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SUMMARY 

No one should have to conform or assimilate in order to participate in the design 

and creation of technology; however, this is the reality facing many students today. Prior 

research suggests that the issues surrounding lack of participation in computing and 

engineering education among underrepresented minorities goes beyond simply access or 

obtaining “critical mass” (Blikstein, 2008; J. Margolis, 2008; J. Margolis & Fisher, 2002). 

Instead, it points to an exclusive, dominant culture that is often toxic for students outside 

the stereotypical mold. From being obligated to participate in activities and projects that 

do not speak to their values, to unspoken and unknown requirements of prior experience; 

non-dominant students are marginalized in ways that span the socio-technical learning 

environment.  

Creating computing environments that are inclusive, equitable, and supportive for 

students coming in with different backgrounds, cultures, and values is a difficult and 

complex problem. Research has shown that the design of these learning environments has 

several characteristics to attend to in order to be successful. One needs to be cognizant of 

the values embedded in the content delivered (Buechley & Eisenberg, 2008; Scott & Hood, 

2009), the types of tools used (Blikstein, 2015; Deitrick et al., 2015a), the climate fostered 

within the social interactions (J. Margolis, 2008; J. Margolis & Fisher, 2002), and how the 

learning environment fits within the socio-cultural context of the students’ lives (Betsy 

DiSalvo, Guzdial, Bruckman, & McKlin, 2014; K. A. Searle & Kafai, 2015). While 

researchers have demonstrated the ability to create inclusive learning environments for a 

targeted set of underrepresented students, we still do not understand how to extrapolate 
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from these targeted designs meant to fit specific needs, to methods that demonstrate success 

across various students. The ability to extrapolate is important for being able to more 

dynamically integrate diverse student values in ways that support differences between 

students.  

The work presented in this dissertation explores learners’ values, or their 

“conceptions of what is ultimately good, proper, or desirable in human life”(Graeber, 

2001) as a lens to create more dynamic learning environments for building personally 

meaningful experiences with computing. I posit that by deconstructing and analyzing 

characteristics within the learning environment for their ability to support students’ values, 

creates an inclusive and equitable learning experience. I explore these concepts within two 

projects with middle school and high schools students: the MoveLab Workshop and the 

Day of the Dead Puppet Summer Camp. In the MoveLab Workshop, participants were 

tasked with creating dance performances that integrated microcontroller technology in 

order to represent issues that they cared about. In the Day of the Dead Puppet Summer 

Camp, participants were tasked with creating interactive puppets that were representative 

of someone or something they had lost in their lives. By having a similar design within 

both learning environments, we were able to analyze the various values that manifested 

within these two environments and how they tied to the design decisions in the learning 

environments.  

We found success in the participatory design methods used to guide the participants 

in reflecting on their values and integrating them into the designs of their computational 

artifacts. Furthermore, the parts of the learning environments that had low stakes for 

participation and stimulated discussion around participants’ values led to productive 



 xxii 

exchanges in ideas and sharing about the students’ and leaders’ cultures. We found issues 

when certain design decisions integrated materials or activities that conflicted with the 

participants’ values. Specifically, conflicts around achievement and power were the most 

destructive to their learning experience. The tools for physical computing were found to 

contribute to this, impacting the participants’ proficiency with computing and desire to 

want to engage with it again. 

The importance of creating tools that provide access to the hardware and software 

concepts, lies in how they prepare students with the knowledge needed to integrate 

computing in ways they value within their lives.  If we continue to black-box these concepts 

for the sake of usability we will “obscure the technology [we] seek to make accessible” 

(Mellis, Jacoby, Buechley, Perner-Wilson, & Qi, 2013). The final two studies presented 

within this dissertation examined how we might bring accessibility to the concepts 

integrated into physical computing environments by examining the design of the hardware 

and software tools. The first study examined two prototyping tools for electronics: the 

Breadboard and BitBlox. In a comparative classroom study, novice high school students 

were observed working and learning with the two different prototyping tools. Through this 

investigation we were provided with insights into the design decisions within these tools 

that had implications for how the students were working and collaborating with one 

another. 

A within and between-subjects laboratory study examining different prototyping 

tools was then conducted in order to more closely understand the work processes, the 

errors, and the thought processes of novices as they worked with these tools for the first 

time. Conducting pre-/post-study tests of knowledge and self-efficacy, along with 



 xxiii 

examining video and audio footage of 46 participants provided a comprehensive 

understanding of the experiences of novices working with the Arduino. While we did not 

see statistically significant results in our test data across the groups, the qualitative analysis 

shed light on how participants learned about physical computing, how they used their 

prototyping tools, how they approached different problems, and the prevalence of different 

types of obstacles, breakdowns and bugs. The data revealed the benefits and drawbacks of 

the different prototyping tools and how the design decisions within the tools contributed to 

this. 

The contributions from this dissertation provide a better understanding of how we 

should design learning environments and tools the for physical computing education in 

order to support inclusivity. The work provides a way to conceptualize and frame the 

design and analysis of the learning environment from the perspective of values. 

Furthermore, the analysis of the learning environments in these studies provided an 

understanding of what aspects of the learning environment supported and hindered students 

in shaping the learning environment around their values.  The studies captured real-world 

and laboratory experiences of novice learners working with physical computing tools. The 

investigations offered insights into the types of obstacles, breakdowns and barriers they are 

faced with, along with an understanding of how the tools contributed to their experience. 

By continued exploration of the learning activities and tools to support students’ values we 

will build our understanding for how to support a diversity of students to learn about and 

use computing in ways that are personally meaningful. 
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CHAPTER 1. INTRODUCTION 

Lack of diversity in computing is a persistent problem, with low numbers of 

Women, Blacks, Hispanics, American Indians, and Alaska Natives obtaining degrees and 

working in engineering and computer science fields (NSF, 2017). Broadening participation 

in computing is important because research has demonstrated that who is enabled to 

participate in the design of technology has implications for how problems are solved and 

the types of problems technology solves (ex. (Bijker, 1997; Noble, 2018; L. Winner, 1986; 

Langdon Winner, 1993)). With the growing integration of technology in how we work, 

play and live, it is essential that we begin to bring equity to who is empowered to design 

and build technology. While there are a number of complex and multifaceted issues within 

this problem space, my research investigates a subset of the issues within the context of 

physical computing education focusing on the design of learning activities and educational 

technology.  

1.1 Why Physical Computing Education? 

Physical computing is the domain that lies on the intersection of engineering and 

computer science. It combines hardware and software aspects of technology to create 

artifacts that have a physical presence and are programmed to interact with the surrounding 

world. For example, one could create a gyroscope-controlled RC helicopter that flies based 

on the user tilting her hand, or an augmented dance floor that responds to dancers’ location 

and movement. The combination of hardware and software provides a powerful tool, 

enabling more complex designs than could be created with either discipline alone, while 

providing students with various pathways to get involved with the development of 
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technology. Students can engage in the programming, the electronics, or the design of the 

physical embodiment of technology. Furthermore, the physical nature enables the 

integration of computing into numerous domains while creating an environment for 

experiential learning (ex. (Buechley & Eisenberg, 2008; Deitrick et al., 2015b; K. A. 

Searle, Fields, Lui, & Kafai, 2014)). This type of hands-on, exploratory education has been 

advocated for since the early 1900s (Dewey, 1938). Thus, physical computing activities 

are uniquely situated as a promising context to study how novices learn about computing.  

In addition to the benefits of physical computing as a domain, the landscape of tools 

and opportunities is growing within our society necessitating a greater understanding. The 

rise in more accessible platforms, such as the Arduino family, Teensy, BlocklyTalky, 

Raspberry Pi, the GoGo Board and Micro:Bit, are enabling more opportunities to interact 

with physical computing. The availability of these tools has served as an impetus to use 

them as a medium to spread computing education in a novel and engaging way. The BBC 

demonstrated this when they gave millions of Micro:bits to all students in the UK who 

were starting secondary school (2015). The hardware trends have been fueled by the 

popularization of the Maker Movement which encapsulates a DIY culture, emphasizing 

individual production over consumption (Dougherty, 2013; Hatch, 2014). The increasing 

popularity has pushed physical computing and making into educational spaces such as 

public and private libraries (ex. (Kalish, 2011)), and FabLabs and makerspaces inside of 

schools (ex. (Blikstein, 2013a; Sheridan et al.; Westervelt, 2016)). The accessibility and 

prevalence of physical computing are expanding within this movement, emphasizing the 

need to understand how students are working and learning within this domain.  
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Alongside the rise of the tools, spaces and opportunities, researchers have begun to 

explore the potential for physical computing to create inclusive computer science and 

engineering learning environments. The literature demonstrates the breadth of 

interdisciplinary experiences that can be created by integrating physical computing into 

disciplines such as interior design (Camarata, Gross, & Do, 2003), dance (DesPortes, 

Spells, & DiSalvo, 2016b; Latulipe & Huskey, 2008), robotics (Goldman, Eguchi, & Sklar, 

2004), knitting (Rosner & Ryokai, 2008), interactive art (Betsy DiSalvo & DesPortes, 

2017), and storytelling (Tanenbaum, Tanenbaum, & Antle, 2010). Investigations of the 

LilyPad Arduino (a development board for wearable computing) (Buechley & Eisenberg, 

2008) have demonstrated the importance of interdisciplinary learning environments for 

broadening the types of students who become interested in computing and broadening how 

students who learn in these environments view computing (Buechley, Eisenberg, Catchen, 

& Crockett, 2008; Kafai et al., 2014; K. A. Searle et al., 2014). The physical computing 

tools not only have the power to enable new interdisciplinary opportunities, but they can 

also “be a powerful agent of emancipation” (Blikstein, 2008, p. 2) and improve the capacity 

of the learning environment to value different types of knowledge (Deitrick et al., 2015b).  

In conclusion, the physical computing domain provides a powerful toolset for the 

design of technology, it is gaining traction as a way to engage more students, and there is 

an optimistic outlook for its capability to engage a diversity of students. However, when 

compared to other fields like math and physics, physical computing is still in its infancy as 

an educational field. While we can use research from both Engineering Education and 

Computer Science Education to inform the work in Physical Computing, it is important to 

not equate the educational environment to just being an additive result of these two 
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domains. There are many things we do not yet understand about designing physical 

computing learning environments. My dissertation adds to our knowledge of physical 

computing education in two main ways. First, the work contributes to the discussion of 

broadening participation in computing by exploring the design and analysis of learning 

environments through a lens focused on students’ values. Second, the work provides a 

closer look at the learning experiences of students and how they are impacted by the tools 

they are using.   

1.2 Justification for Exploring Values in Physical Computing Education 

1.2.1 Importance of Values for Engagement and Motivation 

 Since the late 1800s, researchers have sought to design engaging and motivating 

learning environments that are personally meaningful for all students (William, 1899). 

However, designing learning environments that have lasting engagement is difficult. 

Literature provides us with a number of theories that researchers have explored to address 

this difficulty. For example, studies investigating ways to create learning environments that 

are: interest-driven (Edelson & Joseph, 2004a), intrinsically motivating (Malone, 1981), 

authentic (Shaffer & Resnick, 1999), student-driven (Rahimi, van den Berg, & Veen, 

2015), and culturally relevant (Gloria Ladson-Billings, 1995b), seek to help us tap into 

student motivation in an lasting way. While all of these theories and approaches have 

demonstrated some success, we still do not have a full understanding of why they succeed 

when they do, or perhaps more importantly, why they breakdown when they do. I argue 

that an explicit consideration of values in the design and analysis of learning environments 

provides additional insight into these important questions. I define values using a definition 
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from Graeber, as, “conceptions of what is ultimately good, proper, or desirable in human 

life”(Graeber, 2001). Attending to values offers explanatory power across students and 

incorporates an understanding of the socio-cultural influences both inside and outside of a 

learning environment. Furthermore, by understanding these values in relation to one’s 

culture—which is made up of beliefs, stories, gossip, art forms, and ritual practices that 

we gather from the communities that we engage with (A Swidler, 1986)—we can better 

contextualize the values and students’ participation in the learning environment (explained 

further in section 2.2).  

1.2.2 Values-Based Learning—Striving for Equitable Computing Environments   

I present values-based learning as both a lens for the design of educational 

environments and as an analytical construct to understand how a learning environment 

supports and inhibits students in creating personally meaningful experiences. The construct 

understands students’ values as situated in their self-beliefs, their communities, society, 

and the values within the learning environment. As a design approach, it seeks to engage 

students in creating a personally meaningful experience by supporting them to leverage 

their values and culture within the learning environment. As an analytical construct, it 

enables a multi-faceted understanding of why and how students engaged and disengaged 

in the learning activities. By attending to socio-cultural characteristics, the construct seeks 

to understand differences between students’ engagement and motivation, in ways that I 

argue are essential to creating inclusive and equitable learning environments. I will further 

situate these ideas within the background literature in CHAPTER 2 and explore them 

within the research presented in CHAPTER 3.  
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1.3 Justification for Exploring Physical Computing Tools  

While creating personally meaningful experiences with computing is essential to 

broadening participation, it could prove meaningless if students are not also enabled to gain 

proficiency and self-efficacy within these experiences. Underrepresented minorities have 

historically been pushed out of computing environments and typically do not have the same 

support structure that the dominant majority students possess in these domains (J. Margolis, 

2008; J. Margolis & Fisher, 2002). This reality emphasizes the need to target design of 

these inclusive learning environments for novices.  Focusing on how the tools for physical 

computing affect students’ experiences provides insight on how to scaffold student learning 

in ways that builds their knowledge and their self-confidence with physical computing. By 

doing this, we not only can support students in the environment to engage with computing 

in ways that integrate their values but can provide an avenue for further exploration of the 

domains once they leave the learning environment.  

1.4 Thesis Statement and Research Questions 

1.4.1 Thesis Statement 

From the hardware to the software, physical computing requires a diversity of support for 

students as they use a variety of tools when designing and building a computational artifact. 

To understand their experiences in the context of the learning environment I present the 

following thesis statement: 

I theorize that exploring the design and analysis of the learning environment 

through a lens focused on values can provide us with an understanding of how to 
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empower students to create personally meaningful experiences with computing. 

Further, to enable these types of experiences, physical computing tools should be 

designed to address usability, learning and self-efficacy.  

1.4.2 Research Questions 

The thesis statement is broken down into the following three research questions:  

RQ1. How does design of physical computing learning environments affect students’ 

ability to integrate their diverse values into their learning experience?  

1.1 How can we conceptualize the design of the learning environment from the 

perspective of students’ diverse values?  

1.2 How can we analyze the learning environment from the perspective of 

students’ diverse values?  

1.3 What characteristics of the learning environment in physical computing 

activities impact students’ ability to integrate their diverse values into their 

learning experience?  

RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 

2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  

2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino?  

2.4 What are novice students’ reflections on working with the Arduino?  

RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability?  

3.2 How do different abstraction layers in the design of physical computing tools 

impact students’ learning and self-efficacy?  

 

1.5 Summary of Studies 

1.5.1 Mapping of Research Questions to Studies  
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The work presented in this dissertation is composed of four research studies. I will 

layout the studies in relation to how they help shed light on the research questions in the 

table below. I then give a brief summary of each of the studies in the following section.  

Table 1 – Overview of Research Questions and Studies 

Research Question Data Source Analysis Methods 

RQ1.1 How can we 
conceptualize the design of 
the learning environment 
from the perspective of 
students’ diverse values? 
 
 
RQ1.2 How can we analyze 
the learning environment 
from the perspective of 
students’ diverse values?    
 
 
RQ1.3 What characteristics 
of the learning environment 
in physical computing 
activities impact students’ 
ability to integrate their 
diverse values into their 
learning experience? 

MoveLab Workshop Study:  
● Demographics 
● Prior experience 
● Pre-/Post-Perspectives of 

Computing and Dance 
● Post-Study Leader and 

Student Interviews 
● Observations 
● Daily Leader Debriefs   
● Computational Artifacts and 

Dances 
 
Day of The Dead Summer 
Camp Study:  
● Demographics 
● Prior experience 
● Observations  
● Post-Study Student Focus 

Groups 
● Post-Study Leader Interviews 
● Computational Artifacts 

 
 
 
 
 
 
 
 
 
 
 
 
 

Demographic information 
and prior experience used to 
contextualize qualitative data  
 
Pre-/Post-Perspectives, 
Knowledge Tests and Self-
efficacy Tests was used as a 
supporting data source to 
compare and triangulate with 
qualitative data 
 
Qualitative data was pattern 
coded for emergent themes  
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Table 1 – Continued   

RQ2.1 What are the 
obstacles, questions and 
confusions that novice 
students have when working 
with the Arduino? 
 
RQ2.2 What are the common 
breakdowns, misconceptions 
and errors of novice students 
when working with the 
Arduino?  
 
RQ2.3 What are the work 
processes of novices working 
with the Arduino?  
 
RQ2.4 What are novice 
students’ reflections on 
working with the Arduino? 

MoveLab Workshop Study:  
● Observations 

 
Day of The Dead Summer 
Camp Study:  
● Observations  
● Post-Study Student Focus 

Groups 
 
BitBlox/Breadboard 
Comparative Classroom Study:  
● Demographics 
● Prior experience 
● Observations  

Arduino Laboratory Study:  
● Demographics 
● Prior experience 
● Pre-/Post-Knowledge Tests 
● Pre-/Post-Self-Efficacy Tests 
● Audio/Video Data 
● Concurrent think-aloud  
● Post-Study Interviews 

 

Demographic information 
and prior experience used to 
contextualize data  
 
Pre-/Post-knowledge tests 
and self-efficacy tests were 
analyzed for statistical 
differences between groups  
 
Video/Audio were coded for 
obstacles, breakdowns and 
bugs 
 
 
Observations, post-study 
interviews, and focus groups 
were coded for emergent 
themes 

RQ3.1 What characteristics 
of the hardware and 
software tools impact their 
usability?  
 
RQ3.2 How do different 
abstraction layers in the 
design of physical computing 
tools impact students’ 
learning and self-efficacy? 

MoveLab Workshop Study:  
● Observations 

 
Day of The Dead Summer 
Camp Study:  
● Observations  
● Post-Study Student Focus 

Groups 
 
Arduino Laboratory Study:  
● Demographics 
● Prior experience 
● Pre-/Post-Knowledge Tests 
● Pre-/Post-Self-Efficacy Tests 
● Audio/Video Data 
● Concurrent think-aloud  

Demographic information 
and prior experience used to 
contextualize data  
 
Pre-/Post-knowledge tests 
and self-efficacy tests were 
analyzed for statistical 
differences between groups  
 
Video/Audio were coded for 
obstacles, breakdowns and 
bugs 
 
Observations, post-study 
interviews, and focus groups 
were coded for emergent 
themes 

 



 10 

1.5.2 Summary of Studies 

1.5.2.1 The MoveLab Workshop 

The MoveLab was an investigation of a physical computing learning experience 

combining dance and microcontrollers. This was the first of two studies exploring a lens 

focused on values for design and analysis of computing learning environments. The 

workshop lasted 5 days as the students learned about dance and the Arduino at a local 

performing arts venue in Atlanta. The participants consisted of 8 dance and technology 

leaders working with 13 middle and high schoolers to create dance performance integrating 

the Arduino. The students were split into groups to create dances that expressed issues that 

they have encountered in their lives that they wanted to represent using the dance 

techniques and technology they learned about. The students ended up creating dances about 

social and environmental issues. Within the workshop we scaffolded the students using 

participatory design techniques in order to guide the students in reflecting on their values 

and integrating them into the learning experience. We examined the learning environment 

through a lens focused on values to understand how we supported and hindered participants 

in creating personally meaningful experiences with computing. The investigation of the 

MoveLab contributed to answering RQ1: 

RQ1. How does design of physical computing learning environments affect students’ 

ability to integrate their diverse values into their learning experience?  

1.1 How can we conceptualize the design of the learning environment from the 

perspective of students’ diverse values?  

1.2 How can we analyze the learning environment from the perspective of 

students’ diverse values?  

1.3 What characteristics of the learning environment in physical computing 

activities impact students’ ability to integrate their diverse values into their 

learning experience?  
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1.5.2.2 The Day of the Dead Puppet Summer Camp  

The Day of the Dead or Día de los Muertos Puppet summer camp was the second 

investigation into the design and analysis of computing learning environments from a lens 

focused on values. The study consisted of a two-week summer camp with 7 high school 

students building interactive puppets using microcontrollers. The students were introduced 

to the Mexican holiday of Day of the Dead and asked to reflect on someone or something 

they have lost. The students were scaffolded to create a representation of this person or 

object using the Arduino microcontroller. Similar to the MoveLab we integrated 

participatory design methods to promote reflection on values. While the learning 

environments were structured similarly, the differences enabled us to have two case-studies 

to compare the success and failures of the learning environments. Through this study we 

expanded our understanding of research questions RQ1: 

RQ1. How does design of physical computing learning environments affect students’ 

ability to integrate their diverse values into their learning experience?  

1.1 How can we conceptualize the design of the learning environment from the 

perspective of students’ diverse values?  

1.2 How can we analyze the learning environment from the perspective of 

students’ diverse values?  

1.3 What characteristics of the learning environment in physical computing 

activities impact students’ ability to integrate their diverse values into their 

learning experience? 

1.5.2.3 BitBlox Comparative Classroom Study  

The students in the MoveLab and in the Day of the Dead studies struggled with the Arduino 

microcontroller and electronic components as they worked on their projects. One of the 

main difficulties and barriers students faced when working on their projects was in using 

the breadboard (a tool for quickly prototyping circuits). The design hides connection 
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information that could be useful for novices. I designed another version of the breadboard 

called BitBlox, which intends to bring visibility to these connections and provide a modular 

tool that gives the students flexibility in its use. The BitBlox Comparative Classroom Study 

was a pilot investigation into the use of this tool in a classroom environment comparing 

two 11th grade classes of 22 novice students. One class was given the original Breadboard 

tool and another class was given the BitBlox tool. We taught and observed the students as 

they worked on two introductory physical computing activities using the Arduino. We 

focused our observations on the students’ mistakes, misunderstandings, questions, 

collaboration patterns, moments when a feature in the tool seemed helpful or problematic, 

and patterns in tool use. Within this study we began to start answering research questions: 

RQ2.1, RQ2.2, RQ2.3, and RQ3: 

 RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 

2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  

2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino? 

RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability?  

3.2 How do different abstraction layers in the design of physical computing tools 

impact students’ learning and self-efficacy?  

1.5.2.4 Arduino Laboratory Study of Physical Computing Tools 

While the BitBlox Comparative Classroom study began to provide and idea about 

what the students were thinking and what barriers they faced as they worked on 

introductory Arduino activities, the real-world nature makes it difficult to understand 
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everything that occurred with the individuals. To gain more insight, I conducted laboratory 

study in which novice students went through an introduction to the Arduino and common 

introductory activities using different tools. The participants were given the same learning 

materials for the Arduino and the same activities to complete, but the tools between the 

groups will differ. The study was a within and between-subjects study with a group using 

circuit boards and then BitBlox, a group using BitBlox and then the Breadboard, and a third 

group that used the Breadboard and then BitBlox. Within the study 15 participants 

conducted a think-aloud as they traversed the material while 31 participants were just video 

and audio recorded. Having the students think-aloud gave us insight into their thought 

processes as they completed the activities, while the non-think-aloud section provided a 

large data set of the types of obstacles, breakdowns and bugs the participants encountered. 

Furthermore, a post-study interview with the participants led to greater insight on their 

interpretation of the experience and the tools they were using. The study offered insight 

into: RQ2 and RQ3:   

RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 

2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  

2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino?  

2.4 What are novice students’ reflections on working with the Arduino?  

RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability?  

3.2 How do different abstraction layers in the design of physical computing tools 

impact students’ learning and self-efficacy?  
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CHAPTER 2. SITUATING VALUES-BASED LEARNING 

2.1 Introduction 

Developing equitable and inclusive learning environments that not only initially 

engage, but also sustain learners' attention within a particular conceptual domain is 

challenging. In this dissertation, I explore this problem space within the context of 

computing education, which constantly struggles with cultures of exclusivity. My research 

defines and advocates for the use of values-based learning, which brings values and culture 

to the forefront of design and analysis of learning environments. I define values using a 

definition from Graeber, “conceptions of what is ultimately good, proper, or desirable in 

human life”(Graeber, 2001). Values are framed as a reflection of how one views 

themselves and who they want to be, as well as a reflection of the cultures and communities 

in which one participates.  

Culture is brought into this discussion to provide a more comprehensive picture of 

the participants and how the learning environment is situated within their lives. Culture is 

a conglomeration of the practices, ideas, language, stories and beliefs from the various 

communities and societies that an individual has participated in (Geertz, 1973; A Swidler, 

1986). It is important for understanding values and tied to how one is able to act in relation 

to their values. Swidler  asserts that culture impacts action, “not by providing the ultimate 

values toward which action is oriented, but by shaping a repertoire or “tool-kit” of habits, 

skills, and styles from which people construct ‘strategies of action’” (A Swidler, 1986). 

While culture might be just as important as values for understanding how and why students 

are motivated or engaged in a learning environment, a focus on values provides an 
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operational framing to center design and analysis of the learning environment in a way that 

is considerate of cultural influences and competencies. The research presented contends 

that by integrating values into the discussion of design and analysis of learning 

environments we can create equitable environments that scaffold students with different 

cultures to participate and learn with computing.   

As a design approach, values-based learning seeks to create inclusivity and equity in 

a learning experience through providing opportunities for students to reflect and integrate 

their values into the learning environment. As a lens for analysis, it provides insight into 

the ways in which values manifest in the environment. By using a framing that takes both 

culture and values into consideration, we can understand where the learning environment 

was inclusive and where it was neglectful of different students. However, it is important to 

note that identification of these instances is still limited to what the participants make 

visible—i.e. how they participate (or don’t), the reasons they give for participating (or not 

participating), their dialogue and reactions throughout the experience, how they reflect on 

their experience, etc.  

In this chapter, I present the background literature necessary to situate values-based 

learning. First, I present the related research on values and culture to provide and 

understanding how values-based learning incorporates ideas from these two bodies of 

work. Second, I contrast this approach to the literature exploring interest and culture in 

education in order to differentiate its contributions. Next, I present infrastructure as a way 

to frame the learning environment in order to explore values and advocate for participatory 

design as a method to support reflection and integration of values. I cover how the 

perspective on values and infrastructure can be situated in the context of other theories 
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surrounding project-based work. I then introduce the literature to describe the constructs 

of the self-concept and boundary objects, which will be used to situate some of our 

findings.    

2.2 Situating the Values-Based Learning 

2.2.1 Values and Value Domains 

Graeber provides a comprehensive overview of the various thematic categories in 

how researchers have discussed values (Graeber, 2001):  

1. ‘values’ in the sociological sense: conceptions of what is ultimately good, 

proper, or desirable in human life 

2. ‘value’ in the economic sense: the degree to which objects are desired, 

particularly, as measured by how much others are willing to give up to get them 

3. ‘value’ in the linguistic sense, which goes back to the structural linguistics of 

Ferdinand de Saussure (Saussure, 1966), and might be most simply glossed as 

‘meaningful difference’  

Values-based learning uses values in alignment with the first definition describing them in 

terms of the ideals of what people strive for. Graeber states that values are not just what 

people desire, but “they are the criteria by which people judge which desires they consider 

legitimate and worthwhile and which they do not.” Defining values in this way is important 

for interpreting the work I present for two main reasons. First, it means that values are 

something that can be identified by the individual who holds them and can be internally 
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and externally reflected on. Second, it aligns with the perspective that one’s culture and 

self-concept can be instrumental in influencing the values one holds.  

In order to have a language to talk about values, values-based learning integrates 

the idea of value domains (or high-level groupings of values) from Schwartz et al. (Bardi 

& Schwartz, 2003; S. Schwartz, 1999; S. H. Schwartz, 1992).  The value literature has a 

body of work concerned with the need to identify what is and is not valued by people. 

Rokeach, for example, claims that values “serve as standards or criteria to guide not only 

action but also judgement, choice, attitude, evaluation, argument, exhortation, 

rationalization, and one might add attribution of causality” (Rokeach, 1979). Rokeach 

outlines a list of 36 values which represent desirable end-states (ex. wisdom, equality, 

happiness, etc.) and behaviors that would presumably help one reach those end-states (ex. 

self-control, obedience, helpfulness, etc.) (Rokeach, 1979). While the value survey that 

Rokeach developed has been used in many fields, it has been criticized for being 

incomplete, disregarding multiple interpretations of the values, and neglecting to consider 

the context and culture of the values that are included on the list (Gibbins & Walker, 1993; 

K. C. Lee, 1991). 

Schwartz builds upon this work with the idea of value domains in order to take 

cross-cultural differences into account and to build an argument for the causal link between 

values and action. Schwartz conceptualizes value domains as  criteria for selection rather 

than qualities inherent in objects (S. H. Schwartz & Bilsky, 1987). This would be the 

difference between analyzing whether or not a student values math as a subject, compared 

to analyzing what socio-cultural influences, such as maintaining a social status amongst 

their peers, might affect how a student places importance on math. In this work, Schwartz 
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et al. have examined 88 populations across 38 countries validating the existence and 

persistence of these value domains across cultures and societies (Bardi & Schwartz, 2003; 

S. Schwartz, 1999; S. H. Schwartz, 1992; S. H. Schwartz & Bilsky, 1987). They have found 

that the relations between value domains, or the compatibilities and contradictions that 

arise between them, provide an understanding of different cultures (S. H. Schwartz & 

Bilsky, 1987). Furthermore, the differences between how the underlying values manifest 

within various environments provides insight into these cultures. Table 2 (originally 

published by Bardi and Schwartz (Bardi & Schwartz, 2003)) outlines these value domains.  

Table 2 – Definitions of Value Domains (replication of table from (Bardi & 

Schwartz, 2003)) 

Value Domain: Definition of domain  

Power: Social status and prestige, control or dominance over people and 
resources  

Achievement: Personal success through demonstrating competence according 
to social standards  

Hedonism: Pleasure and sensuous gratification for oneself  

Stimulation: Excitement, novelty, and challenge in life 

Self-direction: Independent thought and action-choosing, creating, exploring  

Universalism: Understanding, appreciation, tolerance and protection of the 
welfare of all people and of nature 

Benevolence: Preservation and enhancement of the welfare of people with 
whom one is in frequent personal contact  

Tradition: Respect, commitment and acceptance of the customs and ideas that 
traditional culture or religion provide the self  

Conformity: Restraint of actions, inclinations, and impulses likely to upset or 
harm others and violate social expectations or norms  

Security: Safety, harmony and stability of society, of relationships, and of self  

Within the literature, Schwartz’s mapping between values and action has been criticized 

for the discrepancies between what people say is important to them and what they actually 

end up doing (ex. (Cancian, 1975; DiMaggio, 1997; A Swidler, 1986; Vaisey, 2008)). 

However, value domains are useful for talking about values because it has shown that these 
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categories exist within and across most cultures. I therefore apply this language in my work 

using it to describe how values manifested within the environment, while using the data 

from the studies to understand the specifics behind the values implicated. Because of the 

difficulties with using values as the direct causal link to action, my work acknowledges the 

role culture plays in how students participate in the learning environment.  

2.2.2 Integrating Culture into Our Understanding of Values and Action 

Researchers have turned to culture as a way to provide a better understanding of 

why people’s actions might not directly align with what they value (see (Lizardo & Strand, 

2010) for a review of culture and cognition). While previous trends in sociology and 

anthropology have defined culture as clean and coherent across situations and people (ex. 

(Geertz, 1973)), the current perspectives diverge from this view. Instead, they understand 

culture as variable, disjoint, and situationally cued (DiMaggio, 1997). This shift in 

understanding stems from developments in cognitive psychology that demonstrate that 

most of human action is automated due to the cognitive strain it would take to deliberately 

weigh and choose all courses of action (Evans, 2003; Kahneman & Tversky, 1982). 

Researchers have therefore conceptualized culture’s role in action as dependent on the 

mixed bag of repertoires, schematas, or tool-kits that are encoded and often automatically 

drawn upon dependent on situational characteristics (DiMaggio, 1997; Lamont, 

Schmalzbaure, & Waller, 1996; Lizardo & Strand, 2010; A Swidler, 1986; Ann Swidler, 

2000, 2013; Vaisey, 2008, 2009). As Lizardo and Strand summarize and cite, “persons do 

not (and cognitively cannot) internalize highly structured symbolic systems…These 

cultural systems are simply too ‘cognitively costly’—in anthropologist Harvey 
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Whitehouse’s sense (Whitehouse, 2004)—to be capable of being strongly ‘internalized’ by 

anybody” (Lizardo & Strand, 2010).  

Swidler aligns with these perspectives, specifically critiquing the values-based 

explanation of action because it neglects to account for culture’s role in making specific 

goals and thus values attainable in particular contexts. She defines culture as “symbolic 

vehicles of meaning, including beliefs, ritual practices, art forms, and ceremonies, as well 

as informal cultural practices such as language, gossip, stories, and rituals of daily life” 

(A Swidler, 1986). Culture thus impacts action, “not by providing the ultimate values 

toward which action is oriented, but by shaping a repertoire or “tool-kit” of habits, skills, 

and styles from which people construct ‘strategies of action’” (A Swidler, 1986). 

Depending on how a person is equipped to navigate a particular situation based on the 

strategies of action they can construct, her/his culture could bias her/him towards actions 

that prioritize certain value domains. Swidler further asserts that while culture is not 

determinate of the values people hold, one’s cultural capacities still influence what those 

values are. In this research, values-based learning uses values as a way to conceptualize 

whether or not something was meaningful for a student, while understanding their 

participation in the learning environment as being influenced by their values and their 

cultural tool-kit. By understanding how students participated and how certain value 

domains manifested in the learning environment we can understand where the learning 

environment was equitable and where it could be improved.  
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2.3 Differentiating Values-Based Learning  

In the educational literature, there have been various theoretical frameworks and 

stances used to help determine how to create personally meaningful educational 

experiences for students. The research surrounding values presented in this dissertation 

adds to this conversation. I will situate the distinguishing contributions of values-based 

learning in the literature involving interest and culture in education. 

2.3.1 Interest in Education 

Within the education literature, interest is often intertwined with the value a student 

holds for a discipline or activity. Investigating the intricacies of student interest on learning 

has been explored since the 1800s (William, 1899). While nuances exist between the exact 

perspectives that researchers take on interest, most refer to it as something that is based on 

the individual and their disposition towards wanting to engage in a domain or task 

(Azevedo, 2013; Hidi, 2000; Renninger, Hidi, & Krapp, 2014). The definition of interest 

is similar to the Value-Expectancy literature’s definition of the value a task holds (Eccles, 

1992; Eccles & Wigfield, 2002). Interest is seen as both individual—a person’s desire to 

engage with a subject over time—and situational—attention sparked “in the moment by 

environmental stimuli” (Hidi & Renninger, 2006). Hidi and Renninger (Hidi & Renninger, 

2006) and Alexander (Alexander, 2004) identify phases to understand how interest begins 

situationally, in the absence of domain knowledge, and changes overtime to an individual 

well-developed interest. While this work has been instrumental in relating both the 

cognitive and affective components of motivation, the construct of interests does not 

provide an understanding of why certain things are individually or situationally interesting 
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for certain students, or why something will sustain one learner while another learner 

disengages. Interest limits the unit of analysis to the individual, which causes an inadequate 

understanding of the influences in the socio-cultural context. Edelson and Joseph’s 

(Edelson & Joseph, 2004b) Interest-Driven Design framework suggest five sources of 

usefulness—pleasure, concern, identity formation, life goals, and curiosity—that begin to 

take socio-cultural characteristics into account. However, even with these suggestions, 

interest-driven learning struggles from, misalignment between the interest and material, 

and the students missing the relevance (Edelson & Joseph, 2004b). Values-based learning 

attempts to provide a lens that takes the socio-cultural context of the students into 

consideration, while providing a method to help participants create the link aligning their 

values to the material.  

2.3.2 Culture in Education  

Culture is strongly integrated with our understanding of values and their 

implications within particular contexts. Similar to Swidler, we view culture having an 

essential role in the social construction of values and their organization (A Swidler, 1986). 

Educational researchers throughout several disciplines have demonstrated the importance 

of integrating culture into education (ex. (Au, 1980; Au & Kawakami, 1994; G. Ladson-

Billings, 1995; Gloria Ladson-Billings, 1990)). The work’s importance lies in cultures 

impact on students’ values and their ability to act within the learning environment. For 

example, Au’s work integrates the cultural practices of native Hawaiian children to support 

students to succeed in educational environments where they otherwise were failing (Au, 

1980). Ladson-Billings builds on this work describing “students’ culture as a vehicle for 
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learning,” highlighting how culture can be incorporated to enable “students to ‘choose’ 

academic excellence” (Gloria Ladson-Billings, 1995a).  

While Culturally Relevant Teaching has gained widespread acknowledgement and 

has been applied to many domains including computing (Eglash, Gilbert, Taylor, & Geier, 

2013; Scott, Clark, Hayes, Mruczek, & Sheridan, 2010; K. A. Searle & Kafai, 2015), it is 

still unclear how to scaffold teachers to become culturally responsive as the successful 

teachers are often viewed as heroic isolates (Gloria Ladson-Billings, 2008). Ladson-

Billings challenges teachers to view the curriculum as a malleable cultural artifact which 

can be deconstructed and reconstructed in response to its inherent biases. Gay provides 

similar suggestions stating that we need to teach teachers “how to do deep cultural analyses 

of textbooks and other instructional materials, revise them for better representations of 

cultural diversity” (Gay, 2010, p. 108). However, neither Ladson-Billings or Gay indicate 

how to support an untrained teacher to accomplish these difficult and complex tasks. Using 

a lens focused on values can inform the deconstruction, through identifying points of 

compatibilities and contradictions between the students’ values, educators’ values, and the 

values espoused in the curriculum. By drawing attention to these aspects of the learning 

environment we can better understand how curricula can support students who have 

differing values. We offer infrastructure as a way to frame the learning environment for 

design and analysis from the perspective of values, while integrating participatory design 

into the infrastructure order to guide the students and instructors to co-design learning 

projects that incorporate a diversity of values.  

Within the computing domain, researchers have explored this idea of using a 

student’s background, interests, and culture to stimulate a greater motivation and alleviate 
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some of the issues surrounding the underrepresentation of women (ex. (Scott et al., 2010; 

Scott & Hood, 2009)) and minorities (ex. (Eglash et al., 2013; Franklin, Conrad, Aldana, 

& Hough, 2011; K. A. Searle & Kafai, 2015)). Eglash, for example, demonstrates success 

through integrating culture into computing curricula through the lens of culturally 

responsive technologies, which have their cultural relevance embedded within the design 

(Eglash et al., 2013). However, with the diversity of students and the dynamics of changing 

culture, these static designs have a narrower appeal and shorter shelf life than a more 

dynamic approach which would seek to help students integrate their culture and values.  

Scott and Hood (Scott & Hood, 2009) create a culturally responsive computing 

environment using digital media and Teen Second Life. In accordance with Ladson-

Billings view of culturally responsive education, Scott and Hood, facilitated the girls’ 

critique of society through the students’ identification of a social/community issue that they 

research within the first course of their COMPUGIRLS program. Throughout the six-

course program the students practice enacting social change through the virtual world of 

Teen Second Life. They participate in, plan for, and execute their proposed projects 

designed to improve the social/community issue they have chosen in the safety of this 

virtual world. At the end of the program the girls present their work in a public forum (Scott 

& Hood, 2009). The program highlights the importance of the authentic problems, the 

agency the students gain over the technology, and the visibility the students had presenting 

their projects. While they demonstrate a dynamic culturally responsive program, they do 

not offer guidance for producing these types of programs.  

Blikstein focuses on similar goals within his learning environments, examining 

technology, “as an emancipatory tool for mobilizing change in schools and empowering 
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students”  (Blikstein, 2008). He draws inspiration for his work from Freire, although Freire 

is more radical he has similar ideas to Ladson-Billings, in that the educational system 

should be developed based on the students, their community, and the needs they have. 

Blikstein points to key factors to enable a Freirean learning environment: (1) incorporate 

a generative theme relevant to the community, (2) use the community’s culture as a basis 

for introducing technology into the learning environment, (3) use a mixed media approach 

for expressive tools, and (4) critique standard practices in school-based education 

(Blikstein, 2008). Similar to Ladson-Billings, the structure of the educational environment 

is meant to inspire critique of current standards in society. The guidelines of this work 

provide goals for physical computing learning interventions to be culturally adaptive to the 

students. We build upon this work by incorporating methods to help educators and students 

reach these goals.  

2.4 Infrastructure to Deconstruct the Learning Environment 

Values-based learning emphasizes understanding how values manifest in the 

learning environment. This makes it important to be able to deconstruct the learning 

environment to understand the impact of the individual design decisions. I advocate for the 

use of the concept of infrastructure. Infrastructure was initially defined by Star as 

something that emerges within a work environment to facilitate interaction between people 

and exists in a form that is ready to be appropriated for local practices to service individual 

needs (Star & Griesemer, 1989b). Infrastructure was chosen because it draws your attention 

to where the learning environment integrates constraints as well as flexibility for students 

to navigate through the activities. We appropriated the infrastructuring strategies from Ehn 

as a way to identify the types of infrastructure in the learning environment (Pelle Ehn, 
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2008). Ehn builds on Star’s work identifying four types of infrastructuring strategies (Pelle 

Ehn, 2008) (we substituted design patterns with design cases):  

1. Formats—pre-defined solutions with the important characteristics 

highlighted. These characteristics can then be flexibly applied to new situations 

based on the user’s knowledge of the process to appropriately modify 

characteristics. 

2. Component Strategy—LEGO block approach in which the user can build 

solutions for specific problems they encounter using the components provided 

3. Design Cases—design examples that can serve as cases for the students to 

reason about and appropriate to new situations (Maher & Gomez de Silva 

Garza, 1997). They are described in terms of context, problematic situation, 

and proposed solution (Pelle Ehn, 2008)  

4. Protocols—within a social context are the defined procedural agreements for 

completing activities and/or communicating 

These four infrastructuring strategies can be seen as a form of distributed scaffolding in 

which the scaffolding is “distributed across the tools and the context in which the learning 

occurs” and spans learning within and between educational activities (Puntambekar & 

Kolodner, 2004). The infrastructuring strategies can be seen as the structure that enables 

(or inhibits) students to recognize, share, and integrate their values within an educational 

context. We use these infrastructuring strategies as a way to draw attention to the design of 

the scaffolding in the learning environment that impacts students’ ability to create 

experiences driven by their values. 

2.4.1 Participatory Design as a Method for Understanding Values 

In order to promote and guide students to reflect on their values, we integrated 

participatory design activities into our studies. To achieve equitable experiences, it is 

essential to understand what values are embedded within the design processes we use to 

create learning environments. As Beista asserts: "values are not simply an element of 
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educational practices, but that they are constitutive of such practices" (pg501). It is 

imperative that we actively practice design that considers the values of all stakeholders. 

Participatory design espouses democratic values providing opportunities for all involved 

stakeholders to have a voice (P Ehn, 2008; Simonsen & Robertson, 2012). Since its 

inception in Scandinavia in the 1970s it has been applied across several domains including 

researchers who have bridged these ideas into the learning sciences (Bonsignore et al., 

2013; B DiSalvo & DiSalvo, 2014; Betsy DiSalvo, Yip, Bonsignore, & DiSalvo, 2017). 

Bonsignore et al. advocate for its use as a resource for creating “collaborative, socially 

constructed learning” experiences (Bonsignore et al., 2013). The research presented 

demonstrates use of participatory design methods that engage students in design activities 

whose goals are “not simply for instrumental ends” (B DiSalvo & DiSalvo, 2014) but 

instead support the students to self-reflect as they express themselves. By acknowledging 

the student as the expert in her or his own values, participatory design provides legitimate 

processes for student values to play a supportive role in shaping the learning environment. 

We contrast these methods with trying to predict student values which would “raise 

concerns about both individual differences and reinforcement of stereotypes” (Edelson & 

Joseph, 2004b). 

2.5 Infrastructure in Project-Based Work 

Designing learning environments using infrastructure and participatory design 

methods can be used to complement project-centric approaches to learning. We explore 

how infrastructure can be situated within two central approaches to experiential learning: 

constructionism and project-based learning. Constructionism involves actively engaging 

students in exploration of concepts through creation of socially situated artifacts (Seymour 
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Papert, 1980; Seymour Papert & Harel, 1991). Implementations of constructionism that 

give the learner full autonomy over choosing their projects allows for self-directed 

learning; however, it takes a skilled mentor to navigate this open-ended project 

environment and ensure that the student is deeply engaged with the material. Blikstein, for 

example, describes how he incorporated semi-structured projects in a fabrication lab to 

scaffold the learners to become acquainted with the tools. However, once they were 

introduced to the laser cutter, Blikstein encountered what he called the keychain syndrome 

in which the learners only wanted to create simple, aesthetically pleasing projects instead 

of diving into something more complex (Blikstein, 2013a). While some might argue that 

open-ended constructionism is values-based by design since learners can explore what they 

want, I believe that students need scaffolding throughout the design process to reflect on 

what they find valuable so they can integrate these values into the designs of their artifacts. 

Specifically, I posit that participatory design can support students in choosing projects that 

appeal to their core values beyond a passing fancy, while having the capacity to maintain 

their engagement through the complex and difficult tasks. Analysis of the infrastructure 

can highlight the important design characteristics in the learning environment for 

supporting the students. 

While the research behind project-based learning offers more structure for creating 

and evaluating physical computing learning activities, it too could benefit from integrating 

participatory design methods. Barron et al. present four main design principles for project-

based learning: (a) define learning-appropriate goals, (b) provide scaffolds for educators 

and students, (c) create situations for formative self-assessment and revision, and (d) 

promote participation and a sense of agency (Brigid J.S. Barron et al., 1998). However, 
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even with these guidelines, it can be difficult to choose the appropriate questions or 

problems in order to incite engagement throughout a difficult project. Barron et al. state, 

“we have little systemic empirical information about what problems students actually find 

valuable, interesting, or useful enough to work on for long periods” (Brigid J.S. Barron et 

al., 1998).  

While both constructionism and project-based learning have the possibility to 

engage novices through physical computing activities, neither provides a guiding method 

or process to make this happen. I propose incorporating the construct of infrastructure to 

understand the decisions in the learning environment that help support project-based work. 

Further, I advocate for integration of methods such as participatory design which can 

scaffold students to reflect on their values such that they can choose themes that speak to 

their values and provide avenues to integrate and discuss their culture. 

2.6 Supporting Theoretical Constructs 

Within our analysis we found the constructs of the self-concept and boundary 

objects important for exploring our findings from the case studies presented in the next 

chapter. I will briefly cover the background literature important for understanding them.  

2.6.1 Adolescent Self-Concept  

I use self-concept as a way to understand how students view themselves in relation to the 

learning environment. Students within underrepresented populations in computing often 

perceive the identity of a computer scientist as one that does not align with their culture or 

values (Martin, 2004; Shashaani, 1993). This misalignment of identities and values often 
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leads to rejection of opportunities to participate in computing (James DiSalvo et al., 2011; 

Jane Margolis, 2008). Identity is a complex concept with many theories and methods for 

exploration. One way to explore the underlying identity misalignment is through the 

processes of students forming congruence or dissension between their self-concept and 

computing. The self-concept can be viewed as a set of self-beliefs that can be thought of 

as an internalization of the student’s culture, values and how she views herself.  

One’s self-concept is composed of abstract self-beliefs that become recognized and 

more organized throughout adolescence (Steinberg & Morris, 2001). It consists of multiple 

dimensions of varying hierarchy. Part of the hierarchical structure of the self-concept is the 

stability of certain self-beliefs (Shavelson, Hubner, & Stanton, 1976). At the bottom are 

the least stable beliefs, which are the ones that are most easily influenced. These consist of 

decisions about the self in relation to specific experiences, “not only does the individual 

develop a description of himself in a particular situation or class of situations, he also forms 

evaluations of himself in these situations” (Shavelson et al., 1976). As you go up the 

hierarchy of stability, the beliefs become more abstract and contain more stable beliefs 

about the self in a general sense. For example, if someone does well on an algebra test they 

now have an experience in which they proved their knowledge of algebra, which then might 

support a self-belief that they are good at math. Aggregation of the experiential self-beliefs 

begins to shape the higher order beliefs about the self (Shavelson et al., 1976). Figure 1 

below is a recreation of the diagram from Byrne and Shavelson of the hierarchical structure 

of the adolescent self-concept concerning academics (Barbara M Byrne & Shavelson, n.d.; 

Shavelson et al., 1976).  
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Figure 1 – Structure of academic self-concept (image remade from Shavelson et al. 

(Barbara M Byrne & Shavelson, n.d.; Shavelson et al., 1976)) 

In Byrne and Shavelson’s investigation they illustrate a multidimensional 

organization of self-concept with “perceptions of behavior at the base moving to inferences 

about the self in sub-areas (e.g., academic—English, mathematics), then to inferences 

about the self in academic and non-academic areas, and finally to inferences about the self 

in general” (B. M. Byrne & Shavelson, 1987). Swann brings attention to the importance of 

the social environment in which these experiences are situated. While the self-concept is 

internal it is externalized with the actions of the students. Because one’s actions are socially 

situated in the world there is a reciprocal relationship between how their actions shape and 

are shaped by the social environment (Swann, 1983). Within these dimensions adolescents 

begin to develop self-occupational congruence which aligns one’s self-concept to the roles 

one associates with certain occupations (Betz, 1994). Between the ages of 10 to 18, the 
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exploration of self-concept in terms of occupational roles increases significantly 

(Montemayor & Eisen, 1977) signifying middle and high school as an important time if we 

hope to influence how students view themselves in relation to computing occupations.  

 In the context of our studies, the students have various experiences with computing 

and the learning environment. These experiences shape their self-concept through either 

supporting or conflicting with their self-beliefs. We define the process of creating 

alignment between a student’s self-concept and how she views computing as forming 

congruence, and we refer to dissension as the process when a student breaks or distances 

her self-concept from how she views computing. Going back to our definition of culture 

as, “a tool kit of symbols, stories, rituals, and world-views, which people may use in 

varying configuration to solve different kinds of problems” (Ann Swidler, 1986). A 

student’s self-concept and values affect which problems they choose to solve and how they 

apply this tool kit to their environment. By drawing attention to the students’ self-concepts, 

we are enabled to understand the students’ motivation for both applying their culture in 

various ways in the learning environment and for understanding their decisions for 

choosing certain problems in the learning environment. 

2.6.2 Boundary Objects  

Within our research we found that values-based learning experiences were 

facilitated through the artifacts the students and educators created. These artifacts served 

as boundary objects in which various interpretations and values are embedded. Star and 

Griesemer (Star & Griesemer, 1989a) present boundary objects as an analytical framework 

to interpret the collaborative practices surrounding Berkeley's Museum of Vertebrate 
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Zoology. They used the framework to describe how scientific findings, which often had 

vastly different meanings and implications depending on the social world, could have 

coherence (Star & Griesemer, 1989a, p. p132).  They further expand on these 

characteristics: 

Boundary objects are objects, which are both plastic enough to adapt to local needs 

and the constraints of the several parties employing them, yet robust enough to 

maintain a common identity across sites. They are weakly structured in common 

use and become strongly structured in individual site use. These objects may be 

abstract or concrete. They have different meanings in different social worlds but 

their structure is common enough to more than one world to make them 

recognizable, as means of translation. (Star & Griesemer, 1989a, p. p132) 

Star (Leigh Star, 2010) emphasizes that the term go beyond interpretive flexibility of 

objects to include understanding how the object influences the “structure of informatic and 

work process needs and arrangements” within communities as well (Leigh Star, 2010, p. 

p601). Star clarifies that boundary objects were originally created to describe the 

phenomena in which opposing forces were able to work together without reaching 

consensus. She points to the importance of scope and scale of the boundary objects in order 

to understand the affordances of the object based on its materiality and infrastructural 

properties (Leigh Star, 2010, p. p601). 

This definition has been applied in the educational domain in a few contexts. For 

example, boundary objects were used as a framework for examining the success of 

curriculum change that progressed in spite of conflicting powers (Hultén, 2013).  The 
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framework has also been used in the context of individual courses, such as understanding 

the success of an authentic science course in which students wrote for science journals, 

bridging them into communities outside of their schools (Polman & Hope, 2014). Wenger 

also examines learning at boundaries in the context of communities of practice (Wenger, 

1998). Outside of these individual explorations, Akkerman and Bakker (Akkerman & 

Bakker, 2011) completed a literature review to offer insight on conceptualizing the use of 

boundary objects and boundary crossings in the education domain. Their analysis reveals 

four ways in which learning occurs at boundaries: identification—understanding the 

diverse perspectives and practices in relations to one another; coordination—how the 

cooperation between the perspectives and practices is regulated; reflection—creating 

opportunities for one to think about and expand their perspectives in relation to others’; 

and transformation—creating new practices based on the intersection of boundaries 

(Akkerman & Bakker, 2011, p. p1). Throughout the MoveLab we saw how the students 

and leaders identified differences in their perspectives, created a structure for the 

coordination between the disciplines and perspectives within the workshop, and created 

opportunities for reflection through their discussion of differences. Due to the brevity of 

the workshop described in our case study, we did not witness new practices being 

developed. However, through our analysis we reveal how the boundary objects served to 

foster abstract thinking amongst the students and leaders during collaboration periods in 

which the objects were more weakly structured. These affordances enabled values-based 

learning even when values might have differed between students in the same group. The 

abstraction of the objects allowed them to work together while having disparate concrete 

views of the objects on an individual level.  
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In the next chapter I present two case-studies on values-based learning: the 

MoveLab workshop and the Day of the Dead Puppet summer camp. I first present the 

MoveLab workshop’s infrastructure and findings from the perspective of the self-concept 

and boundary objects. I then present how we iterated on the infrastructure for the Day of 

the Dead Puppet camp and present the projects of the participants that came out of this 

experience. I end with conducting a cross-analysis between the two learning environments 

from the perspective of values-based learning, discussing how the choices within the 

infrastructure affected the values in the environment. 

