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     CHAPTER 1 

1. INTRODUCTION 

The built environments concept encompasses several aspects beyond the 

traditional three spatial dimensions. It acknowledges its social logic, incorporating the 

complexity of spatial configuration as well as its embedded social purposes (Hillier 

2007). Unfolding the definition, built environment includes spatial aspects, such as the 

layout dimensions and the geometrical configuration, as well as non-spatial aspects, 

such as building program, organizational activity programming, and human behavior 

over time, considering human behavior not as actions that merely occur but as an 

attribute of the built environment. Activities such as walking, congregating, dispersing, 

communicating, and interacting create patterns of people distribution in space, 

influenced by spatial and non-spatial built environment’s dimensions, which in turn are 

altered by those patterns. “Spaces are qualified by actions just as actions are qualified 

by spaces.” (Tschumi, 1996, p.130). This dissertation is situated in the interplay of the 

aforementioned spatial and non-spatial dimensions of a building setting, and proposes a 

set of techniques to capture and analyze one aspect of human behavior: occupancy, 

with the purpose of demonstrating the value of behavioral related metrics.  

The long-term goal of this research is to capturing and analyzing spatiotemporal 

occupancy patterns of high-resolution, with the purpose of determining specific 

occupancy-related metrics. To approach this goal, this dissertation proposes a four-

steps methodology: 1) Capturing positioning data using scene analysis; 2) Processing 

positioning data to obtain location information in space; 3) Analyzing such data to 

improve accuracy and precision; 4) Developing new metrics (see figure 1.1). Specifically 

along these steps, this research emphases on four challenges: 1) Defining the 

appropriate behavioral mapping method that can help capture behavioral patterns at the 

right level of spatial and temporal resolution; 2) Determining location data resolution and 

accuracy for data processing, helping us understand the parameters and the scene 
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conditions that affect them; 3) Understanding occupancy patterns to explain their 

distribution in certain scenarios, which are defined considering the spatial and non-

spatial attributes of the built environment over a specific period of time, under certain 

conditions; and 4) Defining a new occupancy-related metric: the Isovist-minute, which 

attempt to capture both patterns of occupancy and their effect on specific behavioral 

outcomes, which in turn are tailored depending on the architectural program.  

 

Figure 1-1. Research structure that represents the general methodology, the methodology, and the specific 
focus of this research, indicating the four specific challenges: 1) the selection of the location system; 2) the 
positioning techniques for collecting spatiotemporal occupancy; 3) the accuracy and precision of occupancy 

data; and 4) the value of a new metric.  

1.1 The Problem of Capturing and Analyzing Spatiotemporal Occupancy  

The importance of obtaining a high spatial-and-temporal resolution occupancy 

data lays on allowing the study of building occupancy dynamics. “Occupancy and 

movement data are crucial to deepen the understanding of the build environment 

performance” (Tome and Heitor, 2015). The high data resolution allows to broaden the 
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range of research questions to be answered (see figure 1.2), from questions that require 

low occupancy data resolution, such as “the role of spatial layout in shaping the ways in 

which visitors explore, engage, and understand museums and museum exhibitions” 

(Peponis, 2010), to questions related to the length of stay of a patient in exam room by 

minute (Real-time Location System Extraction Sample by HDR research) (see figure 

1.2).  

 

Figure 1-2. Intensity of research distribution regarding spatial and temporal resolution. Dark gray indicates 
more research, light gray indicates less research, and color indicates this research targeted position within 

the existing research context.  

 
Numerous studies on human behavior in buildings have focused on exploring 

movements, occupancy and specific events –such as interactions– as outcomes of the 

influence of space. These approaches to capturing global patterns of human behavior as 

an explanatory variable of space have led to obtain aggregated results, involving totals 

or averages of such behaviors, due to the data collection methods and systems, which 

either do not provide high spatial and temporal resolution, or focus on particular events, 

i.e. visits to rooms. These research approaches, therefore, are subject to the following 

difficulties in data capture and data analyses: (1) limitations in using traditionally 
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accessible methods for behavioral mapping, such as observation and manual mapping, 

which rely on human abilities that bring their own limits to collect occupancy data of high 

temporal-and-spatial resolution (i.e. one square feet per second), and (2) the resulting 

analyses limitations due to the dataset resolution obtained using such traditional 

methods. However, within the context of existing technologies, a remarkable opportunity 

for collecting data of high spatial and temporal resolution arises, allowing enhanced 

methods of behavioral data collection and data processing to promote new research 

analyses, such as the influence of organizational activities –both scheduled and 

unscheduled in time– on occupancy patterns.  

Each of these systems provides occupancy data of different characteristics in 

terms of accuracy, precision, temporal scale, perceived privacy among others, 

stablishing an interdependency between a specific architectural research question and 

the positioning technology that provides the appropriate data to answer such a question. 

Hence, the problem becomes a multi-dependent problem, presenting a platform that, 

based on the review of positioning technologies, helps to technically select the 

appropriate methodology for high-resolution spatiotemporal occupancy data collection 

and analyses. It also supports the co-evaluative process of the research question 

formulation in correlation with both the positioning tools and the dimensions of the built 

environment possible to capture. This platform indicates the influence of one research 

variable over the next one, in a chain, providing a matrix of research possibilities (Figure 

1.3).  
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Figure 1-3. A Parallel Coordinates Plot that represents the links of a multi-dependent problem, indicating the 
relation of the positioning system selection (left) with the potential research question to be answered (right). 

Highlighted is the Scene Analyses selected method, emphasizing its technical and social aspects. This 
content is presented here as an introduction, and further detail is presented in Chapter 2. This Parallel 

Coordinates plot was created using ‘Sprout Space Parallel Coordinates Plot’ developed by Perkins and Will 
Research Group.  

 
Once one system is selected, the potential research question is narrowed down 

to a specific building program, social context, scenarios and data resolution and 

accuracy. In this particular proof-of-concept study, a hospital in Chile was selected, the 

scenarios were determined by the organizational schedule, and the data resolution was 

one square feet per second or higher. To achieve such resolution, Scene Analyses using 

Computer Vision was the selected method for positioning information. Specifically, the 

first challenge is to define the required data characteristics, consequently, the 

appropriate system that would allow capturing such data to answer the specific question 

of interest that belongs to the specific scenario. Additionally, a list of parameters that 

describe the diverse environmental conditions for determining accuracy in the automatic 

detection is proposed, shifting the focus to answering research questions that are 

sensible to the scenario’s significance, and at the same time providing insights for 

meaningful detections in context to the computer vision area. This decision impacted the 

behavioral data type collected and its resolution and accuracy, which is calculated using 

a statistical model, intending to determine what are the scene parameters that determine 

such accuracy, estimating the probability of occupancy detection. 
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1.2 Description of the study 

The aim of the study was to investigate practical and methodological issues 

involved in using scene analysis to collect occupancy data at high spatial and temporal 

resolutions, and to demonstrate how new measures of occupancy rates can be 

developed in order to understand the relationship between spatial configuration and 

behavior. 

This dissertation addresses this task as a proof of concept study, by processing 

one week of surveillance videos over twelve corridors of a hospital in Chile; the resulting 

occupancy was captured at a spatiotemporal resolution of one feet per second using 

Scene Analyses methods based on Computer Vision. Scene Analysis, allows for the 

collection of high spatial-and-temporal occupancy data using 1-week of existing 

surveillance recordings from a hospital, avoiding interference with the social aspects of 

pervasiveness of technology into daily routines, which directly compromises the 

legitimacy of the data collection. Afterwards, computational methods adapted from 

Computer Vision rely on adapting pre-built algorithms for automatically recognizing 

occupancy. These algorithms can be trained and have a certain accuracy range 

influenced by environmental as well as occupancy parameters, which can be 

represented by a multiple regression model. Once the occupancy data are discerned, 

the goal is to measure the relationship between space and behavior in a specific 

scenario, delineating and developing a new key occupancy metric: Isovist-minute, which 

is defined as the relationship between real and probable occupancy and their temporal 

visual fields towards a target. All the methods proposed along this research are general 

enough to be applied to any specific built environment; However, this research focuses 

on occupancy of individuals in hospitals corridors, as they are a weak-program spaces 

into a strong building program. The corridors are characterized by its layout complexity, 

high spatial segregation, strong control over spatial divisions, strong control over the use 

of spaces and activities assigned to spaces, and strong control over inhabitants’ routines 

and visitors’ schedules (Koch and Steen, 2012). 
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The core content of this research is presented in five chapters. Chapter 2 reviews 

the traditional methods of behavioral mapping utilized in architecture research, and the 

contemporary indoor positioning systems developed in the area of Computer Science 

and Technology. The role of this stage of the research is to construct the argument for 

selecting the Scene Analysis computational method for automatic occupancy detection, 

based on Computer Vision. Chapter 3 defines the important aspects involved in 

selecting the proof-of-concept scenario: the building program type, the activity 

programming, and the specific areas of interest for mapping occupancy. The selection of 

a strong program building type – a hospital – restricted the building program variables 

and the activity program flexibility. The corridors of the hospital have no specific program 

or activity assigned to them other than their role as connectors of spaces. The upshot of 

this is that the activity in a corridor is somewhat unpredictable; part of it depends on the 

activity assigned to the rooms off the corridor, but part of it depends upon the place of 

the corridor within the network of corridors of the entire building. For this study, a set of 

corridors was selected such that all the corridors were matched in their shape, size, and 

their location vis-à-vis the entire corridor network. The differences in the activities, 

therefore, could be mostly assumed to be due to the differences of programming. The 

first two chapters present the framework for the contributions of Scene Analysis for 

occupancy detection in a restricted spatial and program context, assigning part of the 

responsibility for the outcomes to activities scheduling over time.  

While the above chapters construct the argument from a technical as well as 

theoretical perspective, Chapter 4 approaches the argument from an empirical 

perspective, introducing specific methods of Scene Analysis based on Computer Vision, 

including Video Acquisition and Video Processing, presenting in detail the Computer 

Vision detection algorithms as well as the practical and technical challenges faced in 

obtaining the required high-resolution occupancy data results. This chapter ends by 

presenting the linking connection between a specific research question of interest –what 

is the patient’s surveillance distribution per hour, for example– and the data type that the 

system allows to collect –square foot occupancy per second. Chapter 5 develops 
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methods to determine the accuracy and precision of the occupancy detection algorithm. 

A two-step statistical technique is presented to model the systematic errors caused by 

the geometrical, environmental and occupancy factors: first, a logistic regression model 

is developed to examine the extent to which different factors can influence whether the 

system is able to detect the presence of an occupant; and then, a multiple regression 

technique is used to model the effect of these factors on the accuracy of the location 

computed. These models are then used to compute the probability that a cell will have 

occupancy within a given time, even when none is recorded, and so to predict actual 

occupancy rates. Finally, Chapter 6 demonstrates two applications of the proposed 

methodology, Scene Analysis of spatiotemporal occupancy. First, models developed in 

the previous chapter are used to compute the actual occupancy rates during a specific 

time period in each of the selected corridors. The results demonstrate that there are 

significant differences in the occupancy rates of corridors, thus confirming that, even 

though the space configuration remain the same, the programmed activities in the 

corridor create measurable difference in occupancy. Second, a new measure called 

Isovist-minute is proposed. It is designed to study the correlation among four aspects of 

the scene: spatial configuration, programming of activities, actual scheduled and 

unscheduled activities, and occupancy. Isovist-minute specifically measures the amount 

and the frequency of casual visual surveillance from the corridors over patients’ beds.  
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CHAPTER 2 

2. SURVEY AND REVIEW OF BUILDING OCCUPANCY DATA 

COLLECTION METHODS 

 
 

Overview  

This chapter provides a platform for selecting the methodology for high-resolution 

spatiotemporal occupancy data collection and analyses by constructing a 

comprehensive review of the location methods utilized in architecture research and the 

positioning systems developed in computer science with the same purpose. The first 

section reviews traditional behavioral data collection methods, focusing on their 

limitations in collecting high-resolution spatiotemporal data in real scenarios. The second 

section extends the survey to semi-automated methods. The third section presents a 

survey of location systems developed in computer science, identifying 10 technical and 

social criteria for comparison. The chapter concludes by introducing Scene Analysis, the 

system selected that meets this study’s objective of adopting and adapting systems of 

low pervasiveness for determining people’s location, exhaustively reviewing its 36 

technical and social aspects, which offer new opportunities for research in architecture. 
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2.1 Behavioral Data Collection Methods Utilized in Architecture Research 

For more than three decades, the influence of spatial configurations on human 

behavior in built environments has been an important focus of architecture research. An 

understanding of these correlations required the collection of behavioral data and the 

development of new methods. Contemporarily, several systems for tracking individuals 

and the location of objects have been developed in the area of computer science. This 

section presents a review and a survey of the traditional behavioral data collection 

methods utilized in architectural research. 

One of the most important models for spatial description, developed in the 1980s 

by Hillier and Hanson (1984), is space syntax theory, which “investigates the relationship 

between human societies and space, from the perspective of a general building theroy of 

structure on inhabited space in all diverse forms: buildings, cities, or even landscapes.” 

(Bafna, 2003). The major contributions of space syntax include not only the conecpt of 

configuration –or relations among discrete spatial units– but also the description of 

space through more abstract attributes –such as spatial depth, integration, and visual 

connectivity, and their correlation to social behavior. At building scale, researchers have 

focused on the effect of  layout configuration of different building programs upon a 

specific behavior, with emphasis on occupancy, social interaction, and movements. 

These studies help to address a variety of issues such as the interplay of spatial 

configuration and face-to-face interactions, visual encounters, wayfinding, and 

navigation. Space syntax research has studied numerous building types, such as 

commercial, educational, residential and healthcare buildings, including buildings that 

support weak and strong programs, such as museums and office environments and 

healthcare environments. A strongly programmed building is defined as a program with 

minimum flexibility since the activities assigned to the space are exclusive and hardly 

interchangeable, e.g., courts, prisons, hospitals, and airports. A weakly programmed 

building, on the other hand, is defined as a program with spatial flexibility regarding 

activities and users, e.g., offices, museums, and galleries (Hillier, Hanson and Peponis, 
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1984; Hillier and Penn, 1991).  In museums, space syntax research has found strong 

correlations between the spatial structure of building layout, particularly visibility, and 

visitors’ circulations and movements, specifically with regard to accessibility, the patterns 

of exploration of art, art encounters, co-awareness, and encounters between visitors 

(Choi, 1999). Peponis and Stravroulaki (2003), for example, focused on the effects of 

spatial arrangements and visual perception – accessibility and visibility – on visitors’ 

paths and their engagement with art. They also stated that “[t]he symbolic function of the 

museum bears on three aspects of spatial arrangement: building layout, the positioning 

of displays within the layout, and the structure of ‘occupiable’ space,” which are primarily 

based on the visibility structure of space. Kaynar (2009) insisted that a crucial influence 

on visitors’ behavior, such as path choice and art-element engagement in open plan 

museums, is visibility, the implicit boundaries of which are stronger than physical 

partitions. Other studies have suggested that the length of an encounter with art, or ‘stop 

time’ (Peponis, 2003), predicted a visitor’s engagement with it, and, therefore, the 

process of learning (Falk, 1982; Serrel, 1995; Sandifer, 1997). 

 

In mid-level weak programs, such as working environments, studies have 

focused on demonstrating the influences of spatial configurations on social interactions. 

The importance of these interactions relates to their impact on the organization, 

collaboration, and the transfer of knowledge. Some critical research questions 

addressed in this area include the influence of layouts on patterns of communication, 

occupancy and movements (Penn et al, 1997), as well as interconnectivity as a main 

factor for interaction and travels-for-interactions (Hillier and Grajewski, 1987; Grajewski, 

1992). Layouts can either reinforce the segregation of organizational areas or diminish 

them (Hillier and Penn, 1991; 1992). At a local scale, within a building, the frequency of 

interactions among co-workers and their patterns of movement do not necessarily 

correlate to different layout types (Steen, 2001).  At a global scale, however, spatial 

integration does correlate to human movement patterns. In support of this conclusion, 
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Steen and Markede (2010) reported that visibility is an important factor for social 

behavior; however, across organizational borders, the spatial influence on spontaneous 

interactions is weak and their existence could be associated with programmed and 

scheduled activities (Steen and Markhede, 2010). Research in strong program buildings, 

such as hospitals, have focused on occupancy and movement – specifically visibility and 

accessibility – as important design criteria and the highest priorities for monitoring 

hospital patients. Previous studies have proven that visibility impacts patient observation 

as well as nurse responses, consequently decreasing nurses’ travel time and patients’ 

falls (Hendrich, Fay and Sorrels, 2002). These factors significantly increase nurse-

patient caregiving and decrease the mortality rate of severely ill patients (Leaf, Home, 

and Factor, 2010). Visibility also impacts communication among staff and patients, 

improving patient satisfaction (Trites et al, 1970; Ulrich et al, 2004). Lu and Zimring 

(2011) explained the importance of visibility patterns for architects, planners and the 

healthcare organization by calculating patients’ targeted visibility in a health care setting 

from the head of each patient’s bed (Lu, 2009). In all the above studies, researchers 

utilized a series of manual methods to collect behavioral data. Those methods range 

from self-report to direct observation and mapping, either from a fixed vantage point or 

from shadowing individuals. Self-report refers to data collected through surveys or 

interviews of individuals about the events and activities occurring in a specific space and 

time setting (Weisman, 1981; Moeser, 1988). This method uses fewer resources since 

participants report their recollection of events, but it is also less accurate due to the 

fragility of memory to recall those events with precision.  An example of a self-report 

method is the one utilized by the Steen and Markhede research (2010), in which 

researchers “asked every office worker on the three floor plans (in total 250 persons) to 

map all their interaction during (the) two (past) days.” (Steen and Markhede, 2010). 

 

Observation and mapping is one of the most popular method for behavioral data 

collection. It requires the constant presence of observers to annotate, code, and classify 
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people’s behavior, by mapping them on a layout or a space (Cosco, Moore, & Islam, 

2009). Two factors influence the resulting data sets: the observers’ location and the 

mapping researcher’s criteria of a location in a conceptual space type. The mapping 

criteria is the association of the coded behavioral information to different conceptual 

spaces such as: (a) a specific location in a layout, (b) a convex space, (c) an axial line, 

or (d) another area defined by the radio of influence, such as the voronoi area of 

influence of a painting in a museum, which was defined for a specific research question 

for Choi’s research (1999). These spatial mapping categories affect the data spatial 

resolution since it depends on the conceptual space selected for the research. The 

observers’ location influences the data collection process since the observers’ positions 

could be from (a) a fixed vantage point, (b) by shadowing an individual, or (c) by doing 

surveillance rounds. Factors such as reaction time, influence of the observer’s presence, 

and lack of precision in spatial mapping, which depends on the observers’ estimation 

accuracy, may result in errors that cannot be controlled in a research design. The time 

variable is aggregated since the annotations occur with low frequency (i.e. 10 minutes), 

or by event.  

Observation and mapping methods include counting the events occurring, 

independently of the frequency of occurrence. In studies of wayfinding, a fundamental 

technique for navigation studies, the focus is on the awareness of the environment by 

observation and the counting of the subjects that reach a destination (Peponis, Zimring, 

Choi, 1990). This method requires that an observer be located at a finish or crossing 

line, counting and annotating the number of individuals that reach that objective. In 

addition to standing at a fixed vantage point, an observer can also cover the space in 

movement by shadowing a specific individual or by doing rounds. In the first case, 

annotations are much more precise in time and location, but the presence of the 

observer following the individual could have a huge impact on daily activities. In the 

second case, annotations are less precise since the observer could miss some activities 

when he or she is not present or activities could be duplicated if the individuals observed 

are also in movement. An example is Choi’s research (2010) exploring the question of 
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“whether the spatial distribution of people can be explained in terms of configurational 

variables”, which stated: 

 

“ By a common technique of observation, the location of each visitor was 

recorded on a building plan during ten rounds of observations at regular intervals. 

Though people moving and standing when they were observed were identified 

separately, the observation data provide a static description of the visitor group.” 

 

Observation and mapping methods have been adapted depending on the 

research needs and the data characteristics required to answer specific research 

questions. The set of classical methods presented above allowed research in 

architecture and spatial behavior to answer a certain range of research questions based 

on the data characteristics. Most of the studies have focused on the unidirectional 

influence of layout on human behavior, analyzing movements, flows, occupancy, and 

interaction among individuals in different layout configurations, as previously reviewed.  

These studies have answered questions such as how open-layouts influence patterns of 

exploration (Peponis, Conroy, Wineman, Dalton, 2004); how buildings become available 

as search structures (Peponis, Zimring, Choi, 1990); or how spatial layouts affect face-

to-face interaction in offices (Rashid, Kampschroer, Wineman, Zimring, 2006), to name a 

few. Some findings reported that in complex layouts, such as museums, the spatial 

configuration restricts human movements and directs their flow and viewing patterns 

(Bafna, 2003). In re-configurable layouts, such as offices, “spatial configuration directs 

movements and influences the field of vision, directly affecting the co-presence of people 

and their face-to-face interaction.” (Gomez et al. 2012; Choi, 1999). Such findings 

provide evidence that layouts, in fact, influence behavior and movements; however, 

most of the conclusions reached by these studies have been based on aggregated 

behavioral data correlated with geometrically derived attributes of space only.  The 

range of such research questions has not broadened since data spatial and temporal 
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resolution cannot increase as long as the data collection methods require human 

intervention and interpretation. Despite these observations, such traditional methods of 

data collection are very popular and accessible (See table 2-1). 

Table 2-1. Sample of studies on behavioral data capturing used in Architecture research. 

METHODS DATA 
CAPTURING 

  TITLE AUTHOR YEAR 

SELF REPORT 
Self-report data Evaluating Architectural Legibility 

Way-Finding in the Built Environment 
Weisman 1981 

SR instrument Space Syntax as a determinant of 
spatial orientation perception 

Ortega, Jimenes, 
Mercado, Estrada 

2005 

SR Mapping Children's active free play in local 
neighborhoods: a behavioral mapping 
study 

J. Veitch*, J. 
Salmon and K. 
Ball 

2007 

SR Mapping Spatial and Social Configurations in 
Offices 

 
Steen and 
Markhede 

2010 

OBSERVATION AND MAPPING  

Observation 

Behavioral Mapping: The Ecology of 
Child Behavior in a Planned 
Residential Setting Coates, Sanoff 1972 

Shadow 
Finding the building in Wayfinding. 
Environment and Behavior 

Peponis, Zimring, 
Choi 1990 

Shadow 

Space, Time, and Family Interaction: 
Visitor Behavior at the Sc. Museum of 
Minnesota Cone 1994 

Rounds 
The morphology of exploration and 
encounter in museum layouts Choi 1999 

Observation 
Floorplate shape as generators of 
circulation Shpuza 2001 

Observation 

Measuring the effects of layout upon 
visitors' spatial behaviors in open 
plan exhibition settings  

Peponis, Conroy 
Dalton, Wineman, 
Dalton 2004 

Observation 
The effects of spatial behavior and 
layout attributes Rashid 2005 

Observation 

A Study Of Variations Among Mies's 
Courtyard Houses By A Combined 
Set Of Visual And Environmental 
Properties Ruchi, Heo, Bafna 2008 

Observation 
Constructing Spatial Meaning: Spatial 
Affordances in Museum Design 

Wineman, 
Peponis 2009 
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 Problems and Limitations  

The characteristics of behavioral data collected through these classical methods 

lead the research questions toward general descriptions of behavioral data patterns, 

presenting three main issues that are central to this thesis. First, the data collection 

procedures include the investment of resources and the continuous presence of 

observers. Second, the variables collected usually refer to humans’ position in space 

and their role, as well as to some particular event that it is possible to be captured within 

a human reaction timeframe, which is ussually in the range of minutes. And third, the 

spatial and temporal resolution of the data obtained is limited to human capacity to 

observe and annotate. Observation methods require considerable resources and effort 

to collect the data in situ, involving the continuous presence of observers and, in 

practice, limiting the area covered. The constant presence of observers may also 

influence normal routines. Moreover, human capacity to annotate manually the 

fundamental variables of the data is limited, usually as to the location and the role of an 

individual in fairly regular intervals of time. Also, the methods are only conceptually, but 

not exactly, replicable, impacting the consistency of annotations among observers or 

findings among studies. To overcome these limitations, the area of computer science 

has developed a series of positioning systems and algorithms. However, very little 

architecture research has incorporated them. The few existing cases are presented in 

the following section, and a survey and review of all location systems are presented in 

detail in Section 3 of this dissertation, with the purpose of selecting the most appropriate 

system for this research. 

2.2 Semi-automated systems utilized in Architecture Research 

Since 2009, very few studies in architecture have adopted new technology for 

collecting behavioral data (See Table 2-2). Some attempts included the use of radio-

frequency identification (RFID) proximity-tracking sensors (Choudhary, Bafna, Heo, 

Hendrich, and Chow, 2009; and Heo et atl., 2009), followed by scene analysis systems 

based on video capture (Gomez, Romero, and Do, 2012; Tomé and Heitor, 2012, 2013 
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and 2015 a and b), and proximity and triangulation sensors (Erickson, Lin, Kamthe, 

Brahme, Surana, Cerpa, Sohn, and Narayanan, 2009; Hormazábal, 2013). 

The research motivation for each of these studies was completely different, 

ranging from health-care related, shapes of activity patterns, movements in education 

layouts, to individual energy consumption in houses. An example is RFID tracking, used 

in two studies in health-care environments where the goal was to “identify opportunities 

to increase direct care time through improvements in work process, technology, and unit 

layout” (Choundhary et al., 2009; Hendrich et al., 2009), demonstrated that higher spatial 

integration could lead to a higher frequency of visits to patient rooms and nurse stations. 

In both studies, technical and social issues appeared during the system review. 

Technically, RFID sensors allow the recognition of an individual’s area of location, but 

the sensors cannot specify in which convex space the individual is located. For example, 

individuals could be located in either of two adjacent rooms. Socially, the participants’ 

use of tags had both negative and positive implications. On the one hand, the 

participants had concerns about privacy, but on the other hand, the data set included 

participant’s roles such as doctors or nurses. 

Other examples of the use of technology in collecting behavioral data for 

architectural research purposes can be found in the scene analysis systems employed in 

two different studies, Activity Shapes (Gomez, Romero and Do, 2012) and the Informal 

Learning Spaces (Tome me and Heitor, 2012). In both studies, the two technical issues 

of data amount and occlusion of the target were overcome by top-down orientation of the 

cameras. The Activity Shapes study was set in a multi-camera environment laboratory, 

where three of the cameras were strategically located on the ceiling, simultaneously 

recording three top-down videos to cover the entire area and facilitating floor layout 

mapping. Videos were stored on a server next door. For this study, the information was 

assigned to a spatial grid of 21 x 13 cells, of one square foot each, weighting each cell’s 

occupancy to understand the topology of the occupancy. This work had a similar basis to 

Bechtel’s work, the “Hodometer floor use study”, on topology of movements (Bechtel, 
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1967). The Informal Learning Spaces study analyzed movements using a single camera 

that was located in the ceiling of an atrium, recording top-view videos of a larger public 

atrium and using computer vision to capture movements. Socially, in both cases, the 

systems did not interfere with the scenarios’ routines. In the first case, three scenarios, 

each with a different activity set-up, were designed to study the differences of the 

occupancy patterns produced by the activities in a particular space. In the second case, 

the focus was on the effect of daily movements on a real scenario. Two major 

differences between these two studies were the focus on occupancy versus movements 

and the time aggregation range, with the first study having a time resolution of one 

second and the second having a time resolution of one hour.  

Table 2-2. Summary of semi-automated methods of behavioral data collection utilized in architectural 
research 

 

 

METHODSDATA 
CAPTURING 

TITLE AUTHOR YEAR 

SEMI-AUTOMATED 

Tracking RFID 

A Modeling Approach for Estimating the 
Impact of Spatial Configuration on 
Nurses’ Movement 

Heo, Choudhary, 
Bafna, Hendrich, 
Chow 2009 

Tracking RFID 

Unit-related factors that affect nursing 
time with patients: spatial analysis of the 
time and motion study. 

Hendrich, Chow, 
Bafna, 
Choudhary, Heo, 
Skierczynski. 2009 

Tracking RFID 

A predictive model for computing the 
influence of space layouts on nurses' 
movement in hospital units 

Choudhary, 
Bafna, Heo, 
Hendrich, Chow 2010 

Wireless camera 
sensor network 

Energy efficient building environment 
control strategies using real-time 
occupancy measurements 

Erickson, Lin, 
Kamthe, Brahme, 
Surana, Cerpa, 
Sohn, and 
Narayanan 2009 

Camera / Video 
Observation 

Activity Shapes: Analysis methods of 
video-recorded human activity in a co-
visible space 

Gomez, Romero, 
Do 2012 

Camera / Computer 
Vision 

Computer Vision Of Mobility In Informal 
Learning Spaces Tomé and Heitor 

2012, 2013, 
2015 

Ubisense Sensors 

Post Occupancy Evaluation Of Homes In 
The United Kingdom To Develop An 
Affordable P.O. Methodology For Homes 
In Chile Hormazábal 2013 
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Cameras and sensors were used to analyze building energy efficiency in two 

studies, the “Energy efficient building environment control strategies using real-time 

occupancy measurements” study by Erickson et al. (Erickson, Lin, Kamthe, Brahme, 

Surana, Cerpa, Sohn, and Narayanan, 2009) and the “Post Occupancy Evaluation Of 

Homes In The United Kingdom To Develop An Affordable P.O. Methodology For Homes 

In Chile” study by Hormazábal (2013). While Erickson et al. (2009) used the SCOPES 

system (Kamthe, Jiang, Dudys, and Cerpa, 2009), a wireless smart camera sensor 

network installed on the ceiling of real environments, to collect mobility patterns in a 

building’s floorplan, Hormazábal used the Ubisense system (ubisense.net) for the same 

purpose. Both studies focused on energy consumption in relation to individuals, but the 

first one predicted occupancy for the use of HVAC systems and the second one 

concerned the real use of appliances and systems. 

