Code Shrew

Software platform for teaching programming through drawings and animations

Ludwik Trammer
Georgia Institute of Technology
ludwik@gatech.edu

ABSTRACT

In this paper, we present Code Shrew, a new software plat-
form accompanied by an interactive programming course.
Its aim is to teach the fundamentals of computer program-
ming by enabling users to create their own drawings and
animations. The programming language has a straightfor-
ward syntax based on Python, with additions that enable
easy drawing and animating using object-oriented code. The
editor reacts seamlessly and instantly, providing an engaging
and interactive environment for experimenting and testing
ideas. The programming course consists of lessons that cover
essential programming principles, as well as challenges to
test users’ skills as they progress through the course. Both
the lessons and challenges take advantage of the editor’s
instant feedback, allowing for a focus on learning-by-doing.
We describe the software and the content, the motivation
behind them, and their connection to constructionism.

KEYWORDS

animation, computer programming, constructionism, course,
drawing, education, k-12, lessons

1 INTRODUCTION

We've built a web-based platform for learning and practicing
the fundamental concepts of computer programming. Code
Shrew consists of those two main components:

o A programming environment which enables people to
create drawings and animations with computer code.
It uses a simple Python-like syntax and is designed to
teach modern object-oriented programing techniques:
one draws by creating objects and animates by chang-
ing their properties. Because of this characteristic, the
resulting drawings and animations can also be seen
as intuitive visualizations of the program’s logic itself.
They are displayed in real-time in the preview area.
Users can save them to their profile on the website and
share them with friends on social media.

e A course using the platform to present a set of funda-
mental programming concepts. Each lesson is based
around a single central idea which is presented in a
video, expanded in a text form, and then reinforced
by interactive examples, which students can play with
freely.

Jamie Dunn
Georgia Institute of Technology
jdunn70@gatech.edu

Among other things, the project was inspired by construc-
tionism, a learning theory according to which people learn
best by creating things [9]. That influenced both the choice
to build a creative tool and the structure of the course - we
wanted to give students the necessary tools to realize their
own creative ideas, instead of forcing them to follow prede-
fined paths.

2 RELATED WORK

There are many existing solutions in this space. We discuss
some of them here.

Code Draw

Georgia Tech’s ¢s6460 project from Summer 2017 created
by Michael Delfino [5]. It was the initial inspiration behind
our work. Delfino created a straightforward domain-specific
language called Drawlang, intended for drawing shapes. The
other part of his project was a multiuser web-based game
inspired by Pictionary, called Code Draw. Players would use
Drawlang code to draw pictures representing words, while
other players would try to guess those words.

Scratch

A popular environment for teaching programming using
draggable code blocks. Its value has been proven in numerous
studies (including [1], [6], [10]). One can use it to create
games and animations by dragging sprints into the stage area
and then dragging code blocks to create programs. It’s easy
to use, but the programs created with it can be surprisingly
sophisticated. Its website includes a lot of social features and
can easily be seen as not only a programming environment,
but also a social network based around creating, sharing and
remixing visual programs.

Alice

Alice [4], similarly to MIT Scratch, is a block-based program-
ming environment. It is however much more powerful and
complex. Just like with Scratch, one creates Alice programs
by dragging objects into a stage area and then programming
them with draggable code blocks. Unlike Scratch, Alice is
object-oriented and aligned quite closely with a “real” pro-
graming language - Java. This closeness to Java can be viewed
as both Alice’s strength and weakness. On the one hand, the



understanding gained from working with Alice can be easily
transferred to “real world” programming with Java. On the
other hand, this complexity makes Alice much more intimi-
dating. Java code is known for having a very rigid complex
structure, which can also be observed in Alice.

Logo

The original constructionist programming tool. One of its
primary creators was Seymour Papert, the funder of the
constructionist movement in education. For the 50 years
since its creation, it was used to teach countless children all
around the world and its effects had been studied extensively
(including (3], [8], [7]).

