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SUMMARY

Computational tools that are capable of rapidly exploring candidate microstruc-

tures and their associated properties are required to accelerate the rate of development

and deployment of novel materials. In this work, a suite of computationally efficient

protocols, based on the materials knowledge system (MKS) framework, are developed

to evaluate the properties and performance of polycrystalline microstructures. In the

MKS approach, physics-capturing coefficients (calibrated with microstructures and

their responses obtained via experiments or simulations) store the microstructure-

sensitive response of the material system of interest. Once calibrated, the linkages

may be employed to predict the local responses (through localization) or effective

properties (through homogenization) of new microstructures at low computational

expense. Specifically, protocols are developed to predict bulk properties (elastic stiff-

ness and yield strength), local cyclic plastic strains and resistance to fatigue crack

formation and early growth (in the high cycle fatigue and transition fatigue regimes).

These protocols are demonstrated on a diverse set of α-titanium microstructures,

which exhibit heterogeneous microstructure features, in addition to anisotropy on

multiple length-scales.
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CHAPTER 1

INTRODUCTION

The current materials development process requires enormous investments of time

and capital. The materials genome initiative (MGI) white paper [1] asserted that

over twenty years typically elapse between the discovery and deployment of a new

material. A major contributor to this glacial rate of progress is an overwhelming

reliance on slow and expensive experiments to evaluate the properties of candidate

materials. This task becomes even more daunting when it is recognized that materials

may be simultaneously evaluated on the basis of multiple criteria; for example, both

the elastic stiffness and the number of cycles to failure of a particular material may

be of interest. The evaluation of each performance measure requires statistically

significant numbers of experiments to be of practical use.

Computational approaches provide an opportunity to reduce the number of ex-

periments required to characterize material performance. These typically take the

form of physics-based models such as the spectral method [2, 3] or crystal plastic-

ity finite element method (CPFEM) [4–6]. Such methods incorporate an arbitrary

level of detail in the description of microstructure and any relevant materials physics.

Unfortunately, these simulations often require significant computational resources.

Alternatively, reduced-order models may be employed. These models typically incor-

porate less microstructural detail, yet involve a smaller computational investment.

One common example is the Hall-Petch relationship, where the grain size in a mi-

crostructure is empirically related to its yield strength though a simple equation [7,
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8]. Also commonly employed are Eshelby type solutions [9–12], where the response

fields and effective properties of an inhomogeneity placed in a homogeneous medium

are analytically or numerically evaluated. While models derived from the Eshelby

solution solve physics-based constitutive relationships, their accuracy and scope are

limited by simplifying assumptions made about the materials microstructure. Clearly,

reduced-order models that incorporate comprehensive microstructure descriptors are

required to accelerate the rate of exploration of material properties.

In recent years, Kalidindi and co-workers have developed the materials knowledge

system (MKS) framework to establish reduced-order, microstructure-sensitive models

[13–30]. Derived from statistical continuum theories [19, 31–33], the MKS framework

addresses both homogenization [15, 18, 20, 22, 24, 27–30] and localization [13, 14,

16, 17, 19, 21, 23, 26] problems. In the MKS homogenization framework, microstruc-

tures are quantified using n-point spatial correlations [34–37] that are represented

in a reduced-dimensional space using PCA [38]. The structure-property (S-P) link-

age may then be calibrated using an ensemble of reduced-dimensional microstructure

representations and their associated effective properties as obtained via experiments

or previously-validated physics-based models. These protocols have been employed

in the prediction of the transport properties of fuel cell materials [22] and the in-

elastic properties of dual-phase steels [24], in addition to numerous other examples.

The framework has also been extended to processing-structure [28–30] and processing-

structure-properties [27] linkages. In the MKS localization framework, microstructure

response fields are predicted through the convolution of localization kernels (based

on Green’s functions) with a digital representation of the microstructure [13, 14, 16,

17, 19, 21, 23, 26]. As before, the localization kernels are calibrated with an ensemble

of microstructure exemplars and their response fields as computed using physics-

based models. The MKS localization approach has been successfully employed in the

prediction of elastic and perfectly-plastic strain-rate fields in two-phase composite mi-

2



crostructures [13, 14, 17], microstructure evolution through spinoidal-decomposition

in binary alloys [16, 26], and elastic strain fields in cubic and hexagonal polycrystalline

microstructures [21, 23].

The overarching goal of this work is to develop protocols to predict the perfor-

mance of polycrystalline microstructures in forms well suited to materials design and

development efforts. Attainment of this goal requires the extension of the MKS frame-

work in several regards. In polycrystalline materials, the local material state in each

voxel is characterized by a crystal lattice orientation (defined by an ordered set of

three Bunge-Euler angles). In previous attempts at the development of homogeniza-

tion relationships for polycrystals [39, 40], the local state space (i.e., the orientation

space) was binned, and the material was treated as a composite where each bin in the

orientation space corresponded to a distinct local state. Unfortunately, this approach

required a very large number of orientation bins to obtain a representation of satisfac-

tory fidelity. In this work, an extension to the existing MKS framework is developed

for homogenization S-P linkages through the use of generalized spherical harmonics

(GSH) [41] for the functional components over the orientation space. It is demon-

strated that this approach produces computationally-efficient, highly-compact repre-

sentations of reduced-order S-P linkages for polycrystalline microstructures (specifi-

cally through the prediction of elastic stiffness and yield strength).

The GSH basis functions have been previously implemented in related problems

[21, 23, 36, 42–44], including MKS localization linkages for the prediction of strain-

component fields in cubic and hexagonal polycrystals [21, 23], where only 10 and

15 GSH basis functions, respectively, were required to accurately represent the func-

tional dependence on crystal lattice orientation. In this work, the MKS localization

framework is extended to rank-order the high cycle fatigue (HCF) resistance of poly-

crystalline materials. First the MKS is employed to predict full tensorial elastic strain

fields in the microstructures. Stresses are then computed using Hooke’s Law and are
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subsequently employed to estimate cyclic plastic strains through numerical integra-

tion of a crystal plasticity flow rule. Surrogate measures of the local driving force for

fatigue crack formation and early growth, referred to as fatigue indicator parameters

(FIPs) are then computed from these field quantities. Microstructures can then be

rank-ordered for resistance to HCF by their extreme value distributions (EVDs) of

FIP responses.

In addition to employing the MKS framework for the prediction of local fatigue

responses, the MKS homogenization framework is extended to rank-order the fatigue

resistance of polycrystalline materials. As before, microstructures are quantified us-

ing spatial statistics and represented in a reduced-dimensional space. The fatigue

response in this approach is characterized by the parameters obtained by fitting a se-

lected functional form to the EVD of FIPs. Consequently, both the microstructures

and associated fatigue responses have reduced-order representations well suited to ma-

terials development efforts. These protocols are demonstrated in the characterization

of the HCF and transition fatigue performance of polycrystalline materials.

The protocols developed through this work are demonstrated on α-titanium poly-

crystals - a material system of particular relevance to the NSF GOALI project funding

this research. The α-titanium system is complex, exhibiting orientation-dependent

elastic and plastic anisotropy at the grain-scale in addition to varied microstructure

topology at higher length-scales [6, 45]. Each protocol developed in this work relies on

a common set of synthetic microstructures generated via DREAM.3D [46]. Further-

more, all simulations rely on the crystal plasticity framework developed by McDowell

and co-workers over the past two decades [6, 47–51].
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CHAPTER 2

EXECUTIVE SUMMARY

This dissertation is organized as a compilation thesis, where publication-quality re-

search articles written by the candidate are tied together by an executive summary.

This section briefly introduces the background of the work and presents each of the

research topics with some selected findings. Furthermore, the executive summary

draws general conclusions from the entire work that may not be apparent in the

separate examination of each article’s findings.

2.1 Background

2.1.1 Digital Microstructure Representation

In the MKS framework, experimental and synthetic microstructures are mathemat-

ically represented using the microstructure function [19, 36, 52]. To properly char-

acterize the microstructure, it is important to identify which physical characteristics

of the local microstructural features are expected to have a significant impact on the

response of interest. This set of characteristics, called the local state, may include

determiners such as phase, chemical composition, crystal structure and dislocation

density. In this work, the local state only refers to a single physical characteristic

and is denoted by h. The microstructure function, m(h,x), captures the probability

density of finding local state h (within a region of ∆h around h) at the spatial location

x in the microstructure.
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The next step is to select a form by which to represent the microstructure function.

The most logical choice is to utilize a generalized Fourier series (GFS), which has the

benefit of flexibility; any desired level of detail can be incorporated into the description

of microstructure feature geometries and local states. In reality, the fidelity of the

experimental characterization of microstructure is limited; digital imaging techniques

generally return a rasterized representation of the microstructure with a characteristic

minimum resolved length-scale. In composite microstructures, where the local state

is suitably characterized by a limited number of distinct phases, the most suitable

GFS is given by

m(h,x)∆h ≈
N∑
n=1

S∑
s=1

Mn
s χn(h)χs(x) (2.1)

where Mn
s are the GFS coefficients, ∆h is the size of the local state bin and χi( ) is

the indicator basis function. The indicator basis returns zero unless its argument is

within the bin indexed by i, in which case it returns one. Note that s is a multidi-

mensional array index and that N and S are the maximum number of phases and

spatial locations in the microstructure, respectively. In this simple GFS, Mn
s is the

volume fraction of the local state h in the spatial bin indexed by s.

The GFS presented in Equation (2.1) is effective for the representation of com-

posite microstructures; however, other local state descriptors such as composition or

orientation necessitate the implementation more sophisticated basis functions that

efficiently represent continuous functions. Sections 3.4 and 4.3.2 present the imple-

mentation of the GSH Fourier basis for the microstructure function’s dependence on

the crystalline lattice orientation in polycrystalline materials.

2.1.2 Spatial Statistics

Metrics must be employed in the construction of reduced-order homogenization rela-

tionships to characterize microstructures so that their differences can be quantified.

Images of microstructure (such as the digital representations described in Section
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2.1.1) are not sufficient as they cannot be directly compared mathematically. Typ-

ically, statistical microstructure descriptors such as grain size and volume fraction

are utilized in structure-property linkages [7, 8, 53]. These simple metrics are often

selected based on the expertise of the researcher and do not account for long-range

interactions between microstructure features that can often have a significant effect

on the response of interest. N-point spatial correlations [34–37] provide an oppor-

tunity to characterize both the lower- and higher-order spatial relationships between

microstructure features and inherently capture a majority of the ad-hoc metrics em-

ployed in the literature.

In this work, 2-point spatial correlations are used to quantify material microstruc-

ture. The most fundamental form of the 2-point statistics is given by

f(h, h′|r) =
1

V ol(Ωr)

∫
Ωr

m(h,x)m(h′,x+ r)dx (2.2)

where Ωr is the integration domain and f(h, h′|r) is the conditional probability den-

sity that a vector r, randomly placed in the microstructure, has local states h and h′

at the head and tail of the vector, respectively. Note that Ωr depends on the choice of

r in non-periodic microstructures because the integration domain must contain x+r

for all x.

Given the form of Equation (2.2), it is natural to substitute the GFS representation

of the microstructure function. For a multi-phase composite material, Equation (2.1)

is substituted, resulting in

f(h, h′|r)[∆h]2 ≈
N∑
p=1

N∑
n=1

∑
t

F np
t χn(h)χp(h

′)χt(r) (2.3a)

F np
t =

1

|St|

St∑
s=1

Mn
sM

p
s+t (2.3b)

where F np
t are the GFS coefficients for Equation (2.2), t is a multidimensional vector
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index for r and St bounds the set of indices for spatial bins contained in Ωr [25, 54].

A similarly simple expression that is better suited to polycrystalline materials may be

obtained through the substitution of the microstructure function defined using GSH

basis functions into Equation (2.2) (as demonstrated in Section 3.4).

2.1.3 MKS Origins

Details of the development of the MKS framework from statistical continuum theories

are presented in previous work [15, 18, 22, 24, 25, 55–57] for both linear and non-linear

physical phenomena; however, it is most instructive to begin the discussion with the

case of linear-elasticity in composite microstructures. The development begins with

an examination of a microstructure volume subject to the following constraints:

∇ · σ = 0 (2.4a)

∇× ε = 0 (2.4b)

σ : ε ≥ 0 (2.4c)

where ε and σ are the strain and stress tensors, respectively.

For this linear-elastic problem, the constitutive relationship between stress and

strain at each location in the volume is described by Hooke’s Law,

σ(x) = C(x) : ε(x) (2.5)

where C(x) is the elastic stiffness tensor at spatial position x. It is convenient to

decompose C and ε as

C(x) = CR +C ′(x) (2.6a)

ε(x) = ε+ ε′(x) (2.6b)
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where CR is a selected reference stiffness and ε is the average of ε over the entire

microstructure. In this problem, it is desirable to obtain the polarization tensor, a(x),

such that

ε′(x) = a(x) : ε (2.7)

To derive a(x), Equation (2.6a) and Equation (2.6b) are first substituted into Equa-

tion (2.5). Through the utilization of the Green’s function and recursive substitution,

the following expression for a(x) is obtained,

a(x) = −
∫
Ω

Γ(x− x′) : C ′(x′)dx′+

∫
Ω

Γ(x− x′) : C ′(x′) :

∫
Ω

Γ(x′ − x′′) : C ′(x′′)dx′′dx′ + . . .

(2.8)

where Γ(x−x′) is a symmetrized derivative of the Green’s function. This analytical

expression for a(x) is a critical component in the development of both homogenization

(Section 2.1.4), and localization relationships (Section 2.1.5).

2.1.4 MKS Homogenization

One branch of the MKS protocols is concerned with the determination of effective

properties given detailed microstructure information and loading conditions. Con-

tinuing the example from Section 2.1.3, it is hypothesized that a homogenization

relationship may be developed for the effective elastic stiffness tensor, Ceff , where

σ = Ceff : ε (2.9)
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according to Hooke’s Law. The volume averaged stress (σ) and strain (ε) in Equation

(2.9) are defined by the following relationships:

σ =
1

V (Ω)

∫
Ω

σ(x)dx (2.10a)

ε =
1

V (Ω)

∫
Ω

ε(x)dx (2.10b)

Ceff may be expressed as a function of C and the localization tensor of Equation

(2.8) [25] as follows

Ceff = C +C : a (2.11)

where the over-bar represents a volumetric average. Through the representation of

C(x) with a GFS and the substitution of Equation (2.8) into Equation (2.11), Ceff

may be expressed as follows,

Ceff = C−
∫
Ωr

∫
H

∫
H

Γ(r) : [C(h)m(h,x)] : [C ′(h′)m(h′,x+ r)] drdhdh′+ . . . (2.12)

where r = x − x′ and H bounds the local state space. One advantage of Equation

(2.12) is that Γ(r), C(h) and C ′(h′) depend solely on the physical characteristics of

the materials system and that m(h,x) and m(h′,x + r) only depend on the specific

topology of the microstructure of interest. Furthermore, in Equation (2.12) m(h,x)

and m(h′,x+r) form the 2-point spatial statistics, f(h, h′|r), which provide an easily

comparable and qualitative description of microstructure.

Unfortunately, evaluation of the triple integral in Equation (2.12) is difficult and

sensitive to the selection of CR. Through a reconfiguration of Equation (2.12) and

a truncation of the higher-order terms in the series, the following relationship is

extracted,

Ceff ≈ C −
∑
r,n,p

Υnp
r F

np
r (2.13)
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where F np
r are the GFS coefficients for f(h, h′|r) (see Equation (2.3b)) and Υnp

r are

physics-capturing coefficients. In theory, Υnp
r could be calibrated with an ensemble of

microstructure exemplars and their associated responses as predicted by established

physics-based models; however, this would require the determination of a large set

of coefficients. Fortunately, principal component analysis (PCA) may be used to re-

duce the dimensionality of F np
r . PCA finds orthogonal and linear combinations of the

original feature data such that they are ordered from highest to lowest variance [38].

Through PCA, a microstructure instantiation may be represented in principal compo-

nent (PC) space with high fidelity using many orders of magnitude fewer dimensions

than in the original representation. Before presenting the PC decomposition, a sim-

plified notation for F np
r is established. The GFS coefficients will be denoted by F

(j)
t ,

where t indexes combinations of (t, n, p) and j indexes individual microstructure ex-

emplars. With this definition in place, the reduced-dimensional representation of F
(j)
t

is given by

F
(j)
t =

min(J−1,R)∑
i=1

α
(j)
i φit + F t (2.14)

where α
(j)
i are the coordinates of the exemplar indexed by j in PC space (denoted

PC scores), φit represent the directions of maximum variance determined by PCA

(denoted PC directions), F t is an average over the spatial statistics of all exemplars

and J and R represent the maximum number of microstructure exemplars and features

in the GFS coefficients, respectively. By employing the full set of PC scores, exemplars

may be represented with no loss of fidelity. In some cases, however, it is desirable

to take further advantage of PCA and represent the spatial statistics with only a

handful of PC scores. In that case, the maximum number of PC components used in

the representation of F
(j)
t is denoted R̃.
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Using the results of Equation (2.14), Equation (2.13) may be simplified as follows

Ceff ≈ A0 +
R̃∑
i=1

Aiαi (2.15)

where Ai are physics-capturing coefficients which describe the dependence of Ceff

on the PC scores. Through a calibration of the Ai coefficients with a diverse set

of exemplars and their associated Ceff tensors, Ceff may be predicted for new mi-

crostructures in the materials system. This prediction is often achieved at far lower

computational cost than required using existing models. As mentioned in Section

2.1.3, this procedure is applicable to a wide range of properties, depending on both

linear and non-linear material phenomena. Furthermore, examining the problem from

a machine-learning perspective allows one to recognize the PC scores as features, the

products of which may be taken to form higher-order features. This enables the con-

struction of S-P linkages where the predicted properties have non-linear dependence

on the PC scores.

2.1.5 MKS Localization

In the context of MKS, localization describes the prediction of local response fields

given microstructure topology and a higher length-scale deformation state. In keeping

with the current derivation for elastic deformation in a composite microstructure, the

local elastic strain fields may be described by the following relationship,

ε(x) = a(x) : ε = (I + a(x)) : ε (2.16)

where I is the fourth-rank identity tensor, a(x) is the polarization tensor of Equation

(2.8), and a(x) is the localization tensor [19, 25]. Through the introduction of a

GFS in the representation of a(x), invoking the ergodic hypothesis and substituting

r = x − x′ and r′ = x′ − x′′, Equation (2.16) can be expanded into the following
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form,

ε(x) =
(
I −

∫
H

∫
Ωr

α(h, r)m(h,x+ r)dhdr+

∫
H

∫
H

∫
Ωr

∫
Ωr

α̃(h, h′, r, r′)m(h,x+ r)m(h′,x+ r + r′)dhdh′drdr′ − . . .
)

: 〈ε〉
(2.17)

where α(h, r) and α̃(h, h′, r, r′) are the first- and second-order influence functions

(both fourth-rank tensors) [19, 25] and 〈 〉 is the ensemble average. As in the homog-

enization example, the physics of the materials system and the specific microstructure

topology are independently captured by the influence functions and microstructure

function, respectively. The influence functions are analogous to the Green’s function

and describe the contribution to ε(x) due to the presence of local state h at the

spatial location x+ r.

Unfortunately, the influence functions of Equation (2.17) are notoriously difficult

to evaluate analytically. The MKS approach avoids these difficulties through a cali-

bration of the influence functions with sets of diverse microstructure exemplars and

their response fields as evaluated using previously-validated physics-based models. To

enable the efficient calibration of the localization relationship, GFS representations

of the microstructure function and the first-order influence function, given by

m(h,x)∆h ≈
∑
n

∑
s

Mn
s χn(h)χs(x) (2.18a)

α(h, r)∆h ≈
∑
n

∑
t

An
tχn(h)χt(r) (2.18b)

respectively, are substituted into Equation (2.17), resulting in a generalized equation

for MKS localization [25]:

εs ≈
(∑

n

∑
t

An
tM

n∗
s+t +

∑
n

∑
n′

∑
t

∑
t′

Ann′

tt′ M
n∗
s+tM

nn′∗
s+t+t′ + . . .

)
: 〈ε〉 (2.19)
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Once the GFS coefficients of the influence functions have been determined, the MKS

can predict the response fields of new microstructures in the materials system, often

at significantly lower cost than with the original physics-based model. In one study,

the MKS was shown to predict elastic strain fields nearly 360 times faster than FEM

in 2-phase composite microstructures [14].

2.1.6 Fatigue Indicator Parameters

Computational evaluation of the fatigue performance of polycrystalline metals is an

appealing alternative to the numerous costly tests required for the experimental deter-

mination of fatigue life. Unfortunately, computational fatigue modeling is a complex

endeavor due to the variety of physical mechanisms which act at different length- and

time-scales [58]. The growth of long cracks in polycrystalline metals is well described

by the stress intensity factor from linear-elastic fracture mechanics (LEFM) [59] in

addition to other energy-, stress- and strain-based relationships [60]. In contrast, the

driving forces for fatigue crack formation and early growth are highly dependent on

local, directional, cumulative plastic slip, in addition to the local stress and elastic

strain [58, 61]. These field responses are directly controlled by the local microstruc-

ture. It is critical to effectively characterize this driving force, as a large proportion

of the fatigue life is occupied by the formation and growth of small cracks [62].

Fatigue indicator parameters (FIPs) are surrogate measures of the driving force

for fatigue crack formation and early growth [62]. FIPs may take different forms

depending on the dominant mechanisms in the material of interest, yet all depend

on local microstructure responses. The Fatemi-Socie (F-S) FIP has been shown to

correlate with fatigue crack formation and early growth in the LCF and HCF regimes

under multi-axial loading [60, 62–64]. The F-S FIP in particular is effective for metals
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which undergo planar slip (such as titanium) [51]. The F-S FIP is given by

FIPFS =
∆γ̄pmax

2

[
1 + k

σ̄nmax
σy

]
, (2.20)

where ∆γpmax is the maximum cyclic plastic shear strain range, σnmax is the maximum

stress normal to ∆γpmax, σy is the macroscopic material yield strength and k is a

constant which controls the impact of normal stress (typically ranging between 0.5

and 1.0). The over-bar on the shear strain and normal stress represents a volume

averaging of the field quantities over a limited length-scale, generally a small number

of voxels [65].

Locations in the microstructure with severe FIP responses are most likely to be

the sites of crack formation. Furthermore, microstructures with numerous severe

FIP locations can be expected to be more susceptible to fatigue crack formation and

growth than microstructures with fewer and less severe extreme FIP locations. In

several previous studies, microstructures have been rank-ordered by their resistance

to HCF through the extreme value distributions (EVDs) of their FIP responses as

computed using CPFEM simulations [66–68].

2.2 Dataset Generation

Throughout this work, common sets of microstructure volumes and simulation tech-

niques are employed in multiple studies. It is advantageous to expend less effort on

obtaining the datasets than on the development of protocols. Microstructures and

their responses are employed both to calibrate S-P linkages and to validate their

predictive capabilities. The material system studied in this work is polycrystalline

α-titanium, which exhibits significant microstructure heterogeneity in addition to

elastic and inelastic anisotropy on multiple length-scales. Details of the generation of

microstructures and the crystal plasticity model employed in this work are discussed
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in the subsequent sections.

2.2.1 Microstructure Generation

To best demonstrate the protocols developed in this work, a diverse set of microstruc-

tures with a wide range of properties are obtained. Due to the scarcity of detailed

three-dimensional characterizations of α-titanium microstructures in the literature,

synthetic microstructures are generated that are differentiated predominantly by their

texture. The twelve selected microstructures have textures inspired by 2-dimensional

EBSD scans [69] as well as textures in the literature [70–73]. Furthermore, a log-

normal grain size distribution is assigned with a mean grain size of 30µm and a

standard deviation of 15µm.

For each target microstructure, a set of 500 synthetic volumes are generated.

These exemplars, named material volume elements (MVEs), are intended for the

calibration and validation of S-P linkages. MVEs must be large enough to capture

the maximum length-scale of interaction between distinct features in the microstruc-

ture. Fortunately, the MKS influence coefficients in localization problems capture

the decaying strength of interaction between microstructure features separated by

increasing distance. In numerous previous studies with low to medium contrast in

local properties for both elastic and inelastic responses, it was demonstrated that

21x21x21 voxel MVEs are sufficiently large to allow these interactions to fully decay

[13, 14, 17, 21, 23, 74]. This size of MVE is selected in this work with a side length

of 210µm.

Synthetic MVEs are generated for each target microstructure using the open-

source DREAM.3D software package [46]. From the microstructure dimensions and

target grain size distribution, DREAM.3D constructs synthetic microstructure vol-

umes through an ellipsoidal packing algorithm. Orientations are subsequently as-

signed to individual grains to match the target texture. Grain ID maps and (0001)
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Figure 2.1: Grain ID maps and (0001) pole figures of sample MVEs for microstruc-
tures A through L.

pole figures are presented in Figure 2.1 for an example MVE from each of the twelve

target microstructures (labeled A through L). Note that the MVE ensembles employed

in this work were generated over the course of several studies [74–76].

2.2.2 Crystal Plasticity Simulations

Crystal plasticity simulations are employed in this work to generate the requisite

data for the calibration and validation of structure-property linkages. The crystal

plasticity framework was developed by McDowell and coworkers over the past two

decades for the Ti-6Al-4V material system [6, 47–51]. The framework is implemented

in ABAQUS [77] through a user-material subroutine in addition to single-point cal-

culations. Further details, including the elastic and inelastic material parameters, are

provided in Section 4.3.1.

The performance of this framework has been extensively validated in prior work.

In one recent study, Smith et al. calibrated the crystal plasticity model parameters

with monotonic and cyclic experimental results for β-annealed Ti-6Al-4V at different

loading rates and strain amplitudes [6]. Cyclic stress-strain curves were subsequently
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compared between an experiment and associated CPFEM simulation (for a loading

condition not employed in the calibration set) to validate the parameter set. In

a later study, the framework was employed to rank-order the HCF performance of

different titanium microstructures following the protocols introduced in Section 2.1.6

[69]. In that work, it was demonstrated that coupled CPFEM and extreme value

FIP analyses reproduce experimentally observed trends in fatigue performance with

respect to crystallographic texture, grain size and loading direction in Ti-6Al-4V.

These studies are emphasized to justify the use of CPFEM simulations to validate

the results of this work. The quality of an S-P linkage cannot exceed the quality

of the data used for its calibration. Consequently, it is most informative to validate

the S-P linkages resulting from this work with CPFEM results and not experimental

results.