 

 

  



 36 

CHAPTER 3. TWO CASE-STUDIES OF VALUES-BASED 

LEARNING 

3.1 Introduction  

Values-based learning was developed through the design and analysis of two physical 

computing learning experiences: the MoveLab Workshop, and the Day of The Dead Puppet 

Summer Camp. The original goal focused on understanding:  

How can we design a flexible and dynamic physical computing learning environment 

that accommodates the culture and values of students to create personally 

meaningful experiences with computing?  

The MoveLab study proceeded the Day of the Dead Puppet study and was designed to 

investigate the characteristics of a dance and computing program that impacted how 

students integrated their values in the learning environment. We used the construct of the 

self-concept to understand how students’ culture and values, that are embedded in their 

self-beliefs and actions, affected how they interacted within the learning environment. 

These interactions created either congruence or dissention between their self-concept and 

computing. Within this intervention we found that one benefit in having students create 

computational art together is that their creations served as boundary objects that could be 

interpreted differently by each person within the learning environment. Our post-analysis 

of the learning environment found that we had supported participants with different 

infrastructure that was important for enabling the flexibility of the student work and 

integration of their values into the learning environment.  
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The Day of the Dead Puppet summer camp was designed using similar infrastructure 

with an activity that had shown success across several populations. The activity was 

originally designed for a three-day afterschool program for middle school Latinx students 

to understand how to promote reflection of both culture and technology (13 participants). 

Based on the success of the activity, it was expanded to include both the planning and 

realization of the computational artifact in two semesters of a graduate-level prototyping 

course in order to motivate their final project (44 participants in total). Students in the 

graduate level course were a diverse group, representing a number of countries. The 

activity was then replicated in a summer camp with high school students, which gave us 

an opportunity create a similar infrastructure in the learning environment as we did for the 

MoveLab. We were able to compare the two studies to provide a greater understanding of 

how the infrastructure assisted and detracted from participants ability to integrate their 

values into the learning environment. The studies contributed to understanding the 

following research questions:  

RQ1. How does design of physical computing learning environments affect students’ 

ability to integrate their diverse values into their learning experience?  

1.1 How can we conceptualize the design of the learning environment from the 

perspective of students’ diverse values?  

1.2 How can we analyze the learning environment from the perspective of 

students’ diverse values?  

1.3 What characteristics of the learning environment in physical computing 

activities impact students’ ability to integrate their diverse values into their 

learning experience?  

I will describe the MoveLab, and examine our findings using the constructs of self-concept 

and boundary objects. I then cover the infrastructure in the Day of the Dead Puppet summer 

camp, discuss what the participants created, and end with a cross analysis using a lens 

focused on values to examine the findings from both the MoveLab workshop and the Day 
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of the Dead Puppet summer camp. In this analysis of the learning experiences, I examine 

the design choices in the infrastructure to articulate how the various aspects of the learning 

environment were supportive, neglectful, and in conflict with student values.  

3.2 The MoveLab Workshop 

A large portion of the work presented in this section was published in the Proceedings of 

the ACM Special Interest Group on Computer Science Education (DesPortes, Spells, et al., 

2016b) and the ACM Interaction Design and Children (DesPortes, Spells, & DiSalvo, 

2016a). 

3.2.1 Introduction and Context of Study 

The MoveLab was a five-day workshop investigating a community of learners (B. 

Rogoff, 1994) as they embarked on an endeavor to create dance performances integrating 

technology. The dances were designed by the students to be representative of issues that 

the participants cared about. The leaders consisted of two lead researchers (both women, 

who also served as computing leaders), two additional computing leaders (both men), and 

four dance leaders (all women). Leaders collaborated with 13 middle school and high 

school girls (ages 11 to 15). We recruited students from Enchanted Closet, a community 

organization that supports underserved girls and young women (ages 11 to 19) in the 

Atlanta-Metro area. They focus on building self-esteem, creating healthy living habits, and 

broadening the girls’ horizons by providing them with new experiences. We used this 

method for recruitment because we intended the workshop to be an outreach program to 

engage students who might not typically participate with CS and engineering. 
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The workshop was held at EyeDrum, a local performing arts center, and took place 

during the students’ Thanksgiving school break. The workshop ran from 10am to 5pm for 

the first four days and ended with a half day, running from 10am to 2pm, on the fifth day. 

Student participation fluctuated throughout the workshop due to family commitments and 

other obligations. Two weeks after the workshop, there was a Saturday rehearsal and a 

Sunday public recital open to the public, allowing the students to present their dances to a 

broader audience. 

3.2.2 Data Collection and Analysis  

We administered pre-study surveys to gather background information on the 

students and capture a baseline understanding of their interests in dance and technology. 

Post-study surveys gathered information about summative changes in perspectives about 

dance and technology. Due to the variability in participation, only 6 students completed 

both the pre- and post-study surveys. In conjunction with the surveys, we conducted 

observations, and had the leaders capture their real-time observations in a journal. At the 

end of each day we audio recorded a debrief session with the leaders to gather their 

observations. We then conducted semi-structured interviews with 6 students and 4 leaders 

at the end of the workshop. Interviews asked about learning and teaching opportunities 

during the workshop, the different ways participants contributed to the performance, the 

participants’ use of technology and dance, and their self-concept in relation to technology 

and dance. The interviews were audio recorded and transcribed. 

The interviews, observations, and leader debriefs were reviewed and analyzed for 

emergent themes by two researchers. They used pattern coding (Saldaña, 2012) to solidify 
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themes which identified self-concept as a construct that could be used to organize and 

understand our data. The analysis led to the codes within the codebook (Table 3) to describe 

the data. After the codes were agreed upon, the two researchers reviewed the data, 

identified any missed or controversial codes, and discussed and resolved any 

disagreements. The researchers identified codes within the codebook, which identified 

characteristics that led to both congruence and dissension between the students’ self-

concepts and the disciplines of computing and dance.  

Table 3 – Codebook for Understanding Self-Concept 

Developing Congruence 

Code: Description Example 

Agency: Taking initiative 

to get involved 

Some of the students wanted to cut the wires and build the 

circuits while others jumped to program on the computers. 

Pride: Pride over success 

with material 

Once I caught onto the computer programming 

and…hooking up different wires …I would help the other 

people in my group. 

Narrowing Expertise: 

Narrowing focus to a 

particular topic 

Students noticed that I’m a little bit more hands-on for the 

technology side of things and the lead dance instructors are 

more hands-on for the dancing side of things. 

Developing Identity as a 

Group: Working within 

the social norms of the 

group 

When it came to coming up with the different sensors and 

building the sensors, I was more on that end and my other 

group member was helping more with the dance and 

costumes. 

Expression of Values: 

Expressing personal 

values through work 

I worked on a project, one that really got me thinking about 

what I didn’t like in the world and what I didn’t like within 

my community. 
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Table 3 – Continued   

Developing Dissention 

Code: Description Example 

Preconceived Ideas: 

Previous ideas influencing 

participation with material 

I would never have thought to put dance and technology 

together. Until, of course, this workshop. 

Avoidance of Failure: 

Avoiding activities for 

fear of failing 

She was putting on a facade of “I don’t care” but in reality, 

she was too nervous to do anything. 

Conflicting Values: 

Previous self-concepts 

conflicting with work 

Because I’m not that big of a dancer…This was definitely a 

new experience for me, in terms of working with actual 

dancing. I’ve never done that because I’m pretty…very 

STEM focused. 

Group Resistance: 

Resisting participation 

against the social norms 

of the group 

She was having a lot of trust issues in the teamwork because 

we were trying to build teams and it was about teamwork 

and especially in the very beginning, she was really anxious 

letting the other partner even touch [the sensor]. 

Within analysis of this data the researchers also identified a code for boundary objects that 

marked instances in the data where there was coordination between the participants 

facilitated in the presence of their differences through the computational artifacts they 

created. We discuss the infrastructure in the learning activities and then go into the findings 

around self-concept and boundary objects. 

3.2.3 Infrastructure in the Learning Environment  

The MoveLab and the Day of the Dead Puppet activities were structured in similar 

ways in order to support the participants. The overall goal of the infrastructure was to 

provide enough structure and guidance so they could successfully create with computing 

in an open-ended environment, while providing enough flexibility for participants to create 

something that was personally meaningful. The infrastructure integrated components, 
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design cases, formats and protocols (as discussed in section 2.4) and served four main 

purposes: first, to help participants gain proficiency and knowledge in the domains they 

were working with; second, to provide guidance and opportunities for participants to self-

reflect on their values; third, to facilitate a shared dialogue around participants’ values; and 

fourth, to organize the work processes of the participants. While each piece of the 

infrastructure usually served multiple of purposes (ex. an organizational strategy that also 

stimulated discussion of values), they will be presented with their main purpose. 

3.2.3.1 Infrastructure for Building Proficiency and Knowledge 

The learning environments integrated infrastructure designed to provide a set of 

resources and to develop a base of knowledge for the participants to dynamically draw on 

within the environment as needed. Introducing the participants to specific components and 

design cases was intended scaffold participants into making informed decisions when it 

came to applying the components in their projects. This differs from a completely open 

environment where components exist but students do not have the base knowledge to know 

what components make sense for their ideas.  

The workshop was seeded with a set of physical and conceptual components that 

were intended for the participants to build from. They had a set of electronic tools at their 

disposal to use throughout the workshop including Arduinos, various types of sensors and 

actuators (ex. accelerometers, capacitive touch sensors, RGB LED strips), breadboards, 

soldering irons, etc. The participants were also introduced to various dance dynamics (ex. 

size, speed, location, etc.) and choreographic techniques (ex. call-and-response, ripples, 

cannons, etc.).  
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 The researchers guided participants through constructing a set of design cases with 

both the electronics and the dance concepts to help the participants gain proficiency in 

using them. The intention was to provide the students with examples of how they might 

apply the various electronic pieces and dance techniques. For the electronics, students built 

a set of predetermined design cases that each used different electronic components. Each 

pair of participants was randomly assigned to build one of the design cases. The idea was 

to create disparities in what the students worked on so they could learn from one another. 

We embedded peer-teaching exercises, such that once the participants had built their 

Arduino circuits, they would present to their peers. This teaching exercise served as a 

protocol for communication between the students and was intended to set a precedent for 

the students to teach and learn from one another throughout the workshop. The constructed 

design cases served as a starting point for the students to remix the circuit and code as they 

appropriated the components into their dances.  

Within the dance activities a similar approach was used, but there was an added 

flexibility in the exercises. The dance leaders encouraged the students to apply the dance 

components themselves; for example, tasking students with coming up with a phrase (a 

group of dance moves) that represented their names. The students then had to think about 

the dance dynamics—i.e. the size, speed and shape of their body—as they constructed 

poses and transitioned between them. The phrases that the students developed served as 

design cases which they could then bridge into their dances. Throughout the workshop 

during the lunch breaks, we also exposed students to professional design cases of artists 

who couple dance and technology, and music and technology. This gave the students 
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examples of how professionals are integrating technology into their work and served as a 

tool to analyze what these artists were expressing and how they were doing it. 

3.2.3.2 Infrastructure for Reflecting on Values and Creating a Shared Dialogue 

The environment encompassed infrastructure designed to promote self-reflection 

on the participants’ values in order to create meaningful dialogue to seed the designs of 

their dances. In both the MoveLab workshop and the Day of the Dead Puppet camp, we set 

the participants up with driving questions that we felt were constrained enough to provide 

guidance but open-ended enough to enable participants to integrate their values into their 

reflections of the question. We engaged the participants in participatory design activities 

surrounding these questions in order to guide their self-reflection as they designed 

diagrams and translated their ideas across different mediums for discussion.  

The driving question of the MoveLab centered the designs of the dances on an issue 

that the participants cared about. By having them focus on an issue it, provided some 

constraints to exactly what they might choose, but still gave them room to make it 

personally meaningful as they could bring in a range of topics. The participants engaged in 

a participatory design activity of creating issue-expression story board. The story board 

served as a format that directed the students to identify an issue, describe their feelings 

surrounding that issue, identify how they might express their feelings, and create a final 

stage that could serve as a conclusion of a dance. The leader of the exercise began by 

sketching out an issue that was important to her, a recent controversy on social media, 

where females who write about video games were attacked and threatened by individuals 

who identified themselves as part of Gamergate. This introduction to the exercise served 
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as a format in which the students were given a fleshed-out example of the exercise, as the 

instructor walked them through each section demonstrating how they could flexibly apply 

many ideas into their storyboard. Having the educator walk through an issue that she cared 

about within a format, enabled her to serve as a cognitive model (Collins, Brown, & 

Newman, 1989) as she described her depth of thought within the example. After the 

students completed their storyboard, they presented their ideas to the group. The 

participants’ ideas ranged from inequality between wealthy and poor schools, bullies, fights 

at school, environmental issues, animal welfare, and the homeless. Figure 2 is an example 

of one of the participants who created her diagram about fake friends.  
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Figure 2 – Issue Diagram of Fake Friends completed by one of the participants in 

the MoveLab. The participant identified this issue as backstabbing, liars, 2-faced, 

strangers, and shame. This made them feel: disappointed, mad, and irritated to a 

certain point and then they felt: oh well, their loss, over it. They wanted to express 

this with representations of: don’t talk to me, I’m done, happy I lost a fake friend. 

Their final stage was a celebration: yay, no fakes! 
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Without prompting, participants began to make connections between their ideas and 

several emerged as the issues they wanted to address. After the participants learned about 

the electronics, dance and choreographic techniques, we prompted them to translate their 

ideas from their formats into components they could incorporate into a dance. We provided 

a dance planning worksheet that served as a protocol for communicating with the leaders 

and a way to organize the participants’ thoughts and designs by requiring them to identify 

what they wanted to represent within their dance and the various ways they might attempt 

to do this (Figure 3). From this we were able to find similarities between the participants’ 

ideas and grouped them appropriately.  
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Figure 3 – Dance Planning Worksheet that guided students to organize components. 

This document was also used to break students into groups with similar themes. 

At the end of the workshop we wanted a platform for the participants to be able to 

continue this dialogue around their values with the surrounding community. We therefore 

setup the final meeting to be an open house dance performance at EyeDrum, which would 

provide an authentic venue for the participants to share their ideas, reflections, and hard 

work with a broader audience. After the dances, the participants engaged in a talk-back 
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with the audience where they were able to give an overview of the ideas behind their dances 

and answer any of the audience’s questions. 

3.2.3.3 Infrastructure for Organizing Work  

Within the MoveLab there was infrastructure specifically designed for facilitating group 

work and communicating progress with the leaders. When participants were initially placed 

in groups they needed to formulate their ideas together as a group and reconcile differences 

between them. The Dance Grid activity prompted the participants to decide on the aspects 

of their design and reach consensus on the visual, auditory, and technical details (see Figure 

4). The grid served as a protocol for the participants to communicate with one another and 

the leaders about what was going to be in their dances.  
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Dance Grid—Theme: 

Sensors: Dance Dynamics: 

Choreographic Tools: Music Choices: 

 

Figure 4 – Dance Grid protocol for organizing ideas and planning the dances: (top) 

template given, and (bottom) example of group use. 

We also, had the students complete a To Do Grid where students wrote down what needed 

to be completed for the circuitry, code, dance/choreography, music, costumes, and practice. 

The themes the participants decided upon, guided what they needed to learn and work with 

to develop the technology, dance moves and choreography for their dances. Articulating 

this information helped the students organize what needed to be completed as well as 

facilitated identification of where they needed help. Figure 5 shows the template used and 

an example from the workshop.  
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To Do: 

Circuits: Code: 

Dance/Choreography: Music: 

Costumes: Practice: 

  

Figure 5 – Organization Grid protocol to facilitate outline of work: (top) template 

given, and (bottom) example of group use. 

3.2.3.4 Dances Resulting from Infrastructure 

The MoveLab activities led to the emergence of three groups. The first group 

created a dance about bullying and a girl learning to stand up for herself. The group used 

LED lights, capacitive touch sensors, and a piezo buzzer to express the emotion and 
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conflict around bullying (see Figure 6). The second group created their dance about the 

harms of deforestation, expressing interactions between humans and nature. The group 

used green and red LED strips to represent differences between nature and humans, and 

capacitive sensors triggered a wood-chopping sound. The third group created a dance about 

resisting peer pressure and standing up for oneself. The group attached LED strips to a cup 

to symbolize negative peer-pressures to drink. All three groups used a push button to 

control their music during the dances. 

  

Figure 6 – One of the costume tops for the bullying-themed dance, which included: 

a) two capacitive touch sensors, b) a piezo buzzer, and c) an RGB LED strip 

3.2.4 Findings and Discussion 

Through our analysis we identified characteristics within the learning environment 

that influenced the students’ transformation of their self-concepts in relation to computing 

and dance and identified how the students’ dances were serving as boundary objects 

throughout the workshop. We discuss both of these findings in the following sections after 
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a short analysis of the quantitative data we collected, which will give some context to the 

participants in the study. 

3.2.4.1 Perspectives of Computing and Dance  

The analysis of the survey data has a small sample size so we are using it simply as 

another data source to triangulate with the qualitative data we collected to improve the 

credibility of our study (Lincoln & Guba, 1985). The survey asked about computer 

comfort, skill, and support in the pre-study survey to understand the girls’ technical 

familiarity and identify a correlation between technical familiarity and aptitude for 

computer science and engineering concepts. Overall, the majority of girls identified 

themselves as being comfortable, skilled, and supported with the computer. Of the 10 

collected responses, 6 reported that feeling very skilled at using the computer and 

comfortable using the computer by themselves; 2 responded that the statement was 

somewhat untrue and only 1 responded they did not feel skilled at using the computer. 

Seven responded that they identified with feeling supported when running into a problem 

on the computer.  However, these technical competencies did not translate to identifying 

with computer science.  

Table 4 – Perceived Comfort and Aptitude on the Computer 

Statement 
Very 
Untrue Untrue 

Somewhat 
Untrue 

Somewhat 
True True 

Very 
True 

I feel comfortable using the computer 
by myself 

0 0 2 1 1 6 

I feel like I have support when I run 
into a problem on the computer 

0 1 1 1 3 4 

I feel like I am skilled at using the 
computer 

0 1 2 0 1 6 
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We asked the girls to identify themselves with respect to various roles and interests 

surrounding the dancer, artist, engineer, and computer science spectra. In the pre-study 

surveys, the highest concentration of negative or “very untrue” responses occurred in 

questions about technical identifiers (I am an engineer, 4 responses; I am a computer 

scientist or programmer, 6 responses) and technical interests (I enjoy programming, 3 

responses). The highest concentration of positive “very true” responses occurred in 

questions about interests that could be viewed as hobbies (I enjoy making things, 7 

responses; I enjoy designing things, 6 responses; I enjoy building things, 4 responses). Pre-

study data shows a negatively skewed response for self-identifying questions related to 

technology occupations, and a positively skewed responses for interest questions. While 

the girls didn’t know or identify with the technology centric occupations or hobbies, they 

did express strong connections to interests that lend themselves to engineering and 

computer science concepts (e.g., making, designing, and building).  

We only were able to collect paired pre- and post-surveys from 6 participants 

because of the fluctuation in participation. When we look at the trends in the deltas between 

the six pairs of pre- and post-surveys (see Table 5), it shows that there is an overall trend 

of the data points moving up the scale towards a more positive rating of the occupations 

and hobbies. The workshop seemed to solidify what students already enjoyed (ie. building 

things and making things) and showed increased perceived enjoyment in programming and 

dance. However, it is interesting to note that while students did enjoy programming, they 

still were far from seeing themselves as a computer scientist, computer programmer, or 

engineer. 
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Table 5 – Pre- and Post-Study Survey Data Focused on Participant Interest and 

Identification 

Statement  
Very 
Untrue Untrue 

Somewhat 
Untrue 

Somewhat 
True True 

Very 
True 

I am a dancer Pre 1 2 0 2 0 1 
Post 0 1 1 2 0 2 

I am a choreographer Pre 1 2 1 2 0 0 
Post 1 1 0 3 0 1 

I am an engineer Pre 3 0 2 0 1 0 
Post 1 0 3 1 0 1 

I am an artist Pre 0 0 1 1 0 4 
Post 0 0 2 0 1 3 

I am a computer scientists 
or computer programmer 

Pre 5 0 0 0 0 1 
Post 1 3 0 1 0 1 

I enjoy dancing Pre 1 0 2 0 0 3 
Post 0 0 1 2 1 2 

I enjoy programming Pre 2 1 1 1 0 1 
Post 0 0 0 0 3 3 

I enjoy building things Pre 0 0 0 2 1 3 
Post 0 0 0 0 2 4 

I enjoy making things Pre 0 0 0 2 1 3 
Post 0 0 0 0 2 4 

3.2.4.2 Experiences Impacting Students’ Self-Concept 

Throughout the workshop we saw transformations of the students’ self-concepts. 

The transformation was not a straightforward evolution, but more of a negotiation between 

the students’ changing views of dance and technology, in conjunction with their 

understanding of themselves. As their perspectives evolved over the course of the project, 

they navigated the incorporation of new aspects of these disciplines into their self-concepts. 

We found instances in which there was congruence formed between their self-beliefs and 

the disciplines, as well as instances in which there was dissension formed between their 

self-beliefs and the disciplines.  
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Developing Congruence  

We identified three characteristics within the MoveLab that enabled students to 

form congruence between their self-concepts and the computing and dance material: (1) 

creating multiple roles for participation, (2) fostering a socially supportive community, and 

(3) integrating student values within the themes.   

Multiple Roles for Participation. The open-ended project nature of the MoveLab 

created many roles for the students to get involved with both dance and computing. Many 

students took on specific roles in their groups such as the role of circuit builder or 

choreographer. These roles were important for creating agency and facilitating the leaders 

in guiding the students. Bandura showed that agency could be viewed as an artifact of 

perceived self-efficacy, which in turn often positively aligned one’s perception of 

themselves within a discipline (Bandura, Barbaranelli, Caprara, & Pastorelli, 2001). The 

agency the students assumed within the MoveLab enabled them to take on more tasks and 

engage more deeply with the content in ways that were beneficial to the students and others 

in the community: “I was actually kind of surprised because I’m not usually that 

great…with technology or any of [the] elements surrounding technology. Once I caught 

onto the computer programming and hooking up different wires…I would help the other 

people in my group to…catch on with it as well and hook up different sensors.” — Janelle 

(student). 

Like Janelle, we found that by encouraging students to form a narrow expertise, we 

increased their ability to develop a deeper understanding of a topic rather than a breadth of 

superficial knowledge. These roles served as a guide for the leaders to understand what 
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piqued the interest of each of the students and to understand where each of them was 

gaining expertise, so the leaders could then push the students in the directions necessary to 

engage more deeply with the topics. This deeper engagement created knowledge disparities 

between the students, allowing them to serve as technical resources for others. This is a 

key characteristic within communities of learners, which allows for integration and thus 

appreciation of various types of knowledge in the community (B. Rogoff, 1994; Barbara 

Rogoff, 2001). Even the programming aspects had tangible results once uploaded to the 

microcontrollers. This externalization provided a way for students to gain recognition as 

others acknowledged and appreciated their contributions.  

Supportive Community. The supportive community developed in the environment 

allowed students to take more risks and not be as afraid of failure. For example, one of the 

students reflected on how the environment enabled her to try something new: “Since I’m 

so used to doing something strict and technical like ballet, it was a bit out of my comfort 

zone because I’m not used to just doing freeform whatever…But, um, since it was just the 

girls I guess it was fine.” — Janelle (student). Creating a place where students could 

interact in new ways with material they originally felt uncomfortable with led many of the 

students to re-evaluate their initial rejection of the material. One student originally only 

wanted to participate with the technology but found herself also contributing to the 

choreography: “I was actually proud of myself for this. I made up a dance move. I was like 

‘yay!’ because I never make up dance moves.” — April (student).  The importance of these 

experiences ties back to the hierarchical nature of one’s self-concept, in which the student’s 

evaluation of herself during specific experiences shapes her higher order beliefs of how 

she views herself in terms of certain disciplines (Shavelson et al., 1976).   
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Values-Based Learning. We created an initial design activity to enable the students 

to have control over their performance themes to express values relevant to them. This 

structured design activity enabled students to talk about issues they were grappling with 

and helped them represent those issues through dance and technology. Interviews 

demonstrated that this was an important aspect of the educational experience that 

differentiated it from other experiences they have had: “You’re still learning but it’s more 

fun and it’s not all about learning, it’s about helping with life and stuff like that.” — Malia 

(student). By allowing the students to choose their themes, they began to see how the 

concepts they learned could be integrated into topics they cared about. When April was 

asked what her favorite thing about the dance was, she stated: “My favorite thing is the 

message behind it…Because we’re basically saying that you should not put someone down 

and that the person that is being put down can, you know, stand up and not take the bullying 

or the hurt.” — April (student). The students thought of their work as relevant outside of 

just the workshop, placing it in the context of the real world and other things they cared 

about. Furthermore, it was clear this characteristic was important to the participants and 

differentiated the MoveLab from their other learning experiences.  

Developing Dissention 

Throughout the workshop, students also developed dissension between their perspective of 

dance and technology and their self-concept. We identified three characteristics that 

cultivated this dissension: (1) their previous perspectives of the disciplines (2) fear of 

failure, and (3) working in a group environment.    
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Student Perspectives of Disciplines. The students entered the workshop having 

already built some ideas around dance and technology. As the leaders worked with the 

students many of these conceptions were revealed, and they often came out in ways to show 

how students previously disengaged with the material. Some of their perspectives of the 

material centered on how they saw the disciplines situated in society. This led to views 

about who should be participating in certain forms of dance: “one girl said that…poor kids 

don’t get to go to good schools. And she had drawn a picture of a girl doing ballet that was 

happy and [at] the rich school…and then a picture of the sad poor girl doing hip-hop” — 

Whitney (dance leader). Many contrasted their perspectives of the computing and 

engineering material in this workshop to their previous experiences in school: “I learned 

[in the MoveLab] that science doesn’t always have to be in the book. It can also be fun. Or 

you could like use it in life, in real world experiences.” – Maila (student). 

Some of the students already had strong identities around dance and/or technology: 

“I’m not really much of a dancer, but I’m definitely going to be doing more technology.” 

— April (student). Our workshop was not the first exposure these students had with either 

dance or technology. Through the media, school, and informal educational programs, the 

students had many beliefs and ideas about the topics we presented to them. We observed 

how these previous experiences seemed to cause them to disengage with the material, 

making them reluctant to participate. Bringing these beliefs to light enabled our leaders to 

work with and around perspectives that were creating dissension between the students’ 

self-concepts and the material. When a student’s values were conflicted, it was important 

to be aware and sensitive to them, as it was imperative that activities are done with a respect 

for students. Research supports the usefulness of revealing students misconceptions about 



 60 

material at the beginning of the learning process (Hestenes, Wells, & Swackhamer, 1992). 

Our study suggests it might also be useful to understand what students’ perspectives are of 

a discipline and how it relates with their values. By doing this we can get a better 

understanding of how students view themselves in terms of what participation in these 

disciplines represents. 

Fear of Failure. Throughout the workshop, we saw students attempting to do 

things with either dance or technology and struggling with their self-esteem. If they got to 

a point in which they were unhappy with themselves, it would often lead to the students 

disengaging with a particular activity: “She tried really hard and I think she was doing 

well, but I think the self-judgment…or whatever her expectation, was not meeting with 

whatever we were doing. So that put her down and she kept pulling herself down each 

time” — Aiza (dance leader). When this happened, it would make it more difficult to get 

the participants to work with the material in future instances because they did not want to 

be put in that situation again.  

Participants also avoided the material even before they experienced failure. For 

example, Harmony was outgoing and vocal throughout the workshop. She was consistently 

demonstrating her knowledge in the community through showing off things she had 

previously made and talking about other experiences she had with computing. However, 

during the daily leader debriefs, many expressed how Harmony would shut down whenever 

she was asked something she was unsure about or had to think through. At one point, when 

one of the leaders asked if she wanted to work on the code for her dance, she physically 

ran away from the computer toward the costuming table saying, “I’m not a technology 

person.” Harmony participated in ways that guided her away from engaging with the 
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technology. While an interest-driven perspective might presume that Harmony is just not 

interested in technology, the socio-cultural aspects of the situation paint a different picture. 

Her prior experiences with creating stop-animation on a tablet and designing a computer 

game in a workshop indicated that she did in fact have interests involving technology. 

However, these interests were seated in the value she placed on being able to show off her 

creations and gain social recognition. By presenting her with a difficult task where she was 

unsure of her ability to succeed, her values became at odds with participating with the 

technology. Harmony navigated this contradiction through participating in other activities, 

like the costume design. 

The idea of failure also impacted how participants viewed the final performance. 

The workshop was five days and the students were novices in both dance and computing 

leading to a performance that could still be improved in many ways. Some participants 

expressed fear that the final performance would be a failure, and some had parents who 

publicly expressed concern that the performance was not of a high enough quality for their 

child to participate in. A few of these participants did not show up to the final performance 

and we believe it was because they were navigating around this fear of failure. This type 

of concern for failure is of particular concern with authentic artistic engagement. Because 

this was a real performance, at a real art venue, it set an expectation that the quality of the 

performance needed to be high. However, because we were working with novices and we 

had limited time, we sacrificed production quality for the participants’ leadership that 

allowed their ideas to drive the project. By placing dance as central to our endeavor, rather 

than just a “hook”, we unwittingly created a higher bar to reach for authenticity. This raised 
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expectations, and therefore created a greater opportunity for public failure that worked as 

a barrier to participation. 

As we create these experiences for students we need to understand how to help 

them deal with failure in a way that is healthy and productive, because failure is an 

important aspect of the creation process for both dance and computing. At the same time, 

we need to understand how to prepare students such that they can feel proud of their final 

artistic expression. Extending the time to work on the dance and creating a space for them 

to show off their work in ways they are comfortable, are important considerations.    

Group Collaboration. While there were many benefits to working in a group, we 

also found that the participants rejected working with or in front of other participants. One 

of the girls was having difficulties at first working with others: “So the first day, I thought 

she is not going to work, like teamwork, so I tried to just talk to her and help her understand 

that it’s a team [activity] and we could make mistakes and we could also correct them.” 

— Aiza (dance leader). This type of group resistance was much more common at the 

beginning of the workshop and subsided as the girls became accustomed to the 

expectations, each other, and the dance and technology material.   

Within the learning environment, not all participants felt comfortable at all times 

with sharing their work with one another. In one of the initial dance activities, where the 

participants were creating dance sequences for their name, a couple participants did not 

want to share the sequence they came up with. At the end of the activity, the participants 

and leaders sat in a circle on the floor, and the dancers led a discussion about working with 

your body. Several participants discussed the concerns they had with their body image 
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which made it more difficult for them to want to move and dance. The leaders were often 

able to understand and work with the difficulties the participants were having, such as 

working with them 1:1 when the other participants were doing other tasks. By taking it out 

of the social context leaders avoided publicly embarrassing the students or making them 

feel any additional discomfort. There are a variety of reasons that students might be 

resistant to participation in a group setting, so it is essential that these moments be handled 

in ways that do not marginalize the student or their choice to not participate. 

 Other instances where participants ran into difficulties with group work, were in 

instances where they were not able to navigate between the different values they wanted to 

integrate into their dances. In the next section, we examine these types of navigations 

through the construct of boundary objects.  

3.2.4.3 Boundary Objects: Collaboration in the Face of Differences  

In conjunction with the codes around self-concept our data also revealed the 

presence of boundary objects. As the students worked on their dances throughout the 

workshop we realized how the dances were serving as boundary objects that enabled the 

students to integrate their values into the experience even in the context of group work 

where participants’ values and ideas may differ. The boundary objects supported 

collaboration, enabled students and leaders to learn about each other and from one another, 

and created opportunities for the participants to take on different roles. Within this section, 

I report on various instances which are indicative of the themes we saw in the data where 

the dances and computational objects arose as boundary objects. 
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When the groups were first formed they worked in their groups to brainstorm. The 

bullying group was comprised of two girls who wanted to work on bullying and one girl 

who wanted to represent a dictatorship. After each of the girls talked about their ideas, the 

girl who wanted to represent a dictatorship was able to find common ground. She remarked 

on how their ideas were not that different because each of their scenarios went from a bad 

situation to a good situation, and the expression would be similar. This realization enabled 

them to get over the first bump in their collaboration and move forward discussing how 

they would use the dance and technology to express the bad situation and the good situation 

in their dance. Even before the dances and technology were realized, we witnessed how 

the dances acted as a boundary objects through the students’ negotiation of themes, helping 

them bridge their differences. While each of the girls had a robust definition of the meaning 

of their dance, they were able to talk about it in an abstract way when they were working 

together across their perspectives. 

Having the students express their differences created an environment where the 

students could recognize that art and technology can be interpreted in many different ways. 

During the post-interviews one student remarked, “I enjoyed that we might like different 

things about what we do”. They also recognized these differences throughout the workshop 

as they caused tensions as the varying opinions emerged: 

At certain points in the dance, um, there were certain things that not everybody 

agreed on, so we had to change a few things in the dance. It ended up working out 

but it was just, um, a bit hard to agree on certain movements in the dance at certain 

points.  
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The need to collaborate on producing the dance brought contrasting views to light giving 

students opportunities to negotiate between their differences. However, they did not 

necessarily reach a consensus in order to move forward with the decisions they had to 

make. The students had to coordinate between the various differing perspectives. A student 

in the deforestation group reflected on how her group members thought about the dance: 

One of my group members, her original theme was about bullying, and so [to] 

incorporate that into the nature theme she said that humans would bully nature so 

she took it that way. And then, so that was a difference. And the other group 

member, she thought a lot about the animals in nature and protecting the animals 

so that was her main concern.  

 It was through these differences in perspectives of the dance itself that students were able 

to coordinate despite their differing interests. These particular differences between 

students’ views had an effect on what they wanted to incorporate and accomplish with the 

work they put into the dances. When one student was asked about how the other students 

contributed to her dance, she stated: 

Some of our ideas were different so we had to figure out how to come 

together…Like, two of them were similar, but not really. So we had to figure out 

where to put it all into the dance…everybody did like one part inside another part. 

The dances became a conglomeration of the various aspects that each student contributed, 

but by working together they were able to achieve cohesion. They were able to understand 

each other’s perspectives, and in this instance, weave their own additions to the dance into 

the greater structure. 
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The dances were also a boundary object for the leaders who viewed the dances from 

their own perspective. One leader remarked on her interpretation, 

They brought up…these global issues [that] also impact girls on a micro level and 

they impact them in their everyday life. And it’s something that they do and want to 

build solutions for. They just need to have the know-how and education and 

resources to do it.  

The leaders often saw the societal context in which the issues the students raised were 

situated. One dance leader saw the dance as a tool for empowering these students to talk 

about the issues they want solved in the world. Throughout the workshop we saw how the 

leaders’ different backgrounds led them to approach the various aspects within the dance 

or technology differently. One of the dance leaders remarked on her experience 

understanding the technology through the students’ interpretation of the technology: 

I basically just sat back when you guys were doing your, uh, your lecture about the 

Arduinos and the breadboards and putting it together. And then I just circled 

around the kids when I felt like they had, like, kind of figured out what they were 

creating and then asked them. What did you create? What are you making? What 

does that do? So, I feel like it also helped me to know if they knew what they were 

talking about and it also taught me what they’re talking about.  

Here electronics portion of the dance was perceived differently: from the technology 

leaders’ perspective, it was a teaching tool that uncovered how the students were thinking 

about the microcontroller; while from the dance leaders’ perspective, it was a learning tool, 
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which the students could use to explain the concepts to them. The technology artifacts 

offered those coming in with different backgrounds different affordances.  

Boundary objects enabled us to understand how the participants, with varying 

backgrounds, interests and expertise, could still create dance performances representative 

of their values. The collaborations within the MoveLab workshop were facilitated through 

the dances and computational artifacts that the students and leaders created together. These 

boundary objects were a form of artistic expression that enabled the participants to 

collaborate using abstractions while embedding different individual values. From learning 

about one another’s backgrounds to learning about one another’s expertise, the boundary 

objects served as learning tools for the entire community of learners. The boundary objects 

highlighted the various values and interests of the students and educators and helped to 

identify the learning opportunities between the diversity of participants. With further 

research, boundary objects could prove to be an important analytical framework to 

understand how fostering abstract thinking about boundary objects affects collaboration 

and integration of values in these interdisciplinary interventions.  

3.3 The Day of the Dead Puppet Summer Camp 

The Day of the Dead Puppet summer camp was an iterative study of values-based learning, 

which gave us an opportunity to understand if we could improve upon the infrastructure 

that was in the MoveLab from the perspective of values. The Day of the Dead Puppet camp 

was designed around creating interactive visual art rather than performance art, in which 

we found strong conflicts in the MoveLab. Furthermore, we incorporated individual 

projects to alleviate from social dynamics that could cause repression of values and 
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included protocols such as critiques and SCRUMs (stand up meetings) to ensure we could 

still support dialogue around values and culture in the absence of group projects. I will 

discuss the context of this study, the types of infrastructure that was integrated, and then 

do a cross analysis of both the summer camp and the MoveLab from the viewpoint of how 

values manifested in the environment in relation to the context and infrastructure.  

3.3.1 Introduction and Context of Study  

The Día de los Muertos or Day of the Dead Puppet activity involves participants 

creating an interactive art piece, which is representative of someone that has passed away 

in their lives. The participants are tasked with reflecting on people who have been 

important in their lives, cultural practices around death and mourning, and ways that they 

can express these complicated concepts with computing. The participants can appropriate 

this theme of loss in their own way; for example, to include loss of an object. The 

participants work individually to integrate microcontrollers to animate the puppets they 

have designed.  The Día de los Muertos Puppet activity has demonstrated success across 

several populations of makers with varying expertise and experience levels (i.e. middle 

school students, high school students, graduate students, and adults). For the purposes of 

this dissertation I am going to describe the study of the activity being used in a summer 

camp run with high school students, since this was the workshop I was most involved with 

in terms of the planning, data collection, and analysis. 

The summer camp was a total of six weeks, two of which were focused on the Day 

of the Dead Activity, the other four consisted of an Earsketch (online python based program 

for creating music with code (Freeman et al., 2014)) module and an aerospace engineering 
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module. The camp was run by a high school designed to help students who have difficulty 

in traditional public schools. They have both an avenue for students to receive their high 

school diploma and a path for students to get their GED. The summer camp consisted of 8 

high school students, 7 of which participated in the study. Five of the students were in the 

school’s diploma track, while three of the students came from outside of the school. The 

students ranged from advanced home school students (12yrs old), to students who were a 

grade or two behind (19yrs old). There were four instructors, inclusive of myself, another 

researcher, a PhD student, and a master’s student who served as the consistent instructor 

across the course of the workshop. The camp lasted two weeks Mon.-Thurs. 10am-3pm. 

Students were consistent with their attendance throughout the entire workshop. On the final 

day of the camp, students presented their work to parents and other community members 

who were invited to come into the camp to see what they had made.  

3.3.2 Data Collection and Analysis  

Data collection consisted of pre-study surveys, observations on some of the days, 

two focus groups with four students in each, and post-study interviews with the other two 

student instructors. Pre-study surveys were administered to understand how students 

aligned themselves to engineering, CS, design, and art. Observation notes were recorded 

on the days the researchers were there and design artifacts were kept or documented for 

review. Focus groups were conducted involving 8 of the participants in a final summer 

camp. The focus groups involved talking about the camp generally, asking students about 

their experience, their puppets, their design processes, how they felt about their designs, 

and if it has changed how they view engineering, computing and design. The goal was to 

understand how values were integrated into both what the participants were building and 
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the learning environment as a whole. The initial codes used on the data were coded using 

the Expression of Values code developed by the researchers working on the MoveLab. I 

then created a reverse code to capture the instances where there was an observable or 

reported conflict, rejection of values in the environment, or a participant was inhibited in 

doing something they found valuable. The codes that I used are in Table 6. The data was 

then analyzed to understand what value domains might have been involved. We capture 

the findings from this analysis of values and value domains in section 3.4 .  

Table 6 – High-Level Codes for Values   

Code: Description Examples 

Expressing and Integrating Values: 

Student is able to articulate and 

integrate their values while 

participating in the learning 

environment 

“I was being considerate in thinking of the minds of 

blind people because blind people have problems 

too but they can’t see and vice versa for deaf 

people. They feel vibration but they can’t hear.” 

Rejection of Environment or Inhibited 

Expression of Values: Student is 

restricted in discussing or integrating 

their values or rejects participating in 

the environment  

One of the students wanted to broaden the scope of 

the activity, “I couldn’t really think of anything else 

to do. I didn’t really want to do that…I wanted to 

see and think if I could do anything else but that’s 

what I ended up having to do...I feel confined with 

the Day of the Dead”  

3.3.3 Infrastructure in the Learning Environment  

Similar to the MoveLab Workshop the Day of the Dead camp incorporated infrastructure 

consisting of components, design cases, formats and protocols. The infrastructure again 

focused on: helping participants gain proficiency and knowledge; providing the structure 

for participants to self-reflect on their values; facilitating conversation around participants’ 

values; and organizing the participants’ work processes. I will discuss the infrastructure 

and then provide an overview of all of the projects. 
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3.3.3.1 Infrastructure for Building Proficiency and Knowledge 

Similar to the MoveLab, the infrastructure in the Day of the Dead camp integrated 

a set of components and design cases for the participants to build knowledge with. The 

components and design cases were focused on learning about the Day of the Dead, 

reflecting on speculative design, and developing skills with the physical prototyping 

materials and electronic components.  One of the instructors began the camp by introducing 

the cultural significance of Día de los Muertos, including the act of celebrating the dead, 

the meaning of symbolic colors and images, the purpose of puppets, altars, and other 

artifacts produced as part of the celebration. These various examples and representations 

served as design cases for participants to understand how the cultural symbols and designs 

could be applied to express emotions. To get the students reflecting on expressive design, 

one of the instructors also led a discussion on speculative design sharing design cases from 

professional artists who use design in a way that critiques or exemplifies certain issues or 

standards within our society (Dunne & Raby, 2013).  For example, a video illustrating a 

speculative technology that monitors the calories of everything you consume and actually 

inhibiting you from eating over your allowable intake.  

A set of electronic components and prototyping materials seeded the environment 

with resources for the participants to use. The SparkFun Arduino kit provided a set of 

electronic components and the researchers brought in a limited set of materials for 

prototyping (ex. foam core, foam block, clay, markers, 3D printer, etc.). Similar to in the 

MoveLab students were introduced to the technology through building out pre-determined 

design cases that could serve as applications for the students to reason about. The students 

went through three of the cases as a group: building a simple blinking LED circuit to 
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become familiar with the Arduino, building circuits with a button and potentiometer to 

control blinking and brightness of an LED to learn about digital and analog controls, and 

constructing a project called rainbow fruit which used fruit (strawberry, grape, and 

blueberry) as capacitive touch sensors to change the color of an RGB LED giving them a 

more complex design case. The students were then tasked with choosing a sensor as an 

input (ex. light sensitive resistor) to control an actuator as the output (ex. addressable LED 

strip) using code from the previous exercises.  

Participants also constructed a slightly more open-ended prototyping design case 

in which participants brainstormed and prototyped an interactive emotional lamp using the 

foam core board and foam block prototyping materials. Everyone was able to experiment 

with both the foam core and foam block as they worked on the design activity. The 

participants worked in pairs and ended up creating lamps that represented emotions in two 

ways: some created lamps that were reactive and mimicked the mood or emotions of the 

user; for example, if the user was happy it would turn yellow or if they were sad it would 

turn blue; other pairs created lamps that were actively trying to change the mood of the 

user; for example, one pair design a book light that would understand the mood in the story 

and try and immerse the user through changing the light to an appropriate color.  

3.3.3.2 Infrastructure for Reflecting on Values and Creating a Shared Dialogue 

The Day of the Dead Puppet Camp had a driving question that was intended to 

integrate discussions around participants’ values, and similar to the MoveLab, we engaged 

the participants in participatory design activities to engage them in reflecting on the driving 

question. The driving question used in this experience was a bit narrower than the MoveLab 
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and more explicitly called for a reflection on one’s culture and how they respond to loss, 

death and mourning. The participants engaged in participatory design activities where they 

reflected on the loss of a person or object of their choosing first on a worksheet and then 

in the design of an interaction storyboard for their puppet.  

The brainstorm worksheet placed the participants as the experts in understanding a 

death or loss they experienced and their own cultural response to death and loss. The 

worksheet was designed to support participants to be thoughtful in identifying components 

to use for the aesthetics and interactions that their puppet would support. The handout 

guided the participants in thinking about expression with 5 sections that gave them room 

to write and draw responses: 

1. Who is someone important to you that has died?  

2. Why were they important to you? How did their death impact you?  

3. What is the story you want to tell about the person you are celebrating?  

4. Symbolic Representation - What is something the person you are celebrating did 

in the world that mattered to you? How can you represent that physically, visually, 

or with sound? 

5. What are the things that the person you are celebrating related to from the world 

around them? How can you use physical computing to symbolize this reaction with 

sound, touch, light, motion, data?  

The questions were structured such that they could be transferred to their puppet interaction 

storyboard. The storyboarding was a format that guided the design process, helping 

participants move from the conceptual ideas, to design of a puppet that incorporates 

programming and hardware to animate it. The storyboard involved four states: START, 

INPUT, OUTPUT, and FINAL. As the instructor walked them through the sections, 

students could grasp the significance of the various sections of the storyboard. Participants 

then sketched out their concept on craft paper using drawing material and collage materials, 
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such as images from Día de los Muertos celebrations, microcontrollers, sensors, and output 

devices. The use of the four states (START, INPUT, OUTPUT, and FINAL) encouraged 

students to think about their puppets as interactive objects and to better tie their conceptual 

ideas about symbolic triggers and representations into hardware, such as light, motion 

sensors, speakers, or lights. An example can be seen in Figure 7. 

 

Figure 7 – Sketch of a puppet using START, INPUT, OUTPUT and FINAL 

indicating the computational communication with the microcontroller in the center.  

We wanted to offer the participants a chance to share what they had created and 

have a chance to explain the reason for the specific design choices they incorporated.  On 

the final day of the camp, the participants presented their puppets in an open house in which 

students were able to share their work with others in the community. The majority of people 

who came to the open house were people that the students knew (ie. other people involved 

with the school, their family members, friends, etc.). The open-house began with each of 

the students presenting their project and demonstrating how it worked. For the rest of the 

time students stood next to their project and explained to the community members who 

came in and out of the open house. 
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3.3.3.3 Infrastructure for Organizing Work 

In the camp, we provided the participants with slightly different infrastructure than 

the MoveLab workshop in order to organize the work processes of the participants. At the 

end of each day in the camp they would have a stand-up SCRUM meeting which was used 

as a protocol for the students to talk about what they have done, what they are doing, and 

what their plans were for the next day. This gave them an organizational structure to ensure 

they all continued to have something to work on and were making progress. Different days 

had different goals, for example, in one of the SCRUM sessions the participants needed to 

talk about the materials they were using and what they still needed to figure out. The 

participants talked about the circuit elements they were using, what prototyping materials 

they were using, how they were planning to decorate each part, and out of that, what 

materials they still needed to get. On that day, the SCRUM session was moved up to the 

beginning of the workshop because the participants were given a budget of $10 went on a 

field trip to a craft store to buy any remaining materials they needed. 

Critiques were integrated throughout the workflow as a protocol to set a student-

to-educator and student-to-student standard for communication. Throughout the design 

process, the instructors visited individuals as they worked, offering critiques. The idea was 

to create an open environment for constructive criticism while enabling the students to 

share and defend their design choices. During the process of working on the final designs, 

we organized an official critique session where the participants presented their work to the 

rest of the group. We scaffolded these interactions during this official critique sessions 

using a template (Figure 8) which gave students an idea of the type of feedback that could 

be useful in a critique session. These group critiques offered a chance for students to learn 
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and be inspired by each other, gain vocabulary for talking about technology and art, and 

reflect on their own ideas. 

 

Figure 8 – Prompts for Critique Exercise  

3.3.3.4 Puppets Created from Infrastructure 

In the summer camp, each participant designed and built their own puppet. By the 

time the participants reached the final day of the study they each had a working project and 

were able to successfully present their narrative to the community in the open house (two 

participants were absent for the final presentation because of another obligation). I will 

briefly present the seven projects to provide an understanding of the different types of 

puppets the participants created during the camp. The puppets had a variety of 

representations within them. Most of the puppets had an input (ex. button, flex sensor, etc.) 

and an output (ex. motor, LEDs, etc.), and some of the puppets were designed to have 
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multiple. On top of having different designs for the electronics, participants used different 

prototyping materials, which resulted in puppets that looked significantly different from 

one another. One participant molded a puppet of his dog out of clay (Figure 9). When the 

puppet was pet, the light sensitive resistors on the top of the puppet’s head would trigger 

the NeoPixel (addressable LED) strip around the mouth and LEDs in the eyes to light up. 

The interaction was intended to demonstrate the happiness of the dog.  

 

Figure 9 – Puppet of Dog with light sensitive resistor that would trigger NeoPixel 

strip along the mouth to light up signifying happiness 

Some participants created their puppet about a person in their life that they had lost. Figure 

10 is one example of this, where the participant created the puppet to represent his dad. His 

father passed away when he was young, but one of his distinct memories was of his father’s 

grill (piece of jewelry for the teeth). The NeoPixel strip was programmed to light up blue 

and red when a button was pushed. These colors were chosen because they were the 
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participant’s favorite colors. Within the computational piece, he merged the representation 

of his father with an artistic expression of his own. He made the coloring in the face similar 

to Harley Quinn’s makeup because he said he “likes weird things” and he wanted it to 

“look a little weird”. 

 

Figure 10 – Puppet of Father that had a NeoPixel strip triggered by a button that 

would light up red and blue to represent the participant’s father’s grill  

Another participant represented her great aunt who had passed away. She wanted to 

represent her great aunt with the motorized wheelchair she remembered her sitting in. She 

placed the chair in a cloud that was representative of her aunt in heaven. She also integrated 

a representation of the necklace that her great aunt gave her and created the puppet below.     
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Figure 11 – Puppet of Great Aunt in heaven with motorized wheelchair. Input, 

located at the joystick of the wheelchair, activates motors in the wheels to move the 

chair back and forth and turns on the motor in the base of the necklace so that it 

spins.  

She integrated technology in the motorized wheels of the wheel chair that would move the 

chair forward and backwards. She also incorporated an input sensor as the joystick in the 

wheel chair that would activate this movement as well as spinning the base that held the 

necklace. Another participant designed his puppet in a way that was representative of how 

the person died. He lost his aunt to a viral infection and used this as inspiration to create 

the puppet of the virus below in Figure 12.  
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Figure 12 – Puppet of Virus had a button inside the foam body that when pushed 

with the needle would turn off the lights in the virus (ie LED balls) demonstrating 

killing the virus.   

The puppet of the virus could be killed by injecting it with the medicine from the needle. 

Before being injected, the lights in the balls surrounding the main body would blink 

signifying it being alive. When the needle was inserted in the hole it would push a button 

which would kill the virus and stop the lights from blinking. 

Some participants appropriated the theme of Day of the Dead to the loss of an object 

instead of a person. One participant had recently broken her tablet which made her angry 

because it is what she used to relax. She created an abstract representation of her feelings 

in the puppet while having it respond to a concrete representation of the tablet. Her design 

can be seen in Figure 13.  
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Figure 13 – Puppet of Tiger had a flex sensor attached to a fake tablet that would 

trigger the rage of the tiger by flashing the LED eyes green and orange and moving 

the mouth back and forth with a motor when bent signifying the breaking of the 

tablet 

She describes her puppet in the quote below captured from her demoing it:  

What this does, is that we have a flex thing right here [pointing to the flex sensor], 

so as you see it’s not mad now [the eyes are green and the mouth is not moving], 

but people tend to actually bend their…tablet or any other device, so this basically 

shows like your rage of it, so when you bend it [proceeds to bend the foam core 

tablet], it goes like that [eyes start flashing orange and green and mouth moves back 

and forth]. 

Similarly, another participant represented the loss of technology by creating a phone 

charging pillow for when her phone dies. Describing what she built she says, “I made an 
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emoji pillow that detects when your phone is either dead or um fully charged…it tells you 

when to take it off the charger so you don’t overheat your battery.” 

 

Figure 14 – Puppet of Emoji that gave you a pillow to rest on while you charged 

your phone. It indicates when your phone is charged by buzzing piezo buzzer and 

moving the mouth of the pillow with a motor. The input was actually a button.  

We do not have a picture of the last participant’s puppet, but he uniquely 

appropriated the theme of loss in his puppet. He was struggling to come up with a topic 

because, as he put it, “everyone else did it about a person or a pet and I didn’t have that 

person or a pet”. He ended up reflecting on the fact that he missed participating in drama, 

which was an activity he was heavily involved in throughout the previous year. He explains 

the motivations for his puppet saying, “so um for my day of the dead thing I used an 

experience about last time I went to a summer camp, so um one of the things I did was um 

when we were filming a video and um everyone was super hot and they weren’t getting the 

video clear, so one of the things I did was bringing enough chairs and water and snacks 

because they were so tired.” He used a positive experience in which he was able to help 



 83 

his peers in the summer camp as a way to reflect on something that he cared about bringing 

it into the computational design of his puppet. He describes what he ended up creating,  

I had this chair and I had arm rests on it, and I had an um, we 3D printed a hand 

and I stuck it on a…took a big piece of foam core and then turned it into a make-

shift arm and hot glued the hand on there, and then I attached it to a motor that 

would spin and I rested it on the arm rest. I wanted to make it so that um once it 

turned, it only turned up to 90 degrees…and I wanted to make it so that when it 

turned up to 90 degrees something would drop down to it, but um I didn’t get to it. 

