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SUMMARY 

Thyssenkrupp recently unveiled a new product titled MULTI. The marketing video 

announcing the product starts with the notion that the elevator industry has existed largely 

unchanged for 160 years. While meant to describe how the horizontal motion and ropeless 

features of the MULTI are changing the industry, the point that the elevator industry is 

relatively unchanged since its inception still holds true. This thesis explores the current 

state of the elevator industry as it relates to modern topics such as Industry 4.0 and 

Industrial Internet of Things and where there is room for improvement internally at 

thyssenkrupp Elevator. Maintenance logs are analyzed to determine scenarios where 

monitoring with sensors could be useful to save time or to improve maintenance quality. 

Different sensor fusion algorithms are also examined for their relevance to different aspects 

of elevator systems such as maintenance or development. These topics, while relatively 

limited in scope, serve as a complement to other previous and ongoing projects all relating 

to changing elevators from their current, unconnected state, to smarter, cyber physical 

systems. 
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CHAPTER 1. INTRODUCTION 

1.1 Research Motivation 

The elevator industry is growing and evolving rapidly after a century and a half of 

relatively little change. Building height continues to increase  and the elevator industry is 

pursuing technological advances to support the larger height required to access the entire 

building. Building design also now utilize more complex shapes as building techniques and 

materials improve; this can require multiple separate shafts to reach every floor. In short, 

the number of elevators is increasing as is the travel distance of all the elevators and this 

will lead to a more challenging and complex maintenance requirement for elevator systems. 

Field service is a major activity for elevator companies and maintenance contracts 

generate substantial revenue. In general, maintenance activities are typically performed by 

a minimum of two technicians, and this number will increase with the increase in elevator 

complexity, travel distance, and number of shafts. Due to this increase in complexity, 

automation of tasks or the addition of tools to decrease lead time is required. Automation 

in the context of this paper entails the addition of sensors, monitoring systems, and sensing 

algorithms that can decrease diagnostic or maintenance time requirements and potentially 

increase diagnostic capabilities and accuracy.  

Elevators, in their current state, have limited sensor capabilities. Examples of sensors 

deployed in elevator systems are in the cab, which has levelling sensors to ensure that the 

floor of the cab is even with the floor of the building, and in the door, which has a curtain 

of light sensors to prevent passengers from being impacted by the door. However, these 

sensors are rudimentary at best, with limited interaction with each other, and provide little 
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to no useful feedback for the operating company or the technicians. To achieve the benefits 

associated with ubiquitous sensing, the industry has interest in placing sensors on major 

aspects of the elevator and multiple sensors per subsystem. These sensors should feed data 

into a central hub that can combine values from across the systems, and even individual 

subsystems, to generate a holistic view of the overall health of the elevator. 

The prior work has focused on archiving data so to use historical information to better 

predict failures. In this regard, it is of significant interest to draw conclusions regarding 

maintenance for elevator health from incomplete data sets that include data from sensors 

covering every aspect of elevator operation. The present thesis is focused on addressing 

this gap by leveraging sensor fusion methods and algorithms, as well as retrofit sensor data 

for elevator systems, so to determine elevator health conditions and operational 

performance metrics. 

1.2 Contributions 

This research initially focuses on the technician with the intent of reducing lead time 

for maintenance. Some tasks require much more time to complete than others and the 

longer time requirements can stem from a variety of reasons including safety and the 

complexity of the task. Therefore, conducting a simple measurement with a sensor could 

be a valuable tool. This paper also reviews how the sensors could be implemented in a way 

that allows for the use of various sensor fusion methods not only related to maintenance, 

but also for more theoretical purposes in other elevator monitoring efforts. This project 

showcases how these sensors and sensor fusion methods set the groundwork for future 

projects and could be the foundation of more robust and intelligent, predictive or 

preventative maintenance systems, while also demonstrating how sensor fusion can be 
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beneficial in other areas. These general benefits stem from work done previously in the 

area of elevator monitoring. These projects include the MAX data acquisition used for data 

analytics, Maintenance on Demand which deals with fault detection, and the Elevator 

Health Check which test vibrations for passenger comfort. The results of thesis will 

contribute to the future MAX 2.0 project that focuses on using data provided by the elevator 

for improved data analytics and predictive/preventative maintenance. 

1.3 Research Approach and Thesis Structure 

Chapter 2 reviews how industries, including the elevator industry, have adopted 

Industry 4.0. There are brief explanations of Big Data and data analytics, and sensor fusion. 

The chapter also discusses prior work in these areas. The chapter uses these projects to 

outline the existing gaps in the elevator industry and where there is potential for 

improvement. 

Chapter 3 discusses the outcome of combining existing callback data from elevator 

maintenance logs of four different cities in the United States. The list is cross referenced 

with external inputs to determine possible areas where sensors could be impactful. It also 

examines the beginnings of a sensor network that monitors multiple aspects of a single 

subsystem to generate a more holistic view of the subsystem health. The chapter also 

examines the potential for the proposed systems to also be wireless. It delineates a method 

of a wireless communication network that will have the required functionality for the 

technician without compromising data integrity. 

Chapter 4 tests possibilities of sensor fusion and enhanced data analytics by 

implementing these sensors, and additional sensors, with artificial data. These data are 

theoretical numbers used to explain the benefit of using a combination of the sensor fusion 



 4 

methods discussed in chapter 2. This chapter also examines how sensor fusion could be 

applied to the MULTI project. 

Chapter 5 summarizes the research and makes recommendations for any future 

iterations or projects. The work will likely be continued by the company and be a reference 

for multiple upcoming internal thyssenkrupp projects.   
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CHAPTER 2. BACKGROUND 

2.1 Industry 4.0 

Industry 4.0 is described as a wide collection of concepts including smart factories, 

human centric manufacturing systems, and cyber-physical systems [1]. A smart factory 

contains automated machines that can self-diagnose and self-regulate. Human-centric 

manufacturing is the idea that machines evolve based on human needs. Finally, cyber-

physical systems (CPS) are systems where the digital and physical systems form a single 

new entity instead of two separate systems attached to each other. This new industrial 

revolution takes these concepts and focuses on the monitoring, self-diagnosis, and 

automation of manufacturing processes through the generation of real time data. An 

overview of a CPS is shown in Figure 1. 

 

 
Figure 1: Hierarchy of a CPS [2] 
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As with any pyramid, the lower levels of Smart Connection, Data-to-Information 

Conversion, and Cyber levels are important to implement first. Sensors attached to a system 

forms the basis of a CPS, the Smart Connection, and allow progress in the next block to 

begin. The third block benefits from multiple machines all being monitored by the same 

types of sensors and being connected to a central network. This allows the data from all 

the machines to be directly compared. This comparison of each machine to the rest of the 

field provides the possibility to discern which machines are experiencing faults. The second 

to last block deals with advanced analytics including, but not limited to, predictive 

maintenance. The machine network can use collected data and fault trends to predict when 

failures will occur. The final block incorporates a feedback loop that gives control over the 

system to the system itself. The system will make decisions to change its parameters based 

on when it predicts that a fault will occur. As each level is added, less human interaction is 

required but still necessary. 

Based on the CPS hierarchy, it seems that sensors can have a tremendous impact 

on a machine. Sensors allow a device to interact with its environment or monitor certain 

parameters of the device itself [3]. Due to these abilities, sensors have the capability to turn 

a normal machine or device into a smart or intelligent product. As explained by Schmidt, 

these smart products can generate not only their name, but also the current and historical 

status of multiple properties: environmental or internal [4]. Sensors enable a system to 

perform a wide variety of tasks ranging from simple data collection to self-optimization 

via advanced data analytics and sensor/data fusion methods. 
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Combining multiple sensors and multiple machines into one sensor network greatly 

improves the ability and accuracy of a CPS. A single sensor can generate data about one 

aspect of a subsystem, but faults could occur in a number of different section meaning there 

is limited spatial coverage. Multiple sensors on one subsystem allow a network to collect 

data about every aspect to form a generalized overview allowing for reduced uncertainty. 

A network of these CPS’s allows mass examination of multiple data points reducing 

imprecision when predicting faults and potentially also reducing any temporal coverage 

lapses. A CPS network can also introduce new data fields, such as device age and region, 

that by themselves for one machine would not mean much, but when combined could 

generate new datasets that were previously unknown to have any impact on a machine. 

2.2 Industrial Internet of Things (IIOT)  

 A CPS is commonly acknowledged as a piece of building block of the Internet of 

Things (IOT). A widely accepted definition of IOT is “a dynamic global network 

infrastructure with self- configuring capabilities based on standard and interoperable 

communication protocols where physical and virtual ‘Things’ have identities, physical 

attributes, and virtual personalities and use intelligent interfaces, and are seamlessly 

integrated into the information network” [5]. Multiple industries are exploring or have 

implemented IOT including, but not limited to, manufacturing [6], healthcare [7], and 

transportation [8].  

Benefits of IOT for these industries are varied. Manufacturing companies are using 

IOT for plant monitoring [9], IOT-based cloud manufacturing services [10], and evolving 

the uses of Mechatronics [11]. The Healthcare industry has developed solutions for human 

posture analysis [12] and wireless health monitoring of rural patients [13]. Finally, the 
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transportation industry has produced solutions for flight control [14], smart parking [15], 

and intelligent traffic information systems [16]. A major activity critical to these industries 

is maintenance, which is often the initial motivation for a system’s venture into “smart” 

territory. The ability to monitor and report faults can be a precursor or simple starting point 

for many smart systems including automobiles, factories, and even home appliances. For 

example, some of the first sensors used widely in automobiles were diagnostic sensors such 

as the speedometer and fuel gauge. This led to other additions such as tire pressure sensors, 

air bags, all-wheel drive, brake monitoring, and others. In very recent events, companies 

are now testing the ability of cars to drive themselves and are now reaching the top of the 

hierarchy in Figure 1. As such, it could make sense for the elevator industry to begin from 

the same starting point: IOT for maintenance. 

 Maintenance can be divided into three main categories: Reactive, Predictive, and 

Preventative. The bottom of the CPS hierarchy in Figure 1, or the Smart Connection, is the 

level for Reactive Maintenance. A system is monitored and a notification is triggered when 

a fault occurs or a value passes a threshold. Levels two and three embody the Predictive 

Maintenance. Sensors on multiple machines are collecting data that is being used to 

estimate in advance when a failure could occur. The top two, or fourth and fifth, levels of 

the hierarchy describe Preventative Maintenance. The system is given control over itself 

so that it can change parameters and attempt to prevent, or at least delay, a failure from 

occurring. A different overview of these relations is shown in Figure 2 and explained in 

Table 1. The table provides a different way of dividing the architecture for IOT but 

ultimately achieves the same outcome as the delineation in [2]. The paper by Xu [5] also 

depicts the different layers in Figure 3. 
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Figure 2: Applications for each level of CPS hierarchy [2] 

 
Table 1 – A Four-Layered Architecture for IOT [5] 

Layer Count of Fault 
Sensing Layer This layer is integrated with 

existing hardware (RFID, 
sensors, actuators, etc.) to 
sense/control the physical 
world and acquire data 

Networking Layer This layer provides basic 
networking support and data 
transfer over wireless or wired 
network 

Service Layer This layer creates and manages 
services. It provides services to 
satisfy user needs 

Interface Layer This layer provides interaction 
methods to users and other 
applications 

 
The service oriented architecture (SOA) for IOT is ideal for Maintenance as it is a service 

aspect of most industries including elevators. With a sensing layer as complicated as that 

shown in Figure 3, an issue arises with compounding and conflicting data sources. The 
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architecture is clear, but the analysis method is less certain. Therefore, there is a need to 

take the data and turn it into something useful. This occurs in the service layer of the SOA 

in Figure 3 and is commonly referred to as Big Data. 

