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PREFACE

This dissertation is original work by the author, Alex Godwin. Portions of this disser-

tation have been published, or have been submitted for review prior to publication.

There have been significant contributions by co-authors for portions of this work,

which have been noted in the relevant sections.
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SUMMARY

This document details research conducted at Georgia Tech to determine

technology-based methods for improving the dialogue between civic leaders and ordi-

nary citizens. I discuss software designs for helping people to capture their perception

of the important parts of a city and the connections between these parts as a men-

tal map that may be different from “official” maps constructed by land surveyors or

political agencies. I also discuss ways that these mental maps can be put to use to

understand how groups of citizens see the city, and I show the differences that can

exist between different groups and between the overall perception of the city and

official maps.
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CHAPTER I

INTRODUCTION

Managing a city is a difficult problem. They are, by definition, made up of a huge

number of people that each have different beliefs, values, and identities. A city reflects

these values, and for cities like Atlanta, even people living in close proximity can

have wildly different perceptions of what is valuable and what should be changed. In

midtown, for example, the skyline is shifting rapidly as new apartment complexes and

condominium high rises are constructed to serve the booming housing demand in the

city’s core. This is fantastic news if you can afford the luxurious options on display,

but not everyone can. Many other neighborhoods are struggling to balance the pace

of development with preserving an existing cultural identity. The beltline is rapidly

connecting neighborhoods and reshaping the economy in the core of the city, but

also bringing property taxes to a point that threatens long-term residents [87]. Like

many cities, the topic of gentrification is raised frequently, with contested definitions

and no clear solution. Throughout the city, twenty-five Neighborhood Planning Units

(NPUs) are charged with providing a forum for community members to work with

city administrators and urban planners to make decisions on zoning and land use,

but major differences in beliefs, demographics, and income create substantial divides

in the opinions for how this outcome can best be achieved.

This is not, by any means, a new problem. Kevin Lynch was one of the first to

study the problem of disparate mental maps held by members of the community (Fig-

ure 1), and worked to capture these maps as physical sketches that could be discussed

in group settings to establish the navigability of areas in a city [75]. Donald Apple-

yard built from this work by documenting the conflicting beliefs and values of urban
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Figure 1: Images of the city of Boston compiled from verbal interviews in which par-
ticipants described the city, field observations conducted by the researchers, and sketched
maps rapidly drawn by participants [75].

planners and inhabitants during the design and development of Ciudad Guyana [8].

Cities also grow and change as a consequence of new technology, environmental fac-

tors, and the evolving requirements of their citizenry. Major metropolitan areas now

have entire departments dedicated to analyzing and mapping important data through

geographic information systems (GIS). As documented extensively by Appleyard, the

problem with keeping city design and mapping solely within city administration is

that it tends to reflect the beliefs and values of the urban planners and those in power.

Inhabitants of a city can have very different conceptual understandings for what fea-

tures of a city are important, and ascribe meaning and value to different recognizable

elements.

At a much larger scale, Peter Gould and Rodney White studied the use of tran-

scribed mental maps to explore factors of desirability in the United States, the United

Kingdom, Sweden, and Canada [52]. In the U.S., they surveyed university students
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Figure 2: Students asked “Where would you like to live?” provide responses that can be
aggregated into an overall desirability map for a wide area [52].

in five different regions of the country to determine their ranked preference for mov-

ing to each of the fifty states after graduation [51]. By simply answering the ques-

tion, “Where would you like to live?” students from each region exhibited markedly

different preferred locations, revealing varying importance placed on perceived envi-

ronmental quality, political quality, economic opportunities, and social and cultural

aspects (Figure 2). These answers were obtained through simple ranking tasks in

which participants indicated on a paper map their preferred order of moving to each

of the possible locations. When aggregated, these responses produce a rich contour

map of a large area in which lines separate areas that are perceived as more or less

desirable.

Geographic information systems (GIS) have advanced substantially in the years

since this research was introduced, and modern systems provide a wealth of capabil-

ities for the analysis of complex spatial data. Unlike the paper maps used by Gould,

White, Appleyard, and Lynch, the typical interface of a GIS is complex, feature-rich,

and powerful. Many cities, such as Atlanta and Boston, have departments dedicated
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to supporting the analysis of spatial data in city planning through GIS systems. Com-

mercial systems, such as ArcGIS, make it possible to create complex maps and share

them embedded directly into websites. Through open-source libraries like Leaflet,

Mapbox, and Turf, developers can create powerful mapping sites for more customized

analysis of specific types of data.

Unfortunately, use of a GIS system or developing a site can prove very intimidat-

ing for inexperienced users, who are more at ease using natural speech and sketching

to access map-based data than through a GIS [91]. Hand-drawn materials (e.g., en-

gineering sketches) can often improve collaboration by serving as boundary objects

between different stakeholders [56, 95], which allows different users to read domain-

specific information from the same object and improve distributed cognition. Plans

can take many different forms, but are created by urban planners and civic engineers

to specify the changes that alter a physical space from its current form into another.

For plans that involve changes to a physical location, such as a proposed housing

development or sports arena, maps provide a layer upon which notes, changes, and

annotations can be drawn to respond to details of the plan or suggest alterations.

Previous research has indicated that rapid, sketch-based prototyping of user inter-

faces can facilitate a more free-form exploration of alternatives [68]. These aspects

can substantially improve the value of an illustration as an artifact that promotes

distributed cognition among stakeholders, allowing them to rapidly externalize and

share mental models within a team. Finally, a “sketchy” rendering style can be used

in information visualization to encourage annotation and to convey the unfinished

quality of uncertain data [111].

Geospatial data within urban spaces is inextricably tied to the architectural forms

and topological features of the city, which can have varying levels of importance for

different inhabitants. Lynch classified these features into five primary elements: nodes

(areas of heightened activity and interaction), paths (channels that people take to
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move around the city), edges (barriers that divide one area from another), districts

(well-defined regions that a person can be within), and landmarks (simple and highly

visible features useful for navigation) [75]. These elements have been used extensively

to analyze the structure of urban spaces, identify locations for improved design, and

to compare cities to each other in content and aesthetic appeal.

In a detailed analysis of the US cities of Boston, Jersey City, and Los Angeles,

Lynch detailed how these elements can be used to ascertain a city’s imageability:

“that quality in a physical object which gives it a high probability of evoking a strong

image in any given observer.” The image of the city can contain many features that

are shared by its inhabitants, but large groups of people may have different opinions

on the essential elements. These differences can be used to inform the analysis of be-

havioral data, such as crime patterns, that are governed by human movement through

urban spaces [13, 9]. Criminals and non-criminal alike may overlap significantly in

the images that they maintain of the city, but acute differences in these images and

the built environment can reveal themselves to a criminal as an opportunity for mis-

chief [79]. Brantingham and Brantingham have provided an extensive analysis of

the ways in which Lynch’s elements, notably nodes, paths, and edges, contribute to

trends in behavior [14].

While it may seem unusual to incorporate differing and subjective perspectives

into the visual analysis of behavioral data, it should be noted that such data is

often fraught with ambiguity. For example, in an analysis of crime data during a

series of violence prevention programs in Cardiff, researchers determined that fewer

than one-third of violent incidents in the UK and Scandinavia requiring emergency

treatment appear in police records [41]. The absence of these incidents from the

official record points to a striking difference of perspective between the police and the

inhabitants of the city, notably, victims of violence. Clearly, alternative perspectives

are necessary to provide insight into the fuller nature of urban spatial data. This
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local knowledge can be incorporated through a variety of mechanisms, notably Public

Participation in Geographic Information Systems (PPGIS) [93, 107] and Bottom-

Up GIS (BUGIS) [97]. Lynch’s imageability elements serve as an ideal basis for

capturing mental maps of urban spaces as digital representations that facilitate the

incorporation of differing perspectives in the analysis of spatial data [65].

1.1 Motivation

It is true that many domains and forms of analysis may not require an understanding

of city data along navigable elements; for example, it is of little value to estimate the

movement of seasonal weather patterns between states, as temperature fronts do not

follow interstate highways and they do not respect perceived neighborhood bound-

aries. People do follow roads, however, and when trying to understand the likelihood

of travel time delays and accidents due to inclement weather it can be useful to

model its effects within the context of the underlying road network topology. From

this perspective, point-based events (e.g., accidents, flood locations) can be modeled

as adverse elements that close individual links within the road network, forcing trav-

elers to take other routes [63]. This approach would also not work for certain types of

discrete spatial events, such as bird strikes, that do not occur within the city or are

affected by human behavior or mobility. For domains that are strongly tied to human

mobility, the importance of road network topology is difficult to understate: it is the

principal medium through which we move between locations whether on foot, on a

bicycle, or in a car. For example, the elements of an area are strongly tied to both the

amount and types of crime that occur there [9]. Areas with high levels of thoroughfare

are at increased risk of crime because of their path reachability, and closed-off streets

and culs-de-sac are at a reduced risk. Connectivity is often preferable for increased

walkability and cycling, but urban planners must also take into account the effects

that the design of an area have on negative aspects of living there.
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An area of recent concern is the path reachability of an area and its effect on

access to substantive and affordable food [20]. Based on the method of travel, it

can take hours to move from a “food desert” to a store providing healthy groceries

and back. Because of this limited access, the residents of a city have an increased

prevalence of illnesses related to heart disease and diabetes. Understanding the re-

lationships between nodes with available food and paths connecting them is the first

step in providing additional access and designing new programs that help. There is

a commercial interest as well, in that other types of retail stand to benefit from un-

derstanding the prevalence of other similar businesses in proposed locations and the

subsequent competition that might be faced. By using the techniques described in

this research, legislators would be more capable of comparing the different districts of

a city and the differing access to healthy food options that are perceived as available

to inhabitants depending on what elements of the city they view as most important.

This could be an important first step for identifying districts that need additional

support and the edges that separate them, either through tax incentives that increase

the number of healthy food nodes or through improved public transportation that

improves the connectivity to neighboring areas with better options.

The primary benefit of incorporating citizen-sourced mental maps in the analysis

process is to identify disparities between perception of a quality within the urban

landscape and the quantitative data about that quality. For example, members of a

community might be fearful because it feels to them that crime is increasing, when

the authoritative data of crime distributions indicates no significant change. Recog-

nizing these differences in mental maps is just the first step to understanding how

they affect perceptions of quantitative data. The goal of my work is to design and

evaluate interaction techniques that can be used to capture mental maps of urban

spaces, allowing powerful capabilities of visualization and analysis while retaining the

simplicity and ease of understanding provided by hand-drawn maps. There are three
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overarching problems that visual analysis of spatial data with mental maps can help

solve:

• GIS systems are complex and expensive, so public participation in GIS is largely

through paper-based capture methods based on sketching exercises that are not

easily shared or stored and that are time consuming to aggregate.

• Current approaches for GIS rarely incorporate qualitative data obtained from

citizens within approaches for analyzing quantitative data. If kept separate,

qualitative data can be difficult to interpret and therefore easy to ignore.

• Qualitative data collected from people is separate from and relatively ignored in

the face of compelling quantitative data, leaving citizen concerns unaddressed.

New policy that affects citizens does not incorporate the values and beliefs of

the people who live in an area.

1.1.1 Capturing Mental Maps

Paper-based sketches and surveys provide an intuitive route for obtaining a wide

variety of citizen-sourced images of the city, but this approach typically relies on

participants attending workshops at a central location to transcribed maps by hand.

This can create complications in obtaining a large number of participants who are

unable to attend the meetings in person due to transportation and scheduling chal-

lenges. After these are completed, the physical depictions of mental maps can serve

as a powerful and compelling overview of the way in which participants perceive the

built environment around them, and provide context for their individual or group

experiences in the city. As static images, these sketches can provide insight into the

value that citizens place on different features of the city and their hopes for the city’s

plans to preserve those features, but the sketches themselves do not promote further

interaction or investigation beyond the short window of time that researchers have
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to ask the participant questions about the image. Finally, collating and aggregat-

ing these artifacts into a single data representation is time-consuming and subjective.

Through online digital sketching techniques, people can transcribe and annotate their

own

1.1.2 Exploration of Qualitative Data from Non-experts

In cities like Atlanta, there are areas that are changing rapidly through the demolition

of existing structures and the construction of new buildings. While this is expected

for the sake of progress, the current residents do not always have the ability to engage

with local government in determining how these changes will take place. Residents

of affluent neighborhoods often have access to professional services, such as GIS ex-

perts, architects, and urban planners that can help analyze impending changes to the

neighborhood and interpret the wishes of the residents into a modified version of these

plans. Such advocacy can be an important, and costly, requirement for maintaining

a voice during negotiations for use of public space. Without such resources, however,

residents of lower-income neighborhoods find it difficult to maintain equal footing

with the professionally developed plans proposed by the city. Improved interaction

techniques could help create a more even footing for residents of these neighborhoods

by providing improved access to methods of analysis for local, map-based data. These

interaction techniques could be utilized on smart phones and tablet devices, which

are often still present in homes without more costly desktop computers.

1.1.3 Utilizing Values for Policy

Map visualizations can often incorporate landscape topography, transportation topol-

ogy, spatiotemporal data, and annotations of important elements provided by design-

ers. What is frequently missing is the incorporation of city elements considered vital

to novice GIS users who do not have the ability to download, manipulate, and host

complex maps. This makes it impossible to identify differences in beliefs and values
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about the city and spatial data under scrutiny. Without a nuanced conversation of

these differences in perspective, it can be challenging to move forward with policy

that is equitable to experts and novice users alike. Incorporating individual mental

maps in the analysis of spatial data relevant to city policy questions can bring these

differing perspectives to the forefront and allow for a meaningful discussion of the

elements that make up these differences in values. This will allow for more rapid

discussion of these ideas, while also allowing novice users to quickly contribute to

discussions of map-based data.

1.2 Barriers to Digital Mental Maps

There are many software systems available for constructing and analyzing spatial

data, from feature-rich commercial software like ArcGIS to free and open-source so-

lutions like QGIS. Other tools for data visualization, such as Tableau and d3.js,

provide some capabilities for mapping spatial data though that is not their primary

purpose and the supported features are more limited. Many other solutions are avail-

able, but there is currently no software solution available to the public designed solely

for capturing digital representations of mental maps.

While these systems, particularly ArcGIS, can be used for comparing or aggre-

gating maps, the steep learning curve is prohibitive for those without a background

in GIS. Once collected in paper form, each individual hand-drawn mental map needs

to be transcribed by a member of the interview team before they can be analyzed

in aggregate. This is a time-consuming and labor-intensive process. Matei et al., for

example, asked participants in Los Angeles to use crayons to draw mental maps in

order to study the perception of the environment and its correlation to feelings of

fear [80]. Each of the 215 maps were translated by research personnel to numeric

matrices in ArcView (an entry-level form of ArcGIS available at the time) before
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analysis could take place. While free online tools do exist that can be used to col-

lect digital sketches of the environment, from JavaScript libraries like Leaflet.js that

support mapping to more complete applications like GeoJson.io, there is still no tool

to facilitate aggregated analysis of collections of mental maps and few methods for

joining mental maps to official data directly.

This is unfortunate, especially considering that much previous work has indicated

not only refinements to the paper-based techniques of Lynch and Gould & White but

also the benefits that mental mapping can bring to civic discussion. Public perception

of urban data often differs from official data sources, and these differences can give

context to the data or highlight deficiencies. Expressive tools for digital mental

mapping can support public participation in GIS (PPGIS), providing an opportunity

to bring these differences to light. These barriers for digital mental mapping indicate

a need for additional research in this area to build and explore these capabilities in

web-based tools. In this thesis, I will discuss my research to explore techniques for

capturing and analyzing digital representation of mental maps.

Thesis Statement Quantitative spatial data, such as crime locations and housing

prices, can be used to substantially augment our understanding of topics of interest to

civic planning, including human behavior. However, it does not necessarily capture

the qualitative values or understanding of an environment from the people that live

within it, which is important for promoting public participation in GIS. Interactive

mental maps may provide an external cognition aid that allows people to confront and

interpret their qualitative understanding of an urban environment during quantitative

analysis of spatial data. A mental map encodes the aspects of an area that a person

considers core to the nature of that place, and the creation of a digital mental map

can both incorporate the significant elements of the urban environment and reflect

the beliefs of the person who created the map. Creating digital expressions of these
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elements and beliefs within software systems may facilitate cooperative discussion of

spatial data between everyday people and experts.

1.2.1 Research Questions

How do we analyze civic data? There are two substantial challenges to urban data

analysis that this thesis seeks to explore. These challenges lead us to these primary

research questions:

• There are many different ways to represent the same underlying data set, and

this can lead to misinterpretation and miscommunication. How can interactive

visualizations improve interpretability of representations of mental maps?

• People have different values and opinions on what is important about their city:

what should be changed, and what should be preserved. How can interactive vi-

sualizations improve current methods for capturing and depicting mental maps

at the neighborhood and city levels?

In Chapter 2, I discuss related work and describe its relation to the hardware

and software I have developed during my own research in this area. In Chapter 3,

I describe software interaction techniques using a combination of sketching, multi-

touch, and mouse commands that I developed to explore spatial data. Once collected

from many different participants, there are many differences that can emerge between

the features present maps and the shapes of neighborhood boundaries. There are

many different ways to represent the same underlying data set, and this

can lead to misinterpretation and miscommunication. To explore these dif-

ferences, I describe a technique in Chapter 4 for analyzing the same data set from

multiple perspectives by using road networks to aggregate and smooth choropleth

maps. In that chapter, I use the technique to analyze crime in the city of Atlanta

across multiple areal unit schemes for neighborhoods, police beats, and census dis-

tricts. Even with such techniques, people have different values and opinions on
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what is important about their city, which can affect whether they think

events in an area of the city are more or less relevant to them. In Chapter 5,

I discuss a method for flagging important elements in a digital mental map and incor-

porating them into the analysis of distributions of spatial data. I describe preliminary

results using crowd-sourced data from OpenStreetMap, then detail an experiment I

conducted using participants from the city of Atlanta. Finally, in Chapter 6, I pro-

vide some reflections on this research and discuss some potential directions for future

work.
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CHAPTER II

RELATED WORK

2.1 Image of Urban Spaces

As a support mechanism for visualization, imageability is frequently used to determine

the characteristics of a scene that will allow a user to navigate through a 2D or

3D environment and better understand the data. An early attempt by Ingram and

Benford set the stage for many later efforts in using imageability elements (e.g.,

nodes, paths, edges) to improve the legibility of a data visualization. Many of these

efforts seek to automatically detect notable elements, though, rather than allowing

the user to explicitly record a mental map of the data [59, 60]. For example, Chang et

al. combined a building aggregation algorithm and a demographic data exploration

panel to analyze the differences in census data between neighborhoods [23]. Similarly,

van Wijk et al. support the creation of wayfinding maps through the simplified

representations of urban networks given a focal origin node [104]. Glander and Döllner

also use focal points and building aggregation, but incorporate a balanced tree of

landmark elements to help navigate a 3D representation of the city at varying levels

of abstraction [45].