Logo programs are procedural - they consist of instruc-
tions that direct the behavior of a marker (usually depicted
as a turtle) which travels across the canvas creating drawings
along its path. This method can be used to create surprisingly
attractive line drawings.

Summary

Each of those tools has its unique set of strengths and weak-
nesses. Our intention while building Code Shrew was not to
replace them but to provide an alternative that focuses on
those four areas:

(1) Fostering creativity by making use of the construction-
ist methodology. We want students to develop their
own personal, unique creations. They shouldn’t be
forced to follow predesigned paths.

(2) Alow barrier to entry. Simple things should be achiev-
able with simple code, without needless boilerplate. An
immediate visual feedback should be always provided.

(3) Providing a good starting point for learning “real” pro-
gramming tools later. That’s why code used by Code
Shrew is text-based, shares basic syntax with Python
and is object-oriented.

(4) Community. Students should be able to learn from
each other by sharing and remixing their creations.

3 THE SOFTWARE

The software is publicly available under https://shrew.app.
It works directly in the browser! and does not require instal-
lation. Registration is not required to access most significant
features, except for saving creations and marking creations
as loved.

The software has a responsive interface - it can be used
on computers, tablets, and mobile phones. The interface
automatically adapts to the screen size. When using the
editor, a device with a physical keyboard is recommended.

ICurrent versions of all major modern browsers are supported, including
Google Chrome, Mozilla Firefox, Microsoft Edge, Apple Safari and Opera.

The editor

The editor is the place where drawings and animations are
created. It features a large code editing area and a smaller
preview area. The editor supports features known from other
code editors such as code coloring, line numbering, and auto-
matic indentation. The previews are generated continuously
in real time so that user can always see an up-to-date re-
flection of their work. In case of an error in user’s code, the
offending line is marked with an icon and a description of
the error.

Drawings and animations created in the editor can be
saved by clicking Save to my profile. Saving requires a reg-
istered account (the drawings/animation itself can be made
without an account, which can be created later as a step in
the saving process). After the initial save, all the subsequent
changes are preserved automatically.

The editor can be accessed by clicking the Create new
button in the top-right corner of the website or by clicking
View code and remix on the page of saved drawing/animation
(or the Edit button, when viewing one’s own work). It can
also be embedded on other pages, most notably in the course
lessons and the documentation.

The Language

The language used to create drawings and animations is
based on Python 3 [11], which is a popular language used
widely in the industry. The syntax for all the basic opera-
tions (including variable assignment, looping, conditional
statements, and working with data structures) is shared with
Python. Because of that, we will not discuss it in detail in this
document. A fuller explanation is available in the Lessons sec-
tion on the website, under shrew.app/lessons. Here we will
focus on the drawing and animations parts of the language,
that are unique to Code Shrew. That includes objects rep-
resenting individual shapes, a context processor used with
animations, and a separate module that can be utilized to
import any of the free icons from FontAwesome.com.

Shapes. Shapes are the most basic building blocks of any
Code Shrew program. Drawing is achieved by creating shape
objects. For example, typing Circle(color="red’) in the
Code Shrew editor, will result in a red circle being displayed.

There are currently seven basic shapes in Code Shrew:
Rectangle, Square, Ellipse, Circle, Line, Polygon, and Text. The
icons module (described later in this document) contains 766
more.

The appearance of a shape can be modified using its prop-
erties. Different kinds of shapes have different properties. A
value of a property can be set when creating a shape or any-
time later. Those are both equally valid methods of creating
a brown square:

Method 1:


https://shrew.app/lessons

Square (color="brown"')
Method 2:

john = Square ()
john.color = 'brown'

Shapes also have methods that perform different actions.
For example to create a mirror image of a text one can use
the flip_horizontal () method:

hello = Text("Hello visitor!")
hello.flip_horizontal ()

Shapes are drawn on a 100x100 plane. Of course, one can
add as many shapes to a single drawing as they like.

Detailed descriptions of each shape (together with their
individual properties and methods) can be found in the doc-
umentation under shrew.app/documentation/shapes.

