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SUMMARY 

This thesis focuses on two separate topics, one lying at the intersection of health 

care and statistics, and the other one rising from classical statistical inference. Chapters 2 

through 4 address the first topic. They explore and improve techniques for comparing both 

efficacy and cost-effectiveness of cancer therapies. Chapter 5 focuses on the second topic. 

It proposes a new estimator for the number of binomial experiments when the success 

probability is unknown. 

Chapter 2 of my thesis establishes an overall ranking of efficacy of possible 

interventions in patients with advanced or metastatic melanoma within a Bayesian setting.  

Currently, chemotherapy is established as the standard of care for melanoma, but is often 

associated with poor responses and short survival. However, recent groundbreaking 

discoveries in tumor biology and immune surveillance have yielded effective molecularly 

targeted therapies and immune agents. These new treatments have changed the therapeutic 

scenario to a completely new reality of high response rates, prolonged disease control, and 

the possibility of talking of a cure for some patients. These positive results have opened 

new avenues in the treatment of melanoma patients and, as expected, added layers of 

complexity to management of those patients. We perform a network meta-analysis in a 

hierarchical Bayesian random-effects model to assess the role of immunotherapies and 

targeted therapies. We also evaluate the impact of immunotherapy biomarkers within a 

hierarchical Bayesian setting with a view to support and improve the therapeutic decision-

making process. 
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Chapter 3 evaluates indirectly the effectiveness of two treatments for advanced 

castration-resistant prostate cancer (CRPC). Prostate cancer is the most commonly 

diagnosed cancer. It eventually progresses to CRPC. CRPC is one of the leading cause of 

cancer-related deaths among men in developed countries. Two novel androgen receptor 

pathway inhibitors, abiraterone acetate and enzalutamide, have recently become available. 

They have been developed with the aim of prolonging survival, minimizing complications, 

and maintaining or improving quality of life in patients with advanced or metastatic CRPC. 

However, these two treatment options have not been compared head to head against each 

other in a prospective randomized fashion. In order to choose the optimal treatment and 

the optimal sequencing of treatments, we perform two analyses. The first one is a 

comparative effectiveness study within a Bayesian hierarchical setting. The second one is 

a sequencing assessment of treatments in the context of exponential survival models, 

informed by Bayesian meta-analyses with between and within study variance components.  

Chapter 4 proposes an improved methodology for conducting both meta-analysis 

and secondary data analyses based on randomized controlled trials. One of the deficiencies 

inherent to traditional methodology is the lack of individual patient-level data which serves 

as a basic ingredient for secondary analyses. This shortcoming is handled by recovering 

the raw time-to-event data through the inverted Kaplan-Meier equations and simulations. 

The recovered survival distributions are then modeled within a Bayesian semi-parametric 

framework. We use a hierarchical Dirichlet Process to model discrete-time event 

probabilities across the time-line up to last follow-up, and a truncated Weibull model to 

model the tail of the distribution. This approach avoids assumption about the shape of the 

survival distributions up to the last follow-up time, allows incorporation of censored data, 



 xvii 

and accommodates study-to-study heterogeneity. The parametric nature of the Weibull 

model on the other hand is well suited to making inferences about the survival curve in the 

absence of data. Finally, patient-level disease trajectories are modeled using a Bayesian 

Markov model. We demonstrate this methodology using simulations and a study on 

advanced non-small cell lung cancer.  

Finally, Chapter 5 presents a new approach to the binomial n problem, which 

concerns the estimation of the number of binomial experiments when the success 

probability is unknown. Some real-life situations, where the problem arises, include the 

estimation of the number of unreported crimes as well as the number of undetected 

software errors. Due to its inherent instability, the problem remains fundamentally difficult. 

Furthermore, neither one of the two parameters of the binomial distribution are unbiasedly 

estimable when both are unknown. We present an efficient method of estimating the 

number of trials using a beta-binomial MLE approach. In the absence of replications, when 

inference about the parameter of interest is not possible, we present a Bayesian approach 

applied in the context of contingency tables.
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CHAPTER 1. INTRODUCTION 

In recent years, many new scientific and technological advancements have emerged, 

and an overwhelming amount of data has become available. On the scientific and 

technological front, there has been an exponential progress and advancement in many 

fields. Some discoveries in the past 15 years include reprogramming of stem cells [1], 

confirming the existence of dark matter [2], producing self-driving cars [3], and others. On 

the data front, facilitated by the internet of things, the role of data has rapidly evolved. The 

astonishing volume and variety of data, that has recently been produced, has transformed 

the world into so called data-driven reality.  

Science, technology and data go hand in hand. Data is a key ingredient to developing 

new scientific and technological tools. Science and technology are necessary to produce, 

collect, process and understand data. The high-impact nature of the three fields together 

has provided many opportunities. Together, they are integral components of the decision 

making and policy making process. However, sometimes limitations on the scientific and 

technological front lead to knowledge gaps on the data front. Scientific and technological 

research is often restricted by funding, time, resources, or all three together. These 

limitations present a challenge because knowledge gaps can in turn hinder the decision-

making process and prevent further scientific and technological progress. This thesis 

focuses on overcoming the knowledge gap in the context of statistical methods.  
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1.1 Part I 

The first part of this thesis focuses on bridging certain knowledge gaps related to cancer 

care. The goal of Chapters 2 through 4 is to support and improve the therapeutic decision-

making process and direct future scientific and technological cancer research efforts.  

In recent years, there has been a wave of dramatic successes in the research and 

treatment of cancer. This progress has been the direct result of revolutionary scientific and 

technological advances as well as new development in data analysis. A few such novel 

therapeutic/ diagnostic development approaches include immunotherapy, tumor-agnostic 

therapy, adoptive T cell therapy, as well as gene therapy. The pace at which the US Food 

and Drug Administration (FDA) is approving new cancer treatments is unprecedented. In 

2016 alone, the FDA approved five uses for immune checkpoint inhibitors in cancer care 

[4]. From November 2016 through October 2017, the FDA approved a record eighteen new 

cancer treatments and thirteen uses of cancer therapies [5]. With an increased availability 

of treatments, physicians face an increasing number of treatment options. However, 

usually, only a small fraction of the treatments are directly compared against one another 

in a prospective randomized fashion. Trials are expensive. Funding for clinical research, 

on the other hand, is limited. Additionally, clinical trials take years to conduct, and cost 

oncologists’ work and patients’ lives. Often, conducting studies is not feasible. This is 

problematic when deciding between compelling treatments that haven’t been directly 

compared before or when choosing the best treatment for a particular patient when an 

overall ranking of all possible treatments is lacking.  
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The primary goal of Chapter 2 is to establish an overall ranking of efficacy of possible 

interventions in patients with advanced or metastatic melanoma. Malignant melanoma is 

one of the most aggressive types of cancer [6]. Before recent therapeutic advances, once 

the disease progressed to a metastatic stage, it was almost always fatal [7, 8]. Recent 

groundbreaking discoveries in tumor biology and immune surveillance have yielded 

effective molecularly targeted therapies and immune agents in patients who have reached 

metastasis. Immunotherapies are treatments that boost the immune system. 

Immunotherapy was named Advance of the Year in ASCO’s 2017 cancer progress report 

[4]. Molecularly targeted therapies target specific disease genes or proteins associated with 

them. Immunotherapies and targeted therapies have rapidly changed the outlook for cancer 

patients. They have achieved high response rates, prolonged disease control and improved 

survival [9-13]. Both strategies have changed the therapeutic scenario of advanced 

melanoma, turning the clinical decision-making a challenging task. With these major 

advances in research and multiple options now available, a better understanding of how all 

available treatments compare to each other is needed for selecting the right treatment for a 

particular patient. However, only a handful of those treatments have been compared 

directly against each other in a clinical study setting. To fill this knowledge gap, this 

chapter presents extended comparisons of immunotherapies and targeted therapies for 

advanced melanoma by incorporating direct and indirect evidence from sixteen published 

trials. Additionally, we evaluate the impact of certain expressions and mutational status on 

immunotherapy efficacy.   

Chapter 3 performs a comparative effectiveness analyses between two compelling 

treatments in advanced castration-resistant prostate cancer (CRPC) that haven’t been 



 4 

directly compared before. Prostate cancer poses a significant health problem today. It is the 

second most common cancer among men [14].  In 2017, prostate cancer alone accounted 

for almost one in five new cancer diagnoses [15]. Most prostate cancer patients with 

metastases eventually progress to CRPC within a median of one year [14]. As a result of 

research efforts over the past decade, two novel treatments, abiraterone acetate and 

enzalutamide, have recently emerged for the treatment of CRPC. Both therapies are 

androgen receptor pathway inhibitors. Androgen receptor has been shown to play an 

important role in the development and progression of prostate cancer [16]. Abiraterone and 

enzalutamide have each been shown to prolong survival [17, 18]. However, these two 

treatments haven’t been directly compared before in a randomized study. To bridge the gap 

between practitioners and patients, we compare indirectly the effectiveness using evidence 

from four randomized trials. We also investigate the optimal sequence of treatments.  

Finally, Chapter 4 assesses the cost-effectiveness of pembrolizumab as compared to 

chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). Lung cancer 

is one of the most common causes of cancer related death [15]. It is the single leading cause 

of cancer death among those aged 40 years or older [15]. Due to relatively late diagnosis 

of lung cancer cases, scientific advances for lung cancer have been slower in contrast to 

most other cancers [15]. As of 2013, platinum-based chemotherapy was standard treatment 

for most patients with NSCLC [19]. However, recent scientific advances have led to the 

discovery of new paradigms for the treatment of NSCLC. In particular, immunotherapies 

have shown promising results. One such novel treatment is pembrolizumab. In late 2016, 

preliminary results of a new randomized trial showed superiority of pembrolizumab over 

standard platinum-based combination chemotherapy [20]. The FDA granted 
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pembrolizumab accelerated approval for the treatment of patients with metastatic NSCLC 

[21]. Pembrolizumab has shown impressive clinical results, but analysis of cost-

effectiveness of new therapies is imperative to ensure that they are used in an appropriate 

and sustainable manner. Currently, such cost-effectiveness analysis is lacking. We assess 

the cost-effectiveness of pembrolizumab in both the United States, and the United 

Kingdom.  

Throughout chapters 3 and 4, we address one additional issue, that is the lack of raw 

time-to-event data at the individual level. Currently, the standard practice in reporting of 

results from randomized controlled trials is to publish summary statistics, and not the raw 

data. Alsheikh-Ali et al found that only 9% of original research papers published in high-

impact journals made the raw research data available [22]. The summary statistics that are 

usually reported include efficacy measures such as hazard ratios and odds ratios. And yet, 

these measures do not constitute sufficient statistics for conducting secondary analysis, 

such as treatment efficacy analysis, cost-effectiveness analysis, analysis of sequencing of 

treatments, and others. We overcome this shortcoming by reconstructing the patient-level 

survival data.  

In conclusion, part I of this thesis aims to provide and improve evidence-based 

knowledge with a view to help practitioners with the development of new policies and 

practices related to cancer care.  

1.2 Part II 

The second part of this thesis bridges the knowledge gap in certain scenarios where 

data cannot be observed due to limitations, and has to be inferred instead. Consider the 
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following three scenarios. The first one is presented by Draper and Guttman and involves 

an appliance repair company [23]. The company is interested in estimating the number of 

a certain type of appliance in use in a certain service area based on the weekly total number 

of defective appliances sent in for repair. The second scenario is concerned with the 

estimation of the total number of crimes when many of them remain unreported [24]. 

Finally, the third one is related to software systems [25]. Often, there are errors introduced 

in the software development process. Reviewers can inspect for errors, but often a few 

errors remain undetected, and the estimation of the number of undetected errors becomes 

an important task. In these three scenarios, we observe partial counts (number of defective 

appliances, number of reported crimes, and number of detected errors), while the real 

interest lies in the total unobserved counts (total number of appliances, total number of 

crimes, and total number of errors respectively). And yet, the probabilities of observing a 

certain number of defective appliances, or crimes, or errors are also unknown. In Chapter 

5 of this thesis, we focus on bridging the gap between what is observed and what cannot 

be observed, and estimate the number of binomial experiments when the success 

probability is unknown.  
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CHAPTER 2. A SYSTEMATIC REVIEW AND NETWORK 

META-ANALYSIS OF IMMUNOTHERAPY AND TARGETED 

THERAPY FOR ADVANCED MELANOMA 

2.1 Introduction 

Recent groundbreaking discoveries in tumor biology and immune surveillance have 

yielded effective molecularly targeted therapies and immune agents, changing the scenario 

from one of poor responses and short survival to a completely new reality of high response 

rates, prolonged disease control, and the possibility of talking of a cure for some patients 

[9-13]. Blocking the BRAF-MEK pathway–commonly hyperactive in melanoma–has 

proved worthwhile. A sizeable number of trials have shown that BRAF inhibitors (BRAFi) 

and MEK inhibitors (MEKi) improve clinical outcomes when compared to chemotherapy 

[26-32]. The role of the immune system in controlling melanoma is well established and 

immune checkpoint inhibitors have shown promise in reinvigorating the immune system, 

successfully showcasing the enormous potential of drugs that manipulate immune 

surveillance for the first time in oncology [33-37].  

These positive results have opened new avenues in the treatment of melanoma 

patients and, as expected, added layers of complexity to management of patients with 

advanced disease. A number of studies have compared competing treatments to one 

another, but an overall ranking of possible interventions is lacking. The number of options 

has grown markedly and defining the best therapeutic plan for a particular patient is now a 

formidable task. This Bayesian network meta-analysis of randomized controlled trials aims 
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to establish relative efficacy of immunotherapy, molecularly targeted therapies, and 

chemotherapy, either alone or in combination, in patients with advanced or metastatic 

melanoma with a view to support and improve the therapeutic decision-making process. 

2.2 Patients and Methods 

2.2.1 Search strategy 

We searched PubMed, Embase, Clinicaltrials.gov, Cochrane Central Register of 

Controlled Trials, World Health Organization International Trial Registry, drugs at FDA, 

and Society of Melanoma Research, ASCO, ESMO, and ECCO meetings using a 

combination of broad terms related to melanoma and drug therapy, namely melan*, 

random*, immunotherapy, BRAF*, MEK*, and chemotherapy (full list of terms in 

Appendix A). References in recovered studies and relevant reviews were also screened. 

Databases were searched from their inception until December 21st 2015. No language 

restrictions were applied. We followed a predefined protocol (PROSPERO number 

CRD42016038618) in accordance with the PRISMA guideline for network meta-analysis 

[38]. 

2.2.2 Study selection 

We searched databases and assessed eligibility of studies based on abstracts and  

full texts, resolving disagreements by consensus. Eligible studies were (1) randomized 

controlled trials enrolling patients with metastatic or advanced melanoma and describing 

outcomes of interest, (2) randomized patients to chemotherapy, targeted therapy against 

the BRAF/MEK axis or immunotherapy (not vaccine, viral therapy or biochemotherapy), 
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and (3) BRAF and/or MEK inhibitor trial restricted inclusion to patients known to harbor 

BRAF mutations. Second-line BRAF-MEK inhibitor studies were eligible if the first-line 

therapy had not been BRAF-targeted therapy. Studies with insufficient follow-up (≤6 

months) or comparing different chemotherapy regimens were excluded. In the case of 

duplicated publication on the same study, the most up-to- date data were used. We 

acknowledged that inclusion criterion (4) would exclude NRAS-mutated patients. 

2.2.3 Data extraction 

We retrieved data from randomized control trial (RCT) full publications and relevant 

appendices guided by an extraction form. The items of interest were: trial name, first 

author, year of publication, number of patients, length of follow-up, methodology details 

(randomization, allocation concealment and blinding methods, use of intention to treat 

analysis), intervention details (drugs, doses, length of use), patient characteristics (median 

age, performance status, previous therapy, if any) and outcomes of interest (overall 

survival, progression-free survival, response rate). Disagreements were resolved by 

consensus. 

2.2.4 Outcomes of interest 

Hazard ratios for overall survival (OS) and progression-free survival (PFS), and odds 

ratios for response rate (RR), were collected or calculated for all included RCTs. We 

abstracted data from original intention-to-treat multivariate analysis whenever possible; 

thus, avoiding those derived from landmark analysis or solely based on median 

comparisons. We adhered to the definition of progression and the criteria used by each trial 

[39]. 
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2.2.5 Data synthesis and statistical analysis 

The comparison of treatments was performed by incorporating both direct and 

indirect effects within a Bayesian network meta-analysis. Standard meta-analysis is a 

method of combining evidence from multiple trials of a single comparison into a single 

effect size. The key here is that traditional meta-analysis does not allow the comparison of 

treatments if they have not been previously compared directly in a RCT.  

The idea behind network meta-analysis was only recently proposed and generalized 

by Bucher (1997) and Hasselblad (1998) [40, 41]. The term network meta-analysis was 

later coined in 2002 by Lumley, who proposed the application of linear mixed model in the 

presence of multiple treatments [42]. The network meta-analysis model allows the 

assessment of relative effectiveness of two treatments when they have not been compared 

directly in a RCT but have each been compared to other treatments. It strengthens inference 

regarding relative efficacy of treatments by synthesizing both direct and indirect evidence 

into a single effect size. Additionally, it facilitates the simultaneous ranking of all 

treatments and provides a global estimate of comparative treatment effectiveness. Most 

importantly, it allows the estimation of within- and between-study heterogeneity and the 

detection of inconsistency between randomized trials.  

The method proposed by Lumley is restricted to trials with only two arms. To 

overcome this limitation, Lu and Ades extended the meta-analysis model developed by 

Smith, Spiegelhalter and Thomas [43], and proposed a hierarchical Bayesian network 

meta-analysis for multi-arm studies based on Markov Chain Monte Carlo algorithm [44]. 
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We performed network meta-analysis within a hierarchical Bayesian random-effects 

model, with relative efficacy measures, hazard and odds ratios, analyzed on the log-scale 

and random effects for study: 

log 𝜃𝑖,𝑗 ~Normal(𝑥𝑖,𝑗
′ 𝛽, 𝜎𝑖

2 + 𝜏2) 

where  

𝜃𝑖,𝑗 ∶   hazard ratio (odds ratio) 𝑗 reported in study 𝑖  

𝑥𝑖,𝑗 ∶  treatment contrast 𝑗 in study 𝑖 

𝛽 ∶  vector of treatment effects relative to chemotherapy 

𝜎𝑖
2 ∶  within − study variance for study 𝑖 

𝜏2 ∶  between − study variance in treatment comparisons.  

The distribution of all parameters was weighted by a distribution of prior beliefs. 

Parameters were given either non- or weakly informative priors letting the pooled data 

dominate the posterior distribution. Weakly informative priors were used for the mean 

treatment effects, placing 95% of the prior probability on hazard (odds) ratios between 1/10 

(1/20) and 10 (20), so that the pooled data dominated the posterior distribution. In 

particular, the effectiveness of treatment 𝑘 relative to chemotherapy 𝛽𝑘 was given the 

following weakly informative prior: 
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𝛽𝑘 ~ 

{
 
 

 
 N(0, (

log (10)

2
)
2

) for hazard ratios

N(0, (
log (20)

2
)
2

) for odds ratios

. 

 Priors for individual within study variances 𝜎𝑖
2 were specified via inverse gamma 

distribution with reported value as its mean and variance proportional to 𝐷𝑖, the number of 

events for OS or PFS outcomes 

𝜎𝑖
2 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (

𝐷𝑖
2
,
𝐷𝑖
2
𝜎̂𝑖
2), 

where 𝜎̂𝑖
2 is the reported variance for study i. For studies that did not report number of 

events (death for OS and progression or death for PFS), number of events were estimated 

by proxies as follows: for OS the assumption was that 50% of the randomized patients died, 

and for PFS 75% had PFS events by study cut-off.  

 Similarly, between-study variances 𝜏2 were assigned a weakly informative uniform 

distribution,  

𝜏 ~ 

{
 
 

 
 𝑈(0, (

log (2)

2
)
2

) for hazard ratios

𝑈 (0, (
log (5)

2
)
2

) for odds ratios

, 

which allows hazard (odds) ratios to vary by up to two-fold (five-fold) across studies.  

 Finally, within-study correlation among the two relative efficacy measures in the 

three arm trials was modeled as bivariate normal whose marginal distributions matching 

those described above and having a correlation coefficient, 𝜌. A non-informative prior 

distribution  
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𝜌 ~ 𝑈(0,0.95) 

was taken for 𝜌. 

Estimates from three-arm studies were modeled in the context of a bivariate normal 

distribution with the same weakly informative prior on the between study variance along 

with an uninformative prior on the within-study correlation.  

Samples from the posterior distribution of the parameters were generated via Markov 

Chain Monte Carlo implemented through JAGS within R http://mcmc-

jags.sourceforge.net/[45-47]. Ten chains were used with the first 100,000 iterations of each 

discarded as “burn-in”. Results are based on 500,000 iterations from each chain, thinned at 

a lag of 100.  

We calculated posterior mean hazard and odds ratios for relative efficacy of each 

therapy, along with credible 95% intervals, predictive 95% intervals, and probabilities of 

each treatment being better than a reference were calculated. Therapies which achieved the 

combined benchmarks (a) overall survival (OS) posterior mean HR ≤ 0.8 with probability 

better ≥ 80% as compared to chemotherapy, (b) progression-free survival (PFS) posterior 

mean HR ≤ 0.6 with probability better than chemotherapy ≥ 90%, and (c) response rate 

(RR) posterior mean OR ≥ 3.0 with probability better than chemotherapy ≥ 95% were 

deemed to have a meaningful benefit as compared to chemotherapy [48]. 

Additionally, we performed a traditional pairwise meta-analysis for all treatments 

that have been directly compared in a trial before. We used a model similar to the approach 

of DerSimonian and Laird published in 1986 [49]. 

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
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We tested the hypothesis that BRAF mutation status alters relative efficacy of 

immunotherapy. Interactions between BRAF mutation status and relative efficacies were 

incorporated in the model. We also tested the hypothesis that PD-L1 expression affects 

relative efficacy of immunotherapies CTLA-4-PD-1 dual blockage, PD-1 blockage and 

CTLA-4 blockage. We adhered to the trial definition of PD-L1 positivity. 

Study-to-study heterogeneity was summarized using predictive intervals, which 

provide an interval in which the relevant comparative efficacy measure would be expected 

to fall for a new study. Ranking and probabilities were calculated based on predicted 

relative effects drawn from the posterior. Quality of studies was assessed via Cochrane 

Collaboration’s tool for assessing risk of bias in randomized trials [50]. Publication bias 

was graphically assessed via funnel plot. 

2.3 Results 

2.3.1 Systematic review 

A total of 1750 published or presented titles and abstracts were screened. After 

duplicated review and discussion, 18 trials on 10 types of therapy, comprising 7596 

patients, had their data extracted. All trials were multicentric and reported in English. A 

sizeable number of trials used chemotherapy (dacarbazine, paclitaxel or temozolomide) as 

control arm. Trials assessing BRAF-MEK dual blockade used BRAFi as control arm and 

restricted enrollment to patients harboring BRAF mutations. When dealing with trials 

comparing MEK-chemotherapy versus chemotherapy, we restricted the data to BRAF-

mutated patients. No trial performed a head-to-head comparison of immunotherapy versus 
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BRAFi. The majority of excluded randomized trials failed to use BRAFi or immunotherapy 

as active comparator. 

Two trials have been omitted from the main analysis as they have not produced 

relevant data; one comparing dacarbazine to dacarbazine and ipilimumab and other 

comparing ipilimumab to ipilimumab and sargramostim (available upon request)[36, 51]. 

Hence, the main analysis gathered data from 16 trials with eight therapeutic nodes and 

6849 patients [26-28, 30, 33-35, 52-66]. 

All included evidence was intention-to-treat, based on standard analyses, from 

studies with low risk of bias, according to the Cochrane risk of bias tool (provided in Figure 

23 in Appendix A). No sign of publication bias was found using the funnel plot (provided 

in Figure 24 in Appendix A). The schematic flowchart of systematic review is presented in 

Figure 1. Table 1 summarizes the trails included in the main analyses. 