Erickson et al. (2009) utilized SCOPES to capture the corridors of the science 

and engineering buildings at the University of California. Technical challenges, such as 

the cameras’ and sensor nodes’ location, were designed to catch movements at 

transition points. Other computational limitations were solved by using object detection 

algorithms after processing the data. However, social challenges are not mentioned in 

this study. Hormazábal’s research was conducted in a BASF house, a home-lab setting, 

where all technical challenges were previously designed and solved (www.basf.com). 

Participants agreed to use wearable sensors during the entire period of research, 

resulting in a high accuracy of positions and identification of roles. Social challenges, 

however, arose from the requirement that participants consent to live in a BASF house 

for at least one month, using the wearable sensors, which highly impacted 

pervasiveness, or effect on normal routines. Privacy was also an important issue, being 

poorly evaluated by 75% of participants (Hormazábal, 2013). 

Three architectural-related computer science studies with a focus on technology 

development are also crucial to this research, i.e., “Vis-A-Viz” (Romero, 2008), “The 

History of Living Spaces” (Ivanov, 2007), and (WeWorkBIM, 2015). All the studies 
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utilized information visualization techniques, including time as a variable for human 

occupancy and movement analysis. Vis-A-Viz provides a tool for visualizing human 

activity through computer vision (Romero et al., 2008), which automatically records and 

after-processes human movements from overhead videos, allowing a close one-to-one 

mapping of individuals’ positions over the architectural layout. It computes motion by 

adjacency frame difference (AFD); therefore, static presence is not taken into account. 

Vis-A-Viz constructs an activity map by aggregating images of people’s movements from 

a top view, and it displays an interactive activity cube, which a three-dimensional 

visualization displayed on “SketchUp” (www.sketchup.com). From the perspective of this 

thesis, the most important technical challenges of Vis-A-Vis involved assigning a specific 

movement type to a particular person or role and discriminating static occupancy from 

lack of presence. The most important social challenge is to extrapolate the system 

installation and settings from a lab environment to a real and large-scale environment.  

Another visualization tool for building occupancy is the History of Living Spaces 

(Ivanov et al., 2007), a mixed application composed of a small number of video cameras 

and a large number of motion sensors, making the monitoring of large-scale buildings 

possible. Technically, the system was designed to capture individuals’ positions, 

covering 3,000-square-feet of office space during one year; however, the spatial and 

temporal resolution of the data collected is low. Another important technical factor is the 

resources needed to replicate the study since it requires the reinstallation of the system 

using the same design criteria.  Moreover, while cameras in buildings help to improve 

security levels, they also raise privacy issues due to the resolution of the information 

captured. However, motion sensors do not provide the same security level or enough 

information to extract positions in space with high precision as video cameras do. 

WeWorkBIM’s research (2015) by Davis and Payne, incorporated iBeacons, a protocol 

developed and introduced by Apple in 2013 (www.ibeacon.com), that uses Bluetooth low 

energy proximity sensors that transmit a unique identifier for the development of an 

application for indoor individuals’ tracking in real-time. Their goal was “to explore the 

potential of indoor positioning technology” since they believe that “[it] has the potential to 
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transform the design and use of buildings, the same way we have seen GPS transform 

the design and use of cities.” (WeWorkBIM, 2015). 

After reviewing the few architecture-related studies that have incorporated a 

location system, this paper next presents a survey and review of all location systems 

developed in the computer science area, with the purpose of selecting the most 

appropriate one for this research taking into account technical solutions, the social 

implications in the use of the systems in real environments, and an adequate 

spatiotemporal resolution of occupancy data. 

2.3 Location Systems 

As mentioned in the previous section, developments in location systems have 

been focused on the automation, precision and resolution of tracking, and positioning 

information of people and objects. Tracking and positioning systems differ by the privacy 

level involved. While tracking systems allow for following objects or individuals, 

positioning systems use the environment to calculate an object’s position (Cook and 

Das, 2004). The development of these systems was intended to address several specific 

needs, including Geo location; the location and tracking of objects stored in a 

warehouse; the location detection of medical personnel or equipment in a hospital; the 

location of firemen in a building; and behavior surveillance, monitoring, security, and 

sensing in smart environments (Liu, Darabi, Banerjee, and Liu, 2007; Lui, 2014 ).  

Each aforementioned system was developed to solve a slightly different problem, 

differentiating themselves on the following six technical parameters, as Hightower and 

Borriello proposed (2001): (1) Location physical phenomena, (2) portable elements 

versus infrastructure, (3) form factor of sensing devices, (4) power requirements, (5) 

portable elements versus infrastructure, and (6) resolution in time and space. These 

technical parameters have a direct impact on social parameters. Physical phenomena 

impact privacy, allowing or hindering identity and the associated information.  
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Table 2-3. List of systems, technologies, techniques, years of development, and years that technology was 
adopted by architectural research or Computer Science research related to indoor spaces (1). 

      Computer Architecture 
System  Technology Technique  Science Research 
      Development Related (1) 

GPS 
Global Positioning 
System Triangulation 1973   

GMS Global Mobile System Triangulation 1991   

Microsoft RADAR 
WLAN, Received 
Signal Strength (RSS) Triangulation 2000   

UWB 
Radio Ultra-Wideband 
>500MHz Triangulation 2002 2010 

Infrared  Infrared waves Proximity 1992   

RF / RFID 
Low Radio frequency 
RF Proximity 2004 2009 

Bluetooth 
Low Radio frequency 
RF Proximity 1994   

iBeacons 
Bluetooth Low Energy 
(BLE) Proximity 2013 2015 

Wi-Fi signals 
Cellphones and Wi-Fi 
signals (avg acc-2mt) 

(50%acc within 
10m) 
Trilateration, 
fingerprints 
 2002 2015 

Smart Floor Pressure Sensors 
Proximity*, 
physical contact 1997   

Cricket Ultrasonic Pulses +RF 
Proximity, 
Triangulation 2000   

Hexamite Ultrasonic ID + RFID 
Proximity, 
Triangulation 2002   

Ubisense UWB+RF 
Proximity 
Triangulation 2005 2013 

Wireless High-
precision cameras 

High-precision video 
cameras  Scene Analysis 2000 2012 

Surveillance 
Cameras for 
location 

Low resolution 
cameras network Scene Analysis 1980’s   

Multicamera 
Environments 

High-resolution 
cameras network Scene Analysis 2005 2008*/2012 

Accuware 
Wearabouts 

Wi-Fi, GMS, GPS, 
Camera Visual 
Features   2015 

Multicamera and 
sensors 
environment 

LowRes cameras, 
Sensors network 

Scene Analysis, 
Proximity and 
Triangulation 2007 2009* 

Kinect Sensors 
RGBD 

Depth sensor, RGB 
camera 

Scene Analysis, 
Proximity and 
Triangulation 2011   

 

Infrastructure or portability, form factor, and power requirements may impact the 

level of the systems’ intrusion on the scenario and the systems’ effect on normal 
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routines, or pervasiveness. Power supply also has an impact on the duration and 

continuity of data recording. Additionally, resolution in time and space of collected data 

has an impact on research questions. The most influential technical parameter for 

determining the approach that best suits a specific study, interfering the least with the 

social parameters, is physical phenomenon that refers to the system’s automatic location 

sensing techniques, i.e., triangulation, proximity, and scene analysis. Triangulation uses 

lateration or distance measurements from three non-collinear points, as well as 

angulation or angle measurements to compute object location, which impacts on 

passiveness since it requires at least three vantage points. Proximity determines when 

the target is within range of the source by monitoring wireless cellular access points and 

by tracking automatic ID systems or by pressure, which increases the effect on normal 

routines. And scene analysis compares a sequence of observed sight, from a fixed 

vantage point, detecting the features in the observation. Although scene analysis does 

not require geometric information, motion, or emission of signals, it requires storing 

changes on the environment that alter the scene, usually visual images, compromising 

privacy (Hightower and Borridello, 2001).  

As background for this thesis, a detailed survey and comprehensive review of 

existing indoor location systems was condructed by adapting and extending the 

taxonomy developed by Hightower and Borridello (2001) and Lui et al. (2007). The 

objective of the survey was to make an informed system selection, considering all 

technical and social aspects that may have an impact on this research’s objective of 

collecting high resolution physical and temporal location information for spatiotemporal 

analysis. The survey covers a subset of indoor location technologies that were 

developed over the last three decades, including: global positioning systems (GPS), 

global mobile systems (GMS), ultra-wideband sensors (UWB), infrared signals, fadio-

frequency (RF) signals, RFID, Bluetooth, pressure sensors, and high-resolution 

cameras. Also, the survey includes a set of systems that represent a series of mixed 

technology, including RADAR, Cricket, Hexamite, Ubisense, multi-camera and sensor 

environments, and Kinect sensors. 
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To construct the survey, the systems were categorized under the three 

techniques they use for location: (1) triangulation; (2) proximity; and (3) scene analysis. 

GPS, GMS, RADAR, UWB, Infrared, and RF/RFID are some of the systems that use the 

triangulation technique. Proximity technique is used for Bluetooth applications, such as 

iBeacons. Also, pressure sensors under each tile, such as the ones used in a smart 

floor, could be considered a proximity technique. Wireless high-precision cameras, low-

precision cameras, and multi-camera environments use scene analysis as the position 

calculation technique. Also, hybrid systems, which use two or three techniques for 

location calculation, are incorporated in the review. They include Cricket, Hexamite, 

Ubisense, multi-camera and sensor environments, and Kinect sensors. Each technology 

also implicates an object identification system or method, which could include the use of 

tags on triangulation and proximity or inferred location on scene analysis and pressure 

techniques.  

For selecting the system to be utilized in this research, an exhaustive review of 

each system and technology was done based on previous research and the products’ 

online reviews. This review included ten specific technical and social criteria: accuracy, 

precision, range, dimensions, temporal scale, robustness, cost, privacy, passiveness 

and pervasiveness (See Table 1-4). Accuracy, in this context, refers to the system’s 

location error or the unit in which the data are collected (i.e. three seconds and two 

square feet), and precision refers to the system’s consistency of measurement unit. 

These first two measurements arise in the context of the technology assessment, and, 

therefore, they will be renamed in this document system accuracy and system 

precision.1  

 

                                                
 
 
 
1 Accuracy and Precision terms will be redefined later in Chapter 4, from the perspective of the statistical 
analysis. 
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Table 2-4. Summary of location systems survey organized by location techniques, and an exhaustive review 
of their technical and social aspects. (*) estimations that depend on the entire system set up. 
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99%	 Outdoor	 3D	

40	
nSec	 5	 5	 3	 2	 4	 battery	 P	 tag	 1	tag/object	 		

GMS	 50	m	 *50%	
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150m	 2D	 	 	 	 3	 3	 4	 battery	 P	 tag	 1	tag/object	 		

Microsoft	
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iBeacons	 Few	cm.	
75%-
90%	

70	mt./	
450	mt.	 3D	 1ms	 3	 4	 1	 3	 5	 battery	 P	 tag	 1	tag/object	 	

Smart	Floor	 grid	cell	 100%	
0.5m	/	

cell	 2D	
by	

event	 3	 5	 3	 5	 1	 net	 I	

infe
rre
d	 1/cell	(50cm)	 		

Pr
ox
im

ity
	&
	T
ria

ng
ul
at
io
n	

Cricket	 1-5m	
75-
91%	 3m	 3D	 		 4	 2	 1	 5	 5	 battery	 P	 tag	 1	tag/object	 		
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Environments	 20	cm	 90%	 27m	
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Kinect	
Sensors	RGBD	 *30	cm	
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6m		57°		 4D	
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fps	 3	 2	 4	 3	 2	 net	 P	
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d	 1	/	6m	

10	
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Range refers to the area of coverage of a system or its radius of influence from 

the source that makes it possible to obtain accurate data. The term “dimensions” refers 

to the capacity of capturing 2D or 3D locations and details Temporal scale is the 

frequency of recording information (i.e. 24 fps, 60s, one hour, one month), and 

robustness refers to the normal functionality in exceptional cases.  Cost includes the use 

of resources, such as money, number of sensors, time, space, human labor for 

installation, and maintenance. Privacy refers to whether the system allows individual 

recognition of or association to a person, and passiveness refers to the level of intrusion 

of the system in the use of tags or consent. Finally, pervasiveness relates to its effect on 

normal routines. 

Regarding these technical aspects, nine of the seventeen reviewed systems 

provide a system accuracy of 30 cm or less; eight of them supply data with around 90% 

system precision, providing consistency between reality and the data obtained. Those 

systems include GPS, UWB, infrared, Bluetooth, Smartfloor, Ubisense, high precision 

video cameras, and multi-camera environments. Their individual coverages are as 

follows: UWB systems cover approximately 10 meters; seven systems including GPS, 

GMS (outdoor), RADAR and Ubisense cover areas up to 1000 meters; and scene 

analysis systems, such as high-precision cameras, surveillance cameras, and multi-

camera environments, cover distances of approximately 27-36 meters (88-120 feet) in 

the direction of the scene. For this research, an accuracy of 30 cm (approximately 1 feet) 

and a range between 90-120 feet are the appropriate distances that provide enough 

resolution and cover a reasonable large area. Infrared technology is obstructed by 

physical objects like walls. Radio frequency and RFID, Smart Floor, Cricket, and 

Hexamite systems are based on UWB and RFID; therefore, they are obstructed by 

physical objects and have a radius shorter than 10 meters. Most of the scene analysis 

and triangulation systems capture 2D and 3D information, but only five really capture 4D 

information with a relatively high temporal resolution of six seconds or less, with some of 
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them reaching 148 fps, like GoPro high-resolution cameras. Although the Kinect sensor 

belongs to the scene analysis and triangulation category, it is also based on infrared (IR) 

emitter and an IR depth sensor, therefore its coverage range is reduced to 

approximately 0.5 to 8 meters (1.6 to 26 feet). Some of the systems, such as Smart 

Floor and infrared, record data by event, and the data collection is not temporally 

continuous. Also, most of the systems ranked average in robustness, a variable that 

reflects users’ positive technical reception and confidence in the system.  

Cost, privacy, passiveness, and pervasiveness are considered social variables 

for the purposes of this study, since they originate in the social context of the research. 

These variables are not exactly replicable since they depend on the research financing 

agreement and on the cultural aspects of the society in which the research is carried out. 

The cost of installing the system, for example, varies depending on the area of interest 

to be covered by the research and on the sponsoring institution’s investment in 

technology. Most of the systems are relatively expensive (above average), with the 

exception of infrastructure systems, which are conceived as part of the building 

infrastructure, such as infrared networks or surveillance camera networks. Some 

systems, such as Kinect sensors, are comparatively cheaper by unit, but since they 

cover a relatively small area, the amount of sensors needed to cover a building floor 

makes the total system’s installation expensive. Therefore, the cost of the system 

installation is the ratio between the areas of interest of the research and the number of 

devices needed to cover them, which in turn defines the system scalability. Also, the 

cost of maintenance share the same area of interest and number of devices ratio, adding 

the durability of the system and the frequency of manual labor required. Privacy refers to 

the direct recognition and identification of individuals. Although some wearable 

technology does not link a person’s identification (ID) with an ID tag, participants 

perceive that by wearing them they are being continuously tracked. Therefore, privacy in 

this survey refers to “perceived privacy” by the user, which does not necessarily relate to 

an actual ID recognition. A high perception of privacy is directly related to not wearing 

the devices. An example of high perceived privacy involves a surveillance camera 
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system, which calculates the location of individuals through scene analysis. Although 

this system continuously records actions and activities that could be interpretable, it 

does not automatically identify a specific person, resulting in a highly evaluated 

perceived privacy. Also, the use of scene analysis technology usually does not require 

an individually signed consent, since a general consent is obtained when the users 

agree to enter the space covered by the surveillance cameras in a building. Alternatively, 

systems that require the use of wearable tags normally relate the individual to an 

identification code, although not to an actual name or ID. Despite these technology 

specifics, users perceive a high level of privacy invasion in the use of wearable tags 

because they provide continuous tracking and require individual consent. 

Other aspects, such as infrastructure or portability requirements, size, location, 

coverage and distribution of technology, and necessary power supply are addressed as 

they impact passiveness and pervasiveness of the system. More than 75% of the 

reviewed systems scored an above average level of intrusion on the environment – or 

passiveness – due to their physical invasion of architectural and personal space. The 

size and location of technology, as well as the number of devices needed to cover an 

area and the type of their required power supply (i.e., battery or plug), are the four most 

influential variables for system scalability, including coverage, duration, continuity, and 

resolution of the data collected, which directly impact the passiveness level. The 

distribution of wearable tags among participants plus their signed consent are the two 

most influential aspects affecting the effect of the use of the technology on normal 

routines – or pervasiveness. Ultimately, pervasiveness and passiveness levels impact 

the validation of the data collected since it defines the partial or total number of 

participants. 

1 Problems and Limitations 

Most of the systems studied hold real promise to inform architectural research 

practices since they are more automatic and less time-consuming than the traditional 

methods of behavioral data collection reviewed in the first section of this chapter. Also, 
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they provide higher spatial and temporal data resolution due to their system accuracy 

and precision and the duration and continuity of data recording, as supported by their 

power supply capacity. Additionally, from the perspective of research methodology, the 

implementation of these systems allows almost exact research replication compared to 

the observation and mapping methods. However, all of these systems and methods 

require more concrete resources than the traditional ones and have diverse social 

implications. Further, some systems, compared with others, have a higher level of 

perceived privacy invasion and of passiveness – requiring a considerable benefit-to-cost 

ratio for participants to provide consent (Lachello & Abowd, 2006) and therefore affecting 

the number of participants and compromising the data sample. Also, they promote a 

high level of pervasiveness – affecting normal routines, therefore having an influence on 

real scenarios and thus on the research findings. Because this research seeks to 

accomplish the certain social objectives, scene analysis was the system selected to 

support the maximum perceived privacy and the minimum pervasiveness and 

passiveness levels, allowing for the collection of a dataset that most closely represents a 

real scenario.  

2.4 Toward Spatiotemporal Data Collection: Why Scene Analysis? 

Following the exhaustive review of location systems presented in the previous 

section, further assessment determined that the system that best contributes to the 

purpose of this study is a scene analysis system, specifically, a video surveillance data 

acquisition process, followed by a computer vision video process and video analysis. As 

with any system, scene analysis involves technical and social implications. However, the 

negative implications become minimal in relation to the accomplishment of one of the 

primary objectives of this research, i.e., to automatically collect spatiotemporal data of 

high resolution in a real scenario. This section presents a more detailed review and 

comparison of all location techniques, supporting the choice of the scene analysis 

system. Afterwards, a more comprehensive technical and social description of this 

specific system is presented, followed by a discussion building the argument for its 
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selection. This assessment was performed by the principal researcher to rationalize the 

selection of the methodology, contemplating the context of this research. The selected 

technique – scene analysis – acts as a version of the implementation of the framework. 

First, the comparative evaluation of the three computational location techniques –

triangulation, proximity, and scene analysis – is presented to support the selection of 

scene analysis as the most appropriate one for this research. The classic method of 

behavioral observation and mapping is included for comparison purposes. This 

evaluation weighs the contribution, neutrality, or negative impact of each aspect as it 

relates to the objective of collecting spatiotemporal data of high resolution in a real 

scenario, assigning them the values of one (1), zero (0), or negative one (-1) 

respectively. The techniques are reviewed under the ten technical and social criteria 

presented earlier in this chapter. Each criterion, however, was more accurately 

subdivided in a number of aspects that concern this research. This review starts with the 

technical criteria, followed by the social ones.  

From the technical perspective, the first criterion is system accuracy, which is 

composed of three crucial aspects, location error, units of data collection, and occlusion 

of the target. Second is system precision, which is composed of consistency of 

measurement units, consistency of target location, and access to the original data to 

validate it. As highlighted in Table 2-4, the system accuracy score is high for the 

triangulation and proximity techniques (0.7), but it is low for scene analysis (0.3) due to 

the occlusion of the targets from a particular vantage point. Although occlusion of the 

target is one of the weakest aspects of scene analysis, its precision score is the highest 

(0.7) due to the access it allows to original data, avoiding manipulation errors. The 

combination of system precision and system accuracy define data authenticity, which is 

constant and averages among the three computational location techniques (0.5).  
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Table 2-5. The three location techniques: Triangulation, Proximity and Scene Analysis evaluated under the 
10 technical and social criteria, and compared to the observation method. 

 

 
The third criterion is range, which refers to the area or range covered by the 

technology’s influence, its infrastructure or portable aspect, and the scalability of the 

system to cover the area of interest. Proximity location technique has the shortest range 

(0), followed by triangulation (0.3). Scene analysis, however, has the highest range (1) 

not only because of the distance it covers, but also due to its scalability (1). The fourth 

criterion shows that the number of dimensions captured is 4D for all the techniques, 

except the classic observation method, as reviewed in the first section. Fifth, temporal 

scale is characterized by the frequency of the data recorded (i.e. fps), the duration and 

continuity of recording capacity, and the spatiotemporal resolution. Its scores are very 

high for the three techniques, with proximity the lowest among them (0.7). Sixth, 

robustness refers to the system’s functionality in normal and extreme conditions, the 
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perceived confidence in the system, the level of implementation, and its scalability to 

larger areas.  Robustness is not the strongest characteristic of any of the techniques (0 - 

0.5), mostly due to the current developmental stage and scalability of all systems, which 

is constantly improving. 

This assessment also reviews the social aspects of cost, privacy, passiveness, 

and pervasiveness. First, cost is considered a social criterion since it does not focus on 

budget as the principal aspect, but on the total resources of the research. Therefore, the 

social aspects of cost are monetary budget, human resources, number of devices to 

cover the necessary area, and the time invested on installation of devices and on 

implementation of the system or the time invested in mapping. The three techniques 

have similar scores on Cost (-0.2), with the exception of Scene analysis (0.4). The 

human resources needed scored high in the three computational techniques, excluding 

observation, making cost one of the crucial aspects for choosing computational methods 

over manual methods. However, differences in cost among the computational 

techniques appear in the hours of installation and implementation. Scene analysis is the 

only system that requires more hours for implementation than installation.  

The eighth criteria, privacy, refers to the perceived privacy, which is the 

fundamental factor for users to agree to participate in the research. Scene analysis is the 

only technique that scores positively in this aspect. Potential participant identification, the 

use of tags, the individual consent requirement, and the capacity to interpret the original 

actions are the other aspects that impact privacy. Triangulation and proximity both 

scored similarly negative in privacy (-0.56), followed by the observation method. Scene 

analysis is the least invasive method in regard to privacy (0.61). Although the data 

format allows accessing the data captured and interpreting original actions, which allows 

for individual identification, the participants accept this aspect as part of the system. The 

ninth criteria, low passiveness, refers to the level of intrusion of the system, the use of 

tags, power supply, and infrastructure or portable elements disruption. Triangulation and 

proximity score negatively (-0.4) compared to observation methods (0), and scene 
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analysis is the only one that scored positively in low passiveness (0.8). The last criteria, 

low pervasiveness, refers to the effect of technology on normal routines, the ease of 

extending the system to natural environments, and the expedited size, location and 

distribution of the devices. All these aspects scored negatively for all technologies, 

except for scene analysis. In conclusion, despite occlusion of the target, a fundamental 

negative aspect of scene analysis, the capture of real occupancy data from a real 

scenario, with no intrusion of the system and no effect on normal routines, proved the 

most crucial factor for selecting scene analysis over other technologies. 

2 Scene Analysis Assessment 

Scene analysis is organized in two components, hardware and software, and the 

following three stages: (1) video acquisition supported by a hardware system, (2) video 

processing and (3) video analysis, all supported by software systems. In this section, a 

comparison of hardware among all scene analysis methods is presented, supporting the 

selection of the most suitable one for this study –surveillance environment. Alone, the 

surveillance environment is not capable of obtaining people’s location in space and time, 

since the data are stored in a video format. Therefore, it is crucial to implement video 

processing for occupancy detection based on computer vision, as well as video analysis, 

in the later stages. This section will review the scene analysis hardware component. The 

three stages will be presented in detail in Chapter 4, after introducing the proof-of-

concept scenario for the specific characterization of the methods in Chapter 3. 

This review addresses the total variety of scene analysis technologies under the 

same ten criteria presented in the previous section (see Table 2-6). First, it covers the 

technical aspects followed by the social ones, and then, it weighs the contribution (1), 

neutrality (0), or negative impact of each aspect toward the objective of collecting 

spatiotemporal data of high resolution in a real scenario, exactly like the previous review. 
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Table 2-6. Four Scene Analysis systems evaluated under the 10 technical and social criteria, and compared 
to Kinect hybrid system. 

 
 

From the technical perspective, the highest total average belongs to multi-

camera sensor systems (0.82), which is obvious result since it utilizes the best aspects 

of two technologies, cameras and sensors. These systems are closely followed by 

surveillance systems (0.71). The multi-camera environment takes third place, and high-

resolution cameras (GoPro) and RGBD sensors (Kinect) fall far below (0.18 and 0.06 

respectively). Comparing multi-camera sensor environments and surveillance systems, 

they significantly differ on system accuracy and system precision. System accuracy has 

an average of 0.7 over 0.3, and system precision 1 over 0.7, respectively. This crucial 

difference may be explained by the occlusion of target and the consistency of target 
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locations, both due to the same factor, the position of camera vantage points on 

surveillance cameras and multi-camera environments. This assumes that multi-camera 

environments distribute more cameras in different and more appropriate locations for the 

location task as compared to the distribution of surveillance cameras for the surveillance 

task. Multi-camera sensor environments and surveillance systems are equally evaluated 

in range (1), dimensions captured (1), temporal scale (1), and precision (0.7). 

From the perspective of social criteria, most scene analysis systems score low, 

with the exception of the surveillance system. In terms of cost, most systems require a 

huge amount of resources since they are not pre-installed in the building infrastructure 

like existing surveillance systems. Money, human, technical, and time resources are 

indispensable to mounting the new systems; therefore, all systems scored below (-0.4), 

with the exception of surveillance systems, which scored 0.6. In terms of privacy, only 

surveillance systems score over the average (0.6), primarily because of perceived 

privacy by users and the absence of individual consent. As previously reviewed, the 

interpretation of original actions from videos in a surveillance system could negatively 

affect privacy, as in all scene analysis systems; however, perceived privacy increases 

over time with the acceptance of the systems into daily routines. The surveillance 

system has the highest score on passiveness and pervasiveness (1) mostly due to the 

power, infrastructure, and low elements of disruption but also because of its potential for 

an extension to natural environments and their device sizes, location, and distribution 

into the infrastructure.  

In conclusion, from a hardware perspective, a surveillance system is by far the 

best choice for the objectives of this specific research, with a total score of 28 over 36 

contributions, and averages of 0.82 in technical aspects and 0.78 in social aspects. 

Nevertheless, because the data acquisition is in video format, the scene analysis 

process must be complemented by implementing the second stage, video processing, in 

order to obtain spatiotemporal occupancy data. The assessment of this stage uncovered 

only two important social restrictions, cost and privacy. Video processing is the most 
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expensive stage in terms of resources, since it requires hundreds of hours of 

implementation. Video processing also allows access to original videos within context, 

permitting the interpretation of actions, thus reducing privacy. However, from a technical 

perspective, this aspect allows for the generation of a model for activity and occupancy 

data that can be used as a baseline for data accuracy and precision, the most significant 

technical challenges of this stage. Overcoming these challenges is crucial, since they 

have a direct impact on data quality and the authentication of the results. Consequently, 

an entire chapter (Chapter 5) of this dissertation is dedicated to studying such 

parameters, designing a test to construct the baseline parameters and validating the 

results. 

2.5 Summary 

This chapter first presented a review of the traditional occupancy data collection 

methods utilized in architecture research, i.e., self-report and observation and mapping 

methods, either from fixed vantage points or with movement, such as “shadowing” a 

person or doing rounds. Some key variables of the traditional methods were identified, 

which helped construct the argument for the adoption of semi-automated systems 

developed in the area of computer science. These key variables are (1) the resources, 

including constant presence of observers, 2) the limitation in capturing dimensions and 

number of variables, and (3) the spatial and temporal resolution of the data collected. 

This chapter also reviewed the technological developments of the location systems, 

identifying ten criteria for exhaustively comparing them: system accuracy, system 

precision, range, dimensions, temporal scale, robustness, cost, privacy, passiveness 

and pervasiveness. The first six are classified as technical criteria and the last four as 

social criteria.  