Icons. Besides basic shapes, Code Shrew contains a pow-
erful addition - the icons module. Icons behave just like
shapes, but there are 766 of them, as the module enables
the use of any of the free icons from the Font Awesome
collection.

To use the module one has to import it first by writing
import icons. That will cause Code Shrew to make the
icons available. For example, the following code will draw a
red track:

import icons
icons.Truck(color="red")

More details on using the icons, together with their prop-
erties and methods can be found in the documentation under
shrew.app/documentation/icons.

Colors. Colors can be used as arguments for the color
property on shapes and icons. Code Shrew supports solid
color (i.e., one color) and gradients (i.e., multiple colors blend-
ing together).

Solid colors can be specified with text in quotes. The text
should contain the color’s name or its RGB value. That means
that both methods shown below will result in a blue circle:

Method 1:

Circle(color="blue')
Method 2:
Circle(color="#0000FF"')

In most cases, we recommend the first method as it is
usually much easier to read and understand. Code Shrew
know about 147 different color names, so referring to colors
by name is not particularly limiting. The full list of avail-
able color names is available in the documentation under
shrew.app/documentation/colors. As an example, the follow-
ing code will create a fish colored salmon:

import icons
icons.Fish(color="'salmon')

To create a gradient a list of solid colors is needed. For
example, to create a circle gradually going from red to blue,

the following code can be used:
Circle(color=['red', 'blue'l])

An arbitrary number of colors can be employed. For ex-
ample, the following code will create a rainbow frog:

import icons

icons.Frog(color=['red', 'orange',
'yellow', 'green', 'blue',
"purple'])

Animations. Creating animations is done by manipulating
properties of shape and icon objects. The code needs to be
inside the with animation() block, to indicate that the
changes are to be animated.

For example, the following code will animate a circle by
gradually changing its color from red to blue:

my_circle = Circle(color="'red')

with animation():
my_circle.color = 'blue'

One can animate by changing almost any of the object’s
properties inside the with animate() block. That includes
changing its color, size, position, rotation, transparency and
other (the full list is available in the documentation).

By default, awith animation() block will take exactly 1
second to perform the animation. That can be changed by
providing it a duration. For example, the following anima-
tion will take 5 seconds to run:

my_circle = Circle(color="'red"')

with animation(duration=5):
my_circle.color = 'blue'

Multiple properties can be animated at the same time. For
example, this code will create a small rectangle going from
left and change its color from pink to cyan, both at the same
time:

rec = Rectangle(width=20, height=20,
x=10, color="'deeppink ")

with animation(duration=3):
rec.x = 90
rec.color = 'cyan'


https://shrew.app/documentation/shapes/
https://shrew.app/documentation/icons/
https://shrew.app/documentation/colors/

There can be more than one with animation() block.
They run one after another. For example, this code will make
the rectangle go back and forth:

rec = Rectangle(width=20, height=20,
x=10, color="'deeppink')

with animation(duration=2):
rec.x = 90
rec.color = 'cyan'

with animation(duration=1):
rec.x = 10
rec.color = 'deeppink'

Empty with animation() blocks are allowed. They
will make the program wait for the duration of the block,
without changing anything. Doing this requires adding the
pass inside such block, to indicate that it is intended to be
empty. For example, this will create an animation where a
rectangle travels from left to right, waits for half a second
and then goes back:

rec = Rectangle(width=20, height=20,
x=10, color="'deeppink')

with animation(duration=2):
rec.x = 90
rec.color = 'cyan'

with animation(duration=0.5):
pass

with animation(duration=1):
rec.x = 10
rec.color = 'deeppink'

Declarations of new shape objects are allowed inside the
with animation() blocks and result in the shape appearing
gradually for the duration of the block. For example, the
following code will create an animation where it takes 5
seconds for the rectangle to appear fully:

with animation(duration=5):
rec = Rectangle(width=20, height=20,
x=10, color="'deeppink')

with animation(duration=2):
rec.x = 90
rec.color = 'cyan'