2.3 Summary of Findings

2.3.1 MKS Homogenization Protocols to Predict the Bulk Properties of

Polycrystalline Microstructures

In this study, protocols are developed to predict the bulk properties of polycrystalline

microstructures using the MKS homogenization framework. Specifically, elastic stiff-

ness and yield strength are evaluated for the 12 α-titanium microstructures discussed

in Section 2.2.1. The ensemble of MVEs (and their associated properties as pre-

dicted via CPFEM simulations) used to calibrate the S-P linkages consists of 30

MVEs each from microstructures A through G. The ensemble used to validate the

linkages (i.e. evaluate their predictive capability versus CPFEM simulations) consists

of 30 (different) MVEs each from microstructures A through G and 30 MVEs each

from microstructures H through L. Microstructures H through L are called validation

microstructures because they are not employed in the calibration of the S-P linkage.
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In annealed polycrystals, the local state of interest is the crystal lattice orientation,

g, which is a function of three Bunge-Euler angles. Consequently, should a binning

approach be used to represent the functional dependence of the spatial statistics on

orientation (as presented in Section 2.1.2), the MKS framework would be burdened

with a huge number of orientation bins. Instead, generalized spherical harmonic

(GSH) basis functions are employed to represent the functional dependence on crystal

lattice orientation. This choice results in massive computational savings versus the

naive binning approach.

These benefits are most obvious after PCA is employed to reduce the dimension-

ality of the spatial statistics of each polycrystalline MVE. Figure 2.2 presents the

cumulative explained variance (where the explained variance in each PC dimension

is given by the variance of the PC scores of all calibration MVEs in that dimension)

for increasing numbers of PC dimensions and for a given truncation in the number

of GSH basis functions (denoted by L̃) used in the GFS representation of the spa-

tial statistics. Notice that with increasing R̃, the percentage cumulative explained

variance asymptotically approaches 100%. To emphasize the compaction achieved,

notice that 85% of the variance is explained for spatial statistics represented by 15

GSH basis functions (this was shown in previous work to be the complete set required

to represent functional dependence of elastic properties on GSH [19, 21, 52, 76, 78,

79]) and only two PCs.

Furthermore, as demonstrated in Figure 2.3, MVEs are well clustered by their

associated target microstructure in the first two PC dimensions. MVEs which are

nearby in PC space exhibit similar structures, while well separated MVEs have sig-

nificantly different structures. Referring back to Figure 2.1, the example MVEs from

neighboring microstructures K and L both have strong transverse texture, while the

example MVE from microstructure D (which is far from K and L in PC space) has

basal texture.
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Figure 2.2: Percentage PCA explained variance versus R̃ and L̃.

Figure 2.3: The full ensemble of MVEs in PC1 and PC2 (for L̃ = 15). MVEs employed
for the calibration of the PC space and the S-P linkages are colored gray.
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(a) (b)

Figure 2.4: Predicted versus simulated response for (a) elastic stiffness with 3 PCs
and (b) yield strength with 6 PCs. Grey markers are for validation MVEs generated
with target microstructure statistics for microstructures A through G.

After the application of PCA, the physics-capturing coefficients of Equation (2.15)

are calibrated using reduced-dimensional representations of the calibration MVEs

and their effective properties as predicted via CPFEM simulations. To identify the

final form of the S-P linkage, the values of R̃ and L̃ mostly likely to provide high

predictive capability in a reduced-order form are selected. The final S-P linkages

in this study are specified by R̃ = 3 and L̃ = 15 for elastic stiffness and R̃ = 6

and L̃ = 41 for yield strength. The results of this study are presented in Figure 2.4,

where the property obtained via CPFEM simulation is compared against the property

predicted by the reduced-order S-P linkage for each MVE in the validation set. Both

linkages consistently predict the effective properties with a high degree of accuracy,

even for MVEs associated with microstructures in the validation set (such MVEs are

highlighted in color).

Finally, it is important to emphasize the computational benefits of this approach.

In the prediction of yield strength, the reduced-order protocols enabled nearly a 10,000

times speed-up in required CPU time versus CPFEM simulations per MVE (note
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that the linkage must be employed for MVEs that are not significant extrapolations

beyond the calibration MVEs). The computational efficiency and simplicity of this

framework have the potential to greatly aid both forward and inverse materials design

tasks. Furthermore, they are expected to be a crucial component in efforts aimed at

the dramatic reduction of the time and cost required to develop and deploy novel

polycrystalline materials.

2.3.2 MKS Localization Protocols to Rank-Order the High Cycle Fatigue

Resistance of Polycrystalline Microstructures

In this study, a novel localization approach is developed to rank-order the HCF re-

sistance of polycrystalline microstructures. This approach relies on the assumption

that in HCF, plastic strains are small in magnitude and localized to specific features

of the microstructure [62]. Consequently, the elastic strains (and therefore stresses)

can be directly computed using linear-elastic simulations and the cyclic plastic strains

can be separately estimated in each voxel through a forward Euler scheme. Crucially,

this approach is far more computationally efficient than traditional CPFEM when an

MKS localization linkage is used to predict the elastic strains.

Traditionally, a representative volume element (RVE) is selected for the analyti-

cal or numerical evaluation of the properties of a microstructure (in this case HCF

performance). The size of the RVE (and the number of features it contains), must be

selected such that it is statistically representative of the microstructure [80]. Specif-

ically, it is required that the properties of interest are not sensitive to the specific

sample of microstructure selected or to a small increase in its size. Unfortunately, the

RVE for fatigue properties is expected to be prohibitively large for analysis using ex-

isting physics-based models. Kanit et al. [80] suggested an alternate approach where

a set of smaller statistical volume elements (SVEs) replace the single RVE. Each SVE

must be large enough to capture the maximum length-scale of interaction between
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microstructure features. In this work, the MVEs discussed in Sec 2.2.1 are employed

as SVEs to approximate the RVE for HCF performance. Through an examination of

the convergence of effective elastic stiffness for x-, y- and z-direction loading, it was

determined that the SVE ensemble for each microstructure should include 500 SVEs.

As in previous studies [66, 67, 69], the HCF analysis is performed for fully-reversed

cyclic loading (R=-1) up to 0.5% strain amplitude (or roughly 60-67% of the strain

to yielding). Three loading cycles are performed to allow the cyclic plastic strains

to saturate before the F-S FIPs are computed. Displacement-controlled, periodic

boundary-conditions are employed in the x-, y- and z-directions for uniaxial strain.

As a first step, the MKS influence coefficients are calibrated using an ensemble of

polycrystalline MVEs and their elastic strain fields as obtained via linear-elastic FEM

simulations. These influence coefficients are employed to efficiently predict the tenso-

rial elastic strain fields in the ensembles of SVEs at both the minimum and maximum

of a loading cycle. The MKS approach takes 0.7 seconds to compute strain fields in

each SVE. The equivalent linear-elastic FEM simulation would require ten minutes to

perform. Stress fields are subsequently computed from the strain fields using Hooke’s

Law.

Next, a decoupled algorithm is used to compute the plastic strains in the SVEs

throughout the three loading cycles. First, the stress at each voxel location is resolved

onto the HCP slip systems. Then, numerical integration is performed on the crystal

plasticity flow rule (see Section 4.3.1) throughout three loading cycles to obtain the

cumulative plastic shear strains at each time step. The plastic strain tensor at the

minimum and maximum of the third loading cycle are computed from the cumula-

tive plastic shear strains. The success of this approach is demonstrated in Figure

2.5, where εp11 strain fields at the maximum of the third loading cycle are compared

between the predictions of the novel protocols and a traditional CPFEM simulation.

As the plastic strains can vary by orders of magnitude, the strain fields are plotted
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Figure 2.5: A two-dimensional cross-section comparison of the εp11 values from CPFEM
(left) and MKS plus numerical integration (right).

with a log-scaled color-scheme.

Next, the F-S FIPs are computed for all voxel locations in each SVE according to

Equation (2.20). To construct the extreme value distributions of the FIP responses,

the maximum-valued FIP from each SVE in the ensemble is extracted. Through the

comparison of these FIP EVDs, the resistance to fatigue crack formation and growth

can be rank-ordered for different microstructures and loading conditions. Figure 2.6

compares the FIP EVDs between the novel protocols and CPFEM simulation results

for a set of 100 SVEs belonging to the β-annealed microstructure (labeled A in Figure

2.1). In general, the results of the novel protocol and CPFEM match closely; loading

in the x- and y-directions results in similar FIP EVDs and loading in the z-direction

results in a more severe FIP response (representing greater susceptibility to HCF).

These protocols are also demonstrated on microstructures B, F and G for x-, y- and

z-direction loading.

These protocols do indeed provide significant computational benefits versus tra-

ditional CPFEM simulations; an approximate speed-up of 40 times is achieved. Fur-

thermore, this approach is able to extract accurate simulation results from 6000 SVEs

without the use of ABAQUS simulations.
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Figure 2.6: Comparison of the β-annealed microstructure extreme value distribution
Fatemi-Socie FIP plot with 100 SVEs for (a) MKS plus numerical integration and
(b) CPFEM.

2.3.3 MKS Homogenization Protocols to Rank-Order the High Cycle Fa-

tigue Resistance of Polycrystalline Microstructures

In this study, the MKS homogenization framework is extended to rank-order the HCF

resistance of polycrystalline microstructures. While the goals of this and the previous

study are similar, in this work, reduced-order representations of the microstructures

and their associated HCF performance are employed. This formulation enables the

accelerated optimization of microstructures for target properties in materials devel-

opment efforts. The full set of 500 MVEs for each of the twelve microstructures are

utilized, for a total of 6000 MVEs. Instead of using CPFEM to obtain the field quan-

tities used to compute FIPs, the protocols described in Section 2.3.2 are employed.

This choice dramatically reduced the cost of obtaining the set of calibration and val-

idation simulations, as the results for 8 of the microstructures were available from

previous studies [74, 75]. Simulations are performed for three cycles of fully reversed

uniaxial loading in the x-direction to 0.5% strain amplitude.

The basic elements of this framework are similar to those of the MKS homoge-

nization framework for the prediction of bulk properties, except that details of the
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representation of both the microstructure and the property of interest differ signif-

icantly. As in Section 2.3.2, each microstructure is represented by an ensemble of

SVEs. Consequently, reduced-order representations of the microstructure must in-

clude the mean structure in addition to some measure of the variation exhibited in

the SVE ensemble. Furthermore, the HCF performance of the microstructure is rep-

resented by the distribution of discrete, extreme-valued FIP responses in the SVE

ensemble. To characterize the HCF performance in a reduced-order manner, the FIP

EVDs are fit to some pre-selected distribution, and the resultant fitting parameters

(herein called performance characteristics) serve as the effective properties in the

MKS homogenization linkage. Specifically, the gamma distribution given by

f (z|α) =
1

Γ (α, 0)
zα−1e−z (2.21a)

F (z|α) =
Γ (α, z)

Γ (α, 0)
(2.21b)

Γ (α, z∗) =

∫ ∞
z∗

zα−1e−zdz, z =
x− µ
σ

, α > 0 (2.21c)

is employed, where α, µ and σ control the shape, location and spread of the distri-

bution, respectively, f (z|α) is the probability density function (PDF) and F (z|α) is

the cumulative distribution function (CDF) [68, 81]. The FIP EVD can therefore be

represented by the three performance characteristics, α, µ and σ. Instead of selecting

the maximum FIP in each SVE as in Section 2.3.2, the FIP EVD is constructed by

taking a threshold on the distribution of all FIPs in the ensemble of SVEs (in this

case the threshold is the top 1% of all FIPs). Note that α and σ have competing

effects on the shape of the EVD in the ranges of interest. Consequently, a reasonable

value for α is selected and held constant prior to identifying µ and σ.

In practice, the first step in the construction of the linkage is to compute the 2-

point spatial correlations (with the functional dependence on the local state captured

by the GSH basis functions as in Section 2.3.1) of all SVEs under consideration. Next,
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the reduced-dimensional PC space is established for SVEs in the calibration ensemble

(in this case SVEs associated with all microstructures introduced in Section 2.2.1

except for microstructure J) and the spatial statistics for all SVEs are transformed

into this space. Each microstructure is represented by the mean set of coordinates in

PC space and the total variance, given by

V ARtot =
R̃∑
i=1

var(α
(j)
i ) (2.22)

where the variances of the PC scores for the SVEs are computed in each PC dimension

and summed.

It now becomes clear that only 11 data points (corresponding to the 11 calibration

microstructures) are available to calibrate the S-P linkage. One option is to generate

more synthetic microstructures and perform physics-based simulations to obtain their

responses. Unfortunately, this would require significant effort and computational ex-

penditure. Alternately, it is proposed that the SVE ensemble for each microstructure

may be sub-sampled to establish numerous unique SVE subsets from each original

microstructure SVE ensemble. The first step in such an approach is to establish

the minimum number of SVEs required to approximate an RVE. In this study, it

was determined that 100 SVEs are sufficient by examining the convergence of α, µ

and σ with the inclusion of increasing numbers of SVEs. Given this information,

SVE subsets are selected that exhibit significant diversity of mean PC locations and

variances.

Once a sufficient number of data-points are obtained (in this study 220 subsets are

extracted from the 11 original microstructure ensembles), the physics-capturing coef-

ficients of the S-P linkage may be calibrated. To capture the potentially sophisticated

dependence of the performance characteristics on the reduced-dimensional represen-

tations of microstructure, truncation levels of R̃ = 25 and L̃ = 41 are selected and
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Table 2.1: The top ten features ranked by the Pearson correlation are presented for
both performance characteristics.

Feature µ Pearson σ Pearson
Ranking Correlation Correlation

1 PC1 · PC7 -0.654 PC1 · PC7 -0.730
2 PC1 · PC5 0.647 PC1 · PC5 0.639
3 PC7 0.586 PC6 0.590
4 PC6 0.574 PC7 0.588
5 PC7 · V ARtot 0.547 PC6 · V ARtot 0.529
6 PC5 · PC6 0.535 PC7 · V ARtot 0.518
7 V ARtot 0.519 PC3 · PC5 0.517
8 PC6 · V ARtot 0.515 PC1 · PC25 0.514

9 V ARtot
2 0.495 PC1

2
-0.506

10 PC1 · PC25 0.491 PC5 -0.472

2nd order combinations of features are allowed. To down-select from this large set

of 378 features, Pearson correlations are employed [82] to identify which features are

likely to contribute most to the prediction of the performance characteristics. The

top ten features for both µ and σ are provided in Table 2.1 along with their Pearson

correlations. Notice that certain features frequently arise in both lists; this is likely

due to the high degree of correlation between the performance characteristics (the

Pearson correlation between of µ and σ is 0.941).

The specific number of features included in the S-P linkage is determined through

an examination of the calibration and cross-validation errors (as briefly discussed in

Section 2.3.1). As a result, 61 and 50 features are selected for µ and σ, respectively.

The final FIP EVDs are reconstructed using Equation (2.21) and the performance

characteristics are predicted by the S-P linkage. The results of this study are presented

in Figure 2.7, where the true FIP EVDs (on the left) are compared to those predicted

by the MKS homogenization linkage (on the right) for the 12 original microstructures.

Clearly, the ranking of the FIP EVDs (and therefore resistance to HCF) is preserved

in the new approach with high accuracy, even for microstructure J (which was not

included in the set of calibration microstructures).
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(a) (b)

Figure 2.7: FIP EVDs extracted from (a) the original simulations, and (b) the novel
MKS protocols are plotted for microstructures A through L.

Furthermore, the computational savings of the MKS homogenization protocols

versus the traditional CPFEM approach are massive. Only 6 hours are required to

predict the FIP EVDs for the 12 microstructures using the novel MKS homogenization

framework. In contrast, the equivalent set of 6000 CPFEM simulations would require

18,000 hours of CPU time. This is more than a 3000 times reduction. This drastic

computational savings and the reduced-order representation of both microstructures

and their performance enables the rapid exploration of microstructures for improved

HCF resistance.

2.3.4 MKS Homogenization Protocols to Rank-Order the Transition Fa-

tigue Resistance of Polycrystalline Microstructures

Given the successes of the new MKS protocols in rank-ordering the HCF resistance

of polycrystalline materials (see Section 2.3.2 and Section 2.3.3), it is desirable to

demonstrate their robustness in a different fatigue regime. While plastic strains are

very small in HCF, in the transition fatigue regime they are similar in magnitude to

elastic strains [58, 83]. Furthermore, nearest neighbor interactions are expected to

be significant, made evident by phenomena such as the redistribution of cyclic stress
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and strain. Unfortunately, these characteristics are not compatible with the major

assumptions of the framework described in Section 2.3.2; namely that the plastic

strains are small and not subject to nearest neighbor interactions. In contrast, the

framework described in Section 2.3.3 requires no such assumptions. In this study,

that same framework is employed to construct FIP EVDs for the transition fatigue

regime without modification (except for certain model parameters).

In this study, cyclic CPFEM simulations are performed to obtain the stress and

plastic strain fields required to compute FIPs. These are used to construct the FIP

EVDs required for the calibration and validation of the S-P linkage. These simu-

lations are performed to 0.75% strain amplitude, or roughly 90-99% of the strain

to yielding. Three cycles of fully-reversed loading are applied using displacement-

controlled, periodic boundary-conditions for uniaxial stress in the x-direction. First,

CPFEM simulations were performed for 500 MVEs associated from microstructure

I. From these results, it was determined that 150 MVEs are required to approximate

an RVE based on the convergence of α, µ and σ. To enable the subset selection algo-

rithm described in Section 2.3.3, CPFEM simulations were performed for 300 MVEs

associated with each of the remaining microstructures.

The remaining protocols in the calibration and validation of the S-P linkage are

identical to those described in Section 2.3.3. The results of this study are presented in

Figure 2.8, with the CPFEM predicted FIP EVDs on the left and the FIP EVDs pre-

dicted by the MKS homogenization protocols on the right. This figure demonstrates

that the protocols reliably rank-order the FIP EVDs for all twelve microstructures

with only several slight exceptions (for example, the rank-ordering of microstructures

A and B is reversed at a high probability of exceedance). Furthermore, the predictive

capabilities of the linkage are similar to the previous linkage for HCF. This indicates

that the GSH spatial statistics and PCA are well suited to account for the local

cyclic plastic strain in both fatigue regimes, and for the significant stress and strain
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(a) (b)

Figure 2.8: FIP EVDs are plotted for each of the twelve microstructures extracted
using (a) the original simulations, and (b) the novel MKS protocols.

redistribution (and nearest neighbor interactions) exhibited in the transition fatigue

regime.

It is also worth taking this opportunity to compare these HCF performance rank-

ings with a previous experimental characterization. In a study by Peters et al. [70],

the fatigue strengths of three different Ti-6Al-4V microstructures were evaluated for

cyclic loading in the transverse and rolling directions (our x- and y-directions, respec-

tively). Notably, in that study, the microstructures employed had very similar grain

morphologies (homogeneous equiaxed with a small α-phase grain size of 1-2µm), yet

had distinct textures. These microstructures, labeled basal, basal-transverse, and

transverse most closely match the B, D and G labeled microstructures in this study,

respectively. After 107 cycles of fully reversed (R=-1) loading in the x-direction, the

basal, basal-transverse and transverse microstructures had fatigue strengths of 620

MPa, 690 MPa and 590 MPa, respectively. This is similar to the results achieved

in this work, where microstructures B and D perform comparably well while mi-

crostructure G performs worse than both. It is noted that these comparisons should

not be taken too seriously, as the microstructures employed in this transition fatigue

work only contain the α-phase and likely exhibit significantly higher levels of inelastic
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deformation.

The computational advantages of the MKS protocols are even more dramatic for

transition fatigue analyses than for HCF. This is due to the time-consuming nature

of CPFEM simulations in the transition fatigue regime. The MKS protocols provide

more than a 22,000 times speed-up in CPU time versus traditional methods (for new

microstructures in the same material system that are not significant extrapolations

beyond the calibration microstructures). The success of these protocols for both

HCF and transition fatigue demonstrate the wide applicability of the approach, and

encourage the exploration of similar protocols for other extreme-value phenomena.

2.3.5 Conclusions

In this work, a diverse suite of tools are developed to evaluate the properties and

performance of polycrystalline materials using MKS homogenization and localization

approaches. Each approach provides remarkable reductions in the expense of per-

forming computational property analysis. Furthermore, these protocols demonstrate

the versatility of the MKS framework for polycrystalline materials. Both elastic

and inelastic material performance is captured in addition to complex extreme-value

phenomena driven by the behavior of materials under cyclic loading. Furthermore,

reduced-order representations of microstructures and performance are extensively in-

vestigated to aid the rapid exploration of material structures for desired properties.

Throughout this dissertation work, it was necessary to employ simple synthetic mi-

crostructures and the results of crystal plasticity simulations to efficiently develop and

demonstrate the capabilities of the MKS framework. In future work, however, it would

be highly desirable to obtain a diverse set of experimentally obtained microstructures

and responses. This would enable the calibration of S-P linkages directly applica-

ble to the design and development of next-generation polycrystalline microstructures

with improved bulk properties and fatigue performance. Furthermore, future studies
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should employ this framework to construct linkages to characterize other extreme

value phenomena, including damage, fracture and void formation. Lastly, further

improvements to the linkages presented in this dissertation work could be achieved

through the implementation of more advanced machine learning algorithms for dimen-

sionality reduction, linkage selection and the quantification of uncertainty propagated

through the linkage.
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CHAPTER 3

MKS HOMOGENIZATION PROTOCOLS TO PREDICT

THE BULK PROPERTIES OF POLYCRYSTALLINE

MICROSTRUCTURES

This work was accepted by the journal Acta Materialia on March 6, 2017 and first

made available on March 8th, 2017 [76]. The title of the paper is Reduced-order

structure-property linkages for polycrystalline microstructures based on 2-point statis-

tics. The order of authorship is as follows: Noah H. Paulson, Matthew W. Priddy,

David L. McDowell and Surya R. Kalidindi.

3.1 Abstract

Computationally efficient structure-property (S-P) linkages (i.e., reduced order mod-

els) are a necessary key ingredient in accelerating the rate of development and de-

ployment of structural materials. This need represents a major challenge for poly-

crystalline materials, which exhibit rich heterogeneous microstructure at multiple

structure/length scales, and exhibit a wide range of properties. In this study, a novel

framework is described for extracting S-P linkages in polycrystalline microstructures

that are obtained using 2-point spatial correlations (also called 2-point statistics) to

quantify the material’s microstructure, and principal component analysis (PCA) to

represent this information in a reduced dimensional space. Additionally, it is demon-

strated that the use of generalized spherical harmonics (GSH) as a Fourier basis for
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functions defined on the orientation space leads to a compact and computationally ef-

ficient representation of the desired S-P linkages. In this study, these novel protocols

are developed and demonstrated for elastic stiffness and yield strength predictions

for α−Ti microstructures using a dataset produced through microscale finite element

simulations.

3.2 Introduction

Materials development and deployment efforts require evaluation of the properties

of large sets of potential material internal structures (generically referred to as mi-

crostructures; this description also includes information regarding chemical compo-

sition at the relevant length scales) [25, 52, 84–94]. Currently, experiments and

simulations are used for such analyses at a high cost, severely limiting the extent of

the materials design spaces explored [1, 95]. In addition, most of the current ap-

proaches (e.g., finite element models) employed in modeling and simulation are not

readily invertible, i.e., it isn’t easy to determine a candidate microstructure given a

set of desired properties. Reduced order models are critical to the acceleration of

materials discovery and development, as they enable high throughput exploration of

the materials design spaces for rapid down selection [19, 25, 87, 88, 96, 97]. In this

work, we specifically focus on reduced order structure-property (S-P) linkages for

polycrystalline microstructures that exhibit rich heterogeneity in the spatial distribu-

tion of the crystal lattice orientation at the mesoscale (also referred to as grain-scale).

These microstructures exhibit strongly anisotropic elastic and inelastic properties at

the macroscale [3, 11, 19, 23, 43, 52, 79, 98–105].

It is important to pursue the development of reduced order models within the

context of established physically-based theories. There is indeed a rich literature on

homogenization theories for polycrystalline microstructures that can be used to guide

the development of surrogate models. For elastic stiffness or compliance components,
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the foundational concepts can be traced back to the elementary bounds established by

Voigt [106], Reuss [107], and Hill [108], as well as the more sophisticated self-consistent

approaches of Kroner [10], which leverage Eshelby’s solution [9]. For inelastic prop-

erties, analogous foundations can be traced to the works of Taylor [109] and Sachs

[110]. Detailed discussion of these theories cast in a modern continuum mechanics

framework can be found in Nemat-Nasser and Mori [111], Milton [57], Mura [53], Qu

and Cherkaoui [112] and Roters [5].

The central limitation of the theories mentioned above is that they can only in-

corporate a very limited amount of information regarding the material microstruc-

ture. To date, microstructural information included in the application of established

composite theories to polycrystalline microstructures has largely been limited to the

orientation distribution (also called texture) in the sample, and in some cases, aver-

aged shape factors (based on idealizing the grains as ellipsoids) [11, 12]. The main

exception to these statements comes in the form of statistical continuum theories

formulated originally by Brown [31] for electrical properties of materials, and sub-

sequently introduced by Volkov and Klinskikh [113], Lomakin [114], and Beran and

Molyneux [115] for mechanical properties. These ideas have been further refined in

later years by Beran [32, 116], Kröner [33, 117, 118], Torquato [119–121], Adams [19,

35, 36], and others [55, 56, 122–124]. A unique feature of this formulation is that

the effective property is expressed as a series expansion, where each term represents

a contribution of a specific microstructural attribute expressed in the formalism of

n-point statistics [34–37]. In some cases, the pre-factor for each term in the series can

be evaluated using known Green’s functions [19, 56]. Most importantly, this approach

allows one to include as much detail of the material microstructure as one wishes in

arriving at the homogenized properties of interest.

The sophisticated higher-order homogenization theories mentioned above have

encountered some difficulties in their implementation. First, the Green’s functions
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required for the implementation of these theories are only available for a limited num-

ber of physical phenomena. Second, the convergence of the series is rather slow for

high contrast composites [40, 119]. Over the past decade, Kalidindi and coworkers

[13–19, 21–26, 74] have developed a novel data science approach that still utilizes the

basic mathematical formulation of the statistical continuum theories, and circumvents

the central impediments mentioned above by employing modern data science tools.

Mainly, it has been shown that the elusive pre-factors (related to Green’s functions)

in the series expansion can be calibrated to results from numerical simulations (e.g.,

performed using finite element models). This new framework for establishing S-P

linkages has been referred as materials knowledge systems (MKS), and has addressed

both homogenization (bottom-up) [15, 18, 22, 24], and localization (top-down) prob-

lems [13, 14, 16, 17, 21, 23, 26, 74]. It is clarified here that the term ”MKS frame-

work” in our prior work was used exclusively with the latter linkages. However, since

both the homogenization and localization linkages developed in this new data science

framework share the same foundations (they both come from the same statistical con-

tinuum theories discussed earlier), we will henceforth refer to both homogenization

and localization linkages established using this approach as MKS linkages.