An explicitly-defined mental map of the city provides intrinsic value, as it allows

a community member to share their perspective of the city. Most representations of

an urban area are “owned” by those in local governments, and reflect a top-down

perspective of how elements of the city are used. Unfortunately, this perspective

is often exclusive to many of the inhabitants of the community, particularly those

who are not in power [67, 30]. This knowledge capture facilitates the expression of

the interests and concerns of individual community members as well as groups of
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(a) Neighborhood Sketches (b) Police Calls Near Intersections

Figure 3: Depictions of Crime in the South Allison Hill community of Harrisburg, Penn-
sylvania [27]. In Figure 3a, a group of youth from the neighborhood have created a map
that indicates “bad” street corners and the alley ways that they use to navigate around
the intersection. In Figure 3b, another view rate of crime is constructed to show the rate
of police calls near each intersection, but the representation lacks the additional context of
how this data affects the individual experience of the residents near those intersections.

citizens [97]. It should be noted, however, that our technique is not intended to

directly capture qualitative aspects of the community such as the “bad intersections”

sketched by the youth Dennis studied during the South Allison Hills Youth Planning

Project [27]. Instead, our technique uses the explicitly-defined mental map as a

framework for interpreting quantitative data and comparing those interpretations.

2.2 Mapping Point-based Data

Three common methods for representing point-based events in a spatial context are

the dotmap, heatmap, and choropleth map. These methods typically provide context

for the distribution of the data at larger scales. The dotmap presents a relatively

straightforward option, but comparisons of local areas by relative density can be

nearly impossible when events are significantly overplotted (Figure 4a). Still, when

scattered appropriately and with a limited color palette, dotmaps can be effective

in revealing the relative distribution of data in an area. One recent examples of

an effective dotmap is Dustin Cable’s racial dotmap (Figure 5, in which each dot

represents a single person [21]. Through effective color selection and dot separation,
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(a) Dot map (b) Heat map (c) Choropleth map

Figure 4: Representations of the event distributions in an urban area. The heat map
in Figure 4b reveals distribution more faithfully, but is disconnected from the political
boundaries used to interpret the data. The choropleth map in Figure 4c creates a false
impression of the relative distribution of events.

Cable’s maps convey overall population distribution, demographic heterogeneity, and

boundaries that separate racially homogeneous areas.

Heatmapping avoids the overplotting concern by mapping the discrete event space

to a continuous domain [33] (Figure 4b). The relative density of areas on the map

are more easily comparable, and heat maps can be extended to include temporal

features in addition to spatial variation [77]. Of the methods for performing this

mapping, kernel density estimation is acknowledged to outperform other approaches

[22]. Kernels use a single bandwidth that must be carefully selected, which can

highlight local or global features but not both. In recent years, significant attention

has been paid to analysis of variation in scale and spatial extent. For example,

Goodwin et al. have explored how correlation coefficients between variables alter

dramatically across locations and analysis scale [49, 50]. Similarly, Turkay et al.

have explored representation techniques for depicting spatial statistical summaries

for multiple attributes across variation in bandwidth and location, but use abstract

paths and rectangular windows that are not constrained to the underlying topology

of movement used by people [102].

Heat maps also exclude the possibility of quantitatively comparing the values of
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Figure 5: Racial Dotmap of Atlanta [21]. Each dot represents a single person, and is
given a representative color to indicate that person’s race. The spacing and use of color are
employed effectively to reveal areas of demographic homogeneity, more diverse areas, and
the edges between them.

bounded regions on a map, which is the primary task supported by the choropleth

map. It is not enough, however, to simply aggregate the number of points contained

within each region due to unaccounted for differences in population density and other

factors [69] (Figure 4c). The problem of area aggregation extends to the choice of

bounding contours, and the substitution of alternative boundaries (e.g., census, public

safety districts, neighborhood) can lead to significant differences in the resultant

choropleth map. This issue, known as the Modifiable Areal Unit Problem (MAUP),

weighs against every evaluation of the benefits of choropleth maps [84]. The use of

bounded regions, while convenient for political comparisons at the global scale, can

be misleading and inaccurate for comparison of trends at the local scale depending

entirely on how the lines are drawn (Figure 6). Areal units create an artificial

barrier between neighboring regions that ignores the significant effects they can have

on each other [44, 103], a problem which is compounded in multivariate analysis
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(a) Police Beat (b) Census
District

(c) Neighborhood (d) Neighborhood
Planning Unit
(NPU)

Figure 6: The Modifiable Areal Unit Problem (MAUP), in which the use of different
binning strategies produces markedly different results for analyzing the distribution of events
within the same geographic region. Each choropleth map depicts the distribution of one
year of crime in Atlanta, but the use of different areal units produces different insights.

[42]. Geographical weighting (GW) can be used to partially circumvent this issue by

smoothing the value of each region so that it incorporates the value of its neighbors

for some statistical consideration [18], most commonly and intuitively the local mean

[19]. A distance function (e.g., Gaussian, bisquare) is used to determine the relative

influence that a nearby region will have on a local mean in relation to its distance to

the region of interest. The choice of an allowable distance for affecting the mean, or

window size, varies depending on the underlying data and domain, though automated

methods do exist to find promising options [72]. Visual inspection of the effects of

changing the window size can reveal regional characteristics that vary from the global

to the local and indicate important correlations between data attributes as the scale

is changed [31].

Regardless of the window size and distance function, the normative Euclidean

distance typically utilized in GW and other multi-scale techniques does not account

for human reachability by available paths, which can be critical for many of the

urban domains discussed in the previous section. Alternative models for accounting

for reachability include Bristlemaps, which aggregates discrete event locations to the

roads of a city [64]. This is accomplished through a continuous mapping by kernel

density estimation that highlights localized patterns in the data, but it does not allow
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for direct global comparison of bounded regions across the map. The importance

of visualizing topology in the context of spatial location has also been explored in

GreenGrid, a system that blends cartograms and weighted edge representations for

analyzing power grids [109]. Reachability has also been explored for local statistics

in the context of travel time and road topology[113], but only for point locations and

never for bounded regions [73, 74].

2.3 Participatory GIS

Research to improve public participation in GIS (PPGIS) has often found that cre-

ating rapid sketch-based representations best improve communication during partic-

ipatory planning workshops, and that many current GIS tools fail to facilitate this

capability [5]. Moreover, many GIS applications remain inaccessible to a wider audi-

ence [54, 93]. Al-Kodmany avoided this dilemma by pairing an expert-operated GIS

with an artist that took requests from participants during planning sessions in the

Pilsen community [4]. Many systems allow for sketching in a GIS context, though

these are often more as a natural interaction technique for exploring data [102] or

creating a query of existing spatial features [35]. Rarer is the capability to express

elements within a spatial context that are of importance to the user. This type of

expression could be acquired implicitly, by tracking the areas of the city and spatial

data items that a user inspects. This approach has been used quite successfully in

other contexts, notably text document analysis, by generating a semantic model from

user interaction at varying levels of detail [37]. This type of interaction, however,

often divides the user from understanding the internal mechanisms that are being

used to generate a representation of the data. Instead, following Green’s et al.’s guid-

ance on process initiators [53], our technique allows the user to explicitly capture her

knowledge of the spatial environment as an explicit and direct interaction with the

interface by sketching the elements of the city.
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Figure 7: Jer Thorp’s Map Room in St. Louis, in which participants project images of
urban data onto a large canvas and collaboratively trace, sketch, draw, and paint their own
image of the city onto it [99].

2.4 Interaction Techniques

There are many techniques from human-computer interaction and visualization re-

search that lend themselves to encoding a mental map, and they have different ad-

vantages and disadvantages based on the model of community engagement with GIS

that they most directly support [71]. For example, the data artist Jer Thorp’s “St.

Louis MapRoom” blends the idea of a Map Room provided by the city planning office

to community organizations with the notion of a Neighbourhood GIS Center (Fig-

ure 7). Members of the community have access to official data that they would not

otherwise be easily able to analyze, and the data is projected onto a collaborative

canvas upon which people annotate, paint, and draw to blend the quantitative data

with their own experiences of the city [99]. Consequently, this approach is very easy

to use and promotes collaboration between community groups, but requires travel to

the location of the map room in order to be utilized and requires significant external

funding for the location, equipment, and maintenance.
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Taking the idea of painting as annotation further, Huck proposed the use of a

“Spraycan” tool to allow users to digitally record their perceptions of a data dis-

tribution on a map [58, 38]. The airbrush interface allows participants to create a

fuzzy-point responses to prompts, such as the suitability of various sites for wind

farms. This type of approach is suitable for use as browser-based GIS technique, pro-

moting Leitner’s Internet Map Server model, which allows the community to have

direct access to spatial data but comes with the disadvantage that the utilization is

dependent on the hosting capabilities of the provider and makes it more difficult to

have a conversation about the results or engage with experts.

Visualization researchers have developed many techniques for interacting with

data beyond the mouse and keyboard in a style that is more similar to the rapid and

easy sketching on a paper map. Notably, Lee et al. provide an in-depth treatment

of “natural” interaction techniques that stray beyond the setup of WIMP (Windows,

Icons, Menus, and Pointer) interfaces [70], many of which are highly suitable for

collaborative work. Jansen and Dragicevic provide a model for characterizing inter-

action in both conventional and unconventional non-WIMP interfaces, from tangible

actuator systems and legos to wall displays [62]. Isenberg and Isenberg focus more

narrowly on the interaction techniques afforded by touch surfaces, primarily wall and

table displays, but echo the input difficulties recognized by Lee et al. in arguing

that the benefits of such systems have yet to be fully realized [61]. In the context of

community participation in GIS, many of these techniques are promising, but in their

current form rely on extremely costly hardware components that are out of reach

for many neighborhoods. From a practical standpoint, the most likely realization of

this arrangement could be through GIS Facilities Hosted in Universities and Public

Libraries. This could allow communities to have access to more advanced equipment,

staff, and volunteers, but is reliant on access to such a university and a number of

other incidental factors. As such, the more an interaction technique can be adapted
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to Leitner’s Internet Map Servers model, the more widely it can be adapted to a

wider variety of contexts and potentially support additional models. While this does

not preclude the use of natural interaction techniques, it does require that they be

accessible through WIMP controls in addition to touch and stylus interactions that

are available to users with more advanced hardware.
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CHAPTER III

INTERACTING WITH CIVIC DATA

In this chapter, I describe my work to date and preliminary findings for developing

interactive techniques for sketching mental maps of urban spaces for visual analysis of

spatial data. This chapter describes my work on the use of sketching and multi-touch

interaction. I began this research with the intent to identify simple, direct methods

for interacting with visual representations of spatial data. This work consisted of

sketch and multi-touch methods that would be relatively easy for non-experts in GIS

to grasp and included capabilities for path analysis in the context of spatial point

data (Section 3.1). This foundation led to several connected efforts, most directly

to the design of a route planning app that allows police officers to rapidly sketch

patrol paths (Section 3.2). Though this is perhaps the most application-focused of

my efforts to this point, it still relies heavily on the analysis of data in the context of

an individual understanding of the city. In this case, the individual is a police officer,

who applies her domain knowledge of the city to decide where her efforts will be most

valuable.

3.1 Sketching Spatial Data on Maps

In a poster at IEEE VIS in 2015, I presented the details for an initial prototype of

sketch-based interaction techniques in a system called SpaceSketch [46]. SpaceSketch

is designed for use on a multi-touch enabled display with a stylus (Figure 8). The

stylus is used to draw data sketches on the map, while touch controls are used for

navigation within the display. There are two underlying data sets in the SpaceSketch

prototype: spatial events and reachable paths. The spatial events have a fixed location

and point in time, such as crimes or traffic collisions. A reachable paths dataset,
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Figure 8: Preliminary map visualization incorporating geospatial features and freehand
annotations. Sketched paths in blue have been fused to the closest match on the road
network from an origin to multiple destinations. Freehand closed shapes have been used to
update and stain the paths that pass through the shapes in red.

obtained as road data from OpenStreetMap, is used by SpaceSketch to snap drawn

paths to actual roads.

Using a stylus, a path can be drawn from one location to another on the map. The

interface supports three modes of path sketching: (1) shortest path; (2) user-specified

path; and (3) radial exploration. In the first mode, the system generates the shortest

path between the endpoints using the reachable road dataset and ignores the shape

of the path drawn by the user. The shortest path mode can also be used to extend

a path indefinitely, moving between different waypoints as the user draws each leg of

the trip on the map. In the user-specified path mode, the user traces a path from

a location. The system follows the traced line to construct a path that follows it in

real time, even if another shorter path exists. Finally, in the radial exploration mode,

a user investigates the area around a central waypoint by dragging the stylus from

that location to any distance around it. While the stylus remains down, a circle is

drawn with the radius of the distance from the starting point to the stylus. When the
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stylus is lifted from the display, the system identifies all reachable locations within

the circle from the central waypoint and creates a path to them. This can be useful

if a user wants to explore the neighborhood within a certain walking distance around

a central location.

SpaceSketch also provides the basic capability to define districts on the map. A

user drags the stylus around the defined area that is automatically closed when it is

lifted from the display. The shading of the district is mapped to the number of spatial

events (e.g., crimes) that occur within that district. The current rendering could be

adapted to highlight the deviation of each area from the median number of internal

crimes, distance of contained crimes from the shape centroid, and more. An additional

capability of the bounded districts is that they can be used to “paint” paths that pass

through the defined area. If, for example, a user specifies a radial exploration with

a long distance, the number of paths constructed will be quite high. By examining

the rendering style of the paths, the user can identify areas with a higher number

of spatial events along each path, and draw a bounded district around those area.

The paths that move through that area will then be shaded with a different hue,

allowing the user to determine if alternate paths are available to reach the affected

destinations.

While SpaceSketch was initially a very promising approach for interacting with

maps, the primary limitation was that it was designed primarily for a fairly powerful

computer with a multitouch surface, pressure-sensitive stylus, and erasing capabilities.

While compelling, this relatively narrow use case limited the application to community

participants who did not have access to this type of hardware. Consequently, I began

to focus more heavily on techniques that could still utilize touch and sketch controls

through a mouse, but take advantage of touch when available in the browser.
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3.2 Sketched Roads and Police Patrols

In a paper presented at the Hawaii International Conference on Systems Sciences

(HICSS 2017), I explored the use of sketched paths within spatiotemporal models for

improved policing [47]. There are many approaches to proactive policing, but broadly,

these practices are based on showing police presence, engaging with the community to

learn their concerns, and analyzing historical crime reports to identify locations and

people that are currently at increased risk of a crime. By moving through a police beat

and creating a visible police presence, officers remind the public that they are nearby,

discouraging potential violations while encouraging the lawful use of public space. By

becoming involved with the community, an officer makes it easier for the residents to

willingly participate in policing efforts. Finally, the use of crime analysis techniques

and software can enable short-term tactical planning (e.g., which neighborhoods to

patrol over the next hours and days) and long-term strategic efforts (e.g., drug market

intervention programs that rehabilitate non-violent first term offenders).

While I was primarily interested in this last aspect for the research described in

this section, it is important to note that it facilitates the previous two. Commercial

software for the analysis and prediction of criminal activity has seen steady deploy-

ment throughout the country, bolstering and often improving on the capabilities of

existing criminal analysts within departments. PredPol, for example, has been de-

ployed in both Los Angeles and Atlanta to help officers determine at what location

they should patrol [12]. Like many systems of this kind, it is not intended to support

analysis of the path that an officer can take to get between destinations. Whether by

car or on foot, hotspot analysis systems do not typically support the exploration of

routes between locations.

While proactive policing is the intent, the reality is that many officers will spend

a great portion of their day responding to 911 calls that take them away from their

current location. Predictive crime systems can help reduce the response time for
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these calls by attempting to position officers in close proximity to areas that receive

calls. This reactive aspect changes the nature of the plan, however, in that it puts

the officer in a new location and causes time to elapse before a new plan can be

created. It is no surprise that in many urban locations, the time of day can have a

significant effect on the volume and types of crimes that are expected to occur. As

the shift progresses and the unit responds to calls, the initial static analysis of the

crime reports generated by many systems become stale. Police units could benefit

greatly by a mobile system that allows them to view an updated analysis of crime

hotspots based upon their changing location and time.

In this section, I present my research to couple interactive hotspot exploration

with rapid route planning and analysis. The primary components are:

• A sketch-based approach to dynamic route planning, which allows a police officer

to rapidly specify a path through the city without typing and review the volume

and types of crime that occur along that route.

• A spatiotemporal hotspot approach that takes into account time of day, location,

season, and recent event volume.

The primary contribution is the novel pairing of these components in an initial

prototype, HotSketch, designed for mobile use on tablets. I present the details of

this prototype and provide validation through a set of use cases within the domain

of police patrol route planning in the city of Atlanta.

