
MOBILE DEVICE CLUSTERS AS EDGE COMPUTE
RESOURCES: DESIGN, DEPLOYMENT, AND ROLE IN

THE COMPUTING ECOSYSTEM

A Thesis
Presented to

The Academic Faculty

by

Karim Habak

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

School of Computer Science
Georgia Institute of Technology

August 2018

Copyright c© 2018 by Karim Habak

MOBILE DEVICE CLUSTERS AS EDGE COMPUTE
RESOURCES: DESIGN, DEPLOYMENT, AND ROLE IN

THE COMPUTING ECOSYSTEM

Approved by:

Professor Mostafa H. Ammar,
Co-advisor
School of Computer Science
Georgia Institute of Technology

Professor Umakishore Ramachandran
School of Computer Science
Georgia Institute of Technology

Professor Ellen W. Zegura,
Co-advisor
School of Computer Science
Georgia Institute of Technology

Professor Khaled Harras
School of Computer Science
Carnegie Mellon University Qatar

Professor Ada Gavrilovska
School of Computer Science
Georgia Institute of Technology

Date Approved: May 17, 2018

To my parents, for they unconditional love and support

To my wife and my daughter who shared the whole journey with me and added a

huge amount of love and joy to it.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisors Prof.

Mostafa Ammar and Prof. Ellen W. Zegura for their dedication, availability, guid-

ance, patience, and support. Throughout my PhD journey, they gave me enough

freedom to explore the topics I found exciting and they have always been there to

provide guidance whenever I needed it. They significantly contributed to my academic

development and guided me along the way of becoming an independent researcher.

Their stimulating suggestions have helped me identify my strengths, overcome my

weaknesses, shape my research skills. On a more personal note, they showed me how

to lead by example, became among those who I am always looking up to, and sig-

nificantly contributed to my personal development. To summaries, I cannot imagine

completing my PhD journey without their continuous support.

Looking back at the last 10 years, Prof. Khaled A. Harras stands out among those

who have the most influence on my career and personal life. Despite sharing the same

continent for just around six month in aggregate, he has always demonstrated extreme

levels of availability, support, and compassion. I truly understand and appreciate the

efforts he puts in being available and aware of the details in spite of the distance and

the difference of time zones. I am deeply indebted to Prof. Harras specially when

it comes to my early career and personal development. On a more academic level,

Prof. Harras has always been a truly fantastic mentor/advisor that I am fortunate

to know and work with. His deep insights have significantly helped in shaping my

work and writing about it. His passion working with students and young researchers

makes him an amazing person to work with and learn from.

iv

I am also grateful to the rest of my committee members: Prof. Umakishore

Ramachandran and Prof. Ada Gavrilovska for their helpful comments and insights

that enabled me to improve the work in this thesis. I owe many thanks to Prof.

Constantine Dovrolis, and Prof Jim Xu for their discussions, encouragement, and

suggestions on my research and career. I would also want to thank Dr. Shruti

Sanadhya from HP Labs, Dave Oran from Cisco, and Dr. T. V. Lakshman, Dr. Sarit

Mukherjee, and Dr. Fang Hao from Nokia Bell Labs for hosting me as a summer

intern where I had the chance to work on a set of very interesting research problems

that influenced the work presented in this thesis.

I would also like to thank a group of wonderful colleges in the Networking Re-

search Group at Georgia Tech. Specially, Dr. Cong Shi, Dr. Ahmed Mansy, Dr.

Samantha Lo, Dr. AliReza Khoshgoftar Monfared, Dr. Hyojoon Kim, Dr. Srikanth

Sundaresan, Dr. Robert Lychev, Dr. Sam Burnett, Dr. Bilal Anwer, Dr. Yogesh

Mundada, Dr. Maria Konte, Dr. Abhinav Narain, Dr. Aemen Lodhi, Dr. Saamer

Akhshabi, Dr. Ilias Foudalis, Tarun Mangla, Yimeng Zhao, Sean Donovan, Sathya

Gunasekaran, Kamal Shadi, Kaesar Sabrin, Payam Siyari, and Danny Lee for their

support, encouragement, fruitful discussions and above all friendship.

A special thanks goes to one of my closest friend, Ahmed Saeed, who shared with

me the last 13 years (and counting) of my life and my whole career so far. We started

our research journey together and he has always been there in all the major events in

my life and he was always present whenever I needed him. Our continuous discussions

about work and other aspects of life are always helpful, stimulating, and motivating.

Over the last few years, he and his wife, Heba Kamal, have always been like a family

for me and my wife. We share with them lots of amazing memories that will never be

forgotten. Mentioning family, I can’t forget our American family, Dave Savage and

Beverly Molander. They made our move to the United States easy. They were very

welcoming, supportive, motivating, and above all loving and caring. My wife and I

v

cannot find better ways to describe their rule and impact in our lives other than truly

being a family for us. It is best depicted by our daughter calling them ”grandma

Beverly” and ”grandpa Dave”.

Last but not least, I would like to thank my parents, my brother Ahmed and my

sister Mai for their unconditional love and support. Their rule in my life is beyond

any description. Also nothing can describe how thankful I am to my wife, Sara, for

her love, support, and patience. I would also love to thank my little daughter, Yara,

who brought loads of joy and happiness to our lives. Finally, I cannot forget to thank

my mother in law for her love and support.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xii

I INTRODUCTION . 1

1.1 Thesis Contributions . 4

1.2 Thesis Outline . 6

II RELATED WORK . 7

2.1 Cloud-Based Computational Offloading 7

2.2 Edge Computing . 8

2.3 Workload Management . 9

2.4 Network Measurements . 9

III THE FEMTOCLOUD SYSTEM . 11

3.1 Introduction . 11

3.2 The FemtoCloud System . 13

3.2.1 Assumptions . 14

3.2.2 System Architecture . 14

3.2.3 Implementation . 17

3.3 FemtoCloud Scheduling Problem . 18

3.3.1 Scheduling as Optimization 19

3.3.2 Heuristics . 23

3.4 Evaluation . 24

3.4.1 Experimental Setup . 24

3.4.2 Femtocloud Simulation Results 26

vii

3.4.3 Femtocloud Prototype Evaluation 31

3.5 Summary . 32

IV WORKLOAD MANAGEMENT IN EDGE FEMTOCLOUDS . . 33

4.1 Introduction . 33

4.2 System Architecture . 35

4.2.1 Femtocloud Controller . 37

4.2.2 Femtocloud Helpers . 38

4.2.3 Job Managers . 39

4.3 Workload Management . 39

4.3.1 Job Admission Control . 41

4.3.2 Single Job Task Assignment 42

4.3.3 Multi-Job Helper Queue Management 48

4.3.4 Task Checkpointing . 50

4.4 Mechanism Evaluation . 52

4.4.1 Experimental Setup . 52

4.4.2 Results . 55

4.5 Prototype Implementation and Evaluation 62

4.5.1 System Implementation . 62

4.5.2 Results . 63

4.6 Discussion . 65

4.6.1 User Incentives . 66

4.6.2 Security and Privacy . 67

4.7 Summary . 68

V CHARACTERIZING AND NAVIGATING THE COMPUTE ECOSYS-
TEM . 69

5.1 Introduction . 69

5.2 The Measurement Study . 71

5.3 System Architecture . 72

5.3.1 System Orchestrator . 74

viii

5.3.2 Mobile Agents . 75

5.3.3 Compute Service Providers 76

5.4 Compute Service Provider Selection 76

5.4.1 Single Task Provider Selection 77

5.4.2 Complex Job Approximation 79

5.5 Performance Evaluation . 80

5.5.1 Experimental Setup . 80

5.5.2 Controlled Experiment . 82

5.5.3 In the Wild Experiment . 83

5.6 Summary . 84

VI SUMMARY OF CONTRIBUTIONS AND FUTURE WORK . . 86

6.1 Future work . 87

REFERENCES . 89

ix

LIST OF TABLES

1 List of symbols used . 19

2 Experimental Device’s Characteristics. 25

3 Experimental parameters. The underlined values are the defaults. . . 25

4 Experimental tasks characteristics and evaluation parameters. 26

5 Prototype performance measurements 31

6 Job Parameters . 41

7 Experimental tasks’ characteristics. 54

8 Experimental helper’s characteristics. 54

9 Edge device connections to Amazon EC2 data center in Portland, Oregon 73

10 List of symbols used . 77

x

LIST OF FIGURES

1 Mobile cluster stability spectrum. 2

2 The FemtoCloud system architecture 15

3 Impact of changing device arrival rate and presence time. 27

4 Stability impact. 28

5 Task characteristics impact. 29

6 Robustness to estimation errors. 30

7 System architecture for edge Femtoclouds. 36

8 Critical path, ready section, and stage illustrative example. For sim-
plicity, all tasks are assumed to have equal computational demand . . 44

9 Impact of changing the helper’s arrival rate on the task assignment
performance. 57

10 Impact of helper’s presence time heterogeneity on the task assignment
performance. 58

11 Impact of job arrival rate on the performance of Femtocloud. 59

12 Impact of changing the helper’s presence time on the checkpointing
performance. 60

13 Sensitivity to estimation errors (presence time model parameters and
task compute requirements). 61

14 Impact of helper’s presence time on the performance. 65

15 The System Architecture of the Compute Ecosystem Navigator . . . 73

16 Impact of changing the job feature to boundary ratio in a controlled
setting. 83

17 Impact of changing the job feature to boundary ratio in the wild. . . 84

xi

SUMMARY

Edge computing offers an alternative to centralized, in-the-cloud compute

services. Among the potential advantages of edge-computing are lower latency that

improves responsiveness, reduced wide-area network congestion, and possibly greater

privacy by keeping data more local. However, widely deploying the needed edge-

compute resources requires (1) provisioning the load introduced at various locations,

(2) huge initial deployment cost and management expenses, and (3) continuous up-

grades to keep up with the increase in demand. The availability of under-utilized

mobile and personal computing devices at the edge provides a potential solution to

these deployment challenges. In this thesis, we propose taking advantage of clusters

of co-located mobile devices to offer an edge computing platform. Scenarios with

co-located devices include, but are not limited to, passengers with mobile devices

using public transit services, students in classrooms and groups of people sitting in

a coffee shop. We propose, design, implement and evaluate the Femtocloud system

which provides a dynamic, self-configuring and multi-device mobile cloud out of a

cluster of mobile devices. Within the Femtocloud system, we develop a variety of

adaptive mechanisms and algorithms to manage the workload on the edge-resources

and effectively mask their churn. These mechanisms enable building a reliable and

efficient edge computing service on top of unreliable, voluntary resources. Our work

also includes building a system that enable mobile devices to accurately and efficiently

acquire knowledge of the existing compute service providers, their compute capacities,

and the network parameters while communicating with each of these providers. Such

data is acquired through measurements that involve a set of voluntary mobile devices

and is be used to allow allow mobile devices to select the compute service provider

xii

that matches their demand and meets their target level of quality of experience. The

data acquired by our system can also be used by compute service providers to iden-

tify potential locations for service deployment and discover any shortcomings in their

existing deployments.

xiii

CHAPTER I

INTRODUCTION

Since the 2002 paper by Balan et al. making a case for mobile devices to cyberforage

by finding surrogate (i.e., helper) servers in the environment [9] the research commu-

nity has explored various forms of interaction between mobile devices and fixed, higher

capacity infrastructure, including the cloud. The motivation for this exploration has

been and remains as articulated by Satyanarayanan[49], namely that mobile devices

are resource constrained in comparison with servers, and that users desire high per-

formance applications regardless of the device used to experience the application. By

offloading some computation to more powerful servers, mobile devices can offer a user

experience beyond what local capabilities can support. Further, offloading may allow

mobile devices to save power and extend time between charges.

In addition to questions of performance speedup, energy savings and cost, the

key questions for an offloading system design are: where is the higher performance

capacity, who provides it, and how does it fit into a larger computing ecosystem?

In traditional cloud computing, the higher performance capacity is located in data

centers reached via the Internet and provided by companies that charge for transient

server use. Traditional cloud computing can offer essentially unlimited compute ca-

pacity, but at the price of latency and bandwidth limitations between the mobile

device and the servers in large data centers. In response to these limitations, the

Cloudlet system moves computation closer to mobile devices, creating a two-tier ar-

chitecture where a mobile device can offload to a nearby, less capable server, at low

latency and high bandwidth, rather than (or as a complement to) offloading to the

cloud [48]. In the cloudlet vision, these nearby servers would be located in public and

1

Figure 1: Mobile cluster stability spectrum.

commercial spaces where people congregate, such as coffee shops and airport waiting

areas [48].

Although one could imagine a third-party provider owning and operating these

cloudlets for profit, truly realizing the cloudlet’s vision faces a set of deployment

challenges. First, for every given location, capacity provisioning is needed to ensure

meeting the requirements of the users in this location at any point in time. Second,

the cost of covering the edge with dedicated computing-servers with such provisioned

capacity is extremely high. Finally, the deployed infrastructure will need to be actively

managed continuously upgraded to account for the changes in users-demand. These

challenges form a formidable deployment barrier for cloudlet-like systems despite their

clear advantages.

The availability of mobile and personal computing devices at the edge provide a

potential solution to the cloudlet’s deployment challenges. The fact that these devices

are widely adopted and are often under-utilized suggests that there might be enough

resources at the edge to operate an edge computing service without the need for de-

ploying additional resources. To this end, we propose taking advantage of clusters of

co-located mobile devices and build “femtoclouds” that offer an edge computing plat-

form. We can situate our work relative to other approaches that use mobile devices

to provide a compute service, by examining the stability and predictability along

2

a spectrum as shown in Figure 1. At one end of the spectrum are extremely sta-

ble and deliberately configured clusters such as proposed in the Mont-Blanc project

(www.montblanc-project.eu) where, motivated by energy considerations, a large num-

ber of mobile CPUs are configured in a single chassis. Our settings of interest – coffee

shops, public transit systems and theaters/classrooms – fall in the middle of the

spectrum with different levels of stability. At the other end of the spectrum are

highly mobile and unpredictable devices that are used opportunistically as they are

encountered over time (e.g., Serendipity [54]).

We envision a fully-operational compute service provider that relies primarily

on clusters of voluntary mobile and edge devices to provide the needed compute

resources. To this extent, the main statement in this thesis is: With appropriate

management, mobile device clusters can provide useful and reliable edge

compute resources despite their churn. These clusters can play a major

role and fill in existing gaps in the evolving compute ecosystem. In this

thesis, we investigate the possibility of realizing our vision and take a set of key steps

towards achieving it. To this end, this thesis consists of the following components:

The FemtoCloud System. The first key step towards realizing our vision is to

examine the possibility of orchestrating a collection of co-located mobile devices to

provide an edge computing resource. Specifically, we investigate the scenario where a

collection of mobile devices, with shared compute resources and different availability

periods, exist at some location (e.g., a classroom or a coffee shop). Our main objective

is how to form a single compute resource out of these devices and maximize its

computational throughput. To this end, we propose, design, and implement the

FemtoCloud system that is able to cluster these mobile devices, estimate their shared

compute capacity and availability durations, and use the shared capacity to offer an

accessible computing platform. Within the FemtoCloud system, we formulate the

task assignment and scheduling problem that strives to maximize the computational

3

throughput of the underlying mobile device cluster. Furthermore, we develop a set of

heuristics to efficiently solve our scheduling problem. Finally, we build a prototype

of the system and use it in addition to simulations to evaluate its performance.

Workload Management in Edge Femtoclouds. The natural second step towards

our vision is to extend our architecture to go beyond a single mobile device cluster

and provide a service to job originators that is comparable to that provided by a

centralized cloud service, namely the submission of jobs for completion in a timely

and reliable manner. To achieve these goals, we extend the FemtoCloud system

architecture to be more accessible by mobile devices sharing their resources as well as

job originators. We also introduce a set of more realistic job model and user presence

time model. In addition, we identify the importance of workload management for

providing a reliable service to job originators. Therefore, we design a set of workload

management mechanisms to efficiently manage the available resources and effectively

mask the impact of churn. We implement a system prototype and use it, in addition

to simulations, to evaluate the performance of the system and assess the efficiency of

each of our developed mechanisms.

Characterizing and Navigating the Compute Ecosystem. Finally, a success-

ful compute service provider should be able to coexist with the currently operating

compute service providers. All these providers are key components of large compute

ecosystem where users are able to select which compute service provider to use at any

point in time. Therefore, we use measurements to shed light on the current compute

ecosystem, highlight its complexity, and identify the best way to model its compo-

nents. In addition, we develop mechanisms that help users to adaptively select the

best compute service provider that matches their needs at any point in time.

1.1 Thesis Contributions

In this thesis, we make the following contributions:

4

1. The FemtoCloud System

(a) We design, implement, and evaluate the FemtoCloud system that leverages

the available compute resources on a cluster of mobile devices to offer

compute resource at the edge.

(b) We formulate the FemtoCloud task scheduling problem and develop effi-

cient heuristics to solve it.

2. Workload Management in Edge Femtoclouds

(a) We design a hybrid edge-cloud architecture that utilizes the cloud for man-

agement and to provide a stable service interface while using the edge for

low latency computation.

(b) We develop a set of workload management mechanisms that enable an

edge computing service comprised of mobile devices with churn to serve

directed acyclic graph (DAG) structured jobs.

(c) We implement a prototype of our system that we use to evaluate the per-

formance of the Femtocloud system. We also use simulations to assess the

efficiency of each of our workload management mechanisms, independently.

(d) We perform a pilot study to identify suitable incentive mechanisms to

encourage users to opt in a Femtocloud system and share their mobile

compute resources.

3. Characterizing and Navigating the Compute Ecosystem

(a) We present a measurement study that characterizes the current state of

the compute ecosystem and identify suitable models to abstract its com-

ponents.

5

(b) We design a system and proposed mechanisms that allow mobile devices

to efficiently navigate the increasingly complex compute ecosystem and

efficiently select the compute service provider that matches their needs.

(c) We implement a prototype of our system that we use to evaluate its per-

formance in a controlled settings and in the wild.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents the current state-

of-the-art and discusses the work related to this thesis. In Chapter 3, we investigate

how to form an edge compute resource using a group of co-located voluntary mobile

devices with churn. Chapter 4 presents a set of workload management functions that

enables us to provide a reliable and efficient edge computing service on top of unreli-

able, voluntary resources. We present a measurement study to better understand the

computing ecosystem in Chapter 5. Chapter 6 concludes this thesis, summarizes the

main contributions, and discusses potential directions for future work.

