
Swarming the SC’17 Student Cluster
Competition

Petros Eskinder
Georgia Institute of Technology

A thesis submitted to the Georgia Institute of Technology
for the degree of Bachelor’s of Science

Swarming the SC’17 Student Cluster Competition

The Experience of Team Swarm from the Georgia Institute of Technology

Petros Eskinder
peskinder3@gatech.edu

Abstract—The Student Cluster Competition is a suite of challenges
where teams of undergraduates design a computer cluster and then
compete against each other through various benchmark applications.
The present study will provide a select summary of the experiences of
Team Swarm who represented the Georgia Institute of Technology
at the SC’17 Student Cluster Competition. This report will first
describe the competition and the members of Team Swarm. After this
introduction, it focuses on three major aspects of the experience: the
hardware and software architecture of the team’s computer cluster, the
team’s system administration workflow and the team’s usage of cloud
resources. Additionally, the appendix provides a brief description of
the team members and their method of preparation.

I. THE STUDENT CLUSTER COMPETITION

This section introduces the Student Cluster Competition.

A. Motivation for the Competition

In 2007, the Association for Computing Machinery (ACM) intro-
duced the Student Cluster Competition as an avenue to expose
undergraduates to High Performance Computing (HPC). [1].

In the years prior, several parties had identified a deficiency
in undergraduate HPC education [2], despite HPC becoming an
increasingly critical component of scientific and industrial research.

The Student Cluster Competition focuses on experiential learning.
By using a competition style environment, it aims to expose
students to the many issues and constraints found in production
level HPC system, as well as the interdisciplinary nature of
professional HPC environments [2], [3].

Prior initiatives like the Curriculum Initiative on Parallel and Dis-
tributed Computing focused on expanding the existing Computer
Science and Computer Engineering degree programs to include
more parallel programming and HPC architecture courses [2].

Because of its success, the initial competition has dramatically
grown in popularity, spawning other Student Cluster Competitions
at the International Supercomputing Conference (ISC) and the
Asia Supercomputing Community (ASC). Because there are subtle
differences between these competitions, subsequent sections will
focus on the ACM/IEEE Supercomputing Conference.

B. Structure of Competition

The competition is one week long and is held at the annual ACM
Supercomputing conference. During the week of the competition,
teams of undergraduates run six different high performance appli-
cations aiming to achieve optimal performance on each applica-
tions.

In the months prior to the competition, students must do consid-
erable preparation and legwork.

First, before they can compete, student teams must apply for ac-
ceptance, through a proposal. The proposal tabulates the members
on their team, how they are preparing for the competition, which
hardware vendors they have relationships with, and how they have
architect their supercomputer.

If accepted, teams commence preparation by:

• obtaining their cluster from their vendor
• physically assembling their cluster
• setting up their operating system and other critical system

software
• developing strategies for administering their cluster
• experimenting with different toolchains
• tuning each application to be as performant as possible
• preparing recovery mechanisms for system going down

C. Judging Metrics

Teams are judged against two orthogonal metrics, creating the
potential for two ”winners.”

First, they are judged against their performance on the LINPACK
and HPCG benchmarks. The team with the highest combined
benchmark results wins this sub-competition.

Second, teams are judged against their aggregate performance
across the six applications. This sub-competition also included the
team’s performance in interviews with the competition committee
as well as the quality of the team’s poster. Each application and
interview was scored, and the team with the highest final score
became the Overall Winner.

D. SC’17 Competition

The competition discussed in the present study was held during
the SC’17 conference in Denver, Colorado. Sixteen different teams
from various universities (and in some cases, high schools) across
the world were selected to compete. TODO

The competition, itself, lasted six days days: November 11 to
November 16, 2017. For the first two days, teams set up and
built their clusters. On the third day, November 13, teams ran the
LINPACK and HPCG benchmarks. The remaining three days were
dedicated to the four other applications. On the last day, the winner
was awarded and teams cleaned up and packed.

II. APPLICATIONS AT SC’17

This section briefly describes the six different applications used in
the SC’17 Student Cluster Competition.

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

petros
Pencil

A. Background

During the SC’17 Student Cluster Competition, teams were ex-
pected to run six different applications. Of these six applications,
one was a ”mystery” application that was revealed during the
competition.In addition to optimizing their applications, teams
were also expected to prepare for and recover from a power shut off
activity, where every team’s cluster is unexpectedly shut off. This
was intended to simulate the uncommon occurrence of needing to
recover a shut down system. Finally, teams were also expected to
incorporate a cloud component to their general workflows.

B. The High Performance LINPACK Benchmark

The HPL benchmark is a parallel implementation of the LINPACK,
a library of numerical linear algebra tools. It is currently used
to rank the world’s supercomputers on the Top500 list [4]. The
benchmark measures the floating point rate for solving a dense
linear system [4]. The fastest computers have the highest floating
point rate.

During the competition, teams competed to attain the highest re-
sulting floating point rate, while keeping their cluster’s peak power
consumption under 3000 Watts throughout the entire calculation.
If at any point during an HPL run, teams exceeded the 3000 Watt
limit, they were forced to restart [5].

C. The High Performance Conjugate Gradient Benchmark

The High Performance Conjugate Gradient (HPCG) benchmark
serves as an alternate benchmark to the HPL benchmark. The
benchmark synthesizes a sparse 3D linear system, and then over
the span of 30 minutes, it executes a fixed number of iterations of
the Gauss-Seidel conjugate gradient descent [6].

Compared to HPL, the HPCG has a significantly lower compute to
data access ratio because it performs matrix vector multiplication
on a sparse matrix rather than on a dense one like HPL.

Consequently, HPCG better assesses a system’s ability to handle
IO bound applications. Note this was by design. The HPCG
benchmark was motivated by the growing belief that HPL did not
accurately assess modern HPC systems [6]. Despite modern HPC
applications are increasingly governed by high bandwidth and low
latency [6], HPL does not assess these attributes. Instead it focuses
on compute bound applications [6].

Similar to HPL, teams competed to obtain the highest floating point
rate all while staying under the power limit [5].

