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SUMMARY

Computational video saliency detection attempts to highlight interesting re-

gions or objects that might attract human attention when watching a video. Many

video and image processing applications such as object segmentation, compression,

and quality assessment utilize video saliency to efficiently reduce the dimensionality

of the input videos and focus only on regions and objects that are interesting to hu-

man visual attention. However, there has been no explicit design of a saliency-based

video processing framework nor an analysis of the saliency maps reliability.

In this dissertation, we focus on developing a systematic saliency-based video pro-

cessing framework that is based on the study of the reliability or the confidence of the

generated saliency maps. To develop such framework, we investigate uncertainty esti-

mation within the context of human visual attention. We, first, analyze eye tracking

data and video content to discover general patterns of human visual attention that

can be used for uncertainty estimation including map consistency and scene motion.

Based on such analysis, we introduce a procedure to estimate the correlation be-

tween eye-fixation data of a given video by using its corresponding optical flow map.

We, also, utilize the eye-fixation correlation analysis to design an unsupervised video

feature for uncertainty estimation based on local spatiotemporal neighborhoods.

We combine our findings from eye-fixation correlation study and the analysis

of the unsupervised uncertainty estimation feature for video saliency with a data-

driven approach to directly obtain a multi-factor estimation model that is both

computationally-efficient and effective in estimating uncertainty in the application

of video saliency detection.
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CHAPTER I

INTRODUCTION

The widespread availability of image and video capturing devices has produced an

unprecedented amount of multimedia content that keeps growing. On YouTube, for

example, 80,000 hours of video content is being uploaded every day [84]. In 2015,

Internet video surveillance traffic exceeded 500 petabytes [16]. With such volume,

automated algorithms must process millions of videos to label, categorize, and some-

times summarize their content, which poses challenging research problems. At the

same time, video resolution is increasing fast, while demand for efficient video process-

ing, for hand-held devices, is growing rapidly. These two trends push researchers to

adopt mechanisms to deal with both data dimensionality and volume. Dimensionality

reduction, similarity metrics, and content analysis are examples of such trends.

Typically, algorithms are designed and tested in a lab-controlled environment with

carefully chosen datasets that might not reflect real world applications. For example,

algorithms can be fitted to a specific dataset regardless of the underlying phenom-

ena. Additionally, comparing different algorithms requires a mechanism to evaluate

statistical significance. A 0.1% improvement in performance might be meaningful

given 0.01 statistical significance, while 1% might be meaningless if the statistical

significance is larger that 1. Moreover, application-specific parameters such as quality

of experience (QoE), risk assessment, and profit need to be considered in the overall

performance of these algorithms when implemented in the real world. To address

all these problems, an uncertainty-based framework is necessary. Such uncertainty

can only be estimated by carefully analysing the algorithm itself and its assumption

within the context of the application.
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Uncertainty in its most basic form is the degree of belief or confidence in a specific

information or event. Train delay, weather conditions, and wait time are uncertain

as most events in our lives. We are inclined to believe that the train will not be

delayed but we cannot say with 100% confidence that it will not. To represent such

uncertainty, we typically use probability framework to encode our confidence or be-

lief. Such representation might be qualitative like “It is unlikely that the train will

be delayed today” or quantitative like “The probability of the train being delayed

is 5%”. Probability provides a well-established framework that can model random

phenomena and extract useful information. However, it might be useful, or even

necessary, to model uncertainty as a lack of knowledge rather than a random vari-

ability. For example, our uncertainty in the train delay could be reduced if we check

a transportation website that tracks trains. The latter type of uncertainty, caused by

lack of knowledge, is often called epistemic uncertainty, while the former, caused by

variability or randomness, is called aleatory uncertainty [54].

In the context of image and video processing, many applications can benefit from

quantifying and evaluating uncertainty. For example, algorithms modeled based on

human visual attention try to overcome the shortage of information about the hu-

man vision system (HVS) by validating their assumptions based on eye tracking data.

These algorithms typically rely on Saliency to enhance the accuracy and efficiency of

image and video processing algorithms. By relying on Saliency, the researchers goal is

to approach, or exceed, HVS capabilities of handling significant amount of visual data

encountered every day, with minimal computational power. HVS can achieve such

efficiency by selectively attending to important (salient) details and suppressing re-

dundant or irrelevant information [45]. For example, it has been shown that HVS can

spot and recognize an object as an animal in 120ms but cannot identify its type until

further processing [91]. Indeed, Human visual attention modeling and understanding

[45, 40, 12, 34, 95, 41, 61] has been shown to be effective in analyzing big visual data

2



as well as improving the computation efficiency of visual data processing. Numerous

applications for saliency-based algorithms have been proposed and currently inves-

tigated, such as object detection and recognition [74], scene understanding [7], and

multimedia summarization [71].

The majority of existing research efforts focus on computational saliency models

[86, 53, 43, 64, 60, 55]. However, less attention has been given to evaluating the

generated saliency maps [24, 4, 3]. The validity of such maps is crucial for integrating

visual attention in various image and video processing applications. It is a common

practice to consider the validity of a saliency detection model, at every pixel, to

be directly related to the overall performance of the detection model on image and

video datasets. In other words, a saliency detection model is, first, evaluated using

typical saliency detection datasets such as CRCNS [47], MSRA [59], MIT [49], and

SAVAM [29]. Then, algorithms that detect salient regions effectively, according to a

predefined ground truth in the dataset, are assumed to perform well when used in

various applications. However, such saliency detectors might fail to produce reliable

results in certain contexts or situations, despite their superior performance in other

contexts.

The objective of this dissertation is two folds (i) analyze uncertainty in compu-

tational video saliency and (ii) design an effective uncertainty estimation algorithm

tailored for video saliency detection. More specifically, we analyze eye tracking data

and video content to discover general patterns of human visual attention that can

be used for uncertainty estimation including: map consistency, and scene motion.

Based on such analysis, we design an uncertainty estimation algorithm and show its

effectiveness in the application of video saliency detection.

The rest of this dissertation is organized as follows: in Chapter 2, we provide an

introduction to uncertainty concepts and common frameworks for its representation,

introductory background on computational visual saliency, a literature survey on eye

3



fixation analysis, and state-of-the-art uncertainty analysis in the context of image

and video processing. Chapter 3 presents analysis of eye-fixation maps and their self-

correlation. In Chapter 4, we show how the self-correlation of eye-fixation maps can be

predicted by relying on motion cues. Chapter 5 shows the design of video feature for

uncertainty analysis and uncertainty estimation using spatiotemporal cues. Chapter

6 shows a multi-factor uncertainty estimation algorithm that utilizes features from

the saliency map as well as video frames. Finally, conclusions and future work are

presented in Chapter 7.
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CHAPTER II

BACKGROUND AND LITERATURE SURVEY

2.1 Uncertainty Representation

Uncertainty is prevalent in every event we encounter and every decision we make [57].

Whether there is a flight delay or a traffic jam on the highway is often uncertain

and imprecise. Nevertheless, we have to make do with this incomplete knowledge

to be productive and move our lives forward. Uncertainty, also called reliability

or confidence, encapsulates our belief of the mismatch between what we know and

what we expect; the more mismatch there is the more uncertain we are about this

knowledge. Scientifically representing uncertainty is crucial to an informed decision

making process and to mitigate possible risks in such process [92]. Before diving into

mathematical formulation of uncertainty representation, we ought to explore a precise

definition of what is uncertainty.

In the literature, the term uncertainty is used in different ways to describe, often,

different things. However, in our work, we use the term uncertainty to describe the

phenomena of imperfect knowledge about the state of an event or the outcome of a

process, rather than a specific measure or a metric [37]. Causes of such imperfect

knowledge are classified into two types: aleatory uncertainty, and epistemic uncer-

tainty [54]. The first type typically refers to the inherent variability or randomness

of an event. For example, in situations where complete knowledge of the forces that

determine the results of coin-flipping are inaccessible, the outcome of flipping a coin

is treated as random and additional knowledge cannot eliminate this uncertainty.

Thus, aleatory uncertainty is often called irreducible uncertainty or objective uncer-

tainty since the source of uncertainty is the randomness of the event itself rather than
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the quantification process [68]. For visual representation of aleatory uncertainty, we

show in Figure 1(a) f(x) an example of a function that generates values that falls on a

circle circumference and an estimation model f̂(x). Since f(x) is inherently random,

there exist errors between true values of f(x), shown in red dots, and the estima-

tion values of f̂(x), shown in blue dashes. On the other hand, epistemic uncertainty

typically refers to the lack of knowledge to characterize a process or an event. For

example, measuring the dimensions of an object often includes epistemic uncertainty

because more precise measuring devices can reduce the gap in knowledge of the true

dimensions of the object. Thus, this type of uncertainty is called reducible uncertainty

or subjective uncertainty since the source of uncertainty is the measurement process

[68]. Again for visual representation, we show in Figure 1(b) f(x) and f̂(x) under

epistemic uncertainty. Unlike the first case, in most values the estimate f̂(x) closely

matches f(x), however, in some range of f(x), f̂(x) does not match f(x), due to

missing knowledge in the estimation model f̂(x). It is important to note here that

this distinction is not absolute and depends on the situation at hand. Going back

to the two examples earlier, one can argue that a precise modeling of a controlled

coin-flipping experiment can deterministically predict the outcome and eliminate its

variability. On the other hand, measuring the dimensions of an object can be made

more precise all the way to atomic or sub-atomic accuracy but it will always be

bounded by technology. However, given a specific situation and a precise description

of the present and accessible knowledge, such distinction between uncertainty causes

is often consistent and useful to inform further analysis [97].

2.1.1 Probability Theory

There are many frameworks, in the literature, to represent and propagate uncertainty.

To illustrate the motivation and assumptions of each framework, we use a simple ex-

ample of an event A; a measurable subset of the sample space Ω, that contains values

6



(a) Example of Aleatory Uncertainty (b) Example of Epistemic Uncertainty

Figure 1: Visual Representation of Uncertainty Types

of a given variable Y . Among the various uncertainty frameworks, probability is by

far the most used framework to represent uncertainty [68]. In probability framework,

uncertainty about the value of Y is encoded into a measure function, i.e. probability

distribution function (PDF), that maps every value y ∈ Ω to a single value pY (y)

between 0 and 1 [57]. Figure 2 shows a visual representation of Probability Theory,

which oversimplifies the framework but is useful to compare between different uncer-

tainty representation frameworks. The probability of event A ⊆ Ω to occur (P (A)) is

equal to sum (or integral) of all Singleton probabilities of the values y ∈ A. Within

probability framework, specifying P (A) results in specifying P (A) as well, since the

two probabilities has to sum to 1. This is known as self-duality property; the speci-

fication of the likelihood of an event implies the likelihood of its complement event.

This stems from the fact that the sample space Ω is well defined and the total proba-

bility assigned to Ω, P (Ω), equals one. Therefore, allocating some of the probability

weight to the even A, inadvertently, allocates the rest to the complement event Ā.

In the literature, there are three main concerns regarding the use of probabil-

ity framework to represent uncertainty [97, 68, 54, 37]. First, utilizing probability
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Figure 2: Visual Representation of Probability Theory

framework requires additional assumptions that might not be strongly supported by

data. For example, if the only information about Y is its range, we have to assume

its mean and variance to build its PDF. Even the so-called uninformed prior ; i.e.

uniform PDF, assumes that the mean of Y is at the center of the interval. Sec-

ond, representation of uncertainty using probability does not differentiate between

aleatory and epistemic uncertainties. In fact, probability framework attributes the

cause of uncertainty based on the probability interpretation itself. In the frequen-

tist view, probability is the chance of event A to occur given an infinite number of

trails. Using this interpretation, uncertainty is attributed mainly to the variation of

the outcome rather than the lack of knowledge. On the the other hand, subjective

(Bayesian) interpretation views probability as an expression of purely epistemic un-

certainty. In both interpretations, quantifying the part of the resulting variation due

to epistemic (reducible) uncertainty is not possible because the framework does not

distinguish between stochastic variation and ignorance. The third concern regarding

the use of probability framework to represent uncertainty is that probability abstracts

uncertainty into a single precise value regardless of the available data. For example,

given the available data, we are inclined to believe P (A) is somewhere between 0.2

to 0.4, however, such knowledge cannot be accommodated in probability framework

and P (A) must be assigned a single precise value, say 0.3.

8



Figure 3: Visual Representation of Interval Analysis

2.1.2 Interval Analysis

To address concerns regarding probability framework representation of uncertainty,

other frameworks have been proposed [85, 78, 20, 19, 25]. Interval analysis, or im-

precise probability, attempts to overcome some of the shortcomings of probability

framework by relaxing its strict precision and required assumptions, such as distribu-

tion, and correlation, by proposing a probability interval instead of probability value

[85], as shown in the visual representation in Figure 3. For an event A, we can repre-

sent the uncertainty of the occurrence of A by an interval [P (A), P (A)] where P (A) is

the upper probability and P (A) is the lower probability. The size of the such interval

is known as imprecision ∆P (A), which is used to represent the epistemic uncertainty

in this framework. Unlike in probability theory, interval analysis starts by assigning

probability intervals directly to events and does not define singletons events or atoms,

which makes interval analysis able to incorporate subjective opinions rather easy, at

least compared to probability theory.

Imprecise probability framework employs interval arithmetic to compound the

uncertainty of multiple variables, which generates a probability interval at the end,

making the results simple and easy to interpret [69]. Additionally, imprecise prob-

ability can represent aleatory and epistemic uncertainty separately making it more
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Figure 4: Visual Representation of Probability Bound Analysis

specific than probability theory in identifying the source of uncertainty. However,

the imprecision of interval analysis is also a disadvantage, because the framework is

incapable of taking into account information like distributions, and correlations or

dependencies if such information is available. Additionally, the rigorous nature of

interval arithmetic makes the computed interval analysis results grow in imprecision

vary quickly, making the computed results less-specific and in-turn less useful.

2.1.3 Probability Bound Analysis

To address the problems of probability framework and imprecise probability, proba-

bility bound analysis combines both frameworks to create a precise and flexible rep-

resentation framework that adapts to the available information [25]. In probability

bound analysis, the parameters which their aleatory uncertainty can be estimated ac-

curately are formulated using traditional probability framework. On the other hand,

the parameters which their aleatory uncertainty cannot be estimated accurately, im-

precise probability framework is employed, as shown in Figure 4.

Propagating uncertainty, within probability bound framework, results in gener-

ating what is called probability boxes where two cumulative distribution functions

(CDF) enclose a region of all possible CDFs of a variable, an example is shown in
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Figure 5: A Toy Example of Probability Box generated by Probability Bound

Analysis

the red striped region between F Y (y) and F̄Y (y) in Figure 5 one of which will be

the true CDF. Naturally, probability bound analysis inherits the advantages of both

probability theory and interval analysis by enabling precise representation when data

is available and the flexibility of interval assignment otherwise. Additionally, proba-

bility bound analysis guarantees bounded answers, which gets narrower with better

empirical information [54]. However, similar to interval analysis, probability bound

analysis does not show the most likely values within probability boxes, also, these

bounds might not be the tightest possible bound given the available information.