Additionally, a review and comparison of location techniques for people – 

proximity, triangulation, and scene analysis – was constructed with the purpose of 

selecting the most appropriate one for one for this thesis’s objective of collecting 

spatiotemporal data of high spatial and temporal resolution in a real scenario. Some of 
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the influences of the technical aspects were discussed, such as system accuracy and 

precision contrasted with the social aspects, such as privacy, passiveness and 

pervasiveness. Further, a specific comparison of the scene analysis systems was 

presented, with the purpose of supporting the selection of a surveillance system, which 

permits researchers to obtain occupancy data in a real scenario with minimal disruption 

caused by the technology. This study cannot accurately provide a depiction of the 

applicable scene analysis and computer vision detection methods, without first 

introducing a detailed description of the proof-of-concept scenario in the context of this 

research, which is provided in the next chapter. 
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CHAPTER 3 

3. A PROOF OF CONCEPT HEALTHCARE SCENARIO 

Overview  

This chapter articulates the theoretical aspects of this research, as captured in 

the research design, through the empirical validation settings. The first section 

introduces the argument for selecting a healthcare facility as a proof-of-concept 

scenario, followed by a section that presents the previous relevant research on 

healthcare settings from two main architectural research perspectives: evidence-based 

design (EBD) and spatial analysis. The third section presents the specific scenario’s 

spatial and non-spatial descriptions, including the main variables of a strong and 

complex architectural program, i.e.,  a hospital, and the main parameters incorporated 

into the scenario analysis, such as layout organization, program spatial distribution, 

programming of activities, and personnel schedule. The fourth section addresses 

hospital corridors as the specific area of interest, with an emphasis on describing them 

as micro-scenarios based on their adjacent spaces and their assigned functions.  

  



 

39	

 

3.1 Why a Healthcare Scenario? 

The main goal of this research is to characterize the spatiotemporal occupancy of 

a building, integrating the influence of the scheduled activities occurring inside. This goal 

raises a question as to whether any architectural program could serve as an appropriate 

subject of study, since each program type would have its own particular characterization. 

However, this study selected a healthcare scenario, among all possible scenarios, 

because it presents a strong building program. A health care scenario is classified as a 

strong program due to its layout complexity, high spatial segregation, strong control over 

spatial divisions, strong control over the use of spaces and activities assigned to spaces, 

and strong control over inhabitants’ routines and visitors’ schedules. These strengths 

arise from the fixed relations between the spatial units, spatial labels, and spatial 

functions and the correspondent activities performed with minimum distortion in the 

space, as produced by rigid organizational mechanical systems (Koch and Steen, 2012). 

As a result, a strong healthcare program scenario minimizes the influence of 

unanticipated variables, such as unexpected activities carried out in unpredicted spaces; 

the range of unpredicted participants in daily scheduled or emergent activities; and the 

adaptation of a space supporting an activity other than what its label indicates, among 

other spatial and temporal variables related to users, activities, and program. As is to be 

expected, any such building is not homogenously programmed; consequently, neither is 

the sample of spaces for analysis as a proof-of-concept. Rather, the spaces will exhibit 

different degrees of programming depending on the organizational units and non-spatial 

descriptions, such as the scheduling of activities as well as the placement of object 

attractors, e.g., supplies (Gomez et al, 2012).  In this study, strong program activities are 

strictly assigned to the sample spaces, allowing for minimum changes, thus allowing the 

isolation of a number of research variables, such as the programmed and scheduled 

activities by space. Therefore, these factors, as well as other non-spatial descriptions 

presented later in this chapter, are key variables in this research.  
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Over past years, healthcare settings, as strong program scenarios, have increasingly 

become a focus of lines in architecture research with an emphasis on improving patients 

and staff outcomes, such as the level of patients’ recovery and nurses’ walking distance 

(Ulrich et all, 2008) (see table2-1). Accordingly, this research uses a healthcare setting 

as its proof-of-concept scenario to demonstrate the feasibility –or the methods in 

principle– usually tested in a reduced scenario where the data may or may not be 

complete. The fundamental purpose of a proof-of-concept scenario is to verify that the 

methods developed can be used in a full study. Pondering all the aspects presented, this 

chapter reviews healthcare research in relationship to this proof-of-concept scenario’s 

specific setting, with the object of establishing associations between the physical 

environment and health outcomes and with a final goal of developing meaningful 

characterizations and interpretations of the spatiotemporal occupancy outcomes. 

3.2 Previous Research in Health Care Facilities 

The integration of the two architectural research areas of spatial analysis and 

EBD, as applied to strong building programs such as hospitals, has been a strong line of 

research since the 50’s, with the ‘Studies in the Functions and Design of Hospitals: the 

Report of an Investigation Sponsored by the NPHT and the University of Bristol’ (1955). 

Through the years, numerous studies have demonstrated a direct correlation between 

the spatial configuration of the environment and improvements in health outcomes. From 

a global perspective, spatial analyses have focused on the description of the 

configurational properties of space using space syntax methods to understand their 

influence on human behavior (Hillier and Hanson, 1984; Bafna, 2003). From a local 

perspective, the application of EBD to healthcare design involved rigorous empirical 

studies to link the physical environment of healthcare settings to specific patients and 

staff outcomes (Hamilton, 2003). Previous spatial analysis research has included 

evaluations of layout configuration, nursing unit typology studies, and behavioral 

outcome studies, such as face-to-face interaction. These prior studies include  a 

configuration and design study in caring environments (Hanson and Zako, 2005), which 
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analyzed the residents’ active time, enjoyable activities, and environment metrics such 

as control and choice in relation to axial global and local spatial integration (Turner, 

2001) on thirty-six residential care and nursing homes; studies of spatial dimensions of 

control, such as square footage of visual fields, connectivity, and integration, in three 

Alzheimer’s units and juvenile detention centers (Peatross, 1997); a study of movements 

and interaction correlated with axial maps and visual fields – or Isovists (Benedikt, 

1978); and research on nursing units focusing on walking distances, walking times, and 

visibility of patient rooms (Cai, 2012), among others. 

Evidence-based Design 

Evidence-based Design (EBD) research challenges architects to re-focus design 

toward people-centered rather than building-centered design. The application of EBD to 

health care relies on scientific evidence, involving rigorous empirical studies to link the 

physical environments of hospitals to health outcomes (Hamilton, 2003; Zimring et al., 

2004). This research indicates the influence of design decisions on clinical outcomes 

and demonstrates how better design can generate “a less risky and less stressful 

environment, promoting the cure of patients" (Ulrich et al, 2008). The findings usually 

suggest design modifications that affect both patients and staff (Joint Commission, 

2002). Thus, these studies helped to establish the widely recognized principle that "a 

well-designed physical environment plays an important role in making design decisions 

for hospitals less risky and less stressful, promoting the speedy recovery of patients and 

providing better places for staff to work" (Ulrich et al. 2008).  

EBD researchers have conducted studies with an emphasis on three outcome 

categories: (1) improving patient safety through environmental measures; (2) improving 

patient outcomes through environmental measures; and (3) improving staff outcomes 

through environmental measures (see Table 3-1). In particular, this growing body of 

research establishes causal relationships between specific properties of the physical 

environment and direct improvements or specific results in health system processes, 

including four outcome types: 1) patient safety, such as infections, errors, and falls; 2) 
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patient symptoms, such as reducing pain, improving sleep, and reducing stress and 

depression; 3) organization-patient relationships, such as duration of stay, spatial 

disorientation, privacy and confidentiality,  and communication with patients and family 

members, all of which foster social support and increase patient satisfaction; and 4) 

organization-staff and environment outcomes, such as decreasing staff injuries and 

stress and improving work effectiveness and satisfaction (Ulrich et al., 2008). The 

resulting research findings suggest a number of recommendations for architectural 

design, interior design, and healthcare processes. For example, the decision to build 

single-patient rather than multiple-patient rooms helps to reduce hospital-acquired 

infections, medical errors, patient falls, and patient stress.  Additionally, this design 

choice helps improve patients’ sleep patterns, patient privacy and confidentiality, 

communication between patients and family members, social support, and patient 

satisfaction. It also decreases staff injuries and stress, while increasing staff 

effectiveness and satisfaction (see table 3-1).  

Table 3-1. Adapted from “A review of the Research Literature on Evidence-Based Healthcare Design” 
(Ulrich, Zimring, Zhum, DuBose, Seo, Chou, Quan and Joseph, 2008).  
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Spatial Analysis 

Spatial analysis research in healthcare settings has mainly focused on 

characterizing the attributes of space, such as connectivity and integration, with an 

emphasis on visibility and accessibility and their relation to the occupancy and 

movements as the most important design outcomes. Connectivity and integration are 

metrics to characterize space based on a visibility graph analysis (VGA). Connectivity is 

calculated from every point in space as is integration, although the latter also factors in 

the distance between points (Turner, 2001). Visibility is the evaluation of a space based 

on connectivity, evaluating all vantage points that generate visual fields. Accessibility is 

also based on connectivity, but it is comprised of all accessible points at foot level. 

Visibility and accessibility are behavioral-spatial variables that are constructed based on 

the interaction of both behavioral and spatial features in an attempt to measure human 

experience in relation to the geometry of a space.  

Visibility and accessibility are the most significant criteria for analyzing patient 

monitoring in healthcare settings, and these factors demonstrate that high spatial 

integration (Hillier, Penn, Hanson, Grajewski, & Xu, 1993; Bafna 2003) could lead to 

more frequent visits to patient rooms and nursing stations (Hendrich, 2003). A new 

measure of local visibility in buildings, targeted, or directed, Visibility, was developed by 

Lu et al. (2009) to propose a new model of visibility that differentiates "the origins and 

destinations of all lines of vision" (Lu, Peponis and Zimring, 2009). As an application of 

these visibility fields, Lu (2011) shows the importance of visibility patterns to architects 

and planners by visualizing the sight from the head of the patients’ beds  and correlating 

the findings with staff distribution in the intensive care unit of the Emory Clinic, where 

visual monitoring is crucial. Another research study, presented by Hendrich (2003), 

states that integration and visibility factors can significantly increase nurse-patient care, 

reducing the mortality rate of critically ill patients. Also from the visitors’ perspective, the 

exploratory study on orientation and wayfinding in hospitals, which focuses on the spatial 

orientation and navigation of people in Chilean hospitals (Mora, Oats, Marziano, 2014 a 

and b) and demonstrates that visitors easily become disoriented after just three turns in 
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their paths due to the complexity in the spatial configuration of hospitals. These studies 

were intended to extrapolate from previous research that corroborated the impact of 

spatial visibility on patient monitoring. The studies focused on nurse response time, 

decreasing the trip distance from nursing stations, and patient falls (Hendrich, Fay and 

Sorrells, 2002). An additional objective of these studies was to prove that visibility also 

affects the level of communication between staff and patients, with high visibility 

improving patient satisfaction, where the most important factor is good communication 

(Trites et al, 1970; Ulrich et al, 2004). Each of the studies and metrics presented in this 

section made a fundamental contribution to supporting the significance of visibility fields 

and surveillance in healthcare design, which will be referenced in Chapter 6. 

Non-spatial Analysis Research 

As reviewed in the previous section, spatial analysis and EBD have 

demonstrated high correlations between specific human behavior patterns and selected 

spatial descriptions. However, other correlations exist between behavior and non-spatial 

descriptions, such as organizational and programmatic factors. This section will first 

describe the details of spatial descriptions and then will address the non-spatial 

descriptions of this specific proof-of-concept study. 

Previous researchers have utilized different approaches to embrace the inclusion 

of non-spatial descriptions, such as programming and organizational variables. In some 

cases, they studied the organizational flows and simulations of activities using a system 

engineering processing approach, focusing on where and when the activities take place. 

Other methodology applied the simulation of the dynamic aspects of buildings, derived 

from organizational workflow charts and aimed toward an understanding of the 

performance of complex healthcare systems. These methods focus on the optimization 

of workflows by simulating the existing flows and assigning activities to agents and 

spatial units. Specific tools, such as Flexsim Healthcare (Felixsim.com), have been used 

for the analysis of hospital organizational processes, adapting multi-model agent 

simulators such as “Anylogic” (www.anylogic.com), based on probabilistic model output 
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from hospital databases, to model expected occupancy and movements. García et al. 

(2003) approached this topic in their study, “Modeling of activities: An approach to the 

virtual representation of human behaviors in architectural spaces tested in emergency 

units” (García, Baesler, Rodríguez, and Pezo, 2003). In this study, they modeled and 

simulated human activities in emergency units, focusing on the probabilistic evolution of 

activities and contributing suggestions for better spatial configurations and processes. 

Although both studies presented the real use of spaces, the behavior of visitors and 

family, which could potentially double the number of agents depending on the culture, 

are not included in the models. Even though these approaches have offered several 

useful contributions, Koch and Steen (2012) argue that "one of the main problems of 

finding consistent relations between workflow, organization, and spatial configurations 

valuable for the design of healthcare environments lies in that programmes and activities 

studied have been described from an organizational point of view rather than a spatial, 

and have been studied as efficiency machines" (Koch, Steen and Öhlén, 2012).  

Discussion 

Therefore, the idea of including programming of activities as a new factor in 

research is rather new, but at the same time, it builds on the original concept of program 

building categories defined by Hiller and Hanson (1984), i.e., strong and weak programs, 

in which the degree of influence of the program – and space – on behavior is determined 

by the type of activity (Bafna, Chambers, 2013). In the original definition, a strong 

program has minimum flexibility in relation to an activity assigned to a space, while a 

weak program has high spatial flexibility regarding activities (Hillier, Hanson and 

Peponis, 1984; Hillier and Penn, 1991). Strong program buildings were characterized as 

having more complex and segregated layouts than weak program buildings, having 

more spatial divisions and fixed uses, and imposing stronger control over inhabitants’ 

and visitors’ behaviors. While activities in strong program buildings are expected to 

follow the organization, activities in weak program buildings are expected to follow the 

spatial configuration. However, recent studies have demonstrated that weakly 
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programmed buildings sometimes also follow organization in space and time, thus 

exhibiting the presence of some aspects of strong programs (Sailer, 2007, 2010). 

Therefore, Sailer et al. (2013) state that buildings can show “different degrees of 

programming,” suggesting that it depends on two criteria: the location of attractors, 

which have placement that does not necessarily follow a logical configuration, and the 

time restrictions placed on the space’s use as a result of constraining activities to 

specific schedules (Sailer, Pachilova, Kostopoulou, Radinuk, MacKinnon, Hoofwijk, 

2013). 

The concept of attractors previously was introduced in the "Activity Shapes" 

study, which focuses on presenting the influence of the nature of the activity catalyzed 

by the object attractor on the distribution of people in space and over time (Gomez 

Romero, Do, 2012). In this research, space was subdivided into a 13 x 9 grid of cells, 

each measuring 1.5 feet x 1.5 feet. That study concluded that activities could be 

differentiated by their outcomes, demonstrating that the catalyst is responsible for 

creating different configurations in the distribution of human occupancy in a singular 

space. Correspondingly, Bafna and Chambers (2013) present the argument that human 

behavior is influenced not only by the space, but also by the nature of the activity. They 

argue that habitual activities – or routines – are more susceptible to the influence of 

space, without the need for the inhabitants to pay attention to their environment. 

Concurrently, Koch and Steen present the concept of spatial practice, defining it as “the 

interplay between spatial configuration, organizational configuration, and the 

configuration of work processes and routines.” (Koch and Steen, 2012, 2013).  In other 

words, spatial practice can be understood as the spatiotemporal patterns created in the 

interaction of space, routines, and activities on individual and collective levels, promoting 

social interaction (Koch, Steen, 2012).  The concept of spatial practice. in conjunction 

with the concept of habitual activities, helps to construct the argument for the 

classification of activities by their nature. This classification introduces the differentiation 

between scheduled and unscheduled, or emergent, activities and constructs a baseline 
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for comparing and contrasting their outcomes by analyzing the differences and 

similarities among activity patterns.  

The next part of this chapter is concerned with articulating the theoretical aspects 

presented in the first half of this chapter through empirical settings by collecting and 

modeling programming information of scheduled activities assigned to specific spaces 

during a regular one-week period in the selected healthcare scenario: The Navy 

Hospital. 

3.3 A proof-of-concept scenario: The Navy Hospital Spatial and Non-Spatial 

Descriptions: 

This section presents a description of the proof-of-concept selected scenario: the 

navy hospital in Chile, from both the spatial and non-spatial perspectives. The first of 

these perspectives, as the name indicates, includes the description of the layout 

organization and spaces characterization. The non-spatial perspective, includes the 

organizational descriptions and programming approaches, the personnel involved, and 

their activities and schedules. The purpose of this section is to clarify the hospital 

functions and organizational workflows as a complement to the building analysis from 

the spatial practice perspective stated by Koch and Steen (2012, 2013). 

Navy Hospital 

Located in Vina del Mar – the central zone of Chile – the Almirante Nef Navy 

Hospital is the largest campus of the Navy health system in Chile with six buildings and 

more than 37.000 m2 built (www.hospitalnaval.cl). It was designed by the Chilean 

architectural firm of Alemparte Barreda Wedeles Besancon (ABWB.cl), and was 

constructed in 1990. For this research, a proof-of-concept study suffices to demonstrate 

in principle the methods proposed. The study’s specific areas of interest were selected 

from inside the hospital’s seven-story Hospitalization Tower (shown in cyan in Figure 3-

1) for two reasons that respond to the research design. First, the building has six 

mirrored levels, with hospitalization wings on the second to the seventh floors, producing 
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twelve almost identical and thoroughly comparable scenarios that allow for isolation of 

the organizational and programming information. And second, these twelve scenarios 

are covered by surveillance cameras, permitting the scene analysis data collection 

necessary for this research. 

 

 

Figure 3-1. Original drawing of the general layout of the Vina del Mar Navy Hospital Campus in Chile, 
provided by the architectural firm Alemparte-Barreda Wedeles Bensancon (ABWB). Hospitalization tower 

shown in Cyan. 
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Figure 3-2. Picture of the Navy Hospital Hospitalization Tower taken from the beach. 

 

Figure 3-3. Drawing of a general floor plan layout of the Hospitalization Tower. In this figure, the South wing 
is located in the lower-left side of the figure; and the North wing is located to the upper-right part of the 

figure. 
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 Spatial and Non-Spatial Descriptions  

 
The Hospitalization Tower consists of a seven-floor building, with a wide-angle L 

shape (as shown in Figure 3-3), which contains 85,638 square feet (1,136.6 m2) and 

450 beds. Each level has 12,234 square feet (almost 8,000 m2) and 70 beds that are 

distributed 33 to 35 per wing from the second to sixth floors and 15 per wing on the 

seventh floor, which is a private hospitalization unit floor with single-bed patient rooms. 

The spatial description of the Hospital Building references two aspects of the building. 

First, it is a strongly structured building, permitting almost no flexibility for spatial layout 

changes by allowing for only small layout adaptations from one unit to another. From the 

second to sixth floors, the layouts are extremely similar. This symmetric design is a 

classic characteristic of almost any building type in Chile due to the existing seismic 

geographic conditions. Second, the characterization of spaces includes patient rooms, 

nurse station, storage spaces, and circulation spaces. Each floor has 19 room spaces 

per wing. Depending on the organizational unit, between 11 to 15 of those spaces are 

patient rooms, and a few are used as offices or storage rooms. The offices and storage 

rooms, as well as the staircases, are located mostly on the east façade of the building, 

facing the hospital campus. Therefore, the majority of the patient rooms have an ocean 

view, including the intermediate-care rooms for each unit, which are located at the center 

of each wing.  

In contrast, the non-spatial description of the Hospital Building refers to all the 

parameters that are not included in a geometrical model of the building, such as the 

organizational units, organizational boundaries within the units, personnel distribution 

and their schedules, and the general schedule of activities. The Hospitalization Tower is 

organized in eight specialty units distributed by floor, as follows: the trauma and 

obstetrics-gynecology units are located on the second floor’s north and south wings, 

respectively; the pediatric unit is located on the north wing of the third floor, and the 

intensive care unit (ICU) is located on the its south wing; and the general hospitalization 

units are located on the fourth, fifth-south, and sixth floors, while the private (single-bed) 
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patient rooms are located on the fifth-north and seventh floors. The critical care units are 

the general intensive care, cardio intensive care, intermediate care, and neonatal 

intensive care units, and they are distributed along respective units in the center of the 

wings. The first floor consists of the entrance, admissions administrative unit, cafeteria, 

gift shop, and the offices of the directors. The obstetrics and gynecology units, for 

example, consist of five two-bed rooms for general care and two four-bed rooms for 

post-operatory recovery and high-risk patients. These last two rooms have larger interior 

windows and are located in front of the nurse’s station, increasing the level of patient 

monitoring. The emergency unit of obstetrics and gynecology is located at the entrance 

of the corridor.  

Table 3-2. Navy Hospital’s Organizational Units by Floor 

Floor North Wing Unit Floor South Wing Unit 
1 Entrance, Admission, Administration, Cafeteria, Gift shop and Offices 

2N Maternity 2S Trauma 
3N Pediatric 3S ICU  
4N General  4S General 
5N Private / Ambulatory 5S Oncology 
6N General 6S General 
7N Private 7S Private 

 

a. Personnel by Unit 

The number of patients usually varies from four to twelve per organizational unit-

wing, never exceeding the capacity of each wing. The personnel consist of thirty-four 

members by unit, as follows: sixteen technical nurses, nine nurses, six medical doctors, 

one secretary, one service assistant, and one cleaning assistant (see Table 3-3). Their 

schedules and shifts are not exactly the same in each unit, resulting in different activities 

scheduling. This non-spatial information is key to this research, since the hypothesis is 

that the scheduling of activities has an influence on the spatial and temporal occupancy 

of the building.  
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b. Planned and Scheduled Activities  

 
The term “planned activities” refers to the activities that are programmed by the 

organization. These activities are essential for the proper functioning of the hospital. 

“Unplanned activities,” on the other hand, are activities that are not programmed by the 

organization (see Table 3-4). These activities could either be scheduled or unscheduled. 

Scheduled activities are those that are programmed and have a specific timetable, e.g., 

8 a.m. medical rounds. Unscheduled activities are activities that could be prearranged by 

either the organization or the users but do not have a specific agenda, e.g., cleaning 

after a spill. Some unplanned activities could have a regular frequency, making them 

routine, e.g. the daily staff breakfast after morning rounds. These activities are not 

essential for the proper functioning of the hospital, but they help improve the work 

environment.  

Table 3-3. Examples of activities classified by nature. 

   Organizaitonal 
Planned Activities 

Organizational 
Unplanned Activities 

Scheduled Regular frequency  i.e. Medical Rounds i.e. Staff Breakfast 

 
 Irregular frequency i.e. Visitors in-and-out -- 

Unscheduled Regular frequency  i.e. Linen distribution -- 
 Irregular frequency i.e. Cleaning after spill i.e. Cellphone calls 

 

In the case of the navy hospital, the predominant planned and scheduled 

activities are hours of operation, work hours, programmed shifts, scheduled services, 

and visiting hours. The Hospitalization Tower operates twenty-four hours per day, seven 

days per week; however, certain specific tasks are distributed in space and time as 

follows: major shift changes occur at 8:00 a.m. and 8:00 p.m., and they last 

approximately one hour in each unit because they include a medical round. Minor shift 

changes, such as when the chief doctor and the specialist leave the unit, occur at 10:00 

a.m. and 12:00 p.m.  (see  

 for details). The majority of the personnel start their work day at 8:00 a.m. The medical 

evaluation rounds start at the same time and last for around one hour, regardless of the 
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number of patients. The order in which the medical team visits each patient room is 

determined by the level of the patient’s health risk – from higher to lower – and the visits 

are not necessarily performed in a particular spatial sequence. However, as a general 

rule, because most critical patients are located in front of the nurse station, the 

personnel usually start their rounds there. 

Table 3-4. Personnel Schedule on Weekdays 

 
 

Table 3-5. Scheduled activities for the function of the Hospital 

 

Beside shifts and medical rounds, other daily scheduled services are meal 

service, medicine distribution, cleaning service, linen distribution, and staff lunchtimes. 
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Meal service and medical rounds are scheduled at a fixed time every day (see tables 3-

5). Medicine distribution, service cleaning, and linen distribution, however, are 

incorporated, but not fixed, in the hospital schedule. Medicine distribution depends on 

each patient’s treatment schedule, which is uniquely designed for that patient. The 

cleaning service and linen distribution are programmed once a day, in the morning with 

no fixed schedule; instead, these services are organized sequentially by patient room. 

The staff is divided in two groups for lunch breaks, either from 12:30 to 1:30 p.m. or from 

1:30 to 2:30 p.m., in order to maintain an uninterrupted surveillance of patients. The ICU 

unit varies its lunch schedule by one-half hour, starting at 12:00 p.m. Also, a planned but 

unscheduled activity is the staff breakfast, an unofficial routine that occurs every day 

after medical rounds finish for approximately one-half hour.  

c. Visiting Hours 

Visits to patients comprise another scheduled activity. Visiting hours are 

scheduled by unit (as shown in Table 3-5). The patient admission office, located on the 

first floor of the Hospitalization Tower, attends to patients and visitors from 8:00 a.m. to 

5:00 p.m. After these regular operating hours, the admission function takes place in the 

hospital’s emergency unit, located in another building. Visiting hours vary from unit to 

unit. Six units receive visitors for only two hours per day, from 3:00 to 5:00 p.m. The 

single-bed hospitalization wing patients receive visitors continuously from 3:00 to 8:00 

p.m. Intermediate and intensive care units, receive visitors two times a day, for time 

periods of one hour each, from 12:00 to 1:00 p.m. and from 4:00  to 5:00 p.m. Other 

rules for visiting patients depend on the age of the visitor. Visiting hours for visitors under 

10 years old are restricted to between 4:00 and 5:00 p.m. Therefore, the time period 

from 4:00 to 5:00 p.m. is the only one in which all units are receiving visitors 

simultaneously. 
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Table 3-6. Programmed and Scheduled (but irregular) activities: Visiting Hours by Healthcare Unit. 

 

For purposes of this research, the organization and schedules presented above 

are considered nominal activities, or activities that are considered in the presumed 

hospital schedule. These nominal activities are planned activities and are thus 

programmed by the organization. In contrast, actual activities are those that are 

observed in reality, which may or may not be programmed or scheduled; therefore, they 

can differ from the presumed hospital schedule. Actual activities are observed in practice 

and are also captured by the video surveillance system. Theoretically, the difference 

between nominal activities and actual activities should be the unscheduled and the 

emergent activities. The challenge was to develop a methodology to collect behavioral 

data of sufficient spatiotemporal resolution to allow for the characterization of both 

nominal and actual activities, differentiating planned and scheduled from un-scheduled 

and emergent activity patterns. The hypothesis is that scheduled and unscheduled types 

of activities will influence the occupancy characterization of spaces, determined by the 

following two factors: (1) the hospital’s fixed schedule and (2) the influence of the 

probabilities of un-scheduled and emergent activities. Accordingly, the specific research 
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questions about the characterization of particular activity types will be led by the 

accuracy and resolution of the behavioral data collected, which, in turn, depends on the 

methods used for collecting it.  

3.4 Defining the Micro-scenario 

Therefore, in attempting to address the goal of characterizing the spatiotemporal 

occupancy of a healthcare scenario, this research is designed to recognize the influence 

of scheduled as well as unscheduled activities within an area of interest. This section 

presents the methods that allow this study to investigate in detail a real micro-scenario 

subset, separating spatial influences from activity-type influences on occupancy, 

beginning with a description of the selected micro-scenario of public corridors in the 

hospitalization units during a one–week period.  

In defining the micro-scenario, the physical area of interest (corridors) as well as 

the temporal sub-sets (schedules) are considered as variables of the research that 

determine selected EBD outputs. Circulation spaces, such as corridors, are very well-

defined and advantageous as proof-of-concept micro-scenarios for several reasons. 

First, they are public spaces, which means that they are accessible by every type of 

user, not only staff and patients but visitors as well. Second, corridor spaces have a 

single and straightforward assigned function of connecting one space to another space. 

As there is no other program or function associated with a corridor space, hospital 

corridors are frequently used for overflow of equipment and sometimes, in extreme 

conditions, even patients. Third, corridor spaces could be characterized by the features 

of its adjacent spaces, as it could become a supporting space for certain activities, such 

as meal service, medicine distribution, cleaning service, and linen distribution. The 

twelve corridors of the hospitalization wings meet the above criteria and present twelve 

almost identical and thoroughly comparable micro-scenarios, allowing a researcher to 

isolate the spatial, organizational, and programming variables. The goal is to study one 

of the hypotheses presented earlier in this chapter, i.e., If all corridor layouts are almost 

identical, what is the influence of non-spatial information on the occupancy patterns? 
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These 12 micro-scenarios are covered by the hospital video-surveillance system, 

permitting the collection of data for the scene analysis necessary for this research.  

3.5 Summary 

The goal of this chapter was to present the research design in the context of a 

healthcare scenario. First, a strong program scenario was selected for the purpose of 

reducing the number of variables involved in the occupancy distribution. Second, a 

strong healthcare program was selected based on the evidence produced by the EBD 

and spatial analyses fields and the interest that healthcare has received because of its 

organizational complexity and its effects on people’s well-being. Third, because of 

challenges in developing methods for achieving a characterization of occupancy, the 

main goal of this research, the scope of this research was restricted to a proof-of-

concept scenario. 