HotSketch is designed to allow police officers to more rapidly utilize predictive

models for crime in their neighborhood while away from the precinct, where expensive

crime prediction software typically resides [90]. Rather than providing a static report,

HotSketch is designed to allow officers to explore the data in their area through loose

sketches that enable them to query the data and update the dashboard.
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Figure 9: The HotSketch dashboard. A route has been drawn through a commercial
shopping area on a Friday night at 11:30pm. The type of crimes along this route and at
this time are presented in the category panel in the upper right. Below that, panels show
the distribution for crimes by day of week, hour of day, and season (week of year) that
are contributing to the count in the category panel. At the bottom of the dashboard, a
histogram shows the distribution of the crimes along the planned route

3.2.1 HotSketch

Our initial prototype is designed to run in the browser on tablets and laptops, and has

been created using d3.js. The primary element is a 2D map centered on the current

location of the user. Additional elements are available in hovering windows around

the periphery of the map and are populated with data as the user interacts with the

system. Figure 9 depicts the system interface. When the system is loaded, the officer

is immediately provided with a heatmap of the crimes in the area based upon the

current time of day and the geospatial location of the user. This heatmap consists

only of the filtered events that occur within a relevant timeframe to the current time,

which is determined through the approach described in Section 3.2.1.1. Then, the

officer can begin sketching potential routes through the area between any locations.

As described in Section 3.2.1.2, these sketched paths can be used to query the filtered

crimes to determine the types and locations of crimes that occur in proximity to the

path. Finally, the officer can dig into the details of any particular crime by switching
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Figure 10: Detailed view of crimes in the dashboard after zooming into the shopping
center at the end of the path in Figure 9. Violent crimes are shown as red circles; non-
violent crimes are rendered as smaller black circles. The heatmap is displayed behind the
event circles to retain context. By tapping or clicking on the location of a crime, a detailed
panel on the left reveals additional information. Below that, a street view is shown for the
crime location.

to the dot map view (Figure 10), which is described further in Section 3.2.1.3.

3.2.1.1 Hotspot Analysis

Our approach to hotspot analysis contends that there are observable patterns in the

overall volume and types of crime that are dependent on when the analysis is being

performed. For example, certain types of crimes occur more often at night than during

the day, and the overall volume of crime increases during the hotter summer months.

Similarly, the day of the week can influence this observable change in crime frequency,

particularly between weekend and weekdays. Finally, as time progresses, the locations

of hotspots will naturally migrate in response to the growth of the city and the effects

of police intervening to alter this growth. To account for these factors, I use a weighted

summation function that scores the temporal relevance of a crime to the current time

and date when an officer opens HotSketch. While a crime analyst would benefit

from the ability to manually browse through range of potential parameters, I focus

on providing functionality in the context of an operational environment in which the
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officer will want rapid answers rather than capabilities for model construction. The

rationale is that if an officer opens the system on a Sunday morning in the middle

of July, locations should be flagged as more relevant to the current geospatial crime

landscape if they occurred in a similar temporal context. An officer opening the

system on a Friday night in January should naturally see a different view.

To calculate the difference between the time a crime occurred and the present,

I utilize a kernel function with a bandwidth parameter, in this case the bisquare

function (Equation 1). For example, if a crime occurred on a Thursday and the

current day is Friday, I want that crime to be considered less relevant than crimes

that also occurred on Friday. Crimes occurring on more distant days of the week

should be considered sparingly, if at all. I determine the difference between them

as the number of days dw and decide on a bandwidth size for which crimes can be

considered relevant (hw). In most of the examples provided in this section , I use

(hw = 2 days), and since Equation 1 increases monotonically as dw decreases, this

will heavily favor events that have occurred on the same week day while still including

events that occur on the day before or the day after.

wi(u, hg) =


[ 1− d2i

h2
g
] 2, if di < hg

0, otherwise

(1)

Continuing with this approach, I choose meaningful bandwidths for our other

factors: time of day dt, and difference in week of year, or season ds. Like day of

week, these measures are cyclical, so determining the difference parameter d must be

done with care before using Equation 1. In most of the examples provided in this

section, I use (ht = 3 hours), as the day is divided into four overlapping shifts of six

hours each. I choose (hs = 6 weeks), which favors events that occur in roughly the

same season as the current date. To determine the relevance that an incident has for

the current time context, I create a weighted summation of the individual kernels.
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This function can be expressed as f(xi, xj) in Equation 2, in which xi is the date

of the incident and xj is the current date. This process bears a resemblance to the

Seasonal Trend decomposition based on Loess (STL) approach utilized by Malik et

al. [78], though there are some noticeable differences. In this example, I specify the

individual weights to increase the importance of an event that occurs close to the

same day of the week and time of day while de-emphasizing the importance of the

seasonal bandwidth. This weighting scheme favors our stated use case of an officer

looking for highly contextual information based on current location and time. These

parameters could be altered to reflect other use cases, however, such as determining

routes of safe passage for school children throughout a season. Unlike Malik et al.,

I primarily rely on this summation approach to filter out irrelevant data from the

heatmap and linked visualizations.

f(xi, xj) =
2

5
k(dt, ht) +

2

5
k(ds, hs) +

1

5
k(dw, hw) (2)

Once the equation has been applied to each event, the value for that event is

added to a heatmap layer that is displayed on top of a 2D map (e.g., Figure 9). As

the criminal incidents are not counted equally, this leads to variation in the distri-

bution of events from a standard heatmap and movement of hotspot locations from

a straightforward count. Instead, this new distribution reflects both the location of

events and the temporal context in which the request was made, allowing an officer

to see the distribution of events for their area and throughout their shift.

3.2.1.2 Sketching Patrol Paths

Paths are drawn onto the map using editing controls in the top left of the dashboard.

Using a mouse or by tapping on the map, an officer creates a path by specifying the

control points that define a polyline. Once the path has been specified, the user can

choose to edit the path by dragging the control points or to delete it entirely. Once
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finalized, a completed path can be explored in the context of the data by clicking on

it. HotSketch will then compare the line segments of the path to the crime incidents

in the area to determine which ones are closest. In addition, I derive the point on

the line that is closest to each point within a minimum distance specified by the user.

In the examples presented in this section , this threshold is set to 200m, which is

sufficient to include incidents within one or two blocks of the path drawn by the user.

By determining the point along the line that is closest to each crime, I can recon-

struct the order in which an officer would pass by these crimes from the beginning of

the patrol path to the end. In Figure 9, for example, the officer has drawn an initial

route from a location into a commercial district with numerous shopping options.

Once the details of the route have been loaded into the dashboard, the officer can

review the types of crimes that occur along the route. The events are filtered and

weighted based on the approach described in the previous section, emphasizing those

crimes that occur not only in proximity to the line sketched by the officer but in

relevance to the temporal context in which the path is created.

That is, the time and date in which the user is drawing these lines affects the

types of data shown (subject to the approach described in the previous section). For

example, in Figure 9 the panel in the upper right indicates the relative distribution

of crimes along this route by category. This panel depicts only the crimes that have

a non-zero value from Equation 2. The panels below indicate the frequency of events

according to day of week, time of day, and week of year. Since Equation 2 is additive,

events that receive a low or zero score for any of the individual kernel components

can still appear as long as they have a positive value for one of the other kernels. The

emphasis of the kernels is evident, however, in the peaks of the distributions for each

of the detailed panels. I also shade the fill color of the bars within the individual

histograms to indicate the current day, hour, and week (Figure 11). The darkest bar

indicates the current time, and a monotonically decreasing grayscale indicates the
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potential score of events coinciding with the other bars for each kernel.

Figure 11: Panels provide a detailed look at the distribution of relevant events through
histograms. For each panel, the current time is filled in black; other bars are colored by the
score for individual kernel windows (darker bars score higher than light bars).

3.2.1.3 Event Details

If the officer wants to review additional details, she can switch to a dot map that shows

the exact location of all the crime events within the area that have not been filtered

out by the approach described in Section 3.2.1.1. In Figure 10, for example, an officer

is examining relevant crimes that have occurred in the proximity of a commercial

shopping area. In the figure, the most common type of incident is a larceny from an

automobile, which likely results from the massive parking lot within the facility and

the propensity for shoppers to leave valuables visible and unattended in their cars.

When the officer clicks on one of the event circles on the map, linked displays to the

left provide details for the selected event. The top pane provides text details on the

event as they are available, such as the type of crime, the date, the time of day, and a

description if one is available. To help provide additional visual context, a secondary

pane on the map provides street-level imagery pointed at the crime location. This
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imagery is obtained through the Google Street View Image API, and reflects the most

up-to-date picture available at that location regardless of the date or time the crime

occurred.

3.2.2 Usage Scenario

Non-violent property crimes such as larceny from a vehicle account for a massive

portion of the crimes throughout the city. While the police cannot be everywhere at

once, maintaining a visible presence in areas of significant property crime can reduce

the number of incidents at that location. In our use case, an officer is moving through

her beat as part of her normal patrol. Using a wayfinding app, she is given a relatively

quick route from her current location to her destination within the eastern edge of

her beat. However, by quickly drawing the route on HotSketch, she sees that there

is an area directly to the south of her that appears to have a high volume of activity

(Figure 12). The area contains a collection of single family homes and small apartment

buildings with a history of assault, robbery, and larceny. While this new location is a

little out of the way for her, it is also an opportunity to establish a presence and spend

some time in an area within her patrol beat without being summoned there for a call.

She quickly sketches a few alternatives, deciding on a route that detours through a

section of the neighborhood before returning to her original route (Figure 13). By

taking this detour, however, she is substantially increasing her dwell time in proximity

to areas of historically high crime, and the timeline panel along the bottom of the

dashboard reflects a gain in nearby incidents towards the middle of her trip.

To familiarize herself with the problem areas along her new route, the officer

switches to the details view in the dashboard (Figure 14). In this image, she has

zoomed into a residential area where a high volume of relevant crimes have occurred.

Clicking on one of the violent crimes provides her with a description an aggravated

assault at the address, one of many in the vicinity. The street view panel has imagery,
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Figure 12: An officer has drawn an initial route through her beat based on the driving
directions given by a wayfinding app. There is a history of activity at the start and end
of her route, but few incidents along the route. The distribution of violent crimes in this
area are high, especially compared to the commercial shopping area in Figure 10.To provide
police presence in high activity areas, she extends part of her trip through a busy area to
the south.

so she is able to see the building in which many of these incidents are occurring. She

now has a route, and knows what to look for on her way through. She will keep an eye

on this location in the future, and look for opportunities to get to know residents in

the area so that her presence as an officer of the law will be recognized and respected.
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Figure 13: While it does increase the length of her drive to her destination, the addition
of a detour through a busy street has significantly increased her dwell time in areas of high
activity. The trip histogram at the bottom now includes a new collection of activity for the
detour. The distribution of violent crimes along this route are also high, particularly for
aggravated assault and pedestrian robbery. While this distribution is similar to that of her
original route, the volume of historical crimes along the new route is nearly double that of
the former.

Figure 14: The officer switches views to get a detailed look at a neighborhood with
a history of frequent criminal activity. By clicking on the dots representing the relevant
crimes, the officer becomes familiar with the details of past incidents and the context of the
locations in which they occurred.
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CHAPTER IV

REACHABILITY MAPS OF URBAN SPACES

In this chapter, I describe a visualization system that uses a combination of paths

and districts to create choropleth maps based on the structure of urban spaces. This

model relies on the reachability of each district, or the path structure within a district

and connecting it to other districts, as a basis for comparing the relative distribution

of events between districts (Section 4.1).

4.1 Districts and Paths

Districts are most commonly represented visually through choropleth maps, which

encode a single hue for each district that maps directly to that districts value for

some data attribute. However, aspects of choropleth maps can make them ill-suited

for analysis at local scales, specifically in urban contexts. For example, the modifiable

areal unit problem (MAUP) has been well-studied in geospatial contexts, but contin-

ues to be a challenge in the design of choropleth maps [84, 42]. As the boundaries

for each region serve as a fixed inclusion criteria for querying the underlying data,

items just outside the boundaries are not counted towards summary statistics that

characterize a region. There are many contexts in which this is not ideal. For ex-

ample, aggregating crime statistics within political boundaries provides the mistaken

impression that adjacent regions are unaffected by the crimes that occur just on the

other side of the boundary. Approaches exist for surmounting this challenge through

geographically weighted (GW) statistics [18, 31], but they use Euclidean distance and

do not take into account travel distance along roads or accessibility. These challenges

are unfortunate given the practical benefits of choropleth maps. By aggregating data

into discrete regions, it becomes much easier to assign administrative and legislative
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solutions to regions that are overseen by existing governmental structures. By pro-

viding a method for comparing regions, stark contrasts between them can become

apparent that can either be used to highlight best practices or to identify areas that

need improvement.

I addressed these shortcomings through 1) a technique that combines analysis

of event reachability at local and global scales; and 2) a system implementing this

technique through multiple coordinated views. First, I describe a road-based sampling

technique for point data that can help estimate the event density at local scales

throughout a region and can be used as an aggregate value for choropleth regions

that is affected by reachability. Second, I describe a global weighting technique for

adjusting the value of a region by taking into account the values of nearby regions that

are reachable from the region, not just close by Euclidean distance. Third, I describe

my implementation of these techniques within a system and my application of them

to an investigation of crime data in the city of Atlanta. This system allows for the

exploration of the additional metadata generated by applying these techniques to a

region, such as the relative rank of one region compared to others and the reachability

from one region to its surroundings. Finally, I compare the described techniques to

alternative approaches for GW.

4.1.1 Reachability

I use the term reachability to refer to the distance between locations based on the

distance between them along paths. For event reachability, this is the distance along

paths from that event to any location that can be reached by paths (i.e., road net-

work distance). For districts, a district is more reachable if there are many paths that

cross its boundaries from its interior to neighboring regions. The techniques described

in this section offer a generalizable approach for joining this topological analysis to

the districts that are typically used to make administrative decisions. For example,
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emergency responders often have a prescribed jurisdiction for responding to accidents

quickly, but depending on the current workload and incident severity it is common

for responders to provide assistance to neighboring regions. When determining the

annual budget for emergency responders within a region, it would be useful to go

beyond a simple count of accidents within each region to incorporate the district’s

internal topology as well as the topology of nearby reachable districts that receive

assistance. This additional level of detail would reveal the true “reach” of the respon-

ders within and outside a district, adjust the level of funding they receive accordingly,

and identify nearby districts that are likely to receive additional emergency support.

4.1.2 Reachability Weighted Statistics

The use of Reachability Weighting (RW) as an alternative distance metric for ge-

ographically weighted (GW) statistics creates several interesting design challenges.

First, events must be aggregated in some way to measure the internal score of a re-

gion before it can affect, and be affected by, the scores of neighboring regions. A region

that has many events very near to its paths should have a higher score than a region

that has few events that are far from its paths. Second, the weighting of one region

and the influence that region has on neighboring reachable regions should reflect the

underlying reachability of those regions with respect to one another. Regions that are

easily reachable from each other in one or more ways should be weighted more heavily

than regions that are difficult to reach in fewer ways. Finally, care should be taken

to allow the user to explore how variation in window bandwidth affects the weight-

ing. Dykes and Brunsdon emphasized the importance of bandwidth on the analysis

facilitated by GW using traditional distance measurements [31]. Unlike traditional

GW, increased window size in RW does not necessarily cause the adjusted values of

each region to tend to the initial global mean, and alternative representation and

interaction methods are necessary to explore this variation. In this section, I discuss
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(a) Line map of the road
scores in a city.

(b) Choropleth map of
mean score for each
region.

(c) An overlay of roads and
regions.

Figure 15: Representations of events in proximity to the road topology of an urban area.
In Figure 15a, road scores have been joined to the underlying road network, revealing the
infrastructure that occurs in close proximity and frequency to the event data. In Figure
15b, the regions have been colored based on the mean road score for the segments contained
in that region. In Figure 15c, the two representations have been overlaid to explore the
correlation between road sampling and region score. Region colors have been selected using
Color Brewer [55].

my approach to each of these challenges: (1) Sample roads to generate a region score;

(2) Weight regions relative to reachability; and (3) Explore alternative bandwidths

interactively.

4.1.3 Road Sampling and Region Score

First, I sample the number of events close to a given road segment to determine that

road’s score. I follow the road network topology structure of primal road-centerline-

between-nodes graphs in which each street is reduced to the endpoints from one

intersection to another [88]. Taking the pieces of road between any two pairs of

intersections as road segments, I count the number of events that occur within a

local window bandwidth hl. For each of these events e1, e2, . . . , en, I determine the

minimum distance di from that event ei to any part of the road segment. Using the

kernel density estimation function (Equation 3), I can then incorporate these distances

to estimate the density of events for that particular road segment [22, 94]. Following
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Figure 16: Histogram of the road-event scores in a city. Scores are represented in log-
scale due to the inverse power distribution. The scores for a region selected in the map are
shown in red.

the example of Kim et al.[64], I apply an Epanechnikov kernel as the windowing

function (Equation 4).

f(x) =
1

nhl

n∑
i=1

K(
di
hl

) (3)

K(u) =


3

4
(1− u2), if ||u|| ≤ 1

0, otherwise

(4)

The local result of applying these equations is that a road that has events that

occur close to that segment will score more highly than a road that has fewer events

at greater distance. At this scale, the bandwidth hl is intended to be relatively small

to reduce the potential effects of landscape features that would affect reachability

(e.g., rivers, mountains). If I render the road segments with a mapping from these

road-event scores to line thickness, I can then generate representations such as Figure

15a. In this figure, areas of the map can be compared based upon the probability

that an event has occurred in close proximity to the road network. Road features can

be discerned but are more salient in the areas in which they frequently coincide with

events. Reviewing a histogram of the road scores for the events indicates that they

follow an inverse power distribution. In Figure 16, the distribution of road scores is

depicted with the y-axis at log-scale, allowing for more thorough examination of the

long tail of values.

The line map in Figure 15a is a useful first step in aggregating the events into
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a reachability-based representation, but much like a typical heatmap, it does not

allow us to directly compare bounded political regions. Using an existing scheme of

boundaries (e.g., police beats, census districts), I can aggregate the road segments

that each region contains rather than the events themselves. Then, I can map the

mean road score of each region to an ordinal color scale to more easily compare them

[55]. An example of this mapping is shown in Figure 15b, in which the mean score

of several regions in the center of the map are visibly higher than the surrounding

regions. I can compare the regional mean road score representation to the line map

through an overlay, which shows the correlation between the density of the road and

region scores (Figure 15c).