2.1.4 Evidence Theory

Evidence theory allows for representation of both aleatory and epistemic uncertainty,

and produces consistent representation regardless of the level of details in the avail-

able information [19, 78]. Specifically, evidence theory is well suited for representing

incomplete information. Using fuzzy measures, belief (Bel) and plausibility (Pl);

evidence theory encodes epistemic uncertainty about variable Y by distributing the

mass of evidence, basic probability assignment (bpa), on the subsets of the power set

P(Y ) of the space of all possible values of Y called Universe of Discourse (UY ), as
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Figure 6: Visual Representation of Evidence Theory

shown in Figure 6. Unlike probability theory and its variations, universe of discourse

UY in evidence theory is not necessarily well defined. In other words, when formu-

lating a problem using probability-based framework, the sample space Ω must list all

possible values of the random variable Y , which leads to two results. The first result

is that the probability of the sample space P (Ω) is one, which is not always the case

in evidence theory since the probability mass is distributed over the power set P(Y )

and not directly to the universe of discourse UY . The second result of a well defined

sample space Ω is the self-duality property; P (A) + P (Ā) = 1. Evidence theory on

the other hand gives the possibility of unknown event which might be undiscoverable

using the available information. Therefore, the two fuzzy measures used in evidence

theory, Bel and Pl, can account for ignorance in the available information by having

Bel(A) +Bel(Ā) ≤ 1 and Pl(A) + Pl(Ā) ≥ 1

In evidence theory, aggregating multiple sources of evidence is done using Demp-

ster’s rule [97]. However, researchers have shown that some results generated using

Dempster’s rule are counter-intuitive especially in situation with highly conflicting

pieces of evidence [94]. Nevertheless, evidence theory provides a rigours framework

for decision making based on available information regardless of its completeness.
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Figure 7: Visual Representation of Fuzzy Sets Theory

2.1.5 Fuzzy Sets Theory

Fuzzy sets theory attempt to represent uncertainty in the problem formulation itself

rather than the random variable under study [93]. For example, we can formulate

the problem of estimating the room temperature as random variable Y and every

possible value for Y , in the sample space Ω, as y. The uncertainty in estimating

Y comes from our incomplete knowledge about its exact value, but we are certain

that Y = ytrue. Now, by reformulating the problem to be identifying the state of the

room temperature to be either cold, warm, or hot, which requires the representation

of uncertainty in the sets themselves. In fuzzy sets theory, the sets boundaries are

not well defined while the membership measure (µA) is precise, as shown in Figure 7,

unlike the case in evidence theory. For example, room temperature can be descried

as warm or hot, however, there is no clear boundary between the two descriptions

(sets). So, the room temperature can be precise but the set it belongs to is fuzzy.

A higher µA(y) indicates that y is more likely to be a member of the set A and vice

versa. This gives a rise to fuzzy fusion rules to aggregate information from multiple

sources[52].
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Figure 8: Visual Representation of Possibility Theory

2.1.6 Possibility Theory

Another framework for representing uncertainty is possibility theory [20]. Using the

so-called possibility distribution, possibility theory enables epistemic uncertainty rep-

resentation using a family of probability distributions [97]. Possibility theory replaces

the fuzzy measure used in evidence theory, belief and plausibility, and derives two new

measures, necessity (N) and possibility (Π), that defines possibility distribution. In

fact, possibility theory is considered a special case of evidence theory, where sets that

have nonzero probability mass assignment are nested sets of each other [97]. Due to

this nesting, possibility theory computes what is known as consonant body of evi-

dence where Bel(A∩B) = min[Bel(A), Bel(B)] and Pl(A∪B) = max[Pl(A), P l(B)],

which is refered to as N and Π, respectively.

2.2 Computational Visual Saliency

Human visual attention modeling has been an active research area in the last few

decades. Psychologists, computational neurophysiologists, and computer vision sci-

entists have all contributed to this field. Thus, there are a lot of aspects to human

visual attention research, however, we only focus on computational visual saliency in
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this thesis. Typically, the term attention covers the factors influencing the mecha-

nisms of HVS to selectively attend to specific details, often called selection mecha-

nisms. Generally, attention research is divided into bottom-up attention, driven by

the scene, and top-down attention, driven by expectation or the task [9]. The term

saliency is often used to describe some part of the scene that stands out relative to

its neighboring parts, usually in the context of bottom-up models. In these models,

features such as color, intensity, structure, surprise, and motion, often called low-level

features, are used to predict the saliency of an image or a video [9]. On the other

hand, top-down models rely on high-level features and task-oriented analysis such as

HVS ability to tune-in to red striped shirts when searching for Waldo, for example

[17]. Visual attention is, also, specific to the media used in the experiments. At-

tention patterns of subjects examining images, static stimuli, are inherently different

than patterns associated with videos, dynamic stimuli [67]. Video sequences with

standard frame rate, 24−30 frames per second, are perceived as a single scene rather

a collection of images. Each frame has less than 0.04 seconds to be perceived, thus

only certain aspects such as motion and flicker stand out at this high rate [70, 67].

Additionally, in visual attention experiments, subjects are shown images for a short

period of time to only allow low-level features to influence the eye-fixation [47]. Such

practice produces the so-called center bias, where the majority of results show salient

regions around the center of images, regardless of the content [8]. Videos, on the

other hand, have the same bias only in the first few frames because subjects are able

to perceive the scene in that time [5].

2.2.1 Theories

Many psychophysical theories have been proposed to explain the mechanism and

process of attention in HVS. Here, we briefly describe the five of the most popular

theories [36]:
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Figure 9: Treisman Feature Integration Model [36].

2.2.1.1 Feature Integration Theory (1980)

Treisman et al. proposed a feature-activation model to explain visual attention in

HVS [83]. In their model, experimentally-verified preattentive features are processed

on parallel to compute feature-specific activation maps as shown in Figure 9. In this

model, salient objects tend to activate more feature maps than others in the image.

Further experimental analysis of their model revealed that the amount of attention is

relative to the target-nontarget difference [82]. For example, a long vertical line can

detected immediately among a group of short lines, but a medium-length line may

take longer to see. Interestingly, experimental results shows that attention to some

features is asymmetric. For example, a sloped line in a sea of vertical lines can be

detected preattentively, but a vertical line in a sea of sloped line is more difficult to

detect.

2.2.1.2 Textons (1981)

Julesz proposed that HVS preattentively detects three kinds of features, called tex-

tons ; Elongated blobs (includes lines, rectangular, or ellipses), terminators (ends of

line segments), and crossings of line segments [51]. In his theory, textons represent
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Figure 10: An Example of Julesz’s texton features [51].

the basis set for perception, and the variation in order statistics of these textons de-

termine their saliency [50]. The experiments show that first order statistic, such as

contrast, are highly salient. While higher order statistics like orientation and regular-

ity (2nd order), and curvature (3rd order) are less salient and needs further processing

by the HVS. To verify his hypothesis, Julesz used texture images, like the one shown

in Figure 10, and showed that even though two textons appear different in isolation,

they cannot be distinguished preattentively when shown in a group.

2.2.1.3 Similarity (1989)

Quinlan et al. investigated the factors that affect conjunction search [72]. They hy-

pothesized that the search time may depend of the amount of information required

to identify a target and the similarity between a target and its distractors. Dun-

can et al. extended this work by quantifying the factors that affect search time
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(a) Homogeneous; high N-N similarity (b) Heterogeneous; low N-N similarity

Figure 11: An Example that shows the effect of N-N similarity on search

efficiency [21].

and they found that two important criteria determine search time; Target-Nontarget

(T-N) similarity, and Nontarget-Nontarget (N-N) similarity [21]. They showed by

experiment that search time increase as T-N similarity increase or as N-N similarity

decrease. Interestingly, their experiments show that when either T-N similarity is

high or N-N similarity is low, changing the other factor has little effect on search

time. For example, experimental results show that a pattern such as the one shown

in Figure 11(a) are easier to identify the target (blob) than patterns like the Figure

11(b). Form these experiments, Duncan et al. proposed a three-step theory of visual

selection: (1)Segmentation of the visual field into homogeneous structural units, (2)

Structural units that are closer to the target template are granted more resources of

HVS such as access to visual short-term memory, and (3) Groups of structural units

that are similar get efficiently rejected if one or more have low correlation with the

target template [21].
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Figure 12: Illustration of Guided Search Theory [89].

2.2.1.4 Guided Search (1994)

Wolf et al., first proposed the theory of guided search in [90] and years later formalized

it in [89]. Guided search theory was the first attempt to incorporate the goals of the

viewer Top-Down mechanism into the model visual attention. As shown in Figure 12,

the theory divides the visual stimulus into primary feature maps such as color and

orientation. Afterwards, the viewer filters out these feature maps by a combination

of bottom-up saliency cues and top-down objectives. Figure 12, shows an example of

such mechanism where the viewer has the objective to find the attributes “vertical

black lines” which are reflected in the Top-Down map search. Finally, a saliency map

emerges by combining the Top-Down and Bottom-Up maps, shown on the far right of

Figure 12. The attention of the viewer lands on the global maxima activation, first,

and then jumps from one local maxima to another in decreasing order of activation

value.

19



2.2.1.5 Boolean Maps (2007)

More recently, Huang et al. proposed a new model of low-level vision by dividing the

visual search task into two steps: selection and access [44]. The theory suggests that

during the visual search process, the viewer starts by selecting elements that poses a

property relevant to the immediate task, then, the visual system can access certain

properties of the selected elements. By doing so, the visual system works by selecting

according to specific feature then excluding irrelevant objects that do not match the

other desired features of the target object, hence the name Boolean maps theory. An

example is shown in Figure 13. The theory suggests that the viewer, when examining

the stimulus Figure 13(a), first selects all the elements with the label Red, Figure

13(b), and then creates a desired feature map with the elements with label Vertical,

Figure 13(c), finally, target objects with both labels Red and Vertical are identified

by finishing the boolean intersection between the two maps (b) and (c).

2.2.2 Models

2.2.2.1 Static and Space-time Visual Saliency Detection by Self-Resemblance
(STSR)

Seo et al. proposed using local steering kernels (LSK) as features for saliency detection

[77]. The proposed algorithm, illustrated in Figure 14, computes feature vectors f i,

at pixel xi, by vectorizing a normalized version of the local steering kernel function

K(xl − xi), which is computed according to:

K(xl − xi) =

√
det(C l)

h2
exp

{
(xl − xi)

TC l(xl − xi)

−2h2

}
(1)

where l ∈ {1, ..., P}, P is the number of pixels in a local neighborhood, h is a global

smoothing parameter, and C l is a covariance matrix estimated from a collection of

spatial gradient vectors within the local analysis window around a position xl. For

an image (or frame) of pixels xi, where i = {1, ...,M}, the proposed algorithms

assembles feature matrices Fi = [f1
i , ..., f

L
i ]. These Fi matrices are used to construct
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(a) Original Stimulus (b) Elements with label Red

(a) Elements with label Vertical (b) Boolean Map output between (b) and (c)

Figure 13: Example of the low-level vision process according to Boolean Maps

theory [44].



Figure 14: Illustration of Spatio-temporal Saliency Detection by

Self-Resemblance algorithm proposed by Seo et al. [77].

the center-surround comparison model, which compares feature matrix Fi, at pixel

xi, with center+surround feature matrices {F1, ...,FN}. Finally, the saliency map is

computed according to:

Si =

(
N∑
j=1

exp

(
−1 + ρ(Fi,Fj)

σ2

))−1

(2)

where N is the size of the local neighborhood, ρ(Fi,Fj) is the matrix cosine similarity

(MCS) measure, and σ is a parameter controlling the fall-off of weights.

2.2.2.2 Spatio-temporal Saliency detection using phase spectrum of quaternion
Fourier transform (PQFT)

Guo et al. proposed using phase-only Fourier transform reconstruction of the quater-

nion representation of images and video frames to detect saliency [31]. The main

idea behind the proposed algorithm is the fact that phase-only reconstruction of the

Fourier transform produces spikes in the locations that corresponds to sudden signal
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changes (i.e. when the signal change is not common in its immediate neighborhood

the phase-only reconstruction of the signal produces a spike in the corresponding

location in the reconstructed signal). For example, the signals in Figure 15 change

over time, but only the ones that have sharp uncommon change would have a spike

in their corresponding location in the reconstruction results. To include information

from color, intensity, and motion features, the authors propose using quaternion sys-

tem to represent images [22]. The proposed algorithm uses two color channels, RG(t)

and BY (t), to represent color information, and two additional channels for intensity

I(t) and motion M(t), which are computed according to:

RG(t) =
3

2

(
r(t)− g(t)

)
(3)

BY (t) =
1

2

∣∣r(t)− g(t)
∣∣ (4)

I(t) =
r(t) + g(t) + b(t)

3
(5)

M(t) =
∣∣I(t)− I(t− τ)

∣∣ (6)

where r(t), g(t), and b(t) are the red, green, and blue, respectively, color channels

in the input image, and τ is a latency coefficient. These four channels are used to

represent the quaternion image q(t) as follows:

q(t) = f1(t) + f2(t)µ2 (7)

f1(t) = M(t) +RG(t)µ1 (8)

f2(t) = BY (t) + I(t)µ1 (9)

where µ1, i = 1,2 satisfies µ2
i = −1, µ1 ⊥ µ2. After representing the video frames

in their quaternion representation, the proposed algorithm computes the quaternion

Fourier transform (QFT) of the image q(n,m, t) according to [22]:

Q[u, v, t] = F1[u, v, t] + F2[u, v, t]µ2 (10)
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Figure 15: Examples of phase-only spectrum reconstruction [31].

Fi[u, v, t] =
1√
MN

M−1∑
m=0

N−1∑
n=0

e−µ12π(mv
M

+nu
N

)fi(n,m, t) (11)

After constructing Q(t), the amplitude ||Q(t)|| is removed and the phase of the spec-

trum Φ(t) is used to for reconstruction according to:

Q
′
(t) = eµΦ(t) (12)

then the inverse quaternion Fourier transform is used to obtain phase-only recon-

structed image q
′
(t) according to:

fi(n,m, t) =
1√
MN

M−1∑
m=0

N−1∑
n=0

eµ12π(mv
M

+nu
N

)Fi[u, v, t] (13)

Finally, the saliency map sM(t) is computed according to:

sM(t) = g ∗ ||q′(t)||2 (14)

where g is a 2D Gaussian filter.

2.2.2.3 Saliency Detection for Videos Using 3D FFT Local Spectra (3DFFT)

Long et al. proposed using 3D FFT local spectra to detect saliency in videos [61].

Unlike other saliency detection algorithms that use frequency domain local features
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[40, 31], the authors proposed detecting saliency by efficiently computing the local

spectral of videos in 3D FFT directly instead of computing the spatial and tempo-

ral saliency separately. This approach provided a significant computational savings

but results in producing scrambled saliency results. To solve this problem, the au-

thors proposed using spectral decomposition as shown in Figure 16. When the point

M(a0, b0, c0) is closer to the ft-axis, it will mostly contain information about the tem-

poral change of the scene. On the other hand, when M(a0, b0, c0) is closer fx-fy plane,

the information it contains will be more related to spatial changes in the scene [61].