 

 
Figure 3: Service Oriented Architecture (SOA) for IOT [5] 

 

2.3 Big Data and Data Analytics 

The term “Big Data” has been used across multiple industries. Data is critical for 

supporting decision making and often ownership of data is a contentious issue. These issues 
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are due to the potentially immense benefit that big data offers. As mentioned in Ref. [17], 

“You can’t manage what you don’t measure”, implying there is paradigm shift with big 

data because parties can now measure aspects or parameters that were previously either 

unmeasurable or difficult to measure. One example in McAfee’s article is Amazon. 

Amazon was originally an online book retailer. However, one advantage they had over 

traditional book stores, besides the convenience of being online, was their recommendation 

system. Traditional book stores might make recommendations based on static reference 

lists such as the New York Times best seller list, but these suggestions might not appeal to 

every consumer. In comparison, Amazon’s recommendations are predictive and data-

driven. In this regard, Amazon can compare data on millions of consumers, thus providing 

a better estimate of what book a consumer will want to read even before they decide. Before 

big data and data analytics, bookstores only knew what books consumers would read after 

they read them and even then, they likely would not record that information or at least not 

on large scales. Amazon found a way to measure book sales and, if it can be measured, 

then it can be managed. 

 A similar concept applies to a vast number of industries. Estimated arrival times of 

packages, airplanes, or commute to work can all be enhanced by big data. Manufacturing 

times could be improved by reducing equipment failures. Healthcare could also benefit 

from big data with potential for increased accuracy of diagnoses. However, once a party 

has an idea of what they want to improve, the question is how they can turn a large 

collection of data into a meaningful result and provide a noticeable adjustment. Part of this 

hinges on the quality of data recorded. As stated in Ref. [18], big data relies on “Volume, 

Variety, and Velocity”. There must be large quantities of data of varying forms and metrics 
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and they must be collected rapidly. If the data collected fits these three metrics, then a 

company can begin extracting value.  

Some ways of extracting information from the data are also described in Ref. [18] as 

text, audio, visual, social media, and predictive analytics. The methods used largely depend 

on both the data collected and the desired outcome, but generally at least one of these five 

methods is used. Text analytics are common due to the shear amount of written work 

already available, but the other methods are becoming popular. Social media analytics are 

becoming more accessible due to the emergence of Facebook and other sites. Audio and 

visual analytics are more widespread because cameras and microphones have become 

inexpensive. Due to the decreasing costs of cameras, microphones, and other sensors, it 

makes sense to use as many as will fit on a device. However, more is not always better, 

and there are some issues that can arise with an abundance of sensors. Their readings must 

be combined in such a way that the data produced is valid, and this fusion of sensor data 

using different combination techniques has its own area of research. 

2.4 Sensor Fusion 

Sensor fusion is the way or ways that a sensor network combines data from the 

sensing layer of Figure 3. Certain sensor types have large data bandwidth requirements and 

often it can be difficult to transmit these large data streams. Other scenarios require 

multiple sensors measuring the same parameter for redundancy. Some subsystems can also 

have multiple sensors measuring different parameters [19]. In each of these cases, it could 

make sense to implement sensor fusion. For the benefit of data processing algorithms, it is 

possible, and in some cases necessary, to simplify or condense the data on a local level 

before transmitting to the rest of the sensor network or CPS. For example, if multiple 
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sensors are recording the same parameter, this might involve combining these recordings 

into one value before transmitting. For single subsystems, it could make sense to combine 

all the data streams into one output before transmitting a single value representing the entire 

subsystem. 

Given that there is a need for local sensor/data fusion, there are multiple sensor fusion 

methods available. Some of these include the Kalman-Filter [20], Dempster-Shafer 

evidence theory [21], the Bayesian method [22], Neural Networks [23] and others, as well 

as combinations of these methods. Each method might perform better depending on the 

scenario and the requirements of the CPS. For example, if multiple sensors of the same 

type are used, it could be more beneficial to use a neural network or statistical average. If 

varied types of sensors are being used, it could make sense to use Bayes, Dempster-Shafer, 

Kalman Filter, or even Fuzzy logic. Selection of approach depends on user preference, or 

a side by side comparison of available methods to determine which has the highest 

accuracy. To explain the methods in more detail, an example scenario will be covered later 

in chapter 4 using the sensors determined in chapter 3.  

2.5 Previous Sensor Related Projects 

Thyssenkrupp has worked on a myriad of projects relating to sensors in a variety of  

the fields discussed in this chapter. The MAX 1.0 project is the gateway to Big Data and 

data analytics as a connection between the elevator controller and cloud storage. Eventually 

more sensors will be fed through the MAX system and in the MAX 2.0 project. The project 

will decide which sensors to use and develop algorithms that make decisions based on the 

data.  
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The Maintenance on Demand was a project in the European business area (BA) that 

looked at determining a number of door faults simply with vibration and noise data. The 

project is a perfect candidate for sensor fusion methods and could be picked up again in 

the MAX 2.0 project using any similar finding from the ongoing project with the University 

of Northampton. The findings of the Maintenance on Demand project were not used in this 

paper other than when the sensing scenario is chosen in chapter 3, but they could be useful 

in other projects. 

Elevator Health Check is an ongoing project in the Americas BA that attempts to 

determine elevator health from vibration data. It its current state, a tool is used by the 

technician to measure the vibrations and it is not an onboard, permanent data collection 

system. The data is fed into and analyzed by a smart phone app that all the technicians were 

issued. The project idea heavily influenced the initial focus of this paper in terms of its 

design and final purpose. There could be other products, such as the MULTI, that fall into 

one or more of the Industry 4.0 topics covered in this chapter, but they are either in other 

BAs or they have not yet been made public. Regardless, even though sensors are 

widespread in thyssenkrupp, there are still gaps and room for improvement. 

  



 15 

 
CHAPTER 3. SYSTEM DEFINITION 

3.1 Existing Gaps in Elevator Industry 

3.1.1 Callback Data 

 To have a representative sample of multiple regions and environment types, data 

was examined from four different cities from around the United States. These four cities 

were the only ones with pre-existing maintenance logs, but happened to ensure that the 

study captured issues that were not region specific (e.g. humidity related breakdowns) or 

dependent on the average unit age (e.g., Denver has more new installations than Syracuse). 

Not that these issues are unimportant, but they can be specific to a region and the idea was 

to find faults that are widespread. Each data set contains information from the major city 

branch field offices over a three-year period. In total, there are over three million callbacks 

in this period. Unfortunately, most of the data entries were either not entered in a way that 

facilitated mass examination, or the fault description was missing. After filtering out 

insufficient entries, over 100,000 total callbacks remained. 

3.1.1.1 Denver Callbacks 

 The most frequent callbacks from the Denver area are shown in the following table. 

This list only shows the faults that generated at least 200 callbacks over the three-year 

period. The generic service request comes up the most as it is an easy input for the 

technician. Outside of this field, events related to the door operator came up the most. 

These callbacks generally deal with dirty sills, an impact, or another fault causing the door 
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operator to get stuck or to lock itself. The oil in hydraulic elevators is also mentioned 

frequently with varying faults, as are the brakes listed toward the bottom. 

 
Table 2 – Denver Callbacks: Branch 106400 
Subsystem Fault Count 

Service Request 5733 
Controller Component 3315 
Hoistway Door Gibbs & Interlock 2319 
Door Operator 1165 
Hall Push Button 671 
Car Door, Gibbs & Interlock 622 
Selector & Attachments 414 
Low Oil Level 390 
Car Push Button 382 
Main Power Supply 358 
Microprocessor 354 
Communication Device 319 
Jack Seal / Packing 317 
Photo Cell / Electronic Door Edge 314 
Door Linkage / Relating Cables 296 
S. S. Circuit Board (s) 286 
Drive 277 
Clutch Assemly / Retiring Cam 253 
Hydraulic Pump / Motor 247 
Power Unit Value 243 
Brake 231 

 

3.1.1.2 Houston Callbacks 

 The most frequent callbacks from three Houston branches are shown in the 

following table. The following lists show the faults that generated at least 200 callbacks 

over the three-year period. Like the Denver branch, the door tends to come up frequently 

with similar if not the exact same faults. However, in these Houston branches, there were 

more issues with hydraulic elevators. The oil level faults and even Jack Seal/Packing faults 

came up more frequently than Denver. This could mean that either Houston had more 
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hydraulic elevators than Denver or that the hydraulics in Houston were older. Either way, 

Houston had a larger need for sensors monitoring aspects of hydraulic elevators. 

Table 3 – Houston Callbacks: Branch 106850 
Subsystem Fault Count 

Service Request 3416 
Controller Component 2847 
Hoistway Door Gibbs & Interlock 1894 
Door Operator 1037 
Microprocessor 733 
Car Door, Gibbs & Interlock 611 
Hall Push Button 501 
Selector & Attachments 371 
Car Push Button 358 
Clutch Assemly / Retiring Cam 345 
Brake 272 
Photo Cell / Electronic Door Edge 263 
Machine / Hoist Motor 262 
Leveling 254 
Low Oil Level 250 
Drive 250 
Power Unit Value 247 
S. S. Circuit Board (s) 229 
Door Linkage / Relating Cables 206 
Communication Device 204 

 
Table 4 – Houston Callbacks: Branch 106800 
Subsystem Fault Count 

Hoistway Door Gibbs & Interlock 2089 
Controller Component 2024 
Service Request 1914 
Door Operator 840 
Car Door, Gibbs & Interlock 674 
Hall Push Button 499 
Drive 427 
Microprocessor 374 
Selector & Attachments 321 
Clutch Assemly / Retiring Cam 317 
Car Push Button 288 
Brake 286 
Low Oil Level 284 
Communication Device 248 
Fuse 203 
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Table 5 – Houston Callbacks: Branch 106860 
Subsystem Fault Count 

Controller Component 2899 
Hoistway Door Gibbs & Interlock 1885 
Service Request 1735 
Door Operator 709 
Car Door, Gibbs & Interlock 525 
Microprocessor 504 
Hall Push Button 333 
Drive 320 
Low Oil Level 268 
Selector & Attachments 265 
Car Push Button 264 
Clutch Assemly / Retiring Cam 255 
Jack Seal / Packing 254 
Brake 219 
Door Linkage / Relating Cables 212 
Car Cladding / Accessories 207 

 

3.1.1.3 Phoenix Callbacks 

 The most frequent callbacks from the Phoenix area are shown in the following 

table. The following lists show the faults that generated at least 200 callbacks over the 

three-year period. The Phoenix branch yielded many more fields with the number of call 

backs over 200. Yet again, the most frequent faults deal with the doors and door operator. 

The Jack Seal/Packing vastly increased over the previous four branches and the hydraulic 

subsystem had more than 1000 total faults as well. Therefore, hydraulic sensors will also 

be beneficial for this branch. 
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Table 6 – Phoenix Callbacks: Branch 107200 
Subsystem Fault Count 

Service Request 6025 
Controller Component 4447 
Hoistway Door Gibbs & Interlock 3153 
Door Operator 1831 
Microprocessor 960 
Hall Push Button 841 
Car Door, Gibbs & Interlock 761 
Jack Seal / Packing 639 
Selector & Attachments 615 
Car Push Button 545 
Power Unit Value 517 
Photo Cell / Electronic Door Edge 497 
Upper Guideshoes (Roller & Slides) 414 
Automatic Doors 365 
Clutch Assemly / Retiring Cam 345 
Door Linkage / Relating Cables 339 
Drive 322 
Brake 318 
Hydraulic Pump / Motor 303 
Communication Device 298 
S. S. Circuit Board (s) 290 
Main Power Supply 266 
Low Oil Level 258 
Leveling 244 
Key Switch 231 
Upper Limit 209 
Overloads 205 

 

3.1.1.4 Syracuse Callbacks 

 The most frequent callbacks from the Syracuse area are shown in the following 

table. The following lists show the faults that generated at least 100 callbacks over the 

three-year period. This table has a more inclusive minimum for number of call backs due 

to the low number of total call backs for this branch (e.g. about half the number of blocks 

as branch 106400). From this table, the same data trends appear. The door and door 
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operator remain the main reason for fault with the controller taking the top spot. Hydraulic 

elevator issues also remain among the top faults. 