D. Reproducibility Challenge

In recent years, there has been growing concern that large swathes
of research results in computer science are not independently
reproducible [7], [8]. The ACM, in response, has introduced an
artifact review process that encourages paper authors to distribute a
well-formed and documented digital artifact [7]. This would allow
reviewers and other third party groups to reproduce and analyze
the authors results.

The SC’17 competition committee selected The Vectorization of
the Tersoff Multi-Body Potential: An Exercise in Performance
Portability as the paper to reproduce [5], [9]. The paper introduced

a vectorized implementation of the Tersoff Multibody Potential
into the LAMMPS molecular dynamics library, documenting a
measurable speedup over the existing LAMMPS implementation
for multiple different CPU and accelerator combinations [9].

Teams were responsible for reproducing the results of the paper
for at least one CPU architecture, and then submitting a report
detailing their experiences [5].

E. MrBayes

MrBayes is a tool for Bayesian Phylogenetic analysis that is often
used for species delimitation, the process of identifying the species
of various organisms from their phylogenetic data [10].

Before the competition, teams were expected to identify and tune
an efficient installation of MrBayes for their cluster. Additionally,
they could integrate it with the Beagle library, a high performance
library for performing Bayesian phylogentic calculations that can
make use of ones GPUs [5], [11].

During the competition, teams were provided a dataset, for which
they were expected to construct an accurate consensus tree [5].

F. Born Seismic Imaging

Born is a tool used by geologists to capture images of the earth’s
subsurface. It constructs seismic images by transmitting thousands
of sound waves into the earth and recording the response signals
[12]. In general, each of these thousands of sound waves are varied
based on the position of the source and receiver, and the results
are later stitched together.

During the competition, teams were provided 1,136 Born shots to
process. They were responsible for processing as much of these
shots as they could. Each shot could be run in parallel, though they
could each potentially take up two to three hours to complete [5].

G. Mystery Application: MPAS

Unlike the other five applications, teams were unaware of this
application until the second day of the application.

The mystery application at SC’17 involved using the Model
for Prediction Across Scales (MPAS) Framework to model the
atmospheric consequences of excess carbon in the Antarctic [13].
MPAS, itself, is an application framework for building weather
simulations [13]. The Los Alamos National Laboratory and the
National Center of Atmospheric Research use the framework
to produce simulation components that are used in climate and
weather studies [13].

H. Power Shutoff Activity

In addition to optimizing their applications, teams were also
expected to prepare for and recover from a power shut off activity.
During the activity, every team’s cluster is unexpectedly shut off,
and no team is allowed near their cluster until designated to do so
[5]. This was intended to simulate the uncommon occurrence of
needing to recover a shut down system [5].

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

I. Supplemental: Cloud Component

This section describes the competition’s new cloud component.
Although it was not required, teams were strongly encouraged to
use the cloud. Additionally, they received points to the overall score
based on how well they used their cloud resources.

Recently, within the HPC community, there has been increased
interest in developing new hybrid HPC compute architectures and
workflows that combine traditional owner-centric physical clusters
with cloud and grid computing [14]. In an attempt to investigate
these hybrid HPC and cloud workflows, a cloud component was
introduced to the SC’17 competition [5].

Each team was given access to a cloud High Performance com-
puting environment through CycleCloud on Microsoft Azure [5].
Teams could run the various competition applications in the cloud
in addition to their physical compute cluster. Unlike the physical
clusters, teams were allocated a specific dollar cost budget for their
cloud instances [5].

III. TEAM SWARM

This section briefly introduces Team Swarm, Georgia Tech’s inau-
gural team at the Student Cluster Competition.

A. Student Members

Team Swarm consisted of seven undergraduate members, six
competitors and one alternate from the Georgia Institute of Tech-
nology. The competitors were Alok Tripathy, David Meyer, Dezhi
”Andy” Fang, Jessica Rosenfield, Nicholas Fahrenkrog, and Petros
Eskinder. The alternate was Manas George.

All members were Computer Science or Electrical Engineering
upperclassmen, with prior exposure to HPC through research
projects, internships and coursework.

B. Faculty Mentors

The team was mentored by Dr. Oded Green, Chirag Jain, and Will
Powell, who are all affiliated with the School of Computational
Science and Engineering at Georgia Tech. Dr. Green was a research
scientist; Chirag a doctoral student; Will a research technologist.

C. Contributions By Writer

The writer of this report made four key contributions to Team
Swarm: spearheading the initial team proposal as well as sub-
sequent write ups, tweaking and experimenting with the system
administration workflow, designing the team poster, and working
on the reproducibility challenge.

Further information about our team, our preparation strategy, or
our sponsorships is provided in the appendix.

IV. HARDWARE DESIGN

Each team with the help of their industry sponsors was expected to
design a compute cluster and justify why the cluster was suitable
for the competition. Suitability is defined by performance on the
HPL benchmark, HPCG benchmark, and the other four competition
applications.

Fig. 1. Our Hardware Design

Below, we describe our hardware configuration, justify why we
thought our system was well suited for the competition. We leave
comments on its results to the next section.

A. Overview

Our team architected a cluster heavily based on the two node IBM
Minsky system (Power S822LC). Each node was outfitted with two
10-core Power8 CPUs and four NVIDIA P100 GPUs. Between
the two nodes, we used Infiniband EDR’s as our interconnect.
Additionally, we used NVIDIA’s NVLink interconnect within each
node for GPU-GPU and GPU-CPU communication.

B. Strength of Hardware: Why POWER8?

The POWER8 architecture is the first processor to come out of the
OpenPOWER consortium, and has been designed for computation-
ally intensive applications. We see this in part with the NVLink
protocol, showing how the POWER8 system is optimized to work
well with NVIDIA GPUs. A similar synergy is seen in the choice
of interconnect which supports some of the fastest interconnects,
like Mellanox InfiniBands.