Saved creation’s page

Each creation that has been saved has its own public page.
The page includes:

e the drawing or animation itself

o the date of creation

e alink to the author’s profile

o if the creation is a remix: a link to the original creation
and information about original creation’s author

a See code and remix button (or an Edit button when
viewed by the author)

a Remove button (only when viewed by the author)

a Share button, which enables sharing to many differ-
ent social media platforms

a Love button with a counter (showing the number of
people that “loved” the creation by clicking the button)

Many of those elements are centered around social in-
teractions. We wanted people to be able to show off their
creations (by sharing), appreciate creations of others and
feel appreciated (by “loving”), and get inspired by the work
of others (by remixing). In a similar vein, we choose the
saved creations that we like the most and feature them on
the Code Shrew’s homepage. This way we can show our
appreciation to the authors, and inspire others by presenting
what’s possible. Even at the time of writing of this paper,
right after the software was finished, we already got some
very high-quality submissions from our users.

User accounts

While most of the website’s functionality is available with-
out registration, saving creations and marking creations as
“loved” requires logging in. Users are able to log in using
their existing Facebook or Google accounts or to create a
new account by providing their email, the desired username,
and password.

Each user registered on the website has an individual
public profile, listing their saved creations and creations that
they “loved”.

Technological stack

The technologies used in the project include (but are not
limited to):
e Django (Python 3) - the server-side framework,
o PostgreSQL - the database,
e Bulma - the CSS framework,
e SASS - the CSS extension language,
Babel - the ES6 compiler,
Skulpt - the in-browser Python interpreter,
svg.js - the graphics library,
Code Mirror - the code editor widget,
Cloud Flare - the CDN and caching provider,
Markdown (CommonMark) - the markup language,



o CloudConvert - the svg to png converter (used for social
media previews of creations).

4 THE COURSE
Design

Along with the Code Shrew tool and site, we created material
for users to work through so they can learn what Code Shrew
does as well as programming basics, providing a complete
package within the Code Shrew website. Providing this side
of the site will act as a quick way for new users to see how
it all works and what areas they may be interested in trying
out more. Also, examples of code are given in an interactive
environment and explained in lesson videos, providing a
useful resource for beginning programmers that are not sure
where to begin.

Similar sites supply a programming tool alongside intro-
ductory programming lessons but these can be very limited
due to cost (some require a membership or payment for full
access to materials) and not employing complex or existing
programming languages. In our case, we are offering this
tool and lessons for free, using syntax similar to Python,
and giving students a chance to learn about more complex
structures such as for loops, functions, and objects. This will
enable students to transition to scripting in Python (or sim-
ilar languages) much more easily when they are ready to
graduate from Code Shrew. This is a central idea behind
Code Shrew and the lessons we developed: not only did we
want to teach students basic programming rules in a very
accessible and interactive way but also get them excited and
ready for more complex programming tasks.

Lessons

The lessons created during this project cover how to use vari-
ables, lists, for loops, functions, and objects. Each of these are
in respect to Code Shrew itself, so the user can experiment
with the different programming techniques all within an
engaging environment where the focus is on creating anima-
tions. Each lesson includes short videos that explain the new
content at a high level, text that covers the same information,
helpful links, examples, and a “playground” area where code
is provided and the user can experiment with different values
and rules. Users are able to change the code, see the result
instantly and automatically, and even save their creation if
desired.

The purpose of this lesson set up stems from the fact that,
especially when it comes to programming, learning-by-doing
is often a very successful and fun way to learn as it can be
exciting to see what is possible and immediately implement
any creative ideas that come to mind. Also, since our lessons
provide different avenues of learning, students can tailor
what components they interact with the most to how they

learn best. For example, learning general content through the
lesson video may be a great start for some students whereas
trying some examples first, finding gaps in knowledge, and
then checking out the lesson text for more information may
work best for others. Overall, we wanted to facilitate learning
in any way a student would feel most comfortable with since
we both love programming and just want to give students a
chance to see why it can be such an exciting field without
getting intimidated.