The third section of this chapter introduced the specific proof-of-concept scenario 

chosen for this research – the hospitalization corridors of the navy hospital. The 

scenarios were described from the spatial as well as the non-spatial perspectives, 

incorporating the main spatial and organizational parameters into the scenario analyses, 

such as layout organization, , program spatial distribution, programming of activities, and 

personnel schedule; introducing the concepts of the nature of the activities as scheduled 

or unscheduled; and characterizing the corridors by their adjacent spaces. These 

concepts help to construct the framework that defines the spatiotemporal occupancy 

characterization, articulating the two theoretical aspects of this research: architectural 

significance and technological applications. The next chapter presents a set of methods 

for obtaining the spatial and temporal occupancy data required to validate the 

framework. 
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CHAPTER 4 

4. SCENE ANALYSIS COLLECTING SPATIOTEMPORAL 

OCCUPANCY DATA FROM SURVEILLANCE VIDEOS 

Overview  

This chapter presents the scene analysis methodology adapted and developed 

as part of this research to capture people’s occupancy data from video surveillance 

cameras and store it for further analysis. These methods include acquiring and 

processing the surveillance videos to obtain spatial and temporal occupancy information 

automatically. After a brief review of scene analysis in the first section of this chapter, the 

second section, Video Acquisition, describes the process of collecting the videos from 

the existing surveillance system at the hospital, including the details of exporting and 

storing the resulting high quantity of data. The third section, Video Processing, describe 

two developments. First, it explains MATLAB’s Computer Vision System’s feature 

location algorithms utilized and adapted for recognizing and automatically extracting the 

position of people in each video frame. And second, it introduces the post-process of 

converting people’s position-in-frame data to people’s position-in-corridor data, i.e., the 

spatial and temporal coordinates of people’s occupancy. The accuracy of these methods 

and the precision of the spatial positioning data obtained will be presented in Chapter 5, 

which is dedicated to building the regression model of occupancy detection to explain 

the parameters that determine its accuracy. 
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4.1. Scene Analysis 

Scene analysis was first introduced in Chapter 2 as the selected method for 

automatic indoor positioning because several of its technical and social characteristics fit 

with the purpose of this research. Scene analysis refers to the set of methods developed 

for analyzing a scenario captured on video with the final purpose of recognizing features 

or objects by identifying structures and features of objects in a real environment and 

generating mathematical or symbolic information to ‘understand’ the results (Nalwa, 

Klette, 2014; Morris, 2004; Shapiro and Stockman, 2001; Jähne and Horst Haußecker, 

2000). Scene analysis methodology consists of three stages: video acquisition, video 

processing, and video analysis (Figure 4-1). The first two stages are presented in detail 

in this chapter, while video analysis is presented in the next chapters. 

 

 

Figure 4-1. Scene analysis consists of three stages: video acquisition, video processing, and video analysis. 
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Figure 4-2. Detailed Activity Diagram of the Scene Analysis, from the Surveillance Video Input to the 

Spatiotemporal Model output 
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4.2. Video Acquisition 

This section describes the existing hospital surveillance system, the process of 

collecting the surveillance videos obtained from the system, and the details of accessing 

and exporting such data, including the protocols for controlling privacy. The selection of 

the video surveillance files to be analyzed for this research must also consider the areas 

of interest and the objects of interest, as well as variables such as the process of 

selection and storage of the video surveillance datasets and the appropriate exporting 

format for video processing. 

 

Figure 4-3. Video Acquisition subset of the Activity Diagram, including the Surveillance Video and Layout 
inputs. 

 

Hospital’s Surveillance System 

As discussed in Chapter 2, one of the objectives of this research is to rely on a 

passive, as well as non-pervasive, technology in order to maintain social acceptance 

and low pervasiveness due to familiarity of users with the 5-years surveillance system, 

and therefore collect data as close to reality as possible by capturing every single 

participant who transits through the areas of interest. Consequently, this study uses the 

existing hospital surveillance videos as the source for evidence collection. For this 

research, the hospital granted access to only one of its servers, which stored video 

surveillance from twelve cameras that ran twenty-four hours a day for one week during 
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the winter season, a high demand season for healthcare systems. These 12 cameras 

correspond to the ones located in the public corridors of the Hospitalization Building.  

The surveillance system utilized by the hospital relies on Milestone XProtect, an open 

platform IP video management software (VMS). Milestone systems offer a range of 

software and hardware for easy-to-manage surveillance systems. The hospital’s entire 

surveillance system consists of forty-one cameras, which are administrated by two 

Milestone systems, XProtect Essential and XProtect Professional 

(www.milestonesys.com).The first system supports up to 26 connected cameras per 

recording server, while the second one supports up to 64. Each system requires two 

independent servers (A and B) with one and two terabytes (TB) to store one and two 

weeks of data, respectively. Each database consists of 24-hour video surveillance 

(1.73GB each in average), stored as a PQZ database file and a set of .PIC images, 

starting at 12:00:00 and ending at 11:59:59. Each video database file is stored in a 

folder, created specifically for that day, with one subfolder for each camera. The folders 

are replaced by the end of their recording period (one or two weeks depending on the 

system) and the previous file is overwritten. For example, if the system records one 

week of video surveillance, the previous six days of complete surveillance video will be 

stored, along with the current day’s videos. At noon of on that day, Monday for example, 

the prior week’s Monday folder will be overwritten, and the same overwriting process 

occurs each day of the week. Beside the cameras and the servers, the surveillance 

system also includes the presence of one or more observers, who monitor the total 

number of cameras in real-time in a monitoring room located in a different building. 

When the observers visually detect a security “event,” they copy the content of that 

folder onto another server. For this research, the hospital decided to grant access to 

footage that does not contain such events. Additionally, the hospital granted consent to 

store the videos on the condition that all institutional review board (IRB) regulations were 

met and that ethical, safety, confidentiality, and privacy provisions were guaranteed by 

secure and confidential handling of the videos. Therefore, the videos were recorded on 

an external hard drive and access was granted only to the researchers participating in 
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this research, by way of password authentication and other restrictions. IRB regulations 

also require the deletion of original videos once the research is completed (see Annex 

A). 

Selecting and Acquiring Video Datasets 

For this research, the video acquisition consisted of one week of stored videos, 

from a Monday to a Sunday, during midwinter, the healthcare high traffic season. The 

surveillance footage was first stored on server A, in twelve files per day (one per 

corridor), which correspond to the collection of twenty-four hours of video files per 

camera. In total, this research had access to 84 video database files. The size of each 

video database depends on the video resolution and the amount of movement captured 

when motion-detection sensors actuate the recording. The list of the cameras and the 

correspondent hospital wings are presented in Table 4-1, and a correspondent 

visualization of them is presented in figure 4-4. 

Table 4-2. Navy Hospital’s Organizational Units by Floor 

Floor North Wing Unit Floor South Wing Unit 
2N Maternity 2S Trauma 
3N Pediatric 3S ICU  
4N General  4S General 
5N Private / Ambulatory 5S Oncology 
6N General 6S General 
7N Private 7S Private 
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Figure 4-4. Collection of surveillance Cameras Views, from second floor (first row) to seventh floor (last row); 
North wings to the left and south wings to the right. 
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In order to store this amount of data, an external drive of 2TB was required. The 

Video Acquisition process took approximately 63 hours in total, using a USB 3.0 external 

hard drive. The transfer took eighty minutes per camera file, per day of recording, 

requiring approximately nine hours to transfer data from twelve cameras per day of 

video-recording. Since the entire week could not be recorded at once due to the folder 

overwriting function discussed in the previous section, two transfer sessions were 

scheduled, one on Thursday, to record data from Monday at 00:00:00 to Wednesday at 

23:59:59 and another on Monday to record data from Thursday at 00:00:00 to Sunday at 

23:59:59. These transfer sessions took about 27 and 36 hours, respectively. This 

strategy allowed time for reviewing the videos to determine if the files were corrupted 

before the folder was overwritten. Some corrupted files were found in the first two 

attempts at data collection, so the data in this research was acquired in the third attempt. 

Exporting the selected evidence 

XProtect Smart Client is an easy–to-use application that allows videos to be 

reviewed, selected, and exported from the native database and manages any Milestone 

surveillance system. Using XProtect Smart Client to export the videos presented many 

advantages as well as a few challenges. First, Smart Client provides an interface to 

visually review up to four videos simultaneously, increasing their speed up to 16x (Figure 

4-5). Second, the application provides a calendar and a time stamp, which allow the 

selection of the date and the exact start and end times of the video to be exported 

(Figure 4-6). Third, the export time depends on several factors, such as the length of the 

video, the version of the system used, the video format, and the storage location. During 

the first tests, because this system was installed in the hospital a decade ago, the 

default player took about one hour to export one hour of video. Afterwards, the Smart 

Client application was updated and installed separately from the rest of the system on a 

different computer. The decision to use a separate computer reduced the export time to 

15 minutes. As more fully discussed below, the .MKV format of the video was selected 

for exporting based on its export time and file size. 
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Figure 4-5. XProtect Smart Client application screenshot, showing the original surveillance database import 
process. Camera name is highlighted in the left column. 

 

 

Figure 4-6. Screenshot of the XProtect Smart Client application showing the easy to use interface for 
exporting evidence by determining the exact date, time, and duration of the videos. 
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Video Format 

The Smart Client application supports JEPG, AVI, and MKV export formats for 

images and videos, respectively. JPEG is an acronym for the Joint Photographic Experts 

Group, which created the standard. AVI stands for Audio Video Interleaved, a 

multimedia container format introduced by Microsoft in 1992, and .MKV stands for 

Matroska Multimedia Container, an “open standard free container format” that can hold 

several videos, audios or pictures in one file.  To give a sense of the comparable file 

sizes, a one-hour video exported in JPEG pictures is about 2.5 GB; a one-hour AVI 

video-only file is approximately 5 GB depending on the amount of frames per second 

(fps) exported, the movements recorded, and light changes; and a one-hour .MKV video-

only file, with the same ambient conditions, is almost 1 GB, about one fifth the AVI file.  

All videos were exported as .MKV files, in their original size, due to the file sizes and the 

characteristics of the data necessary for processing the exported videos. Afterwards, for 

the Video Processing stage, the videos were imported into MATLAB (matlab.com) as 

inputs for the automatic occupancy detector algorithm, providing the opportunity to 

modify their sizes for normalization purposes. 

4.3. Video Processing 

The final goal of video processing is to obtain people’s positions in space and 

time (x, y, time). Video processing is composed of the following three stages: the 

“automatic occupancy detector” algorithm, the “video observation detection” method, and 

a post-stage of location data processing. The three stages include adapting and 

developing algorithms for obtaining people’s occupancy with high spatial and temporal 

resolution from the video files. To facilitate a complete understanding of video 

processing, this section begins with a description of computer vision and the functions 

that concern this research.  
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Figure 4-7. Activity Diagram of Video Processing including Automatic Occupancy Detector Algorithm and 
Scene Accuracy. 

 
 

Computer Vision in MATLAB 

Scene analysis methods rely on computer vision, which refers to the “understanding” 

of digital images or videos. Computer vision works by computationally recognizing 

meaningful patterns of categories of images and by utilizing certain statistical methods 

(such as classifiers) to “understand” and “predict” those patterns. The final purpose is to 

recognize a feature or an object by classifying it as one of a category. While computer 

vision relies on the fundamentals of image processing, it also has algorithms to detect, 

identify, classify, recognize, and track objects or features through a sequence of images 

(www.mathworks.com/videos). 

The field of computer vision has been attractive to researchers due to its fundamental 

goal of understanding and interpreting human perception by learning and building 

models about the real world; however, computer vision’s biggest challenge has been to 

recognize three-dimensional objects from a set of two-dimensional images. While it is 

currently a very active research area, the origins of computer vision dates from the 

1960s, and some classical areas of its application include tracking, robotics for 
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identification and description of objects, aerial images for improving images and 

espionage, astronomy for chemical composition, medicine for diagnoses and procedures 

planning, chemistry for molecular composition, and atomic physics for finding new 

particles and identification of tracks (Ballard and Brown, 1982). Recently, computer 

vision has been flourishing in several areas due to the number and variety of problems 

that are about to be potentially solved by its technological advances (Forsyth and Ponce, 

2003).  Architecture research, however, is a relatively new area for computer vision 

applications. Only a few studies have used some of its methods to relate human 

movements with space (Tomé and Heitor, 2012, 2013 and 2015 a and b; Romero et al, 

2008). These studies were exhaustively reviewed in Chapter 2, where the social and 

technical reasons for using the scene analysis approach were described.  

 

Computer vision algorithms are not bound to a specific programming language. 

Open Source Computer Vision (Open CV) provides a library of programming function 

that is mainly aimed for real-time Computer Vision. It has C, C++, Java and Python 

interfaces and supports Windows, Linus, Mac OS, iOS and Android (http://opencv.org/). 

However, due to the focus of this thesis is on the overall methodology and not on the 

detection algorithms improvement, MATLAB presents a robust platform for the required 

functions for several reasons. First, the language allows object-oriented programing 

design and does not require programming low-level tasks like “declaring variables, 

specifying data types, and allocating memory” (www.mathworks.com). Second, MATLAB 

provides a complete range of computation methods for iterative exploration, design, 

problem solving and analysis, built-in graphics for visualizations and custom data plots, 

and interaction, allowing multidisciplinary collaboration. But more significantly, MATLAB 

also offers specific packages for specific tasks. Among these are the computer vision 

system toolboxes, which supply pre-built algorithms, functions, and applications for 

tracking and detection of features and objects for image and video processing. The 

Image Processing Toolbox “provides a comprehensive set of reference-standard 
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algorithms, functions, and applications for image processing, analysis, visualization, and 

algorithm development.” (www.mathworks.com/products/image). In comparison, the 

Computer Vision System Toolbox (www.mathworks.com/products/computer-vision) 

provides algorithms, functions, and applications for the design and simulation of 

computer vision and video processing systems. 

Image processing has some key features such as image analysis including 

segmentation, morphology, statistics, and measurements; image enhancement , filtering 

and de-blurring; image geometric transformations and intensity-based image registration 

methods; image transformations; Large image workflows, including block processing, 

tiling, and multiresolution display; Visualization apps, including Image and Video Viewer; 

and Multicore- and GPU- enable functions, and C-code generation support 

(www.mathworks.com/products/image/features).  The Computer Vision System’s 

capabilities include object detection and tracking; training of object detection, object 

recognition, and image retrieval analysis; camera calibration for single and stereo 

cameras; 3D point cloud processing and video processing. It also includes video display, 

and graphics, video file I/O, feature detection, extraction and matching, and C-code 

support generation (www.mathworks.com/products/computer-vision/features). This 

research will focus on the feature-detection and tracking capabilities, including the Viola-

Jones, Kanade-Lucas-Tomasi (KLT), and Kalman filtering methods, as well as training of 

object detection, object recognition, and image retrieval systems, including cascade 

object detection and bag-of-features methods. 

4.4. Object Detection and Tracking 

Detection and tracking have captured the attention of computer vision and image 

processing researchers for decades. In computer vision terms, detection refers to the 

recognition of an object in an image by distinguishing its features through recognition of 

an abrupt change in pixel information, which corresponds enough to a significant 

incident in the scene to recognize a boundary or an edge. Detection relies on “matching, 

learning, or pattern recognition algorithms using featured-based techniques, including 
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edges, gradients, Histogram of Oriented Gradients (HOG), Haar wavelets, and linear 

binary patterns.” (Haar wavelets, and linear binary patterns). Tracking focuses on the 

detection of moving objects in a video from a static camera. It has several applications 

such as activity recognition, traffic monitoring, and automatic safety (Yilmaz, Javed and 

Shah, 2006). It uses a subtraction background algorithm based on Gaussian mixture 

models, eliminating background noise. Later, it applies blob analysis to detect groups of 

connected pixels (Sookman, 2006). Object detection and tracking enable a researcher to 

do more than what was traditionally achievable with image processing. While image 

processing has supported object detection for a long time, it uses two primary 

techniques, blob analysis and template matching. Blob analysis works well when an 

object can be found by segmentation and followed by measurement of the segments’ 

properties. However, it does not work well in more complicated images where 

segmentations are difficult or there are different types of objects. Template matching 

searches for a match using a normalized cross-correlation that measures similarities of 

series. Commonly used with machine vision, it does not present a robust method for 

detecting rotation, occlusion, or changes in object size. 

Feature-based and Learning Algorithms 

The feature-based object detection model uses a reference object, detects its 

features, and matches them on the scene, extracting the object. Feature matching is 

similar to, but more robust than, template matching, since it is able to overcome 

occlusion, scale and rotation issues. The algorithm reduces an object’s dimensions by 

representing only its important features, estimating their geometric transformation (for 

which it needs seven points). To locate the transformed referenced object, Random 

Sample Consensus (RANSAC), an iterative method used to “estimate parameters of a 

mathematical model from a set of observed data.” (Martin A. Fischler & Robert C. Bolles, 

1981), is applied. RANSAC traverses the features found and creates a geometric model 

to locate the specific region of interest in the image, discarding outliers. Features and 

descriptors are fundamentals used by many computer vision algorithms, such as image 
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registration, object detection, classification, tracking, and motion estimation. Object 

detection recognizes a group of features by using both matching and RANSAC; 

however, it is limited since it does not refer to a general categorical object detection. 

 

Categorical Object Detection 

To detect more general types of objects, such as faces in general, regional 

descriptions plus machine learning or classifiers, are integrated together. Learning or 

supervised algorithms, as the names state, “learn” from observations by identifying 

patterns. The more observations the better the performance. “Specifically, a supervised 

learning algorithm takes a known set of input data and known responses to the data 

(output), and trains a model to generate reasonable predictions for the response to new 

data.” (http://www.mathworks.com/machine-learning). 

Category detection is commonly used for content-based image retrieval, people 

detection, face recognition, texture classification, and video stabilization. In this 

research, the occupancy detector is based on MATLAB’s vision.PeopleDetector System 

object (“PeopleDetector”), a learning algorithm that was adapted and tested for detecting 

standing people in space. In this research scenario, this algorithm demonstrated a better 

detection rate when some of its properties were adapted. The Computer Vision System 

Toolbox comes with several pre-trained classifiers that use the Viola-Jones algorithm 

(Viola and Jones, 2001, 2004 and 2005) for detecting faces, upper bodies, and standing 

persons, among other objects. “However, these classifiers are not always sufficient for a 

particular application,” and they must be trained 

(www.mathworks.com/help/vision/ug/train-a-cascade-object-detector). The cascade 

object detector is the general learning algorithm, which can be trained using the 

“trainCascadeObjectDetector”, which allows for training a custom classifier. An example 

of a classifier is “People,” which is stored in a classification model. (Please refer to 

Annex B for Training sessions). 
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PeopleDetector includes a classification model (“UprightPeople_128x64” or 

“UprightPeople_96x48”), which is composed of the images used to train the models. The 

numbers refer to the size of the bounding rectangle that inscribes the person, including 

the background pixels around one person, and, therefore, the size of the detected 

person is always smaller than the training size (i.e 128 x 64). A classification threshold is 

a tunable positive value, which typically ranges from 0 to 4, that “controls whether a 

subregion gets classified as a person. The higher the threshold value, the more stringent 

the requirements are for the classification.” When there are many false detections, the 

value should be increased. 

(http://www.mathworks.com/help/vision/ref/vision.peopledetector-class.html).  

“MinSize” and “MaxSize” are also properties of PeopleDetector. Together they 

comprise a two-element [width, height] vector, which refers to the smallest and largest 

regions containing a person. Where they are not specified, the detector sets the 

minimum as the region used to train the classification model and the maximum as the 

entire image. MinSize and MaxSize values are tuned to reduce the computation time. 

Additionally, the “ScaleFactor” property consists of a numeric value greater than 1.0001, 

which “incrementally scales the detection resolution between MinSize and MaxSize. . . .  

Decreasing the scale factor can increase the detection accuracy. However, doing so 

increases the computation time.” With the exception of ScaleFactor, all values are in 

pixels. “WindowStride” is another two-element [x, y] vector that specifies the number of 

pixels the detection window will slide across the image in x and y directions. “Decreasing 

the window stride can increase the detection accuracy. However, doing so increases 

computation time. Increasing the window stride beyond [8 8] can lead to a greater 

number of missed detections.” And MergeDetections and SelectStrongestBbox controls 

duplication of similar detections (http://www.mathworks.com). 
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Classification Models  

“ClassificationModel” is a trained cascade classification model specified as a 

Comma Separated Values (CSV) pair consisting of ClassificationModel and a string, as 

follows: 

detector = vision.CascadeObjectDetector(Name,Value) 
 

 
The “vision.CascadeObjectDetector” (“CascadeObjectDetector”) detects object 

categories with an aspect ratio that does not vary significantly, such as stop signs, cars 

from the side, people’s facial features (e.g., noses, eyes, or mouths), or upper bodies. 

The detector creates a system object and configures it to use the custom classification 

model specified with the XML file (human and machine readable) input. The 

CascadeObjectDetector detects objects by traversing the image with a detection window 

to determine whether it contains the object of interest. Because the aspect ratio of the 

target should not change much, training a single detector sometimes does not work with 

3D rotations. The detection classification model can be trained with a determined object 

of interest using the trainCascadeObjectDetector model, explained later in this chapter. 

 

Figure 4-7.  Vision.CascadeObjectDetector process, where the detection windows slide through the image 
(represented by cells), in a Window Stride range determined by the number of pixels. 

 
The object of interest to be detected and tracked is defined by the specific 

research goal. In this research, the object of interest is people occupancy, which is the 



 

75	

 

physical presence of a person; therefore, the occupancy detector is essentially based on 

PeopleDetector. 

4.5. Automatic Occupancy Detector 

Collecting great amount of high resolution occupancy information is one this 

thesis objectives, therefore the automatic “Occupancy Detector” algorithm was 

developed based on MATLAB’s Computer Vision package described above, specifically, 

based on People Detector. Occupancy Detector inputs the hospital’s surveillance 

footage, and outputs spatial and temporal information of people’s occupancy in the 

corridor space (x,y,time) in a Comma Separated Value (CSV) format (see figure 4-8). 

The following section describes in detail the Occupancy Detector algorithm and its 

adaptations for this specific scenario, from the input to the outputs, in a sequential order 

following the activity diagram (figure 4-8). 

 

Figure 4-8. Activity Diagram of Occupancy Detector Algorithm. The two main inputs are the Exported Video 
and the Spatial Layout. The diagram also indicates the core “Object Detector Algorithm” in yellow; and the 3 

key outcomes: Video File detection, Positions in pixel coordinates, and Spatial Coordinates in dark cyan. 
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Video input 

As mentioned above, the videos were exported in .MKV video format, in their 

original size, and stored in one folder. Each video corresponds to one hour of video in 

one level and wing of the hospital. During the video processing stage (figure 4-7), the 

videos were imported in sequence into an automatic occupancy detector, using 

MATLAB’s “VideoReader” function. The automatic occupancy detector algorithm 

produces a set of spatial occupancy data that corresponds to a one-hour video and that 

is stored in independent CSV files. The CSV output files are named by the hospital’s 

level and wing and by the hour of the day that corresponds to the video, for example 

“2N_1800”, for the second level North wing, from 18:00:00 to 18:59:59. 

People Detector  

As its name indicates, PeopleDetector is a system object that detects upright people 

using “HOG features and a trained support vector machine (SVM) classifier” 

(http://www.mathworks.com/help/vision/ref/vision.peopledetector-class.html). People 

detection is based on “object detection,” which “identifies instances of category of 

objects, using feature-based and learning models, such as image segmentation using 

background subtraction and blob analysis. Object detection is commonly used for image 

retrieval, face detection, tracking, security, surveillance, and automated vehicle parking 

systems.” (http://www.mathworks.com/discovery/object-detection.html). For the human 

body figure, the distribution of features is based on the appearance of a human body, 

creating a model. This model can be built for the entire body or just parts of it, such as 

upper bodies or faces, using blob-based models. The tracking of articulated body parts 

is possible, but it requires more complex, efficient, and specialized tracking algorithms 

(Han, 2016).  For purposes of this research, peopleDetector = 

vision.PeopleDetector(MODEL).  

PeopleDetector distinguishes people within a rectangular search region, or ROI, which 

must be specified as a four-element vector [x, y, width, height]. The properties of 

PeopleDetector are properties of a feature-based as well as a learning algorithm. 
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Classification Model and Classification Threshold 

In order to calibrate the automatic people detector algorithm toward its most 

accurate detection capacity, different classification models and classification thresholds 

were tested for different corridor scenarios, and the best combination was selected after 

a few tests. First, both pre-defined classification models that comes with the Computer 

Vision System package, UprightPeople_128x64 and UprightPeople_96x48, were tested.  

The test consisted of a one-minute video, changing the classification threshold from 

value 1 to value 5, using both classification models. The recognition rate based on false 

positives (Type I error, when something else is recognized as a person) and false 

negatives (Type II error, when the presence of a person is not recognized) was as 

follows: 

Table 4-1. Vision.CascadeObjectDetector process, where the detection windows slide through the image 
(represented by cells), in a Window Stride range determined by the number of pixels. 

Classification Threshold 'UprightPeople_128x64' 'UprightPeople_96x48' 

1 1,104 
 

23,787 
 

2 217 3,326 

3 35 209 

4 0  7 

5 0 0 

 

A test involving 1170 frames was run to determine the optimum classification 

threshold and classification threshold for this scenario conditions. While the smaller 

MinSize of the images (96x48 pixels) together with a lower classification threshold (1) 

produces more recognitions, it also produces more false negatives. The 

'UprightPeople_128x64 and classification threshold with a value of 1 produces more 

false positives, recognizing doors as people. The same model with a classification 

threshold with a value of 3 does not accurately recognize people with matching-

background color cloth, such as nurses. Also the same model with a threshold value of 4 

and 5 does not recognize people at all. The most accurate results were obtained utilizing 
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the default classification model UprightPeople_128x64 and the classification threshold 

with a value of 2. 

Occupancy Coordinates  

PeopleDetector performs multiple scale object detection on each frame (RGB 

image), returning an M-by-4 [x, y, width, height] matrix, defining M as the number of 

bounding boxes (bbox), each of which circumscribe one detected person. 

PeopleDetector also returns the confidence value for the detections. The bbox 

represents people detected within an ROI in pixel units. For occupancy, the detection 

information is extracted from the bbox as occupancy coordinates [i, j], which correspond 

to the position of people’s feet in pixels (see figure 4.10), calculated as 

[ i,j ] = [ bbox (x) + bbox width/2 , bbox (y) + bbox height ], 

where the bbox position is [x, y] in pixel coordinates and the bbox’s dimensions are 

[width, height] in pixels. The occupancy coordinates should also include the timeframe, 

therefore its occupancy output is [i, j, frame]. The information is written into a CSV file, 

where the first two columns correspond to i and j information, and the third column 

corresponds to the frame number. If more than one person is detected in the same 

frame, the CSV file writes a new row with the information, repeating the frame number. 

This way, the CSV file is sequentially written row by row, taking in information from 

upper-left to bottom-right corner.  

 

a   b   c   d 

Figure 4-9. a) Automatic recognition algorithm; b) Bounding box position (x,y, width, height); c) Calculation of 
horizontal occupancy (i = bbox (x) + bbox width/2); d) Calculation of vertical occupancy ( j = bbox (y) + bbox 

height); e) Area of interest represented by magenta area. 
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Occupancy Spatial Coordinates 

To transform occupancy coordinates [i, j, frame] into occupancy spatial 

coordinates [x, y, time], it is necessary to determine the physical area of interest – the 

corridor – by determining the four corners of a polygon that contains it in the image (see 

Figure 4-11, 4-13). 

 

Figure 4-10. Activity diagram of the transformation of pixel coordinate position (i,j,frame) to spatial 
coordinate positions (x,y,time). 

The transformation of the pixel coordinates to real spatial coordinates is done by using a 

projective transformation. Projective transformation supports nonisotropic scaling in 

addition to translation and tilting. The transformation matrix is calculated using the 

location of the four corners of the polygon to be transformed as first input, as well as the 

four points of the expected transformed polygon. The real physical dimensions of the 

corridor are seven feet in width by 120 feet in length. The physical area of interest will be 

represented from now forward, as a bi-dimensional array of 7 by 12 cells, of 1 by 1 foot 

each, as shown in Figure 4-12).  

 

 

Figure 4-11. 2D cells array representing a corridor of the hospital. Gray areas next to it represents openings 
such as door (light gray) and open areas (darker gray). The cyan mark to the right represents the access to 

the corridor from the core of the building.  
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The transformation script uses the “vision.GeometricTransformEstimator System 

object” (“GeometricTransformEstimator”),  which computes the Transformation Matrix P 

from two sets of points, the projected area of interest and the real area of interest. The 

first set of points is stored as a set of coordinates in pixels [x1 y1; x2 y2; ...; xN yN], 

where N is the number of points. The second set of points is bounded by the corners of 

the real area of interest [i1 j1, i2 j2, i3 j3, i4 j4] in cell units, which in turn correspond to 

square feet. The ‘GeometricTransformEstimator calculates’ “projective, affine, or non-

reflective similarity transformation using robust statistical methods, such as RANSAC 

and Least Median of Squares.” 