 
Table 7 – Syracuse Callbacks: Branch 101400 

Subsystem Fault Count 
Controller Component 2253 
Hoistway Door Gibbs & Interlock 1609 
Service Request 953 
Door Operator 852 
Car Door, Gibbs & Interlock 445 
Microprocessor 437 
Hall Push Button 359 
Jack Seal / Packing 320 
Selector & Attachments 280 
Car Push Button 246 
Photo Cell / Electronic Door Edge 219 
Power Unit Value 214 
Clutch Assemly / Retiring Cam 201 
Machine / Hoist Motor 185 
Leveling 172 
Communication Device 157 
Door Linkage / Relating Cables 156 
Upper Limit 149 
Low Oil Level 149 
Hydraulic Pump / Motor 131 
Brake 121 
S. S. Circuit Board (s) 113 
Upper Guideshoes (Roller & Slides) 102 

3.1.2 Summary of Callback Data 

After the data was taken from each region, it was combined into a larger dataset  

intended to be representative of the entire BU Americas. From the top overall faults, a few 

were chosen based on some external factors and the number of total faults. The total list is 

shown in Table 8. The potential of the ideas marked in the right most column is based on 

needs of the branch, recommendations from the tkE Senior Field Engineer, areas already 

covered under previous projects, and input from conversations with a few field service 
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technicians. From these inputs, oil temperature, brake wear/stroke, and the level of oil in 

the pit bucket were chosen for implementation. The brake wear/stroke sensors cover not 

only brake callbacks, but also assist the technician in routine brake wear measurements. 

The oil temperature and pit bucket level sensors address problems with the hydraulic 

subsystem of hydraulic elevators and have the potential to be part of a combined sensor 

network that measures the health of the entire hydraulic subsystem. The network could 

monitor faults from multiple aspects of the subsystem including the amount of oil leaking 

from jack seal/packing and overheating in the oil reservoir.  

Table 8 – Total Callbacks with Potential 
Event Count Potential 

Service Request 19776  
Controller Component 17785  
Hoistway Door Gibbs & Interlock 12949  
Door Operator 6434  
Car Door, Gibbs & Interlock 3638  
Microprocessor 3362  
Hall Push Button 3204  
Selector & Attachments 2266  
Car Push Button 2083  
Jack Seal / Packing 1798 x 
Clutch Assembly / Retiring Cam 1716  
Drive 1688  
Photo Cell / Electronic Door Edge 1632  
Low Oil Level 1599 x 
Power Unit Value 1506  
Brake 1447 x 
Door Linkage / Relating Cables 1380  
Communication Device 1379  
S. S. Circuit Board (s) 1232  
Machine / Hoist Motor 1174  
Upper Guideshoes (Roller & Slides) 1163  
Leveling 1152 x 
Main Power Supply 1149  
Hydraulic Pump / Motor 1128 x 
Automatic Doors 1013  
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The door operator, while easily the most frequent cause of callbacks, is already covered 

under the Maintenance on Demand project and the ongoing project with the University of 

Northampton. Other callbacks such as the Hall Push Button were not chosen because a 

broken button is mainly cosmetic and easy to fix. 

3.2 System Requirements 

For each of the scenarios determined in the previous section, a sensor needed to be  

selected. By definition of this study, the sensors needed to be low cost while still 

performing the required functions. The system initially also needed a data acquisition 

method to collect, store, and process data from the sensors. The requirements for these 

topics were straight forward but still required some analysis to choose appropriate 

solutions. 

3.2.1 Sensors 

3.2.1.1 Brake Gap 

An increasing number of buildings are being installed with machine-roomless 

(MRL) elevators which feature the machine suspended above the top floor in the elevator 

shaft itself. Any maintenance on the machine has to be done from the top of the elevator 

cabin and can require safety harnesses and in some cases even a safety platform that must 

be built or installed every time maintenance is performed. The brake subsystem is a part of 

this machine and requires regular maintenance visits, some as often as every 3 months. Due 

to the frequency of the visits and the egregious amount of time required to perform 

maintenance on the machine of an MRL elevator, a remote solution would be extremely 

beneficial in both cost and time savings. 
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The brake sensor needed to be the most accurate of any of the chosen scenarios. 

This measurement scenario applies to two different machines that are both common in 

thyssenkrupp Elevators. The problem here was the measurement of how much a brake has 

worn over time and whether or not it needed to be adjusted. There were two measurement 

types for each machine. The first measurement was of the brake stroke or how far the brake 

needs to move to engage. Taken from an internal thyssenkrupp maintenance manual, the 

GTW3M machine needed to be measured at the points shown in Figure 4 with the 

following instruction: “Check the gap “A” (brake stroke) at point 1 and 2, which are marked 

on the brake as well, with feeler gauge as the following picture (Figure 4) shows. Max gap 

“A” after wear should be <0.4mm for PZD140MA1, <0.45mm for PZD140MB1, otherwise 

the gap must be readjusted.” 

 

 
Figure 4: Brake Stroke Measurement Points – GTW3M 
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The second measurement was the overall brake wear. Also for the GTW3M 

machine, and also taken from the thyssenkrupp internal maintenance manual, the 

measurement points are shown in Figure 5 and have the following instruction: “The brake 

lining wear must be <1mm. Use feeler gauges to check gap “a1”, “a2”, and “b” between 

brake disc and brake lining frame. The feeler must be able to fit in all 3 gaps.” 

 

 
Figure 5: Brake Wear Measurement Points – GTW3M 

The measurements for the GTW8M machine were similar as shown in Figure 6 and 

Figure 7. This machine also had instructions for the required amount of gap for each 

measurement type. For the brake stroke: “DO NOT adjust gap “A” (brake stroke) at point 

1 and 2, point 3 and 4 unless gap “A” is 0.42mm or bigger. Use feeler gauge 0.42mm as 

test gauge that can NOT be inserted into gap “A” at point 1-4. If gap “A” is smaller than 

0.42mm, there is no need to adjust the gap (brake stroke).” 
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Figure 6: Brake Stroke Measurement Points – GTW8M 

 
The GTW8M manual also has a similar criteria for the brake wear as the GTW3M: 

“The brake lining wear out must be <2mm. Use beam calipers (sic) to check the distance 

“B” (eye able guide bushing) between the anchor disk and the machine frame at the side as 

shown (in Figure 7), it must be >8mm. Generally the distance “B” is about 10mm and it 

has been adjusted in the factory.” 
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Figure 7: Brake Wear Measurement Points – GTW8M 

 
  While similar, the different testing scenarios were actually quite varied. In order to 

use one sensor, that sensor needed to measure 0-10mm at a minimum and have a resolution 

high enough to discern a minimum difference of 0.05mm. Using this information, a number 

of distance sensors were found that matched the criteria. The sensor that best fit the scenario 
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was the TT Electronics’ Model 404 Series position sensor seen in Figure 8 and in appendix 

A.1 TT Electronics Linear Position Sensor. It had an electrical travel range of 12.7mm and 

a resolution that is theoretically infinite and would vary depending on the data acquisition 

method. It also featured a spring loaded shaft meaning that a return mechanism was not 

required. The interface to data acquisition equipment was simple as well, allowing it to fit 

with many possibilities. It has a single purchase price of 21.83 USD and as it fit under all 

the sensing requirements, it can be purchased in bulk further reducing the cost. The one 

downside of this sensor is that while it can be retrofitted and would not need a redesign of 

the existing machine, it would require an adaptation to effectively measure the brake 

parameters. 

 
Figure 8: TT Electronics Linear Position Sensor 
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3.2.1.2 Oil Level: Pit Bucket 

For the oil pit bucket scenario, a highly accurate sensor was not necessary. 

Measuring the oil level in this specific case was limited to the amount that leaks from an 

elevator and collects in a bucket in the pit underneath the cabin, but could also be applied 

to the oil level in the hydraulic tank itself. This aptly named “pit bucket” is a rudimentary 

fix to a larger problem in the Jack seals and packings, but has associated problems that 

could be addressed now with monitoring while a more comprehensive solution is 

developed.  

  

 

Figure 9: Oil collection bucket in the pit 
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The bucket collects oil leaked out of the seals and packings of a hydraulic elevator. 

When excessive oil leaks out, the elevator experiences cavitation, or excess vibrations, 

which can be unpleasant to passengers. The bucket is also prone to overflows which can 

be dangerous to technicians and potentially harmful to the environment in flood prone 

regions. It is therefore vital to monitor the amount of fluid in the bucket. 

The area and bucket mentioned are shown in Figure 9. As oil leaks from the 

hydraulic jack, it gets collected in the white bucket. The bucket is normally a used 5 gallon 

bucket that the hydraulic fluid is shipped in, but there are slight variations. Size can vary 

from site to site and they do not always have a lid. Therefore, a slightly robust sensing 

method was required. The height of a 5 gallon bucket can vary. Due to this fact, a uniform 

sensor would perform better in any bucket if it measures from the top of the bucket. In 

some buckets, this leaves a gap between the bottom of the sensor and the bottom of the 

bucket, but the goal is to prevent overflows and the bottom portion of the bucket is not as 

important. 

 
Figure 10: eTape Continuous Fluid Level Sensor 
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The eTape fluid level sensor from Milone Technologies works in a few different 

setups. The sensor shown in Figure 10, and also seen in the spec sheet in appendix A.2 

Milone Technologies eTape Fluid Sensor, is set up as a voltage divider. The sensor comes 

with an internal reference resistance that is connected to 5v from the controller. This value 

is read by the controller and compared to the variable resistive value of the sensor itself as 

it changes with the fluid level. The controller then calculates the fluid level from the voltage 

difference. The sensor has a high resolution of 1/32 inch and, with a sensor length of 14.3 

inches, is long enough to measure the most common 5 gallon buckets which can be 15-16 

inches tall. A single sensor costs 40.00 USD and the cost can be further reduced through a 

bulk purchase. 

3.2.1.3 Oil Temperature: Pump Reservoir 

The Pump Reservoir for hydraulic elevators is typically located in a pump house or 

room next to the elevator shaft as seen in Figure 11. As the system begins to wear and the 

fluid leaks or breaks down, the reservoir can overheat to levels that prevent a technician 

from accessing the room. However, the system might only overheat during peak travel 

hours (e.g. for an office building 8am, 12pm, or 5pm) and appear otherwise healthy when 

a technician is present. Both of these reasons contribute to a need to have a sensor 

constantly or regularly monitoring the temperature that can also be accessed remotely in 

the case that the technician cannot enter the room.  
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Figure 11: General Hydraulic Elevator System [24]  

From the technician call-back logs discussed in section 3.1.1, the temperature of 

the pump is typically below 110 degrees Fahrenheit, and can overheat to temperatures 

above 140. With a range of temperatures this large (~80-150 F), the sensor did not need to 

have a large resolution or sample rate. The main requirement was that it be submersible in 

hydraulic fluid at these temperatures. From those requirements, the DS18B20 was chosen.  

 
Figure 12: DS18B20 Temperature Sensor 
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The DS18B20 can be purchased as the stand-alone as in Figure 12 or as a submersible 

version. The sensor functions in a temperature range of -67 to 257F with a precision of half 

a degree. It can operate in a 1-wire mode or with all 3 wires depending on the needs of the 

system. With minimal sensors connected to one DQ line, similar to an I2C protocol, it is 

possible to operate in 1-wire mode. As more sensors are added, more power will be needed 

and it would be beneficial if not required to connect the GND and Voo pins to an external 

power source. The instructions on both methods are shown in the spec sheet attached in 

appendix A.3 DS18B20 Temperature Sensor Also, one of the submersible sensors can be 

purchased at 9.95 USD and cheaper if purchased in bulk. It would be relatively inexpensive 

to include multiple of these on one system if necessary. 