6

CHAPTER II

RELATED WORK

This chapter provides an overview of the work related to this thesis. We start by

presenting the cloud-based computational offloading work followed by the state-of-the-

art in the area of edge computing. We then shed the light on a set of key mechanisms

used for workload management in traditional data centers. Finally, we present an

overview of the techniques used for network parameters measurement and estimation.

2.1 Cloud-Based Computational Offloading

Computational offloading has emerged as a result of the lack of computational re-

sources in the early generations of smart-phones, the limited battery these devices

operate-on, and emerging trends of developing compute intensive applications [21].

Early computational offloading systems argued for offloading the heavy computa-

tions from the resource-constrained mobile devices to the cloud, which has virtu-

ally unlimited compute capacity [53, 19, 17, 34, 29, 56]. For instance, MAUI [19]

and CloneCloud [17] primarily focused on enabling code offloading without placing

too much burden on the application developers. COSMOS [53], however, focused

on building a cost-efficient computational offloading service on top of commercially-

available, on-demand, elastic clouds. These systems demonstrated combined energy-

savings and execution speedups for applications with appropriate properties. In con-

trast, these systems also showed that the communication bandwidth and the latency

between the mobile device and the cloud are the main performance bottlenecks for

the cloud-based computational offloading systems. In addition, they demonstrated

that some applications can tolerate higher communication delays between the mobile

device and the cloud than others.

7

2.2 Edge Computing

To minimize the network delays between the mobile devices and the computing

servers, edge computing proposes bringing compute resources closer to their users.

One early realization of edge computing was Cloudlets, which introduced a middle

tier between mobile devices and traditional clouds [48, 30, 68, 37]. Cisco’s fog com-

puting also shares the same vision of introducing a layer between data centers and

end devices [11, 59, 58, 12]. The end goal of both Cloudlets and fog computing is

covering the edge with dedicated computing servers. Therefore, they share the fol-

lowing key limitations: (1) They need capacity provisioning to ensure meeting the

requirements of the users in a given location at any point in time; (2) Their initial

deployment cost is extremely high due to the need to cover the edge with dedicated

servers; (3) The deployed infrastructure will need to be actively managed and contin-

uously upgraded to account for changes in user demands. These limitations stand as

a formidable barrier that hinders the deployment of either of these systems despite

their clear performance advantages.

To reduce the deployment cost and overhead of edge computing services, re-

cent efforts proposed leveraging the resources of underutilized mobile devices at the

edge [44, 15, 54, 40, 22, 47, 25, 31, 7]. These approaches, however, focus on one

of two extreme scenarios. First, scenarios with extremely high device mobility have

been thoroughly investigated [54, 55, 41]. In these scenarios, forming clusters out

of these mobile device is relatively impractical due their high mobility. Therefore,

these devices can only be used in an opportunistic manner. The second class of sce-

narios suggests that the devices are expected to be available at certain location for

extended periods of time. Therefore, they can be deliberately configured to form a

stable computing cluster [40]. Our work in this thesis fills the gap between these two

extremes. We uniquely propose taking advantage of clusters of devices that tend to

be co-located in places such as public transit, classrooms, theaters, or coffee shops.

8

These locations have some elements of social and/or physical structure that suggest

the ability to predict the device’s availability durations. This information can be

taken into account to build a reliable and efficient edge computing service on top of

unreliable, voluntary resources.

2.3 Workload Management

Workload management plays a major role in any distributed computing system [67,

65]. It consists of a set of functions that optimize the performance of the system

by (1) controlling the admission of new jobs to avoid overwhelming the available

resources [66], (2) allocating enough resources for the admitted jobs [63, 10], (3)

distributing the work on the available compute resources [61, 35, 57], (4) balancing

the load on the existing resources [20, 39], and (3) checkpointing the work in progress

to tolerate faults [64, 5, 23, 14]. Despite the fact that workload management has been

thoroughly studied in the last two decades, there are two fundamental differences in

our environment that require innovations within the femtocloud scope beyond existing

research in workload management: (1) the fragmented and heterogeneous nature of

the compute resources provided by mobile devices, and (2) the potentially significant

but predictable churn in the availability of this compute resource. In this thesis, we

build a set of workload management functions are carefully designed for femtocloud

scenarios. We demonstrate that taking the predictability churn into account leads to

the design of efficient workload management functions that can mitigate the impact

of high churn.

2.4 Network Measurements

Over the years, network measurement has been an actively studied research field.

Two of the heavily studied research directions in this field are (1) network parameters

estimation, and (2) network topology mapping. In network parameters estimation,

the main goal is to develop tools and techniques to estimate the communication

9

parameters (e.g., bandwidth, latency, round-trip time) certain network routes that

connect two or more nodes [45, 60, 43, 32, 50]. In the network topology mapping,

however, the main goal is to have the current view of the network topology that

connects certain entities [6, 16, 38, 18].

To understand the role played by FemtoCloud-like systems in the continuously

evolving compute ecosystem, we need to first have the current view of the network

topology that connects edge devices to the cloud. Therefore, we conduct a measure-

ment study that to understand the network topology and connectivity between a

set of geographically distributed edge devices and different cloud data centers. The

measurements in this thesis belongs to the network topology mapping line of work

and relies on state-of-the-art network measurement tools. In addition, we rely on our

acquired measurements to better model the different compute options in the compute

ecosystem and then develop techniques for selecting which compute option to use.

10

CHAPTER III

THE FEMTOCLOUD SYSTEM

3.1 Introduction

This chapter examines the possibility of orchestrating a collection of co-located mobile

devices to provide a viable compute resource at the edge. We focus on scenarios

of co-located devices that have some elements of social and/or physical structure.

This structure suggests forms of stability and, more importantly, predictability of the

duration of time in which a given mobile device is available to be used as a part of

this compute resource. We use the term “femtocloud” to refer the collection of mobile

devices that are configured into an edge compute resource.

Fortunately, the scenarios that have the needed social and/or physical structure

are very common. For instance, these scenarios include, but are not limited to,

passengers with mobile devices using public transit services, students in classrooms,

and groups of people sitting in a coffee shop. In addition, these scenarios share a set

of properties that help in guiding the design our FemtoCloud System:

• There is a natural owner of the setting who may have a business interest in

providing (or contracting for) a controller that puts this femtocloud together

and makes it work, whether a coffee shop owner, a university, a theater owner,

or a public transport provider.

• Each setting has semantics that suggest forms of stability and, importantly,

predictability in the duration of time that a given device is available for use in

the femtocloud. A classroom has pre-determined time periods of use – during a

scheduled class – and predetermined times when the occupancy will experience

most turnover. Public transportation offers only fixed chances for occupancy

11

change, based on bus or train stops. A coffee shop is more complicated from a

stability and predictability standpoint; for now, we simply observe that coffee

shop patrons fall into at least two classes – those who stand in line, make a

purchase, and leave immediately, and those who linger.

• There is a potential to build trust based on in-person, social relationships.

Coffee shop patrons, students at a university, and public transport riders are

typically repeat customers with a relationship of some form to the owner of the

setting. Repeat participation also provides the potential to learn about devices

and device owners in ways that can optimize femtocloud usage.

• There is a natural form of payment to those who participate, associated with

the setting, such as coffee shop credit, university currency credit, or public

transportation credit. While other forms of compensation for device use are

certainly possible, these options connect the place where the device is used to

the compensation in ways that may be attractive to device owners and the

setting owner.

In this chapter, we propose the FemtoCloud system which provides a dynamic,

self-configuring and multi-device mobile cloud out of a cluster of mobile devices that

exists in one of our scenarios of interest. We present the FemtoCloud system ar-

chitecture designed to enable multiple mobile devices to be configured into useful

edge compute resources despite churn in mobile device participation. Our architec-

ture consists of two main components: A controller that is deployed by the owner of

the setting, and a collection of mobile devices that dynamically come into and leave

our setting. We formulate the FemtoCloud task assignment and scheduling problem

as a mixed integer linear programing problem that takes into account the devices’

availability durations, their capacities and the requirements of the tasks in order to

take an optimal assignment decision. Furthermore, we develop a set of heuristics to

12

efficiently reach an approximate solution of this optimization problem. We build a

prototype of our FemtoCloud system and use it in addition to simulations to evalu-

ate the performance of the system showing its efficiency and ability to leverage the

available compute capacity of the volunteering devices.

The remainder of this chapter is organized as follows. We begin in Section 3.2

with the architecture, identifying functionality to be realized in the controller and in

the mobile devices, and information to communicate within and between the two. We

identify a critical and obvious problem that must be solved at the controller, namely

the scheduling of tasks onto mobile devices where the transmission of data and receipt

of results all happens over a shared wireless channel. We formalize the scheduling

problem and then develop several algorithms in Section 3.3. We evaluate the system

in Section 3.4 using simulations, including those driven by measurements of device

dynamics in different settings. We also describe and report briefly on a prototype

built on Android. We end the chapter with a Summary in Section 3.5.

3.2 The FemtoCloud System

The FemtoCloud computing service executes a variety of tasks that arrive at the con-

trol device. The FemtoCloud client service, running on the mobile devices, estimates

the computational capability of the mobile device, and uses it along with user input

to determine the computational capacity available for sharing. This client leverages

device sensors, user input, and utilization history, to build and maintain a user pro-

file. Afterwards, the service shares the available information with the control device,

which is then responsible for estimating the user presence time and configuring the

participating mobile devices as a cloud offering compute as a service.

In this section, we present the details of the FemtoCloud system. We start with

13

listing our assumptions followed by the detailed description of our architecture de-

picted in Figure 2. Afterwards, we present the implementation details of our proto-

type.

3.2.1 Assumptions

We assume that some users will have the FemtoCloud client service installed on their

mobile devices, and that they are willing to share a portion of their computational

capabilities as a result of different incentives ranging from their willingness to share

resources (as in SETI or BOINC) to direct financial gains. We acknowledge that such

incentive mechanism is essential specially for users with battery operated devices. We

assume that a femtocloud controller is responsible for deciding which mobile devices

will be added to the compute cluster in the current environment.

We assume a general task arrival model where tasks can arrive individually or

in batches following any task arrival distribution. Each of these tasks is a compute

intensive tasks that has its own computation requirements, input data size, and

output data size. We assume that a task assigned to a mobile device needs to be

completed and the results returned to the control device before the mobile device

leaves the cluster. Otherwise, the task is aborted and may need to be re-assigned

and restarted. Based on these task parameters as well as the availability of mobile

devices, the controller builds a task execution schedule and assigns each task to a

mobile device to optimize the metric of interest.

3.2.2 System Architecture

The mobile device functions are performed in the following modules:

User Interface Module: This module obtains user preferences, resource shar-

ing policies and personal profile sharing policy. For instance, the user can configure

this module to share up to certain percentage of his mobile device capabilities, or

contribute to femtocloud only if the battery level is above certain threshold. They

14

Figure 2: The FemtoCloud system architecture

also define policies that dictates whether they are willing to join a femtocloud or

not. These policies are defined by many factors such as available battery level, time,

environment type, etc.

Capability Estimation Module: This module estimates the computational

capabilities of the mobile device including the number of cores in the device and the

available computational capacity. Such computation capacity varies based on the sys-

tem load and whether the device running a power savings mode. The computational

capacity estimate is shared with the control device. Since the estimate may change

over time, this module periodically sends updated estimates to the control device.

User Profiling Module: This module gather data about the user preferences

and behavior in different scenarios to be used for determining his presence time while

joining femtocloud. This module opportunistically mines the gathered data and build

a profile. This module only share the profile with the controller in user accepted

granularity to maintain user privacy.

The control device functions are performed by the following modules:

Execution Prediction Module: In order to efficiently distribute tasks across

15

different processing nodes, the controller should know the execution load introduced

by each of these tasks. To achieve this goal, we rely on the original task source to

provide the controller with this information. However, if the source does not provide

such information, the control device carries the responsibility of connecting to an

execution estimation service to acquire it. Such estimation may be done using the

Mantis system [36].

Presence Time Prediction Module: This module is responsible for predicting

the presence time for femtocloud users. It gathers environment specific data to build

a generic user profile based on the collective behaviors of the users. This profile is

used to estimate the presence time for new users as well as updating the estimates

over time. It also uses specific user profile, if shared, along with this generic profile

to determines his presence time.

Task Assignment and Scheduling Module: This module uses the informa-

tion acquired by the previous modules to iteratively assign tasks to their executing

devices.

The control device collaborates with the mobile devices in the cluster to perform

functions implemented in the following modules which are instantiated in both types

of device.

Local Connectivity Estimation Module: This module estimates the available

bandwidth between the control device and each computing mobile device. Since

these devices are directly connected and relatively static in most of the scenarios,

many techniques can be used to estimate the available bandwidth. Our approach is

to use the wireless signal strength to get the initial estimate of the bandwidth and

then monitor the actual achievable bandwidth while assigning tasks and/or gathering

results to update such estimate.

Discovery Module: This module discovers the available mobile devices that

have the FemtoCloud client service installed. Once a mobile device becomes ready to

16

join a cluster, it sends a registration packet to the control device. This registration

packet can includes an initial estimate of the compute capacity based previous con-

tribution to the FemtoCloud system in similar context and user profile information

to be used for determining his presence time. We also use periodic heartbeats to keep

track of the devices in the cluster and gather more updated information about their

shared computational capacity.

3.2.3 Implementation

To assess the feasibility of FemtoCloud and evaluate it, we implement a FemtoCloud

prototype in Android.

We implement the control device to hold the responsibility of providing an in-

terface to the task originators and to manage the mobile devices inside the cloud.

The interface to the task originators enables them to send the code for the desired

computation coupled with their input data and to receive the results once they be-

come available. The control device works in collaboration with the FemtoCloud client

service installed in the mobile devices to acquire information about the device charac-

teristics and user profiles. The service uses such information to assign task to devices

according to a heuristic which will be described in the next section. To minimize

the communication overhead and enhance performance we first use persistent TCP

connections between each mobile device and the control device to avoid the delays

introduced by the protocol’s handshaking and slow start mechanisms. We also allow

the control device to act as a WiFi hotspot allowing the mobile devices to connect to

it using infrastructure mode.

Note that there is no contention for the communication channel between the con-

trol device and the mobile devices in the cluster due to our scheduling technique. For

communication from the mobile devices to the control device there will be two types:

1) short notifications and alerts that are allowed at any time and may contend for the

17

channel, and 2) possibly longer communication needed to return computation results

to the controller which are scheduled by the control device.

We implement the FemtoCloud client service as an Android application that allows

the user to enter preferences and resource sharing policies. Once a user accepts to

share a portion of the mobile device’s resources and select the granularity of sharing his

profile with the controller, it connects to the WiFi network offered by the controller.

Upon successful connection, this service holds the responsibility of estimating the

mobile device capabilities and sharing them with the controlling device. In addition,

it works in collaboration with the control device to estimate the available bandwidth

between the mobile device and the control device as well as the user presence time.

More importantly, it carries the responsibility of executing tasks assigned to it by

the controller. Upon completing the execution of a task, the client service stores the

results, notifies the control device regarding the availability of such results, and starts

executing other assigned tasks, if any. Finally, once it receives a request for the results

from the controller, it sends the available results to the controller, deletes them and

erases any stored state information about the task.

3.3 FemtoCloud Scheduling Problem

The scheduling algorithm that runs at the controller is critical to the performance

of the system. The scheduler must assign tasks to available devices to maximize the

metric of interest, while managing device churn. The task assignment problem differs

from standard parallel task assignment because sending and receiving tasks takes

place over a shared wireless channel and because we assume that if a device departs

prior to completing and delivering its task result, the task must be reassigned and

restarted from the beginning. These two constraints place a priority on getting tasks

assigned quickly, executed well within estimates of device persistence, and results

returned quickly to the controller. While other metrics are possible, we focus on

18

Table 1: List of symbols used
Symbol Description
Bk The available bandwidth at the kth device
Ck The shared processing capacity of

the kth device
T d
k The departure time of the kth device
Ei The execution load of the ith task
Ii The size of the transferable input data and

executable code of the ith task
Ri The size of the results of the ith task
xik Equals 1 if the ith task is assigned to the

kth device and equals 0 otherwise
n Number of tasks waiting for assignment
m Number of devices in the cluster

maximizing the “useful computation”, defined as total computation completed by

the system.

We begin by formulating the problem as an optimization problem, assuming per-

fect knowledge of device capabilities (computation and bandwidth) and departure

time. We then describe a greedy heuristic based on insights gained by solving the

optimization problem on small instances.

3.3.1 Scheduling as Optimization

Table 1 summarizes the system parameters and notation used in the optimization. We

assume the scheduler must distribute a batch of n tasks across the available mobile

devices and gather their results. We assume that our cluster consists of m mobile

devices with users willing to share their computation capabilities. Let Ck denote

the shared computation capability of the kth mobile device, Bk denote the available

communication bandwidth between this device and the controller, and T d
k denote the

departure time of this device. For each of the n tasks, Ei denotes the execution load

introduced by task i, Ii denotes the size of the code and its inputs, and Ri denotes

the size of results of the same task.

Our goal is to determine a complete task-execution schedule. For each task, the

19

scheduler determines which device to assign the task to, when to send the task to the

device, and when to schedule the return of the result. The overall objective of the

task-execution scheduler is to maximize the overall cluster’s useful computations:

Maximize C =
∑
i

Ei
∑
k

xik (1)

where C is the completed computational load and Ei is the execution load introduced

by the ith task.

The decision variables are: (1) xik,∀i, k where xi,k equals 1 if task i is assigned

to device k and equals 0 otherwise. (2) The times of assigning a task to a processor,

executing it, and sending its results to the controller. Therefore, solving this opti-

mization produces not only a task assignment table but also a complete schedule for

task transmission, execution and results transmission.

The following constraints must be satisfied: Integral Association: Each task

should be assigned to at most one mobile device:

∑
k

xik ≤ 1, ∀i (2)

Task Execution Schedule: For each assigned task, the elapsed time from the start

of a task assignment to the start of its execution must be sufficient for a complete

transmission of its code and data. In addition, the elapsed time from the start

of executing a task to the start of sending its results back must be sufficient for

completing its execution.

