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SUMMARY

Analysis and modeling of the large-scale high-dimensional data is very important. This

thesis focuses on modeling the high-dimensional data obtained from sensors for assess-

ment of system performance, early detection of system anomalies, intelligent sampling and

sensing for data collection and decision making to achieve optimal system performance.

The developed methodology should be efficient and scalable and can be applied for data

with complex heterogeneous data structure to extract information or useful features.

The research topic that Chapter 3 focuses on is to detect anomalies from high-dimensional

functional data. We first study the problem of detecting anomaly in high-dimensional spa-

tial profile in Chapter 3. In various manufacturing applications such as steel, composites,

and textile production, anomaly detection in noisy images is of special importance. Al-

though there are several methods for image denoising and anomaly detection, most of these

perform denoising and detection sequentially, which affects detection accuracy and effi-

ciency. Additionally, the low computational speed of some of these methods is a limitation

for real-time inspection. In Chapter 3, we develop a novel methodology for anomaly de-

tection in noisy images with smooth backgrounds. The proposed method, named smooth-

sparse decomposition, exploits regularized high-dimensional regression to decompose an

image and separate anomalous regions by solving a large-scale optimization problem. To

enable the proposed method for real-time implementation, a fast algorithm for solving the

optimization model is proposed. Using simulations and a case study, we evaluate the per-

formance of the proposed method and compare it with existing methods. Numerical results

demonstrate the superiority of the proposed method in terms of the detection accuracy as

well as computation time.

In Chapter 4, we extend this to spatial-temporal functional data. High dimensional data

monitoring and diagnosis has recently attracted increasing attention among researchers as

well as practitioners. However, existing process monitoring methods fail to fully utilize the

xiv



information of high dimensional data streams due to their complex characteristics includ-

ing the large dimensionality, spatio-temporal correlation structure, and non-stationarity. In

Chapter 4, we propose a novel process monitoring methodology for high-dimensional data

streams including profiles and images that can effectively address foregoing challenges.

We introduce spatio-temporal smooth sparse decomposition (ST-SSD), which serves as a

dimension reduction and denoising technique by decomposing the original tensor into the

functional mean, sparse anomalies, and random noises. ST-SSD is followed by a sequen-

tial likelihood ratio test on extracted anomalies for process monitoring. To enable real-time

implementation of the proposed methodology, recursive estimation procedures for ST-SSD

are developed. ST-SSD also provides useful diagnostics information about the location of

change in the functional mean. The proposed methodology is validated through various

simulations and real case studies.

In Chapter 5, we focus on the adaptive sampling for high-dimensional functional data.

In point-based sensing systems such as coordinate measuring machines (CMM) and laser

ultrasonics where complete sensing is impractical due to the high sensing time and cost,

adaptive sensing through a systematic exploration is vital for online inspection and anomaly

detection. Most of existing sequential sampling methodologies focus on reducing the over-

all fitting error for the entire sampling space. However, in many anomaly detection applica-

tions, the main goal is to accurately detect and estimate sparse anomalous regions. In Chap-

ter 5, we develop a novel framework named Adaptive Kernelized Maximum-Minimum

Distance (AKM

2

D) to speed up the inspection and anomaly detection process through an

intelligent sequential sampling scheme integrated with fast estimation and detection. The

proposed method balances the sampling efforts between the space filling sampling (ex-

ploration) and focused sampling near the anomalous region (exploitation). The proposed

methodology is validated by conducting simulations and a case study of anomaly detection

in composite sheets using a guided wave test.

Chapter 6 explores the penalized tensor regression to model the tensor response data

xv



with the process variables. This method is inspired by the advance 3D metrology tech-

nologies such as Coordinate Measuring Machine (CMM) or laser 3D scanners. These

techniques has facilitated the collection of massive point cloud data, beneficial for pro-

cess monitoring, control and optimization. However, due to their high dimensionality and

structure complexity, modeling and analysis of point clouds is a challenge. In Chapter

6, we represent point clouds using tensors and propose regularized tucker decomposition

and regularized tensor regression to model the variational patterns of point clouds and link

them to process variables. The performance of the proposed method is evaluated through

simulation and a real case study of turning process optimization.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Research Background

Nowadays most manufacturing processes are instrumented with sensing systems comprised

of hundreds of sensors to monitor process performance and product quality. The low im-

plementation cost, high acquisition rate, and high variety of such sensing systems lead

to rich data streams that provide distinctive opportunities for performance improvement.

Real-time process monitoring and control, accurate fault diagnosis, and online product in-

spection are among the benefits that can be gained from effective modeling and analysis of

streaming data. However, the complex characteristics of these data streams pose significant

analytical challenges yet to be addressed. Common characteristics of these data streams in-

clude 1) High variety: Various types of sensors generate a high variety of data streams,

including profiles or waveform signals (e.g. an exerted force profile during a forging oper-

ation [1]), images (e.g. an image of a bar surface after rolling [2]), and videos (e.g. a video

of a industrial flame in steel tube manufacturing [3]); 2) High dimensionality: A typical

image used for surface inspection is on the order of 1M pixels [2]; 3) High velocity: In

recent years, the speed of data collection has significantly increased so that it can keep up

with almost any production rate. For example, a commercially available ultrasonic sensor

can easily record data at the rate of 1KHz, and a high-speed industrial camera is capable

of scanning a product surface with the rate of 80 million pixels per second or faster [2]; 4)

Spatial and temporal structure: Another layer of complexity arises because of the spatio-

temporal structure of streaming data. Data points in a profile or pixels within an image are

spatially correlated (e.g. neighbor pixels often exhibit high correlations) and correspond-

ing data points or pixels across sequential samples are often temporally correlated with

1



non-stationary behavior.

1.2 Specific Research Topics

1.2.1 Anomaly Detection for High-dimensional Functional Profiles

Image is one of the most popular examlpe of the high-dimensional functional data. Image

sensing systems have been widely deployed in a variety of manufacturing processes for

online process monitoring and fault diagnosis. The reasons for this range from their low

implementation cost and high acquisition rate of image sensors to the rich process infor-

mation they provide. One of the main applications of these systems is real-time product

inspection in which a snapshot of a product or part is analyzed to detect defects or anoma-

lies. One example is in continuous casting manufacturing where molten metal is solidified

into a semi-finished billet used in the subsequent rolling process. To inspect the quality

of billets and detect anomalies on their surfaces, a vision sensing system is set up to take

snapshots of billets at short time intervals. A sample of the surface image with a vertical

curved line defect is shown in Figure 1.1. Considering the high speed of production, an

automatic, quick, and accurate image analysis technique is crucial to an effective quality

inspection and anomaly detection system.

Another example of image-based quality inspection, as shown in Figure 1.2, is in the

photoelasticity test [4]. The photoelasticity test is a non-destructive evaluation method used

for stress and strain analysis of translucent parts or material. The output is often presented

by a colormap in which regions with high-tensile stress, often associated with anomalies,

are shown by warm colors. The stress maps of a silicon wafer sample and a composite

laminate with surface indentation are shown in Figure 1.2a and Figure 1.2b, respectively.

Other applications where image-based inspection and anomaly detection have been used

include the rolling process [2], composite material fabrication [5], liquid crystal display

manufacturing [6], fabric and textile manufacturing [7], and structural health monitoring

[8], to name a few. Although anomalous regions are normally clear for human inspection,

2



Figure 1.1: A sample image for online surface inspection in rolling system
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Figure 1.2: Examples of stress maps in photoelasticity experiment

developing an automatic algorithm that can accurately detect and separate these regions

from the image background in real time is imperative for effective process monitoring.

In Chapter 3, we propose an accurate and fast method for image-based anomaly detec-

tion that overcomes the drawbacks of existing two-step methods. Our method integrates

smoothing and anomaly detection tasks into one step through a novel smooth-sparse de-

composition (SSD) approach. SSD decomposes an image into three components: namely,

the smooth image background, the sparse anomalous regions, and the random noises, as

illustrated in Figure 1.3. In addition to anomaly detection, SSD helps retrieve an image

3



Figure 1.3: Decomposition of image to background, defect, and noise

by removing anomalies and random noises. SSD is developed based on the premise that

the image background is smooth and anomalous regions are sparse or can be expressed by

sparse bases. Decomposition is achieved by constructing a penalized non-parametric re-

gression model that enforces background smoothness and anomaly sparsity through penalty

terms added to the loss function. In order to estimate the parameters of the regression model

and perform the decomposition in real-time, we propose efficient optimization algorithms.

1.2.2 Anomaly Detection for High-Dimensional (HD) Functional Data Streams with Smooth

Spatial-temporal Structures

We then extend the anomaly detection for HD functional/spatial data to HD spatial-temporal

data streams. Examples of such high dimensional (HD) data are shown in Figure 1.4. In

Figure 1.4a, a sample of a bar surface used for monitoring of a rolling process is shown

[2]. In the second example, shown in Figure 1.4b, a sequence of solar images captured by

a satellite is used to monitor solar activities and detect solar flares. Figure 1.4c shows a

4



sample of normal and faulty multi-channel tonnage profiles used for monitoring a forging

process [1]. As can be seen from the figures and clips, an in-control HD data stream can

typically be represented by a functional mean with a smooth spatial structure that gradually

changes over time. However, this gradual change manifests inherent dynamics of the pro-

cess and should not be considered as an out-of-control situation. Anomalies, on the other

hand, are in the form of abrupt changes with a spatio-temporal structure different from the

functional mean. The smooth temporal change of the functional mean may significantly

increase the false alarm rate of a monitoring procedure if not appropriately modeled. This

makes monitoring of HD data streams even more challenging. Most of existing HD moni-

toring methods fail to model the temporal trend of the functional mean, and only focus on

change detection by assuming that the in-control functional mean is constant over time.

The Chapter 4 develops a new scalable spatio-temporal methodology for real-time mon-

itoring and diagnosis of HD high-velocity streaming functional data with time-varying

means. This methodology is also capable of identifying the location of the change, which

is important for diagnosis. Our proposed methodology is inspired by the recent develop-

ment of smooth-sparse decomposition (SSD) for anomaly detection in images [9]. SSD

can separate anomalies from the image background by utilizing the spatial structure of an

image. The key idea is to extend the SSD methodology so that it can incorporate tem-

poral information of an HD data stream in addition to the spatial information of a single

sample. However, this extension is nontrivial because adding the time dimension signifi-

cantly increases the dimensionality of the problem, given the high rate data acquisition. In

Chapeter 3.2, we begin with extending the SSD method to spatio-temporal SSD so it can

include temporal information and model smooth temporal trend of a data stream. Assuming

that the functional mean of the data stream is spatially and temporally smooth and process

changes/anomalies are non-smooth and sparse in a certain basis representation, our pro-

posed spatio-temporal SSD decomposes an HD data stream into a smooth spatio-temporal

functional mean, sparse anomalous features and random noises. This model serves as a
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(c) Tonnage signals in a forging process

Figure 1.4: Example of HD streaming data with anomalies

dimension reduction technique, which reduces the HD data stream to a small set of fea-

tures. We then develop recursive estimation procedures that significantly reduce the com-

putational complexity and enable the real-time implementation of the method. Finally,

we combine the proposed model with a likelihood-ratio test (LRT) to monitor the process

based on the detected anomalies/features.
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1.2.3 An Adaptive Framework for Online Sensing and Anomaly Detection

In metrology and non-destructive evaluation (NDE), various point-based sensing systems

are used for quality inspection and anomaly detection. Examples include, touch-probe

coordinate measuring machines (CMM) used for measuring the dimension accuracy [10],

and non-destructive methods such as guided wave-field tests (GWT) [11] and laser ul-

trasonics [12], utilized for defect detection and quantification in composite sheets. Most

point-based sensing systems are only capable of measuring one point at a time, result-

ing in a time-consuming procedure not scalable to online inspection of large areas. For

example, using a touch-probe CMM, it may take more than eight hours to measure one

typical batch of wafers that includes 400 wafers of 11” diameters [13]. Also, using GWT,

the high-resolution inspection of a composite laminate of size 1m2 may take up to four

hours [14]. However, due to the fact that anomalies are often clustered and sparse, one

can use a sequential and adaptive sampling strategy to reduce the measurement time by

reducing the number of sampled points. Therefore, the objective of the Chapter 5 is to

propose a new adaptive sensing framework along with estimation procedures for online

anomaly detection. The immediate benefit of the proposed framework is to help scale up

point-based sensing methods so that they can be used for in-situ inspection. An effective

adaptive sensing strategy should consist of two major elements: First, it should randomly

search the entire space (exploration) to spot anomalous regions and recover the functional

mean; and second it should perform focused sampling on areas near the anomalous re-

gion (exploitation) to determine the size and the shape of anomalies. To achieve this, the

following two challenges should be addressed: 1) how to intelligently decide on the loca-

tion of the next sampled point; and 2) how to estimate anomalous regions as well as the

functional mean online based on the sparsely sampled points. In Chapter 5, we will ad-

dress the first challenge by proposing a new sensing strategy named Adaptive Kernelized

Maximum Minimum-Distance (AKM

2

D) combining the computer design of experiment

approach for the random exploration of the entire space and the Hilbert Kernel approach
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[15] for the focused sampling in anomalous regions (exploitation). To address the sec-

ond challenge, we propose a modeling framework based on robust kernel regression for

estimating the background (profile mean) and sparse kernel regression for estimating and

separating anomalies. In order to perform both estimation and adaptive measurement in

real-time, we also propose efficient optimization algorithms.

1.2.4 Modeling the High-dimensional Structured Point Cloud with Process Variables

Nowadays, a variety of products with complex shape and geometry can be manufactured

due to the advancement of manufacturing technologies such as addictive manufacturing

[16]. However, due to the variability of the manufacturing process, the actual dimensions

and geometry may deviate from its ideal or nominal shape [17]. Therefore, finding the

relationship of the 3D geometry of produced parts with the process variables and machine

settings is vital for process modeling and optimization. Modern sensing technology enables

fast and accurate measurement of parts geometry and dimensions [18]. For example, touch-

probe Coordinate Measuring Machines (CMM) is capable of measuring the 3D geometry of

parts within only a few minutes [10]; recent optical systems like laser scanners are capable

of measuring complex geometries with high-sampling frequency (ranging from 10 to 500

KHz) within seconds [19]. Most 3D metrology technologies share a similar measurement

mechanism in which the actual coordinates of points-of-interest on the surface of an object

is measured and stored [20]. This mechanism results in a set of point in a 3D space, referred

to as a point cloud [21]. In most 3D metrology systems, the points-of-interests are defined

on a pre-specified grid. In this chapter, we refer to this type of data as structured point-

cloud, commonly found in dimensional metrology [22].

The objective of Chapter 6 is to develop a tensor regression framework to model a tensor

response as a function of some scalar predictors. To achieve this, we propose to represent

the response tensor on a set of basis which helps significantly reduce the dimensionality

and consequently facilities the parameter estimation. For the basis selection, we will intro-
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Figure 1.5: Examples of cylindrical surface in 9 different settings

duce two frameworks, namely the Regularized Tucker Decomposition Regression (RTDR)

and Regularized Tensor Regression (RTR). For RTDR, we will learn the basis from the

data directly by Regularized Tucker Decomposition. It is worth noting that the proposed

Regularized Tucker Decomposition can extract useful variational patterns of the tensor re-

sponse, which is useful not only for regression analysis but also in other applications such

as fault identification and diagnosis. For RTR, we project the response tensor on a set of

pre-defined basis such as Splines with roughness penalization to control the smoothness of

the estimated tensor response.

1.3 Thesis Organization

Thesis is organized as follows: Chapter 2 reviews existing literature pertaining to several

research areas: image based anomaly detection, monitoring of HD functional data stream,

adaptive sampling strategy for HD data, and HD structured point cloud modeling. Chapter

3 introduces the proposed one-step framework that can identify anomaly from spatial HD

functional data Section 4 extends this framework to dynamic HD functional data stream.

9



Chapter 5 describes the proposed adaptive sampling strategy that balances exploration of

the entire sampling space and focus sampling near the anomalous regions. Chapter 6 intro-

duces the proposed regularized tensor regression to model the HD structured point cloud

with process variables. Chapter 7 summarizes the thesis and introduces future research

directions.
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CHAPTER 2

LITERATURE REVIEW

The high dimensionality and complex spatial structure of images coupled with measure-

ment noises that reduce contrast between anomalies and the background pose significant

challenges in developing real-time anomaly detection methods. Owing to its importance,

anomaly detection in images has been extensively studied in the literature, and consider-

able research has been conducted to address these challenges. Most of existing image-based

anomaly detection methods follow a common two-step procedure in which first, a smooth-

ing or denoising method such as spline [23] or wavelet analysis [24] is applied to reduce

image noises, then a detection algorithm is exploited to identify anomalous regions. The

major problem of the two-step approach is that the smoothing step often blurs the sharp

boundaries of anomalous regions, which in turn makes the detection step challenging [25].

[26] and [27] developed edge-preserved smoothing techniques to preserve the boundary

structure applying the smoothing algorithm. Although effective methods for denoising of

images with a general background structure, they should be followed by an anomaly de-

tection or image segmentation algorithm to identify anomalous regions. This may increase

the analysis time.

Related to anomaly detection in single image or functional profile, considerable re-

search has been conducted on anomaly detection in single image observation, most of

which is based on a two-step approach comprised of denoising and detection. For the de-

noising step, smoothing methods such as spline regression [23], B-Spline [28], Penalized

Spline [29], kernel smoothing [30], and various filtering techniques [31] have been widely

used. To preserve the boundaries of anomalous regions while applying smoothing, [26] and

[27] developed edge-preserved smoothing techniques by assigning small weights to the ob-

servations located on either side of the boundary. In the area of detection, a considerable
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body of research focuses on anomaly detection in images with patterned background - for

examples, images taken from textured materials. Most methods in this category rely upon

identifying the areas that differ from the background pattern. Examples include analysis

of variance [6], the filter technique [32], SVD decomposition [33], wavelet transformation

[5], Fourier transformation [34], etc. These methods, however, are not effective when the

background of an image is smooth.

[35] categorized current anomaly detection methods, applicable to images with smooth

backgrounds, into three categories: edged-based, thresholding-based, region-based meth-

ods. Edge-based methods focus on locating sharp discontinuities in the image. Most tra-

ditional edge detection methods are based on gradient estimation, i.e., the estimation of

first or second order derivatives of the image intensity function. For example, Sobel [36]

and Prewitt [37] are the two widely used first-order derivative operators for edge detection.

Laplacian operator or Laplacian of Gaussianedge detector [38] are second-order derivative

operators for edge detection. However, gradient-based edge detection methods are not ro-

bust to noise because the edge detection mask is usually small. To overcome this problem,

[39] proposed jump regression that utilizes local surface information. Jump regression en-

ables precise estimation of jump locations or edges on a smooth background in a noisy

setting [39, 26]. The output of edge detection algorithms are often discontinuous pixels,

which may not form a closed-boundary region or continuous curves. Consequently, most

edge-based methods require a post-processing step such as edge linking or filling algorithm

to link them for creating closed-boundary regions and fill the area inside these regions. The

main problem of edge-based methods is that even after applying edge-linking algorithms,

the detected edges still do not form a closed region [35]. To address this, [40] devel-

oped a curve estimation algorithm to effectively link scattered pixels with a closed curve.

[41] also developed a local non-parametric segmentation methods for spotted microarray

images. [42] developed a multi-stage semi-automated procedure to extract the shape infor-

mation of nanoparticles based on the boundary points from edge detectors. However, these

12



methods are case-specific (i.e. for spotted microarray image detection and nanoparticles

detection) and may not work well for other types of anomalies such as scattered or line

defects. Moreover, they require information of the centroid location, which, in some cases,

may be difficult to find or estimate. Computational speed is another issue because these

methods often entail multiple processing steps.

Unlike edge-based methods, thresholding-based methods utilize the intensity differ-

ence between anomalies and the background to find closed-boundary regions directly. The

thresholding algorithm can be further classified into two categories: global thresholding

and local thresholding. Otsu’s method [43] is one of the global thresholding methods that

uses a single value obtained by minimizing in-class variation to globally threshold the

entire image and produce a binary map for anomalous regions. However, as pointed by

[44], global thresholding algorithms do not perform well when large intensity variation

exists in the image background. On the contrary, local thresholding methods (e.g., [45],

and [46]) divide an image into small regions and then perform the thresholding locally in

each region. There are two main problems with local thresholding methods: First, in non-

defective regions, local thresholding algorithms still pick a threshold value, which leads to

false detection. Second, anomalous regions are often larger than the thresholding window,

which leads to inconsistent thresholding of the anomalous region.

Similar like local thresholding methods, region-based methods give closed-boundary

regions. For example, the “seeded region growing” method [47] starts from a small ini-

tial region (pixels) and grows it by exploring neighbor pixels and adding pixels similar

to the initial ones. However, region-based algorithms often require a small set of initial

anomalous pixels from which the region can be grown. Consequently, when lacking the lo-

cation information of anomalies or in the case of multiple anomalous regions, this method

is not practical. Extended-maxima transformation [48] is one of the morphological filter-

ing methods that can be used for anomaly detection . This method searches for connected

pixels with a constant intensity that are distinguished from the background by an exter-
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nal boundarywith a different intensity. However, this method does not take advantage of

the smooth structure of the background and anomalies, thus may fail when the intensity

contrast between anomalies and the background is small.

2.1 Monitoring and Diagnosis of High-dimensional Streaming Functional Data

There is a considerable body of literature on monitoring and diagnosis of HD streaming

data. Current research in this area can be classified into three groups: monitoring methods

for HD multivariate data streams, profile monitoring techniques, and monitoring methods

based on dimension reduction. In the first group, HD data are treated as multiple univariate

data streams. For example a profile stream with a length of 200 generates 200 individual

data streams. Under the assumption that data streams are independent, [49] proposed a

monitoring scheme based on the sum of the local CUSUM statistics for individual streams.

[50] extended this method and developed an adaptive sensing scheme assuming that only

partial observations are available. [51] developed a powerful goodness-of-fit test for moni-

toring independent HD data streams. However, these methods assume that the data streams

are independent and therefore, ignore their temporal and spatial structures. To monitor

univariate data streams with a temporal trend, [52] and [53] combined nonparametric re-

gression with longitudinal modeling techniques. However, they did not consider the spatial

structure of the functional mean and anomalies. The literature on nonlinear profile monitor-

ing is rich, which includes various parametric and nonparametric methods. For example,

for monitoring smooth profiles, there are various nonparametric methods based on local

kernel regression [54, 55] and splines [56]. [57] used wavelets to model and monitor non-

smooth profiles. These methods, however, are not applicable to profiles with time-varying

means. Moreover, most of these methods are specifically designed for profile motioning,

and their generalization to image and video streams is nontrivial. Among the dimension

reduction approaches, principal component analysis (PCA) is the most popular method for

HD data monitoring because of its simplicity, scalability, and data compression capability.
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For example, [58] used PCA to reduce the dimensionality of streaming data and constructed

T 2 and Q charts to monitor extracted features and residuals, respectively. [59] proposed a

monitoring approach for multichannel signals by combining multivariate functional PCA

and change-point models. [3] developed a tensor-based principal component analysis that

can model both the spatial and spectral structures of an image sequence. [60] proposed a

multi-resolution PCA for profile monitoring by integrating PCA with wavelets. The main

drawback of PCA-based methods is that they cannot be directly used for non-stationary

data streams with a time-varying mean. To address the drawbacks of existing methods, we

propose a new spatio-temporal smooth sparse decomposition for monitoring and diagnosis

of HD data streams.

2.2 Adaptive Sampling and Sensing for HD spatial profiles

Existing adaptive sampling/sensing strategies in the literature can be classified into three

groups: the multi-resolution grid strategy, sequential design of experiments (SDOE), and

representative points selection. The multi-resolution grid sensing has been widely used

in practice. It begins with sensing over a coarse (low-resolution) grid to estimate the un-

derlying functional mean (e.g. the image background in 2D measurements) and find the

rough locations of anomalies. Then, sensing is continued over a finer (high-resolution)

grids around the identified anomalies to estimate the anomaly shape and size. The per-

formance of this method depends on the predefined size of fine grids, which should be

specified based on the size and shape of anomalies. Since such information may not be

available in advance, this method may result in either over-sampling or poor anomaly de-

tection caused by under-sampling. In the SDOE class, [61] classified current sequential

design of experiment methods into model-based and distance-based (space-filling) depend-

ing on the criterion defined for the sequential selection of the sampled points. Model-based

methods include maximizing the expected improvement criterion [62, 63], minimizing the

prediction error, minimizing the variance of the parameter estimates, e.g., D-optimal design

15



[64], and optimizing a composite index [13]. Among the distance-based models, sequential

LHD design [65, 66] and Sequential maximin design [67, 68] are widely used. However,

the main problem of SDOE methods is that they only focus on improving the estimation of

the functional mean over the entire sampling space without considering potential anoma-

lies and non-smooth features. In the third group, [69] proposed the minimum energy design

that selects representative points based on a known distribution over the design space and

sequentially chooses the next design points based on a criterion minimizing the total po-

tential energy. However, the main problem of applying this approach for online anomaly

detection is that the anomaly distribution is often unknown a priori. Therefore, it lacks the

ability of focused sampling near anomalous regions.

Another relevant body of literature deals with function estimation in the presence of

anomalies. Robust kernel regression [70] and robust spline estimation [71] are among

these methods. However, their main focus is the estimation of the functional mean not

the anomaly, and hence, they do not fully consider the spatial structure of anomalies. To

address this issue, [72] proposed smooth-sparse decomposition (SSD) for anomaly detec-

tion in temporal and/or spatial profiles. SSD can separate anomalies from the functional

mean by utilizing the spatial structure of both the functional mean and anomalies. SSD,

however, can only work efficiently when measurements are dense, hence, not applicable in

point-based sensing and inspection systems.

2.3 Modeling Point Cloud data

High dimensionality and complex structure of point clouds pose significant challenges in

data analysis. In the literature, there exist a variety of methods for point cloud representa-

tion and surface reconstruction. In many applications, point clouds are converted to poly-

gon or triangle mesh models [73], NURBS surface models [74], or CAD models through

surface reconstruction techniques such as Delaunay triangulation [75], alpha shapes [76],

and ball pivoting [77]. Although these techniques are effective in providing a compact
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representation of point clouds, they are not capable of modeling the relationship between

point clouds and some independent variables, which is important in many applications.

In this area, the literature on modeling and analysis of point clouds can be classified into

two general categories depending on the objectives: (i) process monitoring and (ii) process

modeling and optimization.