Here is a listing of the advantages the Power8 possesses:

• Fast Memory Subsystem: The Power8’s biggest attractor’s
is its very fast memory subsystem. The POWER8 memory

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

subsystem series shows consistently high memory bandwidth
(∼90GB/s) on the Stream bandwidth benchmark, staying in
the high nineties even as the number of threads varies from
20 to 80 [15]. These numbers were obtained using the GCC
compiler, which is free and much easier for most developers
to obtain and integrate into their toolchains, as opposed to
vendor-specific compilers, and is therefore more representa-
tive of real world performance. The POWER8 processor also
has big, high-bandwidth caches at each level of abstraction,
further strengthening the memory subsystem.

• SMT: The per-core 8-way simultaneous multi-threading pro-
vides an incredible boost to memory-heavy applications,
allowing the processor to hide memory latency over many
threads. This means improved performance in applications
like graph traversal. Thread scaling is further helped by
support for hardware transactional memory, which removes
the overhead of locking mechanisms in software.

• Embedded NVLink: Currently, POWER is the only architec-
ture that supports the NVLink protocol, providing fast data
transfer between GPUs. NVLink supports transfer rates 5 and
12 times faster than the more common PCIe3 protocol. Com-
bined, the four NVLink ports on the Minsky system provide
a 80GB/s full duplex link between the GPUs, minimizing the
bottleneck presented by CPU to GPU transfers.

• CAPI: The Coherent Accelerator Processor Interface allows
for tighter integration between the POWER8 processors and
the P100 accelerators, allowing for better heterogeneous per-
formance [16, 17]. It accomplishes this through two means:
(1) providing a unified virtual memory space; meaning that
the accelerators and the CPUs can use the same memory
addresses, reducing device driver overhead, (2) permitting
accelerators to behave like normal threads, reducing overhead
with respect to cache coherency, as that is now taken care of
in hardware [16].

C. The GPU Advantage

When designing our supercomputing cluster, we made several key
decisions regarding (1) the composition of each node and (2) the
number of compute nodes. We chose to build a cluster consisting of
a small number of nodes based on a combined CPU/GPU platform
as opposed to a larger cluster of smaller purely CPU based nodes.

Our preliminary literature survey suggested that using GPUs as
computation accelerators provided significant performance im-
provements at a lower cost and power than adding another purely
CPU-based node. For instance, Matsuoka et al. [18] showed that
GPU’s accounted for 66% of their LINPACK performance while
only accounted for 15% of their total power consumption.

Consequently, we elected to build a cluster consisting of a small
number of nodes, each based on a combined CPU/GPU platform.

Our experimental results corroborate our literature survey. Using
only two of our eight P100 GPU’s, we were able to achieve
dramatic speedups using GPU optimized HPL and HPCG binaries.
For example with HPL, each GPU, at its peak usage, provides 4-5
TFLOP/s.

Additionally, we found that these GPU based speedups have not
come at a significant hit on power efficiency. From our experiments

with HPL, we found that each GPU consumes 240-270 Watts of
power when active, and 30 Watts when idle. In contrast, we found
that one 10-core Power8 CPU consumes roughly 250-280 Watts,
that is while providing a fraction of the computational benefit.

Given the P100’s massive 10.6 TeraFLOPS peak single-precision
performance, fed by 720GB/s memory bandwidth and backed by
16GB of high-bandwidth memory, using NVLink allowed us to
minimize the bottleneck presented by CPU to GPU data transfers.
Forgoing the incredible transfer speeds NVLink affords us would
mean sacrificing performance to shuttling data between the host
and the device, which is something we want to avoid at all costs.

V. SOFTWARE SELECTION

In addition to designing their cluster’s hardware, teams were also
responsible for outfitting their machine with appropriate and highly
performant system software, e.g. operating system, file system,
toolchains, and scheduler [19].

In this section, we describe our system software and why we
designed it as we did.

A. Operating System

For our operating system (OS), we elected to use CentOS 7.

When choosing an OS, we had two major constraints. First,
our OS needed to be some Linux variant because Linux is the
lingua franca of server side operating systems. Second, the OS
needed to be supported by the Power8 architecture. At the time,
Power8 supported two Linux variants: Red Hat Enterprise Linux
(RHEL) 7.1+ and Ubuntu 16.04+ [20]. Though we were more
experienced with Debian-based systems, like Ubuntu, several key
system libraries, such as recent versions of ESSL, only offered
support for RHEL-based systems like CentOS 7.

B. File system

For our file system, we used the Network File System or NFS,
a distributed file system allowing us to share data between our
two nodes, ramblin and wreck [21]. We were initially inclined
to using IBM Generation Parallel File System (GPFS) as our file
system. We posited that GPFS would be a great selection because
it provided the performance characteristics matched by few file
systems [22].

Additionally, our sponsor, IBM, as well as numerous Georgia Tech
researchers had ample experience with tuning the performance of
GPFS. Unfortunately, we found that GPFS was primarily designed
for high-performance clusters with numerous nodes as opposed to
our 2-node cluster [23]. Additionally, we found we did not have
sufficient time before the competition to configure it.

C. Toolchain

In computing, a toolchain describes one’s collection of system
libraries and compilers. The section below describes our system’s
toolchains.

In general, we elected to use vendor specific tools, as they are
clearly fine-tuned for our machines. Since our machine consists of

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

IBM Power8 CPUs with NVIDIA P100 GPUs, this translated to
IBM’s proprietary toolkit and NVIDIA’s CUDA toolkit.

• Compilers: We used the standard GNU compilers as well as
IBM’s XL C/C++ compiler and CUDA C/C++.

• BLAS: We used the Engineering and Scientific Subroutine
Library (ESSL), IBM’s BLAS library, for math applications
like LINPACK. We were motivated to use a vendor-specific
BLAS after comparing the performance differences between
them and the standard HPL implementation from the Univer-
sity of Tennessee, Knoxville on appropriate systems.

• Message Passing Interface: We used both OpenMPI and
MVAPICH. Both MPI implementations are CUDA-aware, and
work with InfiniBand. Initially, we had expected to use IBM
Spectrum MPI. However, we found that support for Power8
systems was dropped.