TE,i −

(
TS,i + Ii

∑
k

xik
Bk

)
≥M

(∑
k

xik − 1

)
,

TR,i −

(
TE,i + Ei

∑
k

xik
Ck

)
≥M

(∑
k

xik − 1

)
 ∀i (3)

Where, for the ith task: TE,i is the starting time of its execution, TS,i is the starting

time of sending it to its executing processor, TR,i is the starting time of sending its

20

results, Ii is the size of the transferable input data and codes of the task and Ck is

the processing capacity of the kth processing node.

Processing Node Availability: For each assigned task, the controlling node must

completely receive the results before arriving at the next station.

TLimit −

(
TR,i +Ri

∑
k

xik
Bk

)
≥M

(∑
k

xik − 1

)
, ∀i (4)

Where TLimit is the time needed to reach the next station, TR,i is the starting time

of sending the results of task i, Ri is the size of the results of the ith task, Bk is the

communication bandwidth between the controller and processing node k, and M is

a very large number used for constraint linearization. Basically, this constraint will

become TLimit −
(
TR,i + Ri

Bk

)
≥ 0 if the ith task is assigned to processing node k and

become TLimit ≥ −M if the task is not assigned to any processing node.

Wireless Channel Access Schedule: Since the processing nodes uses the shared

wireless media to exchange data and results with the controlling node, overlapping the

communication between different tasks will introduce delay for each of them. Such

delay will lead to a decrease in our system performance. Therefore, one of our main

design decisions is to avoid any overlapping communication between different tasks.

To enforce such decision we use the following constraints:

TS,i + Ii
∑
k

xik
Bk
− TO,j ≤M (1− zi+j+) ,

TS,i + Ii
∑
k

xik
Bk
− TR,j ≤M (1− zi+j−) ,

TR,i +Ri

∑
k

xik
Bk
− TO,j ≤M (1− zi−j+) ,

TR,i +Ri

∑
k

xik
Bk
− TO,j ≤M (1− zi−j−) ,


∀i,j, i 6= j (5)

Where zi±j± reflects the order of media access operations, + refers to the operation

of sending a task to its executing processor, and − refers to the operation of sending

21

the results. For example, zi−j+ equals 1 if the ith task will finish sending its results

before the jth task starts its assignment process.

To maintain consistency and correctness while setting the values of zi±j± , we use

the following constraints:

zi±j± + zi±j± − 1 ≤M

(
1−

∑
k

xik

)
,

zi±j± + zi±j± − 1 ≤M

(
1−

∑
k

xjk

)
,

zi±j± + zi±j± + 1 ≥
∑
k

(xik + xjk)


∀i,j,i6=j

Processor Access Schedule: The following constraint is used to avoid overlapping

the execution of tasks that are assigned to the same processor.

TE,i + Ei
∑
k

xik
Ck
− TE,j ≤M (1− yij) ,∀i, j (6)

Where yij reflects the execution order of tasks i and j if they are assigned to the same

processor. yij equals 1 if tasks i and j are assigned to the same processor and task

i will be executed before task j. Since yij becomes one of the decision variables, we

use the following constraint to insure that their values are consistent:

yij + yji ≤ 1, ∀i,j

yij + yji ≥ xik + xjk − 1, ∀i,j,k, i 6= j

Variable Ranges: The trivial constraints for the range of the decision variables are

as follows:

xik, yij, zi±j± ∈ {0, 1} ∀i,j,k

0 ≤ TS,i, TE,i, TR,i ≤ TLimit

Generally, this task assignment problem is a mixed 0-1 integer programming prob-

lem that can be shown to be NP-Complete. However, this problem definition guides

us towards developing heuristics for task assignment and gathering of results.

22

3.3.2 Heuristics

Task Assignment Heuristics: To provide an efficient solution for our task assign-

ment problem, we adopt an iterative greedy approach to assigning tasks to mobile

devices. Our approach is based on three key ideas: (1) To maximize the efficiency

of utilizing the communication channel, tasks with higher computational requirement

per unit data transfer (Ei
Ii+Ri

) are prioritized. This approach increases the efficiency of

using the mobile devices because it increases the probability of keeping device CPUs

busy with tasks that require a lot of compute power while buffering new tasks at the

controller. (2) To maximize the useful computation and increase processor utiliza-

tion, the task is assigned to the mobile device that enables getting its results earlier

regardless of the time taken to send the results of previously assigned tasks as long as

(i) it will be able to send the results before leaving the cluster and (ii) it maintains the

feasibility of receiving the results of the previously assigned tasks. (3) To maximize

the amount of tasks executed by the cluster, the controller assigns as many tasks as

it possibly can before a results gathering event is triggered by our results gathering

heuristics.

Results Gathering Heuristics: Determining when to start gathering the available

results from the devices is a very important question. Premature gathering of results

wastes an opportunity of sending more tasks to the executing nodes and increasing

computational throughput. Late gathering, however, risks wasting a portion of the

results and having to reassign some incomplete tasks, which decreases the computa-

tional throughput. Therefore, we adopt two mechanisms while gathering results: (1)

essential gathering mechanism and (2) early gathering mechanism.

The essential gathering mechanism clusters the results that have to be transmitted

together and sends them in the following case:

Tremaining < (1 + α)Tneeded

23

where Tremaining is the remaining time before the deadline, Tneeded is the needed time to

completely send these results to the controller, and α is a safety factor determined by

the controller based on how accurate its estimates are about the available bandwidths

and the departure times. We highlight that once the essential gathering event is

triggered, we use “earliest deadline first” heuristic to gather the clustered results.

The early gathering mechanism utilizes the network in case of the absence of

feasible assignment of new tasks to obtain the results. This approach keeps gathering

one-task result at a time from the available results with the soonest deadline, until a

new task arrival occurs or a change of the system status and parameters takes place.

3.4 Evaluation

In this section we evaluate the performance of the FemtoCloud system, We start by

describing our experimental setup followed by presenting and analyzing our results.

3.4.1 Experimental Setup

To have a realistic performance evaluation, we start by identifying the available capac-

ity in real mobile devices, and the compute requirements of real applications. First,

we conduct a measurement study running a matrix multiplication application, we

develop, with different preset computational loads (MFLOPs) on a set of mobile de-

vices. We summarize the results of this study in in Table 2, which shows the average

background thread capacity for the mobile devices. We conduct another measurement

study to determine the compute resource usage of different real applications. Table 4

summarizes this study and shows the compute resource usage of the following three

applications: (1) Chess game in high difficulty mode, (2) a video game called Angry

Bird Space, and (3) Object recognition in a video feed (Video Processing). In our

evaluation, we use the results of these studies coupled with a newly defined compute

intensive application.

Tables 2, 4, and 3 summarize our experimental parameters. Throughout our

24

Table 2: Experimental Device’s Characteristics.
Devices Computation Capacity

Galaxy S5 3.3 MFLOPS
Nexus 7 [2012] 7.1 MFLOPS
Nexus 7 [2013] 8.5 MFLOPS
Nexus 10 [2013] 10.7 MFLOPS

Table 3: Experimental parameters. The underlined values are the defaults.
Parameter Values

Chess input size (MBytes) [0.5, 2, 16]
Average user arrival rate (user/min) [2, 8]

Average user presence time (min) [0.25, 2, 5]
Average device’s available bandwidth (Mbps) 20

Average presence error ratio (%) [-50, 0.0, 50]

evaluation, we use a Poisson arrival process to model the arrival of new users as well

as the arrival of new tasks. We use the following performance metrics:

• Computational Throughput: This is the average amount of useful compu-

tations finished by our femtocloud per second (MFLOPS).

• Compute Resource Utilization: This is the average utilization of the com-

pute resources in our cluster. To calculate this utilization, we only consider

useful computations, which belong to tasks completed by femtocloud.

• Network utilization: This is the average busy time of the network for sending

tasks or receiving results.

Overall, we conduct two different sets of experiments. The first set of experiments

(Section 3.4.2) aims for understanding the effect of different environmental parame-

ters on the performance of femtocloud. In these experiments, we simulated different

environments and studied the effect of different parameters in the performance of fem-

tocloud. The second set of experiments (Section 3.4.3) sheds light on the performance

of our developed prototype.

25

Table 4: Experimental tasks characteristics and evaluation parameters.
Task Type Input Computation Output arrival rate

Chess 2 MBytes 10 MFLOPs 0.2 MBytes 1 task/sec
Video Game 0.2 MBytes 30 MFLOPs 2 MBytes 2 task/sec

Video Processing 3.125 MBytes 60 MFLOPs 1 MBytes 1 task/sec
Compute Intensive 8 MBytes 100 MFLOPs 0.5 MBytes 0.5 task/sec

3.4.2 Femtocloud Simulation Results

In this section, we study the impact of changing different environmental parameters

on the performance of femtocloud. We start by studying the impact of user arrival

rate and presence time followed by the true effect of stability in the system. We

also study the impact of changing task characteristics and robustness to estimation

errors. In a subset of these experiments, we compare femtocloud against a presence

time oblivious scheduler (PreOb). Such scheduler uses the same task assignment

heuristic used by femtocloud but without taking the presence time of a device into

account. Due to its unawareness of the presence time, it requests the results from the

device one they become available.

Impact of changing user arrival rate and presence time: Figure 3 shows the

effect of changing the average user presence time and the average user arrival rate on

the performance of femtocloud. Figure 3(a) shows that the increase in the presence

time or the user arrival rate, significantly enhances the performance and increases the

femtocloud’s computational throughput. This increased computational throughput

saturates for large values of the arrival rate or the presence time. To explain the

reason behind this saturation, we refer to Figure 3(b), which clearly shows that the

network utilization increases as more tasks get assigned to our devices until it becomes

highly utilized and unable to support more task assignments.

Figure 3(c) shows that the devices’ utilization decreases with the increase of the

presence time or the arrival rate. This decrease is due to having a lot of available

devices in the system which enables distributing the load on them and minimizing

26

1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0

Presence Time (min)

C
o

m
p

u
ta

ti
o

n
 T

h
ro

u
g

h
p

u
t

(M
F

L
O

P
S

)

rate = 2 Devices/Min
rate = 4 Devices/Min
rate = 6 Devices/Min
rate = 8 Devices/Min

(a) Computational Throughput

1 2 3 4 5

0
2

0
4

0
6

0
8

0
1

0
0

Presence Time (min)

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 (

%
)

rate = 2 Devices/Min
rate = 4 Devices/Min
rate = 6 Devices/Min
rate = 8 Devices/Min

(b) Network Utilization

1 2 3 4 5

0
2

0
4

0
6

0
8

0
1

0
0

Presence Time (min)

C
o

m
p

u
ti
n

g
 P

o
w

e
r

U
ti
liz

a
ti
o

n
 (

%
)

rate = 2 Devices/Min
rate = 4 Devices/Min
rate = 6 Devices/Min
rate = 8 Devices/Min

(c) Computational Resource Utilization

Figure 3: Impact of changing device arrival rate and presence time.

their utilization and overhead.

Stability Impact: Guided by the derivations we draw from Figure 3(c), it is critical

to understand the true impact of the increased user presence on the system indepen-

dent of the changes to the available compute resources. Therefore we construct an

experiment in which we fix all the parameters in the system except the presence time

27

0.5 1.0 2.0 5.0 10.0 50.0

0
5

1
0

1
5

2
0

2
5

3
0

Presence Time (min)

C
o

m
p

u
ta

ti
o

n
 T

h
ro

u
g

h
p

u
t

(M
F

L
O

P
S

)

FemtoCloud
PreOb

(a) Computational Throughput

0.5 1.0 2.0 5.0 10.0 50.0

5
0

6
0

7
0

8
0

9
0

1
0

0

Presence Time (min)

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 (

%
)

FemtoCloud
PreOb

(b) Network Utilization

0.5 1.0 2.0 5.0 10.0 50.0

5
0

6
0

7
0

8
0

9
0

1
0

0

Presence Time (min)

C
o

m
p

u
ti
n

g
 P

o
w

e
r

U
ti
liz

a
ti
o

n
 (

%
)

FemtoCloud
PreOb

(c) Computational Resource Utilization

Figure 4: Stability impact.

of the devices. In this experiment we have three devices (a Nexus 10 and 2 Nexus

7 devices) and we change the average user presence time from 15 sec to 1 hour. To

isolate the effect of presence time, once a device leaves our cluster an identical copy

arrives and joins the cluster. Figure 4 shows the results of these experiments and

compares femtcloud to the presence time Oblivious scheduler (PreOb). Figure 4(a)

28

0.5 1.0 2.0 5.0 10.0

0
2
0

4
0

6
0

8
0

1
0
0

Input Size (MBytes)

C
o
m

p
u
ti
n
g
 P

o
w

e
r

U
ti
liz

a
ti
o
n
 (

%
)

FemtoCloud

PreOb

(a) Computational Resource Utilization

0.5 1.0 2.0 5.0 10.0

5
0

6
0

7
0

8
0

9
0

1
0
0

Input Size (MBytes)

N
e
tw

o
rk

 U
ti
liz

a
ti
o
n
 (

%
)

FemtoCloud

PreOb

(b) Network Utilization

Figure 5: Task characteristics impact.

and Figure 4(c) shows that with the increase of the presence time, both algorithms

utilizes the stability to gain more performance. femtocloud’s awareness of the pres-

ence time enabled it to achieve higher performance than PreOb for low presence time

values. Figure 4(b) shows that the femtocloud’s increased performance comes with

lower network utilization. The main reason is that without the knowledge of the pres-

ence time, PreOb assigns tasks to devices that may not be able to execute them and,

thus, it may have to reassign them again to another device. This behavior keeps the

network unnecessary busy. Figure 4(b) also shows that with the increase of presence

time femtocloud becomes able to execute tasks that require high compute resource

and low network usage. Therefore, the more stable the devices in the femtocloud the

less it consumes from the network resources.

Task characteristics impact: To study the impact of changing the task char-

acteristics, we conduct an experiment that has only single type of tasks (Chess).

While maintaining the average computational requirements and average output size

as constants, we vary the input size from 0.5 MBytes to 16MBytes. Figure 5 shows

29

−40 −20 0 20 40

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Error Mean Percentage (%)

C
o
m

p
u
ti
n
g
 P

o
w

e
r

U
ti
liz

a
ti
o
n
 (

%
)

FemtoCloud

PreOb

(a) Computational Resource Utilization

−40 −20 0 20 40

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Error Mean Percentage (%)

N
e
tw

o
rk

 U
ti
liz

a
ti
o
n
 (

%
)

FemtoCloud

PreOb

(b) Network Utilization

Figure 6: Robustness to estimation errors.

the impact of increasing the task input size on the performance of femtocloud. It

is clear that with the increase of the input size, the task characteristics moves from

being CPU bounded, which enables increasing the compute resource utilization, to

be fully Network bounded. Therefore the compute resource utilization decreases and

the network utilization increases.

Robustness to estimation errors: To measure the impact of errors in estimating

the presence time of the user on the system, we conduct an experiment in which we

introduce an Gaussian error and changed the mean from -50% of the presence time to

+50% of the presence time. Figure 6 shows that when the error mean is 0, femtocloud

is able to achieve the highest utilization of the available devices. When the error

is negative, we have a conservative estimate about the presence time which limits

femtocloud usage of a device, which leads to decreasing the compute and network

utilization. When the error is positive the computational utilization degrades because

femtocloud fails to gather all the executed task results. Note that our early gathering

heuristic is responsible for minimizing this effect. Figure 6(b) shows that the network

30

Table 5: Prototype performance measurements
Scenario Oracle femtocloud

Full presence 16.54 MFLOPS 14.23 MFLOPS
Emulated arrival/departure 10.31 MFLOPS 8.86 MFLOPS

utilization keeps increasing because femtocloud keeps assigning tasks more and more

tasks while moving from a conservative estimate to a less conservative one. Further

more, when the error becomes positive, the network utilization will further increase

due to reassigning tasks after a device leaves without sending their results.

3.4.3 Femtocloud Prototype Evaluation

In this section, we discuss the results we gathered while using our prototype. In our

experiment, we use three devices, a Galaxy S5 running Android 4.4.4 in addition

to a Nexus 10[2013] and a Nexus 7[2013] tablets running Android 5.0.2. In this

experiment, we compare the performance of femtocloud to an oracle which assumes

accurate knowledge of all connectivity and execution time for every task on every

device. Since this oracle is impossible, we gather measurements from all the devices

and use after the fact analysis get the results.

In our experiment, we compare the achieved compute throughput by the oracle

and femtocloud under two scenarios: (1) Full presence scenario, and (2) Emulated

arrival/departure scenario. In the first scenario, we assume that the three devices

existed during the whole period of experiment (1 hour). The main goal of this scenario

is comparing the maximum achievable performance of femtocloud to the one achieved

by the oracle. In the second scenario, we emulate average presence time of two minutes

for each device. We emulated the arrival of new devices by returning the device to

the cluster after average of one minute from its last departure. Table 5 summarizes

these experiment results and shows that femtocloud achieved more than 85% of what

the oracle achieved in both scenarios.

31

3.5 Summary

In this chapter, we have designed, implemented, and evaluated the FemtoCloud sys-

tem that leverages the available compute capacity on a collection of co-located mobile

devices to form an edge compute resource. We presented the design and architecture

of the system. We identified the task scheduling problem as an important part of

the design of such a system and developed an optimization framework that led us to

scalable heuristic solution to the problem. Our evaluation demonstrated the potential

for femtocloud clustering to provide a meaningful compute resource at the edge.

As mentioned previously, building the FemtoCloud system that forms a meaningful

and efficient compute resource out of a single cluster of mobile devices with churn lays

the foundation towards building a mobile-cluster based compute service provider. In

the following chapters, we are building on this FemtoCloud system and extend it in

multiple directions.

32

CHAPTER IV

WORKLOAD MANAGEMENT IN EDGE

FEMTOCLOUDS

4.1 Introduction

In this chapter, we build on our previous work, presented in chapter 3, by addressing

the full requirements of workload management in Femtoclouds and the system cov-

erage beyond a single mobile device cluster. At a high level, these functions enable

a Femtocloud to provide a service to job originators that is comparable to that pro-

vided by a centralized cloud service, namely the submission of jobs for completion

in a timely and reliable manner1. Further, because the Femtocloud comprises mo-

bile device helpers, the system must provide an interface for these devices to opt in

and out. Under the covers, the system must manage a continually changing pool of

helpers, assigning and moving computational work in response to job demands and

device churn.

We begin with the observation that selective use of the cloud for control and

management allows a Femtocloud to retain deployment advantages while significantly

increasing the opportunity to provide a stable interface to both job initiators and

willing helpers. In particular, a controller in the cloud can serve as the persistent and

well-known contact point to receive jobs for processing, to receive helper requests to

join, and to monitor helpers during job execution.