Challenges

Programmers are often given tasks to complete, often with
no exact guide of how it should be done. For example, they
may be asked to create a software with certain capabilities
or find an interesting story in an abundance of data. This is
often, in our opinion, the funnest part of programming as it
is a time to be creative, apply what you already know, and
look into topics that aren’t as familiar. With Code Shrew, we
wanted to give users this same experience.

A Challenges tab is provided as an optional resource.
Within this tab, the user will find designs and animations,
but unlike the rest of the site, these do not come with the
code needed to create them. They are then tasked with recre-
ating the art to the best of their ability. To help with this,
helpful (but minimal) parameters are provided to get them
started. For example, exact shape sizes, colors of objects, and
locations of certain pieces of the design/animation can be
provided if they are not obvious. Also, provided with each
of these is the level of skill needed to complete the task, pro-
vided as what lessons the user should already be familiar
with and understand.

What’s Next?

As a final component to the course content, there is a "What’s
Next?" resource where users can find information and links
to other programming languages and tutorials. This part
of the course is meant to direct the student when they are
ready to move onto writing more challenging code, as well as
show them that is indeed the next step, and there are many
resources out there to help on them on this journey.

5 SURVEY

We created a survey and posted it on PeerSurvey, which is a
virtual survey platform available to people with Georgia Tech
accounts. The survey began with the following guidance:

To take this survey, you have to first visit
https://shrew.app and create an animation us-
ing the tool. It would be best if the code had at
least 4 lines but, beyond that, it may be very cre-
ative or very simple - it’s your choice. To save
the animation you will need to log in. You may



use your existing Google or Facebook account,
or create a new account on the site.

It then presented those 11 questions:

(1) Paste the URL of the animation that you created on
shrew.app and saved to your profile
(2) When learning how to create the animation, have you
visited the “Lessons” section?
(3) (if yes) Where the lessons helpful? Do you have any
suggestions?
(4) When learning how to create the animation, have you
visited the "Documentation” section?
(5) (if yes) Where the documentation helpful? Do you
have any suggestions?
(6) When learning how to create the animation, have you
looked at the featured creations on the homepage?
(7) (if yes) Where they helpful? Do you have any sugges-
tions?
(8) What is your age?
(9) What is your level as a programmer?
(10) When working with the tool and the site, have you
experienced any problems?
(11) Do you have other suggestions or ideas?

It is important to note that the results are not representa-
tive. The survey was meant as quick User Experience testing,
not a scientific research. We received 31 responses, which
gave us interesting insights, including bug reports and sug-
gestions for improvements. We were able to implement most
of them already.

While we asked people to create an animation, we did not
suggest a way to learn how to do it. That was on purpose -
we wanted to see what will people do organically. From all
the people surveyed, 66% indicated that they used the Lessons
section, 69% used the documentation, and 56% used exam-
ples featured on the homepage. All people who answered
the question asking if their chosen method of learning was
“helpful” indicated that it was. We did not get a single “not
helpful” answer. It is hard to tell if this is a reflection of
the quality of our work, or just of Georgia Tech community
being inherently supportive.

6 LIMITATIONS

A limitation of the course content created was that it was not
created by someone who was not trained to teach, meaning
some items could have been presented in a much better way
to help facilitate learning. We remedied this as best we could
by discussing the lessons and how they should be approached
as well as getting feedback through the survey discussed here.
Additionally, Ludwik was a teacher in the past so, while he
did not create the videos, he was able to provide feedback on
different ideas for general lesson set up and course design.

Another big limitation of the project as a whole is the fact
that there was no time to test it with users. A proper study
is needed to explore if what we created is compelling and if
it has positive effects on programming skills.