• System Monitoring: To monitor our system for good load
balancing, we used Datadog, a monitoring service. To monitor
our GPUs’ performance, we used the NVIDIA visual profiler
as well as nvidia-smi.

• Profilers and System Monitors: We used a variety of
miscellaneous tools to fine tune the performance of our
system. For instance, to diagnose performance bottlenecks
(e.g. communication latency, thread creation) in MPI and
OpenMP applications, we used Allinea, an OpenMP and MPI
profiler. For other tasks less suited for Allinea, for example,
CPU intensive tasks executed on a single machine, we used
Linux performance tools such as perf and flame graphs [24].

D. Scheduler

We used Slurm for our scheduler. However, we did not invest much
energy to ensure it was performant or to automate many of our
jobs. This was due to three reasons:

• Limited Number of Nodes: Our cluster only contained two
nodes. A scheduler is considerably more useful when one has
numerous nodes to manage.

• Limited Number of Users: We knew going in that we would
only have six potential users and that during the competition,
we would be in close proximity from one another. Conse-
quently, if there were competing applications running, we
could prioritize them through conversation and planning.

• Time Constraints: We gained access to our second node just
a few weeks before the competition. a time when we were
occupied with other aspects of the competition.

In the end, we took the approach of manually scheduling our ap-
plications, using system monitors to ensure that no two competing
applications ran concurrently.

VI. SYSTEM ADMINISTRATION WORKFLOW

Teams were responsible for managing their system administration
and application workflow. In this area, we invested considerable
attention to automating our system environment. In particular, we
make use of various tools so that we can deploy our system
environment and be fully functional within only a few commands.

This section describes the key components of our system.

A. Chef

Chef is a configuration management tool used for dealing with
machine setup on physical servers, virtual machines and in the
cloud. It is primarily used as a provisioning tool, i.e. managing
the software available on a cluster.

With our chef configuration, we are able to quickly set-up a
machine and load it with our desired environmental state, i.e. all
relevant libraries and tools installed and loaded.

As far as our workflow, we host our chef configuration in a git
repository. Team members can make changes to the configuration
of the cluster via submitting Pull Requests. Configurations are
then converged into each of the hosts. This process is idempotent
and revertible. Consequently, we are able to design reproducible
experimentations of software configurations.

We are also able to make use of chef on the cloud. For example,
through chef, we are able to share a set of common tools on both
our Power 8 cluster and our cloud clusters.

B. Environment Module

A significant portion of our competition preparation involved
determining the most optimal set of toolchains for each application.
This meant experimenting on different applications with different
system configurations.

For example, some applications can only be compiled in certain
versions of GCC, whereas other applications can benefit from
Power 8 specific optimizations present in IBM XLC. Unfortunately,
because of conflicting libraries and environment variabls, manually
setting up all the environment variables to switch compilers is
rather cumborsome.

To circumvent this tedium of managing conflicting libraries and
toolchain, we make use of environment modules. Environment
modules allow us to dynamically load and unload different versions
of toolchains, while ensuring no two conflicting modules are
loaded.

Additionally, whenever possible, we packaged custom built system
libraries and toolchain components into environment modules.

Finally, we store our entire set of module configurations in a git
repository. This helps improve the reproducibility of our entire
environment.

C. RPM Package and Artifact Store

As a part of the competition, we acquired and built numerous
system libraries and components; for example, the Intel C compiler
(ICC) and the IBM Engineering and Scientific Subroutine Library
(ESSL).

To version control and to avoid recompiling system components
when deploying to a new machine, we perform three major actions:

1) we package each component into its own RPM package
2) we version control each RPM package by storing its config-

uration into our Chef git repository
3) we store dependency and ”file ownership” information for

each RPM module

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

Fig. 2. Our System Administration Workflow

4) we publish the compiled artifact or binary into our internal
RPM repository that we host in Amazon Simple Storage
Service (S3)

Then when redeploying, we simply fetch from our internal RPM
repository.

D. Nebula

Nebula is a command line tool we built to easily manage all of
the machines in our cluster as well as in the cloud.

It automates updating process of each hosts, and ensures each host
is up to date with the module files and general chef configurations.
Additionally, it allows us to switch between different chef roles and
branches, making for much easier experimentation.

To accomplish this, underneath the hood, we developed a service
discovery system that indexes each of our machines, storing
informations such as IP address and architecture. Additionally,
we also defined a collection of tasks to help manage the state of
our machines; convergence to a specific version, updating module
configuration, etc.

Combining these parts, we can easily manage all of the machines
in a cluster via a simple command-line tool. For example

fab converge -R power8

converges all Power8 machines to the latest configuration.

fab set chef branch:test-intel-cuda converge -R
intel

converges all Intel machines to the branch “test-intel-cuda” for
testing configuration changes made in that branch.

VII. CLOUD STRATEGY

Below we document our strategy for using the cloud. Overall, we
used the cloud as a backup for our physical servers. We relied
on the cloud, whenever we were unable to overcome compatibility
issues between an application on our local servers toolchains. Since
we viewed it primarily as a backup, we did not invest considerable
attention to optimally utilizing the allocated budget, nor did we
actually finish our budget during the competition.

A. Background

In general, cloud computing can be thought of as on-demand
virtual servers and infrastructure services available over the internet
[25]. Instead of setting up and maintaining a physical compute
cluster, one can request computational resources from a cloud
provider like Amazon Web Services, Google Cloud Provider or
Microsoft Azure [25]. Then, the cloud providers generally charge
based off of the amount actually used.

Both in the research community and in industry, many organi-
zations are moving their high-performance and high-throughput

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

workflows to the cloud. The cloud serves as an attractive alternative
to physical clusters and data centers; eliminating the cost of setting
up and maintaining potentially idle physical clusters, replacing it
with dynamic and scalable compute configurations [26].

B. Cloud Orchestration

Cloud orchestration refers to the different processes involved with
deploying services on a cloud environment [27], [28]. For example,
what resources are allocated, what workloads are shared between
different resources, and what services are deployed on what cloud
environments [27], [28].