A cloud-based controller is a good starting point towards a stable service, but a

1Some cloud services provide dedicated servers. That is clearly not possible with mobile device
clusters, and instead we focus on a comparable job processing service.

33

collection of additional workload management functions are needed to further over-

come and mask the effects of device churn. These functions bear some similarities

to those used in traditional computation services (e.g., admission control, job/task

assignment), however they depart from tradition by making primary the assumption

that compute resources are highly dynamic.

These functions are required to enable the system to receive compute jobs from

job originators and enable mobile devices called helpers to process them in a reliable

and scalable manner. The system should also be able to handle a large class of jobs

including those that consist of multiple interdependent tasks, where the dependency

can be modeled with a directed acyclic graph (DAG). Mobile devices should be able

to opt in the system to act as helpers and share their resources at any point in time

regardless of their location. The system has to efficiently handle churn of helpers since

devices may leave at any point in time due to user mobility, resource limitations, lack

of connectivity and/or energy constraints.

In this chapter we develop a modified system architecture that relies on the cloud

to efficiently control and manage a Femtocloud. Within this architecture, we develop

adaptive workload management mechanisms and algorithms to manage resources and

effectively mask churn. These mechanisms include: (1) An efficient admission control

mechanism designed to maintain system stability and avoid helper overload. (2) A

task assignment algorithm that incorporates and adapts to critical path scheduling

to suit the highly-dynamic and heterogeneous environment inherent in mobile device

clusters. (3) A checkpointing mechanism to avoid losing the results of critical tasks

after being completed due to helper churn. (4) A helper queue management algorithm

that ensures fair resource allocation between the jobs that share the same helper.

We implement a prototype of our Femtocloud system on Android devices and uti-

lize it to evaluate the overall system performance. We also use simulation to isolate

and study the impact of each of our workload management mechanisms, and test the

34

system at scale. Our prototype results demonstrate the efficiency of the Femtocloud

workload management mechanisms specially in situations with potentially high churn.

In particular, when the helper churn is relatively high, the Femtocloud workload man-

agement mechanisms workload management can reduce the average job completion

time by up to 26% compared to the CPOP scheduling algorithm [61] which is used

in traditional cloud computing systems. In larger scale experiments, our simulations

showed that our admission control mechanism maintains the stability of the system

regardless of the job arrival rate. In addition, using our checkpointing mechanism

further reduces the average job completion time achieved by our task assignment

mechanism by up to 31%.

The rest of this chapter is organized as follows. Section 4.2 describes the details

of the Femtocloud system architecture. Section 4.3 develops the details of the work-

load management functions within the Femtocloud architecture. Section 4.4 show

results that assess the efficiency of each of our workload management mechanism in-

dependently. Section 4.5 presents details of our prototype implementation and the

performance evaluation of the whole system in a small-scale scenario. Section 4.6

addresses the challenges associated with large scale deployment. In particular, it

discusses how to provide users with incentives to share their compute resources and

surveys mechanisms to protect the Femtocloud architecture against malicious helpers

and/or job originators. Finally, Section 4.7 summarizes our chapter.

4.2 System Architecture

In this section, we provide an overview of the Femtocloud system and its main ar-

chitectural components depicted in Figure 7. It consists of three main components:

a Femtocloud controller running on the cloud that manages the available compute

resources and provides the initial interface to job originators and helpers; a set of

35

Figure 7: System architecture for edge Femtoclouds.

mobile devices running a helper client application and sharing portions of their com-

pute resources; a set of job managers each of which is responsible for managing only

a single job, taking over the interaction with the originator and the helpers for a

certain job after the controller has accepted the job. Hence, job managers provide

functional separation between the work to accept a job and the work to manage a

job to completion. For scalability, they allow the work of run-time job management

to be distributed. A job manager may be located in the cloud or, if appropriate, at

a helper willing to take on more than just job computation. Furthermore, if a job

manager can be located near its job originator and/or its helper set, rather than in

the cloud, there may be performance advantages.

We assume that each job is represented by a directed acyclic graph (DAG) where

each node in the graph is a task and a directed edge indicates a completion depen-

dency. Each task node is labeled with an estimate of the computational requirement

36

of the task; each edge is labeled with an estimate of the communication requirement

to send the task results to downstream tasks that depend on them. This job model

covers a wide range of applications, though clearly not all possible jobs. In particular,

jobs whose task structure and requirements change at run-time do not fit this model.

We now provide the details of the three main architectural components (depicted

in Figure 7).

4.2.1 Femtocloud Controller

The Femtocloud controller provides a registration and management interface for users

who have a job to execute or helper resources to share. To maintain system relia-

bility, the Femtocloud controller is deployed on a commercial cloud (e.g., Amazon

EC2 or Windows Azure). Figure 7 illustrates the main components of the Femto-

cloud controller. To support helper management, the controller periodically collects

information about helper status, user profiles, and resource availability through the

helper tracker function. It uses the gathered information to model individual device

churn using the presence time modeling agent. These models are later shared

with the job managers to be used for task assignment and job management purposes.

The controller also collects information about a helper’s network connectivity and

use it in deciding which helpers to use for which jobs. As a simple example, a job

that requires a large amount data to be moved between between dependent tasks is

ideally scheduled on helpers that are close to one another (in network terms).

In addition to helper monitoring, the controller is also responsible for job admission

and resource allocation. When a new job arrives, the job admission and manager

assignment agent first decides whether or not the job can be accepted and executed

by the Femtocloud cluster using the algorithm presented in Section 4.3.1. If accepted,

the controller spawns a job manager in the cloud to handle the recently accepted job.

The controller may then migrate the job manager to the task originator or one of the

37

helpers to enhance communication efficiency and increase responsiveness. It periodi-

cally communicates with the job manager to collect job progress updates through the

job tracker. It also handles the job manager’s resource allocation requests using the

job resource manager.

4.2.2 Femtocloud Helpers

A Femtocloud helper is a client application responsible for executing assigned com-

putation tasks. A user first needs to configure his/her personalized resource sharing

policy and privacy requirements via the user interface module. These policies

influence the behavior of the user profiling agent, by dictating what is allowed

and not allowed with respect to monitoring user mobility and device usage patterns.

User profiles are generated and shared with the Femtocloud controller based on user-

defined privacy constraints. Additionally, the helper monitors the CPU and memory

usage using the resource monitoring agent, and implements the power manager

functionality which tracks the available battery level on the device. All this infor-

mation is periodically shared with the controller and any job managers to which the

helper has been assigned.

To support task assignment that is cognizant of network performance, each helper

implements a network manager that monitors the available network interfaces to

estimate the bandwidth and the round trip time (RTT) while communicating with

other entities (controller, job originators, and other helpers).

Each helper has a pool of tasks assigned to it by job managers. It also has a set of

worker modules each of which is in charge of a single shared CPU resource (e.g., core).

Once a CPU resource becomes available, the worker in charge of that resource picks

up a task from this pool using the algorithm described in Section 4.3.3 in order to

provide fairness among different jobs. Once the task completes execution, the worker

writes the task’s results and state information to the task data storage.

38

4.2.3 Job Managers

A job manager is responsible for handling only one job and dealing with the job’s

originator. It starts as a service at the controller and can then be migrated to one

of the helpers or the job originator to enhance communication efficiency and increase

responsiveness while handling originator requests and/or managing helpers. Once

started, a job manager analyzes the task dependency graph of its associated job to

determine its critical portions and overall resource requirements using the job ana-

lyzer. Based on this information, the resource negotiator contacts the controller

seeking resources as needed. We describe the details of the resource allocation and

negotiation process in Section 4.3.2.2. Once a set of helpers are assigned to the job

manager by the controller, the job manager periodically collects information about

the available resources at these helpers through the helper tracker. It also collects

information about the helper network connectivity using the network manager.

The job manager’s main function is to quickly complete the associated job and re-

turn the results to its originator. To achieve this goal, the task assignment module

uses the available information about tasks and helpers to assign tasks accordingly.

We present the details of the task assignment mechanism in Section 4.3.2.3. It, fur-

ther, tracks the progress of the assigned tasks using the task tracker. To mitigate

the effect of churn and avoid re-executing tasks upon a departure of a helper, the job

checkpointing module selectively backs up the results of a subset of the completed

tasks on a selected set of helpers as well as the cloud using the algorithm described

in Section 4.3.4.

4.3 Workload Management

A brief scenario would best explain the breakdown and interaction between each

of the mechanisms described in subsections 4.3.1 through 4.3.4. We begin with a

Femtocloud controller running in the cloud and actively managing a group of helpers

39

sharing some compute resources and running tasks assigned to them by a set of

active job managers. When a new job is created at a job originator, this originator

contacts the Femtocloud controller inquiring whether or not it can help execute this

new job. The controller initially relies on our admission control mechanism presented

in subsection 4.3.1 to decide whether to accept or reject this job. If accepted, the

controller instantiates a new job manager to assign job tasks to various helpers as

described in subsection 4.3.2. This new job manager analyzes the task dependency

graph of the job and identifies its critical sections, divides the job into stages to

mitigate churn (i.e., impact of helper/resource departure), requests resources on-

demand, and distributes tasks across available helpers accordingly. Since a single

helper can be assigned to multiple job managers, we use the algorithms described

in subsection 4.3.3 to achieve a fair compute resource distribution across jobs on a

given helper. Finally, once a helper finishes executing a task, the job manager may

decide to replicate the results of the task on multiple helpers and/or in the cloud to

avoid the need for re-executing these tasks to further mitigate helper churn. This

checkpointing mechanism is described in subsection 4.3.4.

All our mechanisms and algorithms rely on the structure of the job DAG and

on estimates of job computation and data requirements. The set of parameters rep-

resenting these requirements is shown in Table 6. Note that the DAG structure of

jobs has been thoroughly studied and is widely used [51]. In addition, we only need

estimates for computation and data parameters to guide our decision making. These

estimates can be obtained using techniques such as those outlined in [17]. The effect

of errors in these estimates is evaluated in Section 4.4.

40

Table 6: Job Parameters
Symbol Description

cT Compute (processing) requirement of task T
oT The size of the output of task T
eT The size of the executable code coupled with

the external data needed by task i
dTk Determines whether task T requires the output

of task k to start executing (1) or not (0)
fT Determines whether the helpers have finished

executing task T (1) or not (0)

4.3.1 Job Admission Control

A Femtocloud strives to minimize the job completion time and enhance its users’

quality of experience under the constraint of not overwhelming the helpers. There-

fore, it is critical for the Femtocloud controller not to accept incoming jobs that will

overwhelm the helpers and are beyond the system capacity. There are many options

for the admission control policy, and our aim in this paper is not to explore them in

detail. Instead, we use a simple job admission policy in which the controller accepts

new jobs based on progress towards completion of the jobs already in the system.

Specifically, if the total relative work remaining on existing jobs is above a threshold,

the new job is rejected. An appropriate value for the threshold can be learned and

adapted over time using measurements of completion time for jobs, average level of

work parallelization for jobs, number of helpers in the system, and average helper

utilization.

To apply our admission control policy, only the job progress information is pe-

riodically reported from active job managers to the controller. The current relative

progress of a job is calculated at the job manager using the following equation:

ρ =

∑
T fT cT∑
T cT

where ρ is the relative job progress,
∑

T fT cT is the computational load of the fully

executed tasks, and
∑

T cT is the job’s computational load.

41

Although this method values progress on short and long jobs equally with respect

to the admission decisions, the size of the job is implicitly taken into account since

shorter jobs will progress faster than longer ones. For instance, if all the arriving jobs

are relatively short, it is expected that they will progress faster and thus more jobs

will be admitted over time. On the other hand, if all the jobs are relatively long, less

number of jobs will be admitted over time due to the slow progress of the jobs.

4.3.2 Single Job Task Assignment

In this section, we develop a task assignment algorithm that takes a single job, rep-

resented by a DAG, and assigns its tasks to helpers such that the job completion

time is minimized. The algorithm consists of two key mechanisms for (1) helper

allocation and (2) task assignment. The helper allocation mechanism, presented in

section 4.3.2.2, assigns the job a set of helpers that matches its requirements. The

task assignment mechanism, presented in section 4.3.2.3, decides which task is to be

executed by which helper. In the next section we deal with issues of fairness between

jobs that share the same helpers.

Two conflicting considerations must be balanced in the assignment algorithm.

The first is that helpers are ephemeral, thus suggesting a conservative approach to

assigning tasks to a given helper, in case it leaves the system before completion2.

The second is that there may be significant communication costs with transferring

the output of one task to those downstream, thus suggesting that tasks with data

dependencies should be scheduled on the same helper. On the other hand, the fact

that different jobs may have different bottlenecks suggests that the task assignment

algorithm should take the task requirements and its location in the DAG of the job

into account while making any assignment decision. Finally, the churn in helpers

suggests that overall the algorithm should schedule tasks in batches, retaining the

2We later discuss the use of checkpointing to help with this issue. Checkpointing has costs,
however, so reducing the need for checkpointing is important.

42

ability to adapt as the job executes.

4.3.2.1 Critical Path and Stages

At a high level, tasks in the job dependency graph form execution paths, each of

which consists of a set of tasks that has to be sequentially executed. The path with

the highest total computation requirement is referred to as the critical path. As tasks

complete, the remaining computation load in each path may change. Therefore, we

use a notion of the current critical path, i.e., the path of tasks in the job dependency

graph with the highest total remaining computation requirement.

As shown in Figure 8, we refer to the last task of the job that marks its completion

as the exit task. Formally, the computational requirements of the current critical path

to the exit task Texit, (Ccp(Texit)) can be calculated using the following formula:

Ccp(T) =

 cT + argmaxk [dTkCcp(k)] if fT = 0

0 if fT 6= 1

where Ccp(T) is the compute requirements of the critical path leading to task T

including the task itself, cT is the compute requirements of task T , fT determines

whether task T has already been completely executed (1) or not (0), and dTk de-

termines whether task T requires the output of task k to start running (1) or not

(0).

A subset of the tasks in the current critical path has no unfulfilled incoming data

dependencies and are ready to be executed once assigned to a helper. We refer to this

set of tasks as the ready section, which we prioritize when we schedule tasks. Figure 8

shows an example that illustrates the difference between the critical path and the

ready section for a job. Progress on the critical path will be important to scheduling

on-critical-path tasks. In particular, we will keep track of the relative critical path

progress from executing a ready section:

P =

∑
T∈Sready

cT

Ccp(Tfinal)

43

Figure 8: Critical path, ready section, and stage illustrative example. For simplicity,
all tasks are assumed to have equal computational demand

where P is the relative critical path progress and Sready is the ready section’s set of

tasks.

In the absence of helper/resource churn, as in most classical cloud environments,

it is clear how to assign tasks to resources once the critical path is identified. The

critical path tasks can be assigned first and then all the non-critical path tasks can

be assigned to the resource that is going to finish them fastest [61]. The assignment

decision, however, is not as straightforward in a Femtocloud due to potentially high

churn. For instance, rushing into assigning and executing tasks that do not belong

to the critical path before their results are actually needed may lead to result loss (if

the helper leaves) and the need to re-execute.

Lemma 1 For every non-critical path in the job dependency graph, the path’s com-

putational progress will not affect the job completion time if the relative progress of

the path, at any point in time, is at least equal to the critical path’s relative progress.

Based on Lemma 1, we highlight that an efficient job assignment strategy should

(1) strive to achieve high progress in the critical path, and (2) maintain the rela-

tive progress of any non-critical path to at least be equal to the relative progress

of the critical path. In addition, we argue that the assignment strategy should also

44

avoid achieving relatively high progress in any non-critical path to mitigate the risks

associated with the churn of helpers.

To achieve these goals, we define a stage as the smallest set of tasks that include

(1) the current critical path’s ready section, and (2) all the tasks, belonging to non-

critical paths, that are needed to keep the relative progress of these paths greater than

or equal to the relative progress of the critical path. Figure 8 shows an example that

illustrate our main concepts. The main objective of our task assignment mechanism

thus can be reduced to minimizing the time needed to finish the execution of all the

tasks that belong to the current stage.

4.3.2.2 Helper Allocation

The controller is responsible for managing the complete pool of helpers and for allo-

cating them to job managers dynamically. A job manager requests helpers from the

controller using one stage lookahead, to avoid delay when the next stage is ready to

start. The job manager estimates its need for helper capacity in the next stage by

estimating the expected stage-level parallelism using the following equation:

Ep =

⌈∑
T∈Sstage

cT∑
T∈Sready

cT

⌉
where Ep is the expected stage-level parallelism (Ep ≥ 1), Sstage is the set of tasks in

the target stage, Sready is the set of tasks in the critical path ready section of that

target stage, and cT is the compute requirement of task T . In example illustrated in

Figure 8, the expected stage-level parallelism equals 2.33 and the target number of

helpers equals 3 (the ceiling of Ep) .

The job manager compares the target number of helpers for the next stage to

the current set of helpers and decides to request/release helpers accordingly. If the

manager decides to release helpers, it releases the ones with the least expected com-

pute resource availability (the allocated compute capacity multiplied by the expected

presence time). Otherwise, it sends a request to the controller with (1) the target

45

number of additional helpers, (2) the target helper’s compute resource availability of

the ready section compute requirements (
∑

T∈Sready
cT).

Once the controller receives a resource allocation request from a job manager,

it checks the availability of helpers that satisfy the requested compute requirement

based on their (1) expected presence time, (2) shared compute capacity, and (3) other-

job commitments. Helpers that satisfy the compute requirement with the minimum

average latency while communicating with the originator, job manager, and already

assigned helpers are selected and assigned to the job. If the number of helpers that

satisfy the requested compute requirement does not fulfill the job manager’s request,

the controller will assign all of available helpers, if any, to the job manager to enable

it to start tasks as soon as possible. It will also maintain the job manager’s request

and assign additional helpers as they join the Femtocloud.

4.3.2.3 Risk-Controlled Task Assignment

Once a stage is ready to be started and its needed resources are allocated, the task

assignment process begins. To assign the stage tasks to their helpers, we adopt

a path-based assignment policy to minimize the overhead of moving data between

helpers. We implement a path selection mechanism to pick paths from the current

stage to be directly assigned to their helpers. This mechanism iterates on all the

paths of unassigned tasks with fulfilled dependencies and selects the one with the

highest total compute requirements to be assigned first. This mechanism is repeated

until all the tasks in the stage are assigned to helpers.