7 FUTURE WORK
The course

This course was created over the span of a single semester
and there is still so much more that can be done to improve
it with more time. For example, additional lessons could be
added that cover while loops, booleans, conditional state-
ments, how to read documentation, if/else statements, work-
ing with data, and more. A fun environment like Code Shrew
really provides a lot of space for creative lessons and fun
examples. As a potential remedy, we feel this a perfect area
for someone to add to this project in the future and hope a
future student, or team, can contribute more content to give
Code Shrew a more comprehensive, well-rounded course.

The software

There are many possible directions for further development
of the website. Some of them include:

(1) Supporting more advanced drawing features (for ex-
ample grouping, controlling outlines, and clipping).
Adding anything that is supported by the SVG stan-
dard should be pretty straightforward from the techni-
cal standpoint. The biggest challenge is doing it while
preserving the simplicity of the language.

(2) Social features that would allow for more communica-
tion between the users. For example comments section
under saved creations. Such communication can be
very beneficial in a constructionist education [2], but
keeping the environment safe and friendly will be a
challenge.

(3) Adding support for sound so that animations can also
include sound effects.

(4) Allowing users to provide new challenges for our Chal-
lenges section.

(5) Support typing suggestions (autocomplete) in the edi-
tor. We already have a working version of this feature,
but it is not able to provide adequate suggestions in
some contexts, so it is disabled for now (we do not
want to confuse users who might start to rely on this
future). To achieve this, we have built a custom code
parser built on top of the nearley.js framework. A more
advanced parser is needed.

(6) Provide the code created by users with information
about the environment (e.g., mouse movements, key-
board and mouse events). That would allow people to
create interactive games using our platform.



REFERENCES
[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How kids code and

(11

—

how we know: An exploratory study on the Scratch repository. In
Proceedings of the 2016 ACM Conference on International Computing
Education Research. ACM, 53-61.

Amy Bruckman. 1998. Community support for constructionist learn-
ing. Computer Supported Cooperative Work (CSCW)7,1-2 (1998), 47-86.
Douglas H Clements. 1987. Longitudinal study of the effects of Logo
programming on cognitive abilities and achievement. Journal of Edu-
cational Computing Research 3, 1 (1987), 73-94.

Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D
tool for introductory programming concepts. In Journal of Computing
Sciences in Colleges, Vol. 15. Consortium for Computing Sciences in
Colleges, 107-116.

Michael Delfino. 2017. Introducing Students to Text-Based Program-
ming. (2017). https://github.gatech.edu/kbrunson6/6460_papers/blob/
master/papers/WUpEeW]i.pdf

John H Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and
Natalie Rusk. 2008. Programming by choice: urban youth learning
programming with scratch. Vol. 40. ACM.

Raymond B Miller, Gwendolyn N Kelly, and Joseph T Kelly. 1988.
Effects of Logo computer programming experience on problem solving
and spatial relations ability. Contemporary Educational Psychology 13,
4 (1988), 348-357.

Richard Noss. 1985. Creating a mathematical environment through pro-
gramming: A study of young children learning Logo. Ph.D. Dissertation.
University of London.

Seymour Papert and Idit Harel. 1991. Situating constructionism. Con-
structionism 36, 2 (1991), 1-11.

José-Manuel Saez-Lopez, Marcos Roman-Gonzalez, and Esteban
Vazquez-Cano. 2016. Visual programming languages integrated across
the curriculum in elementary school: A two year case study using
“Scratch” in five schools. Computers & Education 97 (2016), 129-141.
Guido Van Rossum and Fred L Drake. 2011. The python language
reference manual. Network Theory Ltd.


https://github.gatech.edu/kbrunson6/6460_papers/blob/master/papers/WUpEeWJi.pdf
https://github.gatech.edu/kbrunson6/6460_papers/blob/master/papers/WUpEeWJi.pdf

	Abstract
	1 Introduction
	2 Related Work
	Code Draw
	Scratch
	Alice
	Logo
	Summary

	3 The software
	The editor
	The Language
	Saved creation's page
	User accounts
	Technological stack

	4 The course
	Design
	Lessons
	Challenges
	What's Next?

	5 Survey
	6 Limitations
	7 Future Work
	The course
	The software

	References