  



 16 

   
1354 records 

identified through 

database searching 

720 additional 

records identified 

through meeting 

abstracts review 

1750 records after 

duplicates removed 

1587 records excluded: 

 1477 not randomized 

 (retrospective, narrative reviews) 

 57 randomized to chemotherapy only 

 19 subgroup analyses 

 34 not advanced disease 

145 full-text articles excluded: 

 35 randomized to chemotherapy only 

 34 not randomized 

 32 trials in progress 

 25 biomarker analysis 

 7 updates on quality-of-life 

 3 not testing a standard BRAFi   

 [sorafenib] 

 2 testing endothelin inhibitor 

 2 testing elesclomol 

 2 different doses of same   

 immunotherapy 

 2 MEK therapy for BRAF status   

 unknown 

 1 MEK therapy for NRAS mutant only 

 1 different chemotherapies combined to      

 same immunotherapy 
163 full-text articles 

assessed for eligibility 

18 studies included in 

quantitative synthesis 

(16 in the main meta-

analysis) 

1750 records screened 

18 studies included in 

qualitative synthesis 

Figure 1. PRISMA flowchart of systematic review of studies included in the 

Bayesian network meta-analysis 
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Table 1: Main features of included trials - (A) BRAFi or MEKi trials and (B) 

Immunotherapy trials. 

Study 

Acronym NCT 

Population (line of 

therapy) 
Treatments N OS HR (95% CI) 

PFS HR 

(95% CI) 

Response 

(%) 

BREAK-3 [28, 

54] 

NCT01227889 

Unresectable stage 

III or IV BRAF 

V600E mutated 

(1st or 2nd) 

Dabrafenib 150 mg 

po bd 
187 0.77 (0.52-1.13) 

0.35 

(0.20–

0.61) 

93 (50) 

DTIC4 63 Reference Reference 4 (6) 

BRIM-3 [26, 

60] 

NCT01006980 

Previously 

untreated 

metastatic BRAF 

V600E mutated 

(1st) 

Vemurafenib 960 

mg po bd 
337 0.70 (0.57-0.87) 

0.38 

(0.32-

0.46) 

192 (57) 

DTIC4 338 Reference Reference 29 (9) 

BRF1132201 

[27, 52]  

NCT01072175 

Metastatic, no 

previous BRAFi; 

BRAF mutated 

(1st, 2nd, 3rd) 

Dabrafenib 150 mg 

po bd + trametinib 2 

mg po od 

54 0.79 (0.49-1.27) 

0.39 

(0.25-

0.62) 

41 (76) 

Dabrafenib 150 mg 

po bd + trametinib 1 

mg po od 

54 0.96 (0.57-1.60) 

0.56 

(0.37-

0.87) 

27 (50) 

Dabrafenib 150 mg 

po bd 
54 Reference Reference 29 (54) 

coBRIM [56, 

58] 

NCT01689519 

Previously 

untreated; 

unresectable stage 

III or IV; BRAF 

mutated (1st) 

Vemurafenib 960 

mg po bd + 

cobimetinib 60 mg 

po od 3 weeks on 1 

week off 

247 0.70 (0.55-0.90) 

0.58 

(0.46-

0.72) 

172 (70) 

Vemurafenib 960 

mg po bd + placebo 
248 Reference Reference 124 (50) 

COMBI-d [29, 

30] 

NCT01584648 

Previously 

untreated; 

unresectable stage 

IIIC or IV; BRAF 

mutated (1st) 

Dabrafenib 150 mg 

po bd + trametinib 2 

mg po od 

211 0.71 (0.55-0.92) 

0.67 

(0.53-

0.84) 

144 (68) 

Dabrafenib 150 mg 

po bd+ placebo po 

od 

212 Reference Reference 112 (53) 

COMBI-v [64, 

65] 

NCT01597908 

Previously 

untreated; 

metastatic; BRAF 

mutated (1st) 

Dabrafenib 150 mg 

po bd + trametinib 2 

mg po od 

352 0.66 (0.53-0.81) 

0.61 

(0.51-

0.73) 

226 (64) 

Vemurafenib 960 

mg po bd 
352 Reference Reference 180 (51) 

METRIC [53, 

59] 

NCT01245062 

Unresectable stage 

III or IV BRAF 

mutated (no 

previous BRAFi, 

MEKi or 

ipilimumab) (1st or 

2nd) 

Trametinib 2 mg po 

od 
214 

0.54 (0.32-0.92) 

[no cross-over 

(0.38; 0.15-0.95)] 

0.42 

(0.29-

0.59) 

47 (22) 

DTIC4 or 

Paclitaxel55 
108 Reference Reference 9 (8) 

NCT00338130 

[55] 

Previously 

untreated; 

unresectable stage 

III or IV (1st) 2 

Selumetinib 100 mg 

po bd continuously 
45 1.65 (0.91-3.01) 

1.24 

(00.73-

2.10) 

5 (11) 

Temozolomide 28 Reference Reference 3 (11) 

NCT00936221 

[63] 

Previously 

untreated; 

advanced 

BRAF-mutated 

cutaneous or 

unknown primary 

(1st) 2 

Selumetinib 75 po 

bd + DTIC4 
45 0.93 (0.57-1.53) 

0.63 

(0.40-

0.98) 

18 (40) 

Placebo po bd + 

DTIC4 
46 Reference Reference 12 (26) 
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Table 1 (Continued) 

(B)       

CheckMate 

037 

NCT01721746 

[33] 

Progression after 

ipilimumab (and 

BRAFi 

if BRAF mutated) 

(2nd or further 

Nivolumab 3 mg/kg 

iv every 2 weeks 
272 - - 38 (32) 

Carbotaxol6 or 

DTIC4 
133 Reference Reference 5 (11)   

CheckMate 

066 

NCT01721772 

[35] 

Previously 

untreated; 

unresectable, stage 

III or IV non-

uveal, BRAF wild 

type (1st) 

Nivolumab 3 mg/kg 

iv every 2 weeks + 

DTIC-placebo 

210 0.42 (0.25-0.73) 

0.43 

(0.34-

0.56) 

84 (40) 

DTIC4 + nivo-

placebo iv every 2 

weeks 

208 Reference Reference 29 (14) 

CheckMate 

067 

NCT01844505 

[57] 

Previously 

untreated; 

unresectable stage 

III or IV; BRAF 

mutated (1st) 

Nivolumab 3 mg/kg 

iv every 2 weeks + 

ipi-placebo iv 

316 - 

0.57 

(0.43-

0.76) 

138 (44) 

Nivolumab 1 mg/kg 

+ Ipilimumab 3 

mg/kg iv both 

every 3 weeks 4× 

then Nivolumab 3 

mg/kg iv every 2 

weeks 

314 - 

0.42 

(0.31-

0.57) 

181 (58) 

Ipilimumab 3 

mg/kg + nivo-

placebo 

iv every 3 weeks 

4× then nivo-

placebo iv every 2 

weeks 

315 - Reference 60 (19) 

CheckMate 

069 

NCT01927419 

[34, 67] 

Previously 

untreated; 

unresectable, stage 

III or IV (1st) 

Nivolumab 1 mg/kg 

+ Ipilimumab 3 

mg/kg iv every 

3 weeks 4× then 

Nivolumab 3 mg/kg 

iv every 

2 weeks (BRAF 

wild type) 

72 3 

0.40 

(0.23-

0.68) 

44 (61) 

Ipilimumab 3 

mg/kg + Placebo iv 

every 3 weeks 4× 

then Placebo iv 

every 2 weeks 

(BRAF wild type) 

37 - Reference 4 (11) 

Nivolumab 1 mg/kg 

+ Ipilimumab 3 

mg/kg iv every 

3 weeks 4× then 

Nivolumab 3 mg/kg 

iv every 2 weeks 

(BRAF mutated) 

23 - 

0.38 

(0.15-

1.00) 

12 (52) 

Ipilimumab 3 

mg/kg + Placebo iv 

every 3 weeks 4× 

then Placebo iv 

every 2 weeks 

(BRAF mutated) 

10 - Reference 1 (10) 

 



 19 

Table 1 (Continued) 

Keynote 002 

NCT01704287 

[62] 

Progression after 

ipilimumab and 

BRAFi if BRAF 

mutated (2nd or 

3rd) 

Pembrolizumab 2 

mg/kg iv every 2 

weeks 

180 - 

0.57 

(0.45-

0.73) 

38 (21) 

Pembrolizumab 10 

mg/kg iv every 2 

weeks 

181 - 

0.50 

(0.39-

0.64) 

46 (25) 

DTIC4 or 

paclitaxelb or 

temozolomide7 or 

carbotaxol8 

179 Reference Reference 8 (4) 

Keynote-006 

NCT01866319 

[66] 

Unresectable stage 

III or IV (1st or 

2nd) 

Pembrolizumab 10 

mg/kg iv every 2 

weeks 

183 0.58 (0.41-0.84) 

0.55 

(0.42-

0.72) 

62 (34) 

Pembrolizumab 10 

mg/kg iv every 3 

weeks 

185 0.68 (0.47-0.96) 

0.50 

(0.38-

0.66) 

60 (33) 

Ipilimumab 3 

mg/kg iv every 3 

weeks 4x 

181 Reference Reference 22 (12) 

NCT00257205 

[61] 

Previously 

untreated; 

unresectable stage 

III or IV (1st) 

Tremelimumab 10 

mg/kg every 90 

days 

328 0.9 (0.75-1.07) 

0.94 

(0.81-

1.11) 

36 (11) 

Temozolomide7 or 

DTIC4 
327 Reference Reference 32 (10) 

NCT, National Clinical Trial (NCT) number found on clinicaltrials.gov; N, number of enrolled patients; 

OS, overall survival; PFS, progression-free survival; HR, hazard ratio; BRAFi, BRAF inhibitor; MEKi, 

MEK inhibitor; po, oral; od, once a day; bd, twice a day; iv, intravenously; ipi-placebo, placebo matched to 

ipilimumab; nivo-placebo, placebo matched to nivolumab. 
1Included patients from randomized part (part C) of the trial. 
2BRAF mutation-positive data extracted from subgroup analysis. 
3Data available after systematic review and not included in the meta-analysis. 
4DTIC: Dacarbazine 1000 mg/kg iv every 3 weeks. 
5Paclitaxel: Paclitaxel 175 mg/m2 every 3 weeks. 
6Carbotaxol: Paclitaxel 175 mg/m2 plus carboplatin AUC 5 both iv every 3 weeks. 
7Temozolomide: temozolomide 200 mg/m2/d 5 days ON every 28 days. 
8Carbotaxol: Paclitaxel 225 mg/kg plus Carboplatin AUC 6 both iv every 3 weeks. 

 

2.3.2 Quantitative analysis 

The 16 trials were grouped across eight therapeutic nodes (6849 patients) according 

to type of therapy: chemotherapy, CTLA-4 blockade (CTLA-4i), PD-1 blockade (PD-1i), 

BRAF inhibitors (BRAFi), MEK inhibitors (MEKi), dual BRAF-MEK inhibitors (BRAFi-

MEKi), chemotherapy-MEKi, and dual CTLA-4-PD-1 inhibitors (CTLA-4i-PD-1i). 

Figure 2 describes the network design of treatments’ comparison. All standard 
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chemotherapies (paclitaxel, temozolomide, dacarbazine) were gathered into a single 

therapeutic node (chemotherapy), with analogous collapse for PD-1 drugs (nivolumab and 

pembrolizumab). BRAFi and MEKi results are restricted to BRAF mutated patients across 

all comparisons. The area of the circle in Figure 2 is proportional to the sample size of 

patients enrolled in each node; the width of connecting lines indicates the number of direct 

comparisons within trials. The nodes were organized based on the following groupings:  

- Chemo: chemotherapy; 

- *: MEKi + chemotherapy;  

- **: CTLA-4i-GMCSF;  

- ***: CTLA-4-chemotherapy;  

- Green circles: immunotherapy nodes;  

- Orange circles: BRAFi or MEKi-based nodes;  

- Blue circle: chemotherapy node.  

Number of patients in each node: CTLA-4i: 1172; PD-1i: 1527; CTLA-4i-PD-1i: 

409; CTLA-4-chemotherapy: 250; CTLA-4i-GMCSF: 123; MEKi single agent: 259; 

Chemotherapy: 804; BRAFi single agent: 1390; BRAFi + MEKi: 918; MEKi + 

chemotherapy: 45. Not all trials described all outcomes (Table 1). 
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Figure 2. Network diagram of therapeutic nodes. 

2.3.3 Efficacy 

Three therapies achieved meaningful benefit as compared to chemotherapy: PD-1 

blockade, BRAFi-MEKi combination and BRAFi. As evidenced by comparing the 

prediction and confidence intervals for OS, PFS and RR, study-to-study heterogeneity was 

present, but broadly had little impact on posterior ranking of treatments. 

2.3.4 Overall survival 

OS data were available for 12 (of 16) studies including 4817 patients. The results 

based on traditional pairwise meta-analysis and Bayesian network meta-analysis were 

aligned with no identifiable signal of inconsistency between indirect and direct approaches. 
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Three therapies improved OS when compared to chemotherapy, BRAFi-MEKi 

combination (HR: 0.50; 95% CrI: 0.34–0.74; 95% PrI: 0.31–0.82), PD-1i (HR: 0.52; 95% 

CrI: 0.36–0.75; 95% PrI: 0.32–0.83), and BRAFi (HR: 0.71; 95% CrI: 0.51–0.97; 95% PrI: 

0.46–1.09). PD-1i and BRAFi-MEKi performed similarly (HR: 1.03; 95% CrI: 0.60–1.76; 

95% PrI: 0.56–1.90) with probability of BRAFi-MEKi being superior to PD-1i of 55.8%. 

Both BRAFi-MEKi and PD-1i had high posterior probability of outperforming all 

competitors. Full comparative OS results are provided in Figure 3. Given high probabilities 

of outperforming competitor therapies, for PFS and RR, BRAFi-MEKi combination may 

be optimal for BRAF-mutated patients, whereas PD-1i may be optimal for BRAF wild-

type patients or selected BRAF-mutated patients.  

Despite the lack of OS data for CTLA-4i-PD-1i combination at the time of systematic 

review, PFS and RR data were suggestive that CTLA-4i-PD-1i could also achieve 

meaningful benefit and consequently be a top-ranking option irrespective to BRAF status 

(see below) [34, 57]. 

The results based on traditional pairwise meta-analysis were consistent with the 

results based on the Bayesian network meta-analysis (see Figure 4). Figure 5 displays a 

comparison of the results of the Bayesian network meta-analysis to the corresponding 

reported estimates from the 12 randomized studies of melanoma treatments in 4,817 

patients. 
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Figure 3. Overall survival network meta-analysis 
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Figure 4. Overall survival traditional meta-analysis 
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Figure 5. Overall survival details 

2.3.5 Progression-free survival 

Fifteen trials contributed to the PFS analysis. Worthy of note, the trial comparing 

tremelimumab (CTLA-4i) to chemotherapy provided 6-month time-restricted PFS data 

with tumor assessments done at different time points, every 6 weeks in the dacarbazine arm 

and every 12 weeks in the tremelimumab arm [61]. This study was not included in the PFS 

analysis.  
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Four therapies clearly stood better than chemotherapy: BRAFi-MEKi (HR: 0.22; 

95% CrI: 0.16–0.31; 95% PrI: 0.14–0.34), CTLA-4i-PD-1i (HR: 0.39; 95% CrI: 0.25–0.6; 

95% PrI: 0.23–0.66), BRAFi (HR: 0.39; 95% CrI: 0.29–0.52; 95% PrI: 0.26–0.59), and 

PD-1i (HR: 0.5; 95% CrI: 0.4–0.64; 95% PrI: 0.34–0.73). Single agent PD-1i and dual 

CTLA-4i-PD-1i, both outperformed CTLA-4i with corresponding posterior probability of 

99.5% (HR: 0.53; CrI: 0.42–0.68) and 99.9% (HR: 0.42; CrI: 0.3–0.57). CTLA-4i had 

similar performance to chemotherapy (HR: 0.94; CrI: 0.67–1.31).  

Dual BRAFi-MEKi yielded the best PFS results with a 96.2% posterior probability 

of outranking the remaining options, even when compared to CTLA-4i-PD-1i (HR: 0.56; 

CrI: 0.33–0.97). CTLA-4i-PD-1i and BRAFi stood close as next options (CTLA-4i-PD-1i 

vs. BRAFi HR: 1.00; 95% CrI: 0.6–1.67), both probably above single agent PD-1i. Full 

comparative PFS results are provided in Figure 6. Figure 7 contains the results from the 

traditional meta-analysis. Figure 8 shows that the estimates from the network meta-analysis 

are consistent with the published studies.  
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Figure 6. Progression-free survival network meta-analysis 
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Figure 7. Progression-free survival traditional meta-analysis 
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Figure 8. Progression-free survival details 

2.3.6 Response rate 

RR data were available for all studies. Bearing in mind that response under CTLA-

4i can be a late event, we included the tremelimumab versus chemotherapy trial in this 

analysis. Four therapies led to meaningful benefit (OR ≥ 3.0 and probability better ≥ 95% 

vs. chemotherapy): BRAFi-MEKi (HR: 19.76; 95% CrI: 10.45–37.35; 95% PrI: 9.19–

42.52), BRAFi (HR: 10.78; 95% CrI: 6.24–18.63; 95% PrI: 5.4–21.48), CTLA-4i-PD-1i 
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(HR: 7.25; 95% CrI: 4.09–12.86; 95% PrI: 3.57–14.7), and PD-1i (HR: 4.32; 95% CrI: 

3.07–6.09; 95% PrI: 2.52–7.45). Full comparative RR results are presented in Figure 9. 

Results from traditional meta-analysis are given in Figure 10, and results from the network 

meta-analysis are compared to published estimates in Figure 11. 

Dual BRAFi-MEKi therapy topped best with at least 97.1% posterior probability of 

being superior to any other treatment: CTLA-4i-PD-1i (OR: 2.73; CrI: 1.18–6.3), CTLA-

4i (OR: 17.2; CrI: 8.31–35.58), PD-1i (OR: 4.57; CrI: 2.24–9.31), MEKi (OR: 8.56; CrI: 

3.32–22.04), and BRAFi (OR: 1.83; CrI: 1.37–2.45). For BRAF-mutated patients, the 

second best option was BRAFi. CTLA-4i-PD-1i dual checkpoint blockade had a 94.3% 

posterior probability of being superior to single agent PD-1i (OR: 1.68; 95% CrI: 0.99–

2.84).  
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Figure 9. Response rate network meta-analysis 
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Figure 10. Response rate traditional meta-analysis 
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Figure 11. Response rate details 

2.3.7 PD-L1 expression and BRAF mutational status as biomarkers of response to 

immunotherapy 

The Bayesian network meta-analysis failed to identify any relevant impact of BRAF 

mutation status on efficacy of immunotherapy treatments for OS, PFS, or RR in all subsets 
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sought. The hazard ratios, 95% credible and predictive intervals of BRAF-mutated and 

wild-type patients were superimposable, which negates any role of BRAF status as a 

predictor of benefit of immunotherapy (Table 2). The posterior probability that BRAF+ 

patients had better efficacy of immunotherapies relative to chemotherapy, [P(BRAF+ 

better)] was from 21% to 50% for OS, 17% to 51% for PFS, and from 16% to 61% for RR. 

Also, 95% CrIs failed to show any difference according to BRAF mutation status. Results 

were similar for data selection containing first-line studies with results stratified by BRAF 

status; credible and predictive intervals did not show evidence of a difference between 

BRAF wild-type and mutation positive patients in terms of relative efficacy of 

immunotherapies. As all trials testing BRAFi limited the enrollment of BRAF+ patients, 

BRAF status was disregarded from the analysis henceforth 

Two immunotherapy trials provided information on outcomes according to PD-L1 

status [34, 57]. As the definitions of positive and negative tumor PD-L1 expression as well 

as the laboratory methods used to ascertain them were not homogenous across the two PD-

1 trials (Nivolumab: at least 5% of tumor cells with PD-L1 at any intensity at the 

membrane; Pembrolizumab: >1% tumor cells with membranous PD-L1 expression), we 

accepted the trials’ original cutoffs.   

For both PFS and RR, the Bayesian network meta-analysis failed to show any 

relevant impact of PD-L1 status on efficacy of CTLA-4i-PD-1i, PD-1i, or CTLA-4i. The 

hazard ratios and 95% CrIs of PD-L1 positive and PD-L1 negative patients overlapped, 

failing to identify any difference according to PD-L1 status (Table 3). The posterior 

probability that PD-L1 positive patients had better efficacy under CTLA-4i-PD-1i, PD-1i, 
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or CTLA-4i, (probability PD-L1+ better) was from 44% to 56% for PFS, and 62% to 83% 

for RR. 

Table 2. Comparison of treatments according to BRAF mutation status 

 

Table 3: Comparison of treatments according to tumoral PD-1 status 

 

 

2.4 Discussion 

This meta-analysis synthesizes the wealth of information on immunotherapy and 

BRAFi/MEKi for advanced melanoma, producing a ranking of the drugs currently 

available. The network approach attempts to circumvent the absence of direct comparisons 

among the many available options, notably the comparison of immunotherapy to BRAF-

MEK inhibition and among immunotherapies. The present meta-analysis suggests that dual 

BRAFi-MEKi is the most effective in improving OS, PFS, and RR of BRAF-mutated 

patients, outperforming other treatments. 
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Among the BRAF-MEK axis inhibition options, single-agent BRAFi ranked below 

BRAFi-MEKi combination, but could still offer higher benefits than single MEKi. These 

findings may prompt inquiry into how to manage dose reduction of MEKi and BRAFi in 

the event of toxicities likely to be caused by both drugs. However, clinically relevant this 

question is, it is beyond the scope of our study to provide such practical guidance. 

Appraising the PFS and RR scenarios, it was conceivable that BRAFi-MEKi would 

dominate them, as BRAF-MEK inhibition was already known to produce frequent and 

rapid responses, whereas immunotherapy may take longer to produce sustained tumor 

shrinkage and even lead to unconventional response patterns not properly captured by the 

standard response assessments [39, 68, 69]. CTLA-4i epitomized the immune response 

pattern: failed to improve PFS and RR when compared to chemotherapy, but prolonged 

OS, as the original trials suggested [36, 61]. Our findings underscore the perception that, 

standard PFS assessment may not be the best way to capture anti-tumor activity of 

immunotherapy. Nevertheless, it is noteworthy that dual BRAFi-MEKi also stood as the 

best option with regard to OS, even when compared to single-agent PD-1i. 

Notwithstanding the BRAF-MEK inhibition dominance, PD-1 blockade still ranked 

high in terms of OS, PFS, and RR. Hence, PD-1i may be an attractive option for BRAF 

wild-type patients and even for BRAF-mutated patients, as it ranked in second to BRAFi-

MEKi. OS results for combined CTLA-4-PD-1 immune checkpoint inhibition are not yet 

mature and longer follow-up may change the order of top-ranked therapies. Some very 

recent results have started to become available with promising long-term survivorship with 

dual immune checkpoint blockade [67]. Those findings seem to embody the preliminary 

reports of prolonged disease control under immunotherapy [13]. 
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We could not confirm the role of PD-L1 as a biomarker of response to PD-1i-based 

therapy. As currently tested, tumor PD-L1 expression did not better inform the patient 

selection for PD-1-based therapy, both PD-L1 positive and negative patients derived 

substantial benefit from PD-1-based therapy. This finding somewhat diverged from the 

realms of other tumors, showcasing the particular features of immune response within each 

tumor type [70]. Also, our results failed to show any impact of BRAF status on response 

to PD-1 therapy, confirming previous findings [71]. 

Several issues may be implicated on the lack of surrogacy of PD-L1 expression. The 

simplest one would be statistical power constrained by a small sample size. This indeed 

could have played a role, however, more than 800 patients—evenly divided between PD-

L1 positive and negative— provided data for this analysis. Another possibility would be 

the use of inadequate cutoffs. To properly assess this, individual patient data would be 

required. However, even if such data were available, the different antibodies and 

techniques would require careful consideration. Harmonization of laboratory methods 

should be enacted first, as is already occurring in lung cancer with the different PD-1/PD-

L1 agents. 

Lastly, baseline PD-L1 expression at a single tumor site may not be capable of fully 

capturing the complexity of anti-PD-1-led orchestration of immune system dynamics. It is 

conceivable that resetting a whole system—in the case of immune system—might be 

multilayered and continuously changing. 

The quest for excellent patient selection is key. Better patient selection transcends 

optimizing clinical outcomes. It can improve financial resource allocation, a real-world 
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hurdle to be crossed when new technologies are under consideration. Furthermore, 

identifying the most likely patients for immunotherapy will spare the nonresponders from 

fairly toxic therapies. The results of cooperative work on other tumors may enhance our 

understanding on this important topic [72-76]. 

Given the number of therapeutic options currently available for advanced melanoma, 

the sequencing of drugs is another crucial question. The wealth of information organized 

by this meta-analysis may shed light on the long-term therapeutic plan for melanoma 

patients. These nuances of clinical management are yet to be defined. However, we believe 

that clinicians will now be better informed for the decision-making process. Definitive 

results on sequencing of the various therapeutic options will add to the knowledge base 

[77, 78]. 