When a path of tasks is ready to be assigned to a helper, we use Algorithm 1 to

select the helpers to which the tasks should be assigned. In this algorithm, we first

estimate the amount of time needed to finish all the tasks in the path on each helper

based on (1) the amount of time needed to send each task coupled with its input data

to the helper, and (2) the execution time of all the tasks based on the helper capacity.

46

Algorithm 1 Task Assignment

1: procedure AssignTasks({T}, {H}) . T is of a task type. H is of a helper type
2: selectedH ← null; lowestRisk ← +∞;
3: for H in {H} do
4: compTime[H] ← H.completionTime({T});
5: churnProb[H] ← H.churnProbability(compTime[H]);
6: if lowestRisk > churnProb[H] then
7: selectedH ← H;
8: lowestRisk ← churnProb[H]
9: end if

10: end for
11: SortedH ← sorted({H}, churnProb) . Risk based sorting
12: for H in {SortedH} do
13: if compTime[H] > compTime[selectedH] then
14: continue; . high risk, high compute time helper
15: end if
16: AddedRisk ← churnProb[H]−churnProb[selectedH]

churnProb[H] ;

17: Gain ← compT ime[selectedH]−compT ime[H]
compT ime[selectedH] ;

18: if Gain > AddedRisk then
19: selectedH ← H;
20: end if
21: end for
22: return selectedH
23: end procedure

Let us use Tch to denote the path completion time of the path on helper h. We also

use Tph to denote the total presence time of helper h measured from its arrival time.

Based on the estimated completion time and the helper’s churn model, we estimate

our risk factor, called churn probability Ph(Tph < (Tch + Sh) | Tph > Sh), which is the

probability that the helper will opt out of the system prior to completing the tasks.

Note that Sh denotes the helper’s time in the system up until this moment. The

churn probability is computed using a model of the distribution of the time a helper

spends in the system, also called presence time. This distribution can be learned

using the User Profiling functions in the helper client application and/or learned on

a system-wide basis by the controller.

Once the churn probability and the completion time are calculated for all the

helpers, we sort the helpers according to their churn probability and the helper with

47

the lowest churn probability is selected. Then, we iterate on the sorted list of helpers

using a risk-controlled mechanism, commonly used in economics [52], to compare the

gain of switching to this helper as the reduction ratio in the task completion time

to the relative addition in the risk. In particular we use the following equations to

calculate the gain and the risk:

G =
Tch∗ − Tch

Tch

R =
F (h, Tch)− F (h∗, Tch∗)

F (h, Tch)

where G is the relative gain of using using h over the selected helper h∗, F (h, Tch) is

a function that calculate the churn probability of hth helper (F (h, Tch) = Ph(Tph <

[Tch + Sh] | Tph > Sh)) and R is the relative added risk introduced by using helper h

over the selected one. If the gain exceeds the risk, it switches to the helper with the

higher gain.

4.3.3 Multi-Job Helper Queue Management

Since the same helper can be assigned to multiple job managers and can execute tasks

that belong to different jobs, determining the appropriate order in which the helper

executes these tasks is important. A helper should be (1) predictable, allowing the job

managers to make correct decisions, and (2) optimized to enhance the performance

of the jobs that it contributes to.

4.3.3.1 Fair queuing based task pick up

To enhance predictability, we implement a fair queuing based task pick up mechanism,

described in Algorithm 2. Each helper maintains multiple execution queues, each of

which is associated with only one job. Each of these queues is associated with a credit

counter used to insure fairness. The process starts when a helper becomes associated

with a new job manager. In this case, the helper creates a new queue for the tasks

that belong to the new job and assigns it zero credit. When a worker thread becomes

48

Algorithm 2 Helper Queue Management

1: procedure executeTask({Q}) . Q is a task queue type.
2: adjustCredit({Q});
3: selectedQ ← selectQueue({Q});
4: execute(selectedQ.popHead());
5: selectedQ.credit ← selectedQ.credit - ExecTime;
6: end procedure
7: procedure selectQueue({Q}) . Q is a task queue type.
8: sortedQ ← sorted({Q}); . descending sorting on credit.
9: earliestDeadline ← +∞; timeBuffer ← +∞;

10: selectedQ ← null;
11: for Q in sortedQ do
12: if not Q.isEmpty() then
13: continue;
14: end if
15: if Q.head.startingDeadline() < earliestDeadline and Q.head.exTime() < time-

Buffer then
16: selectedQ ← Q;
17: earliestDeadline ← Q.head.startingDeadline();
18: timeBuffer ← min(timeBuffer - Q.head.exTime(), earliestDeadline - now);
19: end if
20: end for
21: return selectedQ
22: end procedure
23: procedure adjustCredit({Q}) . Q is a task queue type.
24: maxCredit ← −∞ ;
25: for Q in {Q} do
26: if not Q.isEmpty() then
27: maxCredit ← max(maxFreq, Q.credit);
28: end if
29: end for
30: for Q in {Q} do
31: Q.credit ← min(0, Q.credit - maxCredit);
32: end for
33: end procedure

available at the helper, it invokes the “executeTask” function to pick up a task from

these queues and executes it. To insure fairness, this function will pick up the first

task in the queue that has the highest credit, executes it, decreases the credit of the

queue by the amount of time taken to finish the task. To avoid credit drifts, it adjusts

the queue credits maintaining the same relative difference with every pick up decision.

49

4.3.3.2 Deadline-based Optimization

As we described in Section 4.3.2.1, tasks differ in their urgency level depending on

whether they belong to the critical path or not. Even within the same stage different

paths may significantly differ in terms of their task compute requirements and their

computation time on the helper to which they are assigned. Therefore, their task

execution urgency may significantly vary. For instance less urgent tasks on a high

capacity helper may tolerate delays without affecting their stage completion time.

Such delay tolerance can be utilized to execute more urgent tasks and enhance the

overall system performance. To utilize this fact, we rely on the job managers to set

a starting deadline for each task while assigning it and extend the fair queuing based

task pick up mechanism to take these deadlines into account while picking up tasks

for execution.

To assign a starting deadline for a task, the job manager implements a two phase

mechanism. First, while assigning the first path of a stage (the critical path’s ready

section) to a helper, we estimate the target stage completion time which is equal to

the estimated path completion time. The second phase is activated while assigning all

the remaining paths. In this phase, while assigning a path, tasks are assigned starting

with deadlines derived from the target stage completion time and the helper’s shared

capacity.

At the helper, we implement an early pick up mechanism, as shown in Algorithm

2, where urgent tasks from queues with low credit can be executed before tasks from

ones with higher credit if and only if they will not interfere with their deadline

requirements.

4.3.4 Task Checkpointing

Section 4.3.2 presents two key approaches to mitigate the impact of helper churn

prior to fully executing tasks. First, using the concept of execution stages avoids

50

executing tasks and getting their results too early compared to when they are needed.

Second, the risk-controlled task assignment minimizes the risk of helper departure

prior completing the assigned tasks. Once the task results become available, however,

it is essential to preserve them till they are used in order to further mitigate the effect

of churn. Therefore, we implement a checkpointing mechanism with which the job

manager may replicate the results of a selected set of finished tasks on a set of helpers

and/or in the cloud. The main objective of this replication is to avoid losing the results

of finished tasks.

Our checkpointing mechanism runs periodically (every 15 seconds in our imple-

mentation) and determines for a finished task whether new replicas need to be added,

the current state needs to be kept as is, or the results need to be deleted since they

are no longer needed. To describe our mechanism, let’s use rTh to indicate whether

the results of task T exist on helper h (1) or not (0).

The process starts with estimating the probability of losing the results of each of

the completed tasks in a specific period of time X using the following equation:

P (loss-time(T) < X) =
m∏

h=0

[1− rTh (1− F (h,X))]

where loss-time(T) is the time needed to lose all the replicas of task T , and F (h,X)

is a function that calculate the churn probability of hth helper (F (h,X) = Ph(Tph <

[X+Sh]|Tph > Sh)) during a periodX given the helper’s prior stay of Sh. Note that if a

replica of the results of task T exist on the hth helper (rTh = 1), [1− rTh (1− F (h,X))] =

F (h,X). However, if the helper does not have a replica of the task results (rTh = 0),

[1− rTh (1− F (h,X))] = 1. We set X to be equal to twice the time needed to

re-execute the checkpointing mechanism (X = 30 seconds in our implementation).

A task is considered well-maintained if its loss-time probability is less than a

reliability threshold (K), which is set based on the environment and target level of

reliability. To decide if tasks have to be replicated to reach a well-maintained status,

we iterate over the not-well-maintained tasks in order of their loss-time probability

51

and calculate the amount of computation (ET) needed to reconstruct their results

from the set of well-maintained tasks. We compare ET to a linear function of the result

size of the task (aT) and decide accordingly whether the task needs to be replicated or

not. Note that the coefficients of this function are environment dependent and based

on the available bandwidth between helpers and their average shared capacities.

Once all tasks that require replications are marked, we re-iterate on them in order

to determine the ones no-longer needed, relative to the current set of well-maintained

tasks. We then issue replication requests for the ones that require additional repli-

cation followed by a delete request for the results of the tasks that are no longer

needed to free up storage at the helpers. To replicate a task, we iterate over helpers

in descending order of their churn probability and assign a replica to a helper if and

only if it has available storage. This process is repeated until the loss-time probability

becomes lower than the reliability threshold K.

4.4 Mechanism Evaluation

In this section, we evaluate the performance of Femtocloud and assess the efficiency of

its workload management mechanisms. We use simulations to isolate the true impact

of each mechanism individually. We simulate different scenarios and environments,

analyze the impact of using various management mechanisms, and study the effect of

different parameters on the performance of the Femtocloud system. We start by de-

scribing our experimental setup (Section 4.4.1) followed by representative simulation

results (Section 4.4.2).

4.4.1 Experimental Setup

We start by describing the experimental job model followed by the summary of the

characteristics of the set of mobile devices used in our experiments. We then sum-

marize our metrics and parameters followed by presenting our baselines.

52

4.4.1.1 Job models

In our experiments, we use a set of synthesized jobs to evaluate the performance of

our workload management mechanisms. To construct the task dependency graphs for

these jobs, we use a set of models that represent a large variety of application and

programming paradigms. We focus on the following four representative job models:

• Pipeline Job Model: All the tasks in the job form a single path and must be

sequentially executed. This model represents a wide range of single threaded

jobs and/or applications.

• Parallel Path Model: Tasks form p parallel paths with very limited inter-

path dependencies (set at a 0.1 probability). This job model represents multi-

threaded applications with minimum inter-thread dependency and synchroniza-

tion.

• General Parallel Path Model: Tasks form p parallel paths with more signif-

icant inter-path dependencies (set at 0.4 probability). This job model reflects

general multi-threaded applications.

• Pyramid Job Model: Tasks form a tree structure where the task dependency

direction goes from leaf-nodes towards the root. This model encompasses a

wide range of map-reduce jobs.

To construct a job that follows one of these models, we first generate a fixed num-

ber of tasks. Each of the generated tasks falls in one of four categories: (1) lightweight

tasks, (2) medium tasks, (3) compute intensive tasks, and (4) data generating tasks.

Based on the selected category, we pick the computational requirements of the task

and the output size from a normal distribution with the mean values listed in Ta-

ble 7. Once all the tasks are built, we set the dependency edges between them using

a pseudo-random process based on the target job model

53

Table 7: Experimental tasks’ characteristics.
Task Type Computation Output

Lightweight tasks 10 MFLOPs 0.2 MBytes
Medium tasks 30 MFLOPs 2 MBytes

Compute Intensive tasks 100 MFLOPs 0.5 MBytes
Data Generating tasks 20 MFLOPS 20 MBytes

Table 8: Experimental helper’s characteristics.
Devices Computation Capacity

Galaxy S5 3.3 MFLOPS
Nexus 7 [2012] 7.1 MFLOPS
Nexus 7 [2013] 8.5 MFLOPS
Nexus 10 [2013] 10.7 MFLOPS

4.4.1.2 Device Characteristics

To evaluate the performance of Femtocloud under realistic helper characteristics sce-

narios, we identify the available compute capacity in a variety of mobile devices. We

use matrix multiplication operations to emulate the compute capacity of a set of mo-

bile and handheld devices. To achieve this, we measure the time needed to finish a

load of 200 MFLOPs in a background thread using Galaxy S5, Nexus 7 and Nexus

10 devices and use the measured time to calculate the device compute capacity in

MFLOPS. For each device, we repeat this process and take the average of 20 runs

to measure the average compute capacity of the device. Table 8 summarizes the

capacities we establish for the mobile devices we test.

4.4.1.3 Metrics and parameters

We are interested in the following performance metrics:

• Job Completion Time: This is the average amount of time needed to com-

pletely execute a job.

• Job Admission Ratio: This is the ratio of the number of admitted jobs to

the total number of incoming job requests.

54

To assess the impact of each of our workload management mechanisms, we measure

the performance of the system running our task assignment algorithm while turning

other mechanisms (e.g., admission control, task checkpointing, early task pick up)

ON and OFF.

4.4.1.4 Baselines

We compare our task assignment algorithm with the following baseline techniques:

1. Critical path in a processor (CPOP)[61, 46]: The CPOP scheduler aims

to assign the critical path to the node that will execute it faster. To assign

all the remaining tasks, it works in two phases. In the first phase, it assigns

priorities to the tasks based on the amount of computations leading to them

and the amount of computations after them. In the second phase, it assigns the

highest priority task first to the node that will finish it faster.

2. Per-task risk-controlled assignment (PTR): The PTR scheduler takes the

scheduling decision for every task independently. Once a task is ready to execute

(all its dependencies are fulfilled), it applies the same risk-controlled assignment

mechanism as Femtocloud to select its executing helper. If more than one task

is ready to execute, it assigns the one with the largest compute resource re-

quirements first. This derived from the risk-adjusted return economic principle

and is currently used by systems like COSMOS[53]

4.4.2 Results

In this set of experiments, we organize the helpers and the job originators in four

groups each of which represents an enterprise network. The bandwidth and latency

between two nodes in our experiment are modeled using a Normal Distribution where

the standard divination is set to 20% the mean. The average bandwidth and latency

between two nodes in the same group is 30 Mbps and 25 msec, respectively. However,

55

the average bandwidth and latency between two nodes in different groups are 10 Mbps

and 100 msec, respectively. We use a Poisson arrival process to model the arrival of

new helpers. The helper arrival rate is set to 5 helpers/min and arriving helpers are

randomly assigned to one of the groups. In addition, the helper presence is modeled

as Normal(5 min, 1 min).

In this section, we only present the results from using the General Parallel Path

Model and the Pipeline Job Model. We select these two models since (1) they

cover a wide range of applications and real-jobs, and (2) they are considered the two

extremes of our job model spectrum and they reveal all the interesting insights3. We

use a Poisson arrival process to model the arrival of new jobs, where the job arrival

rate is set to 5 Jobs/min. In addition, each job has 30 tasks that form its dependency

graph. For the jobs that follow the General Parallel Path Model, we set the

number of parallel paths to be equal to 5.

To assess the efficiency of each of our mechanisms independently, we start by dis-

abling all our mechanisms and compare the performance of our task assignment mech-

anism to the base-line assignment mechanisms in Section 4.4.2.1. We then analyze

the performance of our admission control mechanisms under different configurations

in Section 4.4.2.2. Section 4.4.2.3 shows how using our task checkpointing mechanism

helps in high churn situations. Section 4.4.2.4 analyzes the sensitivity of our work-

load management mechanisms to estimation errors. Each experiment represents the

average of 10 runs.

4.4.2.1 Risk Controlled Assignment Performance

In this section, we study the impact of using our Femtocloud task assignment mecha-

nism and compare its performance with the two baseline task assignment mechanisms

3We shed the light on the results from using the four job models in Section 4.5.

56

 150

 200

 250

 300

 350

 400

 2 4 6 8 10J
o
b

 C
o

m
p
le

ti
o

n
 T

im
e

 (
S

e
c
)

Helper Arrival Rate (helper/min)

PTR
CPOP

Femtocloud-TA

(a) Pipeline Jobs

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10J
o
b

 C
o

m
p
le

ti
o

n
 T

im
e

 (
S

e
c
)

Helper Arrival Rate (helper/min)

PTR
CPOP

Femtocloud-TA

(b) General Parallel Jobs

Figure 9: Impact of changing the helper’s arrival rate on the task assignment per-
formance.

(CPOP and PTR). To ensure fairness, we allocate all the helpers that join our sys-

tem to every job manager while running each of the task assignment mechanisms.

We focus in this section on the impact of (1) changing the helper arrival rate and

(2) presence time heterogeneity. To avoid repetition, we will study the impact of

the changing the average helper presence time in Section 4.5 using our implemented

prototype.

Impact of changing helper arrival rate: Figure 9 shows the impact of the

helpers arrival rate on the job completion time for the Pipeline Job Model and

the General Parallel Path Model. The figure shows that when the helper arrival

rate is low, resource sharing and competition between jobs increases and thus the

average job completion time increases as well. Figure 9(a) shows that, in case of the

pipeline job model, our Femtocloud task assignment mechanism (Femtocloud-TA)

outperforms CPOP due to its ability to take the helper’s presence time model into

account while assigning tasks to them. It also outperforms PTR due to Femtocloud-

TA’s ability to assign multiple jobs back to back. However, when the helper arrival

rate is low, making the number of helpers present at any point in time low compared

to the number of jobs, assigning a full path of tasks increases the probability of

57

 160

 180

 200

 220

 240

 260

 280

 300

 0 1 2 3 4 5J
o
b

 C
o

m
p
le

ti
o

n
 T

im
e

 (
S

e
c
)

Fast Helper Arrival Rate (helper/min)

PTR
CPOP

Femtocloud-TA

(a) Pipeline Jobs

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5J
o
b

 C
o

m
p
le

ti
o

n
 T

im
e

 (
S

e
c
)

Fast Helper Arrival Rate (helper/min)

PTR
CPOP

Femtocloud-TA

(b) General Parallel Jobs

Figure 10: Impact of helper’s presence time heterogeneity on the task assignment
performance.

losing the whole path and re-executing it which leads to wasting significant compute

resources.

Impact of helper presence time heterogeneity: To understand the impact

of helper presence time heterogeneity, we add a new set of helpers to our helper

set. These new helpers (Fast Helpers) have the capacity of 10.7 MFLOPS and their

presence times are modeled as Normal(30 Sec, 10 Sec). We use a Poisson process to

model the arrival of these helpers. Figure 10 shows the impact of changing the arrival

rate of the fast helpers.