3.2.1.4 MULTI – Accelerometers and Gyroscopes 

The new elevator currently in development at thyssenkrupp is called the MULTI 

due to the ability for the cabin to move horizontally as well as vertically. As the elevator is 

still in development, much work still needs to be done to get it to market. One of the 

projects done on the elevator addresses vibrations that affect passenger comfort. Vibration 

values need to be below certain thresholds, varying depending on vibration direction, 

according to VDI-2057 and EN ISO 8041:2005. To monitor these values, four inertial 

measurement units (IMUs) were attached to four points of the current MULTI prototype 

as seen in Figure 13. The sensors Su and Cu are both IMUs from iMAR shown in Figure 14 

and the sensors Bu,i are both of the type shown in Figure 15. These sensors are separate 

from the communication network and other sensors described in this section, but could be 

added to the Dempster-Shafer algorithm described in sections 4.1.2 and 4.2.1 to record the 

data for vibration and frequency. While these sensors record gyroscopic and acceleration 
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data, only the acceleration data was used in the study. There is potential use for the 

gyroscopic data in future projects.  

 

Figure 13: IMU placement on MULTI prototype 

 

Figure 14: iMAR IMU (200 Hz) 
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Figure 15: IMUs NGS2 from Sensor-Technik Wiedemann GmbH 

3.2.2 Communication Network 

The basis for a remote communication network stemmed from the need of a field 

technician for a tool to measure aspects of the elevator.  The primary motivation was to 

develop an expanded network based on the Elevator Health Check application which 

features acceleration sensors transmitting data to an iPhone app. Due to the distributed 

nature of the application scenarios described in the previous sections, there was also a need 

for a wireless network between the sensors before the data is sent to an app. If the results 

are implemented in the future, it will likely be integrated into the MAX 2.0 project now 

that the MAX team has started allowing full access to the associated data recording and 

transmitting hardware.  
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The three scenarios determined from the call-back logs in section 3.1.1 are low 

bandwidth and therefore do not need to be transmitted via a wired connection or Wi-Fi. 

Bluetooth has a high enough bandwidth to transfer recordings that are made at a maximum 

of once every minute. Because these sensor scenarios are distributed and additional 

scenarios would be further distributed, a central collection point was used that would be 

able to access all of the sensors, while still allowing access to technicians. Because the 

elevator cab is already moving through the shaft, and the technician has to access it during 

maintenance, the elevator cab was the logical collection point. As the elevator moves 

through the shaft and comes into range of a sensor, it collects any recorded data and stores 

it for future transmission to the technician. The data would be transmitted via an HC-05 

Bluetooth chip and each sensor would have its own Arduino Nano micro-controller for 

short term storage and for sending the data. However, this setup can always be amended if 

high-bandwidth sensors are required or a better collection point is viable. An overview of 

this setup is shown in Figure 16. 

In Figure 16, sensors 1, 2, and 3 are currently connected to the Raspberry Pi on top 

of the elevator cabin and the Pi is also connected to the technicians iPhone. Sensors 4 and 

5 are out of range of the Pi and are thus shown with a broken or dotted connection. Sensor 

4 is expanded to show the sensor sending data to the Nano where it waits to be transmitted 

via the HC-05 Bluetooth module. It should be noted that while these 5 sensors each have 

their own Nano and HC-05, it is possible and likely necessary to connect multiple sensors 

to one Nano and HC-05. However, the Nano and HC-05 together only cost 11.99 USD, 

and cheaper in bulk, so it would not be too expensive for each Nano to connect to only a 

single sensor.  
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Figure 16: Sample System Network Diagram 

 
 

 
Figure 17: Linear Sensor Circuit Diagram 
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The circuit diagrams for each sensor setup, with the Arduino Nano microcontroller 

and HC-05 Bluetooth module, are shown in Figure 17, Figure 18, and Figure 19. The TT 

Electronics linear sensor diagrammed in Figure 17 is a spring loaded linear potentiometer, 

similar to a slide potentiometer. The resistance value between ground and +5v is read as a 

voltage into pin A0, converted to a distance, and then transmitted through the HC-05 

Bluetooth module. The sensor here was stated to have a theoretically infinite resolution 

and is limited by the amount of bits given by the Arduino to the measurement. With the 

minimum 0-1023 bits, the sensor had a resolution of approximately 0.02 mm which is less 

than the 0.05 mm required by the maintenance manual. 

 
Figure 18: Fluid Level Sensor Circuit Diagram 

 
The Milone eTape sensor in Figure 18, when purchased as the 4-pin option, has an 

internal reference resistor of about 2k Ohms and a variable resistor that are used to measure 

the fluid height. Both resistors connect to the node at A0 and as the fluid level increases, 

the voltage output from the voltage divider will change accordingly. The HC-05 setup is 

the same as the linear sensor. The DS18B20 temperature sensor when in the 3-wire 
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configuration appears as in Figure 19. If in 1-wire configuration, only the DQ pin would 

be connected to the D2 pin on the Arduino Nano. The HC-05 setup is the same as the other 

circuit diagrams. 

 

 
Figure 19: Temperature Sensor Circuit Diagram 

 
 

 In order to show the feasibility of this system, sample sensor data was collected and 

transmitted to a Raspberry Pi where it was stored until the iPhone mobile phone application 

(app) made a connection. The test showed that the Nano would store data until in range 

with the Raspberry Pi. Once a sensor was in range of the Pi, the Nano would transmit the 

data via the HC-05 module and wipe the recorded values. The Pi would then store the data 

with a timestamp until the iPhone app made a request. Once the request was made, the Pi 

burst transmitted the data to the phone. The app did not have any data processing coded 

into it and only displayed the transmitted values in the spaces provided. The processing in 

the app would come from one or some combination of the sensor fusion methods discussed 

in chapter 4. The main storyboard for the app is shown in Figure 20. The app also displayed 
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whether or not the phone had activated Bluetooth and the name of a Bluetooth device when 

one connected. It is important to note that this sample setup was purely a proof of concept 

and not intended to be a final iteration. For example, this sample had no security protocol 

or high detail data processing. It was developed only to show that the idea was feasible and 

could be expanded in the future. Now that access to the MAX data acquisition and 

transmission hardware is available, the network is less necessary but could still have some 

application on the elevators not yet covered under a MAX system. 

 

 

 
Figure 20: Proof-of-Concept Bluetooth App 
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3.3 Summary 

The sensors and communication network described in section 3.2 have the potential 

to meet multiple aspects needed in a network for the scenarios chosen in section 3.1. The 

sensor specs are more than adequate to measure in the range and resolution required for 

each subsystem and the Arduino, Raspberry Pi, and iPhone network connecting via 

Bluetooth has the storage and bandwidth necessary to do local short term storage on the 

Arduino, longer storage on the Raspberry Pi, and transmit all data between network nodes. 

Without access to the actual spaces that the sensors and network would be installed, 

minimal testing was done. However, for an installation, some pieces will need to be 

determined individually for each elevator. Some shafts might require Bluetooth relays or 

signal boosters, while some might need more short term storage, and others might need 

different sensors entirely. The present system is a starting point for individual installations 

and provides the framework for any future networks. 
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CHAPTER 4. SENSOR FUSION APPLICATIONS 

4.1 Sensor Fusion Methods 

There are multiple sensor fusion methods, all of which have different benefits and 

use-cases. However, each method has the same goal of combining data and generating a 

result that is more accurate or intelligent than the data could provide separately. These 

methods include: Bayes Probabilities, Dempster-Shafer theory of evidence, Kalman-

Filtering, and Artificial Neural Networks. All of these methods are discussed below with 

some level of detail, and detailed examples showing the benefit of using the Dempster-

Shafer and the Kalman Filter methods are also discussed. This paper discusses only these 

four methods, and implements two of them, because while there are more algorithms 

available, they might only be slight variations of the ones above or have niche utility. 

4.1.1 Bayes’ Probability 

Many sensor fusion methods stem from probability theory, so the first method 

examined in this paper is Bayes’ Theorem. This concept of probability was first proposed 

by Thomas Bayes in the 18th century [25]. While the first use of probability was clearly not 

sensor fusion, the method is still relevant. The overarching idea is that a user can input 

various possibilities and determine the probability of an event occurring. The concept is 

extremely similar for sensor fusion. A user inputs various data points and receives a 

combined datum that ideally has more knowledge or worth than the individual data points. 

From this concept, the Bayes’ Theorem, seen in equation 1, was applied to sensor fusion.  
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 !(#|%) =
!(%|#) ∗ !(#)

!(%)
 

 
(1) 

 
Relating Bayes’ Theorem to the topic of this study, a user could predict the probability of 

Fault A occurring given that sensor data B is recorded. The method is simple, but it could 

still be applicable in some basic situations. There are multiple variations of this method 

that arose as an attempt to expand or improve the effectiveness of the theorem. For 

example, a Bayesian Network is one such expansion which is utilized in Ref. [26] to 

establish an occupancy grid for the exterior of a mobile robot.  

 

 
Figure 21: Sample Bayesian Network [26] 
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The network has pre-determined probabilities of certain scenarios occurring based on other 

scenarios occurring and can determine the appropriate result from a given input. The robot 

in this case uses a network of this type and sensor data to make guesses about its 

environment as it moves.  

 The major downside to this method, and to Bayes’ Theorem in general, is the large 

amount of prior data that is needed to generate a probability network like the one shown in 

Figure 21, or just general P(B|A) probabilities. The relations between each state need to be 

known in advance in order for the algorithm to propagate up the network. This would mean 

that the robot already has a vast knowledge of its potential surroundings. For the context 

of this paper, knowledge would be required for all the different fault types and how they 

relate to the sensors attached to the system. There are certainly benefits, but for this study 

there are better alternatives. 

4.1.2 Dempster-Shafer Theory of Evidence 

Arthur Dempster, and later Glenn Shafer, expanded and altered the original Bayes’ 

Theorem as many others have also done. Instead of using statistical probability functions, 

Dempster uses functions, that are referred to as “Belief Functions”, “Mass Functions”, or 

“Levels of Evidence”, which are simply the levels of belief in a piece of evidence [21].  

 

 Ω(*) = {,, ., [,, .], ∅} (2) 

 
Given a set of outcomes, there is a power set, 2n, of mass functions for n potential outcomes 

as seen in equation 2. Where in this case, n = 2, and the possibilities are a, b, a or b, or the 

null set. Each possibility is then assigned a belief, m, such that 
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 34(#) = 1

6⊆8

 (3) 

 
From these mass functions, each outcome has an associated belief and plausibility function. 

 

 .9:(#) = 34(;)

<⊆6

 (4) 

 =:>(#) = 34(;)

<∩6

 (5) 

 
This “Belief Interval”, [bel(A), pls(A)], is used to make the decision of which outcome is 

present. There a few ways to make the decision. For example, the highest belief, the highest 

plausibility, the smallest belief interval, or some combination thereof. The choice of which 

decision metric to use can come from the user or from whichever gives the most accurate 

results.  

 The main benefit for sensor fusion in the Dempster-Shafer method is the 

combination of evidence. Once different outcomes have been assigned a mass function, 

they can be combined using the following equation. 

 

 4(#) = 	
1

1 − B
3 4C(%)4D(E)

F∩GH6

 (6) 

where B =	 3 4C(%)4D(E)

F∩GH∅

  

 
The K value is a measure of conflict between the two data sources and used to eliminate 

discrepancies. This combination method generally allows for more accurate belief and 

plausibility values and a reduced Belief Interval. For example, suppose that an elevator has 

two temperature sensors, 3 accelerometers, and 2 noise sensors. Each sensor records a 

value that is used to generate a mass function for each fault type. All of these readings can 
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then be combined using equation 6 to get an overall view of the system and make a more 

intelligent assessment of which fault is occurring. 