(www.mathworks.com/help/vision/ref/vision.geometrictransformestimator-class), 

expressed as TFORM = step (H,MATCHED_POINTS1, MATCHED_POINTS2).   

 
 

 

a    b    c  

Figure 4-12. a) Area of interest represented by magenta area; b) Cells array displayed in perspective in the 
image; c) Representation of occupied cells in perspective; d) Representation of occupied cells transformed 

to real spatial. 



 

81	

 

  

Figure 4-13. Transformation matrix applied to an image, and then modified to be applied to a bi-dimensional 
array transformation. 

 
When the transform property is set to projective transformation, the output is a 3-by-3 

matrix (geometrictransformestimator-class).  The original occupancy data were first 

exported to a CSV file in pixel coordinates. The transformation matrix P was applied to 

the original CSV file to obtain a spatially transformed CSV dataset, corresponding to the 

corridor layout, in foot coordinates.  Spatial coordinate writing in a CSV file is produced 

during the transformation, writing one row of information at a time. The “frame-to-time” 

transformation is a linear proportion between the frame number and the number of 

frames per second of the video (24.97). Both spatial and temporal information is 

clustered by ranges. Pixels coordinate to cells in feet and timeframes to time stamps in 

seconds. Since the pixels in the upper part of the picture represent a greater physical 

distance than the ones in the lower part of the picture, the occupancy accuracy is not 

homogenous along the corridor. The hypothesis is that the further from the camera, two 

types of error, recognition accuracy and position precision, increase.  
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Occupancy Analyses 

In order to obtain accurate results, the research should study the influence of the 

scenario conditions, such as background or activity conditions, on the occupancy 

detector. These conditions are usually very specific to each scenario and their effect on 

the accuracy of the algorithm could be monitored, in order to find the precise variation for 

each scenario. With that goal in mind, “Video Observation Detection” was developed as 

a user interface application in MATLAB, to manually map the exact position of each 

person’s feet on the scene, creating a “truthful” or 100% level of confidence dataset. This 

approach involves a frame-by-frame video analysis. 

After the 100% level of confidence dataset was obtained, it was compared to the 

automatically computed dataset, in order to measure the level of the algorithm’s 

accuracy, understand the output’s errors, and measure any differences. These 

differences, called accuracy and precision errors, are extensively explained in the next 

chapter. A later application of the spatial and temporal occupancy results will be 

presented in detail in Chapter 6, with the video analysis process, which offers an 

interpretation of the occupancy data automatically obtained from the methods presented 

in this chapter. The assumption is to find patterns of occupancy in space as well as in 

time, under some specific perspectives and goals, depending on the scenario. In this 

specific case, this scenario corresponds to a hospitalization building. 

4.6. Practical Issues and Challenges / Discussion 

This chapter presents a series of methods to capture occupancy, which 

presented a large number of technical and practical challenges, from data volume to 

accuracy of the results. This section presents the challenges by category. First, the 

volume of the data, which includes the number of cameras, the files storage and transfer 

capacity, the exporting process and computational requirements, the database sizes and 

manageable exported files. 
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As discussed earlier in this chapter, the servers stored up to 2-weeks of video 

surveillance due to the sizes of the server and the video databases, where each file 

correspond to 1-day video surveillance in one corridor. Therefore, the transfer to an 

external hard drive was challenging and had to be scheduled in 2 sessions, in two 

different days, since the transfer of files took longer than the speed of files replacement, 

making 1-session transfer impossible. 1-week videos used almost 1TB of storage, 

therefore the files were kept in an external hard drive. This decision made the export 

sessions longer, since the data was constantly transferred through a USB 3 cable. 

Sometimes, the exporting was corrupted, and it was necessary to re-do it. Another factor 

that impacted the exporting time was the XProtect surveillance application used at the 

hospital, which was not updated. The version used for this research was updated to 

make the exporting more time efficient. Due to the reasons explained above, plus the 

difficulty to manage large video files (i.e.12 hours), the length of the videos exported was 

restricted to one hour. Adding to those reasons the theoretical reasons of analyzing 

videos by scheduled activities, which are usually by hour, each 1-hour videos were 

analyzed independently. 

Due to the aforementioned reasons, the number of video files exported increased 

to 288: 24 1-hour video files by corridor. The sizes and qualities of the videos vary 

depending on the camera calibrations and quality, and video resolution (1280x720, 

1280x1024, and 768x576). Therefore, the algorithm had a resize calibration, in order to 

be able to compare the data outputs. The MKV video export format was decided 

because it allowed the smaller file version maintain the data quality. Naming the 

exported files became another issue at two stages. First, the video exported contained 

the corridor and initial hour of exporting, for example 6N-18000 correspond to level sixth, 

corridor north, recording from 18:00 hours to 19:00 hours, stored in a different folder by 

day. Afterwards, the occupancy data exported shared the initial name, and the frames 

started counting from 0 are stored in a 2D array. This becomes an issue again when 

merging 1-day of video in the Video Analysis stage, and it will be explained in the last 

chapter. 
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Furthermore, a number of details related to the algorithms’ variables emerge. 

First, the differences in the surveillance camera lenses and video sizes, which depend 

on the camera type and quality since some cameras are as old as the installation of the 

surveillance system, and other (2) were replaced last year. This issue cannot be 

resolved in general for all the cameras, but for each camera in particular, where each 

field of view varies enough to modify the Area of Interest in pixels’ coordinates, 

disrupting the outcomes. Therefore, for this case an input variable was added, storing 

the different Areas of Interests from camera to camera, as a set of coordinates points. 

The cameras quality also could impact the accuracy and precision of the data 

processed, therefore the accuracy tests should include different video sizes, defining the 

sub-physical-areas that allow higher level of confidence of the occupancy data. 

A conclusion is that any surveillance video is able to produce occupancy data 

with the right levels of confidence, when run against the right classification model. 

Theoretically, the possibility of training the classification model allows the possibility of 

more accurate recognition rate, and also opens the possibility of train specific dataset to 

interchange the object of study, from generic person to a specific role person –nurses, 

staff, patients or visitors–, or to a specific object –such stretchers, carts, or wheelchairs, 

among others. In this specific case the training did not produced a better people 

detection classification model for general persons, as the number of images and the 

number of stages were much smaller and lower than the default dataset. 

In this specific research, one could argue that ideal would have been to have had 

access to a higher number of cameras per area of interest. However, one of the 

arguments in Chapter 2 is about using existing pre-installed systems due to the 

pervasiveness of outside systems. Both constraints –the number of existing cameras 

and not adding external supplementary cameras– provoked to propose a way to 

“correct” the data accuracy under some conditions. The focus is not on having a perfect 

mapping of the current actual occupancy of this specific week, but constructing a 

statistical model that is able to simulate the probability of future results under the same 
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environmental conditions, to be able to extrapolate the occupancy models. At this stage 

of the research, the question that arises is:  

 

“What is the level of confidence on the spatiotemporal occupancy datasets 

obtained using the automatic methods?” 

 

By the time of this publication, Computer Vision will most probably have 

enhanced many of the recognition algorithms utilized in this research. However, the 

focus of this thesis is not the perfection of the computer vision algorithms themselves, 

but developing a consistent methodology for demonstrating the importance of such 

approach and application in Architecture research, proposing to expand the research 

about space use and occupancy.  

 

4.7. Summary 

This chapter has presented the first two stages of the scene analysis method 

developed to automatically process a set of videos to capture the occupancy data: video 

acquisition and video processing. First, video acquisition describes the process of 

collecting the dataset of interest from the hospital’s existing video surveillance system. 

This section explained how the videos were collected and stored, including all the 

technical and practical challenges. Second, the video processing section includes the 

two methods implemented in MATLAB for collecting occupancy data, automatic 

detection and observation and mapping.  

The automatic occupancy detector uses the Computer Vision System’s feature 

location algorithms to automatically extract people’s position in the video. This section 

explained the specifics of the occupancy algorithms, including the translation of people’s 

location in the image to real spatial and temporal occupancy coordinates, including all 
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technical and practical challenges. These challenges raise questions about the accuracy 

and precision of the occupancy data obtained, which introduces the next chapter of this 

thesis. The following chapter presents the accuracy and precision tests, the statistics 

behind the video processing, and introduces some of the findings of spatiotemporal 

occupancy. Video analysis, the third stage of scene analysis method, focuses on the 

spatiotemporal specific findings, which are introduced in Chapter 6. 

  



 

87	

 

CHAPTER 5 

5. ACCURACY AND PRECISION OF AUTOMATIC 

OCCUPANCY DETECTION 

Overview 

The goal of this part of the research is to determine the accuracy and precision of 

the automatic occupancy detection method developed in this study, with the goal of 

improving the accuracy of the automatically obtained datasets. First, this chapter 

introduces an assessment of the accuracy of the scene analysis’ automatic occupancy 

methods by comparing a sample of the automatic dataset, which was obtained using the 

methods described in the previous chapter, with a 100% confidence occupancy dataset 

obtained by observing and manually mapping people’s location. Second, it presents an 

application specifically designed and developed in MATLAB that allows to observe the 

videos and manually map the location of people as well as environmental and activity 

related variables of the scene for further analyses on their impact on occupancy at both 

the data collection and occupancy outcomes levels. Third, the chapter introduces logistic 

regression, the statistical model selected to describe the accuracy and precision of the 

datasets based on the distance of the test subjects from the camera. For purposes of 

this study,”accuracy” refers to the percentage of correctly recognized people on the 

scene, while “precision” refers to the distance error between the actual position of people 

and the position automatically collected. Both errors are associated with environmental 

influential factors, algorithms, or dataset parameters that will influence the results; 

therefore, this study describes the accuracy by a multiple regression statistical model.  

The chapter concludes with a presentation of the probability surface of recognition, 

which will be utilized to improve the automatic occupancy dataset based on the location 

and scene conditions.   
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5.1 Accuracy and Precision 

 
Over the past decades, the accuracy comparison and validation of the algorithms 

developed in the area of machine learning research have become increasingly 

important.  The focus of these methods has been on the statistical comparison of two or 

more learning algorithms on a single dataset and more recently on multiple datasets. 

Demsar (2006) studied all the statistical analyses, published in the proceedings of the 

International Conference on Machine Learning from 1999 to 2003, to rank the 

classification accuracy of two or more algorithms against a single dataset or multiple 

datasets. Since “there is no established procedure for comparing classifiers over multiple 

datasets … researchers adopt different statistical and common-sense techniques to 

decide whether the differences between the algorithms are real or random.” (Desmar, 

2006). Among them, the parametric (paired t-tests and ANOVA), the non-parametric 

(Wilcoxon signed-rank and Friedman tests), and the Sign test were compared, 

concluding that from the samples, non-parametric tests were preferred, since they do not 

assume normal distribution of variance and, “as such, they can be applied to 

classification accuracies, error ratios or any other measure for evaluation of classifiers, 

including even model sizes and computation times.” (Desmar, 2006). 

This research compares the pre-built algorithms when using the default and 

trained classification models (please refer to Annex B) with the video observation-and-

mapping dataset obtained manually on a sample of the almost identical twelve corridor 

scenarios presented in the previous chapter. The method for calculating the accuracy of 

the algorithms in this research has been adapted towards a re-formulated goal: 

understanding the factors of these specific scenario conditions that would impact the 

classification accuracy. The objectives are 1) to recognize the factors that would impact 

the occupancy detection results and 2) to provide a list of parameters to be considered 

for further algorithm developments. Furthermore, the research had a second objective of 

utilizing the same datasets to obtain the characteristics of the spatiotemporal occupancy, 

such as the occupants' roles, the activity they are performing, and their body posture. 
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These factors helped to construct a statistical model to compare the spatiotemporal 

patterns of occupancy within certain periods of time.  

As described in the previous chapter, the automatic PeopleDetector algorithm 

was calibrated toward its most effective detection capacity by adjusting the specific 

variables of the script and functions, such as the “classification model” and “classification 

threshold” values, until the algorithm reached the highest detection accuracy and 

produced the desired results, minimizing errors for every scenario condition. 

Nevertheless, accuracy (Provost and Fawcett, 1997; Provost et al., 1998; Fawcet, 2006) 

and precision (Hofer, Straub, Koulechov & Dietz, 2005) must be measured to determine 

the level of confidence in the results. As noted above, accuracy refers to the percentage 

of the true values of recognition, providing a comparison between the detected and the 

observed in reality. Precision, in turn, refers to the distance between the detected person 

and his actual location, by determining the difference between location coordinates. The 

central hypothesis is that the accuracy and precision of the automatic detection 

algorithm will be higher the closer the target is to the camera and that errors would arise 

from environmental conditions or the database characteristics for object recognition 

when not modifying the parameters of the algorithms. To test the hypothesis, it was 

necessary to measure the detection accuracy by comparing the automatic occupancy 

dataset to an absolute or known occupancy. The absolute occupancy is defined as 

100% accurate occupancy information and is considered the baseline for data 

occupancy. This baseline is obtained by observing the videos and manually mapping 

human location as shown there collecting pixel coordinates in the process. 
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Absolute occupancy ~100%  <>   Automatic detection occupancy x% 

Figure 5-1. Comparison between Video Observation and Mapping outputs and Automatic Detection outputs. 

5.2 Accuracy Process  

The main goal of the “accuracy test” was to measure the accuracy of the data 

produced by the automatic algorithms developed in this study to capture spatiotemporal 

occupancy with high spatial and temporal resolution. The intent was to use these 

measurements to understand the spatial distribution of the algorithms’ accuracy. The 

first objective was to obtain two comparable datasets, the “automatic occupancy” and 

the “manual occupancy” datasets, in both pixels (i,j,f) and spatial (x,y,t) coordinates. The 

second objective was to specify the aspects of the datasets that have an impact on the 

accuracy of the occupancy data in order to understand each aspect’s relative influence 

on both datasets and the spatial distribution. The “video observation” and “mapping 

method” approach proposed herein combined two established methods: “video 

observation” and “observation and behavioral mapping”, as presented and scrutinized in 

Chapter 2. Observation and mapping of a video allows the researcher to freeze the 

video, providing time for mapping occupancy either frame by frame or second by 

second, permitting the researcher to take as long as necessary to correctly map every 

person on the scene. Since the results can be undone and revised, the assumption is 

that this method offers 100% accuracy, and this dataset is utilized as the baseline for 

location detection in this research.  
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Figure 5-2.  Accuracy test process shown in blue, along with its two necessary inputs and three stages: 
accuracy test, accuracy statistical model, and application of the accuracy statistical model to the occupancy 

data. 

Accuracy Test 

Accuracy test involves four sub-processes: (1) obtaining the automatic 

occupancy database, using the algorithms described in the previous chapter; (2) 

selecting a sub-set of random frames from the total database from specific one-hour 

time periods defined by the type of activities performed in order to characterize the 

scenarios; (3) observing and manually mapping occupancy and the environmental and 

the occupancy factors in the “Video Mapping” application developed in MATLAB for this 

specific purpose; and (4) comparing both occupancy datasets, by frame, using 

regression models to determine the recognition accuracy and the influence of the 

environmental and occupancy factors on the results. This section begins with an 

explanation of the process for selecting a statistically representative sample of frames.  
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Figure 5-3. Activity diagram of the “Video Mapping” method for occupancy collection with 100% accuracy 
and precision. This method inputs a video and exports a Comma-Separated Values (CSV) file with spatial 

and temporal coordinates.  

 

Accuracy Statistical Model 

For both the one-minute and one-hour videos, this study selected a random sub-

set of frames for performing the manual occupancy mapping, considering the desired 

occupancy confidence level in determining the appropriate sample size for both types of 

video. The confidence level options were 90%, 95%, or 99%, with an acceptable margin 

of error that varied from 1% to 5%, in increments of 1%. Because most advanced 

detection algorithms provide around a 90% confidence level, this study chose a 95% 

level of confidence (most common value), with +/-5% as an acceptable confidence 

interval (or margin of error), resulting in a sample size of 383 frames per hour of video 

recording (see Table 5-3. Summary of Classification Matrix calculations). This level of 

confidence is comparable to some indoor location positioning system technologies such 

as UWB, Infrared, or Ubisense, which have an accuracy of 90-95% and is similar the 
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highest algorithm detection systems in scene analysis from surveillance cameras, multi-

cameras, and hybrid environments, which have an accuracy of 80%-90% (see table 2.3).  

 
ss = 

Z 2 * (p) * (1-p) 

 

c 2 
 

 

Where: 
Z = Z value or margin of error (e.g. 5 for 95% confidence level)  
p = Percentage of positive of negative values in a sample, expressed as decimal (0.5 in the worst case scenario) 
c = Confidence interval, expressed as decimal (e.g., .05 = ±5) 
 

 

Correction for finite population: 

New ss = 

                Ss 

 

1 + (ss-1 / total population) 
 

 

Table 5-1. Alternative statistical calculations of sample selection based on various population sizes for 
accuracy tests. These calculations are based on http://www.surveysystem.com/sscalc.html 
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The researcher first, selected a random sample of 383 one-minute videos for the 

automatic detection of people. Second, they added the one-minute videos together and 

randomly extracted 4608 total frames for video mapping, resulting in the collection of 

more than 7000 people location points. This process allowed the researchers to 

calculate detection accuracy by matching both datasets by frame number. For the first 

model, the data obtained was a sample of any environmental and activity types, resulting 

in aggregated results that described the overall healthcare micro scenario. For the 

second model, and to assure the representativeness of the activity types, the original 

surveillance videos were subdivided into one-hour videos, synchronized with the 

activities scheduled by the organization (presented in Chapter 2). Then, a sample of 383 

frames for each one-hour video were randomly selected. Both samples represent a 

confidence detection level of 95% with a 5% margin of error.  

For the first part of the study, 383 frames were randomly extracted from every 

one-minute video representing the global healthcare scenario conditions. This portion of 

the study focused on finding environmental or algorithmic causes of any detection errors. 

For the second part of the study, also 383 frames were randomly extracted from the one-

hour videos, representing different activity scenarios. The required number of 

timestamps were randomly created in Microsoft Excel using the RAND function, 

selecting them from the total population size of 86,400 and 108,000 frames, respectively, 

which corresponded to the number of frames in each selection. Using the 

RANDBETWEEN function (1, PopulationSize), a list with timestamp values was created 

in a CSV format. Afterward, a one-hour video and the CSV list containing these numbers 

were imported into MATLAB for the purpose of generating a list of .jpg frames, indicating 

the name of the corridor, the hour, and the frame number as follows: FloorNumber – N 

or S – RNDframeNumber .jpg. 

5.3 Video Mapping Application 

The next stage of the accuracy test consisted of observing and mapping the 

location of people in the video frame, as well as annotating other environmental aspects. 
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With the aim of obtaining 100% accuracy in the occupancy data, the researcher 

implemented “video mapping” in MATLAB, which imported either videos or frames, 

displayed a user interface displaying the current frame to be analyzed (figure 5-3), and 

exported a dataset with the location information as well as other occupancy aspects that 

were relevant to this research. The final goal was to statistically explain the influence of 

these factors on the accuracy levels of the automatic “occupancy detection” algorithm.  

 

For this research, the video mapping process was performed by a single 

researcher, who previously completed 40 hours of training based on a pilot study, using 

the same video cameras but different video samples. The goal of the training was to 

standardize the classification criteria relating to three conditions: 1) determining the 

exact location of a person, which was defined as the lower pixels located right under the 

feet closer to the camera, a decision that resulted in that an individual’s gait stand and 

swing phases (figure 5-4) would be interpreted as “jumps” in the occupancy data, not 

interpolating the position of the head; 2) determining the boundary conditions for aspect 

classifications, such as partial occlusion and occlusion (partial occlusion occurs when 

less than half of the body is occluded by another object, while occlusion occurs when 

half or more than half of the body is obstructed); and 3) defining the limits between 

classification groups such as determining when an activity or body posture changes. 

This factor corresponds to the human body’s center of gravity, initial propulsion for an 

activity, or posture change. (i.e., walking toward the camera versus away from it was 

determined when one foot was pointing in a different direction).  
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Figure 5-4. Video Mapping’s Graphic User interface. It displays all buttons in an upper panel, and the video 
frames or random frames in the lower window.  
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Figure 5-5. Phases of human gait (adapted from http://www.apdm.com/mobility/) presented with the purpose 
of explaining in detail the factors of the precision error detected. 

 

 

Figure 5-6. Sequence of feet position on the floor A and B. Location A during 40% of the total gait time, while 
the right foot marks the position closer to the camera. Location B during the other 40% of the time, while the 

left foot is the closest to the camera, and 20% of the total gait is the transition between A and B.  
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Correspondingly, background changes were identified when the presence of one 

canceled the other, for example, the presence of artificial light over natural light. Glare, in 

turn, was detected when the profile of a person was blurred due to the lighting contrast. 

Also, the researcher’s prior training helped to redefine a number of newly emergent 

classification groups, such as cloth color matching, roles, activities, postures, and activity 

types. 

User interface 

The Video Mapping’s graphic user interface (GUI) displayed all global variables 

as radio or check buttons to enter the information that this study required. The 

application allowed the user to enter three types of information: 1) the coordinates of the 

occupants’ position in the video frame (i,j,frame), which was inputted with a mouse left-

click at the location of their feet; 2) a number of environmental aspects that help 

characterize the background conditions, such as lighting and camera conditions; and 3) 

a number of aspects that collect occupancy information about individuals, such as their 

role, the specific activity each one is performing, the activity type (added for the second 

part of the study), their body position, the extent that the color of their clothing -matched 

the background, and the occlusion information.   

Graphically, the buttons were distributed in one upper panel, subdivided by the 

category of information. In the upper part of the main panel, two global variables were 

displayed as return feedback from the process, i.e., the current frame and the number of 

people detected. “Exit” and “Undo” buttons were also displayed in the upper panel as a 

general control for data storage. All other global variables were displayed in the 

environment and occupancy sub-panels. These variables were globally visible from 

every function of the script, so their values remained constant until they were modified 

by the user. All radio buttons allowed the user to choose only one option among the 

predefined ones, including “other”, which in turn enabled the user to type a new option. 

Each “lighting”, “occlusion”, “activity”, “body posture”, and the clothing color in terms of 
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“background matching” was stored as a categorical value represented by integers, from 

0 to the number of elements in each category. 

 

Figure 5-7. ‘Video Mapping’ application. This image presents the Environment and Occupancy panels, 
including their radio and check buttons for each factor taken into account. These factors are subject to 
change, depending on the research question. 

Environment panel  

The environment panel included the categories of “lighting” and “camera 

conditions”. “Lighting type” could be classified as “natural” or “artificial” or “good” or 

poor”, updating the values to one and two, respectively. “Lighting” could produce “glare” 

and “reflection” depending on the camera’s properties, such as its location and 

orientation, the presence of reflective surfaces, and the hour of the day. In the chosen 

hospital scenario, the environmental conditions lasted for several hours since they 

depended on lighting conditions, which primarily changed during sunrise or sunset. The 

only check button option addressed “camera conditions”, since it was the only option that 

did not require classification values; therefore, both conditions, “glare” and “reflection”, 

could co-exist because they arose, indistinctively, from the sun’s position and a surface’s 

reflective quality. 

Occupancy Panel 

The “occupancy panel” allowed input of the existing occupant conditions, 

including “occlusion”, “activity”, “body posture” and “background matching”. The study 
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hypothesized that any automatic occupancy detection errors most probably resulted 

from these factors. The study also posited the theory that “activity”, “activity type” and 

“role” were the most important factors in determining occupancy distribution. Occlusion 

indicated when the view of a person’s body was partially obstructed. These situations 

arose, for example, when nurses were carrying a wheelchair that occluded their legs or 

when people disappeared from the camera’s field of view by entering another convex 

space. Activity identified the activity each occupant in the frame was performing. The 

activities were listed in order from the most to the least probable to occur in a particular 

corridor, providing an option to add peculiar and recurrent activities in the text box. Since 

the inputs were stored as integers, other additional activities were classified beginning 

with the digit five (5), as assigned by the researcher. In this study, the most recurrent 

activities were: (5) a cell phone call, (6) reaching for supplies, (7) sitting, (8) pushing a 

cart, and (9) providing laundry or cleaning services. Body posture, which is highly related 

to the activity, indicates the position of the body toward the surveillance camera, i.e., (1) 

front, (2) back, (3) side and ‘other’, including (4) sitting and (5) crouching, while 

performing a specific activity. For example, an individual could be walking toward the 

camera (walking-front) or from one side to the other side of the corridor (walking-side). 

Cloth color was another variable that the study hypothesized would be an important 

cause of error recognition, but only when contrasted with the background color; 

therefore, this variable is not categorized by color, but rather by the percentage of 

matching between the clothing color and the background color. The options offered for 

each variable were defined from the most to the least recurring potential causes for 

errors in recognition. This list evolved during the training stage after several iterations, by 

modifying the structure of the GUI and aggregating or modifying variables, resulting, for 

example, in the separation of the activity variable from the body posture variable.  

The occupant’s “role” and “activity type” were variables added in the second part 

of the research, which focused on the study of spatial and temporal occupancy 

characterization rather than detection accuracy. “Role” and “activity type” variables were 

created when the data were selected by hour, representing the activities that, in theory, 
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were programmed by the organization to occur at the selected time. During the training 

stage, the researcher identified six roles and three types of activities. The roles were: 

“doctor”, “nurse”, “staff”, “patient”, “visitor”, and “other”. Roles classified as “other” usually 

referred to an administrative role, such as a worker from another administrative hospital 

unit. The “activity types” were categorized as “scheduled” and “unscheduled” at the 

organizational level and as “regular-” or “irregular-frequency” activities. Regular-

frequency activities include those activities that are fundamental for the successful 

functioning of the hospital, but which are not exactly scheduled by hour at the 

organizational level, e.g., cleaning or linen distribution. 

Process of Data Storing 

Once the first frame from the random sample list was displayed, the researcher 

defined all the environmental conditions, which generally remained constant within a 

single one-hour period, unless sunrise or sunset occurred during that time. Next, the 

researcher defined one person to be mapped and identified all of that individual’s 

occupancy characteristics, as discussed in the previous section. Once these parameters 

were defined, the location of the individual’s feet was left-clicked, storing the [i,j,frame] 

pixel and temporal coordinates, as well as all the environment and occupancy variables, 

using the “dlmwrite” function into a CSV file, as shown in the Table 5-6. These two last 

steps were repeated in that exact order for every person present in each frame. If the 

wrong data was annotated, the researcher could use the “Undo” button to erase all the 

information for that frame. When several occupants were present in the same frame, 

each occupant was identified by clicking the position of his or her feet on the screen, as 

previously defined. This data input was repeated as many times as the number of 

occupants in the frame required. Although the environment and occupancy parameters 

could change, as well as the position, the frame number remained constant until the 

frame was completely analyzed. After all individuals in the frame were mapped, the next 

frame would be displayed by clicking ‘enter’ or ‘right click’, and all previous information 

was stored in the CSV file. Iteratively, the researcher should have repeated all the steps 
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until the frame list was complete. However, if an error in the process was detected after 

appending the data into the CSV file, the Undo command could not delete the last 

appended lines; therefore, to edit that information, the CSV file was opened and edited 

manually. The final number of rows that every frame provided depended on the number 

of people present in that frame. 

When a frame was unoccupied, the “No one” button was checked in order to 

overwrite all the occupancy panel values for that frame with zeros (“0”). When the 

researcher un-checked the “No one” button, all the occupancy values return to their last 

stored value. This process was intended to expedite the occupancy evaluation. In 

practice, when the scenario to be analyzed was very crowded, the set of frames were 

analyzed in rounds or layers of mapping in order to avoid modifying every aspect for 

each occupant several times over in the same frame and instead to enable the 

researcher to come back to the recorded values on the next frame. Hence, for the 

busiest hours, the layers of mapping rounds were defined by role. The mapping process 

could be finished at any time and re-initiated in a determined frame number when 

necessary by entering the initial frame number into the code, so the test re-started where 

the researcher left off. The CSV file continued appending the information, unless the 

CSV file name was manually modified, or another video was imported. All the above 

description is summarized in the following pseudo code:  

 

{Write the Video Mapping information types into a CSV file} 

1 While frames = 1: total population sample, do { // 383 is the total data sample 
2           for each frame  
3               set current global Environment variables;  
4                   for each occupant {  
5                         set current global Occupancy variables;   
6                         mouse input (left click) on current occupant feet’s coordinates (local variable);  
7                         (i,j) coordinates, frame number 
8                         append all information into a row into the CSV file; 
9                  next occupant; next row 
10                  } 
11           undo or append rows; 
12           next frame; 
13  } 
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Outputs 

The expected output of this “video mapping” script was a bi-dimensional array 

(row, col) of spatial and temporal occupancy information, exported as a CSV file. The 

first three columns were expected to be exactly like the ones obtained from the 

automatic occupancy method. However, the “video mapping” CSV files also stored the 

environment and occupancy quantitative information from rows four (4) to thirteen (13) 

(see figure 5-6). Afterwards, the first three columns of both occupancy datasets were 

transformed using a transformation matrix, into spatial occupancy coordinates [x,y,time], 

as explained in Chapter 2.  