Therefore, the authors calculate the temporal component of the 3D FFT spectra as

follows:

Ft(a0, b0, c0) = F (a0, b0, c0)× sinθ = F (a0, b0, c0)× c0√
a2

0 + b2
0 + c2

0

(15)

similarly, the spatial component is computed according to:

Fs(a0, b0, c0) = F (a0, b0, c0)× cosθ = F (a0, b0, c0)×
√
a2

0 + b2
0√

a2
0 + b2

0 + c2
0

(16)

Using the temporal and spatial components of 3D FFT local spectra, the temporal

saliency map is computed using the center-surround model [77] according to:

St(i, j, k) =
1

N

∑
i0,j0,k0

∣∣En
t (i, j, k)− En

t (i+ i0, j + j0, k + k0)
∣∣ (17)

where St is the temporal saliency map, N is the number of pixels in a window of size

L1 × L2 × L3 centered at (i, j, k), En
t is the normalized energy of the FFT spectra in

the frame at time t. Similar procedure is used compute the spatial saliency map Ss.

Finally, the combined saliency map is computed by averaging the temporal saliency

map and the spatial saliency map, as shown in Figure 17.
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Figure 16: Illustration of FFT spectral decomposition used in 3DFFT

algorithm [61].

Figure 17: Block diagram of Saliency Detection for Videos Using 3D FFT

Local Spectra [61].



2.2.3 Applications

2.2.3.1 Compression

Guo et al. demonstrated saliency-based image compression by developing a scheme

for Hierarchical Selection (HS) that extends the wavelet domain foveation weight-

ing (WDFW) and uses phase spectrum of quaternion Fourier transform (PQFT) for

saliency detection [32]. Using multiresolution saliency maps, the authors iteratively

select the most prominent objects by starting from the saliency map with lowest res-

olution, which focuses on large objects in the scene, to the saliency map with the

highest resolution, which identifies objects on finer scale. For example, in Figure

18(a), the HS scheme selects two large groups of sheep, red rectangles 1 and 2, as the

first level of hierarchy. Then, the higher resolution saliency maps are able to iden-

tify smaller groups shown in yellow rectangles. Finally, individual sheep are detected

and shown in blue rectangles. Using the identified salient objects, the authors pro-

pose applying multiresolution masks, that correspond to each hierarchy level, to the

wavelet domain foveation weighting model proposed in [88]. Figure 18(b) continues

the procedure on the example image in Figure 18(a) by applying the generated masks

from HS scheme to the wavelet domain coefficients of the input image. The results of

this process, on the example image, is shown in Figure 18(c). The proposed method

achieves 41.56% compression rate compared to 52.2% achieved by state-of-the-art

algorithm for output images with perceptional similar image quality scores.

2.2.3.2 Auto-Cropping

Stentiford proposed an algorithm for auto-cropping images based on a measure com-

puted using saliency maps [81]. The informativeness measure reflects the region of

the image with the maximum average saliency score. This measure is computed by

averaging the sum of the saliency scores of individual pixels inside a region over the
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(a) (b) (c)

Figure 18: An Example that shows the saliency-based compression procedure

proposed by Guo et al. [32]. (a) Hierarchical Selection (HS) scheme, (b)

Multiresolution wavelet domain foveation model, (c) Compressed image

Figure 19: Examples of auto-cropped images using saliency-based

auto-cropping algorithm proposed by Stentiford [81].

size of that region. Using informativeness measure, Stentiford proposes using a user-

specified window size to search over the whole image and identify the window with the

maximum informativeness, which is claimed to correspond to the optimum cropping

window. Figure 19 show three examples of images along with their automatically

cropped versions.

2.2.3.3 Rendering

Debattista et al. proposed using visual attention models to selectively render high-

fidelity virtual environment [18]. To avoid the reduce expense of global illumination

computation, the authors propose using importance maps that attempt to identify
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the parts of an environment that are attended to by the viewer. By computing

these importance maps, the rendering engine can be guided, during the selective

guidance stage, to only afford computational resources to the parts that are deemed

perceptually more important. The proposed algorithm works by, first, rendering and

image preview that is used to compute task map, which corresponds to top-down

feature maps, and a saliency map that encoded the bottom-up attention cues. Figure

20 shows an example of the proposed algorithm. In Figure 20(a), an image preview

is rendered with fast and rough rendering settings. Next, the image preview is used

to identify the task map, Figure 20(b), and saliency map, Figure 20(c), which both

are combined into importance map. The importance map, in turn, is used to guide

the rendering engine which generates the final image shown in Figure 20(d).

2.2.3.4 Image Quality Assessment

Lin et al. proposed using visual saliency to improve image quality assessment (IQA)

metrics by giving hire weights to the patches that are deemed salient by the saliency

detection algorithm [56]. The proposed algorithm divides the input image to non-

overlapping patches and then computes a normalized visual saliency degree for each

patch, which is used later as a weight for that patch. The overall visual-saliency-

enhanced IQA metrics are computed by weight-averaging the local IQA metric for

the image patches. For example, the patches of the input image in Figure 21(a) that

overlaps with the boat as well as the coastline would have higher weights because

the saliency map, shown in Figure 21(b), identify these patches as visually prominent

areas. The reported experiments show an improvement in the subjective mean opinion

score (MoS) compared to the originally proposed version of the IQA metrics.

2.2.3.5 Scene Understanding

Bharath et al. proposed a saliency-guided framework for scene understanding [7].

The proposed algorithm uses saliency detection for providing possible candidates for

29



30

(a) (b)

(c) (d)

Figure 20: Example of saliency-based selective rendering algorithm proposed

by Debattista et al. [18].



(a) Input image (b) Saliency map

Figure 21: Example of saliency-based image quality assessment algorithm

proposed by Lin et al. [56].

objects in a given scene. Even though other methods for detecting objects exist,

the author argue that saliency detection provides faster and more efficient results

than the other methods without much degradation in accuracy, which makes the

framework as whole more scalable. An overview of the framework is shown in Figure

22. First, the input image, Figure 22(a), is used to compute a saliency map which

is used to identify possible objects, Figure 22(b), in the scene using an automatic

region of interest (RoI) detector. Afterwards, objects are segmented using graph-cut

based segmentation algorithm and classified using bag-of-features model [7] as shown

in Figure 22(c). Finally, the scene is classified based on the recognized objects using

a decision tree model as shown in Figure 22(d).

2.2.3.6 Surveillance Video Summarization

Salehin et al. proposed an efficient method for summarizing surveillance video [75]. In

video summarization, repetitive and uninformative frames are dropped from the input

video and ultimately the algorithm generates a short summary video that provides

complete description of the content of the input video. The proposed method utilizes
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(a) Input image (b) Proposed objects by saliency map

(a) Segmented objects (b) Recognized scene

Figure 22: Example of saliency-based scene understanding algorithm proposed

by Bharath et al. [7].



(a) Input Frame (b) Saliency map difference

Figure 23: Example of saliency-based surveillance video summarization

algorithm proposed by Salehin et al. [75].

features from foreground objects detection by using Gaussian mixture-based dynamic

background modeling (BGM) and subtracting the raw frame, frame-to-frame motion

information by thresholding frame-to-frame difference, and visual saliency difference

between consecutive frames. The three feature sets are used to train a support vec-

tor machine (SVM) that employs a radial basis function (RBF) which can be used

to classify frames into informative and uninformative frames. Figure 23 shows an

example frame with its corresponding visual saliency feature map.

2.2.3.7 Seismic Interpretation

Shafiq et al. proposed a new seismic attribute for computational seismic interpre-

tation and verified by experiments on F3 block from the North Sea dataset that

the proposed attribute is effective for salt dome delineation [79]. The proposed at-

tribute is designed based on the modeling of human visual system. After computing

the saliency map of the migrated seismic volume, the map is thresholded and semi-

automated region growing algorithm is used to capture the area of the salt dome.

Finally, post-processing morphological operation, including dilation and perimeter
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(a) Saliency map detecting a salt dome

(b) The delineation results after post-processing

Figure 24: Example of saliency-based seismic interpretation algorithm

proposed by Shafiq et al. [79].

extraction, are used to generate the delineation results. Figure 24 shows an example

of seismic slice that shows a salt dome and the corresponding saliency map detection.

2.3 Analysis of Eye-fixation Data

Little work has been done to analyze eye-fixation maps separately from visual stim-

uli. In [80], authors use Judd’s et al. image dataset[49] to study spatiotemporal

eye-fixation data of 15 subjects looking at 1003 images in that dataset. The analy-

sis utilizes Singular Value Decomposition (SVD) to compute the eigenvectors of the
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correlation matrix of eye-fixation data. In short, the authors proposed using spa-

tiotemporal histograms of eye-fixation data for each subject as single column in data

matrix of size m × hr × hc × n, where m is the number of subjects, hr and hc are

the dimensions of 2D histogram, and n is number of time intervals taken into ac-

count. The correlation matrix, constructed from the data matrix, is decomposed

using SVD procedure and eigenvalues and vectors are extracted and mapped back to

image space. The proposed analysis shows that the first Eigen vector accounts for

21% of the eye-fixation data and correspond to highly salient locations in the images.

Interestingly, the decomposition of the correlation matrix verified that the correlation

matrix is full rank, rank = m, which suggest that the spatiotemporal viewing pat-

terns of m subjects looking at the same image are basically independent, which may

be attributed to image complexity as have been suggested in [48]. Furthermore, the

authors in [80] demonstrated that a set of salient locations and their time sequences

corresponding to the first eigenvector can be used to evaluate computational saliency

models such as the one proposed in [45]. In another work [2], the authors draw on

the analysis procedure proposed in [80] to analyze eye-fixation data for single subject

across different images. They found that 23 percent of the data can be accounted

by a single eigenvector regardless of the image content, which it turns out to be cor-

related with image center location. Thus, authors proposed an evaluation metric,

robust Area-Under-Curve (rAUC), for computational saliency models that takes such

viewing patterns into account.

In [8], the authors used statistics about eye-fixation data to decode the image

category. They used a subset of the NUSEF dataset [73] containing five categories

over a total of 409 images. The feature vector includes fixation points histogram,

fixation duration, saccade length, orientation, duration, and velocity in addition to

saliency maps generated from state-of-the-art saliency detection algorithms. The

feature vector and image labels are used to train a multi-class Support Vector Machine
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(SVM) with Radial Basis Function (RBF) kernel. The decoding results show that

saliency map generated by Itti et al. [45], along with eye-fixation data statistics,

achieved highest accuracy, 2.5 times higher than random chance. The authors of

[8] show that it is feasible to decode image category from feature vector of saliency,

saccade, and fixation statistics. This could be, they believe, due to similar saliency

patterns across scenes of a category or semantic biases of fixation in each category.

2.4 Uncertainty Analysis in Image and Video Processing
Applications

Recently, there has been some research on uncertainty specific to image and video

processing applications. In [30], authors proposed using an active learning algorithm

based on one-versus-one (OVO) strategy support vector machine (SVM) to solve

multi-class image classification. The results of OVO SVM are combined according

to a cost function that maximizes the diversity of the chosen set of examples and

minimizes the uncertainty of the classification of this set. The uncertainty in this work

is estimated using the difference in number of votes between the highest votes class

and the second highest class. As the difference in number of votes increases, it is more

likely that the highest votes class is the true representative class, so the uncertainty

is lower. In the context of medical image registration, Saygili et al. [76] proposed

a confidence measure that reflects the accuracy of the registration process of a pair

of images. The proposed measure relates the confidence of the registration process

at each pixel to the global minima and the steepness of a predefined cost function.

The registration at a given pixel is expected to be more reliable if the associated

cost function produces a global minima at that location and the cost function in

its local region is very steep. In the context of stereo vision and depth estimation,

numerous confidence measures have been proposed in literature [42]. Typically, these

measures associate the confidence of pixel’s match with the shape of the matching

cost function, e.g. sum of absolute differences, around that pixel. Haeusler et al. [33]
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proposed applying random decision forest framework on a large set of diverse stereo

confidence measures to improve the performance of stereo solvers.

In the context of saliency detection, there has been very limited work to address

the problem of quantifying uncertainty. Directly applying uncertainty and confidence

measures proposed for other image and video processing applications might not take

into consideration characteristics of human visual attention mechanisms which are

crucial for saliency detection. The authors in [24] proposed a supervised method

to estimate the uncertainty associated with detected saliency of a video pixel. The

method uses binary entropy function to measure uncertainty according to the prob-

ability of a pixel being salient given the distance of the target pixel from the center

of mass p(s|d), and connectedness of the target pixel p(s|c). The coordinates of the

center of mass of saliency map [xc, yc] are first calculated using the ground truth map.

Then, the Euclidean distance, d, is calculated for each pixel in the computed saliency

map. Similarly, the connectedness feature, c, is calculated by counting the number of

salient neighbors. The probability densities p(s|d) and p(s|c) are fitted using salient

object segmentation ground truth from images dataset by Achanta et al. [1].
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CHAPTER III

CORRELATION OF EYE-FIXATION MAPS IN VIDEOS

As discussed in the previous chapter, uncertainty formulation and representation de-

pends on the uncertainty representation framework and the its assumptions. For a

framework-independent formulation of uncertainty, we seek to abstract the problem

and its application and compute objective parameters that encode domain-specific

knowledge and can be used to estimate uncertainty. These parameters can be re-

garded as features to feed into uncertainty representation frameworks. In computa-

tional video saliency, such features can be computed from the input video, the saliency

detection algorithm, the generated saliency maps, or a combination of them. Thus,

studying common patterns of saliency maps would be useful to formulate features

for uncertainty estimation. Unlike most work reported in the literature, we analyze

saliency maps as a separate entity away from its input video rather than an output

response of HVS to the input video. To do so, we use eye-fixation data as ground

truth for saliency maps and analyze such data to gain insights into the structure and

dynamics of the saliency maps. We focus on the relation between the saliency of

a pixel and that of its direct neighbors, without making any assumption about the

structure of the eye-fixation maps. By employing some basic concepts from informa-

tion theory, the analysis shows substantial correlation between the saliency of a pixel

and the saliency of its neighborhood.

3.1 Preparing Eye-fixation Maps

This study uses eye-fixation maps from the public CRCNS dataset [47]. The dataset

includes 50 videos of diverse nature including street scenes, TV sports, and video

games; 12 categories in total. The videos are 480 × 640 in size, 5 to 90 seconds in
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duration, and 30 frames per second (fps). Most of the videos have realistic distortions

including camera movement from handheld devices as well as TV camera panning,

low light, significant motion distortion, and compression artifacts. Details about

experiment setup is provided in [47]. The eye tracking data is collected from eight

subjects using an ISCAN RK-464 eye-tracker at 240 Hz sampling rate, which was

calibrated every five clips using 9-point calibration. The stimuli were displayed on

22” CRT monitor at 80cm viewing distance with mean screen luminance of 30 cd/m2.