A major clinical concern is the effectiveness of immunotherapy after progressing 

under previous BRAF-MEK treatment. Two immunotherapy trials enrolled patients who 

had progressed while on BRAF-targeted therapy [33, 62]. No sign of loss of efficacy was 

identified with the use of PD-1 drug among this group of patients as compared to BRAF 

therapy-naïve patients. Such findings must be further validated and the opposite drug order 

also appraised, the latter being the question of active trials [78]. 

This meta-analysis faced several shortcomings inherent to the methodology applied. 

We had no access to individual patient data, precluding a more detailed appraisal of 

outcomes and patients’ characteristics. This is especially true for assessment of the role of 

PD-L1 expression, volume of disease, and presence of other known prognostic markers 

[79, 80]. We concentrated on efficacy foregoing analysis of toxicity, another major 
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practical concern on clinical grounds. The different cutoffs used for defining PD-L1 status 

hindered a more robust analysis of its relevance. The absence of overall survival data for 

CTLA-4-PD-1 trials is a major shortcoming and hopefully more data will become available 

in the near future [67]. Also, for the sake of simplicity, we analyzed all drugs in the same 

therapeutic node as identical (for instance tremelimumab and ipilimumab as CTLA-4i 

prototypes). Furthermore, the duration of response could not be formally assessed as the 

original trials lacked enough information for a comprehensive appraisal. 

Another concern was the publication and trial quality biases. We sought the most 

relevant databases in order to collect all published and presented trials so far, checked their 

references and references from relevant reviews and followed Cochrane′s guidelines on the 

topic. Also, we preplanned the inclusion of BRAFi or immunotherapy trials in order to 

concentrate on the most promising therapies; hence, some randomized trials testing other 

targeted therapies, such as sorafenib, oblimersen, or endothelin inhibitors were not meta-

analyzed. Trials enrolling personalized therapy to other targets, such as NRAS-mutant 

tumor, were not included [81]. With regard to the quality of trials included, nearly all trials 

were ascribed as high quality according to the Cochrane risk of bias tool, with the lack of 

placebo as the commonest source of likely bias. 

Furthermore, it is conceivable that gathering different drugs with different doses and 

regimens in the same node could lead to heterogeneity, and some heterogeneity was found 

among the several comparisons made. Nevertheless— and most importantly—direct 

comparison results were in line with the network results and the impact of heterogeneity 

on the ranking of therapy options was minimal. 
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 In spite of all those shortcomings listed above, we were able to formally compare 

different therapies and provide a clear rank of efficacy of the many available options for 

advanced melanoma. Abstracting all this sizeable amount of information, combined 

BRAFi-MEKi-targeted therapy seems to be a sound option at the present—even in light of 

emerging results of immune therapy—for BRAF-mutant patients. Longer follow-up in dual 

immune checkpoint trials coupled with further analysis of immune markers have the 

potential to further enhance outcomes in advanced melanoma. 
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CHAPTER 3. ABIRATERONE OR ENZALUTAMIDE IN 

CASTRATION-RESISTANT PROSTATE CANCER: INDIRECT 

COMPARISON 

3.1 Introduction 

Prostate cancer is the most commonly diagnosed cancer and the second leading 

cause of cancer-related deaths among men in developed countries [82]. In the United 

States, according to the National Cancer Institute’s Surveillance Epidemiology and End 

Results (SEER) database, prostate cancer prevalence in 2012 was estimated at 

approximately 890 per 100,000 men. Approximately 14.0% of men will be diagnosed with 

prostate cancer at some point during their lifetime.  

A significant majority of prostate cancers are diagnosed at an early-localized stage; 

however, some patients will relapse with disseminated disease while others are diagnosed 

with advanced cancer at initial presentation [83].  

Prostate cancer cells are dependent on androgen receptor (AR) signaling for growth 

and survival. Androgen-deprivation therapy is the standard of care for advanced or 

metastatic prostate cancer, and has been for decades [84-87]. Even though more than 90% 

of prostate cancer patients initially respond to androgen deprivation therapy; many tumors 

become refractory and castration-resistant with time.  

Multiple active treatment modalities have been developed for men with advanced 

castration-resistant prostate cancer (CRPC) with the aim of prolonging survival, 
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minimizing complications, and maintaining or improving quality of life. These agents have 

distinct modes of action and include chemotherapeutic agents, such as docetaxel and 

cabazitaxel, the immunotherapeutic agent, sipuleucel-T, the bone targeting alpha-emitting 

radionuclide, radium-223 chloride, as well as the novel androgen receptor (AR) pathway 

inhibitors abiraterone acetate (abiraterone) and enzalutamide [88-95].  

The development of novel anti-androgens and androgen synthesis inhibitors as a 

result of research efforts over the past decade show that CRPC remains dependent on AR 

function for growth by evolving multiple mechanisms to activate receptor signaling such 

as ligand independent activation of AR,  verexpression of the AR receptor, gain of function 

mutations in AR, and upregulation of androgen biosynthesis enzymes [96].  

Abiraterone acetate (AA), a pro-drug of abiraterone, is a selective irreversible 

inhibitor of the products of the CYP17 gene (including both 17,20-lyase and 17- alpha-

hydroxylase), and thereby blocks synthesis of androgens in tumor as well as in the testis 

and adrenal glands. Enzalutamide is an orally administered, potent next-generation 

antiandrogen agent that acts at multiple sites in the androgen receptor signaling pathway, 

including blocking binding of androgen to the androgen receptor, inhibition of nuclear 

translocation of the androgen receptor, and inhibition of the association of the androgen 

receptor with nuclear DNA. Unlike abiraterone, concurrent treatment with steroids is not 

required.  

AA and enzalutamide have both been investigated and shown to prolong overall 

survival in large phase III trials in both the pre- and post-docetaxel settings [91-94]. Large-

scale, prospective randomized trials testing the optimal sequencing of these treatments 
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have not yet been reported, nor have the two agents been compared head to head against 

each other in a prospective randomized fashion. There is some evidence from a number of 

small retrospective cohort studies suggesting limited activity of these agents when used in 

a sequential fashion either before or after docetaxel chemotherapy in advanced CRPC [97-

107]. Development of predictive biomarkers to facilitate the selection of patients for a 

specific therapy or sequence of therapies is the focus of ongoing efforts. Recently, the AR-

V7 splice variant, a truncated isoform of the AR that lacks the binding domain of both 

enzalutamide and AA, was shown to be associated with resistance to both agents as 

evidenced by inferior PSA50 response rates, PFS and OS [108]. AA and enzalutamide 

differ in the use of prednisone and in the incidence of toxicities, which can be used in the 

decision-making process either for upfront and sequential therapy. 

To assist practicing clinicians in decision-making, we performed two analyses, a 

comparative effectiveness study using available evidence from randomized studies and a 

sequencing assessment using additional available evidence from observational studies of 

enzalutamide and AA in a post-AR pathway inhibitor setting. Indirect meta-analyses are 

often used to provide preliminary guidance when head to head evidence is not available. 

In the comparative effectiveness study, enzalutamide and AA were compared 

indirectly in terms of OS, radiographic PFS, time to PSA progression, PSA response rates 

(RR), and adverse events in both the pre-docetaxel and post-docetaxel setting [91-94]. In 

the sequencing assessment, the treatment ordering of enzalutamide and AA are compared 

in terms of OS in the post-docetaxel setting, using both randomized and observational 

evidence [92, 93, 97-101, 103, 104, 106]. 
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3.2 Methods 

3.2.1 Comparative Effectiveness 

Indirect meta-estimates were generated in the context of a Bayesian hierarchical 

model with study specific efficacy estimates meta-analyzed on the log (of hazard or odds 

ratio) scale similarly to the approach found in section 2.2.5. The primary endpoint, OS, and 

secondary endpoints, radiographic PFS, time until PSA progression, and PSA response 

rate, were modeled as jointly multivariate Gaussian with mean depending on each study’s 

treatment contrast and variance-covariance matrix composed as the sum of a diagonal 

matrix of within study variances and a full dimensional between study variance-covariance 

matrix. Treatment effects considered were enzalutamide relative to placebo in the pre-

docetaxel setting, AA relative to placebo in the pre-docetaxel setting, modification of both 

enzalutamide and AA effects in the post-docetaxel setting, and modification of AA effects 

due to the addition of prednisone in the placebo arm in both the pre- and post-docetaxel 

settings. A Bayesian perspective is appropriate from a decision making (choosing the best 

treatment in a particular context) point of view, and allows seamless incorporation of 

sources of uncertainty. The primary measure of efficacy was posterior probability 

enzalutamide outperforms AA with prednisone in terms of OS on average. Secondary 

measures of efficacy were posterior probability enzalutamide outperforms AA with 

prednisone in terms of OS in an individual study setting, as well as hazard and odds ratios 

along with 95% credible and predictive intervals. Both pre- and post-docetaxel settings 

were of interest. 
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Throughout, priors were selected to reflect the range of realistically plausible 

parameter values. In particular, priors for enzalutamide and AA relative to placebo in the 

pre-docetaxel setting placed 95% of their mass on hazard ratios between 1/10 and 10 (odds 

ratios between 1/400 and 400), priors for the modification of both enzalutamide and AA 

effect in the post-docetaxel setting placed 95% of their mass on hazard ratios between 

1/1.25 and 1.25 (odds ratios between 1/1.5 and 1.5), and priors for the modification of AA 

effect due to the addition of prednisone in the placebo arm placed 95% of their mass on 

hazard ratios between 1/1.1 and 1.1 (odds ratios between 1/1.25 and 1.25). Priors for within 

study variances were taken as inverse gamma with mean equal to the reported (or 

recalculated) standard errors and variance proportional (conservatively) to each study’s 

total number of deaths. Priors for between study variances were taken as uniform on (0, 

0.175), allowing high prior probability of up to twofold differences in hazard and odds 

ratios across individual study settings, and priors for correlations between endpoints were 

taken as uniform on (0, 1) for between survival endpoints and uniform on (-1, 0) for 

between survival endpoints and response. A sensitivity analysis was performed by 

increasing the spread of the prior mass by approximately sevenfold for the priors for 

treatment effects and between study variances. Adverse event rates were summarized 

separately along with Wilson confidence intervals for each trial [109]. 

3.2.2 Sequencing Assessment 

Sequencing of enzalutamide and AA was assessed in the context of exponential 

survival models, informed by Bayesian meta-analyses with between and within study 

variance components. First, OS and PFS time to event data was extracted from published 

Kaplan-Meier curves, along with numbers at risk and censoring times, if available. Plots 
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were digitized using WebPlotDigitizer [110], and a custom built R [45] code was used to 

extract the raw time to event dataset. Censored data could only be characterized up to an 

interval between actual event times if censoring times were not provided. In this case, 

censoring times were taken at the lower bound of possible censoring times to provide a 

conservative estimate of information content. Then, for each time to event dataset, an 

exponential distribution was fit. In particular, the (monthly) rate parameter along with 

accompanying standard error were estimated for each time to event dataset. These rates 

were then meta-analyzed using a Bayesian model with between and within study variance 

components. Uninformative priors were used for the mean treatment effects by placing the 

mean at 0 and the within-study variance at 100 on the log hazard scale. A weakly 

informative prior was used for the between-study variance which placed 95% of the prior 

probability on hazard to varying up to two-fold across studies.  

For constructing the sequencing assessment, rates of interest were OS and 

progression in the initial AR pathway inhibitor setting and OS in the post-progression after 

AR pathway inhibitor setting. Notably, PFS time is the minimum of OS and progression 

time and, in the context of the exponential model, the rate corresponding to the progression 

event is the difference between the PFS and OS rates. Data sources for the sequencing 

assessment were both randomized and observational. Randomized controlled data from the 

comparative effectiveness study was utilized to inform the initial AR pathway inhibitor 

setting, while observational data was utilized to inform the post-progression after AR 

pathway inhibitor setting.  

The two sequencing strategies enzalutamide then AA and AA then enzalutamide, 

were compared by, separately for each strategy and for each of 10,000 draws from the 
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posterior distribution of rates, generating 5,000 initial AR pathway inhibitor OS and 

progression times and 5,000 post-progression after AR pathway inhibitor OS times. For 

each of these 5,000 sets of times, if the initial (strategy specific) AR pathway inhibitor 

progression time was before the OS time, then the strategy OS time was the sum of the 

initial AR pathway inhibitor progression time and the post-progression after AR pathway 

inhibitor OS time. On the other hand, if the initial (strategy specific) AR pathway inhibitor 

progression time was after the OS time, then the strategy OS time was simply the initial 

AR pathway inhibitor OS time. Based on each of these size 5,000 datasets (one dataset for 

each of 10,000 posterior draws) of OS times from initiation of first AR pathway inhibitor, 

several metrics of comparison were computed, HRs, median survival times, and 

probabilities of one- and two-year survival. Each of these metrics of comparison was 

summarized across the posterior as posterior median along with CrI. 

3.3 Results 

3.3.1 Comparative Effectiveness 

Characteristics and efficacy summaries of studies included in the comparative 

effectiveness study are summarized in Table 4. 

3.3.2 Overall Survival 

There was weak evidence that enzalutamide outperforms AA with prednisone in 

terms of OS in the predocetaxel setting with posterior probability enzalutamide better than 

AA with prednisone on average of 0.68 and posterior probability enzalutamide better than 

AA with prednisone in individual study of 0.64 (HR 0.91, 95% Credible Interval (CrI) 
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0.62–1.35, 95% Predictive Interval (PrI) 0.55–1.53). Similarly, there was weak evidence 

that enzalutamide outperforms AA with prednisone in terms of overall survival in the 

postdocetaxel setting with posterior probability enzalutamide better than AA with 

prednisone on average of 0.70 and posterior probability enzalutamide better than AA with 

prednisone in individual study of 0.66 (HR 0.90, 95% CrI 0.61–1.33, 95% PrI 0.54–1.50). 

Comparative effectiveness summarized in Table 5 and Figure 12. 

3.3.3 Secondary Endpoints 

There was strong evidence that enzalutamide outperforms AA with prednisone in 

terms of secondary endpoints radiographic PFS, time until PSA progression, and PSA 

response rate in both the pre- and post-docetaxel settings, with posterior probabilities 

enzalutamide better than AA with prednisone both on average and in individual studies 

exceeding 0.97. Comparative effectiveness summarized in Table 5 and Figure 12.  

Rates of adverse events grade ≥3 for enzalutamide versus placebo, pre-docetaxel 

were 46% versus 37% (𝑃 = 0.001), for abiraterone/prednisone versus placebo/ 

prednisone, pre-docetaxel were 48% versus 42% (𝑃 = 0.057), for enzalutamide versus 

placebo, postdocetaxel were 45% versus 53% (𝑃 = 0.012), and for abiraterone/prednisone 

versus placebo/prednisone, post-docetaxel were 23% versus 19% (𝑃 = 0.146). All 

reported adverse events are summarized in Table 18 in Appendix B. 

3.3.4 Sensitivity Analysis 

The results of the sensitivity analysis were broadly similar to the main analysis in 

both the pre- and post-docetaxel setting, with strong evidence of benefit for enzalutamide 
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relative to AA with prednisone in terms of secondary endpoints radiographic PFS, time 

until PSA progression, and PSA response rate. However, evidence of benefit for 

enzalutamide relative to AA with prednisone in terms of OS was very weak. Sensitivity 

analysis results summarized in in Appendix B. 

3.3.5 Sequencing Assessment 

Characteristics and monthly event rates of studies included in the sequencing 

assessment are summarized in Table 20 in Appendix B. Unfortunately, there was not 

sufficient data to perform a sequencing assessment in a pre-docetaxel setting. 

Our analysis provides evidence that in the post-docetaxel setting the AA then 

enzalutamide strategy may be associated with longer OS time than the enzalutamide then 

AA strategy. In particular, respective median survival times for the AA then enzalutamide 

strategy and the enzalutamide then AA strategy were estimated at 21.3 months (95% CrI 

16.6-28.9) and 14.7 months (95% CI 11-21.2), with posterior HR 0.66 (95% CrI 0.43-1.17) 

and posterior probability AA then enzalutamide better than enzalutamide then AA of 0.94. 

Results of sequencing analysis are summarized in Table 6. 
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Table 4: Summary of studies included in comparative effectiveness study 

Trial 

Patient 

population 

(N) 

Median 

follow 

up 

(month

) 

Treatment 

arms 

(n) 

Primary 

endpoint 
Secondary endpoints 

Overall 

survival 

Radiographic 

progression 

free survival 

Time to PSA 

progression 

PSA response 

ratec (RR) 

median 

(month

) 

HR 

(95% 

CI) 

median 

(month

) 

HR 

(95% 

CI) 

median  

(month

) 

HR 

(95% 

CI) 

RR 

OR 

(95% 

CI) 

PREVAI

L 

Progressiv

e CRPC 

pre-

docetaxel 

(N=1717) 

22 

Enzalutamide 

(n=872) 

not 

reached 0.77 

(0.67

-

0.88) 

not 

reached 0.32  

(0.28

-

0.36) 

11.2 0.17 

(0.15

-

0.20) 

59%d 
27.23 

(16.47-

45.03) Placebo 

(n=845) 
31.0 3.9 2.8 5%d 

COU-

AA-302 

Metastatic 

CRPC pre-

docetaxel 

(N=1088) 

27.1 

Abiraterone 

acetateb 

(n=546) 

35.3 0.81 

(0.70

-

0.93) 

16.5 0.52 

(0.45

-

0.61) 

11.1 0.50 

(0.43

-

0.58) 

68% 
5.38 

(4.15-

6.97) Placebob 

(n=542) 
30.1 8.2 5.6 29% 

AFFIRM 

Progressiv

e CRPC 

post-

docetaxel 

(N=1199) 

14.4 

Enzalutamide
a (n=800) 

18.4  

0.63 

(0.53

-

0.75) 

8.3  

0.40 

(0.35

-

0.47) 

8.3  

0.25 

(0.20

-

0.30) 

54.0%
e 

 

76.41 

(31.22-

187.04

) 
Placeboa 

(n=399) 
13.6 2.9 3.0 1.5%e 

COU-

AA-301 

Metastatic 

CRPC 

post-

docetaxel 

(N=1195) 

20.2 

Abiraterone 

acetateb 

(n=797) 

15.8 
 

0.74 

(0.64

-

0.86) 

5.6 
 

0.66 

(0.58

-

0.76) 

8.5 
 

0.63 

(0.52

-

0.78) 

29.5%  

7.15 

(4.53-

11.28) Placebob 

(n=398) 
11.2 3.6 6.6 5.5% 

aConcomitant administration with prednisone was allowed but not required; 
bconcomitant administration with prednisone; 
cresponse rate defined as PSA decline > 50%;  
ddenominator (enzalutamide) was 396, denominator (placebo) was 381;  
edenominator (enzalutamide) was 731, denominator (placebo) was 330. 
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Table 5: Meta-estimates for enzalutamide vs. abiraterone in the pre- and post-

docetaxel settings 

  
Overall 

Survival 

Radiographic 

Progression-

Free Survival 

Time to PSA 

Progression 

PSA 

Response 

Rate 

Enzalutamide 

vs. 

Abiraterone, 

Pre-Docetaxel 

Posterior 

Median 

Hazard 

Ratio 

0.91  

(95% CrI 

0.62-

1.35, 

95% PrI 

0.55-

1.53) 

0.61  

(95% CrI 

0.41-0.91, 

95% PrI 0.37-

1.03) 

0.37  

(95% CrI 

0.24-0.55, 

95% PrI 

0.22-0.63) 

5.91  

(95% CrI 

3.08-11.3, 

95% PrI 

2.83-

12.28)b 

Posterior 

Probability 

Hazard 

Ratio < 1a 

0.68 

(0.64) 
0.99 (0.97) 1.00 (1.00) 

1.00  

(1.00)b 

Enzalutamide 

vs. 

Abiraterone, 

Post-

Docetaxel 

Posterior 

Median 

Hazard 

Ratio 

0.90  

(95% CrI 

0.61-

1.33, 

95% PrI 

0.54-

1.50) 

0.61  

(95% CrI 

0.41-0.91, 

95% PrI 0.36-

1.03) 

0.37  

(95% CrI 

0.25-0.56, 

95% PrI 

0.22-0.64) 

6.21  

(95% CrI 

3.02-

12.66, 

95% PrI 

2.79-

13.65)b 

Posterior 

Probability 

Hazard 

Ratio < 1a 

0.70 

(0.66) 
0.99 (0.97) 1.00 (1.00) 

1.00 

(1.00)b 

aPosterior probability (predictive probability), bOdds ratio for response. 

 

Table 6: Sequencing assessment for AA then enzalutamide strategy and the 

enzalutamide then AA strategy in a post-docetaxel setting 

 AA then Enzalutamide Enzalutamide then AA 

Posterior HR 0.66 (95% CI 0.43-1.17) - 

Posterior Prob. HR < 1 0.94 - 

Median Survival Time (Months) 21.3 (95% CI 16.6-28.9) 14.7 (95% CI 11-21.2) 

Posterior Prob. One Year Survival 0.71 (95% CI 0.62-0.79) 0.58 (95% CI 0.47-0.7) 

Posterior Prob. Two Year Survival 0.45 (95% CI 0.34-0.57) 0.29 (95% CI 0.1-0.45) 
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Figure 12. Individual study estimates and comparative meta-estimates for efficacy 

outcomes for enzalutamide vs. abiraterone in the pre- and post-docetaxel settings 

3.4 Discussion 

Recent availability of multiple effective agents tested in randomized trials has 

added complexity to the decision-making algorithm in advanced prostate cancer. The lack 

of randomized head-to-head comparison data between AA and enzalutamide makes it 

difficult to choose the optimal first-line treatment either pre- or post-chemotherapy in 

patients with advanced or metastatic CRPC. 

We found that there is only weak evidence that enzalutamide is better than AA with 

prednisone in terms of OS in both the pre- and post-docetaxel setting. However, we found 
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strong evidence that enzalutamide outperforms AA with prednisone in terms of secondary 

endpoints radiographic PFS, time until PSA progression, and PSA response rate in both 

the pre- and post-docetaxel settings. Grade 3 or worse adverse event rates were similar 

between AA and enzalutamide in a pre-docetaxel setting, while there was some evidence 

that AA may have a lower grade 3 or worse adverse event rate than enzalutamide in a post-

docetaxel setting (see Table 18). Therefore, clinicians could consider enzalutamide over 

AA and steroid when looking for a robust PSA response, improvement in PFS and time to 

PSA progression. The choice of either drug should also be tailored based on patient 

preferences, requirement of concomitant administration of steroids, co-morbidities and 

drug accessibility. 

A sequencing assessment of available published trials provided some evidence that 

in a post-docetaxel setting, AA then enzalutamide upon progression may be associated with 

longer OS time than enzalutamide then AA upon progression. This finding in the 

sequencing assessment seems contradictory to the comparative effective analysis. There 

are a few potential explanations. First, there is the possibility that treatment with 

enzalutamide may adversely impact subsequent effectiveness of AA more than AA 

treatment adversely impacts subsequent treatment with enzalutamide. Another possibility 

is that, since evidence suggests that enzalutamide may extend time to progression without 

extending survival time, patients given initial enzalutamide are more likely to die before 

switching to AA. On the other hand, evidence suggests that patients initiated on AA are 

more likely to progress, and be switched to enzalutamide, before dying. Still another 

possibility is that the utilization of non-randomized data has led to an incorrect conclusion. 

Further evidence on sequencing is needed. 
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Our analysis becomes even more relevant with recent publication of three 

randomized clinical trials that suggest that androgen deprivation therapy (ADT) plus early 

docetaxel-based chemotherapy improves progression-free and overall survival in men with 

metastatic castration-sensitive prostate cancer compared with androgen deprivation 

therapy alone in high risk patients [111-113]. Enzalutamide may perform better as 

compared to AA with prednisone in these patients upon progression. 

There is also some evidence from a number of small retrospective cohort studies 

suggesting limited activity of these agents when used in a sequential fashion either before 

or after docetaxel chemotherapy in advanced CRPC [97-107]. Development of predictive 

biomarkers to facilitate the selection of patients for a specific therapy or sequence of 

therapies is the focus of ongoing efforts. Recently, the AR-V7 splice variant, a truncated 

isoform of the AR that lacks the binding domain of both enzalutamide and AA, was shown 

to be associated with resistance to both agents as evidenced by inferior PSA50 response 

rates, PFS, and OS [108]. Prospective combination and sequence studies using both these 

active agents to target the androgenbased pathway in advanced CRPC are ongoing [78, 

114, 115]. Data from a small prospective phase I/II study in 60 men was presented during 

a recent ASCO meeting [116]. Preliminary results show safety and no untoward 

pharmacokinetic interactions of this combination. 