 

Figure 5-4. A screenshot of a sample of the CSV table that stores the occupant’s values as indicated. When 
the frame number is unique, it indicates the presence of only one individual. When the frame numbers are 

duplicated ‘N’ times, it indicates the presence of ‘N’ number of individuals in that frame.  

5.4 Statistical Models 

The data from the two studies was amenable to multiple methods of analysis that 

would achieve useful insights. The selection of the proper method, however, required a 

focus on the objectives of the study’s statistical analyses: first, to calculate the accuracy 

of the automatic occupancy algorithm and determine each parameter’s influence on 

such accuracy; second, to calculate the precision of the location algorithm to correctly 

determine the occupants’ positions; and third, to demonstrate that the spatiotemporal 

patterns of occupancy are influenced by scheduled activities as well as by the space in 
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which they occur, by showing that the differences in occupancy distribution in space and 

time were not the result of chance. The first two objectives are presented in this chapter 

and the third one is introduced in the next chapter.  

Thus, the selection of the proper statistical analysis depended on the nature and the 

number of the dependent and independent variables. In the case of this research, 

occupancy, the dependent variable, is a categorical variable that takes two values: 

occupied or unoccupied.  

Classification Matrix 

Calculating the performance of the Automatic Detection Algorithm lead us to 

recognize the existence of two types of errors: Type I (False Positives), which refers to 

detecting an occupancy that is not present and Type II (False Negatives), which refers to 

failing to detect an occupancy that is present (Hofer et al., 2005). In recognizing the 

nature of the errors, the analyses detoured from pure accuracy to measure the 

performance of a classifier using a “classification matrix”, also called a “confusion 

matrix”.  

Table 5-2. Classification Matrix 

 True Conditions 

Predicted 
Condition 

Total Population 
7266 

Positive Condition 
5117 

Negative Condition 
2149 

Predicted Positive 
Condition 1824 

True Positive 
1824 

False Positive (Type I error) 
0 

Predicted Negative 
Condition 5442 

False Negative (Type II error) 
3293 

True Negative 
2149 

 

A “classification matrix” allows more detailed calculations than “accuracy”, which 

presents the overall ratio between the correct guesses and the total population, in order 

to help explain the statistical models and the causes of error in more detail. These 

calculations include “sensitivity”, which measures the proportion of positives that are 

correctly identified as such (“true positives”); “specificity” (SPC), which “measures the 

proportion of negatives that are correctly identified as such” (“true negatives”); the “false 
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positive rate” (FPR) or fall-out, which measures the proportion of Type I error over the 

total negative conditions; and the “false negative rate” (FNR) or miss rate, which 

calculates the proportion of Type II error over the total positive conditions.  

 

Table 5-3. Summary of Classification Matrix calculations 

 
Accuracy (ACC) (True positive + True Negative) /  

Positive Condition 
3973/5117 = 0.776 

Prevalence Positive condition / Total population 5117 / 7266 = 0.704 

Sensitivity or True 
positive rate (TPR) 

True positive / Positive Condition 1824 / 5117 = 0.356 

Specificity (SPC) or True 
negative rate (FNR):  

True negative / Negative condition 2149/2149 = 1 

Miss rate or False 
Negative Rate (FNR) 

False negative/ Positive Condition 3293 / 5117 = 0.644 

Fall-out or False Positive 
Rate (FPR) 

False positive / Negative Condition 0 / 2149 = 0 

 

Therefore, Classification Matrix’s calculations such as “accuracy”, “prevalence”, 

“sensitivity” and “specificity”  were computed based on the true detections and the two 

types of errors. Then, Logistic Regresion was used to model occupancy, by first 

constructing a bivariate model to study the effect distance on occupancy on data 

stratified by different categories, and then constructing a multiple regression logistical 

model to make a comprehensive model which could be used to predict occupancy rates 

for the setting studied here to test an independent group of variables, i.e., “distance” 

from the camera, “background conditions”, and “occupancy conditions. The premises are 

that the distance from the camera has an effect on the automatic recognition of peopla, 

and that while the distance from the camera increases, it the probability of recognition 

will decrease. This premise also assumes that other factors, such as the environmental 

and occupancy conditions, will influence the recognition. To corroborate this, a set of 

one-minute video data samples were used for the five main calculations mentioned 

above in order to obtain a complete overview of the data sample (Table 5-2. 

Classification Matrix). Then, “accuracy” was cross-measured against distance using 
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“logistic regression” and against environmental and occupancy parameters using 

“multiple regression” (categorical vs. categorical variables). 

Logistic Regression  

The Logistic Regression model, or “logit model”, is a statistical method used 

when there are one or more independent variables that impact a categorical dependent 

variable with two opposite outcomes (i.e., successful or unsuccessful recognition of an 

individual). The objective in this study was to meaningfully explain the influence of the 

underlying factors on “occupancy recognition” true positive and false negative values. 

This study demonstrates the influence of distance from the camera on recognition as:   

 

logit(p)= β0. 

 

Logistic Regression Model by Distance  

The Logistic Regression model is also used for predicting binary dependent 

variables – in this case, recognition and non-recognition –  with a Bernoulli distribution of 

y | x, showing that the residuals are not normally distributed. Logistic regression first 

reflects the likelihood that recognition or non-recognition happens for the different values 

of the independent variable, i.e., distance. Then, it takes those odds’ radio (which is 

continuous but cannot be negative) to create its logarithm. This is referred to as the logit 

or logarithm of the odds (log-odds). The function’s parameters represent a probability p, 

and the logit function outputs the log-odds. The logit of a number p between 0 and 1 is 

shown by the formula: 

 

logit(p) =  log p/(1-p) 

 

 



 

107	

 

 
 

Figure 5-5. Logistic Fit of Automatic recognition by Distance from the camera. The ratio varies from 57.52 to 
80.93% of not recognition.  

   
For this analysis, the Whole- Model Test, which shows that the ‘Chi-Squared 

test’, or the sum of the squared errors, was used to attempt rejection of the null 

hypothesis that the recognition data are independent from the distance to the camera 

[dist Y].  

Table 5-4. Whole Model Test 

 
Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 29.71 1 59.43 <.0001* 
Full 3140.65    
Reduced 3170.36    
 

Table 5-5. Parameter Estimates 

 
Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  0.31 0.06 30.19 <.0001* 
Distance cam  0.0019 0.0002 58.40 <.0001* 
For log odds of 0/1 
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The “logistic fit model” indicated that distance had a significant effect on the 

probability of recognition, the Whole Model Test showed that the probability of obtaining 

a ChiSq value of 59.42938 by chance, for one degree of freedom, is less than 0.0001 (p-

value). This meant that the null hypothesis that “the distance has no effect on automatic 

recognition” could be rejected.  

The parameter estimates analysis shows that the change in odds is 1.01. This means 

that for every one-distance-unit (i.e., one foot) closer to the camera, the odds of 

recognition, which are a numerical expression of the likelihood of that event, will 

increase by 1.36 times, and that the change of log-odds [p/(1-p)] is 0.00195102.  

Series of Logistic Regression Models by Factors 

The aforementioned model presents a clear correlation between the distance 

from the camera and the recognition of an individual. While performing the “video 

observation” and “mapping”, observations and questions emerged regarding the 

influence of scene-related factors (see image 5-7). Environmental factors depend on 

conditions pre-established in the setting, such as the lighting type and quality, as well as 

the camera condition, including the type and position of the cameras and the glare or 

reflection captured by each camera position. Algorithm- and database-related factors 

were associated with the scene occupancy, including the number of people present and 

the occlusion produced due to the occupancy density factor. For the database using the 

people detector “classification model,” the clear hypotheses were that the cloth-

background color-matching, as well as the activity performed and body posture, were 

influential factors on people recognition. 

To determine the influence of each factor, two statistical models were proposed: first, a 

“logistic regression model” to literally visualize the influence of activity and body posture 

and second, a “multiple regression model” to calculate the correlation of all the factors in 

the recognition prediction models. 
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Logistic Regression by Activity  

In general, logistic regression measures the relationship between the categorical 

dependent variable –occupancy– and one other independent variable by estimating the 

probabilities of specific outcomes using a logistic function, or the cumulative logistic 

distribution. Based on the observations made during the manual input of video 

occupancy data, questions arose regarding the nature  of influence of activity type and 

body posture on automatic recognition. These questions led to the dissection of the data; 

addressed by a series of logistic regression models of subsets of data, by “activity” and 

“body posture”. Among the activity data subsets, “walking”, “standing”, “cleaning”, and 

“crouching” were the most frequently occurring activities. The hypothesis Hactv for this 

analysis was that each activity’s accuracy model would be statistically different, and 

would vary by the relative distance of the subjects to the camera.  

    
A. Walking B. Standing C. Cleaning D. Crouching 

 
Figure 5-8. Logistic Regression Models of data subsets by ‘activity’. The four most frequent are: ‘walking’; 
standing’; ‘cleaning’; ‘crouching’. 

 
A. Walking 

Table 5-6. Whole Model Test of Walking Activity 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 593.48 1 1186.97 <.0001* 
Full 1965.93    
Reduced 2559.42    
 

Table 5-7. Parameter Estimates of Walking activity 

Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  -0.91 0.057 249.05 <.0001* 
Distance cam  0.01 0.000 804.92 <.0001* 
For log odds of 0/1 
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B. Standing 

Table 5-8. Whole Model Test of Standing activity 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 23.59 1 47.19 <.0001* 
Full 1024.67    
Reduced 1048.27    

 

Table 5-9. Parameter Estimates of Standing activity 

Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  0.28 0.056 24.42 <.0001* 
Distance cam  -0.00 0.000 43.10 <.0001* 
For log odds of 0/ 
 
 

C. Cleaning 

Table 5-10. Whole Model Test Cleaning activity 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 4.06 1 8.11 0.00044* 
Full 237.55    
Reduced 241.61    
 

Table 5-11. Parameter Estimates for Cleaning activity 

Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  1.84 0.17 110.67 <.0001* 
Distance cam  0.003 0.001 6.83 0.0090* 
For log odds of 0/1 
 

D. Crouching 

Table 5-12. Whole Model Test for Crouching activity 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 0.19 1 0.38 0.5355 
Full 237.55    
Reduced 241.61    
 

Table 5-13. Parameter Estimates for Crouching activity 

Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  -0.33 0.172 0.04 0.8491 
Distance cam  -0.001 0.001 0.38 0.5386 
For log odds of 0/1 
 



 

111	

 

Logistic regression analyses of recognition accuracy versus distance 

demonstrated that each activity’s recognition accuracy was associated with a different 

distribution. For example, walking, which is by far the most common activity in the 

corridor, decreased recognition logarithmically the further the individual was from the 

camera. The chance that these results were random is 0.0001 (ChiSq). When 

associated with standing, recognition increased the further the person was from the 

camera (ChiSq 0.001). This result was unexpected, showing that a clear definition of a 

body’s boundaries has more influence on recognition than the distance to the camera 

and that a static perspective image of a person closer to the camera is more difficult to 

recognize. Cleaning, is a non-frequent activity, and although recognition was very 

unlikely due to the body posture and the external elements (cleaning devices), distance 

did have an impact on recognition (ChiSq 0.0044).  Crouching, however, was not a 

frequent activity, and thus the sample of data was small compared to the other activities. 

The relationship between recognition and distance from the camera was weak for 

crouching subjects since the probability is 0.053. (ChiSq). The ChiSq values resulting 

values in Crouching activity, shows that the “Distance from the camera” is not a variable 

that has an effect on recognition; therefore, any results based on crouching subjects 

have a chance to be random. The hypothesis is that the body posture of this activity, is 

not included into the Classification Model used to train the algorithms. Furthermore, 

people recognition is not defined for this body posture.  

 

Logistic Regression by Body posture 

While “walking" was the most frequent “activity”, the four “body postures” tested 

were the most recurrent ones. “Front”, “back”, “side”, and “hidden hands” were the most 

common body postures that occurred in the collections of scenes analyzed in this study. 

The hypothesis Hpos was that each activity’s accuracy logistic model would be 

statistically different from the others, and their distribution by the distance to the camera 

would also vary differently. 
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A.1 Front A.2 Back A.3 Side A.4 Hidden 

hands 
 
Figure 5-9. Logistic Regression occupancy data plots by ‘body posture’. 

 
 
 
A.1 Walking-Front (towards the camera) 
 

Table 5-14. Whole Model Test for Walking-front 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 211.76 1 423.52 <.0001* 
Full 1298.26    
Reduced 1510.01    

 

Table 5-15. Parameter Estimates for Walking-front 

Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  -0.330 0.07 21.37 <.0001* 
Distance cam  0.009 0.00 320.14 <.0001* 
For log odds of 0/1 
 
A.2 Walking-Back 
 

Table 5-16. Whole Model Test for Walking-back 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 0.008 1 0.016 0.8990 
Full 260.648    
Reduced 260.656    
 

Table 5-17. Parameter Estimates for Walking-back 

Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  -1.83 0.146 156.81 <.0001* 
Distance cam  0.0001 0.001 0.02 0.8987 
For log odds of 0/1 
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A.3 Walking-Side 
 

Table 5-18. Whole Model Test for Walking-side 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 122.52 1 245.05 <.0001* 
Full 1.203e-8    
Reduced 122.52    

 

Table 5-19. Parameter Estimates for Walking-side 

Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  -301.84 151518.72 0.00 0.9984 
Distance cam  1.25 614.51 0.00 0.9984 
For log odds of 0/1 
 
 
A.4 Walking-Hidden hands 
 

Table 5-20. Whole Model Test for Walking-hidden hands 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 0.36 1 0.73 0.3930 
Full 4.95    
Reduced 5.31    
 

Table 5-21. Parameter Estimates for Walking- hidden hands 

Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  3.53 1.155 9.32 0.0023* 
Distance cam  0.013 0.017 0.56 0.4553 
For log odds of 0/1 
 
 

The logistic regression analyses demonstrated that recognition accuracy was 

associated with a different distribution when associated with facing the camera (front), 

back to the camera, side to the camera, and texting, or holding objects (hidden hands). 

Thus, a person walking toward the camera was more likely to be recognized within the 

first 25 feet from the camera. A person walking away from the camera, was very likely to 

be recognized in any position, independently of the distance from the camera (ChiSq 

0.8990). Furthermore, a person walking across the corridor (presenting a side view) was 

likely to be recognized within the first 23-24 feet but unlikely to be recognized at all from 

that distance and further. Hidden hand positions were very unlikely, and when they 
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occurred, the people associated with this position were not recognized, regardless of the 

distance from the camera (ChiSq 0.3930). This result presents a challenging goal to 

develop algorithms that recognize individuals presenting from a side view and with 

hidden hands but the development of such algorithms will be necessary to improve the 

recognition outcome in future research. While these findings are informative, 

environmental parameters also were embedded in the error factor, their inclusion in the 

statistical model becomes extremely important.  

Multiple Logistic Regression 

As previously noted, regression analysis estimates the relationship among 

variables and is commonly employed to predict uncertain events based on experience or 

knowledge (ref.). The goal of multiple logistic regression is to find the equation that best 

predicts the probability of the dependent variable Y, as a function of several independent 

variables (ref), and is represented by the following equation: 

 

Y = β1*x1 + β2*x2 +  ... + βn*xn. 

 

All environmental and occupancy factors from the global data sample are 

included in the model, presenting the influence that each has on recognition.  

Table 5-22. Multiple logistic regression. Whole Model Test for all factors 

Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 1445.59 12 2891.19 <.0001* 
Full 1724.76    
Reduced 3170.36    
 

Table 5-23. Lack Of Fit 

Source DF  -LogLikelihood ChiSquare 
Lack Of Fit 1405 890.04 1780.094 
Saturated 1417 834.72 Prob>ChiSq 
Fitted 12 1724.76 <.0001* 
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Table 5-24. Parameter Estimates 

Term Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  -0.53 0.16 10.01 0.0016* 
Y manual  -0.00 0.00 11.79 0.0006* 
Corridor[] - - - - 
Corridor[2N] 0.19 0.34 0.32 0.5724 
Corridor[2S]  -5.32 0.57 86.92 <.0001* 
Corridor[3N]  -1.59 0.33 22.14 <.0001* 
Corridor[4S] 4.74 0.36 166.24 <.0001* 
Activity [walking] - - - - 
Activity[cleaning] 3.29 0.17 367.17 <.0001* 
Activity[crouching]  -3.17 0.22 206.54 <.0001* 
Activity[standing]  -1.81 0.15 133.74 <.0001* 
Body Posture[side] - - - - 
Body Posture[back]  -4.79 0.24 370.07 <.0001* 
Body Posture[front]  -0.48 0.21 5.05 0.0246* 
Body Posture[hidden hands] 4.99 0.57 75.03 <.0001* 
Color Cloth[mix-matching] - - - - 
Color Cloth[bckg matching] 2.18 0.30 51.90 <.0001* 
Color Cloth[no-matching] 0 0 . . 
Lighting Condition[Good] - - - - 
Lighting Condition[Poor] 0 0 . . 
Glare [no glare] - - - - 
Glare[glare] 0 0 . . 
Reflexion[1] - - - - 
Reflexion[0] 0 0 . . 
Reflexion[Floor] 0 0 . . 
For log odds of 0/1 
 

Table 5-25. Effect Likelihood Ratio Tests 

Source Nparm DF L-R ChiSquare Prob>ChiSq 
Y manual 1 1 11.80 0.0006* 
Corridor 4 4 1245.47 <.0001* 
Activity 3 3 632.83 <.0001* 
Body Posture 3 3 937.41 <.0001* 
Color Cloth 2 1 150.36 <.0001* 
Lighting Condition 1 0 0 . 
Glare 1 0 0 . 
Reflexion 2 0 0 . 
 

The multiple regression analyses showed that most of the variables have a non-

random influence on occupancy detection. First, the different datasets obtained from 

different corridors cannot be determined by randomness, making the case about the 

different scenario conditions influence on occupancy, independently of their almost 

identical spatial layouts. Only one of the corridors [2N] is an exception to these analyses. 

It is important to notice that the corridors not present in this analysis are the ones that 

were discarded due to technical reasons. The second factor of influence, as described in 
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detail before, is the distance from the camera. Same occurs with Activity Type and Body 

Posture factors, which have high impact on occupancy detection. While these findings 

are informative, the crucial future step is to be able to recognize the presence of these 

environmental and occupancy parameters in each spatiotemporal scene, to be able to 

characterize the scenarios and apply a probabilistic model of occupancy. The inclusion 

of these factors in the statistical occupancy model becomes particularly important.  

 

 
Figure 5-10. Prediction Profiler 
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Figure 5-11. Interaction Profiles 

The resulting outcomes present a probability for recognition (p[1]) or non-

recognition (p[0]) based on the set of factors that define the scenario (see image 5-12). 

The value of p varies from 0 to 1 showing a percentage of recognition probability, as 

follows:  

p[1] = num [1] / n. 
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5.5 Applying probabilistic models to datasets 

The probabilities of recognition by location, determined the impact of other 

environmental and occupancy factors, can be used for practical purposes, such as  

correcting the automatic recognition data to model scenarios of occupancy. The process 

of applying such probabilistic models included first constructing a set of statistical 

models based on the programmed activity, which necessarily includes the time of day at 

which the activity is performed. After running the accuracy test, probability factors per 

cell emerged. 

We expect that by applying the probability of recognition p[1] factor of a data 

subset, which was calculated from the general sample, the occupancy recognition 

surface would predict the occupancy expected for each cell in each subset scenario as it 

is presented in Chapter 6. The objective was to complement the automatic occupancy 

datasets with the predicted occupancy. The final goal was to improve the automatically 

collected occupancy data sample obtained from the Scene Analyses video –or any other 

technology that might cause detection errors– by identifying the error that was produced 

by the influence of each environmental as well as behavioral variable on each scenario. 

5.6 Precision 

Precision refers to how close are two measurements, which reflects the 

difference in distance between the positioning information collected using the automatic 

algorithm and the information collected from manual mapping. The goal of measuring 

precision was to correct the positioning information. The hypothesis was that precision 

would vary along the corridor (X axis), and would be fairly constant across the corridor 

(Y axis).  

The testing revealed that the precision decreases by some inches at the 

beginning of the corridor and up to four feet at the end of the corridor. Because the 

occupancy grid resolution is measured in square feet, the first 25 feet of the corridor did 

not exhibit precision errors, but the errors began incrementally increasing at around one 
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foot to approximately 25 feet, with a mean of response of -24. 3472 by 1/10 foot.  In the 

X axis, however, the error was less than one foot, with a few exceptions, which 

corresponded to the less frequent activities, such as cleaning, primarily due to the 

subject’s body position during such activities.  Because the precision factor was very 

reliable, and the errors in the Y axis were always produced toward the camera, making 

that the error negative, this factor should be added to the automatic occupancy algorithm 

to correct the positioning. Although it could be argued that the difference in Y can be 

assumed to be a time error, in the sense that 1 second later the individual would most 

probably be in that exact predicted location, precision is significant at the moment of 

calculating the fields of vision from the patient’s bed. 

Precision Regression Along the Corridor (axis Y) 

The precision from the camera starts in -0.9 ft., which means that the automatic 

recognition detects position further than the actual position. This is due the perspective 

of the body when too close to the camera. At distance between 8 and 20 feet, precision 

error is less than 1 ft. Afterwards it increases, as shown in the profiler, up to 6.2 feet at 

the end of the corridor.  

 
Figure 5-11. Plot of occupancy precision, distributed along the corridor (Y axis). It shows the distances 

between the real occupancy position and the detected position. The unbalanced horizontal distribution is 
due the un-centered camera focus. 
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Table 5-26. Summary of Fit 

RSquare 0.32 
RSquare Adj 0.32 
Mean of Response  -2.44 
Observations 1081 
 

Table 5-27. Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 
Model 1 285035.29 285035 511.4731 
Error 1079 601308.41 557 Prob > F 
C. Total 1080 886343.70  <.0001* 
 

Table 5-28. Parameter Estimates 

Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  9.58 1.66 5.75 <.0001* 
Distance from 
camera 

  -0.19 0.00  -22.62 <.0001* 

 

Table 5-29. Profiler 

Distance from camera (ft.)  Precision (ft.) 
0     0.9 
18    -0.8 
36    -2.6 
56    -4.4 
90    -6.2 

 
 

 
 

Figure 5-12. Precision Regression for Corridor Width. 

Table 5-30. Summary of Fit 

RSquare 0.00 
RSquare Adj 0.00 
Root Mean Square Error 5.32 
Mean of Response  -1.70 
Observations (or Sum Wgts) 1081 
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Table 5-31. Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 
Model 1 140.15 140.15 4.9389 
Error 1079 30619.05 28.37 Prob > F 
C. Total 1080 30759.21  0.0265* 
 

Table 5-32. Lack Of Fit 

Source DF Sum of Squares Mean Square F Ratio 
Lack Of Fit 251 12615.75 50.26 2.3116 
Pure Error 828 18003.30 21.74 Prob > F 
Total Error 1079 30619.06  <.0001* 
    Max RSq 

Table 5-33. Parameter Estimates 

Term   Estimate Std Error t Ratio Prob>|t| 
Intercept   -2.46327 0.37625  -6.55 <.0001* 
Distance from 
camera 

 0.0043144 0.001941 2.22 0.0265* 

 

Table 5-34. Profiler 
Distance from camera (ft.)  Precision (ft.) 

0    -0.24 
24    -0.21 
43    -0.19 
60    -0.16 
90    -0.08 

Table 5-35. Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 19.10 8.19 2.33 0.0199* 
Y manual  -0.28 0.014  -20.19 <.0001* 
Activity[cleaning] 18.37 12.97 1.42 0.1569 
Activity[crouching]  -8.83 5.66  -1.56 0.1190 
Activity[standing]  -5.72 5.36  -1.07 0.2857 
Activity[walking]  -3.81 5.71  -0.67 0.5043 
Body Posture[back]  -2.14 7.02  -0.30 0.7606 
Body Posture[front] 1.81 7.07 0.26 0.7977 
Body Posture[hidden hands]  -16.99 20.05  -0.85 0.3968 
Body Posture[side] 17.32 7.95 2.18 0.0297* 
Color Cloth[background matching]  -19.39 10.36  -1.87 0.0616 
Color Cloth[no background matching] 16.13 5.77 2.79 0.0053* 
Color Cloth[partial background matching] 3.25 5.41 0.60 0.5474 
Lighting Type[Artificial] 16.86 7.98 2.11 0.0350* 
Lighting Type[Natural]  -16.86 7.98  -2.11 0.0350* 
Lighting Condition[Poor]  -14.68 8.78  -1.67 0.0949 
Lighting Condition[Good] 14.68 8.78 1.67 0.0949 
Glare[Glare] 0 0 0.00 1.0000 
Glare[No] 0 0 0.00 1.0000 
Reflexion[0]  -31.56 16.31  -1.93 0.0533 
Reflexion[Floor] 0 0 0.00 1.0000 
Reflexion[Wall] 31.56 16.31 1.93 0.0533 
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The multiple regression results showed that only few of the parameters had a direct 

influence on precision (with a significant effect at 95% level). They are: Distance from 

the camera, Body posture [side], Color Cloth [No background matching], and Lighting 

type[artificial and natural]. The “precision” outcomes involve distances that show the 

difference between the two positioning methods, automatic and manual, once people are 

recognized. The distance between the two systems is added to correct the instrumental 

error when calculating spatiotemporal occupancy (ref. Chapter 6). 

5.7 Discussion 

The main goal of this part of the research was to demonstrate that even when the 

technology used for positioning produces some data with errors, a statistical approach 

can predict the adequate expected data, up to a determined accuracy. For the accuracy 

test, the first objective was to determine the accuracy of the automatic people 

recognition algorithms used for this research, in order to measure the reliability of their 

outcomes. We expected an increase in the accuracy error rate the further the detection 

was from the camera and that other parameters, such as environmental and activity-

related ones, would have an undetermined influence on the measurements. The second 

objective was to understand the impact of each environmental and activity parameter on 

recognition, with two purposes: 1) to understand how the parameters’ variations define 

the scenario for recognition; and 2) to understand the probability of recognition 

depending on these parameters.  

Environmental factors change slowly compared to activity factors. Therefore, the 

lighting and camera conditions are classified in few categories, and can be considered 

mostly constant during time slots of one hour. On the contrary, activity conditions such 

as the activity type and body posture are in permanent change and are the main causes 

of classification model errors for people detection. These findings are expanded in the 

conclusion section, providing valuable feedback to improve future research in the area of 
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machine learning by refining the classification model training process. They could be 

useful to address classification accuracies, error ratios, or any other measure for the 

evaluation of classifiers, including model sizes and computation times. Future work in 

this area could include the automation of the process for collecting environmental and 

occupancy information, extending the algorithms for specific recognition patterns. 

Additionally, the probability of recognition is derived from the influence of each of the 

aforementioned parameters that affect recognition. This research proved that each 

parameter impacts recognition individually and in association with each other and that 

they are related to the environment as well as to occupancy. In fact, the object of our 

analyses, the scenarios, were essentially composed by the environmental conditions, 

including the time of the day, which in turn implied the activity performed, and thus the 

occupancy factors. Occupancy factors such as occlusion, which is the most recognized 

and common factor that impacts visual recognition, depended primarily on the number of 

people present in the scene. This result varied depending on the activity scheduled and 

the number of people involved. Therefore, determining the probability of occlusion by 

shorter periods of time, such as one hour, would help to create a probabilistic model with 

higher resolution, which would explain the variability in the recognition probability. 

Both Accuracy and Precision depend on the units of measurement employed. For 

this research, spatial measurements were taken in pixels and the temporal one in 

frames. Pixels were later transformed to spatial dimensions of feet including decimals. 

Once the spatial position was determined and the accuracy and precision were 

calculated, the units of analysis were rounded to feet and the frames to ¼ of a second. 

At this resolution, the errors were reduced and the unit for occupancy measurement was 

in square feet by 0.25 seconds [sqft/sec]. The “occupancy unit” could become the actual 

resolution, defined as the average of time during that second –or one to four selected 

occupied frames– eliminating from the sample those frames that were not recognized, 

thus increasing the accuracy according to the temporal resolution. 
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5.8 Summary 

Acknowledging that the “scene analysis” accuracy was lower than 50% in some 

zones of the corridor areas, this section of the research proposed to improve that 

occupancy recognition accuracy by applying probabilistic models. The first step 

necessarily involved the design and development of an “accuracy test” to measure the 

accuracy and precision of the “occupancy algorithm”. This test entailed two parts. The 

first step, “video mapping”, consisted of observing and manually mapping occupancy in 

the videos, as well as the activities performed and the environmental factors that might 

influence the occupancy data outcome.  