 Dempster-Shafer is more robust than the Bayes’ Theorem but also has its own 

shortcomings. There is no widely recognized method of determining the mass functions 

and can range from “Expert Input”, such as a meteorologist predicting the chance that it 

will rain or be sunny, to using prior knowledge and calculating the distance between the  

sensor data and different states. Dempster-Shafer also has problems with strongly 

conflicting data as seen in Ref. [26]. Exaggerated sample data exemplifying this conflict is 

multiplied in Table 9 and then combined using equation 6 in Table 10.  

 
Table 9 – Conflicting Evidence 

  m1(A) m1(B) m1(C) 
 m(W) 0.01 0.0 0.99 

m2(A) 0.01 0.0001 0.0 0.0099 
m2(B) 0.99 0.0099 0.0 0.9801 
m2(C) 0.0 0.0 0.0 0.0 

 
 

Table 10 – Conflicting Result from Evidence in Table 9 
 Dempster-Shafer 

m(A) 1.0 
m(B) 0.0 
m(C) 0.0 

 
The combined values strongly favour option A even though both data sources had very 

small mass functions for A. Because the two data sources were strongly in favour of 

conflicting sources, the algorithm eliminates the conflict and chooses the decision where 

there is any overlap, however small it may be. This problem can generally be avoided by 

combining a higher number of data points, but it could still arise.  
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Despite this shortcoming, the Dempster-Shafer method is a valid sensor fusion 

algorithm and can generally deal with disagreements between data sources. Multiple data 

sources can be shown to be sufficient to deal with wide variations in the data itself. For a 

scenario that does not require time-varying analysis and is limited to low amounts of 

computing power, Dempster-Shafer is a relevant method and was strongly considered as a 

solution for this study. 

4.1.3 Kalman Filter 

A Kalman Filter differed from the previous two methods in that the algorithm 

specifically includes time as a factor. This method treats the system similar to a controls 

problem and models the system as a discrete-time state-space representation [20]. Using 

this state space representation, the algorithm makes a prediction and estimate of the current 

state given information of the current and previous states. 

 

 I(J) = #(J)I(J − 1) + %(J)L(J) + M(J) (7) 

 N(J) = E(J)I(J) + O(J) (8) 

 
Equations 7 and 8 are used to discretely model the system. Where x(t) is the state vector at 

time t, u(t) is the input at time t, and v(t) and w(t) are Gaussian noise with covariance of 

R(t) and Q(t) respectively [20]. The time t can also be replaced with kDt, where k is an 

integer for the current iteration, and Dt is the step size of the system. From this model, the 

Kalman Filter algorithm estimates the current state of the system using the following 

equations from Ref. [20]. 
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Prediction: IP(J|J − 1) = #(J)IP(J − 1|J − 1) + %(J)L(J) + M(J) (9) 

 !(J|J − 1) = #(J)!(J − 1|J − 1)#Q(J) + R(J) (10) 

 

Estimation: B(J) = !(J|J − 1)EQ(J)[E(J)!(J|J − 1)EQ(J) + S(J)]TC (11) 

 IP(J|J) = IP(J|J − 1) + B(J)[N(J) − E(J)IP(J|J − 1)] (12) 

 !(J|J) = [U − B(J)E(J)]!(J|J − 1) (13) 

 
 

The main deviations of the Kalman filter from other sensor fusion methods, are the 

calculation of the Kalman gain K(t) as shown in equation 11, and the recursive nature of 

the estimation. The algorithm calculates the error between the predicted values in equation 

9 and the measured values y(t). The Kalman gain, which is a combination of the covariance 

matrices of the estimation and the inherent noises, acts as a step size adjustment to better 

predict the state of the system. The estimation covariance is then updated in equation 13 

and all of the values are fed into the following time step of the algorithm. There are many 

variations of the Kalman Filter, for example the Extended Kalman Filter, that each have 

uses in different areas. 

Like Bayes’ Theorem and Dempster-Shafer, the Kalman Filter method also has many 

variations all of which have usefulness in some area. In general, the Kalman Filter works 

well with time varying systems unlike Bayes’ Theorem and Dempster-Shafer. Some 

downsides to the Kalman Filter include high computational cost especially as the number 

of sensors increase and the covariation matrices become larger and more complex. Despite 

this, it has use in scenarios where the state of the system needs to be estimated or cannot 

be measured. 
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4.1.4 Artificial Neural Network 

Artificial Neural Networks (ANN) are probably the most well-known of the 

algorithms discussed here and could be considered as having the broadest application. The 

concept is derived from the functionality of neurons in a brain hence the name, “Neural 

Network”. The algorithm structure is comprised of multiple layers as seen in Figure 22. 

Only two layers, the two outer layers, are technically required and the middle “hidden 

layers” are hidden neurons connecting the inner and outer layers. They are called hidden 

only because the values calculated in each node are never seen by the end user. The user 

puts data into the input layer and receives and output in the output layer. The number of 

these hidden layers and number of nodes per layer is not pre-defined and could be chosen 

by the user or by another algorithm designed to optimize the network for a specific 

application. The number of input nodes typically comes from the type of data (i.e. number 

of data points available) and the nodes in the output layer depend on the type of outcome 

required. For example, the output could be akin to binary where each node will be a 1 or 0 

and will signify a specific outcome. Each path between layers, or between nodes, has an 

associated weight that is tuned as the algorithm is trained. The training method is generally 

the most complex step in creating a neural network. The method of training can be back or 

forward propagation or involve higher level deep-learning methods.  

Once the ANN is trained, a user or a script inputs data values into the first layer. The 

ANN will propagate these values through each layer and eventually make an overall 

decision or assessment. For example, in Ref. [23] and as seen in Figure 22, researchers 

used sensors to determine the wear of a cutting tool. They used a number of features in the 

first layer and the last layer output the predicted average wear of the cutting tool. For this 
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paper, the sensor data would be fed into the first layer and the ANN would decide what the 

possible fault state is.  

 

 
Figure 22: Sample ANN [23] 

  
  

Neural Networks can be extremely accurate but can also require a lot of data to train 

the weights. This training requirement, as with the other methods, means that there is a 

need for prior knowledge of the system before the algorithm is useful. There is also a large 

amount of variety in the structure of an ANN and this can be useful or a hindrance to the 

user. For example, they are trained either through a feed-forward or feed-back method, the 

number of layers and number of nodes per layer is not predetermined, and how to weight 

the paths is also decided by the user. However, the method has been shown to have clear 

benefits in accuracy and the broad applications to which it can be applied. 
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4.2 Algorithm Results 

The Dempster-Shafer and Kalman Filter methods were tested to determine the 

efficacy when used for a small number of sensors. Each algorithm can of course be 

expanded to include any number of sensors, but for exemplary purposes, and to keep 

calculations to a minimum, 5 data types were used for the Dempster-Shafer, and two 

sensors were used for the Kalman Filter. The Bayes’ Theorem was not tested because it 

has been eclipsed by the Dempster-Shafer and other methods and the ANN was not tested 

because the Dempster-Shafer and Kalman Filter methods fit the scenarios better. 

4.2.1 Dempster-Shafer Theory of Evidence 

The Dempster-Shafer algorithm was tested in a maintenance scenario. Multiple 

sensors collect data across subsystems which is then used to estimate if and which fault 

occurred. Unfortunately, due to a lack of recorded data, the data had to be simulated with 

a Monte-Carlo Simulation. This lack of available data for the chosen sensor types and fault 

types required mock data to be generated. The types of faults come from the maintenance 

log data shown previously and could be measured with the chosen sensors. Mock fault 

states are shown in Table 11 and the mock standard deviations for each fault state are shown 

in Table 12. These values were used along with the MATLAB normrnd function to 

generate 10000 samples for each fault according to a Gaussian distribution. 

Table 11 – Means of Mock Fault Data 
 Temp (F) Oil Level 

(in) 
Vibration 

(mG) 
Frequency 

(Hz) 
Noise (dB) 

No Error 100 3 10 10 30 
High Temp 130 3 15 25 50 

Low Oil 100 9 25 25 55 
Rail Guide 100 3 20 40 55 
Brake Pick 100 3 15 10 70 



 51 

 
 

Table 12 – Standard Deviations of Mock Fault Data 
 Temp (F) Oil Level 

(in) 
Vibration 

(mG) 
Frequency 

(Hz) 
Noise (dB) 

No Error 18.1 3.5 4.7 4.8 12.5 
High Temp 19.0 3.8 5.7 5.8 14.7 

Low Oil 12.2 3.5 4.7 6.5 17.5 
Rail Guide 18.3 3.3 6.7 5.1 13.2 
Brake Pick 17.3 4.3 4.8 4.7 12.6 

 
 

Each sample was used to calculate a mass function to plug into the algorithm. The 

mass functions, as mentioned before, do not have a widely accepted method of 

determination. For this study, and similar to Ref. [28], the mass functions were calculated 

using the Minkowski distance, shown in equation 14, between the sample, xi, and the 

means, I̿, of each of the faults. For this specific case where the exponents in equation 14 

are r = 2, and subsequently 1/r, the equation is also known as the Euclidean distance. 

 

 W(IX, I̿) = 	Y3|IX − I̿|
D

Z

XHC

[

C
D\

 (14) 

 =X =
1
W(IX, I̿)
\  (15) 

 4X =
=X

∑ =X
Z
XHC

 (16) 

 
Each distance calculated using equation 14 was then inverted as seen in equation 15 and 

normalized to be between one and zero using equation 16. An example of the mass function 

generation is shown in Table 13. 
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Table 13 – Example Mass Function Generation 
 Temp (F) Oil Level 

(in) 
Vibration 

(mG) 
Frequency 

(Hz) 
Noise (dB) 

High Temp 130 3 15 25 50 
Sensor Data 118 2 17 23 42 

 

 W(ID, I̿) = 	 (|118− 130|
D + ⋯+ |42 − 50|D)

C
D\ = 14.7309  

 =D =
1
W(IC, I̿)
\ = 0.0679  

 4D =
=D

∑ =X
Z
XHC

= 0.3226  

 
Using the means of each fault state and the data from the sensors, the mass function for a 

High Temperature fault in this example was calculated to be 0.3226. 

Each of these 10000 samples for each fault was run through the Dempster-Shafer 

algorithm to ensure that the predicted fault matches the fault from which the data was 

generated. The accuracy was then calculated as a ratio of successes out of the 10000 

samples. The initial accuracies for varying numbers of each sensor type are shown in Table 

14. For example, 1 sensors means one of each of the 5 sensor types, and 2 sensors means 

2 of each of the 5 sensor types. 

 
Table 14 – Accuracies from Dempster-Shafer (# of Sensors is Coupled) 

 No Error High Temp Low Oil Rail Guide Brake Pick 
1 Sensor 90.6 77.8 86.7 84.8 83.6 
2 Sensors 98.4 92.7 93.1 95.5 95.7 
3 Sensors 99.8 97.0 97.4 96.9 97.9 

 
 

It was clear that having more of each sensor increases the accuracy of the algorithm. The 

algorithm works best when having multiple sources of data, as it reduces sources of conflict 

between sensors, resulting in the improved accuracies in Table 14. However, one issue with 

coupling the number of sensors was that, in practice, it might not be necessary to add a 
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sensor of each type and could be an additional expense. To remedy this, the Monte-Carlo 

Simulation was run again, but adjusted such that sensors were added sequentially. For 

example, one temperature measurement was added and an updated accuracy was 

determined. The temperature measurement was then removed and an oil level measurement 

was added. This continued for each measurement type. The accuracy for each addition was 

recorded and the sensor addition that caused the largest change to accuracy was held, while 

the rest remained at their previous values. The sensor amounts were updated similar to a 

gradient descent method in that sensors were added wherever there was the greatest 

increase in accuracy. Following this method, sensors were added until all of the accuracies 

were above some threshold, in this case 95 percent.  