Research in the first category mainly focuses on finding unusual patterns in the point

cloud to detect out-of-control states and the corresponding assignable causes. For exam-

ple, [78] combined parametric regression with univariate and multivariate control charts to

quantify three dimensional surfaces with spatially correlated noises. However, this model

assumes that a parametric model exists for 3D point clouds, which may not be available for

surfaces with complex shapes. To address this challenge, [79] proposed to use QQ plots to

transform the high-dimensional point cloud monitoring problem into a linear profile mon-

itoring problem. However, due to the use of Q-Q plot, this approach fails to capture the

spatial information of the 3D point cloud. [80] applied Gaussian Process to model and

monitor 3D surfaces with spatial correlation. However, Gaussian Process can be inefficient

for high-dimensional point clouds such as those in our application.

The main objective of the second category is to build a response model of a structured

point cloud as a function of some controllable factors, and then use this model to find the

optimal control settings to minimize the dimensional and geometric deviations of produced

parts from its nominal values. Point clouds are often represented by point locations in

the Cartesian coordinate system. However, a structured point cloud can be represented

compactly in a multidimensional array (tensor) because of the grid structure. Therefore,

modeling the structured point cloud with some controllable factors can be considered as a

tensor regression problem.
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2.4 Tensor-on-scalar regression

While many literature exists on regression with high dimensional functional data, there has

been little work focusing on functional regression with a tensor response. We would review

three major lines of research in this area. The first line of research focuses on regression

models with multivariate vector response. For example, one can use Principal Component

Analysis (PCA) [81] to reduce the dimensionality of the response and then build a regres-

sion model for the estimated PC scores. [82] proposed a functional-on-scalar regression,

in which the functional response is linked with scalar predictors via a set of functional co-

efficients to be estimated in a predefined functional space with a certain penalty function.

Other methods such as partial least squares [83] or sparse regression [84] are also capable

of regressing a multivariate or functional response on scalar predictors. Although these

methods are effective for modeling high-dimensional vectors, they are inadequate for anal-

ysis of structured point clouds due to the ultrahigh dimensionality as well as their complex

tensor structure [85]. The second line of research focuses on regressing a scalar response

with the tensor covariates. For example, [85] proposed a regression framework in which the

dimensionality of the tensor covariates is substantially reduced by applying low-rank ten-

sor decomposition technique leading to efficient estimation and prediction. The third line

of research, directly related to our problem, is on modeling tensor response with scalar or

vector predictors. For example, one popular method is to regress each entry of the response

tensor independently on scalar predictors [86] and generate a statistical parametric map of

the coefficients across the entire response tensor. A smoothing approach is often required as

a preprocessing step to remove the noise in the tensor reponse. For example, [87] proposed

a multi-scale adaptive approach to smooth the tensor response first before the regression

model. However, the major drawback of this approach is that all response variables are

treated independently and important spatial correlation is often ignored. To encounter this

problem, [88] built a parsimonious linear tensor regression model by assuming that only
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part of tensor response depends on the scalar predictors. Although this sparsity assumption

is valid in Neuroimaging applications, it may not be valid in other point cloud applications

such as the one discussed in Chapter 6.
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CHAPTER 3

ANOMALY DETECTION FOR IMAGES AND HIGH-DIMENSIONAL SPATIAL

FUNCTIONAL PROFILE

In this chapter, we develop a novel methodology for anomaly detection in noisy images

with smooth backgrounds. The proposed method, named smooth-sparse decomposition,

exploits regularized high-dimensional regression to decompose an image and separate anoma-

lous regions by solving a large-scale optimization problem. To enable the proposed method

for real-time implementation, a fast algorithm for solving the optimization model is pro-

posed.

The reminder of this chapter is organized as follows. Section 3.1 elaborates the one-

step SSD approach for anomaly detection and presents efficient optimization algorithms

for the real-time implementation of SSD. In Section 3.2, we use simulated image data with

different anomaly structures to evaluate the performance of the proposed SSD method and

compare it with some existing two-step methods in terms of detection accuracy as well as

computation time. In Section 3.3, we illustrate a case study in which we apply the proposed

SSD for anomaly detection in composite laminates and silicon wafers. We conclude the

chapter with a short discussion in Section 3.4.

3.1 Smooth-Sparse Decomposition (SSD)

In this section, we present the penalized nonparametric regression model used for SSD

and propose efficient algorithms for its implementation. For simplicity, we first discuss

the methodology for one-dimensional (1-D) signals and then generalize it to n-D images

(n > 1). When the underlying manufacturing process is unstable, faulty parts may be

produced. In this case, the measured signal is comprised of not only the functional mean

and noises but also anomalies as shown in Figure 1.2a and Figure 1.2b. In this chapter,
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anomalies are defined as faults whose functional structure differ from the functional mean

of the background and their magnitude is larger than that of the noise. Therefore, SSD

aims to decompose the signal into a smooth functional mean, sparse anomalous regions,

and random noises. SSD aims to decompose the signal into a smooth functional mean,

sparse anomalous regions, and random noises. Specifically, the signal is decomposed as

y = µ + a + e, where µ is the smooth mean of the signal, a is the vector of anomalies

assumed to be sparse in a certain functional space, and e is the vector of random noises.

We further expand the mean and anomalies using a smooth basis (e.g., spline basis) denoted

by B and Ba, respectively. Consequently, the signal decomposition model can be rewritten

as y = B✓+Ba✓a+e, where ✓ and ✓a are, respectively, the basis coefficients corresponding

to µ and a. Least square regression is used to estimate the model parameters (i.e., ✓ and ✓a).

To ensure the smoothness of the estimated mean and the sparsity of the detected anomalies,

the least square loss function is augmented by L
1

and L
2

penalties, which results in the

following penalized regression criterion:

argmin
✓,✓

a

kek2 + �✓TR✓ + �k✓ak1, subject to. y = B✓ +Ba✓a + e (3.1)

where k · k and k · k
1

are L
2

and L
1

norm operators, and � and � are tuning parameters to

be determined by the user. R is the roughness matrix, and can be defined as R = DTD

in the 1D case, which is related to the difference between the nearby spline coefficients,

i.e., k�d✓k2, where �d is the dth order difference operator. It is not hard to show this

penalization term can also be written as k�d✓k2 = ✓TR✓, in which R = DTD, D is the

dth order difference matrix. For example, if k = 1, D =

2

66664

1 �1

. . . . . .

1 �1

3

77775
. Therefore,

the L
2

penalty term, �✓0R✓, regularizes the level of smoothness of the mean function,

while the L
1

penalty term, �k✓ak1, encourages the sparsity of the anomalous regions. The

constraint guarantees that the signal can be reconstructed using the linear combination of
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the estimated components. Note that if � = 0, the SSD model boils down to LASSO [89].

3.1.1 Optimization Algorithms for SSD

The loss function in (A.1) is convex and can be solved via general convex optimization

solvers like the interior point method [90]. However, the interior point method is often slow

for large-scale problems and hence cannot be used for real-time inspection and monitoring.

In this section, we propose a set of efficient algorithms for the real-time implementation of

SSD for two cases: orthogonal- and general-anomaly basis (i.e., Ba).

Orthogonal Basis Ba

If the basis Ba is orthogonal, the block coordinate descent (BCD) method is used to break

down the SSD model into two simpler optimization problems. The BCD is a class of

algorithms that groups domain variables into different blocks and finds a local minimum

for a function by iteratively minimizing this function with respect to one block given all

other blocks. By defining ✓ and ✓a as two variable blocks, a two-step iterative algorithm

based on the BCD can be used to find the minimizer of (A.1). In each iteration k, given

✓(k�1)

a , the SSD loss function in (A.1) reduces to a weighted ridge regression, which has a

closed-form solution in the form of ✓(k) = (BTB+�R)

�1BT
(y�Ba✓

(k�1)

a ). Equivalently,

it can be shown that y(k) = H(y � Ba✓
(k�1)

a ), where H = B(BTB + �R)

�1BT . In the

second step of the optimization algorithm, according to Proposition 1, given ✓(k) or µ(k),

✓(k)a is updated by a simple soft-thresholding operation.

Proposition 1. If Ba is orthogonal, in iteration k, the subproblem ✓(k)a = argmin✓
a

ky �

B✓(k) � Ba✓ak2 + �k✓ak1 has a closed-form solution in the form of ✓(k)a = S �

2

(BT
a (y �

B✓(k))), in which S�(x) = sgn(x)(|x| � �)
+

is the soft-thresholding operator, and sgn(x)

is the sign function and x
+

= max(x, 0).

The proof is given in Appendix A.
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Algorithm 1: Optimization algorithm for SSD based on BCD method for orthogonal
Ba

initialize
Choose a basis for the background as B and for the anomalous regions as Ba

✓(0)a = 0, k = 1

end
while

���✓(k)a � ✓(k�1)

a

��� > ✏ do
Update µ(k)

= B✓(k) via µ(k)
= H(y � Ba✓

(k�1)

a ), H = B(BTB + �R)

�1BT

Update ✓(k)a by ✓(k)a = S �

2

(BT
a (y � µ(k)

))

Update k = k + 1

end

The fact that both subproblems have closed-form solutions significantly speeds up the

optimization algorithm. A summary of the BCD algorithm for the orthogonal case is given

in Algorithm 1. Although the BCD algorithm, in general, may not converge to an optimum,

even if the function is convex [91], the following proposition guarantees that the BCD

attains the global optimum of problem (A.1).

Proposition 2. The BCD algorithm attains the global optimum of the SSD loss function in

(A.1).

The proof is given in Appendix B.

General Basis Ba

For the general basis Ba, we first show that the SSD problem can be reduced to a weighted

LASSO problem via Proposition 3.

Proposition 3. The SSD problem in (A.1) is equivalent to a weighted LASSO problem in

the form of

argmin

✓
a

F (✓a) = (y � Ba✓a)
T
(I �H)(y � Ba✓a) + �k✓ak1 (3.2)

with H = B(BTB + �R)

�1BT .
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The proof is given in Appendix C.

Common LASSO solvers such as least angle regression (LARS) [92] and quadratic

programming [89] cannot solve the above weighted LASSO problem for high-dimensional

data. For example, for an image of the size 350 by 350, i.e., p ⇡ 10

5, the LARS algorithm

[92] will find the entire solution path in about 60 hours, which is impractical for real-

time purposes. Alternatively, we develop an efficient algorithm based on the accelerated

proximal gradient method [93] for solving the large scale optimization problem in (A.2).

The proximal gradient (PG) method is a class of optimization algorithms focusing on

minimization of the summation of a group of convex functions, some of which are non-

differentiable. The function F (✓a) in (A.2), is comprised of f(✓a) = (y � Ba✓a)T (I �

H)(y � Ba✓a), which is convex differentiable if R is a positive semi-definite matrix (see

Appendix D for the proof of convexity) and g(✓a) = �k✓ak1, which is a non-differentiable

function. Another assumption of the PG algorithm is that the continuous part of the objec-

tive function f(✓a) (A.1) is convex differentiable with the Lipschitz continuous gradient L,

i.e., there exists a constant L that for every ↵, � 2 R,krf(↵) � rf(�)k  Lk↵ � �k,

where rf(·) is the gradient function. As shown in Appendix E, f(✓a) is Lipschitz con-

tinuous gradient with L = 2kBak2
2

. Provided the above assumptions, the PG method

optimizes F (✓a) through an iterative algorithm given by ✓(k)a = argmin✓
a

{f(✓(k�1)

a ) +

D
✓a � ✓(k�1)

a ,rf(✓(k�1)

a )

E
+

L
2

k✓a�✓(k�1)

a k2+�k✓ak1}, where super-indices (k) and (k�1)

denote iteration numbers and h·, ·i is the inner product operator. For more details on prox-

imal gradient method, readers can refer to [94]. Through the following proposition, we

show that in each iteration PG results in a closed-form solution for the SSD problem in the

form of a soft-thresholding function.

Proposition 4. The proximal gradient method for the SSD problem in (A.1), given by ✓(k)a =

argmin✓
a

{f(✓(k�1)

a )+

D
✓a � ✓(k�1)

a ,rf(✓(k�1)

a )

E
+

L
2

k✓a�✓(k�1)

a k2+�k✓ak1}, has a closed-
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Algorithm 2: Optimization algorithm for solving SSD based on APG
initialize

L = 2kBak2
2

, ✓(0)a = 0, x(0)

= 0, t
0

= 1, k = 1

end
while

���✓(k)a � ✓(k�1)

a

��� > ✏ do
Let µ(k)

= H(y � Ba✓
(k�1)

a )

Update ✓(k)a = S �

L

(x(k�1)

+

2

L
BT

a (y � Bax(k�1) � µ(k)
))

Update tk =
1+

p
1+4t2

k�1

2

Update x(k)
= ✓(k�1)

a +

t
k�1

�1

t
k

(✓(k�1)

a � ✓(k�2)

a )

Update k = k + 1

end

form solution in each iteration k, in the form of a soft-thresholding function as follows:

✓(k)a = S �

L

(✓(k�1)

a +

2

L
BT

a (y � Ba✓
(k�1)

a � µ(k)
)) (3.3)

with L = 2kBak2
2

.

The proof is given in Appendix F.

The soft-thresholding solution provided by PG can significantly expedite the SSD im-

plementation and anomaly detection. Suppose Ba is of size n ⇥ ka, and B is of size

n ⇥ kµ. The most computationally expensive operator in the soft-thresholding solution

is ✓(k�1)

a +

2

L
BT

a (y � Ba✓
(k�1)

a � µ(k)
). So, the total computational complexity in each

iteration is around k3

µ + 6n2kµ flops, which is quadratic in n.

To increase the convergence speed of the proximal gradient method, [95] showed that

with the adjustment of the step size, it is possible to achieve the quadratic convergence rate

O(

1

k2
). With this adjustment, the proposed optimization algorithm for solving SSD based

on the accelerated proximal gradient (APG) algorithm is summarized in Algorithm 2.

It is worth noting that if Ba is orthogonal (BT
a Ba = I), the PG algorithm is reduced to

the BCD algorithm.
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3.1.2 Generalization to 2-D image case

In the previous section, we discussed SSD for one-dimensional cases and presented effi-

cient algorithms for performing SSD. In this section, we extend our formulation and algo-

rithms to two-dimensional images. Suppose a 2-D image Yn
1

⇥n
2

is available. We define

Bi and Ba,i; i = 1, 2 as the basis for the background and anomalous regions, respectively,

where i (i = 1, 2) denotes the basis in the x and y direction of the image. Therefore, the

tensor product of these 1-D bases (i.e., B = B
1

⌦ B
2

) can give the proper 2-D basis for

the background as well as anomalous regions. Consequently, the SSD problem for the 2-D

case can be written as

argmin
✓,✓

S

kẽk2 + �✓TR✓ + �|✓a|1, s.t. ỹ = B✓ +Ba✓a + ẽ, (3.4)

where B = B
2

⌦ B
1

, Ba = Ba,2 ⌦ Ba,1, ỹ = vec(Y ), ẽ = vec(e), ⌦ is the tensor product,

and vec(·) is an operator that unfolds a matrix to a column vector. Note that the size of

the resulting basis is defined by the size of their individual bases - for example, if the size

of matrix Bi is ni ⇥ kµ
i

, in which kµ
i

is the number of basis in the ith direction, then the

size of B is n
1

n
2

⇥ kµ
1

kµ
2

. Similarly, assume that Ba,i is of size ni ⇥ ka
i

, then B is an

n
1

n
2

⇥ ka
1

ka
2

matrix.

To solve the SSD problem in (3.4), we can still use algorithms presented in 1-D cases.

However, since both APG and BCD algorithms require matrix inversion operations to com-

pute the projection matrix H = BT
(BTB + �R)

�1B, and the computational complex-

ity of the matrix inversion is nonlinearly proportional to the size of (BTB + �R), i.e.,

O ((kµ
1

kµ
2

)

3

), the complexity of the APG or BCD algorithm is given by a sixth order poly-

nomial of (n
1

, n
2

, kµ
1

, kµ
2

, ka
1

, ka
2

) with the leading term (k3

µ
1

k3

µ
2

+6n2

1

n2

2

kµ
1

kµ
2

). Conse-

quently, this becomes computationally intractable as the size of the image increases. To re-

duce the computational complexity, we define matrix R in such a way that matrix H can be

computed by a tensor product of two low-dimensional matrices. Following [96], we define
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matrix R as R = BT
2

B
2

⌦DT
1

D
1

+DT
2

D
2

⌦BT
1

B
1

+�DT
2

D
2

⌦DT
1

D
1

, which results in a de-

composable projection matrix, i.e., H = H
2

⌦H
1

, where Hi = Bi(BT
i Bi+�DT

i Di)
�1BT

i ,

with the dimensions of ki;i = 1, 2. Di is the first order difference matrix in ith dimension.

This trick makes the algorithm very efficient for 2-D images, as it requires the inversion of

matrices with lower dimensions, i.e., BT
i Bi+�DT

i Di. Hence, the computational complex-

ity of the matrix inversion operation is reduced from O ((kµ
1

kµ
2

)

3

) to O
�
k3

µ
1

+ k3

µ
2

�
.

Since (P ⌦ Q)✓ = vec(P⇥Q) with ⇥ as the matrix form of ✓, updating steps in Al-

gorithms 1 and 2 can be shown in the matrix form as µ(k)
= H

1

(Ba,1⇥
(k�1)

a BT
a,2 � Y )H

2

,

⇥

(k)
a = S �

2

(BT
a (Y �µ(k)

)) for BCD and⇥(k)
a = S

�

2

(X(k�1)

+

2

L
BT

a,1(Y �Ba.1X(k�1)BT
a,2�

µ(k)
)Ba,2) for APG. The total computational complexity is computed by a third-order poly-

nomial of (n
1

, n
2

, kµ
1

, kµ
2

, ka
1

, ka
2

), with the leading term (k3

µ
1

+ k3

µ
2

+6n2

1

kµ
1

+6n2

2

kµ
2

+

2(n
1

+ n
2

)ka
1

ka
2

+ 2n
1

n
2

(n
1

+ n
2

) + 2n
1

n
2

(ka
1

+ ka
2

)), which is computationally more

efficient.

3.1.3 Choice of tuning parameters � and �

In the SSD model, two tuning parameters, � and �, are used to control the smoothness of the

background µ̂ and the sparsity of anomalous regions â, respectively. A common approach

for choosing these tuning parameters is to use the k-fold cross-validation method on a 2-D

grid of parameters (�, �) and find the pair of parameters that minimizes the mean squared

error. However, this approach requires solving the SSD problem for each pair of (�, �) on

the gird, which may not be feasible. Alternatively, we propose an iterative approach that

updates the tuning parameters in each iteration of the APG and BCD algorithms without

exploring all pairs of (�, �).

We begin with some initial values for the tuning parameters. In the kth iteration, along

with ✓(k), � is also updated based on the general cross-validation (GCV) criterion as fol-

lows: �(k) = argmin� GCV(�) = argmin�
kY�H

1

(�)(Y�a(k�1)

)H
2

(�)�a(k�1)k2/n
(1�n�1

tr(H(k)

(�))2
[29], where

a(k) = Ba,1X(k�1)BT
a,2. As Hi(�) that involves matrix inversion should be computed for
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different values of � in each iteration, we use a series of transformations and operations

inspired by [97] to increase the computational speed. We, first, calculate the Cholesky

decomposition of BT
i Bi that gives the square matrix Zi. Then, using the eigenvalue de-

composition, we calculate the eigenvalues and eigenvectors of matrix Z�1

i DT
i Di(Z

�1

i )

T .

That is, Uidiag(si)UT
i = Z�1

i DT
i Di(Z

�1

i )

T . Next, the calculated eigenvectors are used to

define matrix Vi = Bi(Z
�1

i )

TUi , which is calculated prior to optimization. Therefore,

in each iteration, Hi(�) can be computed by Hi(�) = V T
i diag(

1

1+�s
1

, · · · , 1

1+�s
n

)Vi. As

can be seen, the calculation of Hi(�) does not involve matrix inversion, which makes its

computation much more efficient. The detailed derivation is shown in Appendix G.

To select the tuning parameter �(k) in the kth iteration, the GCV criterion can still be

used. However, GCV usually tends to select more pixels, leading to a larger false positive

rate. This is because GCV is a function of the residual sum of square (RSS) in the following

way: GCV =

RSS/n
(1�n�1Tr(H))

2

. However, in the case of anomaly detection, the goal is to

precisely identify the anomalous regions rather than to achieve a smaller RSS. Therefore,

we utilize the Otsus method [43] for finding �(k). Otsu shows that minimizing the intra-

class variance �2

w(t) = !
1

(t)�2

1

(t) + !
2

(t)�2

2

(t) is the same as maximizing inter-class

variance �2

b (t) = �2 � �2

w(t) = !
1

(t)!
2

(t) [µ
1

(t)� µ
2

(t)]2, where weights !i(t) are the

probabilities of the two classes separated by a threshold t and �2

i are the variances of these

classes. In our case, classes are defined as the background and the anomalous regions. Both

!i(t) and µi(t) can easily be computed from the histogram p(j) by !
1

(t) =

Pt
j=0

p(j),

!
2

(t) = 1 � !
1

(t), µ
1

(t) = [

Pt
j=0

p(j)x(j)]/!
1

and µ
2

(t) = [

Pn
j=t+1

p(j)x(j)]/!
2

. For

simplicity, we use otsu(y) to represent the function that returns �(k) by applying Otsus

method on y. For detailed information on Otsus method, see [43].

The detailed optimization algorithm with parameter selection is shown in Algorithm 3.
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Algorithm 3: Optimization algorithm for solving SSD based on APG and BCD with
tuning parameter selection

initialize
Choose the basis for background as B

1

, B
2

and anomalies as Ba,1, Ba,2,
respectively
ZiZT

i = BT
i Bi, Uidiag(si)UT

i = Z�1

i DT
i Di(Z

�1

i )

T , Vi = Bi(Z
�1

i )

TUi , i = 1, 2
Hi(�) = V T

i (I + �diag(si))�1Vi, i = 1, 2 is a function of �
L = 2kBa,1k2

2

kBa,2k2
2

,
⇥

(0)

a = 0, X(0)

= 0, t
1

= 1, k = 1

end
while

���⇥(k�1)

a �⇥(k)
a

��� > ✏ do

Select �(k) = argmin� GCV (�) = argmin�
kY�H

1

(�)(Y�A(k�1)

)H
2

(�)�A(k�1)k2/n
(1�n�1

tr(

ˆH(�))2

H(k)
i = Hi(�(k)), i = 1, 2

A(k)
= Ba,1X(k�1)BT

a,2, M (k)
= H(k)

1

(Y � A(k�1)

)H(k)
2

⇥

(k)
e := X(k�1)

+

2

L
BT

a,1(Y �M (k) � A(k)
)Ba,2

(In BCD algorithm, for orthogonal Ba,i, i = 1, 2, ⇥(k)
e := BT

a,1(Y �M (k)
)Ba,2 )

Select �(k) by Otsu’s method �(k) = otsu(⇥(k)
e )⇥ L

⇥

(k)
a = S �

L

(⇥

(k)
e )

Update tk =
1+

p
1+4t2

k�1

2

Update X(k)
= ⇥

(k�1)

a +

t
k�1

�1

t
k

(⇥

(k�1)

a �⇥(k�2)

a )

Update k = k + 1

end
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3.1.4 Choice of basis for background and anomalous regions

Another important factor in the implementation of SSD is the type of basis chosen for the

background and anomalous regions. In this section, we provide some general guidelines

for basis selection. As it is assumed that the background is smooth, any smooth basis, such

as splines or kernels, can be used for the background. If a spline basis is used, the number

of knots is another parameter that should be chosen. As pointed out by [97], as long as the

number of knots is sufficiently large to capture the variation of the background, a further

increase in knots will have little effect due to the regulation of smoothness via �. [97]

proposed using the GCV criterion to select the right number of knots. A similar approach

can be used to select the number of knots for the background, assuming that anomalies are

only a small part of the entire image.

Selecting the basis to better represent anomalous regions is a more challenging task,

and prior information about the size and shape of anomalies would be useful for choosing

a suitable basis. For example, if anomalies are small regions scattered over the background

or are in the form of thin lines, then it is recommended to use an identity basis, i.e., Ba = I .

However, if the anomalies form clustered regions, a spline basis can be a better choice. For

example, if anomalous regions have sharp corners (e.g., a rectangular shape), a 0-order or

linear B-splines will suffice. For regions with curved boundaries, quadratic or cubic B-

spline bases are recommended. Prior information about the size of anomalies, if available,

could help in the selection of the right number of knots for a spline basis. In general, a

smaller number of knots may result in the loss of detection accuracy, and a larger number

of knots will lead to the selection of normal regions with large noises.

3.2 Simulation study

In this section, the performance of the proposed Smooth-Sparse Decomposition method is

evaluated through simulations under different conditions. Specifically, we consider three
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Figure 3.1: Simulated background from principal stress direction of a loaded circle

different types of anomalies: the scattered type, in which anomalies are some random pixels

in the image, the line type, in which anomalies are represented by several thin lines, and

the clustered type, in which the clusters of anomalies are spread over the image. A sample

of these generated image with different types of anomalies is shown in Figure 3.2. We

simulate a 350⇥350 image Y according to the following model Y = M+A+E, in which

M is the true background, A represents anomalous regions, and E is the random noise. The

smooth background M (see Figure 3.1b) is obtained from the photoelasticity experiments

from the center part of the theoretical stress direction of a loaded circle where the load is

applied to its top and bottom points (see Figure 3.1a). The anomalies are generated by

A = � · I(a 2 As), in which As is the set of anomalous pixels, and � characterizes the

intensity difference between anomalies and the background, which is set to be 0.3. For the

scattered case, As is defined based on randomly generated 5⇥ 5 squares. For the line case,

a set of line-shaped systematic anomalies caused by numerical errors in photo-elasticity

experiments is used. For the clustered case, anomalies are randomly generated clusters

comprising about 341 pixels. We generate the random noise E by Ei ⇠ NID(0, �2

) with

� = 0.05.

We compare our proposed SSD method with four existing methods in the literature that

follow the two-step approaches described in the introduction. The benchmark algorithms
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Figure 3.2: The Simulated image of scattered and clustered anomalies
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(b) Result of the proposed method
in line anomaly
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Figure 3.3: SSD decomposition results for scattered, line and clustered anomalies
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which we used for comparison include Sobel edge detection [36], jump regression with

local polynomial kernel regression [98], the Otsu global thresholding method [43], and the

Nick local thresholding method [99]. As per reviewer’s suggestion, we also compare our

method with the extended-maxima transformation method. The comparison results are re-

ported in the Supplementary Material. For Sobel edge detection, Otsu global thresholding

method and Nick local thresholding method, a smoothing [100] is first applied as prepro-

cessing step to remove the noises. For the edge-based methods namely, the Sobel edge

detection and jump regression model, edge thinning algorithm, edge linking algorithms

and filling algorithms [48] are applied to close the boundary and fill the area inside the

boundary.