The second step involved comparing the outcome of the “video mapping” of 

sample frames with a sample of the automatic dataset to determine its accuracy and its 

precision. The application of regression models determined the impact of each 

environmental and activity factor on occupancy accuracy, including the distance from the 

camera. To determine the precision of detected location, precision was calculated as the 

distance between the manual and automatically detected positioning coordinates, with 

the final goal of correcting them. Finally, this chapter presented a predicted occupancy 

dataset, and it will continue on Chapter 6 by applying a probability detection factor given 

the location compared with the automatically collected datasets. Later, the precision 

distance was subtracted to correct these positions. The improved occupancy datasets 

are later contrasted with a 100% confidence dataset collected manually to validate the 

results. 
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CHAPTER 6 

 

6. ANALYZING SPATIOTEMPORAL OCCUPANCY AND 
DEFINING A NEW BEHAVIORAL-SPATIOTEMPORAL METRIC 

FOR HEALTHCARE SETTINGS: ISOVIST-MINUTE 

 
Overview 

This chapter presents the framework for the spatiotemporal analyses and 

spatiotemporal occupancy-related metrics in the field of architecture. The three central 

topics are addressed in this chapter: 1) the modeling of spatial and spatiotemporal 

occupancy with a specific focus on recognizing the influence of organizationally 

scheduled activities on people’s behavior; 2) the characterization and comparison of 

specific scenarios by analyzing the spatiotemporal occupancy datasets to understand 

occupancy distribution and finding emergent outcomes such as the spatiotemporal 

occupancy-related metrics, which embodies a relationship between spatial layout and 

occupancy patterns; and 3) the design of spatiotemporal occupancy-related metrics and 

specific analyses to facilitate the healthcare outcome of patient surveillance. The chapter 

starts by introducing the concepts of occupancy grids and occupancy cells, the 

fundamental units of occupancy mapping used in this research; continues with the 

characterization of specific scenarios for occupancy comparison; and concludes with a 

validation of the proposed methodology by defining a spatiotemporal occupancy-related 

metric, the Isovist-minute. This metric measures the probability of achieving patient 

surveillance in specific locations within a spatial setting, given certain scenario 

conditions, including spatial, environmental, and occupancy aspects, as well as 

programmed and actual activities. 
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6.1 A Model for Spatiotemporal Occupancy   

A spatiotemporal occupancy model refers to the structure and presentation of the 

collected occupancy data, organized and displayed to support its exploration. Its 

purpose is to facilitate the identification of occupancy patterns to explain the theoretical 

influence of “organizationally scheduled activities” on people’s behavior, with the main 

goal of characterizing the occupancy patterns of a particular building.  

As discussed earlier in this document, The spatiotemporal occupancy data is stored	not 

in a database but tabular form and because it provides a manageable file size to 

accommodate the amount of data stored in this case. Each occupancy record consists of 

three fields in the automatic data collection (x, y, and time) and ten fields in the manual 

data collection besides x, y, and time. These ten fields include lighting type, lighting 

quality, and camera condition as environmental conditions, and role, activity, body 

posture, activity type, activity frequency, occlusion, and cloth color as occupancy 

conditions. Each CSV file contains occupancy data by hour and by corridor. The 

mechanisms for exploration are the accumulation of a set of hours or the comparison 

among a set of files. The graphic display of the data is structured as x and y on a two-

dimensional (2D) occupancy grid and with a z-axis temporal dimension to construct a 

three-dimensional (3D) “occupancy cube,” referencing Mario Romero’s work on ‘activity 

cube’ (2008), both defined in the next section.  

6.2 Occupancy Grid (OG) 

The spatial occupancy grid in this research is a fine-grained 2D map composed of 

a collection of cells representing the continuous space of possible locations in the 

scenario, reducing the spatial complexity. Additionally, a set of 2D occupancy grids are 

sequentially aggregated together by time instances in a Z-axis to create a 

spatiotemporal 3D occupancy cube. Both the 2D occupancy grid and the 3D occupancy 

cube are based on a grid-based approach, which is computationally easy to build and 

represent, providing independent locations. The first grid-based map was originally 

proposed by Elfes (1987) and Moravec (1988), who assigned an occupancy binary value 
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to each cell to determine its occupancy. Occupancy grids have also been defined in the 

area of probabilistic robotics, the goal of which is to “estimate the posterior probability 

over maps given the data” (Thrun, Burgard and Fox, 2005).  

The 2D OG coordinate system has a location index, which begins at (1,1), 

starting at the bottom-right corner of the area of occupancy. The maximum size of this 

specific grid based on the area of interest (AOI) defined in the previous chapter is 7 x 

120 cells. Each occupancy cell in the grid is assigned a binary value as either occupied 

(1) or unoccupied (0) (see figure 6.1). The model imports the occupancy values obtained 

from the automatic recognition method for each cell in the grid. Each OG represent a 

time stamp, and the aggregated occupancy grids represent the aggregated time. 

 

Figure 6-1. Indicates the 2D gird size and grid indices (row,col), staring at the upper left corner.  

 

The resulting aggregated 2D occupancy grid stores a set of the binary occupancy 

values (0 and 1) assigned to each cell, resulting in a 2D binary occupancy grid or a 

weighted occupancy grid (see figure 6.2).  The weighted occupancy grid (figure 6.2) 

reflects the aggregated results of the temporal occupancy grid, defined as “occupancy 

over a number of different timescales” (Arbuckle, Howard, and Maratic, 2016). The 

values for each cell refer to the total amount of time the cell was occupied during a 

particular period of time, representing the percentage of the total time the cell was 

occupied.  Also, each occupancy cell imports the occupancy probability values 
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calculated from the regression models presented in the previous chapter (see figure 

6.2). The occupancy probability grid ‘adds’ a value between 0 and 1 to each cell, 

representing the probability of a cell having been occupied. Values closer to 1 represent 

a higher chance that the cell is occupied in certain conditions.  

 

 

Figure 6-2. Binary Occupancy Grid (yes and no, or 0 and 1, values). 

 

Figure 6-3. Weighted Occupancy Grid (0 to total number of time stamps, represented as continuous values 
between 0 and 1). 

 

Figure 6-4. Occupancy Probability (values between 0 to 1). 

 

 

The fundamental differences between occupancy probability and weighted occupancy 

are that the occupancy probability values are calculated from the accuracy results and 

are expressed as percentages, while the weighted occupancy values are calculated as 

the sum of the occupancy temporal duration during a determined period of time. These 

results are expressed first as integers, representing the time units that the cell was 

occupied, and later, normalized as percentages. 
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6.3 Analyzing Spatiotemporal Occupancy  

The purpose of analyzing spatiotemporal occupancy is to understand the 

fundamental characteristics of occupancy in terms of spatial and temporal distribution in 

different scenarios, with the main goal of determining key indicators for a building’s data-

driven occupancy performance. The spatiotemporal analyses consist of the following 

four stages: 1) a visual exploration of the data by importing subsets of activity types to 

provide insight about the occupancy distribution of sample scenarios; 2) the quantitative 

analysis of occupancy distribution to compare the scenarios, determining their 

statistically significant differences; 3) the definition of spatiotemporal parameters based 

on the visual understanding of the occupancy data subsets; and 4) the definition of 

spatial-behavioral metrics based on the spatiotemporal parameters to specify precise 

built environment performance indicators. 

 

Visualization of Sample Scenarios 

The visualization of the sample scenarios is aimed at providing an overall 

understanding of occupancy patterns, accompanied by further visual exploration of the 

data to uncover more specific calculations. The quantitative analyses are based on the 

research-specific queries, which are answered through data-driven calculations. 

The visualizations of the spatial and temporal occupancy distribution were created in 

MATLAB, allowing the exploration of the full datasets by providing the necessary 

manipulation and interaction on the variables, such as filtering and selection. The 

analyses provided a set of embedded calculations for some key quantitative analyses on 

the imported datasets. The implementation is structured as shown in the activity diagram 

(figure 6.4) and includes the following steps: (1) importing the two datasets of interest, 

the spatiotemporal occupancy dataset, which is the occupancy data obtained over time 

and the area of interest by corridor; (2) creating an occupancy grid and a occupancy 

cube figures, which are the platform for the 3D visualization, and adding an occupancy 

counter, which is fundamental for all calculations; and (3) creating a spatiotemporal 
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matrix for the spatiotemporal occupancy accumulative data on the occupancy grid. At 

this point, the analyses offer two outputs: a 3D visualization that plots the occupancy 

cube and that allows interaction for data visual exploration and export of a JPEG file, 

and the quantitative analyses, which export the results as a CSV file. 

 

Figure 6-5. Activity diagram for the implementation of spatiotemporal occupancy analyses 

 

Characterization of Scenarios  

The visual exploration of the spatiotemporal occupancy dataset allowed for 

recognition of some fundamental characteristics of occupancy in terms of spatial and 

temporal distribution. The visual comparison of data sub-samples helped us determine 

specific aspects of the occupancy characterization, e.g., the influence of programmed 

activities. The premise is that when comparing two or more scenarios, occupancy 

distributions show different results based on the following three factors: spatial 

configuration, programmed activities, and organizational schedule, which in turn is 

related to activities actually happening at specific times. In this research, spatial 

configuration was discarded as an influential factor because the twelve corridor 

scenarios are close to geometrically identical, with the exact same spatial organization. 

Thus, the most influential factors impacting occupancy distribution were the 

programming, the scheduled activities and the activities actually performed, which occur 

in certain periods of time and imply the presence of a certain number of people. To 
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corroborate the specific influence that programming and scheduled activities have on 

certain patterns of occupancy, a sample of nine scenarios were defined for comparison 

(see figure 6-7).  

 The goal of comparing samples scenarios was to unveil the differences in 

occupancy distribution based on the type of activity. The comparison occurred between 

several of the scenarios’ occupancy patterns under the same spatial conditions but 

different programming and scheduling conditions. The nine sample scenarios selected to 

show these differences were medical rounds, visiting hours, and no scheduled activities 

in two corridors and on different days of the week. The three types of activities occurred 

at 8 a.m., 4 p.m., and midnight respectively, in all corridors. The corridors selected had 

two different organizational programs: the 7th floor, which contained private rooms, and 

the 3rd floor, which contained the ICU. The two days of the week selected were 

Wednesday and Saturday (Figure 6-7).  
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Figure 6-6. Perspective and top view occupancy on a sample scenario for visiting hours, from 4pm to 5pm.  
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 Week day Week day Weekend 
8 am 

  

 

4pm 

 

 

 
00 am 

  

 

 

Figure 6-7. Matrix comparison of nine sample scenarios. Columns from left to right indicate the corridor 
organizational unit and the two selected days: Wednesday and Saturday. Rows indicate the three one-hour 
samples, three times a day: Medical Rounds at 8 am (General Hospitalization and ICU); Visiting Hours at 

4pm (General hospitalization Wednesday and Saturday); and No Scheduled Activities at midnight (General 
hospitalization and ICU). 

Some findings related to simultaneous occupancy, sequences on occupancy, 

frequencies, and the stability of occupancy in certain areas were noticeable though 
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visual exploration of the occupancy data subsets, providing the agenda for testing 

specific hypotheses. For example, the number of people that are co-present influences 

the occupancy counting (two to seventeen, respectively, for the no scheduled and 

medical rounds scenarios), while co-impacting the redistribution of people in space as 

well as the sequence in which the cells become occupied. In medical rounds, for 

example, the number of people varies from four before the round started to twelve during 

the round.  

Spatiotemporal Analyses 

Scenario comparison also includes analyses to determine the significant 

differences in the data subsets, which tests this specific study’s initial premise regarding 

the influence of activity on occupancy distribution. Once the differences were verified, 

analyses of the aggregated and spatiotemporal occupancy were presented. Some of 

these specific quantitative metrics were introduced in the “Activity Shapes” previous 

research (Gomez, Romero and Do, 2012),  providing insights about the form that 

occupancy takes in space and time, as well as any statistical differences2. In Activity 

Shapes, the spatiotemporal analyses were classified into three types: dispersion, 

gravitation, and stability of clusters. In this spatiotemporal occupancy research, the three 

metrics were calculated to help characterize the hospital corridors spatiotemporal 

distribution. Dispersion describes the spread of spatial occupancy in the corridors, and it 

was calculated by distances standard error; Gravitation refers to the distances from each 

occupied cell to attractors at a specific positions. In this case, it was calculated to the 

central nurse station and to the center of gravity of the scene, which refers to the 

average center of all individuals’ positions. The center of gravity was calculated as 

                                                
 
 
 
2 We acknowledge the guidance of Dr. John Peponis in this research, as well as his involvement with the 

implementation of the statistical model. 
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weighted and unweighted. Weighted refers to including the duration that the cell was 

occupied, and unweighted refers to including the occupied cells as a binary result, 

occupied or not occupied. The dispersion and gravitational distances from each 

occupancy cell were calculated as part of the scenario comparison. 

Table 6-1. Dispersion and gravitational distances (in cell unit) by scenario. 

 Week day Week day Weekend 
 dispersion 

(st err) 
gravitation 
(avg dist) 

dispersion 
(st err) 

gravitation 
(avg dist) 

dispersion 
(st err) 

gravitation 
(avg dist) 

Medical 
rounds 
(8 am) 

5.88 49.60 8.24 37.80   

Visiting 
hours 
(4 pm) 

6.21 47.93   7.85 40.77 

Night 
shifts 

(00 am) 
15.80 36.72 10.76 35.74   

 

The results show significant differences among the three scenarios in terms of 

dispersion and gravitational distances. First, the highest dispersion is found in scenario 

three, night shifts (15.80 and 10.76), indicating that participants maintain more variable 

distance from the nurse station. In contrast, the lowest dispersion is found in medical 

round scenario (5.88), followed by visiting hours (6.21), both in the private hospitalization 

wing, indicating that participants are less dispersed, or maintain less distance difference 

to the nurse station, being closer from each other than from any other pivot point. 

Second, the medical rounds scenarios had the highest distance to the nurse station 

(49.60), which means that the center of gravity of the activity moved along the corridor 

forming occupancy clusters. Third, the highest gravitational distance to the nurse station 

was found during the same two scenarios (49.60 and 47.93), while the shorter were 

during the midnight shift. Similarly, gravitation of the visiting hours (40.77) indicate the 

formation of clusters in the corridor, which represent visitors having a conversation in the 

corridor (as shown in Figure 6-5). These results suggest differences in occupancy 

dispersion and gravitation when comparing two scenarios at a time by the sum of the 

total distance among occupied cells and the distance from all occupied cells to the 
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central nurse station. These results corroborate the assumption that the activity being 

performed has an influence on the occupancy distribution. For example, the distribution 

of people during the medical rounds is clustered, while in the other two scenarios, 

people are more dispersed. Thus, a noticeable correlation exists between the type of 

activity and the distribution of people in space and time. These calculations can help 

characterize the occupancy distribution per scenarios, helping to provide guidelines 

further research in occupancy simulation. 

Spatiotemporal Parameters 

The findings presented above, considered in the context of a high occupancy 

resolution of one square-foot by second, raise a question regarding the appropriate 

metrics for studying the spatiotemporal relationship of space and behavior. Two main 

parameter suggestions emerge from this study’s data exploration, position-dependent 

and time-dependent parameters. Position-dependent parameters refer to the position of 

an individual in space, which also depends on the number of people simultaneously 

present in the space. This research presents some definitive findings, based on 

observations that arose during the visual explorations. First, the spatial occupancy 

distribution depends on the solitary or simultaneous presence of users. For example, 

when only one person is walking along a corridor, he or she tends to walk toward the 

center of the corridor, but if two or more individuals are walking along a corridor in 

opposite directions, each person tends to stay to his or her right. The position of a 

person and his relationship to space will directly affect the behavioral-spatial metrics 

proposed in this dissertation. 

Time-dependent parameters refer to an individual’s length of stay in a specific cell, 

either the time spent in a location or the walking speed, which also affected the total 

occupancy distribution. Those factors also depend on the nature of the activity (i.e., 

programmed vs. non-programmed and frequent vs. infrequent). While it is not possible to 

generalize to all scenarios from these samples, some common tendencies arose 
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regarding activity-driven occupancy, and both position- and time-dependent parameters 

as the direct variables for the spatial-behavioral metrics proposed later in this research.  

6.4 Healthcare Behavioral-Spatial Variables  

Prior EBD studies have focused on the correlations between design strategies or 

environmental interventions in healthcare buildings and desired healthcare outcomes, as 

summarized in Table 6.2. For example, the effect of acuity on reducing medical errors 

and patient falls, reducing the length of stay, decreasing staff injuries, and increasing 

staff effectiveness, all of which relate to the field of vision surrounding patient beds 

(Ulrich et al., 2008). With the purpose of demonstrating the key role of spatiotemporal 

occupancy analysis, and based on the concepts of position- and time-dependent 

parameters, as presented above, this research proposes specific metrics to identify new 

key building occupancy performance indicators. From the standpoint of healthcare EBD, 

and its crucial relationship to patient safety and outcomes, the analyses and metrics 

developed in this research will focus on patient surveillance, a key goal for healthcare 

organizations.  

 

Table 6-2. Summary of studies of the impact of design strategies or environmental interventions on 
healthcare outcomes (Table adapted from Ulrich, Zimring et al., 2008). 
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Surveillance 

Dougherty (1985) first introduced the term “surveillance” in the healthcare context 

and defined it as the care provided by nurses, later refining that definition to include both 

cognitive and behavioral processes involved in the decision-making and action for the 

well-being of a patient (Dougherty, 1999). Today’s definition of surveillance implies a set 

of actions, including monitoring, evaluating, analyzing, interpreting, making decisions, 

and taking action based on an assessment (Titler, 1992; Schoneman, 2002), and is a 

broader and multidimensional concept that includes expertise, intuition, and early patient 

health recognition skills. Stated another way, Henneman, Gawlinski, Giuliano (2012), 

defined the term as “a systematic and goal-directed process focused on early 

identification of risk and the need for intervention.” Healthcare surveillance, therefore, 

encompasses a more complex process than mere visual surveillance, and includes 

performing rounds, monitoring, and identifying both vulnerable patients and potentially 

unfavorable events, with a goal of averting medical errors. While the term surveillance 

has been utilized throughout multiple disciplines “to describe the process of collecting, 

analyzing and taking action based on facts and data” (Schoneman, 2002), healthcare 

surveillance refers to an intermittent process, either passive or active, and is used for the 

purpose of collection and propagation (Thacker et al., 1989), as well as for decision-

making (Kelly and Vincent, 2011). Research has shown that patient outcomes are 

directly related to surveillance, most frequently by presenting the negative 

consequences associated with insufficient or absent surveillance, such as health 

complications, life-threatening conditions, and higher mortality rates (Dougherty, 1999; 

Institute of Medicine, 2004; Kalisch, 2006; and Kutney-Lee et al.. 2009).  

Surveillance is the most important strategy for patient safety, and although visual 

surveillance or monitoring is only one component of healthcare surveillance, it is an 

essential one. Analysis from 75 participating hospitals showed that direct observation of 

patients, i.e., visual surveillance, showed a statistically significant correlation with lower 

fall rates (Feil and Wallace, 2014). Other initiatives involved installing video surveillance 
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in selected rooms in a few hospitals, which reduced the number of patient falls to only 

one per year (For hospitals, 2013). Consequently, visual surveillance of patients could 

help reduce negative health consequences, while reducing the length of stay and, 

correspondingly, the cost of hospitalization. Therefore, this dissertation studies the visual 

fields from patient beds and the actual visibility of patients in a hospital setting, with the 

purpose of developing a surveillance-related metric that might help improve the patient 

health outcomes.  

Visibility and Visual Fields 
 

Visibility is a spatial variable constructed on the interaction of behavioral and 

spatial features. The first and most influential work that attempted to measure human 

experience in relation to the geometry of a space is Benedikt’s “Isovists” and “Isovist 

fields” (1979). An Isovist is defined as the polygonal region that is directly visible from 

the specific position of an habitant. A sequence of Isovists – or Isovist fields – represents 

the Isovist variations, which depend on the trajectory of an habitant in space. Both 

Isovists and Isovist fields are used to describe environments, quantitatively, from the 

perspective of a vantage point. Benedikt described some quantitative Isovist’s geometric 

properties, proposing methods to measure its area, perimeter, occlusivity, variance, 

skewness, and circularity, which are geometrically calculated from a defined vantage 

point (Davis & Benedikt, 1979). In 1980, Braaksma and Cook worked on measuring the 

intervisibility between spaces in a transportation terminal by applying visibility graphs. 

They selected certain of the terminal’s key spatial units to measure disorientation in such 

buildings. They were the first researchers to construct a visibility graph as a 

representation of the visual connection between spaces, in which nodes were the 

spaces, and connecting edges represented visual relationships (Braaksma and Cook, 

1980).  From the graph, they calculated the ratio between existing visual relations and 

potential visual relations to measure the influence of space on human orientation. 

Visibility graph analysis is the approach utilized by Space Syntax to construct the spatial 
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analyses mentioned earlier in this research, such as connectivity and integration (Bafna, 

2003; Turner, 2004). 

Targeted Visibility  

Targeted, or directed, visibility was addressed by Lu et al. in a study of targeted 

visibility analysis in buildings (Lu, Peponis & Zimring, 2009; Lu, 2011). They proposed a 

new visibility model that “separates the origins and destinations of all lines of sight.” 

They correlated the findings with the distribution of people in an environment of crucial 

visual monitoring: the Emory Neural ICU. Lu applied this approach in analyzing other 

settings, such as virtual exhibitions. On another track, Markhede and Miranda observed 

how space syntax tools had disregarded the occupied space by giving priority to the 

potentially occupied space, or “occupiable space” (Turner, 2004). In their work on the 

Spatial Positioning Tool (SPOT) (Markhede and Miranda 2007a; 2007b; 2010), they 

measured the visibility of a space from the occupied locations. SPOT examines 360° of 

visual fields from occupied spaces, offering “a new insight into how we approach space 

syntax” (Koch, Marcus and Steen, 2009) in SSS7 proceedings, 2009 (Turner, 2009).  

This dissertation, with the aim of analyzing the real visual fields in spatial 

environments, seeks to answer questions about actual visual surveillance of spaces by 

incorporating actual human positional data as inputs for spatiotemporal analyses, 

shifting the focus from general visibility as a property of the space to an Isovit temporal 

metric, or the surveillance of real observers over time in relation to patient beds. This 

research proposes the development and implementation of algorithms for real 

surveillance over time and its analysis, constructed using the spatiotemporal occupancy 

datasets as inputs.  

6.5 A New Spatiotemporal Occupancy Metric: The Isovist-Minute 

Few previous studies have proposed Isovist field metrics that originate from patient 

beds. The targeted visibility study (Lu, 2011), discussed above, counted the heads of 

patient beds that were in sight of each position from the corridor, assigning this 
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characteristic to the space. Another study by Osman (2016), defined Isovist-connectivity 

as the properties of each patient bed’s Isovist fields, such as its internal connectivity, 

determining their influence on patient’s outcomes, such as mortality rates. Both metrics 

were founded on three geometrical – and static – parameters of space: visual fields, 

positions of the beds, and connectivity. These studies, however, failed to include 

occupancy data; which left no information about actual surveillance. Therefore, importing 

actual spatiotemporal occupancy data will determine the transformation of static-

geometric metrics into a parametric spatiotemporal occupancy-related metric of actual 

surveillance, which would vary depending on the values of the time- and position-

parameters. Consequently, this research proposes a new spatiotemporal occupancy-

related metric for measuring the performance of the occupied space: the Isovist-minute.  

Isovist-Minute 

An Isovist-minute of a target is defined as the visibility of a specific target during a 

determined time frame. In a hospital, for instance, it can be computed for a patient’s 

head, where it measures the amount of visual surveillance of a patient’s bed from the 

corresponding target’s Isovist areas in the corridor (see figure 6.4). The Isovist-minute is 

calculated based on the actual occupancy data collected automatically and corrected 

statistically as described in the previous chapter, measuring the real and probable 

surveillance of a hospitalized patient.  

The Isovist-minute of the patient, or “target,” measures the time that the head of a 

patient’s bed is within any observer’s sight or probable sight. This probability takes into 

account the statistical accuracy and precision corrections presented in the previous 

chapter, as well as the probable direction of the head of the occupant. The Isovist-

minute output is a value that represents the total time during which the target was 

observed or potentially observed. Computationally, the target could be defined as a 

person or as an inanimate object. The Isovist-minute can hold several sub-metrics, 

depending on the emphasis of the key performance indicators. Among these are 

“temporal Isovist-minute fields,” the “Isovist-minute’s frequency,” and its “intensity.” 
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These three metrics are calculated utilizing the occupancy grid approach, with both 

values and visualizations as outputs (figure 6-2).  

 

 
 

Figure 6-8. UML Activity Diagram that represents the Isovist-minute methods. It shows the input 
(spatiotemporal occupancy), the possible queries for computation, the three methods proposed, and their 

outputs as values, as well as visualizations. 

 
“Temporal Isovist-minute fields” are essentially the analyses of the variations in 

Isovist-minutes over time. This metric collects the Isovist-minute information by time 

frames (seconds or minutes), allowing for measurement of the Isovist-minute fields’ 

properties, such as the spatiotemporal distribution of visual fields, calculating their 

variation over time.  The “Isovist-minute’s frequency” refers to the spacing between the 

occurrence of events over a period of time, while the “Isovist-minute’s intensity” factor is 

the distance between the patient and the observer, calculated by dividing the Isovist-

minute by the distance in cell units. This latest Isovist intensity definition was first 

addressed by Do and Gross (1997) with the goal of modeling and analyzing spatial 

characteristics of layouts. Do and Gross created four computational methods of 

analyses, each addressing different aspects of spatial analysis, to support architectural 

design in terms of spatial perception, i.e., enclosure, Isoview, point light simulation, and 

shadow casting Point-light and shadow-casting. In particular, these are two algorithms 
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that calculate the intensity of the Isovist field, which varies depending on the distance 

from the vantage point.  

 

Isovist-Minute Implementation 

Existing methods of spatial analyses have been constructed using different 

implementation approaches that influence the results of the analyses in terms of values, 

but more importantly, in terms of the underlying architectural concepts that they describe 

(Turner and Penn, 1999; Turner, 2001; Turner, Doxa, O’Sullivan and Penn, 2001). 

Visibility has been mathematically described and computationally implemented from two 

approaches, as geometry and as a graph. Geometrical visibility is a mathematical 

abstraction of real-life visibility, which occurs between two points in the Euclidean space. 

In contrast, a visibility graph is an abstraction of relationships of intervisibility between 

nodes (Braaksma and Cook, 1980; Turner 2001). Each node represents a location in 

space, and each edge connecting two nodes, a visible connection. To simplify 

geometrical visibility calculation, and depending on the conceptual description of space, 

several authors have proposed calculating visibility fields as an approximation of space 

in a visibility graph, using a bi-directional adjacency matrix data structure, in which each 

edge represents mutually visible locations, generating an array of relations from each 

node.  

Computationally, the Isovist-minute is calculated as a sub-set of a 3D occupancy 

array of cells containing positioning and time information (x,y,t). This approach is based 

on both the ease of the computational resources required and the MATLAB language, 

which has characteristics that make it compatible with the description of the space as an 

occupancy grid. The calculation of an Isovist-minute requires a description of the 

patient’s fields of view and of the spatiotemporal information occurring inside those 

fields. The first step is to describe the patient’s visual fields – or Isovist-fields – from the 

head of each patient’s bed, and the next step is to define the sub-set of occupancy cells 

that belong to each particular Isovist-field. The description of the patient’s Isovist-fields 
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results in the generation of several CSV files, each composed of a list of cell coordinates 

that belong to the corresponding Isovist-field (figure 6-9). The patient’s Isovist-field, as 

calculated from the head of his or her bed, is defined as the maximum field of vision 

generated from the upper-third of the patient’s bed, as shown in figure 6-10. While an 

occupancy cell’s center belongs inside the Isovist-field area, the occupancy cell itself 

belongs to the Isovist-field list. Some cells, as expected, belong to several Isovist-fields 

(Figure 6-9). In this research, every hospitalization wing contains 22 rooms, as shown in 

figure 6.5 with one or two beds per room positioned either at the center of the wall (m), 

the corridor (c) or the window (w), thereby creating several potential Isovist areas. Once 

the Isovist-fields are created from the head of each patient’s bed, the array of cells that 

belong to that Isovist is stored as an independent CSV file containing an array of cells 

(x,y), named as “Floor level,” “Room number,” and “Position of the bed” (i.e. 7N-07-w).  

 

Figure 6-9. Array of rooms along the corridor, starting at the entrance. 

 

 

Figure 6-10. Isovist areas from patient’s head of beds 6-center and 16-corridor. 
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Figure 6-11. Heat map of occupied cells, indicating length of stay, in the Isovist area of patient’s bed 6-
center. 

 
The computation of the Isovist-minute requires importing the spatiotemporal 

occupancy data and superimposing it over the patient’s Isovist-fields, resulting in a 

number of spatiotemporal occupancy data subsets occurring inside each of the patient’s 

Isovist-fields. Once generated, these cell subsets are used as the main input to create 

the Isovist-minute for each scenario. The result is a global measure of the potential 

surveillance under the current conditions; however, as visual fields have a theoretically 

inherent direction, implementing directed fields of vision will provide more resolution to 

the Isovist-minute results. To determine Isovist-field direction, it is key to define a second 

level of occupancy subsets addressing directional occupancy along the corridor, which 

will determine the Isovist-minutes that are meaningful in a particular context. For 

example, as the patient’s bed in room number 8 is facing north (Figure 6-10), and the 

occupants are walking towards the nurse station, the actual sub-set of visual 

surveillance is very meaningful, showing that the very high probabilities of occupancy 

facing the head of the bed (compared to the opposite scenario when people were 

walking in the away from the nurse station, or are facing another direction, such as 

looking down under a cart). These directional Isovist-minutes are also calculated during 

one-hour periods of time, and include not only on the programmed rounds by medical 

staff and nurses, but also any inadvertent surveillance from the corridor areas. 