In the MKS framework, the homogenization S-P linkages (reduced-order models)

[15, 18, 22, 24, 25] connect the microstructure descriptors (inputs) to the effective

macroscale properties (outputs). These linkages are typically expressed in the form

of a polynomial series. The input microstructure descriptors are generally based on

principal component analysis (PCA) [38] of the 2-point spatial correlations obtained

from all the microstructures in the ensemble studied. The outputs have frequently

included elastic stiffness or compliance components and the yield strength. Much of

the prior work has been limited to materials with multiple distinct phases [15, 18, 22,

24, 25].

The main goal of this work is to extend the MKS homogenization framework to
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polycrystalline microstructures, where the local material state in each voxel is char-

acterized by a crystal lattice orientation (defined by an ordered set of three Euler

angles). Prior attempts [39, 40] in this direction have binned the local state space

(i.e., the orientation space) and treated the material as a composite; each bin in the

orientation space corresponded to a distinct local state. However, this approach re-

quires a very large number of orientation bins in order to obtain a representation

of satisfactory fidelity. In this work, we will develop an extension to the existing

MKS framework for homogenization S-P linkages by using generalized spherical har-

monics (GSH) [41] for the functional components over the orientation space. We will

specifically demonstrate that this approach produces computationally efficient, highly

compact representations of reduced-order S-P linkages for polycrystalline microstruc-

tures. Note that GSH have already been used successfully in related problems [23,

36, 42–44], including certain MKS localization linkages [21, 23, 74]. The efficiency

and efficacy of the new approach developed and presented in this work is specifically

demonstrated through the predictions of the elastic stiffness and yield strengths in a

variety of α-titanium microstructures. It is emphasized that S-P linkages can only

attempt to match the physics of whatever process was used to produce the set of cal-

ibration data. Consequently, the linkages in this work are calibrated using the results

of CPFE simulations on synthetic microstructures, and the success of this approach

is evaluated by comparing against results of that same model.

3.3 Current Theoretical Framework

In order to construct S-P linkages, microstructural information must be presented in

a form that allows for a rigorous quantitative comparison. Unfortunately, images of

microstructure cannot fulfill this role in their raw representations. In other words,

a pixel by pixel comparison of two random microstructures, either from the same

sample or from different samples, will not reveal useful information. Traditionally,
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metrics such as grain size distributions and phase volume fractions have been used to

capture the salient microstructural information [7, 8]. However, these approaches do

not consider the complexities of the microstructure geometry with sufficient fidelity

for many properties of interest. In recent years, Kalidindi and co-workers have em-

ployed 2-point spatial correlations to evaluate microstructural distances [37], cluster

microstructures [15, 20], and to provide a basis for the construction of S-P linkages

[18, 22, 24]. This higher order statistical representation of microstructure precludes

the need to manually select microstructure features (and potentially introduce bias)

in the construction of S-P linkages; the 2-point spatial correlations already include

many of the conventionally defined metrics of the microstructure.

Following the framework developed by Adams et al. [19, 36, 52], the microstruc-

ture in hierarchical materials systems can be mathematically captured through the

function m(h,x), which reflects the probability density of finding local state h (within

an incremental ∆h around h) at the spatial location x. In this formalism, h and x

are both treated as continuous variables. However, in practice it is much more useful

to employ a discretized description of the microstructure function. Moreover, most

experimental characterization techniques recover only a discretized description of the

microstructure (as a consequence of the resolution limits of the equipment). Recog-

nizing this, Adams et al. [19, 36, 52] have proposed a discretized description of the

microstructure function Mn
s based on primitive binning of both the spatial domain

and the local state space, i.e.,

m(h,x)∆h ≈
N∑
n=1

S∑
s=1

Mn
s χn(h)χs(x) (3.1)

where the indicator function χi( ) is defined such that it is equal to one if and only

if the argument belongs to the bin labeled i and zero otherwise, and ∆h denotes the

size of the local state bin employed. An important consequence of this definition is
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that Mn
s has a very simple interpretation - it is essentially the volume fraction of local

states belonging to the bin n (in the local state space) present in the bin s (in the

spatial domain). It is important to recognize that both n and s are simply indices

that point to a specific local state and spatial bin (i.e., voxel), respectively.

Although Mn
s has a simple interpretation and provides a useful description of the

microstructure, it alone does not provide the salient information on the topological

features of the microstructure. For this, one has to compute the spatial correlations.

The most systematic approach to quantifying the spatial correlations in a given mi-

crostructure is through the use of the n-point spatial correlations framework [18, 34,

37, 55, 119, 125–127]. The most basic spatial correlations can be computed in the

form of 2-point statistics formally expressed as

f(h, h′|r) =
1

V ol(Ωr)

∫
Ωr

m(h,x)m(h′,x+ r)dx (3.2)

In Equation (3.2), f(h, h′|r) denotes the 2-point statistics reflecting the conditional

probability density associated with finding the local state h at the spatial location

x and the local state h′ at the spatial location x + r. As before, f(h, h′|r)[∆h]2

denotes the corresponding conditional probability. Note that the volume examined

in evaluating the integral (denoted Ωr) is expected to depend on the choice of r (this

is because of the need to know the local states at both spatial locations x and x+r).

For the same reasons that were mentioned earlier, a much more practical form of the

2-point spatial correlations is a discretized version expressed as

f(h, h′|r)[∆h]2 ≈
N∑
p=1

N∑
n=1

∑
t

F np
t χn(h)χp(h

′)χt(r) (3.3)

Once again, the discretized version F np
t has a simple physical interpretation - it cap-

tures the conditional probability of finding ordered local states belonging to bins n

and p (in the local state space) in spatial bins whose centers are separated by the set
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of vectors indexed by t. Further details and a rigorous treatment of this framework

can be found in Ref. [36]. The discretized forms of the microstructure function and

the 2-point spatial correlations are indeed related by the following simple relation:

F np
t =

1

|St|

St∑
s=1

Mn
sM

p
s+t (3.4)

Specific attention needs to be afforded to several details of Equation (3.4) before one

endeavors to implement it in a computational algorithm: (i) the mapping of the vector

r to the index t needs to follow specific protocols such as those outlined in Ref. [36],

(ii) the earlier discussion regarding Ωr translates to St to identify the set of valid

trials involved in evaluating F np
t , which depends on the vector index t [54], (iii) it

is often convenient to employ multidimensional index arrays for s and t to naturally

index the spatial bins in 2-D and 3-D microstructures [25], and (iv) |St| denotes the

total number of spatial bins involved when s is used as a multidimensional array

index.

For a complete representation of f(h, h′|r) from equation (3.3), F np
t must be cal-

culated for all t, n and p. Depending on the size of the microstructure and choice of

basis functions, this set can be large and unwieldy. For example, F np
t contains close

to one-million features for a 3-dimensional microstructural sample with 21 elements

per edge and 10 local state bins. At this stage, data-science techniques can be applied

to reduce the dimensionality of the problem. One approach is to use principal com-

ponent analysis (PCA), which is a distance-preserving linear transformation. PCA

finds orthogonal and linear combinations of the original features such that they are

ordered from highest to lowest contributors to the variance in the dataset [38]. Let

j = 1, 2, ..., J index the individual elements (i.e., microstructure exemplars) in the

dataset being studied. Let {F (j)
t |t = 1, 2, .., R} denote a vectorized set of all spatial

statistics of interest for a single microstructure exemplar. As an example, this set
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might include all of the 2-point statistics computed from Equation (3.4) for all com-

binations of (t, n, p). This set can also include higher-order spatial statistics (e.g.,

3-point statistics), if deemed essential for the specific study. R denotes the total

number of features (i.e., microstructure measures) included in the analysis. With this

notation, PCA allows an orthogonal decomposition of F
(j)
t as

F
(j)
t =

min((J−1),(R))∑
i=1

α
(j)
i ϕit + F t (3.5)

where ϕit are the PC basis vectors, α
(j)
i are the transformed coordinates of the exem-

plar in the space spanned by the PC basis vectors, and F t is ensemble average of F
(j)
t .

Note that the maximum number of principal components is limited by the smaller

value of R and (J − 1). However, in most practical applications, only a handful of

α
(j)
i (called PC scores) are employed in the reduced-order representation of the orig-

inal dataset. This representation may be written as {α(j)
i |i = 1, 2, ..., R̃}, where the

truncation level R̃ is objectively decided based on the variance explained from the

original dataset. The low-dimensional PC scores of the microstructures have been

successfully utilized in building searchable microstructure databases [20] as well as in

the construction of robust and reliable reduced-order S-P linkages [22, 24].

The introduction of PC representations of the n-point statistics in the series ex-

pressions developed in statistical continuum theories for effective properties produces

a surprisingly simple expression [24, 25], i.e.,

Peff ≈ A0 +
R̃∑
i=1

Aiαi (3.6)

where Ai capture the underlying physics of the problem, Peff is the effective property

of interest, and R̃ is the truncation level selected for the PC representations. Indeed,

Equation (3.6) expresses a linear relationship between Peff and the scores of a chosen
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set of PC basis vectors (which themselves are extremely rich sets of microstructural

features). Although the above equation is easily derived for elastic response of com-

posite material systems, it can be extended to nonlinear effective properties with

suitable modifications [15, 22, 24, 25, 55–57]. In the MKS framework, the Ai co-

efficients are established through regression using datasets generated by numerical

simulation tools (e.g., finite element models) on selected microstructure exemplars.

3.4 Extensions to the Theoretical Framework

Local states for the general class of polycrystalline metals may include descriptors such

as crystal symmetry, dislocation density, and chemical composition (among others).

However, for single-phase annealed polycrystals, the main local state of interest at the

grain-scale is the crystal lattice orientation, g. The corresponding local state space

is simply the orientation space. Based on the concepts discussed thus far, a simple

approach to address polycrystalline microstructures is to bin the fundamental zone

of orientation space [36]. As a specific example, the fundamental zone of orientation

space for hexagonal crystals is expressed as

FZh = {g = (φ1,Φ, φ2) | 0 ≤ φ1 < 2π, 0 ≤ Φ ≤ π/2, 0 ≤ φ2 ≤ π/3} (3.7)

The main impediment to primitive binning of the orientation space (as implied

in Equation (3.1)) comes essentially from the fact that a very large number of bins

are needed to capture the orientation information accurately in the microstructure

function and the 2-point spatial correlations. As an example, if one were to use one

degree bins for each of the three Bunge-Euler angles involved in the definition of the

orientations (cf. Equation(3.7)), one would end up with 1,944,000 local state bins.

This large number of bins makes the computation, storage, and utilization of the

2-point spatial correlations highly unwieldy.
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As an alternative, we explore here the utilization of generalized spherical harmon-

ics [41, 52, 128, 129] as an efficient Fourier basis for the computation of the 2-point

spatial correlations in polycrystalline microstructures. In this approach, we retain the

primitive binning for the spatial variables and only change the basis for the orienta-

tion variables. With these changes, the microstructure function can now be expressed

as

m(g,x)dg ≈
∑
l,m,ν

S∑
s=1

Mmν
ls Tmνl (g)χs(x)dg

Mmν
ls =

2l + 1

|∆x|

∫
FZh

∫
Ωx

m(g,x)Tmν∗l (g)χs(x)dxdg

(3.8)

where Tmνl (g) denote symmetrized GSH functions (in the present work, the symmetry

of interest is the hexagonal-triclinic symmetry, where the first symmetry refers to

crystal symmetry and the second one to the sample symmetry), * denotes a complex

conjugate, |∆x| is the uniform size (volume) of a spatial bin, and Mmν
ls are the

GSH Fourier coefficients. As a special case, when there is a single crystal of lattice

orientation g0 in a spatial bin s, the corresponding GSH Fourier coefficients are simply

given by

Mmν
ls = (2l + 1)Tmν∗l (g0) (3.9)

For simplicity of notation, we will map every distinct combination of (l,m, ν) to

a single index L in all of the ensuing equations. As a result of this simplification,

Mmν
ls will be henceforth denoted simply as ML

s . Extending the concept above, the

description of the 2-point spatial correlations of orientations in the polycrystalline

microstructure is expressed as

f(g, g′|r)dgdg′ ≈
∑
K

∑
L

∑
t

FLK
t TL(g)TK(g′)χt(r)dgdg′ (3.10)

However, if one were to start with the formal definition of the 2-point spatial corre-
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lation (Equation (3.2)) and substitute the GSH representations of the microstructure

function from Equation (3.8), we can derive the following relationship between the

GSH Fourier coefficients in Eqs. (3.8) and (3.10):

FLK
t =

1

|St|

St∑
s=1

ML
s M

K
s+t (3.11)

The implicit convolution in Equation (3.11) (same as in Equation (3.4)) allows the

exploitation of the FFT algorithms in computing the 2-point spatial correlations [20,

37, 125, 126].

As mentioned earlier, the set of 2-point statistics computed using Equation (3.11)

will be large and unwieldy. As before, we will seek a lower dimensional representation

of this set using PCA. In this case, however, the Fourier coefficients computed using

Equation (3.11) are complex. One can either perform the PCA directly on these com-

plex representations, or reshape them into separate real and imaginary components

prior to performing the PCA. Both of these approaches would be completely equiva-

lent, especially given that half of the FLK
t coefficients are complex conjugates of the

other half in our application. In order to construct the S-P linkage, we would continue

to use the model form shown earlier in Equation (3.6) and calibrate the physically-

based coefficients Ai with numerical simulation results obtained from finite element

models for a selected number of microstructure exemplars.

3.5 Case Study

The purpose of this case study is to demonstrate the viability and potential of the

data-driven protocols developed in the previous sections for the creation of S-P link-

ages. In these approaches, the physics capturing coefficients of Equation (3.6) will

be determined through the following steps: (i) An ensemble of microstructure exem-

plars will be generated which exhibit a rich and diverse set of topological features
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(these might include grain size, shape, and orientation distributions) covering a range

of microstructures of interest for the intended application of the S-P linkages being

produced. (ii) Crystal plasticity finite element (CPFE) simulations are performed on

each microstructure exemplar in the ensemble to extract the effective (bulk) proper-

ties of interest. (iii) Each microstructure exemplar is quantified using 2-point spatial

statistics with GSH basis functions. (iv) PCA is performed on the 2-pt statistics

representations of the microstructure exemplars in the ensemble to produce a low-

dimensional representation of each exemplar microstructure in the form of their PC

scores. (v) Multivariate linear regression is performed on the assembled dataset (from

steps (i)-(iv)) to calibrate the physics capturing coefficients of Equation (3.6). This

calibrated model may then be validated by comparing the CPFE computed properties

for new microstructure exemplars against the predictions of the reduced-order model.

Each of the steps described above will be detailed in the following sections.

3.5.1 Generation of Microstructure Ensemble

In this work synthetic microstructure volume elements (MVEs) are generated both

for establishing the S-P linkages of interest and for validating them. The MVEs

must be sufficiently large to capture the rich microscale interactions between grains

of different sizes, shapes, and orientations. In prior work, it was shown that these

microscale interactions are most efficiently captured through influence kernels [13, 14,

16, 17, 21, 23, 26, 74]. More specifically, the decay in these Green’s function-based

influence kernels provides guidance for the minimum size of the MVEs. It is generally

noted that the size of the MVEs should be larger for material systems with higher

contrast in the local properties of the microscale constituents. Based on our prior

experience [21, 23, 74], we employ MVEs of size 21x21x21 voxels in this work, where

each voxel has a side length of 10µm.

The MVEs used in this work are generated using the open-source DREAM.3D

46



Figure 3.1: Sample MVEs (displayed using Grain ID maps) and (0002) pole figures
for the generated microstructures classes A through G.

package [46], which accepts as inputs microstructure measures such as grain size,

grain shape, orientation and misorientation distributions. In this first study on poly-

crystalline microstructures, we will focus our attention on the distribution of grain

orientations (this is the main reason for using the GSH representations described ear-

lier). Consequently, we restrict our attention to MVEs with different textures, but

exhibiting a common grain size distribution. In part, this choice is also made due

to lack of a significant collection of experimental characterizations of polycrystalline

titanium materials accessible to us. In future work, it would be desirable to expand

the range of the generated MVEs using more sophisticated approaches [130].

The targeted grain size distribution for the synthetically generated MVEs follows

a log-normal distribution with an average grain size of 30µm and a 15µm standard

deviation. Each MVE is comprised of an average of 215 distinct grains. Seven unique

textures are selected as targets for the synthetic microstructure generation. These

textures are inspired by those seen in our prior work as well as in literature [131, 132].

The target textures are entered into DREAM.3D as lists of orientations expressed as
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triplets of Euler angles with associated weights and spreads. DREAM.3D is then uti-

lized to randomly generate thirty polycrystalline MVEs for each microstructure class

through an ellipsoidal packing algorithm. Then, DREAM.3D matches the target tex-

ture information for each microstructure class. Figure 3.1 shows example MVEs and

(0002) pole figures for each microstructure class (corresponding to each selected tex-

ture). This figure only enables a qualitative comparison of microstructures. However,

in later sections, the 2-pt spatial correlations and PCA will be used to quantify and

visualize the differences between these microstructures.

3.5.2 CPFE Simulations

In this work, CPFE simulations are used to extract the homogenized properties for

each MVE. The combination of each MVE and its associated properties constitutes

one data point for the desired S-P linkages. The crystal plasticity framework used here

was developed in prior work for α-phase grains in Ti6-4 [6, 47–51, 74, 75]. The model

parameters relevant to the predictions of the effective (bulk) elastic stiffness and yield

strength are summarized in Table 3.1. These include the five independent components

of the transversely isotropic elastic stiffness tensor and the critical resolved shear

strengths (CRSS) of relevant slip families. These elastic and inelastic parameters

were obtained in prior work through fitting to experimental results on Ti6-4 [6, 49,

133]. As mentioned in the introduction, the S-P linkages resulting from this work

learn the physics of the model used to generate the calibration data. So long as

the results of the S-P linkage and CPFE simulations match, the goals of this work

are achieved. Therefore, beyond the calibration of the crystal plasticity model, no

further attempt is made to experimentally validate the simulated properties; these

homogenized properties are taken as ground truth in the remainder of this work.

Periodic boundary conditions are applied to all surfaces of the three-dimensional

MVEs to simulate the loading conditions needed to extract the effective properties
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Table 3.1: Model parameters used in CPFE simulations.

Parameter Value Parameter Value
c11 172.8 GPa τ basalCRSS 350 MPa

c12 97.91 GPa τ prismCRSS 275 MPa

c13 73.43 GPa τ
pyr〈a〉
CRSS 470 MPa

c33 192.3 GPa τ
pyr〈a+c〉
CRSS 570 MPa

c44 49.70 GPa

of interest for this study [134]. Displacement-controlled loading is imposed on the

X-faces of the cuboidal MVEs, with zero net traction lateral faces to mimic the uni-

axial stress state commonly observed in uniaxial tensile tests [48]. The loading is

performed to 1.5% strain, a sufficient level to capture the elastic-plastic transition at

the macroscale. The ABAQUS [77] mesh used in this work contains 9,261 C3D8R

elements (one per voxel in each MVE); these element types have been used in previous

work [6, 66, 68] with good agreement as compared to C3D8 elements for the determi-

nation of bulk properties. The simulations produce engineering stress-strain curves;

the elastic stiffness of each digital microstructure is measured from the initial elastic

portion of the engineering stress-strain curve and the yield strength is determined

using a 0.2% offset with the calculated elastic stiffness.

3.5.3 Computation of 2-point Spatial Correlations

Equation (3.10) allows for the computationally efficient calculation of the 2-point

spatial correlations in polycrystalline microstructures through the use of GSH repre-

sentations for the functional dependencies on the orientation space. This is mainly

because the number of GSH coefficients (determined by the truncation level used on

L) required is expected to be far smaller than the number of discrete orientation bins

needed to attain comparable accuracy in the desired S-P linkages. In prior work (cf.

[21, 23]), this economy in the representation of S-P linkages was largely attributed to

the fact that the physics-capturing kernels and coefficients (based on Green’s func-
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tions) operating on the microstructure descriptors (e.g., n-point spatial correlations)

could be captured in a small number of terms in GSH-based expansions. We an-

ticipate similar economy in the present application. For example, it can be shown

theoretically that only l = (0, 2, 4) terms in the GSH expansions should appear in ho-

mogenization linkages for effective elastic properties [19, 52, 78, 79]. However, we do

not know a priori the acceptable truncation level on L for capturing the S-P linkages

for the effective inelastic properties. Therefore, we treat the truncation level in the

GSH coefficients as a hyper-parameter in the establishment of the S-P linkages (we

will return to this parameter subsequently). It should be noted that the truncation

on L should be carried out such a way that the complete set of terms corresponding

to any selected value of l are included as a group. In other words, if one truncates at

l = 4, then it is important to include all GSH terms corresponding to all combinations

of µ and ν for l ≤ 4 [19, 25]. For the hexagonal-triclinic GSH basis employed in this

work, adoption of this consideration results in acceptable truncation levels of L at

values of 6, 15, 41, and 90 (these correspond to l values truncated at 2, 4, 6 and 8,

respectively).

Once a truncation level has been selected for L, the Fourier coefficients of the 2-

point statistics may be computed using Equation (3.11). Let us denote this truncation

value as L̃. In employing Equation (3.11) one can take advantage of a few strategies

known to dramatically reduce the computational cost involved. First, the number of

2-point spatial correlations is L̃2 (this includes all possible pairings of indices L and K

in Equation (3.11)). In prior work on the multiphase microstructures [126], analytic

relationships were derived between the spatial correlations. Appendix A presents

these interrelationships for the 2-point statistics computed here on polycrystalline

microstructures, where it is shown that the number of independent correlations is 2L̃−

1. It is important to recognize that these dependencies are not all linear. Furthermore,

since PCA automatically removes the linearly dependent correlations, we do not need
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to worry about the linearly dependent correlations. By repeated trials, the optimal

set of spatial correlations to represent each MVE was selected (further details are

provided in Appendix A). It was determined through these trials that the specific

set of 2L̃ − 1 correlations identified in Appendix A produces the best compromise

between accuracy and computational cost for the S-P linkages produced in this work.

3.5.4 Reduced Dimensional Microstructure Representation

Once spatial statistics are computed for all MVEs in the selected ensemble, PCA

is performed to obtain reduced dimensional representations of the microstructure

statistics. In this study, there are far more features (coefficients in the Fourier rep-

resentation of the spatial statistics) than samples (MVEs). Therefore, the maximum

number of PC scores that can be computed is 209 (one less than the number of MVEs

used to build the PC space; see Equation (3.5)) [15]. However, a much smaller number

of PCs are required to satisfactorily represent the spatial statistics for this case study.

Figure 3.2 shows the cumulative variance captured by the inclusion of additional PCs.

As R̃ increases, the cumulative explained variance (representing the 2-point statistics

information) asymptotically approaches 100%. In addition, as the number of GSH

basis functions used in the Fourier representation of the 2-point statistics increases

(improving the fidelity of the microstructure representation), so does the R̃ required

to achieve a given explained variance.

PCA also serves as an effective method to cluster MVEs and to evaluate the dis-

tances between them [15, 18, 20, 22, 24]. It is important to note that PCA results

in unsupervised classification as the MVEs are not identified or labeled in any man-

ner. Figure 3.3a demonstrates this natural clustering of the MVEs in the first two

PC dimensions (the dimensions with the largest and the second-largest variances) for

GSH spatial statistics at a truncation level of L̃ = 15. Remarkably, even in just two

dimensions, the MVEs distinctively cluster by their associated microstructure class
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Figure 3.2: Percentage PCA explained structural variance versus R̃ and L̃

(here differentiated exclusively by target texture). In other words, even though the

PCA is not informed explicitly about the textures in the MVEs, the first two PC

scores effectively cluster the MVEs based on their differences in texture (note that

the texture information is included in the 2-point statistics). Furthermore, it is seen

that the intraclass variance in each cluster is not the same. For example, the MVEs

belonging to class A exhibit more differences among themselves compared to the

MVEs of class G in the first two PCs. This is, of course, a consequence of how each

MVE is randomly generated for target microstructure statistics in the DREAM.3D

software. Comparing Figure 3.1 and Figure 3.3a, it is also seen that microstructures

with similar textures are nearby in the PC space, while microstructures with dramat-

ically different textures are well separated. Notice that microstructure classes with

strong basal texture components are located towards the left of Figure 3.3a, while

microstructure classes with strong transverse texture components are located towards

the right of this figure. Although such observations provide intuition into the mean-

ings of the different PCs, it should be noted that the complete information captured

by each PC is actually stored in the vectors, ϕit, obtained in PCA (see Equation

(3.5)). Given the large size of these vectors (for a truncation level of L̃ = 15 each PC
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(a) (b)

Figure 3.3: Visualizations of microstructures enabled by PCA (for L̃ = 15). (a)
Clustering of MVEs by microstructure type in the first two PCs (b) Dendrogram
showing the distances between microstructures and clusters of microstructures in PC
space

has a length of 268,569 in the present study), it is not straightforward to establish

their precise physical meaning.

Figure 3.3b shows the relative distances between the centers of the microstructure

clusters in PC space, presented by way of a dendrogram. The advantage of this rep-

resentation is that the displayed distances are computed over all available dimensions

(in the present work this is 209). From the dendrogram, it can be seen that the first

two PC dimensions adequately capture the relative distances between the microstruc-

ture classes. This is indeed the power of PC representations; they provide high value

low dimensional representations of practical worth in quantifying the microstructure

statistics. As such, this is an important component in the effort to extract robust

and reliable S-P linkages.

3.5.5 Extraction of Structure-Property Linkages

The low dimensional representation of each MVE and its associated properties es-

tablished using the CPFE model described earlier constitute the calibration dataset
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for extracting the desired S-P linkages. More specifically, we intend to calibrate

the physics-capturing coefficients of Equation (3.6) using a simple multivariate linear

regression. Prior to calibration, two critical hyper-parameters, L̃ and R̃ must be se-

lected. These hyper-parameters cannot be arbitrarily chosen; they must be selected

individually for each property of interest by systematically exploring a large number

of potential values (for both parameters) and evaluating their efficacy in producing

the most reliable S-P linkages.

In order to accomplish this step, it is necessary to select the metrics by which we

objectively evaluate each potential S-P linkage produced in this work. One obvious

metric, called the calibration error, is simply defined as the mean of the absolute error

between the MKS predicted and the CPFEM simulated values of the property for all

MVEs, normalized by the mean value of the simulated property. Figure 3.4 shows

the calibration error for R̃ up to 60 and four different L̃ levels for elastic stiffness

(Figure 3.4a) and yield strength (Figure 3.4b). It is clear from these plots that the

gains in accuracy quickly diminish with increasing values of both R̃ and L̃. This

observation attests to the power of the PC and GSH representations employed in this

work. Note also that the average error values are remarkably low - only about 0.2%

for the elastic stiffness prediction and about 1.5% for the yield strength prediction.