4.1.4 Region Weighting

The approach described in the previous section presents a promising first step to-

wards incorporating reachability into interactive choropleth maps by sampling roads

to generate an reachability weighted (RW) region score. But it is not enough, as the

regions are still subject to the constraints imposed by their artificial boundaries, and

consequently, the modifiable areal unit problem. Moving a boundary in any direction

would alter the inclusion or exclusion of road segments and affect the mean value

calculated for that region. To move forward, I present a general overview of the un-

derlying concepts necessary to understand geographically weighted (GW) statistics

and my contributions regarding reachability.

The essential purpose of GW can be linked to an observation by Walter Tobler

in the analysis of urban growth, “Everything is related to everything else, but near

things are more related than distant things” [100]. Known as Tobler’s first law, this

understanding leads us to move towards methods of spatial analysis in which areas on

a map are considered to be more related to those areas that are closer than those areas

that are farther away. For choropleth maps, this takes shape in a spatial smoothing
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in which the value calculated for each region is combined with the predetermined

values of nearby regions to derive a localized mean. In the approach proposed by

Brunsdon et al., a bandwidth hg is used to determine the window size for each region

and, subsequently, the regions that will affect its local score [18]. For any location, or

region u, I can then determine the local GW mean at that point through Equation 5.

M(u, hg) =

∑n
i=1 riwi(u, hg)∑n
i=1wi(u, hg)

(5)

In this equation, the weight wi(u) is the weight applied to the value of some

other region ui when computing the value for u. This is determined through the

use of a distance function that yields higher values for nearby objects and decreases

monotonically as the distance increases. The bisquare equation is utilized for these

comparisons (Equation 1) in Brunsdon et al.’s original proposal for GW mean [18],

and I use it in kind here. For this comparison, the distance di between a remote

location ui and a region u is used to determine a weight wi, typically taken as the

distance between region centroids. This weight is then applied to the value of that

region ri and, along with the weighted values for all the other regions u1, u2, . . . , un

reachable from u, is summed. This includes the value for u, which is included in the

summation and weighted at w = 1 given the solution at d = 0 for Equation 1.

wi(u, hg) =


[ 1− d2i

h2
g
] 2, if di < hg

0, otherwise

(1 revisited)

Once all the values are summed, they are then divided by the sum of the weights

to derive the GW mean that characterizes a location u. This process is repeated

for all other locations u1, u2, . . . , un. It should be noted that the bandwidth size hg

utilized for the GW mean, while similar in purpose to the hl utilized for the kernel

density estimation in Equation 3, should typically be much larger. This is due to

the different purposes to which they are each intended: hl is a local window size
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(a) 0km (b) 5km (c) 10km (d) 15km

Figure 17: Geographically weighted mean applied at a range of scales. In Figure 17a,
events are counted within regions. In subsequent figures, hg is increased in increments of
5km.

Figure 18: Scalogram of the relative change in region score as the bandwidth hg is
gradually increased from 0 to 15km in Figure 17; lines are colored by their score at 15km.
The scores exhibit substantial volatility from 0-5km that stabilizes from 5-10km. By 10km,
most regions maintain their ordering and tend towards the mean.

that is used to control the bandwidth for aggregating events to roads, while hg is a

global window size that is used to control the bandwidth for aggregating bounded

regions into locally weighted means. While each can be derived statistically through

examination of the distribution of event and region distances, they can also be set to

meaningful values with respect to the domain under consideration.

4.1.4.1 Reachability Weighting and Events

When applied to multivariate statistical values at a range of scales, geographical

weighting can be used to great effect [31]. As discussed in previous sections, how-

ever, the role of reachability between bounded regions is somewhat different in many

domains than the role of linear distance between region centroids. To provide a

comparison, I present a GW mean analysis in Figure 17 of the events from previous
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Figure 19: Reachable locations in the periphery of a bounded region are included in
its score. From left to right, the maximum distance is gradually increased to illustrate the
non-uniform reachability of the region to nearby locations. While there are many reachable
locations to the north, southwest, and south, other areas around the periphery of the region
remain more sparse.

examples. As stated before, the initial count of events for each region in the map can

be misleading due to the lack of adjustment due to population data or region size

(Figure 17a). Once the smoothing is applied at a bandwidth of hg = 5km in Figure

17b, some of the outliers tend toward the locally derived means and a more complete

picture of the underlying distribution is visible. As the bandwidth is increased to

hg = 10km in Figure 17c and again to hg = 15km in Figure 17d, this smoothing be-

comes more coarse and appears to indicate the presence of an overall heightened event

density in the north-northeast regions that diminishes towards the west-southwest.

As the size of the bandwidth increases, however, these differences are extremely

minimal and all the regions have begun to approach the global mean of the initial

values for all visible regions. This is a known limitation when increasing the band-

width in GW statistics, which in part motivates the careful selection of hg. Dykes &

Brunsdon proposed the use of scalograms to examine the variability of regions with

respect to the global mean as the bandwidth hg is increased [31]. Using a scalogram

to examine the range of values for the event data in Figure 17, I can see that there

is substantial volatility as the bandwidth is initially increased from 0 to 5km (Figure

18). This is to be expected, as the jump from no GW to even a minimal window will

smooth out many of the existing outliers. As the bandwidth is increased from left

to right in Figure 18, many of the regions with a higher value dip significantly while
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regions with low values begin to rise.

While this method presents a substantial improvement over the relatively basic

analytic questions facilitated by the simple count of Figure 17a, this approach is

still missing a big piece of the urban puzzle. As described in Section 4.1.1, several

domains are heavily affected by the reachability afforded by road topology. Also

missing in this approach is the consideration of topography that can divide areas that

would otherwise be considered to be in close proximity (e.g., rivers). In consideration

of housing markets, for example, Lu et al. found that incorporating topology and

travel time into the functions utilized for GW made a significant difference in the

derived values [73]. Specifically, the division created by the Thames between sections

of London causes Euclidean distance to be a less accurate distance function when

analyzing pricing data across multiple variables.

There are several feasible methods for incorporating reachability into the distance

function used for determining the local mean of each region. For example, the region

calculations described in Section 4.1.4 could be used to generate the preliminary

score for each region. Then, a GW mean could be applied to smooth the outliers

and derive more accurate regional means. However, this approach leads to a similar

outcome as outlined in Figure 17: the volatility swiftly declines as the scale increases

and the region scores tend towards the global mean. One of the challenges of this

approach is that it only incorporates one possible route between the centroids of

each region, which ignores the dense interconnection that may be present between

two more distant regions or the lack of accessible roads between two regions in close

proximity. Similarly, the centroid of one region may not be easily reachable from

a region though many other road segments are nearby. Even if travel time or hop

distance between centroids were substituted for Euclidean distance, these concerns

would remain.
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4.1.4.2 Peripheral Road Topology

To account for the differences in connectivity due to road topology, an alternative

geographic weighting method is required. The road sampling and region scores de-

scribed in Section 4.1.4 provide the foundation for a method that accounts for the

differences in accessibility from one place to another in terms of the distance between

them along surface roads and the number of routes that are available. I propose the

following method:

1. Determine the preliminary region scores by sampling the internal roads and

their proximity to events through a local distance function.

2. Extend the search beyond the region boundary to include the road segments

that are reachable within the limits of a travel bandwidth hg.

3. Combine the internal and peripheral road segments scores using an extension

of Equation 6.

To perform the second step, I first identify each of the road segments that cross

the region boundary using a simple line intersection test. Then, I explore the road

segments that are connected to these road segments but that do not lie inside the

boundary of the region. As I explore the topology of the road network surrounding

the region, I maintain a data structure of the accessible regions and the shortest

distance that was used to reach them from the boundary. A breadth-first search of

the peripheral topology ensures coverage of the many roads that surround the region,

which is unlikely to be consistent in every direction. In Figure 19, for example,

the progressive deepening of the search around an enclosed region reveals that the

region is more tightly connected to the south, southwest, and north. While there are

connections to the regions in other directions, they are more sparse, which would not

have been reflected in a traditional smoothing by Euclidean distance between region

centroids.
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(a) RW, 0km (b) RW, 5km (c) RW, 10km (d) RW, 15km

Figure 20: Reachability weighted (RW) mean applied to an event data set at a range
of scales. In Figure 20a, no smoothing is applied between regions and the mean event
proximity to roads is displayed. In subsequent figures, hg is increased in increments of 5km.
A lightly-shaded outlier is present in the center of the map, warranting further scrutiny.

To perform the final step, I revisit Equation 5. In this circumstance, however, I

must first perform a slight modification to Equation 1. Rather than solely comparing

the region values, I instead evaluate the road segment scores both within the bound-

aries of the region and those reachable paths explored by the breadth-first search

outside the boundaries. Extending Equation 1, I assign a weight wi = 1 if the road

segment falls within the boundaries of the region and follow the bisquare evaluation

for road segments in the periphery.

wi(u, hg) =


1, if segment lies within region

[ 1− d2i
h2
g
] 2, if di < hg

0, otherwise

(6)

Using Equation 6, I can then carry out Equation 5 on the road segments that

are reachable from the region but outside its boundaries. As before, I weight the

external values against the internal value and divide by the total weight to determine

the local mean of a region. This new value, defined as the reachability weighted mean

(RW mean), exhibits a different behavior as the scale of hg varies compared to the

traditional GW mean using Euclidean distance.
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4.1.4.3 Procedure Summary

In this section, I provide a summary list of the steps necessary to reproduce my

technique for RW mean and a concise discussion of algorithmic complexity. Given a

set of point-based events E = {e1, e2, . . . , en}, a connected graph of road segments

R = {r1, r2, . . . , rn}, and a set of bounded regions U = {u1, u2, . . . , un}:

1. For each region ui, identify the road segments {Rl ⊂ R} that are at least par-

tially contained within the boundaries of the region.

2. Of the road segments within {Rl}, identify the subset {Rb ⊂ Rl} that intersect

the boundary of the region, as these lead to other nearby regions.

3. For each road segment within {Rb}, perform a breadth-first traversal to identify

road segments {Rg} that are reachable within the global bandwidth hg but not

in {Rl}. Record the minimum distance necessary to reach each segment.

4. For each road segment within {Rl ∪Rg}, identify the set of point-based events

{El} that are within the local bandwidth hl. Record the minimum distance

necessary to reach each event. Using Equations 3 and 4, assign a score to each

road based on these proximity values.

5. For each region, aggregate the scores of road segments from {Rl ∪Rg} using

Equation 6.

Reducing the complexity of this approach depends heavily on the use of support-

ing data structures. For example, Steps 1–4 benefit substantially from the use of a

quad tree, r-tree, or other hierarchical spatial data structure to reduce the number

of comparisons that are necessary for determining the subset of items that are in

proximity to another item (e.g., events in proximity to a road). This reduces the

complexity of Steps 1 & 4 each from O(nm) to O(n logm) where n = |U |,m = |R|
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for Step 1 and n = |{Rl ∪Rg}|,m = |E| for Step 4. The subset created in Step 2 can

be performed in parallel with Step 1. Comparisons of distance from individual road

segments to events can be conducted in parallel, as can the overall process for each

bounded region.

For Step 3, in which a breadth-first traversal is conducted starting from each of the

road segments on the boundary of a region, there can be significant overlap between

the explored regions of nearby but distinct boundary roads. During this traversal,

the most direct way to track the distance from the boundary road to each of the

visited road segments outside the boundary of the region is through a hash table.

These traversals can also be conducted in parallel, but I advocate the use of a hash

table designed for concurrent access shared by each of the individual processes so

that road segments in the periphery are not unnecessarily revisited. The traversal

of each periphery can be considered within O(|V | + |E|), where |V | consists of the

road endpoints reachable within the bandwidth hg from the boundary segment and

|E| consists of the road segments connecting them. Many of these vertices are not

explored, as they are within the boundary of the region and thus within {Rl}.

It should be noted that this process overall takes considerably longer on a sin-

gle computer than the time required for GW mean, which consists of a single O(n2)

weighted aggregation between regions. As stated previously, many of the steps in this

process are highly parallelizable, which could significantly reduce the time required

for completion. Also, a practical implication of running this procedure for a given set

of parameters for hl and hg also yields the data necessary for deriving the aggregate

region scores for lower values of those parameters. This is put to use in the construc-

tion of the scalogram (Figure 18), for example, by specifying a maximum hg and then

using the collected data to determine the relative region scores for ten sub-intervals

of that score.
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Figure 21: Exploration of bandwidths through coordinated views. An overview of all
regions can be used to compare reachability weighted mean scores overlaid with road scores.
Linked views provide (from top to bottom): details for road score distribution; a scalogram
of variation in region score as bandwidth increases; and a detail isochrone map for a selected
region.

4.1.5 System of Coordinated Views

Throughout the previous sections, I have generated additional metadata for further

analyzing the quality of each weighting scheme: the relative distribution of road-event

scores within a city (Figure 16), the relative change in regions score as the bandwidth

is changed (Figure 18), and the reachable regions inside the boundary and within

the periphery of a bounded region that are included in its score (Figure 19). This

metadata is generated for both GW and RW means, and the visual representations

provide additional context for gaining insights into the underlying data. To provide

access to this context, I have developed a system (Figure 21) combining a primary

map display with three linked panels displaying (from top to bottom) the histogram,

scalogram, and an isochrone map. Selecting a region in the primary map display

highlights the road-event score within that region in the histogram, the line of the

changing relative value within the histogram as the bandwidth is increased, and the

roads that are on the periphery of the bounded region and contributing to its score.
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The user can also draw a selection box in the scalogram to select one or more of the

lines, which updates the other views and highlights the region in the primary map.

This interaction can be useful for finding groups of regions that score similarly at

different bandwidths.

Within the isochrone map, dark green roads are close to the boundary of the se-

lected region and exert a higher influence on its weighted score, while more lightly

shaded roads exert a smaller influence. Roads inside the region are drawn in blue and

not rendered with the isochrone shading so that the internal structure of the region

can be more easily examined. As evident in Figure 19, increased window size does

not uniformly distribute the effects on a region in all directions, and these alterna-

tive representation and interaction methods are necessary to explore this variation.

Unlike the weighting maps provided by Dykes & Brunsdon [31], the contribution of

surrounding areas to the local mean is highly dependent on the number of roads that

pass through them and the distance to reachable road segments. There are many

approaches to directly representing the reachability of a region, employed typically to

analyze the movement of people and things through a space as trajectories [1, 6, 101]

or to investigate travel time on public transportation [116]. Given that my focus in

reachability weighting is the accessibility of regions rather than exploration of move-

ment data or optimal routing, the isochrone map idiom is ideal for depicting the road

segments that are most likely to influence the score of a region due to accessibility

[34, 85].

For example, one of the most striking features of Figure 20 as the distance is

gradually increased is a local outlier near the center of the map that continues to

have a comparatively low score in relation to the surrounding regions. Examining

the overview reveals an area in the region where no roads are depicted (Figure 22a).

Investigating the isochrone map in Figure 22b reveals that there are a number of

reachable roads for the region both within its boundaries and outside. This indicates
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that incidents are either not occurring in this area, or that perhaps they have been

excluded from the original data set for some reason. Subsequent investigation later

revealed that it is the latter, as the area falls on a college campus that keeps an

independent record of events that are not distributed within the common data set for

the entire city. This insight, while readily apparent as an outlier in the RW images

of Figure 20, is absent from the GW image and the original choropleth maps of event

counts.

Taken together, these views allow a user to interactively explore the choropleth

data to understand why a region has been assigned a certain score, rather than

forced to accept the static relative ordering generated by many maps. Through the

three linked panels, a user can determine if the internal score is the most significant

component of the region’s ranking compared to others, or if it’s due to its proximity

to other high scoring regions. Similarly, the user can determine if the events are

uniformly distributed around a region, or if the influence within the bandwidth is

due primarily to one or more neighboring regions along its border. Finally, a user

can examine the affect that the parameters of the model itself is having, and if the

current setting for the bandwidth distance is causing regions to jump or plummet in

relative score in comparison to other possible settings.

4.1.6 Evaluation

To evaluate the benefits of reachability weighted statistics for the analysis of event

data within bounded regions, I analyzed the relative density of crime incidents in the

city of Atlanta across three primary schemes of modifiable areal unit: police beats,

neighborhood planning units, and census districts. I compared the results generated

by RW means to a choropleth map and geographically weighted means to determine

how the modifiable areal unit problem (MAUP) affected each.
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(a) Roads and region scores. (b) Isochrone of the reachable
roads.

Figure 22: A detailed look at a region of the map that has a lower score than other
regions. Investigation of the overlay in Figure 22a reveals an area where no events have
been sampled through roads, even though roads are visible in the isochrone of Figure 22b.
This indicates that event data may be missing for the area.

4.1.7 Data

The data used for this evaluation consists of three parts: events in an urban area, a

road network, and alternative methods for categorizing the area into separate bounded

regions. In this section, I describe each, how they were obtained, and implications

for analysis by reachability weighted mean.

4.1.7.1 Crime Data

The data collected for this evaluation consisted of crime incidents occurring in the city

during a one-year period of time. Incidents fell within one of the major categories

reported to the FBI as part of the uniform crime reporting (UCR) initiative, and

included both violent and non-violent offenses (Table 1). This data is made available

to the public by the Atlanta Police Department, and is routinely updated with new

incidents. In addition to category, each incident has a recorded date, time, and

location. Incidents are collected from the city’s central records, and locations are

obtained from the computer aided dispatch system. Figures throughout this section

have been populated using the crime incidents described here so that they would be

more familiar to readers at this point.
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Table 1: Incidents of crime in Atlanta for one year

Nonviolent Count Violent Count

Larceny(from vehicle) 9,798 Aggravated Assault 2,159
Larceny(not from vehicle) 7,234 Robbery(Pedestrian) 1,798
Auto Theft 4,469 Robbery(Commercial) 233
Burglary(residential) 3,988 Robbery(Residence) 209
Burglary(non-residential) 862 Rape 144

Homicide 75

Total 26,351 4,618

4.1.7.2 Road Topology

Road topology is obtained from Open StreetMap through the Overpass API. All

roads are downloaded for the bounding region that encapsulates the crime data; no

distinction is made for pedestrian roads. Roads are stored as a sequence of nodes with

fixed locations and unique IDs. A list of nodes is created and a tally is maintained

as it appears in subsequent roads. Nodes that appear more than once are considered

intersections. Once all roads have been processed, a second pass identifies occurrences

of multiple intersections within the same road and stores an edge for them. An

intersection may have multiple edges, but this direction is not stored and redundant

edges are discarded. As the nodes have a location given by a latitude and longitude,

edge weights can be derived for the physical distance between the endpoints. This

allows for more fine-grained calculation of path distances, but could be replaced with

an estimation of travel time for more accurate values. The described approach does

exclude dead ends and simplifies longer curvy roads without intersections. Still, this

process is fairly accurate, and is easily repeatable across other cities for which crime

data can be obtained. For the city of Atlanta, the network consists of 71,751 nodes

and 195,946 edges.