The chair he created was representative of the moment he remembered helping out his 

friends in the camp. He put a hand on the chair to represent a helping hand and signify that 

the chair is there to help people.   

 These examples show how different participants were able to create a variety of 

puppets that represented loss in different ways. The puppets provided avenues for the 

participants to explore different sensors and actuators, as well as apply different 

prototyping materials. In the next section, I will present the findings from this workshop 

along-side a cross analysis of the MoveLab findings that examine the infrastructure in the 

learning environment through a lens focused on values.  

3.4 Cross Analysis of Values in MoveLab and Day of the Dead 

The MoveLab workshop and the Day of the Dead Puppet camp was designed to 

facilitate the participants in creating a personally meaningful experiences with physical 

computing. The original goal was to create an environment where participants would be 
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able to talk about their values and create an object that embodied aspects of their values. 

We became interested in what aspects of the learning environment were enabling 

participants to create personally meaningful experiences, and what aspects of the learning 

environment were not adequately supporting participants. We began to situate our findings 

from the perspective of values centered on analyzing the infrastructure in the environment. 

In order to keep our language consistent and clear when identifying and talking about 

values, we adapted use of Schwartz’s framework of value domains (Table 7 (Bardi & 

Schwartz, 2003)).  

Table 7 – Schwartz et al.’s Value Domains replicated from (Bardi & Schwartz, 

2003) 

Value Domain: Definition of domain  

Power: Social status and prestige, control or dominance over people and 
resources  

Achievement: Personal success through demonstrating competence according 
to social standards  

Hedonism: Pleasure and sensuous gratification for oneself  

Stimulation: Excitement, novelty, and challenge in life 

Self-direction: Independent thought and action-choosing, creating, exploring  

Universalism: Understanding, appreciation, tolerance and protection of the 
welfare of all people and of nature 

Benevolence: Preservation and enhancement of the welfare of people with 
whom one is in frequent personal contact  

Tradition: Respect, commitment and acceptance of the customs and ideas that 
traditional culture or religion provide the self  

Conformity: Restraint of actions, inclinations, and impulses likely to upset or 
harm others and violate social expectations or norms  

Security: Safety, harmony and stability of society, of relationships, and of self  

We used the value domains framework to code the projects of the participants and the data 

from the learning experiences, to understand how values manifested in the dialogue and 

the computing artifacts, and to draw insights from how it related to the infrastructure. We 

examined the infrastructure based on the goals of: reflecting on values, developing a shared 



 85 

dialogue around values, building domain knowledge and proficiency, and organizing work 

processes around values. A summary of the infrastructure examined within the two 

environments can be found below in Table 8.  
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Table 8 – Infrastructure in the Learning Environments  

Infrastructure  MoveLab Workshop Day of the Dead Camp 

 
Building 
Knowledge 
and 
Proficiency 

 

• Dance Components: Dance dynamics 
and choreographic techniques  

• Electronic Components: Microcontroller 
and peripheral sensors and actuators 

• Constructed Electronic Design Cases: 
Building with example circuits with 
electronic components and code  

• Peer Teaching Protocol: sharing 
electronic design cases between 
participants  

• Constructed Dance Design Cases: 
Building phrases and sequences with 
dance dynamics and choreographic 
components  

• Professional Design Cases: Examples of 
professional artists and engineers 
working with dance, music and 
technology  

 

 

• Prototyping Components: foam 
core board, foam block, clay, 
brought in materials  

• Electronic Components: 
Microcontroller and peripheral 
sensors and actuators  

• Constructed Design Cases: Building 
example circuits with electronic 
components and code 

• Emotional Lamp Design-Case: 
Prototype an interactive lamp with 
foam block and foam core that 
represents an emotion   

• Cultural Design Cases: Day of the 
Dead example artifacts and Puppets  

• Professional Design Cases: 
Examples of professional artists’ 
speculative designs 

 
 
Reflecting 
and Sharing 
Values 

 

• Driving Question Protocol: Design a 
dance that represents an issue you care 
about  

• Issue Diagram Format: highlight an 
issue, feelings associated with that issue, 
methods for expressing those feelings, 
and a final state  

• Dance Planning Worksheet: organizing 
issue into components for dances  

• Performance Protocol: Public 
performance to share work 
 

 

• Driving Question Protocol: Design 
an interactive puppet that 
represents someone or something 
you have lost  

• Puppet Planning Worksheet: to 
organize components  

• Interaction Diagram: highlight a 
starting state, an input, an output, 
and a final state of your puppet 

• Presentation Protocol: Open house 
to share work in a presentation 

 
 
Organizing 
Work 
Processes 

 

• Group Sharing: Sharing ideas between 
participants and leaders in group 
activities  

• Dance Grid Protocol: Identifying theme, 
electronic components, dance and 
choreographic components, and music  

• Organization Grid Protocol: Identifying 
what needed to be completed for the 
electronics, code, choreography, music, 
costumes, and practice  

 

• SCRUM Meeting Protocol: Share 
status and plans for design work  

• Peer Critiques: Participant and 
instructor critiques 
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3.4.1 Value Analysis of Infrastructure for Reflection on Values 

3.4.1.1 Designs from Values-Based Learning 

The participants in the MoveLab workshop and Day of the Dead Puppet summer camp 

were able to integrate values within the designs of their final projects in different ways. 

The MoveLab participants created dances that were coded with the various values outlined 

in Table 9. The interpretive nature of the dances led to the dances as boundary objects in 

which the participants did not have to agree on what values were being represented in order 

to collaborate. We coded for the values represented in those interpretations as well. 

However, it is important to note that we could have missed certain interpretations and 

therefore values that were not captured within the data gathered.  

Table 9 – Dance Themes and Values Coded 

Dance Theme Values Coded in Project 

Deforestation 

of Nature 

Universalism – protecting nature 

Benevolence – (dance interpreted as bullying) protecting your peers 

 

Bullying and 

Standing Up 

for Oneself 

Security – physically and emotionally protecting yourself  

Security – (dance interpreted as overthrowing a dictatorship) safety 

of society and of the self   

Benevolence – physically and emotionally protecting your peers 

Universalism – helping others  

 

Building Self-

Esteem and 

Standing Up 

for Oneself 

Security – physically and emotionally protecting yourself 

Benevolence – physically and emotionally protecting your peers 

Overall, we saw a spread of different values that participants were integrating into their 

dances. The emphasis of certain values within their themes were sometimes driven by 

specific personal experiences. For example, the bullying group encompassed participants 

that had dealt with bullies in their school. Other participants chose certain themes because 
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of how it related to the people they cared about. For example, one participant was working 

with her sister in the self-esteem group and said that she was doing the dance to help her 

sister who struggles with low self-esteem. She wanted her sister to realize that she should 

be proud of who she is. The participants were in their adolescence and the safety and 

security of their social relationships was pertinent in many of their lives. We also saw 

instances of participants who reflected on issues that were outside of their interpersonal 

relationships. The participants who were motivated by the deforestation of nature theme 

representing values within the universalism domain, saw something in the world that they 

did not agree with and used their dance as a way to talk about it. 

The Day of the Dead Puppets were also coded for values, as reported on in Table 

10, which demonstrates some value domains that were similar and some that were different.  

Table 10 – Puppets and Values Coded 

Puppet Theme Values Coded in Project 

Dog  (none directly coded to puppet) 

 

Father Security – stability in his family relationships 

Tradition – being able to share his appreciation for his father  

 

Great Aunt Tradition – Christian representation of heaven 

 

Virus Security – protecting against harm of the virus 

Self-Direction – administering the cure for the virus yourself 

 

Tiger Universalism – helping others not break their tablet 

 

Emoji  Universalism – helping others charge their phones 

Universalism – technology that supports all people 

  

Chair Benevolence – helping others 

  



 89 

It is important to note that while the value domain might be similar, the underlying reason 

for it is not necessarily the same. For example, in the MoveLab we saw the prevalence of 

security domain based on the social relationships the participants were faced with; in the 

Day of the Dead Puppet camp, security manifested in terms of finding stability within one’s 

family relations and security in terms of protecting one’s health from infection. This 

emphasizes the use of the value domains for providing language to talk about types values, 

rather than for specifically identifying what people value.  

One value that did not present itself directly in the dances in the MoveLab but was 

found within the puppets was the value of tradition. The problem question in the Day of 

the Dead puppet project prompted students create objects that provided the participants 

with a starting point to have a dialogue about differences and similarities in family, culture, 

and how technology can embody and represent these concepts. These ideas thus were 

integrated into the symbolism and discussions around the puppets. For example, the puppet 

the participant made of her aunt integrated the symbolic representation of a cloud in heaven 

with a cotton ball base that her puppet resided on. Another example, is of the participant 

who made his puppet in memory of his father who passed away. He discussed why this 

project was meaningful to him:  

Just being able to share, to tell people about my dad, you know just about him. It’s 

not all the time, or you know it’s not every day that you get to make something you 

know that represents your dad. I think that’s an awesome thing to do. That’s a good 

way to show your appreciation 
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He was able to talk about his father and share the appreciation he felt for his father. The 

success of the student being able to tap into this value of tradition by showing respect to 

his father was directly correlated to the driving question since his father had passed away. 

 One participant was able to represent his values within his puppet because the 

puppet was a reflection of himself and the value he placed on benevolence. The participant 

who created the helping-hand chair conveyed the care and kindness he showed to his 

friends in the drama camp from the previous year. While there were various appropriations 

of the theme, not all the puppets were directly tied to specific values that we were able to 

identify. However, values did manifest in other ways participants worked on their puppets.  

3.4.1.2 Results from Participatory Design Activities  

In both the MoveLab and the Day of the Dead Puppet camp, the participatory design 

activities were generally successful in getting participants to identify, reflect on, and share 

their values with the other participants. Section 3.2.4.2 outlines some of the ways we saw 

values manifest in the participatory design activities in the MoveLab. For example, the 

issue diagram in Figure 2 outlining the issue of fake friends (from section 3.2.4.2) and the 

diagram in Figure 15 below outlining abandoned homeless people, children, and animals 

illustrate different values manifesting in the same infrastructure. The fake friends issue 

diagram (Figure 2) demonstrated how the student valued security in the trustworthiness of 

her friends to always be there for her. The diagram had her reflect on her cultural responses 

in which she illustrated two stages of expression: first it would make her mad and irritated, 

but she could only let it affect her to a certain point emotionally before she was over it. 
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The outlined scenario demonstrated the resilience that she felt was appropriate for dealing 

with the situation.  

 

Figure 15 – Issue Diagram from a participant who chose the issue of: abandoned 

homeless people, children, and animals. They indicated this makes them feel: empty, 

helpless, frustrated. They wanted to express this using Hip Hop and Wild dancing. 

Their final stage represents a cycle: It’s just gonna keep being a cycle until I’m old 

enough to do something about it. 
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The diagram in Figure 15, demonstrates the student reflecting on both universalism for 

being able to help the people and animals without homes, but also expressing her frustration 

with the lack of power she has as demonstrated by her final stage: It’s just gonna keep 

being a cycle until I’m old enough to do something about it. Having the power to change 

the situation is something that she values because although she cannot currently solve the 

issue, she sees this as something she will have the ability to address once she is older.  

The dance planning worksheet (ex. Figure 16) helped participants further articulate 

these issues and begin to associate the components that they had learned about to the 

expression of these issues. The student in Figure 16, was able to take contrasting 

components from the dance techniques thinking of both the speed and size of the 

movements that would represent both nature and the destruction of it. She discusses 

nature’s movements as slow, pretty and small, while the destruction movements are fast, 

morbid, aggressive, and big. Furthermore, she connects her use of speed to an appropriate 

sensor indicating she will use the accelerometer. This demonstrates how she was able to 

integrate her values of universalism and not destroying the environment, into the design of 

her dance moves and the technology she chose.   
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Figure 16 – Planning worksheet from student who wanted to represent the 

destruction of the environment in her dance. She wanted to represent: The beauty & 

magic of nature being destroyed by greedy humans whose only cares are money and 

industry. The movements she wanted to use were: slow, pretty, small movements for 

nature and fast, morbid, aggressive, big movements for destruction. In the dance she 

wanted to use: an accelerometer to project images of beautiful nature and then the 

destruction of it. A light sensor after the nature part it goes dark and morbid music 

comes on for the destruction.  

While the majority of the students were able to begin to make these types of connections 

in this stage, not all participants were able to articulate their decisions on the same level as 

this participant. For example, one of the younger participants in the Bullying group simply 
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stated that she wanted to use LEDs that were red and blue for her technology. Upon later 

discussion, she talked about how the red represented sadness and the blue represented 

happiness. This was not as complex as the solution outlined in Figure 16 above; however, 

it still indicates that she was able to create links between her theme and how she was 

making choices about the technology. The ways students were making these connections 

indicated success for the high-level learning goal understanding the Arduino as a 

computing object that could collect data and output responses based on that data.  

The participatory design activities in the Day of the Dead were also useful for the 

participants reflecting on what they valued. The activities led to participants appropriating 

the driving problem in creative ways that reflected how they wanted to interact with the 

material. One example, was the participant who took the theme and applied it to her phone 

instead of the loss of a person. She reflected on her choice when the focus group was 

discussing how they felt about using Day of the Dead, “I chose my phone for the Day of 

the Dead so at the end I was happy. I didn’t feel like it was ‘I have to’ or like someone was 

forcing me to do it. I was like ‘I wanted this’ and I just did a pillow”. Death and mourning 

are difficult topics to discuss even with adults. Some participants might not have wanted 

to or felt comfortable engaging with this topic and we tried to respect this. We attempted 

to make sure participants knew they could deviate from the themes in ways that made sense 

for them, and at the same time tried to ensure that it was a safe place for participants to talk 

about their emotions around this difficult topic. This same participant who designed the 

emoji pillow demonstrated how even when deviating from the theme, she was still 

integrating her values into the design during the participatory design activities. The 

interaction diagram format—START, INPUT, OUTPUT, and FINAL—forced her to 
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consider how someone might interact with her pillow, which she intended to use to 

communicate when the phone was done charging. She expressed her values of universalism 

through the accessibility choices she integrated into her pillow: “I was being considerate 

in thinking of the minds of blind people because blind people have problems too but they 

can’t see and vice versa for deaf people. They feel vibration but they can’t hear.” She 

wanted to incorporate lights, a vibration motor, and sound so that her design did not exclude 

anyone. These choices demonstrate her reflection on the trade-offs between various 

sensors.  

The final showcase of the participants’ puppets in the open house gave the 

participants visibility to a community outside of the camp. The participants were proud of 

what they made, as one participant reflected, “my favorite thing was molding and seeing 

my final product, and how it came out good”. Another talked about the results of her hard 

work, “I decorated and I did it with love and I put all my hard work in it and it turned out 

to be beautiful”. When it came to sharing their work, they were not apprehensive, and their 

feelings of success were mirrored by the community members. In the focus group, the 

participant who created the emoji pillow proudly remarked, “people said that I should 

market it”. One of the leaders observed the reactions the participants received in the open 

house, “Parents and other members of the incubator building showed up and they were all 

very impressed and excited. The students also felt proud showing off their projects.” 

Furthermore, another leader noted his high regard for the participants’ proficiency in 

presenting and explaining their creations: “All of the students were able to express a distinct 

well thought out narrative, and they were all really really good. It went really well and 

they largely hit it out of the park.” These experiences are important for those who value 
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achievement in this way and the social prestige (power) related to other community 

members acknowledging the success in their work.  

3.4.1.3 Valueless Designs and Value Rejections when Reflecting on Values 

While we intended for the flexible nature of the participatory design activities to 

allow participants to bring their own values to the project, we found that the activities could 

still cause them to reject the values embedded within different aspects of the learning 

environment. In the MoveLab, we found some instances in which participants had reasons 

for not wanting to participate within a particular discipline because they had already 

decided from prior experiences that the discipline just did not fit with what they valued. 

While in some, instances we understood the value choices participants were making, this 

was not always the case. As discussed in section 3.2.4.2, it would be useful to instantiate a 

protocol to understand value judgements participants might already have about technology, 

engineering, programming, art and design in order to gain a better understanding of how 

participants’ previous encounters with dance and technology were shaping their 

perspectives.  

Participants in the MoveLab also rejected the final performance which was 

designed to serve as a protocol for enabling them to share their dances with the broader 

community. For many participants, a public performance was something they were not 

excited about or comfortable with because they didn’t want to look stupid. A public 

performance as a non-dancer or non-performer scared many of the students and created an 

environment where students were concerned about failure rather than feeling pride or self-

efficacy over what they created conflicting with their value of achievement and social 
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power. The intention was to give the students a voice in the community to talk about the 

issues they faced while being proud of what they created, but their perspective of what they 

created and how they wanted to share it did not match with the infrastructure that was 

designed. Within the Day of the Dead this was rectified by the change in medium from the 

performing arts, to interactive puppets. The participants had to publicly present their 

projects, but they expressed more pride over what they created and were more comfortable 

with the public presentation as the community leaders coached them through it. The 

performing arts is not inherently going to conflict with all students’ values, but it has 

implications surrounding participating and performing that need to be addressed within 

how the infrastructure is designed.  

 We also identified rejection of the values espoused in the puppet planning 

worksheet in the Day of the Dead Puppet camp. The worksheet contained skull images 

which was representative of the Mexican tradition and culture of the holiday. One 

participant interpreted these images as being anti-Christian or perhaps Satanic images. This 

participant’s Christian identity and beliefs were so important to him he at first refused to 

participate. We removed the worksheet and asked him to answer the same questions 

without thinking about the images, as they were unimportant to the project.  He began 

working on his design but was not fully engaged until having talked over his conflict with 

his parents. He reflected on this in the focus group: 

Well at first, I was just trying to figure out if I was okay with it because when I think 

Day of the Dead I think of all these other religions and I’m not sure if I should do 

this so I had to talk about it with my parents, so I come out and I’m okay with it…I 

wish I could model it after something else 
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This participant was the one who reflected on the loss of his experience in drama camp. 

Another participant also felt the theme was a bit constraining. When asked what he would 

like to change about the workshop, he stated, “broaden uh the creativity…I feel confined 

with the Day of the Dead”. He struggled with coming up with something that he cared 

about within the driving problem. He created the puppet of his dog, and when asked why 

he chose what he did, he stated: 

I couldn’t really think of anything else to do. I didn’t really want to do that…I 

wanted to see and think if I could do anything else but that’s what I ended up having 

to do…I couldn’t really think of…there wasn’t anything else that I could think. It is 

like a creative spectrum and I couldn’t really think of anything else that I could 

do…and that is what I thought of and was stuck with…I couldn’t think of anything 

else so that is what I did 

This participant was not able to use the driving problem for inspiration and it was clear that 

it the problem statement impeded his values within the self-direction domain because it 

was inhibiting his ability to creatively explore the design space. However, he was able to 

pull some inspiration from the other participants in the camp. He said that the ideas for the 

technology (i.e. the LED strip along the mouth) from the participant who used it for his 

father’s grill. The SCRUM sessions and critiques facilitated sharing, on top of the sharing 

that happened because they were working in the same space. We will discuss how these 

opportunities offered opportunities to integrate participants’ values in the next section. 
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3.4.2 Value Analysis of Infrastructure for Organization  

3.4.2.1 Organizational Infrastructure Supporting Values-Based Designs 

The organizational infrastructure in the MoveLab helped participants allocate roles 

and solidify components to use. The Dance Grid and To Do Grid both played a role in 

helping the groups outline their ideas in a way that the participants could reference 

throughout their work processes. As one participant reflected, “We needed to learn about 

how to make the sensors and how to put them on the costumes and also how different 

movements would express different emotions and how different movements would affect the 

sensors as well.” The outlines highlighted what the participants needed to do and the 

different roles participants could contribute to for both the dance and technology promoting 

the value of self-direction; however, in the group work there was also social tensions 

around this. For example, when one group wrote down what they needed to practice in the 

dance one of the participants suggested that she be the director while the others were the 

dancers. One of the other participants also wanted to be a director, so the participants had 

to figure out which one was going to do what. The one with more social power became the 

director. We observed various negotiations and compromises throughout the workshop 

with boundary objects sometimes facilitating these processes providing pathways such that 

the disagreements did not always compromise the values participants were able to integrate 

into the dances. 

In the Day of the Dead, participants had other types of organizational processes 

built into the infrastructure. The peer-critiques and the SCRUM in the Day of the Dead 

workshop helped engage participants with one another’s work and build excitement. The 
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participants started off in each presentation relatively quietly with just the researcher asking 

questions. However, the discussion of each person’s work would pick up when the 

researcher got into probing about the specifics of how the puppet might respond in certain 

situations. Here is one example of a critique of the participant’s work who ended up 

creating the phone charging emoji pillow:  

Researcher: “so when it gets a message that the battery’s low from the phone, 

what, what does the puppet do to express its panic?”  

 Ashley [presenter]: “it gets big [raises hands and expresses anger with face]”  

 Researcher: “it gets mad?”  

 Ashley: [nodding]  

 Researcher: “I think you might need some sound too”  

 Jaqueline [peer]: “it could go ‘ahhh ahhhh ahhhhh’”  

Ashley [presenter]: “the output, output sound [pointing at her storyboard] has a 

calming sound [referring to what she already has when its fully charged] that could 

change to ‘wahhhhhh’” 

Researcher: “or I mean you could also have it, I like the idea of a puppet 

representing your phone dying so every time the battery gets lower [demonstrates 

the puppet by slouching her body] and lower [slouches her body lower] and lower 

[slouches lower]” 

Community Leader: “oh I can see that” 

Devon [peer]: “Oh you could use a string” 

William [peer]: “Oh I just got an idea from you two. What if it goes like this [puts 

hands up above his head and out to the side] and after a while it decreases its arms 

[slowly lets his arms fall] and they go doooooown”  

Researcher: “Yeah decreases the arms”  

Jaqueline [peer]: “Yeah and it reaches the floor” 

Community Leader: “Yeah that’s good, that’s good, that’s good” 
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The critique session had many of the participants positively reinforcing each other’s ideas. 

When a participant presented their work many of the other students would get excited about 

the idea and offer supporting ideas to help the presenter take their idea to the next level. 

The critiques embedded the values of achievement and power from the success participants 

could feel both in what they presented and in the ideas they provided to the other 

participants.  

 The critiques also served as an accessible form for one of the community leaders to 

contribute her ideas and expertise to the participants’ designs. The group was discussing 

how the participant who was creating a puppet of the virus. They were in the middle of 

figuring out how he might represent virus dying possibly from the use of a needle. She 

offers her expertise along with the researcher in the critique:  

Community Leader: “I can see that though. Right? So, for some diseases that um 

could be treated at home I could see how you could use something like that 

[referring to using a needle]. The patient gets a chance to take it with them right”  

Researcher: “to see how it works a little bit” 

Community Leader: “like a trial. Take it home and then and this thing would test 

your blood or something that sees that it has the antibodies in it and its this light 

[demonstrating light blinking with hands moving in and out] emits this yellow light 

and and then they just have to take as many doses that it injects and then the lights 

gets dimmer” 
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Researcher: “I think it needs to be a green light because that seems like poison/bad 

thing [group laughs]”  

The common knowledge of treating your health enabled a conversation around the 

technology that the community leader felt comfortable contributing to with ideas that were 

indicative of her values. In that exchange, the community leader emphasizes the patient’s 

own control and agency over their health, which were indicative of values within both the 

self-direction and security domains. The puppets became a boundary object that the 

participants, researchers and leaders within the environment could use to reflect on and 

share their own cultural responses, expressions, and values.  

The SCRUMs were noted by the leaders as engaging the participants. One leader 

recalled, “People would show off their work and update people at the end of the day…they 

would show some cool idea that they just had and it would excite other people”. The 

excitement the participants showed with one another’s work also showed in the focus group 

interviews. When one of the participant finished describing her project, another participant 

commented, “Hers was one of my favorites. Actually, all three of them were some of my 

favorites” referring to the prior three participants who had talked about their projects. The 

SCRUM and peer-critiques created an environment where participants felt comfortable 

talking about one another’s work and it became a supportive community in which they 

were proud of their work.   

The participants were not only excited about one another’s work, but actually 

understood it. In the final presentation, two of the participants were not able to make it 

because of other conflicts. When it came time to present other participants in the workshop 
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stepped in to tell the story of their projects. One of the leaders reflected on this, “That just 

went above and beyond what I would have expected…that’s not something that happens 

often…this probably couldn’t have happened if the students didn’t do the critiques or didn’t 

know what was going on in each other’s work”.  

3.4.2.2 Value Rejections in the Organizational Infrastructure 

Within the MoveLab we identified participants who rejected working in the group 

activities. The infrastructure was setup to organize all of the work around group activities 

and sharing to promote development of a community of learners. However, we saw how 

participants rejected these opportunities at times because they did not find it important to 

participate with other participants for various reasons. Some participants expressed values 

within the achievement and power domain because they were scared of how the other 

participants might judge them. Other times it was because they felt that another person’s 

participation would hinder their achievement and therefore would rather work alone.  

In the Day of the Dead Puppet camp, we noticed slightly different social dynamics. 

While we did witness some participants, who talked less in the group setting or seemed 

more unsure of their contributions in front of the whole group, we did not see anyone 

physically remove themselves from an activity, like we observed in the MoveLab. This 

could have been because more of the work was individual, because participants were not 

working in the domain of a performing art that they were apprehensive of, or because most 

of the participants were already accustomed to working with one another because they go 

to school together.  
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3.4.3 Value Analysis of Infrastructure for Building Proficiency and Knowledge 

3.4.3.1 Supporting Values with Knowledge and Proficiency  

The knowledge and proficiency that participants gained were important for being 

able to think dynamically about the materials, complete their designs in ways that 

accurately represented their ideas and values, and for their self-efficacy in the domains. 

Participants in the MoveLab workshop showed agency in choosing sensors, peripheral 

components, and choreographic and dance techniques allowing the learning experience to 

be formed around their decisions about how they were going to express their theme. Due 

to the flexibility in the design of the learning activities, the participants integrated different 

components from dance and computing. Two of the groups were able to dynamically think 

about and design interactions for integrating multiple components into their dances.  

We observed that the design cases helped students gain agency over the various 

components by giving them experience and a place to start when they were building in the 

open project work sessions. In the MoveLab, participants were most likely to use the 

components that were integrated into the design cases. The participants were able to take 

the case as a starting point to remix the code into what they needed. For example, one of 

the design cases they were given was a capacitive touch sensor made of foil that would 

play music when touched. The deforestation and bullying group used this as a starting point 

for their capacitive touch sensors. Instead of playing music, the deforestation group played 

the sound of chopping down a tree when they mimed this action in their dance, and the 

bullying group changed the sensors to activate the color change in an LED strip in the 

costume.  
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The participants in the Day of the Dead Puppet camp were able to create designs 

around different electronic components, and some were able to tap into proficiencies that 

they already had. The open-endedness of the components allowed for the participants to 

bring in materials and tools to work with as they needed. One participant reflected on this: 

“After I gotten my arts and crafts tools and I was really able to put my mind to it because 

I’m a very crafty person. I have like a whole drawer full of craft supplies, and my 

grandmom, at her house she has like a whole room full of craft supplies so I am a very 

crafty person.” This student had experience working with crafts with her grandmother and 

therefore had experience with certain tools and had developed cultural practices around 

making. When she was enabled to work using the tools she was accustomed to, it helped 

her focus on her design. She valued the power she had over the resources to achieve her 

design.  

Within the Day of the Dead Puppet camp the greater length enabled the participants 

to work with more design cases with the components than the participants working in 

MoveLab. The design cases helped get participants to experience some of the common 

errors that novices make when working with an Arduino for the first time. One of the 

leaders reflected on the errors that many of the participants faced on the initial activities 

with the Arduino, “They didn’t have the right COM port, or the Arduino wasn’t plugged 

into the computer itself. Stuff that wasn’t a problem with the circuit itself”. The participants 

encountered these errors in a simple environment before they might encounter more 

complex errors. The leaders also noted that the participants level of being able to debug the 

circuits by themselves increased over the course of the workshop. As we will discuss in the 

section below the participants showed greater agency in debugging their work and helping 
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each other out with their circuits and code in their final projects, than they showed during 

the design case activities. This was in part because they had a better understanding of how 

to fix certain issues because the design cases gave the participants multiple experiences 

facing different problems. However, it was also noted that participants also had a greater 

desire to fix their final designs.   

3.4.3.2 Technology Detracting from Values-Based Learning Experiences 

Within both the MoveLab workshop and the Day of the Dead puppet camp we 

found the scaffolding for the participants was falling short of enabling them to gain 

proficiency and knowledge in the computing domains. Within the MoveLab participants 

struggled putting together the design cases. We had originally intended the participants to 

put them together play with them, and then brainstorm some ideas of how they might use 

the sensors and actuators in a dance. We then wanted them to share their experience and 

what they learned with the other participants. However, due to the barriers participants 

faced, most of the participants were only able to put together their case with a significant 

amount of help from the CS and engineering leaders, and they did not have much time for 

exploration. The participants were given the code and given a diagram of how the circuit 

was to be constructed with the breadboard and components. The participants struggled with 

understanding the breadboard, and most did not understand how the circuits were working 

once the instructors helped them. The participants were not able to visualize where the 

connections actually were in their circuits.  

 When participants were working on their final projects the researchers noted that 

they could not collaborate well with one another because of the size of the circuit. They 
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were struggling to see what each other was doing with the breadboard when another 

participant was working on it. Because of this, one participant would often be working with 

the circuit while the other waited to see what they had done. It was also difficult for the 

instructors to help participants because the connections were close together and it was hard 

for them to reference a certain point on the breadboard in order to show the participants 

what they were talking about.  

 When the participants were creating the circuits for their dances, the majority of the 

work was completed with an instructor working directly with a set of participants. Much 

of the burden of completing the circuits for the performance was shifted to the leaders 

rather than the participants because of the timing constraints and the difficulty participants 

were having at troubleshooting their own errors. This caused the participants to have to 

pair-down their original ideas and based on our observations, we believe that this affected 

level of agency and self-efficacy the participants had by the end of the workshop. 

The participants in the Day of the Dead had more time to work with the technology, 

but still faced difficulties. While the initial design cases were there to provide guidance and 

a base of knowledge it was not as engaging for the participants. As noted by one of the 

instructors, “The initial activities the kids didn’t care about it as much. They were much 

more passive. If you are trying to get an LED to light up that’s not that interesting…If it 

was something they were excited in they weren’t passive anymore. They were pulling me 

over trying to make sure I could help them to get it to work.” While they became more 

engaged with their project they still had a low self-efficacy for working with the technology 

by the end of the camp. One of the participants commented on something she would 

change: “The only thing I would change is the hardware and have somebody that’s a 
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professional help me with it instead of like my brother trying to figure it out cause it was 

just too hard for me.” Other participants had similar qualms with the hardware, “[The 

hardware] was like the only thing I didn’t like. The wires like trying to figure out where all 

the wires went...it was confusing cause like you put this wire here and the other end here 

and then like it don’t work, and then you do...if you switch it then it works. I was like ‘this 

is confusing’...” This participant articulates the confusion using the breadboard she faced 

in understanding where the wires were connected and why they worked in certain 

configurations and not in others. 

While collaboration was not as significant in the Day of the Dead as it was in the 

MoveLab since the participants were working on different projects, they still struggled with 

the size of the tools when they were trying to help one another out. The participants in this 

workshop also demonstrated a paring down of their ideas due to the timing constraints and 

being able to figure out the code and the circuits within the timeframe. For example, the 

participant with the pillow had the idea of incorporating lights, a vibration motor, and 

sound into her design but ended up just including a motor that moved the mouth of the 

pillow to serve as the tactile response that someone who was deaf or blind could interact 

with. In this case, we did not see the same drop in engagement that we found in the 

MoveLab when participants could not do what they wanted. It seems to be linked to how 

authentically the participants felt they were able to still represent their ideas while being 

proud of the final designs. The participant who created the emoji pillow was able to love 

her creation, whereas in the MoveLab we saw several participants who liked what their 

dances stood for but not necessarily the dance itself. Designs will always need some 

reconfiguration because of resources, but the extent at which participants are able to 
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accurately represent their ideas poses implications for their values-based learning. The 

technology becomes problematic if it inhibits participants to feel ashamed of what they 

created or that they were not able to accurately communicate the values they have 

embedded in their designs. 

3.4.4 Summary of Infrastructure 

As discussed in the previous sections, the infrastructure had things that worked and 

things that could have been improved providing some insight into characteristics of good 

infrastructure and bad infrastructure in these types of environments. In the following three 

sections, I will discuss some of the takeaways that can be gleaned from these two case-

studies.  

3.4.4.1 Takeaways from Infrastructure for Reflecting on and Sharing Values 

The driving questions guided the participants in various ways to create personally 

meaningful computing objects. The questions posed in the MoveLab workshop did not 

have any student lost for ideas by the end of the participatory design activities, but also did 

not stimulate the same types of conversations that occurred in the Day of the Dead Puppet 

camp. The Day of the Dead Puppet camp’s driving question surrounding death, mourning 

and loss was able to generate discussion targeted at exploring ideas of cultural expression 

and practices that were not prevalent in the MoveLab Workshop. We found that when 

engaging in discussions surrounding culture and cultural expression it is important that 

participants do not feel that another culture is being imposed upon them. To ensure this, it 

could be important to discuss the emphasis on learning about different cultures and 

exploring similarities and differences between them. Depending on what the learning 
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environment is trying to achieve, these questions have demonstrated that they can support 

different types of reflections on values on culture. One important characteristic about both 

of the questions was that they provided an accessible topic that participants—including the 

disciplinary leaders and community members—could contribute to, bringing in expertise 

from their lives.  

The participatory design activities were generally successful across the participants 

within both learning environments for stimulating them to reflect on things that were 

representative of their values. We attribute the success of the activities to a few things. 

First, the activities were broken down into small reflections on the problem question and 

how it related to emotional and physical expression. Furthermore, we scaffolded the 

participants to link these expressions to the technology, materials, and other expressive 

medium (i.e. dance/interactive object design). Second, we implemented some of the initial 

activities using the infrastructuring strategy of formats (P Ehn, 2008) such that the leaders 

could serve as a cognitive model (Collins et al., 1989) as they outlined their own reflections 

highlighting the important aspects of the activity.  

When it came to sharing work with people outside of the learning environment, the 

two case studies demonstrated the constraints and requirements can have benefits and 

drawbacks depending on the design. The requirement having to present offered 

opportunities for the participants (that might have opted out otherwise) to have their 

achievements recognized and their ideas listened to by a supportive audience. However, if 

done poorly this could have an opposite effect, with intensified failure felt by the 

participants. Part of the failure in the MoveLab was attributed to working with novices in 

the domain of a performing art without the needed scaffolds. We do not claim that all 
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integrations between performing arts and computing are subject to failure, but suggest it 

creates important considerations in the design of the learning environment. For example, 

these learning environments could be designed to work with participants who are already 

skilled in the performing art that you are working with, it could be designed to support 

alternate ways of sharing work outside of live performances, and/or provide the participants 

with the extensive scaffolding and time that is required in the performing arts discipline to 

mentally and physically prepare participants for a live performance.  

3.4.4.2 Takeaways from Infrastructure for Building Knowledge  

The components and design cases formed the basis of the infrastructure for the 

participants to build knowledge. We found that focusing the unit of analysis on the level 

of the components in the environment provides an understanding of the types of concepts, 

opportunities, and values the learning environment prioritizes. The analysis revealed the 

issues surrounding learnability and usability of the Arduino and other electronic 

components into the participants’ designs. These issues placed constraints on what and how 

the participants were able to build. However, we did find that the design cases the 

participants constructed provided a scaffolded way to interact with the components, similar 

to the “problem- to project-based” learning environments (Brigid J.S. Barron et al., 1998). 

The cases sometimes proved to be more difficult than intended, but we found benefits in 

cases that: (1) introduced participants to issues they might hit in their final designs, and (2) 

could serve as starting points for participants to remix as they created their final designs.  

Furthermore, design cases that used computing as an expressive medium, 

stimulated engagement and motivation. For example, the fixed designs that the participants 
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would copy, such as making an LED blink, did not stimulate a desire to complete the task 

in the same way, that activities requiring students to contribute to design decisions, such 

as the emotional lamp. Cases like the lamp, had the added benefit that participants wanted 

to convey their ideas and thus had to be invested in, in order to do this. Therefore, our 

research demonstrates the benefit in integrating the ethos of using computing as an 

expressive medium even in the smaller introductory design cases.  

Outside of constructed design cases, we also had design cases from professional 

artists and technologists. Our work suggests that professional design cases can serve as a 

good tool for getting students thinking of forms of expression as well as the affordances 

and limitations of the technology and medium the professionals are working in. The 

professional cases might have contributed to the high bar for success that participants in 

the MoveLab set for themselves. In order to set more realistic expectations, it might prove 

useful to talk about the constraints and capabilities of the technology components in the 

environment in relation to what the professional cases are accomplishing.  

3.4.4.3 Takeaways from Infrastructure for Organizing Work Processes 

The learning experiences had informal and formal protocols to engage participants 

in organizing and sharing their ideas and work with others. In the MoveLab, we found 

success when the protocols forced discussions around work allocation and provided the 

groups with a shared artifact to reference as they negotiated between roles and design 

decisions. The organizational protocols in the MoveLab for sharing work were rejected in 

activities when the end result needed to be performed (ex. Dance sequences). This 
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demonstrated the need for low barriers for success, while building trust in the learning 

environment between participants.  

In contrast, SCRUMs and peer critiques in the Day of the Dead Puppet camp 

facilitated important engagement between participants. They were successful because they: 

(1) enabled opportunities for all participants to engage with each project, (2) provided a 

way for the participants to interact in ways they were comfortable with, and (3) stimulated 

ideas that could be built on by one another. The success of these discussions was also 

attributed to the fact that they were led by a leader would solicit feedback from the rest of 

the participants. Furthermore, the accessibility of the problem spaces enabled the 

discussion to get to a point where it was easy for other participants, including the 

community leaders, to contribute. These protocols offered a low bar for participants to 

engage in discussions while creating a space for shared reflection on cultural expression.  

3.5 Conclusion  

The two case studies presented focused on studying how we dynamically support 

students to create personally meaningful experiences with physical computing. We began 

this exploration with the MoveLab workshop in which we investigated ideas surrounding 

participants’ self-concepts and how they were able to see themselves within the domains 

of computing and dance. We found participants negotiating ideas surrounding their 

different perspectives of the dance and technology and how it related to their view of 

themselves. In terms of the participants’ ability to integrate a positive view of themselves 

with computing and dance, we noted the importance of multiple roles for participation, a 

supportive community, and the ability for the participant to bring in their values to what 



 114 

they were creating. By engaging the participants in participatory design activities, we were 

able to facilitate flexibility in the environment for the participants to create a personally 

meaningful experience for themselves. The dances became boundary objects which 

embedded the values of the participants and instructors in ways that then facilitated group 

work and learning.  

The success of these activities stimulated an investigation into how the 

infrastructure was both supporting and inhibiting participants to work and act in the 

environment based on their values. The construct of values useful in understanding not 

only the benefits but also the drawbacks we found within the learning environment. 

Dissention between participants self-concept and the disciplines was caused by 

participants’ past experiences in which they decided the disciplines did not align with their 

values, rejection of the values embedded in the group work, and their fear of failure. Values 

was intended to provide a nuanced perspective to design and analyze the learning 

environment for supporting various students.  

The Day of the Dead Puppet summer camp was the second study that we used to 

analyze the infrastructure for how participants values were and were not being supported. 

We analyzed the data from the perspective of values and compared it with the findings 

from the MoveLab. The driving questions supported reflection on participant values in 

different ways: the MoveLab stimulated participants to reflect on values embedded within 

issues they chose and cultural responses expressing emotions and reacting to stimuli 

associated with these issues; the Day of the Dead Puppet activity stimulated participants to 

reflect on cultural symbolism and responses to death and mourning as well as the 

expression of emotions related to these topics. We found various values were embedded 
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within the designs of the participants with the Day of the Dead Puppets having a more 

explicit integration of one’s culture rather than the implicit integration we identified in the 

MoveLab.   

Across both experiences the participatory design exercises provided the needed 

support and flexibility to stimulate participants to bring their values into the learning 

environment. The exercises guided participants to reflect on their values in ways that could 

be translated to design of a computational object. Furthermore, creating large diagrams and 

pictures in these exercises enabled these artifacts to be referenced by the participants and 

instructors in the learning environment, stimulating shared discourse around values and 

cultural responses. Furthermore, infrastructure to enable this type of discourse such as the 

critiques and SCRUMs were able to provide consistent engagement between the 

participants in the Day of the Dead Puppet camp.  

The MoveLab drew our attention to the opportunities provided by integrating 

physical computing with artistic disciplines. The participants were able to interpret their 

dances in different ways which promoted coordination around these boundary objects. 

Participants did not need to agree on what the dances actually meant as long as they were 

expressing similar emotions. This provided pathways for the participants to have values-

based learning experiences without having to agree on what values were being integrated 

into their work.  

Infrastructure that detracting from student values around achievement and power 

could be the most detrimental to the learning environment. The instances when participants 

felt like they could not succeed or were faced with sharing work that they were not proud 
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of led to rejection of the activities and disciplines. The infrastructure needs to provide the 

proper scaffolding and support within the materials and tools so that participants can 

engage with the material to gain knowledge and self-efficacy. In both environments we 

saw how the tools became a barrier to their engagement and self-efficacy within the 

computing domains; furthermore, in the MoveLab this impacted the pride and achievement 

that the participants felt over their final designs. The point of values-based learning in 

physical computing learning environments is not just to make technology accessible within 

the workshop in a way that is meaningful to participants, but to provide an avenue to 

continue this dialogue in the participant’s life. If we intend to engage participants who are 

stereotypically underrepresented in computing it is important that they have continued 

access and knowledge to apply technology in ways they find valuable. If they leave these 

environments feeling incompetent or that they need a professional in order to work with it, 

we have taken this opportunity away from them. In the next chapters, I explore the physical 

computing tools from the perspective of how they promote engagement with the concepts 

underlying physical computing and their self-efficacy to engage with the discipline.  

3.6 A Note on Values-Based Learning and its Limitations 

Values-based learning intends to situate design of learning environments in values 

and culture to enable the designer to be reflective of what aspects of the infrastructure 

might be promoting particular value domains and strategies of action that might include or 

exclude students. When designing these two original learning environments we were 

primarily concerned with providing enough flexibility and support for students to be self-

directed to create something that is a reflection of their values. This was intended to create 

a personally meaningful experience while providing an opportunity for them to share their 
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values and culture with others. The concepts underlying values-based learning are not 

designed to stand in opposition to the concepts within constructionism or project-based 

learning, but they are intended to provide a way to examine and explore design choices 

within these types of environments.  

 When implementing values-based learning it is important to acknowledge the 

values embedded in the learning environment and their relations to when and how values 

manifested in the data. Incorporating values-based learning within the context of physical 

computing education we are implicitly suggesting that there is some alignment that can be 

made between the participants’ values and what they might be able to create with the 

technology. On top of this the technology choices that we make and how we structure the 

work activities also has implications on the values integrated into how it forces participants 

to work. I made explicit choices to use an Arduino because of the flexibility it provides to 

enable participants self-direction, but at the same time it introduced constraints on the types 

of things participants were enabled to do. The tools and materials chosen to scaffold 

participants are important to how you analyze the values within the environment.  

Another important note on integrating values-based learning, is that as researchers, 

we bring our own biases to how we interpret data and it is possible to misunderstand a 

participant’s reasoning for engaging in a particular way or for not wanting to engage at all 

in an activity. This could happen because the participant has not indicated their reasoning 

for their behavior or because they hide the actual reason (i.e. face-saving (Goffman, 1956)). 

As Geertz states, “that what we call our data are really our own constructions of other 

people’s constructions of what they and their compatriots are up to” (Geertz, 1973). Using 

multiple sources to triangulate findings across the course of the study (Lincoln & Guba, 
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1985) along with providing thick descriptions (or rich contextual information) (Geertz, 

1973), helps to improve the understanding of the learning environment and the participants. 

However, it remains important to try and identify when certain data is inconclusive rather 

than trying to force an understanding of the data from the perspective of values of which 

we might not understand.  

While the studies offer some promising results, the learning environments had a 

small number of participants and they were heavily resourced. While the smaller sample 

size provided the ability to closely analyze the individual experiences of the participants, 

it also means we cannot assume these same strategies will be beneficial in contexts with 

many more students or those in which the educator to student ratio is lower. More research 

is needed to explore the applicability of these types of interventions in different contexts 

to see where the infrastructure is supportive and where it breaks down. 

3.7 Contributions  

The work presented in this chapter explored the following research questions:  

RQ1. How does design of physical computing learning environments affect students’ 

ability to integrate their diverse values into their learning experience?  

1.1 How can we conceptualize the design of the learning environment from the 

perspective of students’ diverse values?  

1.2 How can we analyze the learning environment from the perspective of 

students’ diverse values?  

1.3 What characteristics of the learning environment in physical computing 

activities impact students’ ability to integrate their diverse values into their 

learning experience?  

There are five main contributions from these studies. First, the work defines and analyzes 

the construct of values-based learning experiences as a way to create dynamic personally 
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meaningful computing environments. Second, it provides a method for analyzing learning 

environments from the perspective of values by applying the concept of infrastructure to 

deconstruct the design choices. Third, it identifies ways the design of infrastructure can 

both support and mitigate the values of students. Fourth, the research analyzes participatory 

design as a way to promote student reflection on values in computing learning 

environments. Fifth, the work identifies and analyzes boundary objects as a useful 

construct for exploring computing artifacts for facilitating communication and 

coordination between members in the learning environment. While the MoveLab 

workshop and the Day of the Dead Puppet camp provided an initial insight into the physical 

computing tools, we did not specifically target their investigation within these studies. The 

next couple chapters examine the tools in both a classroom and laboratory study, which 

were designed to bring greater insight into how novices were working and learning with 

the Arduino.  
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CHAPTER 4. BACKGROUND: PHYSICAL COMPUTING 

TOOLS 

In both the MoveLab workshop and the Day of the Dead Puppet camp, the tools 

caused the participants to run into barriers in terms of their engagement and self-efficacy 

with computing. The impact of these tools matter because if we want to be inclusive and 

equitable in the types of people supported to participate in computing, our learning 

experiences need build proficiency and knowledge for learners to continue working with 

the material outside the learning environment. Preparing students with self-efficacy and 

knowledge in physical computing, enables them to continue exploring these domains in 

ways that align with their values. Furthermore, by providing opportunities to explore the 

hardware and software we offering different pathways for students to engage with 

computing. Whether it be the physical design of computing objects, programming of the 

code, or designing and building the electronics, participating in each pathway could have 

different implications for different students. By allowing students to learn about the 

different pathways, we are providing access to different avenues for participants to find 

value within the computing disciplines. The work presented in the following sections was 

part of a publication in the ACM Interaction Design and Children proceedings (DesPortes 

& DiSalvo, 2017). 

4.1 Introduction 

Physical computing in education dates back to the 1970s in MIT’s Artificial 

Intelligence lab where early explorations showed promise for the physical computing 
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domain to successfully enable students to think about complex ideas while working in the 

physical world with tangible computing devices (Blikstein, 2015; Perlman, 1974; Mitchel 

Resnick & Ocko, 1990). Since then, researchers, educators and designers have developed 

toolkits for children and hobbyists to work more easily with tangible computational 

devices. The rise in devices has been propelled by the popularization of the maker 

movement, which emphasizes production over consumption of technology (Dougherty, 

2013; Hatch, 2014). The maker movement has stimulated extensive use of physical 

computing toolkits in educational spaces to engage students in experiential learning as they 

explore technology through design of computational objects (ex. (Buechley & Eisenberg, 

2008; Deitrick et al., 2015a; DesPortes, Spells, & DiSalvo, 2016c; 2015)). While physical 

computing is becoming more prevalent in education, it is still unclear what students are 

learning in these interventions. To understand the capabilities of these tools to facilitate 

learning it is essential that we begin to analyze the design choices embedded in these tools 

based on their ability to support exploration of computing concepts.  

Physical computing offers students multiple pathways into learning about 

computing. The toolkits have hardware, giving the tool its tangibility, and software, giving 

the tool its ability to support interactive behavior. Depending on the tool, students can 

engage in design of computational objects, explore the programming aspects, or learn about 

the electronics. The ability for the student to explore these domains is completely 

dependent on the modularity integrated into the design of the hardware and software tools. 

We use Sadler et al.’s definition of modularity, as the “ability to freely recombine 

elements” (Sadler, Shluzas, Blikstein, & Katila, 2016). We characterize modularity by the 

transparency—what is visible or obscured from the learner—and the affordances for 
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interaction—how learners manipulate and combine the tools as they build computational 

objects. The effect of these two characteristics are inseparable—the transparency affects 

what the learner interacts with, and what the learner interacts with in turn affects what is 

transparent to the learner. 

While the physical computing toolkits range from programmable paper robots 

(Kwak, Kang, Lee, & Wu, 2016), to tools that can be programmed by physically 

manipulating the pieces (Raffle, Parkes, & Ishii, 2004) (see (Blikstein, 2013b, 2015) for a 

comprehensive review of the tools), the modularity in the electronic elements often lies on 

two extremes. The tools are either highly obscured, allowing students to plug-and-play the 

hardware without learning about the electronics, or they are left completely open-ended, 

with little to no scaffolding, creating a difficult learning environment for novices. While 

obscuring the electronics is a valid choice for some learning environments, it would be a 

lost opportunity if we ignored the capabilities inherent in physical computing to support 

pathways for students to explore the electronics. We draw attention to design decisions 

embedded in the modularity of the hardware tools to examine their ability to support 

learning.  

In this chapter, I first introduce the perspective of scaffolding used to analyze the 

modularity of the hardware tools. We then discuss the background literature based on this 

construct. This sets the stage for a systematic breakdown of the hardware tools. We then 

outline the spectrum of modularity, analyzing the transparency and affordances for 

interaction. This enables us to discuss how these design decisions are tied to the tools 

capabilities to facilitate learning. By highlighting possibilities within the design space not 

often explored, the framework contributes to our understanding of how to create 
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educational physical computing toolkits. The goal of this breakdown is not to provide the 

answer for designing physical computing tools, but to provide a framework for examining 

the design choices embedded in the modularity of the tools in order to understand their 

capabilities for learning. After exploring the design space, I will wrap up the chapter with 

a discussion of possible misconceptions that students could encounter when working 

within the tools in our physical computing experiments.  

4.2 Black-Box and Glass-Box Scaffolding  

In order to examine how design decisions, affect learning, the modularity of the 

tools is viewed as a way to provide scaffolding. By supporting certain interactions and 

making certain concepts transparent, the modularity can facilitate learning. I examine the 

range of scaffolding that the physical computing tools can provide from the perspective of 

Hemlo and Guzdial’s  black-box and glass-box scaffolding (Hmelo & Guzdial, 1996). They 

describe black-box scaffolding as something that both helps a student perform an action 

that they could not otherwise perform, while shielding them from having to learn about 

how the scaffolding works. They state, “Black-box scaffolding performs a task in place of 

the student performing that performance goal, usually because learning to perform that 

goal is determined to be unimportant”(Hmelo & Guzdial, 1996)  (Hmelo & Guzdial, 1996, 

p. p128). Conversely, glass-box scaffolding helps the student understand how the 

scaffolding works. They state that, “it is important for the student to understand what 

glass-box scaffolding is providing because we want the student to be able to take on the 

functions that the glass-box scaffolding is providing” (Hmelo & Guzdial, 1996, p. p128). 

They suggest that the types of scaffolding should differ based on the learning goals and 

objectives. If it is unimportant for the student to learn how to do what the scaffolding is 
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doing, it should be black-boxed and not fade; however, if the function of the scaffolding is 

important for the student to learn, it should be glass-boxed and fade as the learner gains the 

knowledge and skills to carry out the task for herself.   

In a physical computing environment that exposes students to electronics and 

programming, there will be a time for black-boxing and a time for glass-boxing in both the 

hardware and software tools. Unfortunately, prior literature shows that the hardware 

elements in physical computing are usually either fully black-boxed, without a pathway for 

fading or having little to no scaffolding (Blikstein & Sipitakiat, 2011). This leaves us to 

wonder, where are the glass-boxes? In order to take advantage of physical computing 

tools’ ability to teach students about the electronics, we need to examine the design space 

in this realm. The framework presented is one perspective that can be used to tie the design 

to the learning affordances in the hardware tools. 

4.3 Previous Analyses of Physical Computing Tools 

Other researchers have analyzed the types of physical computing tools that are 

available. In one analysis, Blikstein and Sipitakiat categorized the tools into two main 

models: the cricket model—plug-and-play features that hide complexities in the electronics 

(ex. LEGO Mindstorms, LittleBits); and the breakout model—open-ended designs that 

enable the user to extend functionality through interfacing with other electronics (ex. 

Arduino, Raspberry Pi, etc.) (Blikstein & Sipitakiat, 2011). The plug-and-play or cricket 

models enable users to explore various inputs and outputs to the microcontroller, but the 

electronics themselves are completely black-boxed. A prevalent argument against this 
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model is that, “In packaging electronic components into higher-level modules, toolkits can 

obscure the technology they seek to make accessible” (Mellis et al., 2013, p. 83).  