The fact that the prediction error for the yield strength is higher than that for the

elastic stiffness is quite reasonable and expected. Indeed, prior work has shown that

the elastic response of polycrystalline microstructures can be represented accurately

by a limited set of GSH basis functions [21, 43]. In the present work, we observe

no significant improvement in the accuracy of the elastic S-P linkage beyond L̃ = 15

(corresponding to l ≤ 4). For the predictions of the yield strength, higher values

of L̃ did provide a modest improvement in the accuracy. These observations of the

efficacy of the GSH representations are highly consistent with prior related work [21,

41, 43]. Considering the effect of the value of R̃, the most dramatic decrease in error

54



(a) (b)

(c) (d)

Figure 3.4: Error in the property prediction versus number of PCs included in the S-P
linkage for different selections of the number of GSH basis functions. (a) Error in the
prediction of elastic stiffness for MVEs in calibration set. (b) Error in prediction of
yield strength for MVEs in calibration set. (c) LOOCV error in prediction of elastic
stiffness for MVEs in calibration set. (d) LOOCV error in prediction of yield strength
for MVEs in calibration set.

occurs within the inclusion of the first 10 PCs. This is consistent with the observation

in Figure 3.2 that the explained structural variance quickly approaches 100% with

increasing numbers of PCs.

Figures 3.4a and 3.4b illustrate the potential for overfitting the S-P linkages. The

calibration error is usually not a good indicator for overfitting as it always decreases

for increasing values of hyper-parameters such as R̃. In prior work, the Leave-One-Out

Cross Validation (LOOCV) error metric was employed as an indicator of overfitting

[22, 24]. In this approach, the S-P linkage is calibrated using the data for all MVEs

in the ensemble except for one, and the error in the prediction of the property for the

excluded MVE is recorded. The entire procedure is repeated for each MVE in the
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ensemble. The LOOCV error is computed as the mean of the prediction errors for each

excluded MVE in the ensemble and normalized the same way as the calibration error.

The normalized LOOCV error is plotted for elastic stiffness and yield strength linkages

in Figure 3.4c and Figure 3.4d, respectively. For both properties, the LOOCV error

drops quickly for small values of R̃. The LOOCV error, however, begins to increase

at higher values of R̃ indicating overfitting. It is also observed that the minimum

LOOCV error occurs at a higher value of R̃ for the higher GSH truncation levels.

This is once again consistent with the observation in Figure 3.2 that a higher R̃ is

required to achieve the same explained variance for at higher values of L̃.

The optimal selection of L̃ and R̃ depends on the desired characteristics of the S-P

linkages to be produced. If the minimization of error is paramount, the linkage with

the lowest LOOCV error should be chosen. Such a linkage is expected to perform the

best for new MVEs. However, if compactness is desired, then the linkage which has the

minimum L̃ and R̃ yet has a LOOCV error below some acceptable threshold should

be selected. In this study, reduced-order (low-dimensional) linkages are prioritized to

demonstrate their applicability for inverse materials design problems. Through the

consideration of Figure 3.4c a linkage for elastic stiffness is selected with 3 PCs and

15 GSH basis functions. From Figure 3.4d a linkage for yield strength is selected

with 6 PCs and 41 GSH basis functions. This means that the S-P linkages produced

in this study for elastic stiffness and yield strength only have 4 and 7 coefficients,

respectively, in Equation 3.6.

3.5.6 Validation of Structure-Property Linkages

In the previous sections, a novel data science framework is developed and implemented

for the extraction of highly accurate and robust S-P linkages (note the very low error

values in Figure 3.4). We now seek to further validate these linkages using completely

new MVEs (those that have not been used in the calibration). For this purpose, a
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(a)
(b)

Figure 3.5: (a) Sample MVEs (with Grain ID displayed) and (0002) pole figures for
microstructure classes H through L. (b) The ensemble of validation MVEs in PC1
and PC2 (for L̃ = 15). MVEs from previously existing microstructure classes are
colored gray.

new set of MVEs are generated and their properties are simulated using the same

protocols described earlier in this paper. However, in an effort to make these MVEs

different from the calibration MVEs, five additional target textures are employed.

Example MVEs and (0002) pole figures for each of the new microstructure classes

are presented in Figure 3.5a. Microstructure class H is inspired from literature [132],

while classes I through L are created using different combinations of texture compo-

nents present in classes A through H. The new microstructure classes are intended to

be interpolations between existing classes. The S-P linkages may give good results for

small extrapolations beyond the bounds of the calibration MVE ensemble, but cannot

be expected to predict the properties of completely new microstructures. As before,

thirty MVEs are generated for each of the five new microstructure classes. Further-

more, thirty additional MVEs are generated for each of the existing microstructure

classes. CPFEM simulations are performed for all MVEs in the validation ensemble

to extract their yield strength and elastic stiffness.

For each MVE in the validation ensemble, the 2-point spatial correlations are
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(a) (b)

Figure 3.6: Predicted versus simulated response for (a) elastic stiffness with 3 PCs
and (b) yield strength with 6 PCs. Grey markers are for validation MVEs generated
with target microstructure statistics from the original seven microstructure classes.

computed up to the GSH truncation levels selected for each property in Section 3.5.5.

The spatial statistics for each new MVE are then transformed into the reduced di-

mensionality PC space already established in Section 3.3. This validation ensemble is

displayed in Figure 3.5b in the PC1-PC2 space. For better visualization, the MVEs

from microstructure classes H through L are highlighted in color in this figure, while

MVEs from the original microstructure classes are shown in gray. The properties

of each MVE in the validation ensemble are then predicted using the calibrated S-

P linkages obtained in Section 3.5.5. Figure 3.6 presents parity plots for each S-P

linkage, where the predicted property is plotted versus the simulated property (via

CPFE simulations) for each MVE in the validation ensemble. The maximum pre-

diction errors for elastic stiffness and yield strength in the calibration and validation

ensembles are highly consistent with each other, and are below 1% and 5%, respec-

tively. The success of both linkages in accurately predicting properties for these new

microstructure classes demonstrates the robustness of the S-P linkage produced in

this work.
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3.6 Conclusions

In this work, novel data science protocols for the construction of reduced-order

structure-property linkages in polycrystalline materials were developed and validated

for the low crystal symmetry α-titanium materials system. This is the first use of

GSH basis functions in the MKS framework for the computation of spatial statistics

and for the construction of homogenization linkages. Protocols to predict both elastic

stiffness and yield strength were developed, each in the form of polynomial equations

with a small number of coefficients; it was demonstrated that only four and seven

coefficients were required to predict elastic stiffness and yield strength respectively.

These linkages provided massive computational savings versus traditional protocols.

CPFE simulations for the prediction of yield strength in a single MVE took two hours

on four processors on a super-computing cluster, while the reduced-order S-P linkage

required only three seconds with one processor. This represents nearly four orders of

magnitude reduction in processing time. The simplicity and efficiency of these robust

structure-property linkages are well suited for inverse design protocols and will be

instrumental in future materials design efforts.
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3.7 Appendix

In previous work, Niezgoda et al. [126] identified redundancies in the full set of 2-

point spatial statistics. Knowledge of these redundancies is crucial for identifying

an efficient yet comprehensive set of spatial statistics for the representation of mi-

crostructure. Specifically, it was shown that the discrete Fourier transforms (DFTs)

of the 2-point statistics, F̃ np
j = F(F np

t ), exhibit the following interrelationships:

F̃ np
j F̃ pq

j = F̃ pp
j F̃ nq

j , F̃ np
j = F̃ pn∗

j , F̃ nq
j =

F̃ pn∗
j F̃ pq

j

F̃ pp
j

(3.12)

where ∗ denotes the complex conjugate. It is convenient to visualize F̃ np
j in the array[

F̃ np
j

]
N×N

, where N is the number of discrete local states (in conventional binning

of the local state space using indicator functions). Equation (3.12) implies that if

F̃ np
j is known for a row or column of the correlation array, then the remainder of the

array may be calculated. Furthermore, due to the properties of the indicator basis in

the representation of the local state, only N − 1 of the correlations in a given row or

column are independent. Therefore there are only N − 1 independent correlations in

the set of the 2 point spatial correlations for an N-phase microstructure.

When the GSH basis is selected to describe the functional dependence of the grain

orientation in the microstructure function, FKL
t (see Equation (3.11)) does not have a

simple interpretation as a probability. As a result, the conclusions of Equation (3.12)

need to be suitably modified. Recognizing that T1(g) = 1 it can be shown that

F̃Q1
j=0 = F̃ 1Q

j=0 = CQ, F̃ 11
j=0 = |S|, F̃Q1

j 6=0 = F̃ 1Q
j 6=0 = 0 (3.13)

where CQ are related to the 1-point statistics of the microstructure for single-phase

polycrystals and contain the same information as the ODF. At this point it is useful

60



to introduce two different arrays of GSH-based 2-pt correlations:

A =
[
F̃LK
j

]
L̃×L̃

, B =
[
F̃LK
j

]
L̃−1×L̃−1

with L = 1 and K = 1 excluded (3.14)

Equations (3.12) and (3.13) imply that the independent set of correlations consists of

the first row or column of A in addition to any row or column of B (for 2L̃− 1 total

correlations).

To select the optimal set of correlations for this study, the errors associated with

the S-P linkages calibrated using different sets of correlations are compared. These

test linkages are developed for both elastic stiffness and yield strength at a GSH

truncation level of L̃ = 6. The following list describes a selection of correlation sets

and the quality of the resultant linkages.

1. All correlations in A (L̃2 correlations): This results in the lowest error of all

sets.

2. The lower triangular correlations of A (1
2
(L̃2 + L̃) correlations): The error re-

sponse is similar to set 1.

3. The first columns of A and B and the diagonal elements of B (3(L̃− 1) corre-

lations): This results in an error slightly higher than sets 1 and 2.

4. The first column and diagonal elements of A (2L̃− 1 correlations): This results

in an error response similar to set 3.

5. The first columns of A and B (2L̃ − 1 correlations): This results in an error

response worse than sets 1 and 2 but slightly better than 3 and 4.

6. The first column of A (L̃ correlations): This results in higher errors than in the

preceding sets. Furthermore, error does not decrease beyond the inclusion of

the first several PCs. This indicates that the ODF information is important,

but not sufficient for high-quality predictive capability.
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7. The first column of B (L̃−1 correlations): This results in extremely high errors

(the linkages had no predictive utility). It is hypothesized that the correlations

in B do not contain any information from the ODF, which is of first-order

importance.

As a result of this investigation the first columns of A and B are selected as a good

compromise between computational efficiency and S-P linkage quality.
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CHAPTER 4

MKS LOCALIZATION PROTOCOLS TO RANK-ORDER

THE HIGH CYCLE FATIGUE RESISTANCE OF

POLYCRYSTALLINE MICROSTRUCTURES

This work was being prepared for submission to a peer-reviewed journal as of April

20, 2017. The title of the paper is Strategies for rapid parametric assessment of

microstructure-sensitive fatigue for HCP polycrystals. The order of authorship is as

follows: Matthew W. Priddy, Noah H. Paulson, Surya R. Kalidindi and David L.

McDowell.

4.1 Abstract

Traditionally, crystal plasticity finite element method (CPFEM) simulations have

been used to capture the variability in the microstructure-scale response of poly-

crystalline metals. However, these types of simulations are computationally expen-

sive and require significant resources. To explore the large space of microstructures

(reflecting a variety of grain shape, size, and orientation distributions) within the

practical constraints of computational resources, a more efficient strategy is required.

The purpose of this work is to explore the viability of leveraging the recently estab-

lished, high-throughput Materials Knowledge System (MKS) for fast evaluation of

high cycle fatigue (HCF) performance of candidate microstructures. More specifi-

cally, we explore the feasibility of estimating the mesoscale strain fields in hexagonal
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close packed (HCP) α-titanium polycrystals during HCF loading conditions using

the computationally low-cost MKS approach, and subsequently estimating the slip

system activities via decoupled numerical integration of the relevant crystal plasticity

(CP) constitutive relations. The computed slip activities are then used to arrive at

extreme value distributions (EVDs) of fatigue indicator parameters (FIPs). As crit-

ical validation of this reduced-cost computational strategy, it is shown that the FIP

distributions in the HCF regime estimated using this novel strategy are in reasonable

agreement with those computed directly using the conventional CPFEM approach.

Additionally, the computational advantages of the MKS and decoupled numerical

integration approach over the traditional, computationally-expensive, CPFEM ap-

proach are presented and discussed.

4.2 Introduction

Titanium and its alloys have attractive strength-to-weight ratios and corrosion resis-

tance, both of which are vital for the aerospace, automotive, and biomedical indus-

tries. The α-phase of titanium has a hexagonal close packed (HCP) crystal structure

while the β-phase has a body centered cubic (BCC) crystal structure. In general,

titanium alloys can be categorized as α or near α, α + β, or β alloys [135]. Tita-

nium alloys exhibit an enormous diversity of microstructure arrangements resulting

from the combined effect of composition and thermo-mechanical processing routes

[136]. Furthermore, these microstructures are characterized by elastic and inelastic

anisotropy at multiple length-scales [21, 73, 78, 101]. This variation in microstructure

and resultant mechanical properties can lead to competing objectives in the material

selection or optimization process.

Fatigue resistance is an important performance characteristic for titanium alloys

because of their applications of use. Experimental evaluation of the fatigue resistance

of materials is costly and labor intensive. In addition, the information extracted is
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often limited to simple metrics such as the number of cycles to failure. Unfortu-

nately, it can be difficult to relate this data to microstructure variables (e.g., grain

size distribution and crystallographic texture) because this requires parametric arrays

of experiments and material characterization. Computational frameworks such as the

crystal plasticity finite element method (CPFEM) have been used recently for relating

microstructure features to macroscopic material properties [98, 103, 105]. CPFEM

allows for the estimation of local plastic deformation and the associated fatigue in-

dicator parameters (FIPs); however, the practical viability of employing CPFEM for

microstructure-sensitive design of polycrystalline microstructures for improved high

cycle fatigue (HCF) performance is rather limited due to the high demands placed

on computational resources.

To circumvent the difficulties mentioned above, an alternative approach is pro-

posed in this work that leverages modern machine learning techniques to significantly

reduce the computational cost of evaluating the HCF performance of polycrystalline

materials. Specifically, this approach takes advantage of a convenient trait of the HCF

regime; the magnitudes of the cyclic plastic strains are generally much lower than the

magnitudes of the cyclic elastic strains. This feature enables the use of the recently

developed Materials Knowledge System (MKS) to efficiently predict the elastic strain

fields in the polycrystalline microstructures [13, 14, 17, 19, 21, 23]. Stresses may

be directly calculated from the elastic strains using Hooke’s Law and resolved onto

each slip system. Plastic strains may then be estimated by numerically integrating

a crystal plasticity flow rule over a specified number of cycles. As with traditional

computational approaches, these plastic quantities enable the computation of FIPs

and the rank-ordering of the HCF resistance of candidate microstructures. In this

work, these novel protocols are demonstrated for the analysis of the HCF resistance of

a diverse set of α-titanium microstructures subjected to uniaxial loading conditions.
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4.3 Background

4.3.1 Crystal Plasticity Framework

The anisotropic deformation response of polycrystalline materials can be simulated

using crystal plasticity [98, 137, 138] to successfully rank-order the HCF resistance

of different α-titanium microstructures. Specifically, the crystal plasticity framework

considered in this work was initially developed as a CPFEM model for 2D analysis of

duplex Ti-6Al-4V [47], was extended to 3-D [48], and then further modified by various

authors [6, 49–51, 134]. Most recently, Smith et al. [6] calibrated the model to three

distinct titanium alloy microstructures via uniaxial tension and fully-reversed tension-

compression experimental data (employing periodic boundary conditions for uniaxial

stress in simulation). In the remainder of this section, the features of this crystal

plasticity framework relevant to the present modeling of α-titanium are discussed

in detail (features relevant to the modeling of α-β titanium colony grains are not

discussed).

HCP crystal structures have the following slip systems: (i) basal slip {0001} 〈112̄0〉,

(ii) prismatic slip {101̄0} 〈112̄0〉, (iii) 〈a〉 pyramidal slip {101̄1} 〈112̄0〉, (iv) first-order

〈c + a〉 pyramidal slip {101̄1} 〈112̄3〉, and (v) second-order 〈c + a〉 pyramidal slip

{112̄2} 〈112̄3〉. These slip planes and their associated slip directions are shown in

Figure 4.1.

In the α-phase of Ti-6Al-4V, prismatic slip has the smallest critical resolved shear

stress (CRSS), followed by basal slip, while the pyramidal families exhibit much higher

slip-resistance values. Deformation twinning can also be present in titanium alloys,

but is severely diminished with an Al content above 6% in Ti-6Al-4V [139]. Accord-

ingly, we will only consider slip and will neglect twinning in this study.

The crystal plasticity model employed in this work is based on the two-term

multiplicative decomposition of the deformation gradient into elastic and plastic parts
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(a) (b)

Figure 4.1: Schematic of (a) basal and prismatic slip planes and associated slip direc-
tions along with (b) 〈a〉 pyramidal and 〈c + a〉 pyramidal slip planes and associated
slip directions.

(i.e. F = Fe · Fp). The plastic velocity gradient is determined in the intermediate

configuration [137], which is both isoclinic and lattice invariant. The symmetric

second Piola-Kirchhoff stress, σPK2, is obtained by application of linear elasticity in

the intermediate isoclinic configuration, i.e.,

σPK2 = C0 : Ee (4.1)

where C0 is the fourth-rank elasticity tensor in the intermediate configuration. The

elastic Green strain is defined by

Ee =
1

2

[
(Fe)T · Fe − I

]
. (4.2)

The Cauchy stress (σ) can be found by mapping the second Piola-Kirchhoff stress to
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the current configuration, i.e.,

σ =
1

det (Fe)

[
Fe · σPK2 · (Fe)T

]
. (4.3)

Finally, the resolved shear stress on slip system (ξ) is given by

τ (ξ) = σPK2 :
(
s

(ξ)
0 ⊗ n

(ξ)
0

)
. (4.4)

where s
(ξ)
0 and n

(ξ)
0 are the slip direction and slip plane normal, respectively, in the

intermediate (and reference) configuration.

The isothermal slip system shearing rate, γ̇(ξ) is defined according to a power-law

flow rule of the form

γ̇(ξ) = γ̇0

〈∣∣τ (ξ) − χ(ξ)
∣∣− κ(ξ)

D(ξ)

〉M

sgn
(
τ (ξ) − χ(ξ)

)
, (4.5)

where γ̇0 is the reference shearing rate, χ(ξ) is the back stress, κ(ξ) is the threshold

stress, D(ξ) is the drag stress, and M is the inverse strain-rate sensitivity exponent.

The threshold stress is defined as the sum of a Hall-Petch strength term and a soft-

ening term due to breakdown of short-range order, i.e.,

κ(ξ) =
κy√
d

+ κ(ξ)
s . (4.6)

In Equation (4.6), κy is the Hall-Petch slope, d is the mean slip distance in the α-

phase, and κ
(ξ)
s is a softening parameter. The evolution of the threshold stress is

governed solely by the softening term, which follows a dynamic recovery law and

takes the form

κ̇(ξ) = κ̇s
(ξ) = −µκs

∣∣γ̇(ξ)
∣∣ (4.7)

where µ is the softening rate coefficient. The drag stress is the difference between the
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CRSS (τCRSS) and the initial threshold stress [140], i.e.

D(ξ) = τ
(ξ)
CRSS − κ(ξ)

∣∣
t=0

. (4.8)

The drag stress does not evolve (i.e., Ḋ(ξ) = 0), while the back stress is initially set

to zero and evolves according to a direct hardening/dynamic recovery relation of the

form

χ̇(ξ) = hγ̇(ξ) − hDχ(ξ)
∣∣γ̇(ξ)

∣∣ , (4.9)

where h is the direct hardening coefficient and hD is the dynamic recovery coefficient.

The parameter values for the crystal plasticity framework described in this section

are included below in Table 4.1 [6].

Table 4.1: Elastic and inelastic crystal plasticity model parameters for α-titanium.

Parameter Value Parameter Value Parameter Value
c11 172.8 GPa τ basalCRSS 350 MPa h 50 MPa

c12 97.9 GPa τ prismCRSS 275 MPa hD 50 MPa

c13 73.4 GPa τ
pyr〈a〉
CRSS 470 MPa d 146 µm

c33 192.3 GPa τ
pyr〈a+c〉
CRSS 570 MPa µ 2

c44 49.7 GPa κs 50 MPa

4.3.2 Materials Knowledge System

In recent years, a computationally efficient localization framework for hierarchical

material microstructure called the Materials Knowledge System (MKS) has been de-

veloped [13, 14, 17, 19, 21, 23, 26]. The MKS is an algebraic series capable of

predicting response fields on the mesoscale given the corresponding macroscale aver-

aged loading or boundary conditions. The details of the MKS framework relevant to

its application in the present study are briefly described next.

The response of hierarchical materials systems has been addressed using general-

ized composite theories [31, 33, 40, 55, 56, 114, 115, 117], wherein a localization tensor
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relates the material response at the mesoscale to the macroscale averaged values. In

the case of linear-elastic response, the fourth-order localization tensor A(x) relates

the elastic strain at a location in the microstructure, x, to the average macroscopic

strain imposed on the microstructure:

ε (x) = A (x) : 〈ε (x)〉 (4.10a)

A (x) = I − 〈Γ (x,x′) : C ′ (x′)〉+ 〈Γ (x,x′) : C ′ (x′) : Γ (x′,x′′) : C ′ (x′′)〉 − . . .

(4.10b)

In Equation (4.10b), I is the fourth-rank identity tensor, C ′ (x) is the deviation

in elastic stiffness from some arbitrary reference medium at a location x, Γ is a

symmetrized derivative of the Green’s function defined with the elastic properties of

the reference medium and 〈f〉 signifies the ensemble average of a variable f over all

spatial locations in the microstructure.

Equation (4.10b) can be transformed to a more convenient form through the intro-

duction of the microstructure function, m (x, h) [36], which captures the probability

density of finding local state h at the spatial location x. The local state descriptors

are selected in such a manner that allows one to define the local mesoscale proper-

ties at the spatial location x (these may include phase identifiers, crystal orientation,

etc.). Through the introduction of m (x, h), substitution of r = x−x′ and invocation

of the ergodic hypothesis, Equations (4.10a) and (4.10b) can be rewritten as

ε (x) =
(
I −

∫
R

∫
H

a (r, h)m (x+ r, h) dhdr

+

∫
R

∫
R

∫
H

∫
H

ã (r, r′, h, h′)m (x+ r, h)m (x+ r + r′, h′) dhdh′drdr′ − . . .
)

: 〈ε (x)〉

(4.11)

where a (r, h) and ã (r, r′, h, h′) are the first- and second-order influence functions

[14], respectively, H is the set of all possible distinct local states (h ∈ H) and R is
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the set of all vectors (r ∈ R). The first-order influence functions a (r, h) quantify the

contribution to the local response in the current spatial location due to the presence

of local state h at a vector r away. Note that the influence functions are fourth-

rank tensors and satisfy the mapping established in Equation (4.10). The influence

functions are computationally advantageous as they are completely independent of

microstructure. Equation (4.11) is an infinite series where each successive term cap-

tures the influence of the local topology for higher levels of interactions between the

local states [23]. It is worth noting that when the variation of local properties (or con-

trast) throughout the range of H is low, the series can be truncated to the first-order

terms with minimal loss of accuracy [13, 14, 21, 23].

Unfortunately, Γ (r) has a singularity as r approaches zero, and the convergence

of the series is highly sensitive to the selection of the reference medium. The MKS

avoids these computational issues through a calibration of the influence functions us-

ing results from numerical simulations (e.g., based on finite element simulations) that

include a variety of microstructures and their local response fields. Once the influence

functions are calibrated, the resulting linkages can be used to predict the response

field of any new microstructure in the materials system at a far lower computational

cost than using existing numerical frameworks.

Next, a generalized MKS framework is presented which extends Equation (4.11) to

complex microstructures (e.g., polycrystalline microstructures studied in this work).

First, m (x, h) and a (x, h) are expressed as Fourier series using products of orthonor-

mal basis over both the local state space and the spatial domain of the microstructure

[21, 23]:

m (x, h) =
∑
L

∑
s

ML
s QL (h)χs (x) , (4.12)

a (r, h) =
∑
L

∑
t

AL
tQL (h)χt (r) , (4.13)

where QL (h) and χs (x) denote the basis indexed by L and s, respectively. χs (x) are
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referred as the indicator basis and return one for all values of x within the spatial bin

indexed by s, and zero elsewhere. This uniform discretization of the spatial domain

allows for the application of the FFT algorithm in the evaluation of Equations (4.12)

and (4.13). If the same indicator basis is chosen for QL (h), the local state space

will be binned discretely (e.g., a two phase composite material). If the desired local

state space is crystal lattice orientation, this binning strategy proves computationally

inefficient as the number of bins required to accurately represent the orientation space

is very large (1,944,000 bins for 1◦ spacing in each of the three Bunge-Euler [41] angles,

φ1, Φ and φ2, used to describe the lattice orientation in a hexagonal crystal). It is

far more efficient in this case to use the generalized spherical harmonics (GSH) [41];

a continuous, periodic, and orthonormal basis for functions on the orientation space

defined using the Bunge-Euler angles.

Through the utilization of the orthogonality of the bases, expressions for ML
s and

AL
t can be derived from Equation (4.12) and Equation (4.13) [23]. Introducing these

definitions, the MKS can be expressed as

εs =

(∑
L

∑
t

∆

NL

AL
tM

L
s+t+

∑
L

∑
L′

∑
t

∑
t′

∆2

NLNL′
ALL′

t ML
s+tM

L′

s+t+t′ + . . .

)
: 〈ε〉.

(4.14)

where ∆ is the volume of a spatial bin and NL is a constant that may depend on L.

4.3.3 Fatigue Indicator Parameters

The driving force for growth of long cracks in metals is adequately described by

the stress intensity factor in the context of LEFM [59]. In particular, a variety of

stress-, strain-, and energy-based relations have been employed to predict fatigue

crack growth at the macroscopic length scale [60]. The driving force for small fatigue

crack formation and early growth, however, is strongly dependent on the local driving
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force, which in turn is directly linked to the microstructure of the material and local

cyclic slip conditions [141]. Fatigue indicator parameters (FIPs) have been used in

macroscale and mesoscale data analysis to serve as surrogate measures of the driving

force for fatigue crack nucleation and early growth [63, 142].

The HCF regime typically requires more than 100,000 cycles to failure and is char-

acterized by heterogeneous plastic deformation among grains, with the majority of

grains undergoing elastic deformation throughout the specimen. The majority of cy-

cles to failure for HCF involve processes of crack nucleation and early growth through

the first few grains. Additionally, the fatigue crack formation process is strongly af-

fected by the spatial variation of microstructure features (e.g., grain size, orientation,

disorientation) that give rise to heterogeneous stress and plastic strain states. These

local elevated states of cyclic plastic shear strain can lead to localized damage and,

ultimately, the formation of a single dominant crack that eventually propagates to

failure [61]. For example, for Ti-6Al-4V tested at room temperature with R=0.1,

more than 85% of the high-cycle fatigue life (strain amplitude not reported) was

spent initiating and propagating small cracks up to 0.5 mm in length [143].