4.1.7.3 Modifiable Areal Units

Depending on context, there are several alternative methods of organizing the city

into bounded regions. First, the city of Atlanta is divided into six major public safety
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zones, which are further individually subdivided into dozens of police beats. During a

shift, each beat is primarily assigned to a single unit that responds to dispatched calls.

Beat and zone boundaries are redrawn periodically to reflect the changing population

and trends in criminal activity. Beats are drawn so that a unit responding to a call

can generally reach any portion of their beat within a short amount of time. The city

can also be divided into several major neighborhood planning units (NPUs), which

are used primarily by neighborhood planners to coordinate with citizens and civic

organizations to decide zoning and policy issues for the city. NPUs are frequently

divided into one of any number of neighborhoods depending on who is drawing the

lines, which can reflect trends in the housing market and the desirability of commercial

real estate. One example neighborhood parceling scheme is utilized in this section,

which is further complicated by its incompleteness. Several gaps exist in the boundary

file where neighborhoods are missing or were never originally encoded. Finally, the

city can also be divided into the regions that are used in the federal census. Census

tracts are determined at the federal level, and can vary widely in area and population.

In this section, I examine the most recent census tracts available from 2010.

4.1.8 Comparison of Techniques

In Figure 23, I compare three techniques for analyzing spatial events: regional count,

geographically weighted (GW) mean, and my reachability weighted (RW) mean. For

each technique, I generate alternative mappings using the three different areal units

described in Section 4.1.7.3. Each of the smaller figures has been assigned a color

mapping with a normalized scale independent of the other figures so that the relative

distribution of events within the mapping can be compared. This is necessary given

that each weighting method generates substantially different numbers. Darker regions

correspond to a higher score in each image, regardless of the method used to determine

each score.
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(a) Event count within
police beats.

(b) Event count within
neighborhoods.

(c) Event count
within census
districts.

(d) GW mean of police
beats with
hg = 5km.

(e) GW mean of
neighborhoods with
hg = 5km.

(f) GW mean of
census districts
with
hg = 5km.

(g) RW mean of police
beats with
hg = 5km.

(h) GW mean of
neighborhoods with
hg = 5km.

(i) GW mean of
census districts
with hg = 5km.

Figure 23: Comparison of weighting methods. In the first row, events are counted without
smoothing by three different modifiable areal units: police beat, neighborhoods, and 2010
census districts. In the middle row, geographically weighted (GW) mean has been applied
to these regions with a bandwidth of hg = 5km, however, the choice of boundaries yields
significantly different results. In the bottom row, reachability weighted (RW) mean has
been applied to the regions with the same bandwidth. Unlike the other methods, the color
encoding in RW is relatively stable across the mapping schemes despite the changes in
region size, shape, and count.
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For the first comparison, each of the areal units are aggregated by the count of the

number of events that occur within the boundaries of each region. In the first row of

Figure 23, it is clear that the shape and placement of the boundaries is highly influ-

ential on the relative shading of the region. For the police beats and census districts,

the color mapping exhibits no discernible pattern. In the neighborhood mapping, the

larger regions in the center of the map have collected more events, which brings the

representation more in line with the true distribution of events (Figure 25). In the

second comparison and middle row of Figure 23, GW has been applied to each of

the bounding schemes with a bandwidth hg = 5km. For the police beats, the higher

number of crime incidents in the center and throughout the north has been empha-

sized, but to a lesser degree than in the mapping of the neighborhoods in the central

column. While somewhat similar to each other, both figures differ substantially from

the census district mapping. The census district mapping fosters a substantially dif-

ferent interpretation of the data than the other mappings, drawing attention to the

relatively large southwest and northernmost regions as hotspots (Figure 26).

The variation in distribution apparent in the three images underlies an important

consideration in the use of GW: the selection of an appropriate bandwidth hg. As

the scale of the bandwidth changes, outliers in the data will alter position and new

distributions will become apparent. As reinforced by Figure 23, the variability in

scale is dependent on the shape, number, and area of the regions in the mapping

scheme. This is problematic when the bandwidth is meaningful within the domain.

For example, a bandwidth of hg = 5k represents a walking distance outside of a

neighborhood that can be covered in about an hour. This is a substantial distance to

cover in each direction to obtain groceries, but in sprawled cities is not uncommon.

If alternative mapping schemes are used to analyze the relative placement of new

grocery locations, the meaningful bandwidth should not be altered to fit the mapping

scheme. In the final row of Figure 23, TWR is applied to each of the region mapping
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schemes. Unlike the other approaches, distribution of scores for the regions appears

relatively stable despite variability in boundary positions and sizes among the three

mapping schemes (Figure 27).

To more directly compare the score variation between the three different weight-

ing methods, I conducted an analysis of variance in assigned scores for a collection of

points distributed throughout the map. Using Bridson’s method for generating ran-

dom samples in a Poisson-disc distribution [15], I created a set of 713 sample locations

spaced at 0.5km or more from each other (Figure 24). Only samples located within

the boundaries of a region in all three mapping schemes were used for comparison. In

each trial, I recorded the normalized score of the bounding region that the sample was

located within. I then obtained a standard deviation of the assigned values across the

mapping schemes for each location. My hypothesis was that the deviation between

values for each location would be significantly lower for RW than for region counts

or GW.

A one-way between subjects ANOVA was conducted to compare the effect of

weighting method on normalized region score in RW, region count, and GW condi-

tions. There was a significant effect of weighting method on normalized region score

at the p < .05 level for the three conditions [F (2, 2136) = 150.02, p < .001]. Post-hoc

comparisons using Tukey’s HSD indicated that the mean score for RW (M = 0.08, SD

= 0.03) was significantly different than both the region count (M = 0.15, SD = 0.10)

and GW (M = 0.15, SD = 0.09). The region count method, however, did not sig-

nificantly differ from GW. Taken together, these results suggest that the RW assigns

region scores more consistently across different areal mapping schemes. This means

that insights derived from analysis of an event data set with one mapping scheme

are less likely to significantly differ from those that are derived using an alternative

mapping scheme, which represents a useful step in mitigating the MAUP in situa-

tions where the reachability from one region to another is important for analysis of
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Figure 24: Random samples used to compare the variation in assigned score across areal
unit schemes. Sample point locations are generated using Bridson’s method [15] with a
minimum spacing of 0.5km.

the data. In situations where reachability is not important, such as weather analysis,

alternative methods for interpreting the data at multiple scales and mitigating the

MAUP would still be necessary.

4.1.9 Discussion

In this section, I explored methods for analyzing geographical event data at local and

global scales based on the structure of urban spaces. I have described a method for

reachability weighted means of these districts to better understand the local distribu-

tion of events around a region and how travel distance and access to nearby regions

can affect this distribution at the global scale. I have presented coordinated views

for interactive exploration of the boundaries of a region across varying bandwidths.

Finally, I evaluated these methods within the context of the modifiable areal unit

problem, and found that the contributed method is significantly less volatile in the

scores assigned to regions across alternative areal units.

This research provides one important component for the application of image
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Figure 25: Comparison of sample point assignment as a consequence of modifiable areal
units. In this figure, percentile rankings have been assigned based upon the number of
events within the region that the sample point is located within. Correlation between areal
unit schemes indicates that there is significant variability and little consistency, leading to
very different outcomes in choropleth map interpretation and insights.
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Figure 26: Comparison of sample point assignment as a consequence of modifiable areal
units. In this figure, percentile rankings have been assigned based upon the geographically
weighted mean (using Euclidean distance) of the region that the sample point is located
within. Correlation between areal unit schemes indicates that there is significant variability
but some consistency between beats and neighborhoods, leading to different outcomes in
choropleth map interpretation and insights depending on the binning strategy used.
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Figure 27: Comparison of sample point assignment as a consequence of modifiable areal
units. In this figure, percentile rankings have been assigned based upon the reachability
weighted mean (using path network distance) of the region that the sample point is located
within. Correlation between areal unit schemes indicates that there is significant consistency
and little variability, leading to more consistent outcomes in choropleth map interpretation
and insights.
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elements in a mental map of urban spaces. By incorporating paths and districts in the

interpretation of spatial data, I can allow for the use of various alternative approaches

to separating the districts of a city without accidentally imposing artificial partitions.

The representation of each district is most influenced by the data contained within

that region, but can also still be affected by neighboring data. This allows for the

designation of a district that has a definitive inside or outside without walling it off

from the other elements of the city. More importantly, this also allows many different

participants to generate alternative boundary schemes for the city while still retaining

the ability to analyze the same data set and have a collaborative discussion about a

shared physical environment with distinct perspectives.

64



CHAPTER V

ANALYZING CIVIC DATA AND URBAN SPACES

In this chapter, I describe applications of these techniques to analyzing civic data

and urban spaces across three cities. The first application, a community dashboard

developed through a participatory design effort, incorporates community assets as

node elements (e.g., libraries, schools, senior centers) within a public safety visual-

ization. This allows community members to discern which nodes are in proximity

to high crime areas (Section 5). The next section of this chapter describes my work

to formally incorporate important activity nodes and barrier edges within a model

of event distribution (Section 5.1). The final section of this chapter describes an ex-

periment to collect mental maps of Atlanta citizens and compare the representation

and interaction techniques that are most effective for analyzing urban data in this

context.

Individual neighborhoods within large cities can benefit from independent analysis

of public data in the context of ongoing efforts to improve the community. For exam-

ple, communities in the Westside of Atlanta have been changing their neighborhoods

for the better by organizing amongst themselves and collaborating with organizations

that have a local presence. Georgia Tech has partnered with Westside communities

via the Westside Community Alliance (WCA), a communications network started in

2011 by the Ivan Allen College of Liberal Arts in collaboration with the College of

Design and the Office of Government and Community Relations. The WCA works

to build and sustain relationships among constituencies located in West Atlanta to

strengthen partnerships around issues of common concern. In a paper presented at

the Bloomberg Data for Good Exchange, I explored these issues with members of
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the WCA (Katie O’Connell, Mackenzie Madden), student fellows from the Data Sci-

ence for Social Good program (Yeji Lee, Shawn M. Staudaher, Firaz Peer), and Ellen

Zegura of Georgia Tech [82].

Since its inception in 2011, the WCA recognized the importance of data dissemina-

tion as a tool for community development. In February 2016 the WCA launched the

WCA Data Dashboard. This on-line website is designed to be a one-stop data shop

with information presented in locally recognized and meaningful geographies. Rather

than census tracts or zip codes, data is presented by neighborhood or Neighborhood

Planning Unit (NPU). In the Atlanta area, neighborhoods and NPUs represent the

unit of local community organization as well as local identity and pride. The Dash-

board developers have gathered previously siloed data sets and integrated them into

one platform to support examining data relationships. Central to the Dashboard’s

design is regular engagement with local organizations and community groups both

for design feedback and for data literacy training. The Data Dashboard is orga-

nized into portals that correspond to community concerns. Currently there are five

portals—community profile, education, historic data, historic timeline, and resource

library—with several more in the pipeline [83].

In Summer 2016, the WCA served as a client and partner in the Atlanta Data

Science for Social Good (DSSG-ATL) summer internship program. DSSG-ATL is

modeled after the DSSG summer fellowship program started at the University of

Chicago in 2013; students work full-time in teams on projects that come from local

partners, with a focus on supporting understanding and decision-making based on

data, in domains of social importance. DSSG-ATL started in 2014 [115].

In this section, I describe our participatory approach to building the public safety

module of the WCA’s Data Dashboard, with some key insights into how one can

approach similar projects in the future. We conducted interviews with key community

stakeholders and participated in local government meetings to understand the needs
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of our users. These needs include the ability to locate where crimes have occurred, a

metric to quantitatively evaluate the efficiency of their public safety programs, and

a means to learn how other factors such as education, age, transportation, housing,

and more are related to crime. To satisfy these needs, we introduce a mapping tool

with the capability to locate current and historic hotspots of criminal activity. This

tool includes a variety of overlays that allow users to spatially correlate features of

the built environment, such as code violations with criminal activity as well as crime

prevention efforts. We also present a statistical model that highlights correlations

between crime and other socio-economic factors specific to particular neighborhoods

in Atlanta.

Parts of the public safety module have been built with Tableau and web-based

mapping libraries like CartoDB and Leaflet.js to help maintain consistency with the

existing Data Dashboard. The paper was submitted for publication during the fi-

nal stages of developing the first version of the tool, and the public release of the

dashboard was completed in the fall of 2016.

5.0.1 Design Goals

Because the Data Dashboard was developed within the WCA, it shares design goals

and values with the overarching organization. In particular, the WCA is a partner-

ship between a university (Georgia Tech) and local communities. The structure and

priorities of the WCA are arrived at via community engagement. Staff in the WCA

live in these communities and are regular participants in community meetings and

events. Long-standing relationships with the community are created and sustained

through regular and myriad interactions. The Data Dashboard was designed to be

accessible to citizens in ways that fit how citizens think about their communities,

useful for citizen information gathering and advocacy, and integrated so that citizens

do not need to navigate and synthesize data from disparate sources.
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For example, would it be possible for churches to input the different youth pro-

grams they run, into a tool to determine how it has impacted juvenile crime in their

neighborhoods? As part of Operation Shield, the Police Foundation, with the help

of a $1.2 million grant from Invest Atlanta, has recently installed about 80 cameras

in different parts of the neighborhood that are considered hotspots for drug related

crimes. Can we overlay these camera locations on a map to see what impact they may

have had on these hotspots? The Westside also has a high number of vacant proper-

ties, which many residents believe is the cause for high crime in their neighborhoods.

Can we numerically determine the relationship between crime and code violations, so

residents can make a case with the city to demolish specific properties that have a

high correlation with crime? These questions are representative of the kinds we hope

we can answer through our tool. But before we could build any of it, our first task

was to understand the people we were working with, to make sure that the tool we

build is the one they need. Community feedback and design participation—described

in more detail in the next section—are key to achieving accessibility and usefulness.

5.0.2 Approach

In addition to weekly meetings between the WCA and the DSSG team, student

members of the research team also participated in NPU meetings. These are public

planning meetings attended by residents and other interested stakeholders within the

community. The meetings provide a place for residents to interact with community

and city leadership. These tend to be highly contested spaces, as committee members

share updates, residents hear about and vote on specific changes they would like to

see implemented, and organizations/researchers get buy-in for various initiatives they

have in the pipeline. Attending these NPU meetings gave us a good sense of the

issues residents were currently grappling with as well as a first-hand exposure to the

dynamics of community governance.

68



Some high priority issues have their own committees and meeting schedules; public

safety has recently emerged as an area worthy of committee instantiation. The Vine

City Public Safety Committee meets on a regular basis to discuss the status of the

many public safety programs, and their meetings are attended by police officers and

residents alike. We attended one instance of this meeting, where we described our

preliminary tool, along with some screenshots of the kinds of visualizations we had

in mind, to seek feedback.

The attendees at the public safety meeting seemed excited about the prospect of

having free and open access, along with the ability to analyze crime and code viola-

tions data within their neighborhoods. We spoke with one of the code enforcement

officers present at the meeting, who was interested in talking with us further about

ways his department could use our data visualizations in their day-to-day operations.

This was significant, as public safety officers were one of the user groups we were

hoping to design for. He introduced us to one of the senior analysts at the Code

Enforcement division of the Atlanta Police Department, who gave us an overview of

exactly how his team goes about collecting and reacting to code violation complaints

in their jurisdiction. This meeting also helped clarify many questions we had about

the code violations dataset we were working with.

5.0.3 Community Asset and Crime Mapping Tool

The third module in the dashboard is the spatial visualization of the crime data,

code violations, and community assets. The primary goal of these visualizations is

to provide users with a means to precisely pin-point where crimes occur, and to give

them the ability to learn how these locations change by crime-type and over time.

Additionally, the map allows users to focus on specific geographic areas to examine

the relationship between crime, code violations, and community assets.

The crime data is visualized with a hex-based heat map (Figure 28). This map is
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Figure 28: Map Module - The map displays drug and alcohol related crime (colored
hexes) and vacant houses selected (blue circular pins).

constructed by counting the number of crimes within each hex and assigning one of

five colors based on a logarithmic scale (i.e. the first color represents a single crime

per hex, the second color represents 2-10 crimes per hex, the third color is 11-100

crimes per hex, and so on). This logarithmic aggregation of crime into colored hexes

naturally highlights hot-spots, where small regions have significantly higher numbers

of crime than average. In addition, crimes may be selected by their Uniform Crime

Reporting Code, or into larger categories of crime including drugs and alcohol, sex

crime, theft, or violent crime. Furthermore, a specific time period may be selected by

specifying a date and time span (all data, a year, or a month).

The code violation data is sparser than the crime data, and a heat map would not

be an appropriate visualization. Instead, these data are shown as circular pins on the

map, with clusters of points represented by a larger pin with the number of points in

the cluster inscribed. These data may also be selected by time in the same manner

as the crime data. Community assets are visualized with pins as well, but without

clustering as these data are sparse enough to not require aggregation. In addition,

further information specific to the asset type is displayed on mouseover.
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The goal of this map is not to highlight areas of high crime in a negative manner,

but to be a tool the community may use to coordinate their crime prevention strate-

gies. For instance, an NPU public safety chair may be leading a drug prevention

campaign. They may use the heat map to locate areas of drug use in their neighbor-

hoods, and then overlay drug prevention programs from other sources on the map.

They may then choose to concentrate their efforts on an area with drug usage and

without another active drug prevention program. In another case, a public safety

chair may use the map to examine historic data. They may zoom to a location where

they have been active in the past and learn how crime has changed over time in the

specific area that they work.