The open-ended or breakout models are more complex. These solutions require that 

users combine individual electronic elements into circuits, understand where the 

connections need to be made, and how to troubleshoot the circuit when things go wrong. 

Depending on the shields and the packaging of the peripheral electronic elements, the 

modularity and therefore scaffolding can vary within these tools. One of the main 

arguments against this model is that it is difficult for novices, and this difficulty then creates 

barriers for novices to learn the programming and design concepts (Blikstein, 2015). Chan 

et al. (Chan, Pondicherry, & Blikstein, 2013) also discuss the need to address the gap 

between the accessible platforms and expert platforms through design. These researchers 

argue for tools that can begin to scaffold students between these the two extremes 

(Blikstein & Sipitakiat, 2011; Chan et al., 2013; DesPortes, Anupam, Pathak, & DiSalvo, 

2016).   

In a later analysis, Blikstein critically analyzes the range of designs and argues for 

the importance of attention to the selective exposure embedded within the design choices. 

This construct is similar to the glass- and black-box scaffolding. He discusses how what is 

visible and what is hidden determines the contrasting goals of usability and power. The 

more exposed the device is, the less useable it is; and the less exposed the device is, the 

less power and flexibility the tool has (Blikstein, 2015). His analysis reveals that the usable 

education friendly tools obscure many of the electronics concepts, while the open-ended 

kits, which are less usable, have the capability to cover the electronics concepts (i.e. the 

Arduino and BASIC Stamp) (Blikstein, 2015). Within his discussion he argues for explicit 
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analysis and understanding of the affordances of the design choices within the toolkits 

before introduction into an educational domain. He states, “Instead of exposing children to 

inadequate technologies, a more productive approach would be to identify the many 

toolkits that children should use throughout their school years, understand what each can 

accomplish, and task designers with the creation of better bridges between toolkits” 

(Blikstein, 2015). Our paper explores a way to conceptualize the design of these bridges in 

physical computing toolkits in which the electronics and programming are not obscured.  

4.4 Analyzing Modularity 

The design of the entire physical computing learning environment can be explored 

for the modularity. Depending on how the hardware and software has been packaged holds 

implications for what is accessible to the learner both in how they apply the modules and 

in what they learn from the modules. The software for example, can have complex code 

such as face recognition available to novices by putting it in an easily referenced module 

in which users do not need to understand how it works (Chailangka, Sipitakiat, & Blikstein, 

2017). I’m going to focus on the modularity of the hardware for this analysis.  

4.4.1 Segmenting the Hardware  

In order to analyze the ability to create bridges between hardware tools, we segment 

the hardware into three categories: the electronic connectors, the programmable 

electronics, and the peripheral electronics (Figure 17). We use these categories to illustrate 

how differences in function drive differences in design explorations.  
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Figure 17 – Segmentation of hardware for design and analysis  

A high-level discussion of these three categories examines the related literature illustrating 

how modularity plays an important role in each aspect of the hardware when designing for 

learning. We then take a deeper dive exploring the design space of the peripheral 

electronics. While all of these categories are important, the current literature has few 

examples exploring how the design of peripheral electronics affects learning. We believe 

many of the bridges between levels of modularity can be created through examining the 

affordances for interactions and transparency of these tools.    
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4.4.2 Electronic Connectors  

Within the various designs of physical computing kits, researchers and designers 

have explored different methods for connecting and constructing circuits. The capabilities 

of these connections have been conceptualized based on their materiality and their ability 

to scaffold students. Eisenberg’s (2002) examination of construction kits identifies the 

means of connection/construction materials as one of the central dimensions of design. He 

argues that the materials and their capabilities guide the user to certain creative possibilities 

based on the materials’ affordances and constraints. He argues that this affects what the 

user experiments with and therefore learns about (Eisenberg et al., 2002). The materiality 

of the physical computing kits has been explored by researchers and designers investigating 

materials such as thread (Buechley & Eisenberg, 2008), ink (Mellis et al., 2013), stickers 

(Qi, Huang, & Paradiso, 2015), play dough (Johnson & Thomas, 2010; Schmidtbauer, 

Johnson, Jalkio, & Thomas, 2012), fiber optics (Eisenberg et al., 2002), magnets (Bdeir, 

2009; Chan et al., 2013), and button snaps (“Snap Circuits,” 2017).  

The choices made about the material and how users create connections affects its 

use in certain situations. These capabilities make certain domains more or less transparent 

to the learner. For example, the Chibitronics circuit sticker kits (Qi et al., 2015) that enable 

students to lay conductive tape as traces between electronic elements lend themselves to 

surfaces in which the tape sticks well (ie. paper, cardboard, hard smooth surfaces, etc.). 

This would guide users to explore designs such as interactive paper creations but would be 

more likely to obscure domains such as wearables where the sticky conductive traces might 

not stick. A tool such as the LilyPad Arduino would be more appropriate for bringing 

transparency to wearable computing.   
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The materiality also guides the permanence and therefore the learners’ interactions 

as they experiment with the tools. In playdough circuits  (Johnson & Thomas, 2010; 

Schmidtbauer et al., 2012), there is a distinctive ability to continuously mold, reposition, 

and repurpose the dough as a user is working with it. This stands in contrast to circuit 

stickers, which once laid are more difficult to undo and reuse. While there is no empirical 

data on the differences between the modularity of these two models in electronics 

education, research in other educational fields suggests that being able to receive feedback, 

reflect on mistakes, and iterate upon the design can be an essential part of the learning 

process (Ericsson, Krampe, & Tesch-Römer, 1993; Schön, 1987). 

The types of connections can also affect students’ interactions by determining how 

easily students can make connections to recombine elements. Chu et al. investigate six 

types of connectors in an investigation of children’s motor skills (ages 8-11) (Chu, Saenz, 

& Quek, 2016). They found that children often either misused the connectors due to an 

incorrect mental model or they had difficulty physically operating the connector. Children 

were most successful at using the electronics when the connection points were obvious and 

there were few steps to use it  (Chu et al., 2016).  

Blikstein takes a slightly different approach to analyzing the connections between 

the tools. He describes the connections through the lens of embedded error correction 

classifying tools based on their ability to guide students into making connections correctly 

and thus avoiding errors. He draws attention to the spectrum of design choices from no 

error correction (ex. LilyPad, Arduino, Chibitronics), to error correction in the form of 

specifically shaped connectors designed to guide the user to correctly insert them (ex. 

Phidgets/GoGo board/Cricket), to correction in the form of connectors that cannot be 
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inserted incorrectly based on size, shape or connection capabilities (ex LittleBits/LEGO 

MINDSTORMS) (Blikstein, 2015).  

Embedded error correction relates to modularity in the students’ ability to know 

how and why to combine the elements together and the ease at which they can complete 

this. Embedded information can make interactions more seamless by scaffolding students 

to more rapidly combine elements with fewer mistakes. Depending on how these 

characteristics are implemented the transparency into the tool often decreases. Tools like 

LittleBits and LEGO MINDSTORMS black-box much of the electronics and do not require 

students to think about how to connect the elements but instead whether they can connect 

them. For example, LittleBits alters the perception of a circuit, which becomes a line of 

Bits instead of something that resembles a complete circuit. Within this level of 

transparency, there is no visibility into how electricity is flowing through the elements and 

so it is impossible for a student to learn anything about it. However, the embedded error 

correction in the magnetic connectors that guides “legal” connections, enables rapid 

prototyping. This opens up opportunities to learn about design without the overhead of 

learning the electronics.  

On the flip side, when working with tools like the LilyPad Arduino that do not 

scaffold connections, students might experience more errors when interacting with the 

elements. However, the transparency into the connections enables the possibility for 

students to learn about electronic concepts. For example, in an E-Textiles workshop, 

Peppler and Glosson demonstrated that students learned about current flow, important 

aspects of connections between the elements, and the polarity of elements (Peppler & 

Glosson, 2013). These concepts were transparent to the learner, who could not create a 
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circuit without implementing knowledge of these concepts in the construction of their 

circuits.  

4.4.3 Programmable Electronics  

The programmable electronics are the interface between the software and the 

hardware in a physical computing toolkit. The programmable electronics are often the 

central entities of physical computing projects because they control the interactive behavior 

of the hardware. The modularity of the programmable electronics affects the transparency 

of the communication between the hardware and software. When the programming is not 

obscured, the user uploads code to a programmable integrated circuit (IC). The code can 

create sophisticated behavior that would be more difficult to create without programming 

(i.e. independent logic gates).  

The transparency determines the accessibility of the IC and affects the user’s 

control of the IC. For example, the Arduino’s popularity was due in part to its inexpensive 

scaffolded packaging that enabled untrained professional hobbyists and designers easy 

access to powerful hardware (Mohomed & Dutta, 2015). The Arduino platform makes the 

pins transparent and therefore allows the users to capitalize on their functionality. The 

markings on the Arduino platform and documentation guides interactions with these pins 

making it easier for a professional to combine into designs with other hardware. 

The scaffolding of the programmable electronics goes from none at all (i.e. just the 

IC), to scaffolding that completely obscures the pins of the IC. Mellis et al.’s “Untoolkit” 

is on the side of no scaffolding. They have their users directly integrate the microcontroller 

chip into a conductive ink circuit (Mellis et al., 2013). Interactions of users to combine 
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elements together are only guided through documentation because there is no opportunity 

for scaffolding in the hardware. On the highly scaffolded end of the spectrum, there are 

tools such as LEGO MINDSTORMS. This tool has specific places for proprietary 

peripheral components to be plugged into the main controller. The IC and access to its pins 

are completely obscured from the user. The GoGo board is somewhere in the middle 

because it obscures the particular microcontroller pin connections but has transparency into 

the connections for particular inputs and outputs to the microcontroller circuit. There is 

flexibility in terms of what inputs or outputs go where; for example, there are 8 analog 

inputs, but a particular set of sensors are not specified for these pins (Blikstein, 2015; 

Sipitakiat, Blikstein, & Cavallo, 2004). Similarly, shields for the Arduino such as the Grove 

Sensor shield also strike a balance between what is and is not visible in the connections to 

the IC. The shield gives you access to different types of ports such as digital, analog, I2C 

(Inter-Integrated Circuit synchronous protocol for sending data), and UART (asynchronous 

serial protocol for sending data). The connectors are the same across the types of ports so 

the user has to make an informed decision about when to use which one. 

The modularity of the programmable IC is tied to the capability of the toolkit to 

support students in understanding how the software is communicating with the hardware. 

Depending on how the design exposes or obscures connections to the IC pins designates 

the set of interactions required by the user to facilitate communication between the 

hardware and software. This affects how the students understand the connections and the 

transparency of the processes through which the code is affecting the peripheral 

electronics. Booth et al. demonstrate the importance of this based on  their finding that a 

breakdown in a user’s understanding of the interactions between the hardware and software 
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can lead to difficult errors for the user to overcome (Booth, Stumpf, Bird, & Jones, 2016). 

Research has yet to empirically investigate what types of modularity facilitate 

understanding of the hardware and software interactions, and how this affects the usability 

of the tools.    

4.4.4 Peripheral Electronics  

The modularity of peripheral electronic elements used in physical computing kits 

can exist in a wide variety. These elements vary in complexity and transparency affecting 

users’ interactions when combining them. A closer examination of the design space within 

these abstraction layers can be the key to enabling designers to create the bridges between 

the usable tools and the more powerful tools that were highlighted by Blikstein (Blikstein, 

2015). We have created a design spectrum to examine the affordances of the various 

electronic elements for learning. For the sake of simplicity, I will discuss these tools in the 

context of wired connections between electronic components. Wires were chosen because 

of their prevalence and the ease of iteration using tools on the market. Focusing on wires 

places constraints on the design space, which are useful now, and can be removed in future 

explorations when they are needlessly inhibiting. Table 11 traverses six levels of 

modularity using circuit boards that we have designed 
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Table 11 – Spectrum of Modularity for Peripheral Electronic Components 
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In the discussion of this spectrum, we refer to the electronic components as the 

individual electronic pieces such as an LED or a resistor. We combine electronic 

components with circuit boards to create glass-box scaffolding for the learner. The 

modularity is discussed based on the types of interactions that are possible with the circuit 

boards, which make certain concepts and electronic component behaviors more or less 

transparent to the user. The spectrum starts with Level 1 circuit boards that have the least 

transparency, and traverses to the Level 6 circuit boards with the most transparency into 

the concepts and components. In describing the levels, we highlight differences in 

interaction and transparency that could help identify design choices to facilitate learning. 

The spectrum serves as a guide for creation of glass-box scaffolding that can fade 

throughout the learning process. The levels draw attention to design choices that could be 

useful for scaffolding students to learn about physical computing concepts, while 

emphasizing the levels as steps for designers to explore the trajectory of glass-boxes for 

students to transition between. Using examples from industry, the literature, and some of 

our own, we will examine areas for exploration in the design space of physical computing 

tools. 

4.5 Spectrum of Modularity 

4.5.1 Level 1: Plug-and-Play with Static Components 

The first level of modularity comprises of multiple electronic component modules 

where the components are soldered into a circuit that can be directly connected to a 

microcontroller or another circuit. Table 11, contains an example of an LED and resistor 

circuit with the components soldered to the board. There are many examples of these tools 
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in use today. Figure 18 shows two examples of circuits that have been packaged into 

modules: (a) a LilyPad Arduino light sensor, and (b) a microphone breakout board. Circuit 

boards at this level can be seen as a tool that gives students the ability to play with particular 

sensor, actuator, or pre-programmed module but only requires them to understand the 

circuit as a black-box with inputs and outputs. 

(a)    (b)  

Figure 18 – Example plug-and-play circuits that provide users with simple input 

and output pins to gather or provide data: (a) LilyPad Arduino light sensor 

(“LilyPad Light Sensor,” 2017) and (b) Microphone breakout board (“High 

Sensitivity Sound Detector,” 2017) 

Each of the modules in Figure 18 has power connections, ground connections, and 

signal connections. All of the internal connections are masked from the user, which can 

have only a few components, such as the light sensor (Figure 18(a)), which has 2 

components—photoresistor and pull-down resistor—or several components in the case of 

the microphone breakout board (Figure 18 (b)), which has a microphone, analog-to-digital 

converter, operational amplifier, resistors, etc.  

Using plug-and-play static modules allows the user to interact with the circuit 

boards based on a signal that they either send or receive, and there is transparency in how 

the circuit board interacts with the world. Depending on how it is used, the student can 
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learn about the signal in a variety of ways. For example, the user could observe the signal 

from the light sensor in Figure 18(a) in an abstract way, such as a number representation 

output from a microcontroller, or as a concrete physical representation, such as connecting 

it in series with an LED to visualize how the light sensor affects the brightness. These 

various representations could lead to different understandings of what is going on in the 

circuit and possibly how signals are being manipulated in the code.   

Within the literature, Sadler et al. begin to investigate some of the affordances of this 

plug-and-play design using an LED circuit in a virtual world (Sadler et al., 2016). They 

found that having a plug-and-play design, in which the user doesn’t have to wire the LED, 

increased the number of designs the users could make with the LEDs. However, by adding 

a simple wiring task they could raise the cognitive flow—or the alignment between the 

user’s perceived difficulty of a task and their perceived ability (Csikszentmihalyi & 

Csikszentmihalyi, 1992)—of the users as long as the task was not too difficult (Sadler et 

al., 2016). The authors echo the importance of understanding the learning goals in order to 

choose how to package components, “Modules may be a poor choice if one’s goal is to 

educate a designer on the technical aspects of a system, since the details are hidden. 

However, if the primary goals is to enable functional prototyping of a creative idea as 

quickly as possible, then modules are effective candidates” (Sadler et al., 2016, p. p144). 

Their study examines virtual circuit boards only within this first level of modularity. In the 

following sections, we examine other levels that might enable rapid prototyping along with 

educating the designer about electronics concepts.  
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4.5.2 Level 2: Plug-and-Play with Static and Variable Components  

The second level of modularity involves predefined circuits, similar to Level 1, but 

integrates pin headers for some of the components so the user can experiment with 

particular aspects of the circuit to change the behavior. Table 11 shows an example of the 

LED circuit in which the resistor becomes a variable component. By creating an aspect of 

the circuit that is variable, the learner is guided to experiment with specific manipulations 

to scaffold her into learning about a certain concept. The variability can create 

transparency of a component and/or a particular circuit concept as it guides interactions 

with the circuit. In the case of the LED circuit, the concept of resistance is now accessible 

to the learner through tangible interactions that were not possible in the first level of 

modularity.   

There has been little exploration of the design space in this level of modularity; 

however, we see potential to facilitate learning. The most similar breakout boards are ones 

like the LCD breakout board in Figure 19.  
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Figure 19 – LCD Breakout board that enables the user to control the brightness of 

the LCD using a potentiometer (“16x2 LCD Keypad Shield for Arduino Version B,” 

2017). 

The LCD circuit has a potentiometer that controls the screen brightness, which gives the 

user some ability to manipulate a component in the circuit. However, because a knob is a 

conventional way for users to interact with electronic devices (ex. radio knobs), it is unclear 

if the learner would gain any conceptual insight from this manipulation. A more effective 

way of promoting students to learn the underlying concepts, might be to force the learner 

to make intentional changes to the circuit components in ways that build their conceptual 

models about electricity, the components in the circuit, or circuit itself. This intentionality 

should guide reflections on the changes within the circuit. While it is possible for students 

to complete many circuit manipulation tasks without reflecting, as designers of educational 

technology the goal is to attempt to increase the possibility of this reflection occurring.  

Figure 20 provides two other examples of circuits that meet this level of modularity. 

They are designed to use the pin headers as guides for students to make intentional changes 

within the circuit and observe the behavior that ensues from these changes in order to make 

a particular concept transparent. 
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(a)  (b)  

Figure 20 – Two level 2 modules: (a) two lead sensor circuit with pull-up/pull-down 

resistor in which the sensor can be changed; (b) 555 timer (astable) break out 

enabling user to manipulate the resistances and capacitance to change signal 

frequency 

Figure 20(a) shows a design of a module that can either be a pull-up or pull-down 

resistor circuit. This circuit board intends to bring transparency to how information can 

take different forms based on how electrical signals are translated into data (i.e. high vs. 

low). The students must make intentional decisions about where to connect the power and 

ground and can explore differences in the signals and how the code interprets the signals. 

The students using this board can also manipulate the sensors used in the circuit. For 

example, they can explore different types of variable resistors such as a flex sensor (flex-

sensitive resistor), a photoresistor resistor (light sensitive resistor), and a thermistor 

(temperature sensitive resistor). This brings transparency to similarities between how these 

two lead sensors work.  

Figure 20(b) shows the design of a module that demonstrates how students can be 

scaffolded into using more complex components, such as the 555 timer. This circuit puts 

the 555 timer into its astable mode that outputs a stream of rectangular pulses, of which the 

timing of the low and the high pulses is determined by the variable resistors and capacitor 

in the module. This circuit board brings transparency to the role that these variable 
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electronic components have on the output of the 555 timer. The students can learn about 

the relationships of these components without having the overhead of connecting all the 

pins in the IC or having to sort through the differences in possible modes of the timer. 

Instead of learning about an overarching concept of electronics like in the previous 

example, this circuit board scaffolds students into learning about the functionality of the 

555 timer. While manipulating these aspects of the circuit does not teach students 

everything about the 555 timer, it scaffolds students into understanding how to use 

hardware to manipulate the 555 timer into specific circuit behavior.   

4.5.3 Level 3: Plug-and-Play with Variable Components 

The third level of modularity is similar to the second level, but there is less 

scaffolding within each circuit because all the parts are variable. There is now transparency 

brought to all components within the circuit. This level of modularity is similar to the 

electronics kits popularized in the 70s and 80s, in which the base board design allowed you 

to insert different components in guided configurations to create a variety of projects. For 

example, Velleman’s 130 in 1 electronics lab kit (ex. Figure 21).  



 142 

 

Figure 21 – Velleman Electronic Lab Kit 130 in 1 (Velleman, 2018) 

One could consider this level of modularity as similar to blocks-based programming 

languages, which enable students to modify certain aspects of the functions. For example, 

a move function that lets the user tell the computer how far, but not have to deal with the 

entire syntax or building the function. Blocks-based programming languages have been 

shown successful in giving students access to the power of computing and computational 

thinking (Brennan & Resnick, 2012), while creating an environment that is easier for 

students to tinker with code and understand the functionality of the various blocks 

(Weintrop & Wilensky, 2015a). We anticipate that Plug-and-Play Variable Component 

tools can achieve similar goals in the electronics side of physical computing.   

The example circuit in Table 11 is of the LED circuit in which both the resistor and 

LED can be manipulated. The information on the module still provides scaffolding to help 
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students correctly assemble the circuits (i.e. polarity of LED), but logically there are more 

mistakes that can be made in this stage when compared to the previous. Depending on the 

circuit and its implementation in a learning activity, it could be more difficult for an 

instructor to draw a students’ attention to one aspect of the circuit now that all aspects are 

variable. The entire circuit becomes transparent and open for the user to interact with. For 

example, if a student is playing with the LED circuit she might end up switching out the 

LED each time she switches out the resistor. When she is done experimenting, she might 

not understand the cause for the change of brightness she would have experienced. 

However, the greater number of interactions that this design affords enables an instructor 

to come up with more complex problems. For example, the student can be tasked with 

experimenting with the multiple variables to determine which electronic component is 

responsible for the changes they are seeing in the circuit. This type of design can enable an 

educator to incorporate larger ideas into their activities such as systematic analysis of a 

problem and experimental design. This type of educational design is similar to the inquiry-

based physics research where students explore concepts of mechanics as a way to 

understand complex phenomena (ex. (Laws, 1991)). Researchers Schulz and Pinkwart 

have begun to explore the capabilities of physical computing to support scientific inquiry 

(Schulz, 2016; Schulz & Pinkwart, 2016).  

4.5.4 Level 4&5: Static & Variable Single Component Modules 

Level 4 and 5 are the levels of modularity in which we transition from multiple 

components packaged together to single components packaged by themselves. These two 

levels are presented together because conceptually that are very similar but have different 

affordances for scaffolding between the levels of modularity. The interactions with the 
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components are now on a component level rather than based on components integrated into 

a circuit. The connections between components is no longer scaffolded leading to an 

exponential number of concepts that a learner can be exposed to. 

The single component circuit boards are useful for their embedded error correction 

(Blikstein, 2015) that give a little bit more information on the component than would within 

an open environment. Snap Circuits (Figure 22) and LightUp (Chan et al., 2013) are both 

examples of this type of module.  

 

Figure 22 – Snap Circuits (“Snap Circuits,” 2017) are an example of a Level 4 Single 

Component Static Circuit Board 

Table 11 shows a resistor module in both level 4 and 5 forms. The circuit boards offer 

transparency into information about the component that would not be visible otherwise. 

The Level 4 circuit boards have the component physically soldered to the module so there 

can be specific information such as the resistance of the resistor, or polarity (ex. in the case 

of an LED) to ensure the LED is plugged into other components with the correct 

directionality. Many of the tangible electronics tools that have existed for decades have 

similar affordances. For example, the Thames & Kosmos Electricity Master Lab (Figure 

23) that has circuit diagram symbols on the blocks with the components embedded inside; 

or Vat19’s Draw Circuits Kit in which the components are separate but you can draw 

conductive ink to connect them (Figure 24).   
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Figure 23 – Thames & Kosmos Science Experiment Kit Electricity Master Lab 

(Thames & Kosmos, 2018) 

 

Figure 24 – Vat19’s Draw Circuits Kit (“Draw Circuits Kit,” 2018) 



 146 

The Level 5 modules give this same type of error correction for things such as 

directionality but depending on the component may have less specificity; for example, the 

resistance module is not restricted to a particular resistance. While there is no guarantee 

that the Level 5 component will be used properly (i.e. the LED placed into the module the 

way the board designates), it does have the affordance of enabling the user to transfer 

components between abstraction layers and possibly into a final permanent solution. While 

we do not have any empirical data, this interaction with the component could be beneficial. 

4.5.5 Level 6: Open Circuit Modules 

The final level of modules is less defined in terms of the components but focuses 

instead on the relation between components. The connections between components are set 

(i.e. if two things are in parallel or in series), but the modules do not guide the student into 

using any specific component in the various slots. Depending on the number of leads the 

component has, the student is still restricted to some degree. Figure 36 shows examples of 

various types of connections in a circuit that an educator could allow their students to 

experiment with using two lead components. Using these circuit boards allows an educator 

to bring transparency to concepts such as resistors and capacitors in series versus parallel.  
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(a)                   (b)  

Figure 25 – Level 6 Modules: (a) parallel circuit, and (b) combination parallel/series 

circuit 

These circuit boards scaffold the students in terms of creating a specific circuit, but they 

still enable the students experiment with various concepts depending on the components 

used. There are no examples of these particular types of modules that we know of, so it is 

unclear if students would remember what the connections were between the components 

they explored. This would be necessary for them to understand the underlying concepts. 

We believe this level could be worthwhile for designers to experiment with. 

4.5.6 Open-Ended Prototyping Tools  

The level above the modular components are open-ended prototyping tools that 

have less restrictions on use and components. With the current tools on the market there is 

potential for them to be improved through designs focused on usability. Breadboards are 

often used to test out circuits in this environment before the learner makes a circuit more 

permanent. A breadboard is used for easily connecting wires and other electronic elements 

when prototyping circuits. Breadboards often take on a standard design, which I 

hypothesize is difficult for new students to work with due to its complexity and lack of 

visibility into the connections. I have created another design called BitBlox. The BitBlox 

modules were designed to decrease the complexity while still keeping the open-ended 
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affordances that the standard breadboard contains. The design of BitBlox bring modularity 

and visibility to the design for the purposes of increasing its usability. Figure 26 shows the 

same circuit prototyped with the two different tools. In CHAPTER 5, I present a study in 

which I examine the use of these two tools in a classroom setting, and in CHAPTER 6, I 

expand upon my insights through use of these tools in a laboratory study along with Level 

1 (Plug-and-Play with Static Components) and Level 3 (Plug-and-Play with Variable 

Components) modules.   

(a)  (b)  

(c)  

Figure 26 – Showing the same circuit prototyped with (a) the standard breadboard, 

and (b) the BitBlox modules. (c) Shows the circuit diagram that represents these 

circuits 
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4.5.6.1 Standard Breadboard Design 

The standard breadboard design has two main sections—the outside rows and the 

middle columns. The holes or contact points in the row sections are only electrically 

connected to contact points in the same row. The contact points in the column sections are 

only electrically connected to the contact points in the same column (see Figure 27 (a) and 

(b)). There is an electrical break going across horizontally in the middle of the board 

separating the two sections of columns above and below the break. The other common 

design is to have a breadboard that consists of just the center column section from the first 

design (see Figure 28).  

(a)  (b)  

Figure 27 – Most common standard breadboard design with two sections: every hole 

in each row is interconnected, and every hole within each column is interconnected 

(a) shows the front or top, with (b) showing the back or bottom of the breadboard 
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Figure 28 – Another common breadboard design in which there are only the 

columns with interconnected holes.  

4.5.6.2 BitBlox Design  

BitBlox are similar to Breadboards in that they also have holes or contact points 

into which wires can be plugged in. Each of these contact points is electrically connected 

to other contact points that have the same color and are connected. In some variations, all 

contact points in the board are electrically connected (see Figure 29 (a) and (b)). Other 

BitBlox modules are color coded to identify the connections (see Figure 29 (c)(d)(e)(f)). 

The multi-connection blocks have been made in order to enable components in the market 

to fit on them. For example, Figure 29 (d) enables users to use a button that physically 

would not otherwise be able to span between two BitBlox modules. Figure 29 (c) could be 

used with transistors, (e) could be used with something with even more pins, such as an 

LCD module, and (f) could be used for integrated circuit (IC) chips. 
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(a)   (b)  (c)  (d)  

(e) (f)  

Figure 29 – BitBlox modules (a) and (b) completely connected modules, (c) five 

separate columns of connected holes, (d) two separate sections of connected holes, 

(e) seventeen separate columns of connected holes, and (f) front and back of two 

sections of 10 separate columns of connected holes.  

This connection scheme was designed to require less memorization than the standard 

breadboard’s. The individual BitBlox modules can snap together like puzzle pieces. The 

flexibility of snapping together the BitBlox allows the user to modify the structure of their 

breadboard giving them the ability to organize and adapt the tool for their needs. For 

example, if they wanted to, they could mirror a circuit diagram more closely, like in Figure 

26. We hypothesized that this would also allow the students to break up the circuit in 

various ways for either conceptual or collaborative purposes.  

4.5.7 A Note on the Spectrum of Modularity 

Physical computing has been explored for its ability to engage students with 

technology (ex. (Blikstein, 2008; Deitrick et al., 2015a; DesPortes, Spells, et al., 2016c; K. 

Searle & Kafai, 2015)), but it is often unclear what students are learning or how they might 
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transfer this knowledge to other situations. With each design decision in a physical 

computing toolkit there are choices being made about what is important for the students to 

be able to modify, and each decision affects what the students are able to learn. By focusing 

our attention to the modularity in the design of learner-centered tools we explore the 

affordances design choices could have in scaffolding students to build their conceptual 

models.  

The spectrum outlined above is one way to conceptualize the glass-box scaffolding 

that can exist within the electronic components in physical computing toolkits. By 

designing based on the transparency and the interactions that the tools afford, the 

modularity physically contains the ability for the learner to explore concepts in physical 

computing in a constrained way that still supports constructionist learning (S Papert, 1993). 

The theoretical ideas underpinning this scaffolded exploration of physical computing are 

analogous to those offered in the problem- to project-based work (B.J.S. Barron et al., 

1998; Blumenfeld et al., 1991). Educators can systematically expose students to particular 

concepts that can facilitate transitioning students to an open-ended scenario in which 

students are empowered to create with technology. It is possible that the ease of use 

provided by these glass-boxes enables students to go through the material too quickly 

without reflection on what each level of the circuit design highlights. However, if these 

circuit levels are seen as a set rather than designating one level as the answer, then these 

risks might be mitigated because the scaffolding will fade and the prior modules can serve 

as cases that are physical references as learners proceed through various activities. 

The spectrum of modularity provides a framework to empirically analyze design 

choices successes and failures in educational interventions. The spectrum is outlined such 
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that it can be investigated, iterated upon, and improved rather than to mandate a final state 

that the design of these educational circuits should take. By drawing attention to the 

modularity of design choices we can begin to create learner-centered physical computing 

tools providing learners access to the powerful concepts of computing. I will now go over 

the background literature around misconceptions which will be useful for situating the 

findings from the studies investigating tools.  

4.6 Misconceptions 

The misconceptions that are within the domains of CS and electronics are important 

for understanding how the findings form the comparative classroom study and the 

laboratory study investigating the tools. I will go over the literature within the computer 

science, electronics and physical computing literature that shed light on misconceptions 

relevant for this dissertation.  

4.6.1 Computer Science Misconceptions 

The programming concepts that students can be exposed to in a physical computing 

environment are vast. Within introductory experiences, students are generally exposed to: 

loops, variables, and conditions.  

4.6.1.1 Interpretation of Notional Machine 

One of the misconceptions that spans almost any programming 

language/environment is a student treating the computer as an agent that can interpret 

information like a human instead of a notional machine. Pea coined this as the “super bug”. 

Students believe that a computer “has goals, and knows or sees what will happen elsewhere 
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in itself” (Pea, 1984, p. p30). This type of error can lead to many mistakes due to lack of 

specificity in a student’s code. For example, Pea notes a prevalence of a parallelism bug in 

which “the assumption that different lines in a program can be active or somehow known 

by the computer at the same time, or in parallel” (Pea, 1984). These types of 

misconceptions could be present in a physical computing context since the Arduino 

programming environment is a notional machine that has analogous requirements in how 

the students need to communicate instructions to it as compared with other programming 

environments.   

4.6.1.2 Iterative Logic 

Misconceptions surrounding loops or iterative logic are also expected to prevail 

within the physical computing context. The premise of the software the runs on the Arduino 

is that there is a “forever loop” that the code runs so that the microcontroller is continuously 

manipulating the hardware. Iterative logic is important even for a simple program like 

Blinky LED. Blinky LED turns on and off an LED, and it is often used as the introductory 

activity for novices (Figure 30).  
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Figure 30 – Blinky LED code that is used to continuously turn on and off an LED 

connected to pin 13. 

In order to blink an LED, most students seem to understand the concept of turning 

something on then off and the need for a delay in between those commands. However, the 

second delay that is not physically between anything, is more confusing. The command to 

turn on the LED after you have turned it off is not below it, but instead at the top of the 

loop. 

In prior literature, novices have been recorded having several misconceptions 

concerning loops (Kaczmarczyk, Petrick, East, & Herman, 2010). Based on the prevalence 

of loops within physical computing these are probably relevant to a physical computing 

environment as well. Students have been shown to have difficulty understanding, “which 

statements are repeated in loops and where loops begin and end” (Sleeman & others, 1984, 

p. p17). Some of this might have been due to using Pascal as the textual programming 

language in this study. Research concerning loops in programming languages found great 

importance in the semantics used for the looping structure (Stefik & Gellenbeck, 2011; 

Stefik & Siebert, 2013; Weintrop & Wilensky, 2015b). Using “repeat” instead of “for” 

showed an improved success rate with novice programmers (Weintrop & Wilensky, 
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2015b). Within the blocks-based language we are using, “repeat” and “forever” are the 

terminology used in the looping functions. It is unclear from the literature how “forever” 

will be interpreted by the students. Students using “for” loops have also shown 

misconceptions about the control variable, thinking that it “does not have a value inside 

the loop” (Sleeman & others, 1984, p. p18). Sleeman et al. also identified that students 

sometimes believe a “for” loop will change how many times it is iterated based on 

irrelevant information inside the loop (Sleeman & others, 1984).  

4.6.1.3 Variables and Assignment Statements 

Physical computing often uses variables which can hold things such as pin 

assignments or values that are read from a particular sensor. Depending on the project 

students might be able to get away without having to implement variables, but we discuss 

some of the misconceptions seen with variables that could be relevant.  Variables can be 

set to a specific value or to the result of a statement which is evaluated. Sorva found that 

students with a limited understanding of expressions were not able to understand the 

concept of evaluation of a statement. Furthermore, students believe a variable would store 

an unresolved expression (Sorva, 2012). Putnam et al. found that novices demonstrated 

frequent misconceptions with variables. One frequent misconception was that a variable 

could contain more than one value. They noticed other occasional difficulties that novices 

had with variables, such as not realizing the change in value of a variable when it was set, 

and novices would confuse two variables (Putnam & others, 1984). Sleeman et al. 

investigate novice high school students using Pascal and found that students made several 

errors using variables. When it came to assigning variables to one another there was a 

confusion in what happens when variable A was said to equal variable B (ie. A=B). Some 



 157 

felt that the variables should be swapped, some felt that nothing would happen, and one 

decided that the variables would be printed (Sleeman & others, 1984). When two variables 

are interacting, novices seem to misinterpret the outcome. Another issue that has prevailed 

in the literature, is that variable naming affects how students interpret what the variable 

contains. The name of variables can be confusing if they are not mapped onto what a 

student expects them to mean (Sleeman & others, 1984). As Kaczmarczyk states, “Student 

applies real-world semantic understanding to variable declarations.” (Kaczmarczyk et al., 

2010).  

4.6.1.4 Conditional Logic 

Physical computing projects often use conditional statements in order to control 

how the inputs to the microcontroller effect the outputs from the microcontroller. Students 

often have difficulties with various aspects of conditional logic. Students often harbor 

misconceptions about “if” statements. In Putnam’s study, students believed that a program 

would terminate if the condition of an IF statement was not true (Putnam & others, 1984; 

Sleeman & others, 1984). Another version of this misconception is that the code will return 

back to the beginning if a statement is untrue (Putnam & others, 1984; Sleeman & others, 

1984). When an “if” statement did evaluate as true some students believed that it would 

execute regardless of the program’s location within the code (Pea, 1984). The spatial 

location of code near an “if” statement could also cause confusion. Sleeman et al. found 

that statements that were not in an “if” statement block but proceeded it was interpreted by 

some of the students as being the “else” statement. Sleeman also found that some students 

thought their print statements within conditional logic statements would always be 

executed regardless of their location within the statement. Other students demonstrated that 
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they did not understand conditional logic at all and believed that both the “if” and the “else” 

statement will be executed when the program runs (Putnam & others, 1984; Sleeman & 

others, 1984).  

4.6.2 Electronics Misconceptions 

Physical computing electronics in the Arduino environment often involves students 

reproducing circuits that they are given diagrams of how to construct. When students make 

mistakes, debugging often requires a base level understanding of some electronics 

concepts. I will discuss the misconceptions within the conceptual areas of current flow, 

polarity, voltage and resistance. While the literature offers some research to inform what 

might happen in a physical computing environment, many of the studies do not use physical 

circuits so it is difficult to understand what will and will not transfer into this learning 

environment. 

4.6.2.1 Current Misconceptions 

The concepts within current flow could be some of the most important concepts in 

physical computing in terms of being able to get a circuit working. These concepts 

encompass being able to: identify a complete circuit and a short circuit, understand how to 

handle a node (ie. multiple connections at the same point) within a circuit and understand 

how current splits between different paths. Engelhardt and Beichner created a validated 

test instrument to understand novices’ misconceptions of direct current circuits, which 

tested physical aspects of circuits, energy, current and potential difference. Within their 

study they used circuit diagrams and illustrations of real circuits. Regarding current, they 

found that many students were incapable of identifying a complete circuit and incapable of 
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identifying a short within a circuit (Engelhardt & Beichner, 2004). This is an important 

concept in physical computing because students need to be able to understand why parts of 

their circuit are not working. Students also thought of a battery as a current source (ex. 

thinking current does not change in relation to resistance), thought current always split 

evenly through parallel junctions, and reasoned sequentially about the current, viewing it 

as being “consumed” as it traveled through various components (Engelhardt & Beichner, 

2004). In a study building upon this work, DesPortes et al. investigated some of the 

questions within their instrument comparing students who reasoned about both a physical 

circuit and a circuit diagram. In both the physical form and the circuit diagram forms, they 

found similar issues with students not being able to identify a short circuit, viewing the 

battery as a current source, not understanding current splitting and reasoning sequentially 

about current (DesPortes, Pathak, & Anupam, 2016). These misconceptions are prevalent 

throughout much of the literature (Cohen, 1983; Jaakkola & Nurmi, 2004; Küçüközer & 

Kocakülah, 2007). Furthermore, DesPortes et al. found that students were more likely to 

reason sequentially about current in the physical form than in the circuit diagram form 

(DesPortes, Pathak, et al., 2016), which suggests this might be more likely to occur in the 

physical computing environment. Sequential reasoning is one of the most common 

misconceptions about electricity that students harbor (Beheshti, Aljuhani, & Horn, 2014; 

Cohen, 1983; Grotzer & Sudbury, 2000; Küçüközer & Kocakülah, 2007) and could be 

difficult to correct due to its emergent nature (Chi, 2005). The misconceptions about 

current misconceptions could be dangerous if students are not able to identify faulty 

behavior in a circuit if they think it is correct based on their misconceptions. 
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4.6.2.2 Polarity Misconceptions 

Polarity is a concept that students are exposed to in physical computing when 

working with the Arduino. The Arduino can be used as a voltage source and is often used 

in conjunction with LEDs into activities (ex.(Peppler & Glosson, 2013)). There are a set of 

misconceptions within the literature associated with polarity of the voltage source and how 

it works. One misconception is that current comes out from the positive side of a battery 

and the negative side isn’t needed (Küçüközer & Kocakülah, 2007). In the physical 

computing environment this might translate into a student not understanding the necessity 

to have their circuit connected to ground. Another common misconception is that current 

comes out of both sides of the battery and clashes within circuit components (Butts, 1985; 

Küçüközer & Kocakülah, 2007). This might not cause them to create an incomplete circuit, 

but it could affect their ability to reason about and debug and incorrect circuit. This 

misconception would likely hinder a students’ ability to understand a diode which only 

allows current to flow in one direction.  

4.6.2.3 Voltage Misconceptions 

The Arduino often acts as a voltage source for the various circuits that are attached 

to it. It is unclear what level of voltage is necessary in order for a novice to be successful 

in physical computing. Students often need to understand the concept of connecting circuits 

to a common ground, and they might need to understand voltage drop across components 

to understand how certain sensors work. One error that students often make is that they do 

not distinguish their views of current and voltage (Cohen, 1983). This error could cause 

them to misunderstand circuit behavior. In one study, where students did not have a 
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conception of voltage, they were shown to make up what they believed to be voltage drops 

across components (DesPortes, Pathak, et al., 2016). This could lead to an improper 

understanding if something is working correctly or incorrectly in a physical computing 

scenario. 

4.6.2.4 Resistance Misconceptions 

Resistance is an important concept that applies to many of the physical computing 

components and sensors (ex. resistor, potentiometer, flexsensor, photoresistor, etc.); 

however, it is also a concept that many students confuse. Many studies have identified that 

some students get confused about what happens to resistances in series and parallel, do not 

understand that series or parallel resistances could have an effect on the circuit, or think 

that resistance is something that changes with changing current (DesPortes, Pathak, et al., 

2016; Engelhardt & Beichner, 2004; Küçüközer & Kocakülah, 2007). This could affect 

how a student interprets what is going on in a particular circuit and what information is 

getting sent to the Arduino.  

4.6.3 Physical Computing Misconceptions 

Currently, within the physical computing literature, there are few studies that focus 

on how learners are thinking about the physical computing artifacts, tools or concepts 

prevalent in this domain. Little work exists which uncovers the misconceptions learners 

create and even fewer focus on studying how complete novices are thinking about these 

concepts. I will review the literature that exists.  
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Granott’s dissertation was one exploration that focused on how computational 

artifacts are understood. Her work focused on how adults explored computational robots 

built with Lego Bricks and pre-programmed with particular behavior that was complex and 

difficult to identify. For example, “one robot moved forward and sideways toward 

shadows, and after bumping into an obstacle it retreated and turned around”.  Both of her 

studies comprised of adults. She identified three phases within the developmental process 

as the participants began to understand the objects: actual phase → representational phase 

→ abstract phase. The actual phase comprised of the participants understanding the 

behavior of the robots through its “actual actions and perceptions”. The representational 

phase comprised of participants understanding the causality of what stimuli in the 

environment caused the behavior. Lastly, in the abstract phase participants connected 

participants understanding of the robot’s behavior to how the robot’s structure actually 

generated the behavior. The adults in this experiment were able to gain a high level 

understanding of how and why the robot was able to interact in certain ways using an object 

in which the programming and electronics were highly obscured (Granott, 1993).  

When we work with students in physical computing we hope that they are able to 

traverse similar phases of understanding such that they gain some knowledge of the 

underlying concepts of computing; however, it is unclear what phases of understanding 

they actually traverse and what knowledge they gain from the experience. While Granott’s 

studies focus on exploration of computational artifacts rather than creation of them, the 

levels of understanding could be useful in relating them to what might be seen in novice 

students as they create computational artifacts. It is important to note that the population in 

these studies consisted of elementary school teachers and graduate students, each of whom 
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has advanced knowledge of learning that could result in vastly different behavior and 

understanding than students.  

The most informative prior literature in understanding what people are thinking and 

what issues they face during physical computing tasks are Booth et al.’s investigation of 

end-user developers working with Arduinos (Booth & Stumpf, 2013; Booth et al., 2016) 

and Sadler et al.’s analysis of beginners learning and prototyping with Arduino and LED 

circuits (Sadler, Shluzas, & Blikstein, 2017). In Booth et al.’s one study (Booth et al., 2016) 

they investigate a set of adult participants who constructed a Love-o-Meter which used an 

Arduino microcontroller to visualize a reading from a temperature sensor using three 

LEDs. The participants in their study were not novices and were able to use the internet to 

solve the problem. The participants had on average about 10yrs programming experience, 

7yrs electronics experience, and 3yrs physical computing experience. Despite their 

experience and a reasonable level of self-confidence only 6 of the 20 participants 

successfully built the computational artifact with the right specifications. They found that 

more obstacles and breakdowns occurred when the participants were programming as 

opposed to creating their circuit. However, when they investigated the issues that inhibited 

the participants in completing the task successfully, they found that the majority of fatal 

issues were related to errors in the circuit construction. Some of the errors the participants 

demonstrated in the electronics were:  

- Incorrectly wiring components (ex. the temperature sensor leads) 

- Incorrectly identifying a sensor as not working when their circuit was wrong 

- Using incorrect resistances (ex. with LEDs) 

- Incorrectly inserting a component into the breadboard so it does not make 

contact 

- Improperly testing their sensor 
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The authors propose two suggestions for improvements to the environment: creating better 

tools for testing and debugging physical computing, and figuring out how to better educate 

the end-user developer (Booth et al., 2016).  

In another investigation, Booth et al. (Booth & Stumpf, 2013) investigate the 

programming environment in the context of a physical computing task, comparing blocks-

based versus text-based languages. The participants had never programmed an Arduino but 

had some programming experience (i.e. familiarity with loops, variables, and ‘if 

statements’). Each participant completed two programming tasks one in each environment: 

one task involved remixing code of a program to extend its functionality, and the other task 

involved creating code from scratch to complete a task. The authors gave half the 

participants the text-based program for task 1 and the blocks-based program for task 2, and 

flipped the order for the other half. The participants were given the completed circuits to 

use with their code. The authors analyzed the participants think-aloud and video data for 

the system learning barriers (Ko, Myers, & Aung, 2004) to understand the usability of the 

various tools. They quantified success of the task completion and measured the self-

efficacy and the cognitive load of the participants in each environment. They found that 

the task completion was low in both environments but lowest in the text-based 

environment. They also found that users had a lower perceived workload and a higher 

perceived self-efficacy in the visual programming language as opposed the textual 

programming environment (Booth & Stumpf, 2013). 

In terms of the specific errors participants encountered, there were significant 

numbers within both cases. The text-based environment contributed to syntactical issues 

that slowed the participants down and affected their ability to focus on the program design. 
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These findings mirror many of the issues identified when students are using textual 

languages in computer science education (Weintrop & Wilensky, 2015b, 2015a). The 

blocks-based environment was difficult for many of their participants to make the blocks 

do what they wanted them to do (i.e. coordination barrier). They had issues connecting 

blocks and knowing whether they were connected or not. Furthermore, it was difficult for 

users to navigate the variety of blocks in the environment and understand what the various 

blocks did. Both environments encountered issues with visibility into what the code was 

doing. While the incorrect circuit behavior enabled them to identify that an error existed in 

their code it was difficult for them to understand why it was happening. As shown in Booth 

et al.’s other study, the complexity of isolating the issue is compounded if they also do not 

know whether their circuit is correct. This study provides an understanding of some of the 

usability issues students might face as they encounter physical computing with the Arduino 

for the first time. However, in the first study their participants had knowledge of 

programming, circuits and working with the Arduino before, and in the second study the 

participants knew how to code and were provided with a working circuit.  

Sadler et al’s study is one of the few studies investigating high school students 

working and learning with the Arduino (Sadler et al., 2017). They use data from a study 

conducted by Jung et al. (Jung, Martelaro, Hoster, & Nass, 2014) who investigated design 

of an animated agent to guide participants through an Arduino tutorial. The study 

encompassed 68 participants, and, although the participants’ experience levels were not 

reported on, the authors report that they accepted complete novices. The animated agent, 

embedded in an LCD screen, walked participants through a 10min Blinky LED tutorial 

using the standard breadboard and a text-based Arduino IDE. After the tutorial, the 
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participants could experiment prototyping with more LEDs, resistors, paper, scissors, and 

markers without the help of the agent for 15min. If the participants became stuck, the 

researcher would help them through the error. Sadler et al. used the video data to analyze 

the types of errors that were made during the tutorial and exploration (Sadler et al., 2017).  

Sadler et al. reported that 47% of the participants could not get through the Blinky 

LED tutorial without researcher intervention. Furthermore, their analysis of the errors 

participants made within environment found that the biggest error was a slip in one 

connection in their circuits leading to an open circuit (18 participants). The other errors 

identified were: theoretical misunderstanding creating incorrect circuits (10 participants), 

syntactical programming errors (9 participants), LED backwards (7 participants), 

misunderstanding the breadboard connection scheme (4 participants), crashing the 

software (3 participants), missing wires in their circuits (2 participants), electronic 

components breaking (2 participants), confusion of the microcontroller pins (2 

participants), software usability error (1 participant) and confusion between the 

components (1 participant) (Sadler et al., 2017). They also found that four participants 

decided to not touch the electronics in their prototyping session and eight participants had 

a visible lack of interest in the task.  

These findings provide a start for understanding the numerous obstacles and 

mistakes high school students face with the Arduino. The open questions from this work 

are: what are the theoretical errors that participants struggled with in the hardware, how 

were participants thinking about the tools and concepts, how did novices approach problem 

solving, and how would different types of prototyping tools impact the experience. While 

the limited amount of time given to the participants for learning how to use the Arduino 
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might be similar to an individual learning at home on their own, it is unclear how the 

experiences would be different if the participants were provided with more scaffolding.  

In the following two chapters, I explore two different methods for examining the 

hardware tools and the experiences of novice high school and college students working 

with the Arduino. The first investigation is a comparative classroom study that looks at the 

errors and interactions between different groups using the Breadboard and the BitBlox. The 

comparative classroom study served as a pilot that investigating the tools within one class 

period of novices providing insight to the socio-technical implications of the tools. The 

second study, was a laboratory study designed to provide a closer look at how novices are 

thinking about these tools for the first time. It gave insight into the conceptual complexities 

beginners are faced with when working with these tools.  
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CHAPTER 5. BITBLOX COMPARATIVE CLASSROOM STUDY 

5.1 Introduction and Context of Study 

The pilot study was comprised of two class periods designed to compare the use of 

BitBlox to the standard Breadboard. While there are imperfections with comparative 

studies in the wild, the design of this study allowed us to observe how the various tools 

affected learning and collaboration, bringing to light future directions for further 

investigation. The work presented in this chapter was largely part of a publication in the 

Interaction Design and Children conference (DesPortes, Anupam, et al., 2016). 

Table 12 – Student demographic information 

Students Gender Ethnicity Age 

 M F White  Black 16  17  18  
Breadboard  

(22 total) 
9 13 20 2 14 7 1 

BitBlox  

(22 total) 
14 8 21 1 11 11 0 

Table 13 – Student prior experience 

Students 
Had 

Experience 

No 

Experience 
Unreported 

Breadboard 

(22 total) 6 15 1 

BitBlox 

(22 total) 3 18 1 

The participants that completed the pre-study survey and class activities comprised of 44 

high school juniors enrolled in a rural, southern US school. The majority of the students 

were 16 or 17 years old identifying as White or Caucasian (see Table 12). The study took 

place during a regularly scheduled Drafting class designed to introduce students to topics 



 169 

in engineering. The majority of the students had never worked circuits before (see Table 

13). 

 The study incorporated two classes—one class used BitBlox and one used the 

Breadboard. The students worked in pairs with a computer and a basic Arduino kit. There 

were 11 pairs on each day. Each class lasted 1hr and 40min, following an identical 

curriculum: surveys → presentation → simple circuit exercise → challenge circuit 

exercise. The presentation introduced the Arduino, explained either the BitBlox or the 

Breadboard, and walked through building a basic circuit for blinking an LED (Figure 

31(a)). In the final step, the pairs of students worked without direct guidance to build the 

challenge circuit (Figure 31 (b)). 

(a)  (b)  

Figure 31 – (a) The schematic for the introductory LED circuit. (b) The schematic 

for the Simon memory game circuit.  

The challenge circuit involved building the circuit needed to create the Simon memory 

game. The game involves the computer randomly generating an ever-increasing pattern of 

blinking LEDs for the player to replicate by pressing buttons connected to the LEDs. The 
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students had to construct the circuit and then upload the pre-programmed code that they 

received. 

5.2 Data Collection and Analysis  

Data was gathered through pre-study surveys administered at the beginning of the 

class and through participant observations during the class periods. The pre-study survey 

asked students their age, ethnicity, gender, and if they had experience with building 

circuits, working with the breadboard, or working with the Arduino. Three researchers 

taught the lesson material, distributed the supplies in the class, and gathered the 

observations. This enabled them to be alerted when there were issues and listen to each 

group explain their circuit. They agreed to split their attention on different sections in the 

classroom to ensure no group was left unnoticed. The researchers agreed to focus their 

observations within the broad categories of: mistakes, misunderstandings, questions, 

collaboration patterns, moments when a feature in the tool seemed helpful or problematic, 

and patterns in tool use. They didn’t pre-define a list of codes for the observations because 

this was a pilot study and sticking to a rigid list would run the risk of missing key 

observations. Each of the researchers took hand-written notes during the class, recording a 

diversity of observations throughout the class because they each worked with a variety of 

pairs. After each class, the researchers audio-recorded a conversation amongst themselves 

discussing their written observations. They first talked about general observations of the 

class, and then addressed each group to discuss what each one of them found in their 

personal notes. This strategy ensured that the audio recording incorporated all of the data 

from each researcher. 
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 The audio recording of the researchers’ conversation was transcribed and used for 

analysis because it contained all of the data from the observation notes and reflections made 

throughout the classes. The researchers independently coded the transcription for patterns 

in the categories defined above. They then met to agree on a final code book with 

appropriate labels and settle discrepancies regarding transcribed text with different labels. 

Reaching a consensus, they solidified the codes (see Table 14). Observation notes for each 

code was then cross-referenced for patterns across and between conditions. 