Eye tracking data are provided for each human subject separately in a string of eye

gaze coordinates, which span 0 to 639 in the horizontal direction and 0 to 479 in

the vertical direction with location (0,0) being at the top left corner of the monitor.

Labels are available for each eye-gaze sample, e.g., fixation, saccade, and during blink,

just to name a few.

For a given video sequence, we transform the eye-tracking data to an eye-fixation

map according to the following procedure:

1. Initialize a 480× 640-frame with zeros

2. Exclude Saccade or loss-of-tracking samples from further processing. Only fix-

ation or smooth pursuit samples are processed

3. Increment the corresponding pixel value, of every sample, by one.

4. Process the eye-tracking data frame by frame

5. After processing all frames, construct an eye-fixation map with the same size

and number of frames as the video sequence.

Additionally, video frames are often downsampled, i.e. reduced in size, to satisfy

application constrains. Thus, we analyze eye-fixation maps at various scales of the

original map by reducing its size. For an original map F [m,n, k], the s-scale map,
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Figure 25: Illustration of the procedure for preparing the eye-fixation data.



F (s)[m,n, k], is formed as

F (s)[m,n, k] =
∑
∀i,j∈Rs

F [i, j, k] (18)

where Rs is a window that defines the set of pixels in F [m,n, k] that correspond to

pixel [m,n, k] in F (s)[m,n, k].

3.2 Correlation Results

3.2.1 Overall Map

For a M ×N ×K-eye-fixation map, F , where M is the height, N is the width, and

K is the depth in frames; every pixel x[m,n, k] ∈ F is considered an instance of a

discrete integer random variable, X, that is:

X : Ω→ E, (19)

where Ω is the set of all possible outcomes of the eye tracking experiments, E is the

observed set, and x[m,n, k] ∈ {0, 1, 2, ..., L} enumerates all possible outcomes using

L + 1 symbols. For such a eye-fixation map F , we compute the Shannon entropy of

X as follows:

H(X) = E[I(X)] = −
L∑
i=0

P (xi) log2 P (xi), (20)

where E[·] is the expectation operator, I(X) is the self-information of X, and P (xi)

is the probability mass function of X.

3.2.2 Spatiotemporal Neighbors

We are interested in examining the relationship between the pixels and their neighbors

in eye-fixation maps. There are 9 pixels from frame k− 1, 9 pixels from frame k + 1,

and 8 pixels from the current frame k; 26 direct spatiotemporal neighbors altogether,

as shown in Figure 26. These neighbors are labeled Y (j), where j ∈ {1, 2, ..., 26}. The

conditional entropy of X, the center pixel, given the average of its direct neighbors
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Figure 26: Illustration of neighborhood pixels grouping. Spatial neighbors

Y (1)...Y (8) of pixel X are hashed in orange color, temporal neighbors Y (9) and

Y (10) of X are shown in green color, and the rest of spatiotemporal neighbors

Y (11)...Y (26) are shown in purple.



is:

H(X|Z) =
∑
∀xi,zj

P (xi, zj) log2

P (zi)

P (xi, zj)
(21)

where Z = f
(
Y (1), . . . , Y (26)

)
is the arithmetic mean of the 26 direct neighbors, and

P (xi, zj) is the joint probability mass function for X (the center pixel) and Z (the

mean of its direct neighbors). A property of conditional entropy states that:

0 ≤ H(X|Z) ≤ H(X). (22)

The equality between H(X|Z) and H(X) holds only when X is completely inde-

pendent of Z; alternatively, H(X|Z) = 0 if Z completely determines X. In our

experiments, the window size Rs = 40 × 40, in Eq.(1), to reduces the time for com-

putation while at the same time generates similar results to those obtained using the

original map size. First, we evaluate the correlation between a map pixel and its di-

rect spatiotemporal neighbors. Figure 27 shows the entropy values computed for each

of the 50 video sequences in the dataset. As shown in the figure, the entropy of the

eye-fixation drops when the spatiotemporal neighborhood average is considered (red

curve). To have a basis for comparison, the entropy of the eye-fixation conditioned on

a uniformly-distributed random variable (yellow curve) is shown in the same figure.

A significant 50% reduction in the entropy values, in most videos, indicates a

strong correlation. Despite the variation among these videos, the entropy reduction is

consistent across all videos in the dataset. In Figure 27, the average entropy reduction

is 0.0815 bits with variance 3.2416×10−05. Such low entropy is caused by the sparsity

of the eye-fixation maps which most of its pixels are zero. However, the skewness of

the probability mass function does not affect the analysis because the probability

mass is concentrated in a single symbol. This mass can be redistributed equally

among the remaining symbols which would moves the entropy (and the conditional

entropy) up or down but does not change its shape. Gamecube02, gamecube06, and

gamecube13 are the three video sequences with the highest entropy values because
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Figure 27: Entropy calculation for all video sequences in CRCNS dataset.

they are relatively longer and contain engaging content. These characteristics could

contribute to the higher entropy because it might engage more cognitive processes

than other sequences. This difference between categories of video content can be seen

clearly in Figure 28.

3.2.3 Spatial Neighbors

To investigate the effect of the video content on the correlation between a pixel

and its neighbors, we extend the model introduced above. We study the correlation

between a map pixel in a given spatial location and its direct spatial neighborhood.

For every location [m,n] in the eye-fixation map, all pixels at that location, across

all K frames, are considered instances of a random variable X[m,n]. Then, we use

mutual information between two random variables to measure the correlation between

a given X[m,n] and Q[m,n], the arithmetic mean of its eight direct spatial neighbors
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Figure 28: Entropy reduction across all videos in CRCNS dataset. Results

reported here are computed using Scale 1 saliency map of size 12× 16.



X[m+ i, n+ j], where i and j ∈ {1, 0,−1}, as follows:

I(X[m,n];Q[m,n]) =
∑
∀xi,qj

P (xi, qj) log2

P (xi, qj)

P (xi)P (qj)
, (23)

where P (xi) is the probability mass function of random variable X[m,n], P (qj) is the

probability mass function of Q[m,n], the arithmetic mean of the spatial neighbors,

and P (xi, qj) is the joint probability mass function of X[m,n] and Q[m,n].

It would be interesting to evaluate the impact of the famous center-bias phe-

nomenon [28] on the correlation of eye fixation maps. Research shows that such bias

exist in most eye-fixation data related to images. In fact, in addition to naturally oc-

curring bias, observed in images [28], every video sequence, in CRCNS, is preceded by

a blinking cross, that lasts for 1 sec, in the middle of the screen, exactly at [239,319],

which should further enforce the center-bias. However, our results show that lack of

knowledge center-bias has a small effect on the overall correlation and is only present

in the first few frames of almost all videos. The videos that have a center-bias, in

this dataset, are the ones with photography center-bias which significantly influences

the end results. This bias is caused by the tendency of photographers to place the

object(s) of interest around the center of the video frames. Such bias is mostly elim-

inated from visual attention image datasets by shifting the object(s) of interest away

from the center, doing the same for videos is difficult. This photography center-bias

is particularly obvious in the gamecube videos, a sample frame is shown in Figure

29.(a), since the in-game camera system is designed to place the game character(s)

in the center of the video.

When we compute the mutual information between a pixel at a given location

and its direct spatial neighbors, the results are shown in Figure 29.(b). Gamecube06

results shows a high correlation, as the case in most gamecube videos, which can be

attributed to the photography center-bias. Although textual information has been

shown to attract human attention [14], this is not the case with gamecube videos.
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(a) gamecube06 sample frame taken at 01m:57s:076’.

x-location (pixels)
0 2 4 6 8 10 12 14 16

y-
lo

ca
tio

n 
(p

ix
el

s)

0

2

4

6

8

10

12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) gamecube06 mutual information given

spatial location, across all frames.

Figure 29: gamecube06 sample frame alone with mutual information given

spatial location, involving only spatial neighbors



Gameplay related text, located at the corners of the screen, does not attract eye-

fixation for prolonged periods. We believe such pattern is due to the relatively low-

information content of this kind of text.

On the other hand, videos that lack photography center-bias exhibit totally differ-

ent behaviour. Figure 30.(a) shows a sample frame of saccadetest video that consists

of a blue textured background and a diagonally moving red dot. The eye-fixation

map correlation, Figure 30.(b), is highest when there is a smooth pursuit following

the red dot, due to high sampling rate and low spatial displacement of the object of

interest. Similar trends can also be observed in video sequences such as beverly06,

beverly07, and beverly08.

Additionally, interesting trends can be observed when there are multiple salient

objects present in the scene, such as in the tv-news03 video, a sample frame of which

shown in Figure 31.(a). The space-localized mutual information map, shown in Figure

31.(b), exhibits two centers of attention. One corresponds to the most semantically

informative object in the scene, i.e., the news anchor’s face. The other is the textual

messages in the lower banner. Since the human subjects spend considerable periods

of time looking at these two locations, the correlation is significantly higher than

other locations in the eye-fixation map. The example results, especially those from

the latter two without obvious center-bias, demonstrate that the higher correlation

areas match very well with the human attention.

3.2.4 Temporal Neighbors

To analyze the correlation with temporal neighbors, each pixel in frame k of an eye-

fixation map, F (k), is considered as an instance of a random variable Xk. Then, we

compute mutual information between Xk and Wk, a pixel-wise arithmetic mean of

adjacent frames F (k +D) where D ∈ {±1,±2,±3, . . . }, as follows:

I(Xk;Wk) =
∑
∀xi,wj

P (xi, wj) log2

P (xi, wj)

P (xi)P (wj)
, (24)

48



49

(a) saccadetest sample frame taken at 00m:07s:606’.
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(b) saccadetest mutual information given

spatial location, across all frames.

Figure 30: saccadetest sample frame alone with mutual information given

spatial location



50

(a) tv-news03 sample frame taken at 06m:51s:026’.
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where P (xi) is the probability mass function of Xk, P (wj) is the probability mass

function of Wk, and P (xi, wj) is the associated joint probability mass function.

By restricting Wk, the average of temporal neighbors, to only two frames F (k+D)

and F (k−D), we can study the correlation change over time, at distanceD from frame

F (k). Mutual information between a frame and its direct neighbors (i.e., D = 1) is

significant, as shown in Figure 32, compared to the information shared with distant

frames. Roughly 50% of information is shared between adjacent neighboring frames

for all videos, regardless of the content (recall that, as shown in Figure 27, the average

information content in an eye-fixation map is about 0.3 bits). However, various video

content affect the rate of change. In saccadetest, for example, the rate of change is

small (i.e. slow decay), while in tv-ads and tv-sport the rate of change is large (i.e.

fast decay). This variability might be attributed to the level of complexity of these

videos. More correlated frames in the eye-fixation map of simple stimuli videos (e.g.,

saccadetest) are caused by subjects fixating on a single target. On the other hand, to

comprehend the scene of complex stimuli videos (e.g., tv-ads and tv-sports), subjects

are required to exert more effort to examine the scene and actively search for visual

information.

Moreover, we compute the correlation between a given frame F (k) and the average

of its N direct neighbors. As shown in Figure 33, mutual information between a given

frame and its nearest neighbors contains most of the information shared with the rest

of the frames. For most categories, the nearest 5− 6 neighbors contain almost all the

correlated information in the eye-fixation map. Therefore, including more frames in

the neighborhood average does not necessarily add any more useful information. This

trend is observed in every category in the dataset, regardless of the content. However,

some categories (such as monica and gamecube) yield higher mutual information than

other categories, suggesting that the video content makes a difference. For most

categories, the mutual information levels-off after 6-8 frames, with the exception of
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F (k + D) and F (k −D), where D is the frame distance.
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standard. This can be attributed to the process of averaging that may cause some

mutual information in the nearest neighbors to be marginalized as the number of

frames included gets greater.
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CHAPTER IV

PREDICTING THE CORRELATION OF EYE-FIXATION

MAPS IN VIDEO USING OPTICAL FLOW

In the previous chapter, we showed correlation analysis of eye-fixation data inde-

pendent from the visual stimuli in order to gain insight into the structure of the

eye-fixation data of natural scenes as well as provide us with a better understanding

of visual attention mechanisms. However, it would be interesting to see which features

in the visual stimuli contributed to such correlation. Correlation analysis of spatial

neighbors discussed earlier showed that scene complexity plays an important role in

determining the locations of saliency clusters, which is shared between static and

dynamic visual stimuli. Scene complexity in images has been shown to be a major

contributing factor to saliency [40]. On the other hand, correlation analysis of tem-

poral neighbors shows that temporal complexity affects the correlation of eye-fixation

data. The size of correlated neighborhoods in a sequences is inversely proportional

to its temporal complexity. Although, the correlation analysis using spatial and tem-

poral neighbors show a snap-shot of motion contribution on eye-fixation data, the

analysis does not quantify the motion contribution. In this section, we quantify such

contribution using motion cues extracted from optical flow maps and a simple linear

regression model.

4.1 Optical Flow Basics

In Optical Flow estimation, we attempt to estimate the 2D velocities for visible surface

points in a sequence of images as projected on the image plan from 3D moving surface

points in natural scenes [26]. These 2D velocities are typically called 2D motion field,
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and the goal of optical flow estimation is to compute an approximation to the motion

field from time-varying image intensity [38]. The problem of optical flow in its basic

formulation is to compute the x and y translation of pixel intensities between frames.

That is, given a pixel intensity in time t, I(x, y, t), the following equation holds, given

Brightness constancy [6]

I(x, y, t) = I(x+ u, y + v, t+ 1), (25)

which simplifies to Optical Flow Constraint

u
∂I

∂x
+ v

∂I

∂y
+
∂I

∂t
= 0. (26)

To solve this under-constrained system, optical flow algorithms impose several choices

of prior, the majority of which are smoothness priors [6].

Several optical flow algorithms have been proposed, and continue to be, in the

last few decades [6]. Two cornerstone approaches to optical flow estimation are Horn-

Schunck [39] and Lucas-Kanade [62]. Horn-Schunck method assumes a global smooth-

ness of motion field over the whole image. To solve the flow equation, Horn-Schunck

method tries to minimize distortions by solving the associated multi-dimensional

Euler-Lagrange equations. On the other hand, Lucas-Kanade takes a local approach

to the problem and assumes that the flow is consistent in local patches, then solves the

over-constrained system using least squares. More recently, authors of [13] proposed

combining global and local smoothing approaches in the so called combines local-global

Method (CLG). In this paper, we used optical flow estimation implemented by [58],

which combines CLG from [13] with warping technique [11] by means of minimizing

a non-linearized constancy assumption using fixed point iteration.
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(a) beverly06 sample frame taken at 00m:06s:50’.

(b) beverly06 optical flow map generated using publicly available code of [58].