For the proposed SSD method, we use the identity matrix, cubic B-spline basis with

175 ⇥ 175 knots and cubic B-spline basis with 85 ⇥ 85 knots in the case of line anoma-

lies, scattered anomalies, and clustered anomalies for anomaly basis Ba, respectively. The

cubic B-spline basis B with 7 ⇥ 7 knots is chosen for the background. The tuning param-

eters � and � are selected automatically based on the GCV criterion and Otsu’s method as

discussed in Section 3.1.3.

To evaluate the performance of the proposed methodology and benchmark methods,

we repeat the simulation procedure 100 times and the following criteria are calculated and

compared: false positive rate (FPR), defined as the proportion of normal pixels predicted

as anomaly; and false negative rate (FNR), defined as the proportion of anomalous pixels

predicted as normal; background recovery square root mean square error (eµ), defined as

the square root of mean square error of the background estimator µ̂: eµ =

p
kµ� µ̂k2;

anomalies recovery square root mean square error (ea), defined as the square root of mean

square error of the anomalies estimator â: ea =

p
ka� âk2; and the computation time.

The FPR, FNR, and computational time of all methods for all scenarios are reported in

Table 3.1. Since other benchmark method cannot give the estimation of the background

and anomalies, only eµ and ea of the proposed SSD is reported in Table 3.2. Detected
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Figure 3.4: Detected anomalies for scattered, line, and clustered cases

regions along with true anomalies for one of the simulation replications with � = 0.3 is

shown in the binary plots in Figure 3.4.

From Figure 3.4 and Table 3.1, it can be seen that in terms of the FPR and FNR, our

SSD method overall exhibits a better performance than other benchmark methods. For

example, in the line case, The FPR and FNR of SSD are 0.001 and 0.003, respectively,

which are the least among all methods. The edge detection method has a lower FPR than

SSD in the clustered case and scattered case. However, it shows an FNR of 0.754 in the

case of clustered Anomalies which is much larger than that of SSD, 0.001. The reason

for such a high FNR is that the edge-based method only detects the boundaries and often

fails to give closed-boundary regions even with edge linking and filling algorithm applied.

Therefore, the inner sections of anomalous regions are not detected as seen in Figure 3.4b

and 3.4c. Jump regression, on the other hand, can detect the edge more precisely by the

local kernel polynomial regression, thus reduce the FNR drametically. Global thresholding

has the worst performance with FPR and FNR values around 0.20 and 0.50 in all cases. The

poor performance of this method is because that it can only identify the anomalies globally

with one single thresholding value. In contrast, local thresholding has better FPR and

FNR values than global thresholding techinques, since it identifies the anomalous regions
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Table 3.1: FPR, FNR, and computation time for line anomalies, clustered anomalies and
scattered anomalies with � = 0.3

Line Anomalies Clustered Anomalies
FPR FNR Time FPR FNR Time

SS Decomposition 0.001 0.003 0.129s 0.018 0.001 0.19s
Edge Detection 0.015 0.783 0.945s 0.001 0.754 0.409s

Jump Regression 0.035 0.111 38.43s 0.081 0.054 37.736s
Local Thresholding 0.054 0.063 0.043s 0.046 0.289 0.045s
Global Thresholding 0.195 0.456 0.046s 0.211 0.572 0.048s

Scattered Anomalies
FPR FNR Time

SS Decomposition 0.012 0.007 0.267s
Edge Detection 0.003 0.257 0.667s

Jump Regression 0.11 0.063 37.796s
Local Thresholding 0.02 0.087 0.045s
Global Thresholding 0.203 0.407 0.048s

Table 3.2: The square root of mean square error of background and anamalies estimator
with � = 0.3

Line Anomalies Clustered Anomalies Scattered Anomalies
eµ ea eµ ea eµ ea

SS Decomposition 3.7e� 4 6e� 4 3.6e� 4 1.5e� 3 4.2e� 4 7e� 4

directly by thresholding the image locally. However, this method is sensitive to noises,

and hence falsely detecting more anomalies in normal regions than the SSD method. For

example, in the clustered case, the FPR of the local thresholding method is 0.289 which is

almost 300 times larger than that of SSD, 0.001. In terms of computation time, local and

global thresholding methods as well as SSD have comparable computational times. The

edge detection is slow because it entails post-processing steps. Jump regression has the

highest computation time as it requires fitting local polynomial kernel regression models

for each pixel.

In order to study the sensitivity of these algorithms, we also run a similar simulation

setting for different anomaly magnitudes �. FPR and FNR values of all methods for all

cases are reported in Figures 3.5 - 3.7. In terms of FNR, one can see that as � increases, the
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Figure 3.5: Sensitivity study for line anomaly

FNR of the SSD methods converges to 0 much faster than the rest. In addition, local thresh-

olding and jump regression have much smaller FNR value than other benchmark methods.

This indicates that if the intensity contrast between anomalous regions and the background

is large, both of these methods will accurately detect all the regions. Jump regression

has smaller performance (smaller FNR) especially in the clustered case indicating that it

identifies the jump location precisely between the clustered defect and the background.

However, in the case of line defect, due to the difficulty to close the boundary, it has larger

FNR rate than local thresholding. Both global thresholding and Sobel edge detection have

very large FNR rate even � is large. In terms of FPR, both local thresholding and jump

regression have larger FPR than SSD methods implying that it selects some noisy pixels

as anomaly. Global thresholding has much larger FPR. Sobel Edge Detection sometimes

has a very small FPR at the cost of a very large FNR. Furthermore, the comparison of the

FNR and FPR plots for different methods indicates that our comparative observations in

the previous simulation with � = 0.3 is valid for other � values. In short, considering the

reported error rates and computation time, the proposed SSD method overall outperforms

other benchmark methods.
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Figure 3.6: Sensitivity study for scattered anomaly
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Figure 3.7: Sensitivity study for clustered anomaly
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3.3 Case study

In this section, the proposed SSD method is applied to a case study of anomaly detection

and feature extraction in the area of photo-elasticity, a non-destructive evaluation method.

Photo-elasticity is a non-contact optical technique developed based on the birefringence

property exhibited by translucent materials. This method can acquire maximum shear stress

(isochromatics) and principal stress direction (isoclinics) by recording the transmitted light

through translucent materials. Unlike point-by-point techniques such as X-ray diffraction,

ultrasonic test, and micro-Raman spectroscopy, photo-elasticity is able to obtain the full-

field stress quantification directly from the digital camera, making it popular in the stress

analysis of various manufacturing products, such as silicon wafers and translucent compos-

ite laminates.

The setup of photo-elasticity experiments used in this chapter is shown in Figure 5.7.

In this setup, a near infra-red light source of wavelength 1150nm and a digital camera

equipped with a low-pass filter was used to record necessary images. Two polarizers are

placed on both sides of the specimen, one between the source and the specimen and the

other between the specimen and the analyzer. Four images are taken based on the different

angles of the two polarizers. Two quarter plates are then added to both sides of the specimen

between the specimen and the polarizers. After that, six images are taken by changing the

angles of two polarizers and quarter-wave plates. Finally, using Maxwell’s stress optic

law, the maximum shear stress is obtained from these ten images to quantify the stress

distribution in the specimen [101].

A multi-crystalline bending silicon beam and a silicon surface laminate with surface in-

dentation [103] were inspected using the photo-elasticity experiments as described above.

The stress maps of these samples are shown in Figures 1.2a and 1.2b. In the silicon beam,

we are interested in extracting the “grain boundaries.” Grain boundaries used in crystal-

lography represent the interface between two crystallines, which is often in the form of
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obtained using a 10-step method as shown in

Table 1. The first four steps in Table 1 correspond to

the optical arrangement of the plane polariscope-

based algorithm of Brown and Sullivan [7] and they

are used for the evaluation of isoclinic values. The

next six arrangements are that of the six-step PST

algorithm [2] based on a circular polariscope

arrangement and they are used for the evaluation of

isochromatic values. The isoclinic value is obtained

by

hc ¼
1

4
tan"1 I4 " I2

I3 " I1

! "
(1)

In Equation (1), the subscript c indicates that the

principal value of the inverse trigonometric function

is used and hc is evaluated by atan2 () function [1].

The isoclinic value obtained by Equation (1) is

unwrapped (h) and these are used for isochromatic

phasemap evaluation in Equation (2). The isochro-

matic value is obtained by

dc ¼ tan"1 ðI9 " I7Þ sin 2hþ ðI8 " I10Þ cos 2h
I5 " I6

! "
(2)

The fractional retardation dc is evaluated by atan2

() function as per the recommendation of Ref. [1].

The approach of using the unwrapped isoclinic

values in isochromatic evaluation (Equation 2)

ensures the removal of the ambiguous zones

occurring in the isochromatic phasemap, which is

demonstrated in the subsequent sections of this

paper. The phase-shifted images for isoclinic and

isochromatic evaluation are experimentally recorded

with a monochromatic light source (sodium vapour,

k ¼ 589.3 nm) and the intensity of light transmitted

is recorded by a monochrome charge-coupled device

(CCD) camera (DC-700, Sony, Japan) having a reso-

lution of 768 · 576 pixels.

Adaptive quality guided isoclinic phase
unwrapping algorithm (AQGPU)

A new adaptive quality guided unwrapping of iso-

clinic phasemap is proposed in this paper. Quality

maps are arrays of values that indicate the quality or

goodness of the phase data. In this paper, quality

map by phase derivative variance is used for the

unwrapping process [21–23]. This quality map gives

the measure of the statistical variance of the phase

derivatives. As it involves derivatives, this quality

map is more suitable for phase data with steep

gradients [21]. It is defined as [21]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðDx

i;j " !Dx
m;nÞ

2þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðDy
i;j " !Dy

m;nÞ
2

q

k2
(3)

where for each sum, the indices (i, j) range over a

k · k neighbourhood of each centre pixel (m, n) and

Dx
i;j and Dy

i;j are the partial derivatives of the phase as

follows:

Figure 1: Generic arrangement. (A) Plane polariscope;
(B) circular polariscope

Table 1: Polariscope arrangements and intensity equations for
isoclinic and isochromatic evaluation (10-step method)

a n g b Intensity equation

p/2 – – 0 I1 ¼ Ib þ Ia sin2 d
2

sin2 2h

5p/8 – – p/8 I2 ¼ Ib þ
Ia
2

sin2 d
2

1" sin 4h½ '

3p/4 – – p/4 I3 ¼ Ib þ Ia sin2 d
2

cos2 2h

7p/8 – – 3p/8 I4 ¼ Ib þ
Ia
2

sin2 d
2

1þ sin 4h½ '

p/2 3p/4 p/4 p/2 I5 ¼ Ib þ
Ia
2
ð1þ cos dÞ

p/2 3p/4 p/4 0 I6 ¼ Ib þ
Ia
2
ð1" cos dÞ

p/2 3p/4 0 0 I7 ¼ Ib þ
Ia
2
ð1" sin 2h sin dÞ

p/2 3p/4 p/4 p/4 I8 ¼ Ib þ
Ia
2
ð1þ cos 2h sin dÞ

p/2 p/4 0 0 I9 ¼ Ib þ
Ia
2
ð1þ sin 2h sin dÞ

p/2 p/4 3p/4 p/4 I10 ¼ Ib þ
Ia
2
ð1" cos 2h sin dÞ
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Adaptive Quality Guided Phase Unwrapping Algorithm : M. Ramji and K. Ramesh

Figure 3.8: Photo-elasticity experiment setup [102]

Table 3.3: Case Study Sample Description

Sample Description Image Size Defect Defect Type
Sample 1 Multi-crystalline Silicon 200 by 2910 Grain Boundaries Line
Sample 2 Silicon Surface 90 by 550 Surface Indentation Clustered

swerving lines. In the silicon surface sample, high-stress areas indicate the surface inden-

tation important to be detected in quality inspection. These indentations often form clusters

of high-stress areas. A summary of the sample specifications is given in Table 3.3.

We applied the proposed SSD method and other benchmarks on these stress maps to

separate the anomalous regions (i.e., grain boundaries and indentations) from the back-

ground of stress maps. In SSD, we used an identity basis for detecting grain boundaries

and a cubic B-spline basis with 24 ⇥ 139 knots for detecting the indentations. We also

used a cubic B-spline basis with knots 21 ⇥ 21 and 11 ⇥ 51 for the backgrounds of these

two samples, respectively. Detected regions from each sample are shown in Figures 3.9a

and 3.9b. As can be seen in Figure 3.9a, the SSD algorithm gives a clearer representation

of the grain boundaries than other benchmarks. The edge-detection method is sensitive to
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Table 3.4: Computational time for all methods

Sample SSD Edge Detection Local Thresholding Global Thresholding Jump Regression
Sample 1 0.350s 6.44s 0.320s 0.270s 534.05s
Sample 2 0.034s 0.543s 0.030s 0.020s 50.069s

noise and hence, misses a significant portion of the grain boundaries. Global thresholding

performs poorly for Sample 1, since the range of the background intensity in this sample

is large. Detected boundaries by local thresholding and jump regression resemble those

by SSD. From Figure 3.9b, it can be seen that the SSD algorithm can identify all three

indentation clusters with no false detection. As the background has a smaller intensity

range, the detection performance of global thresholding is better than its performance in

Sample 1. However, it still fails to detect the small indentation region because it thresholds

the entire image with a single thresholding value without considering the local smooth-

ness. Local-thresholding and edge-detection methods are sensitive to noise, which leads to

larger detection errors. Although jump regression can detect all three indentations, its FPR

is high. The computation times for each of these methods are also reported in Table 3.4.

Threshold-based methods and SSD have comparable computation times, whereas edge de-

tection and jump regression are significantly slower. For example, the computation time of

SSD in Sample 2 is around 0.034 seconds, 16 times faster than the edge-detection method.

The difference in the computation times between Samples 1 and 2 is because of the image

size.

3.4 Conclusion

Image data are increasingly used for online inspection and anomaly detection in various

manufacturing and service applications. In this chapter, we proposed Smooth-Sparse De-

composition for image denoising and anomaly detection. Unlike existing methods, which

perform denoising and detection separately, SSD is a one-step approach that is able to

model and separate the background, anomalies and defect. This method improve both the
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(a) Detected anomalies in Sample 1
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Figure 3.9: Detection results of Sample 1 and Sample 2 for all methods

detection accuracy and computation time under the smooth background with various de-

fect types. We formulated the SSD problem in the form of high-dimensional regression

augmented with penalty terms to encourage both smoothness of background and sparsity

of anomalies in a certain basis. To efficiently solve the large-scale optimization problem

for SSD, we used BCD and APG methods and proposed efficient iterative algorithms that

have closed-form solutions in each iteration. We also proposed an iterative method for

the quick selection of tuning parameters. Using simulations, the performance of proposed

SSD was evaluated and compared with some existing methods in terms of detection ac-

curacy and computation time for three types of anomalies. Based on simulation results,

we concluded that, overall, the proposed SSD algorithm outperforms other benchmarks.

We further showed that the error rate of the proposed SSD algorithm converges to 0 as the

anomaly intensity increases. Other benchmarks did not show this property. Additionally,

to demonstrate how the proposed method can be applied to real data, we analyzed the stress

maps obtained from the photo-elasticity experiments by using SSD. In the case study, we
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used the stress images of a silicon beam and surface sample that possessed different types

of anomalies. We showed that the SSD algorithm can identify anomalous regions precisely

in both samples.

The main focus of this chapter was to provide a framework for one-step, real-time, and

automatic algorithms for anomaly detection under smooth background. One extension is to

generalize SSD for other types of backgrounds like textured backgrounds. To achieve this,

one may use other types of basis such as Fourier basis, wavelet basis, and kernel can in the

SSD model.
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CHAPTER 4

REAL-TIME MONITORING AND DIAGNOSIS OF HIGH-DIMENSIONAL

FUNCTIONAL DATA STREAMS VIA SPATIO-TEMPORAL SMOOTH SPARSE

DECOMPOSITION

In this chapter, we present a process monitoring technique that effectively deals with high

dimensional streaming data and is able to consider different spatio-temporal structure of

functional mean and anomalies. The method extends the smooth sparse decomposition

(SSD) into spatio-temporal SSD, which decomposes the original tensor stacked by sequen-

tial profiles or images into three parts: namely, the smooth spatio-temporal correlated func-

tional mean, anomalies, and random noises. Furthermore, we propose two temporal mod-

els, reproducing kernel models and roughness minimization models to model the temporal

trend of the system. A recursive updating procedure of those two models is also proposed

for real-time monitoring applications.

The remainder of Chapter 4 is organized as follows. Section 4.1 elaborates the proposed

spatio-temporal SSD for HD data stream. In Section 4.2, reproducing kernel and rough-

ness penalization are used for temporal modeling and recursive estimation procedures are

proposed for real-time analysis. In Section 4.3, monitoring and diagnosis methods are pro-

posed by combining LRT with spatio-temporal SSD. To evaluate and compare the proposed

methodology with existing methods, simulated data based on thermodynamic principles of

heat transfer are used in Section 4.4. In Section 4.5, we illustrate how our proposed method

can be used in real world using three case studies including monitoring of a rolling process,

detection of solar flares, and monitoring of a forging process. We conclude the chapter in

Section 4.6.
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4.1 Spatio-Temporal Smooth Sparse Decomposition

In this section, we develop the spatio-temporal model by extending SSD so it can model

the temporal trend in addition to the spatial structure of functional data streams. We also

propose efficient algorithms for fast implementation of spatio-temporal SSD (ST-SSD) for

a given data sample. For simplicity, we begin with profile data (i.e. 1D functional data).

Suppose a sequence of profiles yt; t = 1, · · · , n is available where yt is a profile of size

p⇥ 1 recorded at time t. We combine all profiles into a matrix Y = (y
1

, y
2

, · · · , yn) of size

p⇥n and define y = vec(Y ) as the vectorized matrix (i.e., y is a pn⇥ 1 vector). Following

[9], we aim to decompose y into three components: A functional mean µ, anomalies a, and

noises e as y = µ + a + e, where a = vec(a
1

, · · · , an) and e = vec(e
1

, · · · , en) with at

and et as anomaly features and noise in yt. We assume that the dynamic functional mean

µ has a smooth spatio-temporal structure and a is sparse or can be sparsely represented

by a certain basis. To model both spatial and temporal structures and at the same time

reduce data dimensions, we define Bs and Bt as smooth spatial and temporal bases for

the mean, and Bas and Bat as spatial and temporal bases for anomalies, respectively. The

spatio-temporal bases for the mean and anomalies are obtained by the tensor product of

these bases, i.e., B = Bt ⌦ Bs and Ba = Bat ⌦ Bas. Consequently, the functional mean

and anomalies are modeled as µ = (Bt ⌦ Bs)✓ and a = (Bat ⌦ Bas)✓a resulting in y =

(Bt⌦Bs)✓+(Bat⌦Bas)✓a+e, where ✓ = vec(✓
1

, ✓
2

, · · · , ✓n) and ✓a = vec(✓a,1, · · · , ✓a,n),

and ✓t and ✓a,t are the spatio-temporal coefficients of the functional mean and anomalies

at time t, correspondingly. We assume that noise components are normally independently

distributed i.e., e ⇠ NID(0, �2

). To estimate ✓ and ✓a, we propose a penalized regression

model, called spatio-temporal smooth sparse decomposition (ST-SSD), as follows:

argmin
✓,✓

a

kek2 + ✓TR✓ + �k✓ak1 s.t. y = (Bt ⌦ Bs)✓ + (Bat ⌦ Bas)✓a + e. (4.1)

44



where k · k and k · k
1

are L
2

and L
1

norm operators, and � is a tuning parameter to be

determined by the user. The Matrix R is the regularization matrix that controls the smooth-

ness of the mean function, and the L
1

penalty term, �|✓a|1, encourages the sparsity of the

anomalous regions. In this chapter, inspired by [96], we define the regularization matrix

R as R = Rt ⌦ BT
s Bs + BT

t Bt ⌦ Rs + Rt ⌦ Rs, where Rs and Rt are the regularization

matrices that control the smoothness in the spatial and temporal directions. For tensors

with smooth structure, it has shown in [96] and [9] that the penalty term defined with this

tensor structure is able to achieve high precision with small computational time and asymp-

totically achieve the optimal rate of convergence under some mild conditions. The spatial

regularization matrix Rs can be defined as Rs = �sDT
s Ds [104], where Ds is the first order

difference matrix since the smoothness of the function is directly related to the difference

between the neighbor coefficients. That is, Ds = [dpq] = 1q=p � 1q=p+1

, with 1A as an

indicator function i.e., it is 1 when A is true, and 0 otherwise. �s is the tuning parameter

controlling the spatial smoothness of the functional mean. The choice of Rt depends on

the temporal model and will be discussed in Section 4. It is shown in [9] that if ✓a is given,

µ = B✓ can be solved by µ = H(y � Ba✓a), where H = B(BTB + R)

�1BT is the pro-

jection matrix. They also showed that (4.1) is equivalent to a weighted lasso formulation,

i.e., min✓
a

(y � Ba✓a)T (I �H)(y � Ba✓a) + �k✓ak1, thus can be efficiently solved by the

APG algorithm. The reason for defining the regularization matrix in the foregoing form

is that under this definition of R, the projection matrix of ST-SSD, denoted by H , can be

further decomposed by the tensor product of two spatial and temporal projection matrices,

i.e., H = Ht ⌦ Hs, where Hs = Bs(BT
s Bs + Rs)

�1BT
s and Ht = Bt(BT

t Bt + Rt)
�1BT

t ,

as shown in Appendix A. This will help significantly reduce the computational complex-

ity of the optimization algorithm for solving Equation (4.1). Equation (4.1) is a convex

optimization problem that can be solved via a general convex solver such as the interior

point method. However, the interior point method is slow and cannot be used in HD set-

tings. Therefore, similar to [9], the accelerated proximal gradient (APG) algorithm is used
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Algorithm 4: Optimization algorithm for solving SSD
initialize

L = 2kBask2
2

, x(0)

= 0, ✓(0)a = 0, t
0

= 1

end
Compute

Hs = Bs(B
T
s Bs +Rs)

�1BT
s

Ht = Bt(B
T
t Bt +Rt)

�1BT
t (4.2)

for k = 1, 2, · · · do
Update

a(k�1)

= (Bat ⌦ Bas)x
(k�1)

µ(k�1)

= (Ht ⌦Hs)(y � a(k�1)

) (4.3)

✓(k)a = S �

L

(x(k�1)

+

2

L
(BT

at ⌦ BT
as)(y � a(k�1) � µ(k�1)

)) (4.4)

tk =
1 +

q
1 + 4t2k�1

2

x(k)
= ✓(k)a +

tk�1

� 1

tk
(✓(k)a � ✓(k�1)

a )

if
���✓(k)a � ✓(k�1)

a

��� < ✏ then
Stop

end
end

to solve (4.1) iteratively, as given in Algorithm 4.

In Algorithm 4, S�(x) = sgn(x)(|x| � �)
+

is a soft-thresholding operator, in which

sgn(x) is the sign function and x
+

= max(x, 0). The ✓ is not explicitly update since it is

updated with µ as µ(k)
= B✓(k). Note that the convergence of Algorithm 4 is guaranteed

and can be proved similarly as shown in [9].

To generalize the ST-SSD model to l-dimensional data (e.g., l = 2 for images or multi-

channel signals), we represent a single sample by tensor Y of size p
1

⇥ · · ·⇥pl. For compu-

tational efficiency, the spatial basis Bs and Bas are defined as the tensor product of multiple
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Algorithm 5: Optimization algorithm for solving SSD based on APG
initialize
⇥

(0)

a = 0, X (0)

= 0, t
0

= 1

L = 2

Q
i kBaik2

2

Hsi = Bsi(BT
siBsi +Rsi)

�1BT
si, i = 1, · · · , k

Ht = Bt(BT
t Bt +Rt)

�1BT
t

end
for k = 1, 2, · · · do

Update A(k�1)

= X (k�1) ⇥k
i=1

Bsi ⇥t Bst

M(k)
= (Y �A(k�1)

)⇥k
i=1

Hsi ⇥t Ht

⇥

(k)
a = S �

L

(X (k�1)

+

2

L
(Y �A(k�1) �M(k�1)

)⇥k
i=1

BT
si ⇥t BT

st)

tk =
1+

p
1+4t2

k�1

2

X (k)
= ⇥

(k)
a +

t
k�1

�1

t
k

(⇥

(k)
a �⇥(k�1)

a )

if |⇥(k�1)

a �⇥(k)
a | < ✏ then

Stop
end

end

1D bases, i.e., Bs = ⌦l
i=1

Bsi and Bas = ⌦l
i=1

Basi, where ⌦l
i=1

Bsi := Bs1⌦ · · ·⌦Bsl. It is

shown in appendix A that if we set Rs = ⌦l
i=1

(BT
siBsi+Rsi)�BT

s Bs, the projection matrix

becomes decomposable, that is Hs = ⌦l
i=1

Hsi with Hsi = Bsi(BT
siBsi + Rsi)

�1BT
si. For

example, if a B-spline basis is used, Rsi can be defined as Rsi = �siDT
i Di. Furthermore, to

increase the computational efficiency of the optimization algorithm, we use the well-known

relationship between the Kronecker and tensor products to compute y = (⌦l
i=1

Bsi)x by

Y = X ⇥l
i=1

Bsi := X ⇥
1

Bs1 ⇥
2

Bs2 · · · ⇥l Bsl, in which X ⇥n Bsn is the n-mode

tensor product defined by (X ⇥nBsn)(i1, · · · , il) =
P

j
n

X (i
1

, · · · , jn, · · · , il)Bsn(in, jn).

A summary of the optimization algorithm for solving the generalized ST-SSD problem

is given in Algorithm 5. In this algorithm, since the matrix inversion can be performed

in each dimension separately, i.e., BT
siBsi + Rsi;i = 1, · · · , l, the total complexity of the

matrix inversion is reduced from O (n3

Q
i k

3

i ) to O (n3

+

P
i k

3

i ), assuming Bsi is of size

pi ⇥ ki.