Distinct FIPs were introduced [58] to explicitly account for cyclic (reversed) slip

per cycle as well as cumulative directional slip and have since been used in conjunc-

tion with macroscopic experimental [64, 144–148] and computational [149] data of

titanium alloys. FIPs have also been combined with finite element simulations to

make life estimates [65, 150] and compare the relative fatigue resistance of multiple

microstructures or materials [67]. In these cases, the selection of a specific FIP is

important to reflect the deformation mechanisms that contribute to fatigue crack for-

mation and early growth. For example, the Fatemi-Socie [63, 151] shear-based FIP

has been shown to correlate well in the LCF and HCF regimes for multiaxial fatigue
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Figure 4.2: Illustration of the two parameters computed to assess the Fatemi-Socie
Fatigue Indicator Parameter (FIPFS).

crack initiation [62] and is defined by [67]

FIPFS =
∆γ̄pmax

2

[
1 + k

σ̄nmax
σy

]
, (4.15)

where ∆γpmax is the maximum cyclic plastic shear strain range, σnmax is the maximum

stress normal to the maximum cyclic plastic shear strain, σy is the macroscopic yield

strength of the material and k is a constant with typical values between 0.5 and 1.

The overbar (∆γ̄pmax, σ̄
n
max) indicates that volumetric averaging should be performed

[67]. The Fatemi-Socie FIP correlates well with fatigue crack formation and early

growth for metals that exhibit planar slip [140]; a graphical representation is shown

in Figure 4.2. Additionally, FIP values can be extended to assist in the calculation

of life estimates [65, 150, 152]. The FIP FS in Equation (4.15) serves as an effective

grain-level surrogate measure for the cyclic crack tip displacement range of small

crystallographic fatigue cracks [65].

4.3.4 Extreme Value Statistics

Microstructure locations with the lowest resistance to fatigue crack formation are

associated with the largest FIP values identified through Equation (4.15). A single

FIP value, however, is not sufficient to evaluate a microstructure’s resistance to HCF.
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Instead, the distribution of the most extreme FIP values for a sufficient volume of

material gives some indication of the relative presence of HCF susceptible locations

in the microstructure. In previous work [67, 69], a statistical approach was taken

where multiple instantiations of each microstructure were simulated using CPFEM

and the maximum FIP values in each were used to perform an EVD analysis. The

FIP distributions were fit to a Gumbel distribution [153], i.e.,

FYn (yn) = exp
[
−eαn(yn−un)

]
, (4.16)

where FYn (yn) is the probability that Yn will be equal to or less than yn, un is the

characteristic largest value of the sampled population, and αn is an inverse measure

of dispersion of the largest values of the population. The Gumbel distribution is

unbounded and the shape of the probability density function is the same regard-

less of the fitting parameters. The maximum FIP values are arranged in increasing

magnitude and their probability estimated by

FYj (yj) =
j − 0.3

n+ 0.4
, (4.17)

where n is the total number of simulations and j is the rank-order of each maximum

FIP value. For plotting and regression purposes, the Gumbel distribution is re-

formulated as a linear function of y with expressions for slope (αn) and y-intercept

(αnun), i.e.,

ln

[
1

ln [FYn (yn)]

]
= αnyn − αnun. (4.18)

These resultant distributions are the basis for comparing fatigue resistance among

different microstructures in this work.
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Figure 4.3: Flowchart for the insertion of MKS into the traditional workflow for
producing extreme value distributions of the extreme FIP responses.

4.4 Proposed Methodology

The main purpose of this work is to explore a novel, computationally-efficient method

for rank-ordering the HCF resistance of polycrystalline microstructures. The conven-

tional approach, shown in the bottom row of Figure 4.3, adheres to the following

steps: (i) digital microstructures are obtained, (ii) CPFEM is used to determine the

local cyclic plastic strain tensors, (iii) FIP fields are computed for each microstruc-

ture, and (iv) extreme value distributions of FIPs are constructed to rank-order the

microstructures in terms of their HCF resistance. The new approach explored in this

study (also displayed in Figure 4.3) utilizes the MKS method to determine the local

total strain fields and calculate the local plastic strain tensors through a decoupled in-

tegration scheme that employs the relevant constitutive relations described in Section

4.3.1. The remainder of this section describes this new approach in detail.

First, a diverse set of microstructures of interest are identified for a given composi-

tion as a function of thermo-mechanical process path. Traditionally, a representative

volume element (RVE) is established to capture the microstructure for subsequent

computational evaluations. RVEs are intended to approximate the response of the

overall material microstructure by encompassing a volume that is large enough to con-
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tain a sufficient number of microstructure-specific features for statistical homogeneity

[154]. Additionally, RVEs must have measurable properties (e.g., elastic modulus,

thermal conductivity) that are in agreement with the properties of an extremely

large volume of the true material microstructure. Unfortunately, this typically re-

quires performing simulations on prohibitively large volumes of material, especially

to describe extreme value phenomena such as HCF. Instead, the microstructures may

be represented by an ensemble of smaller statistical volume elements (SVEs), which

are constructed such that their size is sufficient to sample microstructure-specific fea-

tures (e.g., grains), but whose individual responses might differ from that of an RVE.

In this framework, a large enough set of SVEs is selected for each microstructure to

demonstrate the convergence of a representative property.

Next, if they have not been previously computed for the specific material system

being studied, the MKS influence functions are calibrated with an ensemble of cal-

ibration SVEs and their responses as computed using linear-elastic FE simulations.

These simulations are performed using appropriate periodic boundary conditions for

the applied loading of interest and the elastic model parameters given in Table 4.1.

The use of an MKS calibrated with linear-elastic simulations is justified as the cyclic

plastic strains in the HCF regime are expected to be orders of magnitude smaller

than the elastic strains; therefore the total strains are approximately equal to the

elastic strains. Once the Fourier coefficients of the influence function (herein called

influence coefficients) are calibrated for each set of boundary conditions and for all

unique components of the strain tensor, Equation (4.14) is employed to efficiently

predict the elastic strain fields in each SVE at the minimum and maximum applied

strains in strain-controlled cyclic loading. The stress tensor is calculated from the

strain tensor in each voxel for the local fourth-order elastic stiffness tensor (see Equa-

tion (4.1)). Assuming a linear relationship between the initial and final stress tensors,

each loading segment is discretized into a number of increments. The stress tensor
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is then used to determine the resolved shear stress in each slip system (τ (ξ)) for each

time increment, according to

τ (ξ) = σ :
(
s(ξ) ⊗ n(ξ)

)
, (4.19)

where s(ξ) and n(ξ) are the slip direction and slip plane normal, respectively. The

resolved shear stress is then used to solve for the slip system shearing rate (Equation

(4.5)) and evolution equations (Equations (4.7) and (4.9)) in each time increment.

A forward Euler routine, commonly used in explicit CPFEM simulations [155], is

employed to obtain the cumulative plastic strains on the slip systems. Finally, the

plastic strain tensor at a time indexed by i may be approximated as

εpi =
∑
ξ

γ
(ξ)
i

(
s(ξ) ⊗ n(ξ)

)
sym

. (4.20)

from the associated cumulative plastic shear strains.

A graphical representation of this procedure is shown in Figure 4.4. The back

stress and plastic shear strain are initialized at zero for each slip system. The plastic

strain quantities are orders of magnitude smaller than the total strain quantities in

the HCF regime, and therefore their impact on redistribution of the stress and total

strain tensors relative to the elastic solution are minimal. Accordingly, phenomena of

cyclic stress redistribution and relaxation are neglected in this work, as well as local

lattice rotation.

Finally, FIP fields are computed in all SVEs using Equation (4.15), and the ex-

treme value distributions are extracted following the procedures of Section 4.3.4.

Through the FIP EVDs, microstructures may be rank-ordered by their resistance to

HCF.
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Figure 4.4: Flowchart for the forward Euler integration scheme used to estimate the
local plastic strain tensor (εp) from the local total strain tensor (ε) provided by MKS.
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4.5 Case Study

To demonstrate the protocols described in Section 4.4, four different α-titanium mi-

crostructures in three separate loading directions are rank-ordered by their HCF re-

sistance. Synthetic microstructure volumes are first generated using the open-source

DREAM.3D software. The MKS is then calibrated with linear-elastic FE simulations

and employed to predict elastic strain fields in the volumes. Stresses are calculated

from the elastic strain fields and the integration scheme is used to compute the cyclic

plastic strains. These quantities are used to calculate the FIP fields in each SVE.

The microstructures and loading directions are rank-ordered by their HCF resistance

through a comparison of the FIP EVDs. The details of this case study are provided

in the remainder of this section.

4.5.1 Digital Microstructures

Four crystallographic textures are selected for analysis in this work: (a) random,

(b) β-annealed, (c) transverse, and (d) basal/transverse. The β-annealed texture is

taken from previous work [6] while the other textures are extracted from the literature

[70–72, 136]. All three-dimensional digital microstructures are generated using the

open source DREAM.3D software [46] with inputs of desired grain-size, orientation,

and misorientation distributions. The grain-size distribution for all microstructures

is modeled as a log-normal distribution with a mean and standard deviation of 30µm

and 15µm, respectively. The instantiated microstructures contain 9,261 hexahedron

elements, each with 8 integration points (i.e., C3D8-type in ABAQUS 6.10-1[77])

and an individual side length of 10µm. Each digital SVE has a total side-length of

210µm in the x-, y-, and z-directions. A total of 500 SVEs are instantiated for each

of the four microstructures and their statistics are compared to the desired statistics.

Representative pole figures for each microstructure analyzed in this work are shown
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in Figure 4.5. DREAM.3D is used to generate the fully periodic microstructures

employed in this work.

To determine how many SVEs are adequate to approximate an RVE, the mean

and standard deviation of a particular value of interest (elastic stiffness in this in-

stance) are compared with tolerance values [156]. The details of these calculations are

provided in the Appendix. As shown in Figure 4.6, the mean of the elastic stiffness

converges extremely quickly (in fewer than 50 simulations) for loading in each di-

rection while the standard deviation requires approximately 250 simulations for each

loading direction. Similar results are found for the other textures.

4.5.2 MKS Model Calibration

The MKS framework described in Section 4.3.2 was successfully employed in prior

work for the prediction of elastic strain fields in polycrstalline HCP microstructures

[21, 23]. In this study, however, the influence coefficients of Equation (4.13) are re-

calibrated for the set of elastic parameters in Table 4.1. Truncation to the first term

of Equation (4.14) is justified as α-titanium single crystals exhibit low contrast (e.g.,

the ratio of the highest modulus to the lowest modulus is approximately 1.40); prior

work has shown that this truncation provides excellent results for composite systems

with low to moderate contrasts [13, 14, 17, 21, 23]. Furthermore, only fifteen GSH

basis functions are employed in Equation (4.12) and Equation (4.13), as it has been

previously demonstrated that this is sufficient for the prediction of the elastic response

of hexagonal polycrystals [21]. The influence coefficients are calibrated for all unique

components of the strain tensor for three different loading directions.

The influence coefficients are calibrated using the linear-elastic FE responses (us-

ing ABAQUS) of uniform-textured SVEs (generated via DREAM.3D). For each load-

ing direction (x, y and z), periodic, displacement-controlled boundary-conditions are

employed such that the macroscopic strain tensor only has only one non-zero compo-
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(a)

(b)

(c)

(d)

Figure 4.5: Representative pole figures for (a) β-annealed, (b) basal/transverse, (c)
transverse, and (d) random texture inputs to DREAM.3D.
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Figure 4.6: The (a) mean and (b) standard deviation of the effective elastic modulus
values for N number of MKS simulations of the β-annealed microstructure and for
each loading direction.

nent (in the direction of loading). It is noted that the MKS influence coefficients may

be calibrated for any desired macroscopic strain tensor; uniaxial strain is selected in

this work because it has been successfully employed in many previous studies [13,

14, 17, 21, 23]. The number of SVEs used in calibration of the MKS is determined

through examining the mean and maximum error metrics in the strain field predic-

tions for different sets of validation SVEs. From this analysis, it was seen that an

ensemble of 400 SVEs is sufficient to calibrate the influence coefficients. When elastic

strain fields are compared for 100 SVEs not included in the calibration set, the mean

voxel-to-voxel difference between MKS and linear-elastic FEM responses is 0.28% and

the maximum error per microstructure averages to only 1.50% for the ε11 component.

Furthermore, the MKS evaluation requires only 0.7 seconds on a single processor

compared to the 10 minutes on four processors required for the linear-elastic FE sim-

ulation of a single SVE. The local stress fields are also predicted with high accuracy.

The mean and average maximum error per microstructure are 1.00% and 2.37%, re-

spectively, for the σ11 fields from 100 instantiations of the β-annealed microstructure

simulated with CPFEM (subject to the cyclic loading described in Section 4.5.3) and
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Figure 4.7: Schematic of the imposed strain versus time curve used in the work.

the MKS computed fields. These results indicate that stress relaxation or redistri-

bution are minimal in the CPFEM simulations, which is an expected result for the

HCF regime.

4.5.3 Auxiliary Decoupled Estimation of Plastic Strains

In this study, cyclic plastic strain fields are computed from the stress fields in each SVE

using the decoupled numerical integration scheme described in Section 4.4. Three cy-

cles of fully reversed (R = −1) cyclic loading are performed (see Figure (4.7)) to

ensure that cyclic plastic strains saturate before FIPs are computed. Furthermore,

loading is performed to 0.5% strain amplitude so that |εp| � |εe| and stress redistri-

bution is minimal. This roughly corresponds to 60-67% of the applied strain to yield,

depending on the specific microstructure and loading direction. As a consequence,

the stress and elastic strain fields are identical at points A, C, and E for any selected

microstructure (this is not the case for the corresponding plastic strain fields). This

is due to the evolution of the plasticity-related fields computed using the crystal plas-

ticity framework presented earlier. In this decoupled numerical integration algorithm,

the stress tensor is discretized into 50 increments for each loading segment (e.g., A-B,

B-C, etc.).

To check the accuracy of the predicted plastic strain fields, CPFEM simulations

are performed for 100 SVEs belonging to the β-annealed microstructure. The crystal
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Figure 4.8: A two-dimensional cross-section comparison of the εp11 values from CPFEM
(left) and MKS plus decoupled numerical integration (right).

plasticity formulation described in Section 4.3.1 is employed in Abaqus/Standard [77]

through a User MATerial subroutine (UMAT) [157]. Three cycles of fully reversed

loading are applied to the volumes using the same displacement-controlled, uniaxial-

strain boundary-conditions described in Section 4.5.2. Figure 4.8 displays the plastic

strain fields obtained using the novel protocols and CPFEM for a slice of an example

SVE.

Figure 4.8 demonstrates that the plastic strain fields computed using the two

approaches are indeed very similar. Note that the magnitudes of the plastic strains

are several orders smaller than the elastic strain fields (the average ε11 strain is 0.5%).

In this example SVE, the mean and maximum relative errors (of the novel approach

versus CPFEM) do not exceed 0.39% and 0.84%, respectively, for any component of

the plastic strain tensor. This error is defined as the local difference in plastic strains

normalized by the maximum plastic strain obtained via CPFEM. This definition

ensures that relative error is well characterized for locations in the volume exhibiting

high levels of plastic strain. Later results will demonstrate that this level of agreement

is sufficient to reliably rank-order the HCF performance of the microstructures studied

in this work. The main benefit of the proposed approach continues to be the dramatic

savings in computational cost. The CPFEM simulation requires approximately 45

minutes to complete on four processors (and a total of 8 ABAQUS licenses) per SVE,
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while the decoupled numerical integration scheme requires 70 seconds on a single

processor.

4.5.4 High Cycle Fatigue Analysis

Given the results of Section 4.5.3, FIP fields are computed for all SVEs in each

loading direction using Equation (4.15). FIP EVDs are then calculated by compiling

the maximum FIP value in each SVE. At this stage, it would be desirable to compare

the FIP EVDs resulting from the novel protocols described in this work and the

traditional CPFEM approach. Therefore, FIP EVDs are obtained from the CPFEM

predicted plastic strain fields computed in the previous section for 100 β-annealed

SVEs. In general, the FIP EVDs from the new protocol closely match the CPFEM

results, as demonstrated in Figure 4.9. The two approaches indicate identical rank-

ordering of HCF resistance based on a specified loading direction at a selected high

probability of failure. At a low probability of failure, however, the rank-ordering

is different between the two methods. This discrepancy can be traced back to the

difference in the local plastic strain tensors, and that both methods approximate the

local plastic strain tensors via Equation (4.20).

Due to the high computational costs of the conventional approach (which provide

the main motivation for this work), comparisons between the two approaches were not

be performed for all microstructures studied here. Consequently, the FIP EVDs were

constructed using the novel protocols presented in this work for all four microstructure

classes, each with a full ensemble of 500 SVEs (note that comparison presented in

Figure 4.9 used only 100 SVEs). Figure 4.10 compares the resultant FIP EVDs for all

four microstructures and three loading directions. As expected, the FIP EVDs of the

random textured microstructure are nearly coincident for all loading directions. The

basal/transverse and β-annealed textured microstructures exhibit similar FIP EVD

responses, with the lowest fatigue resistance for loading in the z-direction.
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Figure 4.9: Comparison of the β-annealed microstructure extreme value distribution
Fatemi-Socie FIP plot with 100 SVEs obtained via (a) MKS plus decoupled numerical
integration and (b) CPFEM.

Finally, the HCF resistance of the transverse textured microstructure is distinctly

different from the other microstructures, exhibiting a significant positive correlation

with the effective modulus in the direction of loading. This microstructure is distinct

as compared to the other three due to a strong c-axis fiber texture component par-

allel to the sample x-axis. This particular texture feature essentially dominates this

microstructure. As a result, when this sample is loaded along the x-axis, we should

expect a minimum amount of interactions between neighboring grains, especially in

the elastic regime due to the transverse isotropy of the elastic response in each crystal

in the plane normal to the c-axis. It is therefore not surprising that x-axis loading

produces the best HCF response for this microstructure with most of the FIP values

being lower compared to the loading in the other directions. Note that this is the

case despite the higher stiffness of the material along the x-axis (i.e., stresses are

higher because the same strain amplitude is imposed in all cases) as compared to the

other directions. It is also interesting to note that there are a few high FIP values in

the x-axis loaded microstructure that are comparable to the values obtained in the

other two loading directions on the same microstructure. This is because the high
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Figure 4.10: The extreme value distribution Fatemi-Socie FIP plot generated from
the MKS and the decoupled numerical integration scheme with 500 SVEs for mi-
crostructures with the following textures: (a) basal/transverse, (b) transverse, (c)
β-annealed and (d) random.
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FIP values would correspond to locations of high local plastic strains. In the case

of x-axis loading, once plastic deformation initiates, transverse isotropy in the local

response of the c-axis grains is completely lost (note that only the elastic response

is transversely isotropic in the HCP crystals) and the degree of interactions between

neighboring grains dramatically increases. As a result of these strong interactions,

the local plastic strains can be high in this microstructure. Overall, it should be

noted that this microstructure provides the best HCF response out of all of the mi-

crostructures studied. This improved performance is largely attributed to lower levels

of interactions between the neighboring grains (in the HCF loading regime dominated

by elasticity).

4.6 Conclusions

A new methodology that employs MKS and a decoupled numerical integration scheme

is presented to reliably predict cyclic plastic strain fields in hexagonal, α-titanium,

polycrystalline aggregates under low-amplitude loading conditions. These quantities

inform the computation of FIP distributions which are used to rank-order the HCF

resistance of polycrystalline microstructures. This analysis is specifically designed to

support rapid microstructure selection and optimization, assuming the proper mate-

rial and application have been identified. These new protocols are demonstrated on an

ensemble comprising over 6000 individual SVEs; the same task would demand major

computational resources when using traditional CPFEM-based approaches. In fact,

the low computational cost allows for the consideration of such a large ensemble of

microstructures in the present work. The approximate speed-up of the new protocols

is approximately 40x versus traditional CPFEM. The study also identifies the critical

role of grain interactions in the HCF performance through a consideration of twelve

different conditions (four microstructures, each loaded in three directions). While this

study has established the feasibility of the new protocols, much additional work is
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needed to extract new insights into the HCF response of polycrystalline microstruc-

tures. These will be targeted in future studies where the new protocols developed in

this work will be employed on a much larger ensemble of microstructures.
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4.7 Appendix

In this work, the number of SVEs required to approximate the RVE for a microstruc-

ture of interest is selected by examining the convergence of the mean and standard

deviation of the effective elastic modulus in each loading direction. In this section,

protocols are set forth to calculate these moduli values for the boundary conditions

employed in this work.

HCP crystal structures have a transversely isotropic elastic response, meaning

that the elastic properties exhibit rotational symmetry around the HCP crystal c-

axis. For α-titanium, the elastic modulus can vary between 104 and 146 GPa, the

shear modulus between 40 and 47 GPa, and Poisson’s ratio between 0.265 and 0.337.

This degree of anisotropy for the elastic modulus (40%) and the shear modulus (18%)

is much higher than that of other HCP metals [73] and can have a pronounced effect

on the material deformation response.

Mechanical properties (such as elastic stiffness) can be determined from datasets

generated in this study. Since the boundary conditions used in this work result
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in non-zero normal stress components in all normal directions, additional steps are

taken to determine directional effective elastic modulus values. The MKS determines

local quantities, therefore the stress and strain components are volume-averaged to

obtain the macroscopic quantities (e.g., 〈σij〉 =
∑N

k=1 σ
k
ij/N where N is the total

number of centroidal averaged values for uniform voxel size). The averaged stress

and strain quantities are then used to determine the effective stiffness components.

The effective stiffness tensor can then be inverted to recover the effective compliance

tensor. Subsequently, the effective elastic modulus values for each loading direction

are extracted from the diagonal components of the compliance tensor. The mean and

standard deviation of the effective elastic modulus values for each loading direction

and microstructure are presented in Table 4.2.

Table 4.2: Mean directional effective elastic modulus (± std. dev.) for each mi-
crostructure.

Texture Ex (GPa) Ey (GPa) Ez (GPa)
Random 123.4 ± 1.2 123.4 ± 1.2 120.0 ± 1.0

β-Annealed 116.5 ± 0.8 118.6 ± 1.0 135.0 ± 1.7
Basal/Transverse 122.8 ± 2.0 114.1 ± 0.2 135.6 ± 1.8

Transverse 144.8 ± 0.6 112.7 ± 0.2 112.8 ± 0.2
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CHAPTER 5

MKS HOMOGENIZATION PROTOCOLS TO

RANK-ORDER THE HIGH CYCLE FATIGUE

RESISTANCE OF POLYCRYSTALLINE

MICROSTRUCTURES

This work was under review for publication by a peer-reviewed journal as of April 20,

2017. The title of the paper is Data-driven reduced-order models for rank-ordering

the high cycle fatigue performance of polycrystalline microstructures. The order of

authorship is as follows: Noah H. Paulson, Matthew W. Priddy, David L. McDowell

and Surya R. Kalidindi.

5.1 Abstract

Computationally efficient estimation of the fatigue response of polycrystalline materi-

als is critical for the development of next generation materials in application domains

such as transportation, health, security, and energy industries. This goal is non-trivial

for fatigue of polycrystalline metals since the initiation and growth of fatigue cracks

depends strongly on various attributes of the material microstructure, such as the

sizes, shapes, orientations, and neighbors of individual grains. Furthermore, regions

of microstructure most likely to initiate cracks correspond to the tails of the distribu-

tions of the microstructural features. This requires the execution of large numbers of

experiments or simulations to capture the response of the material in a statistically
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meaningful manner. In this work, a novel framework is described to rank-order the

high cycle fatigue (HCF) resistance of various polycrystalline material microstructures

through novel protocols that quantify these microstructures using 2-pt spatial corre-

lations and represent them in a reduced-dimensional space using principal component

analysis (PCA). Reduced-order linkages are then constructed to link microstructures

to performance characteristics related to their HCF responses. These protocols are

demonstrated for α-titanium, which exhibits heterogeneous microstructural features

along with significant elastic and inelastic anisotropies at both the microscale and the

macroscale.

5.2 Introduction

The estimation of fatigue resistance is a formidable barrier to the introduction of new

polycrystalline materials in many advanced technology applications [58, 61, 62]. This

is in large part due to the high cost of assessing the fatigue performance of these

materials, which in turn depends on their heterogeneous microstructures. By nature,

fatigue crack formation under high cycle fatigue (HCF) conditions is a rare event

phenomenon, arising in local microstructure regions where a specific combination of

shape, orientation and size of the constituent grains promotes the localization of stress

and plastic strain [62]. The rarity of these critical features requires that large volumes

of material be evaluated (via experiments or microstructure-sensitive computational

models) to ensure the statistical robustness of the results [67, 80, 158, 159]. Validated

protocols do not yet exist to identify these critical features in a systematic and reliable

manner, and to quantify the relevant statistics of their rare occurrences in the material

microstructure.

In the literature, attempts have been made to identify novel connections between

fatigue properties and a variety of material parameters. Machine learning techniques

have been utilized to predict fatigue crack growth rates in Nickel-base superalloys [160]
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as well as the fatigue lives [161] and fatigue strengths [162] of a variety of steels. In

these studies, the HCF property of interest (evaluated through experiments) is related

to a set of material characteristics which generally includes composition, process path,

and simple microstructure descriptors (e.g., grain size). While the process path used

to create a material is indeed correlated to its properties, the connection is indirect and

non-unique, since multiple process paths may lead to similar material microstructures.

In reality, the material’s hierarchical structure offers a much more direct path to

correlate with properties, provided that the important structural features can be

identified and reliably quantified. In other words, there is a clear incentive to move

from process-property linkages to process-structure-property linkages. However, it is

important to recognize that simple structural descriptors such as the average grain size

and orientation distribution function (ODF) are unlikely to suffice in correlating to

the HCF related properties of the material. It is therefore highly desirable to develop

and demonstrate protocols that aim to explore the structure-property (S-P) linkages

for HCF related properties of polycrystalline microstructures in a comprehensive and

systematic manner. It is also desirable to express these S-P linkages in terms of

reduced-order frameworks that are easily accessible to materials designers.

Computational approaches are well suited for the exploration of microstructure-

sensitive S-P linkages for fatigue properties, as they reveal the local fields affecting

the fatigue responses of detailed digital microstructures. In recent years, Pryzbyla

and McDowell have developed a framework to investigate the fatigue performance of

materials microstructures through the comparison of extremal distributions of local

fatigue responses [66, 67]. In one recent study, this framework was employed to rank-

order the HCF resistance of polycrystalline titanium microstructures [69]. Crystal

plasticity finite element method (CPFEM) simulations were performed to extract

tensorial stress and plastic strain fields, which were in turn used to evaluate fatigue

indicator parameters (FIPs) defined to serve as surrogate measures for driving local
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fatigue crack formation and growth. The HCF resistance of the microstructures could

be rank-ordered by comparing the probability of a given FIP value being exceeded.