The comparative effectiveness study and sequencing assessment presented here 

have a number of limitations and strengths. Both are limited by the indirect nature of 

comparisons between AA and enzalutamide, which rely on the quality of between study 

variance component estimates and a lack of systematic interaction between individual 

study characteristics and treatment efficacy. Further, lack of individual patient data 
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precludes detailed identification of sources of study-to-study heterogeneity. The 

sequencing assessment is further limited by the inclusion of observational data, for which 

a causal link between treatment and outcomes cannot be established concretely due to 

various forms of confounding. On the other hand, all included studies were well-executed 

with objectively defined endpoints. There was no evidence of publication bias. The 

Bayesian approach is well-adapted to choosing between treatments with no a priori 

preference. In particular, the posterior probability that one treatment is better than the other 

summarizes the chance, conditional on the data, that one treatment outperforms the other. 

The posterior hazard ratio estimates, along with confidence and predictive intervals, 

indicate how much better might be reasonably expected. In contrast, a traditional 

hypothesis testing perspective is biased towards the null hypothesis, in a sense. In the 

absence of evidence strong enough to refute a pure sceptic, the null hypothesis is selected. 

On the whole, this comparative effectiveness study represents a high-quality synthesis of 

best-available evidence on the comparison of first-line AA and enzalutamide. 

3.5 Conclusions 

We sought to compare indirectly the effectiveness of abiraterone acetate and 

enzalutamide in advanced CRPC. Our results show that in a pre-docetaxel setting, 

enzalutamide may be a better drug than AA with prednisone in terms of radiographic PFS, 

time until PSA progression, and PSA response rate. In a post-docetaxel setting, 

comparative effectiveness analysis showed that enzalutamide may outperform AA with 

abiraterone in terms of secondary end points. The results of our analyses may help guide 

clinicians in making best treatment decisions with their patients. Prospective randomized 
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trials are eagerly awaited to provide insight on the optimal treatment sequence and 

combinations in this patient population.  
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CHAPTER 4. COST-EFFECTIVENESS OF PEMBROLIZUMAB 

AS FIRST-LINE THERAPY FOR ADVANCED NON-SMALL 

CELL LUNG CANCER 

4.1  Introduction 

In the last two decades, systemic therapy has brought meaningful clinical 

improvements for non-small cell lung cancer (NSCLC) patients, more than doubling life 

expectancy of patients with metastatic disease. Precision medicine and targeted therapy 

have become a reality responsible for increasingly high response rates and prolonged 

disease control for carefully selected patients [117-121]. Notwithstanding these gains, lung 

cancer remains the most common cause of cancer-related death, claiming more lives than 

breast, prostate, and colon cancer combined [122-124]. Patients lacking actionable targets 

- the majority - or those who inevitably progress after personalized therapy still rely upon 

palliative chemotherapy, with median overall survival not exceeding 16 months [123, 125, 

126]. 

New therapies are urgently required and immunotherapy has shown enormous 

potential to further improve prognosis for lung cancer patients. With elevated neo-antigen 

expression and active mechanisms of immune surveillance evasion, lung cancer is an ideal 

setting for current PD-1, PD-L1, and CTLA-4 therapies [127, 128]. Recently, several PD-

1, PD-L1, and CLTA-4 drugs have reached late phase development for lung cancer, in a 

quest for betterment of prognosis and patient selection [21, 129-131]. 
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Some immunotherapies have received FDA and EMA approval in record time due 

to strong clinical results, with superior, and for some patients durable, survival and more 

tolerable side effects. These results have largely reset standard management of advanced 

NSCLC. Nevertheless, there is a price tagged to these breakthrough treatments that cannot 

be overlooked [132]. 

Analysis of cost-effectiveness of new therapies is imperative to ensure appropriate 

and sustainable use of advanced targeted treatments in NSCLC. The current study 

investigates cost-effectiveness of pembrolizumab treatment for previously untreated 

patients with advanced NSCLC and PD-L1 expression in ≥50% of tumor cells. 

4.2 Materials and Methods 

4.2.1 Data 

Overall survival (OS) and progression-free survival (PFS) time-to-event data were 

extracted from published Kaplan-Meier (KM) curves, numbers at risk, and censoring times 

from the KEYNOTE-024 study. In brief, KEYNOTE-024 compared platinum-doublets 

versus pembrolizumab as first-line therapy for EGFR wild-type, ALK non-translocated, 

chemo-naive advanced lung cancer patients whose tumors expressed PD-L1 in ≥50% of 

cancer cells [20, 133]. The most up to date KM curves [133] for OS and PFS were digitized 

using WebPlotDigitizer [110], and raw time-to-event data was recovered by inverting the 

KM equations with a custom-built R code, extending techniques in Guyot et. al [134]. 

Details on frequency and severity of side effects for both intervention arms were also 

abstracted. We examined the quality of data recovery. 
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4.2.2 Bayesian survival and progression model 

The distributions of OS and PFS times were modeled using a Bayesian semi-

parametric framework. Specifically, we modeled discrete-time event probabilities across 

the time-line up to last follow-up time using a hierarchical Dirichlet Process (DP). The tail 

of the survival distribution (after last follow-up time) was modeled using a Weibull 

distribution. 

The non-parametric nature of the Dirichlet process is well-suited for modeling the 

survival function as survival distributions are in general unlikely to follow a parametric 

family [135]. Bayesian nonparametric inference offers relatively new class of methods. 

There has been an increased interest in nonparametric approaches to analyzing survival 

distributions due to their considerable degree of flexibility compared to parametric 

alternatives. The development of Markov chain Monte Carlo (MCMC) techniques has 

further facilitated the success of Bayesian nonparametric inference.  

One of the seminal works in the field is a paper published in Annals of Statistics in 

1974 by Ferguson [136], who proposed the Dirichlet process as an approach to analyzing 

nonparametric problems from a Bayesian viewpoint. An important result is that if a sample 

is obtained from a mixture of Dirichlet processes, the posterior distribution of the process 

is again a mixture of Dirichlet processes [137]. Later in 1976, Susarla and Van Ryzin [138] 

initiated the modern day nonparametric Bayesian analysis of survival data in medical 

studies with right censored observations. They derived the Bayes estimator of the survival 

function under the Dirichlet process prior. Blum and Susarla [139] showed that the 

posterior survival distribution is a mixture of Dirichlet processes.  



 60 

In 2006, Teh et al [140] extended the ordinary Dirichlet process for accommodating 

and modeling heterogenous groups of data. They introduced the hierarchical Dirichlet 

process. The model pools directly samples of survival data arising from different 

heterogenous groups, and lets clusters flexibly borrow information across groups. This 

approach avoids assumptions about the shape of the survival distributions, allows 

incorporation of censored data, and accommodates study-to-study heterogeneity. 

Furthermore, the DP model is particularly well-suited to situations where relative efficacy 

measures such as hazard and odds ratios are not sufficient, such as cost-effectiveness 

analyses requiring patient-level disease trajectories as a basic ingredient. 

The DP model was constructed by modeling each observed event time as a 

multinomial variable indicating the time interval within which the corresponding event 

occurred. Time up to last follow-up was discretized into one-month intervals. The 

parameters (probability event occurs within each time interval) underlying the multinomial 

distributions were modeled as a study-specific Dirichlet distribution. Right-censored 

observations were also modeled as multinomial variables, with several tail categories and 

corresponding parameters aggregated. For example, if an observation was right-censored 

at 10 months, then it is known that the event occurred at some time after 10 months. The 

corresponding multinomial distribution would have all the categories >10 months 

combined into a single category, with the probability of the combined category equal to 

the sum of its component probabilities. 

The study-specific Dirichlet distribution describing probabilities of events in each 

time interval was in turn modeled as a deviation from an overall Dirichlet distribution. In 

particular, the study-specific time interval probabilities equaled the overall Dirichlet 
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probabilities on average, but with study-to-study heterogeneity controlled via a scaling 

parameter. Weakly informative prior distributions were set for the overall Dirichlet 

distribution and study-to-study heterogeneity scaling parameter. Prior distributions 

summarize uncertainty about model parameters before examining the data.  

In this setup, the time-line up to last follow-up was partitioned into one-month time 

intervals. In particular, the follow-up time for OS was 33 months and thus we partitioned 

the time-line into 34 one-month grids as follows:   

[0,month 1), [month 1,month 2), … , [month 32,month 33), [month 34,∞). 

Similarly for PFS with follow-up time of 18 months, we partitioned the time-line into 

19 one-month grids.  

We defined the study-specific distribution, 𝐹1, as a DP with a scaling parameter 𝛼0, 

that governed the study-to-study heterogeneity, and a common base distribution, 𝐹0. To 

capture the uncertainty about this distribution, we let 𝐹0 itself be a draw from a DP with a 

base distribution measure 𝑆0 that governed the a priori distribution over the data, and a 

concentration parameter c that captured the amount of variability around the prior 𝑆0. This 

model is described as follows: 

𝐹1|𝛼0, 𝐹0~𝐷𝑃(𝛼0, 𝐹0) 

𝐹0|𝑐, 𝑆0~𝐷𝑃(𝑐, 𝑆0) 

 Let 𝑃0 and 𝑃1 correspondingly reflect the overall base probability and the study-

specific probability of an event occurring in each grid on the time-line.  Using the fact that 
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the Dirichlet distribution serves as an approximation to DP, these discrete time event 

probabilities follow 𝐺 −dimensional Dirichlet distributions described as follows:  

 𝑃0(grid 1), … , 𝑃0(grid 𝐺)~𝐷𝑖𝑟𝑖𝑐h𝑙𝑒𝑡 (𝑐[𝑆0(grid 1), … , 𝑆0(grid 𝐺)]) 

𝑃1(grid 1), … , 𝑃1(grid 𝐺)~𝐷𝑖𝑟𝑖𝑐h𝑙𝑒𝑡 (𝛼0(𝑃0(𝑔𝑟𝑖𝑑 1),… , 𝑃0(grid 𝐺)) 

By the multinomial-Dirichlet conjugacy, event and right-censored times then follow 

a multinomial distribution. The observed event times, 𝑧𝑖, have a support on the time-line 

up to 1 month after last follow-up. The censored times, 𝑡𝑘, still have a support on the same 

time-line, but they were sampled over the grids on the time line until the time of censoring 

with the grids after that collapsed into a single tail category: 

𝑧𝑖~Multinomial (𝑃1(grid 1), … , 𝑃1(grid 𝐺))   ∀ 𝑖 ∈ {1,… , 𝐼} , 

𝑡𝑘~Multinomial (𝑃1(grid 1), … , 𝑃1(grid 𝑟 − 1), ∑ 𝑃1(grid 𝑚)𝐺
𝑚=𝑟 )   ∀ 𝑘 ∈

{1,… , 𝐾} , 

where I and K are the total number of events and censored observations correspondingly, 

and 𝑟 is the censoring time. 

Events that occurred in the tail of the distribution (after last follow-up time) were 

then modeled through a truncated Weibull survival model. The parametric nature of the 

Weibull model is well-suited to making inferences about the survival curve after the last 

follow-up time. The Weibull model was constructed by modeling survival times as random 

variables from a Weibull distribution within a Bayesian framework. The model had support 

on the whole time line beginning after the last follow-up time. 
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We used Markov chain Monte Carlo with Gibbs sampling to estimate the posterior 

distributions of 𝐹0 and 𝐹1 and the shape and scale parameters of the Weibull model in R 

through JAGS [45-47]. 

Model validation, sensitivity to survival function prior, and sensitivity to 

heterogeneity parameters are described and reported in Table 10, Figure 18, and Table 11, 

respectively. Samples from the posterior distribution were generated via Markov chain 

Monte Carlo (MCMC) implemented in JAGS and called via the rjags package in R [45-

47]. Posterior distributions summarize uncertainty about the model after examining the 

data. Five MCMC chains were used with the first 10,000 iterations of each discarded while 

the Markov chain stabilized. Posterior inference was based on 100,000 iterations from each 

of the chains, thinned at a lag of 50. 

For constructing patient trajectories in the pembrolizumab and chemotherapy arms, 

quantities of interest were posterior probabilities of death and progression within particular 

one-month time intervals up to the last follow-up, and posterior probabilities of death and 

progression on the continuous truncated time-line after the last follow-up time. Notably, 

the probability that a progression event occurred in a particular time interval was taken as 

the difference between the corresponding PFS and OS probabilities. Pembrolizumab and 

chemotherapy were compared based on 10,000 OS and progression times for each of the 

10,000 draws from the posterior distributions of probabilities. 

4.2.3 Disease model 

Cost-effectiveness of pembrolizumab relative to chemotherapy was assessed using 

simulated patient trajectories in the pembrolizumab and chemotherapy arms over a full 
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lifetime horizon (with one-month increments up to last follow-up and continuous time-line 

after last follow-up). Patients could transition from stable disease to one transition state, 

(1) progressive disease, and three absorbing states, (2) death, (3) discontinuation due to 

treatment-related adverse events, or (4) discontinuation upon progression. Probabilities for 

treatment discontinuation due to adverse events and probabilities for continuation after 

progression were obtained from Reck et al [20, 133]. In particular, patients in the model 

discontinued treatment due to adverse events with probability 13.6% in the pembrolizumab 

group, and 10.7% in the chemotherapy group. Upon progression, 44% of patients in the 

pembrolizumab group, and 54% of patients in the chemotherapy group underwent second-

line treatment. From a progressive disease state, patients could transition to absorbing 

states, (1) death or (2) treatment discontinuation. We assumed post-progression therapy 

discontinuation occurred after a median of 4 cycles for the pembrolizumab arm, and a 

median of 5 cycles for the chemotherapy arm. The state-transition diagram in Figure 13 

illustrates how patients flowed through the model. 

 

Figure 13: Patients flow 
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4.2.4 Dependency model 

Our analysis explored several levels of dependency between each simulated patient’s 

hypothetical disease trajectories in the pembrolizumab and chemotherapy arms, as well as 

between their progression and OS times. Intuitively, we might expect that a patient with 

longer time to progression would also have a longer survival time, and a patient with 

extended survival on pembrolizumab might also have a longer than typical survival time 

had they instead been treated with chemotherapy. The dependency model controlled the 

extent to which these event times were positively associated. Dependencies between each 

simulated patient’s four associated event times (progression and death for each of 

pembrolizumab and chemotherapy) were modeled via a Gaussian copula. 

We used a multivariate normal distribution to model the dependency between the 

pembrolizumab and chemotherapy arms and the dependency between progression and 

overall survival. We first generated four variables from a multivariate standard normal 

distribution with added correlation coefficients to capture the above-mentioned 

dependency: 

[

𝑧𝑂𝑆𝐶
𝑧𝑂𝑆𝑃
𝑧𝑃𝑟𝑜𝑔𝐶
𝑧𝑃𝑟𝑜𝑔𝑃

]~𝑁𝑜𝑟𝑚𝑎𝑙 ([

0
0
0
0

] , [

1 𝑝1 𝑝2 𝑝1𝑝2
𝑝1 1 𝑝1𝑝2 𝑝2
𝑝2 𝑝1𝑝2 1 𝑝1
𝑝1𝑝2 𝑝2 𝑝1 1

]), 

where 𝑝1 is the correlation between the pembrolizumab and chemotherapy arms, 𝑝2 

is the correlation between overall survival and progression, 𝑂𝑆𝐶 , 𝑂𝑆𝑃, 𝑃𝑟𝑜𝑔𝐶 and 𝑃𝑟𝑜𝑔𝑃 

indicate death time for chemotherapy and pembrolizumab, and progression time for 

chemotherapy and pembrolizumab respectively. The death and progression times for 
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chemotherapy and pembrolizumab were then recovered by finding the bin (from the DP 

model) or the time point (from the Weibull tail) corresponding to Φ(𝑧), where Φ is the 

cumulative distribution of a standard normal distribution: 

[

Death time (chemotherapy)
Death time (pembrolizumab)

Progression time (chemotherapy)
Progression time (pembrolizumab)

] =

[
 
 
 
 
Φ(𝑧OSC)

Φ(𝑧OSP)

Φ(𝑧ProgC)

Φ(𝑧ProgP)]
 
 
 
 

 

Two scenarios, no and moderate dependency between hypothetical outcomes, are 

reported in the chapter. A high dependency scenario is described and reported in Appendix 

C.2. 

4.2.5 Cost Data 

Cost data for pembrolizumab and chemotherapy were based on UK and US costs of 

several aspects of treatment, care, and testing [141, 142]. The model included one-off costs 

for (1) PD-L1 testing, (2) enrolling under pembrolizumab therapy, (3) treatment initiation, 

resources upon progression specific to either (4) next line of treatment or (5) no further 

anti-cancer treatment, and (6) terminal care. Only those patients who entered the death state 

accumulated costs for end-of-life care. The model included weekly costs for resource use 

specific to (1) stable disease and (2) progressive disease. Treatment costs included all drugs 

used in first and second lines of therapy, (1) pembrolizumab (per 3-week cycle), (2) 

nivolumab (per 2-week cycle), and four platinum-based chemotherapy regimens per 3-

week cycles: (3) carboplatin plus pemetrexed (CARB+PEM), (4) carboplatin plus 

paclitaxel (CARB+PAC), (5) cisplatin plus gemcitabine (CIS+GEM), and (6) pemetrexed 

maintenance (PEM Maint). Patients in the chemotherapy arm received one of four first-
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line treatments, as reported in Reck et al [20, 133]. 30.7% received CARB+PEM followed 

by PEM maintenance, 37.3% CARB+PEM with no maintenance, 20.7% CIS+GEM, and 

11.3% CARB+PAC. Patients in the pembrolizumab arm received pembrolizumab as first-

line treatment.  Patients in the chemotherapy arm who received a post-progression 

treatment received either (1) pembrolizumab (88%), or (2) nivolumab (12%).  Assignment 

of post-progression treatments for the pembrolizumab arm was taken as equivalent to first-

line chemotherapy arm. All costs were converted to approximate 2018 US dollars, and can 

be found in Table 7.  

Toxicity managements costs[143-146] (Table 8) were included for several of the 

most common treatment-related and immune-mediated adverse effects. Hospitalization 

rates were obtained from Reck et al [20]. Adverse effects that were included were nausea, 

anemia, fatigue, diarrhea, neutropenia, vomiting, stomatitis, increased blood creatinine 

level, decreased platelet count, thrombocytopenia, decreased white-cell count, 

hypothyroidism, hyperthyroidism, and pneumonitis. 
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Table 7: UK and US costs of treatments, resources and tests for comparison of 

platinum doublet chemotherapy to pembrolizumab as first-line therapy for 

advanced NSCLC. All costs are in 2018 US dollars. Dosage for pembrolizumab is 

200 mg every 3 weeks and for nivolumab 240 mg every 2 weeks. 

Treatment/ Care/ Tests Frequency 
UK 

cost 

US 

cost 

Pembrolizumab (with one infusion added) per 3-week cycle 7,558 8,760 

CARB+PEM (with one infusion added)* per 3-week cycle 2,451 6,180 

CARB+PAC (with one infusion added)* per 3-week cycle 1,322 638 

CIS+GEM (with two infusions added)* per 3-week cycle 1,294 845 

PEM MAINT (with one infusion added)* per 3-week cycle 2,226 5,983 

Nivolumab per 2-week cycle 3,896 5,926 

PD-L1 single test one-time 57 60 

Total PD-L1 costs for enrolling under 

pembrolizumab therapy 
one-time 472 - 

Resource for treatment initiation one-time 1,023 1,000 

Resource use for progression-free health states weekly 93 419 

Resource upon progression to next line of 

treatment 
one-time 1,023 1,000 

Resource upon progression (no further anti-

cancer treatment) 
one-time 386 - 

Resource use for progressed disease health state weekly 98 - 

Resource for terminal care one-time 5,261 8,632 
*Assuming body surface area of 1.80 m², creatinine clearance of 80 mL/min/1.73 m², and £150 per 

infusion, chemotherapy costs in UK. 
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Table 8: UK and US costs of adverse events for comparison of platinum doublet 

chemotherapy to pembrolizumab as first-line therapy for advanced NSCLC. All 

costs are in 2018 US dollars 

 
UK cost[143, 144] US cost[145, 146] 

 

  

 Grade <3 Grade ≥3 Grade <3 Grade ≥3 

Nausea 180 1,365 1,965 19,341 

Anemia 3,270 4,353 20,260 

Fatigue 2,902 16,185 

Diarrhea 555 1,365 3,265 16,510 

Neutropenia 225 5,321 17,181 

Vomiting 180 2,553 895 16,899 

Constipation - 2,591 20,949 

Stomatitis 144  1,695 18,151 

Increased blood creatinine level - 729 - - 

Decreased platelet count - 1,212 - - 

Thrombocytopenia - 1,212 6,325 22,698 

Decreased white-cell count -  - 

Dysgeusia - 3,700 23,187 

Hypothyroidism 610 2,255 20,428 

Hyperthyroidism 610 2,255 20,428 

Pneumonitis 2,214 9,941 21,929 

Infusion reaction - 4,782 22,860 

Severe skin reaction 143 940 15,709 

Colitis 1,266 6,079 20,208 

Pancreatitis - 15,943 32,918 
 

 

4.2.6 Effectiveness  

Patient-specific health utility values for each disease state (stable disease and disease 

progression) were taken according to distributions consistent with a UK-based study on 

health utilities for advanced NSCLC treated with immunotherapy or chemotherapy [147]. 

Utility values measure overall health and quality of life associated with each disease state. 
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Utility scores range from 1 (perfect utility) to 0 (death). Utility distributions are shown in 

Table 9.  

The British National Institute of Clinical Excellence (NICE) provides a framework 

for cost-effectiveness analysis. NICE recommends that end-of-life interventions that meet 

the end-of-life (EoL) threshold should be given perfect utility [141]. The NICE EoL 

threshold is constituted of (1) small patient population, (2) prognosis <24 months, and (3) 

life-extension >3 months  [148]. In the EoL adjusted analysis, a perfect utility was assigned 

to treatment with pembrolizumab if it extended life >3 months as compared to standard 

chemotherapy for the particular simulated patient.  

Quality-adjusted life-years (QALYs) were used to measure effectiveness. QALYs 

are a measure combining information on both quality of life and life expectancy. QALYs 

are calculated as a product of time spent in each state and the corresponding health utility, 

and they reflect a patient’s accumulated utility over time [149]. An analysis incorporating 

3% annual cost and utility discounting is described and reported in Appendix C.3. 

Table 9: Patient-specific utility distributions for advanced NSCLC treated with 

immunotherapy or chemotherapy 

State Adjusted utility 

Stable disease Uniform (0.563,0.743)  

Disease progression Uniform (0.383,0.563) 

  

4.2.7 Analysis 
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Incremental cost-effectiveness ratios (ICERs) were calculated to evaluate cost-

effectiveness of pembrolizumab compared to standard chemotherapy. ICERs measure 

incremental cost per QALY gained. A treatment is commonly considered cost-effective if 

the ICER is below the GBP 30,000 threshold (approximately USD 42,048) or the USD 

100,000 threshold [149]. A sensitivity analysis basing the full cost-effectiveness analysis 

on a traditional Weibull model, instead of the combination DP-Weibull models, is 

presented in Appendix C.4. 

4.3 Results 

4.3.1 Data recovery 

Data recovery using graph capture and inverting KM equations was excellent. OS 

and PFS time-to-event data were extracted from published KM curves, numbers at risk, 

and censoring times from the KEYNOTE-024 study [20, 133]. The raw time-to-event data 

was recovered by the inverted KM equations, extending the techniques in Guyot et al [134]. 

Figure 14 and Figure 15 below display how the reconstructed KM curves compare to the 

original KM curves published in KEYNOTE-024. In the case of OS, the recovered KM 

curves for both chemotherapy and pembrolizumab almost completely overlap with the 

original KM curves confirming that the data was recovered well. In the case of PFS, the 

recovered overlap with the original curves with a slight difference present after month 12. 

The data was recovered well.  
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Figure 14. Reconstructed Kaplan-Meier curves for OS for the pembrolizumab and 

chemotherapy arms 

 

Figure 15. Reconstructed Kaplan-Meier curves for PFS for the pembrolizumab and 

chemotherapy arms 
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4.3.2 Survival model validation 

The DP-Weibull models validated well, accurately reproducing several OS and PFS 

summary statistics (Table 10). We validated the results of our survival model by comparing 

posterior summary statistics to summary statistics published in KEYNOTE-024 [20, 133]. 

We compared the median PFS and OS survival, the OS% at 12 and 24 months and the 

PFS% at 6 months for both arms. Table 10 below compares the reported statistics from the 

study to the ones recovered by the model. The model estimates were very close to the 

reported statistics. Additionally, Figure 16 and Figure 17 present the model fit for OS and 

PFS in both arms.  