Selection of an appropriate basis for the functional mean and anomaly is important

to model the spatio-temporal structure of a data stream. Therefore, due to its computa-
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tional efficiency and flexibility, the B-Spline basis is commonly used for modeling nonlin-

ear smooth functions. In this chapter, for the spatial basis, we assume that the functional

mean is smooth and can be modeled with B-spline basis. Selecting a basis for anomalous

regions depends on the type of anomalies. For example, if anomalies are randomly scat-

tered over the mean, it is recommended to use an identity basis, i.e., Bas = I . If anomalies

form clustered regions, a spline basis can be a better choice. More details about the spatial

basis selection of the functional mean and anomalies are given in [9]. We also assume

that anomalies appear abruptly, and hence they do not have a specific temporal structure.

Therefore, we use the identity matrix as the temporal basis for anomalies, i.e., Bat = I . In

the following section, we will discuss the choice of temporal basis for the functional mean

and the recursive estimation of ST-SSD.

4.2 ST-SSD for Streaming Data and Recursive Estimation

The proposed ST-SSD can effectively model both the temporal and spatial structure of HD

data streams. However, the estimation method given in Algorithm 4 is only efficient for

a given data stream with a fixed number of observations, n. In the context of statistical

process control (SPC), process monitoring includes two stages known as Phase I and Phase

II. Since the functional mean is unknown in the beginning, we use n in-control (IC) obser-

vations in Phase I to learn the distribution of the monitoring statistic and the control limit.

The baseline control chart estimated in Phase I, can then be used for real-time and online

monitoring in Phase II. Therefore, the proposed method can be used to conduct Phase I

analysis offline on n observations collected offline. However, for online (phase II) analysis

of HD data where streaming samples are being recorded in short sampling intervals, Al-

gorithm 4 with the complexity of O (n3

+

P
i k

3

i ) loses its efficiency over time as n grows

linearly by time. Specifically, when a new sample is recorded at time t, the length of y

increases by the dimensions of the recorded data. Consequently, after some time, the di-

mensions of Problem (4.1) become so large that it cannot be solved by any optimization
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algorithms. To address this issue, the key idea is to develop a recursive estimation proce-

dure that only requires the previous estimations and current data to solve the optimization

problem. This recursive algorithm significantly reduces the computation time and required

memory, which enables real-time implementation of the method. For this purpose, we use

special temporal bases for the functional mean, Bt, and penalization term, Rt. In the fol-

lowing subsections, we propose two temporal models based on reproducing kernels and

roughness minimization and present a recursive estimator for each model.

4.2.1 Reproducing Kernels

Reproducing Kernel Hilbert Space (RKHS) is a functional space widely used for modeling

smooth functional forms using kernels [105]. From the representer theorem [106], it is

known that any function in an RKHS can be written as a linear combination of kernel

functions evaluated at time t. Hence, the gram matrix Kt, defined as (Kt)ij = (i, j)

(i, j = 1, · · · , t), can be used as the temporal basis (i.e. Bt = Kt) in (4.1), where (i, j)

is the kernel function. In this chapter, we use the Gaussian kernel to model the smooth

temporal structure defined as (i, j) = exp(� (i�j)2

2c2
) [107], where c is the bandwidth of

the Gaussian kernel). To control the smoothness of the temporal trend, we use Hilbert

norm penalization [106], which is equivalent to defining Rt = �tKt in Equation (4.1).

�t is the tuning parameter controlling the temporal smoothness of the functional mean.

Consequently, the projection matrix Ht can be computed by

Ht = Kt(K
2

t + �tKt)
�1Kt = KtK�

t

,t (4.5)

where K�
t

,t = (Kt + �tIt)�1. However, since computing (4.5) requires inversion of

Kt + �tIt, which is an t ⇥ t matrix, the total complexity is O(t3) at time t. Eventually,

computing (4.5) is not feasible due to the increasing number of observations and the limited

computational resources. To reduce the computational complexity, we propose to solve the

estimation recursively with only recent w observations since earlier observations typically

49



have little impact on the current estimation. We define Kt = (i, j) i, j = t�w+1, · · · , t

and ˜Kt = (i, j) i, j = t � w, · · · , t as windowed kernel functions, and define K�
t

,t =

(Kt + �tI)�1 and ˜K�
t

,t = (

˜Kt + �tI)�1, accordingly. Proposition 1 shows that Ht and

K�
t

,t can be computed recursively.

Proposition 5. The following update rules hold for Ht and K�
t

,t

˜Ht =

2

64
˜Ht�1

� kt�1

rTt�1

gt�1

(It�1

� ˜Ht�1

) (It�1

� ˜Ht�1

)kt�1

gt�1

rTt�1

(It�1

+ kt�1

rt�1

gt�1

� gt�1

) (1� rTt�1

kt�1

)gt�1

3

75 (4.6)

˜K�
t

,t =

2

64
K�,t�1

+ rt�1

rTt�1

gt�1

�rt�1

gt�1

�rTt�1

gt�1

gt�1

3

75

where rt =

˜K�
t

,tkt, Ht =

˜Ht(2 : t, 2 : t), K�
t

,t =

˜K�
t

,t(2 : t, 2 : t) kt = [(t � w +

1, t), · · · ,(t� 1, t)]T , gt�1

= (1 + �t � rTt�1

kt�1

)

�1.

˜K�
t

,t(2 : t, 2 : t) denotes the reduced matrix ˜K�
t

,t after removing the first row and col-

umn of the matrix. The proof of Proposition 1 is given in Appendix B. With this recursive

updating rule, it is not hard to show that the total complexity of Algorithm 4 will reduce to

O(w2

) at each sampling time t, which is more efficient compared to the non-recursive case

with O(t3). The fact that the complexity does not grow with the rate of O(t3) enables the

real-time implementation of ST-SSD for online monitoring of HD streaming data. Finally,

the optimization (estimation) algorithm can be updated by replacing the computation of the

projection matrix Ht in Algorithm 4 with the updating procedure in (4.6).

4.2.2 Roughness Minimization

In this section, we propose an alternative approach for temporal modeling that can achieve

even faster computational speed than reproducing kernels. In cases where the functional

mean is less volatile over time, we suggest a simple temporal basis and roughness matrix,

namely, Bt = It and Rt = DT
t Dt in (4.1), in which Dt is the first order difference matrix
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of size (t�1)⇥ t defined as Dt = [dpq] = 1q=p�1q=p+1

. By choosing Rt to be DT
t Dt , the

temporal penalization term, ✓TRt✓ = ✓TDT
t Dt✓ =

Pt
i=2

k✓i � ✓i�1

k2, becomes roughness

penalization that penalizes the first order difference of ✓t for a smoother estimation over

time. Therefore, the temporal projection matrix is given by

Ht = (It + �tD
T
t Dt)

�1. (4.7)

The next step is to design a recursive estimator for the roughness minimization model.

As mentioned earlier, for a system with a gradual temporal trend, it is often true that recent

observations have more impact and therefore are more important for parameter estimation

and updating. Therefore, an approximate, yet accurate, approach is to estimate only the

most recent coefficient ✓t without changing the previous estimations of ✓
1

, · · · , ✓t�1

. This

is equivalent to solve (4.1) for only ✓t and ✓a,t. In this way, the ST-SSD model in (4.1) can

be reduced to the following model, which only requires the estimation of ✓t and ✓a,t at time

t.

argmin
✓
t

,✓
a,t

kek2 + ✓TR✓ + �k✓ak1, subject to yt = Bs✓t +Bas✓a,t + et, (4.8)

where R = It⌦Rs+�tDT
t Dt⌦BT

s Bs+�tDT
t Dt⌦Rs. As shown in Proposition 2, given

✓a,t and previous estimates, ✓t has a closed-form solution.

Proposition 6. Suppose the previous estimation ˆ✓
1

, · · · , ˆ✓t�1

, ˆ✓a,1, · · · , ˆ✓a,t�1

and ˆ✓a,t are

known, then the solution of ✓t (or equivalently µt = Bs✓t) to (4.8) is given by

µ̂t = Bs
ˆ✓t = (1� ˜�t)µ̂t�1

+

˜�tHs(yt � ât), (4.9)

where ˜�t =
1

1+�
t

and ât = Bat
ˆ✓a,t

The proof is shown in Appendix C. Note that in (4.9), the temporal structure of µt is

modeled by the weighted average of the previous estimation µ̂t�1

and the current estimation
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of Hs(yt � ât), which is a recursive equation similar to the monitoring statistic of the

EWMA control chart. Therefore, for a stationary process, µ̂t can help average the noise

over time, which leads to a stationary distribution with a much smaller variance than the

original data. However, different from the EWMA control chart, we use (4.9) to estimate

the true dynamic trend µ̂t in dynamic processes. The spatial structure of µt is captured

by applying the projection matrix Hs. However, ˆ✓a,t (or equivalently ât = Bat
ˆ✓a,t) is

unknown and should also be estimated. To efficiently solve for ✓a,t , we first show that

the loss function is equivalent to a weighted lasso formulation, which can be solved via an

accelerated proximal gradient algorithm.

Proposition 7. Suppose the previous estimation ˆ✓
1

, · · · , ˆ✓t�1

, ˆ✓a,1, · · · , ˆ✓a,t�1

are known,

then Problem (4.8) is equivalent to the following weighted lasso formulation:

min

✓
a,t

F (✓a,t) = min

✓
a,t

(yt�Bas✓a,t)
T
(I�˜�tHs)(yt�Bas✓a,t)�2(1�˜�t)(yt�Bas✓a,t)

Tyt�1

+�k✓a,tk1

(4.10)

where ˜�t =
1

1+�
t

.

The proof is given in Appendix D. To efficiently solve this weighted lasso formula-

tion, we propose to use the proximal gradient method, which is a class of optimization

algorithms focusing on minimization of the summation of a group of convex functions,

some of which are non-differentiable. The function F (✓a,t) in (A.2), is comprised of a

differentiable convex function f(✓a.t) = (yt � Bas✓a,t)T (I � ˜�tHs)(yt � Bas✓a,t)� 2(1�

˜�t)(yt � Bas✓a,t)Tyt�1

and a non-differentiable L
1

penalty g(✓a) = �k✓a,tk1. It can be

proved that the proximal gradient algorithm converges to a global optimum given Rs is a

positive semi-definite matrix. This is true because f(✓a,t) is convex and Lipchitz continu-

ous (see Appendix E for the proof of convexity and Appendix F for the proof of Lipchitz

continuity.) According to the following proposition, the proximal gradient method leads to

a closed-form solution for ✓a,t in each iteration of the optimization algorithm.

Proposition 8. The proximal gradient problem for (A.2), given by ✓(k)a,t = argmin✓
a,t

{f(✓(k�1)

a,t )+
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Algorithm 6: Recursive algorithm for roughness minimization
initialize

✓(0)a = 0, L = 2kBask2
2

, t
0

= 1, x(0)

t = 0

Hs = Bs(BT
s Bs +Rs)

�1BT
s

end
for each time t
while |✓(k�1)

a,t � ✓(k)a,t | > ✏ do
Update
a(k�1)

t = Basx
(k�1)

t

µ(k�1)

t = (1� ˜�t)µ̂t�1

+

˜�tHs(yt � a(k�1)

t )

✓(k)a,t = S �

L

(✓(k�1)

a,t +

2

L
BT

as(yt � a(k�1)

t � µ(k�1)

t ))

tk =
1+

p
1+4t2

k�1

2

x(k)
t = ✓(k)a,t +

t
k�1

�1

t
k

(✓(k)a,t � ✓(k�1)

a,t )

end

D
✓a,t � ✓(k�1)

a,t ,rf(✓(k�1)

a )

E
+

L
2

k✓a,t � ✓(k�1)

a,t k2 + �k✓a,tk1}, has a closed-form solution in

each iteration k, in the form of a soft-thresholding function as follows:

✓(k)a,t = S �

L

(✓(k�1)

a,t +

2

L
BT

as(yt � Bas✓
(k�1)

a,t � µ(k)
t )), (4.11)

where L = 2kBask2
2

.

The proof is given in appendix G. Finally, by combining the estimator from both (4.9)

and (A.3), Problem (4.8) can be solved iteratively and recursively with the accelerated

proximal gradient algorithm as shown in Algorithm 6. The accelerated proximal gradient

algorithm is an accelerated version of the proximal gradient (PG) algorithm, which is able

to achieve a better convergence rate than the PG algorithm.

4.2.3 ST-SSD for Stationary Processes

In a stationary process where the functional mean of the data stream is constant when the

process is in-control, ST-SSD is simplified by removing the temporal basis of the mean, i.e.,

µ = Bs✓. Hence, Equation (4.8) becomes argmin ✓
t

,✓
a,t

kek2+✓TR✓+�k✓ak1, subjecttoyt =

Bs✓ + Bas✓a,t + et, which can be solved by Algorithm 6 with a slight modification in es-
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timating µ. As the functional mean is constant, the temporal projection matrix reduces to

a sample average function. Consequently, the functional mean in Algorithm 6 is estimated

by µ̂(k)
= Hs(

1

n

Pn
i=1

(yi � a(k�1)

i )). It is noteworthy that the ST-SSD model for stationary

processes is a special case of the roughness minimization model with �t ! 1 and the

kernel model with c ! 0. More detailed discussions are given in Appendix H.

4.3 Online Process Monitoring and Diagnostics

In this section, we propose a monitoring procedure that combines the ST-SSD model with

a sequential likelihood ratio test. We also discuss how ST-SSD can be used for diagnosis

after a change is detected.

4.3.1 Construct Monitoring Statistics

We propose an online monitoring method using the estimated sparse anomalous features

from ST-SSD. If the sparse vector of anomalies detected by ST-SSD, i.e., â is statistically

significant, it can be implied that a process change has occurred. In this chapter, we focus

on two types of temporal changes: the first type, studied in the simulation study, is based on

the change-point model where the anomaly appears after a time point ⌧ . In the second type,

discussed in the case study, the anomaly happens only in short-time windows. It should be

noted that in both cases, the anomaly is non-smooth in the temporal domain due to the

sudden jump. We denote the detected anomaly at time t as ât. Therefore, at each time t, we

test whether the expected residuals after removing the functional mean, denoted by µr,t, is

zero or has a mean shift in the direction of ât. That is,

H
0

: µr,t = 0 vs H
1

: µr,t = �ât; � > 0.

To test these hypotheses, a likelihood ratio test is applied to the residuals at each sampling

time t, i.e., rt = yt � µt. This leads to the test statistic T�(t) =
(âT

t

r
t

)

2

âT
t

â
t

[108], in which it is
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assumed that the residuals rt are independent after removing the functional mean and their

distribution before and after the change remains the same.However, the test statistics T�(t)

relies on the selection of � since it directly controls the sparsity of ât. To construct a more

stable hypothesis test, inspired by [109], we develop a monitoring statistic by combining

multiple tuning parameters. [109] proposed to use different values of the tuning parameter

� obtained from the breakpoints of the piecewise linear solution path of LASSO. This

is a very time consuming process. For example, for an images stream with the size of

350 ⇥ 350, the LARS algorithm finds the entire solution path in about 60 hours, which

makes it impractical for real-time monitoring purposes. Consequently, we use a smaller set

of possible tuning parameters denoted by �n
�

. It is known that when � is large enough, i.e.,

� � �max, every element of coefficient ✓a will become 0. Therefore, we define the set of

tuning parameter � as �n
�

= {�
max

i
n
�

|i = 0, 1, · · · , n�} by dividing (0, �max] equally into n�

intervals. The choice of �max is discussed in the next subsection. Thus, the combined test

statistic can be defined as

˜T (t) = max

�2�
n

�

T�(t)� E(T�(t))q
Var(

˜T�(t))
(4.12)

where E(T�(t)) and Var(

˜T�(t)) respectively are the mean and variance of T�(t) under H
0

,

that are estimated using a set of in-control data. An out-of-control sample is detected when

its corresponding monitoring statistic ˜T (t) is greater than a control limit h.

4.3.2 Control Limit Determination

The value of the control limit is computed based on a predetermined in-control average run

length (or equivalently, type I error rate) and the set of the tuning parameter values, �n
�

.

[109] suggested to determine �n
�

by using the least angle regression (LARS) algorithm

[92] that provides the entire solution path. The breakpoints in such a solution path define

the set �q. However, the complexity of the LARS algorithm with p covariates is O(np+p3),
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which is infeasible for HD data. Alternatively, to define �q, we use equidistant values of �

within a certain range. The procedure for computing the control limit h in Phase I analysis

using an in-control sample of HD is summarized as follows: First, a ST-SSD algorithm

such as Algorithm 4 (for 1D profile) or Algorithm 5 (for image or high-dimensional tensor)

is applied to an in-control sample Y = (y
1

, y
2

, · · · , yn) to estimate µ and a. The parameters

�s and �t are tuned via the GCV criterion as proposed in [3] and the kernel bandwidth c are

selected by using the cross validation criterion. Next, the set of tuning parameter is defined

by �n
�

= {�
max

i
n
�

|i = 0, 1, · · · , n�}, �max is determined such that ✓a = 0 for all the IC sam-

ples. Larger values of n� increase the detectability of the monitoring procedure. However,

if too large, the monitoring procedure becomes computationally inefficient. In this chapter,

based on numerical experiments, we found that for n� � 20 the detection power in detect-

ing small shifts are similar. Therefore, we use n� = 20 in this chapter. After that, Similar

to [109], assuming the dynamic mean can be estimated accurately (this is validated in the

simulation study), we generate i.i.d gaussian random draws to simulate the residuals rt.

We then apply the ST-SSD on the simulated data, compute the monitoring statistics ˜T (t),

and estimate its empirical distribution. Finally, the control limit is determined as a certain

quantile of the empirical distribution of the monitoring statistics based on a predetermined

IC average run length.

4.3.3 Diagnosis of Detected Changes

After the proposed control chart triggers an out-of-control signal, the next step is to diag-

nose the detected change. Diagnosis for functional data is defined by determining portions

of data that have a different structure from the functional mean. In many cases, especially

in the HD setting, estimating the location of anomalies responsible for the out-of-control

signal is important. This information would help process engineers identify and eliminate

the potential root causes. Suppose that the control chart triggers a signal at time ⌧ , we then

apply the LRT test procedure described in the previous section to determine which � pro-
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vides the largest test statistics in (4.12), denoted by j⇤ = argmax j=1,··· ,q
t

T
�

j

(⌧)�E(T
�

j

(⌧))
q

Var(

˜T
�

j

(⌧))
.

Vector â�
j

⇤ ,⌧ = Bas
ˆ✓a⌧ is the estimated anomalies for the optimal �j⇤ at time ⌧ . Since a

localized basis (e.g. band matrix) is used for Bas, the sparsity of ˆ✓a⌧ leads to the sparsity

of â�
j

⇤ ,⌧ . Therefore, the non-zero elements of â�
j

⇤ ,⌧ can be used to identify the location of

anomalies. If a non-localized basis is chosen, one may use thresholding to determine the

anomalous region by 1(â�
j

⇤ ,⌧ > !), where ! can be chosen by Ostu’s method [43].

4.4 Simulation Study

In this section, the performance of the proposed methodology is evaluated by using sim-

ulated streams of images with a dynamic functional mean (background). To simulate the

functional mean with smooth spatial and temporal structures, we mimic a heat transfer pro-

cess, in which a 2D temperature map, M(x, y, t), are generated according to the following

heat transfer equation [110]:

@M

@t
� ↵(

@2M

@x2

+

@2M

@y2
) = f

where x, y, 0  x, y  1 denote pixel locations on an image, ↵ is the thermal diffusivity

constant describing how fast a material can conduct thermal energy, and f describes the

internal heat generation of the entire surface. In this simulation study, we set ↵ = 1. The

initial and boundary conditions are set as M |t=0

= 0 and M |x=0

= M |x=1

= M |y=0

=

M |y=1

= 1, respectively. At each time t, the functional mean M(x, y, t) is recorded at

points x =

i
m+1

, y =

j
m+1

; i, j = 1, · · · ,m, which results in an m⇥m matrix denoted by

M(t). In this study, we consider two types of anomalies; namely, clustered and scattered

anomalies. Both types of anomalies are generated based on S
0

= �I(s 2 SA)1(t > t
1

), in

which SA is the set of anomalous pixels, � characterizes the intensity difference between

anomalies and the functional mean, 1(·) is an indicator function, and t
1

is the time of the

change. For the scattered case, SA is a set of 25 pixels randomly selected throughout the
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(d) Simulated image coupled
with noise and anomalies at time
t1 = 201

Figure 4.1: Simulated images with both functional mean and anomalies at time t = 201

image. For the clustered case, SA is a randomly generated 5⇥ 5 square. Finally, the matrix

of random noises, i.e., Ei ⇠ NID(0, �2

) with � = 0.1, are added to the generated image

streams. A sample of simulated scattered and square anomalies, the simulated functional

mean, and an example of simulated noisy image are shown in Figure 4.1a, (b), (c) and (d),

respectively.

To model the spatial structure of each image M(t), we use cubic B-spline basis with

10 knots in both x and y directions. For scattered anomalies, since the size of anomalies is

very small and their locations are randomly chosen, an identity matrix can be used as the

spatial basis. For the clustered anomalies, however, since anomalies form small continuos

regions, a cubic B-spline basis with 30 knots is used in both x and y directions. We also

include the results of using an identity basis for the clustered case to study the sensitivity

of the proposed method to the choice of bases. We then apply both versions of the ST-SSD

model (i.e. kernel and roughness minimization) to the simulated streaming images.
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We first begin with evaluating the effectiveness of ST-SSD in estimating the functional

mean. The estimated functional mean from a sample of data streams using both reproduc-

ing kernel (RK) and roughness minimization (RM) models are shown in Figure 4.2a and

(b). The mean square errors (MSE) of the estimated mean are 2.320⇥10

�5 and 8.400⇥10

�5

for RK and RM, respectively, which indicates a slight advantage of the kernel basis due to

its flexibility. Also, in order to show the importance of considering both spatial and tempo-

ral structures of data, in Figure 4.2c and (d), we plot the estimated functional mean when

only either spatial or temporal structure is modeled. To estimate the functional mean with

only spatial structure, we apply SSD on each single image with the same spatial spline

basis used in the ST-SSD. To estimate the functional mean considering only the temporal

structure, we apply the proposed RM method with the identity matrix as the spatial basis.

The MSE of the estimated mean for spatial and temporal models are receptively 2.32⇥10

�4

and 3.92⇥10

�4, both larger than that of RK and RM. By comparing Figure 4.2 with Figure

5.3b, it is clear that the estimated functional mean by our proposed ST-SSD is much closer

to the true functional mean as it takes both spatial and temporal structures into account.

Next, we compare the performance of our method with a few benchmark methods in

the literature. Specifically, we compare the proposed reproducing kernel (designated as RK

for the identity spatial basis and as RKcluster for the cubic B-spline basis) and roughness

minimization (designated as RM for the identity spatial basis and RMcluster for the cubic

B-spline basis) methods with the Hotelling T 2 control chart (designated as ’T2’), Lasso-

based control chart proposed by [111] (designated as LASSO) and local CUSUM control

chart [49] (designated as ’CUSUM’). It should be noted that none of benchmark methods

can remove the temporal trend. Therefore, to have a fair comparison, we use a simple

moving average filter with the window size of 5 to remove the temporal trend before ap-

plying the benchmark methods. We fix the in-control ARL
0

for all methods to be 200 and

compare the out-of-control ARL
1

under different anomaly intensity levels,�.

The average time of computing the monitoring statistics for a sample is given in Ta-
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Figure 4.2: Functional mean estimation results

ble 4.1, and the out-of-control ARL curves of clustered and scattered anomalies obtained

from 1000 simulation replications are shown in Figure 4.3a and 4.3b, respectively. In both

cases of scattered and clustered anomalies, it is clear that RK and RM models have better

detection performance than other benchmark methods. The RK method performs slightly

better than RM due to its accuracy in modeling the temporal trend. However, RM is slower

in terms of the computation time because of its higher modeling complexity. The reason

for the poor performance of the local CUSUM and lasso-based control charts is that they

lack the ability to model both the spatial structure and the temporal trend at the same time.

Hotelling T 2 control chart performs the worst because it is based on a multivariate hypoth-

esis test, whose power deteriorates as the data dimensions increase, hence, not scalable to

HD data streams. Moreover, in the case of clustered anomalies, the proposed RK and RM

models with spline basis detect the changes significantly quicker than those with identity

basis. For example, in the clustered anomaly case, for a small shift with � = 1, the ARL
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Table 4.1: Computation time of ST-SSD and other benchmark methods

RK RM LASSO CUSUM T2
Time 0.13s 0.015s 5.2e-3s 2.0e-4s 1.6e-4s
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(b) ARL Run Length for clustered defect in different
�

Figure 4.3: Detection power comparison based on ARL

for both RKcluster and RMcluster is around 40, while the ARL for other methods without

considering the spatial structure are at least about 4 times larger (� 170). This indicates

the importance of accurate modeling of the spatial structure in addition to the temporal

tend. The ARL of the benchmark methods for such a shift is close to the in-control ARL

of 200, indicating that these methods are not capable of detecting small changes. In con-

clusion, even if the computational time of RK and RM is much larger than LASSO, T2

and CUSUM, it is still small enough to be used for online monitoring. Furthermore, the

performance of RK and RM is much better especially in the clustered anomaly case. A

video of one simulation run along with the ST-SSD results and the corresponding control

chart is given in the online appendix. 1

Finally, we evaluate and compare the performance of the diagnosis method with bench-

mark methods. For this purpose, we compute the following four criteria after a shift is

detected: (i) precision, defined as the proportion of detected anomalies that are true anoma-
1Online appendix on https://www.dropbox.com/sh/5qf1z8ls5afnpiv/AACRJ3G5lSpxePXFIByXoaqRa?dl=0
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Table 4.2: Monitoring and diagnostics result when � = 2 and � = 3, (precision, recall and
F, the larger the better; ARL, the smaller the better.)

methods Scattered Anomalies � = 2 Scattered Anomalies � = 3

precision recall F ARL precision recall F ARL
RK 0.2357 0.2764 0.2544 37.17 0.6106 0.5500 0.5738 1.73
RM 0.2535 0.2532 0.2533 43.11 0.5851 0.5560 0.5656 1.83

LASSO 0.2553 0.2204 0.2366 155.39 0.5719 0.4892 0.5257 8.96
CUSUM 0.1092 0.1136 0.1114 124.88 0.5187 0.5394 0.5289 1.86

T2 - - - 195.32 - - - 181.23
methods Clustered Anomalies � = 2 Clustered Anomalies � = 3

RKcluster 0.8515 0.8596 0.8415 1.11 0.9424 0.9464 0.9444 1.00
RMcluster 0.8490 0.7934 0.8202 1.46 0.9163 0.9474 0.9316 1.00

LASSO 0.2498 0.2160 0.2297 153.88 0.5880 0.4952 0.5333 8.57
CUSUM 0.1100 0.1144 0.1121 121.85 0.5195 0.5402 0.5296 1.95

T2 - - - 195.32 - - - 181.23

lies; (ii) recall, defined as the proportion of the anomalies that are correctly identified; (iii)

F measure, a single criterion that combines the precision and recall by calculating their

harmonic mean; and (iv) the corresponding ARL. The average values of these criteria over

1000 simulation replications for � = 2 and � = 3 are given in Table 4.2. An example

of detected anomalies for both scattered and clustered cases with � = 3 are also shown

in Figure 4.4, in which incorrectly classified points are shown in red. It is clear from this

figure and Table 4.2 that the proposed RK and RM models have a much better diagnostics

performance than other benchmark methods. This difference is more pronounced in the

clustered case where the benchmark methods fail to model the spatial structure of anoma-

lies. For example, for the scattered case, the F measure of both RK and LASSO is around

0.25. However, in the clustered case, this measure is 0.84 for kernel, while lasso’s measure

remains the same. Moreover, the diagnostics measures of ST-SSD methods (i.e. RK and

RM) in the clustered case is much better than the corresponding measures in the scattered

case. This is because the spatial structure of defects in the clustered case is well captured

by the B-spine basis.
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(a) Scattered defects with � = 3
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(b) Clustered defects with � = 3

Figure 4.4: Detected anomalies by using different methods (incorrectly identified pixels
are shown in red)
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4.5 Case study

In this section, the proposed monitoring method is applied to three real datasets collected

from a steel rolling process, a solar data observatory, and a stamping process. In the first

two cases, we analyze images with a dynamic functional mean and in the third case we

study multi-channel profiles with a static functional mean.