From these analyses, the fatigue response was related to characteristics such as the

feature size, crystallographic texture, and radial correlation of selected microstructure

features. In another study, the HCF response of Ti-6242 was examined using an

accelerated CPFEM framework [163]. In this work, the number of cycles until crack

initiation was related to a parameter describing the surface area fraction of soft grains

surrounding each hard grain (SAFSSG). Although it is generally expected that the

HCF response of a structural alloy should correlate with the relevant statistics of

occurrence of certain critical features in its polycrystalline microstructure, we are still

in the early stages of establishing a rigorous framework for exploring and capturing

such microstructure-HCF property linkages in practically useful forms that support

materials design.

Over the past decade, Kalidindi and co-workers have developed a new framework

for expressing process-structure-property (PSP) linkages of hierarchical materials in

practically-useful, reduced-order forms [25]. Called the materials knowledge system

(MKS), this framework leverages the comprehensive description of microstructure

based on n-point spatial correlations [15, 19, 20, 22, 24, 34–37, 40, 54–56, 76, 119,

125–127] together with emerging data science toolsets. In previous work, the viability

and advantages of the MKS framework were demonstrated in the prediction of the

elastic and inelastic bulk properties of titanium polycrystals [76], transport proper-

ties of porous microstructures used in fuel cell applications [22], and the elastic strain

fields in cubic and hexagonal polycrystals [21, 23]. In a recent publication [74], an

MKS model was utilized successfully to speed-up the CPFEM simulations needed

for the efficient rank-ordering of the HCF resistance of α-titanium microstructures.

More specifically, instead of directly performing computationally expensive paramet-

ric sets of CPFEM simulations, an MKS localization model was calibrated and used
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to predict the local elastic strain fields of polycrystalline microstructures. Using

these elastic strain fields, the associated plastic strains were computed using crystal

plasticity models and employed in evaluating the FIP distributions. The predicted

FIP distributions matched well with CPFEM results, while providing a substantial

reduction by a factor of 40 in computation time. Building further on this demon-

stration, it would be desirable to develop a framework that enables the evaluation

of the performance of polycrystalline materials in microstructure-sensitive, extreme

value problems (such as fatigue and fracture). To address this gap, it is necessary

to seek objective, reduced-dimensional representations for both the microstructure

and performance characteristics. Such low-dimensional representations of the inputs

and outputs of the S-P linkages related to HCF are critical to facilitate dramatically

accelerated forward and inverse protocols in materials selection and design.

The overarching goal of this work is to develop a data-driven, reduced-order

structure-property linkage for the analysis of the microstructure-sensitive HCF per-

formance of polycrystalline alloys. Success in advancing towards this goal requires

two significant extensions to the MKS framework. The first challenge comes from the

fact that the property of interest in these problems is the distribution of the local

computed surrogate driving forces for fatigue crack initiation and early growth (i.e.,

the extreme value FIP distributions). In prior work using the MKS framework, the

property of interest was generally defined as a suitably averaged quantity over a sta-

tistically representative material microstructural volume (such as effective modulus

or yield strength). In this work, we critically explore if the fatigue response of the ma-

terial can be captured by an appropriately parameterized functional form of the FIP

distributions, with the parameters then serving as surrogate measures of HCF per-

formance of the material (i.e., as properties in the S-P linkages). For computational

efficiency, each microstructure is represented by a set or ensemble of statistical vol-

ume elements (SVEs) instead of a single, large representative volume element (RVE)
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[80]. In other words, the HCF response of a microstructure is characterized by the

performance characteristics of the entire set of SVEs associated with the selected ma-

terial system. The second challenge therefore lies in selecting the size of the SVE set

to support ensemble numerical simulations to evaluate the microstructure-sensitive

response of each distinct material condition (nominal microstructure). To ensure

reliable predictions, it is essential to establish a systematic approach to the charac-

terization of the variability of predicted values for properties of the selected SVE sets.

In this work, we demonstrate a computationally efficient strategy for addressing this

gap. The effectiveness and computational benefits of the overall approach (addressing

both challenges identified above) developed in this work will be demonstrated through

the rank-ordering of the HCF responses of twelve distinct α-titanium microstructures.

5.3 New Framework for HCF related S-P Linkages

The main goal of this study is to develop and demonstrate a novel framework to

link polycrystalline microstructures to their fatigue responses in reduced-order forms

that are of high value to materials designers. As mentioned earlier, the success of

this approach depends on our ability to identify suitable reduced-order descriptors

for both the material microstructure as well as the HCF performance indicators (i.e.,

FIP distributions). These are discussed in detail next.

5.3.1 Microstructure Descriptors

The first critical task in the development of the framework is to select microstructures

for the calibration (and later validation) of the S-P linkage. It is necessary to select

a sufficient number of diverse microstructures to ensure that the linkage is robust

and capable of predicting the properties of new microstructures. Furthermore, an

adequate volume of material must be included to capture a statistically representative

set of local fatigue responses. In theory, an RVE could be selected such that the
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fatigue property would not be sensitive to the specific sample or a small increase

in its size. Unfortunately, the computational analysis for HCF performance of such

a large volume of material would be unfeasible using existing simulation methods

and computational resources. Instead, it is common practice to select a sufficient

number of smaller SVEs such that the quantity of interest relating to fatigue resistance

converges [80]. Each SVE must be large enough to enclose the key correlation length-

scales of interaction between various features in the microstructure [76].

The next task is to statistically quantify each of the selected microstructures. In

previous work, spatial statistics were employed in the quantification of microstruc-

tures for S-P linkages [15, 20, 22, 24, 76]. Typically, each microstructure volume was

assumed to be large enough to capture the bulk property of interest. In this work,

however, microstructures are represented by ensembles of SVEs; therefore, it is ex-

pected that an ensemble of spatial statistics will be required to capture this inherent

structural variability (which is critical to the local fatigue property) [25]. To construct

this ensemble, the 2-point spatial correlations are computed for each individual SVE

and represented in a reduced-dimensional space.

In previous work, 2-point spatial correlations were mainly evaluated for microstruc-

tures with distinct phases [15, 20, 22, 24, 37, 40, 54, 125, 126] where the local state

in each cell is discretized into a limited number of bins. However, for polycrystalline

materials, the local state is described by the crystal lattice orientation, g. Although

it is possible to discretize the orientation space, a prohibitively large number of bins

would be required. To address this conundrum, a spatial statistics framework for

polycrystalline materials was developed [76]. In this framework, the 2-point spatial

correlation, f (g, g′|r), describes the conditional probability density of finding orienta-

tions g and g′ at the head and tail, respectively, of a vector r randomly placed in the

microstructure. The spatial correlations may be expanded as a generalized Fourier
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series as described in recent work [25, 76] in the form

f(g, g′|r)dgdg′ ≈
∑
K

∑
L

∑
t

FLK
t TL(g)TK(g′)χt(r)dgdg′ (5.1)

where FLK
t are the Fourier coefficients, TL(g) are the generalized spherical harmonic

(GSH) functions which describe the functional dependence of spatial statistics on the

local state and χt(r) are the indicator basis functions used to bin the vector space

corresponding to r. The implementation of the GSH functions in the description of the

local state (local crystalline lattice orientation) greatly facilitates the computation of

the spatial correlations in polycrystalline microstructures. Further details of Equation

(5.1) and the calculation of FLK
t have already been described in detail in prior work

[76].

While each SVE may be statistically represented with high fidelity using FLK
t , this

Fourier coefficient set typically contains a large number of elements. Reduced-order

representations of the structure in each SVE may be achieved using dimensionality-

reduction techniques, most notably PCA. PCA is a linear, distance-preserving trans-

formation which finds a new set of orthonormal feature vectors that are linear combi-

nations of the existing feature vectors and are ordered in terms of the variance of the

data [38]. In the remainder of this section, the spatial correlations for each SVE (in-

dexed by j = 1, 2, ..., J) are portrayed in vectorized form {F (j)
t |t = 1, 2, ..., R} where

the set of indices, (t, L,K), is replaced by the linear index t. Furthermore, J and R

denote the total number of SVEs and the total number of features in the set of spatial

correlations, respectively. With this terminology in place, the spatial correlations for

a given SVE are expressed as

F
(j)
t =

min((J−1),(R))∑
i=1

α
(j)
i ϕit + F t (5.2)
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where F t is the average of the spatial correlations (expressed as GSH Fourier coef-

ficients) for all SVEs, α
(j)
i are the coordinates of each SVE in principal component

space (herein called PC scores) and ϕit are the new PCA feature vectors (referred to

as PC vectors). While the maximum number of PC vectors in Equation (5.2) is lim-

ited by the lesser of (J − 1) and R, in previous work far fewer were used to construct

reliable S-P linkages [20, 22, 24, 54, 76]. This truncation in the PC representation

of each set of spatial correlations may be denoted as {α(j)
i |i = 1, 2, ..., R̃}, where the

truncation level, R̃, is a hyper-parameter which may be selected based on the desired

representation fidelity. Note that many existing PCA algorithms will not accept the

complex-valued FLK
t coefficients. In such a scenario, it would be necessary to split

the coefficients into real and complex features prior to the application of the PCA

algorithm to conduct an equivalent analysis.

Finally, the reduced dimensionality of the representations of each SVE in the mi-

crostructure ensemble may be leveraged to represent the SVE sets (ensemble of SVEs

used to represent each microstructure). To properly represent the microstructure,

measures of both the typical structure and deviation from that structure must be

obtained. It is natural to represent the typical microstructure as the mean of all

the PC scores in the ensemble (or the central location in PC space). Likewise, the

structural variability may be captured by the variance in the ensemble of PC scores.

In this work, this quantity is captured by the total variance, in which the variance of

the SVE ensemble is summed for all PC dimensions [15]

V ARtot =
R̃∑
i

var(α
(j)
i ) (5.3)

5.3.2 Representation of HCF Resistance

The selection of effective surrogate quantities of interest for HCF performance de-

mands attention. The aim of this work is to rank-order the HCF resistance of poly-

100



crystalline microstructures. It is anticipated that the different SVE members of an

SVE set used to represent a given microstructure are likely to exhibit distinctly dif-

ferent FIP distributions. Consequently, a single SVE cannot possibly represent the

fatigue property for the entire sample. Practically speaking, the probability distri-

bution of FIPs must be estimated from a large enough set of SVEs. Furthermore,

the homogenization framework is statistical in nature and therefore not well suited to

predict the field response in a single microstructure region (such as the location of the

maximum FIP). In this work, the fatigue property is instead taken as the distribu-

tion of FIPs for all SVEs associated with a microstructure, with focus on the extreme

values (large values). There are three main advantages to this approach. First, FIPs

computed from a large volume of microstructure may be included; this ensures that a

statistically meaningful extreme value distribution (EVD) may be achieved. Second,

the fatigue property is connected to statistical trends in the microstructure picked

up by the 2-point spatial correlations instead of hyper-specific regions in each mi-

crostructure. Last, a suitable functional form may be selected for the distribution of

FIPs, and henceforth the HCF property of interest may be simply represented by the

parameters (performance characteristics) of the surrogate FIP distribution.

In the literature, the Fatemi-Socie (F-S) FIP [60, 62–64] has been shown to be

an effective surrogate measure for fatigue crack formation and growth in metals with

planar slip (such as α-titanium) [51]. The F-S FIP is given by

FIPFS =
∆γ̄pmax

2

[
1 + k

σ̄nmax
σy

]
, (5.4)

where ∆γ̄pmax is the maximum cyclic plastic shear strain range, σ̄nmax is the maximum

stress normal to the plastic shear, σy is the macroscopic yield strength of the material

and k describes the impact of normal stress on the fatigue driving force. The over-bar

indicates that a quantity is volume averaged, typically over the volume of a single
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grain in the polycrystal [65]. This FIP is employed in the remainder of this work to

characterize the local HCF response in each polycrystalline volume.

Previous studies in the literature have employed a variety of distributions in the

description of extreme value phenomena [66, 67, 164]. The gamma distribution is cho-

sen for this work as it was successfully used for the characterization of the extreme

value FIP response of polycrystalline materials in previous studies [68]. The proba-

bility density function (PDF, Equation (5.5a)) and cumulative distribution function

(CDF, Equation (5.5b)) of the gamma distribution are given by

f (z|α) =
1

Γ (α, 0)
zα−1e−z (5.5a)

F (z|α) =
Γ (α, z)

Γ (α, 0)
(5.5b)

Γ (α, z∗) =

∫ ∞
z∗

zα−1e−zdz, z =
x− µ
σ

, α > 0 (5.5c)

where x is the continuous random variable of interest and α, µ and σ control the

shape, location and spread of the distribution, respectively [68, 81]. Of these three

parameters, the effect of α is most complex. For α > 0 the distribution resembles

the log-normal distribution, for α = 0 the PDF becomes the exponential distribution,

and for α < 0 the distribution behaves like the reciprocal function. Note that for the

expected range of α, the effects of α and σ on the CDF are similar. Consequently,

depending on the fitting algorithm used, different combinations of α and σ may be

selected. This ambiguity is undesirable as the parameters of the gamma distribu-

tion are expected to characterize the performance of the material. Therefore, in this

framework, a reasonable value of α is selected and held constant so that the distri-

butions of FIPs may be fit using only µ and σ. Furthermore, a threshold on the FIP

responses is typically selected before fitting the gamma distribution [68, 164]. Only

the largest FIP values are of interest, and thresholding improves the achieved fitting

quality. Procedures for selecting the threshold will be discussed in a later section.
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Note that the identification of the performance characteristics provides a sensible

way to evaluate the number of SVEs required to represent the fatigue response of the

microstructure of interest. The convergence of each performance characteristic with

increasing numbers of SVEs for a particular microstructure may be taken as evidence

of convergence of the fatigue response.

5.3.3 Formulation of the S-P Linkage

Given low-dimensional representations of both the microstructures and their associ-

ated HCF FIP distributions (as computed using existing physics-based models), the

desired S-P linkage may be established. In previous studies where each microstructure

volume was simply represented by a limited number of PC scores, multivariate polyno-

mial expressions were particularly successful in the connection to effective properties

[22, 24]. A similar approach is proposed in this work, where each microstructure is

represented by the mean and variance of the PC scores of the ensemble of SVEs.

Consequently, the S-P linkage takes the form

µk, σk ≈ A0 +
∑
i

Aiα̃
k
i (5.6)

where Ai are physics-capturing coefficients for each performance characteristic and

α̃ki are the features which describe the microstructure indexed by k. More specifically,

α̃ki are multiplicative combinations of elements of the mean vector and total variance,

which may be expanded as follows,

α̃ki = PC1
a · PC2

b · ... · PCR̃

c · V ARtot
d (5.7)

where PCi
j

is a mean PC score raised to the jth power, and V ARtot
d is the total

variance raised to the dth power. Once the physics-capturing coefficients have been

calibrated, the FIP distribution for a new microstructure may be predicted with
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Equation (5.5), Equation (5.6) and Equation (5.7) at low computational expense.

5.4 Dataset Compilation

In this study, the framework described in Section 5.3 is employed to rank-order the

HCF resistance of α-titanium microstructures. The first step in achieving this goal

is to obtain ensembles of SVEs and their associated FIP responses. A set of twelve

titanium microstructures were selected for this study. Eleven of these are used to

calibrate the physics-capturing coefficients of Equation (5.6), and one is retained to

demonstrate the effectiveness of the linkage in the prediction of the HCF response

of previously unseen microstructures. Although one might consider this as a very

limited set of microstructures, our goal here is to establish a novel framework and

demonstrate its applicability to the very complex problem of extracting re-usable

structure-property linkages related to HCF. Therefore, instead of focusing our efforts

on generating a large dataset that would have practical significance to a specific appli-

cation, we decided to aggregate available data from prior work (suitably supplemented

where needed) [74–76] and focus more on the development of the data-centric frame-

work described earlier. A total of 6000 SVEs and their HCF responses (via previous

MKS studies [74, 75]) were obtained for the twelve microstructures. The remainder

of this section describes the details of the procedures employed in obtaining these

datasets.

5.4.1 Synthetic Microstructures

In this work, microstructures are represented by sets of synthetically generated SVEs.

Each SVE must be of sufficient size to enclose the maximum correlation length-scale

to capture key interactions between microstructure features. In previous work on

the construction of localization linkages, it was observed that the magnitude of the

Green’s function based influence coefficients quickly decayed for both elastic and
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inelastic response of materials with low- to moderate-contrast in the respective prop-

erties of the local microstructural constituents [13, 14, 17, 21, 23, 74]. In a recent

MKS localization study for α-titanium microstructures, the influence functions de-

cayed close to zero well within a 21x21x21 voxel region [74, 75]. Therefore, SVEs

with the same voxel dimensions and 210µm side lengths are employed here.

The synthetic SVEs employed in this work are generated using the open source

DREAM.3D software [46], using a log-normal grain size distribution with a mean

grain size of 30µm and a 15µm standard deviation. Each SVE is assigned a distribu-

tion of crystal lattice orientations through a small set of texture components identified

by Bunge Euler angles as well as intensities and spreads. A diverse set of textures em-

ployed in prior work [69, 132] are selected for this study. This set of textures exhibits

both significant and subtle differences among the members, and are selected mainly

to validate the framework presented in this work. DREAM.3D generates individual

polycrystalline volumes through an ellipsoidal packing algorithm, and crystal lattice

orientations are assigned to achieve the target texture. In theory, the synthetic SVEs

generated for a selected set of target microstructure statistics should be statistically

similar. In practice, this is not the case due to the practical difficulties associated

with matching target microstructure statistics in a volume with a limited number of

voxels. This structural variation within the ensemble of synthetic SVEs is in fact

desirable as it mimics the variation of randomly sampled regions of experimentally

characterized microstructures. These concepts will be further explored through the

low-dimensional, statistical representations of each SVE in Section 5.5.1. In prior

studies [74–76], 500 SVEs were generated using DREAM.3D for each of the 12 target

microstructures used in this work. Figure 5.1 presents an example 3-D SVE colored

by grain ID for each texture (shown as a (0002) pole figure). Microstructure J was

reserved for the validation of this framework as it was expected to be an interpolation

between the other microstructures in terms of its 2-point spatial statistics [76]. The
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Figure 5.1: Grain ID maps and (0002) pole figures of sample SVEs for microstructures
A through L.

remaining eleven microstructures are used for the calibration of the physics-capturing

coefficients of Equation (5.6).

5.4.2 HCF Property Evaluation

In this framework, the computation of the FIP response requires that physics-based

simulation methods be used to evaluate the stress and plastic strain fields in each

SVE. Performance characteristics are extracted by fitting the EVD of FIP responses

for a chosen ensemble of SVEs to the gamma distribution of Equation (5.5). These

performance characteristics serve as reduced-order HCF property representations in

the calibration of the physics-capturing coefficients of Equation (5.6). Typically,

CPFEM cyclic simulation approaches [69, 163] are used to evaluate the response

fields of the SVEs. In this case, however, response fields are evaluated using the MKS

localization approach described in the introduction section. This decision significantly

reduces the cost of obtaining the data set for this study [74, 75].

The details of the MKS localization approach have been described in numerous

prior publications [21, 23, 74]. The framework is based on expressing the microscale
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field as a series-sum of terms that represent the convolution of the microstructure

fields with kernels derived from Green’s functions (approximated here as influence

functions) that are calibrated to results from numerical simulations. The MKS frame-

work was used in a recent study [74, 75] to accelerate the rank-ordering of the HCF

resistance of titanium microstructures. In that work, the MKS localization model

was employed to predict the full tensorial elastic strain fields in the polycrystalline

microstructures. At macroscopic strain levels far less than the bulk yield point, the

local plastic strains are expected to be orders of magnitude smaller than the elastic

strains. Consequently, in HCF evaluations, it is reasonable to assume that the stress

fields are the same as those obtained in purely elastic simulations. In this prior work,

it was shown that the elastic stress fields obtained from the MKS localization link-

ages can be used to reliably compute the local plastic strain fields and the associated

FIP fields. This same strategy is employed to compute the FIP fields for all 6000

SVEs used in this work. The imposed loading condition corresponds to fully reversed

loading cycles under imposed uniaxial-strain, with periodic boundary conditions.

5.5 Model Calibration

Given a sufficiently comprehensive dataset of microstructures and associated HCF

responses, it becomes possible to develop a reduced-order S-P linkage. This task

involves several steps. First, the SVEs representing the microstructures must be

quantified through 2-point spatial statistics. Next, the spatial statistics representing

each SVE are transformed into a reduced-dimensional space obtained through PCA.

Finally, the physics-capturing coefficients may be calibrated through linear regression.

The optimal linkage is systematically identified through a cross-validation procedure

in which the quality of fit for linkages with different parameterizations are compared.

In this section, each of these steps are presented in detail for the dataset identified in

Section 5.4.
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5.5.1 Quantification of Statistical Volume Elements

The first step in developing a reduced-dimensional representation of the microstruc-

ture is to quantify the SVEs using spatial statistics and PCA. Several details require

further attention in the application of Equation (5.1) to compute the spatial statis-

tics of each SVE. First, the truncation level of the GSH basis functions, L̃, used to

represent the dependence of the spatial statistics on crystal lattice orientation must

be selected. Due to the properties of the Fourier series, increasing L̃ also increases

the fidelity of the representation of the spatial statistics, the dimensionality of the

Fourier coefficients and the cost to compute them. For certain properties, only lim-

ited fidelity representations of microstructure are required to construct successful S-P

linkages. For example, in previous work [19, 21, 52, 76, 78, 79], it was shown that only

15 GSH basis functions contribute to the efficacy of S-P linkages developed to predict

elastic properties in hexagonally symmetric materials. Unfortunately, no such limit is

known for inelastic properties, and many more basis functions may be required. No

more than 41 basis functions are employed in this work to limit the cost of computing

the spatial statistics; however, there is a possibility that the inclusion of more basis

function may further improve the S-P linkage.

Additionally, FLK
t is typically computed only for certain selected combinations

of L and K. This practice stems from the realization that many redundancies exist

in the Fourier coefficients of the spatial statistics [76, 126]. While PCA recognizes

the linear redundancies, it cannot do so for the nonlinear ones. The final decision

on which coefficients to compute requires balancing the fidelity of representation of

the 2-point statistics and the dimensionality of the Fourier coefficients. In prior

work [76], the quality of simple S-P linkages for the prediction of elastic stiffness and

yield strength in α-titanium polycrystals was evaluated using different sets of FLK
t .

Through this study, the optimal set of Fourier coefficients was identified as follows:

{FL1
t |L = 1, 2, ..., L̃} ∪ {FL2

t |L = 2, 3, ..., L̃} for a total of 2L̃ − 1 combinations of L
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and K. This same set is used in this work, as it was shown to be efficient and effective

for the prediction of both elastic and inelastic properties.

Even after paring down the Fourier coefficients of the spatial statistics, FLK
t is

still a large set. It would be desirable to represent the spatial statistics of each

SVE with a handful of numbers instead. To achieve this reduction in dimensionality,

the PCA is applied on the SVEs associated with the calibration microstructures to

identify the directions of maximum variance. SVEs associated with the validation

microstructure are purposefully not included in this set to avoid biasing the eventual

evaluation of the success of the S-P linkage in predicting the HCF response of new

microstructures. From the results of the PCA algorithm, all SVEs may be transformed

into the reduced-dimensional space. Depending on the choice of L̃, different levels

of compaction are achieved. These trends are most clearly identified by examining

the cumulative structural variance explained by increasing numbers of PCs (where

the explained variance in one PC dimension is the variance of the PC scores of the

SVEs in that dimension). Figure 5.2 shows that for each truncation level, L̃, the

PCA cumulative explained variance asymptotically approaches 100% as the number

of included PC dimensions increases. Furthermore, this rate of approach is slower for

higher L̃. This result is intuitive, as spatial statistics defined with more GSH basis

functions have higher fidelity, and therefore contain more nuanced information than

spatial statistics defined with fewer GSH basis functions.

It is also informative to visualize the SVE ensembles to obtain a qualitative picture

of the differences between microstructures. This is particularly convenient in PC

space, where approximately 85% of the structural variation for L̃ = 15 is captured

in the first two PCs. Figure 5.3 simply plots each SVE by its PC scores in the first

two components, color-coded by its associated microstructure. First, it is important

to note that SVEs are well clustered by microstructure even in only two dimensions.

This is a testament to the effectiveness of PCA in reducing the dimensionality of
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Figure 5.2: PCA cumulative explained variance as a function of R̃ and L̃.

the spatial statistics. Second, microstructures which are nearby in PC space are also

qualitatively similar in terms of their texture. For example, microstructures J and

K, which are neighbors in Figure 5.3, have very similar textures, as seen in the pole

figures in Figure 5.1. In contrast, microstructures K and D, which are far apart in

PC space, have distinctly different textures. While some simple texture trends can be

identified by examining Figure 5.1 and Figure 5.3, more robust relationships would

only become clear using more PC dimensions. Also, notice that the SVE ensembles

for each microstructure do indeed have significant variance as was discussed in Section

5.4.1. Last, notice that the direction of maximum variance within each microstructure

does not necessarily align with the overall direction of maximum variance for all SVEs

(Microstructure E for example). This is just one demonstration of the statistical

complexity of each ensemble of SVEs.

5.5.2 Microstructure Subdivision to Expand Available Calibration Data

Observant readers perhaps will anticipate a troubling feature of the calibration dataset;

namely, the number of available microstructures is not sufficient to robustly calibrate

the physics-capturing coefficients of Equation (5.6) for all but the simplest linkages.

Furthermore, identifying and evaluating the properties of ideally hundreds or thou-
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Figure 5.3: All 6000 SVEs are plotted by their coordinates in the first two principal
components. The SVEs are color- and shape-coded by their associated microstructure
type.

sands of microstructures would prove to be prohibitively expensive and time consum-

ing. Clearly, it is desirable to extend the usefulness of a limited set of characterized

microstructures. One opportunity is to sample a subset of SVEs from the greater

ensemble of a particular microstructure. This subset of SVEs would have a different

mean and total variance as well as different values for the performance characteristics

than the original microstructure; therefore it would serve as a distinct “data point”

from the perspective of Equation (5.6). Each microstructure could be sub-sampled in

this manner many times to generate as many unique data points as required. Note

that an individual SVE may be simultaneously included in multiple subsets so long as

each subset has a unique statistical description and set of performance characteristics.

Diminishing returns are expected for very large numbers of subsets as each subset is

limited by the extents of the SVE ensemble of the parent microstructure in PC space.

Consequently, 20 subsets will be selected from each original SVE ensemble. Prior to
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the development of such an algorithm, certain details must be addressed, including

the identification of the minimum number of SVEs required per subset and the desired

spatial distribution of the SVEs themselves.