One of the early decisions we made in preparation of the compe-
tition was to use Chef to manage the configuration of our cluster.
Naturally, Chef can also be extended for use on the cloud, so
we were able to reuse our different chef recipes to orchestrate
our cloud environment. There was one minor complication. To
initially configure the cloud clusters, CycleCloud’s cloud instances
their own Chef configuration. This could have meant conflicts
had our configurations differed in a meaningful way. However,
we were able to have our Chef setup run side-by-side without
any compatibility issues. By using our own Chef recipes, we were
able to version-control our server configurations which increased
the reproducibility of our entire software stack.

C. Architectural Considerations

Since the start of the century, Intel has stronghold on the HPC
community. As of 2016, more than 90 percent of HPC systems
are equipped with Intel processors, including those using NVIDA
GPU accelerators [29]. Consequently, HPC applications are often
designed assuming they’ll be run on x86 64 processors, the CPU
architecture often used by Intel processors. Our cluster had a
pp64le CPU architecture, a CPU architecture unique to IBM
POWER machines [30]. Infrequently, this difference resulted in
compatibility issues with an application’s library. For example, the
library or application would expect an Intel specific library on our
path, or it would use Intel’s vector ISA rather than POWER’s. We
viewed the cloud as a backup if ever we were unable to overcome
a compatibility issue on our local server.

D. Application Specific Strategies

We primarily used the cloud for the Mystery Application and the
Born Seismic Imaging Application. The following section explains
our approach for each application utilizing the cloud.

1) MPAS Mystery Application: Entering the competition, we re-
served the cloud first and foremost to the mystery application. From
our collective experiences working with the other applications,
we were apprehensive that there would be compatibility issues
between the Power 8 servers and the libraries used by the mystery
application. As expected, there were numerous compatibility issues
between our physical servers’ toolchains and the libraries needed
by MPAS. On the cloud, however, there were no such issues. We
dedicated a H16r cluster and were able to successfully compile
MPAS on the cloud.

2) Born Application: We offloaded Born to the cloud so it
wouldn’t compete for our cluster’s limited compute resources.

For the Born application, teams tried to complete as many ”shots”
from the provided 1,136 shots [5]. Without considerable modifi-
cation, the Born application only ran on the CPU, and each shot
took two to three hours to complete.

We did not want the Born application to prevent other applications
from using of our server’s resources. We also were constrained
on time before the competition, so we did not write the requisite
CUDA code to exploit our GPUS.

Consequently, the cloud seemed like a naturally a fit for Born
workloads. As far as our cloud configuration, we chose one of the
most high-CPU instances (D64s) for born. Additionally, we utilized
vectorization as well as Link Time Optimizations available on the
Intel Platform. Since Born only ran on a single-node, we didnt
need the RDMA related benefits from the H-series instance types.

VIII. ACKNOWLEDGMENTS

We thank our advisors for challenging us to write this proposal,
as well as for mentoring us throughout this process.

REFERENCES

[1] S. L. Harrell, P. M. Smith, D. Smith, T. Hoefler, A. A.
Labutina, and T. Overmyer, “Methods of creating student
cluster competition teams,” in Proceedings of the 2011
TeraGrid Conference: Extreme Digital Discovery, ACM,
2011, p. 50.

[2] M. Sahami, M. Guzdial, A. McGettrick, and S. Roach,
“Setting the stage for computing curricula 2013: Computer
science–report from the acm/ieee-cs joint task force,” in
Proceedings of the 42nd ACM technical symposium on
Computer science education, ACM, 2011, pp. 161–162.

[3] S. L. Harrell, H. A. Nam, V. G. V. Larrea, K. Keville, and D.
Kamalic, “Student cluster competition: A multi-disciplinary
undergraduate hpc educational tool,” in Proceedings of the
Workshop on Education for High-Performance Computing,
ACM, 2015, p. 4.

[4] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack
benchmark: Past, present and future,” Concurrency and
Computation: Practice and experience, vol. 15, no. 9,
pp. 803–820, 2003.

[5] (2017). 2017 competition applications, [Online]. Available:
http://www.studentclustercompetition.us/2017/applications.
html.

[6] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-
performance conjugate-gradient benchmark: A new metric
for ranking high-performance computing systems,” The In-
ternational Journal of High Performance Computing Appli-
cations, vol. 30, no. 1, pp. 3–10, 2016.

[7] (2018). Artifact review and badging, [Online]. Available:
https://www.acm.org/publications/policies/artifact- review-
badging.

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

http://www.studentclustercompetition.us/2017/applications.html
http://www.studentclustercompetition.us/2017/applications.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

[8] I. Jimenez, C. Maltzahn, A. Moody, K. Mohror, J. Lofstead,
R. Arpaci-Dusseau, and A. Arpaci-Dusseau, “The role of
container technology in reproducible computer systems re-
search,” in Cloud Engineering (IC2E), 2015 IEEE Interna-
tional Conference on, IEEE, 2015, pp. 379–385.

[9] M. Höhnerbach, A. E. Ismail, and P. Bientinesi, “The vec-
torization of the tersoff multi-body potential: An exercise in
performance portability,” in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE Press, 2016, p. 7.

[10] J. P. Huelsenbeck and F. Ronquist, “Mrbayes: Bayesian
inference of phylogenetic trees,” Bioinformatics, vol. 17, no.
8, pp. 754–755, 2001.

[11] beagle-dev, Beagle-lib, https : / / github . com / beagle - dev /
beagle-lib, 2018.

[12] J. Hudson and J. Heritage, “The use of the born approxima-
tion in seismic scattering problems,” Geophysical Journal
International, vol. 66, no. 1, pp. 221–240, 1981.

[13] D. Heinzeller, M. Duda, and H. Kunstmann, “Towards
convection-resolving, global atmospheric simulations with
the model for prediction across scales (mpas) v3. 1: An
extreme scaling experiment,” Geoscientific Model Develop-
ment, vol. 9, no. 1, p. 77, 2016.

[14] G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid com-
puting where hpc meets grid and cloud computing,” Future
Generation Computer Systems, vol. 27, no. 5, pp. 440–453,
2011.