4.5.1 On-line Seam Detection in Steel Rolling Process

Rolling is a high-speed deformation process that uses a set of rollers to reduce the cross-

section of a long steel bar by applying compressive forces for achieving certain uniform

diameters [112]. Surface defects such as seam defects can result in stress concentration on

the bulk material that may cause failures when a steel bar is used. Therefore, early detec-

tion of anomalies is vital to prevent product damage and to reduce manufacturing costs.

Traditionally, due to the high speed of the rolling process (e.g. 225 mile per hour), seam

detection has been limited to off-line manual inspection. In recent years, with the develop-

ment of advanced sensing and imaging technologies, vision sensors have been successfully

adopted in rolling processes, collecting high-resolution images of the product surface with

a high data acquisition rate. In this case study, a stream of surface images of a rolling bar

is used to validate our methodology. We collect a sample of 100 images with the size of

128⇥ 512 pixels. The first 50 images are in-control samples with no defects. As an exam-

ple, one frame of the image stream is shown in Figure 1.4a. An image of a rolling bar is

generally smooth in the rolling direction (vertical direction). Moreover, seam defects that

have a high contrast against the functional mean (image background) are typically sparse

[113], which justifies the use of ST-SSD model for analyzing this data stream. We apply

the proposed RM method to monitor rolling process and detect potential defects on the

surface. To model the functional mean in y direction, a B-Spline basis with 5 knots is used

for By and Bx = Ix. We also use an identity matrix basis for anomalies in both the x and

64



Time
0 20 40 60 80 100

L
o
g
(T

)

-4

-2

0

2

4

6

8
Control Chart

(a) Log of testing statistics

Background

50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

120

(b) Functional mean estimation

Detected Anomaly

100 200 300 400 500

20

40

60

80

100

120

(c) Anomalies estimation

Figure 4.5: Detection results for rolling example at time t = 97

y directions, i.e., Bax = Iax and Bay = Iay.

Since the dynamic behavior of the functional mean is not intricate, the roughness mini-

mization model described in Section 4.2, is used. The testing statistic in (4.12) is calculated

and plotted in Figure 4.5a. The control limit for this case and other examples presented in

this section is determined using the in-control data and according to the procedure pre-

sented in Section 5.2. Seam defects often occur towards the end of the rolling bar. It

is clear from the image stream (see the online appendix), the first defect appears at time

t = 76, which is the first out-of-control point in the control chart. The computational time

is 0.35s per sample, which is sufficiently fast for online monitoring. To illustrate the ef-

fectiveness of the diagnosis procedure, the estimated functional mean and detected defects

in one out-of-control image recorded at t = 97 is shown in Figure 4.5b and 4.5c, respec-

tively. The original image is also shown in Figure 1.4a. As we can see from Figure 4.5,

the estimated functional mean (background) is smooth in the y direction and the detected

defects are sparse and demonstrate certain repeated patterns suggesting that the roller may

be damaged.

4.5.2 Online Monitoring of Solar Activity

In the second example, a stream of solar images are used for monitoring of solar activi-

ties and detection of solar flares. A solar flare emits a large number of energetic charged

65



particles, which may potentially cause the failure of large-scale power-grids. Thus, quick

detection of solar flares is important for preventive and corrective actions. The solar tem-

perature slowly changes over time and solar bursts are sparse in both the time and space,

which makes process monitoring challenging. Existing detection methods that simply re-

move the functional mean (background) by subtracting the sample mean are incapable of

detecting small transient flares in the dynamic system [114].

This dataset is publicly available online at http://nislab.ee.duke.edu/MOUSSE/index.html.

In this dataset, a sequence of images of size 232⇥ 292 pixels was captured by satellite. A

sample of 300 frames is used in this case study and the first 100 frames are considered as

the in-control sample. To detect the solar flare in real-time, the proposed RM monitoring

method is applied with the following specification: To model the smooth functional mean

(background), B-Spline basis with 50 knots are used as Bx and By; to model the sparse

anomalies (solar flares), we select the identity matrix for the anomalies in both the x and y

directions, i.e., Bax = Iax and Bay = Iay. The logarithm of the test statistic obtained from

(4.12) is plotted in Figure 4.6. As can be seen form the control charts, three solar flares are

detected. The first two solar flares occurred at intervals [191, 194] and [216, 237], which is

compatible with the results reported in [114] and [50]. Additionally, we are able to detect a

third small flare at the interval [257, 258], which was not detected by the existing two-step

approaches (i.e., [50, 114]). Computation time is about 0.12s per frame, which enables

online monitoring. Note that although image frames in both case studies have similar num-

ber of pixels, the computation time for the analysis of solar images is smaller than that of

rolling images. The reason is that the computational complexity for the proposed algorithm

is O(n3

x + n3

y) , which is in order of 1.2 ⇥ 10

8 and 4 ⇥ 10

7 for rolling and solar images,

receptively. This makes the computation time for solar images approximately three times

lower.

Furthermore, to find the location of the solar flares in out of control images, the esti-

mated functional mean (the background) and anomalies (solar flares) corresponding to time
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Figure 4.6: Log of testing statistics in solar flare monitoring

t = 192, 222, 258 are shown in Figure 4.7. As can be seen form the figure, the proposed

method not only is able to detect the changes, but also can identify the location of solar

flares in different time frames.

4.5.3 Tonnage Signal Monitoring

We also utilize the proposed methodology to monitor multi-channel tonnage profiles col-

lected in a multi-operation forging process. In this process, four strain gauge sensors, each

mounted on one column of the forging machine, measure the exerted tonnage force of the

press uprights as shown in Figure 4.8a. This results in a four-channel tonnage profile in

each cycle of operation. The dataset used in this case study contains 202 in-control profiles

collected under normal production condition and 69 out-of-control profiles in which there

is a missing part in the piercing operation die. As pointed out by [1], [115] and [59], a

missing part only affects certain segments of the tonnage profile, which implies that the

change is sparse. Hence, in this case study, we only focus on the peak area of the tonnage

profile, which is mostly affected by a missing part. The length of the peak profiles for each

channel is 569. Examples of peak profiles for both normal and faulty conditions are shown

in Figure 1.4c.

Since the signal mean is static, the proposed static model is applied. However, to model
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(a) First solar flare at t=192 (b) Mean estimation at t=192 (c) Anomalies estimation at t=192

(d) Second solar flare at t=222 (e) Mean estimation at t=222 (f) Anomalies estimation at t=222

(g) Third solar flare at t=258 (h) Mean estimation at t=258 (i) Anomalies estimation at t=258

Figure 4.7: Detection results in three solar frames at time t = 192, 222, 258
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Figure 4.8: Monitoring forging process using multi-channel tonnage signal

the spatial structure of the profile mean and anomalies, cubic B-spline bases with 10 and

90 knots are used, respectively. We use the sequence of in-control profiles to estimate

the control limit. Out of 202 samples collected under the normal operations, 9 samples

are specified as out-of-control. After removing these outlier samples and recalculating the

control limit, the proposed monitoring method is applied to the sequence of faulty profiles

and the resulting control chart is shown in Figure 4.8b. As shown in the figure, there is a

clear change in the mean of the monitoring statistic, indicating that the monitoring method

can detect the profile changes caused by missing parts. Overall 44 out of 69 faulty samples

are beyond the control limit, which is roughly equivalent to the out-of-control ARL of 1.5.

The computational time on average is 0.25s per sample.

Moreover, we use all out-of-control samples to perform diagnosis analysis. The per-

centage of identified anomalies by our diagnosis method across different channels and

segments are shown in a colormap in Figure 4.9a. Warmer colors imply that more out-

of-control samples contain anomalies in the corresponding channel segment. As can be

seen in Figure 4.9a, anomalies mostly occur in the segment [44, 88], segment [319, 346]

and segment [497, 535] and mostly in Channel 1. This is because Sensor 1 is mounted on

the front side of the forging machine where the die with missing parts is located. Figure
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Figure 4.9: Tonnage Signal Diagnostics

4.9b shows one example of faulty profile recorded by Sensor 1 along with the profile mean

and the identified anomalous segment. As can be seen from the figure, the main difference

between the signal and the profile mean is picked up by the the diagnosis procedure. These

findings are consistent with those in [1, 59].

4.6 Conclusion

Online monitoring of high-dimensional streaming data with complex spatio-temporal struc-

ture is very important in various manufacturing and service applications. In this chapter,

we proposed a novel methodology for real-time monitoring of HD data streams. In our

methodology, we first developed ST-SSD that effectively decomposes a data stream into a

smooth functional mean and sparse anomalies by considering the difference in the spatio-

temporal structures of the functional mean and anomalies. Similar to SSD, we formulated

ST-SSD in the form of high-dimensional regression augmented with penalty terms to en-

courage both the smoothness of the spatio-temporal functional mean and the sparsity of

anomalies. To effectively solve this large-scale convex optimization problem, we used

APG methods and developed efficient iterative algorithms that have closed-form solutions

in each iteration. This method can be applied to identify anomalies and the functional mean
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for a fixed number of samples, which can only be applied in offline phase-I monitoring. To

handle challenges of the increasing number of observations in online monitoring, reproduc-

ing kernel and roughness minimization models were developed as two temporal modeling

methods that provide a recursive estimation scheme for ST-SSD. This enables real-time im-

plementation of ST-SSD. Then, a sequential likelihood-ratio-test-based control chart was

proposed for monitoring. In the simulation study, we showed that the proposed methods

outperforms existing process monitoring approaches that fail to effectively model both the

spatial structure and temporal trend. Finally, the proposed method was applied to three

real case studies including steel rolling, solar activity, and tonnage signal monitoring. The

results from all case studies demonstrated the capability of the proposed methods in iden-

tifying not only the time of process changes, but also the location of detected anomalies.

chapter
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CHAPTER 5

AN ADAPTIVE FRAMEWORK FOR ONLINE SENSING AND ANOMALY

DETECTION

In this chapter, we develop a novel framework named Adaptive Kernelized Maximum-

Minimum Distance (AKM

2

D) to speed up the inspection and anomaly detection process

through an intelligent sequential sampling scheme integrated with fast estimation and de-

tection. The proposed method balances the sampling efforts between the space filling sam-

pling (exploration) and focused sampling near the anomalous region (exploitation). The

proposed methodology is validated by conducting simulations and a case study of anomaly

detection in composite sheets using a guided wave test.
The remainder of the chapter is organized as follows. Section 5.1 provides an overview

of the proposed methodology. In Section 5.2, we propose the new adaptive sampling/sensing
framework AKM

2

D. Section 5.3 elaborates mean estimation and anomaly detection algo-
rithms. In Sections 5.4 and 5.5, simulated data and a case study of anomaly detection in
composite laminates are used to evaluate the performance of the proposed methodology.
Finally, we conclude the chapter with a short discussion in Section 5.6.

5.1 Methodology Overview

We first briefly review the overall methodology proposed in this chapter, which includes

two main components: an adaptive sampling framework and procedures for estimating the

functional mean and anomalies. For illustration purposes, we use the 2D sampling space

[0, 1]2 in this chapter. We further constrain the samples to be on a 2D fine grid defined as

Gm = {( i
m
, j
m
)|i, j = 1, · · · ,m}, where m can be specified by the resolution capability

of the sensing device. It should be noted that the proposed methodology can be easily

extended to a higher dimensional space or continuous space.
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Figure 5.1: Procedure of the proposed sampling algorithm

The proposed methodology, illustrated in Figure 5.1, is summarized as follows: First,

ninit initial points are sampled using a space-filling design (e.g. max-min distance, [116])

to explore the entire sampling space. Then, based on the outcome of the initial points, sub-

sequent points are chosen by using AKM

2

D to balance between the space-filling sampling

(exploration) and the focused sampling near the anomalous region (exploitation). After

AKM

2

D chooses the location of a new sample, the functional mean is estimated (updated)

via robust kernel regression. After certain number of sampled points, if the functional

mean estimate does not deviate much from the estimate obtained in the previous itera-

tion, the functional mean estimation step can be skipped to reduce the computational time.

Also, in this step, the probability that a point in the sample space is anomalous is updated,

which is an input for AKM

2

D in the next iteration. Next, clustered anomalous regions are

estimated (updated) via the proposed sparse kernel regression. Finally, this procedure is

repeated until the desired sampling resolution is reached.

In developing the proposed sampling methodology, we make the following assump-

tions: we assume that sparse anomalies are in the form of clusters. Also, for estimating the

functional mean and anomalous regions, it is assumed that the functional mean is smooth

and anomalies have different intensity values from the functional mean. It should be noted

that the proposed AKM

2

D framework is general and does not require the smoothness as-

sumption.
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5.2 Adaptive Kernelized Maximum Minimum-Distance (AKM

2

D) Sensing

5.2.1 Formulation and Algorithm

In this section, we present our new adaptive sensing framework, AKM

2

D, that helps se-

quentially choose the location of samples. Suppose n sampled points located at Mn =

{rk = (xk, yk) 2 Gm|k = 1, · · · , n} are observed in an iteration. Let pa(rk) denote the

known probability that the point rk in this set is anomalous (the detailed procedure for es-

timating pa(rk) will be discussed in Section 4.) To find the next sampled point rn+1

, we

propose the following criterion:

rn+1

= argmax

r
gn(r) =  n(r)(fn(r))

�, (5.1)

where  n(r) is the estimated distribution of anomalies. Therefore, maximizing  n(r) can

encourage the focused sampling (exploitation) meaning that the next sampled point rn+1

continues searching in anomalous regions. fn(r) is the regularization term to prevent sam-

pled points being too close to each other. In the other word, fn(r) encourage the exploration

of entire sampling space for undiscovered anomalies (space-filling property). In this chap-

ter, we define  n(r) as a mixture distribution of gaussian distributions centered at each

anomalous point observed, and a uniform distribution for the entire sampling space to ac-

count for unobserved anomalies. That is,  n(r) = (

Pn
k=1

pa(rk)Kh(r, rk) + u) where

Kh(r, rk) =

1

(

p
2⇡h)2

exp(�kr�r
k

k2
2h2

) is the 2D-gaussian kernel centered at point rk used

to model the clustered structure of the anomalies. pa(rk) and u are respectively the mix-

ture weights for the gaussian distribution Kh(r, rk) and the uniform distribution. Note that

pa(rk) is also the probability that the sampled point rk is anomalous. The normalization

weight 1P
n

k=1

p
a

(r
k

)+u
is neglected since it is constant and independent of r. Furthermore, we

define fn(r) by fn(r) := minr
k

2M
n

kr � rkk to encourage the space-filling property. For

a special case  n(r) = 1, Equation (5.1) becomes rn+1

= argmaxr mink=1,··· ,n kr � rkk
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Algorithm 7: AKMMD
initialize

Initial ninit sampling based on max-min distance design
end
for n = ninit, · · · , nmax do

Update  n(r) based on  n = KT
x PAKy + u1m⇥m

Update fn(r) = min(fn�1

(r), kr � rnk) for r 2 Gm

rn+1

= argmaxr2G
m

 n(r)(fn(r))�

end

which is equivalent to a greedy approach to solve the maximum minimum-distance design

proposed by [116]. By plugging in  n(r) and fn(r) , the sampling criterion given in (5.1)

can be rewritten as

rn+1

= argmaxr

(
(

nX

k=1

pa(rk)Kh(r, rk) + u) min

k=1,··· ,n
kr � rkk�

)
. (5.2)

To efficiently solve (5.2) on r 2 Gm, we compute  n(r) by the tensor product of two 1D-

gaussian kernel. That is, n = KT
x PAKy+u1m⇥m, where Kx,ij = Ky,ij =

1

(

p
2⇡h)2

exp(�ki�jk2
2h2m2

),

and PA,ij = pa(
i
m
, j
m
)1((

i
m
, j
m
) 2 Mn) are the ij component of the matrix Kx, Ky and PA,

respectively. 1(x) is an indicator function defined as 1(x) =

8
>><

>>:

1 x is true

0 x is false
, and 1m⇥m is

an m by m matrix of 1s. It is straightforward to show that fn(r), r 2 Gm can be updated re-

cursively by fn(r) = min(fn�1

(r), kr� rnk), r 2 Gm. Both the space and time complexity

of this recursive update is O(m2

), where m is the grid size in each dimension. Therefore,

(5.2) can be efficiently and recursively solved by Algorithm 7.

5.2.2 AKM

2

D Sampling Properties

In this section, we study the properties of the proposed AKM

2

D. Let Ri denote the neigh-

borhood of a point ri defined by Ri = {r|kr � rik  kr � rkk, 8k = 1, · · · , n}. We first

investigate the behavior of the sampling criterion g(r) in the neighborhood of an anoma-

lous point ra, i.e., Ra. (see Figure 5.2). It is easy to show that Equation (5.2) for r 2 Ra

75



can be decomposed into two terms: g(r) = ga(r) + g�a(r), where ga(r) = (Kh(r, ra) +

u)kr � rak�, g�a(r) =

⇣Pn
k 6=a p(rk)Kh(r, rk)

⌘
kr � rak�. The second term, g�a(r), is

often negligible in the neighborhood of ra especially when krk � rak � h, 8k 6= a. For

simplicity, we assume ra is the only detected anomalous point with pa > 0.

Proposition 9. The local maximum of ga(r), r 2 Ra is attained at kr � rak = d⇤a =

h
q
�� 2W (�⇡h2�u

p
a

exp(

�
2

)) if {r : kr � rak = d⇤a} 2 Ra. W is the Lambert W-function

defined as W (z) = {w|z = w exp(w)}.

Proof is given in Appendix A.

Proposition 9 guarantees that ga(r) in the neighborhood of ra will generate a local maxi-

mum ring with radius d⇤a (as shown in Figure 5.2), which encourages the next sampled point

to be chosen near the potential anomalous point ra (exploitation), but with the distance of

d⇤a to avoid over-exploitation. Proposition 9 only guarantees the local optimality. How-

ever, the next sampled point is selected on the local maximum ring only if it is the global

maximum of g(r). To study this and show how criterion (5.2) is able to balance sampled

points between exploration and exploitation, we give the following necessary condition

under which the algorithm selects r⇤a .

Proposition 10. Let d⇤ denote the current sampling Max-Min Distance (MMD) defined as

the maximum distance of each point in the entire sampling space with its closest sampled

point, i.e., d⇤ := maxr minr
k

2M
n

kr � rkk and suppose ra is the only sampled point with

pa > 0. If there exists a constant c such that krk � rak � max(2c
p
2h2

ln(

p
a

2⇡h2u
), 2d⇤a),

then kr � rak = d⇤a = h
q
�� 2W (�⇡h2�u

p
a

exp(

�
2

)) is the global maximum of (5.2) if

d⇤ < ˜d⇤ := (

1

(1 + exp(�c2)
⇥ (d⇤a)

2

2((d⇤a)
2 � �h2

)

)

1

�d⇤a. (5.3)

Proof is given in Appendix B.

Proposition 10 shows that the proposed algorithm first samples the entire space up to

a certain resolution ˜d⇤ and then, starts focused sampling. This ensures that the proposed
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Figure 5.2: Behavior of g(r) with the center point as anomaly point

method does not miss any anomaly with radius greater than ˜d⇤. Furthermore, this propo-

sition can be used for choosing the tuning parameters, which will be discussed in the next

section.

To illustrate the implication of this proposition, we plot the behavior of g(r) in Figure

5.2. The center point in this figure is an anomalous point (the point indicated by ra), which

generates a local optimal ring with radius d⇤a. It will be global optimum if this optimal

value is larger than the other local maximum in the center of the potential sampled points

(the point indicated by r
1

) as shown in Figure 5.2. Proposition 10 shows that if (5.3) holds,

the algorithm will select a point on the local maximum ring centered at ra as the global

optimum and hence as the next sampled point.

5.2.3 Tuning Parameter Selection

In this section, we discuss how to select tuning parameters �, h and u. First, based on

our numerical experiments in the simulation study, we suggest the kernel bandwidth h is
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selected approximately as the 1/5 of the anomaly size desired to be detected. To avoid

over-exploitation for subsequent sampled points � should be large. We found � > 5 works

reasonably well in practice. Furthermore, according to proposition 10, the desired sampling

MMD, ˜d⇤ = (

(d⇤
a

)

2

2((d⇤
a

)

2��h2

)

)

1

�d⇤a, and the focused sampling radius d⇤a, can also be used as a

guideline to select the tuning parameters. Note that when computing ˜d⇤, we ignore the

(

1

1+exp(�c2)
)

1

� since it is close to 1 when c > 3 and � > 5. For example, c = 3, � = 5,

(

1

1+exp(�c2)
)

1

�

= 0.99998.

5.3 Mean and Anomaly Estimation Using Sparse Samples

In the previous section, we proposed a general adaptive sampling strategy and discussed

its properties. Here, we propose methods for estimating the mean function as well as

anomalous regions using the sparse measurements obtained by AKM

2

D. Specifically, we

present a robust kernel regression algorithm for functional mean estimation and a sparse

kernel regression algorithm for anomaly estimation.

5.3.1 Robust Kernel Regression for Functional Mean Estimation

Let zk denote the recorded measurement at point rk = (xk, yk) and z = (z
1

, · · · , zk, · · · , zn)

be the vector of measurements for all n sampled points. To model the smooth functional

mean µ in the presence of anomalies, Reproducing Kernel Hilbert Space (RKHS) is uti-

lized. From the representer theorem [106], it is known that every function in an RKHS

can be written as a linear combination of kernel functions evaluated at sampled points. If

anomalies did not exist, kernel regression could be used for estimating the functional mean.

However, since anomalies have a different functional structure from the mean, they behave

as outliers when estimating the functional mean. Therefore, we utilize robust kernel re-

gression to alleviate the effect of anomalies on mean estimation. To estimate the functional

mean µ, we minimize
nX

k=1

⇢(zk � µk) + �kµkH , (5.4)
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in which ⇢(x) is the Huber loss function, defined by ⇢(x) =

8
>><

>>:

x2 |x|  �
2

�|x|� �2

4

|x| > �
2

, and

�kµkH is the Hilbert norm penalty, which controls the smoothness of the functional mean.

The Robust kernel regression can be solved efficiently via an iterative soft-thresholding

function [117]. See Appendix C for the detailed derivation and optimization algorithm.

The functional mean µ is almost the same after sensing enough sampled points. Therefore,

to speed up the algorithm, we stop updating µ when the estimation difference after adding

a new sampled point is smaller than a certain threshold. After estimating the functional

mean µk, the residuals can be computed by ê = [êk] = [zk � µ̂k].

5.3.2 Updating Probability pa(rk)

We conduct a hypothesis test on the residual êk to test whether there exist anomalies in the

specimen at the location rk. The null hypothesis is H
0

: µe
k

= 0, implying no anomalies

exist. The p-value of this test can be used to update the probability of the sampled point

rk being anomalous. That is, pa(rk) = P (|ek| > |êk||ek ⇠ N(0, ŝ2)) = 1 � 2P (ek >

êk) = 2�(

|ê
k

|
ŝ
) � 1, where �(·) is the cumulative density function of the standard normal

distribution, ŝ is the standard deviation of the noise e, which can be estimated by the median

absolute deviation under the normality assumption as ŝ = median{|ê|}/0.6745. pa(rk) is

used as an input to AKM

2

D as discussed earlier. Moreover, the selection of � can be

determined based on a specified false positive rate, ↵
0

, associated with the hypothesis test.

If no anomalies exist (H
0

is true), the false positive rate can be computed by P (|ek| >

�
2

|ek ⇠ N(0, ŝ2)) = 2(1��( �
2ŝ
)) = ↵

0

. Consequently, � can be selected by �̂ = 2ŝ��1

(1�
↵
0

2

). See Appendix C for the reason as to why �
2

is a good threshold to determine whether

a point is anomalous.
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5.3.3 Sparse Kernel Regression for Clustered Anomaly Estimation

In this subsection, we estimate the size, shape, and boundary of anomalous regions. Specifi-

cally, we model the spatial structure of clustered anomalies by a gaussian kernel Ka through

optimizing

argmin

✓
a

kê�Ka✓ak2 + �a|✓a|1. (5.5)

Problem (5.5) can be solved efficiently by existing L1 solvers such as the accelerated prox-

imal gradient (APG) method used in [72]. The APG algorithm for solving Problem (5.5) is

given in Algorithm 8. For the tuning parameter �a, as it has been pointed out by [72], Gen-

eralized Cross Validation (GCV) usually tends to select more points, leading to a larger

false positive rate. Therefore, instead of using GCV, we choose �a based on a specified

false positive rate ↵. Since there is no closed-form solution for Problem (5.5) with gen-

eral Ka, Monte Carlo simulations can be used to select �a as follows: generate white

noise from e ⇠ NID(0, ŝ2), where ŝ is the standard deviation of the noise e. Select �a

such that ↵ ⇥ 100% of â = Ka
ˆ✓a are non-zero. Note that since Ka changes overtime,

�a should be recomputed whenever a new point is measured, which is time-consuming.