Table 15 – Average Number of Sensors for 95% Accurate Results 
 Temp (F) Oil Level 

(in) 
Vibration 

(mG) 
Frequency 

(Hz) 
Noise (dB) 

Calculated 2.05 3.35 2.15 2.3 2.1 
Rounded 2 4 3 3 2 

 

The results from running this method 30 times are shown in Table 15. The data for 

Vibration and Frequency can come from the same sensor and thus the higher of the two 

numbers was required and would be equal for both data types. The numbers for all the 

sensors will vary for each application, but the algorithm would be able to determine the 

number of sensors required provided that adequate data is available for each fault type. 

Table 16 – Accuracies of Each Fault using Number of Sensors from Table 15 
 No Error High Temp Low Oil Rail Guide Brake Pick 

Calculated 98.99 95.58 97.60 97.19 97.10 
Rounded 99.01 96.37 98.50 98.23 97.84 
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After it was shown in Table 14 that the method was capable of achieving a 

minimum accuracy of 95 percent, that value was used as the threshold for generating the 

values in Table 15. The accuracies for the calculated and rounded number of sensors in 

Table 15 are shown in Table 16. The accuracies of the rounded number of sensors are 

slightly higher due to most of the amounts of sensors being rounded up to the nearest whole 

number. Not only can the algorithm be used to correctly identify a number of faults, it can 

also be used to determine a minimum number of sensors that would be needed for an 

accurate result and therefore minimizing cost while maximizing efficiency. 

 It should be noted that only one set of means and standard deviations were tested 

due to computation times increasing as the number of simulations inside of simulations 

increased. The mean of each fault state was somewhat arbitrary, but the standard deviation 

could greatly influence the results. Therefore, the large standard deviations used were 

chosen to simulate uncertain knowledge of fault states. The standard deviations ranged 

from 10-47 percent of each data types’ maximum value ensuring a wide variation in test 

data. With this variation, the algorithm had some problems with lower numbers of sensors 

but rapidly increased in accuracy as more were added. The Dempster-Shafer method 

proved that it quickly becomes more effective with an increasing number of sensors and it 

could also determine the minimum number of sensors required to achieve a desired level 

of accuracy. 

4.2.2 Kalman Filter 

The previous project that used the data from the IMUs shown in section 3.2.1.4 used 

data to estimate the vibrations experienced at head height by a passenger. The project only 

used the Cu sensor attached to the cabin as seen in Figure 13 and the data from the other 
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three sensors was unused. Due to the system being a prototype and therefore still uncertain 

about the internal parameters and due to the data available, it made sense to use sensor 

fusion in an attempt to estimate the parameters of a model of the prototype and to compare 

the estimated parameters against the values used in the previous project.  

4.2.2.1 Problem Formulation 

From the model shown in Figure 13, the goal was to estimate the parameters 

between the sledge, where sensor Su measured, and the bucket. Due to the rigidity of the 

supports between the weights simulating the cabin and the bucket, these two pieces were 

treated as one rigid body in both the previous MULTI project and this paper. From this 

assumption, the Su and Cu sensors could be used in the fusion algorithm. This was 

beneficial due to them being the same type of sensor and therefore having the same sample 

rate. The model was simplified to a spring-mass-damper system as shown in Figure 23 

where mB is the bucket/cabin rigid body, mS is the sledge, u is the input to the system, and 

the other variables are the associated acceleration, velocity, and position of each body. The 

K and C are the spring constant and damping coefficient respectively and the parameters 

to be estimated to see if this model fits with the recorded data. From this model, the 

following state space representation of the bucket was formed. 

 i
İF
ṀF
k = l

0 1

−
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−
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4F
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o + l
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(18) 
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Figure 23: Proposed System Model 

The K and C values are the unknown parameters, the positions and velocities are calculated 

from the acceleration data recorded and therefore considered as known, and mB is the 

combined weight of the bucket and weights used to simulate the cabin. The output y(t) is 

the calculated values of position and velocity from the recorded acceleration data. The 

state-space representation is then converted to a discrete model using the MATLAB 

function c2d and shown as follows: 

 i
IF(q + 1)

MF(q + 1)
k = l

1 ∆J

−
B ∗ ∆J

4F

1 −
E ∗ ∆J

4F

m i
IF(q)
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4F

E

4F

m i
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N(q) = n
1 0

0 1
o i
IF(q)

MF(q)
k 

 
(20) 

 

The data used in this model is acceleration data of the sledge, Su, and the cabin, Cu. 

The acceleration data was converted into velocity and position values by first subtracting 
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the mean of the data, and then integrating using the MATLAB function cumtrapz. One of 

the rides recorded is shown in Figure 24. 

 

Figure 24: Ride Profile (Vertical, 4 m/s, 50 m) 
 

The data for both the Sledge and the Cabin are in this form. Rides were recorded at three 

different speeds (3, 4 and 5 m/s). The 4 and 5 m/s rides accelerated at 1.0 m/s2 and with a 

travel distance of 50 m. The 3 m/s rides accelerated at 0.8 m/s2 with a travel distance of 20 

m. Rides of each type were used for robustness and accuracy.  

After some consideration, due to the ability to work with time varying state space 

models, the Kalman Filter fit the requirements the best. Generally, the algorithm takes a 

discretized state space representation of a system and estimates the state of the system at 

the next time step. However, some versions are capable of simultaneously estimating the 

internal parameters of the system if they are time-varying or simply unknown. Some of 

these variants are the Extended Kalman Filter [29], Unscented Kalman Filter [30], and the 
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Dual Extended Kalman Filter [31]. The Dual Extended Kalman Filter was the variant 

chosen due to its simplicity and its similarity in concept to other methods such as the Dual 

Ascent optimization method [32].  

The Dual Extended Kalman Filter effectively nests two Kalman filters inside of each 

other. The outer filter updates the estimates of the parameters, and the inner filter updates 

the estimate of the state. The formulation is similar to equations 9-13. The equations from 

Ref. [31] are shown as follows, but using notation similar to equations 9-13, and are based 

off the state space representation in equations 7 & 8. 

 

Prediction 
(Paramter): IPs(J|J − 1) = IPs(J − 1|J − 1) (21) 

 !s(J|J − 1) = !s(J − 1|J − 1) + Rs(J) (22) 

   

   

Prediction 
(State): 

IPp(J|J − 1) = t uIPp(J − 1|J − 1), L(J), IPs(J|J − 1)v (23) 

 !p(J|J − 1) = #(J)!p(J − 1|J − 1)#
Q(J) + Rp(J) (24) 

 
 
 

  

Estimation 
(State): Bp(J) = !p(J|J − 1)E

Q(J)[E(J)!p(J|J − 1)E
Q(J) + Sp(J)]

TC (25) 

 IPp(J|J) = IPp(J|J − 1) + Bp(J)[N(J) − E(J)IPp(J|J − 1)] (26) 

 !p(J|J) = [U − Bp(J)E(J)]!p(J|J − 1) (27) 
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Estimation 
(Parameter): Bs(J) = !s(J|J − 1)ws

Q(J)[ws(J)!s(J|J − 1)ws
Q(J) + Ss(J)]

TC (28) 

 IPs(J|J) = IPs(J|J − 1) + Bs(J)[N(J) − E(J)IPp(J|J − 1)] (29) 

 !s(J|J) = xU − Bs(J)ws(J)y!s(J|J − 1) (30) 

 

Here, IPs and IPp are the vectors of parameters and state vectors to be estimated, !s and !p 

the covariance matrices of the estimation error, A(t) is the Jacobian of the state vector, C(t) 

is the Jacobian of the output vector, u(t) the input vector, Rs(J) and Rp(J) are noise 

covariance matrices that can be specified by the user, and the Ss(J) and Sp(J) are the 

output noise covariance matrices [31]. From the discretized model in equations 19 and 20 

the Jacobians are 

 #(J) = l

1 ∆J

−
B ∗ ∆J

4F

1 −
E ∗ ∆J

4F

m (31) 

 
 

E(J) = 	 n
1 0

0 1
o 

 
(32) 

 

The noise covariance matrices come from the standard deviation of the output readings 

 Ss(J) = Sp(J) = i
>z
D 0

0 >{
D
k (33) 

 

and are the same because the output vectors for both the parameters and the state are the 

same. The Rs(J) and Rp(J) matrices are calculated as in the method in Ref. [31] as 

 Rs(J) = i
>|
D 0

0 >}
D
k (34) 

 
 

Rp(J) = 	 n
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0 10000
o 

 
(35) 

 



 60 

where the variables sk and sc are set to approximately 1% of the expected parameter values. 

The Jacobian for the parameters is calculated using the method described in Ref. [31] and 

Ref. [33] 

 ws(J) = wp
~t(IPp, IPs)

~IPs
= �

~I

~B

~I

~E
~M

~B

~M

~E

Ä (36) 

 

Hs in this case is the Jacobian of the state space equation, or A(t) in equation (31. The 

discretized state space model and the associated parameters could then be simulated in a 

Kalman Filter. 

4.2.2.2 Simulation Results 

Using the initial matrices from 4.2.2.1 and the recorded data, a simulation was run 

with MATLAB. The Dual Extended Kalman Filter generated a spring constant K of 1,763 

N/m and a damping coefficient C of 410 N/m*s-1. With these values, a basic Kalman Filter, 

as shown in equations 9-13, was run to check against the recorded output data. The results 

from this method for the velocity and position are shown in Figure 25 and Figure 26 

respectively. The estimated velocity results are extremely accurate with very little drift 

while the position estimate is almost exact. The errors for both velocity and position are 

shown in Figure 27 and Figure 28. 
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Figure 25: Dual Extended Kalman Filter Parameter Estimation Results – Velocity 

 
Figure 26: Dual Extended Kalman Filter Parameter Estimation Results – Position 
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Figure 27: Error Between Recorded and Estimated Output States 

 
Figure 28: Error Between Recorded and Kalman Adjusted Output States 
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 While this method seems to be extremely accurate, there were some problems with 

some of the data sets. For example, when a set of data recorded at 4 m/s moving downward 

was singularly run through the Dual Extended Kalman Filter, the algorithm estimated 

physically impossible parameters. The spring constant K was estimated to be 1.736*106, 

and the damping coefficient C was estimated to be -4.147*104. In this regard, a negative 

damping coefficient is inconsistent with a realistic response. Using these parameters with 

a basic Kalman Filter generates the estimates shown in Figure 29 and Figure 30. 

Interestingly, the position estimation is still very accurate, while the velocity estimate, 

before the Kalman adjustment, exhibits extreme drift. The errors for both the velocity and 

position are shown in Figure 31 and Figure 32. 

 

Figure 29: Velocity Estimation using Physically Impossible Parameters 
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Figure 30: Position Estimation using Physically Impossible Parameters 

 

Figure 31: Error Between Recorded and Estimated Output States 
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Figure 32: Error Between Recorded and Kalman Adjusted Output States 

The error between the estimated and recorded velocity is clear and expected based on the 

large differences visible in Figure 29. The position estimation, surprisingly, is still 

extremely accurate despite the parameters. Due to the Dual Extended Kalman Filter giving 

such obviously inaccurate results for some data sets, another verification method was 

needed. 

4.2.2.3 Alternative Parameter Estimation 

While the Kalman Filter does have variants that allow for simultaneous parameter 

estimation, the common way of estimating parameters is through a form of regression 

applied to recorded data. With this in mind, the fminsearch MATLAB function could be 

used to estimate the parameters. This function uses the Nelder-Mean simplex algorithm 

and it is built in to MATLAB making it preferable over creating or coding a new algorithm. 
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The function takes in an equation to be optimized and specifies what variables are to be 

estimated for optimization. The function also needs an initial guess for the parameters in 

question as a starting point. The equation could be the time-varying or discrete versions of 

the state-space model. In order to use the raw data, the left side of the time-varying equation 

17 was subtracted so that the minimum should be zero as seen in equation 37.  