Figure 10(a) shows that, in case of the pipeline job model, Femto-cloud-TA does

not utilize the availability of the fast helpers due to the high risk of losing the job’s

computations due to the fast helper’s churn. CPOP, however, did not take these

helper’s churn probability into account and assigned tasks to them. Such decision

led to wastage of computation resources leading to an increase in the average job

completion time. PTR, however, was able to utilize the additional capacity introduced

by these helpers due to (1) its fine-grained per-task assignment mechanism, and (2) its

ability to take the risk probability into account while assigning tasks to their executing

helpers. Figure 10(b), however, demonstrates that the increased complexity of a job

58

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

S
e
c
)

Job Arrival Rate (Job/min)

Femtocloud (No AC)
Femtocloud (A = 10)
Femtocloud (A = 20)
Femtocloud (A = 40)

(a) Job Completion Time (Pipeline)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

J
o
b
 A

d
m

is
s
io

n
 R

a
ti
o

Job Arrival Rate (Job/min)

Femtocloud (A = 10)
Femtocloud (A = 20)
Femtocloud (A = 40)

(b) Job Admission Ratio (Pipeline)

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

S
e
c
)

Job Arrival Rate (Job/min)

Femtocloud (No AC)
Femtocloud (A = 10)
Femtocloud (A = 20)
Femtocloud (A = 40)

(c) Job Completion Time (G-Parallel)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

J
o
b
 A

d
m

is
s
io

n
 R

a
ti
o

Job Arrival Rate (Job/min)

Femtocloud (A = 10)
Femtocloud (A = 20)
Femtocloud (A = 40)

(d) Job Admission Ratio (G-Parallel)

Figure 11: Impact of job arrival rate on the performance of Femtocloud.

can result in its division into multiple stages allowing Femtocloud-TA to utilize the

fast helpers to decrease average job completion time.

4.4.2.2 Admission Control Performance

We next study the impact of using our Femtocloud admission control mechanism.

We compare the performance of using Femtocloud task assignment mechanism with

and without using our admission control mechanism under different loads. In the

following experiments, we disable (1) the checkpointing mechanism, and (2) the early

task pick up mechanism.

Figure 11 shows the impact of changing the job arrival rate on the performance

59

 150

 200

 250

 300

 350

 3 4 5 6 7 8 9 10

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

S
e
c
)

Fast Helper Arrival Rate (helper/min)

FemtoCloud (No CHK)
Femtocloud (K = 50%)
Femtocloud (K = 70%)

(a) Pipeline Jobs

 40

 60

 80

 100

 120

 140

 3 4 5 6 7 8 9 10

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

S
e
c
)

Fast Helper Arrival Rate (helper/min)

FemtoCloud (No CHK)
Femtocloud (K = 50%)
Femtocloud (K = 70%)

(b) General Parallel Jobs

Figure 12: Impact of changing the helper’s presence time on the checkpointing per-
formance.

of Femtocloud with and without using admission control. While using our admission

control mechanism, we experiment with the total relative work remaining maximum

threshold (Amax) values of 10, 20, and 40. An increase in the job arrival rate causes

the average job completion time to increase. Without admission control, we observe

that the job completion time increases drastically once the number of jobs in the

system exceeds its capacity. With admission control, job completion time can be

limited to an acceptable value. It is important to carefully select the value of Amax.

A low value of Amax decreases the efficiency of the system and leads to the rejection of

jobs that the helpers are capable of executing as shown in Figure 11(b) (Amax = 10).

4.4.2.3 Task Checkpointing Performance

We compare the performance of task assignment in Femtocloud with and without

using task checkpointing while disabling all the other mechanisms.

Figure 12 shows the impact of changing the presence time of helpers on the per-

formance of Femtocloud with and without using our checkpointing mechanism. We

compare various reliability thresholds, (K), when checkpointing is used. The figure

shows that when the average helper presence time is low, there is increased need for

60

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 J

o
b
 C

o
m

p
le

ti
o
n
 t
im

e

Presence Time Error Variance Ratio (%)

FemtoCloud (Pipeline)
FemtoCloud (G-Parallel)

(a) Presence Time Errors

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 J

o
b
 C

o
m

p
le

ti
o
n
 t
im

e

Compute Requirement Error Variance (%)

FemtoCloud (Pipeline)
FemtoCloud (G-Parallel)

(b) Task Requirement Errors

Figure 13: Sensitivity to estimation errors (presence time model parameters and task
compute requirements).

task checkpointing to avoid losing finished tasks, re-executing them, and increasing

the overall job completion time. However, when the average presence time is large

the probability of losing task results decreases and thus the checkpointing mechanism

is not as important. Note that the checkpointing mechanism is more critical in case

of the pipeline job model since the assigned path length increases.

4.4.2.4 Sensitivity Analysis

We analyze the sensitivity of our mechanisms to estimation errors. In this set of ex-

periments, we enable all our mechanisms. We set the value of the reliability threshold

(K) for our checkpointing mechanism to be 70%. We analyze Femtocloud’s sensitiv-

ity to estimation errors of (1) presence time model parameters and (2) task compute

requirements. In both cases, our errors follow a Normal distribution with a mean

of 0. We set the variance of the error distribution to be a percentage of the correct

value and we vary this percentage from 0% to 100%. To show the error sensitivity,

we report the ratio between the average job completion time with and without errors

Figure 13(a) shows, for both the pipeline job model and the general parallel job

model, the job completion time increases with the increase of the presence time error

61

variance. We notice that the pipeline job model is relatively less sensitive to errors in

estimating the presence time model parameters because the checkpointing mechanism

maintains copies of the intermediate task results leading to efficient recovery from the

churn when it occurs. The figure also shows that the general parallel job model can

sustain up to 20% error variance with approximately 10% increase in the average job

completion time.

Figure 13(b) shows the impact of changing the variance of the compute require-

ment estimation error on the performance of Femtocloud. The figure demonstrates

that the pipeline job model is insensitive to this type of error because the helper’s fair

queue management mechanism prevents a job task estimation error from influencing

the performance of other jobs. The general parallel model, however, can accept up

to 30% variance of the compute requirement estimation error without a significant

increase in the job completion time.

4.5 Prototype Implementation and Evaluation

4.5.1 System Implementation

In this section, we present the implementation details of our Femtocloud prototype.

We implement the Femtocloud controller logic as a python script that carries the

responsibilities described in Section 4.2.1. We run this script on a local Linux machine.

To emulate running on the cloud, we enforce an additional communication latency

between the controller and the helpers of 168 ms, which is our measured average

latency between a mobile device in Georgia Tech’s enterprise network and Amazon

Web Services in Europe (Frankfurt and Ireland).

We implement the Femtocloud helper as an Android application that allows users

to enter their resource sharing policies. Based on these policies, the helper connects to

the controller and shares the user profile accordingly. Upon joining the Femtocloud,

the helper service estimates the mobile device capabilities and shares them with the

62

controller. Additionally, while being used by a job manager, it shares with it the

estimated fair share of resources that the job may receive from the helper. To ensure

fair resource sharing between different jobs, it implements our mechanisms described

in Section 4.3.3. It also carries the responsibility of estimating some contextual in-

formation as described in Section 4.2.2.

Our job manager is implemented as an Android service that can be assigned to

the helper with the estimated longest presence time, or the job originator. The job

manager’s main responsibilities are described in Section 4.2.3. The state of the job

manager is periodically replicated at the controller to enable recovery in case the

device running the job manager functions opts out of the system.

Job originators are Android applications designed to generate jobs each of which

consists of a set of tasks organized in directed-acyclic dependency graph. We emulate

real tasks in the job by synthesizing a matrix multiplication task with the same input

size, output size, and compute requirements of the target tasks. When a job manager

assigns a task to a helper, the code is directly sent to the helper from the originator

and is executed by the helper using the Java Reflection API.

In our prototype, we run the job originators inside Android x86 virtual machines.

We configure the job originators to be willing to carry the job management respon-

sibility. Therefore, once the controller accepts a job it starts the job manager service

at the originator’s VM.

4.5.2 Results

In this section, we present the results acquired using our prototype implementation.

Due to the limitations imposed by the scale of our experiments, we modified our

checkpointing mechanism such that a task is considered well-maintained if its results

are available in at least two helpers. We also set the number of full jobs allowed by

Femtocloud to be relatively high such that all the incoming jobs are admitted by the

63

controller. Therefore, we only present the job completion time results in Figure 8.

Our helper set consists of 6 devices, a Galaxy S5, a Nexus 10[2013], 2 Nexus 7

[2013], and 2 Nexus 7 [2012]. All these helpers are connected to the same enter-

prise network through WiFi. We use the Normal distribution to model the helper’s

presence time. In our experiments, we change the mean of the helper presence time

distribution from 30 to 210 seconds. Once a helper leaves, it returns after an OFF

period that follows a Normal distribution with mean equals 25% of the presence time

mean maintaining the helper’s duty cycle to be 75% on average.

We use a Poisson arrival process to model the arrival of new jobs. The job arrival

rate is set to be equal to 3 jobs per minute. Each of the generated jobs consists of

15 tasks. We set the number of parallel paths in the jobs that follow the General

Parallel Path Model to be equal to 3. In our results, we show the average of 5

runs.

Figure 14 shows the impact of changing the average presence time of the helper on

the job completion time of different types of jobs. It is clear from the plots that with

the increase of the helper presence time the job completion time decreases for all the

scheduling mechanisms. Also all job models, Femtocloud outperforms the CPOP task

assignment mechanism due to its ability to control the risk associated with assigning

tasks to helpers that may leave before completing them. The relative advantage of

Femtocloud over CPOP decreases with the increase of the helper presence time and

decrease of churn probability. The figure also reveals that Femtocloud outperforms

the PTR assignment mechanism under all job models except the pyramid model.

For both the parallel and the general parallel job model, Femtocloud outperforms the

PTR assignment mechanism due to its ability to identify the job’s bottleneck (critical

path) and prioritize it while assigning tasks to their executing nodes. For the pipeline

job model, however, Femtocloud slightly outperforms PTR due to its ability to send

multiple tasks back to back to the helper instead of waiting for each task to finish in

64

 70

 75

 80

 85

 90

 95

 100

 105

 110

 0 30 60 90 120 150 180 210J
o
b

 C
o

m
p
le

ti
o

n
 T

im
e

 (
S

e
c
)

Average Helper Presence Time (Sec)

PTR
CPOP

Femtocloud

(a) Pipeline Jobs

 40

 45

 50

 55

 60

 65

 70

 0 30 60 90 120 150 180 210J
o
b

 C
o

m
p
le

ti
o

n
 T

im
e

 (
S

e
c
)

Average Helper Presence Time (Sec)

PTR
CPOP

Femtocloud

(b) Parallel Jobs

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 30 60 90 120 150 180 210J
o

b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

S
e

c
)

Average Helper Presence Time (Sec)

PTR
CPOP

Femtocloud

(c) General Parallel Jobs

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 30 60 90 120 150 180 210J
o

b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

S
e

c
)

Average Helper Presence Time (Sec)

PTR
CPOP

Femtocloud

(d) Pyramid Jobs

Figure 14: Impact of helper’s presence time on the performance.

order to assign the next one. In case of the pyramid job model, the Femtocloud loses

its back-to-back assignment edge over PTR since all the paths at each every stage

will consist of only one tasks. This will lead to Femtocloud schedule to operate on a

per-task basis.

4.6 Discussion

In this section, we discuss two key questions associated the Femtocloud system: (1)

How can the system provide users with incentives to share their mobile compute

resources? (2) How can the system overcome the security challenges that will be in-

troduced by malicious users (helpers/job originators). Although properly addressing

65

those two questions are out of scope of our current work, they require some discussion.

4.6.1 User Incentives

We have witnessed increasing numbers in those willing to share their compute re-

sources. For instance, BOINC projects demonstrate the willingness of millions of

users to share the compute resources of their personal computers and mobile devices

in support of scientific applications [1]. To achieve similar success, the Femtocloud

system has to provide users with proper incentives to share their compute resources

not only for scientific applications but also for a wide-range of edge computing appli-

cations.

To identify effective incentive mechanisms and assess users willingness to share

their mobile compute resources while employing each of these mechanisms, we con-

ducted a pilot user study. We surveyed approximately 50 students taking networking

courses at Georgia Tech, at the undergraduate and graduate levels. Our survey con-

sisted of two main sections. In the first section, we asked the students about the

generic factors that might influence their decision when it comes to sharing their

mobile compute resources (e.g., battery life, device type). These questions were in-

tended to ensure the students’ awareness to these factors prior to responding to the

sharing-decision related questions. The latter section of the survey asked about their

willingness to share in four specific scenarios: (1) in support of a for-profit company,

(2) in support of gaming, (3) in support of science, and (4) in support of finding a

lost child. In addition to the simple yes/no responses, students were asked to write

additional comments, if needed.

Our pilot study reveals that individuals rationalize sharing their computational

resources differently depending on who is utilizing the resources and why. All the

students who were willing to share their resources with a for-profit business noted that

they must receive some compensation (e.g., money). For the other three scenarios, the

66

cause and the trustworthiness of the computation borrower were the driving factors

behind their decision. The science scenario and the lost child scenario appealed to

76% and 83% of the demographic we surveyed, respectively. The gaming scenario,

however, appealed to only 29% of the users surveyed.

The outcome of our pilot study suggests that people are willing to share their

mobile compute resource if (1) they are getting compensated by the computation

borrower, or (2) the cause of the computation is significant (e.g., common good,

emergencies). Accordingly, a mix of these incentive mechanisms can be developed

and integrated with our Femtocloud system to insure its adoption and future success.

4.6.2 Security and Privacy

In the Femtocloud system, ensuring the security and privacy of our helpers is critical

for them to share their resources. Generally, helpers need to guarantee protection

against malicious originators who may try to infringe on their privacy or compromise

their security. Fortunately, using sandboxing allows the Femtocloud helper client

service to control data access privileges and thus ensures helper data privacy [8, 28].

A Job originator must be protected against malicious helpers that may try to

access the job’s private data or provide incorrect results without executing the job.

First, to protect against job-data leakage while running on untrusted resources, task

execution over encrypted data was proposed [62, 24, 27, 42]. In these mechanisms,

the originator encrypts the job’s private data prior to submitting the job to the

Femtocloud system. Upon the completion of the job, the Femtocloud system will

return the results that only the job originator will be able to decrypt and understand.

Second, to enable originators to verify the correctness of the results and and the work

done by the helpers, cryptographically verifiable approaches can be used [26, 33].

These mechanisms enable the job originator to ensure the correctness of the results

and verify that the tasks have been fully executed by the helpers. In the absence

67

of these approaches, task replication over independent helpers can be used to detect

inconsistencies and protect against malicious entities.

4.7 Summary

In this chapter, we presented an enhanced architecture for the Femtocloud system in

which we rely on mobile device clusters at the edge to provide the compute resources

while moving the cluster control and management functionalities to the cloud. Within

this new architecture, we developed a set of adaptive workload management mecha-

nisms and algorithms that make the Femtocloud system efficient for real computation

workloads, and reliable and scalable in the presence of device heterogeneity and churn.

We implemented a small scale prototype of our system and use it to demonstrate the

feasibility and efficiency of the system. We used simulations to further understand

the gains imposed by each of our workload management techniques in larger scale

systems.

68

CHAPTER V

CHARACTERIZING AND NAVIGATING THE

COMPUTE ECOSYSTEM

5.1 Introduction

In the previous chapters, we demonstrated the possibility of clustering mobile devices

in order to provide a meaningful and efficient computing service. In addition, we have

also showed that, with proper incentives, people are willing to share a portion of the

compute resources available in their mobile devices. These findings open the door to-

wards operating a compute service provider that relies mainly on clusters of voluntary

mobile devices to share their resources and perform the needed computations. How-

ever, identifying the role played by such a compute service provider requires deeper

understanding of the full compute ecosystem.

The last few years have seen a tremendous evolution of this compute ecosystem.

This evolution has been led by the availability of a variety of cloud-based compute

service providers and the deployment of cloud data centers in multiple locations all

around the globe. Furthermore, the anticipated deployment of fog and edge comput-

ing systems coupled with the potential of having mobile device-based compute service

providers add new levels of complexity.

This increased complexity of the compute ecosystem allows mobile device users

to have access to a variety of compute options that they can utilize to fulfill their

application requirements and meet their target levels of quality of experience. To

simplify the mobile device selection decisions, traditional approaches categorized dif-

ferent compute options in two classes (1) low latency edge-compute options, and (2)

high latency cloud-compute options. In this chapter, we argue that this is a location

69

dependent view as different compute options can be classified as edge-compute ser-

vices from certain locations and cloud compute services from other locations. As a

result, we argue for a classification-free view of the current compute ecosystem where

mobile devices have to be able to learn about the all the the existing compute options

and their different network and compute parameters, and and select the ones that

maximize their performance.

In this chapter, we use measurement to confirm our insight and shed the light on

the current state of the compute ecosystem. In addition, we propose a system that

allows mobile devices to better navigate the ever complex compute ecosystem and

be able to quickly select which providers are best to execute their jobs. Our system

architecture consists of (1) a set of system orchestrators, each of which is responsible

for a given geographical area serving its users, (2) a group of mobile agents who either

have jobs to execute or volunteer to help the orchestrator, and (3) a variety of compute

service providers ready to accept and execute the jobs assigned to them by mobile

devices. In our system, each orchestrator relies on mobile agents to acquire data

about the existing compute service providers and their connectivity to the different

edge networks in the area of interest. Once acquired, this data is analyzed to (1)

determine when each of the available providers should be used, and (2) assist mobile

agents to make their provider selection decisions efficiently and accurately.

Within our system, we develop a provider selection mechanism designed to min-

imize the amount of time and state information needed for a mobile agent to make

its selection decision. We use a system prototype to validate the accuracy of our

selection decision and study the performance of the system. Our results demonstrate

the high success rate enjoyed by our provider selection mechanism. Our results also

show that the occasional wrong decisions made by our provider selection mechanism

has a relatively small impact on the overall system performance introducing no more

than 20% computational slowdown.

70

The rest of this chapter is organized as follows. Section 5.2 provides a measurement-

based view of the current compute ecosystem. Section 5.3 discusses the details of our

system architecture and presents the main functionalities performed by each of its

components. In Section 5.4 we develop our efficient compute-service provider se-

lection mechanism. Finally, we evaluate the performance of our provider selection

mechanism in Section 5.5 followed by summarizing the chapter in Section 5.6.