Therefore, an approximate procedure for tuning parameter selection is proposed. When

Ka is orthogonal, ✓a has a closed-form solution computed by ˆ✓a = S �

a

2

(KT
a ê), or equiva-

lently, ˆ✓ai = S �

↵

2

(

P
j Ka(rj, ri)êj). When Ka is close to orthogonal, the soft-thresholding

function gives a reasonable approximate solution. The false positive rate can then be

computed by ↵ = P (

ˆ✓ai 6= 0) = 2P (|z| > �
a

2

|z ⇠ N(0, l2ŝ2) = 2�(1 � �
a

2lŝ
), where

l2 =
P

j Ka(rj, ri)2. Therefore, �a can be approximated by �a = 2lŝ��1

(1� ↵
2

).

To determine the anomalous regions, since the gaussian kernel is not localized, we

threshold the solution to (5.5) using a small threshold w to ensure noises are not detected.

Consequently, anomalous regions are estimated by 1(â > w), where 1(x) is an indicator

function. In our study, we select w = 0.005ŝ. Furthermore, as the number of points in

anomalous regions increases, the corresponding kernel size should decrease accordingly.
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Algorithm 8: APG algorithm for sparse kernel estimation of anomalies
initialize

Choose a basis for the background as B
✓(0)a = 0

end
while |✓a(k�1) � ✓(k)a | > ✏ do

Update ✓(k+1)

a by ✓(k+1)

a = S �

2

(x(k)
+KT

a (e�Kax(k)
)))

Update tk+1

=

1+

p
1+4t2

k

2

Update x(k+1)

= ✓(k)a +

t
k

�1

t
k+1

(✓(k)a � ✓(k�1)

a )

end

Therefore, we update the bandwidth of kernel Ka (i.e. ha ) proportionally to the sam-

pling resolution in anomalous regions. That is, ha = ch maxr2â minr
k

kr � rkk. From the

simulation study, we found ch = 0.2 works reasonably well.

5.4 Simulation Study

To evaluate the performance of the proposed methodology, we simulate 200⇥ 200 images

with a smooth functional mean denoted by matrix M whose elements are obtained by

evaluating M(x, y) = exp(� (x2

+y2)
4

) at points x =

i
201

, y =

j
201

; i, j = 1, · · · , 200. In this

study, 7 anomaly clusters are generated by A = BsAsBT
s , in which Bs is a cubic B-spline

basis with 13 knots, and As is a 13 by 13 sparse matrix with 7 randomly selected non-zero

entries denoted by SA. The elements of As are defined by As(i, j) = � · 1(aij 2 SA),

where � = 0.3 characterizes the intensity difference between anomalies and the functional

mean. Random noises E are generated from E ⇠ NID(0, �2

) with � = 0.05. Finally, the

set of 200 ⇥ 200 simulated images, Y , is generated by adding the anomalies and random

noises to the functional mean, i.e., Y = M + A + E. A sample of simulated functional

mean, anomalies, and a noisy image with anomalies are shown in Figure 5.3. The goal of

this simulation study is to accurately estimate anomalous regions with the least number of

sampled points.

We compare our proposed adaptive sampling framework, AKM

2

D, with the random
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Figure 5.3: Simulated images with both functional mean and anomalies

sampling method (designated by “Random”) and multi-resolution grid sampling (desig-

nated by “Grid”). In the Random sampling method, the sampled points are selected purely

at random. In the Grid sampling, the sampled points are first selected on a 15 ⇥ 15 coarse

grid. If pa > 0.5, a finer grid with a five-times-higher resolution is then used to sample

within the coarse grid containing anomalous points. We apply the proposed estimation

method to the sampled points obtained by both AKM

2

D and the benchmarks to estimate

the anomalous regions. In this way, the difference in anomaly detection performance can

only be attributed to the sampling strategy.

To compare the performance of different sampling methods, the average value of the

following criteria are computed over 5000 simulation replications: Precision, defined as

the the percentage of detected anomalies by the algorithm that are indeed anomalous; Re-

call, defined as the percentage of the true anomalous regions detected by the algorithm;

F-measure, defined as the harmonic mean of precision and recall; Exploitation Ratio (ER),

defined as the percentage ratio of sampled points in the true anomalous regions to total

number of sampled points; Anomaly Max-Min Distance (AMMD), defined as the maxi-

mum distance of points in the true anomalous region to the nearest sampled point; Max-

Min Distance (MMD), defined as the maximum distance of points in the entire sampling

space to the nearest sampled point; and the computational time of the sampling procedure

for each sampled point. These average values are reported in Table 5.1. Form the table, it
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is clear that the proposed AKM

2

D overall outperforms other benchmark methods. For ex-

ample, with 250 sampled points, the recall of AKM

2

D is about 78% indicating that 78% of

the anomalous regions have been detected by AKM

2

D with only 250 points. This is much

higher than the recall of benchmarks that is only about 27%. Although benchmark methods

have slightly higher precision, the overall classification accuracy, measured by F is in favor

of AKM

2

D. The F-measure of AKM

2

D is around 0.70, while it is around 0.40 for Random

and Grid. MMD and AMMD values of the AKM

2

D are also much smaller than those of

Random and Grid, which indicates the proposed AKM

2

D achieves better exploration of the

entire sampling space and better focused sampling near the anomalous regions. Similarly,

the ER of AKM

2

D with 250 sampled points method is around 18%, 3.6 times larger than

that of Random and Grid (around 5%). This implies that the proposed method is able to

quickly locate anomalous regions and sample about 3.6 times more points in those regions

than benchmark methods. Note that the area of anomalous regions covers about 5.8% of

the entire sampling space. However, AKM

2

D with around 0.6% of the full sampled points

(250 sampled points out of 200 ⇥ 200), is able to detect at least 78% of the true anoma-

lous regions. If we increase the number of sampled points to 400, this number increases

to 88%, whereas for Grid and Random it is around 64% and 40%, respectively. The main

reason for the poor performance of Grid is that it lacks the ability of quickly focusing on

the discovered anomalous regions. Moreover, the fine sampling grid is rigid, and hence it

is not flexible to detect arbitrarily shaped anomalies. Random performs the worst since it

does not incorporate any information of detected anomalies. Although AKM

2

D is slightly

slower than the benchmarks, all methods satisfy the real-time speed requirement for online

sensing.

The average values of the F-measure and the ER against the iteration number (number

of sampled points) are also plotted in Figure 5.4. From this figure, we can conclude that

the F-measure of AKM

2

D is strictly better than Grid and Random methods for any number

of sampled points. Furthermore, the ER of AKM

2

D increases to 18% with only 200 points
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Table 5.1: Anomaly Detection Result with 250 and 400 sampled points

Methods 250 sampled points 400 sampled points
AKM

2

D Random Grid AKM

2

D Random Grid
Precision 0.6895 0.8081 0.8012 0.7498 0.7843 0.6681

Recall 0.7802 0.2662 0.2726 0.8816 0.4020 0.6492
F 0.7212 0.3815 0.3930 0.8047 0.5088 0.6539

ER 18.31% 5.37% 5.62% 17.81% 5.36% 14.17%
AMMD 0.0367 0.0735 0.0545 0.0272 0.0631 0.0495
MMD 0.0681 0.1187 0.0700 0.0560 0.0952 0.0699
Time 0.0046s 0.0026s 0.0025s 0.0053s 0.0028s 0.0032s
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Figure 5.4: F-measure and Exploitation Ratio

and then oscillating around 18%, showing its superiority to quickly locate and sample the

anomalous regions. The ER of Grid stays at 4% during the coarse grid sampling and only

begin to increase up to 16% when performing the fine-grid sampling (after 225 points). Fi-

nally, the ER of Random stays the same as 5.8%, which is the percentage of true anomalous

regions.

Furthermore, we investigate the pattern of sampled points (with 250 and 400 points) in

Figure 5.5. From the figure, we can observe that with only 250 sampled points, AKM

2

D

discovers all anomalous regions but one, with a better space-filling point distribution. How-

ever, Random fails to detect any of the anomalous regions and Grid can only detect one.

On the other hand, 400 sampled points are enough for AKM

2

D to detect all 7 anomalous

regions. However, again Random fails to discover any anomalous regions and Grid finishes
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Figure 5.5: Sampled point pattern for all methods for 250 and 400 points
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Figure 5.6: Anomaly estimation result for all methods for 250 and 400 points

with the fine-grid sampling of only three regions. Also, we plot the detected anomalies cor-

responding to 250 and 400 sampled points in Figure 5.6, which again indicates the superior

performance of AKM

2

D in anomaly detection.

5.5 Case Study

In this section, the proposed adaptive sampling and estimation framework is applied to a

real dataset in the NDE area. The case study pertains to anomaly detection in composite

laminates using a guided wave-field (GW) inspection system. Lamb wave-based inspec-

tion is one of the popular methods in NDE and structural health monitoring due to its

high sensitivity to detecting anomalies invisible to the naked eye [14]. However, existing

GW techniques are point-based and require the whole-field inspection of a specimen. The

whole-field inspection is typically a time-consuming process as it requires sensing of a

large number of points to avoid spatial aliasing and to achieve the desired resolution [14].

Therefore, it is vital to reduce the data acquisition time by reducing the number of sampled

points using an adaptive sampling strategy.
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Figure 5.7: Guided wavefield experiment setup [14]

The setup of our GW experiment is shown in Figure 5.7. A scanning laser Doppler

vibrometer (SLDV) is employed for wavefield measurement over a grid of points with

the resolution of 270 ⇥ 100. It takes around 2 hours to inspect a 600 ⇥ 600 ⇥ 1.6 mm

composite laminate with 8 layers. The specimen contains several artificial delaminations

in the center as shown in Figure 5.8a, which is the energy map of the entire wavefield

based on complete sampling. To speed up the GW test so that it can be used for online

inspection, we reduce the number of sensing points by using adaptive sampling strategies.

For comparison purposes, we show detected anomalies using complete sampling strategy

(i.e. Figure 5.8a) in Figure 5.8b. The objective is to achieve a similar detection accuracy

with the least number of sampled points.

We apply AKM

2

D as well as two other benchmark methods (i.e. Random and Grid)

for adaptive sampling and use the proposed estimation methods for anomaly detection. We

compare the detection results obtained from the adaptive sampling methods with those of

the complete sampling, shown in Figure 5.8b, (as the ground truth), and compute the F-

measure and ER profiles depicted in Figure 5.9. We can observe that with only 300 points

(1.1% of complete sensing) AKM

2

D is able to achieve the F-measure of 0.8 much higher
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(a) Energy map of the entire wavefield (b) Detected anomaly

Figure 5.8: Energy map of the entire wavefield and detected anomaly
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Figure 5.9: F-measure and Exploitation Ration

than those of Random and Grid around 0.5.

The pattern of sampled points and detected anomalous regions by using 200 and 300

points are also shown in Figures 5.10 and 5.11, respectively. From these figures, it is clear

that, the irregular anomalous regions can be fully explored by the proposed AKM

2

D with

only 200 sampled points (0.7% of full sampling), which can reduce the measurement time

from 2 hours to a few seconds. However, using Random and Grid methods, very few

sampled points are selected in the anomalous regions.
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Figure 5.10: Sampled point pattern for all methods for 200 and 300 points
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Figure 5.11: Anomaly estimation result for all methods for 200 and 300 points

5.6 Conclusion

Adaptive sampling for clustered anomaly detection is vital in scaling up point-based in-

spection systems. In this chapter, we proposed a novel methodology for real-time adaptive

sampling and anomaly detection in large sampling spaces. In our methodology, we first de-

veloped an adaptive sampling framework, namely the AKM

2

D, by optimizing a composite

index. We also studied the sampling properties and showed that the proposed method is

able to balance sampling between the exploration of the entire space and the focused sam-

pling near anomalies. We developed efficient and recursive algorithms to determine the

location of the next sampled point by solving the optimization problem in real time. Then,

we proposed robust kernel regression and sparse kernel regression to update the estimates

of the functional mean and the anomalous regions after a new sample is collected. In

the simulation study, we showed that the proposed AKM

2

D outperforms existing adaptive

sampling approaches, which fail to locate and focus on anomalous regions. Finally, the

proposed method was applied to a real case study on the anomaly detection of composite

laminates via guided wavefield test. We showed that our method can achieve a similar
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detection accuracy to that of the complete sampling by sensing only 0.7% of the sampled

points, and hence it can significantly reduce the inspection time. There are several potential

research directions to be investigated.
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CHAPTER 6

POINT CLOUD DATA MODELING AND ANALYSIS VIA REGULARIZED

TENSOR REGRESSION AND DECOMPOSITION

In this chapter, we represent point clouds using tensors and propose regularized tucker

decomposition and regularized tensor regression to model the variational patterns of point

clouds and link them to process variables. The performance of the proposed method is

evaluated through simulation and a real case study of turning process optimization.
The remainder of the chapter is organized as follows. Section 6.1 briefly reviews the

basic tensor notation and multilinear algebra. Section 6.2 first introduces the general re-
gression framework for tensor response data and then elaborates the two frameworks for
basis selection, i.e., RTDR and RTR. Section 6.3 validate the proposed methodology by
using simulated data with two different types of structured point clouds. In this section, the
performance of the proposed methods is compared with some existing two-step methods
in terms of estimation accuracy. In Section 6.4, we illustrate a case study for process mod-
eling and optimization in a turning process. Finally, we conclude the paper with a short
discussion in Section 6.5.

6.1 Basic Tensor Notation and Multilinear Algebra

In this section, we introduce basic notations, definitions, and operators in multilinear (ten-

sor) algebra that we use in this paper. Throughout the paper, scalars are denoted by low-

ercase italic letters, e.g., a, vectors by lowercase boldface letters, e.g., a, matrices by up-

percase boldface letter, e.g., A, and tensors by calligraphic letters, e.g., A. For example,

an order-K tensor is represented by A 2 RI
1

⇥···⇥I
K , where Ik represent the mode-k di-

mension of A. The mode-k product of a tensor A by a matrix V 2 RP
k

⇥I
k is defined

by (A ⇥k V)(i
1

, · · · , in�1

, jk, in+1

, · · · , iK) =

P
i
k

A(i
1

, · · · , ik, · · · , iN)V (jk, ik). The

Frobenius norm of a tensor A can be defined as kAk2F =

P
i
1

,··· ,i
K

A(i
1

, · · · , ik, · · · , iK)2.
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The n-mode unfold maps the tensor A into matrix A
(n), where the column of A

(n) are the

n-mode vectors of A.

Tucker decomposition decomposes a tensor into a core tensor multiplied by a matrix

along each mode, A = S⇥
1

U(1)⇥
2

U(2) · · ·⇥KU(K), where U(k) is an orthogonal Ik⇥Ik

matrix and is the principal components in each mode. Tensor product can be represented

equivalently by Kronecker product vec(A) = (U(K) ⌦ · · · ⌦ U(1)

)vec(S), where vec is

the vectorized operator defined as vec(A) = A
(K+1)

(a I
1

· · · IK-dimension vector). The

definition of Kronecker product is as follow: Suppose A 2 Rm⇥n and B 2 Rp⇥q are

matrices, the Kronecker product of these matrices, denoted by A⌦B, is an mq⇥nq block

matrix defined by A⌦B =

2

66664

a
11

B · · · a
1nB

... . . . ...

am1

B · · · amnB

3

77775
.

6.2 Tensor Regression Model with Scalar Input

In this paper, to simplify presentation, we demonstrate the methodology with 2D response

variable. However, this method can be easily extended to higher order tensors by simply

adding other dimensions. Suppose a training sample of size N is available that includes

tensor responses denoted by Yi 2 RI
1

⇥I
2 , i = 1, · · · , N along with the corresponding

input variables denoted by xi 2 Rp⇥1, i = 1, · · · , N , where p is the number of regression

coefficients. The tensor regression aims to link the response Yi with the input variables xi

through a tensor coefficient A 2 RI
1

⇥I
2

⇥p such that

Yi = A⇥
3

xi + Ei, i = 1, · · · , N (6.1)

where Ei
iid⇠ N(0, �2

) represents the random noises. We can combine the response data

Yi and the residual Ei in 3D tensors as Y 2 RI
1

⇥I
2

⇥N and E 2 RI
1

⇥I
2

⇥N , respectively.

Furthermore, we combine all xi in a single input matrix X 2 RN⇥p. Therefore, (6.1) can
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be represented compactly in the tensor format as shown in (6.2).

Y = A⇥
3

X+ E (6.2)

Intuitively, the coefficient tensor in (6.2) can be estimated by using the least square estima-

tion method, i.e.,

ˆA = argmin

A
kY �A⇥

3

Xk2F , (6.3)

which has a closed form solution in the form of A
(3)

= (XTX)

�1

(XTY
(3)

), where Y
(3)

and A
(3)

are the mode-3 unfolding of Y and A, respectively. However, since the dimension

of A is too high, solving (6.3) directly could result in severe overfitting. A common proce-

dure is to assume that the coefficient tensor A is low rank and hence it can be represented

in a low-dimensional functional space expanded by basis U(k), k = 1, 2, as shown in (6.4).

A = B ⇥
1

U(1) ⇥
2

U(2)

+ EA (6.4)

where EA is the residual tensor of projecting the coefficient A into the low dimensional

space. B 2 RP
1

⇥P
2

⇥p is the core tensor in the low dimensional space after the projection. If

U(k) is complete, the residual tensor kEAkF = 0. In most applications, however, A lies in

a low-dimensional space, which is known as the “Blessing of Dimensionality”. Therefore,

by using a low-dimensional basis U(k) (i.e., Pk ⌧ Ik), we can significantly reduce the

dimensionality of the coefficient tensor A and still have kEAkF close to zero. Since EA is

negligible, when U(1) and U(2) are given, ˆA can be approximated by ˆB ⇥
1

U(1) ⇥
2

U(2),

where ˆB can be estimated by solving the following tensor regression formulation (6.5).

ˆB = argmin

B
kY � B ⇥

1

U(1) ⇥
2

U(2) ⇥
3

Xk2F (6.5)

Proposition 11. the optimization problem (6.5) has a closed-form solution that can be
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expressed by

ˆB = Y ⇥
1

(U(1)

T

U(1)

)

�1U(1)

T ⇥
2

(U(2)

T

U(2)

)

�1U(2)

T ⇥
3

(XTX)

�1XT (6.6)

The proof of proposition 11 is shown in Appendix D.

The choice of basis U(k), k = 1, 2 is important and for a more accurate model, they

should be carefully chosen. In the next subsections, we propose two methods for defining

basis; one method is based on a data-driven approach and the other one incorporates the

user knowledge about the process and response. Specifically, in the first method, U(k), k =

1, 2 are extracted from data by applying regularized Tucker decomposition and second

method shows how a user-defined basis such as B-spline can be used.

6.2.1 Regularized Tucker Decomposition

In this section, we propose a new regularized Tucker decomposition, which is capable of

extracting smooth variational patterns from a tensor response. We then demonstrate how it

can be integrated with the tensor regression model presented in (6.5).

Tucker Decomposition Regression

Principal component analysis (PCA) [81] has been widely used because of its ability to

reduce the dimensionality of high-dimensional data. However, as pointed out by [3], ap-

plying PCA directly on tensor data requires to unfold the original tensor into a long vector,

which may result in the loss of the structural information of the original tensor. To over-

come this difficulty, tensor decomposition techniques such as Tucker Decomposition [118]

have been proposed and widely applied in image denoising, image monitoring, tensor com-

pletion, etc. Tucker decomposition aims to find a set of orthogonal transformation matrices

U = {U(k) 2 RI
k

⇥P
k

;U(k)TU(k)
= IP

k

, Pk < Ik, k = 1, 2} such that it can best represent
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the original data Y , where IP
k

represents the identity matrix of size Pk ⇥ Pk. That is,

{ ˆS, ˆU(1), ˆU(2)} = argmin

S,U(1),U(2)

kY � S ⇥
1

U(1) ⇥
2

U(2)k2F (6.7)

ˆS is the core tensor and can be obtained by

ˆS = Y ⇥
1

ˆU(1)

T ⇥
2

ˆU(2)

T

(6.8)

[3] showed that (6.7) is equivalent to maximize the variation of the projected low-dimensional

tensor, known as Multi-linear Principal Component Analysis (MPCA) method proposed in

[119]. Therefore, for finding the basis matrix, one can solve the following optimization

problem.

{Û(1), Û(2)} = argmax

U(1),U(2)

kY ⇥
1

U(1)

T ⇥
2

U(2)

T k2F (6.9)

Moreover, it follows directly from Proposition 11, (6.8) and (6.6) that (6.5) can be solved

efficiently by regressing the core tensor ˆS on the input variables matrix X.

ˆB =

ˆS ⇥
1

(

ˆU(1)

T

Û(1)

)

�1 ⇥
2

(

ˆU(2)

T

ˆU(2)

)

�1 ⇥
3

(XTX)

�1XT (6.10)

Furthermore, if ˆU(k) is orthogonal, it is easy to show that

ˆB =

ˆS ⇥
3

(XTX)

�1XT (6.11)

Therefore, for the orthogonal basis, directly solving (6.5) for ˆB is equivalent to the follow-

ing two-step approach: 1) Apply Tucker decomposition on original tensor Y to compute

the basis U(k) and core tensor ˆS . 2) Regress the core tensor ˆS on the input variable X,

where the core tensor ˆS is computed by (6.8).
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Regularized Tucker Decomposition

As shown in [120], in high-dimensional cases, if the structural information of the eigenbasis

such as smoothness or sparsity is incorporated in decomposition procedure, more accurate

estimates of the eigenbasis can be obtained. Inspired by smoothed functional principal

components analysis[121], in this section, we propose a new regularized Tucker decom-

position to penalize the roughness of the eigenbasis by changing the orthogonality of the

basis, as shown in the following equation:

{Û(1), Û(2)} = argmax

U(1),U(2)

kY ⇥
1

U(1)

T ⇥
2

U(2)

T k2F (6.12)

s.t. U(k)TRk(�)U
(k)

= IP
k

, k = 1, 2

where Rk(�) = II
k

+ �(D2

k)
TD2

k is the roughness matrix to control the level of smooth-

ness of eigenbasis U(k), where Dk is the first order difference operator. For open bound-

ary conditions, Dk =

2

66664

1 �1

. . . . . .

1 �1

3

77775
, For periodic boundary condition, Dk =

2

66666664

1 �1

. . . . . .

1 �1

�1 1

3

77777775

. It should be noted that if � = 0, the regularized Tucker de-

composition (6.12) becomes the traditional Tucker decomposition in (6.7). Similarly to the

traditional Tucker Decomposition, we can prove in Proposition 12 that (6.12) is equivalent

to minimize the reconstruction error with the smoothness penalty.

Proposition 12. Regularized Tucker Decomposition (6.12) is equivalent to the following

penalized tensor regression (6.13) in the sense that

{Û(1), Û(2), ˆS} = argmax

U(1),U(2),S
kY � S ⇥

1

U(1) ⇥
2

U(2)k2F + sTPss (6.13)
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Algorithm 9: ALS algorithm
initialize

Rk(�) = I + �(D2

k)
TD2

k, k = 1, 2
Compute Chelosky Decomposition: LT

kLk = Rk(�), Sk = L�1

k ,
Vk = ST

kWkSk, k = 1, 2
end
for i = 1, · · ·niter do

Solve the eigenvalue problem: VkZ
(k)

= Z(k)⇤k, k = 1, 2
U(k)

= SkZ
(k)

end

and ˆS = Y ⇥
1

ˆU(1)

T ⇥
2

ˆU(2)

T where s = vec(S) and Ps = (�UT
2

U
2

⌦UT
1

(D2

1

)

TD2

1

U
1

+

�UT
2

(D2

2

)

TD2

2

U
2

⌦ I
1

U
2

+�2UT
2

(D2

2

)

TD2

2

U
2

⌦UT
1

(D2

1

)

TD2

1

U
1

) is the roughness matrix

to encourage the smoothness of Uk.

Proof is given in the appendix B.

Similar to the traditional Tucker decomposition, Alternative Least Square (ALS) algo-

rithm can be used to update U(1) and U(2) iteratively until convergence. We then showed

in Proposition 13 that each update of U(k), k = 1, 2 yields a close-form solution.

Proposition 13. Given U(�k), the solution of argmaxU(k)

kY⇥
1

U(1)

T ⇥
2

U(2)

T k2F is given

by the following generalized eigenvalue problem

WkU
(k)

= Rk(�)U
(k)
⇤k

where Wk = Y
(k)U

(�k)U(�k)TYT
(k), ⇤k is the diagonal eigenvalue matrix, and U(�k)

=8
>><

>>:

U(2) k = 1

U(1) k = 2

.

The proof is given in Appendix D. The fact that the subproblem in each iteration reduces

to the generalized eigenvalue problem significantly speeds up the ALS algorithm. The

detailed of the ALS algorithm is given in Algorithm 9.
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6.2.2 Customized Basis Selection

In other cases, we would like to customize the basis in (6.5) to represent the tensor response

based on domain knowledge or other data characteristics. For example, a pre-defined spline

or kernel basis can be used to represent general smooth tensors. Fourier basis or periodic

B-spline basis can be used to represent smooth tensors with periodic boundary constrain.

Furthermore, penalization can be added to (6.5) to control the level of smoothness as

ˆB = argmin

B
kY � B ⇥

1

U(1) ⇥
2

U(2) ⇥
3

Xk2F + P (B) (6.14)

(6.5) can be represented alternatively by the Kronecker product as ˆ� = argmin� ky �

(X⌦U(2)⌦U(1)

)�k2+P (�), which is in the form of a regression problem. However, the

dimensions of X⌦U(2)⌦U(1) in (6.15) is RNI
1

I
2

⇥pP
1

P
2 , which is often too large to compute

or even stored for high dimensional problems. Therefore, to address this computational

challenge, following [72], we use a special from of the penalty term defined by

P (�) = �T
(XTX)⌦ (�P

2

⌦U(1)

T

U(1)

+ �U(2)

T

U(2) ⌦P
1

+ �2P
2

⌦P
1

)� (6.15)

where � = vec(B), Pk = (D2

k)
TD2

k is the penalization matrix to control the smoothness of

mode-k of the original tensor. It has shown in [96] and [72] that the penalty term defined

with tensor structure works well in simulation and achieve optimal rate of convergence

asymptotically under some mild conditions.

We proved in Proposition 14 that by using this P (B), Problem (6.14) becomes separable

for different modes of the original tensor.