Figure 34: beverly06 sample frame and associated optical flow map
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4.2 Correlation Prediction using Optical Flow

In this part, we show the possibility of predicting eye-fixation map correlation from

video frames using motion cues computed using optical flow. First, we compute

correlation vector d of length K from eye-fixation map F of size M ×N ×K. This

is done by reducing the size of eye-fixation map by a factor α using aggregation

in Eq.(18). This aggregation affects the sparsity and variability of the eye-fixation

map, which ultimately affects model fitness. Then, we compute mutual information

between frame k and the pixel-wise arithmetic mean of adjacent frames F (k + D),

where D ∈ {±1,±2,±3, . . . }, according to Eq.(24), for all values of 1 ≤ D ≤ LB,

where LB is frame buffer length. Different values of frame buffer length affects the

spread of data points over the correlation range, as will be highlighted in the next

section. Finally, the kth entry in d correlation vector is computed by averaging all

mutual information values for frame k and all frame pairs in frame buffer. As for

coefficient matrix C of size K ×W , we generate motion cues, i.e optical flow, using

[58]. Given video S of size M×N×K, first, we downsample video frames by a factor

β, then compute optical flow map. Afterwards, we use Gaussian filter to smooth

out optical flow map discontinuities, which are due to compression and interlacing

artifices in the video dataset [47]. Finally, kth row of coefficients matrix C is produced

by computing the magnitude of the optical flow of map, then, unfolding frames k,

k + 1, and k − 1 into a single row.

To quantify the relation between motion cues computed from video frames and

correlation between eye-fixation map frames, we use linear least squares method to

fit coefficient matrix C to correlation vector d. Linear least squares is one of the

simplest, yet effective, data fitting approach in literature. Linearity assumption is

reasonable since the majority of systems and processes are inherently linear or can be

approximated by a linear model reasonably well. Another advantage of using a linear

model is to reduce the possibility of data over-fitting compared to nonlinear models.
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Therefore, we compute the optimal values of regression model x, in the least square

sense [35], such that misfit error is minimized:

argmin
x
‖Cx− d‖2 , (27)

where C is the coefficient matrix extracted from optical flow map, d is the correlation

vector computed from eye-fixation map. The analytical solution for the regression

model x is:

x = (CTC)−1CTd. (28)

4.3 Regression Fitting Results

Using data model defined in the previous section, we process all 50 video in CR-

CNS dataset [47] and compute the predicted frame correlation from motion cues and

compare it to that computed from mutual information of eye-fixation map frames.

In Figure 36, we show a plot of correlation results where every video is represented

using a single point, for which the x-coordinates are the average frame correlation

computed from the eye-fixation map and y-coordinates are the average frame corre-

lation predicted by motion cues from optical flow map. As seen in Figure 36, most

points are close to the 45-degree line indicating that there is, indeed, strong corre-

lation between mutual information of different frames of the eye-fixation map and

motion cues in most videos. In addition to average frame correlation results, we show

frame correlation results for eight different videos (four close to the 45-degree line, in

Figure 37, and another four away from the 45-degree line, in Figure 38). Each of the

bottom plots represent a single video, in which every point represent a frame in that

video.

In the first four videos, saccadetest, standard05, tv-talk05, and tv-announce01, we

notice a good spread of the data across frame correlation range, where saccadetest and

tv-talk05 are gravitated towards higher correlation values due to their simple semantic

content while standard05 and tv-announce01 are generally lower in correlation values
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Figure 36: Each video in the dataset is represented as a single point with

average frame correlation computed from 8× 10 eye-fixation map (x-axis) and

average predicted correlation from 120× 160 optical flow map (y-axis)
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Figure 37: Frame Correlation results of the proposed prediction algorithm.
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Figure 38: Frame Correlation results of the proposed prediction algorithm.



due to their constantly unique information presented in every frame. Also, we can

see that even though the predicted values have maximum misfit error of 10 − 20%,

the model represent the data well since majority of points fall in a narrow ellipsoid

around the 45-degree line. As for the second half of the bottom plots, in tv-sports04,

monica03, we notice that the average frame correlation predictions are further away

from the 45-degree line compared to the previous four cases due to wider spread of

prediction results and the bulk of misfit error in 20−40% range. This might be caused

by major motion events biasing the optical flow map, thus, small motion cues related

to the main object of interest in these two videos are missed. In tv-sports04, motion

of basket players and news graphics obstruct the motion of the small basketball (the

main object of attention). Similarly, in monica03, cars and buses motion obstructs

motion of hand gestures of the police officers. Next, tv-news05 and gamecube23 are

among the videos with correlations furthest away from the 45-degree line. As evident

from the predictions scatter plot, the model basically failed to reliably predict frame

correlation, where maximum misfit error reaches up to 70%. When closely examining

the content, one can observe that tv-news05 contain many high-level features that are

not explained by motion, which is discussed in more details in High-Level Features

section below. gamecube23, on the other hand, suffers from a different problem; a

combination of Photographers Bias [8] and background motion perpendicular to image

plane, details provided in Camera Motion section below.

4.3.1 Effect of Frame Buffer Size on Model Fitness

To examine the effect of frame buffer size on the results, we show, in Figure 40, the

results of model fitting proposed in earlier for frame buffer lengths LB = 3, 7, 11,

and 21. As seen in Figure 40, as the frame buffer size increases, the average frame

correlation of videos start to spread across wider range. This is because considering

more neighboring frames of eye-fixation map when computing frame correlation makes
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it easier to distinguish unique eye-fixation patters. In contrast, examining only direct

neighbors makes eye-fixation patters appear more random, and as a result, it makes

majority of eye-fixation map frames look the same.

4.3.2 Effect of Eye-fixation Map-Aggregation Size on Model Fitness

We examine the effect of Eye-fixation maps size on the results. In Figure 42, we ob-

serve that data points fitting get better as we increase the size of the eye-fixation map

used in computing correlation values. This might be due to the fact that meaningful

data structures are lost during the aggregation process to generate extremely small

eye-fixation map as the case in 3× 4 maps.

As the size of eye-fixation map gets larger, fitting algorithm converges to model

the data structure reasonably well, as the case when size= 6 × 8 and 8 × 10. Fur-

thermore, as eye-fixation map size gets even larger, the data fitting parameters start

to over-fit and generate predictions with zero misfit errors, as the case with 12 × 14

maps. Another aspect to consider when examining this behavior is the fact that

as aggregation process reduces the size of the eye-fixation map, the variability of

resultant map entries increases compared to original size map. Thus, the effect of

eye-fixation map size of model fitness can be due to the variability of the smaller sizes

of the eye-fixation map, hence, struggle of data fitting algorithm to capture suitable

representation of the smaller sizes of the eye-fixation maps compared to the larger

ones.

4.3.3 Effect of High-Level Features on Model Fitness

In some videos in CRCNS database [47], scenes mainly consist of a single actor with

little to no motion in the scene, as in tv-news05 shown in Figure 43(a). As seen

in the Regression Fitting Results section, the proposed data fitting algorithm is not

able to converge to a suitable model for tv-news05. We believe this is caused by the

video scene, which consists of a news anchor speaking with screen-bottom messages
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Figure 39: Effect of frames buffer size on frame correlation predictions. Each

video in the dataset is represented as a single point with average frame cor-

relation computed from 8× 10 eye-fixation map (x-axis) and average predicted

correlation from 120× 160 optical flow map (y-axis).
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(a) tv-news05 sample frame (b) beverly06 sample frame

(c) tv-news05 optical flow (b) beverly06 optical flow

Figure 43: Attention to high-level saliency stimuli suppresses the saliency of

motion.



and banners changing every few seconds, being dis-proportionally filled with high-

level saliency stimuli such as text and faces. Research has shown that faces and text

attract gaze of HVS independent of the task given to subjects and play a major role

in explaining the visual attention patterns [14]. In fact, including face detection as

part of saliency detection algorithm improves results greatly [15]. Therefore, it would

be expected that visual attention attributed to high-level saliency stimuli are not

captured properly using motion only. On the other hand, eye-fixation correlation in

scenes with low semantic content, such as beverly06 shown in Figure 43(b), can be

predicted reliably using motion-based models. In these type videos, the scene context

is entirely explained by motion and, thus, attention can be modeled extremely well.

In the case of tv-news05 and beverly06, simply examining the optical flow map, Figure

43(c) and Figure 43(d), shows that optical flow map of beverly06 highlights the most

prominent object in the scene, while optical flow map of tv-news05 has no identifiable

structure and conveys no information about the scene. On contrary, optical flow map

of tv-news05 highlights the weather animation in the lower left corner which has no

semantic meaning and is of little relevance to tv-news05 context.

4.3.4 Effect of Motion Complexity on Model Fitness

Even in cases where motion plays a major role in explaining the video, the complexity

of motion and subjects’ prior information can affect the predictability of visual atten-

tion in these videos. For example, tv-sports03 (scene from TV coverage of basketball

game) shown in Figure 44(a) and beverly03 (scene of amateur soccer game) shown in

Figure 44(b) both are sports scenes. However, according to prediction results earlier,

beverly03 has a much simpler model to predict compared to tv-sports03. We believe

this is due to complexity of motion in tv-sports03 where different player constantly

change their positions across the basketball court to optimize their game play. In

tv-sports03, the attention of subjects is mainly concentrated on the small basket ball
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rather than the players, which is not properly highlighted in tv-sports03 optical flow

map. Also, since tv-sports03 is a record of professional game, subjects’ prior infor-

mation, such as players or teams recognition, might be affect their viewing patterns.

Additionally, tv-sports03 is a TV coverage of sport event, so subjects might be instinc-

tively looking for score board or remaining time clock which they could be familiar

with from previous experience. On the other hand, beverly03 does not have similar

problems nor any associated prior information available to subjects. Therefore, even

though optical flow maps of tv-sports03 and beverly03, shown in Figure 44(c) and

Figure 44(d) respectively, look similar in capturing semantically significant motion in

both scenes, their predictability is affected by motion complexity and subjects prior

information. Naturally, such explanation is far from conclusive and further experi-

ments and annotated videos are required to verify the effect of prior knowledge on the

predictability of self-correlation using motion. It is important to note here that both

scenes suffer from camera motion and non-stationary backgrounds, however, this fact

is more relevant to the discussion next.

4.3.5 Effect of Camera Motion on Model Fitness

In addition to factors discussed earlier, camera motion plays a considerable role in con-

trolling viewing patterns. Let us consider gamecube02 (a scene of video game play),

shown in Figure 45(a), and standard05 (a scene of camera sweep recording a social

event), shown in Figure 45(b), to examine camera motion effect on the predictabil-

ity of subjects viewing patterns. In gamecube02 as the player moves the character

throughout the video game, the in-game camera system keeps track of the changes

and constantly centers the character in middle of the screen, known as Photographers

Bias [8]. Such setting leads optical flow map of gamecube02, shown in Figure 45(c), to

label all the surrounds of the video game character as in-motion, while the character

itself is relatively static, completely the opposite of the viewing patters of subjects.
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(a) tv-sports03 sample frame (b) beverly03 sample frame

(c) tv-sports03 optical flow (b) beverly03 optical flow

Figure 44: Motion complexity and subjects prior information affects the pre-

dictability of eye-fixation map frames correlation



Table 1: Summary of the factors that affect the predictability of eye-fixation

correlation from motion cues

Factors Effect on the prediction performance

Algorithm

Parameters

Regression Model More complex models would improve predic-

tion performance at the cost of overfitting

Frame Buffer Longer buffer length would improve predic-

tion performance and reduce clustering effect

Aggregation Size Larger aggregated eye-fixation maps improve

prediction performance at the cost of overfit-

ting

Content

Parameters

High-level Features Presence of higher-level features reduces pre-

diction results

Motion Complexity Less complex motion improve prediction re-

sults

Camera Motion Camera motion parallel to image plane im-

prove prediction results

Camera motion that is perpendicular to image plane cannot be interpreted easily by

computer vision algorithms and certainly not by optical flow field estimation. On the

other hand, camera motion parallel to and perpendicular to salient objects can be

easily modeled as in the case of standard05 as the mosaic shown in Figure 46. In this

video, subjects attention is motivated by continuous flow of new information about

the scene details, which is caused by camera motion. Hence, standard05 prediction

results based on motion cues closely resemble the correlation in the eye-fixation data.
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(a) gamecube02 (b) standard05

sample frame sample frame

(c) gamecube02 (b) standard05

optical flow map optical flow map

Figure 45: camera/background motion with fixed main actor vs. cam-

era/background motion parallel to image plane

Figure 46: Mosaic of standard05 frames showing motion parallel to image plane.



CHAPTER V

UNSUPERVISED VIDEO FEATURE FOR ESTIMATING

UNCERTAINTY

5.1 Uncertainty-based Framework for Video Saliency Ap-
plications

In an attempt to mimic the advanced processing capability of the human vision sys-

tem (HVS), saliency detection has been incorporated into various image and video

processing algorithms for improved performance. The diversified applications include

but are not limited to compression [32], segmentation [87], object recognition [74],

tracking [63], and quality assessment [96]. However, there has been no explicit design

of a saliency-based video processing framework, to the best of our knowledge. Most

of the proposed methods do not evaluate the validity of saliency maps generated on-

line, but rather design or choose a saliency detection algorithm that exhibits good

performance in evaluation datasets, and then hope for the best when the algorithm

goes online. Therefore, we propose a unified framework for enhancing video process-

ing algorithms using saliency that is neither application- nor algorithm-specific and

can be reliable in real world scenarios. The proposed uncertainty-based framework is

depicted in Figure 47. It evaluates the saliency map and produces associated uncer-

tainty map that describes the level of confidence in the generated saliency map. By

reliably estimating uncertainty, we can expand the framework to include a systematic

decision-making procedure that makes application-specific decisions. Additionally,

having a separate module for decision making helps clarify which assumptions are

application-specific and which ones are saliency related. Knowledge about the appli-

cation space can influence the design of this module without making drastic changes
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Figure 47: Uncertainty-based framework for improving saliency-enabled video

processing algorithms

to the whole framework. Similarly, the availability of uncertainty estimations allows

for risk assessment that can be used to guide the optimization of video processing

algorithms.

5.2 Unsupervised Uncertainty Estimation Using Spatiotem-
poral Cues

As discussed in the previous chapter, pixels in eye-fixation maps are correlated and

such dependency can be exploited to identify unlikely occurrences in the computa-

tional saliency maps. Basically, we assume that visual saliency is consistent and

changes in saliency values happen gradually. Thus, sudden changes in saliency value

should lower our trust in that particular spatiotemporal event. Thus, saliency map

pixels that are significantly different from their neighborhood are most likely uncer-

tain and should be examined more carefully.

However, the size of local neighborhoods crucially depends on the video content.
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For example, fast action videos would most likely have a small group of contiguous

correlated pixels, in the saliency map, around location of the main scene actor. In

contrast, a slow changing scene gives the viewers more freedom to explore different

parts of the video frame, thus, the corresponding eye fixation map would have a larger

group of pixels that are correlated. Therefore, it is important to include uncertainty

cues from the appropriate scales in order to more reliably capture context-based

events.

In most video saliency detection algorithms, the processing of video frames usually

consumes significant computation time. Hence, a common practice is to resize the

input video frames to several sizes and define saliency maps generated in terms of the

frame scale. It is worth noting that saliency maps generated from size-reduced video

frames differ from saliency maps downsampled from saliency maps of higher scale.