5.2 The Measurement Study

To validate our insights and have better understanding of how the current compute

ecosystem look like, we set up a network measurement study in with we use a set of

anchor point that exist in various Internet locations to measure the round-trip time

between their location and a set of data centers that provide compute services. In

our measurement campaign, we have only focused on Amazon EC2 and its various

data center locations that are distributed all around the world.

Measurement anchor points: We rely on both GENI [3] and SEATTLE [4] to

provide us access to a geographically distributed set of machines in which we install

our measurement tools and start our measurement campaign.

Inside Amazon EC2 data centers: To be able to use network measurement tools

(like ping) to measure the round-trip time between a given anchor point and a given

Amazon EC2 data center, we rented one server instance per data center location and

configure it such that it can participate in our measurement campaign.

Acquired data: In our campaign, we have recorded the following data: (1) the lo-

cation of the data center, (2) the location of the anchor point, (3) the geo-distance for

every pair of a data center and an anchor point, (4) the ping round-trip time between

every anchor point and every data center instance (mean and standard deviation),

(5) the network distance (number of hops) between every data center instance and

every anchor point, and (6) the round-trip time between the anchor point and the

71

first hop that can be pinged on the route between it and the data center (mean and

standard deviation).

Data Acquisition Mechanism:

• To get the address of the first hop that can be pinged on on the route between

the anchor point and the data center instance coupled with the number of hops

in the route, we run traceroute once every 30 min for 12 hours to be able to

capture any changes to the route due to multi-path load balancing.

• To get the mean and the variance of the round trip time between an anchor

point and (1) a data center instance or (2) the first hop in the route, for 12

hours we issue ping requests with frequency 1 ping per second and record the

measured round-trip times. Afters the 12 hour measurement period, we analyze

the stored data calculating both the mean and the variance of the round trip

times.

Gained Insights: Table 9 shows an example of the edge device connections to one of

Amazon EC2’s data centers. According to the observed latency, some of the devices

can classify this data center as an edge compute service provider while others classify

it as being a far cloud-based compute service provider. In addition, the table shows

that the increase of the physical distance between the edge device and the data center

does not imply an increase of the network distance and round-trip time.

5.3 System Architecture

In this section, we provide an overview of our system and its main architectural

components depicted in Figure 15. It consists of three main components: (1) System

Orchestrators, (2) Mobile Agents, and (3) Compute Service Providers. First, the

system orchestrators are running on the cloud and can be deployed as a location based

service to enhance the scalability of the system. Each Orchestrator is responsible for

72

Table 9: Edge device connections to Amazon EC2 data center in Portland, Oregon

Anchor Point
Eugene, Vancouver, Reno, Palo Alto
Oregon Canada Nevada California

Physical Dist. (km) 167 420 707 901
Network Dist. (hops) 21 19 20 19

RTT Mean (ms) 11.388 14.107 30.201 25.066
RTT Standard Dev. 3.289 5.155 0.782 0.401

Used Testbed SEATTLE SEATTLE SEATTLE GENI

Anchor Point
Los Angeles Columbia, Richardson, Champaign,
California Missouri Texas Illinois

Physical Dist. (km) 1331 2588 2621 2852
Network Dist. (hops) 16 27 21 24

RTT Mean (ms) 33.617 56.765 58.484 52.032
RTT Standard Dev. 9.195 0.731 0.564 3.614

Used Testbed SEATTLE GENI SEATTLE GENI

Anchor Point
West Lafayette, New Brunswick, Tokyo, Gudang,

Indiana New Jersey Japan China

Physical Dist. (km) 2943 3905 7801 9487
Network Dist. (hops) 24 23 22 37

RTT Mean (ms) 104.010 78.100 144.659 281.822
RTT Standard Dev. 68.282 2.329 70.423 16.404

Used Testbed SEATTLE GENI SEATTLE SEATTLE

Figure 15: The System Architecture of the Compute Ecosystem Navigator

acquiring the knowledge about a set of compute service providers and how to reach

them from different edge networks. It uses the acquired information to help mobile

73

agents better select which compute service provider will meet the requirements of

their jobs. The mobile agents, on the other hand, are mobile devices who either have

jobs to offload to compute service providers and need the orchestrator’s assistance to

decide which ones to use or volunteer to help the orchestrator acquire information

about their edge network. Finally, compute service providers are responsible for

executing the jobs assigned to them by mobile agents. Some of these providers share

their runtime information (e.g., job queuing delays) with the orchestrator allowing it

to better assist mobile agents in making their assignment decisions.

Similar to Chapter 4, we assume that each job is represented by a directed acyclic

graph (DAG) where each node in the graph is a task and a directed edge indicates

a completion dependency. Each task node is labeled with an estimate of the com-

putational requirement of the task; each edge is labeled with an estimate of the

communication requirement to send the task results to downstream tasks that de-

pend on them. This job model covers a wide range of applications, though clearly not

all possible jobs. In particular, jobs whose task structure and requirements change at

run-time do not fit this model.

We now provide the details of the three main architectural components (depicted

in Figure 15).

5.3.1 System Orchestrator

The System Orchestrator is at the heart of our system providing mobile devices with

the knowledge of the available compute service providers and the means for making job

assignment decision. It maintains data about the different compute service providers

as well as their connectivity to edge networks. To be scalable, the System Orchestrator

can be deployed as a location based service where different System Orchestrators are

deployed each of which is assigned a geographical area that it will keeps its data and

services its users.

74

To acquire the needed knowledge about the existing edge networks and their

connections to various compute service providers, the Measurement Scheduler

determines if it needs to launch an active measurement campaign between certain

edge network and a set of compute service providers, selects a set of mobile agents who

are willing to perform these measurements, and issues a measurement start request

to the selected agents. The Data Collection Manager collects the measurement

data from mobile agents coupled with runtime data, if shared by compute service

providers. This data is stored and then analyzed by the Data Analyzer in order

to provide guidance to mobile agents with jobs that need to be assigned to one of

the available compute service providers. Finally, the Recommendation Manager

responds to mobile agents queries and provides a recommended list of compute service

providers coupled with guidance on how to select which provider to submit a job to.

5.3.2 Mobile Agents

A mobile agent is a client application that operates in two different modes of opera-

tions: (1) Job originating mode; and (2) Measurement Volunteering Mode.

In the job originating mode, the user application layer issues one or more

jobs that has to be performed/executed by one of the compute service providers.

For a given job, the offloading manager uses job requirements coupled with the

knowledge it acquired about various compute service providers and decides which

provider that job will be assigned to. Once an assignment decision has been taken,

the Measurement Engine utilizes the data exchanged (code, inputs, and results)

between the mobile agent and the compute service provider to estimate the network

parameters (RTT and bandwidth). Furthermore, it also monitors the response time

of the jobs and estimates its job queuing delays at the given compute service provider.

This information are later shared with the System Orchestrator.

In the measurement volunteering mode, the mobile agent, with the approval of

75

the mobile device owner, is volunteering to help the system orchestrator to acquire

information about the the network to which the mobile device is connected to. In

this mode, the Measurement Controller communicates with the orchestrator to

determine the target set of compute network providers that it will actively measure the

network parameters while communicating with them. For each target compute service

provider, the Measurement Engine will measure both the round trip time (RTT)

and the achievable throughput, store these measurement in the local measurement

database, and share the acquired data with the System Orchestrator.

5.3.3 Compute Service Providers

A compute service provider is responsible for executing jobs assigned to it by mobile

devices. The needed compute resources for these providers can be provided by major

data centers, voluntary devices at the edge, or any deployed compute infrastructure.

For a job that the provider receives, the Execution Manager carries the responsibil-

ity of fully executing the job and returning the results to the job-originating mobile

agent. The Resource Manager monitors the resource usage of jobs and gather

data about its execution schedule. The data gathered by the resource manager can

be voluntarily shared with the system orchestrator in order to enhance the accuracy.

Finally, the Measurement Engine work with mobile agent to estimate the commu-

nication parameters (bandwidth and RTT) between the mobile agent’s edge network

and the compute service provider.

5.4 Compute Service Provider Selection

The compute service provider selection problem that runs at a mobile agent is very

critical to its performance. Typically, a mobile agent must be able to select the

compute service provider that suits its demands and will completely execute the the

job in hand and return its results as early as possible. This decision, however, has to

be taken in a timely manner to avoid introducing additional delays to the job.

76

Table 10: List of symbols used
Symbol Description
Bk The available bandwidth between the mobile agent and

the kth compute service provider
Ck The single thread processing capacity of

the kth compute service provider
Pk The compute level parallelism supported by

the kth compute service provider
Tq,k The average queuing delay at

the kth compute service provider
cT Compute (processing) requirement of task T
oT The size of the output of task T
eT The size of the executable code coupled with

the external data needed by task T
dTk Determines whether task T requires the output

of task k to start executing (1) or not (0)

5.4.1 Single Task Provider Selection

In this section, we develop a provider selection algorithm that takes a simple job

that consists of only one task and selects the fastest compute service provider to fully

execute the job and return its results to the mobile agent.

Completion time Model: We first model the job completion time while using

certain compute service provider (with index k) as follows:

Tcomp,k = Tin,k + Tq,k + Tex,k + Tout,k

where Tcomp,k is the job completion time using the kth compute service provider, Tin,k

is the input transmission time from the mobile agent to the compute service provider,

Tou,k is the output transmission time from the provider to the mobile agent, Tq,k is the

job queuing time at the kth compute service provider, and Tex,k is the job execution

time at that provider.

The network delays can be modeled as follows:

Tin,k =
e

Bk
+ δk(e)

Tout,k =
o

Bk
+ δk(o)

77

where e is the size of the executable code coupled with the input data of the job, o is

the size of the output data, and δ(x) is a function that captures the additional delays

introduced by the data-exchange protocol to send an x amount of data. As a result,

the job completion time can be formulated as:

Tcomp,k =
e+ o

Bk
+ δk(e) + δk(o) + Tq,k +

c

Ck
=
e+ o

Bk
+

c

Ck
+ ∆(e, o, k)

where c is the compute (processing) requirements of the job, Ck the single thread

processing capacity of the kth compute service provider, and ∆(e, o, k) = δ(e)+δ(o)+

Tq,k. So the overhead function (∆(e, o, k)) captures the transmission protocol-specific

delays coupled with the provider queuing delay.

Comparing Two Providers: Given two different compute service providers (k1

and k2), our goal is determining which of these providers should be used. For the

k1
(th) to be selected the following condition must apply:

e+ o

Bk1
+

c

Ck1
+ ∆(e, o, k1) ≤ e+ o

Bk2
+

c

Ck2
+ ∆(e, o, k2)

This condition can be also formulated as:

c

e+ o
≤
[
Ck1Ck2 (Bk1 − Bk2)
Bk1Bk2 (Ck2 − Ck1)

]
+
Ck1Ck2 [∆(e, o, k2)−∆(e, o, k1)]

(Ck2 − Ck1) (e+ o)

Which is equivalent to:

c

e+ o
≤
[
Ck1Ck2 (Bk1 − Bk2)
Bk1Bk2 (Ck2 − Ck1)

]
+

(Ck1Ck2 [Tqk2 − Tqk1]) + (Ck1Ck2 [δk2(e)− δk1(e) + δk2(o)− δk1(o)])
(Ck2 − Ck1) (e+ o)

(7)

Equation 7 shows that: (1) The provider selection problem can be viewed as a

job classification problem where each class of jobs (jobs that have similar compute

requirements per unit data) can be assigned to certain compute service providers; (2)

This relation is inherently transitive and can be easily generalized to compare more

78

than two compute service providers efficiently; (3) The transitivity of the relation

allows for calculating ranges of job’s compute per unit data (c
e+o

) value where a certain

compute service provider will outperform the rest; (4) It allows for purging the list of

compute service providers and eliminating the ones that will never be selected for jobs

coming from certain location/network; (5) Approximate decision boundaries can be

pre-calculated and cached by the system orchestrator to help simplifying the selection

decisions taken by the mobile agents; (6) Calculating these approximate decision

boundaries further helps the system orchestrator to minimize the state information

that has to be transmitted to a mobile agent to take its selection decisions; and

(7) The accuracy of the approximation increases with the increase of the amount

of data transmitted (e + o) allowing the mobile agent to make its selection decision

through a simple lookup operation. Finally, note that the majority of the terms in

this equation are constants that are known by the system orchestrator which enables

the orchestrator to further simplify the adjustment calculations that may have to be

performed by the mobile agent.

We highlight that this equation can also be written as:

c

e+ o
− (Ck1Ck2 [Tqk2 − Tqk1]) + (Ck1Ck2 [δk2(e)− δk1(e) + δk2(o)− δk1(o)])

(Ck2 − Ck1) (e+ o)

≤ Ck1Ck2 (Bk1 − Bk2)
Bk1Bk2 (Ck2 − Ck1)

(8)

where the right hand side term represents the boundaries calculated by the system

orchestrator and the left hand side terms represent the job-specific calculations that

have to be performed by the mobile agent upon having a new job that is ready to be

assigned to a compute service provider.

5.4.2 Complex Job Approximation

Despite the clear advantages of our provider selection technique outlined in Sec-

tion 5.4.1, this technique has been designed to only deal with the simplest form of

jobs (a job that consists of a single task).

79

To be able to use the outlined provider selection process with its efficiency and

simplicity while handling jobs with complex task graphs and dependencies, we opt

for approximating a given complex job by a single-tasked one. While the job input

and output sizes can be directly mapped from the original job model to the approx-

imate one, we use the following equation to calculate the job compute (processing)

requirements in the approximate model:

c =

[∑
T∈CP

cT

]
max

(
1,

∑
T cT

Pk

∑
T∈CP cT

)
=

∑
cT

min(Pk,
∑

cT∑
T∈CP cT

)

where
∑

T∈CP cT is the total processing requirement of the job’s critical path,
∑

T cT is

the overall processing requirements of the job, and Pk is the compute level parallelism

supported by the kth compute service provider.

We highlight that this approximation is only suitable for situations were (1) all

the compute service providers have the same compute level parallelism, or (2) the

compute level parallelism that can be exploited by the job is less than the minimum

compute level parallelism provided by the available providers:

∀k;

∑
cT∑

T∈CP cT
≤ Pk

5.5 Performance Evaluation

In this section, we evaluate the performance of our provider selection mechanism

and validate the correctness of the decisions it makes. We use a prototype that we

implemented on Android and evaluate its performance under two different conditions:

(1) Controlled, and (2) In the wild. We start by describing our experimental setup

(Section 5.5.1) followed by representative the results from our controlled experiments

(Section 5.5.2) and the ones in the wild experiments (Section 5.5.3).

5.5.1 Experimental Setup

We start by describing the experimental job model followed by the summary of the

characteristics of the compute service providers we emulate coupled with their network

80

connectivity to the mobile agents. We then summarize our metrics and parameters

followed by presenting our baselines.

Job Models: In our experiments, we assume single task jobs. The task’s input and

output sizes come from a normal distribution with the preset means and standard

deviation of 0.25 of the mean. In our experiments, we set the compute requirements

of the tasks to match a target value of the compute per unit data.

Provider Model: In our experiments, we assume two compute service providers.

To capture the network time versus compute time trade-off, we assume that the

first compute service provider has higher compute capacity but connected to the

mobile device with a high-latency, low-bandwidth link (typical connectivity with far

data centers). The second compute service provider has lower compute capacity but

connected to the mobile agent with a high-bandwidth, low-latency link. We will

discuss the exact configuration in Sections 5.5.2 and 5.5.3.

We assume that the job queues in both providers are empty (Tq1 = Tq2 = 0). We

also assume that all the compute service providers use TCP Reno as their transport

layer protocol. Therefore, we rely on Cardwell’s model [13] while calculating our

additional protocol specific delays (δk(e), and δk(o)).

Metrics and Parameters: We are interested in the following performance metrics:

• Success Rate: This is the ratio between the number of correct decisions taken

by our provider selection mechanism and the total number of decisions. We

identify a correct decision as selecting the provider that indeed had the minimum

job completion time.

• Computational Slowdown: This is the ratio between the job completion

time on the selected provider and the minimum job completion times achieved

by any compute service provider. This metric is designed to understand the true

impact of the incorrect decisions made by our provider selection mechanism.

81

To validate the correctness of the decisions made by our provider selection mech-

anism, we primarily test against the job feature-to-boundary ratio which is the ratio

between the compute per unit data of the job and the boundary at which its decision

will be switched. We control this ratio by reverse calculating the corresponding job

compute requirements needed to achieve this ratio and setting it to the incoming new

job.

Baselines: We compare our provider selection mechanism with the Fastest Possible

(FP) baseline technique. This approach assumes the ability of assigning the job to all

the existing providers and considers a job completed once the fastest of them returns

the results. In reality such algorithm might not be possible as the mobile device may

not be able to send the job to multiple provider due to cost and energy constraints.

Furthermore, the performance achieved by such technique is equivalent to having an

oracle that knows, prior to submitting the job, with certainty which provider will

finish it earliest.

5.5.2 Controlled Experiment

In this controlled experiment, we run our prototype on three virtual machines one

of them represents a mobile agent and the other two represent our compute service

providers. We set the compute capacity of the first compute service provider to

100MFLOPS where the compute capacity of the second provider is set to be equal to

50MFLOPS. We use dummynet [2] to emulate the network that connects the mobile

agent to each of these compute service providers. We emulate a link with a round

trip time of 100ms and bandwidth equal to 512Kbps that connects the mobile agent

to the high capacity provider. On the other hand, we connect the mobile agent to the

low capacity provider with a link that has 1Mbps bandwidth and 10ms round-trip

time.

Figure 16 present the results we acquired while using our controlled setting. The

82

 0

 25

 50

 75

 100

 0 0.5 1 1.5 2

S
u

c
c
e

s
s
 R

a
te

 (
%

)

Job Feature to Boundary Ratio

ProSel (200MB)
ProSel (4MB)

ProSel (300KB)

(a) Success Rate

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.5 1 1.5 2

C
o

m
p
u

ta
ti
o
n

a
l
s
lo

w
d

o
w

n

Job Feature to Boundary Ratio

FP
ProSel (200MB)

ProSel (4MB)
ProSel (300KB)

(b) Computational Slowdown

Figure 16: Impact of changing the job feature to boundary ratio in a controlled
setting.

figure shows that the farther the task feature is from the decision bounty (>> 1 or

<< 1), the higher the success rate demonstrating the ability of our provider selection

mechanism to make the right selection decision for a very large group of jobs. Al-

though being close to the decision boundary introduced significant amount of wrong

decisions, Figure 16(b) shows that the slowdown caused by these decision is less

than 10% highlighting that both providers are practically providing the same level of

quality of service (completion time) to the job.