Proposition 14. If P (B), defined in (6.15), is used in the optimization problem (6.14), can
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be solved efficiently via tensor product by

ˆB = Y ⇥
1

(U(1)

T

U(1)

+ �P
1

)

�1U(1)

T ⇥
2

(U(2)

T

U(2)

+ �P
2

)

�1U(2)

T ⇥
3

(XTX)

�1XT

(6.16)

The proof is given in Appendix D. Finally, to select the tuning parameter � in the al-

gorithm, the GCV criterion can be used, where the tuning parameter � can be selected

by solving ˆ� = argmin� GCV(�) = argmin�
kY� ˆB⇥

1

U(1)⇥
2

U(2)⇥
3

Xk2/n
(1�n�1

tr(

ˆH
1

(�))tr( ˆH
2

(�))tr( ˆH
3

(�)))2
, where

ˆHk(�) = U(k)
(U(k)TU(k)

+ �Pk)
�1U(k)T , k = 1, 2, and ˆH

3

(�) = X(XTX)

�1XT .

6.3 Simulation Study

In this section, we conduct simulations to evaluate the proposed Regularized Tucker De-

composition Regression (RTDR) and Regularized Tensor Regression (RTR) for structured

point cloud modeling. We simulate N structured point cloud as training samples Yi, i =

1, · · · , N with two different scenarios (i.e. surface shape and truncated cone shape) by

following Yi = M+Vi+Ei, or equivalently in the tensor format Y = M+V+E , where

Y is the 3rd order tensor combining Yi, i = 1, · · · , N ; M is the mean of the point cloud

data and V is the variational pattern of the point cloud due to different input variables xi.

Finally, random noise Ei is generated by Ei
i.i.d⇠ N(0, �2

).

Case 1. Surface point cloud simulation In this case, we simulate the surface point cloud

in a 3D Cartesian coordinate system (x, y, z) where 0  x, y  1. The corresponding zi
1

i
2

value at ( i1
I
1

, i
2

I
2

), i
1

= 1, · · · , I
1

; i
2

= 1, · · · I
2

, with I
1

= I
2

= 200 for ith sample is

recorded in a matrix Yi. We then simulate 100 training samples with variational patterns of

point cloud surface V according to the following linear model V = B ⇥
1

U(1) ⇥
2

U(2) ⇥
3

X. In the simulation setup, we select three basis U(k)
= [u

(k)
1

,u(k)
2

,u(k)
3

] with u
(k)
↵ =

[sin(

⇡↵
n
), sin(2⇡↵

n
), · · · , sin(n⇡↵

n
)]

T ,↵ = 1, 2, 3. The two mode-3 slices of B 2 R3⇥3⇥2 is
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generated as B
1

=

2

66664

4 1 0

1 0.1 0

1 0 1

3

77775
, B

2

=

2

66664

1 2 0

1 3 0

1 0 0.2

3

77775
. The examples of the generated

point cloud surface are shown in Figure 6.1a.

Case 2. Truncated cone point cloud simulation In this case, we simulate truncated

cone point clouds in the 3D cylindrical coordinate system (r,�, z), where � 2 [0, 2⇡],

z 2 [0, 1]. The corresponding r value at (�, z) = (

2⇡i
1

I
1

, i
2

I
2

), i
1

= 1, · · · , I
1

; i
2

= 1, · · · I
2

with I
1

= I
2

= 200 for ith sample is recorded in the matrix Yi. We simulate the variational

patterns of point cloud surface V according to r(�, z) =

r
0

+z tan ✓p
1�e2 cos2 �

+ c(z2 � z) with

different settings of ✓, r
0

, e, c as follow: 1) different angles of the cone, i.e., ✓ 2 {0, ⇡
8

, ⇡
4

};

2) different radii of the upper circle, i.e., r
0

2 {1.1, 1.3, 1.5}; 3) different eccentricities of

top and bottom surfaces, i.e., e 2 {0, 0.3, 0.5}; 4) different curvatures of the side of the

truncated cone, i.e., c = {�1, 0, 1}. Finally, we conduct a full factorial design to generate

3

4

= 81 training samples with different combinations of these coefficients. Furthermore,

we define four input variables by x
1

= tan ✓, x
2

= r, x
3

= e2, x
4

= c and record them

in an input matrix X of size 81 ⇥ 4. These nonlinear transformations lead to a better

linear approximation of the point cloud in the cylindrical coordinate system with the input

matrix X. The examples of the generated truncated cone are shown in Figure 6.1b. Finally,

we generated 1000 testing examples Yte based on the variational patterns generated from

✓ ⇠ U(0, ⇡
4

), r ⇠ U(1.1, 1.5), e ⇠ U(0, 0.5), c ⇠ U(�1, 1), where U denotes the uniform

distribution.

For both cases, The goal is to find the relationship between the point cloud tensor Y

and input variables X. We compare our proposed Regularized Tensor Regression (RTR)

and Regularized Tucker Decomposition Regression (RTDR) with two existing methods in

the literature. The benchmark methods we used for comparison include Vectorized Princi-

pal Component Analysis (VPCA) and simple linear regression (LR). For both benchmark

methods, smoothing is first applied as a preprocessing step to remove the noise. For VPCA,
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(a) Case 1: Examples of generated surface (b) Case 2: Examples of generated truncated cone

Figure 6.1: Examples of generated point cloud for simulation study

PCA is applied on the unfolded matrix denoted by Y
(3)

. For LR, we conduct a linear regres-

sion for each entry of the tensor Y with the input variables X, separately. For RTR, we use

B-spline with 10 knots on each dimension. It should be noted that in Case 2, we apply the

periodic B-spline with period 2⇡ to model the periodicity in the ✓ direction. Similarly for

RTDR, we apply the periodic difference matrix Dk in Case 2. The tuning parameters of the

RTR and RTDR are selected by using the GCV criterion and cross validation. Finally, for

Case 1, the sum of squared error (SSE) between the true coefficients A = B⇥
1

U(1)⇥
2

U(2)

and estimated coefficients ˆA is evaluated. For Case 2, since we generate complex varia-

tional patterns, the sum of squared error (SSE) between Yte and the predicted tensor ˆYte

is evaluated from 10000 simulation replications under different noise levels �, shown in

Figure 6.2.

From Figure 6.2, we can conclude that the SSEs of the VPCA and LR (after smooth-

ing) is much larger than the SSEs of the proposed RTR and RTDR. The main reason is that

VPCA and LR do not consider the tensor structure and spatial structure of the simulated

point clouds. RTDR works better especially when the noise level is low. The reason is that

the smoothness of RTDR is controlled by the regularization term, which is more flexible

than RTR, where the functional space is constructed by the predefined B-spline basis. Fi-

nally, the estimated coefficient ˆA of both the proposed methods and true coefficients for
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(a) Case 1: SSE of A with magnitude of noise �
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(b) Case 2: SSE of Yte with magnitude of noise �

Figure 6.2: SSE of the proposed methods with different magnitude in Case 1 and Case 2

(a) Tensor Regression (b) Tucker Decomposition (c) True coefficient

Figure 6.3: Estimated and true coefficient for case 1

Case 1 are plotted in Figure 6.3. We can conclude that both RTR and RTDR are capable of

estimating the true coefficient accurately. Furthermore, in Case 2, if the noise magnitude is

very small, the SSEs of all methods reduce to the linear approximation error of the complex

point cloud. The estimated coefficient ˆA for both cases of the proposed RTR and RTDR

are shown in Figure 6.4. From this figure, we can conclude that both methods are able to

estimate the surface coefficients accurately.

6.4 Case Study

In this section, the proposed RTR and RTDR methods are applied to a case study in the

turing process, in which cylinders of titanium alloy Ti-6A1-4V were machined from an
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(a) Tensor regression (b) Tucker decomposition

Figure 6.4: Estimated coefficient for case 2

initial 20 mm diameter to the diameter of 16.8 mm. With reference to the cutting step in the

turning process, two process parameters, namely the rotary speed and cutting depth were set

according to a 32 full factorial design. In order to keep the tool wear constant (according to

suggestions provided by the tool supplier), we selected the value of the feed rate depending

on the level of rotery speed (a feed rate equal to 0.07, 0.11 and 0.14 mm/rev was set when

the speed was equal to 80, 70 and 65 m/min, respectively). Table 6.1 shows 9 treatments

with different process variables. Each treatment was replicated 10 times. Hence, a set of

9 ⇥ 10 = 90 samples was used in this experimental study. These two process variables

(depth and speed) are recorded in the input matrix X after the normalization (subtract the

mean and divide by standard deviation). After the turning operations, all the 90 machined

surfaces were measured with a CMM machine using a touch trigger probe head that holds

a four-tip stylus of 0.5 mm radius. More details of the experiment is provided in [122].

The measurements were taken in 42 mm along the bar length direction with 210 cross-

sections. Each cross-sections were measured with 64 generatrices. Therefore, a set of

210 ⇥ 64 points, equally distributed on the cylindrical surface, was measured for each

sample Yi, i = 1, · · · , 90. The examples of the cylindrical surface are shown in Figure

1.5, which clearly shows the shape of the cylinder are influenced by both the rotery speed

and cutting depth. Furthermore, the surface roughness are also influenced by these process

102



Table 6.1: Cutting parameters for 9 experimental conditions

Ex. No Depth(mm) Speed(m/min)
1 0.4 80
2 0.4 70
3 0.4 65
4 0.8 80
5 0.8 70
6 0.8 65
7 1.2 80
8 1.2 70
9 1.2 65

variables. To model both the cylindrical mean shape and the residual with unequal variance

caused by the different process variables, we combine the framework proposed by [123]

with our proposed tensor regression model in the section 6.4.1.

6.4.1 Handling unequal variances of residuals

To model the unequal variances of residuals as a function of the process variables, we

assume that the noise Ei ⇠ N(0, �2

i ), where log �2

i = x0
i� + �

0

. Therefore, combining

with the tensor regression model in (6.1), the parameter �, �
0

and A can be estimated

by maximizing the likelihood estimation given by L(�,�; yi) = �1

2

(

P
i I1I2 log(�

2

i ) +

P
i
kY

i

� ¯Y�A⇥
3

X
i

k2
�2

i

). The likelihood function can be maximized by iteratively updating �

and A until convergence as follows: 1) For fixed � and �
0

, �2

i = exp(x0
i� + �

0

), with

transformation Y0

i =

Y
i

� ¯Y
�
i

, X0

i =

X
i

�
i

, the MLE can be obtained by the proposed tensor

regression methods introduced in section (6.2). 2) For fixed A, MLE becomes the gamma

regression with log link on the Residual Mean Squares Error (RMSE) 1

I
1

I
2

kˆEik2, where

ˆEi = Yi �A⇥
3

Xi.

We then apply RTDR on these cylindrical surface to map the relationship of the mean

shape and residual variance with process variables. First, the eigentensors of RTDR are

extracted, as shown in Figure 6.5. The RMSE and the fitted �2 of the 90 samples via

the gamma regression are shown in Figure 6.6b. It is clear that the proposed framework
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Figure 6.5: Eigen-tensors with regularized Tucker decomposition

Table 6.2: Gamma regression of k ˆEik2

Estimate SE tStat pValue
�
0

Intercept �13.5755 0.0451 �300.1470 1e� 133

�
depth 0.3856 0.0479 8.0525 1e� 12

speed �0.1255 0.0479 �2.6212 0.01

is able to account for the unequal variance under the 9 different input settings. Finally,

the gamma regression coefficients of the RMSE are shown in Table 6.2. From this table,

we can conclude that if the cutting depth increases or rotery speed decreases, the surface

roughness will also increase. Moreover, for the surface roughness, the effect of cutting

depth is much more significant than the rotery speed. These findings are consistent with

engineer principals.

6.4.2 Process optimization

The estimated tensor regression model can also provide useful information to optimize

the process settings (cutting depth and speed) for better product quality. In this turning
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(a) Tensor regression coefficient A
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(b) Residual Mean of Square Error (RMSE) and
fitted �̂2 via gamma regression

Figure 6.6: Result of tensor regression via regularized tucker decomposition

process, the goal is to produce an cylindrical surface with a uniform radius rt = 16.8mm.

Therefore, the following optimization problem can be solved. The objective function is

defined as the sum of squared differences of the produced mean shape and the uniform

cylinder with radius rt. Furthermore, we require the produced surface roughness � to be

smaller than a certain threshold �
0

. Finally, the process variable are typically constrained

in certain range l  x  u due to the physical constraints of the machine.

min

x
k ¯Y +

ˆA⇥
3

x� rtk2F s.t.�  �
0

, l  x  u

It is straightforward to show that this optimization problem can be reformulated to a Quadratic

Programming (QP) model with linear constraints as

min

x
xTAT

(3)

A
(3)

x+ 2xTAT
(3)

(vec(

¯Y)� rt) s.t.� 0x  log(�2

0

)� �
0

, l  x  u

Since the problem is convex, it can be solved via the standard Quadratic Programming

approach. For example, if we constrain �
0

= 0.0001 and process variables lies in the

range of the design Table 6.1. The optimal rotery speed can be solved as 80m/min and

the optimal cutting depth as 0.8250mm. Under this setting, we simulate the produced
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Figure 6.7: Simulated cylinder under the optimal setting (rotery speed: 80m/min, cutting
depth: 0.8250mm)

cylindrical surfaces as shown in Figure 6.7 by combining both the predicted surface ˆY =

¯Y +

ˆA ⇥
3

x and added noise from the normal distribution with the estimated standard

deviation �̂ = exp(

1

2

(�
0

+ � 0
ˆx)). It is clear that the produced cylindrical surfaces under

this optimal setting is closer to the uniform cylinder compared to other input settings as

shown in Figure 1.5.

6.5 Conclusion

Point cloud modeling is an important research area with various applications especially in

modern manufacturing due to the popularity of 3D scanning tools and the need for accurate

shape control. As most structured point clouds can be represented in the tensor format in

certain coordinate system, in this paper, we proposed two tensor regression strategies (RTR

and RTDR) to link the response tensor with input variables. In the simulation study, we

showed the proposed methods outperform the existing vector-based techniques. Finally,

the proposed methods were applied to a real case study on the point cloud modeling in a

turning process. The results indicated that our methods are capable of handling residuals
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with unequal variances due to the different roughness caused by different input settings.

We also demonstrated that how this model can be used to find the optimal setting of the

process variables.
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CHAPTER 7

CONCLUSION

7.1 Summary of Original Contributions

In summary, this thesis investigates four major research topics in the area of high-dimensional

functional data analysis. In Chapter 3, we consdier detecting anomaly from HD functional

profiles or single images. This method can be applied to various inspection system or online

image based monitoring system. In Chapter 4, we extend this framwork into HD functional

streaming data with complex spatial temporal structure. In Chapter 5, we still focus on the

anomaly detection but weconsider the case where we don’t have the full sampling. There-

fore, an adpative sampling strategy is needed for online anomaly detection. In Chapter 6,

we study a new topic, which model the complex 3D shape with the process variables via

regualrized tensor regression.

The original contribution of Chapter 3 is to proposed a novel methodology for anomaly

detection in noisy images with smooth backgrounds. The proposed method, named smooth-

sparse decomposition, exploits regularized high-dimensional regression to decompose an

image and separate anomalous regions by solving a large-scale optimization problem. This

one-step approach is much more efficient than the existing first-smooth-then-detect ap-

proaches. To enable the proposed method for real-time implementation, a fast algorithm

for solving the optimization model is proposed. Using simulations and a case study, we

evaluate the performance of the proposed method and compare it with existing methods.

Numerical results demonstrate the superiority of the proposed method in terms of the detec-

tion accuracy as well as computation time. This methodology has great potential impacts

in the image based inspection methods and it actually has been tested on various inspection

methods such as Guided Wave Test, Photo-elasticity, Thermal Imaging, Rolling Inspection,
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etc.

The original contribution of Chapter 4 is to propose a novel process monitoring method-

ology for high-dimensional data streams including profiles and images that can effectively

address foregoing challenges. We introduce spatio-temporal smooth sparse decomposition

(ST-SSD), which serves as a dimension reduction and denoising technique by decomposing

the original tensor into the functional mean, sparse anomalies, and random noises. ST-SSD

is followed by a sequential likelihood ratio test on extracted anomalies for process monitor-

ing. To enable real-time implementation of the proposed methodology, recursive estimation

procedures for ST-SSD are developed. ST-SSD also provides useful diagnostics informa-

tion about the location of change in the functional mean. We also use real-world case

studies to show that all the aforementioned methodologies can be implemented in multi-

channel signals, as well as video streams. The studies include online rolling bar inspection,

online solar flare monitoring, and forging signal monitoring. Currently, we are also work-

ing with our industrial collaborators to implement the methodologies in their monitoring

and inspection systems.

The original contribution of Chapter 5 is to develop a novel framework named Adap-

tive Kernelized Maximum-Minimum Distance (AKM

2

D) to speed up the inspection and

anomaly detection process through an intelligent sequential sampling scheme integrated

with fast estimation and detection. The proposed method balances the sampling efforts

between the space filling sampling (exploration) and focused sampling near the anomalous

region (exploitation). The proposed methodology is validated by conducting simulations

and a case study of anomaly detection in composite sheets using a guided wave test. I have

also been working with researchers from Aerospace Engineering to design compressive

sensing framework to reconstruct HD data with partial sampling. We are currently work-

ing on combining my adaptive sensing method with this compressive sensing framework

to further reduce the measurement time. We have shown that this innovative combination

can reduce the data acquisition time of point measurement systems from 4 hours to several
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minutes without losing the detection powers.

The original contribution of Chapter 6 is to propose regularized tucker decomposition

and regularized tensor regression to model the variational patterns of point clouds and link

them to process variables. The performance of the proposed method is evaluated through

simulation studies. We also applied this framework to the Turning process to model the 3D

shape variations of the product. This model can also help to determine the best parametric

settings for the precision control of the product.

7.2 Future Work

The problems of high-dimensional data analysis for system monitoring, anomaly detection,

and system evaluation is a very active research currently and there are many future step.

The possible extension of the Chapter 3 and Chapter 4 is generalize SSD for other types

of spatial and temporal structures such as non-smooth and/or periodic functional mean. To

model different types of spatial or temporal structures, one may adjust the basis for ex-

ample by using Fourier or wavelet basis. Another non-trival generation is to propose a

data-adaptive method to learn the “best” basis to model the anomaly components. Similar

in Chapter 6, there are several potential research directions to be investigated. One possi-

ble extension is to extend this method to non-smooth point cloud with abrupt changes in

surface. Another extension is to extend this method to unstructured point cloud.

For other possible directions, combining the HD data analysis and parallel process-

ing to address the challenges of both large sample size (e.g. the big data challenge) and

high-dimensionality is very important. For example, the manufacturing process can pro-

vide millions of samples in the production lines with HD data measured from thousands

of stations. Therefore, when the number of samples becomes large, traditional statistical

methods with complexity or even may not scale well and cannot be implemented to address

those problems in real-time. Therefore, designing scalable computational algorithms with

less complexity is needed to address the big-data challenge.
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APPENDIX A

APPENDIX ON ”ANOMALY DETECTION FOR IMAGES AND

HIGH-DIMENSIONAL SPATIAL FUNCTIONAL PROFILE”

Appendix A

Proposition. If Ba is orthogonal, in iteration k, the subproblem ˆ✓(k)a = argmin✓
S

ky �

B✓(k) � Ba✓ak2 + �k✓ak1 has a closed-form solution in the form of ˆ✓(k)a = S �

2

(BT
a (y �

B✓(k))), in which S�(x) = sgn(x)(|x| � �)
+

is the soft-thresholding operator, and sgn(x)

is the sign function and x
+

= max(x, 0).

Proof. If Ba is orthogonal, in each iteration k, we solve ✓(k)S = argmin✓
S

ky � B✓(k) �

Ba✓ak2 + �k✓ak1. The first Karush–Kuhn–Tucker (KKT) condition of this optimization

problem can be expressed as: rky � B✓(k) � Ba✓ak2 + �g = 0, where r is the gradient

operator and g = [gi] =

8
>><

>>:

sgn(✓Si) ✓Si 6= 0

[�1, 1] ✓Si = 0

. The square is ky � B✓(k) � Ba✓ak2 =

✓TaB
T
a Ba✓a � 2✓TaB

T
a (y � B✓(k)) + ky � B✓(k)k2. Since BT

a Ba = I , the loss function

can be simplified to ky � B✓(k) � Ba✓ak2 = ✓Ta ✓a � 2✓TaB
T
a (y � B✓(k)) + ky � B✓(k)k2.

Consequently, after simplification, the KKT condition gives ✓a = BT
a (y�B✓(k))� �

2

g. We

consider two cases for this solution, if ✓ai 6= 0, then ✓ai + �
2

sgn(✓ai) = BT
S (y � B✓(k)). If

✓ai = 0, then BT
a (y�B✓(k)) = �

2

g 2 [��
2

, �
2

]. The solution can be given in a compact form

of ✓(k+1)

a = sgn(BT
a (y�B✓(k)))(

��BT
a (y � B✓(k))

��� �
2

)

+

prop* , which is a soft-thresholding

operator denoted by S �

2

(BT
a (y � B✓(k))) .

Appendix B

Proposition. The BCD algorithm attains the global optimum of the SSD loss function in

(A.1).
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argmin
✓,✓

a

kek2 + �✓TR✓ + �|✓a|1, subject to. y = B✓ +Ba✓a + e (A.1)

Proof. [124] in page 484, Theorem 5.1 proved that if an objective function f can be de-

composed into the sum of a continuous function f
0

and some non-differentiable functions

fi = 1, · · · , N , with some basic continuity assumptions on f
0

, the BCD algorithm guar-

antees to attain a local optimum. It is clear that the SSD objective function in (A.1) is

comprised of a continuous function kek2 + �✓0R✓ and a non-differentiable penalty term

�|✓S|1. Consequently, the BCD algorithm converges to a local optimum. In addition, since

problem (A.1) is convex, the attained optimum is the global optimum.

Appendix C:

Proposition. The SSD problem in (A.1) is equivalent to a weighted LASSO problem in the

form of

argmin

✓
S

F (✓S) = (y � Ba✓a)
T
(I �H)(y � Ba✓a) + �k✓ak1 (A.2)

with H = B(BTB + �R)

�1BT .

Proof. We first solve (A.1) for ✓ by fixing ✓S . That is ✓ = argmin✓ ky � B✓ � Ba✓ak2 +

�✓TR✓+�k✓ak1, which can be solved via ✓ = (BTB+�R)

�1BT
(y�Ba✓a). Thus, it can be

written that B✓ = B(BTB+�R)

�1BT
(y�Ba✓a) = H(y�Ba✓a). By plugging in this into

(A.1), we have ✓ = argmin✓ ky�H(y�Ba✓a)�Ba✓ak2+�(y�Ba✓a)THTRH(y�Ba✓a)+

�k✓Sk1. After simplification and since (I �H)

2

+ �BK�1

� RK�1

� BT
(y�Ba✓a) = I �H ,

where K� = BTB + �R, we can show that ky � B✓ � Ba✓ak2 + �✓TR✓ + �k✓ak1 =

(y�Ba✓a)T (I �H)(y�Ba✓a)+ �k✓ak1, which is the weighted LASSO formulation.

Appendix D:

Claim 1. The f(✓a) = (y � Ba✓a)T (I �H)(y � Ba✓a). is convex for ✓a.
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Proof. f(✓a) = (y � Ba✓a)T (I �H)(y � Ba✓a). To prove f(✓a) is convex, we only need

to show that I � H is a positive semi-definite matrix. From Appendix C, it is given that

I�H = (I�H)

2

+�B(BTB+�R)

�1R(BTB+�R)

�1BT . Clearly, the first term (I�H)

2

is a positive semi-definite matrix. For the second term, since R is a positive semi-definite

matrix, B(BTB+�R)

�1R(BTB+�R)

�1BT is also positive semi-definite. Consequently,

f(✓a) is a convex function.

Appendix E:

Claim 2. f(·) is Lipschitz continuos, in which satisfieskrf(a)�rf(b)k  Lka� bk for

any a, b 2 R with L = 2kBak2
2

Proof. We first show that H is positive semidefinite matrix. H = B(BTB + �R)

�1BT .

Since BTB+�R is positive definite matrix, (BTB+�R)

�1 is also positive definite matrix,

and H is positive semi-definite matrix.

We then prove that kI � Hk
2

 1. Notice that kXk
2

refers to the spectrum norm

of matrix X . This is because that kI � Hk
2

=

p
�max[(I �H)

2

] = �max(I � H) =

1 � �min(H)  1. The last equation hold because �min(H) � 0 since H is positive semi-

definite matrix. Note that �max(X) refers to the largest eigenvalue of X and �min(X) refers

to the smallest eigenvalue of X .

Consequently, rf(a) = r(y � Baa)T (I � H)(y � Baa) = 2BT
a (I � H)(Baa � y).

krf(a)�rf(b)k = k2BT
a (I�H)Ba(a�b)k  k2BT

a (I�H)Bak2 ·ka�bk  Lka�bk,

in which L = 2kBak2
2

The last equation holds because k2BT
a (I � H)Bak2  k2BT

a k2k(I � H)k
2

kBak2 

k2BT
a k2kBSk2 = 2kBak2

2

.
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Appendix F:

Proposition. The proximal gradient method for the SSD problem in (A.1), given by ✓(k)a =

argmin✓
a

{f(✓(k�1)

a ) +

D
✓a � ✓(k�1)

a ,rf(✓(k�1)

a )

E
+

L
2

k✓a � ✓(k�1)

a k2 + �k✓ak1}, has a

closed-form solution in each iteration k, in the form of a soft-thresholding function as

follows:

✓(k)a = S �

L

(✓(k�1)

a +

2

L
BT

a (y � Ba✓
(k�1)

a � µ(k)
)) (A.3)

with L = 2kBak2
2

.

Proof. Since rf(✓(k�1)

a ) = 2BT
a Ba✓

(k�1)

a �2BT
a (y�B✓(k)), in each iteration given ✓(k�1)

a ,

the ✓(k)a = argmin✓
a

k✓a � ✓(k�1)

a � 2

L
BT

a (y � B✓(k) � Ba✓
(k�1)

a )k2 + �k✓ak1}}. Thus,

similar to Appendix A, it is simple to show that this problem can be solved using a soft

thresholding operator in the form of ✓(k)a = S �

L

(✓(k�1)

a +

2

L
BT

a (y � Ba✓
(k�1)

a � µ(k)
)).