 
B

4F

(Ip − IF) +
E

4F

(Mp − MF) −	 ṀF = 0 (37) 

 

Most of the data sets available were used to update the estimation of the parameters, while 

some were reserved for testing in the Kalman Filter. Because the optimization function is 

run for every time step of each dataset, this method took much longer than the Dual 

Extended Kalman Filter.   

 

Figure 33: Velocity Estimation using Parameters from fminsearch  
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After running the datasets through the fminsearch function, the spring constant K 

was estimated to be 4.86 N/m and the damping coefficient C as 4.32*104 N/m*s-1.  These 

values were inputted to a basic Kalman Filter and generated the results in Figure 33 and 

Figure 34. The errors for the estimated and Kalman adjusted values are then shown in 

Figure 35 and Figure 36. The errors for both velocity and position are similar in magnitude 

to the successful tests of the Dual Extended Kalman Filter, except in this case every dataset 

was run through the parameter estimation without generating impossible parameters. As 

with the previous attempt, some datasets were reserved for testing. There is some error, 

more noticeable in the velocity estimation, but again the Kalman adjustment step reduces 

the error to be negligibly small.  

 

Figure 34: Position Estimation using Parameters from fminsearch 
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Figure 35: Error Between Recorded and Estimated Output States 

 

Figure 36: Error Between Recorded and Kalman Adjusted Output States 
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4.2.2.4 Kalman Filter Analysis 

While the estimated parameters from the Nelder-Mead function and the successful 

Dual Extended Kalman Filter sets are physically possible, and generate extremely accurate 

results, there are still some elements that may suggest they are not accurately representing 

the data. The damping ratio and natural frequency of the system can be calculated from the 

spring constant and damping coefficients from equations 38 and 39. 

 Å =
1

2
∗

E

ÇB ∗ 4F

 (38) 

 
 

ÉZ =	Ñ
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4F
\  

 
(39) 

 

For the Dual Extended Kalman Filter, the estimated spring constant and damping 

coefficient generate a damping ratio of 0.1941 and natural frequency of 1.67 Hz. For the 

Nelder-Mead estimation method, the damping ratio is 389.4339 which would suggest that 

the system is extremely overdamped. The natural frequency was calculated to be 0.0876 

Hz. The damping ratio from the Nelder-Mead method is extremely large and the frequency 

is extremely small. However, every dataset was run through the optimization function 

without generating impossible results. The damping ratio calculated from the Dual 

Extended Kalman Filter method is between zero and one which would suggest the system 

is underdamped which could make sense if the some of the datasets were not generating 

impossible physical parameters. 

 Some other aspects that could be affecting the algorithms include disparity in the 

datasets themselves or that the model is too simplified and does not accurately reflect how 

the system behaves. The disparity in the data is visible in Figure 37 and Figure 38.  
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Figure 37: Discrepancy between Input and Output Positions 

 
Figure 38: Discrepancy between Input and Output Velocities 

The two bodies, the sledge and the cabin/bucket, constitute the input and output values 

respectively and are shown in the previous figures. They are attached in a way such that 
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the difference of 1m shown in Figure 37 is not possible without the system breaking. The 

velocity difference shown in Figure 38 also does not fit the system. The two bodies should 

be traveling around the same speed, with only minor fluctuations due to the dynamics 

present between them. While it is possible that the model is oversimplified or does not 

accurately describe the system, it is more likely that there was a problem generating the 

velocity and position data from the recorded acceleration data. One final issue could be 

with the types of data being recorded. Because the exact state vector, containing position 

and velocity, is being recorded, the Kalman Filter update step, shown in equations 12, 26, 

and 29, is correcting the state estimate to the exact value. Typically, in a Kalman filter 

scenario, information about the state vector is only partly known meaning that the rest of 

the state must be estimated. Having access to the exact values reduces, if not eliminates, 

the need to estimate the state of the system. This could potentially be affecting the accuracy 

of the parameter estimation but would require further testing using different measurement 

vectors. 

4.3 Algorithm Discussion 

4.3.1 Dempster-Shafer Theory of Evidence 

The Dempster-Shafer method showed that even when the exact fault states are 

unknown or have large uncertainty, it can still generate accurate results. The inaccuracies 

inherent from the large standard deviations could account for uncertainty in the fault states 

themselves or theoretically could be from the uncertainty in a sensor. Either way, it was 

shown to be able to determine the number of sensors required for each fault state the be 

accurately predicted. Due to the form of the evidence combination, it is also possible for 
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many fault states to be checked at once without severely increasing the computation time. 

Due to this, the algorithm would be relevant to the upcoming internal thyssenkrupp project 

titled MAX 2.0. Now that the data transmission interface is in place from MAX 1.0, the 

next step of the project is to determine which sensors can be added to an elevator that will 

generate the most value. The sensors value will likely be determined on a basis of 

maintenance, but whether it will be reactive, predictive, or preventative is currently 

unknown. For many cases, the Dempster-Shafer method could be a valuable tool in 

implementing a maintenance-focused monitoring algorithm. 

4.3.2 Kalman Filter 

The Kalman Filter has many applications further than the one examined in this paper. 

There are many other potential uses for the filter on the MULTI project, but potential 

projects outside of this include real time monitoring of the wear of a carbon fiber belt. For 

the elevator applications with multiple shafts, the Dual Extended Kalman Filter could be 

used as a real time parameter estimator to allow for active damping to minimize vibrations 

experienced by passengers and therefore maximizing ride quality. The algorithm could also 

be used on the other connection, between the bucket and the cabin, if the assumption that 

they are one rigid body changes. For the carbon fiber belt, a set of steady state 

measurements can generate the parameters for a state space representation of the system 

and then the algorithm can monitor for deviations. These are but a couple of examples, and 

of course there are many more possibilities. 
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CHAPTER 5. CONCLUSIONS AND NEXT STEPS 

5.1 Results Interpretation 

Elevators are still in a nascent state of intelligent monitoring, but there are many 

opportunities to improve. Companies such as thyssenkrupp have begun transitioning 

elevators into cyber-physical systems, but there are many more sensors that can be added 

and algorithms to implement that are necessary to reach the top of the CPS hierarchy. The 

sensors discussed in this paper, temperature, fluid level, distance, and acceleration, all can 

record data that can be used to generate new information about the elevator. Ongoing 

technology deployment projects include health check monitoring and others related to 

ubiquitous sensing and fiber belt monitoring also pose significant opportunities. 

The sensors chosen in sections 3.2.1.1 - 3.2.1.3, temperature, oil level, and distance, 

can be used in conjunction with the Dempster-Shafer method for maintenance. Initially the 

sensors and the algorithm fulfil the bottom two sections of the CPS hierarchy, the Smart 

Connection and Data-to-Information Conversion levels. However, this is an important first 

step to moving up the hierarchy and creating a smart device. With the data that the sensors 

provide, and the information that a sensor fusion algorithm can generate, multiple 

algorithms could be combined for predictive or even preventative maintenance. If the 

system proposed and analysed in this paper is implemented, it could complement ongoing 

sensing projects and be expanded to include many more sensors giving a comprehensive 

health metric of the entire elevator system. Additionally, the Kalman Filter and its variants 

are widely used in multiple industries and could be very beneficial to the elevator industry 

as discussed in the above sections. 
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5.2 Next Steps and Future Work 

There are next steps for both the Dempster-Shafer algorithm and the Kalman Filter 

work done in this paper, as well as work that can be done in the future. The Dempster-

Shafer analysis in this paper was done with theoretical data and a Monte-Carlo simulation. 

The next steps would include recording data for the fault states chosen in section 3.1.2 and 

generate a look up table that describes the fault states and healthy states. Another step 

would be to install the network proposed in section 3.2.2 on an elevator to collect data and 

test if the algorithm can accurately determine when a fault occurs. Should any problems 

arise while testing, further changes and steps could be required. 

Due to the problems occurring with the Kalman-Filter parameter estimation, the next 

steps would be to determine the source of the error in the estimation. First, different 

methods of preprocessing the data could improve the discrepancies seen in Figure 37 and 

Figure 38 and subsequently improve the effectiveness of the parameter estimation. If the 

issues still persist, one option would be to record the position and velocity directly instead 

of calculating them from the recorded acceleration data. Another option would be to change 

the measurement vector to be different from the state vector so that the algorithm cannot 

rely on an exact estimate of the state and must rely on the parameter estimation to improve 

accuracy. Lastly, if none of these changes are effective, then the model might require 

adjusting as it either is simplified too much from the actual system or does not accurately 

describe the system. 

Future work, as mentioned previously, would be to implement the findings from this 

paper on other projects that thyssenkrupp is currently pursuing or planning to pursue. These 

include the carbon fiber belt real time monitoring and the MAX 2.0 projects. Both projects 
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will start in the Atlanta research center in Fall 2018 and provide a great opportunity for 

thyssenkrupp to move its elevators up the CPS hierarchy towards the cognition and even 

configuration levels. 
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APPENDIX A. SPEC SHEETS FOR SENSORS 

A.1 TT Electronics Linear Position Sensor 

A.2 Milone Technologies eTape Fluid Sensor 

A.3 DS18B20 Temperature Sensor 

A.4 iMAR IMU 

A.5 Sensor-Technik Wiedemann GmbH IMU 



Position Sensor 

 

© TT electronics plc Issue B      02/2014     Page 1 

BI Technologies 
4200 Bonita Place, Fullerton, CA 92835 |Ph: +1 714 447 2300 

www.bitechnologies.com | www.ttelectronics.com 

General Note  
TT Electronics reserves the right to make changes in product specification without 
notice or liability.  All information is subject to TT Electronics’ own data and is 
considered accurate at time of going to print. 

 

Applications: 
 Robotics 
 Automotive 
 Heavy equipment 

 Industrial automation 
 Wing flap position 
 Pedal position 
 Satellite dish 
 Electro surgical equipment 

Features: 
 Short travel (0.5 inches), linear motion with spring return 
 Accurate position feedback 
 Compact design for small spaces 
 Conductive plastic technology 
 Long life (5 million actuations) 

Electrical 
Resistance range 1K to 150K Ohms 

Standard resistance tolerance ±10% 

Minimum practical resistance tolerance ±5% 

Independent linearity ±1% 

Minimum practical independent linearity ±0.5% 

Input voltage 400 VDC maximum, not to exceed power rating 

Dielectric strength 1,000 V rms 

Insulation resistance 1,000 Megohms minimum 

Output smoothness 0.1% maximum at 10” to 18” per minute 

Actual electrical travel 0.50” ±0.015” (12.7 mm ±0.38 mm) 

Electrical continuity travel Within mechanical travel 

End voltage Maximum 0.5% of input voltage 

Resolution Essentially infinite 

Temperature coefficient of resistance -400 ppm/°C typical 

Temperature coefficient of output voltage ±10 ppm/°C typical 

Mechanical 
Torque mechanical travel 0.56” ±0.015” (14.2 mm ±0.38 mm) 

Actuating force 14 oz. maximum, internal spring to return slider to extended position 

Backlash 0.003” maximum 

Static stop strength 20 lb. minimum 

Body style Rectangular 

Termination style Turret terminations 
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TT Electronics reserves the right to make changes in product specification without 
notice or liability.  All information is subject to TT Electronics’ own data and is 
considered accurate at time of going to print. 
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Ordering Information 

Environmental (MIL-PRF-39023) 

Operating temperature range -40°C to +125°C dynamic, -55°C to +125°C static 

Load life 1 million shaft cycles at 0.25 Watts & 70°C, maximum 10% ∆R 

Circuit Diagram Feature Codes 

Outline Drawing 



 
  

Description 
The eTape sensor is a solid state, continuous (multi-level) fluid level sensor for measuring levels in 
water, non-corrosive water based liquids and dry fluids (powders). The eTape sensor is 
manufactured using printed electronic technologies which employ additive direct printing 
processes to produce functional circuits. 