In the first case, video details lost in the downsampling process are not included in

the downsampled saliency map, while in the second case, downsampled saliency maps

still maintain such details. Generally, uncertainty estimation should take advantage

of saliency maps of multiple scales to enhance the estimation performance. One way

to approximate the contribution to uncertainty estimation from different scales is to

generate a multi-scale uncertainty map that is a weighted combination of uncertainty

generated from different scales. In this paper, we focus our study on how to estimate

uncertainty from a single scale.

Formally, given a saliency map S(d) of scale d and size M × N and of depth K

frames, we seek to estimate an uncertainty map U (d) of the same scale, size and depth

as S(d) that is roughly approximated by saliency value divergence from spatiotemporal

local neighborhood mean. The estimation is efficiently computed by processing the

map S(d) according to Eq.(29):

U (d) = γ
∣∣αS(d) ∗WL1×L2×L3

∣∣, (29)
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where
∣∣.∣∣ is the operation to find the absolute value and d = 1, 2, ...D is the scale

label, L1×L2×L3 is the size of the spatiotemporal kernel WL1×L2×L3 , α is a scaling

factor for the saliency map to fix its range to be [0,1], and γ is a scaling factor for the

uncertainty map to ensure the output range is [0,1]. In this paper, we use a simple

averaging kernel defined as follows

WL1×L2×L3 =


R−1
R

at the center

− 1
R
, otherwise,

(30)

where R = L1 × L2 × L3. The design of WL1×L2×L3 can be viewed as the difference

between saliency value and a moving average window of size L1 × L2 × L3. With

appropriate size, WL1×L2×L3 can follow the changes in the scene and, to some extent,

approximates the common trend of pixel saliency change over time.

In order to systematically analyze spatiotemporal uncertainty estimation, we study

the contribution of spatial neighbors separate from temporal neighbors which might

lead to a better understanding of spatial context in saliency maps. Thus, we introduce

in the following subsections two special cases of the proposed algorithm: uncertainty

estimation from temporal cues and uncertainty estimation from spatial cues. Relying

only on temporal neighbors, the proposed algorithm estimates the uncertainty of a

pixel in frame k by studying its correlation with its neighbors in the same location

across all K frames, as we have proposed in [4]. By dividing the saliency map into

temporal neighborhoods, we can treat each pixel location as separate 1-D signal that

can be processed using a simple 1-D filter of length Lt to calculate pixel-neighborhood

divergence. Similarly, we can divide the saliency map into spatial neighborhoods that

span Ls1 × Ls2 pixels in a single frame, as we have reported in [3].
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5.2.1 Uncertainty Estimation from Temporal Cues

For a given saliency map S of size M ×N and of depth K frames, we decompse the

map into 1-D signals as follows

S =



s[1, 1] s[1, 2] . . . s[1, n] . . . s[1, N ]

s[2, 1] s[2, 2] . . . s[2, n] . . . s[2, N ]

...
... . . .

... . . .
...

s[m, 1] s[m, 2] . . . s[m,n] . . . s[2, N ]

...
... . . .

... . . .
...

s[M, 1] s[M, 2] . . . s[M,n] . . . s[M,N ]


, (31)

where m = 1, 2, ...,M , n = 1, 2, ..., N , are the spatial coordinates of the saliency map.

We seek to construct an uncertainty map U of the same size and depth as S by

iteratively processing 1-D signals s located at saliency map pixel [m,n] according to

U [m,n] = γ
∣∣αS[m,n] ∗WLt

∣∣, (32)

where m = 1, 2, ...,M , n = 1, 2, ..., N , are the spatial coordinates of both the saliency

map and uncertainty map, α and γ are scaling factors, and WLt is the temporal filter

of length Lt, defined by

WLt = [
−1

Lt
...
−1

Lt
,
Lt − 1

Lt
,
−1

Lt
...
−1

Lt
], (33)

5.2.2 Uncertainty Estimation from Spatial Cues

Similar to the temporal neighborhood case, given a saliency map S (Eq. (34)) of size

M × N and of depth K frames, we construct an uncertainty map U (Eq. (35)) of

the same size and depth as S by iteratively processing saliency frames Sk using a 2-D

averaging kernel WLs1×Ls2 (Eq.(36)) of size Ls1 × Ls2 .

S =

[
S1 S2 . . . SK

]
, (34)
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U =

[
U1 U2 . . . UK

]
, (35)

Uk = γ
∣∣αSk ∗WLs1×Ls2

∣∣, (36)

where k = 1, 2, ..., K is the frame index, WLs1×Ls2 is a spatial filter similar to averaging

kernel WLt , symmetrical around its center and has a size of Ls1 × Ls2 , α and γ are

scaling factors.

5.3 Methods for Ground Truth Generation and Performance
Evaluation

To objectively evaluate the performance of an uncertainty estimation algorithm, ide-

ally we need to compare the estimated uncertainty against the ground truth, or the

true uncertainty. However, such true uncertainty data is not readily available.

5.3.1 Computing True Uncertainty

Available databases for saliency detection research usually contain ground truth data

recording eye fixations of human subjects viewing the images or videos. Based on

the eye fixation data, as we proposed in [4], the following method is used to generate

the true uncertainty data. Figure 48 illustrates this procedure with some examples

while the block diagram is shown in Figure 49. First, we compile the fixation data

from all subjects in CRCNS dataset into a single map F̂
tr

of size M ′, N ′, and K

being the height, width, and the total number of frames, respectively. We add 1 to

F̂ tr[i, j, k] for every eye fixation that corresponds to pixel location [i, j, k]. Second,

we resize the fixation map F̂
tr

to M , N and K; the respective height, width, and

depth of the saliency map S from a saliency detection algorithm. This resizing is

necessary because many saliency detection techniques work on downsampled video

frames for computational efficiency. However, for the binary map F̂
tr

, the resizing

is not exactly a downsampling procedure.Denoted as F tr, the resized binary fixation
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Figure 48: Examples illustrating true uncertainty data. (a) Original video

frame with eye fixation superimposed (small color squares in the center and

top-right corner); (b) Resized eye fixation map superimposed on the original

frame; (c) Saliency detection results; (d) True uncertainty. We note that the

color display is only for a better illustration, which involves some interpolation

causing the discrete resized fixation map to appear continuous.
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map is obtained as follows

F tr[m,n, k] =
∑

∀(i,j)∈Φ[m,n,k]

F̂ tr[i, j, k], (37)

where Φ[m,n, k] is an indexing function that points to the set of pixels in F̂ tr that

corresponds to pixel [m,n, k] in F tr map. Here, we use the sum of eye-fixation points

from all subjects so that salient locations agreed upon by majority of subjects have the

highest saliency, but at the same time sparse “1”s in the original fixation truth data

are not lost. Finally, assuming that the saliency map S is normalized, we normalize

F tr and calculate the true uncertainty as

U tr =
∣∣S − F tr

∣∣. (38)

Obviously, U tr shows how far each saliency estimate is from the recorded fixations.

Thus, it can serve as a measure of the estimation uncertainty. Even though the

individual eye-fixation data is binary, the aggregated fixation maps F̂
tr

, F tr, the

derived true uncertainty data U tr, and the saliency detection results S are continuous

values.

5.3.2 Performance Measurement

With the true uncertainty data available, we use a detection theory-based scheme for

the performance evaluation [4]. The scheme generates an ROC curve and uses AUC

as the performance metric [35]. Since our true uncertainty data U tr is continuous, it

needs to be converted to binary data, denoted as U trb, as the ROC curve is intended

for binary classifiers. This conversion is conducted by applying a threshold T1. To

generate the ROC curve, the uncertainty estimates U are also thresholded by T2 into

a binary form, U b, and compared against U trb. Thus, both the true detection rate

(TDR) and the false positive rate (FPR) are obtained. When we change the value of

T2, sweeping through its whole range, pairs of TDR and FPR are obtained to yield

an ROC curve plotted as TDR vs. FPR. Then, the AUC is easily computed. AUC
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ranges between 0 and 1, with a greater value indicating better performance, and 0.5

indicating a performance equivalent to random classifier.

5.4 Experimental Results

We conducted three sets of experiments to study several aspects of the proposed al-

gorithm. In the first set, we compare the relative performance based on the neighbor-

hood selection. We evaluate and compare the performance of the proposed algorithm

using:

• Spatiotemporal neighborhood as described in 5.2, labeled Spatiotemporal Un-

certainty (STU )

• Temporal neighborhood as described in 5.2.1, labeled Temporal Uncertainty

(TU ) [4]

• Spatial neighborhood as described in 5.2.2, labeled Spatial Uncertainty (SU )

[3]

• Naive fusion of Spatial and Temporal Uncertainty (SU+TU ), a pixel-wise ad-

dition of TU and SU maps

• Entropy-based Uncertainty (EU ) [23]

• Local variance of spatiotemporal neighborhood, labeled Baseline

The performance of these algorithms is quantified in terms of Area-Under-the-Curve

(AUC) values of their corresponding Receiver-Operating-Characteristic (ROC) curves.

We, also, show effects of saliency map scale as well as kernel size on the proposed

algorithm’s performance. Details on data and experiments procedure are provided in

the dataset section and the performance evaluation methodology section, respectively.

The second set of experiments are designed to show performance of the proposed un-

certainty estimation algorithm given different categories of videos. Also, we show the
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distinct effects of kernel size on the proposed algorithm performance given radically

different video contents. The third set of experiments verifies the performance of the

proposed algorithms using additional datasets and saliency detection models.

5.4.1 Datasets

We tested the proposed unsupervised uncertainty estimation algorithm using three

publicly available databases: CRCNS [46], DIEM [66], and AVD [65]. The CRCNS

[46] database includes 50 videos, with the resolution being 480×640 and the duration

ranging from 5 to 90 seconds with 30 frames per second. The videos contents are

diverse with a total of 12 categories ranging from street scenes to video games and

from TV sports to TV news. In many cases the videos contain variations of lighting

conditions, severe camera movements, and high motion blur effects. Eye fixation data

are provided with each video, recorded for a group of eight human subjects watching

the videos under task-free view condition. The DIEM [66] database includes 85

videos, with varying resolutions and duration up to 130 seconds with 30 frames per

second. The videos content are mainly limited to TV and film content including film

trailers, music videos, and advertisement. The eye fixation data are collected from

250 participants under task-free view conditions. The AVD [65] database includes 148

videos, with varying resolutions and mean duration of 22 seconds with 30 frames per

second. The video contents are limited to moving objects, landscape, and faces. The

eye fixations data are collected from 176 observers. The AVD dataset contains two

sets of videos of the same visual content but one with audio and the other without.

According to their findings on the effect of audio on the attention of the participants,

we only select the videos without associated audio.

For our experiments, we generated saliency maps for the videos using a recent

algorithm based on 3D FFT local spectra (3DFFT) [61]. However, for validation, we

also share the results from two additional saliency models: STSR [77] and PQFT [31],
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which are shown at the end of this section. Unless stated otherwise, saliency maps

used in all experiments are generated using 3DFFT. In most of our experiments, the

saliency maps are reduced in size to three different scales. Scale 1 is of size 12×16; a

downscale of frames original size 480×640, where every 40×40 region in the original

frame corresponds to a single pixel in Scale 1. Similarly, Scale 2 saliency maps are

24 × 32, where every pixel is equivalent to 20 × 20 region of pixels in the original

sized frame, and Scale 3 saliency maps are 48 × 64, where every pixel is equivalent

to 10× 10 regions.

5.4.2 Threshold Selection

The performance evaluation procedure described earlier utilizes a fixed threshold T1

to transform the continuous valued true uncertainty U tr to binary ground truth.

First, we examine the impact of changing the value of T1. The algorithms under

consideration are: Temporal Uncertainty (TU ), Spatial Uncertainty (SU ), Fused

Spatial and Temporal Uncertainty (SU+TU ), Spatiotemporal Uncertainty (STU ),

Spatiotemporal local variance (Baseline) computed on the same neighborhood as

STU, and Entropy-based Uncertainty (EU ). Figure 50 shows the performance of these

algorithms in terms of AUC versus T1. As shown in Figure 50, T1 directly affects AUC

value; as the value of T1 increases, the AUC value of all algorithms considered here

decreases. It is also interesting to point out that the gradient of AUC levels-off as T1

reaches higher values. Although we can see that T1 value significantly changes AUC,

conclusions based on relative AUC values are consistent regardless of the value of T1.

As shown in Figure 50, STU outperforms all other algorithms while EU is performing

the worst in this experiment. Please note that the reported AUC results are for Scale

1 maps with averaging kernel of length 5 for TU, of size 5× 5 for SU, and 5× 5× 5

for STU.
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reported here were generated using Scale 1 maps with averaging kernel of length
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5.4.3 Neighborhood Selection

As shown earlier, in addition to the threshold T1, the neighborhood selection affects

AUC value. Additionally, scale of the saliency maps and size of the processing kernels

affect the performance of proposed estimation algorithm as well. In Figure 53, we

show the AUC values for the algorithms under test using different saliency map scales.

The experiment is conducted using saliency maps of scale 1, 2 and 3 and an averaging

kernel. In order to fix the kernel size relative to the support region size in the original

frame, we use different kernel size for each scale, as illustrated in Figure 51. In

Figure 53, Scale 1 experiment uses 5 × 5 for SU and 5 × 5 × 5 for STU. Similarly,

for Scale 2 : 11 × 11 for SU and 11 × 11 × 5 for STU, and for Scale 3 : 21 × 21 for

SU and 21 × 21 × 5 for STU. The length of TU kernel is fixed Lt = 5. We can see

that the change in AUC value is relatively small, thus, shows the effectiveness of

the proposed uncertainty algorithm even when saliency maps are considerably small

size. This feature of the proposed estimation algorithm can be exploited to reduce

the required computations, thus speeding up the estimation process without much

sacrifice in terms of performance. Please note that AUC value for EU algorithm

changes over different scales, due to true uncertainty U tr containing more details as

the scale increases.

Moreover, kernel size affects the performance of the proposed algorithm as well.

Figure 52 shows the performance of the estimation algorithms under test, in terms of

AUC values, when the estimation kernel size is changed. The experiment is conducted

using scale 2 saliency map and variable kernel size r (r for TU, r × r for SU, and

r×r×r for STU ). As shown in Figure 52, AUC of the proposed algorithm changes as

the size of the kernel changes. However, the change in TU performance is significantly

smaller than that of SU and STU because the number of pixels added into SU and

STU kernels is significantly more than the number of pixels added to TU kernel.

There is, however, a slight degradation in TU performance as the kernel size increases
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Figure 51: Kernel size changes between scales according to support region size.

(starting from Lt = 13 onwards), which can be attributed to including less relevant

pixel in the estimation process as the kernel size increase. For kernels of sizes 3×3×3

till 11×11×11, it can be seen that STU achieves higher AUC than SU. However, such

trend inverts starting from kernel size 13× 13× 13 onwards. This could be explained

by noting the similar trend in TU as the kernel size increases in time domain due

to inclusion of pixels that might be less relevant. The performance degradation in

STU (and Baseline as well) is more profound than TU because, for a kernel size of

n× n× n, n2 pixels are added to STU estimation process for every additional frame

while only a single pixel is added for TU estimation. It is important here to clarify

that these results are obtained for the whole dataset (50 videos). Thus, trends that

are observed here are not necessarily true for every video type. We discuss in details

the performance as related to the video categories in the next section.