5.5.2.1 Identification of the Minimum SVE Set

One of the critical details in the implementation of such an algorithm is the identifi-

cation of the minimum number of SVEs required per subset for a given size of SVE.

This lower limit must be selected such that each subset approximates an RVE for

the HCF property of interest. In this work, the convergence of the performance char-

acteristics is closely tied to the threshold selected on the FIP distribution. If a low

percentile threshold is selected, then each SVE in the ensemble will have many voxels

with FIP responses exceeding the threshold, and relatively few SVEs will be required

to achieve convergence of the performance characteristics. Unfortunately, the gamma

distribution is not expected to closely fit such a broad-spectrum FIP response, espe-

cially in the tail of the distribution containing the largest FIP values that control the

HCF resistance. Choosing a larger threshold may improve the quality of the gamma

distribution fit for the extreme FIP values; however, this will also increase the number

of SVEs required for convergence. This interplay is presented in Figure 5.4 for the

microstructure labeled I, helping to guide the selection of both the FIP threshold and

the minimum number of SVEs. Figure 5.4a shows the Gamma distribution fit to the

FIP distribution for three different threshold levels. This plot provides the proba-

bility that a randomly selected voxel from any of the 500 SVEs in the ensemble will

exceed the selected FIP value. The logarithmic scale on the vertical axis emphasizes

the most extreme FIP responses (which would be obscured in a typical CDF plot).

As evident in Figure 5.4, increasing the threshold on the FIP distribution brings the

fit of the gamma distribution closer to the true FIP response. Figures 5.4b, 5.4c and

5.4d show the convergence of the performance characteristics for the 90th, 99th, and
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(a)

(b)

(c)

(d)

Figure 5.4: (a) The FIP probability of exceedance is plotted for the original FIP
values for microstructure I alongside the gamma distribution fits with 90th, 99th
and 99.9th percentile thresholds on the FIPs. The convergence of the performance
characteristics is plotted for increasing numbers of included SVEs for the (b) 90th,
(c) 99th, and (d) 99.9th percentile thresholds for microstructure I.

99.9th percentile thresholds on the FIP distribution, respectively. While convergence

is achieved for subsets of fewer than 100 SVEs for the 90th and 99th percentile FIP

thresholds, more than 500 SVEs may be required for the 99.9th percentile threshold

(based on σ and α). From this analysis, it appears that the best compromise between

convergence and accuracy-of-fit is achieved for a 99th percentile FIP threshold and a

minimum of 100 SVEs. Lastly, Figure 5.4c indicates that it is most suitable to hold

α constant at a value of 0.85.

It is sometimes useful to characterize the extreme value distribution of FIP re-

sponses through a comparison of the mean and thresholded FIP responses. Con-

sequently, the mean and standard deviation of the full FIP distributions (including

all 500 SVEs) are computed for each microstructure. This allows for comparison of
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the mean and 99th percentile FIP responses. For the twelve microstructures under

consideration, the 99th percentile FIP is between 3.19 (for microstructure K) and

4.32 (for microstructure I) standard deviations greater than the mean FIP. This rein-

forces the fact that the extreme value distributions considered here are 3-5 standard

deviations from the mean of the overall probability distribution of FIPs, consistent

with industry practice regarding low probability of failure of design of fatigue critical

components.

5.5.2.2 Subset Selection Algorithm

At this point, it is appropriate to devise a strategy to select which SVEs to assign

to each subset. To retain the predictive capabilities of the resultant linkage, it would

be desirable to select subsets such that the distribution of PC scores of the SVEs are

reminiscent of the characteristic distributions of the original ensembles. Conveniently,

the estimated PDF of each original SVE ensemble clearly resembles a multivariate

Gaussian distribution. Accordingly, SVEs should be selected such that each subset

approximates some desired multivariate Gaussian. Furthermore, these subsets must

be selected to exhibit a wide range of mean locations and total variances to enhance

the richness of the calibration set. Lastly, each subset is restricted to sample only

from one SVE ensemble to reduce the complexity of the calculation.

The next step is to develop an algorithm to identify reasonable target distribu-

tions for the selection of a subset. First, it is useful to isolate the SVE set of the

microstructure of interest and transform it to a frame aligned with its directions of

maximum variance. This task is easily achieved through another local application of

PCA. Next, it is conditioned that the target multivariate Gaussian distribution has

zero co-variance with respect to the frame aligned with the principal directions of the

original SVE set. The following relationships may be defined to randomly generate
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suitable target parameterizations of the multivariate Gaussian distribution, i.e.,

mt = so x, x ∼ U([−1, 1]) (5.8a)

st = so log1000(y), y ∼ U
([

10000.5, 10000.5
])

(5.8b)

where so is the sample standard deviation of the original SVE set, and mt and st

are the sample means and standard deviations of the desired subset, respectively.

From Equation (5.8b), mt is no more than one standard deviation distance from the

center of the original SVE set in each dimension. Equation (5.8b) ensures that st

ranges between so/2 and so in each dimension, yet is heavily weighted towards so.

Equation (5.8) is formulated so that the subsets are similar in size to the original

SVE ensembles, yet vary significantly in terms of their mean location and shape.

Finally, an algorithm is developed to select the optimal set of SVEs to match the

target multivariate Gaussian distribution. Although there are many potential ways

to achieve this task, in this work the difference between the target PDF and the

PDF of the selected points is iteratively minimized. To start, the subset is initialized

to contain every SVE from the original ensemble. In each iteration, kernel density

estimation (KDE) [165] is used to estimate the multidimensional PDF of all SVEs

in the subset. KDE is an alternative approach to traditional histograms for the

estimation of the PDF of discrete data points through the summation of Gaussian

distributions assigned to each data point (although other kernels shapes may be

employed) [165]. Once the PDF of the subset is estimated, the error is computed

against the target multivariate Gaussian PDF. Based on the error, the point with the

maximum positive error is removed from the subset, and the iterations are continued

until the subset retains a desired number of points. Unfortunately, the algorithm

tends to select points clustered by the characteristic length-scale of the Gaussian

kernel in KDE, called the bandwidth. To avoid the formation of these patterns, the
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bandwidth is randomized each iteration per the following relationship, i.e.,

bandwidth = U([0.6, 0.8]) ∗ w, w = σ

(
N(D + 2)

4

) −1
D+4

(5.9)

where ω is the bandwidth according Silverman’s rule of thumb, σ is the standard

deviation of the data-points in each dimension, N is the number of data points, and D

is the number of dimensions [166]. Note that in each iteration the selected bandwidth

is smaller than what Silverman’s rule of thumb suggests; this results in a slightly

noisier PDF with higher fidelity in local regions. Three-dimensional Gaussians were

matched to ensure a good quality of fit for each target statistic.

5.5.3 S-P Linkage Selection

With a sufficiently large number of SVE subsets and associated performance charac-

teristics, it becomes possible to obtain an S-P linkage for the prediction of FIP EVDs.

Specifically, the physics-capturing coefficients of Equation (5.6) may be calibrated for

any selected subset of features (from the set identified in Equation (5.7)) using a vari-

ety of regression techniques. The selection of the feature set, however, is non-trivial,

as Equation (5.7) can describe an infinite variety of features. Even if one limits the

numbers of principal components and the polynomial order employed, the number of

features is still prohibitively large. Consequently, it is necessary to employ feature

selection techniques to reduce the feature set. Finally, cross-validation techniques are

used to identify the specific form of the S-P linkage with the best predictive capability

while not resulting in over-fits. The remainder of this section discusses each of these

steps in detail.

First, bounds on the set of features defined by Equation (5.7) are delineated based

on previous experience and common sense. Figure 5.2 provides some guidance with

regard to the selection of R̃; for the three GSH truncation levels explored in this work,
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it appears that the first 25 principal components capture over 98% of the structural

variance, therefore this will serve as a reasonable cutoff in this work. As mentioned in

Section 5.5.1, it is difficult to know what truncation level in the GSH basis functions

is sufficient to capture the inelastic response of a microstructure. Therefore, the

maximum set of 41 GSH basis functions are employed in this work. In prior studies

where polynomial terms were also used, it was observed that higher order terms

have the potential to reduce the stability of the linkage [22, 24]. Furthermore, as

the polynomial degree increases, the number of features explodes. From a starting

set of 26 features, 352 second-order features can be generated, and 3276 third-order

features can be generated. In recognition of these two issues, in this study only first-

and second-order terms are used.

At this stage, there are still 378 unique features to contend with, so it is helpful to

employ techniques to identify which features are expected to contribute the most to

the final linkage. The simplest of such techniques are univariate filtering algorithms,

which independently evaluate the strength of relationship between each individual

feature and the response variable of interest. In this work, the Pearson correlation

[82] of each feature versus the response variable (µ or σ) is evaluated, and features

are rank-ordered based on the absolute value of the correlation (the Pearson correla-

tion measures the positive or negative linear dependence between two variables and

provides an output between -1 and 1). A ranking of the top ten features and their

associated Pearson correlation scores versus µ and σ is shown in Table 5.1. The top

ranked features contain combinations of the mean subset locations in each dimension

and the total variance in unpredictable combinations. Also, note that individual first-

order features are present repeatedly in higher order features; for example, V ARtot

is present in four of the top ten features for µ. Furthermore, seven of the features

are common between the top ten sets for µ and σ. This is likely due to the high

correlation (R = 0.941) between µ and σ for the calibration SVE subsets.
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Table 5.1: The top ten features ranked by the Pearson correlation are presented for
both performance characteristics.

Feature µ Pearson σ Pearson
Ranking Correlation Correlation

1 PC1 · PC7 -0.654 PC1 · PC7 -0.730
2 PC1 · PC5 0.647 PC1 · PC5 0.639
3 PC7 0.586 PC6 0.590
4 PC6 0.574 PC7 0.588
5 PC7 · V ARtot 0.547 PC6 · V ARtot 0.529
6 PC5 · PC6 0.535 PC7 · V ARtot 0.518
7 V ARtot 0.519 PC3 · PC5 0.517
8 PC6 · V ARtot 0.515 PC1 · PC25 0.514

9 V ARtot
2 0.495 PC1

2
-0.506

10 PC1 · PC25 0.491 PC5 -0.472

Once the top features have been identified, training and cross-validation errors

are used to select the final form of the S-P linkage. Training error refers to the

error in the linkage’s prediction of the responses of the calibration data-points. In

cross-validation, data-points are removed from the calibration set and reserved before

the linkage is calibrated. The error in the model’s prediction of the reserved data

points can be used as a measure by which to compare differently parametrized mod-

els. This is typically done a number of times for each model to ensure the statistical

robustness of the measure. In this work, the collection of subsets associated with

each original microstructure are split into two, for a total of 22 groups of 10 subsets.

Cross-validation is then performed for each of these groups. This approach is less

computationally expensive than Leave-One-Out cross-validation [22, 24, 76] and en-

courages the selection of a simple linkage with strong predictive capability for new

microstructures. Cross-validation is performed for linkages that include increasing

numbers of the previously-identified, highly-correlated features. The results of this

procedure are presented in Figures 5.5a and 5.5b for µ and σ, respectively. Notice

that the cross-validation error first decreases along with the training error as more

features are included, but eventually diverges as the number of features become too
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(a) (b)

Figure 5.5: The training and cross-validation errors are plotted versus the number of
top-ranking features included in the linkage for (a) µ, and (b) σ.

large for the number of data-points. The ideal number of features is selected by iden-

tifying where the training and cross-validation errors begin to diverge. From these

plots, the top 61 and 50 features are selected for µ and σ, respectively, both at a GSH

truncation level of L̃ = 41.

5.6 Model Validation

In the previous section, the specific form of Equation (5.6) expected to be most

successful in the prediction of the performance characteristics was selected. It is now

desirable to evaluate the efficacy of the selected linkage in rank-ordering the HCF

resistance of titanium microstructures. First, the accuracy of the prediction of µ and

σ is evaluated for all 240 SVE subsets (used for both calibration and validation). The

success of the linkage in this regard is clearly demonstrated in Figure 5.6, where µ

and σ as obtained via simulation and S-P linkage methods are compared for each

SVE subset. Notice that µ and σ are presented on a log scale as they differ by orders

of magnitude between subsets. The mean relative error (normalized by the mean

log-scaled value of the performance characteristic) is 0.2% for both µ and σ and does

not exceed 1.3% in any individual subset. Furthermore, the predicted performance

characteristics for subsets associated with the validation microstructure (labeled J)
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(a) (b)

Figure 5.6: The simulated versus predicted performance characteristics for each SVE
subset are plotted for (a) ln(µ) and (b) ln(σ).

exhibit low error.

Evaluating the error in the predicted performance characteristics of the SVE sub-

sets is informative, but it is important to demonstrate the prediction of the EVDs

of the original twelve microstructures, each represented by 500 SVEs. To this end,

Equation (5.6) is used to predict µ and σ for each original SVE set. Along with

the preset shape parameter, α, this set of performance characteristics can be used

to predict the FIP EVD for each microstructure. The results of this evaluation are

presented in Figure 5.7, where the true simulated FIP EVDs (on the left) are com-

pared against the EVDs predicted using the reduced-order model developed in this

study (on the right). Clearly, the general rank-ordering of the microstructures in

terms of HCF resistance is preserved in the MKS prediction, with microstructures

G and I exhibiting the most and least resistance to HCF, respectively. Furthermore,

note that the EVD of the validation microstructure J is nearly coincident with mi-

crostructure L in the results of both approaches. Small differences can be identified

between the simulations and MKS in terms of the probability-of-exceedance at which

two EVDs intersect. This is most clear when examining the EVDs of microstructures

A and C, where the crossover point is at a lower probability-of-exceedance level for
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(a) (b)

Figure 5.7: FIP EVDs are plotted for each of the twelve microstructures (labeled
A through L) extracted from (a) the original simulations and (b) the novel MKS
protocols.

the MKS prediction than for the simulation. Note that the probability of exceedance

is plotted on a log scale, and tends to emphasize the features of the FIP EVD at

extremely low probabilities. Consequently, certain features of the simulated EVDs

below 10−5 probability are not mirrored in the predicted EVDs. These deviations

are not large enough, however, to significantly change the rank-ordering of the HCF

resistance. These results indicate that the MKS protocols can reliably rank-order the

HCF resistance of a diverse set of polycrystalline microstructures.

It is also important to emphasize the computational benefits of these new MKS

protocols. If traditional CPFEM simulations were employed to evaluate the HCF

resistance of these twelve microstructures (as represented by 6000 SVEs), roughly

18,000 hours of CPU time on a supercomputer would be required. Furthermore,

this evaluation would potentially require numerous software licenses, especially if

simulations were performed in parallel. Once the physics-capturing coefficients are

calibrated, the MKS protocols can complete the same task in fewer than 6 hours (this

includes the time required to compute the spatial statistics, transform to PC space

and evaluate Equation (5.6)). This represents more than a 3000 times speed-up in

CPU time versus traditional approaches to conduct this evaluation of extreme value
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FIP distributions for the SVEs of interest.

5.7 Conclusions

In this work, novel protocols are developed to connect reduced-order representations

of polycrystalline microstructures and their associated fatigue responses. This ap-

proach combines several recent advancements in the computational analysis of fatigue

and the development of microstructure-sensitive models for polycrystalline materials,

resulting in robust and efficient protocols well suited for next-generation materials de-

velopment efforts. The methodology is successfully demonstrated in the rank-ordering

of the HCF resistance of twelve diverse α-titanium microstructures. Not only are the

extreme value fatigue responses accurately predicted, but the computational cost of

the analysis is dramatically reduced; the measured speed-up in CPU time versus

traditional approaches is over 3000 times.
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CHAPTER 6

MKS HOMOGENIZATION PROTOCOLS TO

RANK-ORDER THE TRANSITION FATIGUE

RESISTANCE OF POLYCRYSTALLINE

MICROSTRUCTURES

This work was being prepared for submission to a peer-reviewed journal as of April

20, 2017. The title of the paper is Reduced-order microstructure-sensitive protocols

to rank-order the transition fatigue resistance of polycrystalline microstructures. The

order of authorship is as follows: Noah H. Paulson, Matthew W. Priddy, David L.

McDowell and Surya R. Kalidindi.

6.1 Abstract

The transition fatigue regime between low cycle fatigue (LCF) and high cycle fatigue

(HCF) is often addressed in the design and performance evaluation of load-bearing

components used in many structural applications. Transition fatigue is character-

ized by elevated levels of local inelastic deformation in significant regions of the mi-

crostructure as compared to HCF. Typically, crystal plasticity finite element method

(CPFEM) simulations are performed to model this phenomenon and to rank-order

microstructures by their resistance to crack formation and early growth in the regime

of transition fatigue. Unfortunately, these approaches require significant computa-

tional resources, inhibiting their use to explore novel materials for transition fatigue
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resistance. Reduced-order, microstructure-sensitive models are needed to accelerate

the search for next-generation, fatigue-resistant materials. In a recent study, Paulson

et al. [167] extended the materials knowledge system (MKS) framework for rank-

ordering the HCF resistance of polycrystalline microstructures. The efficacy of this

approach lies in the reduced-dimensional representation of microstructures through

2-point spatial correlations and principal component analysis (PCA), in addition to

the characterization of the HCF response with a small set of performance measures.

In this work, these same protocols are critically evaluated for their applicability to

rank-order the transition fatigue resistance of the same class of polycrystalline mi-

crostructures subjected to increased strain amplitudes. Success in this endeavor re-

quires the formation of homogenization linkages that account for the significantly

higher levels of local inelastic deformation and stress redistribution in transition fa-

tigue as compared to HCF. A set of 12 α-titanium microstructures generated using

the open access DREAM.3D software [46] are employed for this evaluation.

6.2 Introduction

In high-performance applications, components may be subject to repeated loads that

bring large volumes of material close to macroscopic plastic yield. Crack growth in

the transition regime between HCF and LCF is a life-limiting phenomenon for com-

ponents in aerospace, security and motorsport industries. The regime of transition

fatigue is physically complex, with zones of cyclic plastic strain spreading beyond

stress concentrations across grains and other microstructure features [58, 62, 83].

Furthermore, nearest-neighbor interactions in the material become prevalent, exhib-

ited through phenomena such as stress- and strain-redistribution [74]. Consequently,

enhancements to the transition fatigue life require simulations of microscale stress

and strain distributions. Generally, such simulations demand significant investments

of computational resources and time. It is desirable to develop and employ suitable
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low-computational cost, reduced-order models that can reliably account for the influ-

ence of the microstructure and cyclic stress and plastic strain redistribution on the

drivers for transition fatigue life in materials design efforts.

In recent years, McDowell and co-workers have developed a computational frame-

work that employs CPFEM simulations to rank-order the fatigue resistance of mi-

crostructures under different loading conditions [66, 67, 69]. Specifically, cyclic CPFEM

simulations are performed on sets of statistical volume elements (SVEs) for each mi-

crostructure of interest. Then, from the resultant stress and cyclic plastic strains,

surrogate measures of the driving force for fatigue crack initiation and growth, called

fatigue indicator parameters (FIPs), are evaluated at all spatial locations in the SVEs.

The fatigue performance of different microstructures for a selected loading condition

is compared through extreme value distributions (EVDs) of the FIP responses. Un-

fortunately, these protocols require significant numbers of computationally expensive

CPFEM simulations, which limits progress towards high throughput exploration pro-

tocols for the assessment of candidate materials.

Reduced-order computational and analytical approaches provide an opportunity

to efficiently explore fatigue responses in the regime between HCF and LCF for various

materials. Stress- and strain-based methods have been used for decades to quickly

estimate the fatigue lives of materials at different strain amplitudes [168]. While

efficient, these empirical approaches heavily rely on experimentally determined pa-

rameters and do not account for the huge variability exhibited in microstructures

caused by variations in the processing path. Indeed, quantitative accounting of the

influence of microstructure on the transition fatigue life has been a major challenge

because of the very complex interactions that occur naturally between the heteroge-

neous constituents present in the material internal structure at multiple hierarchical

length scales. Although a number of composite theories account for some of the sim-

pler details of the material microstructure [9–12], they have not been successful in
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accounting for the rich and complex interactions of individual grains in a polycrys-

talline microstructure, especially for loading conditions leading to elevated levels of

local inelastic strains in the transition fatigue regime. High fidelity, reduced-order

representations of the microstructure are therefore central to the formulation of high-

value structure-property linkages for transition fatigue performance that can be used

effectively in high throughput explorations of large materials design spaces.

The materials knowledge system (MKS) framework has been developed over the

past decade by Kalidindi and co-workers for the mining of microstructure-sensitive

homogenization and localization linkages [13–30, 74, 76, 169]. The MKS homogeniza-

tion framework [15, 18, 20, 22, 24, 27–30, 76] is particularly promising because the

reduced-order representations of microstructure it employs are well suited to rapid

materials exploration efforts. Specifically, microstructure volumes are quantified us-

ing n-point spatial correlations and are transformed into a reduced-dimensional space

using PCA. The homogenization relationship may then be calibrated using an ensem-

ble of microstructure volumes and their associated effective properties (obtained via

experiments or existing physics-based models) or processing parameters. This frame-

work has been extensively demonstrated in the prediction of the transport properties

of porous fuel cell materials [22], the inelastic properties of dual-phase steels [24]

and the bulk mechanical properties of polycrystalline α-titanium microstructures. It

has also been successfully extended to the prediction of structure evolution of me-

chanically strained polymers [28], additive manufacturing [29], and ternary eutectic

alloys [30] in addition to the development of process-structure-properties linkages in

dual-phase steels from experimental assays [27].

In prior work, the MKS homogenization framework was extended to rank-order

polycrystalline microstructures according to their resistance to the formation of cracks

under HCF [167]. As a case study, 12 α-titanium microstructures were rank-ordered,

with each microstructure corresponding to a distinct crystallographic texture. First,
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the ensembles of synthetically-generated SVEs (which represent each microstructure)

were quantified using a formulation of the 2-point spatial statistics specialized for

polycrystalline materials [76]. PCA was then performed to reduce the dimensionality

of the spatial-statistics, and each microstructure was represented by the mean loca-

tion and variance of the ensemble of spatial statistics in principal-component (PC)

space. Simultaneously, the gamma distribution was fit to the EVD of FIP responses

representing the performance of each microstructure (as computed using a physics-

based model). The extracted fitting parameters (called performance characteristics)

then served as the effective properties in the MKS homogenization linkage. The S-P

linkage was then calibrated using the reduced-order representations of 11 of the 12

microstructures and their associated performance characteristics. The success of the

resultant S-P linkage was demonstrated through the comparison of the rank-ordering

of all 12 microstructures (according to their resistance to HCF) to the results of

brute force CPFEM, while providing a 3000 times speed-up in CPU time versus the

traditional CPFEM approach.

This study builds on the prior work described above and specifically evaluates the

efficacy of the recently developed MKS homogenization protocols for rank-ordering

polycrystalline microstructures based on their transition fatigue performance. This

performance is assessed via surrogate measures for the driving force to form fatigue

cracks. The same 12 α-titanium microstructures from the prior study [167] are em-

ployed here. Due to the significant phenomenological differences between HCF and

transition fatigue, the MKS protocols must overcome a new set of challenges in the

transition fatigue regime. First, the cyclic plastic strains are expected to be several

orders of magnitude larger than those in HCF, with comparable magnitudes to the

elastic strains (and even total strains) in certain microstructure locations. Further-

more, due to these larger cyclic plastic strain ranges, redistribution of both cyclic

stress and plastic strain is expected to be significant. To effectively rank-order poly-
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crystalline microstructures based on their resistance to transition fatigue, the MKS

must capture the sophisticated physics underpinning these phenomena. There are

reasons to believe that this approach has merit; in prior work [76], the MKS frame-

work was employed to construct a structure-property (S-P) linkage for yield strength

in α-titanium, where the degree of plastic deformation was also significant. The flex-

ibility of the MKS framework in representing both linear and non-linear phenomena

stems from the use of n-point spatial statistics to capture microstructure interactions

as suggested by statistical continuum theories [19, 31–33].

6.3 Description of Protocols

The protocols developed by Paulson et al. [167] to rank-order the fatigue resistance

of polycrystalline microstructures rely on reduced-order representations of both the

microstructure and the fatigue performance. This is challenging because each mi-

crostructure must be represented by a set of SVEs, constituting a massive quantity

of salient information. The following strategy is enacted to confront this challenge;

first, all SVEs representing the microstructure are quantified using 2-point spatial

statistics and transformed into a reduced-dimensional space using PCA. Then, each

microstructure may be represented by the mean location of the SVE spatial statistics

in PC space along with a measure of the structural variance. Similarly, the local

responses (i.e., computed surrogate measures of driving force to form fatigue cracks,

based on FIPs) of all SVEs in the ensemble contribute to the overall transition fatigue

performance of the microstructure. In this framework, this performance is charac-

terized by the EVD of FIP responses in all SVEs. This large set of discrete data

points may be represented by three parameters after fitting the raw FIP EVD to the

gamma distribution, as described next. Figure 6.1 presents a general outline of the

steps involved in the calibration of the homogenization linkage. These steps with be

discussed further throughout the remainder of this work.
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Figure 6.1: Schematic summary of the protocols employed to calibrate an MKS ho-
mogenization linkage for the characterization of transition fatigue performance in
polycrystalline microstructures.

The extreme value distribution of FIPs is obtained by applying a threshold to

the raw distribution of FIP responses in the SVE ensemble. The threshold level

is generally selected to achieve a high-quality fit of the gamma distribution to the

data. Generally, the extreme FIP values are of most interest and 99% or more of the

lower values are discarded. The probability density function (PDF) and cumulative

distribution function (CDF) of the gamma distribution are given by Equation (6.1a)

and Equation (6.1b), respectively [68, 81], as follows

f (z|α) =
1

Γ (α, 0)
zα−1e−z (6.1a)

F (z|α) =
Γ (α, z)

Γ (α, 0)
(6.1b)

Γ (α, z∗) =

∫ ∞
z∗

zα−1e−zdz, z =
x− µ
σ

, α > 0 (6.1c)

In Equation (6.1), α, µ and σ are parameters which control the shape, location

and scaling of the gamma distribution, respectively, and are further described in the

preceding study [167]. These parameters are collectively referred to as “performance

characteristics” and are employed as surrogate measures for the transition fatigue

performance in the remainder of this work. The convergence of the performance
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characteristics with the inclusion of increasing numbers of SVEs is used to identify

a sufficient minimum number of SVEs needed to represent the microstructure. The

effects of α and σ on the shape of the CDF of the gamma distribution are similar in

their typical ranges for fitting the EVD of FIP responses, so to improve the consistency

of the fitted parameters, a reasonable α is typically selected and held constant before

obtaining µ and σ.

The first step in the reduced-order representation of the ensemble of SVEs associ-

ated with each microstructure is to quantify individual SVEs using spatial statistics.