 

Isovist-minute Scenarios  

As addressed above, the Isovist-minute outputs depend on the predominant 

activity performed during a specific period of time, as demonstrated by the nine scenario 

characterizations presented below (Figures 6-12 to 6-19). 
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Figure 6-12.  (6SN-00am) Isovist Bed-12-corridor; Heat map of Isovist-minute by cell. 

  

Figure 6-13. (6SN-00am) Isovist Bed-8-center; Heat map of Isovist-minute by cell. 

  

Figure 6-14. (6SN-00am) Isovist Bed-8-window; Heat map of Isovist-minute by cell. 

  

Figure 6-15. (7N-8am) Isovist Bed-7-center; Heat map of Isovist-minute by cell. 

 
Figure 6-16.  (7N-8am) Isovist Bed-7-window; Heat map of Isovist-minute by cell. 

 

  

Figure 6-17(7N-8am) Isovist-minute bed-16- corridor; Heat map of Isovist-minute by cell. 

 

 

Figure 6-18.  (7N-4pm) Isovist-minute bed-16- corridor; Heat map of Isovist-minute by cell. 

 

 

Figure 6-19.  (7N-00am) Isovist-minute bed-16- corridor; Heat map of Isovist-minute by cell. 
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Table 6.2: Occupancy count results obtained from IsovistCount.m Matlab file, which counts the number of 
events per cell; total Isovist-minute in minutes, per hour, per scenario. 
 

 Occupancy count Isovist-minute per hour 
Bed-12-corridor (6SN-00am) 1290 21.5 min. 
Bed-8-center (6SN-00am) 180 3 min 
Bed-8-window (6SN-00am) 220 3.7 min 
Bed-7-center (7N-8am) 610 10.2 min 
Bed-7-window (7N-8am) 640 10.7 min. 
Bed-16-corridor (7N-8am) 2220 37 min. 
Bed-16-corridor (7N-4pm) 540 9 min. 
Bed-16-corridor (7N-00am) 1360 22.67 min. 

 

The Isovist-minute visualization outcomes were expected to predict that bigger 

Isovist-minutes would result from the larger Isovist areas. Additionally, the visualizations 

revealed that visual surveillance for beds located in front of the nurse station, was not 

limited to evident areas in the radius of the nurse station, but instead expanded to other 

areas along the corridor. Moreover, certain patient beds including the 16-c (room 16, bed 

towards the corridor), which was somehow hidden from direct visual surveillance from 

the center of the nurse station, had a bigger Isovist area (210 sqFt. compared to 155 

sqFt.) as well as a bigger Isovist-minute (21.5 min. / 22.67 min.) than patient’s bed 12-c 

(room 12, bed towards the corridor) –which is theoretically more exposed to constant 

surveillance– when comparing both at the same hours (please see figures 6.12 and 6.19 

for details, as well as table 6.2 for results).  

In addition, directional surveillance must be taken into account in determining 

meaningful Isovist-minutes. It was expected and corroborated that at the end of each 

day, the aggregation of all spatiotemporal occupancy information would be close to 

average, including the number of occupancy inputs facing both directions along the 

corridor. The findings indicate that at 8 a.m., during the medical-round scenario, the 

patient’s beds facing south, or the entrance of the unit, had higher Isovist-minutes, 

because most people walk into the organizational wing in a northerly direction. In this 

context, even though medical rounds added exclusive surveillance-time for patients in 

each room, as the visits were sporadic the Isovist-minute per room were infrequent (one 
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per hour). In contrast, during visiting hours, nurses were mostly not present when they 

were supposed to stay primarily at the nurse station, and un-programmed casual 

surveillance came from visitors, mostly those walking towards the unit, opposite to the 

beds facing the entrance at the beginning of the visiting period and beds facing in the 

opposite direction at the end of the period.  

Practical and technical challenges 

Both conceptual challenges and challenges in implementation development 

arose at this stage of the research, evolving with each iteration. The conceptual 

challenge involved the development of meaningful analyses in the specific context of a 

healthcare building, and the implementation presented several practical and technical 

challenges.  The practical challenges concerned file management and naming; data 

management; and mapping data positioning from video to layout and to space labeling. 

The technical challenges included adding the precision error into the spatiotemporal 

occupancy data, filtering the data into meaningful subsets, scaling the temporal axis for 

the visualization to ensure the data samples were comparable, and inserting automation 

between several steps in the process. 

The volume of data necessitated that file management and naming include strict 

organization of the folders and the files within them. First, spatiotemporal occupancy 

data was exported every hour, and the exported file adopted the name of the folder 

followed by the name of the video. Parsing technique was applied to recognize 

delimiters, such as a slash (/) and a dot (.), including the name of the folder and the 

video file in the name saved into the CSV output file. Managing the set of files for 

analyses involved a semi-automated process. The code determined each sequence of 

files to analyze, but they were conceptually pre-defined by the researcher. Mapping 

occupancy data needed global and local coordinate references. First, on the videos, the 

global origin was defined in the lower left corner of the area of interest, the corridor. 

Second, in the layout, the consensus origin was located at the lower left corner of the 

corridor, when looking from the camera’s perspective. This means that in the actual 
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layout, the positioning data was mirrored in the Y axis, numbering the cells from 0 to 120 

on the Y axis in the north corridor and from 120 to 0 on the Y axis in the south corridor. 

On the X axis, however, the cells were not mirrored but rather were flipped, meaning 

that, when looking from a top view of the layout, the origin was located at the lower right 

corner in the south corridor and on the upper left corner in the north corridor. This 

procedure was implemented to maintain consistency in the labeling of space for the 

Isovists. Space labeling, however, was mirrored to the X axis as well, to maintain the 

relation of space labeling to space qualities, such as the relation to adjacent spaces and 

exterior views (see image 6.7). 

Because of the number of considerations and exceptions, the automation of the 

transition between operations presented a substantial technical challenge that was not 

completely resolved in this thesis. First, although the statistical approach was defined in 

this research, calculating and automatically adding the changing precision error into the 

spatiotemporal occupancy data required the statistical model’s implementation into 

MATLAB, since the values changed by cell, depending on the scenario conditions. 

Second, the knowledge needed to filter the data into meaningful subsets was defined 

along with the data exploration, iteratively, and it can be implemented later in a future 

research. Third, in order to visualize the data in a normalized scale, it was necessary to 

scale the Z-axis of the visualization depending on the size of the dataset (from 1:1:1/2, to 

1:1:1/30), which in turn depended on the number of people present and was recognized 

in a one-hour time period. 

Future work would include importing a set of correct files for analyses; 

implementing other versions of the Isovist-minute, such as an Isovist for each occupant, 

which would include the presence of other occupants as obstacles as well as moving 

objects, such as closing doors; recalculating the visual fields for every frame; storing 

occupancy data into a structure database for queries; exchanging data from and to the 

DepthmapX application or other CAD tools, such as Rhino; and packaging the database 
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into a stand–alone application, allowing direct interaction with universal users, although 

this could limit the type of analyses to those pre-built in the code. 

 

6.6 Conclusions 

The spatiotemporal analyses implemented in this research focused on the 

theoretical influence of organizationally scheduled activities on people’s behavior, 

confirming that the distribution of people in the space was neither homogeneous nor 

constant over time but instead depended on the activity being performed as well as the 

number of occupants in the space. Some patterns of occupancy under determined 

temporal parameters, such as the higher concentrations of occupants in specific 

locations at different times of the day, such as the higher concentration of occupants at 

the nurse station at midnight compared to the medical rounds (min.); or the higher 

concentration of occupants in the sections of corridor that are located between patients’ 

doors, during medical rounds. In both examples, the findings might seem trivial, but the 

level of spatial and temporal resolution obtained is unusual.  

The main goal of this section of the study was to find meaning for the 

spatiotemporal analyses in the context of architecture by measuring some aspects of the 

space-use. The result of the research was not on specific findings, but on the 

development of a set of spatiotemporal metrics, such as dispersion and gravitation, as 

well as a key-metric related to spatial configuration and environmental occupancy 

conditions: the Isovist-minute. In this specific research, that metric refers to a guaranteed 

minimum of patient surveillance per day, by patient room. This metric, the Isovist-minute, 

contains units of measurement that imply an area coverage during a specified period of 

time and allows for the recognition of certain parameters that affect its outcome, i.e., 

design and occupancy parameters, categorized into position of objects and proportions 

of the space, and positioning and time parameters, respectively. For example, one can 

assume that the patient’s bed located in front of the nurse station would have a major 
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and constant surveillance rate per patient. The fine-grain anayses depicted that 

depending on the hour of the day (and the programmed activity), some in-front-of-nurse 

station beds (i.e. 12c), which are expected to be highly surveilled, are less surveilled 

than other beds (i.e. 16c) during certain periods of times, such as medical rounds. 

Expanding on that example, during medical rounds, patients get at least 10.5 minutes of 

direct surveillance within the hour, besides the default visit to each patient room. 

Patients towards the entrance get the surveillance in the first third of the hour, while the 

rest of the beds get the surveillance later within the same hour. Also, as the order of the 

visits per room are determined by the diagnosis of the patient, the central rooms tend to 

get higher casual surveillance when the group of doctors is walking from one room to 

another.  

Also, the position of objects in space act either as targets for, or as obstacles to, 

impacting the shape of the visual fields will or Isovist-fields. Also, proportions will 

determine both the distances between dispersed objects or persons in space, due to 

their radius of influence or personal bubbles (Hall, 1960), as well as the architectural 

elements that will either enhance, funnel, or dissuade Isovist-fields. The position of 

people in space, combined with their length of stay in such a position and their sequence 

of positions, will be a factor that impacts the Isovist-minute in terms of the Isovist field 

(occupancy-space relationship mapped) and the duration in minutes. Design 

modifications, such as the position of the bed in a patient’s room, the size of the door 

thresholds or windows, or even changes in the hospital’s organizational performance 

can influence the spatiotemporal metric of the Isovist-minute, and, therefore, may affect 

some specific patient’s outcomes. 

Particularly, visual calculations implemented in this research assessed visibility 

from a theoretical perspective of an observer with a 180° field of vision and general 

focus Isovists. Theoretically, observers are aware of their entire surroundings (Peponis, 

1998) and vision is assumed to be horizontal at eye level, however in real life vision has 

a direction and a coverage range. Previously, it was reviewed that visual surveillance 
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from public areas covers a certain range of a patient’s global health state. Ambient 

factors, such as distance to the patient or glare coming from patient’s rooms, may allow 

observers to focus their attention on the patient’s general health status, including 

detecting falls, but such conditions may not allow the observer to detect more 

particularized symptoms, such as dehydration or fever. Therefore, Isovist-minute has 

particular implications for visual surveillance. In addition to healthcare environments, 

spatiotemporal analyses, and specifically the Isovist-minute, can be applied to retail and 

work environments, providing specific outcomes such as economic return or 

communication. Interchangeably replacing surveillance with another spatiotemporal 

metric that concerns occupancy, such as interactions, will allow for the extension of the 

list of key performance indicators to other spatial and temporal architecture aspects.  

6.7 Summary 

This chapter described four new metrics that capture distribution of people within 

a given setting both in space and over time. It further presented an empirical validation 

of methods by which these metrics can be estimated using Scene Analyses detection 

technology, combined with staistical modeling of errors. First, this chapter presented the 

modeling of spatial and spatiotemporal occupancy, focusing on the influence of the 

organizational schedule on people’s behavior. Second, it presented the resulting 

characteristics of specific sample scenarios, describing and comparing the 

spatiotemporal occupancy. And third, it presented the spatiotemporal occupancy-related 

metric that renders the relationship of spatial layout and occupancy patterns toward an 

EBD healthcare outcome, a metric called the Isovist-minute, which measures the 

probability of an individual’s surveillance in specific locations of a spatial setting, given 

certain scenario conditions, including spatial, environmental, and occupancy aspects, as 

well as programmed and actual activities.   
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  CHAPTER 7 

7. CONCLUSION 

This research focused on capturing and analyzing spatial and temporal patterns of 

human occupancy in building settings, with the purpose of determining building 

occupancy-related metrics. These occupancy metrics were associated with the 

performance of key aspects of post-occupied spaces, such as inpatient surveillance 

during a hospital stay, which was computed as the relationship of the visual field in 

conjunction with the actual occupancy. The specific goal of this research was 

determined by the relation between a selected behavioral mapping automated system – 

including all its technical specifications – and an appropriate research question that the 

selected system was capable of answering. In this case, the characteristics of the proof-

of-concept hospital scenario contributed to defining a thorough and systematic 

methodology, including precise aspects for the study of spatiotemporal occupancy 

patterns, such as automatic detection accuracy and probability. The occupancy data 

captured allowed for the analysis of spatiotemporal patterns and key assessments.  

The outcomes and contributions of this dissertation correspond to the four main 

challenges in which the research was structured. The first challenge was the 

identification of the fundamental features of behavioral mapping that were crucial for the 

analyses, traversing practical, technical and theoretical inquiries, helping to define a 

process for capturing spatiotemporal occupancy data of high temporal and spatial 

resolution. Second, once the positioning system was selected based on that interrelated 

technology-research question. Second, adopting and adapting specific spatial analysis 

techniques to recognize the features the architecture research practice care about from 

a detection perspective. The third challenge was to determine the occupancy recognition 

accuracy for the large datasets gathered. And fourth, after the occupancy data were 

obtained, the distribution of occupancy patterns in specific scenarios became the focus 

of the study, which ultimately found that these patterns depended on certain 
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programming and scheduling conditions. Also, in attempting to capture patterns of 

occupancy, the possibility of measuring their effect on specific behavioral outcomes 

became the challenge of the following stage, which outlined the Isovist-minute – a new 

spatial-behavioral metric. Each of these stages of research can be an independent 

study, yet the aim is that together they present the layout for this line of research. 

7.1 The Adoption of Scene Analyses for Determining Spatiotemporal Occupancy 

Resolution and Social Acceptance 

 
The research outcomes that correspond to this first stage, system selection, includes a 

broad survey for the selection of the data collection system appropriate for this research. 

The main finding was the bi-directional effect between the selection of the system and 

the question of interest. The nature of the research question will determine the social 

and technical aspects of the technology, which will have an impact on defining such 

question as well. For this, a parallel coordinates was plot to visualize the implications of 

the system selection on the research question.  

Previous surveys and reviews of positioning systems, which have been 

exhaustively performed from the technology perspective approximately every seven 

years, have not addressed the systems’ social aspects and implications, such as their 

potential social disruption and/or acceptance. Social acceptance of tracking and 

positioning technologies has a huge impact on the type of data possible to acquire. Also, 

social aspects are crucial when selecting a technology, especially in behavioral 

mapping, since they determine the size of the population that participates in the sample. 

If the sample is reduced or incomplete, the findings may not be generalizable. Although 

the technology with higher social acceptance usually provides greater privacy for the 

participants’ identification, it also generally includes more subjects, allowing for the 

capture of more complete and exportable data, encouraging emergent findings. And as 

noted above, the attributes of the data that a technology can capture and the research 

question to be answered are interdependent factors. Other aspects to consider are the 
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resources necessary in terms of installation, implementation, and maintenance. These 

factors will also determine the duration of the collection as well as the area of coverage. 

7.2 Positioning Techniques 

 
The outcomes at this second stage are set of techniques developed for 

spatiotemporal occupancy collection and analysis. Each technique had a set of sub-

challenges at the implementation level, providing a glimpse for future work on activity 

detection and patterns analyses, from the perspective of applied research in the field of 

architecture. 

The scene analyses in this specific case included all subjects in a certain 

distance range, capturing a spatial resolution of less than one feet and a temporal 

resolution of several frames per second, which determined the resolution of the 

spatiotemporal analyses. Additionally, aspects such as accuracy and precision played a 

principal role in the data acquisition process. The practical challenges included the 

number of cameras, each of which possessed slightly different characteristics, such as 

video size and quality, camera orientation, and vision angle. These challenges required 

setting up each corridor individually. Concepts such as “the area of interest” and the 

“object of interest,” as well as methods to systematically capture them, emerged. 

Theoretically, the training of classification models for the detection of people should be 

the same in all scenarios. However, this research showed that for each surveillance 

scenario, the levels of confidence in the classification models changed, allowing an 

opportunity for training specific datasets for particular environments, interchanging the 

“object of interest.” Computationally, the definition of object includes more than just 

physical objects. It also includes features that are important for detection of meaningful 

aspects for a research question. The object of interest could change for future research, 

having an impact on the methodology or system selection. For example, some objects 

(i.e. carts) can be tracked using sensing technologies. Therefore, create classification 

models for people or other more specifically defined “objects”, such as the persons’ role, 
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their body orientation, their body posture, or the activity they are performing during 

certain periods of time, related to the scheduled activity, are potential next steps for 

research. 

In this research and after performing several training sessions, the results 

showed much less accurate detection when using the pre-trained classification models, 

due to the number of images involved in the training, leading to the conclusion that for 

this stage of the research, the use of several approaches can help solve the challenge of 

accurate detection. The selection of the system set-up, including the possibility of adding 

extra cameras to avoid distortion and occlusion, and the ensuing technical challenges, 

including the particularized training of the classification model and the development of 

more advanced algorithms based on the environmental conditions, presented some 

solutions for this research. However, this thesis argues that since the technology and 

scenario are continuously changing, this study proposes statistical models that can help 

overcome data collection accuracy and precision errors, found on every technology. 

From the machine learning perspective, another future research direction that can 

branch from this stage is that similar pattern recognition techniques that the ones used in 

computer vision for detection could be applied to occupancy pattern learning and 

recognition in a layout, since both are based on a grid of ‘pixels’ or ‘cells’ to determine 

the “object of interest” features that are necessary to recognize. 

7.3 Determining the Accuracy and Precision of the Scene Analysis Detection 

System 

 
The third research stage proposes that probabilistic models can be used to derive 

the probability of detection of the systems, with the goal of obtaining a more reliable 

occupancy dataset. Further challenges arose in determining the accuracy and precision 

of the scene analyses system based on an understanding of the key factors that might 

influence occupancy data collection errors. The sources of these challenges were linked 

to two aspects of the behavioral mapping system selected: the environmental conditions 
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in which the system was set up, including the number and orientation of existing 

cameras and the lighting conditions, and the development level of the detection 

algorithms. A study was designed and developed specifically to determine the influence 

of Background and Activity parameters on detection, and can be described by scenario 

conditions. It helped to determine both the exact accuracy and precision and the 

boundary of an adequate expected accuracy. This approach supported the use of a 

technology under development, even though the results were not 100% accurate. The 

hypothesis for this study was that the distance from the cameras, as well as 

environmental and activity-related factors, would have a direct influence on detection 

accuracy. An increase in accuracy and precision errors was expected the further the 

distance from the camera. The study also sought to determine the combined influence of 

each factor on the accuracy errors. Because the results showed less than 50% accuracy 

in some zones of the corridors, this study also proposed a strategy to improve 

occupancy recognition by applying probabilistic models.  

The research demonstrated that distance had a non-linear but exponential impact 

on accuracy errors and a linear impact on precision in location errors. Additionally, the 

models developed for assessing the accuracy and precision of the scene analysis 

automatic detection also help us understand the sources of error that come from 

environmental conditions as well as the activity that is observed. Since lighting and 

camera conditions were predominantly constant during relatively long periods of time 

(i.e. one hour), the “activity”, the “body posture” were the main causes of errors related 

to the classification model for people detection, showing that ‘Activity Type’ and ‘Body 

Posture’ factors have high impact on occupancy detection. The organizational schedule 

will determine the probability of detecting such specific activity type, and in turn, the 

activity will determine the probability of detecting such body posture. The color of the 

cloth showed no real impact on detection, but on the classification of people’s roles. 

These findings provided valuable feedback to improve future research in the area of 

machine learning by refining the classification model training process.  
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The empirical study of errors also showed the value of developing models of 

specific scenarios. In a particular scenario, environmental conditions can be taken to be 

consistent as programmed activity. This means that apart from accidental change in 

rates of occupancy, the effect of systematically programmed activity and possible 

environmental conditions on error rates can be successfully predicted and accurate 

estimates of occupancy can be generated even when the technology or algorithms used 

to do so present errors. These in-context findings can be used as guidelines to improve 

future research in the area of machine learning algorithms development, as well as 

providing valuable feedback for refining the classification models, classification 

accuracy, errors, or other measures for the evaluation of classifiers. These findings also 

set a precedent for promoting the validation of video-based automatic detection incidents 

(Shehatta, 2008; Tsai, 2010; Sheata, 2006; Meshoui, Kardouchi, Allalim and Ait, 2011) 

such as the environmental and activity factors that could have a known influence on 

recognition probability of environmental conditions, such as glare levels, brightness and 

contrast levels or the degree of light reflection on surfaces. 

The scenarios used for the analyses in this study were primarily determined by 

environmental conditions, including the time of day and thus the activity being 

performed. The nature of a scheduled activity necessarily affected occupancy factors, 

such as occlusion, the most recognized and common factor impacting visual recognition, 

which depended primarily on the number of people present in the scene. Consequently, 

the level of occlusion varied depending on the activity scheduled and the number of 

people involved. This study determined the probability of such occlusion, by one-hour 

periods of time, creating a probabilistic model that explains the occupancy recognition 

probability depending on the activity being performed.  

Future work in this area could include developing algorithms that are adaptive to 

the expected environmental and occupancy conditions based on the architectural 

program assigned by space. Such future work would require training the algorithms to 

recognize not only the object of interest, but the context of interest, classifying all the 
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aforementioned parameters, ultimately resulting in detection algorithms that are 

meaningful in context. Also, accuracy and precision errors depend on the units of 

measurement employed. This study used pixels for spatial units and frames for temporal 

units to detect people in videos A spatial transformation matrix then transformed the 

pixels into feet to obtain real spatial accuracy and precision. The matrix was modeled in 

general, but it took into account the specific area of interest of each camera. Thus, the 

generalized transformation approach had to be tailored for each camera focus and 

angle, determining a slightly different area of interest in terms of pixels’ coordinates. The 

units of spatial and temporal occupancy were rounded to the nearest foot and to ¼ 

second, which reduced the error rates. 

This study concluded by presenting a predicted occupancy dataset, obtained by 

applying a probability detection factor based on the accuracy of a given location. 

Precision also was calculated as the distance between the real and the detected 

location, which was subtracted at each location to correct the occupancy positions 

detected. The improved occupancy datasets were later contrasted with a 100% 

confidence dataset collected manually to validate the results. These results showed 

important differences in the occupancy pattern distributions, but less varied results when 

comparing the one-hour time periods. These results suggest that, even if it is not 

possible to have a predictive model for occupancy, the underlying patterns of occupancy 

are comparable. Accuracy and Precision analyses are methods that can be adapted to 

any technology. Same probability models applied to the recognition factors could be 

applied to occupancy patterns factors in future research. 

7.4  Integrating Spatiotemporal Occupancy Analyses 

 
The selection of a strong program scenario such as a hospital provided two 

advantages. One advantage is architectural program rigidity, which allowed the 

researcher to isolate the majority of the research variables, maintaining an almost 

identical geometry in each scenario and a fixed and limited set of activity and participant 
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types. A second advantage arose from the richness of the real world scenarios, which 

forced this proof-of-concept study to include a number of unexpected variables into the 

analyses, such as the differences in occupancy outcomes based on architectural 

programs, organizational programming, or the programmed and unprogrammed 

activities that actually occurred. Compared to a simulated environment, these conditions 

provided the depth of detailed variables included in the research.  

The aim of spatiotemporal occupancy analyses is to collect datasets that provide 

answers to a range of research questions, including current state-of-the-art research and 

other studies designed to determine more specific issues with greater resolution or 

multidimensional questions. Some analyses will address global patterns of behavior in 

specific built environments, while others will specify the spatiotemporal patterns. The 

ratios between occupancy and activity type, occupancy and the occupants’ roles, and 

the occupants’ distribution in space and time also can help expand the spatiotemporal 

question categories. Suggestions for future work include the computation of the ratio 

between scheduled and unscheduled activities, including the impact of some factors, 

such as activity programming, occupancy patterns, and the probability of occupancy, to 

help researchers define more detailed inputs for occupancy simulations in strong 

building programs. Future research to acquire more extensive datasets for occupancy 

detection will impact the complexity of the occupancy simulation models, by obtaining, 

for example, the ratio between activity types, thus providing feedback to the 

organizational process as well as the geometric variations of spatial configurations. 

Occupancy simulation models can be improved by incorporating real occupancy 

parameters. For example, due to the inherent nature of the activities in a strong 

program, most of the activities are expected to occur at certain locations and hours. 

However, this spatiotemporal occupancy methodology can incorporate the frequency of 

scheduled and unscheduled activities on certain areas of the building. Although most 

activities in a strong program scenario are supposed to be scheduled, they are usually 

linked to a designated room space. Unscheduled activities primarily occur in corridors or 

other types of space that do not have a specific program formally assigned.  
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7.5 Towards Spatiotemporal Performance Metrics by Scenario 

 
Through the proposal and development of occupancy analyses for architectural 

research, this research proposes spatiotemporal analyses for building settings. These 

analyses included several stages: first, the modeling of spatial and temporal occupancy 

through the lens of organizationally scheduled and unscheduled activities; second, the 

characterization of sample scenarios by describing and comparing them; and third, the 

conception of a spatiotemporal occupancy-related metric, which measures the 

relationship of occupancy patterns and spatial configuration, with the goal of improving 

outcomes. In the case of a healthcare program, for example, an evidence-based design 

factor, such as patient surveillance, provides one important outcome that could give 

value to the built environment. In this research, the Isovist-minute mapped in a layout the 

probability of a patient’s surveillance in specific setting, given certain scenario conditions 

including spatial, environmental, and occupancy aspects, as well as programmed and 

actual activities.   

 

This research showed how dynamics measures of occupancy rates can be 

computed even when the detection systems present errors. These kinds of dynamic 

measures are particularly useful when the patterns of occupancy depend not just on 

spatial layout and program but also on activity programming and occupancy rate itself. 

Higher concentrations of occupants at different times of the day, at different areas, 

showed that the aggregated results presented in previous research tended to show only 

general patterns of occupancy distribution, generalizing the findings. This research does 

not present any specific behavioral finding due to the size of the sample. The main goal 

was to expand spatial analyses toward spatiotemporal analyses, adding value and 

meaning to the architecture evaluations, developing key metrics based on the relation of 

both spatial configuration and occupancy, with the objective of demonstrating the value 

of measuring certain aspects of the use of the space, such as a guaranteed minimum of 

patient surveillance per minute of occupancy. This metric, called the Isovist-minute, 
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study the relationship among spatial variables, occupancy, and time; and it is calculated 

based on an Isovist or field-of-vision, activated during a specific period of time. These 

Isovist-minute are impacted by spatial and temporal parameters. Spatial parameters 

include the location of targets –such as the position and orientation of the head of an 

inpatient’s bed–, the position of obstacles that could interfere with visual fields –such as 

medicine carts or closed doors– and the distance between the origin and target of the 

visual field. Temporal parameters that impact the Isovist-minute include the duration in 

time that people occupy a certain position, and the activity scheduled for that period of 

time.  

Although this particular research assessed visibility more theoretically – as a proof-

of-concept study– considering a horizontal 180° vision range, with no specific focus, 

these factors can be updated later for a more realistic approach, including aspects other 

than visual surveillance. Design parameters such as the position and orientation of 

patient beds, the dimensions of patient room thresholds and windows, and policies 

regarding visual connectivity can influence the Isovist-minute outcome and, in 

consequence, may have some correlation with patient health related outcomes such as 

reducing falls or reducing the length of a patient’s stay.   

This research approach shows that useful spatiotemporal metrics can be 

successfully developed even when the detection systems are prone to errors. This proof-

of-concept study prepared the platform for using spatiotemporal metrics in architecture, 

at the post-occupancy evaluation stage. The system and the outcomes can be 

interchanged to answer a variety of research question. Hence, for example, when a 

more accurate location systems become available –even when it presents errors– Scene 

Analysis can be replaced, allowing for continuous growth and expansion of this area of 

research at two fronts: technological development and architectural assessment. 

However, each change brings with it several implications. For positioning system 

selection, for example, the replacement of a scene analyses system with a tracking 

system could impact social acceptance as well as the type of data obtained, which, in 
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turn, could directly affect the type of calculable metrics achieved. Also, for architectural 

assessments goals, for example, applying the Isovist-minute to retail environments could 

provide an economic return as a measurable outcome. The surveillance-minute outcome 

could be replaced, for example, by the interactions-minute outcome, measuring the 

spatiotemporal distribution of communication in a workplace environment, thus 

expanding the range of spatiotemporal metrics in architectural assessments. In 

conclusion, spatiotemporal occupancy data collection and analyses methods endorse 

the integration of a temporal dimension into architectural research, proposing a branch 

of research towards the study of the relationship of spaces and their temporal occupancy 

dynamics.  
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