Table 10: Comparison of reconstructed summary statistics to summary statistics 

published in KEYNOTE-024 [20, 133] – median OS and PFS, PFS% at 6 months, 

and OS% at 12 and 24 months for the pembrolizumab and chemotherapy arms 

 Reck et al. Model 

Median PFS survival for pembrolizumab (months) 10.3 10 

Median PFS survival for chemotherapy (months) 6 6 

Median OS survival for pembrolizumab (months) 30 30 

Median OS survival for chemotherapy (months) 14.2 15 

OS % at 12 months (pembrolizumab) 70.3% 71.1% 

OS% at 12 months (chemotherapy) 54.8% 54.9% 

OS % at 24 months (pembrolizumab) 51.5% 51.8% 

OS% at 24 months (chemotherapy) 34.5% 36.6% 

PFS % at 6 months (pembrolizumab) 62.1% 62.9% 

PFS% at 6 months (chemotherapy) 50.3% 49.9% 
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Figure 16. Reconstructed and fitted survival curves for OS for the pembrolizumab 

and chemotherapy arms 
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Figure 17. Reconstructed and fitted survival curves for PFS for the pembrolizumab 

and chemotherapy arms 

4.3.3 Survival prior distribution sensitivity analysis  

We explored the effect of the prior on the results by allowing the prior survival 

functions for both pembrolizumab and chemotherapy to vary anywhere between 0 and 1 

almost everywhere across the positive axis. Figure 18 shows the spread of the prior. In the 

case of OS in the pembrolizumab arm, the prior survival function was allowed to vary 

anywhere from 0.63 to 1 at month 1 with a mean at 0.97, from 0.27 to 1 at month 2, and 
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anywhere from 0 to 1 for the following months. Similarly, in the case of PFS in the 

pembrolizumab arm, the prior was allowed to vary from 0.52 to 1 at month 1, from 0.06 to 

1 at month 2, and from 0 to 1 the following months. Finally, for the chemotherapy arm, the 

prior for OS was spread between 0.42 and 1 at month 1 followed by a spread of 0 to 1 for 

the months afterwards, and for PFS it was allowed to vary from 0.18 to 1 at month 1 and 

then from 0 to 1 for the following months. The median OS and PFS times were 30 months 

(95% CrI 20-45) and 10 months (95% CrI 7-18) in the pembrolizumab arm, and 15 months 

(95% CrI 11-21) and 6 months (95% CrI 5-7) in the chemotherapy arm. The analysis 

showed that variations in priors within a sensible range had a limited qualitative effect on 

the outcome. 

 

Figure 18. Prior survival function and corresponding 95% CI on the spread of the 

prior for OS (top left) and PFS (top right) in the pembrolizumab arm, and for OS 

(bottom left) and PFS (bottom right) in the chemotherapy arm. 
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4.3.4 Heterogeneity sensitivity analysis  

 We explored the effect of variable levels of study-to-study heterogeneity on the 

results. As previously discussed, the model is described as follows: 

𝐹1|𝛼0, 𝐹0~𝐷𝑃(𝛼0, 𝐹0) 

𝐹0|𝑐, 𝑆0~𝐷𝑃(𝑐, 𝑆0) 

where the scaling parameter 𝛼0 governs the study-to-study heterogeneity. The 

heterogeneity parameter was allowed to vary anywhere from 1 (introducing high level of 

heterogeneity) to 1,000 (almost no heterogeneity). We used the 𝐼2 statistic to measure the 

magnitude of the between-study heterogeneity, where 𝐼2 ranged from 0 (low) to 1 (high). 

The 𝐼2 metric was based on variability of the median overall and progression-free survival 

time in the pembrolizumab and chemotherapy arms. When the initial heterogeneity was set 

to 1, the resulting 𝐼2 was modestly high. For 𝛼0 = 10, 𝐼
2 was modest to high, and for  𝛼0 ≥

100, 𝐼2 was low to modest. The results are shown in Table 11 below. We evaluated the 

cost-effectiveness of pembrolizumab in the case of high level of between-study 

heterogeneity, specifically when 𝛼0 = 1.  While there was a significant variability present 

within the overall survival distribution, the study-specific survival distribution exhibited 

little to almost no change. This behavior shows a limitation of our analysis that stems from 

the absence of multiple studies. Since the model was based on a single study, the analysis 

showed that introducing study-to-study heterogeneity had little qualitative effect on the 

results (see Table 21 in Appendix C.1). 
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Table 11: I^2 values for different levels of study-to-study heterogeneity across OS 

and PFS for the pembrolizumab and chemotherapy arms. I^2 metric based on the 

variability of the median OS and PFS for each arm 

 𝐼2 

 Pembrolizumab Chemotherapy 

𝛼0 OS PFS OS PFS 

1 0.57 0.14 0.72 0.76 

10 0.36 0.1 0.53 0.61 

100 0.05 0.22 0.09 0.32 

1000 0.03 0.02 0.06 0.01 

     

4.3.5 Cost-effectiveness 

For the no dependency among outcomes scenario, we modeled the two arms and their 

corresponding OS and PFS times as fully independent of each other. Patients who received 

chemotherapy gained a posterior mean of 1.11 QALYs (95% CrI 0.99-1.18). Patients who 

received pembrolizumab gained a posterior mean 1.93 QALYs (95% CrI 1.7-2.01) or EoL 

adjusted 3.06 QALYs (95% CrI 2.63-3.23). Posterior mean UK and US costs for the 

duration of therapy in the pembrolizumab arm were $99,000 (UK) and $132,000 (US), 

compared to $34,000 (UK) and $73,000 (US), respectively, for chemotherapy. These 

translated into posterior mean ICERs of $81,000 per QALY in the UK setting and $74,000 

per QALY in the US setting. With EoL adjustment, the respective UK and US posterior 

mean ICERs were $34,000 and $31,000 per QALY (Table 12 and Figure 19).  

The probability of pembrolizumab being cost-effective was <1% with respect to UK 

(USD 42,048) threshold without EoL adjustment, and 97.1% with EoL adjustment. The 
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probability that pembrolizumab was cost-effective with respect to US (USD 100,000) 

threshold was 97.2% without EoL adjustment and >99% with EoL adjustment (Figure 19). 

In the second scenario, we incorporated a moderate dependency between each 

simulated patient’s outcomes in the pembrolizumab and chemotherapy arms and between 

their associated OS and progression times by introducing a (latent) correlation of 0.5 

between the pembrolizumab and chemotherapy arms and a (latent) correlation of 0.8 

between progression and OS times via a Gaussian copula. In the chemotherapy arm, 

posterior mean QALYs gained decreased to 1.06, while mean treatment cost increased to 

$38,000 in the UK setting, and to $81,000 in the US setting. Mean cost in the 

pembrolizumab arm increased to $121,000 in the UK setting, and to $160,000 in the US 

setting. In the absence of EoL adjustment, mean QALYs gained by patients on 

pembrolizumab decreased to 1.80, leading to ICER per QALY of $115,000 for the UK and 

$110,000 for the US. With EoL adjustment, ICERs per QALY for the UK and US settings 

were $52,000 and $49,000, respectively (Table 12 and Figure 19). The probability of 

pembrolizumab being cost-effective in the UK was <1% with or without EoL adjustment. 

In the US setting, the probability that pembrolizumab was cost-effective was 25.32%, and 

99.8% with EoL adjustment (Table 12 and Figure 19).   

We explored a third, high dependence, scenario which incorporated a strong 

dependency between the arms and the progression and survival times. Results were 

qualitatively similar, with higher levels of dependency leading to higher ICERs, and can 

be found in Appendix C.2.  
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Figure 20 displays cost-effectiveness acceptability curves for pembrolizumab for the 

no and moderate dependency scenarios in a UK and US setting. In the UK setting, there is 

a 50% probability that pembrolizumab is cost-effective at a willingness-to-pay threshold 

of USD ≥51,000 per QALY in the scenario with EoL adjustment, and USD ≥111,000 per 

QALY without EoL adjustment. In the US setting, there is a 50% probability that 

pembrolizumab is cost-effective at a willingness-to-pay threshold of USD ≥48,500 per 

QALY in the scenario with EoL adjustment, and USD ≥106,500 per QALY without EoL 

adjustment. 

Additionally, a discounting factor was considered, but results were qualitatively 

similar with slightly higher ICER values (Appendix C.3). Finally, a relatively traditional 

survival model based on the Weibull distribution was considered, and the results were 

qualitatively similar to the DP-Weibull model in each of the no, moderate, and high 

dependency scenarios (Appendix C.4).   

  



 81 

Table 12: Posterior mean (95% CrI) costs (2018 USD), QALYs and ICERs for 

comparison of platinum doublet chemotherapy versus pembrolizumab as first-line 

therapy for advanced NSCLC, under no dependency and moderate dependency 

between patients’ hypothetical outcomes 

 Chemotherapy Pembrolizumab 

    
Without End-of-Life 

adjustment 

With End-of-Life 

adjustment 

 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

No Dependency 

UK 
34 

(32-36) 1.11 

(0.99-

1.18) 

99 

(90-108) 1.93 

(1.7-

2.01) 

81 

(67-111) 3.06 

(2.63-

3.23) 

34 

(29-43) 

US 
73 

(68-77) 

132 

(120-

144) 

74 

(58-102) 

31 

(25-40) 

Moderate Dependency 

UK 
38 

(35-40) 1.06 

(0.94-

1.13) 

121 

(112-

128) 
1.8 

(1.56-

1.89) 

115 

(93-166) 2.69 

(2.26-

2.86) 

52 

(43-69) 

US 
81 

(76-85) 

160 

(150-

170) 

110 

(87-159) 

49 

(40-67) 



 82 

 

Figure 19. Posterior distribution ICER 
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Figure 20. Acceptability ICER 
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4.4 Discussion 

The success of immune checkpoint blockade has no parallel in recent medical 

oncology, however its costs are a matter of concern. Our current analysis indicates that 

pembrolizumab is likely to be cost-effective within the US but not in the UK. This 

difference across the Atlantic seems to stem from different willingness to pay thresholds 

(US USD 100,000, UK USD 42048), as the US and UK ICER values were close to each 

other in nearly all sensitivity and dependency analyses. Pembrolizumab was cost-effective 

in nearly all sub-analysis in US setting, whereas in the UK setting, evidence suggested it 

may be cost-effective only in the no dependency model, a fairly stringent assumption. 

We used the end of life adjustment [149]– a tool proposed and applied by NICE to 

assess therapies in challenging palliative settings – and the results became even more 

favored towards incorporation of pembrolizumab in the US. EoL adjustment also decreased 

the UK ICERs, but the values fell short of the current British willingness to pay threshold. 

It is noteworthy that ICER values were numerically similar between US and UK in all 

analyses, but the difference in thresholds (USD 100,000 in the US and USD 42000 in the 

UK) precluded a favorable opinion in UK setting. 

Moving beyond the US scenario, the enticing clinical results of pembrolizumab must 

be put into perspective against the backdrop of limited reimbursement supply, present even 

in the high-income world, as in the UK scenario. The conundrum between clinical efficacy 

and costs can reach dramatic proportions when a groundbreaking therapy emerges but its 

costs are prohibitive, which seems to be the case with first-line pembrolizumab for lung 

cancer in the middle and lower income countries. It is crucial to inform the general 
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population, patients, physicians, and paying sources about those limitations in order to best 

allocate scarce funds. 

A pragmatic approach to bring new and expensive drugs to clinics would be lowering 

their prices and some examples have shown this approach is feasible. For instance, 

nivolumab and pembrolizumab have been incorporated as second or third line therapy for 

lung cancer patients in the UK after NICE successfully negotiated lower costs and proposed 

more stringent patient selection [150]. Those treatments had original ICERs far above the 

British threshold, but became available to NHS patients after aggressive deals were struck 

with pharmaceutical companies. Even though these transactions were productive, this path 

may not be generalizable worldwide. Not all patients will be represented by a stakeholder 

with the bargaining power of the NHS, nor will there be alternative treatment to which 

patients can switch in the case of unproductive negotiations. 

Other proposals must also be explored. One alternative recently put forth is cost-

sharing between pharmaceutical companies and the reimbursement body, as in the Italian 

public health system by a manufacturer of another PD-1 antibody [151]. In that specific 

deal, initial costs would be defrayed by the reimbursement body and later drug-only costs 

by the pharmaceutical company. It is paramount to notice that the main cost still falls on 

the reimbursement body, as fewer patients will be at the tail of therapy and all non-drug 

costs are paid by the health care provider.  

Another approach for accepting more expensive drugs would be raising the 

willingness to pay bar in the specific scenarios of “end of life treatments”. This is a real 

alternative, already adopted by NHS for treating metastatic melanoma with ipilimumab, a 
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practice changing immunotherapy [152]. The current use of “end of life” adjustments 

supports the application of this tool in our present work. Those approaches are promising 

but may not suffice. A mixed option of discount, cost-sharing, end of life adjustment and 

multicriteria decision analysis [153] is more likely to be provide better access to high value 

therapies. 

A unique and very relevant feature of immunotherapy is the long-term survivorship 

brought by this type of treatment, that may not be captured by standard statistics used in 

cost-effectiveness analysis or studies with immature overall survival data [154]. The real - 

even though small - group of long term survivors may positively impact on survival 

outcomes, rendering the investment in the therapy still more appealing as the update of 

Keynote 024 has shown [133].  

Even though evidence suggests pembrolizumab may be considered cost-effective in 

the US, it is expected that immunotherapy costs will be a constant as newer therapies are 

set to be more expensive [155]. An example for the present day in the realms of lung cancer 

is the FDA approval of pembrolizumab combined with platinum doublet for first-line 

chemotherapy based on Keynote-021 [155]. Again, the clinical results are enticing, with 

subgroup analysis showing lasting tumor response in 80% of PD-L1 positive patients. 

However, it does not appear that immunotherapy-chemotherapy combination will become 

a cost-sustainable option even for this selected group at current costs of PD-1 therapy even 

in high income countries.  

As in most cost-effectiveness analyses, our results and conclusions were based upon 

adaptations from clinical trials to the real world and further limited by lack of 
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comprehensive cost and survival data. In our model, patients received further treatment 

according to a distribution abstracted from the chemotherapy arm.  However, duration and 

outcomes on second-line treatment are not described in detail and there was a high rate of 

treatment cross over, adding uncertainty to the results [156]. Nevertheless, we used the 

most updated Keynote 024 results with mature overall survival [133].   

In spite of its limitations, our work can improve understanding of costs. Detailed 

costs of immune-related side-effects, both mild and severe, were retrieved and applied. 

Nivolumab, another expensive immunotherapy available as second or third line in the UK 

and US, entered the model as an option for further therapy. We ran analyses in two different 

scenarios: the mostly public-funded UK, and the mixed reimbursement US.  

A recent analysis by Huang et al. assessed cost effectiveness of pembrolizumab 

compared with platinum-based chemotherapy as first-line treatment in patients with 

metastatic NSCLC with PD-L1 expression ≥50% at $97,621 per QALY gained for the US 

[157]. That analysis was based on the preliminary data from Keynote 024 study, assumed 

a parametric distribution for the overall and progression-free survival and relied on lengthy 

extrapolation to model a 20-year time horizon. The study estimated the mean time in the 

PFS state for pembrolizumab and chemotherapy at 2.16 and 0.55 years respectively [157]. 

Our analysis on the other hand, estimated the mean time spent in the PFS state for 

pembrolizumab and chemotherapy at less than 10 and 6 months correspondingly, which is 

more consistent with the respective median PFS times of 10.3 and 6 months, as reported at 

Reck et al [20, 133]. Moreover, we included other PD-1 therapies and platinum-doublets 

as possible further therapies, which very likely increased the overall costs of therapies.  
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Cost-effectiveness studies aim to inform limitations of a given therapy and to allow 

a better decision-making process. Funders, pharmaceutical companies and, most 

importantly, patients and families must be actively involved in these decisions bearing in 

mind benefits and costs of new therapies in the joint attempt of providing sustainable 

cancer care. 
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CHAPTER 5. BINOMIAL 𝒏 −PROBLEM 

5.1 Introduction 

Because of its applicability, the problem of estimating the success probability 𝑝 in a 

binomial Bin(𝑛, 𝑝) distribution when the number of trials 𝑛 is known is one of the most 

fundamental statistical problems finding place in introductory statistical textbooks. 

However, in some real-life situations, 𝑛 may not be known, and may be the parameter of 

interest. The binomial 𝑛 problem is a much less studied and a much more difficult problem.  

The most difficult cases involve simultaneous estimation of both 𝑛 and 𝑝, even when 

only a single observation might be available. The problem of estimating the parameters 𝑛 

and 𝑝 simultaneously has been first addressed in the literature by Whitaker [158], Fisher 

[159] and Haldane [160], who proposed the method of moments estimators (MME’s) and 

presented how the maximum likelihood estimates (MLE’s) may be computed. Fisher [159] 

didn’t take the problem seriously arguing that for sufficiently large number of observations 

𝑘, 𝑛 will be known. While this argument is correct, if 𝑝 is small, in practice 𝑘 will have to 

be unreasonably large for 𝑛 to be known with any degree of certainty.  

Classical procedures and their asymptotic properties were further critically assessed 

by Olkin et al [24], Carroll and Lombard [161], and Casella [162], who pointed out that 

the MME (introduced by Haldane [160]) and the MLE (introduced by Fisher [159]) 

estimators were highly sensitive to slight perturbations of the count data and hence 

unstable. This erratic behavior arises when the sample mean and sample variance of the 

observations are nearly equal. To overcome this lack of robustness, Olkin et al [24] 
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proposed two stabilized versions of the MME and MLE estimators: jackknife-stabilized 

MLE:S, and ridge-stabilized MME:S. Both the MLE:S and MME:S estimators outperform 

the ordinary MLE and MME and are reasonably stable. Later, Carroll and Lombard [161] 

took a different approach to stabilizing the classical estimators. They suggested an 

alternative estimator MB(𝑎, 𝑏) by assuming a beta prior distribution for 𝑝 and maximizing 

an integrated likelihood. Casella [162] explored situations in which stabilized estimators 

are preferred over classical estimators. Further classic literature includes Blumenthal and 

Dahiya [163], Lindsay [164], Hall [165], Kuhne [166], and others. 

Recently, DasGupta and Rubin [167] proposed two new more efficient estimators. 

The first one is a new moment estimator that uses the sample maximum, the sample mean 

and the sample variance and is easy to motivate and compute. The second one is a bias 

correction of the sample maximum that performs very well and outperforms the Carroll-

Lombard estimate in many scenarios. The authors also derived the two estimators’ 

asymptotic properties. 

While most of the classical estimators of 𝑛 are based on MLE, MVUE or MME, 

several authors have considered the binomial 𝑛 problem from a Bayesian viewpoint. 

Draper and Guttman [23] proposed a Bayes point estimate assuming that the prior 

distribution of 𝑛 is discrete uniform on a set {1,2, … ,𝑁} with a prespecified upper bound 

𝑁. In the case when 𝑝 is known, the Bayes estimator coincides with the MLE solution of 

Feldman and Fox [168], and in the case when 𝑝 is unknown, 𝑝 is assumed to follow a beta 

prior distribution that is independent of 𝑛. Raftery [169] adopted a Bayes empirical Bayes 

approach within a hierarchical under the assumption that 𝑛 follows a Poisson distribution. 
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Kahn [170] demonstrated that the tails of the posterior distribution of 𝑛 are fully determined 

by the prior distribution of 𝑝, and do not depend on the data. Hamedani and Walter [171] 

investigated Bayes estimators based on a general prior distribution for 𝑛. Gunel and Chilko 

[172] proposed a Bayesian estimate under a continuous prior distribution for 𝑛.  More 

recently, Bayoud [173] proposed Bayes and empirical Bayes point estimates for 𝑛 under 

the assumption of a left-truncated Poisson prior distribution for 𝑛 and a beta prior 

distribution for 𝑝. Bayesian approaches seem to alleviate difficulties inherent to the 

classical approaches, but they do no appeal to asymptotic theory, consequently being for 

practical “small” problems.  

The simpler case of estimating the parameter 𝑛 when 𝑝 is known has been addressed 

by Feldman and Fox [168] who obtain estimates based on MLE, MVUE and MME and 

develop their asymptotic properties. Hunter and Griffiths [174], Sadooghi-Alvandi [175], 

Zou and Wan [176], Iliopoulos [177], Bayoud [173], and De and Zacks [178].  

The binomial 𝑛 problem when 𝑝 unknown continues to be a fundamentally difficult 

problem. As mentioned earlier the problem exhibits an inherent instability. Furthermore, 

DasGupta and Rubin [167] established that neither 𝑛 nor 𝑝 are unbiasedly estimable which 

imposes further difficulty obtaining good estimates. The most profound difficulty across 

estimators arises from their tendency to severely underestimate 𝑛, especially when either 

𝑛 is large, or 𝑝 is small. Furthermore, in the absence of replication, inference about 𝑛 is not 

possible. 

The problem that we address in this paper is estimating the parameter 𝑛 in a binomial 

distribution when 𝑝 is unknown for both cases of multiple observations and no replications. 
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5.2 𝒏 −estimators 

Given a random sample 𝑋1, … , 𝑋𝑘 of iid observations each drawn from a binomial 

distribution Bin(𝑛, 𝑝), where 𝑛, the total number of trials, and 𝑝, the success probability, 

are unknown, we consider the problem of estimating 𝑛. We assume that 𝑛 and 𝑝 are 

independent, 𝑛 ∈ {1,2, … } and 𝑝 ∈ (0,1). Define the sample mean, the sample variance 

and the sample maximum as 𝑥̅ =
∑ 𝑥𝑖
𝑘
𝑖=1

𝑘
, 𝑠2 =

∑ (𝑥𝑖−𝑥̅)
2𝑘

𝑖=1

𝑘
 and 𝑥(𝑘) respectively. 

The 𝑛 binomial problem is a notoriously difficult one. The most common issue with 

estimators of 𝑛 is their instability. Both the MLE and MME estimators are highly sensitive 

to even slight perturbations of the data when the sample mean is nearly equal to or exceeds 

the sample variance. In order to avoid this issue, various stabilized estimators have been 

proposed, but a lot of them tend to underestimate 𝑛, especially when 𝑝 is small. Smaller 

variance occurs when 𝑝 is near 0 or 1. Variance is maximized at 𝑝 =
1

2
. Given a sample 

with a small variance, it’s hard to distinguish whether the sample comes from a population 

with small 𝑝 and large 𝑛, or large 𝑝 and small 𝑛. Most estimators tend to go for the latter 

and severely underestimate 𝑛, which poses a serious practical difficulty.  

DasGupta and Rubin [167] established the lack of unbiased estimates.  

Another difficulty is that, as noted by Student [179] and Olkin et al [24], there are 

certain ranges of the parameters 𝑛 and 𝑝 for which it is unclear whether the binomial or 

Poisson distribution is a better fit. If 𝑝 is small and 𝑛 is large, the Poisson distribution is a 

good approximation to the binomial distribution.  
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A more practical approach to the binomial 𝑛 problem is provided from a Bayesian 

standpoint. Analytical results might not be feasible, but numerical results are usually easy 

to obtain. Additionally, the Bayesian approach does not require any appeal to asymptotic 

distributional results. However, it exhibits an inherent challenge from a Bayesian 

perspective because n is discrete. That restriction leads to a limited choice of prior 

distributions. Furthermore, Jeffrey priors are not defined. Additionally, the posterior of 𝑛 

must be restricted to 𝑛 ≥ 𝑥(𝑘).  

Kahn [170] showed that for large 𝑛 the tail weight of the marginal posterior 

distribution of 𝑛 is totally determined by the choice of prior distribution on 𝑛 and 𝑝 rather 

than the data. In fact, the tail of this posterior is not asymptotically affected by the data. 

Finally, the Bayesian approaches pose an additional question on how one should 

specify the parameters of the prior distributions.  

Now, we present existing estimators of the sample size 𝑛 when 𝑝 is unknown.  

5.2.1 Estimators related to the sample maximum 

5.2.1.1 Sample maximum 

A trivial estimator of 𝑛 is 𝑥(𝑘). As 𝑘 → ∞, the maximum sample is a consistent 

estimator of 𝑛, but a biased one as it can severely underestimate 𝑛. In practice, 𝑘 will have 

to be unrealistically large before 𝑛 can be known with any degree of certainty. One can 

modify the estimator by adding a constant 𝑟. Feldman and Fox [168] showed that the 

estimator 𝑥(𝑘) + 𝑟 is still a consistent estimator of 𝑛 as 𝑛, 𝑘 → ∞ provided that 𝑘𝑝𝑛𝑛𝑟−1 →

∞, but it is nevertheless still unreliable. 
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5.2.1.2 Bias correction of the sample maximum 

An attempt to improve the sample maximum estimator is to incorporate a bias 

correction. DasGupta and Rubin [167] introduced the following bias corrected estimator 

by obtaining a bound on the average bias of 𝑥(𝑘) averaged over 𝑝: 

𝑛̂ = 𝑥(𝑘) +∑𝐹𝑖+1,𝑛̃−𝑖
−1 (

1

𝑘
)

𝑛̃−2

𝑖=0

, 

where 𝐹𝑟,𝑠
−1 denotes the quantile function of the Beta(𝑟, 𝑠) distribution and 𝑛̃ is some 

suitable (preliminary) estimate of 𝑛. 