Table 14 – Codebook with descriptions and examples 

Category Description Example 

Tool Usage How they used the Breadboard or 

BitBlox 

Not connecting any of the BitBlox 

during their circuit construction 

Student Hesitancy Students demonstrating doubt and 

uncertainty 

Wanting to be told if their 

approach was correct before 

building it  

Student Agency Students demonstrating self-

efficacy/autonomy 

Debugging circuit on their own 

Concept Errors Errors made based on not 

understanding basic concepts 

Not being able to transfer a signal 

from one point in a circuit to 

another  

Component Errors  Using components (ex. LED) 

incorrectly 

Mixing up the button orientation 

Tool Error  Errors with using or understanding 

the tool 

Plugging both ends of an LED into 

one BitBlox module 

Collaboration 

Within Pair 

How students worked together in 

their pair 

One student directing while the 

other was plugging in the wires  

Collaboration 

Between Pairs 

How different pairs interacted One pair using a finished group’s 

circuit for comparison  

Work Strategies  Strategies students used to get the 

circuit working 

Color coding of their circuit to the 

diagram 
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5.3 Findings  

Below we present the findings that are most relevant to how the tools affected the students 

and learning environment. 

5.3.1 Circuit Layout 

The students using the Breadboard only had small variations between the circuit 

layouts. The variations primarily encompassed using different combinations of rows or 

columns (see Figure 32 for an example circuit). The compact nature of the Breadboard 

made debugging the circuit difficult for the students. We observed students having 

difficulty tracing out their circuit for the instructors. 

 

Figure 32 – An example Breadboard circuit 

The BitBlox allowed for more variation since there were different modules the students 

could use and different ways they could connect them. Figure 33 (a), (b), and (c) show 

some of the various layouts from the different groups. Group F used many blocks and only 
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connected a few (Figure 33 (a)). Two of the groups made an island of BitBlox for the 

buttons and an island for the LEDs (Figure 33 (b)). Other groups used many blocks but 

snapped them together making a circuit that was more compact and organized (Figure 33 

(c)). 

(a)  (b)  

(c)  

Figure 33 – (a) Group F’s spread out circuit, (b) Group D’s large organized circuit, 

and (c) Group A’s small compact circuit 

5.3.2 Tool Issues 

Confusing the Breadboard row and column connections caused issues with all of 

the students. The researchers observed all 11 pairs mixing up the underlying connection 

schemes between the row and column. This error persisted throughout the length of the 
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class, despite students hearing repeated explanations. For example, after running out of 

contact points to place wires in a column, group B began to group the wires in the columns 

next to it, as if being close together meant that they were connected. After the Breadboard 

rows and columns were explained to them, they corrected this error and continued to 

construct their circuit using the columns properly, but incorrectly extended the column 

connection scheme to the outer rows of the Breadboard. 

Observations showed the BitBlox connections caused confusion in four groups. In 

all four cases, they tried connecting a component with both sides into one block rather than 

connecting it across blocks or across colors. The BitBlox enabled many block layout 

options, which led to decision paralysis in some of the students. For example, Group F was 

stuck for 10 minutes trying to decide between multiple ways of connecting the ground wire 

for the components. “These are all connected, but should they be in one block or separate 

blocks?” they asked. Even though they could build it either way, they wanted a 

straightforward solution. They finally decided to use separate blocks and ended up with the 

circuit in Figure 33 (a). 

5.3.3 Component Errors 

The buttons were a pain point for almost all of the pairs in both classes. Because 

the buttons had four pins, students had trouble understanding their orientation. The students 

using the Breadboard struggled with connecting the button and then connecting wires to 

the button. All of the students had the opportunity to hold and examine an example button 

on the Breadboard enabling them to see how it bridges across two columns.  Yet when 

applying that to their own circuit, many of them confused the rows and columns and had 
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difficulties comprehending what happened to the connections when the button bridged the 

two columns. 

Students using the BitBlox also had issues with connecting the button to the block 

because they confused the orientation. However, the students used the visual color cues on 

the block to fit it into their circuit properly. 

5.3.4 Terminology 

The majority of the students were novices and learning new circuit terminology. 

We observed that in both conditions, students were initially confused with terms such as 

resistor, LED, and what positive and negative meant in this context. We observed 

additional confusion during the Breadboard class with the added terms of row and column. 

Further, students initially confused the ‘+’ and ‘-’ annotations on the Breadboard with the 

positive and negative sides of the LEDs. While these annotations did lead to confusion, we 

also observed that the annotations were a useful way for students to reference parts of their 

circuit as they were explaining them to researchers. 

5.3.5 Other Circuit Building Issues  

The researchers observed students struggling to transfer connections, such as power 

and ground, from one point in the circuit to another. At least six groups faced this issue 

with the Breadboard. This problem occurred at times when students exhausted all holes in 

a column and needed to connect more wires to it. Only two groups were observed 

struggling to transfer connections with the BitBlox. No students were observed running out 

of holes while using the BitBlox, which may be related.  
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When some students encountered an issue, instead of debugging their circuit, they 

took it apart and rebuilt it. Of the Breadboard groups four were observed using this 

technique, as opposed to one Bitblox group. Roughly the same number of groups in both 

conditions built their circuit color coded to the diagram—i.e. they matched the wire color 

to the diagram. Observations showed two Breadboard groups tried to map the number of 

wires to the schematic. This caused them to leave out wires because of the lack of a one-

to-one correspondence between what they considered a separate wire in the diagram versus 

their actual circuit. 

5.3.6 Collaboration 

Some students disengaged from the circuit building activity, either not paying 

attention at all or merely observing and not contributing anything. However, this was more 

pronounced amongst students using the Breadboard. Five groups using the Breadboard had 

at least one disengaged student as opposed to only one group using the BitBlox.  

The Breadboard was more compact, so it was not placed in between the members, 

but instead resided in front of one person. This made it difficult for one student to see it as 

the other worked on it. A few groups were struggling with the close connections on the 

Breadboard. In one pair, the male student said to the female student, “your fingers are 

smaller, maybe you can make this work”. 

Students using the BitBlox often had the modules physically placed in front of both 

people as they worked together. Each member of the pair was not necessarily plugging in 

wires at the same time, but they could clearly see and engage with what the other student 

was working on. 
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5.4 Discussion  

The findings from the comparative study between the Breadboard and BitBlox led to 

interesting design considerations for creating tools for building circuits.  

5.4.1 Simplicity in Design 

While neither connection scheme was flawless, we observed that the BitBlox’s 

simpler connection scheme resulted in fewer user errors. The simpler scheme also meant 

that fewer terms were needed to describe the tool to the students. This proved beneficial 

for decreasing the complexity of the learning environment as the students had many other 

terms to learn and new concepts to understand.   

Several groups were observed struggling with the underlying connections of the 

Breadboard, but far fewer had similar problems with the BitBlox. We attribute this to the 

simplicity of BitBlox design as it set a lower level of entry for novice students, allowing 

them to build the same complex circuits that are built on breadboards.  

5.4.2 Affordances for Organization 

Circuitry, even at a basic level, can be difficult to understand. Intermediates and 

experts become trained over time at understanding complex circuits and are able to use this 

skill when building and debugging them. To an untrained novice, these tasks can lead to 

frustrations. We noticed groups took apart their circuit instead of trying to debug it more 

often in the Breadboard groups than in the BitBlox groups. On both days, some students 

used the wires to color code their circuits; however, students using the BitBlox could snap 

together their BitBlox in different ways resulting in different organizations of their circuits. 
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The differences in organization may help instructors discern students’ misconceptions. 

These findings suggest that affordances for flexible organization within these tools can 

help students decrease the complexity of their circuits and serve as a physical manifestation 

of their knowledge about their circuit that instructors can use for providing personalized 

assistance. 

5.4.3 Designing for Appropriation 

We observed that the BitBlox gave the students opportunities to create their circuit 

in many different ways. Instead of using a one size fits all model, the flexibility in the tool 

allows for greater diversity in learning approaches. This can empower learners by giving 

them greater control over their learning environment (Fischer, 2013). However, the 

limitations of useful flexibility should be further explored. It is possible that some students 

may end up more confused and hesitant about building circuits due to the extra degree of 

freedom. Without guidance, students may construct circuits that they themselves find 

difficult to debug making it harder for them to get assistance (see Figure 33 (a)).  

5.4.4 Including Identifiers 

We observed that annotations on the Breadboard caused confusion for some 

students, but it also served as a useful tool for students to describe sections of their circuit. 

This suggests that having identifiers on the tool that allow students to reference their circuit 

may be useful for collaborating with other students and the instructor.  
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5.4.5 Size of Tool 

One of the main differences between the BitBlox and the Breadboard is the size of 

the circuit that students produce. This affected how easily students could work on their 

circuit and how they collaborated within their pairs. Consistent with research in 

collaborative learning, creating a larger tool allows multiple access points for students to 

work more seamlessly together (Rick, 2012). Therefore, the number of students to be 

working together should be considered when determining the size for a tool in this space.   

5.5 Contributions and Limitations 

We presented a pilot study of BitBlox, a new tool for building circuits in a 

classroom. The study provided insight to the following research questions:  

RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 

2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  

2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino?  

RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability 

in individual and group settings?  

The study offers three main contributions. First, the findings identified difficulties 

associated with understanding how the tools worked based on the design choices embedded 

within the tools. Second, the study provided an understanding of how design characteristics 

impacted the social interactions between participants in the learning environment. Third, 

we highlight benefits (i.e. organization and appropriation) and draw backs (i.e. increased 
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decisions and confusion) to added flexibility within the prototyping tools. We found it 

useful to consider the simplicity of the design, affordances for organization, affordances 

for appropriation, identifiers for referencing, and the size of the tool. We hypothesized that 

the increased complexity of the Breadboard causes a higher strain on the students’ working 

memory. Throughout our investigation we found a greater confusion with the underlying 

design and terminology associated with the Breadboard in comparison to the BitBlox. This 

suggests that a further investigation of the cognitive load theory within this domain could 

prove useful.   

The study was limited both in its time and our ability to capture everything that was 

occurring in the learning environment. The class was only one day, and while we did 

capture observations we were still limited by what we saw and recorded since we did not 

have video of the participants interactions. Furthermore, we could identify what the 

students were doing, but we had little understanding into what they were thinking. We use 

the laboratory study in the next chapter to complement the findings from this classroom 

study and offer further insight into the design of tools for physical computing.  
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CHAPTER 6. ARDUINO LABORATORY STUDY OF PHYSICAL 

COMPUTING TOOLS 

6.1 Introduction 

The prior investigation demonstrated both benefits and drawbacks of the designs 

within the Breadboard and BitBlox prototyping tools in the comparative classroom study 

(CHAPTER 5) (DesPortes, Anupam, et al., 2016). However, the previous study design was 

not able to capture the individual students’ processes and experiences. The laboratory study 

of physical computing tools was designed to capture these experiences, investigating 

novice students working with the Arduino (Figure 34) for the first time. Although the 

Arduino has been critiqued for not being a suitable for beginners (Blikstein, 2015) it is one 

of the few tools that offers opportunities for the participants to engage conceptually with 

the electronics. Part of the contributions of this study is to understand the difficulties 

beginners face and how we improve the scaffolding in the hardware instead of black-

boxing it and making it inaccessible. Specifically, this study was created to tease apart 

differences in how students are thinking about and using prototyping tools with different 

affordances, while gathering information on the mistakes, errors and misconceptions that 

arise. The study explores research questions RQ2 and RQ3 below:  

RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 

2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  

2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino?  

2.4 What are novice students’ reflections on working with the Arduino?  
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RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability 

in individual and group settings? 

3.2 How do different abstraction layers in the design of physical computing tools 

impact students’ learning and self-efficacy? 

 

 

Figure 34 – Arduino Open Source Prototyping Platform  

6.2 Study Design  

The study comprised of two sections of novice participants learning about and 

working with the Arduino: a think-aloud section and a non-think-aloud section. The think-

aloud section comprised of 15 participants and was designed to provide rich qualitative 

data capturing how novices conceptually approached the material and their processes, 

mistakes and errors as they worked. The non-think-aloud section comprised of 30 

participants and was designed to provide quantitative insights on the impact of the tools 

used on participants’ self-efficacy and knowledge in conjunction with providing a larger 

data set of the participants processes, mistakes and errors. 

For the quantitative analysis, the non-think-aloud section was a within and between-

subjects design with a pre-test and post-test that gathered data on self-efficacy and 
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knowledge. The participants within each section were split into three groups based on 

rolling admission to the study. Each group used a different combination of hardware tools 

(see Table 15). The three types of tools used were: circuit modules, BitBlox, and the 

standard Breadboard.  

Table 15 – Tools Used in Each Group 

 Group #1 Group #2 Group #3 

First Circuit Modules  

          
Static Components    Variable Components 

 

BitBlox  

 

Breadboard

 
 

Second BitBlox  

 

 

Breadboard  

 

BitBlox  

 

The circuit modules were intended to decrease the amount of problems the students would 

run into. The static modules have the resistor and LED soldered to it, and the user just 

needs to plug in the power and ground. The variable modules are similar, but instead of 

soldered components there are pin headers and labels for where the LED and resistor 

should be placed. The BitBlox and Breadboard are more complex in their design. They 

require participants to understand how to make connections between the components using 

the connection schemes built into the tools. They each have a set of holes that are 
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electrically connected in specific orientations; by plugging the end of two components into 

holes that are connected the user connects the components—ex. plugging the positive end 

of a battery and an LED into holes that are connected. The connection scheme for the 

BitBlox and Breadboard can be seen in Figure 35 and Figure 36. 

(a)  (b) (c) (d)  

Figure 35 – BitBlox modules with connection scheme conveyed through coloring: (a) 

and (b) have all the holes connected to one another, (c) has five separate columns of 

connected holes, and (d) has two separate sections of connected holes 

(a)  (b)  

Figure 36 – The standard breadboard has two types of connection schemes: every 

hole in each row is interconnected and every hole within each column is 

interconnected—(a) shows the top of the breadboard with rectangles around select 

rows and columns of connected holes and, (b) the bottom of the breadboard 

illustrating metal connections in the rows and columns 

Each group used two tools: Group 1 started with circuit modules then transitioned to 

BitBlox; Group 2 started with BitBlox then transitioned to the Breadboard, and Group 3 

started with the Breadboard, then then transitioned to BitBlox. The hardware tools served 
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as the independent variable while the self-efficacy and knowledge tests served as the 

dependent variable. Having the participants use two tools provided an understanding of 

how their knowledge transferred between the tools and data on how use of one tool might 

impact use of another.  

The software that was used was a blocks-based environment called Modkit. This 

software IDE (integrated development environment) was chosen because of the 

affordances prior literature has identified for beginners working with blocks-based 

environments (see (Bau, Gray, Kelleher, Sheldon, & Turbak, 2017) for short review). An 

image of the coding software can be seen in Figure 37. 
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Figure 37 – Screenshot of the Modkit Blocks-Based Integrated Development 

Environment 

6.3 Study Procedures 

6.3.1 Study Protocol 

The participants from both the think-aloud and non-think-aloud section went 

through a similar procedure that lasted roughly 2hrs per participant. The participants were 

guided through the study with a PDF document that walked them through the information 

and activities that are outlined in Table 16. The researcher first introduced the study to the 

participant and discussed any questions or concerns about the consent document and data 

collection methods. In order to preserve consistency across participants, the researcher then 
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told the participants to try and complete the study without asking the researcher any 

questions. The document contained the links to the pre-tests and post-tests, the information 

for the participants to learn from, as well as the instructions for all of the activities and 

tasks that the participants needed to complete. The group assigned to the participant 

designated the different tools he/she would use throughout the procedure. The differences 

in the tool use for each group can be seen in  Table 16. The steps without a tool designation 

means that there was consistency across groups during these parts of the procedure.  
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Table 16 – Arduino Laboratory Study Protocol 

1. Consent  

2. Pre-Test: Self-Efficacy  

3. Pre-Test: Knowledge  

4. Electronics Review with LED Circuit 

5. Introduction to the Arduino and Modkit (IDE) 

6. Guided Blinky LED and Intro to Hardware Tool (Figure 38) 

Group 1: Plug-and-Play 

Static Module 

Group 2: BitBlox  Group 3: Breadboard  

7. Task #1: Blinking Two LEDs (Table 17 and Figure 48) 

Group 1: Plug-and-Play 

Variable Module 

Group 2: BitBlox  Group 3: Breadboard  

8. Introduction to New Prototyping Tool 

Group 1: BitBlox Group 2: Breadboard Group 3: BitBlox 

9. Task #2: Two LED Circuit with New Prototyping Tool (Table 17 and 

Figure 49) 

Group 1: BitBlox Group 2: Breadboard Group 3: BitBlox 

10. Post-Test: Self-Efficacy  

11. Post-Test: Knowledge 

12. Post-Study Debrief Interview  

13. Demographics Survey  

14. Compensation and Wrap-Up 

All participants started off with taking the pre-test of self-efficacy and knowledge. 

When they had completed the pre-tests, they could begin learning about physical 

computing. The participants were first given a refresher to basic high school electronics 

covering how electricity flows through a circuit and the functions of the battery, LED, and 

resistor. As part of the refresher, participants were walked through creating a circuit with 
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the battery, LED, and resistor using alligator clips. Next, the participants were introduced 

to the Arduino and Modkit IDE and guided through creating Blinky LED, which is a 

beginner activity for the Arduino that consists of creating the circuit and code to blink an 

LED forever. Figure 38 shows a diagram of the circuit and code needed to successfully 

complete the activity.   

 

Figure 38 – Blinky LED Arduino circuit (left) and Modkit code (right)  

In this section, the participants were walked through how to create the code with Modkit, 

and how to use their prototyping tool with the Arduino to make the circuit. For the software, 

participants were stepped through: using and initializing pins with the pinMode block; 

using the forever block; how to send digital signals with the digitalWrite block; and the use 

of the delay block. For the hardware, Group 1 was given a brief description of the Plug-

and-Play module with static components, which only required them to plug in the power 

and ground of the module correctly into the Arduino power and ground ports; Group 2 was 

taught how to use the BitBlox and then walked through connecting each component in the 
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circuit; and Group 3 was taught how to use the Breadboard and then walked through 

connecting each component in the circuit. The circuits built with each tool can be seen in 

Figure 39 below.    

(a)  (b) 

(c)  

Figure 39 -- Blinky LED Circuits for (a) Group 1: Plug-and-Play Module with Static 

Components, (b) Group 2: BitBlox, and (c) Group 3: Breadboard 

Upon completing the Blinky LED activity, they moved onto the Tasks section of the study. 

The tasks section was composed of two unguided tasks that the participants had to 

complete.  The two tasks are outlined below in Table 17. 
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Table 17 – Study Tasks 

Task #1: Blinking Two LEDs 

Create two LED/Resistor circuits and hook them up to two different pins. 

Create a sequence of code to blink one of the LEDs twice then blink the 

second LED once. Repeat the entire sequence over and over again forever. 

The code should have the following effect: 

 Blink LED 1 -> Blink LED 1 -> Blink LED 2 -> 

 Blink LED 1 -> Blink LED 1 -> Blink LED 2 -> (continue forever). 

Task #2: Two LED Circuit with New Prototyping Tool 

You are going to build the circuit to the 

right. Instead of just one LED at pin 3 

you’re going to hook up two LEDs with 

a resistor to pin 3. Go ahead and create 

the circuit and modify your code 

appropriately to make the LEDs 

continuously blink forever. 

 

 

 

 

 

 

Figure 40 – Plug-and-Play Circuit Module with Variable Components used by 

Group 1 for Task #1. The pin headers provide positions for the LED, resistor, power 

and ground to be connected.  
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The second task was intended to be easier from a software perspective but required all the 

participants to learn a new prototyping tool. Group 1 transitioned from Circuit Modules to 

BitBlox, Group 2 transitioned from BitBlox to the Breadboard, and Group 3 transitioned 

from the Breadboard to BitBlox. When the tasks were complete, or the time was up (in the 

case of the non-think-aloud section), the participants moved onto take the post-test of self-

efficacy and knowledge. Then a post-study debrief interview was then conducted to capture 

the students’ reflective thoughts on the experience and the tools that they used (explained 

in more depth in section 6.4.4). At the end of the debrief interview the study was wrapped 

up with the participants completing a demographics survey and receiving compensation 

for the time they spent in the study. The think-aloud participants all received a $30 Amazon 

gift card, and the non-think-aloud participants all received a $20 Amazon gift card for their 

participation.  

6.3.2 Protocols for Providing Hints to Participants 

The participants inevitably had questions or problems that hindered their ability to 

continue through a task or activity as they completed the study. If this occurred, the 

participant would get a hint. The hints were handled differently for the think-aloud section 

and non-think-aloud section. In the think-aloud section, we wanted to ensure that all the 

participants made it through all of the activities since there were a limited number, and we 

wanted to understand their thoughts throughout the different sections of the procedure. In 

this section, the researcher followed a consistent protocol (outlined in Figure 41) for giving 

participants hints to help them get through the study. Based on specific student issues and 

needs, there were some variations. For example, if the student had multiple issues and they 

were running low on time the researcher might identify a specific problem rather than going 
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through all the steps. Since this section was used for its descriptive power, the need for 

consistency was less strict. Providing hints based on the participant’s specific situation did 

not inhibit our ability to understand what the participants were thinking and, in some cases, 

provided insight based on how they responded to the hints.   

 

Figure 41 – Protocol for hints in Think-Aloud Section 

In the non-think-aloud section, a more consistent protocol needed to be followed to 

ensure that biases from the researcher in how they applied the protocol and inevitable 

differences in how certain things were explained did not taint the data. We therefore 
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changed the method for distributing hints within the non-think-aloud section. The 

researcher created four sets of hints based on the errors that the participants in the think-

aloud group faced: (1) hardware debugging hints, (2) software debugging hints, (3) Task 

#1 hints, and (4) Task #2 hints. The hardware and software hints each consisted of a sheet 

of debugging checks the participants received all at once. The hardware hints were 

composed of checks that the participant could conduct on their circuit to see if they had an 

unexpected bug, and the software hints were a similar set of checks but for the code. The 

hardware hints consisted of hints such as a reminder to verify the correct Arduino pin was 

being used, or a reminder to ensure their electronic components are pushed all the way 

down in the hardware tools. The software hints consisted of checks such as verifying the 

correct pin was being referenced in their code blocks, or a reminder to ensure that all their 

blocks were connected properly in the code. 

The task hints were slightly different, as they were designed to help the participant 

achieve the task. The task hints were distributed one at a time and successively explained 

how to complete the task. For example, the first hint for Task #1 was: You must create two 

circuits each with a different digital pin on the Arduino and each containing an LED and 

resistor. Make sure that each circuit is connected to ground, and remember, it doesn’t 

matter which ground you use. The final hint for each task described how to connect the 

electronic components and how to create the code to complete the task. For example, the 

fourth and final hint for Task #1: 

To complete the task, you should do the following:  

• Create two circuits each with a different digital pin on the Arduino:  
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o You should have an LED and a resistor in each circuit with one of the ends 

connected to a digital pin and the other side of the circuit connected to a 

ground connection. 

• In your code:  

o Setup two pinMode commands, one for each of the digital pins you are using 

with your circuits. Set each of the pins as an OUTPUT 

o Use a forever loop in which you will put the following code:  

▪ To blink the first LED setup code that sends a digitalWrite HIGH, 

delay, digitalWrite LOW, delay (then do it again) digitalWrite 

HIGH, delay, digitalWrite LOW, delay. By doing it twice it will 

make it blink twice  

▪ Then blink the second LED by sending a digitalWrite HIGH, delay, 

digitalWrite LOW, delay. You only need to blink the second LED 

once so you don’t need to do this more than once  

▪ Make sure that the code above is all contained within the one forever 

loop 

The hints were intended to be agnostic to the prototyping tool the participant was using, so 

no pictures were used. If the participants had difficulty understanding the hints, using their 

tool, or had an error in the code or circuit that they could not identify, they might not be 

able to complete the task, even with all of the hints.   

At the beginning of the study, the researcher introduced the participants to the hints 

for debugging and for the tasks. The researcher conveyed that they would need to request 

a hint when they wanted one, otherwise they would not receive one. The guide also 

introduced the participants to the hints, reiterating what the researcher had already gone 

over. As the participant transitioned from the guided activities (Blinky LED) to the Tasks 

section of the procedure, the guide reminded the participant of the hints. If the participant 

asked the researcher a question, the researcher would remind them that they are not allowed 

to answer the participant’s questions and informed them that there were debugging and 

task hints they could use. If the participant was stuck and told the researcher they did not 

know what to do, the researcher would again remind them that they had hints that they 
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could ask for and that they could try re-examining the hints they had already received to 

solve their problems.  

The one exception to this procedure was when the participant created a short 

between power and ground. The researcher would tell them they needed to remove a 

connection because they were creating a short circuit by connecting power and ground. 

The participants did not necessarily understand what a short was but they did understand 

that the connection was incorrect. This was done to ensure the Arduino was not damaged.  

6.3.3 Protocol for Concurrent Think-Aloud  

The 15 participants who completed the study using a concurrent think-aloud 

protocol (Ericsson & Simon, 1980) were intended to provide a better idea of what novices 

were thinking when presented with the tools and concepts in a physical computing task for 

the first time. Concurrent think-aloud protocols require the participant to verbalize their 

thoughts as they are working on a task (Ericsson & Simon, 1980). This method was chosen 

over a retrospective think-aloud (Ericsson & Simon, 1980) because previous research 

suggests there is more accurate action information about why an action was taken and how 

the participant was thinking about the task (van den Haak, De Jong, & Jan Schellens, 2003; 

van Gog, Paas, van Merriënboer, & Witte, 2005).  

The think-aloud was introduced to the participants at the beginning of the 

experiment. Ericsson et al. suggest using “warm-up” exercises in order to introduce the 

process to the participants and get them used to thinking out loud (Ericsson et al., 1993). 

For the sake of time, we had the participants practice on the “Review of Electronics” 

section since the other groups went through this material as well and it proceeded the 
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physical computing activities. In this section, they reviewed the basics of electronics and 

built a resistor-LED circuit with a battery using alligator clips. At the conclusion of the 

activity the researcher provided feedback to the participants, which often consisted of 

instruction to increase their volume, and/or if possible, try to vocalize more of their 

thoughts as they are going through the information and activities.  

6.3.4 Collecting Video and Audio Data  

Throughout both sections of the study, a total of about 85hrs was recorded of both 

video and audio data across all 45 participants. A web camera was mounted to shoot 

directly down on the workspace and linked to a screen recording of the laptop the 

participants used (see Figure 42). To ensure we were able to capture what was going on 

with the small components, we also setup a backup camera that focused on the workspace 

from a different angle. The backup recording was used in instances when we could not 

decipher what was happening from the webcam footage that was captured. Since the non-

think-aloud section did not have the added audio to contextualize the participants’ actions 

with the hardware components, the researcher recorded notes throughout each of the 

studies to log the participants’ actions with the hardware in conjunction with the status of 

where there were issues in the code and circuit to contextualize the notes.   
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Figure 42 – Example of Screen Recording with Webcam Capture 

6.4 Study Materials 

The study materials were developed, tested and refined through observation and 

analysis of three pilot tests of graduate students who were novices in physical computing. 

The graduate students completed the study using a think-aloud protocol. At the end of each 

participant’s study we reviewed the materials with the participant to understand where the 

materials could be improved. The instructions, procedures, and questions were improved 

after each pilot test. The changes included things such as, reordering the content, rewording 

the tasks, adding information they were confused about, and expanding and labeling the 

pictures to improve their readability. After the last changes were made, another novice 

graduate student reviewed the materials to ensure the clarity and catch any last 

improvements that should be made.  

After the initial set of 15 think-aloud participants, slight modifications were made 

again to improve areas in which the materials caused confusion. For example, we extended 

the positive leg of the LED in any diagram in which it appeared to ensure participants could 
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read it correctly. We also found that our explanation of the delay block caused 

misconceptions within the participants of how the code was causing the LED to blink (more 

on this in section 6.6.6.3), so we reworded it to improve the understanding within the next 

set of participants.  

6.4.1 Pre-Study Screening Survey 

In order to ensure the participants were novices, students who wanted to participate 

had to first complete a pre-screening survey (Appendix: A.1  Pre-Screening 

Survey). We then excluded students who: had taken a college electronics course, had taken 

more than one high school electronics course, had taken a high school or college CS course, 

rated their expertise in CS higher than three on a nine-point Likert scale, rated their 

expertise in electronics as higher than six on a nine-point Likert scale, rated their expertise 

in physical computing as higher than three on a nine-point Likert scale, had used a 

microcontroller before, or have had informal experience indicating they have legitimate 

expertise in CS, electronics or physical computing (ex. created a cell phone app, 

participated in FIRST robotics, etc.). We were originally also going to use the AP physics 

test as a way to exclude students, and we were going to exclude those who rated their 

electronics expertise higher than a 3; however, with those criteria we were left with few 

participants who could participate so we expanded the selection criteria by getting rid of 

the requirement around AP physics and raising the allowable expertise for electronics to a 

five.  
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6.4.2 Tests of Self-Efficacy 

In order to understand how the tools might affect one’s motivation to work with 

physical computing in the future, I measured the participant’s self-efficacy in the pre-test 

and post-test. Self-efficacy links one’s perceived competence in a particular domain to 

perform certain tasks and overcome certain challenges (Bandura, 2006). As Bandura states, 

“Unless people believe they can produce desired effects by their actions, they have little 

incentive to undertake activities or to persevere in the face of difficulties.” (Bandura, 1994, 

p. p1). The self-efficacy test covered three domains: programming, electronics, and 

physical computing. For programming self-efficacy, I adapted four questions from 

Ramalingam and Wiedenbeck’s computer programming self-efficacy scale and created 

three more questions mirroring the structure but changing what the questions asked about 

based on skills learned in the study. I applied a similar method to create seven questions to 

measure electronics self-efficacy and seven questions to measure physical computing self-

efficacy. The test can be found in Appendix A.2  Pre-/Post-Test of Self-Efficacy and 

Knowledge. 

6.4.3 Tests of Knowledge  

In order to understand what the students were learning throughout the study and how 

the tools may have impacted this, I measured the participants’ knowledge in the pre-test 

and post-test. The participants took the test of knowledge directly after the test of self-

efficacy in both the pre-test and post-test. This order was chosen because it was more 

important to understand the effect of the participants’ experience in the study than the effect 

of their perceived achievement on the knowledge test. For the first three questions in 
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knowledge test, I used Osborne’s (1983) method of drawing a complete circuit using a 

power source and electronic components. This was used because of its prior use in the 

study assessing participants’ knowledge of the electronics concepts students acquired 

during an E-Textiles program (Peppler & Glosson, 2013). We developed three questions 

using this method—two questions using the Arduino and one question using a battery as 

the voltage source. Since there was no validated test for use with the Arduino, I created a 

9-question multiple choice test—three questions that require analysis of a circuit, three that 

require analysis of code, and three that require analysis of a circuit and code together. The 

test was designed to understand participants ability to analyze forever loops, the effect of 

code on a circuit, delays in various locations, pin numbers within the write functions, 

polarity of the LEDs, sequential reasoning in electronics and the effect of using multiple 

resistances. The test can be found in Appendix A.2  Pre-/Post-Test of Self-Efficacy and 

Knowledge. 

6.4.4 Post-Study Debrief Interviews 

In order, to capture the participants’ reflective thoughts on the experience, a short 

post-study debrief interview was conducted. All of the think-aloud participants answered 

the first four questions of the set outlined below. The questions were intended for the 

participants to reflect on their experience and the tools that they used. The questions were:  

1. What did you think about this experience?  

2. What did you think about the tools you used?  

3. What did you find difficult as you were going through?  

4. What did you find easy as you were going through? 

5. How would you feel about working with the Arduino again?  
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The non-think-aloud section first answered two extra test-like questions that were intended 

to probe into how the participants were thinking about the physical computing tasks. Then, 

they answered all five of the questions above. The first test-like question asked them to 

describe how they thought they would need to setup the circuit and code for an LED to 

blink twice when a button was pushed. The second question required the student to analyze 

a broken Arduino circuit and program in order to identify the mistakes in the circuit and 

the code. The participants in the non-think-aloud section only completed the post-study 

interview if there was time. Since participants were not helped through completing the task 

beyond the hints, the tasks sometimes took up a greater portion of the study time in the 

non-think-aloud section.    

6.5 Participants  

A total of 48 participants were recruited for the study: 15 for the think-aloud section 

and 33 for the non-think-aloud section. Two participants (one from the non-think-aloud 

section in group 1 and one from group 2), had to have their data thrown out because the 

researcher made an error during the participant’s study. The researcher intervened when 

they should not have providing information that could have compromised the data for 

comparison across groups. This left us with 31 participants in the non-think-aloud 

section—Group 1: 10 participants, Group 2: 10 participants, and Group 3: 11 participants.  

Participants were recruited from eight universities: Georgia Institute of Technology 

(GT), Georgia State University (GSU), Agnes Scott College (ASC), Emory University 

(EU), University of Colorado Boulder (CUB), Columbia University (CU), University of 

Florida (UF) and University of Nebraska Omaha (UNO). A range of universities were 
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recruited from because of the difficulty of finding novices at the college level that met our 

requirements and would sign up for the study.  

We first recruited for the think-aloud section which consisted of participants from 

GT and GSU (see Table 18) and then recruited the non-think-aloud participants, which had 

participants from the various universities spread out throughout the three groups (see Table 

19). Within the think-aloud and non-think-aloud sections, participants were split into the 

three groups based on a rolling admission into the study.  

Table 18 – Participants by College in Each Group for Think-Aloud 

 GT GSU Female Male 

Group 1 3 2 5 0 

Group 2 3 2 2 3 

Group 3 3 2 4 1 

Total 9 6 11 4 

 

Table 19 – Participants by College in Each Group for Non-Think-Aloud  

 GT GSU ASC EU CUB CU UNO UF 

Group 1 2 1 0 0 1 3 1 2 

Group 2 1 0 1 0 1 3 1 3 

Group 3 1 0 1 1 2 2 2 2 

Total 4 1 2 1 4 8 4 7 
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The demographics for the groups were also collected in order to understand how similar 

the groups were. Overall, there was an over representation of women, with a mixed racial 

demographic in each group, and an age range of 18-32 (see Table 20). 

Table 20 – Demographic Makeup of Groups 

 Num. 

Participants 

Gender Race/Ethnicity Age 

  M  F O B W L A M Range 

Group 1 10 1 9 0 2 6 0 2 0 19-32 

Group 2 10 2 8 0 1 3 1 4 1 18-25 

Group 3 11 3 7 1 1 5 0 4 1 18-26 

Total 31 6 24 1 4 14 1 10 2 18-32 

Gender: M=Male, F=Female, O=Gender Fluid 

Race/Ethnicity: B=Black/African American, W=White/Caucasian,  

L= Latinx/Hispanic, A=Asian, M=Multi-Race 

6.6 Data Analysis and Findings 

The data from the think-aloud and non-think-aloud sections complement each other 

and therefore will be presented alongside one another and at points together where it makes 

sense. I will first go through and discuss the tests of self-efficacy and knowledge and my 

findings from the statistical analysis between the groups. The data from this section will 

provide a high-level overview of the groups from which the qualitative data can be situated. 

I then go over the completion rates between the groups in the non-think-aloud section 

highlighting how participants used the hints. Next, I dive into a discussion on the 

qualitative coding of the participants experiences during the study. The findings conclude 
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with a discussion of the insights from the post-study interviews where participants reflected 

on their experiences.  

6.6.1 Tests of Self-Efficacy and Knowledge 

The Self-Efficacy test was composed of 21 Likert Scale questions gauging 

participants self-efficacy within programming, electronics, and physical computing. The 

total points within the self-efficacy test was 145 points for the think-aloud section and 147 

for the non-think-aloud section. For the think-aloud section, 20 of the questions were on a 

7-point scale, but one question was accidentally clipped to a 5-point scale. Since the 

mistake was on both the pre-test and post-test, we were not concerned with this mistake, 

which was corrected for the non-think-aloud section. The knowledge tests were out of 15 

points and had the participants drawing circuits, analyzing diagrams of circuits, and 

analyzing code. The first three questions in which the participants drew diagrams were 

worth two points while the other 12 multiple choice questions were all worth one point. 

The data from the self-efficacy and knowledge tests were collected twice: once directly 

after the introduction and consent procedures and again after the participants had finished 

going through the tasks section. While the data from both the think-aloud and non-think-

aloud sections provided a source to contextualize and triangulate the qualitative data, the 

data from the non-think-aloud section was also statistically analyzed to see if there was a 

significant impact on learning gains and self-efficacy in relation to the tools used.  

6.6.1.1 Pretest and Posttest Data from Think-Aloud Participants 

In the think-aloud section, all three groups demonstrated an increase in both their 

self-efficacy and knowledge (see Figure 43 and Figure 44).   
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Figure 43 – Average Self-Efficacy scores of Think-Aloud participants by group out 

of 145 points 

 

Figure 44 – Average Knowledge test scores of Think-Aloud participants by group in 

a 15-point test 
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While Group 3 (Breadboard/BitBlox) had a slightly higher average pretest self-efficacy 

score than the other two groups (a score of 62 compared to Group 1 at 52 and Group 2 at 

53), Group 3’s knowledge scores were about the same with an average score of 2.6 

compared to Group 1 and 2’s average score of 3. We saw the greatest change in average 

score of self-efficacy within in Group 1 (Modules/BitBlox) which was 10 points higher 

than either of the other groups. However, the participants had the greatest change in 

knowledge in Group 3 (Breadboard/BitBlox). These scores can be used to contextualize 

and triangulate and understanding of the participants’ experiences with the tools based on 

the qualitative analysis. 

6.6.1.2 Pretest and Posttest Data from Non-Think-Aloud Participants 

Summary. We conducted a statistical analysis on the data from the participants in 

the non-think-aloud section as a within and between-subjects design using a Mixed 

Multivariate Analysis of Variance (MANOVA). The hardware tools used by each of the 

groups served as the independent variable while self-efficacy and knowledge test scores 

served as the dependent variables, measured in the pre-test and post-test1. The statistical 

analysis found no statistically significant difference between the participants based on their 

group. The data was also analyzed from the perspective of a between-subjects design using 

an Analysis of Covariance (ANCOVA). The ANCOVA was run on the data for the post-

test knowledge and self-efficacy of the groups using the pre-test scores as a covariate. 

These tests also did not find a significant difference between the groups. The low number 

                                                 
1 The repeated measures test fit the comparison of Group 2 and 3 since they were both exposed to the 

Breadboard and BitBlox however the statistical test did not directly align with the data from Group 1 who 

used the modules and were not exposed to both of the other two tools.  
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of participants in each group and an issue identified with the hardware of the modules 

group both present reasons for these non-significant results. An improved study design is 

presented in CHAPTER 7, that would be more appropriate for understanding the questions 

that these statistical analyses were targeted at. Below are the methods and results from the 

two tests that were run.   

MANOVA. The initial descriptive statistics were analyzed and one outlier was 

identified in the data for Group 3 (Breadboard/BitBlox). The descriptive statistics with the 

data point can be seen in Table 21. 

Table 21 – Descriptive Statistics of Self-Efficacy (SE) and Knowledge (KN) (N=31) 

Group N Minimum Maximum Mean Median IQR Std. Deviation 

1 Pre-SE 10 21 90 44.60 36.5 35 22.172 

Post-SE 10 70 140 98.50 93 32 21.183 

Pre-KN 10 0 7 2.70 1.5 4 2.452 

Post-KN 10 5 13 8.70 8.5 5 2.627 

2 Pre-SE 10 30 97 53.00 46 36 22.151 

Post-SE 10 59 129 104.20 113 48 25.494 

Pre-KN 10 0 7 3.20 3 5 2.573 

Post-KN 10 4 14 10.30 11 5 3.020 

3 Pre-SE 11 26 104 56.73 55 37 22.078 

Post-SE 11 20 139 110.27 114 40 34.252 

Pre-KN 11 1 8 4.18 5 6 2.750 

Post-KN 11 1 15 10.91 11 4 3.754 

 

The participant had a posttest knowledge score of 1 and a posttest self-efficacy score of 20. 

Her posttest knowledge and self-efficacy was more than 2.5 standard deviations less than 

the mean in her group. Her data for self-efficacy and knowledge was identified as a minor 

outlier (major outliers were not possible in this data set, see Table 22).  
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Table 22 – Outlier Calculations 

GROUP 3 Q1 Q3 IQR 
MINOR OUTLIER  

Q1-(IQR*1.5) 
MAJOR OUTLIER 

Q1-(IQR*3) 

POST-SE 10.5 13 4 4.5 -1.5 (min=0) 

POST-KN 98.5 134.5 40 38.5 -21.5(min=0) 

 

With the outlier data removed we had the following descriptive statistics in Table 23. The 

skewness and kurtosis were within the +/-2 acceptable range for the pretests and posttests 

of knowledge and self-efficacy (see Table 23). Figure 22 and Figure 23 below show the 

average scores of pre-test and post-test self-efficacy and knowledge scores presented by 

group. 

Table 23 – Descriptive Statistics of Self-Efficacy (SE) and Knowledge (KN) (N=30) 

Group 

    Std. Skewness Kurtosis 

N Min. Max. Mean Deviation Statistic Std. Error Statistic Std. Error 

1 Pre-SE 10 21 90 44.60 22.172 .972 .687 .254 1.334 

Post-SE 10 70 140 98.50 21.183 .762 .687 .136 1.334 

Pre-KN 10 0 7 2.70 2.452 .829 .687 -.865 1.334 

Post-KN 10 5 13 8.70 2.627 .361 .687 -.920 1.334 

2 Pre-SE 10 30 97 53.00 22.151 .871 .687 -.031 1.334 

Post-SE 10 59 129 104.20 25.494 -.679 .687 -1.003 1.334 

Pre-KN 10 0 7 3.20 2.573 .409 .687 -1.326 1.334 

Post-KN 10 4 14 10.30 3.020 -.994 .687 .883 1.334 

3 Pre-SE 10 26 104 56.80 23.270 .856 .687 .461 1.334 

Post-SE 10 95 139 119.30 17.538 -.296 .687 -1.767 1.334 

Pre-KN 10 1 8 4.50 2.677 -.369 .687 -1.434 1.334 

Post-KN 10 9 15 11.90 1.912 .296 .687 -.795 1.334 
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Figure 45 – Average self-efficacy scores of Non-Think-Aloud participants by group 

out of 147 points 

 

Figure 46 – Average knowledge test scores of Non-Think-Aloud participants by 

group in a 15-point test 
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(Breadboard-BitBlox) had the highest. The post-test results mirror this trend with Group 1 

having the lowest overall posttest score on both the knowledge and self-efficacy pretests 

and Group 3 having the highest. In order to understand if a significant difference between 

the groups existed, a Multivariate Analysis of Variance (MANOVA) was conducted on the 

data.   

The data was checked for multicollinearity by running Pearson Correlation tests 

between the pre-test and post-test self-efficacy and knowledge data as reported in Table 24 

below. As expected, there is a moderate positive correlation between the pretest self-

efficacy and the pretest knowledge scores (r = 0.421, p < 0.05) and a moderate positive 

correlation between the posttest self-efficacy and posttest knowledge scores (r = 0.473, p 

< 0.01). None of the scores are above 0.9; therefore, there is no multicollinearity. 

Table 24 – Correlation Tests Between Dependent Variables  

Comparison Pearson Correlation Results 

Pre-SE, Post-SE Not Significantly Related 

Pre-KN, Post-KN Not Significantly Related 

Pre-SE, Post-KN Not Significantly Related 

Pre-SE, Pre-KN Weak Positive Correlation (r = 0.421, p < 0.05) 

Post-SE, Post-KN Weak Positive Correlation (r = 0.473, p < 0.01) 

 

The data was analyzed using a Mixed Multivariate Analysis of Variance (MANOVA) to 

understand the possible interactions between the pre-test and post-test measurements of the 

dependent variables of self-efficacy and knowledge, with the independent variable of the 

tools used by the participant. There was not a significant interaction between groups as 

shown in the Type III Sum of Squares and Wilks’ Lambda in Table 25 and Table 26.  
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Table 25 – Tests of Between-Subject Effects 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 223344.408 1 223344.408 637.164 .000 

Group 1818.067 2 909.033 2.593 .093 

Error 9464.275 27 350.529   

 

Table 26 – Multivariate Tests  

Effect Value F Hypothesis df Error df Sig. 

Tests Pillai's Trace .955 571.895 1.000 27.000 .000 

Wilks' Lambda .045 571.895 1.000 27.000 .000 

Hotelling's Trace 21.181 571.895 1.000 27.000 .000 

Roy's Largest Root 21.181 571.895 1.000 27.000 .000 

Tests * Group Pillai's Trace .117 1.788 2.000 27.000 .186 

Wilks' Lambda .883 1.788 2.000 27.000 .186 

Hotelling's Trace .132 1.788 2.000 27.000 .186 

Roy's Largest Root .132 1.788 2.000 27.000 .186 

PrePost Pillai's Trace .854 157.813 1.000 27.000 .000 

Wilks' Lambda .146 157.813 1.000 27.000 .000 

Hotelling's Trace 5.845 157.813 1.000 27.000 .000 

Roy's Largest Root 5.845 157.813 1.000 27.000 .000 

PrePost * Group Pillai's Trace .038 .529 2.000 27.000 .595 

Wilks' Lambda .962 .529 2.000 27.000 .595 

Hotelling's Trace .039 .529 2.000 27.000 .595 

Roy's Largest Root .039 .529 2.000 27.000 .595 

Tests * PrePost Pillai's Trace .791 102.096 1.000 27.000 .000 

Wilks' Lambda .209 102.096 1.000 27.000 .000 

Hotelling's Trace 3.781 102.096 1.000 27.000 .000 

Roy's Largest Root 3.781 102.096 1.000 27.000 .000 

Tests * PrePost * 

Group 

Pillai's Trace .032 .442 2.000 27.000 .647 

Wilks' Lambda .968 .442 2.000 27.000 .647 

Hotelling's Trace .033 .442 2.000 27.000 .647 

Roy's Largest Root .033 .442 2.000 27.000 .647 
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ANCOVA. The data was also analyzed from the perspective of an Analysis of 

Covariance (ANCOVA) to understand if the posttest knowledge and self-efficacy scores 

would highlight any differences between groups taking the pretest scores as covariates in 

the analysis. There was no significant interaction between groups for either the self-

efficacy (Table 27) or knowledge (Table 28) as shown in the Type III Sum of Squares 

below. 

Table 27 – Tests of Between-Subjects Effects for Post-Test Self-Efficacy 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Corrected Model 3207.598a 3 1069.199 2.364 .094 

Intercept 39155.518 1 39155.518 86.575 .000 

Pretest Self-Efficacy 897.131 1 897.131 1.984 .171 

Group 1680.651 2 840.326 1.858 .176 

Error 11759.069 26 452.272     

Total 360580.000 30       

Corrected Total 14966.667 29       

a. R Squared = .214 (Adjusted R Squared = .124) 

 

Table 28 – Tests of Between-Subjects Effects for Post-Test Knowledge 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Corrected Model 61.099a 3 20.366 3.167 .041 

Intercept 892.362 1 892.362 138.764 .000 

Pretest Knowledge 9.899 1 9.899 1.539 .226 

Group 35.455 2 17.727 2.757 .082 

Error 167.201 26 6.431     

Total 3411.000 30       

Corrected Total 228.300 29       

a. R Squared = .268 (Adjusted R Squared = .183) 
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The results demonstrate that the quantitative analysis was inconclusive; however, analysis 

of the video and audio data of both the think-aloud and non-think-aloud section provided 

insights to the research questions. We will first discuss how participants completed the 

activities in the non-think-aloud section, before presenting the findings from the qualitative 

coding analysis of the video and audio data.  

6.6.2 Completion of Activities Non-Think-Aloud Section 

The data from the participants was analyzed for the number of participants that completed 

the various activities within each group in the non-think-aloud section. While the 

researcher ensured that participants in the think-aloud section were able to complete the 

activities by providing hints as needed, this was not true for the non-think-aloud section. 

The task completion rates along with the average time to completion can be found in Table 

29. Since the participants were able to request hints, it is important to understand how the 

hints relate to the completion rates. The time to completion was averaged across the 

participants who did complete the activity. The number of participants that used the Task 

hints, hardware debugging, and software debugging per group is broken up by activity in 

Table 30. 
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Table 29 – Task Completion Rates by Group  

 Blinky LED Task #1 Task #2 

 Num. 

Completed 

(Attempted) 

Avg. 

Time 

(min) 

Num. 

Completed 

(Attempted) 

Avg. 

Time 

(min) 

Num. 

Completed 

(Attempted) 

Avg. 

Time 

(min)  

Group 1 

(N=10)  

Modules 

10 (10) 13.05 

Modules 

9 (10) 30.30 

BitBlox 

6 (10) 11.37 

Group 2 

(N=10)  

BitBlox 

10 (10) 19.33 

BitBlox 

7 (10) 14.22 

Breadboard 

7 (8) 6.92 

Group 3 

(N=11)  

Breadboard 

11 (11) 20.25 

Breadboard 

9 (11) 17.89 

BitBlox 

8 (8) 7.23 

Total 31 17.54 24 20.80 21 8.51 

 

Table 30 – Hints Requested by Group 

  Blinky LED Task #1 Task #2 

 N HW SW N Task HW SW N Task HW SW 

Group 1 10 0 0 10 7 7 7 9 5 3 3 

Group 2 10 1 0 10 6 3 3 7 0 0 0 

Group 3 11 2 2 11 5 2 3 9 0 1 1 

Total 31 3 2 31 18 12 13 24 5 4 4 

We ensured that all participants were able to complete Blinky LED, however, the rates at 

which they completed the activity varied. Group 1 participants averaged around 13 min 

while the other two groups took around 20min. No hints were needed for Group 1 to 

complete the activity, while one participant in Group 2 and two participants in Group 3 

needed debugging hints in order to get through the activity.   
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In Task #1, all but one of the participants in Group 1 were able to complete the 

activity; however, they also took the longest time with an average time of about 30 minutes 

with Groups 2 and 3 averaging about 14 and 18 minutes respectively. Furthermore, just 

over twice as many participants in Group 1 needed the hardware and software debugging 

hints than in the other two groups in order to do so. Of the five participants that did not 

complete Task #1 in Groups 2 and 3, only two received all the hints, one received no hints, 

and two each only received the first task hint (out of four). Therefore, the higher completion 

rate in Group 1 for the first task could be attributed to the fact that the participants received 

more hints.   

 Task #2 was completed by all of the participants who attempted it in Groups 3 and 

all but one participant in Group 2, while four of the ten participants in Group 1 were not 

able to complete the task. Of the Group 1 participants that did complete the task, it took 

them just under twice as long on average to complete it when compared to the other two 

groups. This data provides context for the results of what happened in each of the three 

groups during the various activities, but it does not provide insight into what was going on 

during the participants’ experiences. In the next sections, I present the types and prevalence 

of the bugs, breakdowns, and obstacles that participants encountered that contributed to 

these results.  

6.6.3 Codebook for Qualitative Analysis 

When the study was designed, two coding schemes from prior literature were identified as 

schemes that might fit our data because of the similar nature of the studies investigating 

skilled adult participants working with the Arduino in a laboratory setting (Booth & 
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Stumpf, 2013; Booth et al., 2016). The first coding scheme involves coding of: obstacles—

where participants needed to overcome hurdles, breakdowns—where participants 

demonstrated errors in their actions or thinking, and bugs—where participants introduced 

a fault into the system (Booth et al., 2016). The second relevant coding scheme was Booth 

et al.’s application of system Learning Barriers that she derived from Ko et al. (Ko et al., 

2004) who defined six categories of learning barriers, which Booth then applied to the 

Arduino environment (Booth & Stumpf, 2013). To understand whether either of these two 

schemes would fit the data collected in this study, one researcher coded a third of the data 

for emergent themes. The researcher then compared the themes she identified to the coding 

schemes above. A close mapping was identified between the obstacles/breakdowns/bugs 

scheme. The researcher’s codes fit into the original scheme (see Table 31) and provided an 

opportunity to expand on it by identifying the types of breakdowns the novice participants 

encountered. The researcher proceeded to use the expanded codebook to code the final two 

thirds of the data.  

Table 31 – Original Obstacles/Breakdowns/Bugs coding scheme from Booth et al.’s 

study of the Arduino in a laboratory setting (Booth et al., 2016) 

Code  Description  

Obstacles Hurdles to overcome:  
1) Participants stated that they did not know or understand something 
2) Participants said they needed to do something but there was evidence that 

they faced a problem doing it 
3) Participants showed signs of confusion or frustration 

Breakdowns Evidence of errors in action or thinking:  
1) Participants carried out a wrong action making a slip or mistake 
2) Participants made an incorrect assessment 
3) There were observed faults in their knowledge or reasoning 

Bugs Fault that a participant introduces through their actions or beliefs 
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To ensure the validity of the coded data, a second researcher contributed to the 

coding process. Both researchers reviewed the codebook over transcriptions of 5% of the 

coded segments. The codebook was clarified and refined as well as a process for coding 

each segment such that each researcher felt it represented the data appropriately and there 

was consistency in identifying the codes. The process involved going through the following 

questions for each code segment:  

(1) Is there an obstacle? 

o Did they ask a question, say or indicate that something was confusing?  

(2) Is there a bug (also) introduced?  

o Did they introduce and error they would have to fix in order to complete 

the task?  

(3) Is there a bug (also) being fixed?  

o Did they change something that fixed a bug that was previously 

identified?  

(4) Is there a breakdown (also)? 

o If a bug was introduced, what incorrect assessment or thought process 

led to this? Was there more than one issue with their thought 

processes/actions?  

o If there wasn’t a bug introduced, did the participant have any incorrect 

thought processes/actions?  