[15] J. D. Gelas, “Assessing IBM’s power8, part 1: A low level
look at little endian,” Tech. Rep.

[16] J. Stuecheli, “Power8,” in Hot Chips, vol. 25, 2013, p. 2013.
[17] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel, “Capi: A

coherent accelerator processor interface,” IBM Journal of
Research and Development, vol. 59, no. 1, pp. 7–1, 2015.

[18] S. Matsuoka, T. Aoki, T. Endo, A. Nukada, T. Kato, and
A. Hasegawa, “GPU accelerated computing—from hype to
mainstream, the rebirth of vector computing,” Journal of
Physics: Conference Series, vol. 180, no. 1, p. 012 043,

[19] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra, “Performance analysis of
mpi collective operations,” Cluster Computing, vol. 10, no.
2, pp. 127–143, 2007.

[20] (2015). Supported linux distributions for power8 linux on
power systems.

[21] D. Arthursson, Network file system, US Patent 8,156,146,
Apr. 2012.

[22] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file
system for large computing clusters.,” in FAST, vol. 2, 2002.

[23] F. Schmuck and R. Haskin, “GPFS: A shared-disk file
system for large computing clusters,” Proceedings of the
Conferenced on File and Storage Technologies, 2002.

[24] B. Gregg, “Linux profiling at netflix,” 2015.
[25] E. Knorr and G. Gruman, “What cloud computing really

means,” InfoWorld, vol. 7, pp. 20–20, 2008.
[26] A. Gupta and D. Milojicic, “Evaluation of hpc applications

on cloud,” in Open Cirrus Summit (OCS), 2011 Sixth, IEEE,
2011, pp. 22–26.

[27] A. Parameswaran and A. Chaddha, “Cloud interoperabil-
ity and standardization,” SETlabs briefings, vol. 7, no. 7,
pp. 19–26, 2009.

[28] D. Baur, D. Seybold, F. Griesinger, A. Tsitsipas, C. B.
Hauser, and J. Domaschka, “Cloud orchestration features:
Are tools fit for purpose?” In Utility and Cloud Computing
(UCC), 2015 IEEE/ACM 8th International Conference on,
IEEE, 2015, pp. 95–101.

[29] M. Feldman. (2016). Hpc in 2016: Hits and misses, [Online].
Available: https://www.top500.org/news/hpc-in-2016-hits-
and-misses/.

[30] D. Henderson, Power8 processor-based systems ras, 2016.
[31] D. Fang and D. Chau, “M3: Scaling up machine learning via

memory mapping.,” Proceedings of the 2016 International
Conference on Management of Data., 2016.

[32] S. C. Competition. (2017). 2017 submission guidelines.
[33] W. M. DuBow, “Diversity in computing: Why it matters and

how organizations can achieve it,” Computer, vol. 46, no. 3,
pp. 24–29, 2013.

[34] D. G. Johnson and K. W. Miller, “Is diversity in computing
a moral matter?” ACM SIGCSE Bulletin, vol. 34, no. 2,
pp. 9–10, 2002.

[35] A. W. Ervin. (2017). Office of institute diversity strategic
plan.

[36] G. I. of Technology. (2015). Intel, georgia tech partner to
diversify workforce, [Online]. Available: http://www.news.
gatech.edu/2015/08/04/intel-georgia-tech-partner-diversify-
workforce.

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

https://github.com/beagle-dev/beagle-lib
https://github.com/beagle-dev/beagle-lib
https://www.top500.org/news/hpc-in-2016-hits-and-misses/
https://www.top500.org/news/hpc-in-2016-hits-and-misses/
http://www.news.gatech.edu/2015/08/04/intel-georgia-tech-partner-diversify-workforce
http://www.news.gatech.edu/2015/08/04/intel-georgia-tech-partner-diversify-workforce
http://www.news.gatech.edu/2015/08/04/intel-georgia-tech-partner-diversify-workforce

APPENDIX I. TEAM SWARM

We document who was on our team members and what our
strengths as a team were. Additionally, we comment on our team
diversity and our inclusive recruitment practices.

A. Strength of Team

Our mentors recruited our team with the intent of assembling an
excellent group of passionate and capable students and faculty.

Since the SC’17 Student Cluster Competition was Georgia Tech’s
first student cluster competition, to ensure our team was competi-
tive, we were selected on the following criteria:

• Strong Academic Background. Through our coursework, we
each shared knowledge of computer architecture, operating
systems, data structures and algorithms, and parallel program-
ming. Members on our team have also taken graduate level
courses in Numerical Linear Algebra, Operating Systems,
Distributed Systems, and Parallel Computing Architecture.

• Experienced with Linux. All team members had prior expe-
rience using Linux through courses, internships, and personal
usage. Some members had even worked as administrators. For
instance, Andy administered the clusters for both his research
lab and the company he previously led. Other members were
active competitors of capture-the-flag (CTF) competitions,
where they exploited vulnerabilities in Linux ELFs or bina-
ries.

• Extensive Research and Industry Experience. We had a
broad range of research and internship experiences relevant
for the competition. Our shared research experience ranged
from working on parallel streaming graph algorithms, to
accelerating genomic applications using GPUs, to integrated
circuit fabrication, to data analytics and parallel programming
instrumentation. Additionally, we had also interned at a num-
ber of companies, providing us the opportunity to further
improve our software engineering skills and face a wider
breadth of programming and engineering problems. These
companies included Apple, Bloomberg, Facebook, Google,
Sandia National Labs, Square, Symantec, and Texas Instru-
ments.

• Leaders in Our Community. Every one of us had loved some
course or club enough that we wanted to take a leadership
position to make a positive impact on it. For example, 5 of our
7 members had served as undergraduate teaching assistants for
our computing courses. Jessica had served as the president
of College of Computing’s Undergraduate Council, and had
been recognized as Outstanding Senior in Computing. Manas
led our school’s Computer Security club, where he organized
weekly CTF competitions.

• Passionate Programmers. We all also programmed exten-
sively outside of school, largely for fun. Several of our team
members had competed in and won at hackathons. Others had
competed in algorithmic programming competitions. Some
members had also started and ran their own technology
companies.