5.2.2 Estimators related to MME 

5.2.2.1 MME 

Haldane [160] presented the method of moments estimators of the parameters 𝑝 and 

𝑛: 

𝑝̂ =
𝑥̅ − 𝑠2

𝑥̅
         and         𝑛̂ =

𝑥̅2

𝑥̅ − 𝑠2
. 

While the MME estimators are consistent, they do not seem to be fully efficient 

according to Haldane [160]. The MME estimator is very unstable when 𝑠2 is close to 𝑥̅.  

Furthermore, produces negative estimates with positive probability. Despite its erratic 

behavior especially when 𝑛 is large and 𝑝 is small, the MME can still be a useful estimate.  

Binet [180] showed that if the MLE estimator exceeds one hundred, very little information 
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or efficiency is lost by using the MME estimator instead. Furthermore, the MME is simple 

to compute. 

5.2.2.2 Stabilized MME 

Olkin et al [24] proposed a stabilized version of the MME estimator. In the case when 

𝑠2 is close to 𝑥̅ and the MME is not stable, the authors suggested perturbing the observed 

sample by a small constant 𝜖 > 0, so that the sample mean of the perturbed observations 

becomes greater than 𝑠2. The stabilized version of MME is defined as: 

𝑛̂ =

{
  
 

  
 max

 
{
𝑥̅2

𝑥̅ − 𝑠2
, 𝑥(𝑘)} , if    

𝑥̅  

𝑠2
≥ 1 +

1

√2

(2 +
3

√2
) 𝑠2, if    

𝑥̅  

𝑠2
< 1 +

1

√2
   and  𝑠 ≥

𝑧𝑘

1 + √2
𝑧𝑘
2𝑠  

𝑧𝑘 − 𝑠
, if    

𝑥̅  

𝑠2
< 1 +

1

√2
   and  𝑠 <

𝑧𝑘

1 + √2

, 

where 𝑧𝑘 = 𝛷−1(2−1/𝑘), and 𝛷 denotes the standard normal cumulative distribution 

function. 

5.2.2.3 A new moment estimate 

DasGupta and Rubin [167] introduced a new moment estimate, that incorporates 

information not only from 𝑥̅ and 𝑠2, but also from 𝑥(𝑘): 

𝑛̂ =
𝑥(𝑘)
𝛼+1(𝑠2)𝛼

𝑥̅𝛼(𝑥(𝑘) − 𝑥̅)
𝛼 

The estimator is easy to compute. The authors state that a good choice for 𝛼 is 1.  
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5.2.3 Estimators related to MLE 

5.2.3.1 MLE 

The maximum likelihood estimator, MLE, is defined as:  

𝑛̂ = {

𝑥(𝑘), if    𝑑(𝑥(𝑘)) ≤ 0

∞, if    𝑠2 ≥ 𝑥̅

solution of 𝑑(𝑛) = 0, if    𝑑(𝑥(𝑘)) > 0 and  𝑠2 < 𝑥̅  
 

where 𝑑(𝑛) = 𝑘 log (1 −
𝑥̅

𝑛
) + ∑ ∑

𝑁𝑥

𝑛−𝑗

𝑥(𝑘)
𝑥=𝑗+1

𝑥(𝑘)−1

𝑗=0
  with 𝑁𝑥 being the sample frequency of 

𝑥. The maximum likelihood equation 𝑑(𝑛) is presented by Fisher [159] and Haldane 

[160].Olkin et al [24] shows that the likelihood equation leads to a unique MLE estimator 

if 𝑑(𝑥(𝑘)) > 0. Similarly to the MME estimator, as 
𝑥̅

𝑠2
→ 1, the estimator become less 

stable and more sensitive to small changes in the success counts.  Furthermore, as 𝑛 → ∞, 

it is not necessarily true that 𝐿(𝑛) → ∞, where 𝐿(𝑛) is the likelihood function, thus causing 

instability issues. 

5.2.3.2 Stabilized MLE 

Olkin et al [24] robustified the MLE estimator through a jackknife procedure and 

arrived at the following stabilized MLE estimator that is either the ordinary MLE estimator 

or a jackknifed version of 𝑥(𝑘): 

𝑛̂ =

{
 
 

 
 MLE,                                        if    

𝑥̅  

𝑠2
 ≥ 1 +

1

√2

𝑥(𝑘) +
𝑘 − 1

𝑘
[𝑥(𝑘) − 𝑥(𝑘−1)], otherwise
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where 𝑥(𝑘−1) is the 𝑘 − 1 order statistic. 

5.2.3.3 Second stabilized MLE 

Casella [162] analyzed the stability of the MLE estimator by perturbing the log 

likelihood function in a systematic fashion. The author argues that the instability arises 

from the first term in the log likelihood function given below: 

𝑙(𝑛, 𝑝|𝑋, 𝑘) =∑log (
𝑛

𝑥𝑖
)

𝑘

𝑖=1

+ 𝑘𝑥̅ log 𝑝 + 𝑘(𝑛 − 𝑥̅) log(1 − 𝑝). 

The goal is to perturb the first term by replacing the log 𝑛! and log(𝑛 − 𝑥𝑖)! terms 

with the following approximation: 

log 𝑦! ≈ (1 − 𝛼)𝑦 log 𝑦 + 𝛼(𝑦 + 1) log(𝑦 + 1), 

for some 𝛼 ∈ (0,1). For 𝛼 near 
1

2
, the perturbed likelihood is very close to the original one. 

For a range of 𝛼 values near 
1

2
, the author examines the maximum likelihood estimators 

resulting from those slightly perturbed likelihood functions. Differentiating 𝑙(𝑛, 𝑝|𝑋, 𝑘) 

leads to the stabilized 𝑛 −estimator 𝑛̂𝛼 , which is the solution to 

log

[
 
 
 
 𝑛(1−𝛼)𝑘(𝑛 + 1)𝛼𝑘 [

∑ (𝑛 − 𝑥𝑖)
𝑘
𝑖=1

𝑘𝑛
]

𝑘

∏ (𝑛 − 𝑥𝑖)𝛼∏ (𝑛 − 𝑥𝑖 + 1)1−𝛼
𝑘
𝑖=1

𝑘
𝑖=1

]
 
 
 
 

= 0. 
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The MLE of 𝑝 based on the perturbed likelihood is 𝑝̂𝛼 =
𝑥̅

𝑛̂𝛼
. Casella shows that for 

a fixed 𝛼, the perturbed likelihood has a unique finite root 𝑛̂𝛼. To obtain a point estimate 

of 𝑛, the author suggests taking a weighted average of values of 𝑛̂𝛼 for 𝛼 near 
1

2
: 

𝑛̂avg =
∑ |

1
2 − 𝛼| 𝑛̂𝛼  

 
𝛼

∑ |
1
2 − 𝛼| 

 
𝛼

 

5.2.3.4 Likelihood weighed by beta prior for 𝒑 

Consider the conjugate Beta(𝛼, 𝛽) prior distribution on the parameter 𝑝. The 

justification behind the beta distribution is that it does not impose any severe limitations 

on the way the probability fluctuates, yet it is versatile. The marginal posterior distribution 

for 𝑛 after integrating out 𝑝 and recognizing the beta integral is:  

𝐿(𝑛) = ∫∏(
𝑛
𝑥𝑖
) 𝑝𝑥𝑖(1 − 𝑝)𝑛−𝑥𝑖

𝑘

𝑖=1

 𝑝𝛼−1(1 − 𝑝)𝛽−1

𝛣(𝛼, 𝛽)

1

0

𝑑𝑝

=
𝛣(𝛼 + ∑ 𝑥𝑖

𝑘
𝑖=1 , 𝛽 + 𝑘𝑛 − ∑ 𝑥𝑖

𝑘
𝑖=1 )

𝛣(𝛼, 𝛽)
∏(

𝑛
𝑥𝑖
)

𝑘

𝑖=1

. 

Carroll and Lombard [161] obtain an estimator by maximizing the marginal posterior 

as a function of 𝑛 ≥ 𝑥(𝑘) for some given 𝛼 and 𝛽. According to DasGupta and Rubin [167], 

it is the best available estimate of 𝑛. 

Skellam [181] discussed how to obtain satisfactory estimates of the parameters 𝛼 and 

𝛽 through the method of moments through the following relation: 
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𝛼 =
𝑅1𝑅2 − (𝑛 − 1)𝑅1
(𝑛 − 1)𝑅1 − 𝑛𝑅2

 

𝛽 = 𝛼 (
𝑛

𝑅1
− 1) 

where 𝑅𝑗 =
(𝑛−𝑗+1)(𝑗+𝛼−1)

𝑗+𝛼+𝛽−1
. More efficient parameters can be obtained by directly 

maximizing the log likelihood instead. 

Carroll and Lombard [161] examine this problem when 𝛼 and 𝛽 are integers. Their 

estimator MB(𝛼 − 1, 𝛽 − 1) is obtained by maximizing the integrated likelihood as a 

function of 𝑛 ≥ 𝑥(𝑘), where  

𝐿(𝑛) =∏(
𝑛
𝑥𝑖
)

𝑘

𝑖=1

1

(𝛼 + 𝛽 + 𝑘𝑛 − 1) (
𝛼 + 𝛽 + 𝑘𝑛 − 2

𝛼 + ∑ 𝑥𝑖
𝑘
𝑖=1 − 1

)

. 

Notice that the likelihood is optimized over a continuous range of 𝑛.  

5.2.4 Bayesian approaches 

5.2.4.1 Beta prior for 𝒑, and discrete uniform prior for 𝒏 

Consider the Beta(𝛼, 𝛽) and Uniform(1, 𝑁) priors on 𝑝 and 𝑛 respectively (where 𝑁 

is some large preselected integer). These priors have been used by Draper and Guttman 

[23]. Under the assumption that 𝑛 and 𝑝 are independent a priori, and after integrating 𝑝 

out, the marginal posterior of 𝑛 becomes 
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𝑝(𝑛|𝑋) ∝
(𝑘𝑛 − ∑ 𝑥𝑖

𝑘
𝑖=1 + 𝛽 − 1)!

(𝑘𝑛 + 𝛼 + 𝛽 − 1)!
∏

𝑛!

(𝑛 − 𝑥𝑖)!

𝑘

𝑖=1

     for max
 
𝑥𝑖 ≤ 𝑛 ≤ 𝑁 

Draper and Guttman consider the modal value of the marginal posterior distribution 

as an estimate of 𝑛 under the absolute loss function. 

In the case when 𝛼 = 𝛽 = 1, 𝑝 follows an arguably noninformative uniform prior 

distribution. Under that assumption, the authors argue that the choice of the upper bound 

𝑁 does not affect the inferred value of 𝑛 as long as 𝑁 does not limit the upper tail. Kahn 

[170] notes that this is incorrect, since when 𝑁 increases, both the mean and the median of 

the posterior of 𝑛 get arbitrarily large.   

Prior information on 𝑝 can be very easily incorporated into the model by selecting 

the parameters 𝛼 and 𝛽 to match the most likely a priori value of 𝑝 and the “strength” of 

the prior belief. Prior information on 𝑛 is as easy to incorporate, thus the method is 

nonrestrictive.  

5.2.4.2 Uniform prior for 𝒑, and Poisson prior for 𝒏 

Assume that 𝑛 follows a Poisson(𝜇) prior distribution. The observations 𝑋𝑖’s then 

follow a Poisson distribution with mean 𝜆 = 𝜇𝑝, where 𝜆 and 𝑝 are assumed to be 

independent a priori. Raftery [169] adopts a hierarchical approach to the problem by 

specifying a standard vague prior for λ and a uniform prior for p (prior specified in terms 

of (𝜆, 𝑝) instead of (𝜇, 𝑝)) such that 

𝑝~Uniform(0,1)                                 
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𝑛~Poisson(𝜇)         where 𝜆 = 𝜇𝑝 

𝑝(𝜆) ∝
1

𝜆
.                                      

which leads to a posterior distribution of 𝑛, that is 

𝑝(𝑛|𝑥) ∝ {
(𝑘𝑛 − ∑ 𝑥𝑖

𝑘
𝑖=1 )!

(𝑛𝑘 + 1)! 𝑛
} {∏(

𝑛

𝑥𝑖
)

𝑘

𝑖=1

}             (𝑛 ≥ 𝑥(𝑘) ) 

5.2.4.3 Beta prior for 𝒑, and Poisson prior for 𝒏 

Hamedani and Walter [171] investigate the case where 𝑝 follows a beta prior, while 

𝑛 follows a Poisson prior: 

𝑝~Beta(𝛼, 𝛽) 

𝑛~Poisson(𝜆). 

The posterior density for 𝑛 is: 

𝑓 (𝑛|𝑥
~
) = (∏(

𝑛

𝑥𝑖
)

𝑘

𝑖=1

)∫

((1 − 𝑝)𝑘𝜆)𝑛

𝑛! 𝑝𝛼(1 − 𝑝)𝛽

∑ ∏ (𝑚
𝑥𝑖
)𝑘

𝑖=1

((1 − 𝑝)𝑘𝜆)𝑚

𝑚!
∞
𝑚=𝑥(𝑘)

1

0

𝑑𝑝 𝛣(𝛼, 𝛽)       𝑛 ≥ 𝑥(𝑘). 

The resulting estimator for 𝑛 does not have a simple closed form expression, though.  

5.2.4.4 Beta prior for 𝒑, and left truncated Poisson prior for 𝒏 

Since n is the number of trials, n has to be greater than or equal to 1. Bayoud [173] 

assumes that n follows a zero truncated Poisson distribution and investigate the model  
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𝑝~Beta(𝛼, 𝛽) 

𝑛~zero truncated Poisson(𝜆). 

The marginal posterior pdf of 𝑛 is then given by 

ℎ (𝑛|𝑥1, … , 𝑥𝑘) =
1

𝐶1

𝜆𝑛

𝑛!

𝛤(𝑘𝑥̅ + 𝛼)𝛤(𝑘𝑛 − 𝑘𝑥̅ + 𝛽)

𝛤(𝑘𝑛 + 𝛼 + 𝛽)
∏(

𝑛
𝑥𝑖
)

𝑘

𝑖=1

, 

where 𝑛 ≥ max{𝑥(𝑘), 1} and 𝐶1 is the normalizing constant 

𝐶1 =∑
𝜆𝑛

𝑛!

𝛤(𝑇𝑘 + 𝛼)𝛤(𝑘𝑛 − 𝑇𝑘 + 𝛽)

𝛤(𝑘𝑛 + 𝛼 + 𝛽)
∏(

𝑛
𝑥𝑖
)

𝑘

𝑖=1

∞

𝑛=max{𝑥(𝑘),1}
. 

The Bayes point estimate (𝑛̂1) of 𝑛 under the squared error loss is 

𝑛̂ =
𝛤(𝑇𝑘 + 𝛼)

𝐶1
∑ 𝑛

𝜆𝑛

𝑛!

𝛤(𝑘𝑛 − 𝑇𝑘 + 𝛽)

𝛤(𝑘𝑛 + 𝛼 + 𝛽)

∞

𝑛=max{𝑥(𝑘),1}
∏(

𝑛
𝑥𝑖
)

𝑘

𝑖=1

. 

Bayoud [173] also discusses how to construct an empirical Bayes estimate for 𝑛 by 

obtaining MME values for the hyperparameters 𝛼, 𝛽 and 𝜆. 

5.2.4.5 Continuous prior for 𝒏 

Even though the number of trials 𝑛 is a discrete random variable, as an 

approximation, Gunel and Chilko [172] considered a continuous prior for 𝑛. The model is 

specified as follows: 

𝑝~Beta(𝛼, 𝛽) 
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𝑛~Gamma(𝛼 + 𝛽, 𝛿), 

where 𝑝 and 𝑛 are independent. The justification behind a continuous prior for 𝑛 stems 

from the approximated value of 𝑛, 𝑛 ≈ 𝜆 + 𝜆′, where 𝜆~Gamma(𝛼, 𝛿) and 

𝜆′~Gamma(𝛽, 𝛿). The estimator does not have a closed form and is evaluated using the 

Laguerre-Gauss quadrature.  

5.2.4.6 Improper prior for 𝒏 

Hamedani and Walter [171] investigate the effect of improper priors for both 𝑛 and 

𝑝 and show that improper priors lead to implausible results.  

5.3 A Beta-Binomial MLE Approach 

Let 𝑋1, … , 𝑋𝑘~Bin(𝑛, 𝑝), where 𝑛 and 𝑝 are assumed to be independent, and 𝑛 ∈

{1,2, … } and 𝑝 ∈ (0,1). Observe that the likelihood function of 𝑛 and 𝑝 given 𝑋1, … , 𝑋𝑘 is 

given by: 

L(𝑛, 𝑝|𝑥1, … , 𝑥𝑘) =∏(
𝑛

𝑥𝑖
) 𝑝𝑥𝑖(1 − 𝑝)𝑛−𝑥𝑖

𝑘

𝑖=1

. 

The function has to be maximized with respect to 𝑝 and 𝑛 simultaneously, where the 

range for 𝑛 is restricted to 𝑛 ≥ max{𝑥(𝑘), 1}. Since the parameter 𝑝 is unknown, we let 𝑝 

fluctuate by viewing it as a random variable arising from the conjugate Beta(𝛼, 𝛽) prior 

distribution given by:  

𝑔(𝑝|𝛼, 𝛽) =
 𝑝𝛼−1(1 − 𝑝)𝛽−1

𝛣(𝛼, 𝛽)
, 
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where 𝛣 is the usual beta function, 𝛼, 𝛽 > 0, and 𝑝 ∈ [0,1]. The beta distribution lets 𝑝 

take a variety of shapes between 0 and 1, and imposes no severe restrictions on the 

parameter. After integrating 𝑝 out, the modified likelihood becomes  

𝐿(𝑛, 𝛼, 𝛽|𝑥1, … , 𝑥𝑘) = ∫∏𝑃(𝑥𝑖|𝑛, 𝑝)

𝑘

𝑖=1

𝑃(𝑝|𝛼, 𝛽)

 

 

𝑑𝑝

= ∫∏(
𝑛
𝑥𝑖
) 𝑝𝑥𝑖(1 − 𝑝)𝑛−𝑥𝑖

𝑘

𝑖=1

 𝑝𝛼−1(1 − 𝑝)𝛽−1

𝛣(𝛼, 𝛽)

1

0

𝑑𝑝

= [∏(
n
xi
)

𝑘

𝑖=1

]
Β(∑ 𝑥𝑖

𝑘
𝑖=1 + 𝛼, 𝑘n − ∑ 𝑥𝑖

𝑘
𝑖=1 + 𝛽)

Β(𝛼, 𝛽)
. 

A fundamental problem when using the Beta-Binomial distribution is the estimation 

of the parameters 𝛼 and 𝛽. In this setup, one additional parameter needs to be estimated, 

𝑛. One possible method is to use the method of moments through the following relation 

between the first three moments of the Beta-Binomial distribution and the data: 

𝐸[𝑋𝑖] =
𝑛𝛼

𝛼 + 𝛽
 

𝐸[𝑋𝑖
2] = 𝑛𝛼

𝑛𝛼 + 𝛽 + 𝑛

(𝛼 + 𝛽)(𝛼 + 𝛽 + 1)
 

𝐸[𝑋𝑖
3] =

𝑛𝛼

(𝛼 + 𝛽) 

(𝑏2 + 3𝑛𝛽 + 2𝑛2 + 𝑛2𝛼2 + 𝛼(3𝑛2 + 𝛽(3𝑛 − 1)))

(𝛼 + 𝛽 + 1)(𝛼 + 𝛽 + 2)
 

Skellam [181] discussed how to obtain satisfactory estimates of the parameters 

through the first three moments of the distribution. While this approach is simple and 

computationally easy, it is not very efficient, and can lead to negative estimates.  



 105 

A second more efficient, and our preferred, method of obtaining satisfactory 

estimates of the parameters 𝛼, 𝛽 and 𝑛 is to use maximum likelihood approach. The log 

likelihood function 

𝑙(𝑛, 𝛼, 𝛽) = 

= 𝑘 log Γ(𝑛 + 1) −∑[log Γ(𝑛 − 𝑥𝑖 + 1)]

𝑘

𝑖=1

+ log Β(∑𝑥𝑖

𝑘

𝑖=1

+ 𝛼, 𝑘𝑛 −∑𝑥𝑖

𝑘

𝑖=1

+ 𝛽)

− log Β(𝛼, 𝛽) 

is directly maximized with respect to integer values of 𝑛 ≥ max{𝑥(𝑘), 1}, and continuous 

values of 𝛼, 𝛽 ≥ 0. Thus, the estimates of 𝑛, 𝛼, 𝛽 are given by 

(𝑛̂, 𝛼̂, 𝛽̂) = arg max
𝑛≥max{𝑥(𝑘),1},𝑛∈ℤ,𝛼>0,𝛽>0

𝑙(𝑛, 𝛼, 𝛽). 

Optimizing the likelihood function with respect to all three parameters, allows the 

inference based on the data of not only 𝑛, but 𝛼 and 𝛽 as well. Furthermore, Carroll and 

Lombard [161] state that if 𝛼, 𝛽 ≥ 0, then the likelihood is maximized at some finite 𝑛. 

 As mentioned earlier, the beta distribution is a flexible distribution with density that 

can take on a number of shapes. When both 𝛼, 𝛽 < 1, the density is U-shaped and more 

sparse. If 𝛼 < 1 or 𝛽 < 1, the distribution is reverse J- and J-shaped respectively. When 

𝛼 = 𝛽 = 1, the density is flat (uniform) on the unit interval. Finally, as 𝛼, 𝛽 increase, the 

density “tightens” around its mean and resembles a spike. 

 To overcome instability and make the 𝑛̂, 𝛼̂, and 𝛽̂ estimators more robust, we 

restricted the parameter space of 𝛼 and 𝛽 to (0,1000), where the upper bound was 
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somewhat arbitrarily chosen. The imposed restriction is still flexible enough to 

accommodate all of the above mentioned different shapes of the beta distribution. The 

lower and upper bounds of 𝛼 and 𝛽 permit the mean (variance) of 𝑝 to vary anywhere from 

0 to 1 (0 to 0.25), where 𝑝 is estimated as 
𝛼

𝛼+𝛽
. Limiting the upper bound for 𝛼 and 𝛽 leads 

to a more cautious inference about n. The final form of our estimator is as follows: 

(𝑛̂, 𝛼̂, 𝛽̂) = arg max
𝑛≥max{𝑥(𝑘),1},𝑛∈ℤ,𝛼,𝛽∈(0,1000)

𝑙(𝑛, 𝛼, 𝛽). 

 We optimized the log likelihood function using a grid search over integer values 

for 𝑛, and a limited memory modification of the BFGS quasi-Newton method proposed by 

Byrd et al [182]. The BFGS is a quasi-Newton algorithm that was published simultaneously 

by Broyden, Fletcher, Goldfarb and Shanno Broyden, Fletcher, Goldfarb and Shanno in 

1970 [183-186]. We used the gridSearch function within the NMOF package in R [187, 

188], and the optim function within the stats package in R [45]. 

Similar approach has been proposed previously by Carroll and Lombard [161] and 

Blumenthal and Dahiya [163]. Carroll and Lombard [161] suggested an estimator by 

maximizing the integrated likelihood as a function of 𝑛 ≥ 𝑥(𝑘);  𝛼 and 𝛽 were set at some 

pre-selected integer values.  Blumenthal and Dahiya [163] maximized the product 

∏ 𝑃(𝑥𝑖|𝑛, 𝑝)
𝑘
𝑖=1 𝑃(𝑝|𝛼, 𝛽) directly over 𝑛 and 𝑝 without integrating 𝑝 out. They do not 

provide any guidelines on how to select 𝛼 and 𝛽 though.  
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5.4 Performance Investigation and Applications 

5.4.1 Illustrative Example 

Consider the random sample {16,18,22,25,27} generated from a binomial 

distribution with 𝑛 = 75 and 𝑝 = 0.32 investigated by Olkin et al [24]. The MME and 

MLE estimates are 102 and 99 respectively. Suppose that the 27 in the sample was 

misrecorded, and the correct value was 28. The MME and MLE estimates then become 

195 and 190, which shows their lack of robustness. This is an example of an unstable case 

since the sample mean and sample variance are nearly equal. The proposed estimator based 

on Beta-Binomial MLE approach is 70 before correcting the sample, and 85 after. 