Figure 16 highlights the fact that the higher the amount of data associated with

the job (input and output), the better the performance of the system (in terms of both

success rate and computational slowdown). The reason behind this behavior is that

with more data to send and/or receive, the accuracy of our network time estimation

increases which leads to more accurate selection decisions.

5.5.3 In the Wild Experiment

In this experiment, we run our prototype on three machines. The mobile agent and

the low capacity (50MFLOPS) provider exist in the same WLAN inside Georgia Tech.

The high capacity provider (100MFLOPS) however is deployed on Amazon EC2 in

83

 0

 25

 50

 75

 100

 0 0.5 1 1.5 2

S
u

c
c
e

s
s
 R

a
te

 (
%

)

Job Feature to Boundary Ratio

ProSel (200MB)
ProSel (4MB)

ProSel (300KB)

(a) Success Rate

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.5 1 1.5 2

C
o

m
p
u

ta
ti
o
n

a
l
s
lo

w
d

o
w

n

Job Feature to Boundary Ratio

FP
ProSel (200MB)

ProSel (4MB)
ProSel (300KB)

(b) Computational Slowdown

Figure 17: Impact of changing the job feature to boundary ratio in the wild.

Northern California.

Figure 17 presents the results we acquired while using our in the wild setting. The

figure confirms the observations we had in our controlled experiments. The reason

behind the decreased success rate while going to the Amazon EC2 cloud is due to

the fact that the transmission time estimates of sending the input to the cloud and

receiving the output are less accurate as they are affected by background traffic. The

fact that the slow down is bounded by 20% shows the level of effectiveness achieved

by our provider selection mechanism.

5.6 Summary

In this chapter, we presented a system that allows mobile devices to better navigate

the ever complex compute ecosystem and quickly select which provider can execute

their jobs. We designed the architecture of our system that consists of (1) a set of

system orchestrators each of which is responsible for a given geographical area serving

its users, (2) a group of mobile agents who either have jobs to execute or volunteer

to help the orchestrator, and (3) a variety of compute service providers ready to

accept and execute the jobs assigned to them by mobile devices. In our system,

each orchestrator relies on mobile agents to acquire data about the existing compute

84

service providers and their connectivity to the different edge networks in the area of

interest. Once acquired, this data is analyzed to (1) determine when should each of

the available providers be used and (2) assist mobile agents to make their provider

selection decisions efficiently and accurately. We used an Andriod prototype that we

implemented to evaluate the performance of the system in controlled settings as well

as in the wild.

85

CHAPTER VI

SUMMARY OF CONTRIBUTIONS AND FUTURE

WORK

This thesis studies using mobile device clusters as compute platform and takes a

set of steps towards realizing a mobile-cluster based compute service provider. The

summary of this thesis contributions is:

The FemtoCloud System: This work presents the design, implementation and

evaluation of the FemtoCloud system that leverages the available compute resources

on a cluster mobile devices to offer compute resource at the edge. It also identifies the

importance of the task scheduling problem in this context, formulates the problem

within the context of the FemtoCloud system and develops efficient heuristics to solve

it.

Workload Management in Edge Femtoclouds: This work presents significant

enhancements on the design of the FemtoCloud system allowing it to go beyond

supporting a single cluster of mobile devices. The newly proposed architecture is a

hybrid edge-cloud architecture that utilizes the cloud for management and to provide

a stable service interface while using the edge for low latency computation. In this

work we also propose a set of workload management mechanisms that enable an edge

computing service comprised of mobile devices with churn to serve DAG structured

jobs. We implement a prototype of our system that we use to evaluate the performance

of the Femtocloud system. We also use simulations to assess the efficiency of each

of our workload management mechanisms, independently. We perform a pilot study

to identify suitable incentive mechanisms to encourage users to opt in a Femtocloud

system and share their mobile compute resources.

86

Characterizing and Navigating the Compute Ecosystem: This work provides

better understanding of the current compute ecosystem. It presents a a measurement

study that characterizes the current state of the compute ecosystem. It proposes the

design of a system that allows mobile devices to efficiently navigate the increasingly

complex compute ecosystem and efficiently become aware of the existing compute

service providers. Within this system, we develop an efficient provider selection mech-

anism and assess its ability make the right decisions through a set of experiments in

a controlled setting and in the wild.

6.1 Future work

There are many directions to extend the work we did in this thesis. We present some

of these potential directions below:

• Running a mobile cluster based compute service provider at scale: A

successful deployment of a mobile cluster based provider with the right set of

incentives will eventually lead to more and more people sharing their resources.

At this moment, the scalability of the FemtoCloud control architecture will be

considered a significant challenge. A single controller model will not be able

to handle all the load while deploying enough controllers that are designed to

withstand the maximum number of volunteers will be introduce its inefficiencies

specially in terms of maintenance cost as well as performance. A promising

direction could be designing an elastic FemtoCloud control architecture which

is able to grow with the increased number of volunteers and job demand as well

as shrink when either of job demand or the volunteering devices decrease.

• Understanding the economics of the compute ecosystem: In this thesis,

we looked into the current compute ecosystem from the perspective of which

provider will be able to better assist a given customer by finishing its jobs earlier.

However, there are a lot of other parameters that has to be considered. For

87

example, the cost of using a provider can play a major role on selecting which

ones to use. The availability of certain data to be processed (e.g., previous

stored information and user data) and the cost of moving it should also be

considered. Therefore we further look into the economics and the data usage

model in the current compute ecosystem can lead to significant enhancements of

the overall user experience and better capturing of her goals and requirements.

88

REFERENCES

[1] “Boinc: Open-source software for volunteer computing.” https://boinc.

berkeley.edu/. Online; accessed 23-April-2017.

[2] “The dummynet project.” http://info.iet.unipi.it/~luigi/dummynet/.
Online; accessed 13-May-2018.

[3] “Geni.” http://www.geni.net/. Online; accessed 13-May-2018.

[4] “Seattle: Open peer-to-peer computing.” https://seattle.poly.edu/html/.
Online; accessed 13-May-2018.

[5] Acharya, A. and Badrinath, B., “Checkpointing distributed applications
on mobile computers,” in Parallel and Distributed Information Systems, 1994.,
Proceedings of the Third International Conference on, pp. 73–80, IEEE, 1994.

[6] Andersen, D. G., Feamster, N., Bauer, S., and Balakrishnan, H.,
“Topology inference from bgp routing dynamics,” in Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, pp. 243–248, ACM, 2002.

[7] Arslan, M. Y., Singh, I., Singh, S., Madhyastha, H. V., Sundaresan,
K., and Krishnamurthy, S. V., “Computing while charging: building a dis-
tributed computing infrastructure using smartphones,” in ACM CoNEXT, 2012.

[8] Ashley, P. A., Butler, A. M., ELKeissi, G. M., and Veliyathuparam-
bil, L., “Dynamic security sandboxing based on intruder intent,” 2017. US
Patent 9,535,731.

[9] Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., and
Yang, H., “The case for cyberforaging,” in ACM EW, 2002.

[10] Beloglazov, A., Abawajy, J., and Buyya, R., “Energy-aware resource allo-
cation heuristics for efficient management of data centers for cloud computing,”
Future generation computer systems, vol. 28, no. 5, pp. 755–768, 2012.

[11] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S., “Fog computing and
its role in the internet of things,” in SIGCOMM MCC, 2012.

[12] Bonomi, F., Milito, R., Zhu, J., and Addepalli, S., “Fog computing and
its role in the internet of things,” in Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, pp. 13–16, ACM, 2012.

89

[13] Cardwell, N., Savage, S., and Anderson, T., “Modeling tcp latency,” in
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1742–1751, IEEE,
2000.

[14] Carlen, D., Heck, J., Szilagyi, M., Guis, M., Caruso, K., and Mankin,
Y. B., “Fault tolerance for a distributed computing system,” May 9 2017. US
Patent 9,645,811.

[15] Chen, M., Hao, Y., Li, Y., Lai, C., and Wu, D., “On the computation
offloading at ad hoc cloudlet: architecture and service modes,” IEEE Commu-
nications Magazine, 2015.

[16] Choy, S., Wong, B., Simon, G., and Rosenberg, C., “The brewing storm
in cloud gaming: A measurement study on cloud to end-user latency,” in Pro-
ceedings of the 11th annual workshop on network and systems support for games,
p. 2, IEEE Press, 2012.

[17] Chun, B., Ihm, S., Maniatis, P., Naik, M., and Patti, A., “Clonecloud:
elastic execution between mobile device and cloud,” in ACM EuroSys, 2011.

[18] Clinch, S., Harkes, J., Friday, A., Davies, N., and Satyanarayanan,
M., “How close is close enough? understanding the role of cloudlets in supporting
display appropriation by mobile users,” in Pervasive Computing and Communi-
cations (PerCom), 2012 IEEE International Conference on, pp. 122–127, IEEE,
2012.

[19] Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S.,
Chandra, R., and Bahl, P., “Maui: making smartphones last longer with
code offload,” in ACM MobiSys, 2010.

[20] Devi, C. and Uthariaraj, R., “Load balancing in cloud computing environ-
ment using improved weighted round robin algorithm for nonpreemptive depen-
dent tasks,” The Scientific World Journal, 2016.

[21] Dinh, H. T., Lee, C., Niyato, D., and Wang, P., “A survey of mobile cloud
computing: architecture, applications, and approaches,” Wireless communica-
tions and mobile computing, 2013.

[22] Drolia, U., Martins, R., Tan, J., Chheda, A., Sanghavi, M., Gandhi,
R., and Narasimhan, P., “The case for mobile edge-clouds,” in IEEE
UIC/ATC, 2013.

[23] Dusi, M., Fiori, L., and Gringoli, F., “Method and system for checkpointing
a global state of a distributed system,” June 23 2016. US Patent App. 14/908,131.

[24] Fu, Z., Ren, K., Shu, J., Sun, X., and Huang, F., “Enabling personal-
ized search over encrypted outsourced data with efficiency improvement,” IEEE
TPDS, 2016.

90

[25] Gedawy, H., Tariq, S., Mtibaa, A., and Harras, K., “Cumulus: A dis-
tributed and flexible computing testbed for edge cloud computational offloading,”
in Cloudification of the Internet of Things (CIoT), IEEE, 2016.

[26] Gennaro, R., Gentry, C., and Parno, B., “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Annual Cryptology
Conference, Springer, 2010.

[27] Gentry, C. and others, “Fully homomorphic encryption using ideal lattices.,”
in STOC, no. 2009, 2009.

[28] Georgiev, M., Jana, S., and Shmatikov, V., “Rethinking security of web-
based system applications,” in ACM WWW, 2015.

[29] Gordon, M. S., Jamshidi, D., Mahlke, S. A., Mao, M., and Chen, X.,
“Comet: Code offload by migrating execution transparently.,” in OSDI, 2012.

[30] Ha, K., Pillai, P., Richter, W., Abe, Y., and Satyanarayanan, M.,
“Just-in-time provisioning for cyber foraging,” in ACM MobiSys, 2013.

[31] Habak, K., Shi, C., Zegura, E. W., Harras, K. A., and Ammar, M.,
“Elastic mobile device clouds: Leveraging mobile devices to provide cloud com-
puting services at the edge,” Fog for 5G and IoT, 2017.

[32] Keshav, S., “A control-theoretic approach to flow control,” ACM SIGCOMM
Computer Communication Review, 1995.

[33] Kosba, A. E., Papadopoulos, D., Papamanthou, C., Sayed, M. F., Shi,
E., and Triandopoulos, N., “Trueset: Faster verifiable set computations.,”
in USENIX Security, 2014.

[34] Kumar, K. and Lu, Y., “Cloud computing for mobile users: Can offloading
computation save energy?,” IEEE Computer, 2010.

[35] Kwok, Y. and Ahmad, I., “Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors,” IEEE TPDS, 1996.

[36] Kwon, Y., Lee, S., Yi, H., Kwon, D., Yang, S., Chun, B., Huang, L.,
Maniatis, P., Naik, M., and Paek, Y., “Mantis: automatic performance
prediction for smartphone applications,” in USENIX ATC, 2013.

[37] Lewis, G. A., Echeverŕıa, S., Simanta, S., Bradshaw, B., and Root, J.,
“Cloudlet-based cyber-foraging for mobile systems in resource-constrained edge
environments,” in Companion Proceedings of the 36th International Conference
on Software Engineering, pp. 412–415, ACM, 2014.

[38] Li, A., Yang, X., Kandula, S., and Zhang, M., “Cloudcmp: comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pp. 1–14, ACM, 2010.

91

[39] Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Mar-
wah, M., and Hyser, C., “Renewable and cooling aware workload management
for sustainable data centers,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 40, pp. 175–186, ACM, 2012.

[40] Mtibaa, A., Harras, K. A., and Fahim, A., “Towards computational of-
floading in mobile device clouds,” in IEEE CloudCom, 2013.

[41] Mtibaa, A., Snober, M. A., Carelli, A., Beraldi, R., and Alnuweiri,
H., “Collaborative mobile-to-mobile computation offloading,” in Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom), 2014
International Conference on, pp. 460–465, IEEE, 2014.

[42] Naehrig, M., Lauter, K., and Vaikuntanathan, V., “Can homomorphic
encryption be practical?,” in Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, ACM, 2011.

[43] Navratil, J. and Les Cottrell, R., “Abwe: A practical approach to avail-
able bandwidth estimation,” in in Passive and Active Measurement (PAM)
Workshop 2003 Proceedings, La Jolla, Citeseer, 2003.

[44] Nishio, T., Shinkuma, R., Takahashi, T., and Mandayam, N. B.,
“Service-oriented heterogeneous resource sharing for optimizing service latency
in mobile cloud,” in MobileCloud, ACM, 2013.

[45] Prasad, R., Dovrolis, C., Murray, M., and Claffy, K., “Bandwidth
estimation: metrics, measurement techniques, and tools,” IEEE network, vol. 17,
no. 6, pp. 27–35, 2003.

[46] Rodriguez, M. A. and Buyya, R., “A taxonomy and survey on schedul-
ing algorithms for scientific workflows in iaas cloud computing environments,”
Concurrency and Computation: Practice and Experience, 2016.

[47] Saeed, A., Ammar, M., Harras, K. A., and Zegura, E., “Vision: The case
for symbiosis in the internet of things,” in Proceedings of the 6th International
Workshop on Mobile Cloud Computing and Services, ACM, 2015.

[48] Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N., “The case
for vm-based cloudlets in mobile computing,” IEEE Pervasive Computing, 2009.

[49] Satyanarayanan, M., “A brief history of cloud offload: A personal journey
from odyssey through cyber foraging to cloudlets,” Mobile Computing and Com-
munications Review, 2015.

[50] Sharma, P., Xu, Z., Banerjee, S., and Lee, S.-J., “Estimating network
proximity and latency,” ACM SIGCOMM Computer Communication Review,
vol. 36, no. 3, pp. 39–50, 2006.

[51] Sharp, J. A., Data flow computing: theory and practice. Intellect Books, 1992.

92

[52] Sharpe, W. F., Alexander, G. J., and Bailey, J. V., Investments.
Prentice-Hall Upper Saddle River, NJ, 1999.

[53] Shi, C., Habak, K., Pandurangan, P., Ammar, M., Naik, M., and Ze-
gura, E., “Cosmos: computation offloading as a service for mobile devices,” in
ACM MobiHoc, 2014.

[54] Shi, C., Lakafosis, V., Ammar, M. H., and Zegura, E. W., “Serendipity:
enabling remote computing among intermittently connected mobile devices,” in
ACM MobiHoc, 2012.

[55] Shi, C., Ammar, M. H., Zegura, E. W., and Naik, M., “Computing in
cirrus clouds: the challenge of intermittent connectivity,” in Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, MCC ’12, (New
York, NY, USA), pp. 23–28, ACM, 2012.

[56] Shi, C., Pandurangan, P., Ni, K., Yang, J., Ammar, M., Naik, M., and
Zegura, E., “Ic-cloud: Computation offloading to an intermittently-connected
cloud,” tech. rep., Georgia Institute of Technology, 2013.

[57] Singh, R. M., Paul, S., and Kumar, A., “Task scheduling in cloud comput-
ing,” International Journal of Computer Scienceand Information Technologies
(IJCSIT), vol. 5, no. 6, pp. 7940–7944, 2014.

[58] Stojmenovic, I., “Fog computing: A cloud to the ground support for smart
things and machine-to-machine networks,” in IEEE ATNAC, 2014.

[59] Stojmenovic, I. and Wen, S., “The fog computing paradigm: Scenarios and
security issues,” in IEEE FedCSIS, 2014.

[60] Strauss, J., Katabi, D., and Kaashoek, F., “A measurement study of avail-
able bandwidth estimation tools,” in Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, pp. 39–44, ACM, 2003.

[61] Topcuoglu, H., Hariri, S., and Wu, M., “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE TPDS, 2002.

[62] Tu, S., Kaashoek, M. F., Madden, S., and Zeldovich, N., “Processing
analytical queries over encrypted data,” in Proceedings of the VLDB Endowment,
2013.

[63] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar,
M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., and others,
“Apache hadoop yarn: Yet another resource negotiator,” in Proceedings of the
4th annual Symposium on Cloud Computing, ACM, 2013.

[64] Wong, K. F. and Franklin, M., “Checkpointing in distributed computing
systems,” Journal of parallel and distributed computing, vol. 35, no. 1, pp. 67–75,
1996.

93

[65] Wu, F., Wu, Q., and Tan, Y., “Workflow scheduling in cloud: a survey,” The
Journal of Supercomputing, 2015.

[66] Wu, L., Garg, S. K., and Buyya, R., “Sla-based admission control for
a software-as-a-service provider in cloud computing environments,” Journal of
Computer and System Sciences, vol. 78, no. 5, pp. 1280–1299, 2012.

[67] Yu, J. and Buyya, R., “A taxonomy of workflow management systems for grid
computing,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 171–200, 2005.

[68] Zhang, T., Chowdhery, A., Bahl, P., Jamieson, K., and Banerjee,
S., “The design and implementation of a wireless video surveillance system,” in
MobiCom, 2015.

94