We believed that by coupling our shared experiences and talents
with duly applied hard work, we would be competitive at the 2017
competition as well as many future ones to come.

B. Our Members

Petros Eskinder was a fourth year computer
science major whose interests lie in graph algo-
rithms and high performance computer architec-
ture. As an undergrad at Georgia Tech, he served
as a teaching assistant for courses on algorithms
and computer systems. He previously interned at
Google and Facebook, where he developed tools
to automate build-file creation and made pretty mobile screens. Last
year, he launched a viral mobile application that was featured on
various media publications like Business Insider, CNN, and NBC
News.

Dezhi ”Andy” Fang was a second year com-
puter science major. He was first exposed to
HPC through a data analytics research project
where he reimplemented the lower-level com-
munication of a big data framework to use
memory-mapped I/O. The results of his work
were published in SIGMOD’16 [31]. Andy has
interned with Symantec where he created a malware visualization
pipeline using Hive and Hadoop. He has also served as technical
lead for a Chinese startup. He will be responsible for managing
our usage of Docker.

Nick Fahrenkrog was a fourth year student and
the only electrical engineer on the team. He
possesses a wide breadth of experiences, ranging
from conducting integrated circuit fabrication
research, squashing security issues at Texas In-
struments, and developing full stack web appli-
cations. He is an avid programmer, frequently
attending and winning hackathons. He was first introduced to HPC
through a class on MPI, pthreads, CUDA, and OpenGL. He intends
to leverage his experiences by focusing on power management and
providing a holistic perspective from the transistor level upwards.

Manas George was a third year computer sci-
ence student. He is a member of Georgia Tech’s
High Performance Computing Lab, where he
works on cuStinger, a GPU-based dynamic
graph processing framework. He was a research
intern at Apple where he built a data processing
pipeline for the iTunes app submission process.
He leads the computer security club at Tech, giving presentations
on security vulnerabilities, as well as setting up competitions that
involve administering multiple systems under attack over a period
of 24-48 hours.

David Meyer is a third year CS major, who
became interested in HPC through reading about
Beowulf clusters. For the past two years, he
has worked as a teaching assistant for courses
on Object Oriented Programming and Com-
puter Organization. He is currently developing a
web application to elegantly visualize genealogy
data. Ever since, he has been searching for a ways to expand his
knowledge on HPC.

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

Jessica Rosenfield was a third year computer
science major who has served as the president
of the College of Computing’s Undergraduate
Council and was recently awarded Outstand-
ing Senior in Computing. This semester she is
researching high performance computing algo-
rithms to improve DNA alignment and assembly software. Jessica
has interned twice with Square where she worked in distributed
systems and customer insights. She plans to work at Snapchat this
summer in data engineering.

Alok Tripathy was a second year CS major. His
research focuses on designing and implementing
parallel streaming graph analytics for massively
multi-threaded systems. He has interned at San-
dia National Labs where he implemented a dis-
tributed cache coherency protocol in Go, and at
Bloomberg designing and implementing machine learning features
to extract tables from PDF files. He is a recipient of the Sidney
Goldin scholarship for outstanding leadership abilities. In his free
time, he likes to play capture-the-flag (CTF) computer security and
competitive programming competitions.

C. Our Advisors

Chirag Jain was a third year PhD student in
the School of Computational Science and En-
gineering at Georgia Tech. His research interest
lies in designing scalable serial and parallel algo-
rithms for combinatorial problems in genomics.
In 2016, he was a summer fellow at the National
Institutes of Health. He is the recipient of the
Reproducibility Initiative Award at Supercomputing’16.

Oded Green was a research scientist in the
School of Computational Science and Engineer-
ing at Georgia Institute of Technology, where
he also received his PhD. Oded received his
MSc in electrical engineering and his BSc in
computer engineering, both from the Technion,
Israel Institute of Technology. Oded’s research
focuses on improving performance and increasing scalability for
large-scale data analytics using a wide range of high performance
computing platforms.

Will Powell was a research technologist in the
School of Computational Science and Engineer-
ing at Georgia Institute of Technology. Will has
over 20 years experience in the IT industry
including almost 12 years at IBM. Will is an
expert in designing high performance servers
and clusters. He assisted the team with setting
up the team’s cluster and teaching the students
good system administration techniques.

D. SC’17 on Diversity

When evaluating potential teams, the Student Cluster Competition
committee included team member diversity and inclusive recruit-
ment practices in their evaluation [32]. Due to the international
nature of the competition, there was flexibility in terms of what

constituted diversity. However, in general, diversity was broken
down into two components: (1) academic diversity and (2) ethnic
and gender diversity.

Academic diversity focused on the student’s academic majors; in
particular, whether there were students from each of the compu-
tational sciences, the domain sciences like physics and chemistry,
as well as traditional engineering. The intent was to simulate the
collaboration habits of traditional HPC environments. Ethnic and
gender diversity, at least for American teams, primarily focused
on ensuring women and traditionally underrepresented minority
groups within computing had the opportunity to join and compete
with the team. This was intended to ameliorate the pipeline crisis
within HPC and computing, more broadly, where there are limited
numbers at all stages of computing [33],[34].

E. Strength of Our Diversity

At Georgia Tech, we pride ourselves on our institution-wide com-
mitment to support and foster diversity in all of its manifestations
[35]. Each year, we are consistently rated among the top univer-
sities in the nation for graduation of women and underrepresented
minorities in engineering, and computer science. More recently,
in 2015, we received a $5 million grant from Intel to expand our
existing initiatives to recruit and retain qualified underrepresented
students in STEM [36]. These initiatives include summer research
programs for undergraduates, mentorship programs at the K-12
level as well as at the graduate and undergraduate levels, and
outreach programs attracting bright women and underrepresented
minorities to attend graduate school [36].