The first and second researcher separately analyzed and coded another 10% of the video 

transcriptions using the updated codebook. The researchers reached an inter-rater reliability 

Pooled Kappa Cohen (De Vries, Elliott, Kanouse, & Teleki, 2008) score of 84% based on 

this analysis. The first researcher then used the refined code book to go back through the 

data reviewing and correcting the rest of the segments. The final codebook used for the 

Obstacles, Breakdowns, and Bugs can be found in Table 32, Table 33, and Table 34. This 

validated coding scheme was then re-used for the non-think-aloud section. Combined, the 

think-aloud and non-think-aloud section had 27hrs of participant data working with the 

Arduino that was coded by the researchers using this codebook.  
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Table 32 – Codes for Obstacles: Hurdles that the participant had to overcome 

 Description Example 

HW Question or confusion about a HW component, 
prototyping tool, building the circuit, or 
debugging a HW error 

 “But how do I connect two grounds if 
there is only one on the Arduino?” 

SW Question or confusion about how to use the SW 
IDE, a code block, accomplishing a task in the 
code, or debugging a SW error  

Participant is staring at her code: “So I 
have it blinking once…how do I make it 
blink twice?” 

HW+SW Question or confusion about the interaction of 
HW and SW, or unsure where to debug because 
there are issues are in HW or SW 

“It doesn’t matter which debugging 
hints [referring to HW or SW] ‘cause I 
have no idea what’s wrong”  

 

Table 33 – Codes for Breakdowns: Errors in participant’s thoughts and/or actions 

 Type Description Example 

HW Incorrect Circuit 
Formation 

Demonstrates error in thoughts or actions 
creating circuits that include components 
connected in parallel or series that should 
not be  

Creates parallel circuit 
connection between the LED and 
resistor when they should be in 
series 

Leaves out 
Component 

Neglects to include a HW component that 
should be in the circuit they are building 

Leaves resistor out of LED 
resistor circuit 

LED Backwards Demonstrates error in thought or action in 
the orientation of the LED  

“The negative side is the long 
leg”  

Open Circuit Creates an open circuit when building 
their circuit (does not include using the 
wrong Arduino pin) 

Doesn’t push component all the 
way into the Breadboard  

Short Circuit Creates a short in their circuit by 
connecting components in a way that 
short out parts of the circuit 

Connects both ends of the 
resistor to the same connection 
block in a BitBlox module 

Wrong Arduino 
Pin 

Connects the circuit to a wrong pin in the 
Arduino either purposefully or 
accidentally 

Plugs jumper into pin 8 when 
they thought it was in pin 9 

Other Other incorrect assessments, actions, or 
faults in knowledge about the HW 

Thinks that the resistor needs to 
be closer to ground than the LED 

SW Blocks Not 
Connected 

Attempts to connect SW blocks but fails to 
actually do so  

Places forever loop under 
pinMode block but doesn’t get 
them to lock together 

Delay Demonstrates error in thought or action in 
the purpose, usage or effect of the delay 
block 

Tries changing the delay to 
make the LED brighter 

Pin Signal 
(HIGH/LOW) 

Demonstrates error in thought or action in 
the purpose, usage or effect of setting the 
pin signal to HIGH/LOW 

Sends two HIGH signals in order 
to get the LED to blink 

PinMode Demonstrates error in thought or action in 
the purpose, usage or effect of the 
pinMode block.  
 
 

Forgets to initialize the pinMode 
for a second output 
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Table 33 – Continued  
SW Sequentiality of 

Code 
Demonstrates error in thought or action in 
the sequentiality of how the code runs 

Connects code under the end of 
a forever loop 

Wrong Arduino 
Pin 

Demonstrates error in thought or action in 
setting the pins in any of the SW blocks 

Includes a digitalWrite for an 
LED but forgets to identify the 
pin  

Other Other mistakes, incorrect assessments, or 
faults in knowledge about the SW 

Uses while loop to get LEDs to 
blink together 

   

HW 
+ 
SW 

Programming 
w/o Plugging in 
Arduino 

Fails to have the Arduino plugged in while 
code is being uploaded to the board 

Unplugs Arduino when code has 
not finished uploading 

Reprograms 
Arduino With 
Same Program 

Re-uploads same code that is already on 
the Arduino 

Didn’t see change from their 
new code changes so they 
reprogram the board again 

Wrong 
Assessment of 
Bug Location 

Demonstrates error in thought or action in 
narrowing down whether the bug is in SW 
or HW 

Blocks aren’t connected properly 
in SW, but introduces a 
backwards LED to try and fix 
their problems 

Incorrectly 
Thinks Problem 
is Solved 

Indicates that they have completed the 
task or fixed a problem when they have 
not 

Participant says “I’m done.” 
When they still haven’t added a 
pinMode to initialize one of the 
pins for their LED circuits.  

 

Table 34 – Codes for Bugs: Faults introduced and fixed 

 Type Description Example 

HW  Introduced Bug in the circuit was 
introduced  

Shorts a resistor to itself when building the 
circuit 

Fixed Bug fixed or removed from the 
HW setup 

Takes apart circuit with shorted resistor 

SW Introduced Bug in software was introduced 
and uploaded to the Arduino 

Forgets to include a pinMode for one of the 
outputs and uploads code to the Arduino 

Fixed Bug fixed or removed from the 
HW setup 

Includes a previously forgotten pinMode for 
one of their pins 

HW+SW Introduced Bug in HW+SW was introduced 
to the setup 

Forgets to plug in Arduino when they press 
the button to upload the code  

Fixed Bug in HW+SW was introduced 
to the setup 

Realizes they forgot to plug in the Arduino 
and plugs it in and uploads code 

6.6.4 Overview of the Obstacles, Breakdowns, and Bugs Data 

The data reveals trends between the obstacles, breakdowns, and bugs. There were 

similarities between the data in the think-aloud and non-think-aloud sections so they were 

combined in the numbers presented to convey the difficulties participants encountered with 
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the various tools. We will first outline the circuits and code that each activity required the 

participants to build, then provide an overview of the prevalence of the obstacles, 

breakdowns, and bugs across activities and groups, and then end with a comprehensive 

break down of the thematic trends we found across these codes diving into the specifics of 

the participants’ issues in the hardware, software and hardware+software.  

6.6.4.1 Activity Overview 

The goals of each task are important for contextualizing the information provided 

by the numbers and types of bugs, breakdowns and obstacles experienced by the 

participants. Therefore, I will briefly review the circuits and code that could be built to 

complete each task.  

Blinky LED: The introductory task walked participants through creating the code 

and circuit necessary to blink an LED forever. They were provided step by step instructions 

to create the circuit and code with each of the steps explained from a conceptual stand 

point. For example, the significance of initializing the pins as inputs or outputs. The circuit 

and code created by the participants for this activity are below in Figure 47. 
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Figure 47 – The circuit and code created by participants in the Blink LED activity 

Task #1: The first task required the participants to create a slightly more complex 

hardware and software setup. To build the hardware for the first task the participants had 

to replicate the circuit they created in the Blinky LED activity twice using different pins. 

To create the software, the participants had to figure out how to initialize a second LED 

and properly integrate code for blinking two LEDs into the same forever loop. Figure 48 

has a diagram of one version of a circuit and code that participants could make in order to 

complete Task #1. The participants had a choice in which pins they used and could get the 

circuit to work properly even if the pinModes were not placed at the beginning of the code.  
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Figure 48 – Task #1 example circuit and code 

Task #2: The second task required the participants to switch prototyping tools and 

figure out how to use it while adding another LED to the circuit they used in the Blinky 

LED activity. The software component required the participants to replicate the same code 

as was used in the Blinky LED activity. Figure 49 shows one version of the circuit and 

code that will complete the task. The participants were required to use PIN3 in the 

hardware, but the code could have variations (ex. number of digitalWrites used) as long as 

it would blink the LEDs in their circuit.  
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Figure 49 – Task #2 example circuit and code 

As the data below will reveal, based on the number of bugs, breakdowns, and 

obstacles the Blinky LED activity was the easiest, while the first task was most difficult. 

From a software standpoint, organizing the code to blink two LEDs consecutively in the 

first task, posed conceptual hurdles for organizing the code resulting in more issues with 

the software than the hardware. In the second task, switching prototyping tools resulted in 

more hardware issues than software issues.  We will now provide an overview of the 

number of obstacles, bugs, and breakdowns faced by each group in the various activities.  

6.6.4.2 Obstacles Encountered by the Think-Aloud and Non-Think-Aloud Section 

The data from the obstacles presented in Figure 50 and Figure 51 show where 

participants had questions and confusions. The researchers coded more obstacles in the 

data from the think-aloud participants (204 obstacles) than in the data from the non-think-

aloud section (148 obstacles). Although there were fewer participants in the think-aloud 
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section, it provided more insight into the obstacles because the participants would articulate 

their questions and explain if and why something was confusing. In this section, we also 

coded the data from when the participants were initially learning about the LED circuit and 

Arduino because the participants were voicing their questions as they traversed the material 

for the first time. This is reflected in the high number of hardware obstacles identified in 

the Learning Activities. In the non-think-aloud section, we relied mostly on when the 

participants went back in the slides to seek information or on the rare occasion that they 

stated their problems out loud either seeking help from the researcher or out of frustration.  

In the non-think-aloud section, we only coded the Blinky LED activity and Tasks because 

there was little to be observed in the initial learning activities.  

 

Figure 50 – Obstacles in Think-Aloud and Non-Think-Aloud Section by Activity 
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Figure 51 – Obstacles in Think-Aloud and Non-Think-Aloud Section by Location 

and Group 

Overall, the participants had a greater number of questions and confusions when it 

came to the hardware than the software or hardware+software. We expected the hardware 

to pose more confusion since the code was blocks-based and the hardware was not 

perceived to be as beginner friendly based on previous analyses (Blikstein, 2015; DesPortes 

& DiSalvo, 2017); however, the activity impacted the types and location of the questions 

and confusions. While drawing conclusions solely based on the differences in number of 

obstacles between the groups could lead to false conclusions (since the number of obstacles 

was often dependent on whether or the participants were voicing their questions and 

confusions), the trends in this data are similar to the ones found in the bugs and 

breakdowns. 
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6.6.4.3 Bugs Introduced by Think-Aloud and Non-Think-Aloud Section 

The number of bugs provides a good starting point to discuss the differences 

between the groups, which is complimented with data from the breakdowns. Overall, there 

were about as many hardware bugs as software bugs, with far fewer hardware+software 

bugs (see Figure 52 and Figure 53). The Blinky LED activity had fewer bugs introduced 

than either of the other two activities, which is expected since the participants were walked 

through this activity step by step. When errors did occur, they were more likely to be in the 

hardware—26 bugs—than in the software—10 bugs. In Task #1, there were more software 

bugs than hardware bugs—185 compared to 100—with the hardware+software only 

contributing to 24. In Task #2, the hardware component resulted in more bugs than the 

software component—90 compared to 35. 

 

Figure 52 – Bugs in Think-Aloud and Non-Think-Aloud Section by Activity 
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Examining the bugs broken down by activity and group (see Figure 53) provides 

us with a more comprehensive picture of where the challenges were when participants were 

using the different tools. 

 

Figure 53 – Bugs in Think-Aloud Section and Non-Think-Aloud by Location and 

Group 

In the Blinky LED task we see that the Modules [Group 1] had no bugs since there 

were far fewer opportunities for them to make mistakes. In the participants using the 

BitBlox [Group 2] and Breadboard [Group 3], we do see 13 and 23 bugs respectively with 

a majority of hardware bugs. These numbers represent that initial difficulty of working 

with the tools even when being walked through the Blinky LED circuit step by step. As 

participants struggled with the prototyping tools in the BitBlox and Breadboard group, they 

also made more errors in the software. 

17

26

47

28

38

34

14

12

0

10

3

22

59

49

77

9

1

2

3

7

8

10

6

0 20 40 60 80 100 120 140

Group 3 BitBlox

Group 2 Breadboard

Group 1 BitBlox

Group 3 Breadboard

Group 2 BitBlox

Group 1 Modules

Group 3 Breadboard

Group 2 BitBlox

Group 1 Modules

HW SW HW+SW

Blinky LED

Task #1

Task #2



 229 

The groups with the highest and lowest numbers switch when we get to Task #1. 

The Breadboard [Group 3] and BitBlox [Group 2] participants introduced about the same 

with 95 bugs and 97 bugs respectively, and the Modules [Group 1] introduced the most 

with 117 bugs. This was unexpected given that we predicted the Modules would continue 

to have the fewest bugs. Although they had a slight change in their hardware, it was still 

intended to integrate more scaffolding than the BitBlox or Breadboard would have. The 

hardware bugs between the groups turned out to be about the same with slightly fewer in 

the participants using the Breadboard who introduced 28 compared to the Modules [Group 

1] who introduced 34 and the BitBlox [Group 2] who introduced 38. Furthermore, the 

software bugs introduced by the participants using the Modules [Group 1] was higher with 

a count of 77 software bugs while the Breadboard [Group 3] introduced 59 and the BitBlox 

[Group 2] introduced 49 software bugs. As we discuss in section 6.6.5.3, faulty hardware 

issues in the modules could have impacted these numbers.  

Task #2 required the participants to switch prototyping tools. The participants in 

Group 1 who transitioned from the Modules to the BitBlox had over twice as many bugs 

introduced than Group 2 and 3 with 76 bugs introduced compared to 32 and 29. The task 

of transferring to the open-ended prototyping tool from the modules proved more difficult 

than transferring between the two open-ended tools. Furthermore, the participants 

transitioning from the Modules to the BitBlox group not only introduced more hardware 

bugs (47 compared to the BitBlox participant’s 26 bugs and the Breadboard participant’s 

17), they also introduced a substantial number of software bugs in comparison to the other 

two groups (22 software bugs compared to BitBlox participant’s 3 and Breadboard 

participant’s 10). Understanding the types of breakdowns in the sections that follow 
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provide a better understanding of where the misconceptions and mistakes that participants 

had were coming from that led to these differences. 

6.6.4.4 Breakdowns Faced by the Think-Aloud and Non-Think-Aloud Participants 

The breakdowns offer a picture of what and how participants were incorrectly 

assessing and interpreting information as they worked through the activities. While the 

bugs indicated when an error was introduced in the setup, a breakdown indicated whenever 

there was any type of misconception, mistake, or error even if it did not lead to the 

introduction of a bug—all bugs were tagged with at least one breakdown, but not all 

breakdowns were bugs. Overall, we see more breakdowns than bugs because, while all 

bugs were linked to a breakdown, not all breakdowns introduced bugs. Figure 54 and 

Figure 55 provide an overview of the breakdowns across the groups and activities.  

 

Figure 54 – Breakdowns in Think-Aloud and Non-Think-Aloud Section by Activity 
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Figure 55 – Breakdowns in Think-Aloud and Non-Think-Aloud Section by Group  
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was a higher prevalence of software breakdowns and hardware+software breakdowns than 
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6.6.5 Hardware Bugs, Breakdowns and Obstacles 

Examining the data confirms that the participant’s experiences with the hardware 

varied based on the activity and the prototyping tool they used. The bugs, breakdowns and 

obstacles in Figure 56 show a combined view of how the prototyping tool impacted their 

hardware experiences. Despite the step by step instructions in Blinky LED, participants 

using the BitBlox and Breadboard had difficulties starting up with their tool. In contrast, 

the participants using the static modules had few difficulties in the Blinky LED activity, 

but when they transitioned to the variable modules they ended up having a harder or equally 

challenging time during Task #1. Furthermore, changing prototyping tools proved the most 

difficult for participants transitioning between the Modules to the BitBlox, with the easiest 

transition occurring for the group switching between the Breadboard to the BitBlox.  

 

Figure 56 – Hardware Bugs, Breakdowns, and Obstacles by Group and Activity 
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that emerged from the data: using the wrong Arduino pin, creating a short circuit, creating 

an open circuit, assessing the LED directionality incorrectly, leaving out a component in 

their circuit, and forming their circuit incorrectly so there were components either in 

parallel or series when they should not be. The Other category was used as a bucket for the 

long-tail or the errors that were not prevalent enough to warrant their own category. Figure 

57 illustrates the number and type of breakdowns within each group.   
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Figure 57 – Hardware Breakdowns from Think-Aloud and Non-Think-Aloud 

Section  
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breakdowns. For example, one participant looking for the positive side of the LED said: 

“The positive end is the longer side and the curved side. That one is longer…the whole 

thing is curved, so that’s not really a good representation…[continuing to look at the 

LED]…oh! I see it. That side is straight.” While the majority of participants were 

eventually able to figure out which side was which, it took added time and effort to do so 

and on occasion they ended up getting it wrong after taking the time to analyze it.  

The other reason participants introduced this breakdown into their circuit was just 

to check to make sure they had it right. For example, a participant in the think-aloud section 

had an open circuit in his hardware setup and made a change in his hardware. The 

researcher asked him what he changed and he said, “Oh ok, so ok, when I switched it I 

turned [he picks up LED and examines it] positive side and negative side just to see if it 

would do anything different, but it didn’t, so I’m just going to switch it back to what I had 

before cause I’m pretty sure that’s what I had before, but I just wanted to see if it did 

anything different”. 

The tiny size of the Arduino also posed its own usability issues with participants 

having to spend time trying to identify certain pins or making mistakes in identifying the 

pins they were using. For example, one participant who was trying to plug in a ground 

wire, picks up the Arduino and stares at it: “I can’t tell..okay…8, 9, 10, 11, 12, 

13…ground?” He was able to find the correct pin after counting it out. Upon inspecting the 

data, half of the Wrong Arduino Pin breakdowns were from the think-aloud section (i.e. 

only 15 of the 45 participants) who were using an Arduino that did not have numbering on 

the sides of the pins (see Figure 58 left). Because of the difficulty participants were having, 

we transitioned to one with the numbering (see Figure 58 right), which made the error less 
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common across the participants in the non-think-aloud section. Furthermore, when we did 

see it occur it was more likely to be because of a conceptual difficulty than a slip in which 

they mistook one pin for another. For example, a participant consciously choosing to put a 

jumper cable into the 5v pin instead of a digital pin.  

 

Figure 58 – Arduino without labeling on the pin headers (left) and with labeling 

(right) 

6.6.5.2 Short Circuit 

The Short Circuit breakdown led to bugs and was mostly encountered with 

participants using the BitBlox. The participants would hit this error when they interpreted 

how to use the tool incorrectly and purposefully plugged both ends of one component into 

the same section of a BitBlox module, therefore shorting it to itself. This misconception 

was also found in participants who used the BitBlox in the comparative classroom study 

reported on in CHAPTER 5 (DesPortes, Anupam, et al., 2016). 
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6.6.5.3 Open Circuit  

The open circuit bug was found to persist across all the tools. In Blinky LED, the 

participants were learning to use their prototyping tool and those using the Breadboard 

often made a slip in how they were using the tool leading to an open circuit bug by plugging 

components into holes that were next to one another but not electrically connected. Booth 

et al.’s study noted similar issues with miswiring in their study of programmers using the 

Arduino (Booth et al., 2016). Surprisingly the open circuit bug became more prevalent in 

the groups using the BitBlox and Modules in Task #1. The video data reveled that 

participants using the BitBlox usually introduced open circuit bugs for other reasons. For 

example, some of these errors were caused from the BitBlox that were not snapped together 

that spread apart and pulled the components out of the blocks as they moved. Other open 

circuits were caused because participants consciously set up their circuits incorrectly. For 

example, connecting a resistor with only one leg attached to the rest of the circuit (ex. 

Figure 59).   

 

Figure 59 – Example of open circuit created by participants who did not connect 

components into their circuits properly 

The prevalence of the open circuit bug in the participants using the variable 

modules ran counter to our initial hypotheses, which would have predicted this would 
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rarely happen since there are only four things to plug in (i.e. LED, resistor, power, and 

ground). If the components are plugged in correctly, they should connect to one another. 

However, the header pins caused unexpected issues both in their usability and because the 

pin headers became loose over time making inconsistent connections between components 

(ie. bugs caused by faulty hardware instead of usability issues). The faultiness of the 

hardware was not caught by the researcher until the last two participants in the section. Of 

the 15 participants who worked with the modules, 9 experienced an open circuit bug from 

connections using the pin headers in the modules. Within 2 of these instances (both in the 

think-aloud section), it was clear the participant had not pushed their components into the 

module all of the way. For example, one participant noticed her LED coming out of the pin 

header saying, “and that’s not connected”, which was subsequently fixed when she saw 

the issue. Out of the 7 participants who might have had an error because of the faulty 

hardware, the video reveals the last 3 participants pushing down the components down and 

not getting a secure connection (i.e. the LED flickered as they pushed the component into 

the module). In the 4 remaining cases, 3 participants fixed their issue the first time they 

attempted to push their components down all the way; and one was unable to complete the 

task with this as a remaining bug. In these cases, it was unclear if it was caused by a 

usability error (i.e. they didn’t have all of their components pushed down into the pin 

headers) or caused by the faulty hardware (i.e. their components were pushed down, but 

not making a solid connection because of the pin header).  

Insight for supporting participants in these situations, comes from their processes 

for overcoming the issue. The time it took participants to check their hardware connections 

ranged from never attempting it (the case of the participant who did not complete the task) 



 239 

to taking anywhere between 30sec to 25min (avg. ~8min). Furthermore, this was 

sometimes only attempted after the participant was prompted by the hardware debugging 

hints. The longer it took for the participants to debug this issue the more iterations they 

went through in their code. In some cases, the participants had the correct code that was 

disassembled when they did not see the intended change in their hardware. This was similar 

to what happened in other instances when the location of a bug was misdiagnosed (more 

on this in section 6.6.7.1). 

6.6.5.4 Leaving Out Components in Circuit 

Participants using the variable modules were the only participants to leave out a 

component in the first task. The participants in this group were using a static module in the 

Blinky LED activity, which led some participants to forget they needed to plug in 

components in the variable modules when they first started using them. Participants 

generally identified and fixed this error quickly. In the second task, we see a greater 

prevalence of this error across tools caused by participants forgetting to include the resistor 

in the circuit with the two LEDs they had connected in series.  

6.6.5.5 Incorrect Circuit Formation 

The participants using the BitBlox and Breadboard, often created incorrect circuits 

placing components in series or parallel when they should not be. For example, participants 

in the first task who should have been creating the circuit demonstrated in Figure 60 (left), 

combined both LEDs into one circuit (Figure 60 (right)). This rarely happened with the 

participants using the modules since each module had all the components needed for one 

circuit. 
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Figure 60 – Task #1 correct circuit formation (left) and Task #1 common incorrect 

circuit formation (right)  

Participants in the second task often combined the LEDs and/or resistor in parallel instead 

of series in the second task. The participants in Group 1 who transitioned to the BitBlox 

from the Modules often translated the circuit incorrectly as they built it out using the 

BitBlox. Figure 61 shows what the circuit should have looked like and Figure 62 shows 

the three most common incorrect circuits that were built.  

 

Figure 61 – Task #2 Correct Circuit Formation 
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Figure 62 – Task #2 Common Incorrect Circuit Formations 

6.6.5.6 Other Hardware Findings 

Outside of the obstacles and breakdowns reviewed in the above sections, there were 

a wide range of other hurdles and questions the participants encountered in relation to the 

hardware; from questions about how the Arduino is actually able to supply 5 volts, to 

asking whether it was necessary to extend the USB cord all the way for it to work. Other 

important findings involve participants’ problems using ground pins, their initial confusion 

using the prototyping tools, their struggle to correctly interpret visual information, and the 

difficulties they faced transitioning between the tools.  

Creating a Common Ground 

One consistent conceptual obstacle was the concept of ground and whether or not 

the participants could use different ground connections on the board. Although the guide 

indicated they could, the participants were still uncertain when it came to actually using 

them in the tasks. One participant demonstrates this as she looks for a second ground to 

connect a second LED circuit to the Arduino: “I don’t see like another pin that says 
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ground…hmm…I see it but on the other side, like underneath power, but I don’t know if 

that will also work. Or maybe the uh, these three that are next to it, maybe they are also 

ground.” Even though she sees the correct pin her uncertainty leads her to introduce a bug 

by plugging it into a pin adjacent to the ground pin she is using. This is interesting because 

the participants wanted to create a common ground between the circuits even though we 

did not discuss the importance of this concept. A common ground is important because 

voltage is the potential difference between two points. A common ground ensures that the 

bottom or base voltage (i.e. 0 volts) from which that difference is measured is the same. 

The grounds on the Arduino board are connected, but the participants still faced an obstacle 

when deciding whether they could or should connect their circuits to different ground pins. 

Furthermore, while the participants in the Breadboard and BitBlox group had the tools to 

connect their circuit to a common ground they did not usually use their tool when they 

were stuck on this obstacle. In the comparative classroom study, we noted the conceptual 

hurdle for participants to link one point in their circuit to another location in their 

prototyping tool when they ran out of holes for their ground pins.  

Purpose of the Prototyping Tools 

Data from the obstacles made it apparent that the concept of the prototyping tool 

was foreign to the majority of the participants as they first began to work with either the 

Breadboard or BitBlox. Participants, therefore, did not necessarily understand their 

purpose; as one participant asked, “so why is this breadboard actually used to connect 

things instead of a circuit?”. Within the video footage, participants can be seen trying to 

figure out a way to attach components together after going through the slides describing 

how you put components into the tools. For example, a few participants tried stacking the 
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components on top of one another on the table in order to get them to connect as they 

neglected their prototyping tool. 

Correctly Interpreting Relevant Visual Information 

Participants also hit obstacles trying to correctly interpret the relevance of certain 

visual cues. For example, not knowing whether or not the wire colors mattered, wanting to 

know if the “~” next to the digital pins (indicative of pulse width modulation capabilities) 

mattered, interpreting the pin numbers as voltages, or mistaking the blinking of the Rx and 

Tx LEDs on the Arduino (which blink when code is uploaded) for changes they created 

using their code. This also happened with the coloring between the different BitBlox. 

Participants sometimes thought they needed to find two separate BitBlox with the same 

colored section so that they could properly connect their components. One participant 

asked after reading the directions on BitBlox, “does it matter what color they are?” The 

researcher told the participant they couldn’t answer any questions and the participant later 

asked, “is there a red one we can use?” as he tried to match the colors between the blocks.  

The BitBlox also had the ability to connect the various blocks which was visible 

from the edges of the tool, but while participants noticed you could do this they did not 

necessarily know how to do this. One participant, when trying to push two together 

horizontally said, “It’s like LEGOs, but it doesn’t fit. It’s not right”. These obstacles 

indicate that the participants are particularly attuned to the various visual cues in the 

hardware, but that the information can be misinterpreted and lead them astray. 

In the directions for using BitBlox, we did not explicitly cover that participants 

could snap them together, although the pictures in the directions did have the BitBlox 



 244 

connected. Out of the 15 participants who used the BitBlox only two did not end up 

connecting any of the modules, but they did not necessarily connect all of the blocks they 

were using. This could lead to open circuits as discussed in section 6.6.5.3. The video 

footage also revealed that connecting the blocks did not fit seamlessly into their work 

processes. Participants often tried connecting the BitBlox together at the same time they 

were trying to insert the component in them (contrasted to connecting two BitBlox first 

then sticking the component into the blocks).  The parts usually had to be readjusted before 

they were all connected properly. This might have been why participants did not connect 

all of their BitBlox.   

Transitioning Between Tools 

The transition between the prototyping tools also caused issues dependent on which 

tools the participants were transitioning between. While the participants were given 

instructions on how to use the new tool they introduced to, they were not walked through 

an activity with it. As the data from the obstacles, breakdowns, and bugs revealed, the 

transition posed a greater challenge for the participants in Group 1 switching from the 

Modules to the BitBlox compared to other two groups. These participants had a high 

prevalence of breakdowns such as: creating short circuits, open circuits, inserting the LED 

backwards, and connecting components in parallel that should have been in series, which 

we did not see in the other two groups. Given that the Breadboard and BitBlox are 

isomorphic representations of one another with different connection schemes, switching 

from the modules to the BitBlox presents a larger conceptual gap. While participants 

gained some knowledge using the modules, the data demonstrates it did not encompass 
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information that transferred well to using the BitBlox. As one participant reflected, “yeah, 

this is more confusing”. 

The participants who transitioned to the BitBlox from the Breadboard had the 

fewest breakdowns and bugs. Since we hypothesized that using the Breadboard was the 

hardest task, it aligned with our expectations that the BitBlox would be an easy transition 

for them. The participants who transitioned from the BitBlox to the Breadboard had an 

easier time than the modules group, but some still had some difficulty interpreting the 

connection scheme. One participant in this group, for example, who switched to the 

Breadboard after using the BitBlox said, “so I’m just kinda confused. It just, it just looks 

completely different to me. I mean, so if I plug this in here [pointing to a spot on the 

breadboard], I mean how will I know if it’s actually going to do anything? It’s just, it’s just 

weird.” It was common for participants in this group make slips with the breadboard 

creating open circuits by incorrectly putting components in separate columns or rows that 

should have been connected.    

6.6.6 Software Bugs, Breakdowns and Obstacles 

The greatest number of breakdowns and bugs came from how the participants were 

thinking about and working with the software. Similar to the hardware breakdowns the 

most software breakdowns were in Task #2, followed by Task #1 and the fewest in the 

Blinky LED activity. Figure 63 shows the software bugs, breakdowns, and obstacles by 

group and activity.  
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Figure 63 – Software Bugs, Breakdowns, and Obstacles by Group and Activity 

In Blinky LED, the group using the Breadboard had the most software issues followed by 

the participants using BitBlox and then those using the Modules. In Task #1, the group 

using the modules had the most issues, with a similar amount of issues found in the 

participants using the BitBlox and Breadboard. Task #2, revealed similar difficulties for 

those transitioning from the Modules to the BitBlox, followed by those transitioning from 

the BitBlox to the Breadboard. The group transitioning from the Breadboard to the BitBlox 

had the fewest issues.  

The types of breakdowns provide insight into the types of problems the participants 

were facing with the software (see Figure 64). The six most common types of breakdowns 

were, referencing the wrong Arduino pin, misunderstanding how code would execute 

sequentially, incorrectly using (or not using) a pinMode to initialize a pin as an input or 

output, incorrectly sending signals to the pins as high or low, incorrectly using or 
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interpreting the delay block, and incorrectly connecting blocks in the IDE. Similar to the 

hardware, we used an Other category for all the errors participants made when incorrectly 

assessing or interacting with the software. Figure 64 shows the counts for each of the 

breakdowns.  
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Figure 64 – Software Breakdowns from Think-Aloud and Non-Think-Aloud Section 

6.6.6.1 Sequentiality of Code 

The largest number of breakdowns came from participants incorrectly 

understanding the order of execution within their code, or what we are calling sequentiality 

of code.  This error predominated Task #1 and accounted for much of the difference that 

5

5

0

3

5

9

15

11

11

5

25

50

5

1

3

2

2

1

2

17

6

12

8

26

18

4

5

3

1

4

2

2

2

4

3

13

7

6

7

15

27

10

6

8

4

1

3

0

1

0 20 40 60 80

Other

Block Connection

Delay

Pin Signal (HIGH/LOW)

PinMode

Sequentiality of Code

Wrong Arduino Pin

Other

Block Connection

Delay

Pin Signal (HIGH/LOW)

PinMode

Sequentiality of Code

Wrong Arduino Pin

Other

Block Connection

Delay

Pin Signal (HIGH/LOW)

PinMode

Sequentiality of Code

Wrong Arduino Pin

Ta
sk

 #
2

Ta
sk

 #
1

B
lin

ky
 L

ED

Group 1 Modules/BitBlox
Group 2 BitBlox/Breadboard
Group 3 Breadboard/BitBlox



 249 

we saw between the Modules group and the other two groups, as they made almost twice 

as many errors as either the participants using BitBlox or those using the Breadboard. Two 

main mistakes made up the majority of the breakdowns in this category across all the 

groups: (1) creating two chunks of code with two forever loops (ex. Figure 65), and (2) 

attaching code after a forever loop (ex. Figure 66).  

 

Figure 65 – Incorrect code initializing two forever loops 
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Figure 66 – Incorrect code which connects code after a forever loop 

When Modkit compiles the code for two separate forever loops it does not run them at the 

same time, since the Arduino cannot run parallel processes or support multithreading. 

Instead, it runs the code that was last touched by the user. Participants sometimes ran into 

obstacles when something that was working would stop working because another chunk of 

code was activated by a change they made (see example below). Outside of the 

misconception of how the computer interprets code, the thought process for creating these 

two chunks of code is inherently incorrect. If the two blocks ran in parallel the LEDs would 

blink at the same time not sequentially as the task instructed (i.e. Blink LED 1 → Blink 

LED 1 → Blink LED 2 [repeat forever]). The second most common error the participants 

made, is in thinking that code placed after a forever loop would run. Instead, the Arduino 
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runs the code attached before the forever loop then stays within the first forever loop until 

power is reset, in which case it restarts execution from the top of the code. 

Participants were generally unsure of how to correctly add the code for a second 

LED and often times switched in between several incorrect configurations. Participants 

also nested forever loops and brought in new code blocks to help them accomplish the task. 

The following example illustrates the sequence of configurations from a participant in 

Group 1 who had already constructed and connected her modules to the Arduino correctly. 

One module was connected to PIN8 and one to PIN6. She starts with the following code 

uploaded to her Arduino, which blinks her LED at PIN8 (Figure 67).  

 

Figure 67 – Sequentiality Example Step 1 

She then creates a second separate block of code for her second LED at PIN6 and uploads 

it (see Figure 68).  
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Figure 68 – Sequentiality Example Step 2 

With this change, the LED that was blinking switches from PIN8 to PIN6 since she last 

touched that code chunk. She says, “hmm now that one’s blinking and that one stopped”. 

Her next solution involves using a while-loop block, connecting everything together in one 

chunk of code as shown in Figure 69.  
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Figure 69 – Sequentiality Example Step 3 

Uploading this code switches the code back to blinking the LED at PIN8 since it executes 

before the other code. Upon seeing this she exclaimed, “No? Why don’t you want to 

blink?!?!...Hmmm, ok”. She then separates all the loops (as seen in Figure 70) touching the 

PIN6 code last before uploading it.  
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Figure 70 – Sequentiality Example Step 4 

The LED blinking switches again, “ok now that one’s blinking [referring to PIN6] and then 

before, this one was blinking [picking up the PIN8 code].” She then clicks upload, with 

PIN8 being touched last, which then switches the blinking LED back to PIN8. She then 

states, “yeah so they are two separate things…[scrolling through the blocks on 

Modkit]…so maybe to make them blink at the same time you don’t do while maybe you do 

and? [she picks up the and block from the menu but does not see a way to attach it] no that 

doesn’t work. You can’t do that.” The participant eventually received a hint that tells her 

to use one forever loop, and she creates the code in Figure 71. 
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Figure 71 – Sequentiality Example Step 5 

The participant last interacted with the code on the right, so it successfully blinked her 

LEDs in succession, while the forever loop on the left was inactive. She deleted the forever 

loop and added the code needed to make the LED at PIN8 blink twice and completed the 

task.  

The example above demonstrates how participants would experiment with multiple 

iterations of code as they reasoned through how to blink their LEDs. As discussed in the 

next section, part of this misconception might have stemmed from confusion surrounding 

where they should be putting the pinMode to initialize the second LED. Since the Blinky 

LED activity involved putting a pinMode block above a forever loop, this code 

arrangement was readily accessible for many participants. Only 26 of the 46 participants 

started with putting the code for both LEDs within one forever loop on the first try, and 

some reverted from this method because of misdiagnosing other errors they encountered. 
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In CS education research, the work on plan composition has identified that novices often 

start with a schema, or chunk of code for a specific purpose, that they know in order to 

begin solving a problem (Rist, 1989, 1991). This indicates that participants might have 

been doing this here with the pinMode+forever loop schema they had used for the Blinky 

LED task; they had two LEDs to initialize so they created their schema two times.  

6.6.6.2 Pin Mode Breakdowns for Initializing Hardware 

The pinMode breakdown was the second most prevalent software breakdown that 

participants encountered. These breakdowns involved how participants were thinking 

about or using the pinMode block to initialize the Arduino pins as input or output. The two 

most common errors were: (1) not using a pinMode to initialize one of their pins as an 

output, or (2) using a pinMode and leaving it as an input instead of changing it to an output. 

The first issue could have been because participants did not know where to put it, or simply 

because they forgot it was necessary. For example, one participant was trying to figure out 

where she should put a second pinMode and asked, “can one pinMode go under another 

pinMode though? Maybe? [drags one pinMode under another] Oh it can…that’s 

interesting.”. Other participants put the pinMode into the into the forever loop unsure of 

whether this would work, “but [pinModes] don’t normally go in the bracket [forever loop] 

…but I’m going to try it anyways”. If participants did not think they could put the pinMode 

either underneath another pinMode or in the forever loop, it might have led a decision to 

create two chunks of code. Only once did a participant upload code without having any 

pinModes in their program.  
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 The second issue with not switching the pinMode to output could have either been 

a slip since the block initialized as an input, or because they thought it should be an input. 

While the video footage indicated that majority were probably due to slips, some 

participants did struggle understanding the concept of input and output, “yeah I still don’t 

understand this whole input/output thing but I trust that it says output”. When this 

participant first learned about setting input and output she said that it would make more 

sense to her if they switched what they were calling inputs and outputs. Other participants 

could have had similar interpretations.  

6.6.6.3 Delay Code Block Breakdowns 

The delay code block was also a source of confusion, more so in the think-aloud 

section than in the non-think-aloud section. The wording in the initial guide for the think-

aloud section caused many participants to think that the delay caused the blinking of the 

LED. As one participant reflected, “hmm [reading from the guide] ‘we will now add a 

second digitalWrite but this time make it so we turn the LED off’ see like that’s where I’m 

kind of confused because if we want it to blink forever then why are we turning it off? cause 

like the delay is what makes it blink not off. Off turns it off, so if you want it to keep blinking 

why would you turn it off?” This misconception was also seen as participants created 

incorrect code. For example, one participant put the delay in a repeat block by itself in 

order to get one of her LEDs to blink twice (see Figure 72). 
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Figure 72 – Participant who had a misconception about the delay block thinking 

that it caused the LEDs to blink 

The wording in the guide was modified to describe the blink differently, using switching 

on and off a light switch as an analogy, and removing the wording that led participants to 

believe the delay caused the blinking. After this change, the misconception surrounding 

the purpose of the delay was less prevalent in the non-think-aloud section. 

 The other common breakdown participants would make with the delay function, 

was thinking it would fix other issues in their setup. For example, the video captured 

participants changing the delay in order to: get one of their LEDs to turn on, change the 

order in which their LEDs were blinking, and to make an LED brighter when they had not 

initialized a pin as an output. Often times, when a participant would change the delay, it 

was indicative that the participant was stuck on an issue, and this was something they could 

do when they were at a loss for what else to do. As we will show in an example in section 

6.6.7.1 even when acknowledging the flaw in their logic they sometimes would still change 

the delay to fix their problems.  
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6.6.6.4 Wrong Arduino Pin and Pin Signal High/Low 

Setting the wrong Arduino pin and sending the wrong pin signal were two of the 

breakdowns that were usually caused by slips rather than conscious decisions. These slips 

introduced bugs into the code. Participants would often forget to change the pin that was 

being referenced, the signal that a digitalWrite was sending, or they would try and set it 

using the drop-down menu and accidentally choose the wrong selection. This was 

evidenced by situations such as a participant setting all the other code blocks to reference 

PIN8 and selecting one of the digitalWrites to reference PIN7 when nothing was hooked 

up to PIN7 (ex. Figure 73) 
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Figure 73 – Example of selecting the wrong Arduino pin from the drop-down menu  

Participants, such as in the example below, would be thinking about their code correctly 

but then be more concerned with using the correct code blocks and introduce this error. For 

example, one participant had the code in Figure 74 below. 
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Figure 74 – Example Pin Signal Breakdown Step 1 

She traces her code on the right with the mouse and says, “Turn on, turn off, turn on and 

turn off again”. As she places another digitalWrite and delay for PIN2 she says, “Turn off 

then delay again.” She neglects to set the digitalWrite LOW resulting in the code in Figure 

75 below.  
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Figure 75 – Example Pin Signal Breakdown Step 2 

The participant goes back through the code again, “This would be turn on, turn off, turn 

on, turn off, delay then loop again.” She uploads it with the pin signal set incorrectly. 

While this sometimes happened, usually if participants were seen reviewing the code, they 

would be able to pick up these mistakes.  

6.6.6.5 Block Connection 

The last software breakdown that was prevalent amongst the participant was a 

breakdown in the usability of the IDE for connecting code blocks. While participants had 

a few other obstacles using the IDE, this was the only one that consistently led to bugs in 

the code; furthermore, these bugs were often difficult to discern. The obstacle connecting 

blocks is illustrated well by one participant who was trying to connect the blocks for the 

first time in the guide’s tutorial for using Modkit. She dragged two blocks out and was 

attempting to connect them using the block above (Figure 76 (a)). The connection only 

works if you move the block below. After several attempts moving the block above the 
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participant says, “Ok that looks like a shadow [it wasn’t] …That is not connected… [drags 

block under other block and sees shadow (Figure 76 (b))] …ooooh! I think maybe that 

worked. I don’t know what I did [trying to connect from above again and it’s not working 

so she picks up the bottom block to connect them] ooooh that works.” The participants 

often faced difficulties connecting blocks in the activities following the tutorial. The fact 

that there are no visible indicators to show you when blocks are connected, led to 

participants thinking they had connected blocks when they had not.  

(a)  (b)  

Figure 76 – Participant attempting to connect blocks (a) unsuccessfully and (b) 

successfully 

While the software has an indicator when you are about to connect blocks (i.e. the shadow 

under the block as shown in Figure 76(b)), there is no indicator showing which blocks are 

actually connected. In Figure 77, the pinMode is connected to the forever loop in the left 

chunk of code whereas the one on the right is not connected. While it is possible to notice 

the slight offset of the blocks, it’s difficult to see and was often missed by participants 

reviewing their code for bugs. One participant who was debugging this exact issue 

eventually moved her blocks around fixing the issue, but she had no idea how, “something 

changed. I don’t know what I did…I don’t think I changed anything.” These findings were 

consistent with the barriers Boothe’s study of participants using the same software interface 

(Booth & Stumpf, 2013).  
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Figure 77 – Two pieces of code that demonstrate a connection between the pinMode 

block and the forever block (left) and code that demonstrates unconnected blocks 

between the pinMode and the forever block (right) 

6.6.6.6 Exploring New Code Blocks  

On top of the findings discussed above, a fair number of participants had varying 

success as they experimented with new code blocks during the tasks. In the guided 

activities, we only covered the usage of four blocks—pinMode, forever, digitalWrite, and 

delay—which were the only blocks needed to complete the activities. However, upon 

seeing other blocks that they might be able to use, participants often experimented 

integrating them into their code. A number of participants identified and correctly used the 

repeat block to get the first LED in Task #1 to blink twice. The fact that the block used 

language that was directly linked to its usage and it did not require any inputs made it so 

participants were generally able to integrate it correctly. This is similar to Weintrop and 

Wilensky’s finding that the repeat block was easy for their participants to understand 

(Weintrop & Wilensky, 2015c). The repeat block was the only new block that participants 

used correctly without introducing bugs into their code.  
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When participants tried integrating other blocks, such as the while and and blocks 

explored by the participant in the sequentiality example (section 6.6.6.1), there were 

breakdowns in how they were interpreting the blocks. In Kaczmarcyzk et al.’s work they 

found that students would apply “real-world semantic understanding to variable 

declarations” (Kaczmarczyk et al., 2010). Unsurprisingly, our work suggests that this is 

also how they are initially determining the code blocks’ functionality. Characteristics, such 

as the size and shape enabled participants to quickly rule out certain blocks, such as the 

and block which physically did not fit with the other blocks the participants were using. 

Blocks that were more similar, like the while and break, were more likely to find their way 

into the code participants uploaded to their Arduinos (see Figure 78 (left)). Slips were also 

made by participants who would accidentally pick up an analogWrite or the read blocks 

instead of a digitalWrite block (see Figure 78 (right)). Similar to the and block the 

analogRead and digitalRead blocks were often deleted from their code before uploading, 

but participants usually took a bit longer to notice that they had an analogWrite in their 

code.  
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Figure 78 – (Left) Code demonstrating the shape differences between the while, 

break and and code blocks leading participants to integrate or rule out their use. 

(Right) Similarities between digitalWrite and analogWrite blocks.  

6.6.7 Hardware+Software Bugs, Breakdowns and Obstacles  

The hardware+software Bugs, Breakdowns, and Obstacles were intended to capture 

mistakes and misconceptions about the interaction between the hardware and software. The 

bugs resulting from this category were lower than the number of breakdowns because there 

was only one breakdown that was directly linked to the introduction of a bug. However, 

the mistakes participants made did reveal deficits that are important for understanding how 

a novice could be supported. Figure 79, outlines the hardware+software bugs, breakdowns 

and obstacles identified across the groups and activities. Similar to the hardware and 

software, the Blinky LED activity had a higher number of issues found in the participants 

using the Breadboard and BitBlox when it came to the hardware+software interactions. 
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While the participants using the BitBlox had a higher number of issues in Task #1, followed 

by the group using modules and then the Breadboard. Task #2 continued to demonstrate 

the difficulties faced by the participants transitioning from the Modules to the BitBlox.  

 

Figure 79 – Hardware+Software Bugs, Breakdowns, and Obstacles   

There were only four breakdowns in this category since most of the errors participants 

made were predominantly in either the hardware or software. The four categories of 

prevalent breakdowns were: incorrectly assessing where a bug was in their setup, 

reprogramming the Arduino with the same code that was already uploaded to it, 

programming code to the Arduino without the Arduino plugged in, and incorrectly thinking 

a problem was solved when there was still a bug (see Figure 80). 
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Figure 80 – Hardware+Software Breakdowns from Think-Aloud and Non-Think-

Aloud Section 

6.6.7.1 Wrong Assessment of Bug Location  

The breakdown associated with incorrectly assessing the location of a bug did not introduce 

a bug but led to the persistence of bugs in participants’ setup. The issue usually occurred 

when the participant had a software issue and thought it was in their circuit. For example, 

when participants created two forever loops or placed one forever loop after another, it led 

to a program that would only light up one of the participants LED circuits. Not realizing 

their code was wrong, participants often assumed the issue they were having was in their 

circuit rather than with their code leading participants to make changes in their hardware. 

These changes were sometimes harmless, such as rebuilding their circuits correctly or 

changing the pins their circuits were connected to; however, sometimes the participants 
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introduced bugs such as reconstructing their circuit with the wrong circuit formation or 

changing the directionality of their LED just to make sure they had it correct. Participants 

often would guess and check certain configurations which relied on buggy code or circuits, 

rather than narrowing down their problem based on what was working.  

One participant provided a clear articulation of his process debugging a pin that 

was not initialized properly. The example was chosen because the processes and mistakes 

he made were similar to the themes identified across the participants. The participant 

started with the code in Figure 81, which did not initialize PIN12 as an output, and was 

faced with debugging why the LED at PIN12 was dim. Both of his LED circuits were built 

correctly.  
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Figure 81 – Example Incorrect Assessment of Bug Location Step 1 

As he begins to debug his setup, he goes straight for the circuit at PIN12: “Let’s take a 

closer look [takes out the LED in his circuit] let’s see if this is wired correctly. Obviously 

if it weren’t wired correctly it wouldn’t work, but [continues inspecting his LED]…so flat 

end this definitely seems to be positive to negative like I said, so positive ground [plugging 

the LED back in correctly]. It’s wired like before. It still has the resistor and then the wire. 

Let’s try moving the ground over to see if that makes a difference. I’m not sure it will but 

let’s just test it, and see what we got [switches ground pin he is using, which wouldn’t 

make a difference], so let’s plug it back in. Ok, let’s give it a shot [he says uploading the 

code]. Ok so no change. This one’s still bright and this one’s still dim, so why don’t we try 

switching the LEDs and seeing if that makes a difference…ok [he unplugs the Arduino and 

presses stop to upload blank code]. So we take this out…[he switches the LEDs between 



 271 

the circuit at PIN12 and PIN8]. Hmmm [picking up circuit to look at it] so there definitely 

seems to be an issue either with the programming or the wiring because this one, this one 

now that it switches but is going really brightly compared to the other one before when it 

was being very dull [he unplugs the Arduino and stops the code], so let’s try to redo this 

portion of the circuitry and see if we can see what’s wrong. [takes apart the dim circuit] ok 

just to make changes let’s try using this one instead [he changes the BitBlox he is using] 

just because, so let’s start by navigating…[connects the circuit correctly with new 

BitBlox]…Attach this [plugging in the USB cable and uploads the code]. Ok [looks at the 

circuit that’s still dim].” The researcher provides a hint that the problem is in his code. “Ok, 

let’s take a look so writes HIGH writes LOW. We have the PIN8 components are working 

properly, and then this is plugged into PIN12 [verifying in his circuit] so the issue is not 

there. Let’s take a look at this more closely [pointing at PIN12 code], so we have a write 

to PIN12 HIGH, wait, write to PIN12 LOW…hmmm [picks up delay block from menu] 

let’s see [places a delay between turning PIN8 low and PIN12 high], so we’ve got a little 

bit of a gap in between [changes delay to 500ms] although that shouldn’t change 

anything…write HIGH, write LOW, and then after that the delay just means, no delay just 

means it seamlessly goes back into flashing twice before repeating. It might be possible 

that the delay between the two is affecting the brightness, so let’s change it to 250 as well 

and see if this affects things [changes delay and uploads code to Figure 82].  
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Figure 82 – Example Incorrect Assessment of Bug Location Step 2 

Hmm alright whelp…this doesn’t seem to have helped, so stop this [presses stop]. Let’s see 

why could that be the case?” The researcher gives him another hint that he is doing 

something with pin 8 that he is not doing with pin 12. He then introduces a bug by adding 

another digitalWrite high for PIN12 which will make the LED turn on the whole time the 

LED at PIN8 is blinking (see Figure 83).  
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Figure 83 – Example Incorrect Assessment of Bug Location Step 3  

When it doesn’t work he goes back to debugging his circuit despite being told that his error 

is with his software. The researcher eventually identifies his specific problem by telling 

him to look at his first block of code. He then realizes his mistake and fixes his bugs to 

complete the task.  

The example above demonstrates several themes we saw in how participants would 

debug their code. First, the participant tried things that ran counter to his beliefs of how the 

circuit and code worked, such as checking the LED orientation (which he stated had to be 

correct because the circuit was blinking) and changing the delay (which he stated should 

not make a difference). The participant tried harmless fixes in the hardware such as 
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rebuilding his circuit using different BitBlox and ground pins. Other researchers have noted 

these debugging strategies as Just in Case in which students make unnecessary changes 

just to check, and tinkering making “fairly random and usually unproductive changes” 

(Murphy, Lewandowski, & McCauley, n.d.). He also introduced bugs, such as adding 

another digitalWrite high to his code. Furthermore, he was fixated on the hardware as the 

problem space. Even after the researcher told him the error was not in his hardware, he did 

not know what else to do in his software, so eventually returned to debugging his hardware 

after introducing an error in his code. Not all of these behaviors were inherently bad; for 

example, testing your assumptions is important for debugging. However, the lack of a 

systematic and directed debugging process made it inefficient and unsuccessful.  

 While the participant above was clear in his direction for debugging the hardware, 

other participants were faced with instances where they discussed their confusion over 

where the issue was. One participant in the non-think-aloud section who had an issue with 

her pinMode not being attached to her forever loop wanted a hint to solve the problem. 

When asked what type of hint she wanted, she said, “software….it doesn’t matter haha any 

one I don’t really know.”  

Other participants were confused if the circuits were responding the way they 

intended with their code. For example, if the participant mixed up how they were turning 

the LEDs high and low so that one was turning on before the second one was off it became 

a difficult problem to reason about especially because the code was in a loop. Fast blinking 

LEDs also exacerbated participants issues discerning what was happening. The following 

exchange happened, when a participant had the code in Figure 84 with short delays of 50ms 

and 100ms long:  
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Figure 84 – Code from participant who could not tell if her code was blinking one of 

the LEDs once or twice because it was changing so rapidly 

[Participant] They are both blinking but I don’t think that it’s doing the right thing… 

[Researcher] How come?  

[Participant] Well I mean, I thought. Let’s see here. I thought this was [going back 

to the task question in the guide] one of the LEDs should be blinking twice and the 

other one says it should. Then the other one should blink once, but I can’t tell if I’m 

doing that right though. 

Her code was going too fast for her to know if the first LED was blinking twice or once 

before the second LED. While the answer could be found in her code, she was trying to 

use the feedback from her circuits to understand what was going on in her code.  
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6.6.7.2 Reprograms Arduino with Same Program 

Reprogramming the Arduino was a harmless breakdown and perhaps avoided bugs 

that could have occurred had participants not been as diligent in uploading code to their 

Arduino. However, it became clear that participants did not realize the Arduino stored the 

code on the board after it was uploaded. Several of the participants used the same pin that 

was used in Blinky LED for completing Task #1 (i.e. PIN8). When they plugged in the 

Arduino and their LED started to blink, several indicated their surprised; as one participant 

said, “oh! That one’s already blinking…cool, okay now I just have to [turning her attention 

to the code] oh it’s because I didn’t remove this [pointing at the code on the screen with 

her mouse] that’s why”. While the guide did mention that the Arduino stores the code, it 

is not something that would be reinforced since the participants had the Arduino tethered 

to the computer throughout the study.  

Reprogramming the Arduino consecutively without changing anything in the 

circuit or code, was often seen in participants who were stuck and churning on an issue. 

Reuploading the was often a last-ditch attempt just to see if it would work when they were 

not getting the results they wanted. One participant uploaded the code three times in a row 

within a few seconds because his circuit was not lighting up as expected. Other 

investigations in CS education found that novice debuggers would recompile code even 

though they had not changed anything (Murphy et al., n.d.).  