5.4.2 Comparative performance 

In this section, we compare the performance of five different 𝑛 −estimators for 

different combinations of (𝑘, 𝑛, 𝑝). The five estimators include the stabilized method of 

moments and stabilized maximum likelihood estimators as presented by Olkin et al Olkin 

et al [24] (MME:S and MLE:S), the Carroll and Lombard [161] estimators (MB(0,0) and 

MB(1,1)), and the proposed estimator 𝑛̂.  

 First, we present results for eight particularly difficult cases selected by Olkin et al 

[24]. We also present results for each perturbed sample obtained by adding one to the 

sample maximum. The results are shown in Table 13. The proposed estimator is reasonably 

stable when subjected to perturbations. The estimator 𝑛̂ was closer to the true value of 𝑛 

than the other six estimators in one case. The MME and MLE estimators are highly unstable 

though. If we disregard those two unstable estimators, 𝑛̂ was closer/equally close to the 
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true value of 𝑛 compared to the other four estimators in two cases. Finally, 𝑛̂ outperformed 

both MB(0,0) and MB(1,1) in three cases. It performed similarly well in another three 

cases, but exhibited higher instability. Sample #6 is of particular interest since it is an 

unstable case with large 𝑝. The MLE:S dominates all estimators followed by the 𝑛̂ 

estimator. Finally, if we restrict our attention to sample 8, which is an example of unstable 

case with small 𝑝, we observe that MME:S is the best estimator (excluding MME and MLE 

due to instability), and the 𝑛̂ estimator is next. 

Table 13: n- estimators for selected samples and perturbed samples. 

Sample 𝑛 𝑝 𝑘 MME MLE MME:S MLE:S MB(0,0) MB(1,1) 𝑛̂ 

1 75 0.32 5 102 

195P 

99 

191P 

70 

80P 

29 

30P 

51 

57P 

49 

52P 

46 

49P 

2 34 0.57 4 507 

<0 P 

515 

∞P 

77 

91P 

31 

32P 

52 

59P 

47 

52P 

47 

55P 

3 37 0.17 20 65 

154 P 

66 

160P 

25 

27P 

11 

13P 

26 

29P 

23 

25P 

31 

35P 

4 48 0.06 15 18 

135 P 

15 

127P 

10 

12P 

7 

9P 

9 

12P 

8 

10P 

9 

14P 

5 40 0.17 12 32 

61 P 

40 

80P 

26 

32P 

21 

22P 

27 

33P 

25 

29P 

27 

42P 

6 74 0.68 12 210 

259 P 

214 

267P 

153 

162P 

67 

69P 

135 

144P 

125 

131P 

109 

139P 

7 55 0.48 20 71 

79 P 

71 

81P 

69 

74P 

43 

45P 

64 

70P 

63 

67P 

66 

70P 

8 60 0.24 15 67 

88 P 

67 

90P 

49 

53P 

24 

26P 

45 

49P 

41 

45P 

47 

51P 

Note: The exact samples can be found in Table 2 of Olkin et al [24] 
P: perturbed sample 

 

Next, we conducted a simulation study to compare the performance of the five 

estimators. Following the same design found in the study by Olkin et al [24], we generated 

values of 𝑘, 𝑛 and p from uniform distributions on {3, … ,22}, {1, … ,100} and (0,1) 
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respectively. We generated 100,000 random binomial samples, and computed the five 

estimators for each sample.  

The performance of the estimators was evaluated based on three criteria. The first 

and main criterion is the relative mean squared error, defined for any estimator 𝑛̂ as 

E[(
𝑛̂

𝑛
− 1)

2

]. Several authors including Olkin et al [24], Carroll and Lombard [161], and 

Casella [162] have suggested that the scaled squared error is an appropriate and natural 

loss function for this problem. For easier interpretation, we reported relative mean square 

error efficiency instead. A relative mean square error efficiency of an estimator 𝑛̂ relative 

to a benchmark estimator 𝑛̅ is the ratio of the relative mean square error of 𝑛̅ to the relative 

mean square error of 𝑛̂. The second criterion is the bias, defined as E[
𝑛̂

𝑛
− 1] similarly to 

the study of Blumenthal and Dahiya [163]. Lastly, we computed the number of times each 

estimator “won” (was closest to the true value of 𝑛). Ties were counted as wins.  

Finally, each sample was categorized as either stable or unstable. We used the 

criterion that Olkin et al [24] suggested – a sample is classified as stable if and only if 
𝑥̅

𝑠2
≥

1 +
1

√2
.  

The relative mean square errors efficiency, bias and number of wins for both the 

stable and unstable cases are showed in Table 14.  

Overall, the 𝑛̂ estimator performed slightly better than the other four estimators with 

an overall efficiency gain of about 4% and 1% over MME:S and MB(1,1) respectively. In 

terms of proximity to the true 𝑛, the 𝑛̂ estimator won/tied in 42% of the cases, while the 
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MB(1,1) and MME:S both won/tied in about 50% of the cases. The MLE:S estimator 

performed the worst in terms of efficiency and bias, and second worst behind MB(0,0) in 

terms of number of wins. The MB(1,1) outperformed MB(0,0) across all three measures of 

error. 

However, in stable cases, which occurred 69.4% of the time, the 𝑛̂ estimator 

performed slightly worse than or equally well at best compared to the other estimators with 

an overall efficiency loss of 1% over MME:S. MB(1,1) had an overall efficiency gain of 

1% over MME:S and won/tied in 63% of the cases. The MB(1,1) performed the best across 

all three measures of error. MB(1,1) again outperformed MB(0,0) across all three measures 

of error. 

In unstable cases (30.6% of all cases), the  𝑛̂ estimator dominated all other estimators, 

and showed an 8% overall efficiency gain over MME:S, and about 4% over both MB(0,0) 

and MB(1,1). In terms of bias and number of wins, MME:S performed the best followed 

by the proposed 𝑛̂ estimator. This time, MB(1,1) performed similarly to or worse than 

MB(0,0) across all three measures of error. The 𝑛̂ estimator outperformed MLE:S, MB(0,0) 

and MB(1,1) across every criterion. 
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Table 14: Comparison of the n-estimators. 

 Cases  MME:S MLE:S MB(0,0) MB(1,1) 𝑛̂  
All cases 10000 Efficiency 1.00 0.93 1.02 1.03 1.04 

Bias -0.186 -0.304 -0.223 -0.23 -0.218 

Wins 49% 35% 33% 50% 42% 

Stable 6939 

(69.4%) 

 

Efficiency 1.00 0.99 0.99 1.01 0.99 

Bias -0.172 -0.179 -0.185 -0.165 -0.187 

Wins 49% 42% 39% 64% 42% 

Unstable 3061 

(30.6%) 

 

Efficiency 1.00 0.9 1.05 1.05 1.09 

Bias -0.217 -0.583 -0.309 -0.375 -0.286 

Wins 47% 19% 19% 19% 41% 

 

We investigated the performance of the estimators further by splitting the parameter 

range for 𝑝 into several overlapping categories following Olkin et al [24]. For stable cases, 

MB(1,1) achieved highest efficiency across values for 𝑝 ∈ (0.2,1), which can be explained 

by the tendency of the MB(0,0) and MB(1,1) estimators to downweigh the possibility that 

𝑝 is near zero. For “small” values of 𝑝, (0 < 𝑝 < √2 − 1), the MME:S achieved the best 

performance.  

In the special unstable case with “small 𝑝” (0 < 𝑝 < √2 − 1) the proposed 𝑛̂ 

estimator was superior to the other estimators, followed by MME:S. For bigger values of 

𝑝 the MB(1,1) performed better than all other estimators. 

5.5 𝒏 −estimator when 𝒌 = 𝟏 with Applications in Contingency Tables 

5.5.1 Background 

In the absence of replications, inference about 𝑛 is not possible. And yet, the need 

for an 𝑛 −estimator, even when only a single observation is available, arises in certain 
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situations, particularly in analyzing partially reported contingency tables when the interest 

lies in inference about unobserved cell counts.  

Consider a simple 2 × 2 contingency table design, where the columns are counts of 

subjects who have a particular disease of interest and those who do not, and the rows are 

counts of those subjects who tested positive and negative for the disease. A standard 

assumption is that the disease and no disease groups are independent. Suppose that the test 

found agreement in 𝐴 subjects for being positive (true positives), and in 𝐷 subjects for 

being negative (true negatives). Let 𝐵 represent the number of subjects who do not have 

the disease and tested positive (false positives), and 𝐶 the number of subjects who have the 

disease and tested negative (false negatives). The contingency table design for evaluating 

the performance of a test can be represented as Table 15.  

Table 15: Contingency design table 

  Disease No disease  Total 

Test positive 𝐴 𝐵 𝐴 + 𝐵 

Test negative 𝐶 𝐷 𝐶 + 𝐷 

 Total A + 𝐶 𝐵 + 𝐷 𝐴 + 𝐵 + 𝐶 + 𝐷 

 

Some studies report only the number of true positives and true negatives, that is cell 

counts 𝐴 and 𝐷. When 𝐵 and 𝐶 are not reported, the total number of subjects who have the 

disease 𝐴 + 𝐶 and the total number of subjects who do not have the disease 𝐵 + 𝐷 are 

unknown. This is problematic since in order to determine a test’s performance, a key 

quantity of interest is the sensitivity and specificity of the test. Sensitivity is the ability of 
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a test to identify correctly those who have the disease, and specificity is the ability to 

identify correctly those who do not have the disease. The sensitivity (true positive rate) and 

specificity (true negative rate) of a test are defined as: 

Sensitivity =
A

A + C∗
 

Specificity =
𝐷

𝐵∗ + 𝐷
, 

where * refers to counts that are not reported. 

With the increase in knowledge and technology in the medical field in recent years, 

an increasing number of diagnostic tests for different diseases has become available. 

Diagnostics tests should be used based on their validity, and not availability. Validity of a 

test can be characterized by its sensitivity and specificity.  

This section addresses the problem of inference on the sensitivity and specificity for 

a test in a missing data context when only the true positives 𝐴 and true negatives 𝐷 are 

reported. Equivalently, the problem can be translated in the context of the binomial 𝑛 

problem with 𝑘 = 1 replications. The problem now is to estimate column totals  A + C∗ 

and 𝐵∗ + 𝐷 conditional on the observed values of some cell counts (true positives 𝐴 and 

true negatives 𝐷). We propose a Bayesian model to recover the contingency table by 

incorporating any prior information available. 
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5.5.2 Bayesian Model 

Assume that Table 15 is partially observed, that is 𝐴 and 𝐷 are known, while 𝐵 and 

𝐶 are unknown. Since the disease and no disease populations are independent from one 

another, we can treat each of 𝐴 and 𝐷 as a realization of an independent binomial 

distribution as follows: 

𝐴~Binomial(𝑛1, 𝑝1) 

𝐷~Binomial(𝑛2, 𝑝2), 

where 𝑛1 = 𝐴 + 𝐶∗, 𝑛2 = 𝐵∗ + 𝐷, and the probabilities 𝑝1 and 𝑝2 of testing positive 

(negative) in the presence (absence) of the disease are unknown. A natural restriction is 

that 𝑛1 ≥ 𝐴 and 𝑛2 ≥ 𝐷. 

We propose a Bayesian approach to the problem. We assume that the sample sizes 

𝑛1 and 𝑛2 follow a Poisson distribution with parameters 𝜆1 and 𝜆2 respectively. The 

Poisson distribution accommodates the discrete nature of the parameters. Additionally, we 

let the probabilities 𝑝1 and 𝑝2 each be a draw from a uniform distribution 

Since sensitivity and specificity are both usually in the interval [0.5,1], we let 𝑝1 be 

a draw from a Uniform(0.5,1) distribution.  

In practice, for any test, there is a tradeoff between sensitivity and specificity. Due 

to a minimum error bound, as sensitivity increases, specificity decreases, and vice versa. 

Therefore, to quantify and incorporate this tradeoff into our model, we let sensitivity and 



 115 

specificity together (𝑝1 + 𝑝2) vary from 1.4 to 1.8. Therefore, we assume that 𝑝2 follows a 

Uniform(1.4 − 𝑝1, 1.8 − 𝑝1) distribution. 

Finally, 𝜆1 and 𝜆2 are each selected based on prior knowledge about 𝐴 + 𝐶∗ and 

𝐵∗ + 𝐷 respectively. The [0.5,1] range for sensitivity and specificity limits the range for 

𝑛1 and 𝑛2 to [𝐴, 2𝐴] and [𝐷, 2𝐷] respectively. Using this restriction, if there is no prior 

information available, we assign the parameters uninformative priors by centering 𝜆1 and 

𝜆2 at 
4

3
𝐴 and 

4

3
𝐷. 

The model has the following form: 

𝐴|𝑛1, 𝑝1~Binom(𝑛1, 𝑝1) 

𝑝1~Uniform(0.5,1) 

𝑛1|𝜆1~Poi(𝜆1) 

𝐷|𝑛2, 𝑝2~Binom(𝑛2, 𝑝2) 

𝑝2|𝑝1~Uniform(1.4 − 𝑝1, 1.8 − 𝑝1) 

𝑛2|𝜆2~Poi(𝜆2) 

We generated samples from the posterior distribution using Markov chain Monte 

Carlo (MCMC) algorithm implemented in JAGS via the rjags package in R. We used 1 

chain with the first 10,000 iterations discarded while the Markov chain stabilized. 

Assuming quadratic loss function, posterior inference was based on posterior means 

generated from 50,000 samples thinned at a lag of 50.  

5.5.3 Example 

In this section, we demonstrate how our methodology can be used to recover 

contingency tables and to estimate sensitivity and specificity. Consider the following fully 
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observed contingency table from a study by Tubman et al [189] . The study investigated 

the performance of different screening tests for detecting congenital heart disease early in 

the life of children with Down’s syndrome. Table 16 shows the diagnostic ability of a 

combination of clinical examination, chest radiography and electrocardiography: 

Table 16: Original contingency table reported by Tubman et al [183] 

  Disease No disease 

Test positive 24 4 

Test negative 10 43 

 

Suppose that only the true positive (24) and true negative (43) diagnoses of heart 

disease are reported. Without incorporating any additional information about the 

association between the cell counts, the resulting recovered contingency table based on the 

posterior means obtained through our methodology is presented in Table 17.  

Table 17: Recovered contingency table with uninformative prior 

  Disease No disease 

Test positive 24 13 

Test negative 7 43 

 

Considering that the model is based on a single observation and due to the prior being 

fairly non-informative, the performance of the model is not remarkable. The estimated false 

negatives were 7 (compared to the true value 10), and the estimated false positives were 13 
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(compared to the true value 4). While the estimated sensitivity of 0.77 is relatively close to 

the actual sensitivity of the test, 0.71, it is apparent that the estimated specificity of 0.77 is 

significantly lower than the true value, 0.91.  

Incorporating more information into the model through the priors leads to a 

significantly better performance. Figure 21 and Figure 22 below show the absolute 

deviation of the recovered cell counts 𝐵 and 𝐶 from their true values as we vary 𝑛1 and 𝑛2 

through the parameters 𝜆1 and 𝜆2. We let 𝑛1 vary anywhere from 𝐴 to 2𝐴 (that is from 24 

to 48). Similarly, we let 𝑛2 vary anywhere from 𝐷 to 2𝐷 (that is from 43 to 86). The true 

values for 𝑛1 and 𝑛2 are 34 and 47 respectively. 

Unsurprisingly, Figure 21 shows that the deviation of the estimate of 𝐵 from the 

original table increases as we increase 𝜆2 which governs the distribution on 𝑛2 (𝑛2 = 𝐵 +

𝐷). For any prior of 𝜆2 between 43 and 45, the posterior of 𝐵 (𝑛2) stayed within 3 deviations 

from the original cell count of 𝐵, 4 (original count 𝑛2,47). As 𝜆2 increased, the error 

increased. The estimator of 𝐵 was not affected by the prior on 𝜆1 which governs the 

distribution of 𝑛1.  

The effect of the priors on the posterior of 𝐶 showed an interesting pattern that can 

be observed in Figure 22. The two priors, 𝜆1 and 𝜆2 both influence 𝐶, and the posterior 

estimate of 𝐶 does not remain the same as we vary the prior on 𝜆2. The posterior of 𝐶 

generated by the model was within 1 deviation from the original value of 10 12.5% of the 

scenarios, and within 3 deviations from the original value about 37.49% of the time.  



 118 

 

Figure 21. Deviation of B 

 

 

Figure 22. Deviation of C 
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APPENDIX A. SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

A.1 Full search strategy for PubMed 

 Detailed search terms and strategy for title/abstract: (melanom* or melanocyt*) 

AND (BRAF or BRAF* or *RAF or MEK1 or MEK2 or MEK* or MAPK or ERK1 or 

ERK2 or ERK* or R05185426 or RG7204 or PLX 4032 or vemurafenib or zelboraf or 

dabrafenib or tanfilar or GSK 2118436 or GSK2118436 or GSK-2118436 or JTP 74057 or 

trametinib or mekinist or JTP74057 or JTP-74057 or GSK1120212 or GSK1120212 or 

GSK-1120212 or cobimetinib or cotellic or GDC-0973 or XL518 or pd-1 or pd-l1 or pd-l2 

or programmed cell death receptor or  programmed cell death 1 receptor or programmed 

cell death 2 receptor or CD279 or CLTA-4 or Cytotoxic T-Lymphocyte-Associated 

Antigen 4 or Cytotoxic T Lymphocyte Associated Antigen 4 or Cytotoxic T-Lymphocyte 

Antigen 4 or Cytotoxic T Lymphocyte Antigen 4 or CD152 or CD28 OR ipilimumab or 

MDX-CTLA-4 or Yervoy or MDX 010 or MDX010 or MDX-010 or tremelimumab or 

ticilimumab or CP 675 or CP675 or CP-675 or CP-675,206 or CP-675206 or CP675206 or 

CP 675206 or pidilizumab or nivolumab or opdivo or bms-936558 or ono-4538 or ono4538 

or mdx-1106 or pembrolizumab or lambrolizumab or keytruda or mk-3475) AND 

(random* or randomised or randomized or prospective). 
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A.2 Cochrane risk of bias tool 

 

Figure 23. Risk of bias analysis 
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A.3 Funnel plot of publication bias 

 

Figure 24. Funnel plot of all included studies (Overall survival outcome) 
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APPENDIX B. SUPPLEMENTAL MATERIAL FOR CHAPTER 3  

Table 18: All reported adverse events for enzalutamide vs. abiraterone in the pre- 

and post-docetaxel settings 

  

Enzalut

amide, 

pre-
docetax

el 

(PREV
AIL) 

Placebo

, pre-

docetax

el 
(PREV

AIL) 

Abirater

one, 

pre-

docetax

el 
(COU-

AA-

302) 

Placebo/Pred

nisone, pre-
docetaxel 

(COU-AA-

302) 

Enzaluta

mide, 

post-

docetaxel 
(AFFIR

M) 

Placeb

o, post-

doceta

xel 
(AFFI

RM) 

Abirater

one, 

post-

docetax

el 
(COU-

AA-

301) 

Placebo/Pred

nisone, post-
docetaxel 

(COU-AA-

301) 

Adverse Event 

Any 

grade 

Grad
e ≥3 

0.97 
(0.96-

0.98) 

0.46 
(0.42-

0.49) 

0.93 
(0.91-

0.95) 

0.37 
(0.34-

0.41) 

0.99 
(0.98-

1.00) 

0.48 
(0.43-

0.52) 

0.97 (0.95-

0.98) 

0.42 (0.38-
0.46) 

0.98 
(0.97-

0.99) 

0.45 
(0.42-

0.49) 

0.98 
(0.96-

0.99) 

0.53 
(0.48-

0.58) 

0.77 
(0.74-

0.80) 

0.23 
(0.20-

0.26) 

0.77 (0.73-

0.81) 

0.19 (0.16-
0.23) 

Any SAE 
0.36 

(0.33-

0.39) 

0.27 
(0.24-

0.30) 

0.33 
(0.29-

0.37) 

0.26 (0.23-

0.30) 

0.34 
(0.30-

0.37) 

0.39 
(0.34-

0.43) 

  

AE leading to treatment 

discontinuation 

0.06 

(0.04-

0.07) 

0.06 

(0.05-

0.08) 

0.10 

(0.08-

0.13) 

0.09 (0.07-

0.12) 

0.08 

(0.06-

0.10) 

0.10 

(0.07-

0.13) 

0.13 

(0.11-

0.16) 

0.18 (0.15-

0.22) 

AE leading to death 

0.04 

(0.03-
0.06) 

0.04 

(0.03-
0.05) 

0.04 

(0.02-
0.06) 

0.02 (0.01-

0.04) 

0.03 

(0.02-
0.04) 

0.04 

(0.02-
0.06) 

0.13 

(0.11-
0.16) 

0.15 (0.12-

0.19) 

Any cardiac 

Any 
grade 

Grad

e ≥3 

0.10 

(0.08-
0.12) 

0.03 

(0.02-
0.04) 

0.08 

(0.06-
0.10) 

0.02 

(0.01-
0.03) 

0.19 

(0.16-
0.22) 

0.06 

(0.04-
0.08) 

0.16 (0.13-
0.19) 

0.03 (0.02-

0.05) 

0.06 

(0.05-
0.08) 

0.01 

(0.00-
0.02) 

0.08 

(0.05-
0.11) 

0.02 

(0.01-
0.04) 

0.16 

(0.14-
0.19) 

0.05 

(0.04-
0.07) 

0.12 (0.09-
0.15) 

0.02 (0.01-

0.04) 

Cardiac AE leading to 
death 

      

0.01 

(0.01-

0.02) 

0.01 (0.01-
0.03) 

Atrial 
fibrillation 

Any 

grade 
Grad

e ≥3 

0.02 

(0.01-

0.03) 
0.00 

(0.00-

0.01) 

0.01 

(0.01-

0.02) 
0.01 

(0.00-

0.01) 

0.04 

(0.03-

0.06) 
0.01 

(0.01-

0.03) 

0.05 (0.03-

0.07) 
0.01 (0.00-

0.02) 

    

Acute coronary 

syndromes/my
ocardial 

infarction 

Any 

grade 
Grad

e ≥3 

0.01 
(0.00-

0.02) 
0.01 

(0.00-

0.02) 

0.00 
(0.00-

0.01) 
0.00 

(0.00-

0.01) 

  

0.00 
(0.00-

0.01) 
0.00 

(0.00-

0.01) 

0.01 
(0.00-

0.02) 
0.01 

(0.00-

0.02) 

  

Acute renal 

failure 

Any 

grade 

Grad
e ≥3 

0.04 
(0.03-

0.05) 

0.01 
(0.01-

0.02) 

0.05 
(0.03-

0.06) 

0.01 
(0.01-

0.02) 
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Table 18 (Continued) 

Ischemic or hemorrhagic 

cerebrovascular event 

Any 

grade 

Grade 
≥3 

0.01 
(0.01-

0.02) 

0.01 
(0.00-

0.01) 

0.01 
(0.01-

0.02) 

0.00 
(0.00-

0.01) 

      

ALT elevation 

Any 

grade 

Grade 
≥3 

0.01 
(0.00-

0.02) 

0.00 
(0.00-

0.01) 

0.01 
(0.00-

0.01) 

0.00 
(0.00-

0.01) 

0.12 
(0.09-

0.15) 

0.05 
(0.04-

0.08) 

0.05 
(0.03-

0.07) 

0.01 
(0.00-

0.02) 

    

AST elevation 

Any 
grade 

Grade 

≥3 

  

0.11 

(0.08-
0.14) 

0.03 

(0.02-
0.05) 

0.05 

(0.03-
0.07) 

0.01 

(0.00-
0.02) 

    

Abnormalities in liver 

function tests 

Any 
grade 

Grade 

≥3 

    

0.01 

(0.01-
0.02) 

0.00 

(0.00-
0.01) 

0.02 

(0.01-
0.03) 

0.01 

(0.00-
0.02) 

0.11 

(0.09-
0.14) 

0.04 

(0.03-
0.05) 

0.09 

(0.06-
0.12) 

0.04 

(0.02-
0.06) 

Seizure 

Any 

grade 

Grade 

≥3 

0.00 

(0.00-

0.01) 

0.00 

(0.00-
0.01) 

0.00 

(0.00-

0.01) 

0.00 

(0.00-
0.00) 

  

0.01 

(0.00-

0.01) 

0.01 

(0.00-
0.01) 

0.00 

(0.00-

0.01) 

0.00 

(0.00-
0.01) 

  

Anemia 

Any 

grade 
Grade 

≥3 

      