Appendix G:

Claim 3. Suppose the Cholesky decomposition of BT
i Bi is given as BT

i Bi = ZiZT
i , the

eigen decomposition Z�1

i DT
i Di(Z

�1

i )

T is Uidiag(si)UT
i and Ai = Bi(Z

�1

i )

TUi. It can

be shown that Hi(�) = AT
i diag(

1

1+�s
1

, · · · , 1

1+�s
n

)Ai, and its trace is given by tr(Hi) =

Pn
i=1

1

1+�s
i

Proof. The proof of the first part is given below:

Hi(�) = Bi(B
T
i Bi + �DT

i Di)
�1BT

i = Bi(ZiZ
T
i + �DT

i Di)
�1BT

i

= Bi(Z
�1

i )

T
(I + �Z�1

i DT
i Di(Z

�1

i )

T
)

�1

(Z�1

i )BT
i

= Bi(Z
�1

i )

T
(I + �Uidiag(si)U

T
i )

�1

(Z�1

i )BT
i

= Bi(Z
�1

i )

TUi(I + �diag(s
i

))

�1UT
i (Z

�1

i )BT
i

= Ai(I + �diag(s
i

))

�1AT
i

= AT
i diag(

1

1 + �s
1

, · · · , 1

1 + �sn
)Ai
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Figure A.1: Anomalies detection comparison result for SSD and extended maxima trans-
formation when � = 0.3

Smooth-Sparse Decomposition Extended Maxima Transformation True Anomalies

To compute the trace of Hi, we first show that AT
i Ai = UT

i Z
�1

i BT
i Bi(Z

�1

i )

TUi =

UT
i Ui = I . Thus the trace of Hi becomes tr(Hi) = tr(Ai(I + �diag(s

i

))

�1AT
i ) =

tr(AT
i Ai(I + �diag(s

i

))

�1

) = tr((I + �diag(s
i

))

�1

) =

Pn
i=1

1

1+�s
i

Appendix H:

“In this appendix, we applied the extended-maxima transformationmethod to the simulated

images with line anomalies, clustered anomalies and scattered anomalies. The detection

results are reportedin Figure A.1. Moreover, the FPR, FNR, and computational time for all

the benchmark methods are reported in Table A.1. ”
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Table A.1: FPR, FNR, and computation time for line , clustered and scattered anomalies
with � = 0.1, 0.2, 0.3

� Defect Type Criterion SSD Edge Jump Local Global Maxima

0.1

Line FPR 0.108 0.012 0.022 0.066 0.202 0.045
FNR 0.234 0.989 0.908 0.492 0.591 0.791

Clustered FPR 0.016 0.0003 0.086 0.539 0.211 0.008
FNR 0.035 0.979 0.837 0.756 0.799 0.868

Scattered FPR 0.011 0.008 0.179 0.019 0.204 0.018
FNR 0.076 0.858 0.722 0.567 0.752 0.984

0.2

Line FPR 0.027 0.016 0.037 0.058 0.202 0.005
FNR 0.021 0.900 0.126 0.181 0.507 0.792

Clustered FPR 0.017 0.0003 0.083 0.052 0.213 0.002
FNR 0.005 0.89 0.127 0.462 0.673 0.657

Scattered FPR 0.0114 0.005 0.138 0.02 0.203 0.004
FNR 0.0153 0.293 0.108 0.251 0.595 0.038

0.3

Line FPR 0.001 0.015 0.035 0.054 0.195 0.001
FNR 0.003 0.783 0.111 0.063 0.456 0.557

Clustered FPR 0.018 0.001 0.081 0.046 0.211 0.007
FNR 0.001 0.754 0.054 0.289 0.572 0.268

Scattered FPR 0.012 0.003 0.11 0.02 0.203 0.001
FNR 0.007 0.257 0.063 0.087 0.407 0.012

Computational Time 0.19s 0.667s 38.43s 0.043s 0.048s 0.039s

’SSD’ for Smooth Sparse Decomposition, ’Edge’ for edge detection, ’Jump’ for jump regression,
’Local’ for local thresholding, ’Global’ for global thresholding, and ’Maxima’ for extented

maxima transformation.
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APPENDIX B

APPENDIX ON ”ANOMALY DETECTION FOR IMAGES AND

HIGH-DIMENSIONAL SPATIAL FUNCTIONAL PROFILE”

Appendix A: Decomposition of the projection matrix Since BT
s Bs+Rs = ⌦1

i=l(B
T
siBsi+

Rsi), from the property of Kronecker product, we know that (BT
s Bs+Rs)

�1

= ⌦1

i=l(B
T
siBsi+

Rsi)
�1.

Finally, we have Hs = Bs(BT
s Bs+Rs)

�1BT
s = ⌦1

i=lBsi(BT
siBsi+Rsi)

�1BT
si = ⌦1

i=lHsi

Appendix B: Prove of the recursive estimation of Ht We can apply the standard block

matrix inversion formula as follow, M =

2

64
A b

bT d

3

75 2 Rn⇥n, A 2 R(n�1)⇥(n�1), b 2

R(n�1)⇥1, g is a scalar, then M�1

=

2

64
A�1

(I + bbTA�1g) �A�1bg

�bTA�1g g

3

75, with g = (d �

bTA�1b)�1.

Therefore, K�
t

,t = (Kt+�tI)�1

=

2

64
Kt�1

+ �tIt�1

kt�1

kT
t�1

1 + �t

3

75

�1

. Following this , it is

straightforward to show that K�
t

,t =

2

64
K�

t

,t�1

(I + kt�1

kT
t�1

K�
t

,t�1

gt�1

) �K�
t

,t�1

kt�1

gt�1

�kT
t�1

K�
t

,t�1

gt�1

gt�1

3

75,

where gt�1

= (1 + �t � rTt�1

kt�1

)

�1. Therefore, the ˜Ht can be computed recursively by

˜Ht = KtK�
t

,t =

2

64
Kt�1

kT
t�1

kt�1

1

3

75

2

64
K�

t

,t�1

(I + kt�1

kT
t�1

K�
t

,t�1

gt�1

) �K�
t

,t�1

kt�1

gt�1

�kT
t�1

K�
t

,t�1

gt�1

gt�1

3

75

=

2

64
Ht�1

� kt�1

rTt�1

gt�1

(It�1

�Ht�1

) (It�1

�Ht�1

)kt�1

gt�1

rTt�1

(It�1

+ kt�1

rt�1

gt�1

� gt�1

) (1� rTt�1

kt�1

)gt�1

3

75

where rt = K�
t

,tkt.
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Appendix C: Roughness minimization modeling estimator ˆ✓t

Proof. First, from the property of Kronecker product we know that ✓T (A⌦B)✓ = tr(A⇥TB⇥)

if ✓ = vec(⇥). The penalization term can be reduced to

✓TR✓ = ✓T (It ⌦Rs + �tD
T
t Dt ⌦ BT

s Bs + �tD
T
t Dt ⌦Rs)✓

= tr(⇥TRs⇥+Dt⇥
T
(BT

s Bs +Rs)⇥D
T
t )

=

tX

i=1

(✓iRs✓i + (✓i+1

� ✓i)
T
(BT

s Bs +Rs)(✓i+1

� ✓i))

Finally ˆ✓t can be solved by

ˆ✓t = argmin

✓
t

tX

i=1

((✓iRs✓i + (✓i+1

� ✓i)
T
(BT

s Bs +Rs)(✓i+1

� ✓i)) + kyt � Bs✓t � atk2)

= argmin

✓
t

�t(✓t � ✓t�1

)

T
(BT

s Bs +Rs)(✓t � ✓t�1

) + ✓Tt Rs✓t + kyt � Bs✓t � atk2(B.1)

= argmin

✓
t

(1 + �t)✓
T
t (B

T
s Bs +Rs)✓t � 2✓Tt (�tB

T
s Bs✓t�1

+ �tRs✓t�1

+BT
s (yt � St))

= (

�t
1 + �t

✓t�1

+

1

1 + �t
(BT

s Bs +R)

�1BT
s (yt � at))

= (1� ˜�t)✓t�1

+

˜�t(B
T
s Bs +R)

�1BT
s (yt � at)

The first equation holds since ✓
1

, · · · , ✓t�1

is fixed, only the last term of the summation

(i = t) is considered. Finally, we know that ŷt = Bs✓t = (1 � ˜�t)ŷt�1

+

˜�tHs(yt � at)

because Hs = Bs(BT
s Bs +Rs)

�1BT
s .

Appendix D: Equivalency of Equation (4.8) to weighted lasso formulation

Proof. According to Appendix A, we have solved ✓t by fixing other variables as ˆ✓t =

�
t

1+�
t

✓t�1

+

1

1+�
t

(BT
s Bs+R)

�1BT
s (yt�at). Then, by plugging it into (B.1), and considering

the terms that only contain yt � at, we have

�t(✓t � ✓t�1

)

T
(BT

s Bs + Rs)(✓t � ✓t�1

) =

˜�t(1 � ˜�t)((yt � at)TBs(BT
s Bs + R)

�1 �
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✓Tt�1

)(BT
s Bs + Rs)((BT

s Bs + R)

�1BT
s (yt � at) � ✓t�1

) =

˜�t(1 � ˜�t)((yt � at)THs(yt �

at)� 2(yt � at)TBs✓t�1

) + C
0

✓Tt Rs✓t =

˜�2t (yt � at)TBs(BT
s Bs + Rs)

�1Rs(BT
s Bs + R)

�1BT
s (yt � at) + 2

˜�t(1 �

˜�t)(yt � at)TBs(BT
s Bs +Rs)

�1Rs✓t�1

+ C
1

kyt�Bs✓t�atk2 = k(I�˜�tHs)(yt�at)�(1�˜�t)ŷt�1

k2 = (yt�at)T (I�˜�tHs)
2

(yt�

at)� 2(1� ˜�t)(yt � at)T (I � ˜�tHs)ŷt�1

+ C
2

C
0

, C
1

, C
2

are the constant terms that do not include at. Finally, by only taking consid-

eration of the quadratic and linear term of yt � at. Equation (4.8) becomes:

kyt � Bs✓t � atk2 + �t(✓t � ✓t�1

)

T
(BT

s Bs +Rs)(✓t � ✓t�1

) + ✓Tt Rs✓t + �k✓a,tk1

= (yt � at)
TQ(yt � at) + (yt � at)

TP + �k✓a,tk1 (B.2)

In which

Q =

˜�t(1� ˜�t)Hs +
˜�2tBs(B

T
s Bs +Rs)

�1Rs(B
T
s Bs +R)

�1BT
s + (I � ˜�tHs)

2

= (

˜�tHs � ˜�2tHs) +
˜�2t (Hs �H2

s ) + I � 2

˜�tHs +
˜�2tH

2

s

= I � ˜�tHs

The second ’=’ holds because Bs(BT
s Bs +Rs)

�1Rs(BT
s Bs +R)

�1BT
s = Hs �H2

s and

P = 2

˜�t(1� ˜�t)Bs(B
T
s Bs +Rs)

�1Rs✓t�1

+ 2Bs✓t�1

� 2(1� ˜�t)(I � ˜�tHs)ŷt�1

= 2

˜�t(1� ˜�t)Bs((B
T
s Bs +Rs)

�1Rs � I)✓t�1

� 2(1� ˜�t)(I � ˜�tHs)ŷt�1

= �2

˜�t(1� ˜�t)HsBsŷt�1

� 2(1� ˜�t)(I � ˜�tHs)ŷt�1

= �2(1� ˜�t)ŷt�1

The third ’=’ holds because Bs((BT
s Bs+Rs)

�1Rs�I)✓t�1

= �Bs(BT
s Bs+Rs)

�1BT
s Bs✓t�1

=
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�HsBs✓t�1

= �Hsŷt�1

Finally, plugging P,Q and at = Bas✓a,t into (B.2), we will have (A.2).

Appendix E: Convexity of f(✓a) = (yt�Bas✓a,t)T (I�˜�tHs)(yt�Bas✓a,t)�2(1�˜�t)(yt�Bas✓a,t)Tyt�1

To prove f(✓a) is convex, we only need to show that I � ˜�tHs is a positive semi-definite

matrix, in which ˜�t =
1

1+�
t

2 (0, 1).

We first show that Hs is positive semi-definite matrix. Hs = Bs(BT
s Bs + �sRs)

�1BT
s .

Since (BT
s Bs+�sRs)

�1 is a positive definite matrix, we know Hs is also a positive definite

matrix.

We then show that I � Hs is positive semi-definite matrix by I � Hs = (I � Hs)
2

+

˜�tBs(BT
s Bs + �sRs)

�1Rs(BT
s Bs + �sRs)

�1BT
s , and both terms are positive semi-definite

matrices.

We then know I � ˜�tHs =
˜�t(I �Hs) + (1� ˜�t)I is also a positive definite matrix.

Appendix F: Lipschitz continuity of f(·) f(·) satisfieskrf(↵)�rf(�)k  Lk↵� �k

for any ↵, � 2 R with L = 2kBask2
2

We first proved that kI � ˜�tHsk2  1. Notice that kXk
2

refers to the spectrum norm of

matrix X . From the definition of the spectrum norm, we know that kXk
2

=

p
�max(XTX).

Consequently, kI�˜�tHk
2

=

q
�max[(I � ˜�tH)

2

] = �max(I�˜�tH) = 1��min(
˜�tH)  1.

For any ˜�t 2 (0, 1).

We then know from Appendix D that rf(↵) = �2BT
as(I � ˜�tHs)(yt �Bas↵) + 2(1�

˜�t)BT
asyt�1

and

krf(↵)�rf(�)k = k2BT
as(I � ˜�tHs)Bas(↵� �)k  k2BT

as(I � ˜�tHs)Bask2 · k↵�

�k  Lk↵ � �k, in which L = 2kBask2
2

. The last equation holds because k2BT
as(I �

˜�tHs)Bask2  k2BT
ask2kI � ˜�tHsk2kBask2  k2BT

ask2kBask2 = 2kBask2
2

.

Appendix G: Solution of ✓(k)a,t in proximal gradient algorithm It is not hard to show

that the proximal gradient method for (A.2) given by
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✓(k)a,t = argmin

✓
a,t

{f(✓(k�1)

a,t ) +

D
✓a,t � ✓(k�1)

a,t ,rf(✓(k�1)

a,t )

E
+

L

2

k✓a,t � ✓(k�1)

a,t k2 + �k✓a,tk1}

has a closed-form solution in each iteration k and can be solved. Since f(✓a) = (yt �

Bas✓a,t)T (I � ˜�tHs)(yt � Bas✓a,t)� 2(1� ˜�t)(yt � Bas✓a,t)Tyt�1

We know that

rf(✓(k�1)

a,t ) = �2BT
as(I � ˜�tHs)(yt � Bas✓

(k�1)

a,t ) + 2(1� ˜�t)B
T
asyt�1

= �2BT
as(yt � Bas✓

(k�1)

a,t ) + 2BT
as((1� ˜�t)yt�1

+

˜�tHs(yt � Bas✓
(k�1)

a,t ))

= �2BT
as(yt � Bas✓

(k�1)

a,t � µ(k)
t )

The last equation holds because of (4.9).

✓(k)a,t = argmin

✓
a,t

{
D
✓a,t � ✓(k�1)

a,t ,rf(✓(k�1)

a,t )

E
+

L

2

k✓a,t � ✓(k�1)

a,t k2 + �k✓a,tk1}

= argmin

✓
a,t

L

2

k✓a,t � ✓(k�1)

a,t � 2

L
BT

as(yt � Bas✓
(k�1)

a,t � µ(k)
t )k2 + �k✓a,tk1}

We know that this can be solved by the soft-thresholding operator as follow: ✓(k)a,t =

S �

L

(✓(k�1)

a,t +

2

L
BT

as(y � Bas✓
(k�1)

a,t � µ(k)
t )) which is exactly (A.3).

Appendix H: The limit of the temporal projection matrix for the static background

Proposition. The temporal projection matrix Ht in (4.7) and (4.5) becomes the average

projection matrix Ht ! 1

n
1n1

T
n when �t ! 1 and c ! 0, respectively, where 1n =

2

66664

1

...

1

3

77775

is the column vector of 1.

Proof. To prove this, we look at the following two lemmas
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Lemma 1: For the roughness minimization model: Ht = (I + �tDT
t Dt)

�1 ! 1

n
1n1

T
n

when �! 1. Suppose the eigendecomposition of DTD yields, DTD = U⇤U�1. It has

been proved in that ⇤ = diag(�
1

, · · · ,�n) with �i = �2 + 2 cos((i � 1)⇡/n). This gives

that there is only one eigenvalue that equals to 0 as �
1

= 0, and �i 6= 0, when i � 2.

(I + �⇤)�1

= diag(

1

1+��
1

, · · · , 1

1+��
n

) ! diag(1, 0 · · · 0)

Ht = (I + �tU⇤U
�1

)

�1

= UT
(I + �t⇤)

�1U

! UT

2

66666664

1

0

. . .

0

3

77777775

U = uuT

, in which u is the first eigenvector of DTD, which corresponds to eigenvalue 0. It is not

hard to show that u =

1p
n
1n, in which 1n =

2

66664

1

...

1

3

77775
because DTDu =

1p
n
DTD1n = 0.

Therefore H =

1p
n
1n

1p
n
1

T
n =

1

n
1n1

T
n

Lemma 2: For the kernel model: Ht = Kt(Kt + �tI)�1 / 1n1
T
n when c ! 0. When

c ! 1, sine (i, j) = exp(� (i�j)2

2c2
),

Therefore, Kt = 1n1
T
n and

Ht = Kt(Kt + �tI)
�1

From ShermanMorrison formula we know that
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(Kt + �tI)
�1

= (1n1
T
n + �tI)

�1

=

1

�t
(I +

1

�t
1n1

T
n )

�1

=

1

�t
(I � 1

�t

1n1
T
n

1 + 1

T
n1n

) =

1

�t
(I � 1

�t(n+ 1)

1n1
T
n )

This gives

H = Kt(Kt + �tI)
�1

= 1n1
T
n

1

�t
(I � 1

�t(n+ 1)

1n1
T
n ) / 1n1

T
n

124



APPENDIX C

APPENDIX ON ”AN ADAPTIVE FRAMEWORK FOR ONLINE SENSING AND

ANOMALY DETECTION ”

Appendix A: The Proof of Proposition (9)

Proof. The function ga(r) = (Kh(r, ra) + u)kr � rak� only relies on the distance kr �

rak since the gaussian kernel Kh(r, ra) =

1

(

p
2⇡h)2

exp(�kr�r
a

k2
2h2

) can be represented as

a function of kr � rak. Let us define d := kr � rak. Therefore, ga(r) = g̃a(d) =

(pa
1

2⇡h2

exp(� d2

2h2

) + u)d�. The local optimum can be obtained by solving g̃0a(d) = 0,

which is

g̃0a(d) =
1

2⇡h4

exp(� d2

2h2

)d��1

(2⇡h4�u exp(
d2

2h2

)� pad
2

+ h2�pa) = 0.

Consequently, 2⇡h2

�u
p
a

exp(

d2

2h2

) + � =

d2

h2

, which is equivalent to solving

�⇡h
2�u

pa
exp(

�

2

) = (� d2

2h2

+

�

2

) exp(� d2

2h2

+

�

2

).

The above equation can be solved analytically by Lambert W-function � d2

2h2

+

�
2

= W (�⇡h2�u
p
a

exp(

�
2

)).

After some simplification, we have

d⇤a = h

s

�� 2W (�⇡h
2�u

pa
exp(

�

2

)).
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Appendix B: The Proof of Proposition (10)

Proof. We first consider the case that g(r) is in the neighborhood of ra, defined as Ra =

{r|kr � rak  kr � rkk, 8k = 1, · · · , n}. Therefore,

max

r2R
a

g(r) = max

r2R
a

ga(r) = ga(d
⇤
a) =

u(d⇤a)
�+2

(d⇤a)
2 � �h2

We then consider g(r) in the neighborhood of other points rj , which rj 6= ra.

max

r2R
j

,r
j

6=r
a

g(r) = (

pa
2⇡h2

exp(�kr � rak2

2h2

) + u)kr � rjk�

 u(1 + exp(�c2))d�

The last inequality holds since kr � rakr2R
j

� 1

2

krj � rak � c
p
2h2

ln(

p
a

2⇡h2u
), which

means, p
a

2⇡h2

exp(�kr�r
a

k2
2h2

)  u exp(�c2). If

d < d⇤a(
(d⇤a)

2

2((d⇤a)
2 � �h2

)

)

1

�

(

1

(1 + exp(�c2)
)

1

� ,

then, maxr2R
j

,j 6=a g(r)  maxr2R
a

g(r). Therefore, argmaxrg(r) can be found in the

neighborhood of ra. More specifically, according to in Proposition 1, argmaxrga(r) =

{r|kr � rak = d⇤a}.

Appendix C: Iterative Soft-thresholding for Robust Kernel Regression

We first show the equivalency of robust kernel regression and outlier detection in the fol-

lowing Lemma.

Lemma. (C.1) and (5.4) are equivalent in the sense that the µ solved by both formulations

are the same.

min

a,µ
kz � a� µk2

2

+ �kak
1

+ �kµkH (C.1)
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The detailed proof of this is shown in [117].

It is straightforward to show that if µ is given, a can be solved by soft-thresholding

as a = S(z � µ, �
2

), where S(x, �
2

) = sgn(x)(|x| � �
2

)

+

is the soft-thresholding operator.

sgn(x) is the sign function and x
+

= max(x, 0). This Lemma relates the robust kernel

regression with outlier detection problem, which also explains why �
2

is a natural threshold

for a point to be considered as an outlier. Furthermore, given a, µ can be solved via µ =

H(z � a), where H is the projection matrix computed by H = K(K + �I)�1.

Algorithm 10: Optimization algorithm for Robust Kernel Regression
initialize

Choose a basis for the background as B
a(0) = 0

H = K(K + �I)�1

end
while |µ(t�1) � µ(t)| > ✏ do

Update µ(t+1) via µ(t+1)

= H(z � a(t))
Update a(t+1) by a(t+1)

= S(z � µ(t+1), �
2

))

end
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APPENDIX D

APPENDIX ON ”POINT CLOUD DATA MODELING AND ANALYSIS VIA

REGULARIZED TENSOR REGRESSION AND DECOMPOSITION”

Appendix A: The proof of Proposition 11

Proof. B can be solved by

ˆB = argmin

B
kY � B ⇥

1

U(1) ⇥
2

U(2) ⇥
3

Xk2F

= argmin

�
ky � (X⌦U(2) ⌦U(1)

)�k2F

Where ˜y is the vectorized ˜Y with size y 2 Rn

1

n

2

N⇥1, ˆ� is the vectorized ˆB with size

ˆ� 2 RpI
1

I
2

⇥1, which can be solved efficiently by

ˆ� = ((X⌦U(2) ⌦U(1)

)

T
(X⌦U(2) ⌦U(1)

))

�1

(X⌦U(2) ⌦U(1)

)

Ty

= (XTX)

�1 ⌦ (U(2)

T

U(2)

)

�1 ⌦ (U(1)

T

U(1)

)

�1

)(X⌦U(2) ⌦U(1)

)

Ty

= (XTX)

�1XT ⌦ (U(2)

T

U(2)

)

�1U(2)

T ⌦ (U(1)

T

U(1)

)

�1U(1)

T

y

Or equivalently

ˆB =

˜Y ⇥
1

(U(1)

T

U(1)

)

�1U(1)

T ⇥
2

(U(2)

T

U(2)

)

�1U(2)

T ⇥
3

(XTX)

�1XT

=

ˆS ⇥
1

(U(1)

T

U(1)

)

�1 ⇥
2

(U(2)

T

U(2)

)

�1 ⇥
3

(XTX)

�1XT

Notice that which is exactly the same as computing ˆS first in 6.8 and then perform regres-

sion on ˆS given the input variable X.
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Appendix B: The proof of Proposition 12

Proof. By rewriting the objective function kY � S ⇥
1

U(1) ⇥
2

U(2)k2F + sTRs into ky �

Usk2 + sTRs where U = U(2) ⌦U(1), s = vec(S), and y = vec(Y). This can be solved

by

s = (UTU+R)

�1UTy

= (UT
2

(II
2

+ �(D2

2

)

TD2

2

)U
2

)

�1 ⌦ (UT
1

(II
1

+ �(D2

1

)

TD2

1

)U
1

)

�1y

= UTy

The last equation holds since we constrain UT
k (IIk + �(D2

k)
TD2

k)Uk = IP
k

, we can then

plug s into (6.13), we have

ky �Usk2 + sTRs = sT (UTU+R)s� 2sTUTy = �yTUUTy

= �kUTyk2F = �kY ⇥
1

UT
1

⇥
2

UT
2

k2F

Therefore, minimizing (6.13) is equivalent to maximize the (6.12) under the constrain

UT
k (IIk + �(D2

k)
TD2

k)Uk = IP
k

.

Appendix C: The proof of Proposition 13

Proof. Given U(�k), the solution of argmaxU(k)

kY ⇥
1

U(1)

T ⇥
2

U(2)

T k2F is given by the

following generalized eigenvalue problem

WkU
(k)

= Rk(�)U
(k)
⇤k

where Wk = Y
(k)U

(�k)U(�k)TYT
(k), ⇤k is the diagonal eigenvalue matrix, U(�k)

=
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8
>><

>>:

U(2) k = 1

U(1) k = 2

.

First, Z = Y ⇥
1

U(1)

T ⇥
2

U(2)

T , Z
(1)

= U(1)

T

Y
(1)

U(2), Z
(2)

= U(2)

T

Y
(2)

U(1)

kY ⇥
1

U(1)

T ⇥
2

U(2)

T k2F = kU(k)TY
(k)U

(�k)k2F = tr(U(k)TY
(k)U

(�k)U(�k)TYT
(k)U

(k)
)

= tr(U(k)TWkU
(k)
)

where Wk = Y
(k)U

(�k)U(�k)TYT
(k). Therefore, Û(k)

= argminU(k)

tr(U(k)TWkU
(k)
) can

be solved by generalized eigenvalue problem.

WkU
(k)

= Rk(�)U
(k)
⇤k

Appendix D: The proof of Proposition 13

Proof. � can be solved by

ˆ� = argmin
�

ky � (X⌦U(2) ⌦U(1)

)�k2 + P (�)

= argmin
�

�T
(XTX)⌦U(2)

T

U(2) ⌦U(1)

T

U(1)� + P (�)� 2�T
(XT ⌦U(2)

T ⌦U(1)

T

)y

= argmin
�

�T
(XTX)⌦ (U(2)

T

U(2)

+ �P
2

)⌦ (U(1)

T

U(1)

+ �P
1

)� 2�T
(XT ⌦U(2)

T ⌦U(1)

T

)y

= (XTX)

�1 ⌦ (U(2)

T

U(2)

+ �P
2

)

�1 ⌦ (U(1)

T

U(1)

+ �P
1

)

�1

(XT ⌦U(2)

T ⌦U(1)

T

)y

= (XTX)

�1XT ⌦ (U(2)

T

U(2)

+ �P
2

)

�1U(2)

T ⌦ (U(1)

T

U(1)

+ �P
1

)

�1U(1)

T

y

which is equivalent to solve B in the tensor format as shown in (6.16).
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