6.6.7.3 Programming without Plugging in the Arduino 

The third breakdown participants experienced between the hardware+software was 

a breakdown programming the Arduino without plugging it into the computer. This was 
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the one breakdown that was marked as introducing a bug and could be relatively harmful 

to the participants success if it was not identified quickly. While the Modkit software does 

indicate there was an error programming (see Figure 85) this was not always seen by 

participants and if it was, it was sometimes interpreted incorrectly. Participants sometimes 

thought the code was wrong, rather than realizing the need to plug in the Arduino. 

Participants that were not able to catch the error quickly iterated through several versions 

of their code not knowing what was correct or incorrect. Not getting the expected feedback 

from their circuit skewed participants’ interpretation of what would work in their code. 

One participant went through six different iterations of her code without uploading any of 

them properly to the Arduino. At one point during these iterations she had the correct code, 

but never realized it and ended up not being able to complete the task.  

 

Figure 85 – Error participants would receive if they did not plug in their Arduino 

when programming it 
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Some participants, however, added to the number of hardware+software breakdowns by 

pressing the stop button (which uploads blank code) without waiting for the program to 

finish uploading. This accounted for 8 of the breakdowns that were subsequently fixed 

when they plugged in the Arduino and uploaded the code.   

6.6.7.4 Incorrectly Thinks Problem is Solved 

The last category of hardware+software breakdowns was incorrectly thinking the problem 

or task was solved when it was not. This generally was because participants would forget 

to initialize one of their pins as an output. They would see the LED dimly blinking and 

think they had completed the task. They were told that they still had an error because the 

LED should not be that dim. This often resulted in them debugging the circuit instead of 

their code because they could see the error in their circuit resulting in a wrong assessment 

of bug location. 

6.6.8 Non-Think-Aloud Section Extra Interview Questions 

The data from the short post-study interview served to complement the information 

gathered during the study. Because the participants in the non-think-aloud section did not 

complete a think-aloud protocol, they answered two extra interview questions that could 

help provide an understanding of how they were thinking about the material. The first 

question, was the Button Blink Question and the second was the BitBlox Circuit Debug 

Question. I’ll describe the questions in more detail in the sections below and report on how 

the participants did.  
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6.6.8.1 Button Blink Question 

The Button Blink Question is as follows:  

If you were given a button, an LED and resistors, how do you think you would 

create the circuit and code so that an LED blinks twice when you push a button? 

You can explain it at a high level.  

Overall, the participants struggled with the question. It was hard for the participants to 

articulate their thoughts as they struggled with the vocabulary for all of the parts:  

I’m assuming the programming would be similar except you’d take um you’d have 

to plug the button into one of the um one of the um, sorry I’m forgetting names. 

You’d have to plug the button into one of the um digital slots. 

The participants in the comparative classroom study also struggled with applying the 

correct terminology with the amount new vocabulary they were presented with when using 

the Arduino for the first time (see section 5.3.4). All of the participants who worked through 

the study did so by tinkering with the Arduino to get it to work properly. Asking them to 

simply talk about it without being able to tinker was inauthentic (Shaffer & Resnick, 1999) 

in comparison to how they had learned. Participants commented on the need to actually be 

able to play with it in order to figure it out:  

I’m more of like a doer and player than like explainer. 

Some participants were not able to answer the question at all or stayed at such a high level 

that it was unclear what they knew. For example, one participant said:  
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I have to first connect the circuit and connect to the computer and the USB to the 

software. And make a code and upload it and it will work.  

When the researcher probed the participant for more information they were unable to say 

anything more concrete. Those who could give a more comprehensive answer often still 

struggled to determine that the button should not be directly connected to the LED. Out of 

the 20 who answered the question, only 6 identified the need to separate the button from 

the LED circuit. As one participant put it,  

I would try and connect the Arduino to the led and maybe try and connect that to 

the button and then hopefully it would, I don’t know be able to control it by the 

button. 

Out of the 6 who did identify the button as needing to be separate 5 were able to correctly 

identify it as an input rather than an output; one swapped the term analog for input.  

 About half of the participants (9 out of 20) identified the need for conditional logic 

without being taught about it in this session. A couple participants recalled seeing an if-

block in the software. For example, one participant said,  

If you press the button the light would blink so um the light...it’d be on high then a 

delay and then low and then another delay, but that’s only if the button’s pressed 

so I guess, I don’t know, I saw an ‘if’ thing so maybe that would work? 

Most participants talked more vaguely about the need for conditional logic, such as this 

participant who said,  
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If you put the pinMode as like an input so when it’s like triggered or something then 

it goes on the cycle of referencing um pin whichever over here on the digital side 

to use a blink twice so reference it to the HIGH input delay and then same pin LOW 

input and then delay and then that would be it. Yeah ‘cause it wouldn’t be going 

forever 

A couple participants had fairly comprehensive and specific answers such as this 

participant,  

So I’d like create two circuits one with the button in it and one with the LED in 

it…then I’d have to make the button circuit I think an input in the code so it’d be 

like whatever pin that’s connected to would have to be an input, and then I’m not 

sure, I’d probably have to play around with it to make it work exactly, but I think 

I’d like have...I’d have to find some sort of if-then relationships in the in the code, 

so that like if when the button’s pressed then I like do this same thing that I had 

setup before but like a twotime blink instead of a forever blink. 

Although the participants realized that the LED should no longer be blinking forever, no 

one identified the need for a forever loop in order to check for the button press. 

6.6.8.2 BitBlox Circuit Debug Question 

The BitBlox Circuit Debug Question was designed to provide the participants with the 

opportunity to identify both code and circuit bugs to see how they approached the problem. 

The participants were given a sheet of paper with the following instructions and code that 

the researcher walked the participant through:  
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What’s Wrong with The Code and Circuit?  
GOAL: The code and circuit are supposed to blink the three LEDs in this order forever: 
LED PIN4 -> LED PIN6 -> LED PIN4 -> LED PIN8 -> LED PIN8 ->  

LED PIN4 -> LED PIN6 -> LED PIN4 -> LED PIN8 -> LED PIN8 ->  

(continue repeating forever) 

 
QUESTION: Can you tell me what the problems are in the circuit and/or the code?  
 
CODE:         

 

Figure 86 – Code in Circuit Debug Question in post-study debrief with non-think-

aloud section 

The participants were then given the following Arduino circuit, which they could plug into 

the computer:  
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Figure 87 – BitBlox Arduino Circuit in Circuit Debug Question in post-study 

debrief with non-think-aloud section 

The setup had three code bugs and two circuit bugs:  

 Code Bugs:  

(1) Pin 8 is initialized as an INPUT instead of an OUTPUT 

(2) Pin 6 is missing the digitalWrite LOW  

(3) Pin 8 is missing the digitalWrite LOW which is incorrectly assigned to 

Pin 6 

 Circuit Bugs: 

(1) LED circuit at Pin 8 has an Open Circuit 

(2) LED circuit at Pin 4 has a Backwards LED 

Overall the participants were able to catch the majority of the bugs. Table 35 reports on the 

bugs identified by the participants in each group.  
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Table 35 – Bugs Identified by Participants in BitBlox Debug Circuit Question 

 LED 

Backwards 

Open 

Circuit 

pinMode set 

as INPUT 

Missing  

Pin 6 LOW 

Missing  

Pin 8 LOW 

Total 

% 

Group 1 

(N=5) 
3 3 4 5 4 76% 

Group 2 

(N=7) 
5 5 5 7 6 80% 

Group 3 

(N=8) 
2 6 8 7 7 75% 

Total % 

(N=20) 
50% 70% 85% 95% 85%  

 

All groups performed about the same on the debugging task. Group 2 who started with the 

BitBlox, performing slightly better than the other two groups catching an average of 80% 

of the bugs compared to 76% (Group 1) and 75% (Group 3).  The hardware bugs were the 

least spotted bugs with the LED backwards only being caught by 50% of the participants, 

and the open circuit only caught by 70% of the participants. The bug that was caught the 

most was the need to set pin 6 LOW in the code, with only one participant missing this 

bug—95% of the participants caught it.  

 Aside from correctly identifying bugs, participants also falsely identified bugs. In 

the code, participants often thought that the pinMode needed to be inside the forever loop 

before each digitalWrite. After one of the participants was provided with the correct answer 

he reflected,  

I didn’t realize they were settings I thought they were orders, so I thought that if I 

needed to switch from the current output being pin 4 then I would have to put it in 

to say like ‘ok, pin 4 was the output now pin 6 is the output’. I didn’t know multiple 

things could be [set] but that makes sense now. 



 285 

In the circuit, participants falsely identified bugs because of sequentially reasoning 

about the circuit thinking that the LED needed to be next to where the circuit was receiving 

power instead of the resistor. When they fixed this bug they often also fixed the Open 

Circuit bug and the LED Backwards bug so therefore thought their assessment was correct. 

In one case, the researcher asked the participant to try switching it back to see if it actually 

mattered, as the participant did this she flipped the LED backwards. The researcher then 

identified the participant’s error. This example demonstrates how a misconception can 

propagate when wrong assumptions are made about what matters and what doesn’t as a 

participant is debugging a circuit.  

Participants in Group 1 and 3 often falsely identified open circuits in the hardware 

based on thinking that the row/column of the BitBlox mattered, even when they were in 

the same section. The participants would switch the components around in the circuit in 

order to ensure there were no open circuits even when the LEDs were blinking. While their 

reasoning was incorrect, it ensured they correctly identified the one open circuit that did 

exist. This error was not made by anyone in Group 2, who started with and thus had more 

experience with the BitBlox.  

6.6.9 Reflection on The Experience 

In the think-aloud and non-think-aloud section, the post-study interview provided 

an opportunity for the participants to reflect on the experience. Some questions were open 

ended while others required the participants to reflect specifically on the tools they were 

using. Findings spanned the participants’ perceptions of three main categories (1) 
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electronics and programming, (2) the hardware tasks and tools, and (3) the software tasks 

and tools.  I will go through each of these breaking it up by group where it is appropriate.  

6.6.9.1 Participant Perspectives on Electronics and Programming 

In the interview, a persistent theme across all the participants was how they viewed 

this experience as existing outside their comfort zone. The participants described coming 

into the study viewing electronics and programming as, nerve wracking, scary, daunting, 

intimidating, imposing, challenging and stressful. Furthermore, most did not self-identify 

with the content, saying things like “I’m someone who's always considered myself to be 

really bad with technology”, “comp sci, it’s just not me at all”, and “it’s just that biology 

is more my thing”. These findings aligned with an observation from the researcher, who 

had to remind the participants that they were supposed to be beginners and that it was okay 

if they did not know the answers on the pre-test, which often elicited negative feelings, as 

one participant put it: 

It was just a flashback to junior year of physics and the very first thing when I had 

to draw the [circuit] I was like ‘uh Mr. [Palmer] is gonna be so disappointed in 

me’.  

One participant even excused herself from the study when she realized she had no idea how 

to draw a circuit in the pretest. She stated:  
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I worry that later even with the instructions I might not [be] able to solve the 

problems, so I worry that I will embarrass myself even more...maybe my husband 

can do this, but I can’t do this. I’m sorry.2 

This participant was a graduate student at a top tier college and was still afraid that she was 

not going to be able to learn about electronics. Another participant had such a strong 

aversion to the material that she did not want to try building anything as she went through 

the guide. The participant went through the guide without putting together the alligator clip 

circuit or her code or circuit for the Blinky LED activity (even though she was reminded 

that the parts were there for her to put together the circuits). When the researcher informed 

her that she had to complete the Blinky LED activity she was visibly reluctant to do so. 

She proceeded to build the circuit and then clicked past all of the slides that showed her 

how to make the code. As the participant tried to move on, the researcher told her, “You 

have to actually make it blink” to which she replied, “like this?! [pointing at her circuit in 

disbelief] Oh…would it actually blink?”. She went back to through the slides and ended 

up completing the Blinky LED but was unable to get through the first Task. She was one 

of the few participants who had a strong negative reaction to the experience throughout. 

She scored a 1 on the posttest knowledge test and was 2.5 standard deviations below all 

other participants in her group in both the knowledge and self-efficacy scores. Debriefing 

on the experience she said it was awful and stressful because she is “not inclined towards 

anything math or physics related”. When asked why she did not want to put the circuits 

together she said,  

                                                 
2 Quotation used with the permission of the participant 
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I just like have no interest in it…it’s just my dad’s an engineer and an electrical 

engineer and he used to make our science projects with these things and I never 

enjoyed it and I’ve been very like…like I’m graduating with a counseling and 

business degree 

While those two participants completely rejected working with the content, the majority of 

the participants commented on how their perspectives and feelings changed:  

I’ve seen one before but I was just too scared to get near it so I never really learned 

anything. I never got to do anything with it, but you know I would do it [now].  

Another participant remarked on his experience:  

I thought it was cool I mean I never really used or made my own circuits or used a 

board like that or anything so I mean it's not as hard as I thought it would be I 

guess, so it makes me feel more confident in the future.  

While the participants felt more comfortable with the material, they also still had some 

hesitations and felt they had a long way to go before being able to work with the Arduino 

on their own. One participant reflected on the knowledge they gained:  

I felt stupid at first. I mean I did learn some stuff though like I actually learned 

something, which was nice and felt less stupid afterwards, but yeah this isn’t the 

most intuitive thing for me.  

Participants talked about how they would only be able to work with the Arduino again if 

they knew they would have the proper support:  
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If it’s guided then it’s ok...and like guided properly. Like the guide has to be 

beginner friendly you know? 

Having a desire to want to work with the Arduino was not only tied to whether they would 

have the proper scaffolding, but also if they found they could do something relevant, useful 

or interesting. For example, one participant stated:  

I thought it was really awesome like you can use it to monitor the garden water 

cause I’m in organic and sustainable crop production, so the thought of like being 

able to like monitor the moisture in the soil through something like this is really 

cool to me, so like maybe I could try and do that in the future.  

Others did not find any immediate relevance; as one participant said,  

It’s pretty fun… I would do it and I wouldn’t be worried about it. Like I don’t know 

if I would like do it for fun you know…I wasn’t necessarily...like ‘oh look at this 

amazing thing I’ve done.’ I’ve made a thing blink three times. 

6.6.9.2 Participant Perspectives on Hardware 

We were also able to understand the participants’ perspectives on the hardware. 

The participants often found that working with the hardware could be a tedious task; as one 

mentioned,  

I mean it's just pretty uh meticulous really like slow when you have to make sure 

you’re plugging everything into the right place. Putting everything correctly on 
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there you have to like check every little thing so I mean that’s just kind of hard 

cause there is a lot of stuff going on” 

Furthermore, they were often surprised at the small size of the components, which made 

them difficult to see and deal with:  

“At first I was surprised about how small [the components] were and how like 

accurate you have to be with the wires and with the little ports and it was really 

tiny. 

The LED was often specifically called out for its lack of usability:  

Like I had no way of knowing...the longer side is positive or that it mattered. 

Especially cause like with the resistor that’s the weird thing. The resistors look like 

the ones that matter ‘cause they have the colors on them like these stripes so I 

literally was assuming oh one of these sides is specifically you have to go through 

it because of these stripes that are not in the middle, but like on one side and then 

[the LED] looks the same almost on both sides. Like this is ridiculous to 

tell...there’s a slight flat part that’s insane 

On top of understanding the similarities between the participants’ overall 

perspective on the hardware, the various groups enabled us to understand the similarities 

and differences on the prototyping tools they used. The order that the participants were 

introduced to the tools impacted how they felt about them, with the majority preferring the 

one they were introduced to first. Group 1, for example, used the Modules then transitioned 
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to the BitBlox and these participants generally preferred the Modules over the BitBlox. 

Participants commented on the usefulness of the labeling in the Modules: 

Yeah [the modules] were like pretty self-explanatory cause it kinda like shows you 

where everything goes. 

The participants consequentially found BitBlox more difficult in terms of figuring out 

where the circuit components should go and how to create connections between them. As 

one participant remarked: 

“the most confusing one was [the BitBlox] haha um yeah cause like the [variable 

modules] was...connecting directly to something else so it was a lot easier for me 

to like, I guess, like do than doing it this way (pointing at BitBlox) where you had 

to kinda connect the dots and then make sure that one wasn’t in the other one and 

like trust that if they were in the same pile that they were going to receive the same 

energy from each other and like respond to the same um power or voltage or 

whatever at the same time like that was a little like confusing to setup so once it did 

work I was happy that it actually worked but like the whole time I was just like I 

don’t even know if this is going to work.”  

The participants did however comment on some of the usability issues that the faced with 

the Modules. The biggest complaint was surrounding the difficulty of plugging in the wires 

to the pin headers and making sure they were pushed down. One participant stated:  

[The modules] make life easier...Yeah until you get the thin wires on the resistors. 

One of them kept bending and I was like ‘nooo!’ 



 292 

 The participants in Groups 2 and 3 were able to compare their experience using 

BitBlox and the Breadboard. The participants in Group 2 generally preferred the BitBlox 

over the Breadboard. They felt that it was easier to understand because the connections 

were clearer. As one participant put it:  

I mean I think [BitBlox] kind of shows like the connections clearer because of like, 

I dunno, just like the separate pieces versus [the Breadboard] where I think it's a 

lot easier to get confused cause they’re just like all in a line and then remembering 

like that these are rows and these are columns and I guess not really knowing why 

you would set it up like that but that it is.  

Participants also remarked on the usefulness of the BitBlox spreading out the circuit,  

I liked working with these [BitBlox] more than the [Breadboard] because like I just 

have big fingers. It’s a lot easier to plug it into these than to stick it into the little 

holes on the [Breadboard].   

However, some participants had mixed feelings because the individual pieces of the 

BitBlox posed their own usability problems. For example, one participant stated, 

I think the Breadboard was like simpler. Um just because well [the BitBlox] kind 

[of] just kept falling apart...I dunno the color [in the BitBlox] is helpful because in 

the breadboard it doesn’t have any color, but I just felt like it’s just kind of 

unnecessary to have all of these like small little pieces that you’re piecing together.  

 In contrast, the participants in Group 3 preferred the Breadboard over the BitBlox. 

Similar to some of the acknowledgements from Group 2, they found the Breadboard had a 
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cleaner design because it had fewer pieces making it easier to work with and understand. 

One participant stated,  

“I felt like [the Breadboard], I don’t know, was easier to understand. [The Bitblox] 

has so many colors and blocks and things I wasn’t sure if I was doing it right, or if 

I like misread the instructions for that ‘cause I sort of just jumped into it.”   

Some of the participants using the Breadboard still had difficulty with the connection 

scheme, such as this participant who said,  

the Breadboard is a little more confusing because with...um BitBlox you connect 

one and this is one and you connect another one it’ll connect another. It’s relatively 

straightforward, but [the Breadboard] you have to keep the actual columns and 

rows and, I don’t know, like those columns and rows actually differ. It’s a little 

more confusing.  

While the participants in Group 3 definitely had their preferences, they were more inclined 

to suggest different use cases in which either the Breadboard or BitBlox would be better 

suited. For example, one participant stated,  

I liked [the Breadboard] better but I think it only works for like simple tasks 

because...obviously you could do it for a billion different things, but for doing this 

circuit (the one used for the debugging task) I would have to work really hard to 

make sure that everything is connected right [in the Breadboard]. I might 

accidentally bump one and knock it off to the wrong spot and I’d be like doing wire 
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over wire because there’d be like you know like twelve or some fifteen components 

like stuck in [the Breadboard] and it would just be difficult. 

6.6.9.3 Participant Perspectives on Software 

The participants across all groups had varying opinions on the difficulty of programming 

the software. The participants who found it difficult, thought it was challenging to apply 

what they learned to new situations and to figure out how to get the code to do what they 

wanted. One participant talked about the difficulty of transferring what she learned to a 

new problem,  

like in [Blinky LED] we were only like taught to do a specific circumstance so it 

was kind hard being not familiar with programming to figure out like what uh 

applied in other situations. Like if the delay was put before it how would that 

change it, or if it would.  

Another participant discussed the difficulty of having to understand what is going on in the 

code in order to get his LEDs to blink,  

the most challenging part was for me was the code part...cause when you use the 

code and have to actually know what each part does..I have to learn like...how the 

code is setup and how it correlates with what cut on first and what cut on second, 

so I feel like that was the hardest part.  

Although, a set of the participants found the programming hard, they still appreciated the 

blocks-based language. One participant stated,  
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I thought it was going to be something a lot more complicated, but it’s just as simple 

as dragging and dropping icons and then selecting parameters for each icon that 

reference what you made. 

Furthermore, while several participants mentioned that it looked like a tool for kids, unlike 

what (Weintrop & Wilensky, 2015a) found in their study, the participants who remarked 

on it did not regard it as a bad thing,  

The coding software was really cool. I was expecting to...type up tons of lines, but 

this...felt like one of those educational games that I give to kids in elementary school 

to like teach them letters and stuff except its teaching you how to code. It’s cute, 

it’s like a cute little format, and it makes sense how the blocks work and you can 

move them. 

However, they did view it as a starting point,  

If it was my goal to learn how to code I would want to start translating pretty 

quickly from this to like actual programming languages. 

6.7 Discussion  

The lab study findings presented above demonstrate insights into the tools and experiences 

of novice participants working with physical computing for the first time, contributing to 

our understanding of the following research questions:  

RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 

2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  
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2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino?  

2.4 What are novice students’ reflections on working with the Arduino?  

RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability 

in individual and group settings? 

3.2 How do different abstraction layers in the design of physical computing tools 

impact students’ learning and self-efficacy? 

Within this discussion I will first cover how our findings of the obstacles, bugs and 

breakdowns integrated into the findings from previous studies. Next, I will discuss some 

of the processes of solving errors and correcting misunderstandings. Last, I will talk about 

the implications of our findings in relation to the design of the tools for physical computing.  

6.7.1 Findings Situated with Prior Literature  

In section 4.6, we introduced literature that could be useful for understanding how 

participants would be thinking about the Arduino in our laboratory study and specifically 

the misconceptions and errors they might encounter. I will go through the findings 

concerning the obstacles, breakdowns and bugs participants encountered in the study and 

discuss how our work is situated within the prior work answering RQ2.1 and RQ2.2.  

6.7.1.1 Summary of Hardware Errors  

The hardware errors were made up of six main categories: using the wrong Arduino 

pin, creating a short circuit, creating an open circuit, assessing the LED directionality 

incorrectly, leaving out a component in their circuit, and forming their circuit incorrectly 

so there were components either in parallel or series when they should not be. We found 
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that using the wrong Arduino pin and using the LED backwards was often the result of the 

small components causing a slip in the participants actions, or in the case of the LED 

causing participants to forget that orientation mattered. Similarly, our comparative 

classroom study (DesPortes, Anupam, et al., 2016) and the work of Sadler et al. (Sadler et 

al., 2017) and Booth et al. (Booth et al., 2016) demonstrated how small components caused 

similar issues. Sadler et al.’s study with high school students also found that their 

participants would flip the LED backwards, and Both et al.’s study of intermediate adults, 

identified miswiring the temperature sensors and LEDs to the wrong Arduino pins as the 

most common errors (Booth et al., 2016). In Booth et al.’s case, these errors were often 

fatal, inhibiting participants to complete the task. Our results from the debugging task 

showed that catching hardware bugs with the small components were some of the harder 

issues for participants to spot, with only half finding the backwards LED. However, our 

results also show that small changes to the tools, such as using an Arduino with better 

labeling on the pins, could increase usability and decrease participants’ errors.  

Other hardware breakdowns we identified could be related to the prototyping tool 

design and conceptual misunderstandings participants harbored. Some participants using 

the BitBlox interpreted the colors as meaning everything should be plugged into one 

connection section, which then shorted everything together. This short circuit issue with 

the BitBlox was one that we identified in the prior comparative classroom study 

(DesPortes, Anupam, et al., 2016). In contrast, the design of the Breadboard increased the 

likelihood that participants would make slips causing open circuits because they did not 

plug the component into the right column or row. The usability issue was prevalent in the 

comparative classroom study (DesPortes, Anupam, et al., 2016) and occurred within Sadler 
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et al.’s study (Sadler et al., 2017), demonstrating the persistence of this error. Participants 

also struggled conceptually in their construction of the circuits, or as Sadler et al. identified 

it, having theoretical misunderstandings (Sadler et al., 2017). While Sadler’s work only 

mentions one mistake—placing too many LEDs in parallel—we found participants would 

leave components only partially connected to the circuit (creating open circuits), place two 

things in parallel that should be in series, or place two things in series that should be in 

parallel (creating incorrect circuit formations). Participants also sometimes left out 

components in their circuits, but this usually seemed to be because of a slip rather than an 

intentional choice (i.e. not a conceptual issue). Booth et al.’s study demonstrated how 

detrimental this could be. The lack of a resistor in their participants’ LED circuit caused it 

to source too much current, leading the Arduino to drop its supply voltage to a temperature 

sensor, which in turn began providing non-sensical data (Booth et al., 2016).  

One other error that was not as visible until the non-think-aloud participants were 

debugging the circuit in the post-study was sequentially reasoning about the circuits. Some 

participants thought that the LED had to be “closest” to the power source in order for it to 

work. A few participants in the think-aloud group were noted with this error, but it was 

unclear how many participants in the non-think-aloud group had this misconception when 

they were working since they could just hook it up the “correct” way. This error is noted 

within the literature to be one of the most common misconceptions of novices working 

with electronics, as well as one of the more difficult misconceptions to correct (Beheshti 

et al., 2014; Chi, 2005; Cohen, 1983; Grotzer & Sudbury, 2000; Küçüközer & Kocakülah, 

2007). 
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6.7.1.2 Summary of Software Errors 

The software errors were made up of six main breakdowns: referencing the wrong 

Arduino pin, setting the pin signal incorrectly (i.e. high/low), failing to connect their code 

blocks, errors interpreting the sequentiality of code, misunderstanding or misusing the 

delay block, and misusing or misunderstanding initialization with the pinMode block. 

Similar to the hardware errors the software errors had errors caused by slips and conceptual 

difficulties. Referencing the wrong Arduino pin, setting the pin signal incorrectly, and 

failing to connect blocks properly in the code were all generally caused by slips. The 

debugging task demonstrated that the participants were generally successful at finding and 

correcting wrong Arduino pin references, as well as incorrect pin signals. This finding 

supports Weintrop and Wilensky’s finding that the blocks-based language provides code 

that is easily readable for users. In contrast, identifying blocks that were not connected and 

should be was much more difficult a problem. When participants went through the guided 

section teaching them how to connect blocks we identified the difficulty they were having, 

which Booth et al. also identified as a barrier of the interface (Booth & Stumpf, 2013). 

They did not however report on the errors caused by participants not being able to see or 

understand the consequences from missed block connections, which we found to be an 

insidious problem for participants to find and fix.  

The most common software breakdown in our study was a conceptual error in 

which participants misinterpreted the sequentiality of code. This misunderstanding led 

participants to create two forever loops, which they intended to run at the same time or two 

forever loops, which they intended to run one after the other. This error is similar to the 

parallelism error found in novice programmers who thought code outside of loops would 
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be “known” when the code was inside the loop (Pea, 1984). In our case, the participants 

thought that code in both loops would be “known” at the same time. While two separate 

forever loops would work in multi-threaded systems (ex. Scratch enables multiple forever 

loops), this is not the case for this context and did not get the participants the desired effect. 

Difficulties with this misconception often led to an introduction of other bugs because the 

code had unintended consequences (ex. only blinking one of their LEDs), which often 

hindered them from sorting through the issue.  

The delay block breakdowns were also generally caused by conceptual issues, but 

often did not lead to the introduction of bugs. Participants sometimes extended the 

functionality of the delay block beyond its actual purpose—ex. thinking it could make an 

LED brighter. However, we found that these mistakes were generally an indicator that a 

participant was stuck and did not know what else to do at the moment.  

Errors with initialization of the pins using the pinMode block spanned from 

confusion over where they should initialize the pins, if they needed to initialize the pins, 

and slips in setting it to input incorrectly. Reflections from one of the participants indicated 

that premise of initialization could have been misinterpreted as a setting that needed to be 

changed between pins as they referenced different pins in their other code blocks. When 

participants forgot or incorrectly initialized the pinMode, the error resulted in a dim LED 

which was not usually interpreted as an issue, although participants did notice that it was 

dimmer than usual. There is a question of whether or not the compiler should assume 

whether it is an input or output based on whether the user is reading or writing to it in the 

code (i.e. similar to how Python assigns a type to objects). However, this gets back to the 

question of whether it should be black-boxed and automatically set or should be glass-
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boxed providing information about how it should be set such that participants can learn the 

difference in how the initialization changes the capabilities of the pins.  

6.7.1.3 Summary of Hardware + Software 

The hardware + software breakdowns provided us with insight of four mistakes 

participants made in their understanding of the programming and electronics: trying to 

program the Arduino without plugging it in, reprogramming the Arduino with the same 

code that is already uploaded, incorrectly thinking they had solved a problem when they 

had not, and incorrectly assessing where a bug was in their setup. When participants did 

not plug in the Arduino to program it, it was because they forgot to rather than because 

they thought it was not necessary. Catching this error early proved essential for the 

participants to understand what was and was not working in their setup.  

Reprogramming the Arduino was identified as both a conceptual misunderstanding 

and an indicator that participants were stuck. Our findings revealed that participants did 

not always understand what it meant for code to be uploaded to the Arduino, with many 

articulating their surprise when code continued to run after being unplugged and plugged 

back in. This conceptual misunderstanding could probably be rectified by integrating 

activities that require participants to question their assumptions—ex. having them power 

and use the Arduino through a wall or battery pack after code is uploaded.  

The last two errors were both indicative of a failure to properly understand how to 

debug. Thinking the problem was solved, was a mistake caused by not double checking the 

setup if they were getting reasonable responses from the code and circuit. Incorrectly 

assessing the bug location caused the bugs in the setup to persist without getting the 
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participant closer to figuring out the problem. Booth et al. found similar difficulties with 

the intermediate programmers in her study who had worked with the Arduino before 

(Booth et al., 2016). We will talk more about the work processes of our participants in the 

section below.  

6.7.2 Working Through the Issues – Novices Strategies for Solving Problems 

As participants hit issues they had different ways of handling the errors they were 

faced with. We will discuss these strategies in the following two sub-sections, examining 

RQ2.3. First, we will discuss examples of how visibility played a role in both the success 

and failure of participants sorting through errors and misconceptions from these errors. 

Next, we will talk more specifically about debugging and the knowledge that would have 

helped participants problem solve.  

6.7.2.1 Impact of Visibility into Errors on Participants Debugging and Learning  

Conceptual errors were either ameliorated or exacerbated based on the participants’ 

visibility into their misconceptions. One example of this in the hardware was how 

participants struggled to understand what should and should not be electrically connected 

leading to open circuits, short circuits, leaving out a components and incorrect circuit 

formations. In the first task, participants had to figure out how to create the hardware to 

blink two LEDs separately. To do this correctly the participants had to create two separate 

LED circuits and hook them up to two different pins such that they could refence them 

individually. In the process of solving this task, several participants connected everything 

in series using one pin in order to get both LEDs blinking. They were soon faced with the 

constraint of needing to make the LEDs blink separately. When participants went to edit 
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their code in order to do this, they usually realized that their series circuit would not allow 

them to reference the LEDs separately. They then had to adapt their circuit schema in order 

to solve the problem. The physical constraints of the hardware and the visibility into the 

mistake led to their ability to fix it.  

In contrast, when participants made errors but were still able to get the intended 

blinking effect, they had difficulty understanding how their setup was wrong. In the first 

task, participants could get away with putting the LED and resistor for each circuit in 

parallel instead of series or creating a closed circuit with the LED while not incorporating 

the resistor properly and still get the LEDs to light up using their code. Similarly, in the 

second task, participants could have several circuit arrangements that enabled them to blink 

all of their LEDs while still having bugs in solving the task. The limited visual feedback 

consisted of the physical connections they could trace, and the different brightness levels 

of the LEDs. However, the brightness of the LEDs was not feedback that was readily seen 

or interpreted as an issue by participants. They were able to get the basic intended effect 

(i.e. blinking), and thus did not question the brightness levels. It often was not until they 

were told they had not completed the activity or asked for a hint for something else that 

they were able to catch and fix their mistakes. Other research has demonstrated that novices 

struggle identifying incomplete or short circuits in both circuit diagrams (Engelhardt & 

Beichner, 2004) and soldered circuits (DesPortes, Pathak, et al., 2016). Without relevant 

feedback, this error also seems to persist in circuits built with prototyping tools. The 

participants’ processes indicate the need for more relevant information on top of the LED 

brightness (either from the learning materials or the tools) to be able to understand and 

correct these mistakes. 
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Visibility of information was also important for correcting misconceptions 

surrounding the sequentiality of code. The participants had low visibility into how the 

computer was compiling and interpreting the code, which created a complex situation for 

them to fix their errors and misconceptions. Similar to Meerbaum-Salant et al.’s 

investigation of habits formed in blocks-based environments (2011), when participants 

were constructing their code for Task #1, we found that participants were often 

implementing a bottom-up programming process in order to get both of their LEDs to blink 

sequentially. The participants took the schema (Rist, 1989, 1991) that they had from the 

Blinky LED task—i.e. the pinMode and forever loop code to blink one LED—and 

implemented it twice. The participants in this situation had to work through three issues: 

the first concerns their thought process about the problem—i.e. incorrectly using parallel 

processes to get the LEDs to blink one after another; the second concerns interpreting what 

the IDE is capable of—i.e. the IDE cannot compile parallel processes; and the third 

concerns interpreting what the code is doing when it does not compile parallel processes—

i.e. understanding what code will actually be executed. The second and third are related, 

but the participants had to deal with the fact that their code wasn’t running properly, and 

then deal with what it was actually doing. Some participants (like the example in section 

6.6.6.1) were able to use the feedback from their two working LED circuits to decipher 

how their code interactions were linked to the output (i.e. understanding that the last forever 

loop touched was active), but this did not necessarily lead to an understanding of how to 

correct their issues or an understanding of why they were getting certain behavior. Not 

knowing what they could or should do led participants to repeatedly try failed solutions 

and focus on innocuous changes such as modifying the delay or uploading the code 
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multiple times. Visual indicators from the compiler, such as greying out inactive code or 

highlighting active code (i.e. what Scratch does (M. Resnick et al., 2009)), could help 

participants think through both how the code is executing and how it should be executing 

to accomplish the task at hand. 

When participants did have visibility into how the computer was interpreting code, 

it made it easier for participants to sort through their misunderstandings. For example, the 

IDE provided insights into how code blocks should be used based on their shape and color. 

These indicators helped participants understand if the blocks would work in the way they 

intended. For example, when participants thought the and block would help them do two 

things at the same time (i.e. blink this LED and that LED), they were able to see that the 

code block would not fit with any of the code blocks they were currently using. When a 

code block’s color or shape did not rule it out, participants were more likely to use an 

incorrect block introducing bugs into their setup. Other studies have also identified the 

usefulness of the colors and shapes in guiding students on their use (Weintrop & Wilensky, 

2015a). As we continue to develop both learning materials and tools for physical 

computing it is important that we determine ways to provide information and activities that 

can help learners develop their conceptual models of the hardware, software, and 

programming tasks.  

6.7.2.2 Debugging the Hardware and Software 

The processes implemented by participants as they tried to identify and fix the bugs 

in their setup, demonstrated the conceptual hurdle posed by debugging. The participants in 

the various groups showed that as more problems were introduced in the hardware it also 
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increased the number of errors that group made with the software. For example, the 

participants using the static module in the Blinky LED activity had lowest number of issues 

with their hardware and also had the fewest software errors; similarly, as these same 

participants had the most difficulty in Task #2, they correspondingly had the most software 

errors. This demonstrates how errors could compound as participants tried to work through 

them.  

Debugging a physical computing setup was difficult for participants because they 

had to deal with the possibility of bugs being in both the hardware and software. This 

complexity makes it important that a systematic debugging process is used to understand 

where the issues are coming from. However, similar to other findings with novice 

programmers, this was not something the participants were able to do without guidance 

(Ahmadzadeh, Elliman, & Higgins, 2005; Edwards, 2004; Murphy et al., n.d.) causing 

them to incorrectly identify software bugs as hardware and vice versa. The findings suggest 

that participants lacked methods to check parts of their setup, lacked knowledge of the 

types of errors they should check for, and did not realize the importance of thoroughly 

checking their assumptions. Furthermore, the findings provided insight into the common 

actions participants would implement when they were stuck.  

Throughout the activities there were instances when participants could use the 

working parts of their setup to debug the parts that weren’t working, in order to isolate the 

problem. For example, a common case participants were faced with was when they were 

able to get one of their LED circuits working but not the second one. The participants could 

have changed the hardware or software to provide better insight into where the issue was 

coming from—ex. use the 5V pin to statically check the circuit, switch the non-working 
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circuit to the pins the working circuit was using, or switch the working code to reference 

the non-working circuit. These strategies were rarely attempted, and when participants did 

try them they were not always implemented correctly or in a way that was comprehensive. 

For example, in the debug example we walked through in section 6.6.7.1, the participant 

switched the LEDs between circuits and switched the grounds between circuits, but he 

never checked switching the whole circuit between the two pins he was using. 

Part of the difficulty with debugging also stems from knowing the types of bugs 

that they should check for in their setup. While the participants did not have a list of errors 

that they knew to check for (unless they received the debugging hints), they did consistently 

check for a backwards LED. We attributed this to the fact that the guide consistently 

reminded participants that flipping the LED backwards is a common mistake. Thus, 

participants would often check for this when they were having difficulties with an LED 

lighting up. However, their repertoire for checking errors was low, so bugs that could be 

quickly fixed, such as pushing down the components into the prototyping tool, sometimes 

lasted a long time before they were diagnosed.  

Even when participants were given the debugging hints they did not always go 

through and physically check all the issues. If they thought something was correct (like 

their block connections), they would not perform the check of trying to lift up the top block 

to see if they were connected (this process was outlined in the guide and debugging hints). 

Even in Booth et al.’s investigation of programmers using the Arduino, they demonstrated 

that the programmers had a hard time translating their knowledge of debugging software 

to debugging an Arduino circuit (Booth et al., 2016) emphasizing the importance of this 

line of research is explored specifically in physical computing.  
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The participants strategies for debugging provided us with insight into 

characteristic actions they would take when they were stuck. The three main indicators we 

identified were: continuously uploading the same code to the Arduino without making 

changes, changing the delays multiple times, and taking apart and rebuilding their circuit. 

Rebuilding the circuit was a strategy also noted in the comparative classroom study 

(DesPortes, Anupam, et al., 2016). Information on what “getting stuck” looks like can 

inform designs that are built to offer hints or suggestions when it seems the user is having 

difficulties.  

6.7.3 Design of Physical Computing Tools 

In the following section we are going to discuss implications of our findings on tool 

design for physical computing (RQ3.1, RQ3.2). 

6.7.3.1 The Arduino and Electronic Components  

In the Arduino and electronic components, we saw how the small components 

contributed to slips as participants plugged in components to the wrong Arduino pin and 

plugged the LED in backwards. Further, the small size required more time for participants 

to decipher information in these components as they tried to avoid introducing bugs—ex. 

time spent examining the Arduino for the correct pin or the LED’s directionality. While it 

is unlikely that participants learned anything from a slip using the wrong Arduino pin, it is 

possible that the difficulty the participants had deciphering the directionality of the LED, 

led to improved learning outcomes based on the increased time they spent using the 

component. Similar to the concept of seamful design, in which breakdowns or uncertainties 

in the technology which are usually hidden (i.e. seamless) are can be used in an 
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opportunistic way to exploit uncertainty (Chalmers, 2003), integrating design choices that 

make participants spend time on specific concepts might improve learning outcomes. 

However, Barkhuus integrates seamful design in ways that are intended to increase the 

enjoyment of the gameplay (Barkhuus, 2005), which stands in contrast to the participants 

dislike of the small components. Moving forward in this research direction would require 

an examination of seamful designs that exploit participants uncertainty in ways that prove 

conceptually and motivationally beneficial. 

Outside of the slips participants made, we also found that participants were 

particularly receptive to noticing and identifying visual information that was larger, but 

with the number of visual cues, the challenge became sorting through the relevant and 

irrelevant information correctly. As one participant put it, “there is a lot of stuff going on”, 

which becomes hard for participants to keep straight. The Arduino has small text on the 

board and a number of functions and information built into the visual design of the board. 

Participants articulated many questions associated with this information as they wondered 

what everything meant. While they did learn to ignore certain information, much of it was 

initially misinterpreted.  

The findings suggest that the design of these boards could benefit from pairing 

down the amount and types of information presented, while expanding the design to 

provide more visible and comprehensive identification of the relevant information. While 

many beginner electronic tools make information more visible (ex. Snap Circuits), they 

often also come with other restrictions such as tying components to a baseboard. As 

discussed in the post-study interviews the ability to integrate the Arduino into the things 

participants cared about was important to their desire to want to work with it again, making 



 310 

the restrictions posed by these tools problematic. However, inspiration from the design of 

these tools, can be integrated into the microcontroller designs. For example, boards such 

as the Micro:Bit (Figure 88 (left)) that pair down the aspects of the design that are visible 

and labelled for the user. Other boards such as the Adafruit Trinket (Figure 88 (right)), 

which integrate a microcontroller with less functionality, could increase the size of the 

board design and offer more information to the users without overwhelming them. 

 

Figure 88 – Micro:Bit example of paired down microcontroller (left) and Adafruit 

Trinket Mini example of a less complex microcontroller (right)  

6.7.3.2 Circuit Prototyping Tools 

The findings from the participants usage and success with the different circuit 

prototyping tools provides an understanding of the benefits and drawbacks within the 

designs of each of the tools. The static and variable modules were easy for the participants 

to figure out how to use, indicated by the participants’ ability to get up and running with 

the static modules more quickly and with fewer errors compared to the other groups. When 

they transitioned to the variable modules and realized they had to plug in the components, 
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the participants did not have difficulties figuring out where to put the components. 

Furthermore, the modules demonstrated that having a separate module for each circuit 

guided participants to hook them up individually to the Arduino rather than in series (i.e. 

they rarely created an incorrect circuit formation in the first task). Thus, they avoided the 

conceptual difficulty other participants hit in the first task, but also might not have learned 

the same things since they did not have to sort through this error. The participants using 

the modules did face usability and faulty hardware issues leading to a number of open 

circuit bugs identified in Task #1.  The problems did not seem to contribute to an elevated 

conceptual understanding; however, the participants who did identify and fix this issue 

often learned to adapt pushing down the components as a debugging strategy. When it was 

not identified quickly however, it compounded participants’ mistakes and 

misunderstandings of what was going on in their software.  

While it is difficult to understand what the participants’ experience would have 

been on the first task had these issues not existed, the transition from the modules to the 

BitBlox indicates the differences in how the tools forced participants to think about the 

circuit. In presenting the spectrum of modularity, we hypothesized that learning is related 

to the concepts that are made visible based on the interactions they require from the 

participants. In this case, the need to translate the picture of the circuit to create connections 

between the components was offloaded to the module although still physically visible. 

When they transitioned to the BitBlox, accomplishing this translation was their greatest 

difficulty, causing them more open circuit, short circuit, LED backwards, and incorrect 

circuit formation breakdowns than the other groups. Those that had already used the 

BitBlox and Breadboard were already forced to make these translations in the use of the 
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first tool. Because of the difficult transition the first group had to make between Modules 

to BitBlox, most did not enjoy working with the BitBlox. The findings suggest that students 

could be more reluctant to transition away from the tools with more integrated scaffolding 

if the transition to the new tool presents too many difficulties. 

 The BitBlox also had some advantages and disadvantages to its design. The 

coloring and separation of connections successfully eliminated the majority of slips caused 

by participants plugging components into the wrong area by accident. While participants 

reflected on the benefit of the coloring in their post-study debriefs, the data from the study 

indicated that the color was also sometimes misinterpreted by participants who created 

shorts in their circuits and those who were looking to match colors between different blocks 

to create connections. We identified the same interpretive errors in the comparative 

classroom study with the BitBlox, in which students created shorts in their circuit because 

they misunderstood how to use the tool (DesPortes, Anupam, et al., 2016).  

One finding that ran contrary to our expectations based on the previous study, was 

in the difficulties associated with snapping the blocks together. We hypothesized this 

capability would make it easier for participants to organize their circuits. However, the 

separate blocks presented participants with more things they had to deal with in an already 

complex environment. We did note decision paralysis in the comparative classroom study 

caused by students not knowing which block they should use (DesPortes, Anupam, et al., 

2016) but did not recognize the extent of the difficulties the participants were having. In 

addition, snapping the blocks together did not fit fluidly into how participants were 

integrating their components into the blocks. When this happened, this led to either a less 

organized workspace that could lead to open circuits because blocks were left unconnected, 



 313 

or it could cause barriers in the participants’ work processes as they rearranged components 

to get everything plugged in correctly.  

Participants often contrasted using the BitBlox to the simpler and cleaner design of 

the Breadboard. The Breadboard encompassed all the needed connections on one board 

and required less interactions to use. One drawback of the Breadboard was that it has a 

more difficult connection scheme that led to bugs being introduced even when participants 

were walked through step by step instructions for how to construct the circuit in the Blinky 

LED activity.  This aligns with the difficulties we identified in the comparative classroom 

study (DesPortes, Anupam, et al., 2016). In the laboratory setting, the participants had a 

more comprehensive guide to creating the circuit, and were able learn the connection 

scheme, leading to fewer issues in the later activities. This contrasted to the persistence of 

the issue in the participants in the comparative classroom study of high school students. 

This could be indicative of a few things. For one, it could be highlighting a limitation of 

the laboratory environment for accurately predicting outcomes in a classroom 

environment. One participant acknowledged the differences, “In a classroom I would have 

totally like not, I would have started skipping slides much quicker”. The differences in the 

persistence of the error could also have been because the participants in the laboratory 

study were older, more educated, had more materials to reference, and more practice using 

reference materials.  

On top of taking more time for the participants to learn, the second drawback of the 

Breadboard’s connection scheme was that it led to slips from participants unintentionally 

plugging components into the wrong place. This seemed to be a reflection of the 

compactness of the breadboard and the lack of indicators showing the separations between 
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columns and rows. Slips in tool usage were more common in participants using the 

breadboard than in the other groups.  

The transition between prototyping tools presented the participants with a task in 

translating between connection schemes. The transition between the BitBlox and 

Breadboard groups was easier than the transition to BitBlox made by the modules group. 

The BitBlox and Breadboard are isomorphic representations of one another, which is not 

the case for the modules and BitBlox. The similarities between the tools were recognized 

by the participants as evidenced in their reflections in the post-study debrief. Enabling ways 

for participants to become proficient in translating between representational forms is 

important whether the goal is to provide pathways for an individual to work on hobbyist 

electronics, or so they can eventually work as an engineer. This skill is needed for working 

with the majority of prototyping tools as a person experiments with new electronic 

components, which have circuit diagrams, circuit layouts, and physical circuits that one 

might need to understand. 

6.7.3.3 Blocks-Based Software and Modkit IDE 

The software was shown to embody many of the benefits of approachability and 

ease of use found in prior work investigating blocks-based environments with older 

students (Weintrop & Wilensky, 2015a). The software enabled the participants to easily 

start creating code for the first time, and participants reflected on the simplicity of the 

environment and the ease with which they could pick up the coding. When students did 

critique the environment they noted possible issues with slow authoring and stated that they 

would like to advance to more challenging coding environments, which was similar to the 
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drawbacks High School CS students in Weintrop and Wilensky’s study identified 

(Weintrop & Wilensky, 2015a). However, while Weintrop and Wilensky found that the 

blocks-based environments could be potentially damaging for older students (Weintrop & 

Wilensky, 2015a), the inauthenticity and kid-like interface was not negatively perceived 

by our participants, who were also older but had high levels of apprehension when it came 

to working with CS and electronics. Our study suggests that the type of simplicity you 

build into the interface should depend on the level of proficiency and self-efficacy of the 

learner rather than just the age. Furthermore, when combined with the lower perceived 

cognitive load and higher self-efficacy identified by Booth et al.(Booth & Stumpf, 2013) 

there is a strong argument to be made for blocks-based languages for novices of all ages. 

Outside of the benefits provided by the blocks-based interface, the participants had 

to deal with errors introduced in their code because of usability mistakes. The breakdowns 

related to slips in using the software were: accidentally referencing the wrong Arduino pin 

in the code blocks, setting the pin signal incorrectly, accidentally setting the pinMode to 

be an input instead of an output, and not connecting blocks properly. Some of the slips 

were caused because participants brought out a block and simply forgot to change any of 

the settings (ex. forgot to set the pin reference). Other times, the bugs were introduced 

because participants tried to select a different setting but missed the selection on the drop-

down menu. While these slips did happen, we found that participants were pretty astute at 

identifying everything except their block connections. It was generally not a conceptual 

issue, but the visibility into how the computer was interpreting the code would have been 

useful for identifying this error.  
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Another slip that was between the hardware and software, but visible in software 

was when participants forgot to plug in their Arduino when uploading code. When this 

happened, the compiler identified an error programming, but the lack of specificity led 

some participants to misinterpret it, not realizing why the compiler would have an error 

programming. This was marked as an understanding barrier by Booth et al. (Booth & 

Stumpf, 2013). Researchers in CS education have attempted to support students in various 

ways, from personifying the compiler (M. J. Lee & Ko, n.d.) to aggregating useful 

suggestions based on other programmers actions (Hartmann, MacDougall, Brandt, & 

Klemmer, n.d.). Creating better methods to help novices fix compilation errors continues 

to be actively explored in the CS education literature. Unsurprisingly, our research 

confirms that this is also an important consideration in physical computing environments. 

Some researchers such as Jung et al. have begun to investigate useful characteristics of an 

animated agent for guiding novices through using the Arduino offering insight into how to 

make the agent more likeable, socially present, able to reduce task stressfulness, and ability 

to stimulate reflective conversations with the participant (Jung et al., 2014). While the work 

is in its infancy (i.e. the agent was tested using a Wizard-Of-Oz implementation) the results 

offer a promising direction for providing information to the user. 

6.7.3.4 Other Reflections from Participants 

We covered some of the reflections participants had in the prior sections, we focus 

this section of the discussion on reflections that would further inform the design of tools 

and materials for novice students (RQ2.4). The intimidation novice participants were faced 

with when working with the electronics and code for the first time was more extensive than 

expected. Even with the filtering provided by participants self-selecting into the study, 



 317 

many had aversion to the material. The negative emotional responses that were elicited by 

the pre-test caused participants to have flashbacks to other failed experiences, and in short, 

made many participants feel incompetent. From a design perspective, the need for designs 

that convey ease of use and approachability are essential for this demographic of older 

participants who are novices. When it came to the software, we found that the blocks-based 

interface was intuitive, helped participants pick up programming relatively quickly, and 

had aesthetics that decreased their aversions and intimidation to programming. In the 

hardware, several of the participants mentioned that they had seen the Arduino before from 

friends or on the internet but felt it would be too difficult for them to use. Even when these 

participants had relatively successful experiences with the material in the study, many were 

still apprehensive about working with it again, emphasizing the need for beginner friendly 

materials and tools that guide students through their learning trajectory. More research is 

needed to understand what types of design choices in a microcontroller and electronic 

components embody ease of use and approachability as perceived by someone who is 

intimidated by these tools.  

On top of feeling comfortable working with the Arduino again based on their self-

efficacy, the participants’ desire to work with it in the future was tied the relevance that 

they found with how it fit into their lives. Even if the participants were able to traverse the 

material seamlessly with the tools and technology, it was still meaningless unless they were 

able to connect it to something that they valued. This finding supports the need to bring 

attention not only to the design of tools for supporting learning but also emphasizes the 

need for design that considers how these tools can be situated within the lives and values 

of the learners.  
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6.8 Contributions 

The research study presented in this chapter was intended to provide a close 

analysis of novice participants working with physical computing using the Arduino for the 

first time. Within this I sought to contribute to our knowledge of two of the high-level 

research questions for my thesis:  

RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 

2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  

2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino?  

2.4 What are novice students’ reflections on working with the Arduino?  

RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability 

in individual and group settings? 

3.2 How do different abstraction layers in the design of physical computing tools 

impact students’ learning and self-efficacy? 

The data and analysis of this study led to five main contributions. First the data resulted in 

development of a codebook of the types of novice breakdowns within the hardware and 

software (RQ2.1, RQ2.2). Second, the study provided an analysis of the types and 

prevalence of obstacles, breakdowns and bugs within the hardware and software (RQ2.1, 

RQ2.2, RQ3). Third, the data offered insight into how the tools and their design 

characteristics contributed to the various issues and difficulties across tools and 

transitioning between tools (RQ3). Fourth, the analysis examined novice work processes 

and strategies for debugging errors with the Arduino (RQ2.2, RQ2.3 RQ3.1). Last, the 
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analysis of participant reflections gives an account of how these types of experiences and 

tools are interpreted by novices who are intimidated by CS and electronics (RQ2.4).  

6.9 Limitations 

The limitations of this study include the context of the lab environment, the study 

design for statistical analysis, and the faults found in the hardware for the modules. The 

laboratory context offers one perspective to analyze these research questions; however, it 

is not the same as a user working on physical computing activities at home or in a classroom 

setting. The data from this study provided findings that would have been difficult to capture 

in a real-world context; however, they should still be used to triangulate with data gathered 

in real-world environments to understand how they are impacted by contextual 

considerations.  

While I originally intended to gather enough data for the statistical analysis across 

the three groups to complement our understanding of (RQ3.2), the findings were 

inconclusive from this perspective. First, the faulty hardware presented issues for being 

able to make assumptions from the findings (although it provided other insights into the 

debugging practices of the participants). Second, the low number of participants in each 

group made it difficult to see any statistically significant results between the groups. 