The aggregated data and correlation modules are generated with the Tableau data

visualization software. The map is created with CartoDB, a database and geospatial

visualization portal. The data are hosted with CartoDB’s PostgreSQL server, and

the visualization and navigational tools are created with the JQuery and CartoDB

JavaScript libraries. All three modules were hosted on the WCA data-dashboard.

Since that time, unfortunately, the dashboard has been taken offline due to restruc-

turing within the WCA.

5.1 Nodes, Paths, and Edges

In a paper presented at EuroVis 2017, I proposed a novel technique for applying

mental maps based on nodes, paths, and edges to spatial data [48]. I describe my

implementation of this technique in a sketch-based system that can highlight the

disparities between mental maps, and provide preliminary findings from the applica-

tion of my technique to property crime data in three U.S. cities: Baltimore, Atlanta,

and Chicago. This technique provides a method for identifying disparities in mental

maps of urban spatial data and provides insight into the effects these maps have on

the analysis of urban data, which is necessary for making decisions that affect all
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members of a community regardless of their image of the city.

Though competent mental maps can be drawn from any of the five elements [108],

I chose to focus on nodes, paths, and edges for this technique. Brantingham and

Brantingham have demonstrated that these elements are necessary, if not sufficient,

components in a framework for the analysis of the spatial distribution of crime [14].

Spatial data visualization represented along paths has been previously explored by

Xie and Yan for traffic accidents [113, 114], Wong et al. for power grids [109], and

Kim et al. for crime [64]. Wood et al. have also demonstrated abstract hierarchical

representation that depict the connectivity between regions on a map, though this is

primarily for trajectory data rather than joining of spatial data to paths [110, 112].

Nodes, or areas of high activity, can most directly be compared to the hotspots derived

during more spatial analysis of point-based data. However, unlike Euclidean [77] or

grid-based [89] approaches, our technique allows users to actively specify nodes rather

than try to passively detect them. Our technique is novel in its incorporation of edges,

or barriers, which are not present in other approaches to model spatial data.

I do not include landmarks, as they are often visible at great distances (e.g., tall

buildings and landscape features), requiring the capability to model observability and

occlusion in a 3D space. This was a significant feature of Glander and Döllner’s sys-

tem [45], but it presents additional complexity when the landmarks are user-specified.

As our intent was to provide a technique to facilitate sketch-based specification of ur-

ban mental maps in a 2D-space—similar to a hand-drawn sheet of paper—this was

outside the scope of our work. I also do not include districts, or bounded regions,

as considerable issues arise in both model construction and interpretation due to the

modifiable areal unit problem [84]. Considerable effort has been put forward to over-

come this problem in planar spatial representations, notably through geographically

weighted regression [31] and more recently through Bayesian weighting [25]. How-

ever, it remains an open problem to meaningfully incorporate path-based data models
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(a) Events within the local
bandwidth hl(white
dotted line) of a lixel are
assigned to it, which
becomes a source lixel.

(b) Source lixels receive a
score based on the
number and proximity of
assigned events.

(c) Events diffuse through
the network from each
source lixel at a distance
of hg, smoothing the
distribution across the
road network.

Figure 29: Events are assigned to the closest lixel in the network before diffusing to
nearby lixels. The local bandwidth hl represents the maximum distance that a crime should
considered to be associated with a representative street location. The global bandwidth hg
represents the maximum distance that connected and nearby streets are affected by nearby
crimes.

(e.g., [113]) and bounded regions. Our technique described in Section 4.1 represents

one promising approach.

5.1.1 Paths Revisited

I utilize paths as the primary urban imaging element in our technique. Building from

previous work in network-based Kernel Density Estimation (KDE), I utilize a path

network consisting of lixels [113]. This approach differs from standard planar KDE

in that the distance between points on the map are not measured in Euclidean space,

but based upon network distance. This is similar in many ways to the technique

described previously, however, in that the lixels are more fine-grained and consistent

in length than the primal approach described in Section 4.1 and adapted from Porta et

al. [88]. In our approach, I obtained road-level data from OpenStreetMap(OSM) and

constructed a course graph between intersections. As an open data source that can

be modified by the public, OSM is ideal for constructing the backdrop for analysis of

community-oriented data. I acknowledge, however, that this differs from sketches or

explicitly-defined paths created by users. For this technique, I include roads accessible

by car and footpaths accessible by pedestrians.
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I begin by dividing the road topology into lixels, or linear pixels. Lixels consist of

linear road segments of equal length. In terms of KDE, lixels are similar to selection

of a pixel resolution for the planar space. The selection of lixel length in network KDE

is, as with the selection of pixel resolution in planar KDE, an important consideration

affecting the variation details of spatial patterns (Figure 31). Once road segments

have been divided into lixels, I then assign each spatial data item in the set (e.g.,

crimes) to the nearest lixel. Each lixel with one or more assigned data items is a

source lixel, and serves as the point of origin for the network KDE within the network

topology. I follow the approach of Kim et al. [64] rather than Xie and Yan, and

assign scores to each lixel based on a weighted kernel function (Equation 3) and a

minimum detection bandwidth rather than using a count of nearby items. For each

of these events e1, e2, . . . , en, I determine the minimum distance di from that event ei

to any part of the lixel (Figure 29). For this approach, the choice of kernel function

does not affect the results as much as the choice of bandwidth hl, which should be

chosen carefully based upon the domain. I utilize the Epanechnikov kernel, depicted

in Equation 4.

f(x) =
1

nhl

n∑
i=1

K(
di
hl

) (3 revisited)

K(u) =


3

4
(1− u2), if ||u|| ≤ 1

0, otherwise

(4 revisited)

Once the spatial data items have been assigned to the correct lixel, I iterate

through the source lixels to determine each of the other lixels that are visible from

their position given the current hl. This visibility is determined by network distance

rather than Euclidean distance. Each other lixel that a source lixel can “see” receives

a score adjustment relative to the network distance between them. The resulting

score for any lixel represents the network KDE score aggregated from all of the other
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(a) Dotmap of 2015 Property Crimes
in Baltimore.

(b) Line map of 2015 Property
Crimes.

(c) Church and School Nodes (d) Highway, Water, and Train Edges

Figure 30: 2015 Property Crimes in Baltimore. In Figure 30b, the path KDE is rendered
as line thickness and saturation, with thicker and darker lines indicating a higher network
score. In Figure 30c, the path network is shown in yellow, with green highlights indicating
the lixels that have been amplified due to node proximity (church and school nodes are
black circles). In Figure 30d, the red highlights indicate lixels that have been dampened
due to edge proximity (highway, water, and train edges are black lines mostly occluded by
the path highlights).

lixels that can reach it (Figure 30b). This score is aggregated using Equation 3,

though I substitute a bisquare equation for the kernel (Equation 1). This equation

utilizes a different bandwidth, hg, than the preceding detection bandwidth, as I am

calculating the density of the lixel with respect to the nearby lixels in the network

topology rather than aggregating nearby crimes. This larger bandwidth must also be

chosen carefully, as it determines the default distance that a source lixel can reach

other lixels and affect their scores (Figure 32).
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(a) 5m lixel size (b) 10m lixel size (c) 25m lixel size

Figure 31: The paths of an urban area are used to represent spatial data through network
KDE with varying lixel size. Paths with a nonzero score are drawn in blue; path thickness
is mapped to each lixel’s net KDE percentile score for the map. Bandwidth hg sizes for all
images are 50m. Reducing lixel length increases the fidelity of the model but increases the
computation cost for deriving the network KDE.

Ki(u, hg) =


[ 1− d2i

h2
g
] 2, if di < hg

0, otherwise

(Eq. 1 revisited)

5.1.2 Nodes

As elements of an urban mental map, nodes represent areas of high activity: com-

munity, shopping, education, worship, and more. However, what represents a node

to one person, or one group of people, might differ significantly. This difference can

be influenced by where a person lives, where they work, what they do for a living,

or their cultural and ethnic background. Nodes are “the concentration of a district,

over which their influence radiates and of which they stand as a symbol” [75].

To incorporate node elements into a cognitive model of the city, I update the

existing path model to modify the sight distance of a source lixel. This modification

provides an incremental boost to the hg of all source lixels within the radius of the

node subject to the weighted distance obtained by Equation 1. We default nodes to an

activity radius of half the current hg, though other parameters would yield alternative

results (Figure 30c). For example, if hg = 100m, then the activity radius would be
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(a) 10m bandwidth (b) 100m bandwidth (c) 1km bandwidth

Figure 32: The paths of an urban area are used to represent spatial data through network
KDE with varying bandwidth size. Lixel size for all images is 10m. Paths with a nonzero
score are highlighted in blue; highlight thickness is mapped to each lixel’s net KDE percentile
score for the map; yellow paths for each line are thicker for lixels in the top 2%. In
Figure 32a, the bandwidth hg is set at 10m, which reveals only the most localized trends in
path pattern variation. In Figure 32b, hg is increased to 100m, which allows for identification
of larger patterns throughout the network. Finally, in Figure 32c, hg is set at 1km, which
depicts the overall trend of the map but obscures fine-grained patterns in this data.

50m. A source lixel within 25m of the activity node would receive an improved sight

of 28.125m in addition to the default sight of 50m. A source lixel that occurs in

proximity to many activity nodes could receive additional sight modifications. The

result of these modifications is that source lixels that occur in proximity to activity

nodes within the map have a pronounced effect on the overall scores for the map.

5.1.3 Edges

Edges represent barriers to movement: highways and train tracks that hinder pedestri-

ans, water features that bottleneck traffic, or other features of the environment. Edges

may also be more abstract, such as the dividing line between two neighborhoods. It

may still be possible to move across an edge, but it can be difficult, depending on the

type of barrier it represents. Criminal activity is often higher at edges, as they often

provide a place where land use provides opportunities for mischief and strangers go

unchallenged [14].

In our technique, edge elements modify the lixel topology by artificially inflating

lixel length (Figure 30d). When an edge is added to the map, it increases the artificial

length of all lixels that are within its activity radius, subject to Equation 1. As with
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nodes, the default activity radius is half the current hg. As source lixels are modifying

the scores of reachable nodes, they observe inflated lixels as longer than they actually

are. Consequently, any destination lixel that receives an increased network KDE score

does so at a reduced value.

5.1.4 Crowd-Sourced Mental Maps of Property Crime

To understand the effects of mental image elements on quantitative spatial data, I

analyzed the property crime in three US cities using an alternative mental map. I

obtained property crime data for Atlanta, Baltimore, and Chicago, three cities with

significant difference in layout and navigability. Atlanta, for example, is notable for its

wide sprawl and relatively sparse downtown and midtown. It also contains a relative

absence of water features, such as rivers or lakes, but is conspicuously divided from

north to south by a major US highway. In contrast, Baltimore is a harbor city that

contains a relatively dense street grid within its interior. Like Atlanta, however, the

population density is low within the downtown, as inhabitants largely commute to

the interior to work, shop, or dine. Chicago also lies on the edge of a significant water

feature, Lake Michigan, and contains an incredibly dense network topology within its

inner loop. All three cities are known for their ongoing efforts to curtail significant

property crime.

I utilized road network topology data obtained from OpenStreetMap (OSM) to

form the paths within each city. I incorporated all types of paths accessible on foot

or by car, though the inclusion of alternative types of paths would help create a

more nuanced model (e.g., only including footpaths or only including major highways

utilized by out of town commuters). To account for this, I included a second set of

features as edges: major interstate highways, train tracks (excluding subway features),

and water features (rivers and streams). The inclusion of these features still allowed

for the inclusion of the highways as aspects of the cognitive model of each city, but
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skewed the perspective towards inhabitants of the urban that might use a highway

sparingly while relying on shorter streets and sidewalks to move around on a daily

basis.

For each city I create a distinct mental maps to represent community perception.

These are intended to represent inhabitants of the citythat are attempting to un-

derstand the spatially distributed property crimes. This crime consists primarily of

nonviolent larceny, auto theft, and nonresidential burglary but also includes pedes-

trian and residential robbery when it occurs. The data set is limited to only the

events that occurred in 2015. For the mental maps, the image of the city is com-

posed of church and school locations, as these represent important components of the

community and family. Node locations for the mental maps were obtained from the

crowd-sourced tags on OSM. To limit the effects that clusters of relevant nodes might

have on the model, I apply a hierarchical aggregation scheme to cluster together nodes

that occur within hl, the activation bandwidth, of each other. Cities were analyzed

with a lixel size of 25m to provide a resolution of approximately four lixels per city

block. Local bandwidth was set at hl = 100m so crimes would be associated with a

lixel at the nearest block but no further. Finally, the global bandwidth was set at

hg = 200m to limit the propagation to a maximum distance of two blocks.

I then created visual representations of the disparities between the original data

distributions and the new distributions. Red lines indicate neighborhoods where the

distribution is more dense in the mental map, while blue lines indicate neighborhoods

where the distribution is more dense in the original data. For the city of Atlanta,

the greatest disparity between the mental map and the raw data occurs around West

Midtown and the intersection between the major highways in the center of the map

near downtown (Figure 33). For the city of Baltimore, the largest disparity occurs

with high mental map distributions in East Baltimore in the neighborhoods of Oliver,

Dunbar-Broadway, and Middle East (Figure 34). Many other neighborhoods, notably
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downtown and Fells Point, are lower, though Harlem Park to the west and the stadium

area to the south also have higher property crime distributions. Finally, for the city

of Chicago, most of the disparities in the mental map exist on the edge between

the Loop and South Loop neighborhoods (Figure 35). To the south, neighborhoods

along the lake and to the southwest along the highway also have an increase, as well

as the northern neighborhoods around Goose Island. For the neighborhoods that are

drawn in red, the presence of nodes and edges may indicate that the crime density is

higher than what is captured in the official data source, or that inhabitants of those

neighborhoods perceive crime as being higher because it occurs close to important

nodes in their community. In either case, programs that are designed for reducing

the amount of crime in those neighborhoods would be well-advised to include citizens

of those neighborhoods in planning sessions.

5.1.5 Discussion

One of the primary benefits of incorporating mental maps is to identify disparities

between perception of a quality within the urban landscape and the quantitative

data about that quality. For example, members of a community might be fearful

because it feels to them that crime is increasing, when the authoritative data of crime

distributions indicates no significant change. Recognizing these differences in mental

maps is just the first step to understanding how they affect perceptions of quantitative

data. In this section, I proposed a novel technique for applying mental maps based

on nodes, paths, and edges to spatial data. Finally, I provided preliminary findings

from the application of our technique to property crime data in three U.S. cities:

Baltimore, Atlanta, and Chicago. This technique provides a method for identifying

disparities in mental maps of urban spatial data and provides insight into the effects

these models have on the data perception, which is necessary for making decisions

that affect all members of a community regardless of their image of the city.
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Figure 33: The disparities between the crime map and the church and school mental
map. Areas where church and school lixel values are higher are in thick red lines, while areas
where the original map is higher are in thick blue lines. The greatest disparity between the
mental map and the raw data occurs around West Midtown and the intersection between
the major highways in the center of the map near downtown.
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Figure 34: The disparities between the crime map and the church and school mental
map. Areas where church and school lixel values are higher are in thick red lines, while areas
where the original map is higher are in thick blue lines. the largest disparity occurs with
high mental map distributions in East Baltimore in the neighborhoods of Oliver, Dunbar-
Broadway, and Middle East. Many other neighborhoods, notably downtown and Fells Point,
are lower, though Harlem Park to the west and the stadium area to the south also have
higher property crime distributions.
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Figure 35: The disparities between the crime map and the church and school mental
map. Areas where church and school lixel values are higher are in thick red lines, while
areas where the original map is higher are in thick blue lines. For the city of Chicago, most
of the disparities in the mental map exist on the edge between the Loop and South Loop
neighborhoods. To the south, neighborhoods along the lake and to the southwest along the
highway also have an increase, as well as the northern neighborhoods around Goose Island.
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5.2 Online Collection and Interpretation of Atlanta Mental
Maps

Many of the prototypes used in the examples described in this work were constructed

in Java using Processing [43] and several associated rich-client libraries. This approach

was originally taken because the tools available within a rich-client implementations

allowed for both more expressive capture of sketch and multi-touch interactions and

more responsive visualizations of map-based data than were possible in the browser.

However, this imposes a significant limitation on the availability of the benefits of

the proposed techniques to those capable of running the existing software: namely,

people who already possess or can afford touch-screen laptops and tablets that they

can install the software onto. An approach was needed to study the same or similar

capabilities in a browser so that it they are accessible to as wide an audience as

possible. As a thin-client solution, a browser application also makes it easier to

determine the external validity of the proposed cognitive mapping techniques.

Improvements to the core d3.js framework [10] as well as the availability of several

supporting libraries (e.g., Leaflet [3], Turf [57]) have made the possibility of a web-

based sketching and visualization application much more feasible. These components

have already been incorporated into a prototype for one of the systems described in

this work, HotSketch (see Section 3.2), which is intended for use on tablets and laptops

through a browser. The development of HotSketch has shed light on the capabilities

that would be necessary for a more open-ended sketch-based analytic application.

One of the most significant requirements for a successful browser application was

a backing database for the path networks of roads, highways, and streets. Neo4j was a

potential solution, as it allows a graph structure to be accessed through a REST API,

HTTP API, or through plugins for javascript and node.js. Ultimately, an approach

based on smaller and more localized neighborhood street networks in geojson and

PostgreSQL was determined to be more efficient and more easily implemented. This
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also has the benefit of being easier to deploy and maintain by community organiza-

tions. Heroku was chosen as a hosted server for instances of each study prototype,

allowing for wide availability at minimal cost. The data used to populate these pro-

totypes was obtained from OpenStreetMap through custom but easily modifiable

scripts. As the intent would be for multiple cities to be accessible through the appli-

cation, the system could eventually scale to keep the individual path networks and

associated data separate and allow the user to select the city of interest through the

user interface of the application, but for the studies described subsequently the focus

is primarily on the data around the core of Atlanta.