0.25 

(0.22-

0.28) 
0.08 

(0.06-

0.10) 

0.28 

(0.24-

0.33) 
0.08 

(0.06-

0.11) 

Thrombocytopenia 

Any 

grade 
Grade 

≥3 

      

0.04 

(0.03-

0.05) 
0.01 

(0.01-

0.02) 

0.04 

(0.02-

0.06) 
0.01 

(0.00-

0.02) 

Neutropenia 

Any 

grade 

Grade 
≥3 

      

0.01 
(0.01-

0.02) 

0.00 
(0.00-

0.01) 

0.01 
(0.00-

0.02) 

0.00 
(0.00-

0.01) 

Febrile neutropenia 

Any 

grade 

Grade 
≥3 

      

0.00 
(0.00-

0.01) 

0.00 
(0.00-

0.01) 

0.00 
(0.00-

0.01) 

0.00 
(0.00-

0.01) 

Abdominal pain 

Any 

grade 

Grade 

≥3 

      

0.13 
(0.11-

0.15) 

0.02 

(0.01-

0.04) 

0.12 
(0.09-

0.16) 

0.02 

(0.01-

0.04) 



 124 

 

Table 18 (Continued) 

Arthralgia 

Any 

grade 

Grade 
≥3 

0.21 
(0.19-

0.24) 

0.02 
(0.01-

0.03) 

0.16 
(0.14-

0.19) 

0.01 
(0.01-

0.02) 

0.28 

(0.25-

0.32) 
 

0.24 

(0.20-

0.28) 
 

  

0.30 
(0.27-

0.34) 

0.05 
(0.04-

0.07) 

0.24 
(0.20-

0.29) 

0.04 
(0.03-

0.07) 

Asthenia 

Any 

grade 

Grade 
≥3 

0.47 
(0.44-

0.50) 

0.03 
(0.02-

0.05) 

0.33 
(0.30-

0.36) 

0.03 
(0.02-

0.04) 

    

0.15 
(0.13-

0.18) 

0.03 
(0.02-

0.05) 

0.14 
(0.11-

0.17) 

0.02 
(0.01-

0.04) 

Back pain 

Any 
grade 

Grade 

≥3 

0.29 

(0.26-
0.32) 

0.03 

(0.02-
0.04) 

0.22 

(0.20-
0.25) 

0.03 

(0.02-
0.04) 

0.32 
(0.28-

0.36) 

 

0.32 
(0.28-

0.36) 

 

  

0.33 

(0.30-
0.36) 

0.07 

(0.05-
0.09) 

0.36 

(0.31-
0.41) 

0.10 

(0.08-
0.14) 

Bone pain 

Any 
grade 

Grade 

≥3 

  

0.20 
(0.16-

0.23) 

 

0.19 
(0.16-

0.23) 

 

  

0.27 

(0.24-
0.31) 

0.06 

(0.05-
0.08) 

0.30 

(0.25-
0.34) 

0.08 

(0.06-
0.11) 

Constipation 

Any 
grade 

Grade 

≥3 

0.23 

(0.21-
0.26) 

0.01 

(0.00-
0.01) 

0.17 

(0.15-
0.20) 

0.00 

(0.00-
0.01) 

0.23 
(0.20-

0.27) 

 

0.19 
(0.16-

0.23) 

 

  

0.28 

(0.25-
0.31) 

0.01 

(0.01-
0.02) 

0.32 

(0.28-
0.37) 

0.01 

(0.00-
0.03) 

Cough   

0.17 

(0.14-

0.21) 

0.14 

(0.11-

0.17) 

    

Decreased appetite 

Any 

grade 
Grade 

≥3 

0.19 

(0.16-

0.22) 
0.00 

(0.00-

0.01) 

0.16 

(0.14-

0.19) 
0.01 

(0.00-

0.02) 

      

Diarrhea 

Any 

grade 

Grade 
≥3 

0.17 
(0.14-

0.19) 

0.00 
(0.00-

0.01) 

0.14 
(0.12-

0.17) 

0.00 
(0.00-

0.01) 

0.22 

(0.18-

0.25) 
 

0.18 

(0.15-

0.21) 
 

0.21 
(0.19-

0.24) 

0.01 
(0.01-

0.02) 

0.18 
(0.14-

0.22) 

0.00 
(0.00-

0.01) 

0.20 
(0.17-

0.23) 

0.01 
(0.01-

0.02) 

0.15 
(0.12-

0.19) 

0.01 
(0.01-

0.03) 

Dizziness 

Any 

grade 

Grade 
≥3 

0.11 
(0.09-

0.14) 

0.00 
(0.00-

0.01) 

0.07 
(0.06-

0.09) 

0.00 
(0.00-

0.00) 

      

Dysgeusia 

Any 

grade 

Grade 
≥3 

0.08 
(0.06-

0.10) 

0.00 
(0.00-

0.01) 

0.04 
(0.03-

0.05) 

0.00 
(0.00-

0.00) 

      

Peripheral edema/edema 

Any 
grade 

Grade 

≥3 

0.11 

(0.10-
0.14) 

0.00 

(0.00-
0.01) 

0.08 

(0.07-
0.10) 

0.00 

(0.00-
0.01) 

0.28 

(0.24-
0.32) 

0.01 

(0.00-
0.02) 

0.24 

(0.20-
0.27) 

0.02 

(0.01-
0.03) 

  

0.33 

(0.30-
0.36) 

0.03 

(0.02-
0.04) 

0.24 

(0.20-
0.28) 

0.01 

(0.00-
0.03) 
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Table 18 (Continued) 

Fall 

Any 

grade 

Grade 
≥3 

0.13 
(0.11-

0.15) 

0.02 
(0.01-

0.03) 

0.05 
(0.04-

0.07) 

0.01 
(0.00-

0.02) 

      

Dyspnea 

Any 

grade 

Grade 
≥3 

0.11 
(0.09-

0.13) 

0.01 
(0.00-

0.01) 

0.09 
(0.07-

0.11) 

0.01 
(0.00-

0.01) 

    

0.15 
(0.12-

0.17) 

0.02 
(0.01-

0.03) 

0.12 
(0.10-

0.16) 

0.02 
(0.01-

0.04) 

Fatigue 

Any 
grade 

Grade 

≥3 

  

0.39 
(0.35-

0.43) 

 

0.34 
(0.30-

0.38) 

 

0.34 

(0.30-
0.37) 

0.06 

(0.05-
0.08) 

0.29 

(0.25-
0.34) 

0.07 

(0.05-
0.10) 

0.47 

(0.44-
0.51) 

0.09 

(0.07-
0.11) 

0.44 

(0.39-
0.49) 

0.10 

(0.08-
0.14) 

Gynecomastia 

Any 
grade 

Grade 

≥3 

0.03 

(0.02-
0.05) 

0.00 

(0.00-
0.00) 

0.01 

(0.01-
0.02) 

0.00 

(0.00-
0.00) 

      

Headache 

Any 

grade 

Grade 

≥3 

0.11 

(0.09-

0.13) 

0.00 

(0.00-
0.01) 

0.07 

(0.05-

0.09) 

0.00 

(0.00-
0.01) 

  

0.12 

(0.10-

0.14) 

0.01 

(0.00-
0.02) 

0.06 

(0.04-

0.08) 

0.00 

(0.00-
0.01) 

  

Hematuria 

Any 

grade 
Grade 

≥3 

0.09 

(0.07-

0.11) 
0.01 

(0.01-

0.02) 

0.06 

(0.04-

0.08) 
0.01 

(0.01-

0.02) 

    

0.09 

(0.07-

0.11) 
0.02 

(0.01-

0.03) 

0.09 

(0.06-

0.12) 
0.02 

(0.01-

0.04) 

Hot flush 

Any 

grade 
Grade 

≥3 

0.18 

(0.16-

0.21) 
0.00 

(0.00-

0.01) 

0.08 

(0.06-

0.10) 
0.00 

(0.00-

0.00) 

0.22 

(0.19-
0.26) 

 

0.18 

(0.15-
0.22) 

 

0.20 

(0.18-

0.23) 
0.00 

(0.00-

0.00) 

0.10 

(0.08-

0.14) 
0.00 

(0.00-

0.01) 

  

Hypertension 

Any 

grade 

Grade 
≥3 

0.14 
(0.12-

0.17) 

0.07 
(0.06-

0.09) 

0.04 
(0.03-

0.06) 

0.02 
(0.01-

0.03) 

0.22 
(0.19-

0.25) 

0.04 
(0.03-

0.06) 

0.13 
(0.11-

0.16) 

0.03 
(0.02-

0.05) 

0.07 

(0.05-

0.09) 
 

0.03 

(0.02-

0.05) 
 

0.11 
(0.09-

0.14) 

0.01 
(0.01-

0.02) 

0.08 
(0.06-

0.11) 

0.00 
(0.00-

0.01) 

Hypokalaemia 

Any 

grade 

Grade 
≥3 

  

0.17 
(0.14-

0.20) 

0.02 
(0.01-

0.04) 

0.13 
(0.10-

0.16) 

0.02 
(0.01-

0.03) 

  

0.18 
(0.16-

0.21) 

0.04 
(0.03-

0.06) 

0.09 
(0.07-

0.12) 

0.01 
(0.00-

0.02) 

Insomnia 

Any 

grade 

Grade 

≥3 

0.08 
(0.07-

0.10) 

0.00 

(0.00-

0.01) 

0.06 
(0.04-

0.07) 

0.00 

(0.00-

0.00) 
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Table 18 (Continued) 

Lower respiratory tract or 
lung infection 

Any 

grade 
Grade 

≥3 

0.08 

(0.06-

0.10) 
0.01 

(0.01-

0.03) 

0.05 

(0.03-

0.06) 
0.01 

(0.01-

0.02) 

      

Upper respiratory tract 
infection 

Any 

grade 
Grade 

≥3 

0.16 

(0.14-

0.19) 
0.00 

(0.00-

0.00) 

0.11 

(0.09-

0.13) 
0.00 

(0.00-

0.00) 

      

Mental impairment 

disorders 

Any 

grade 

Grade 
≥3 

0.06 
(0.04-

0.07) 

0.00 
(0.00-

0.00) 

0.01 
(0.01-

0.02) 

0.00 
(0.00-

0.01) 

      

Muscle spasm   
0.14 

(0.11-

0.17) 

0.20 
(0.17-

0.24) 

    

Musculoskeletal pain 

Any 
grade 

Grade 

≥3 

    

0.14 

(0.11-
0.16) 

0.01 

(0.01-

0.02) 

0.10 

(0.07-
0.13) 

0.00 

(0.00-

0.01) 

  

Nausea 

Any 
grade 

Grade 

≥3 

  

0.22 
(0.19-

0.26) 

 

0.22 
(0.19-

0.26) 

 

  

0.33 

(0.29-
0.36) 

0.02 

(0.01-
0.03) 

0.33 

(0.29-
0.38) 

0.03 

(0.02-
0.05) 

Non-pathological fracture 

Any 
grade 

Grade 

≥3 

0.09 

(0.07-
0.11) 

0.02 

(0.01-
0.03) 

0.03 

(0.02-
0.04) 

0.01 

(0.01-
0.02) 

      

Pain 

Any 

grade 
Grade 

≥3 

      

0.05 

(0.04-

0.07) 
0.01 

(0.00-

0.02) 

0.05 

(0.04-

0.08) 
0.02 

(0.01-

0.04) 

Pain in extremity 

Any 

grade 
Grade 

≥3 

  

0.17 

(0.14-
0.20) 

 

0.16 

(0.13-
0.19) 

 

  

0.20 

(0.17-

0.23) 
0.03 

(0.02-

0.04) 

0.21 

(0.17-

0.25) 
0.05 

(0.03-

0.08) 

Pyrexia 

Any 

grade 
Grade 

≥3 

      

0.10 

(0.08-

0.12) 
0.00 

(0.00-

0.01) 

0.09 

(0.07-

0.12) 
0.01 

(0.01-

0.03) 

Restless leg syndrome 

Any 

grade 

Grade 
≥3 

0.02 
(0.01-

0.03) 

0.00 
(0.00-

0.01) 

0.00 
(0.00-

0.01) 

0.00 
(0.00-

0.00) 
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Table 18 (Continued) 

Urinary tract infection 

Any 

grade 
Grade 

≥3 

      

0.13 

(0.11-

0.16) 
0.02 

(0.01-

0.03) 

0.07 

(0.05-

0.10) 
0.01 

(0.00-

0.02) 

Vomiting 

Any 

grade 
Grade 

≥3 

      

0.24 

(0.21-

0.27) 
0.03 

(0.02-

0.04) 

0.26 

(0.22-

0.30) 
0.03 

(0.02-

0.05) 

Weight decrease 

Any 

grade 

Grade 
≥3 

0.12 
(0.10-

0.15) 

0.01 
(0.00-

0.02) 

0.09 
(0.07-

0.11) 

0.00 
(0.00-

0.01) 
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Table 19: Sensitivity analysis meta-estimates for enzalutamide vs. abiraterone in the 

pre- and post-docetaxel settings 

  
Overall 

Survival 

Radiographic 

Progression-

Free Survival 

Time to PSA 

Progression 

PSA 

Response 

Rate 

Enzalutamide 

vs. 

Abiraterone, 

Pre-Docetaxel 

Posterior 

Median 

Hazard 

Ratio 

0.91  

(95% CrI 

0.45-

1.84, 

95% PrI 

0.35-

2.37) 

0.61  

(95% CrI 

0.30-1.25, 

95% PrI 0.24-

1.59) 

0.36  

(95% CrI 

0.18-0.75, 

95% PrI 

0.14-0.96) 

6.01  

(95% CrI 

2.30-

15.82, 

95% PrI 

1.88-

19.33)b 

Posterior 

Probability 

Hazard 

Ratio < 1a 

0.60 

(0.58) 
0.91 (0.85) 1.00 (0.98) 

1.00  

(1.00)b 

Enzalutamide 

vs. 

Abiraterone, 

Post-

Docetaxel 

Posterior 

Median 

Hazard 

Ratio 

0.90 

(95% CrI 

0.44-

1.83, 

95% PrI 

0.35-

2.34) 

0.61  

(95% CrI 

0.30-1.26, 

95% PrI 0.24-

1.60) 

0.38  

(95% CrI 

0.18-0.78, 

95% PrI 

0.14-0.99) 

7.17  

(95% CrI 

2.50-

20.60, 

95% PrI 

2.08-

24.83)b 

Posterior 

Probability 

Hazard 

Ratio < 1a 

0.62 

(0.59) 
0.91 (0.85) 0.99 (0.98) 

1.00  

(1.00)b 

aPosterior probability (predictive probability); bodds ratio for response. 
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Table 20: Characteristics of studies included in the sequencing assessment 

Study 

Name 

Patient 

population 

(N) 

Median 

follow up 

(month) 

Prior 

Treatment 

(n) 

Study 

treatment 

Median Survival 

(months) 

OS 

(95%CI) 

PFS 

(95%CI) 

Ryan et 

al. 

Metastatic 

CRPC pre-

docetaxel 

(N=1088) 

49.2 Docetaxel 

Abiraterone 

(n=546) 

34.7 

(32.7-

36.8) 

33.4 

(30.2-

39.8) 

Placebo 

(n=542) 

30.3 

(28.7-

33.3) 

23.4 

(20.3-

27.5) 

Rathkoph 

et al. 

Metastatic 

CRPC pre-

docetaxel 

(N=1088) 

27.1 Docetaxel 

Abiraterone 

(n=546) 

34.7 

(32.7-

36.8)* 

 

13.5 

(10.9-

14.8)* 

Placebo 

(n=542) 

30 (28.7-

33.3)* 

8.2 (8.1-

8.5)* 

Scher et 

al. 

Progressive 

CRPC post-

docetaxel 

(N=1199) 

14.4 Docetaxel 

Enzalutamide 

(n=800) 

18.4 

(17.3-

NR) 

8.3 (8.2-

9.4) 

Placebo 

(n=399) 

13.6 

(11.3-

15.8) 

2.9 (2.8-

3.4) 

Loriot et 

al. 

Metastatic 

CRPC 

(N=38) 

5.8* 
Docetaxel, 

Enzalutamide 

Abiraterone 

(n=38) 

7.2 (5-

NR) 

2.7 (2.3-

4.1) 

Noonan 

et al. 

Metastatic 

CRPC 

(N=27) 

6.8* 
Docetaxel, 

Enzalutamide 

Abiraterone 

(n=27) 

11.5 

(6.5.3-

16.6) 

3.5 (2.5-

4.6) 

Badrising 

et al. 

Metastatic 

CRPC 

(N=61) 

3.8 

Docetaxel, 

Abiraterone 

 

Enzalutamide 

(n=61) 

7.3 (6.6-

NR) 

2.8 (2.6-

3.7) 

Bianchini 

et al. 

(N=39) 

4.3 

Docetaxel, 

Abiraterone 

 

Enzalutamide 

(n=39) 

NR 2.8 (2-

3.6) 

Brasso et 

al. 

(N=137) 

6.5* 

Docetaxel, 

Abiraterone 

 

Enzalutamide 

(n=137) 

8.3 (6.8-

9.8) 

- 
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*Estimated parameters (not reported) 

NR, not reached  

Table 20 (Continued) 

Schmid et 

al. 

(N=35) 

5 

Docetaxel, 

Abiraterone 

 

Enzalutamide 

(n=35) 

7.5 (4.7-

10.3) 

3.1 (1.4-

4.8) 

Schrader 

et al. 

(N=35) 

5.3* 

Docetaxel, 

Abiraterone 

 

Enzalutamide 

(n=35) 

7.1 (6.2-

8.1) 

4 (2-6) 

Cheng et 

al. 

(N=165) 

6.3* 

Docetaxel, 

Abiraterone 

 

Enzalutamide 

(n=165) 

12.2 

(10.7-

16.5) 

2.8 (2.5-

3.2) 
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APPENDIX C. SUPPLEMENTAL MATERIAL FOR CHAPTER 4  

C.1 Heterogeneity 

 Table 21: Posterior median (95% CrI) costs (2018 USD), QALYs and ICERs 

for comparison of platinum doublet chemotherapy versus pembrolizumab as first-

line therapy for advanced NSCLC, under high level of study-to-study heterogeneity 

 Chemotherapy Pembrolizumab 

    
Without End-of-Life 

adjustment 

With End-of-Life 

adjustment 

 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

No Dependency 

UK 
34 

(32-35) 1.03 

(0.87-

1.09) 

99 

(93-104) 1.89 

(1.74-

1.95) 

77 

(64-92) 3.01 

(2.75-

3.13) 

33 

(29-38) 

US 
70 

(65-74) 

132 

(124-

138) 

73 

(60-87) 

31 

(27-37) 

        

C.2 High dependency scenario  

In the third scenario, we incorporated a moderate dependency between each 

simulated patient’s outcomes in the pembrolizumab and chemotherapy arms and between 

their associated OS and progression times by introducing a correlation of 0.9 between the 

arms and a correlation of 0.9 between progression and OS times via a Gaussian copula. In 

the chemotherapy arm, posterior mean QALYs gained remained 1.06 as in the moderate 

dependency scenario. The mean cost in the chemotherapy arm remained almost unchanged 

in both the UK and US setting. Mean cost in the pembrolizumab arm increased from 



 132 

$121,000 to $123,000 in the UK setting, and from $160,000 to $164,000 in the US setting. 

In the absence of EoL adjustment, mean QALYs gained by patients on pembrolizumab 

decreased from 1.8 to 1.78, leading to ICER per QALY gained of $121,000 for the UK and 

$116,000 for the US. With EoL adjustment, ICERs per QALY gained for the UK and US 

setting were $62,000 and $60,000 respectively. See Table 22Table 22. The probability that 

pembrolizumab was cost-effective was 0.1% with respect to the UK (USD 42,048) 

threshold and 98.6% with respect to the US (USD 100,000) threshold in the presence of 

EoL adjustment. The probabilities were <1% and 9.3% with respect to the UK and US 

thresholds respectively in the absence of EoL adjustment. The results from this strong 

dependence scenario were similar to the moderate dependence scenario.  

Table 22: Posterior mean (95% CrI) costs (2018 USD), QALYs and ICERs for 

comparison of platinum doublet chemotherapy versus pembrolizumab as first-line therapy 

for advanced NSCLC, under strong dependency between patients’ hypothetical outcomes 

 Chemotherapy Pembrolizumab 

    
Without End-of-Life 

adjustment 

With End-of-Life 

adjustment 

 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

High Dependency 

UK 
38 

(36-40) 1.06 

(0.94-

1.13) 

123 

(114-

131) 
1.78 

(1.55-

1.88) 

121 

(96-176) 2.45 

(2.03-

2.67) 

62 

(50-89) 

US 
82 

(77-87) 

164 

(152-

174) 

116 

(90-170) 

60 

(46-86) 
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C.3 Analysis incorporating discounting 

We considered a discounting factor to adjust the costs and utilities for the 

pembrolizumab and chemotherapy arms to present values. We chose a discounting factor 

corresponding to 3% on an annual basis. Accumulated costs and utilities were multiplied 

by 1/(1+0.03)^n  , where n is the corresponding year in which the cost or utility occurred. 

The results were qualitatively unchanged with slightly higher ICER values and lower 

probabilities of pembrolizumab being cost effective. The results can be found in Table 23. 
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Table 23: Posterior mean (95% CrI) costs (2018 USD), QALYs and ICERs for 

comparison of platinum doublet chemotherapy versus pembrolizumab as first-line 

therapy for advanced NSCLC 

 Chemotherapy Pembrolizumab 

    
Without End-of-Life 

adjustment 

With End-of-Life 

adjustment 

 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

No Dependency 

UK 
33 

(31-35) 
0.98 

(0.88-

1.05) 

95 

(86-104) 
1.62 

(1.43-

1.69) 

100 

(82-140) 
2.54 

(2.18-

2.68) 

40 

(34-52) 

US 
71 

(67-76) 

128 

(116-139) 

90 

(71-127) 

36 

(29-47) 

Moderate Dependency 

UK 
37 

(35-39) 
0.95 

(0.85-

1.01) 

116 

(108-123) 
1.53 

(1.34-

1.62) 

138 

(110-203) 
2.25 

(1.89-

2.41) 

61 

(51-84) 

US 
79 

(75-84) 

154 

(143-163) 

130 

(101-193) 

58 

(47-79) 

High Dependency 

UK 
37 

(35-39) 
0.94 

(0.84-

1.01) 

118 

(110-126) 
1.52 

(1.33-

1.61) 

143 

(113-213) 
2.13 

(1.76-

2.31) 

70 

(56-100) 

US 
80 

(76-85) 

157 

(146-167) 

136 

(104-204) 

66 

(51-96) 

 

C.4 Analysis based on parametric survival model (Weibull distribution) 

We considered a parametric survival model using the Weibull distribution. We used 

the fitted parametric survival curves, to independently generate 10,000,000 progression 

and OS times and construct patient trajectories for the pembrolizumab and chemotherapy 

arms. The results are summarized in Table 24 below.  
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Table 24: Mean (95% CI) costs (2018 USD), QALYs and ICERs for comparison of 

platinum doublet chemotherapy versus pembrolizumab as first-line therapy for 

advanced NSCLC for Weibull survival model 

 Chemotherapy Pembrolizumab 

    
Without End-of-Life 

adjustment 

With End-of-Life 

adjustment 

 

Cost 

('000) 

USD 

(95% CrI) 

QA

LY 

(95

% 

CrI) 

Cost 

('000) 

USD 

(95% 

CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) USD 

per QALY 

(95% CrI) 

QALY 

(95% 

CrI) 

ICER 

('000) 

USD per 

QALY 

(95% CrI) 

No Dependency 

UK 
36 

(35-36) 
1.15 

(1.14

-

1.16) 

103 

(102-104) 
1.97 

(1.95-

1.98) 

82 

(80-84) 
3.11 

(3.08-

3.15) 

34 

(34-35) 

US 
77 

(76-78) 

137 

(136-139) 

74 

(72-76) 

31 

(30-31) 

Moderate Dependency 

UK 
40 

(39-40) 
1.1 

(1.1-

1.11) 

124 

(123-125) 
1.85 

(1.83-

1.86) 

113 

(110-116) 
2.74 

(2.71-

2.77) 

51 

(50-52) 

US 
85 

(85-86) 

164 

(163-165) 

106 

(102-109) 

48 

(47-49) 

High Dependency 

UK 
40 

(40-41) 
1.1 

(1.09

-1.1) 

126 

(125-127) 
1.83 

(1.81-

1.84) 

117 

(114-121) 
2.51 

(2.47-

2.54) 

61 

(59-62) 

US 
86 

(86-87) 

167 

(165-168) 

110 

(107-113) 

57 

(55-59) 
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