Furthermore, the study design could be improved to more authentically align with the 

statistical tests run. For one, the assumptions of a MANOVA require that each participant 

was not exposed to each tool (i.e. the modules group had an added level not used by the 

other groups and did not use the breadboard); furthermore, the ANCOVA assume that the 

participants’ groups are completely separate was not true given that the tools used 
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overlapped across participants. The future work, in the last chapter, outlines an improved 

study design that will target RQ3.2 using a Multivariate Analysis of Covariance 

(MANCOVA).   
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CHAPTER 7. DISCUSSION AND CONTRIBUTIONS 

7.1 Introduction 

The research presented in this dissertation focused on contributing to our understanding of 

equity and inclusivity in physical computing learning environments. The problem domain 

was explored though a lens focused on values in order conceptualize personally meaningful 

experiences across a diversity of students. At the beginning of this dissertation, I presented 

the following thesis statement:  

I theorize that exploring the design and analysis of the learning environment 

through a lens focused on values can provide us with an understanding of how to 

empower students to create personally meaningful experiences with computing. 

Further, to enable these types of experiences, physical computing tools should be 

designed to address usability, learning and self-efficacy.  

To explore this thesis statement there were five studies conducted that shed light on three 

research questions:  

RQ1. How does design of physical computing learning environments affect students’ 

ability to integrate their diverse values into their learning experience?  

1.1 How can we conceptualize the design of the learning environment from the 

perspective of students’ diverse values?  

1.2 How can we analyze the learning environment from the perspective of 

students’ diverse values?  

1.3 What characteristics of the learning environment in physical computing 

activities impact students’ ability to integrate their diverse values into their 

learning experience?  

RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 
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2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  

2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino?  

2.4 What are novice students’ reflections on working with the Arduino?  

RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability 

in individual and group settings?  

3.2 How do different abstraction layers in the design of physical computing tools 

impact students’ learning and self-efficacy?  

In this discussion, I will describe how the studies presented in this dissertation answer these 

questions as I review the findings from the investigations.  

7.2 RQ1: Culture, Values, and Physical Computing Learning Environments 

7.2.1 Summary of Contributions: RQ1  

The MoveLab Workshop and the Day of the Dead Summer Camp mainly focused 

on the first research question. The studies contributed to the development and exploration 

of values-based learning that was used to provide a way to conceptualize the design and 

analysis of learning experiences to support personally meaningful computing education. 

While the work surrounding values-based learning is still in its infancy, the studies provide 

initial exploration of the construct. In this work, we posed infrastructure as a way to 

deconstruct the design choices within the learning environment from the perspective of 

values while examining participatory design methods for scaffolding reflection on values 

(RQ1.1). We integrated the constructs of the self-concept, boundary objects, and value-

domains, in order to analyze the learning environment for how values manifested in the 

environment (RQ1.2). Analysis using these methods in the MoveLab workshop and Day 
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of the Dead Puppet camp provided insights into how characteristics within the 

infrastructure both supported and neglected students’ values (RQ1.3).  

7.2.2 Conceptualizing the Design of the Learning Environment 

I define and advocate for a values-based learning approach for the design and 

analysis of learning environments that can promote equity and inclusivity in computing 

education. Values-based learning is a concept that is still in development but was cultivated 

from two investigations presented in this dissertation: the MoveLab workshop and the Day 

of the Dead Puppet camp. I define values using a definition from Graeber, “conceptions of 

what is ultimately good, proper, or desirable in human life”(Graeber, 2001), and situate 

values-based learning as both a design approach and a lens for analysis. As a design 

approach, values-based learning seeks to create inclusivity and equity in a learning 

experience through providing opportunities for students to reflect and integrate their values 

into the learning environment. As a lens for analysis, it provides insight into the ways in 

which values manifested in the environment. By using a framing that takes both culture 

and values into consideration, the goal of values-based learning is to understand where the 

learning environment was inclusive and where it was neglectful of different students.  

In order to deconstruct the design of the learning environment from the perspective 

of values-based learning, I incorporate the ideas from the literature on infrastructure.  

Infrastructure was initially defined by Star as something that facilitates interaction between 

people and exists in a form that is ready to be appropriated for local practices to serve 

individual needs (Star & Griesemer, 1989b). Infrastructure was chosen because it draws 

your attention to where the learning environment integrates constraints as well as flexibility 
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for students to navigate through the activities.  Upon investigating infrastructure, we 

realized that the design of the MoveLab was integrating infrastructuring strategies (P Ehn, 

2008) in various ways as we scaffolded participants through the learning experience. The 

following four strategies outlined by Ehn (2008), enabled us to tease apart the learning 

environment from the perspective of values-based learning:  

1. Formats—pre-defined solutions with the important characteristics highlighted. 

These characteristics can then be flexibly applied to new situations based on the 

user’s knowledge of the process to appropriately modify characteristics. 

2. Component Strategy—LEGO block approach in which the user can build 

solutions for specific problems they encounter using the components provided 

3. Design cases—design examples that can serve as cases for the students to reason 

about and appropriate to new situations (Maher & Gomez de Silva Garza, 1997). 

They are described in terms of context, problematic situation, and proposed 

solution (Pelle Ehn, 2008)  

4. Protocols—within a social context are the defined procedural agreements for 

completing activities and/or communicating 

While these strategies might not be the only useful strategies for structuring values-based 

learning with computing, our studies demonstrated that they provided a start for providing 

the basic structure to scaffold students into creating personally meaningful computational 

artifacts with physical computing.    

7.2.3 Analyzing the Learning Environment from the Perspective of Values 

In the first analysis of the MoveLab, we found the constructs of the self-concept 

and boundary objects to be useful in understanding our results. The self-concept is a set of 

self-beliefs that are an internalization of one’s culture, values and how one views herself 

(Barbara M Byrne & Shavelson, n.d.; Shavelson et al., 1976).  In our case, we examined 

the students’ self-concepts with respect to the disciplines of dance and computing. By 
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examining how participants navigated the learning environment and negotiated views of 

themselves with computing, we began to understand the importance of their values in 

creating opportunities to find alignments between the disciplines and how they viewed 

themselves.  

We identified the construct of boundary objects to describe how we observed the 

participants (both leaders and students) using the dances to negotiate and integrate their 

diverse values into the learning environment. Boundary objects, as originally defined by 

Star, are things that emerged in work processes that facilitated collaboration between 

different groups of people with different needs. The objects are weakly structured between 

different groups of people that enable them to productively collaborate in the face of 

differences. Within specific groups, they become more strongly structured based on needs 

and contexts in which they are implemented. In our work, boundary objects became a way 

to understand how the participants in the environment were able to create personally 

meaningful learning experiences even when they had diverse values. Furthermore, we saw 

how disagreements could be mediated through the abstract themes of the dances. 

The work on the MoveLab prompted a more specific analysis from the perspective 

of values in order to understand how we can create dynamic learning environments that 

can be personally meaningful. Through iterating on the design of the MoveLab from the 

perspective of infrastructure to support student values, we conducted the Day of the Dead 

Puppet Summer Camp. To identify values across the two learning environments we used 

Graeber’s definition—“conceptions of what is ultimately good, proper, or desirable in 

human life”(Graeber, 2001)—and Schwartz et al.’s definitions of value-domains to provide 

consistent language as we identified and analyzed participants differing values and 
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analyzed how the learning environment tied into them. We identified the construct of 

value-domains—power, achievement, hedonism, stimulation, self-direction, universalism, 

benevolence, tradition, conformity, and security—as useful for talking about values 

because it has shown that these categories exist within and across most cultures (Bardi & 

Schwartz, 2003; S. Schwartz, 1999; S. H. Schwartz, 1992; S. H. Schwartz & Bilsky, 1987).  

7.2.4 Impact of the Learning Environment from the Perspective of Value-Based Learning 

7.2.4.1 Findings from the Self-Concept and Boundary Objects in the MoveLab 

Applying the theoretical constructs described in the previous two sections for the 

design and analysis of learning environments provided us with an understanding of how 

the characteristics within the learning environments impacted students from the perspective 

of their values. In the MoveLab, we found that characteristics within the learning 

environment were influencing the students’ transformation of their self-concepts in relation 

to computing and dance. The participants’ previous pre-dispositions combined with the 

experiences they had in the learning environment, highlighted the different ways the 

participants were negotiating how they viewed themselves in relation to the disciplines. 

We found instances in which participants were forming congruence between their self-

beliefs and the disciplines, as well as instances in which they were forming dissension 

between their self-beliefs and the disciplines. Three characteristics within the MoveLab 

supported students in forming congruence: (1) multiple roles for participation, (2) a socially 

supportive community, and (3) opportunities for students to integrate their values within 

the themes.  Throughout the workshop, students also developed dissension between their 

perspective of dance and technology and their self-concept. Three characteristics that 
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cultivated this dissension were: (1) their previous perspectives of the disciplines (2) fear of 

failure, and (3) working in a group environment. 

Within the MoveLab we also found that the dances emerged as boundary objects 

enabling us to understand how the participants, with varying backgrounds, interests and 

expertise, were facilitated in navigating the learning environment in ways that were 

representative of their values. The dances and computing artifacts were a form of artistic 

expression that enabled the participants to collaborate using abstractions while embedding 

different concrete individual values. From learning about one another’s backgrounds to 

learning about one another’s expertise, the boundary objects served as educational tools 

for the entire community of learners. Furthermore, they highlighted various values and 

interests of the students and educators and helped to identify the learning opportunities 

between the diversity of participants. 

7.2.4.2  Impact of the Infrastructure: Findings from the Analysis of Student Values 

In both the MoveLab Workshop and the Day of the Dead Puppet Summer Camp, 

we found characteristics within the infrastructure that facilitated participants to integrate 

their values into the learning environment, as well as characteristics that either conflicted 

with or inhibiting students’ values. We break up the findings from the infrastructure into 

the infrastructure for reflecting and sharing values, for building knowledge, and for 

organizing their work processes.  
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Infrastructure for Reflecting on and Sharing Values 

The protocol of the driving questions provided an accessible topic that 

participants—including the disciplinary leaders and community members—could 

contribute to, bringing in expertise from their lives. The MoveLab, which required 

participants to reflect on an issue, stimulated discussions about participants’ values their 

lives, their relationships, their place in their community/society, and things that they 

wanted to change in their community/society. In contrast, the Day of the Dead project, 

required participants to reflect on death, mourning and loss, which stimulated 

conversations around cultural responses and expressions as participants engaged in 

discussions surrounding their values. We found that conflicts could arise with participants’ 

values when they felt another culture was being imposed upon them either by the driving 

question, the topics covered, or the materials. 

In both of the learning environments, we scaffolded participatory design activities 

using formats in which leaders served as cognitive models (Collins et al., 1989) 

demonstrating how one might reflect on their own lives, experiences, and values. The 

infrastructure proved successful in breaking down the driving question into smaller 

questions that facilitated participants to engage in self-reflection, while then guiding the 

participants into linking these reflections to the technology, materials and other mediums 

for expression (i.e. dance and design of interactive objects).  

The MoveLab workshop and Day of the Dead Puppet Camp had different 

instantiations of protocols for engaging with a community outside of the learning 

environment in order to share the participants’ work. We found that the type of 
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interdisciplinary environment that computing is coupled with can impact the types of 

protocols that participants are comfortable with.  In the MoveLab, students rejected the 

protocol for sharing their work in a public performance. A public performance as a non-

dancer or non-performer scared many of the students and created an environment where 

students were concerned about failure rather than feeling pride or self-efficacy over what 

they created, thus, conflicting with their value of achievement and social power. In the Day 

of the Dead Puppet Camp, we found that publicly sharing the interactive objects in an open 

house did not carry the same concern or apprehension as the dance performance. The 

design of infrastructure needs to be considerate of how to integrate appropriate flexibility 

and scaffolding for participants to navigate the protocols for sharing their work.  

Infrastructure for Building Knowledge 

 The components and design cases were used in both environments to build a basis 

of knowledge for participants to use as they built their final designs. We found that focusing 

the unit of analysis on the level of the components in the environment provides an 

understanding of the types of concepts, opportunities, and values the learning environment 

prioritizes. The analysis revealed the issues surrounding learnability and usability of the 

Arduino and other electronic components. These issues placed constraints on what and how 

the participants were able to build. However, we did find that the design cases the 

participants constructed provided a scaffolded way to interact with the components, similar 

to the “problem- to project-based” learning environments (Brigid J.S. Barron et al., 1998). 

The cases sometimes proved to be more difficult than intended, but we found benefits in 

cases that: (1) introduced participants to issues they might hit in their final designs, and (2) 

could serve as starting points for participants to remix as they created their final designs. 
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Furthermore, design cases that used computing as an expressive medium, stimulated 

engagement and motivation. 

 Outside of constructed design cases, we also had design cases from professional 

artists and technologists. Our work suggests that professional design cases can serve as a 

good tool for getting students thinking of forms of expression as well as the affordances 

and limitations of the technology and medium the professionals are working in. The 

professional cases might have contributed to the high bar for success that participants in 

the MoveLab set for themselves. In order to set more realistic expectations, it might prove 

useful to talk about the constraints and capabilities of the technology components in the 

environment in relation to what the professional cases are accomplishing. 

Infrastructure for Organizing Work Processes 

The learning experiences integrated informal and formal protocols to engage 

participants in organizing and sharing their ideas and work with others. In the MoveLab, 

we found success when the protocols forced discussions around work allocation and 

provided the groups with a shared artifact to reference as they negotiated between roles 

and design decisions. The organizational protocols in the MoveLab for sharing work were 

rejected in activities when the end result needed to be performed (ex. dance sequences). 

This demonstrated the need for low barriers for success, while building trust in the learning 

environment between participants.  

In contrast, SCRUMs and peer critiques in the Day of the Dead Puppet camp served 

as formal protocols that facilitated engagement between participants. They were successful 

because they: (1) enabled opportunities for all participants to engage with each project, (2) 
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provided a way for the participants to interact in ways they were comfortable with, and (3) 

stimulated ideas that could be built on by one another. The success of these discussions 

was also attributed to the fact that they were led by a leader would solicit feedback from 

the rest of the participants. Furthermore, the accessibility of the problem spaces enabled 

the discussion to get to a point where it was easy for other participants, including the 

community leaders, to contribute. These protocols offered a low bar for participants to 

engage in discussions while creating a space for shared reflection on cultural expression.  

Summary of Infrastructure 

We found characteristics that improved participants ability to create values-based 

experiences within the learning environment. I will briefly list some of the findings that 

our work suggests, which are not to be interpreted as concrete or exhaustive, but to begin 

a dialogue around design of infrastructure as the work on values-based learning continues:  

 Formats:  

- Can enable the educator to serve as a cognitive model  

- Can facilitate the breakdown driving questions 

- Can guide students to create connections between their ideas, values, and design 

of computational artifacts 

- Should enable flexibility for participants to navigate conflicts with driving 

question 

Protocols:  

- Can build community through engaging participants in one another’s work 

- Can facilitate shared dialogue that values all participants’ contributions 

- Can create or use shared artifacts to stimulate dialogue around work and values 

- Should enable flexibility in their requirements of participation for participants 

to navigate conflicts  

Component Strategies:  

- Can bring visibility to the concepts, opportunities, and values the learning 

environment prioritizes 
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- Can offer multiple ways for participants to express themselves, their ideas, and 

their values 

- Should promote self-efficacy, learning, and agency 

- Should facilitate integration into participants’ design  

- Should facilitate expression of participants’ values  

Design Cases:  

- Can scaffold learning of components  

- Can enable remixing to produce more complex designs  

- Can provide multiple examples for reasoning about components and design 

- Should offer a range of entry levels to build proficiency and knowledge 

 

7.3 RQ2: Novices Experiences with the Arduino 

7.3.1 Summary of Contributions: RQ2  

In both the MoveLab workshop and the Day of the Dead Puppet camp, the tools 

caused the participants to run into barriers in terms of their engagement and self-efficacy 

with computing. The impact of these tools matter because if we want to be inclusive and 

equitable in the types of people supported to participate in computing, our learning 

experiences need build proficiency and knowledge for learners to continue working with 

the material outside the learning environment. Within the MoveLab workshop and Day of 

the Dead Puppet camp we identified some of the obstacles that participants faced (RQ2.1) 

along with capturing the reflections of some of the participants (RQ2.4). We then expanded 

upon our investigations in the comparative classroom study of the Breadboard and BitBlox, 

which provided an in-situ study of the obstacles (RQ2.1) and breakdowns of participants 

(RQ2.2) and how they collaborated (RQ2.3). The Arduino laboratory study was then 

conducted to more thoroughly explore the participants obstacles, mistakes, thoughts, and 

processes (RQ2.1, RQ2.2, RQ2.3) as they worked with the Arduino and different 
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prototyping tools. Post-study debriefs provided more insights into their reflections on the 

experience (RQ2.4).  

7.3.2 Obstacles, Breakdowns and Bugs of Novices 

The MoveLab workshop and Day of the Dead Puppet camp provided us with some 

rough insights into how the participants were struggling with the Arduino. The breadboard 

became a point of confusion with almost all participants. The experience stimulated the 

development of BitBlox to spread out the connections, provide visibility to the connections 

and offer more flexibility in how the tool was integrated into the users’ work processes. 

The comparative classroom study investigated these tools with novice high school students. 

In the study, we found that participants had difficulties with the tools, small components, 

the terminology, and the concept of a node within the circuit. While the comparative 

classroom study offered insights into a real-world context, it was difficult to get a 

comprehensive view of the prevalence of errors. The laboratory study gave us the ability 

to track all the errors the participants made leading to a code book representative of these 

errors. The errors that were most prevalent have been listed in Table 36.  
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Table 36 – Summary of Breakdowns from Arduino Laboratory Study 

Location Breakdown 

HW Incorrect Circuit Formation 
Leaves out Component 
LED Backwards 
Open Circuit 
Short Circuit 
Wrong Arduino Pin 

SW Code Blocks Not Connected 
Delay Block Misconceptions and Errors 
Pin Signal (HIGH/LOW) 
PinMode Initialization Misconceptions and Errors 
Sequentiality of Code Execution 
Wrong Arduino Pin Selected 

HW+SW Programming w/o Plugging in the Arduino 
Reprograms Arduino With Same Program 
Wrong Assessment of Bug Location 
Incorrectly Thinks Problem is Solved 

The hardware errors were made up of six main categories: using the wrong Arduino 

pin, creating a short circuit, creating an open circuit, assessing the LED directionality 

incorrectly, leaving out a component in their circuit, and forming their circuit incorrectly 

so there were components either in parallel or series when they should not be. The software 

errors were made up of six main breakdowns: referencing the wrong Arduino pin, setting 

the pin signal incorrectly (i.e. high/low), failing to connect their code blocks, errors 

interpreting the sequentiality of code execution, misunderstanding or misusing the delay 

block, and misunderstanding or misusing the pinMode block for pin initialization. The 

hardware + software breakdowns provided us with insight of four mistakes participants 

made in their understanding of the programming and electronics. The errors were: trying 

to program the Arduino without plugging it in, reprogramming the Arduino with the same 

code that is already uploaded, incorrectly thinking they had solved a problem when they 

had not, and incorrectly assessing where a bug was in their setup. Other obstacles 

participants encountered were: participants confused about the purpose of the prototyping 
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tools, uncertainty in how to create a common ground, understanding all of the visual 

information displayed on the tools correctly, and interpreting how to use new code blocks.  

7.3.3 Work Processes of Novices  

In the MoveLab workshop, the Day of the Dead Puppet camp, and the comparative 

classroom study we were able to identify work processes surrounding the collaboration 

between participants and the researchers. In these studies, we identified the difficulties 

posed by the small size of the breadboard. Participants had trouble interacting and even 

seeing the breadboard throughout the process of working with another participant. The 

leaders were noted as having difficulties helping students through issues because the small 

size made it difficult for them to reference and talk about points in the circuit. However, in 

the classroom study, we found that the symbols such as the “+” and “–” on the rails of the 

breadboard provided reference markers that could be used to talk about points in the circuit. 

In the case of the Breadboard, we found groups taking apart their whole circuit instead of 

debugging what they had built (one group did this in the BitBlox). We found that the 

BitBlox spread out the circuit making it easier to collaborate because more than one person 

could interact and engage with the circuit at once. Participants snapped the BitBlox 

together in various ways, which, depending on their strategies, led to more or less organized 

circuits. In both the Breadboard and BitBlox groups, we noted participants color coding 

their circuits with the wires in order to improve organization after they ran into errors. The 

organizational affordances were a learned tactic that participants found useful in adapting. 

In the laboratory study, we identified participants’ strategies when creating the code 

and circuits to solve problems as well as their strategies for debugging. When participants 
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were creating the code and circuits to solve the tasks, they seemed to be applying a bottom 

up approach where they would implement a schema (Rist, 1989, 1991) that they learned in 

the previous activities and then tinker with it until they got the correct solution. This work 

aligns with the plan composition work in CS education, which has identified that novices 

often start with a schema, or chunk of code for a specific purpose, in order to begin solving 

a problem (Rist, 1989, 1991). When it came to solving the problems as they worked 

towards the correct setup for the tasks, they often were able to get through their errors when 

their misconceptions visibly inhibited them from solving the problem. Issues that did not 

have visible feedback or it was difficult to see (ex. brightness of the LEDs) participants 

had more trouble identifying and fixing their mistakes.  

When it came to implementing debugging strategies, we found that participants did 

not have the ability to systematically work through their issues in an efficient manner. The 

findings suggest that participants lacked methods to check parts of their setup, lacked 

knowledge of the types of errors they should check for, and did not realize the importance 

of thoroughly checking their assumptions. Furthermore, the findings provided insight into 

the common actions—such as changing their delays, reuploading the same code, and 

rebuilding their circuits—as indicators that participants were stuck. Indicators can be useful 

for future systems and IDEs that help novices.  

7.3.4 Novice Student Reflections on Their Experience 

In the participants reflections, they discussed their perspective of the overall 

experience and how their perspectives of computing shifted. The participants across the 

studies emphasized the importance of creating something in which they found value. In the 
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MoveLab workshop and the Day of the Dead Puppet camp, the participants reflected 

positively on their final themes. The participants in the MoveLab found the experience 

relevant to their lives, and often referred to the theme of their dance as the best part. The 

participants in the Day of the Dead project loved their final artifacts because they were able 

to make it their own and were proud of the puppets that they had created. While two 

participants in the Day of the Dead were not able to create something that they were 

thematically interested in, they still remarked on their computational object as their favorite 

thing. We identified other ways their values manifested in the environment and their pride 

in what they created. In the Arduino lab experiment, participants also emphasized the need 

for relevance if they were going to work with the Arduino again. While some participants 

were able to identify ways that the Arduino would be relevant for them, others did not see 

any value for the Arduino in their lives.  

The participants also reflected on the various prototyping tools that they used. The 

ones that used the modules felt that they were much easier, finding the BitBlox a difficult 

and confusing transition. The participants who used the BitBlox and Breadboard found that 

the coloring within the BitBlox was useful as well as the ability to spread out the circuit. 

They found the number of pieces to be more of a hinderance than a benefit despite the fact 

that they could snap together. The participants remarked on the cleaner design of the 

Breadboard, although they mentioned the connection scheme and size of as possible 

drawbacks. Participants also identified different use cases that might make sense for the 

Breadboard or the BitBlox. Although they did not always agree on what these use cases 

should be, they were able to think of situations in which they might find each tool useful. 
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The participants reflections also revealed their low self-efficacy with the material. 

In the MoveLab and the Day of the Dead Puppet camp, the participants often reported on 

the difficulty they had with the tools in ways that indicated their apprehension of working 

with the Arduino. Participants in the laboratory study were given tools and materials with 

a focus on understanding how to improve the participants learning and self-efficacy. We 

found that while participants noted that the fear and uncertainty they came into the study 

with improved, they were still apprehensive about their next experience being as beginner 

friendly. The participants identified the comprehensiveness of the guide and the blocks-

based programming as things that made them feel more comfortable, decreasing their 

apprehension.  

7.4 RQ3: Designing Physical Computing Tools for Novices 

7.4.1 Summary of Contributions: RQ3 

The investigation into the design of physical computing tools was stimulated from 

some of our initial findings in the MoveLab and Day of the Dead Puppet camp, which 

guided an explicit investigation into the tools. We outlined the spectrum of modularity to 

bring attention to the design choices within tools for their ability to support learning 

(RQ3.2). We examined two tools along this spectrum—the Breadboard and BitBlox—in 

the comparative classroom study. Our findings highlighted how the tools contributed to the 

mistakes participants made and their experiences learning with one another (RQ3.1, 

RQ3.2).  The laboratory study then examined four tools—static modules, variable modules, 

BitBlox, and the Breadboard—in a within and between-subjects study. The study helped 

to understand the usability errors posed by the different tools (RQ3.1). While the data we 



 339 

gathered provided qualitative insight on how the tools impacted learning and self-efficacy 

(RQ3.2) our quantitative data was inconclusive.  

7.4.2 Usability of Physical Computing Tools  

The findings from the participants usage and success with the different circuit 

prototyping tools provides an understanding of the benefits and drawbacks within the 

designs of each of the tools. The four prototyping tools were the static and variable 

modules, the BitBlox and the Breadboard.  The static and variable modules were easy for 

the participants to figure out how to use, indicated by the participants’ ability to get up and 

running with the static modules more quickly and with fewer errors compared to the other 

tools. When they transitioned to the variable modules and realized they had to plug in the 

components, the participants did not have difficulties figuring out where to put the 

components. The participants using the modules did face usability and faulty hardware 

issues leading to a number of open circuit bugs.  

The BitBlox also had some advantages and disadvantages to its design. The 

coloring and separation of connections successfully eliminated the majority of slips caused 

by participants plugging components into the wrong area by accident. While participants 

reflected on the benefit of the coloring in their post-study debriefs, the data from the study 

indicated that the color was also sometimes misinterpreted by participants who created 

shorts in their circuits and those who were looking to match colors between different blocks 

to create connections. We identified the same interpretive errors in the comparative 

classroom study with the BitBlox. In the comparative classroom study, we also noted 

benefits for organization that the modularity of the BitBlox enabled as the participants 
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created circuits snapping blocks together in different ways. However, in the lab study we 

found drawbacks to the modularity of the tool. The BitBlox increased the number of 

components that the participants had to think about and use, and the video data revealed 

how snapping together the blocks was not a seamless operation as they built their circuit. 

Because of the usability issues, we found that participants would not snap together the 

blocks, causing an unorganized circuit that could result in open circuits when the blocks 

pulled apart. 

The MoveLab workshop, Day of the Dead Puppet camp, comparative classroom 

study, and laboratory study all identified issues with the size of the breadboard causing 

errors because of slips in using the tool. Furthermore, participants had difficulties initially 

learning and applying the connection scheme without visible indicators that they could 

reference. While the participants’ errors persisted in the classroom study, the participants 

in the laboratory study were able to work through their issues in the initial activities and 

become proficient at using the connection scheme. The college students probably had 

different proficiencies than the high school students, but this could have also been due to 

contextual differences of being in a laboratory setting versus a classroom setting.  

In the Arduino and electronic components, we saw how the small components 

contributed to slips plugging in components to the wrong Arduino pin, plugging the LED 

in backwards, and, in the classroom study, plugging in the button backwards. Further, the 

small size required more time for participants to decipher information in these components 

as they tried to avoid introducing bugs. While the more time spent using the tools might 

have led to more learning gains, it is unclear and a possible direction for future work.  
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While the small components posed issues, we found that participants were 

particularly receptive to noticing and identifying visual information that was larger. 

However, with the number of visual cues, the participants had difficulty sorting through 

and interpreting the relevant and irrelevant information. The findings suggest that the 

design of the microcontroller boards could benefit from pairing down the amount and types 

of information presented, while expanding the design to provide more visible and 

comprehensive identification of the relevant information. While these slips did happen, we 

found that participants were pretty astute at identifying everything except their block 

connections. 

The software was shown to embody many of the benefits of approachability and 

ease of use found in prior work investigating blocks-based environments with older 

students (Weintrop & Wilensky, 2015a). The software enabled the participants to easily 

start creating code for the first time, and participants reflected on the simplicity of the 

environment and the ease with which they could pick up the coding. However, there were 

some errors caused by usability issues with the programming environment. The 

breakdowns related to slips in using the software were: accidentally referencing the wrong 

Arduino pin in the code blocks, setting the pin signal incorrectly, accidentally setting the 

pinMode to be an input instead of an output, and not connecting blocks properly. Some of 

the slips were caused because participants brought out a block and simply forgot to change 

any of the settings (ex. forgot to set the pin reference). Other times, the bugs were 

introduced because participants tried to select a different setting but missed the selection 

on the drop-down menu. Another slip visible in the software was when participants forgot 

to plug in their Arduino to upload code. When this happened, the compiler identified an 
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error programming, but the lack of specificity led some participants to misinterpret it. 

Creating better methods to help novices identify and fix errors in their setup, is an essential 

area of research for supporting learners to become proficient with physical computing.  

7.4.3 Abstraction Layers Impact on Learning and Self-Efficacy 

The various abstraction layers in the physical computing tools were broken down 

in the spectrum of modularity using transparency and interactions as a way to conceptualize 

how the tools could support learning. Building on the ideas from black-box and glass-box 

scaffolding (Hmelo & Guzdial, 1996, p.), the spectrum explores how we can create glass-

boxes to develop proficiencies with different concepts and electronic components. The 

abstraction layers are characterized by the transparency—what is visible or obscured from 

the learner—and the affordances for interaction—how learners manipulate and combine 

the tools as they build computational objects. These two characteristics are inseparable—

the transparency affects what the learner interacts with, and what the learner interacts with 

in turn affects what is transparent to the learner. The underlying premise is that you can 

explore the components for what interactions are enabled to understand what concepts 

students are exposed to. The spectrum breaks down the components into six levels as 

shown in Table 37. 
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Table 37 – Spectrum of Modularity  
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On top of the modularity of the peripheral electronics, I explored the design space 

of the open-ended prototyping tools using the Breadboard as a starting point. The BitBlox 

were created as a probe to understand how visibility into the connection scheme and 

flexibility in its design (i.e. snapping BitBlox together) would impact the participants 

learning experience. While the MoveLab and Day of the Dead Puppet Camp, both only 

used the breadboard, the comparative classroom study explored the Breadboard and the 

BitBlox, and the Arduino laboratory explored the variable and static Plug-and-Play 

modules in conjunction with the Breadboard and BitBlox. Through investigation of these 

different abstraction layers in the tools we have begun to bring insights into how they 

impact learning and self-efficacy (some of which was discussed in the sections above).  

Participants in the MoveLab workshop and Day of the Dead Puppet camp expressed 

concern over their abilities to be able to work with the electronics without help of the 

instructor. Furthermore, while the participants had access to all of the concepts it was 

unclear what they learned because the burden of debugging and creating working 

computing artifacts was often pushed onto the leaders (more so in the MoveLab because 

of the shorter time frame). Participants reported on their low self-efficacy, as they reflected 

on needing the help of someone who is skilled in electronics in order to be able to work 

with the electronics. The findings demonstrated that the breadboard and Arduino were 

inappropriate for those learning contexts. We further explored the tool design in the 

comparative classroom study and the laboratory study.  
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In the comparative classroom study, we noted different designs that were useful in 

helping participants collaborate with one another in ways that facilitated learning. The 

BitBlox spread out the circuit so that participants could both be engaged in the activity at 

once and thus consistently participant in the learning activities. The Breadboard limited the 

ability to have a continuous engagement because of the size. The Breadboard, however, 

had markings that helped the participants and instructors be able to talk more seamlessly 

about the circuit. We found this helped as the participants struggled to pick-up all the new 

terminology.  

In the Arduino laboratory study, we intended to get conclusive quantitative data on 

how the abstraction layers were impacting the participants self-efficacy and learning 

outcomes from the pre-/post-tests. However, these results were inconclusive, which could 

have been due to the faulty hardware in the modules and the low number of participants in 

each group. An improved study design is outlined in section 8.1, which will be conducted 

in future work. Outside of the pre-/post-tests, the qualitative data from how the participants 

transitioned between tools provided some insight into what they learned.  In presenting the 

spectrum of modularity, we hypothesized that learning is related to the concepts that are 

made visible based on the interactions they require from the participants. The difficulties 

the participants transitioning between the variable modules to the BitBlox provided support 

for this hypothesis. In the case of the variable modules, the need to translate the picture of 

the circuit to create connections between the components was offloaded to the module 

although still physically visible. When they transitioned to the BitBlox, accomplishing this 

translation was their greatest difficulty, causing them more open circuit, short circuit, LED 

backwards, and incorrect circuit formation breakdowns than the other groups. Those that 
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had already used the BitBlox and Breadboard were already forced to make these 

translations in the use of the first too and therefore, made fewer mistakes.  

7.5 Conclusion  

RQ1. How does design of physical computing learning environments affect students’ 

ability to integrate their diverse values into their learning experience?  

1.1 How can we conceptualize the design of the learning environment from the 

perspective of students’ diverse values?  

1.2 How can we analyze the learning environment from the perspective of 

students’ diverse values?  

1.3 What characteristics of the learning environment in physical computing 

activities impact students’ ability to integrate their diverse values into their 

learning experience?  

The initial studies of the MoveLab and Day of the Dead Puppet camp provided the 

beginning investigations into how we can integrate computing as an expressive medium in 

learning experiences in ways that support students to dynamically integrate their values 

and culture into the learning environments. We defined the concept of values-based 

learning in order to provide an explicit focus on how we integrate values into both the 

design and analysis phase of exploring learning environments. We integrated infrastructure 

and participatory design methods as a way to design from a values-based learning 

perspective (RQ1.1). In our analysis, we demonstrated the usefulness of value-domains, 

the self-concept, and boundary objects in understanding values-based learning 

environments (RQ1.2). Through this process, we identified characteristics of the 

infrastructure that impacted and engaged with participants’ values throughout the learning 

experience (RQ1.2).  
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RQ2. What are novice students’ experiences when working with the Arduino for the 

first time? 

2.1 What are the obstacles, questions and confusions that novice students have 

when working with the Arduino?  

2.2 What are the common breakdowns, misconceptions and errors of novice 

students when working with the Arduino?  

2.3 What are the work processes of novices working with the Arduino?  

2.4 What are novice students’ reflections on working with the Arduino?  

The MoveLab and Day of the Dead Puppet camp provided us with the initial findings on 

the obstacles that participants faced when working with the Arduino. Analysis of the post-

study interviews also captured their reflections of the experience (RQ2.1, RQ2.4). The 

comparative classroom study of the Breadboard and BitBlox provided us with an in-situ 

study that more explicitly focused on the tools. We identified the obstacles and breakdowns 

of the participants, as well as captured the participants collaborative practices (RQ2.1, 

RQ2.2, RQ2.3). The Arduino laboratory study was then conducted to gather data in a 

constrained environment focused on the tools to gather comprehensive data on an 

individual’s experience. The findings contributed the identification of breakdowns in the 

hardware and software leading to a codebook representative of these issues (RQ2.1, 

RQ2.2). Applying this codebook, provided an understanding of the prevalence of the 

different types of obstacles, breakdowns, and bugs that participants were faced with 

(RQ2.1, RQ2.2).  Examining how participants approached solving tasks and debugging 

their setups gave us insight into their work processes (RQ2.3).  Post-study debriefs then 

provided more insights into their reflections on the experience (RQ2.4). 

RQ3. How should we design physical computing tools for novice learners to increase 

their knowledge and self-efficacy?  

3.1 What characteristics of the hardware and software tools impact their usability 

in individual and group settings?  
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3.2 How do different abstraction layers in the design of physical computing tools 

impact students’ learning and self-efficacy?  

The MoveLab and Day of the Dead Puppet camp brought the usability of the hardware 

tools to our attention (RQ3.1) as well as the impact the tools can have on users’ self-

efficacy (RQ3.2). To examine the hardware tools from the perspective of learning, the 

spectrum of modularity teased apart the various abstraction layers. The analysis provides a 

way to conceptualize the design for learning opportunities using the transparency and 

affordances for interaction (RQ3.2). The tools were then further examined in the 

comparative classroom study, which provided insights into usability of the Breadboard and 

BitBlox in collaborative work, and in the Arduino laboratory study which provided insights 

into the usability of the Breadboard, BitBlox and Modules in individual work (RQ3.1). The 

comparative classroom study identified the ways in which some of the usability issues 

could exclude participants form the learning experience or create opportunities for 

engagement while facilitating discussion with educators (RQ3.2). The laboratory study 

provided another perspective exploring the tool design in a constrained environment. In 

this investigation participants worked with a combination of tools: static modules, variable 

modules, BitBlox, and the Breadboard. The study helped to understand the usability errors 

posed by the different tools (RQ3.1). The study was designed as a within and between-

subjects study to examine the tool effect on self-efficacy and learning, but the quantitative 

data gathered provided in inconclusive findings. However, the qualitative data provided 

other insights on how the tools impacted the overall learning experience (RQ3.2). 
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CHAPTER 8. FUTURE WORK 

8.1 Overview 

The future work from this dissertation encompasses two main directions that need 

to be merged together. The first is a continued exploration of the infrastructure for student 

authorship of values-based learning experiences, and the second is specifically in relation 

to the tool design for supporting values-based learning in physical computing education. I 

will briefly describe these avenues forward in the next few sections.   

8.2 Further Explorations of Infrastructure for Values-Based Learning  

The work still needs to provide a more cohesive understanding of the benefits and 

drawbacks of a values-based learning approach to the design and analysis of learning 

environments. Thus far the construct has been examined in the context of heavily resourced 

project-based work with computing as an expressive medium. However, we did not answer 

questions as to whether or when other approaches might be more useful than an approach 

centered on student values. For example, the approach of culturally relevant curricula 

might be more appropriate as a way to frame the design of learning environments when it 

is more critical that teacher constrain the learning activities. It is currently unclear how 

these methods have a place or a way to integrate into more structured curricula. 

The studies conducted within this research demonstrated success in stimulating 

dialogue and artifacts that were inclusive and representative of participants’ values. 

Furthermore, the participants acknowledged the importance of this characteristic of the 

learning environment. However, there are many open questions for values-based learning 
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that need to be explored in future research. One important avenue for exploration, which 

drives how this construct can be used and applied, is in how we frame the relationship 

between computing and student values. In this work we limited the scope to how student 

values manifested in the dialogue and artifacts within the learning environment. However, 

it neglects to consider how the computing knowledge and experience translates into the 

participants lives outside the learning environment. Continued investigations into the ways 

we define and analyze how computing experiences integrate values can lead to a more 

comprehensive understanding of equity and inclusivity in computing education.  

Future research should continue investigations of values-based learning across 

contexts. The two learning environments presented in this study were heavily resourced, 

which is a good starting point to see if something can work but limits our understanding of 

how these experiences would fare in more common learning environments. Research needs 

to address what characteristics of the infrastructure are important based on the constraints 

of different learning environments. One aspect of this concerns how educators are 

supported in integrating the values-based learning into their environments. While the 

researchers in these studies collaborated with other organizations and educators, they were 

still heavily involved in designing and running these experiences. We still do not know 

what types of infrastructure are the most important for supporting educators in designing 

and carrying out these types of experiences, or what types of pedagogical and content 

knowledge is most important for them to embark on these types of experiences. Future 

research exploring these questions with educators who have different experiences and areas 

of expertise can begin to understand these questions. 
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Another aspect of the context of these experiences is the question of whether or not 

informal learning experiences of this nature have a place in formal K-12 education. While 

we do have data of these types of experiences succeeding in college level courses, we do 

not know if these experiences could or should be translated into formal K-12 school 

environments. My inclination is that they should be, but there are many stakeholders in 

these environments that would determine if, when and how K-12 education would benefit 

from these types of experiences.  

8.3 Further Exploration of Tools and Learning for Values-Based Learning 

Experiences 

8.3.1 Re-Design of Physical Computing Tool Lab Study  

While the lab studies were supposed to provide a quantitative analysis, the data 

mostly served for the opportunities it provided for a deep qualitative analysis on novice 

experiences with the Arduino tools. Outside of needing more participants to improve the 

power, the faultiness of the modules inhibited me from answering some of my questions 

surrounding the usefulness of the modularity of the tools. I hypothesized that the modules 

would have decreased the amount of time and errors the participants ran into, which if true 

would make a case for these types of tools. However, I was not able to understand this 

question. While different tool designs should be explored within the next study, based on 

the findings from this study, I will go over the improvements to the study design for future 

explorations.  

 The lab study was previously created as a within and between-subjects design; 

however, we did not provide all participants with the same tools, which makes the use of 
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the MANOVA questionable. I would change this such that we have a between-subjects 

design in which the participants only use one tool. This will provide an opportunity to use 

the MANCOVA analysis while cutting down on the time it takes for each participant to go 

through the study. The independent variable will be the tool the participants are using; the 

dependent variables will be the post-tests and number of bugs introduced; and the pre-tests 

will serve as the covariates in the analysis. The power analysis would be completed based 

on the number of tools cross-analyzed (i.e. levels) in order to determine the number of 

participants that should be placed in each group.  By designing the study in this way, it will 

help to answer questions concerning the benefits of a more modularized hardware tool 

while making the data collection more attainable. 

8.3.2 Moving Forward with the Tool Investigations 

The analysis of the tools was the first step in understanding how we might improve 

the opportunities for participants to learn about the various disciplines that physical 

computing encapsulates. The findings provide insights into the tool design as well as the 

work processes of novices that highlight directions for future work. The tool design 

implicates values of the participants in a few ways, one is in how and what they learn and 

the implications it has for them to apply the domains in ways they value, and another is in 

what they build and how it integrates their values. Within the open-ended prototyping tools, 

I began exploration of how to teach using these tools so that we can eventually understand 

the implications for how participants are enabled to use the knowledge they gain. The 

prototyping tools demonstrated clear improvements in how they could be designed. While 

the BitBlox connection scheme was easier for participants to pick up in the classroom 

environment, the cognitive load and the obstacles to their work processes provides insights 
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for improvements. The Breadboard had a cleaner and static design, which helped decrease 

the amount the participant had to deal with; however, the lack of visibility into the 

connections contributed to a higher barrier to entry and unintentional slips because of the 

close connections within the tool. Merging the design choices within these two tools such 

that there are fewer pieces for the participants to deal with, have a visible connection 

scheme, and provide a layout that is slightly more spread out than the breadboard could 

provide improvements over the current two tools.  

In terms of the affordances that the circuit modules provide for mitigating certain 

learning curves, we still do not know how their design impacts learning and the overall 

experience of students in physical computing learning environments. In one of the previous 

sections, I outlined another experiment that could be conducted in order to continue to 

explore these tools in the laboratory environment in order to answer these questions that 

my research did not get at. On top of continued laboratory experiments, the design 

affordances of the modules should be explored in real-world settings. The comparative 

classroom study with the Breadboard and BitBlox demonstrated how the differences in the 

laboratory and classroom setting led to different insights for the tools and the impact they 

have on the socio-technical environment. 

The studies presented in this work did reveal various ways in which novices 

approach problems and the difficulties that arise. The application of these findings to the 

design of tools that can support these processes is important for building proficiency and 

enabling participants to design in these environments. For example, the task of debugging 

errors showed to be difficult for the novice participants. Not only did our participants 

struggle, but in Booth et al.’s experiment they demonstrated that this difficulty spread even 
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to those who have had multiple years of programming experience and thus were familiar 

with debugging programs (Booth et al., 2016). Research should contribute to how we might 

teach debugging strategies and how we might design tools that can better support 

participants to debug their creations. While there are tools for debugging circuits, such as 

voltmeters they also pose a usability barrier for novices who might not know the symbols 

and language used in the tool or how to implement it correctly in the circuit in order to get 

a reading of current or voltage. 

As we explore designs for various situations the tools need to be explored for the 

affordances for the different computing objects that can be achieved and the implications 

these objects have on student values. We explored the tools within the domains of dance 

and interactive computational artifacts. While we did not focus our data collection or 

analysis on how these tools fit within these domains, it was clear that they could be 

improved for both. Understanding more concretely how the materiality and modularity 

impact the types of creations within different domains has implications for the types of 

values that can emerge in these environments. 

The designs of the various physical computing tools should continue to be explored 

in acknowledgement of goals for learning, which should tie into values-based learning. 

When analyzed from the perspective of values, certain situations might call for black-

boxing aspects of the hardware and software rather than incorporating the learning curve 

associated with them. Part of what needs to be understood is what types of proficiencies 

we should be designing for if we are to empower students within the computing domains. 

We still do not have a comprehensive understanding of what concepts are most important 

for participants who might use this for their own personal applications, or what concepts 



 355 

can be ignored in different cases. These questions are important for how the learning 

environments and knowledge becomes situated in the lives of students. By exploring these 

avenues of research, we can better understand how to empower students with the power of 

computing.  
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APPENDIX A. LABORATORY STUDY MATERIALS 

A.1  Pre-Screening Survey 

Basic Information 

1. Name: 

2. Email: 

3. Age: 

4. Name of College You are Currently Enrolled In: 

5. Semesters Completed in College: 

6. Degree program you are currently enrolled in:  

Mark only one oval. 

 Bachelor’s degree 

 Master’s degree 

 PhD degree 

 Associate’s degree 

 Other: ______________ 

7. What is your major in your degree program?  

 

Expertise Rating in Computing 

8. Rate your expertise in Electronics 

Mark only one oval. 

Novice 1 2 3 4 5 6 7 8 9 Expert 

9. Rate your expertise in Computer Programming 

Mark only one oval. 

Novice 1 2 3 4 5 6 7 8 9 Expert 

10. Rate your expertise in Physical Computing 

Mark only one oval. 

Novice 1 2 3 4 5 6 7 8 9 Expert 

 

Prior Class Experience 

11. Did you take a physics AP exam in high school? 

Mark only one oval. 

 Yes 

 No 

12. How many high school classes have you taken that involve circuits? 

Mark only one oval. 

 0 Classes 

 1 or More Classes 

13. How many college classes have you taken that involve circuits? 

Mark only one oval. 

 0 Classes 

 1 or More Classes 

14. How many high school classes have you taken that involve computer programming? 
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Mark only one oval. 

 0 Classes 

 1 or More Classes 

15. How many college classes have you taken that involve computer programming? 

Mark only one oval. 

 0 Classes 

 1 or More Classes 

16. Have you ever used a microcontroller before, such as the Arduino, Teensy, Micro:Bit, 

Raspberry Pi, etc.? 

Mark only one oval. 

 Yes 

 No 

 I can't remember 

17. Describe any informal educational experiences (ex. club or a summer camp) that you 

have had with electronics or computer programming.  

 

A.2  Pre-/Post-Test of Self-Efficacy and Knowledge 

Section #1 

Rate your confidence in doing the following Arduino physical computing tasks using a 

scale of 1 (not at all confident) to 7 (absolutely confident). If a specific term or task is 

totally unfamiliar to you, please mark 1. 

1. I could complete a programming task if I had a lot of time to complete the task 

and I was told what the program had to do. 

2. I could complete a programming task if I was told what the program had to do and 

I could call someone for help if I got stuck 

3. I could complete a programming task if someone showed me how to solve the 

problem first 

4. I could find ways of overcoming a problem if I got stuck at a point while working 

on a programming task 

5. I could create a program to blink an LED 

6. I could create a program to read or write a signal (ex. buzzer or temperature 

sensor) 

7. I feel comfortable programming on my own 

8. I could build a circuit if I was given the components, told what the circuit had to 

do, and had a lot of time to complete the task. 

9. I could build a circuit if I was given the components, told what the circuit had to 

do, and could call someone for help if I got stuck 

10. I could build a circuit if I was given the components and someone showed me 

how to do it first 

11. I could find ways of overcoming a problem if I got stuck at a point while building 

a circuit 

12. I could create the circuit to blink an LED if given the components 
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13. I could create a new circuit if I was given the components and a picture of the 

connections 

14. I feel comfortable building circuits on my own 

15. I could complete a task using an Arduino and electronic components if I was 

given the specifications and the components, and I had a lot of time to complete 

the task 

16. I could complete a task using an Arduino and electronic components if I was 

given the specifications and the components, and I could call someone for help if 

I got stuck 

17. I could complete a task using an Arduino and electronic components if I was 

given the specifications and the components, and someone showed me how to 

solve the problem first 

18. I could find ways of overcoming a problem if I got stuck at a point while working 

on a task with the Arduino 

19. I could figure out how to use the Arduino to have a button control multiple LEDs 

if I was given the components and a diagram of the circuit connections 

20. I could figure out how to use the Arduino to read a temperature sensor to control a 

motor if I was given the components and a diagram of the circuit connections 

21. I feel comfortable using the Arduino on my own 

Section #2 

Fill out each question to the best of your ability. If the question involves a circuit and code 

pay attention to both the circuit and the code. Some of the questions have small text on the 

pictures, which we could not seem to enlarge efficiently. If you are having difficulty 

reading anything, ask the researcher for help deciphering the tiny text. If you do not know 

the answer to any of the questions mark "I don't know" as your answer rather than taking a 

blind guess. 

For the purposes of this experiment, we will not allow you to come back to questions or 

skip between the questions on the test. Please DO NOT hit the back button to go look at 

other questions after you have answered them. Doing so would invalidate your answers as 

we need to keep this consistent for all participants in the study. 

1. Ask the researcher for the materials to complete this question. You will be 

answering on a sheet of paper rather than on the computer. Using the pictures of 

electronic components (battery, resistor and LED), build a working (closed) 

electrical circuit by taping down the pieces and using your pencil to draw any of 

the connections for a working circuit. If you have to draw two wires that cross 

paths, follow the directions on how to draw wire connections in the picture below. 
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2. You will be answering on a sheet of paper rather than on the computer. Using the 

pictures of electronic components (Arduino, resistor and LED), build a working 

(closed) electrical circuit by taping down the pieces and using your pencil to draw 

any of the connections for a working circuit. Use the 5v pin on the Arduino for 

power. If you have to draw two wires that cross paths, follow the directions on 

how to draw wire connections in the picture below. 

 
 

3. You will be answering on a sheet of paper rather than on the computer. Using the 

pictures of electronic components (Arduino, resistor and LED), build a working 

(closed) electrical circuit by taping down the pieces and using your pencil to draw 

any of the connections for a working circuit. The microcontroller on the Arduino 

is programmed to blink an LED on digital pin 10. If you have to draw two wires 

that cross paths, follow the directions on how to draw wire connections in the 

picture below. 
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4. If the following code was uploaded to the following circuit, what would you see 

happen? (analyze both the circuit and the code for correctness). The delay is in 

milliseconds. 

 
Mark only one oval. 

 The LED would look like it would blink every second and repeat forever 

 The LED would look like it would turn on for 1 second and turn off forever 

 The LED would look like it is always on 

 The LED would look like it is always off 

 I don’t know 

 

5. If the following code was uploaded to the following circuit, what would you see 

happen? (analyze both the circuit and the code for correctness). The delay is in 
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milliseconds. 

 
Mark only one oval. 

 The LED would look like it would blink every second and repeat forever 

 The LED would look like it would turn on for 1 second and turn off forever 

 The LED would look like it is always on 

 The LED would look like it is always off 

 I don’t know 

 

6. If the following code was uploaded to the following circuit, what would you see 

happen? (analyze both the circuit and the code for correctness). The delay is in 

milliseconds. 

 
Mark only one oval. 

 The LED would look like it would blink every second and repeat forever 

 The LED would look like it would turn on for 1 second and turn off forever 

 The LED would look like it is always on 

 The LED would look like it is always off 

 I don’t know 
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7. If code to blink the LED was uploaded to both circuits with an output at pin 6, 

which circuit's LED would be brighter? 

 
Mark only one oval. 

 LED in Circuit A  

 LED in Circuit B 

 LED in Circuit A = LED in Circuit B 

 I don’t know 

 

8. If code to blink the LED was uploaded to both circuits with an output at pin 6, 

which circuit's LED would be brighter? 

 
Mark only one oval. 

 LED in Circuit A  

 LED in Circuit B 

 LED in Circuit A = LED in Circuit B 

 I don’t know 
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9. If code to blink the LED was uploaded to both circuits with an output at pin 6, 

which circuit's LED would be brighter? 

 
Mark only one oval. 

 LED in Circuit A  

 LED in Circuit B 

 LED in Circuit A = LED in Circuit B 

 I don’t know 

 

10. If the following code was uploaded to a correctly built circuit with output pin 10. 

What would happen to the LED? The delay is in milliseconds. 

 
Mark only one oval. 

 The LED would look like it would blink every second and repeat forever 

 The LED would look like it would turn on for 1 second and turn off forever 

 The LED would look like it is always on 

 The LED would look like it is always off 

 I don’t know 

 

11. If the following code was uploaded to a correctly built circuit with output pin 10. 

What would happen to the LED? The delay is in milliseconds. 
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Mark only one oval. 

 The LED would look like it would blink every second and repeat forever 

 The LED would look like it would turn on for 1 second and turn off forever 

 The LED would look like it is always on 

 The LED would look like it is always off 

 I don’t know 

  

12. If the following code was uploaded to a correctly built circuit with output pin 10. 

What would happen to the LED? The delay is in milliseconds. 

 
Mark only one oval. 

 The LED would look like it would blink every second and repeat forever 

 The LED would look like it would turn on for 1 second and turn off forever 

 The LED would look like it is always on 

 The LED would look like it is always off 

 I don’t know 

 

A.3  Demographics Survey 

1. Name:  

2. Age:  

3. Gender:  
Mark only one oval. 

 Male 

 Female 

 Other:_________ 

4. Race/Ethnicity:  
Check all that apply.. 

 White/Caucasian 

 Black/African American 

 Hispanic, Latino(a), or Spanish Origin 

 American Indian or Alaska Native  

 Asian 

 Other:_________ 

5. Name of the college you are enrolled in:  

6. Semesters Completed in College:  
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