Our team was a direct reflection of this commitment to inclusive
excellence. Early January 2017, our advisors posted an announce-
ment on our college’s news and events mailing list inviting students
to join GT’s inaugural Student Cluster Competition team. Soon
after, they held an information session describing the competition
and expected level of commitment. From the attendees, seven
members, six competitors and one alternate, were then selected
based on their enthusiasm and prior experience with HPC. What
resulted was a very diverse group of students.

Geographically, our team members’ backgrounds span four states,
six countries, and three continents. Manas grew up in Dubai.
Chirag is from Haryana, India. Dr. Green stems from Haifa, Israel.
Andy is from Ürümqi, China. Petros was born in Ethiopia. Jessica
was raised in Farmington, Connecticut, Alok grew up in Princeton,
New Jersey. Nick is from Boulder, Colorado, and David is from
Buford, Georgia. Beyond this variety in background, we also share
an eclectic mix of interests outside of our work in computing.
Members of our team can be found running marathons, playing
sports such as squash and baseball, designing fashionable clothing,
and hacking gaming consoles.

APPENDIX II. SPONSORSHIP

F. Vendor Relationship

Our company sponsors were IBM, Avnet, and Flagship. They
provided our cluster hardware and funded hardware shipment to
Georgia Tech. We received our first node in August and the second
in late September. In the ensuing time, IBM also loaned us a

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

Fig. 3. Map of our Team Members’ Backgrounds

Power8 cluster until June. We were able to using this machine
to investigate optimizations for HPL and HPCG.

During the months preceding the competition, we worked with
IBM, Avnet and Flagship to ensure we utilized our systems to
peak capacity. Concretely, this meant receiving

• Binaries for the LINPACK and HPCG challenge that were
highly optimized

• Guidance selecting and setting up our file system
• Suggestions on how to reduce power consumption

APPENDIX III. TEAM PREPARATION

We describe how we prepared for the competition.

G. Prior Coursework

As apart of our degrees, we each took coursework on computer
architecture, operating systems, data structures and algorithms,
and parallel programming. Several members, through their own
choosing, also took advanced courses in Numerical Linear Alge-
bra, Operating Systems, Distributed Systems, Processor Design,
Compilers, High Performance Computing Algorithms and Parallel
Computing Architecture. Note, we not only enrolled in these
courses, we also excelled in them. Most notably, 5 of our 7
members had served as teaching assistants for relevant courses like
Data Structures and Algorithms, Introductory Computer Architec-
ture, Introductory Computer Systems and Networks, and Algorithm
Design. Other members also privately tutor the above coursework.

H. Available HPC Hardware Resources

We describe the hardware we used to prepare for the competition.

1) When we expected competition cluster: With the support of our
industry sponsors, we planned to assemble a two node Power8
cluster. We expected the first node to arrive in early August,
right before the start of the Fall 2017 semester. Then, between
mid-September and early October, we expected our second node.
Because of these arrival dates, we expected at most two months
of access to our competition machine.

2) Additional Clusters: To prepare during the ensuing waiting
period, we planned various alternative clusters. The College of
Computing at Georgia Tech provided us with two Intel Xeon based
clusters, PACE and Jinx. PACE is a four node research cluster with
each node outfitted with 24 core Intel Xeon E5-2680 CPU. Jinx is
a 24 node instructional cluster with each node containing two Intel
Xeon X5650 processors and two NVIDIA Tesla GPUs. PACE is
shared amongst members of a research group at Georgia Tech and
Jinx is shared with various classes. Additionally, we were given
access to Top500 machine Comet@SDSC. These servers were used
for practicing our skills and developing an intuition for tuning the
different applications.

In addition to the aforementioned clusters, IBM loaned us a Power8
server. This server was an older generation of the Minsky server we
used at the competition. We used this system to get accustomed to
the PowerPC architecture and to properly tune each application for
our future server. This way, during the fall, when our server arrives,
we will be productive. Note, IBM loaned us this cluster explicitly
to prepare for the Student Cluster Competition. Consequently, the
team has exclusive access to the server, and each member has sudo
access.

I. Preparation for Applications

1) Spring Semester: After forming our team in early January,
we held weekly meetings throughout the spring semester. Since

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

TABLE I
SUPERCOMPUTING 2017 TRAVEL BUDGET

Description Estimated
Cost

Quantity Frequency Total Cost

Airport
Transport

$10 7-people 4-trips $280

Airfare $550 7-people 1-flight $3850
Per diem $70 7-people 6-days $2940
Hotel Room
(provided by
SCC)

$0 7-people 7-nights $0

Conference
Registration
(provided by
SCC)

$0 7-people 7-nights $0

Hardware
Transport

$5000 1 1 $5000

Onsite
expenses

$1500 1 1 $1500

Total Cost $13,570

many of our members had strong fundamental HPC knowledge, our
primary focus during the spring was to familiarize everyone with
the applications, and with the practice of tuning an application.
Consequently, our meetings largely consisted of discussions on
applications and our experiences tuning them. On a number of
occasions, faculty and research scientists at Georgia Tech have
given talks on topics like the mathematics behind the LINPACK
algorithm and the basics of distributed memory parallel computing
using Message Passing Interface (MPI).

2) Fall Semester: Once our first cluster node arrived, during the
fall, we split our team into groups of two or three members.
Each group was responsible for becoming technical leads on a
specific application or tool. Each week, subteams worked together
to experiment, build tools and conduct investigations. Then, during
weekly team meetings, they presented their results and learnings
to the larger team. This weekly communication practice served
as excellent preparation for the application and team specific
interviews at the competition.

3) Communication Channels: Outside of meetings, we commu-
nicated using Slack, an instant messaging and collaboration tool.
We segmented our Slack into different channels such as proposal
writing, HPL benchmark results, Reproducibility Challenge and
general announcements. Within each channel, we communicate
topically relevant questions, progress and concerns.

J. Institutional Support

Our team’s travel expenses were supported by Georgia Tech’s
School of Computational Science and Engineering (CSE) as well
as it’s Institute of Data Engineering and Science (IDEaS). This
included support shipping our machine to the conference. We
provide our projected budget in Table I.

DocuSign Envelope ID: 655D8286-9D8D-4589-B7D9-E3EB667B64D1