The 2-point spatial correlations for polycrystals, denoted f(g, g′|r), describe the con-

ditional probability density of finding crystal lattice orientations g and g′ at the head

and tail, respectively, of a vector r randomly placed in the microstructure. The spa-

tial correlations are represented using a Generalized Fourier series (GFS), allowing for

the efficient description of their dependence on crystal lattice orientation using gener-

alized spherical harmonics (GSH) [41]. In previous work, only 15 GSH basis functions

were required to construct S-P linkages for the prediction of elastic properties [21,

23, 76]. The GFS representation of the 2-point spatial correlations for orientation is

given by

f(g, g′|r)dgdg′ ≈
L̃∑
K

L̃∑
L

∑
t

FLK
t TL(g)TK(g′)χt(r)dgdg′ (6.2)

where FLK
t are the GFS coefficients, TI(g) are the GSH basis functions which describe

the functional dependence on the crystal lattice orientation, χt(r) are the indicator

basis functions which describe the functional dependence on r and L̃ refers to the

truncation in the number of GSH basis functions employed in the GFS.

FLK
t may consist of a very large set of coefficients, especially for the high-fidelity

representation of polycrystalline microstructures. Consequently, PCA is employed

to obtain a reduced-dimensional representation of the spatial statistics. The PCA

algorithm finds directions of maximum variance in the original data so that the re-
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sultant PC vectors are orthogonal and ordered from highest to lowest variance [38].

PCA is performed on all J SVEs in the calibration ensemble, each indexed by j. To

prepare the GFS coefficients for PCA, a new linear index, t, is defined for unique sets

of {t, L,K}. The total number of sets indexed by t is denoted R. Finally, the PCA

representation of the GFS coefficients is given by

F
(j)
t =

min((J−1),(R))∑
i=1

α
(j)
i ϕit + F t (6.3)

where φit is the PC direction indexed by i, α
(j)
i is the coordinate of the SVE indexed

by j in the ith PC direction (referred to as a PC score) and F t is the average of the

GFS coefficients for the J SVEs along the feature index, t. To fully represent the

spatial statistics of an SVE in the calibration set, all available PC directions must

be employed; however, due to the qualities of PCA, high-fidelity representations may

be obtained with only a handful of PC directions [15, 18, 20, 22, 24, 76]. When

truncation is employed, the total number of PC directions is denoted by R̃.

After obtaining reduced-dimensional representations of the SVEs, each microstruc-

ture is represented by the mean structure and variance of its associated ensemble of

SVEs. The mean structure is simply computed as the average of the PC scores for

all SVEs in the ensemble. There are numerous options for representing the spread

of the structures in the ensemble (the variance in each PC dimension, hyper-volume

of the convex hull, etc.); however, in this framework, the scalar-valued total vari-

ance measure is employed to retain the reduced-dimensional representation of each

microstructure. The total variance is simply given by

V ARtot =
R̃∑
i

var(α
(j)
i ) (6.4)

where the variance of the ensemble in each PC direction is summed.
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Finally, the reduced-order representations of the microstructures and their per-

formance characteristics (as computed from the response fields simulated via existing

physics-based models) are employed to calibrate the S-P linkage. The form of this

linkage is given by

µk, σk ≈ A0 +
∑
l

Alα̃
k
l (6.5)

where α̃kl is feature l of the microstructure indexed by k which may consist of mul-

tiplicative combinations of mean PC scores (for a particular PC direction) and the

total variance and Al is the physics-capturing coefficient associated with feature l.

Once these coefficients are calibrated, Equation (6.1) and Equation (6.5) can be em-

ployed in concert to estimate the EVD of FIPs for a new microstructure at very low

computational cost.

The number of data-points available for the calibration of the physics-capturing

coefficients of Equation (6.5) is equal to the number of available microstructures.

This limitation is likely to curb the maximum complexity and sophistication of the

final homogenization linkage, because models with large numbers of features (and

more complex features) tend to require numerous data-points for their calibration.

Thankfully, it is often easier to obtain large numbers of SVEs for a small number of

target microstructures than the reverse. Consequently, a boot-strapping strategy was

employed in the preceding study [167]. In this approach, the number of available data-

points for calibration is expanded by repeatedly sub-sampling the SVE ensembles such

that each SVE subset has enough members to approximate an RVE for the property

of interest. To ensure the richness of the calibration dataset, SVE subsets should be

selected such that they have a wide variety of mean locations and shapes.
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6.4 Case Study

In this work, the protocols discussed in Section 6.3 are employed to rank-order the

transition fatigue resistance of 12 unique α-titanium microstructures. The HCP α-

titanium single-crystals exhibit significant anisotropy in their elastic and inelastic re-

sponses, making the prediction of microstructure-sensitive phenomena difficult. Fur-

thermore, the transition fatigue resistance of titanium alloys is of great interest in

the aerospace industry and in other high-performance applications. The remainder

of this section describes each step of the development of the homogenization link-

age in detail. This includes obtaining microstructure volumes, performing CPFEM

simulations, calculating surrogate measures for the fatigue performance, quantifying

microstructures using 2-point spatial statistics and PCA, calibrating the homogeniza-

tion linkage, validating the linkage and discussing the results.

6.4.1 Microstructure SVE Ensembles

The α-titanium microstructures employed in this work are the same 12 used in pre-

vious studies [74–76, 167]. Each microstructure is assigned a distinct target texture

inspired by those seen in the literature [69–73]. Texture is expected to have a sig-

nificant impact on the transition fatigue performance due to the local elastic and

inelastic anisotropy exhibited by α-titanium polycrystals [6, 73]. Each microstruc-

ture is assigned a log-normal grain size distribution with a 30µm mean and 15µm

standard deviation.

In previous studies [74–76], 500 SVEs were generated for each of the 12 target

microstructures using DREAM.3D [46] (for a total of 6000 SVEs). Only 3800 SVEs

are used in this study to reduce the computational expense of running CPFEM sim-

ulations for the calibration and validation of the linkage (the reasons for this partic-

ular selection of SVEs are presented in later sections). The SVEs have dimensions of
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Figure 6.2: Example SVEs and (0001) pole figures are presented for each microstruc-
ture [167].

21x21x21 voxels (the voxels have side lengths of 10µm). This results in approximately

215 grains per SVE. This SVE size has been previously demonstrated to capture the

maximum length-scale of interaction between microstructure features in materials

systems with similar contrasts in both elastic and inelastic properties [13, 14, 17, 21,

23]. In the generation of synthetic microstructure volumes, DREAM.3D first matches

the target grain-size distribution using an ellipsoidal packing algorithm. The texture

is subsequently matched to the target texture (in this case represented though the

orientation distribution function of individual crystallites). For each microstructure,

Figure 6.2 presents an example SVE colored by grain-id and the associated (0001)

pole figure; 11 of the 12 microstructures are used to calibrate the physics-capturing

coefficients of Equation (6.5) and the remaining microstructure (labeled J) is reserved

to validate the predictive capability of the resultant linkage. This same strategy was

employed in the preceding study [167].
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6.4.2 Crystal Plasticity Simulations

In this study, CPFEM simulations are employed to model the transition fatigue re-

sponses of the microstructures. Specifically, the stress and cyclic plastic strain outputs

are required to compute the EVD of FIPs for each α-titanium microstructure. These

are subsequently used to calibrate the physics-capturing coefficients of Equation (6.5).

The crystal-plasticity framework that underlies the CPFEM was developed by Mc-

Dowell and co-workers for Ti-6Al-4V [6, 47–51]. Most recently, Smith and McDowell

calibrated the model parameters with both monotonic and cyclic experimental results

[6].

In the CPFEM simulations, SVEs are loaded to a maximum strain amplitude of

0.75%, or roughly 90-99% of the strain at yielding, depending on the specific mi-

crostructure. This level of inelastic deformation ensures that the material is loaded in

the transition fatigue regime. Three cycles of fully-reversed loading (R=-1) are per-

formed before evaluating the FIPs so that the cyclic plastic strains have the chance

to saturate. Displacement-controlled, fully-periodic boundary conditions are utilized

to implement uniaxial loading, resulting in a SVE-level stress tensor with non-zero

component σ11. CPFEM simulations are performed for all 500 SVEs associated with

microstructure I. These results are employed to study the convergence of the sur-

rogate measures for transition fatigue performance and therefore to determine how

many CPFEM simulations should be performed for each remaining microstructure.

The results of this analysis as presented in Section 6.4.3 dictate that 300 CPFEM

simulations be performed for each microstructure.

Figure 6.3 displays the grain-ID map for an example SVE along with its associated

total strain and plastic strain magnitudes (note that total strains and plastic strains

use the same color-bar). These results are obtained from a CPFEM simulation after

three loading cycles. Generally, the plastic strains are smaller than the total strains;

however, in certain locations the plastic strain magnitude may be comparable to or
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(a) (b) (c)

Figure 6.3: (a) grain ID, (b) total strain magnitude and (c) plastic strain magnitude
fields for example SVE from microstructure A.

exceed the total strain magnitude. This phenomenon is observed predominantly in

locations where the total strain is small. Furthermore, notice that the plastic strains

are not limited to isolated grains with high stress concentration (as in HCF); areas

of high plastic strain magnitude span groups of multiple contiguous grains in the

polycrystalline SVE.

6.4.3 Surrogate Measures for Transition Fatigue Performance

After the stress and cyclic plastic strain fields are computed though CPFEM simula-

tions, the Fatemi-Socie (F-S) FIP [60, 62–64, 74] is computed in all voxel locations.

The F-S FIP is given by

FIPFS =
∆γ̄pmax

2

[
1 + k

σ̄nmax
σy

]
, (6.6)

where ∆γpmax is the maximum cyclic plastic shear strain range, σnmax is the maximum

stress normal to that shear strain, σy is the macroscopic yield strength and k is a

constant controlling the contribution of normal stress to the driving force for fatigue

crack formation and early growth. The over-line indicates that a quantity is volume

averaged. In this study, volume averaging is performed over a 2x2x2 block of voxels

including the spatial location of interest.

The transition fatigue performance is then characterized by the fitting parameters
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of the gamma distribution to the set of extreme-valued FIP responses. These fitting

parameters, referred to as performance characteristics, serve as surrogate measures of

the transition fatigue performance. Once the physics-capturing coefficients of Equa-

tion (6.5) are calibrated, the homogenization linkage can be used to predict these

performance characteristics for previously unseen microstructures at low computa-

tional cost. Additionally, FIP EVDs for the microstructures can be reconstructed

from the predicted performance characteristics using Equation (6.1), enabling the

rank-ordering of microstructures by their resistance to transition fatigue.

Characterization of the transition fatigue performance requires the careful selec-

tion of several hyper-parameters. The choice of the threshold on the FIP distribution

and the number of SVEs required to approximate the transition fatigue performance

of an RVE are coupled. In short, if a high threshold is selected (where fewer FIP

values are contributed by each SVE to the final FIP EVD) the gamma distribution

fit improves and the minimum number of SVEs required increases. Alternately, a

low threshold results in a worse fit to the gamma distribution, but generally requires

fewer SVEs to approximate the RVE. These trends are evident in Figure 6.4 where

the gamma distribution fit and convergence of the performance characteristics are ex-

amined using a set of CPFEM results from 500 SVEs associated with microstructure

I.

In Figure 6.4a the gamma distribution fits for 99th, 99.9th and 99.99th percentile

thresholds of the FIPs are plotted on top of the raw FIP distribution. For any selected

value of the abscissa, the ordinate indicates the probability that a randomly selected

voxel in the SVE set will have a higher FIP value. Note that the log scale emphasizes

discrepancies in the distributions at very low probabilities of exceedance. Clearly,

the 99th percentile threshold results in a low-quality fit while the 99.9th and 99.99th

percentile fits are acceptable. Figures 6.4b, 6.4c and 6.4d show the convergence of the

three performance characteristics for increasing numbers of SVEs and different FIP
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(c)

(d)

Figure 6.4: The FIP threshold and SVE convergence are studied for microstructure I
with 500 SVEs: (a) The probability of exceedance is plotted for the true FIP EVD and
for fits of the gamma distribution with three different thresholds. The convergence
of the performance characteristics is plotted for (a) 99th, (b) 99.9th and (c) 99.99th
percentile thresholds on the raw FIP response used to fit to the gamma distribution.
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thresholds. For the 99th and 99.9th percentile thresholds the performance character-

istics converge with the inclusion of at least 150 SVEs. For the 99.99th percentile

fit, however, the performance characteristics do not converge until the inclusion of at

least 400 SVEs. This analysis indicates that 150 SVEs and a 99.9th percentile thresh-

old on the FIP distribution are most appropriate to represent the transition fatigue

performance. Lastly, as α converges to around 1.15 in Figure 6.4c, this value will

be held constant in the determination of µ and σ for future SVE ensembles. These

results contrast with those of the HCF study, where 100 SVEs, a 99th percentile

threshold and α = 0.85 were selected using the same procedures [167]. Interestingly,

the FIP threshold in this study exceeds that of the HCF study. This indicates that

while FIP values are orders of magnitude greater in transition fatigue than in HCF,

high quality fits to the gamma distribution still require extreme FIP values; in other

words, fitting the tail of the overall PDF of FIPs is equally demanding in transition

fatigue as in HCF. This was not fully expected prior to this study.

The minimum number of SVEs required to approximate the RVE (as identified

from microstructure I) guides the number of CPFEM simulations that must be per-

formed for the remaining microstructures. As discussed in Section 6.3, SVE subsets

are identified from the original microstructure SVE ensembles to expand the number

of data-points in the calibration of the linkage. If each subset contains 150 SVEs, the

original microstructure SVE ensemble should contain significantly greater numbers

to allow for diversity in the mean locations and variances of the subsets. Conse-

quently, CPFEM simulations are performed for 300 SVEs for each of the remaining

11 microstructures.
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6.4.4 Reduced-Dimensional Representation of Microstructures and Mi-

crostructure Subsets

Construction of a homogenization linkage to predict surrogate measures of transition

fatigue performance requires the representation of microstructures by a small number

of parameters. The first step in obtaining reduced-dimensional representations of the

12 α-titanium microstructures is the quantification of individual SVEs using 2-point

spatial correlations (computed using Equation (6.2)). As in the preceding study [167],

41 GSH basis functions represent the functional dependence of the spatial correlations

on crystal lattice orientation. This natural level of truncation in the GFS contains

more than the 15 basis functions required to capture the functional dependence of

elastic properties on orientation. While it may be desirable to explore representations

with higher truncation levels, in this study it was decided that the improvements

in representation fidelity would not outweigh the additional computational cost of

computing the spatial statistics. Further details of the spatial statistics framework

for polycrystals are presented in a prior study by Paulson et al. [76].

The GFS coefficients of Equation (6.2) are defined by 750,141 individual coef-

ficients. Consequently, the application of PCA is an important step to obtain a

tractable representation of the spatial statistics of each SVE. The PC directions are

computed by performing PCA on all SVEs in the calibration ensemble (excluding

SVEs associated with microstructure J). Once the PC directions are obtained, the

PC scores of the SVEs may be computed. As the number of PC directions included in

the representation of the spatial statistics increases, so does the cumulative explained

variance (where the explained variance in one PC direction is the variance of the PC

scores in the SVE ensemble along that direction). The cumulative explained variance

succinctly demonstrates the compaction achieved by PCA; 72% and 98% of the vari-

ance is explained by the first 2 and 25 PC dimensions, respectively. This feature of

PCA makes the visualization of data-points in two or three dimensions convenient. In
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Figure 6.5: SVEs are plotted as points by their first two PC scores. The shape and
color of each point indicates its associated microstructure.

Figure 6.5 all SVEs are plotted by their first two PC scores. In this figure, SVEs are

well clustered by their associated microstructure. Significant spread is observed in the

PC scores of SVEs associated with some microstructures. This variance is likely due

to randomness inherent in the DREAM.3D algorithms. Furthermore, SVEs belonging

to microstructures with similar texture features are nearby in PC space (for example

microstructures A and B). The opposite is true for SVEs belonging to microstruc-

tures with very different textures (for example microstructures A and E). Readers

who have examined the preceding work on HCF will notice significant differences in

the PC maps. This is mainly due to the use of additional GSH basis functions in the

representation of the spatial statistics with the GFS in this work (for the purposes of

visualization).

At this stage, subsets are selected from the original SVE ensembles to expand the

data available for calibration of the final linkage. First, the desired mean and vari-

ance (along the first three PC directions) of the target subset of SVEs are randomly
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selected. These target statistics are generated so that there is a reasonable chance

that the subset selected from an original SVE ensemble (representing 1 of the 12

microstructures) matches the statistics. Next, an iterative algorithm is employed to

identify the best set of SVEs to match the target statistics. In the initialization stage,

all SVEs associated with the microstructure under consideration are included in the

subset. Each iteration, the multivariate PDF of the current subset of SVEs (as com-

puted using kernel density estimation [165, 166]) is compared against the PDF of the

multivariate Gaussian distribution defined by the target mean location and variances.

The SVE in the subset where the actual probability density most exceeds the target

probability density is removed. Iterations are continued until only 150 SVEs remain

in the subset (this was identified in Section 6.4.3 as the number of SVEs needed to

obtain a robust quantification of the FIP distribution for each microstructure). A

total of 20 subsets are selected from each calibration microstructure for a total of 220

subsets. Further details of this approach were provided in a prior study [167].

Finally, each SVE ensemble (representing a microstructure or microstructure sub-

set) may be characterized by the mean and total variance its members’ PC scores.

Twenty-five PC dimensions are considered in the calculation of the mean location.

This truncation is justified because over 98% of the cumulative explained variance

is captured by this set of PC dimensions. The total variance is calculated with all

available PC dimensions because it always results in a scalar value (the use of more

PC dimensions does not increase the dimensionality of the measure).

6.4.5 Calibration of the S-P Linkage

Given the reduced-dimensional representations of 220 SVE subsets and their associ-

ated performance characteristics, the physics-capturing coefficients of Equation (6.5)

may be obtained through a calibration procedure. First, the set of features of interest

(each denoted α̃kl ) are identified. This set may include multiplicative combinations of
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the mean PC locations and total variance, resulting in a huge set of potential features.

As described in Section 6.4.4, only 25 PC dimensions are employed to represent the

mean location of the SVE ensemble. Furthermore, only 2nd order polynomial fea-

tures are allowed, as it was shown in the preceding work that such features provide

good descriptive capability with lower risk of overfitting the calibration data [167]. To

further reduce this set, Pearson correlations [82] are employed to identify which spe-

cific features are most likely to contribute to the predictive capability of the resultant

linkage.

Table 6.1 presents the top ten features and their Pearson correlation scores for

µ and σ. Note that certain features are highly correlated with both performance

characteristics (specifically PC1 and PC1 ·V ARtot), although the number of common

features is fewer than in the preceding work, where four of the top ten features were

common [167]. In that study, more features were common, as was reflected in the high

Pearson correlation between µ and σ (R = 0.941). Fewer highly correlated features

are common in the current study on transition fatigue, because the performance

characteristics are only weakly correlated (R = 0.465). Also, note that none of the

top-ranked features are common between the transition fatigue and the HCF studies.

This is likely due to the different physics governing HCF and transition fatigue, as

well as the different boundary conditions used in the two studies. That said, PC1,

PC6, PC7 and V ARtot show prominently in the top features in both studies. Most

importantly, similarly complex features are prominent in both studies, indicating that

both require sophisticated functions to fit to the fatigue performance measures.

Ranking features by their Pearson correlations enables us to precisely select a

small subset likely to provide good predictive capability. The number of features

included in the final linkage is identified through a comparison of training and cross-

validation errors. Training error is computed for linkages calibrated with the whole

set of SVE ensembles (associated with the calibration set). Cross-validation describes
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Table 6.1: The top ten features for performance characteristics µ and σ are ranked
by their Pearson correlations. The overbar indicates that the mean is taken over the
specified PC dimension for each SVE ensemble.

Feature µ Pearson σ Pearson
Ranking Correlation Correlation

1 PC1 -0.892 PC1 · PC8 -0.762
2 PC1 · V ARtot -0.890 PC2 · PC3 -0.648
3 PC6 · PC8 0.810 PC1 -0.630

4 PC8
2

-0.727 PC1 · PC6 0.614
5 PC3 · PC4 -0.621 PC1 · V ARtot -0.588

6 PC2
2

-0.584 PC4
2

-0.541
7 PC2 · PC3 -0.566 PC3 · PC4 -0.508
8 PC6 · PC10 0.541 PC1 · PC10 -0.503
9 PC8 · PC15 -0.540 PC2 0.494

10 PC7 · PC8 -0.529 PC20
2

-0.492

(a) (b)

Figure 6.6: Training and cross-validation errors are plotted for increasing numbers of
features for (a) µ and (b) σ.

the technique of removing data-points from the calibration set and reserving them

for evaluating the resultant linkage. The cross-validation strategy of the preceding

study is directly employed in this work [167]. Cross-validation is performed on 22

sets of 10 SVE subsets, where each set contains half of the subsets associated with

each of the 11 original microstructures. Both errors are computed by evaluating the

difference between the predicted and simulated performance characteristics for the

SVE ensembles of interest.

Figure 6.6 presents training and cross-validation errors for linkages constructed
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with increasing numbers of features. While the training error continuously decreases

with increasing numbers of features, the cross-validation error first decreases and then

increases. The divergence of the cross-validation error from the training error indi-

cates sensitivity of the linkage to the specific data-points included in the calibration

set for the linkage. Consequently, linkages should be selected with the number of

features at the point where this divergence becomes evident. Note that the presented

training and cross-validation error curves are similar in shape and magnitude to the

errors from previous linkages that characterized the HCF performance [167]. This

indicates that the MKS framework has successfully captured the physics of the tran-

sition fatigue regime where plastic strains are on the same order of magnitude as

elastic strains and where stress redistribution is significant. In this study, the top 34

and 10 features are employed in the final linkages for µ and σ, respectively.

6.4.6 Validation of Protocols

After the calibration of the physics-capturing coefficients with the full set of 220 SVE

subsets, Equation (6.5) may be used to predict the performance characteristics of the

SVE ensembles associated with the original 12 microstructures (including microstruc-

ture J). Then, employing Equation (6.1), the FIP EVDs for these microstructures can

be constructed. The results of this effort are presented in Figure 6.7, where the FIP

EVDs resulting from CPFEM simulations and the MKS homogenization protocols are

compared for microstructures A through L. It is acknowledged that the predicted FIP

EVDs are different from the CPFEM derived ones in some regards. Most notably, the

predicted EVDs display a less pronounced curvature in the probability of exceedance

plot. This results in slight differences in the rank-ordering at low probabilities of

exceedance (see microstructures A and B). Even so, this comparison demonstrates

the success of these protocols in rank-ordering the transition fatigue resistance of a

diverse set of polycrystalline microstructures (including the validation microstructure
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(a) (b)

Figure 6.7: FIP EVDs as obtained via (a) CPFEM simulations and (b) the MKS
approach for the 12 α-titanium microstructures (labeled A through L).

whose SVEs were not included in the calibration sets).

The error levels for the transition fatigue linkages developed here are observed to

be very comparable to those from the HCF linkages obtained in the earlier study [167].

Indeed, this is somewhat surprising because we anticipated that the higher levels of

inelastic deformation and stress redistribution in transition fatigue (as compared to

HCF) would demand more complex linkages (with more terms and higher powers

of the polynomials). The present study provides a strong testament to the power

of GSH in capturing the 2-point statistics and the PCA in providing a high-value,

low-dimensional representation of these correlations. We attribute the success of

the protocols in delivering high-value, low-dimensional structure-property linkages in

transition fatigue to these two key ingredients of our protocol.

Furthermore, the computational advantages of the MKS protocols versus CPFEM

in rank-ordering fatigue resistance is even more dramatic for transition fatigue than

for HCF. Once the one time cost of calibrating the homogenization relationship was

performed (utilizing CPFEM results for 300 SVEs from each of the 11 calibration

microstructures), evaluation of the FIP EVD for the validation microstructure was

performed in less than nine minutes on a single processor (including the computa-

tion of the spatial statistics for 300 SVEs and the evaluation of Equation (6.5)). In

146



contrast, a direct application of the traditional brute force CPFEM approach for the

validation microstructure would require over 3000 hours (or roughly 5 months) of

CPU time. This represents more than a 22,000 times reduction in CPU time versus

the traditional approach. A similar speed-up is expected for any other microstructure

(e.g., texture variant for the same material composition) in the materials system that

does not represent a dramatic extrapolation beyond the microstructures employed

to calibrate the linkage. Furthermore, the computational speed-up is greater than

the 3000 times reduction seen in the preceding study [167]. This apparent improve-

ment is due to the increased computational cost of modeling the larger cyclic plastic

strains through CPFEM simulations. In this work, each CPFEM simulation required

3 hours on four processors, as compared to the 45 minutes required in the HCF regime.

Comparing the computational expense between the two studies further emphasizes

the benefits of reduced-order protocols for the exploration of the transition fatigue

performance of polycrystalline microstructures.

6.5 Conclusions

In this study, an MKS homogenization linkage is developed to rank-order the tran-

sition fatigue performance of 12 distinct α-titanium microstructures. The success of

these protocols (originally developed for the HCF regime) in transition fatigue un-

derscore their efficacy and versatility in addressing many failure-related microscale

phenomena important in materials design. In particular, it is seen that the GSH rep-

resentation of the 2-point statistics and their low-dimensional representation using

PCA are the main keys to success of such efforts. More specifically, simulations in

the transition fatigue regime are computationally expensive due to significant levels of

heterogenous plastic strains in addition to stress- and strain-redistribution. Once cali-

brated with the results of CPFEM simulations for a set of calibration microstructures,

the linkages developed in this work provide more than a 22,000 times computational
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speed-up versus traditional CPFEM approaches in the evaluation of the transition

fatigue performance of new microstructures with the same material composition. Fur-

thermore, these linkages take reduced-order forms well suited to materials exploration

efforts. This study demonstrates the flexibility of the MKS framework for modeling

microstructure-sensitive, extreme-value phenomena such as fatigue.
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[10] Ekkehart Kröner. “Berechnung der elastischen Konstanten des Vielkristalls
aus den Konstanten des Einkristalls”. In: Zeitschrift für Phys. 151.4 (1958),
pp. 504–518. issn: 0044-3328. doi: 10.1007/BF01337948. url: http://dx.
doi.org/10.1007/BF01337948.

149

https://doi.org/10.1016/j.ijplas.2011.12.005
http://dx.doi.org/10.1016/j.ijplas.2011.12.005
http://dx.doi.org/10.1016/j.ijplas.2011.12.005
https://doi.org/10.1016/0022-5096(92)80003-9
https://doi.org/10.1016/0022-5096(92)80003-9
http://linkinghub.elsevier.com/retrieve/pii/0022509692800039
http://linkinghub.elsevier.com/retrieve/pii/0022509692800039
https://doi.org/10.1016/j.ijplas.2013.10.004
https://doi.org/10.1016/j.ijplas.2013.10.004
https://doi.org/10.1007/BF01337948
http://dx.doi.org/10.1007/BF01337948
http://dx.doi.org/10.1007/BF01337948
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