5.4.4 Video Categories

Given the diverse nature of scenes and dynamics in the dataset, we evaluate the

performance of our proposed algorithm for each category in the dataset. For these
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experiments, we set T1 = 0.55 and use Scale 1 saliency maps. Table 2 shows AUC

values for TU (Lt = 5), SU (Lsx = 5), ST+SU, STU (Lstx = 5), EU, and Baseline

(Lstx = 5), for each category, separately. As shown in Table 2, AUC values for the

proposed algorithm are above 0.5, indicating that the proposed algorithm is advan-

tageous over random guessing. Additionally, the algorithm performs better than EU

in every category and in some by a wide margin. One interesting result is that AUC

for Saccadetest video is significantly higher than other categories for all algorithms

considered here. This can be attributed to its non-complex structure, which shows

a disk moving against a light textured background. Notably, STU achieves highest

performance in every category except Saccadetest. This could be attributed to its

relative constant scenes in the first segment of the video.

Moreover, we explore the effect of kernel size on the estimation performance.

In these experiments, we focus on STU, however, TU, SU, and SU+TU exhibit

similar behavior. Figure 54 shows AUC for STU estimation algorithm on three

video categories; saccadetest, tv-talk, and gamecube for kernel sizes: Lstx = 3, 7, 11,

and 15, using Scale 2 saliency maps and T1 = 0.55. As shown in Figure 54, as the

kernel size increases, STU performance on saccadetest degrades indicating that the

relevance saliency context in saccadetest video is strictly local and including more

pixels than direct neighbors degrades uncertainty estimation performance. Indeed,

the structure of saccadetest video justifies these results due to its simplicity. In

contrast, gamecube video uncertainty estimation results increase as the kernel size

increase. This indicates that the set of correlated saliency pixels for gamecube is larger

than its direct neighbors. The large set of correlated saliency pixels in gamecube might

be explained by its complex structure and the fact that these videos contain multiple

salient actors in the same scene making it more difficult to capture saliency context

from small local neighborhoods. On the other hand, STU performance in estimating

uncertainty for tv-talk reaches maximum level in intermediate kernel sizes and then
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decreases as we increase the kernel size, indicating that the most appropriate kernel

size to capture relevant saliency context is half the frame size.

5.4.5 Comparison across various datasets and saliency models

In this section, we present evaluation results for the proposed algorithm across various

datasets. We compare the performance of the proposed algorithm using videos from

three datasets: CRCNS [46], DIEM [66], and AVD [65]. Figure 55 shows the the AUC

values of the five uncertainty estimation methods using videos from the three datasets.

In Figure 55, STU performance is the highest among all datasets. In general, the

trend and ranking between the uncertainty estimation methods is consistent across

the three datasets.

Additionally, we present the evaluation results for the proposed algorithm across

using three saliency models: 3DFFT [61], STSR [77], and PQFT [31]. Figure 56

shows the AUC values of the five uncertainty estimation algorithms. In Figure 56, a

consistent trend and ranking between the five algorithms exist across all three saliency

models, where STU achieves the highest AUC value.

Moreover, we evaluate the proposed algorithm, in terms of the computed uncer-

tainty map distribution versus uncertainty ground truth maps distribution, using four

distribution-based metrics; Jeffrey Divergence (JD), Jensen-Shannon divergence (JS),

Histogram Intersection (HI), L2-norm. As shown in Table.3, the proposed algorithm

provides the closest distribution to that of the ground truth maps across all four

metrics and all datasets.
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Table 2: List of AUC value for different categories using fixed threshold T1 = 0.55

and Scale 1 saliency maps. Note that the highest AUC value in each category

is labeled in green and lowest AUC value in red. Also, the category with the

highest AUC in the dataset is shown in bold

TU [4] SU [3] SU+TU STU EU [23] Baseline

beverly 0.5793 0.8088 0.7174 0.8130 0.5835 0.6915

gamecube 0.5987 0.7636 0.7155 0.7913 0.5906 0.6834

monica 0.6152 0.7801 0.7240 0.7994 0.5728 0.6506

saccadetest 0.7722 0.8734 0.8216 0.8587 0.8458 0.8308

standard 0.5866 0.7190 0.6609 0.7462 0.5165 0.5841

tv-action 0.7481 0.8466 0.7970 0.8667 0.7245 0.6491

tv-ads 0.5565 0.7248 0.6565 0.7476 0.5228 0.5360

tv-announce 0.4555 0.6679 0.5550 0.7321 0.4434 0.5818

tv-music 0.5548 0.6721 0.6236 0.7427 0.4471 0.5771

tv-news 0.5051 0.6497 0.5885 0.6947 0.4861 0.5029

tv-sports 0.5156 0.6746 0.6170 0.7172 0.5020 0.5368

tv-talk 0.5692 0.7142 0.6393 0.7364 0.5299 0.5250
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CHAPTER VI

UNCERTAINTY ESTIMATION USING

SPATIOTEMPORAL ANALYSIS

6.1 Enhanced Uncertainty-based Framework for Video Saliency
Applications

As mentioned before, video saliency application tend to utilize the computed saliency

maps without an evaluation of its accuracy. To enable a systematic analysis of the

computed saliency maps, we proposed an uncertainty-based framework, section 5.1,

that aims to improve the current pipeline by estimating the uncertainty of the com-

puted saliency maps and utilizing the estimated uncertainty to inform the decision

making process. We have also shown, in Chapter 5, that an effective uncertainty

estimation can be achieved by relying on the consistency of the saliency map which

reveals some aspects regarding the accuracy of the computed saliency map. How-

ever, a significant amount of information about the video saliency is embedded in the

video frames themselves which might be useful for uncertainty estimation. Addition-

ally, we have shown, in Chapter 3, that motion information, both the scene motion

and camera motion, contributes significantly to the visual attention. Therefore, we

expand our uncertainty-based framework, proposed in section 5.1, to include motion

information extracted from the video frames as shown in Figure 57.

Similar to the original uncertainty-based framework in Figure 47, the extended

framework, Figure 57, enables a separation between the saliency detection and the

decision making model by incorporating uncertainty information. However, the un-

certainty estimation itself takes as its input both the saliency map coming from the

saliency detection algorithm and motion information coming from an abstraction
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Figure 57: Enhanced Uncertainty-based framework for improving

saliency-enabled video processing algorithms

layer. This abstraction step is used here to be a general representation of feature

extraction algorithms rather than a specific algorithm. Unlike the case where video

frames are fed directly to the uncertainty estimation algorithm, separating uncer-

tainty estimation from extracting uncertainty-relevant information from video frames

enables tackling each problem separately.

6.2 Multi-factor Uncertainty Estimation

As discussed in Chapter 3, pixels in eye-fixation maps are correlated and visual

saliency is mostly consistent where changes in saliency values happen gradually. Thus,

sudden changes in saliency value, compared to its local neighborhoods, should lower

our trust in that particular spatiotemporal event. Based on these assumption, we

proposed in Section 4.2 an uncertainty estimation feature based on spatiotemporal

cues that takes these assumption into account.

Formally, given a saliency map S of size M × N and of depth K frames, the
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spatiotemporal uncertainty feature map FSTU of the same size and depth as S ap-

proximates the saliency value divergence from its spatiotemporal local neighborhood

mean. The estimation is efficiently computed by processing the map S according to

Eq.(39):

FSTU = γ
∣∣αS ∗WL1×L2×L3

∣∣, (39)

where
∣∣.∣∣ is the operation to find the absolute value and d = 1, 2, ...D is the scale

label, L1×L2×L3 is the size of the spatiotemporal kernel WL1×L2×L3 , α is a scaling

factor for the saliency map to fix its range to be [0,1], and γ is a scaling factor for

the uncertainty map to ensure the output range is [0,1]. We use a simple averaging

kernel defined as follows

WL1×L2×L3 =


R−1
R

at the center

− 1
R
, otherwise,

(40)

where R = L1 × L2 × L3. The design of WL1×L2×L3 can be viewed as the difference

between saliency value and a moving average window of size L1 × L2 × L3. Appro-

priately sized, WL1×L2×L3 can follow the changes in the scene and, to some extent,

approximates the common trend of pixel saliency change over time.

Additionally, we showed, in Chapter 4, that motion plays a major role in explain-

ing video scenes and how the complexity of motion and subjects’ prior information can

affect the predictability of visual attention in these videos. For example, tv-sports03

(scene from TV coverage of basketball game) shown in Figure 58(a) and beverly06

(scene of a park with people walking and running) shown in Figure 58(b) both con-

tain motion. However, according to prediction results shown in Figure 59, beverly06

is much easier to predict using a simple regression model compared to tv-sports03, as

shown in Section 4.3. We believe this is due to complexity of motion in tv-sports03

where different players constantly change their positions across the basketball court
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to optimize their game play. In tv-sports03, the attention of subjects is mainly con-

centrated on the small basket ball rather than the players, which is not properly

highlighted in tv-sports03 optical flow map. On the other hand, beverly06 shows a

scene with static background and only few objects moving. Therefore, the optical

flow map of beverly06, shown in Figure 58(c), corresponds to the visual saliency in

the scene, which explains the accuracy of the optical flow based prediction. Therefore,

we use optical flow of the video frames as one of the factors to estimate uncertainty.

Formally, given a video V of size M ×N ×K, first, we downsample the video frames

by a factor β, then compute optical flow feature map FOF using [58] according to Eq.

41:

FOF =
∣∣∣∣G ∗ (V β)OF

∣∣∣∣, (41)

where
∣∣∣∣.∣∣∣∣ is the operation of computing the magnitude, G is a Gaussian kernel to

smooth out the optical flow map discontinuities, which are due to compression and

interlacing artifices in the video dataset [47], ∗ is the convolution operator, (V β)OF

is the optical flow of the β-downsampled video frames.

Furthermore, we have shown, in Chapter 4, that camera motion plays a consid-

erable role in controlling viewing patterns. Let us consider gamecube02 (a scene of

video game play), shown in Figure 60(a), and standard05 (a scene of camera sweep

recording a social event), shown in Figure 60(b), to examine camera motion effect on

the predictability of subjects viewing patterns. In gamecube02 as the player moves the

character throughout the video game, the in-game camera system keeps track of the

changes and constantly centers the character in middle of the screen leading to out-

of-plane motion On the other hand, camera motion parallel to and perpendicular to

salient objects can be easily modeled as in the case of standard05 as the mosaic shown

in Figure 60(b). In standard05, subjects attention is motivated by continuous flow of

new information about the scene details, which is caused by camera motion. Hence,
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(a) tv-sports03 sample frame (b) beverly06 sample frame

(c) tv-sports03 optical flow (d) beverly06 optical flow

Figure 58: Motion complexity affects the correlation between the frames of

eye-fixation map and may lowers the confidence in the computed saliency maps
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standard05 prediction results, shown in Figure 61, based on motion cues closely resem-

ble the correlation in the eye-fixation data unlike the case of gamecube02. Therefore,

we use camera motion as one of the factors to estimate uncertainty. However, instead

of a detailed frame-by-frame camera motion estimation, we propose using a general

label for the whole video as one of five choices (Top, Bottom, Left, Right, Center). To

represent these labels numerically, we use linearly changing maps, as shown in Figure

62, to indicate our prior knowledge regarding the camera motion direction. Formally,

given a video V of size M ×N ×K, we compute camera motion feature map FCM ,

of the same size and depth as V , according to Eq. 42:

FCM (m,n, k) = C1 + C2Cmm+ C3Cnn+ C4

√
(m−mcenter)2 + (n− ncenter)2, (42)

where C1, C2, C3, and C4 are values used to differentiate between the various camera

motion directions, Cm and Cn are normalization factors to ensure that the feature

map FCM ∈ [0, 1], m = 1, 2, ...,M , n = 1, 2, ..., N , and k = 1, 2, ..., K, and mcenter

and ncenter are the spatial coordinates of the center pixel in FCM .

Based on these features, we propose a multi-factor uncertainty estimation algo-

rithm using Gradient Boosting Trees (GBT) [27] summarized in Figure 63. After

computing the three feature maps using Eq. 39, Eq. 41, and Eq. 42, we construct a

feature vector xi ∈ Rd, where i = 1, 2, ...,M ×N ×K and x is a d-length real-valued

vector, by unfolding an L1 × L2 neighborhood around pixel i in each of the feature

maps FSTU , FOF , and FCM that corresponds to the label yi. Using the training

and optimization procedures specified in [27], we train an ensemble of classification

and regression trees (CARTs) [10] to find the parameters that minimize the objective

function as follows:

min
MNK∑
i=1

(yi − ŷi)2 +
T∑
i=1

Ω(fi) (43)

where M , N ,and K are the dimensions of the video V , yi is the true label for the
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(a) Sequence gamecube02 frames showing out-of-plane camera motion.

(b) Mosaic of standard05 frames showing motion parallel to image plane

Figure 60: Camera/background motion with fixed main actor vs. cam-

era/background motion parallel to image plane
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Figure 61: Correlation analysis between eye-fixation map frames shows that

camera motion plays a significant role in visual attention.
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Figure 63: Illustration of the proposed Multi-factor Uncertainty Estimation.

i-th instance , Ω is the regularization term to minimize the complexity of the trained

CARTs (fi’s), T is the total number of CARTs in the trained ensemble and ŷi is the

estimated label for training which is computed according to:

ŷi =
T∑
k=1

fk(xi), fk ∈ F (44)

where xi is the feature vector, fk’s are the trained CARTs, T is the total number of

CARTs in the trained ensemble, and F is the set of all possible CARTs.

6.3 Experimental Results

We conducted three sets of experiments to study several aspects of the proposed

algorithm. In the first set, we compare the relative performance based on the fixed

threshold T1, according to the evaluation framework proposed in 5.3. We evaluate

and compare the performance of the proposed algorithm using:

• Spatiotemporal Uncertainty (STU ) as described in 5.2

• Temporal Uncertainty (TU ) as described in [4]
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• Spatial Uncertainty (SU ) as described in [3]

• Naive fusion of Spatial and Temporal Uncertainty (SU+TU ), a pixel-wise ad-

dition of TU and SU maps

• Entropy-based Uncertainty (EU ) [23]

• Local variance of spatiotemporal neighborhood, labeled Baseline

• Multi-factor Uncertainty (mU ) as described in 6.2

The performance of these algorithms is quantified in terms of Area-Under-the-Curve

(AUC) values of their corresponding Receiver-Operating-Characteristic (ROC) curves.

We, also, show effects of kernel size of the feature map FSTU on the proposed algo-

rithm’s performance. Details on data and experiments procedure are provided in

the datasets section while the performance evaluation methodology is detailed in

5.3.The second set of experiments are designed to show performance of the proposed

uncertainty estimation algorithm given different categories of videos. The third set

of experiments verifies the performance of the proposed algorithms using additional

datasets and saliency detection models.