A secondary requirement was for the storage of spatial data sets consisting of

location records and events. Most of the previous research conducted to date has

been focused on crime events, which could be included within a PostgreSQL instance

at larger scales but were deployed here through geojson. As the data is updated,

however, updates would need to be made to the dataset. The city of Atlanta, for

example, updates the Federal UCR data posted publicly every two weeks (or in the

words of the officer who manages the data, “whenever I get around to it”). A Cron

job or similar structure would be helpful to track the data posted to the Atlanta

Police public site and pull the most recent data when it is made available. In addition,

several server-side scripts could be developed to detect changes to previously uploaded

data or the data model itself, which have both occurred with the Atlanta data as new

information on previous crimes has come to light or new UCR formatting requirements

have been handed down.

Finally, it was beneficial to store the elements of the cognitive models sketched

by each user as geojson feature collections within the PostgreSQL instance. This

way, it would be possible for an individual user to construct a set of important

nodes, paths, edges, and districts and store that model within the system for future

use as the spatial data set is updated over time. The elements themselves can be
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stored as map features (e.g., points, lines, polygons) within a PostgreSQL table for

review in subsequent studies. The basic capability supporting the matching of a

table to a user was accomplished through stored cookies in the browser, but a more

robust capability of login authentication may be necessary to allow for users who are

borrowing computers or using them temporarily (e.g., in a public library) to maintain

access to developed models across sessions.

But even with this infrastructure in place–questions remain. How can interactive

visualization improve current methods for capturing mental maps at the neighborhood

and city levels? For the city level, what interaction methods best facilitate the creation

of desirability contours? For the neighborhood level, what interaction methods best

facilitate the creation of nodes, paths, and edges? What separates a “good” mental

map from a “bad” one? Does heightened interactivity and visualization improve the

fidelity of these mental maps, or do they inhibit accurate capture? To answer these

questions, I conducted a study with participants drawn from the area around midtown

and downtown Atlanta.

5.2.1 Motivation

What is the ideal interaction strategy for rapidly and accurately specifying mental

maps of spatial data? This study sought to determine how interactive visualization

can improve current methods for capturing mental maps at the neighborhood and

city levels. Currently, it is unclear what the optimum interaction paradigm is for

capturing mental maps. For example, when users create maps of the city in studies

based on the work of Lynch [75] and Appleyard [8], they use blank sheets of paper to

rapidly construct off-the-cuff models of the city that best represent the elements that

matter the most to them. Then, a group of researchers typically codes the elements

that are present in a drawing, which is confirmed by additional reviewers if possible.

Is the best canvas for specifying a mental map of the city a blank page, or it more
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effective to provide a simple ranking interface similar to the maps provided by Gould

and White [52]? Does the presence of dynamic feedback in the system alter the

effectiveness of each approach?

Through the following online study, I sought to determine the differences in inter-

action strategies for rapidly and accurately specifying mental maps. Two groups were

assigned from a pool of everyday citizens that live in the nine central neighborhood

planning units (NPUs) of Atlanta. The Simpler Interaction Group utilized repre-

sentation and interaction techniques that closely mirrored the techniques of Lynch,

Appleyard, Gould, and White for eliciting mental maps on paper. These techniques

were intended to be faster, easier to understand, easier to implement, and have less

potential for error. The Complex Interaction Group utilized representation techniques

that were more expressive and provided nuanced feedback to users in the form of dy-

namic modifications to the map representation. These techniques benefited more from

the digital format of the online study, but were more complex to explain and carry

out than the more straightforward Simple versions of tasks. All participants were

asked to indicate which neighborhood they live in, and which neighborhoods they

feel the most fear from crime and which are the most expensive. This is to establish

a baseline of indicators that can be correlated both with the stated desirability of the

neighborhoods and the actual data available on crime statistics and housing prices.

People then participated in two tasks. The first was designed to mimic the larger-

scale desirability studies of Gould and White by eliciting broad preferences across

the entire city [52]. The second was designed to mimic the smaller-scale imageability

studies of Lynch and countless others by challenging participants to remember and

record the features that they feel are most important in characterizing the city [75].
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(a) Random samples in the context of
central Atlanta NPUs.

(b) Areas enclosed by each sample
location.

Figure 36: Random samples used to group participants to the closest “home” neighbor-
hood and to elicit rankings of the areas in the city of Atlanta. After seeding each NPU with
a single sample point at its centroid, sample point locations were generated using Bridson’s
method [15] with a minimum spacing of 1km. In the home selection interface, a textured
circle, rather than a point marker, is used to convey that the area nearest to the center of
the circle is also included in that region.

5.2.2 Method

I created 118 sample points around central Atlanta spaced at 1km apart (Figure 36a).

Participants were drawn from current residents of the nine neighborhood planning

units (NPUs) around downtown and midtown Atlanta. The study was advertised

through email lists, Craigslist, NextDoor, Facebook, Twitter, and through fliers in

NPU meetings. People participated in the study through a browser by following the

link in the advertisements. Participants certified that they had lived at an address

within one of the NPU boundaries containing the sample points for at least six months.

I asked all participants which point is the closest to where they currently live, but

did not ask for their exact address of residence or distance to that point (Figure 36b).

Participants were divided into two groups: participants who use a simpler capture

method (Group A: Simple) or a complex method with dynamic information visual-

ization feedback to interactions (Group B: Complex ). Participants in both groups

participated in three tasks. Participants were counterbalanced by assigning them to
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Figure 37: All participants were prompted: Of all of the neighborhoods in Atlanta, which
five do you feel the most fear from crime? Which five do you feel the least fear from crime?
By clicking on neighborhoods in the map, locations were added to reorderable lists. Red
markers are ranked high, blue markers are ranked low. A similar interface was used to elicit
responses to the question: Of all of the neighborhoods in Atlanta, which five do you feel is
the most expensive to live in? Which five do you feel is the least expensive to live in?

the group (A or B) that currently had the fewest number of participants within the

NPU that their neighborhood was located in.

In the initial task, all participants in both groups were given a map with the

labeled sample circled areas and asked to click the five areas where they feel the most

fear from crime, and the five sample areas where they fear the least fear from crime.

Participants were also asked to click the five sample areas where they feel homes are

the most expensive, and the five sample areas where the homes are the least expensive

(Figure 37). I collected this data to facilitate direct comparison between the individual

rankings for crime and price as component features of the overall desirability for each

neighborhood. This data also allowed us to directly compare the perceived rankings

for these specific attributes to publicly available quantitative statistics on crime and

housing price throughout the area.
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Figure 38: Participants in the Simple Group were prompted: Suppose you were suddenly
given the chance to choose where you would like to live- an entirely free choice that you
could make quite independently of the usual constraints of income or job availability. Where
would you choose to go? By clicking on neighborhoods in the map, locations were added
to reorderable lists. Blue markers are ranked highly desirable, red markers are ranked
less desirable. The task is a digital version of the map ranking task used by Gould and
White [52].

In the next task, all participants in both groups were prompted with the following

question: ”Suppose you were suddenly given the chance to choose where you would

like to live- an entirely free choice that you could make quite independently of the

usual constraints of income or job availability. Where would you choose to go?”

Participants had ten minutes to provide a response through the mechanism specific

to their group.

Simple Group Participants clicked on neighborhood circle areas to rank them

from highest to lowest desirability, which appeared in a sorted reorderable list in

the interface. At any time, participants could switch from labeling most desirable

points to least desirable, and back. Participants had to choose at least ten points to

continue. Locations were colored using the d3 “RdYlBu” diverging color scheme, with
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(a) Participants in the Complex Group were
asked to draw non-intersecting shapes to
represent their desire to live in locations
around Atlanta.

(b) Shapes were give a hue to
represent their desirability as new
shapes were added to the map.

Figure 39: Complex group participants were prompted: Suppose you were suddenly given
the chance to choose where you would like to live- an entirely free choice that you could make
quite independently of the usual constraints of income or job availability. Where would you
choose to go?. The task is a dynamic version of the blank sketching process used by Lynch
and Appleyard to elicit imageability from participants on paper maps [75, 8], and uses the
digital interface to dynamically adjust the color in response to the user’s sketched lines.

blue locations representing more desirable locations and red locations representing less

desirable ones (Figure 38).

Complex Group Participants were directed to draw non-intersecting closed shapes

around areas on the map and indicated through a button whether the shape was

more or less desirable than the area around it. They were able to drag contour lines

around once constructed to edit the visualization dynamically. As closed shapes were

completed, the colors assigned to the interiors of regions were updated to reflect the

current ordinal desirability ranking of regions.

Simple Group participants received the benefit of familiarity with the selection

interface for this task, as it was nearly identical to the selection mechanism used for

the ranking of crime and housing prices. The disadvantage was that the Simple group

was also unable to express more nuanced preferences in the boundaries between the

predetermined sample locations. Complex group participants benefited from this ex-

pressiveness, and were able to provide a higher-resolution depiction of their perceived
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Figure 40: Participants in the simple group were shown this style of map moments after
expressing the desirability of the neighborhoods in the city, which has been constructed using
a regularly spaced grid of sample locations that are assigned a hue based on proximity to
the nearest neighborhood ranked by the participant. For consistency with the Complex
group, isolines have been drawn to separate major groups by their desirability.

desirability within the region. One drawback of the study execution, however, was

that simple group participants were encouraged to rank no fewer than ten neighbor-

hoods and were encouraged to rank more. Complex group participants were allowed

to proceed after drawing even one closed shape for either high or low desirability,

which may have negatively affected the level of detail in participant responses by

reducing the number of shapes.

Participants were then shown a digital representation of the mental map con-

structed from their interaction with the interface in the previous task (Figure 40).

They were prompted with: Please review the city map image on this page. This image

has been constructed based on your responses to the previous tasks. For the task you

participated in and the image displayed, please answer the following questions to the

best of your ability. They were asked to complete a short survey to establish how
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well the representation matches their internal mental map (Section 5.2.3). They

were also asked questions about how they believe someone else would interpret the

mental map. The survey consisted of ordinal Likert questions drawn from the System

Usability Scale [16] and free responses specific to this study.

For participants in the Simple Group, the representation method differed some-

what from the image that was generated as the participant interacted with the system.

This was done to more directly mimic the separation between the transcription of a

paper-based mental map and the interpretation by a secondary expert user. While

the new representation is not drastically different from the desirability map encoded

by the participant, it is clear that additional steps of analysis have been performed

without explanation. The resulting representation has been constructed through the

use of a regularly spaced sample grid of points that are distributed evenly throughout

the map area. Each sample point is assigned the ranking of the nearest neighborhood

ranked by the user in the previous task. Isolines have been added to the map to

separate major breaks between rank bins.

In the second task, participants were prompted to create a sketch of the 2km

radius area around the point closes to where they live with the following question:

“Make it just as if you were making a rapid description of the city to a stranger,

covering all the main features. We don’t expect an accurate drawing- just a rough

sketch.” Participants had ten minutes to provide a response through the mechanism

specific to their group.

Simple Group The simple sketch group was primed briefly for 10 seconds with a

map of the area they were to draw in order to get oriented, then given a blank canvas

upon which to sketch their mental map of the area around their home sample point.

They were able to choose one of four drawing tools: blue line, a circle marker tool,

red dashed line, or an eraser. Blue lines represented roads or other paths, circles
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(a) Participants in the Simple Group were
primed for 10 seconds with an unlabeled
image of the map tiles around the
neighborhood they selected.

(b) After 10 seconds, tiles were
hidden and participants sketched
the important features of their
neighborhood.

Figure 41: Participants in the Simple Group sketch the important features of their
neighborhood. The task is a digital version of the blank sketching process used by Lynch
and Appleyard to elicit imageability from participants on paper maps [75, 8].

represented important nodes, and dashed lines represented edges. After drawing any

feature, participants were able to type in the name of the feature.

Complex Group The Complex sketch group were given an unlabeled basemap

that indicates the location of blocks and major geographic features but few details

and no text. They were directed to draw important paths, nodes, and edges directly

through three separate drawing techniques. After blue lines were drawn on the map,

the road network is queried for paths that are close to and reachable from the drawn

path. Circle markers could be placed to represent nodes, and were rendered with a

surrounding ”area of effect” that amplified the distance of reachable paths from the

circle and paths already on the map. Drawn dashed lines were interpreted as edges,

and dampened the reachability of nearby paths placed on the maps. As people added

features, the map updated to show the changes in the underlying network model

through line thickness and hue.

Participants were then shown a digital representation of the mental map con-

structed from their interaction with the interface. Much like in the previous task,
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Figure 42: Participants in the Simple Group were shown this style of map after sketching
the important features of their neighborhood. It depicts the features that they drew in the
task but reveals the underlying map tiles for context.

they were asked to complete a short survey to establish how well the representation

matches their internal mental map. They were also asked questions about how they

believe someone else would interpret the mental map (Section 5.2.3). The survey

consisted of ordinal Likert questions drawn from the System Usability Scale [16] and

free responses specific to this study.
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(a) A drawn path queries
the network model to
reveal reachable paths
nearby.

(b) A drawn edge queries
the network model to
dampen reachable paths
nearby.

(c) A drawn node queries
the network model to
amplify reachable paths
nearby.

Figure 43: Participants in the Complex Group sketch the important features of their
neighborhood. The task is a digital version of the blank sketching process used by Lynch
and Appleyard to elicit imageability from participants on paper maps [75, 8], enhanced with
dynamic feedback from interacting with the reachability model of connected streets.
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Figure 44: Participants in the Complex Group were shown this style of map after
sketching the important features of their local neighborhood. The sketched features have
been applied to a network reachability model in which edges dampen the reachability of
nearby lixels and nodes amplify nearby lixels. Lixels that are close to any feature sketched
by a user are considered source lixels, and are assigned a score of 1. In the generated
representation, the network KDE score is encoded in the hue and thickness of the lines
overlaid on the map.
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5.2.3 Questionnaire

These are the questions that were posed to participants at the end of the desirability

and feature sketching tasks. The first ten items are based on the System Usability

Scale (SUS) questions [16]. Question 11 is designed to determine the perceived accu-

racy of the created image, and is worded slightly differently for the feature sketching

task. The final five questions are designed to elicit qualitative data that can provide

context for the rankings and sketched features transcribed during each task.

1. I think that I would like to use this system frequently. (agreement-Likert)

2. I found the system unnecessarily complex. (agreement-Likert)

3. I thought the system was easy to use. (agreement-Likert)

4. I think that I would need the support of a technical person to be able to use

this system. (agreement-Likert)

5. I found the various functions in this system were well integrated. (agreement-

Likert)

6. I thought there was too much inconsistency in this system. (agreement-Likert)

7. I would imagine that most people would learn to use this system very quickly.

(agreement-Likert)

8. I found the system very cumbersome to use. (agreement-Likert)

9. I felt very confident using the system. (agreement-Likert)

10. I needed to learn a lot of things before I could get going with this system.

(agreement-Likert)

11. The city image accurately represents my desire to live in the various neighbor-

hoods of the city. (agreement-Likert)
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12. Please describe, in your own words, what characteristics are shared by the areas

that you DO desire to live in? (free response)

13. Please describe, in your own words, what characteristics are shared by the areas

that you DO NOT desire to live in? (free response)

14. If a city official were to review this map, what conclusions do you think they

would reach about the city? (free response)

15. If a city official were to review this map, what conclusions do you think they

would reach about the person who created it? (free response)

16. If you were to use the created image to argue for one policy change about the

city, what would it be? (free response)
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Figure 45: Neighborhood planning units E (midtown) and M (downtown) were the most
common home NPUs for participants in the study (NPU-E : 56; NPU-M : 18).

5.2.4 Analysis

Overall, 86 people took part in our study and were relatively balanced across sex (44

female, 40 male, 2 no response). The median age of participants was 27.5 (mean =

31.73, standard deviation = 12.68). The responses were markedly less balanced in

terms of race (see Table 2). Participants tended to be white or Asian, which is more

reflective of the demographic makeup of the university campus than its surrounding

population in the sampled area. Of the nine neighborhood planning units (NPUs)

in the survey region, the two most heavily represented are NPU-M (downtown) and

NPU-E (midtown) (Figure 45).

However, it should be noted that not all participants completed all tasks; though

most participants completed the tasks on reporting fear from crime and perceived

housing price few of the participants completed the subsequent tasks. Of the 86 par-

ticipants who completed any task in the study, 60 participants persisted long enough

to complete the questionnaire about the usability of the desirability interface and 44

completed all tasks leading up to and including the final questionnaire regarding the
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Table 2: Participant Demographics

Race Female Male No Response Total

Asian 11 11 22
Black 1 1 2
Hispanic 1 1 2
No Response 1 1
Other 3 2 5
White 28 25 1 54

Total 44 40 2 86

system usability of the map feature sketching interface. Part of the attrition can cer-

tainly be attributed to the method of compensation for research participants, a raffle,

which under Georgia Law is available to anyone for entry regardless of the degree to

which they complete the study.

The responses from the completed SUS questions were aggregated within each

group following the methods of Brooke [16] to yield individual SUS scores. A between-

groups t-test was performed to determine if a significance difference existed between

the perceived system usability of the desirability interface between the simple group

(n=33) and the Complex group (n=27). The results of the t-test indicate that there

is not a significant difference between the two interaction methods for the desirability

task (f=1.5, p=0.135) which is confirmed by an examination of the confidence intervals

(-1.84, 13.18). T-tests of the perceived system accuracy for both the desirability and

map sketching interfaces similarly did not indicate a significant difference.

However, a between-groups t-test was also performed to determine if a significant

difference existed between the perceived system usability of the map sketching inter-

face between the simple group (n=26) and the Complex group (n=18). The results of

the t-test indicate that there is a significant difference between the two interaction

methods for the sketching task (f=-2.46, p=0.018) which is confirmed by an exami-

nation of the confidence intervals (-26.99, -2.66). In this case, participants felt that

the Complex interface was significantly more usable than participants who were using
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the simple interface. Realistically, much of this difference can be attributed to the

requirement for participants in the simple group to sketch from memory, a demand

that was not required of the participants in the Complex sketching group.

To analyze the constructed mental maps in more detail, I used the data to con-

struct aggregated maps for the overall study population, participants from only NPUs

E, and only from M. I collected data from the Atlanta Police Department on crime

in the city for 2017, and bolstered it with crime data collected from the Georgia

Tech Police Department. I also collected data from the Zillow API for 10,757 for-sale

properties across the 13 zip codes represented in the study region. By obtaining data

from these secondary sources, I am able to make direct comparisons between the per-

ceptions of the neighborhoods and publicly available quantitative measures of crime

and median housing listing price.