Theory of Operation 
The eTape sensor's envelope is compressed by hydrostatic pressure of the fluid in which it is 
immersed resulting in a change in resistance which corresponds to the distance from the top of 
the sensor to the fluid surface. The eTape sensor provides a resistive output that is inversely 
proportional to the level of the liquid: the lower the liquid level, the higher the output resistance; 
the higher the liquid level, the lower the output resistance. 

Specifications 
 
Sensor Length: 10.1" (257 mm)               Resolution: < 0.01“(0.25 mm) 

Thickness: 0.015" (0.381mm)    Actuation Depth: Nominal 1” (25.4 mm)      

Width: 1.0" (25.4 mm)     Reference Resistor (Rref): 1500 , ±10%    

Active Sensor Length: 8.4" (213 mm)  Connector:  Crimpflex Pins      

Sensor Output: 1500  empty, 300  full, ±10%     Temperature Range: 15°F - 150°F (-9°C - 65°C) 

Resistance Gradient: 140  /inch (56 /cm), ±10% Power Rating:  0.5 Watts (VMax = 10V) 

Sensor Output 
The eTape can be modeled as a variable resistor (300 – 1500 Ω ± 10%).  The typical output  
characteristics of the eTape sensor are show in the figure below: 
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                                        Connection and Installation 

Connect to the eTape by attaching a 4 pin connector with pre-soldered wires to the Crimpflex 
pins.  Do not solder directly to the Crimpflex pins.  The inner two pins (pins 2 and 3) are the 
sensor output (Rsense). The outer pins (pins 1 and 4) are the reference resistor (Rref) which can 
be used for temperature compensation. Suspend the eTape sensor in the fluid to be 
measured.  To work properly the sensor must remain straight and must not be bent vertically or 
longitudinally.  For best results install the sensor inside a section of 1-inch diameter PVC pipe. 
Double sided adhesive tape may be applied to the upper back portion of the sensor to 
suspend the sensor in the container to be measured. However, the liquid must be allowed to 
interact freely with both sides of the sensor.  The vent hole located above the max line allows 
the eTape to equilibrate with atmospheric pressure. The vent hole is fitted with a hydrophobic 
filter membrane to prevent the eTape from being swamped if inadvertently submerged. 

 
         Sample Circuits 

       
        Custom Applications 
           The eTape sensor can be manufactured in custom lengths to fit any application.   
           Contact Milone Technologies if you have an application that requires specific      
           length, configuration or output characteristics. 
 

        Technical Support 
           If you require technical support for the eTape liquid level sensor, please contact our technical           

                                        support department by email at: techsupport@milonetech.com. 
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FEATURES
! Unique 1-Wire interface requires only one

port pin for communication
! Multidrop capability simplifies distributed

temperature sensing applications
! Requires no external components
! Can be powered from data line.  Power supply

range is 3.0V to 5.5V
! Zero standby power required
! Measures temperatures from -55°C to

+125°C.  Fahrenheit equivalent is -67°F to
+257°F

! ±0.5°C accuracy from -10°C to +85°C
! Thermometer resolution is programmable

from 9 to 12 bits
! Converts 12-bit temperature to digital word in

750 ms (max.)
! User-definable, nonvolatile temperature alarm

settings
! Alarm search command identifies and

addresses devices whose temperature is
outside of programmed limits (temperature
alarm condition)

! Applications include thermostatic controls,
industrial systems, consumer products,
thermometers, or any thermally sensitive
system

PIN ASSIGNMENT

PIN DESCRIPTION
GND - Ground
DQ - Data In/Out
VDD - Power Supply Voltage
NC - No Connect

DESCRIPTION
The DS18B20 Digital Thermometer provides 9 to 12-bit (configurable) temperature readings which
indicate the temperature of the device.

Information is sent to/from the DS18B20 over a 1-Wire interface, so that only one wire (and ground)
needs to be connected from a central microprocessor to a DS18B20.  Power for reading, writing, and
performing temperature conversions can be derived from the data line itself with no need for an external
power source.

Because each DS18B20 contains a unique silicon serial number, multiple DS18B20s can exist on the
same 1-Wire bus.  This allows for placing temperature sensors in many different places.  Applications
where this feature is useful include HVAC environmental controls, sensing temperatures inside buildings,
equipment or machinery, and process monitoring and control.

DS18B20
Programmable Resolution

1-Wire® Digital Thermometer
www.dalsemi.com
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  AUTOMATISIERUNGS- UND  REGELSYSTEME MBH 
  WWW.IMAR-NAVIGATION.DE  

iµIMU-01/ iµVRU-01 
Micro IMS with integrated GPS, Magnetometer, Barometer, Odometer 

 

The iµIMU-01 is a MEMS based low-cost IMU consis-
ting of 3 MEMS gyro axes and 3 MEMS accelerome-
ter axes, baro, 3D magnetometer, GPS and odome-
ter interface. The iµVRU-01 additionally provides atti-
tude, velocity, position and true heading (AHRS).  

x Calibrated sensor data  
x Up to 1’000 Hz data rate with calibrated data 
x Filtered power supply via USB 
x iµVRU: Attitude Heading Reference, Surveying, 

UAV & missile Guidance & Control Applications 
x Integrated L1 GPS, magnetometer, barometer 

(altimeter) and odometer interface 
x Precise UTC referenced output 
x RS232, RS422, USB, CAN, CANaero 
x SYNC input and output for time stamping 
x Compatible to external iDAGOS 2-antenna GPS 

heading reference and up to RTK GNSS aiding 

The iµVRU is delivered with fully calibrated gyro and 
acelerometer axes. The IMU is designed for rugged-
ized industrial applications on autonomous guided 
vehicles, land vehicles, marine vessels and aircrafts. 
The iµVRU-01 and the iµIMU-01 can be operated at 

an unregulated wide range power supply (7-34 V DC 
and via USB 5V) and is protected against wrong po-
larity.  

The iµVRU contains an integrated AHRS processor 
which provides roll, pitch, heading, position and velo-

city information.  

iMAR’s iµVRU is 
delivered with 
iMAR’s PC based 

iXCOMsoftware 
for data collection, 
parameter ad-
justment and 
command inter-
face.  
The iµIMU / 
iµVRU are neither 

covered by any export control nor by ITAR re-
strictions. The iµVRU is used in unmanned aerial 
vrehicles (UAV) as well as in manned and unmanned 
naval, aerial and automotive vehicle applications.  

Technical Data of iµIMU-01 / iµVRU-01 (typical 1 sigma values): 
  Angular Rate1 Acceleration1 Altitude (Baro) Magnetometer  
 Sensor Range: r 250 °/s [2’000 °/s] r 4 g [16 g]  300…1100 hPa r 8 Gauss 
    -500…9000 m r 0.8 mT 
 Bias (OTR): < 1 °/s (typ. < 0.2 °/s) < 15 mg (typ. < 8 mg)  < 1 hPa < 2 mGauss / 0.2 µT 
 Bias Stability (AllanVar): < 10 °/h     (@ const.temp) 2 mg  < 0.1 hPa 
 Resolution [@range]: < 0.003 °/s [@ 250 °/s] < 0.1 mg [@ 4 g] 0.01 hPa (0.1 m) < 1 mGauss / 0.1 µT 
 Linearity / Scale error: < 0.2 % / < 1 %  0.5 % / < 0.5 %  0.1 % / 5 % 
 Angular random walk, Noise: 0.015 °/s/ Hz (@ 10 Hz) < 1 mg/ Hz 0.01 hPa/ Hz 
 g dependent Drift (comp.): < 0.01 °/s/g 
 Data Rate / Bandwidth:                  up to 1’000 Hz / 200 Hz  40 Hz 75 Hz 
 GPS: 2.5 m CEP, 27 sec cold start, 3 sec aided start; WAAS/EGNOS/MSAS supported 
 Output     iµIMU-01: calibrated rate & acceleration, pressure, magnetic field vector, odometer counts, GPS  
                     iµVRU-01: additional: roll/pitch 1.5° static, 0.5° dyn.; INS/GPS heading < 0.5° 2); mag. heading < 1° 
 Inertial Axis Misalignment: < 2 mrad between all inertial sensor axes (calibrated) 
 Digital Interface: RS232, RS422, USB, CAN; INS/GNS data up to 200 Hz, calibrated sensor data 1 kHz 
  ARINC-825-light / CANaero-light   
 Connector: Harwin M80, 20 pin; SMA for GPS antenna; Micro USB  
 Data rate: up to 200 Hz all navigation data, or up to 1’000 Hz for calib. raw data  
 SYNC: Option: RS422 level SYNC input to reset internal package counter 
 Temperature: -40...+71 °C (operating, case temperature); magnetometer: -30…+85 °C  
  -45...+85 °C (storage)  
 Shock, Vibration: 6 g, 20 ms ½ sine saw-tooth; 10...2’000 Hz 2 g rms (operation) 
  6.3 g rms (endurance); shock and vibration may affect performance 
 Environment / MTBF/ MTTR: IP54 /  > 25.000 hrs (estimated) / 2 minutes 
 Size, Weight: approx. 73.5 x 23 x 34 mm (plus connector),  approx. 50 gr   
 Power, Start-up-Time: 7...34 V DC ; approx..  < 2 W @ 34 V, < 1 W @ 7 V; < 4 sec; reverse-voltage protection 
 
 

iMAR Navigation GmbH x Im Reihersbruch 3 x D-66386  St. Ingbert / Germany 
Phone: +49-(0)-6894-9657-0 x Fax: +49-(0)-6894-9657-22 

www.imar-navigation.de x sales@imar-navigation.de  
¤  iMAR� / 04/2014             (Technical modifications reserved)    rev 1.10 

                                                           
1 Systems with other (higher and lower) sensor performance available on request 
2 depends on applied dynamics (typical values) 

http://www.imar-navigation.de/
mailto:sales@imar-navigation.de


Pioneering new technologies

Technical data
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3-axis Inclinometer and Gyroscope Sensor

Combined sensor for measurement of angular velocity and inclination in 3 axes. The acceleration in each axis is also available.  
The measured values are available on the CAN bus and optionally on three analog outputs, current or voltage.

Technical data
Gyroscope Sensor

Measuring range ± 50 °/s

Band width (3 dB) 40 Hz

Resolution 0,25 °/s

Accuracy Offset (−40 °C...+85 °C) ± 0,5 °/s*

Accuracy Span (−40 °C...+85 °C) ± 0,5 % FS*

Non linearity 0,1 % FS

Influence acceleration (0,1 °/s)/g

Inclinometer

Measuring range ± 180 ° (analogue ± 90 °)

Band width (3dB) 15 Hz

Resolution 0,01 °

Accuracy (−40°C...+85°C) ± 1,5 ° (typ. ± 0,5 °)*

Collective data

Output signal digital CAN, baudrate 50 to 1000 kBit/s

Output signal analogue 0 ... 20 mA or 0 ... 10 V *refered to CANopen-Interface, analogue outputs can differ

CAN-Interface CANopen

Temperature range −40 °C ... +85 °C

Excitation voltage 9 … 36 VDC resp. 14 … 36 VDC (0 … 10 V voltage output)

Current consumption 120 mA @ 12 V / 60 mA @ 24 V

Connector 5-pole M12-plug (CANopen), 8-pole (CANopen and analogue output)

Protection class IP67 / IP69k

EMV, mechanical and climatic requirements According to automotive, agricultural and construction industry standards, CE-conformity

Chassis PBT-GF30

Weight approx. 250 g



3-axis Inclinometer and Gyroscope Sensor
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Pin assignment for 8-pole connector

Pin Signal 

1 CAN_H, CAN+

2 V+, Supply

3 ANALOG_OUT1

4 ANALOG_OUT2

5 ANALOG_OUT3

6 ANALOG_GND

7 CAN_L, CAN-

8 GND, Ground

 
 

Pin assignment for 5-pole connector

Pin Signal 

1 n.c.

2 CAN_V+, Supply

3 CAN_GND, Ground

4 CAN_H, CAN+

5 CAN_L, CAN-
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