6.3.1 Datasets and Experiment Setup

We tested the proposed multi-factor uncertainty estimation algorithm using three

publicly available databases: CRCNS [46], DIEM [66], and AVD [65]. The CRCNS

[46] database includes 50 videos, with the resolution being 480×640 and the duration

ranging from 5 to 90 seconds with 30 frames per second. The videos contents are

diverse with a total of 12 categories ranging from street scenes to video games and

from TV sports to TV news. In many cases the videos contain variations of lighting

conditions, severe camera movements, and high motion blur effects. Eye fixation data

are provided with each video, recorded for a group of eight human subjects watching

the videos under task-free view condition. The DIEM [66] database includes 85
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videos, with varying resolutions and duration up to 130 seconds with 30 frames per

second. The videos content are mainly limited to TV and film content including film

trailers, music videos, and advertisement. The eye fixation data are collected from

250 participants under task-free view conditions. The AVD [65] database includes 148

videos, with varying resolutions and mean duration of 22 seconds with 30 frames per

second. The video contents are limited to moving objects, landscape, and faces. The

eye fixations data are collected from 176 observers. The AVD dataset contains two

sets of videos of the same visual content but one with audio and the other without.

According to their findings on the effect of audio on the attention of the participants,

we only select the videos without associated audio.

For our experiments, we generated saliency maps for the videos using a recent

algorithm based on 3D FFT local spectra (3DFFT) [61]. However, for validation,

we also share the results from two additional saliency models: STSR [77] and PQFT

[31], which are shown at the end of this section. In most of our experiments, the

saliency maps are reduced in size to three different scales. Scale 1 is of size 12×16; a

downscale of frames original size 480×640, where every 40×40 region in the original

frame corresponds to a single pixel in Scale 1. Similarly, Scale 2 saliency maps are

24 × 32, where every pixel is equivalent to 20 × 20 region of pixels in the original

sized frame, and Scale 3 saliency maps are 48 × 64, where every pixel is equivalent

to 10 × 10 regions. Unless stated otherwise, saliency maps used in all experiments

are generated from downscaled frames to be Scale 1 and generated using 3DFFT.

As for the algorithm parameters, we are using an ensemble of size 65, 3 × 3 local

neighborhood of the feature maps which results in feature vector xi ∈ IR27, and the

reported results are computed using 5-fold cross-validation tests.
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Figure 64: Examples illustrating that relative uncertainty estimation perfor-

mance is independent of fixed threshold T1 applied to true uncertainty.

6.3.2 Threshold Selection

The performance evaluation procedure described earlier utilizes a fixed threshold T1

to transform the continuous valued true uncertainty U tr to binary ground truth.

First, we examine the impact of changing the value of T1. The algorithms under

consideration are: Temporal Uncertainty (TU ), Spatial Uncertainty (SU ), Fused

Spatial and Temporal Uncertainty (SU+TU ), Spatiotemporal Uncertainty (STU ),

Spatiotemporal local variance (Baseline) computed on the same neighborhood as

STU, Entropy-based Uncertainty (EU ), and Multi-factor Uncertainty (mU ). Figure

64 shows the performance of these algorithms in terms of AUC versus T1. As shown

in Figure 64, T1 directly affects AUC value; as the value of T1 increases, the AUC
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Figure 65: The effect of learning ensemble size on the performance of the

proposed algorithm.

value of all algorithms considered here decreases. It is also interesting to point out

that the gradient of AUC levels-off as T1 reaches higher values. Although we can see

that T1 value significantly changes AUC, conclusions based on relative AUC values

are consistent regardless of the value of T1. As shown in Figure 64, mU outperforms

all other algorithms, by a big margin, while EU is performing the worst in this

experiment. Please note that the reported AUC results are for Scale 1 maps with

averaging kernel of length 5 for TU, of size 5× 5 for SU, 5× 5× 5 for STU, 3× 3× 3

for mU.

6.3.3 Number of Learners

In most of our experiments, we use an ensemble of size 65, which we found to produce

the highest results. As shown in Figure 65, the effect of the ensemble size is noticeable.

As we increase the size of the ensemble, the AUC values increase until an ensemble

of size 50, after which the AUC values levels off and doesn’t change much.

114



6.3.4 Kernel Size

Moreover, kernel size affects the performance of the proposed algorithm as well. Fig-

ure 66 shows the performance of the estimation algorithms under test, in terms of

AUC values, when the estimation kernel size is changed. The experiment is conducted

using scale 2 saliency map and variable kernel size r (r for TU, r × r for SU, and

r × r × r for both STU and mU ). As shown in Figure 66, AUC of the proposed

algorithm changes as the size of the kernel changes. However, the change in TU per-

formance is significantly smaller than that of SU and STU because the number of

pixels added into SU and STU kernels is significantly more than the number of pixels

added to TU kernel. There is, however, a slight degradation in TU performance as

the kernel size increases (starting from Lt = 13 onwards), which can be attributed to

including less relevant pixel in the estimation process as the kernel size increase. For

kernels of sizes 3 × 3 × 3 till 11 × 11 × 11, it can be seen that STU achieves higher

AUC than SU. However, such trend inverts starting from kernel size 13 × 13 × 13

onwards. However, the negative effects of the kernel size increase, in the case of STU,

does not affect the proposed mU. In fact, as the size of the kernel increase the per-

formance of mU improves. This might be explained by noting that the estimation in

mU algorithm, unlike STU, is highly non-linear because of the use of an ensemble of

decision trees which are able to infer higher order relationships between features [10].

6.3.5 Video Categories

Given the diverse nature of scenes and dynamics in the CRCNS dataset, we evaluate

the performance of our proposed algorithm for each category in the dataset. For these

experiments, we set T1 = 0.55 and use Scale 1 saliency maps. Table 4 shows AUC

values for TU (Lt = 5), SU (Lsx = 5), ST+SU, STU (Lstx = 5), EU, Baseline (Lstx

= 5), and mU (Lstx = 5), for each category, separately. As shown in Table 4, AUC
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values for the proposed algorithm are above 0.5, indicating that the proposed algo-

rithm is advantageous over random guessing. Additionally, the algorithm performs

better than EU in every category and in some by a wide margin. One interesting

result is that AUC for Saccadetest video is significantly higher than other categories

for all algorithms considered here. This can be attributed to its non-complex struc-

ture, which shows a disk moving against a light textured background. Notably, mU

achieves highest performance in most categories. Comparing STU and mU, we find

that mU outperforms STU in the categories where motion plays a major role in

explaining the scene, like gamecube, saccadetest, and tv-sports.

6.3.6 Comparison across various datasets and saliency models

In this section, we present evaluation results for the proposed algorithm across various

datasets. We compare the performance of the proposed algorithm using videos from

three datasets: CRCNS [46], DIEM [66], and AVD [65]. Figure 68 shows the the AUC

values of the six uncertainty estimation methods using videos from the three datasets.

In Figure 68, mU performance is the highest across all datasets. In general, the trend

and ranking between the uncertainty estimation methods is consistent across the three

datasets.

Additionally, we present the evaluation results for the proposed algorithm using

three saliency models: 3DFFT [61], STSR [77], and PQFT [31]. Figure 67 shows the

AUC values of the six uncertainty estimation algorithms. In Figure 67, a consistent

trend and ranking between the six algorithms exist across all three saliency models,

where mU achieves the highest AUC value.

Moreover, we evaluate the proposed algorithm, in terms of the computed uncer-

tainty map distribution versus uncertainty ground truth maps distribution, using four

distribution-based metrics; Jeffrey Divergence (JD), Jensen-Shannon divergence (JS),

Histogram Intersection (HI), L2-norm. As shown in Table.5, the proposed algorithm
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Figure 67: The performance of the proposed algorithm using the saliency

models 3DFFT [61], STSR [77], PQFT [31]

is among the best algorithms that provides the closest distribution to that of the

ground truth maps. Interestingly, even though mU has a higher performance, than

STU, in AUC metric, this is not reflected in the distribution-based metrics. This is

caused by the splitting and partitions of the feature space in CART models which

produces a spiky histogram of the estimated labels [35], as shown in histogram plots

in Figure 69. Even though the profile of the histogram of mU matches that of the

ground truth closer than STU in many examples, it suffers from the problem of par-

titions of the feature space in CART models which generates the same estimation for

a large range of input features. This leads to the spiky shape of the histogram shown

in Figure 69.
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Table 4: List of AUC value for different categories using fixed threshold T1 = 0.55

and Scale 1 saliency maps. Note that the highest AUC value in each category

is labeled in green and lowest AUC value in red. Also, the category with the

highest AUC in the dataset is shown in bold

TU [4] SU [3] SU+TU STU EU [23] Baseline mU

beverly 0.5793 0.8088 0.7174 0.8130 0.5835 0.6915 0.7748

gamecube 0.5987 0.7636 0.7155 0.7913 0.5906 0.6834 0.8562

monica 0.6152 0.7801 0.7240 0.7994 0.5728 0.6506 0.8014

saccadetest 0.7722 0.8734 0.8216 0.8587 0.8458 0.8308 0.9259

standard 0.5866 0.7190 0.6609 0.7462 0.5165 0.5841 0.7261

tv-action 0.7481 0.8466 0.7970 0.8667 0.7245 0.6491 0.8433

tv-ads 0.5565 0.7248 0.6565 0.7476 0.5228 0.5360 0.8342

tv-announce 0.4555 0.6679 0.5550 0.7321 0.4434 0.5818 0.7855

tv-music 0.5548 0.6721 0.6236 0.7427 0.4471 0.5771 0.8513

tv-news 0.5051 0.6497 0.5885 0.6947 0.4861 0.5029 0.7732

tv-sports 0.5156 0.6746 0.6170 0.7172 0.5020 0.5368 0.8251

tv-talk 0.5692 0.7142 0.6393 0.7364 0.5299 0.5250 0.8134
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CHAPTER VII

CONCLUSIONS

7.1 Contributions

Saliency detection has been incorporated into various image and video processing

algorithms to improve performance and mimic the advanced processing capability

of the human vision system (HVS). However, there has been no explicit design of a

saliency-based video processing framework, to the best of our knowledge. Most of

the proposed methods do not analyze the validity of saliency maps generated online,

but rather design or choose a saliency detection algorithm that exhibits good perfor-

mance in evaluation datasets, and then hope for the best when the algorithm goes

online. Therefore, we propose a unified framework for enhancing video processing

algorithms using saliency that is neither application- nor algorithm-specific and can

be reliable in real world scenarios. The proposed framework analyzes the saliency

map and produces associated uncertainty map that describes the level of confidence

in the generated saliency map. By reliably estimating uncertainty, we can expand the

framework to include a systematic decision-making procedure that makes application-

specific decisions. Additionally, having a separate module for decision making helps

clarify which assumptions are application-specific and which ones are saliency related.

Knowledge about the application space can influence the design of this module with-

out making drastic changes to the whole framework. Similarly, the availability of

uncertainty estimations allows for risk assessment that can be used to guide the op-

timization of video processing algorithms. We expand the framework beyond relying

only on saliency maps for estimating uncertainty, to rely on the motion information

extracted from video frames.
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We address the problem of quantifying the uncertainty of computational saliency

for videos by, first, exploring the spatial correlations in both the saliency map and the

eye-fixation map. Then, we learn the spatiotemporal correlations that define a reliable

saliency map. We study spatiotemporal eye-fixation data from the public CRCNS

dataset and investigate a common feature in human visual attention, without making

any assumption about the structure of the eye-fixation maps. By employing basic

concepts from information theory, the analysis shows a substantial correlation between

the saliency of a pixel and the saliency of its neighborhood. Our experiments showed

a reduction of roughly 50%, across all videos, in pixel entropy when conditioned on

its local neighbors’ average. The experiment shows that local correlation exists in

saliency perceived by HVS. Thus, saliency map’s pixels ought to be highly correlated

with their local neighbors. The analysis also provides insights into the structure and

dynamics of the eye-fixation maps.

Motivated by this analysis, we investigated the predictability of spatial correlation

of eye-fixation maps using motion cues extracted from optical flow maps. We showed

that motion in some video sequences dominates as the main salient stimuli, while

other sequences have different stimuli. Our research might provide an alternative

quantitative approach to describing human attention. We believe such an approach

is very important for many saliency applications. For example, uncertain ground truth

data can be validated based on this approach. The various correlations discussed in

the paper can also be used as measures of the reliability of detected saliency, thus

being a guide for optimizing saliency-based video processing.

Based on the self-correlation study, we design a feature that estimates a pixel-

wise uncertainty map that reflects our supposed confidence in the associated com-

putational saliency map by relating a pixel’s saliency to the saliency of its direct

neighbors. To estimate such uncertainties, we measure the divergence of a pixel, in

a saliency map, from its local neighborhood. Additionally, we propose a systematic
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procedure to evaluate uncertainty estimation performance by explicitly computing

uncertainty ground truth as a function of a given saliency map and eye fixations of

human subjects. In our experiments, we explore multiple definitions of locality and

neighborhoods in spatiotemporal video signals. In addition, we examine the relation-

ship between the parameters of our proposed feature and the content of the videos.

The proposed feature is developed in an unsupervised fashion, making it more suit-

able for generalization to most natural videos. Also, it is computationally efficient and

flexible for customization to specific video content. Experiments using three publicly

available video datasets show that the proposed feature outperforms state-of-the-art

uncertainty estimation methods with improvement in accuracy up to 75% and offers

efficiency and flexibility that make it more useful in practical situations.

Finally, we combine the analysis and the features designed in our experiments

on saliency maps into a unified multi-factor uncertainty estimation algorithm based

on Gradient Boosting Trees (GBT). The proposed algorithm utilizes spatiotemporal

cues computed from the saliency maps, scene motion estimated by optical flow maps,

and camera motion maps. The proposed algorithm outperforms state-of-the-art un-

certainty estimation method by a wide margin and achieves up to 93% accuracy. To

summarize, we have the following contributions:

1. Uncertainty-based framework for improving saliency applications reliability

2. Correlation analysis of eye-fixation maps on video datasets

3. Novel Unsupervised video feature for uncertainty estimation

4. Prediction model for eye-fixation correlation using optical flow maps

5. Multi-factor uncertainty estimation of video saliency maps

6. Application-independent uncertainty evaluation procedure
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7.2 Prospective Research Directions

Given the limited work in uncertainty estimation in visual saliency applications, there

are many aspects that needs further study and analysis. In Chapter 3, we presented a

study on the self-correlation of eye-fixation maps and saliency maps without relying on

assumptions regarding the structure of eye-fixation maps. However, further analysis

on this correlation is needed to gain a deeper understanding. For example, a high level

model that links spatiotemporal events in the eye-fixation maps with each others and

how they affect the global attention given the well-known Winner Takes All (WTA)

phenomenon in visual attention research.

In Chapter 4, we showed that the self-correlation of eye-fixation maps can be

predicted from motion cues using a simple linear regression model. Therefore, a

continuation of this work would be to analyze the predictability of the self-correlation

maps by analyzing higher-order visual attention targets such as faces and text.Such

extension can improve our understanding of the predictability of eye-fixation maps

and ultimately improves our ability to estimate uncertainty in saliency maps.
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