For all the residents of Atlanta, this meant a marked shift between the areas of

perceived crime and the crime locations (Figure 46). From the dots used to mark

perception, it is quite clear that the overall and NPU-E perspective is that a line runs

from the northwest of the map to the southeast and that this barrier divides a region

of fear from one of relatively safety.

For NPU-M, however, this perception is quite different (Figure 47). Unlike the

aggregate view and perception of NPU-E residents, people in NPU-M do not rank the

southwest of Atlanta highly as an area that they feel fear from crime. There is appar-

ent clustering still in place, however, with large groupings of perceived safety towards

the northeast and fear to the west and immediate south, but the distribution is very

different than that found in NPU-E. An interesting aspect of this comparison is that

the inhabitants of NPU-E see one location as particularly fearful, while participants

in NPU-M perceive fear strongly from several locations in the neighborhood. This

disparity deepens if we examine the correlation between the perceived fear and the

desirability reported by people from NPU-E (Figure 48). In this figure, we can see
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Figure 46: Perception of Crime (dots) vs Crime Locations (background). On the left are
perceptions obtained from participants in all neighborhoods, on the right are perceptions
obtained only from participants in NPU-E. The foreground dot hue pattern depicting a
separating line of fear is in contrast to the background hue pattern depicting crime central
to midtown and west of downtown.

that NPU-E resident largely desire to push east and away from the NPU, in particular

the neighborhood perceived as high in fear. For residents of NPU-M, however, we see

a completely different response despite the perceived fear: participants report a high

ranked desire to live in the NPU (Figure 49). While it’s possible that the perception

of NPU-E residents can be attributed to a high number of student responses and the

Clery Safety Act reports of crime in the feared neighborhood, it does little to explain

why residents of NPU-M have such a different reaction.

When I examine the aggregated mental maps obtained from the sketching ex-

ercise, it becomes immediately clear that the outcome from the Complex sketching

exercise is far more legible. The disadvantage is that it takes much longer to compute,

requiring more than ten minutes of processing on a moderately powerful laptop and

generating enough data to take several seconds just to load into the browser even

after processing. Meanwhile, the simple map is computed on the fly and added to

the map instantly. With the right browsing functionality to step through and/or

hide individual responses, it could prove quite powerful. The aggregated Complex
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Figure 47: Perception of Crime (dots) vs Crime Locations (background) obtained only
from participants in NPU-M. The foreground dot hue pattern is unlike the dot pattern for
NPU-E, and is only focused on a small portion of the area around the west of downtown.
Notably, a small portion of that area on the west of the NPU is seen as ranked quite low
for fear from crime.

map is derived slowly by initially assigning any lixel that is present in the sketched

mental maps of participants from that region as a source lixel, then increasing that

score for each separate participant that included that lixel. Similarly, the aggregate

amplification and dampening values for multiple nodes and edges are aggregated.

When complete, the result is a thoroughly detailed map of the city that emphasizes

the area that participants thought were most important about the area they live in

(Figure 51). In contrast, the aggregated image from the simple features is difficult to

read in detail but conveys an overall sense of relative importance within the southeast

and east of the region, a somewhat general conclusion that is nonetheless borne out

by the desirability maps.
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Figure 48: Perception of Crime (dots) vs Desirability (background). On the left are
perceptions obtained from participants in all neighborhoods, on the right are perceptions
obtained only from participants in NPU-E. Notably, while NPU-E participants do not per-
ceive most of NPU-E as fearful, they also do not desire strongly to live there, instead
showing a preference for the eastern edge of the region and beyond.

Figure 49: Perception of Crime (dots) vs Desirability(background) obtained only from
participants in NPU-M. Unlike the residents of NPU-E, the perceived fear from crime at
neighborhoods within the NPU does not dissuade residents from desiring to live there.
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Figure 50: Perception of Price (dots) vs Median House Listing Price (background). On
the left are perceptions obtained from participants in all neighborhoods, on the right are
perceptions obtained only from participants in NPU-E. Notably, NPU-E participants are
fairly accurate at predicting home prices, save for the Home Park area north of campus
where perception of crime is similarly different from the available data and the northeast
portion of the map which is much more expensive than participants of all groups perceived.

Figure 51: Aggregated mental map features of NPU-E obtained from residents of that
neighborhood during a Complex sketching task.
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Figure 52: Aggregated mental map features of NPU-E obtained from residents of that
neighborhood during a simple sketching task.
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Figure 53: Interface for analyzing the interpretation of mental maps. In this image, the
image on the left is aggregated from user reported perceptions of crime, housing price, and
Complex desirability as a background layer. The representation on the right depicts the
aggregated network features from the Complex group for each of the individual neighbor-
hoods that make up make up the NPU. Controls in the center can be used to select other
hues for the foreground or background layers on the left.

5.3 Interpretation of Mental Maps

How can interactive visualizations improve interpretability of mental maps? Is a

mental map interpretable by a person who did not draw it? Do the opinions of the

sketcher transfer to the reader? Does the representation of the mental map affect this

process? How can interaction methods support the interpretation of a mental map?

5.3.1 Method

Participants were drawn from current civic leaders, advertised through Neighborhood

Planning Unit (NPU) meetings and through direct mailings to the NPUs and local

civic organizations. People participated in the study through a browser by follow-

ing the link in the advertisements. Participants reviewed anonymous data collected

from participants in the previous study (see Section 5.2), analyzed that data, and

indicated their findings. Participants were divided into groups based upon the NPU

they represent, which affected the data that was used to generate the representations

that they interacted with. People participated in two activities (all participants will
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Figure 54: Interface for analyzing the interpretation of mental maps. In this image,
the image on the left is aggregated from user reported perceptions of crime, housing price,
and simple desirability as a foreground hue for the dots. The representation on the right
depicts the aggregated network features from the simple group for each of the individual
neighborhoods that make up the NPU. Controls in the center can be used to select other
hues for the foreground or background layers on the left.

participate in both, counterbalanced for order).

In each interface, participants were shown representations of maps constructed

by people in either the Simple Group or the Complex Group in the previous study

(Figure 53). They were able to compare data collected on fear from crime, perceived

housing price, and desirability with publicly available records for crime prevalence

and median housing prices. They were then given a short survey in which they were

asked to interpret the representation in their own words.

Then they reviewed the anonymous free response data from people in the previous

study, and rated how closely their own interpretation aligns with the responses from

participants. In the second activity, participants were shown representations of maps

constructed by people who were using a different interaction technique (whichever

they did not review first). They repeated the process of analyzing the maps and

repeated the process of answering a questionnaire about their interpretations and

insights.
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5.3.2 Questionnaire

Participants were directed to answer the following questions while interpreting the

spatial data and mental maps:

1. The city image accurately represents the relative desirability and importance of

the various neighborhoods of the city. (agreement-Likert)

2. Please describe, in your own words, what characteristics are shared by the areas

that people desire to live in? (free response)

3. Please describe, in your own words, what characteristics are shared by the areas

that people DO NOT desire to live in? (free response)

4. As you review this map, what conclusions do you reach about the city? (free

response)

5. As you review this map, what conclusions do you reach about the people who

created it? (free response)

6. If you were to use the created image to argue for one policy change about the

city, what would it be? (free response)

Participants were directed to answer the following questions while reviewing the

free responses obtained during the previous study:

1. After reviewing the responses provided by citizens to these questions, how much

do you think your previous responses agree with them? (agreement-Likert)

2. After reviewing the responses provided by citizens to these questions, what do

you think you were most correct about? (free response)

3. After reviewing the responses provided by citizens to these questions, what do

you think you were most incorrect about? (free response)
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5.3.3 Analysis

Of the three people that have successfully completed the study, two strongly agree

that the city image generated from the Complex group accurately represents the

relative desirability and importance of the various neighborhoods of the city. These

two also agree, while not strongly, that the city images from the Simple group also

accurately represent the city. The third respondent is adamant in her decision to

neither agree nor disagree with all prompts. One member of NPU-E noted in her

response to question 3 that “Northern areas are more desirable than southern areas”

when reviewing the Complex group data. This observation is certainly present in the

NPU-E data, although one participant noted that it is not entirely uniform, in her

response to the question about the insights that the thing she was most wrong about

was “That lots of South Atlanta is desirable to people.” Although, one participant

also noted in his response to a question that “I think that the people creating this

map must be really smart because smart developers are sometimes out of touch with

simple designs. I had to do too much work to look at the map and answer the

questions...” This thoughtful response does speak to a challenge with both forms of

interaction, namely, that they are still far more complex and error-prone than a sheet

of paper and a pencil. Given that the attrition numbers for the data collection study

rose steadily as task complexity increased, one of the most important takeaways for

this research may be simply that the simplest solution may be the best, particularly

in matters of broad community outreach and participation. Finally, one participant

kept primarily to short responses based on pre-existing bias. For example, in response

to the question about what elements are shared by the areas that people desire to live

in, he merely responded with “the lazy.” Truly, one of the great challenges of public

participation in GIS is that not everyone takes participation seriously. I suppose it

takes all kinds to make a world.
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CHAPTER VI

CONCLUSION

In this document, I have described several distinct visualization research efforts that

all work toward simplified interaction techniques for mapping urban data. In Chapter

1, I began with the question: How do we analyze civic data? There were two sub-

stantial challenges to urban data analysis that this thesis sought to explore. These

challenges led us to these primary research questions:

RQ1 There are many different ways to represent the same underlying data set,

and this can lead to misinterpretation and miscommunication. How can interactive

visualizations improve interpretability of representations of mental maps?

To pursue answers to this question, I reviewed current techniques for mitigating

errors across alternative mappings. I also proposed a new technique, reachability

weighted mean (rw-mean), for comparing mappings specifically for urban data. The

results are promising, and indicate that rw-mean generates consistent visual repre-

sentations across mapping schemes. It should be noted, however, that there are likely

unexplored effects that result from variation in street network density across different

areas in the city.

RQ2 People have different values and opinions on what is important about their

city: what should be changed, and what should be preserved. How can interactive

visualizations improve current methods for capturing and depicting mental maps at

the neighborhood and city levels?

To pursue answers to this question, I designed a model for joining collected mental

maps to official data, and representation methods for depicting mental maps. I also
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conducted a study to compare web-based collection techniques. The goal of this work

was to provide urban planners, community members, and civic organizations with a

simple, expressive set of interaction techniques to analyze urban data. I have shown

that dynamic sketch-based mental maps of urban spaces can provide these capabilities

to non-experts in GIS, and can help experts to understand differences in qualitative

perception for people in the region that they work in. In the course of conducting

this research, I have produced the following contributions to the visualization research

community:

• A set of techniques for capturing imageability elements (i.e., Nodes, Paths,

Edges, and Districts) as mental maps

• A model that joins spatial data to mental maps

• Guidelines for specifying mental maps interactively within sketch-based online

tools.

• A data set of mental maps from citizens of the city of Atlanta.

• A sketch-based system for capturing mental maps and analyzing spatial data

in a browser.

• An analysis of the effect of interaction technique on spatial data interpretation.

6.1 Future Work

The results of this research have indicated several promising areas for potential future

research. Of the many interaction techniques described in this thesis, many are

ideal for touch, gesture, and pen-based hardware systems. These systems exist at a

range of scales, from smaller hand-held phones and tablets to much larger interactive

whiteboards that cover several feet. While the former is ideal for a single person to

record a digital mental map and explore urban data, the latter is more optimal for
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a collaborative approach that facilitates discussion. I think that, reflecting on the

various models of public participation that can exist in a community [71], there are

several promising research questions centered on facilitating collaborative discussion

of urban data between hand-held devices in a localized setting. As people bring their

devices into a shared location for public discussion, how can we enable shared data

analysis that supports this discussion? For example, the St. Louis Map Room project

by Jer Thorpe discussed in Chapter 2 uses a projected display on top of paper to allow

participants to create a shared representation of the built environment by sketching

on top of it. It would be interesting to explore methods that allows participants

to navigate to a web application on a phone or tablet and digitally sketch in on

the projected image as a group. This would make it easier to maintain a digital

record of the collaborative activities of the group. This more complex method of

interacting with the system may also have downsides, such as a higher maintenance

or development cost that makes it less feasible for many communities and PPGIS

models.

One of the challenges I have touched on many times in this research is the difficulty

curve present in GIS software. An area of open research that is relevant to the ques-

tions of PPGIS interaction software is visualization literacy. There have been many

attempts to not only define visualization literacy but measure it [11], and there are

many implications for civic data analysis. It is a good thing to value the democratic

nature of PPGIS and provide a forum for people to engage in the planning of their

own community, but how can we ensure that people understand the complexities of

the issues that they are debating? Are there representation or interaction techniques

that are not equitable for those with a lower visualization literacy? It has long been

understood that, just like with charts or even basic statistics, it is possible to create

a purposefully misleading map [81]. The question, then, is how do we design map

visualization and interaction techniques that are equitable? For those members of the
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community that need some additional help understanding complex issues and data,

how do we measure their understanding and provide a suitable interface that allows

them to still participate in the discussion without getting lost in the complexity?

In Chapter 5, I discussed research that was conducted in part with students in

the Data Science for Social Good (DSSG) program at Georgia Tech. In that project,

students worked with a core group of civic leaders from a neighborhood in Atlanta and

consulted with members of the Westside Communities Alliance to design a web-based

interface for analyzing public safety data. I think that a promising area for future

research in this area is the development of a broader model of student-community

engagement that builds on this premise of students applying their understanding

of technical concepts (e.g., data analysis, website design) to problems faced by the

community around them. I would like to pursue this research to design a model for

civic data labs that can provide students with a steady flow of interesting projects

in the community while also providing value to that community. One of the great

challenges for this type of work is that it the benefits are often one-sided, and I would

like to conduct research to determine how these benefits can be made practical and

sustainable beyond the short limits of a summer program or project course. I believe

that, ultimately, it will require a lot of time to develop trust with a core group of

volunteer and civic organizations and projects that persist across multiple years. But,

it is my hope to design and deploy this model in my new role as a tenure-track faculty.

In Chapter 5, I also discussed a model for joining mental maps to urban data

through a modification of network kernel density estimation. I believe this model

is a promising direction of research for steering simulations conducted within urban

environments. For example, in analyzing traffic throughout the city, many researchers

are turning to car data collected from taxi cabs [39]. This type of data has been

immensely useful for modeling overall traffic flow, but it only represents one point of

view: professional drivers. I think it would be fruitful to model a wider cross-section
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of the population by using digital mental maps obtained from other types of drivers

along with the traffic data. Much like the comparisons between housing price from

listings and perception of housing price from surveys described in Chapter 5, I would

imagine the disparity between perceived mental maps of the environment and taxi

volume to highlight differences in perception of the navigable environment between

professional drivers and other drivers. Understanding this disparity could be useful

when trying to design agent-based systems for predicting crowd behavior.

We also know that public perception of data distributions, such as crime, can

differ from official records. But how can we predict these differences, or fill in the

gaps in official data sources? Are there alternative sources for data that can help

us to understand what is missing from the official data? To pursue answers to these

questions, I have been working with the Violence Prevention Program at Grady Hos-

pital in Atlanta and the Division of Violence Prevention at the Centers for Disease

Control (CDC). They are collecting data from trauma patients at the hospital to de-

termine the rate of unreported violent crimes in the city of Atlanta with the intent of

understanding what commercial properties are frequent sources of unreported violent

crime. This data, commonly referred to as the Cardiff data (referring to pioneering

work for this approach by researchers in Cardiff, UK [41]) contrasts with the official

reported data by the Atlanta Police Department (APD). The data collected includes

the location for the crime, the type of crime, and the time at which the crime oc-

curred. I have spent much of the past year working to go through the process of

being added to the existing legal framework that would permit me to have access

to the data and perform research with it, but changes to department and additional

protections for Cardiff data have so far prevented this.

In the future, I will continue to work with these researchers to obtain access to

the Cardiff data in the hopes of using the mental maps from the other two studies to

analyze the Cardiff data for Atlanta. I plan to work with the researchers at Grady and
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the CDC to design interaction methods for exploring and combining the mental maps

with the Cardiff data. I will compare the Cardiff data to the official data from the

APD to determine the differences in distribution between them. I will compare the

differences to the mental maps to determine if the mental maps more closely align

with the Cardiff data or the APD data. I will compare the participant indicated

locations of fear to the Cardiff data and the APD data to determine if the locations

of fear more closely correlate with one or the other.

6.2 Discussion and Reflections

I have learned quite a bit over the years spent working on this research. In my

earliest projects, I focused entirely on exploring the design space provided by slick,

expensive displays: either small or large touchscreens that had a stylus attached.

One of the things that became painfully apparent as I gravitated more and more

towards community-driven applications of map visualization was how rare these types

of systems would be available for public use in that context. While it’s certainly true

that many larger cities do have systems like a large interactive whiteboard, most do

not.

I think this will be a challenge for researchers and students in this area; how to find

the best balance between the desire to push technology forward while being sensitive

to the social issues that affect adoption of new developments. It is no big revelation

that a disparity exists between the availability of the benefits of technology and

research not only between cities but also between communities within individual cities.

However, I think it has been a challenge for me individually to determine how best to

focus my own efforts. Do I try and design something really cool that only a handful

of cities could use, or do I follow best practices to design something that a resource-

starved community group really needs? Even this dichotomy is an oversimplification,

but I think that it captures some of the tension that exists between research that
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benefits the technology researcher and research that benefits the community being

researched. In the ideal scenario, a novel solution might be found that satisfies the

needs of the both, but one of the things that I have come to believe is that there are

scenarios in which the best technological solution might be no technology at all.

While designing map interactions that would work for even novice users, I dis-

cerned that for many users the act of using a computer interface at all was still a

substantial barrier. In these cases, the participant would have potentially been bet-

ter served by a sheet of paper and something to draw with than all of the software

that I had spent time coding. In these circumstances, it is more beneficial to try and

push the user to adopt a more advanced system that might not provide the same

benefits, or to allow them to use a more expressive and technologically simpler tech-

nique? I suspect that there may be no simple answer, but that there is value in taking

time to reflect on these questions when conducting research that includes elements of

computing and social sciences, as much of my own has.
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