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ABSTRACT 

The following paper presents a cross-disciplinary snapshot of 

21st century research in sonification and leverages the review 

to identify a new immersive exocentric approach to studying 

human capacity to perceive spatial aural cues. The paper 

further defines immersive exocentric sonification, highlights 

its unique affordances, and presents an argument for its 

potential to fundamentally change the way we understand 

and study the human capacity for location-aware audio 

pattern recognition. Finally, the paper describes an example 

of an externally funded research project that aims to tackle 

this newfound research whitespace.  

1. INTRODUCTION

Human interfaces to the natural world are inherently 

multisensory [1]. In simulated environments we often mimic 

our interaction with the natural world by combining sensory 

mechanisms to broaden cognitive bandwidth [1], [2], as well 

as to reinforce comprehension [3] and learning [4], [5]. A 

1997 report to the National Science Foundation [6] defines 

sonification as “the use of nonspeech audio to convey 

information”. In this paper the authors refine this definition 

only slightly, using the term sonification to describe the 

process of using sound to convey information that is not 

inherently auditory. 

Despite decades of concerted research, sonification 

remains vastly underutilized. In 1999 Hermann and Ritter 

suggested that sonification is an “underused perceptual 

channel for man-machine-interaction” [7], and in 2007 Nasir 

and Roberts stated “that researchers have not fully utilized 

the maximum potential of spatial sound” [8]. More recently, 

a 2014 paper by Thomas Hermann suggests that sonification 

is still in its infancy [9]. This continued challenge presents us 

with a seemingly obvious question: after decades of rigorous 

research, why is sonification still in its infancy? There are 

many facets to this complex issue. By leveraging the 

aforesaid immersive exocentric approach this paper proposes 

a path forward. 

2. THE EXOCENTRIC ENVIRONMENT

Central to this paper is the idea of creating and exploring an 

exocentric environment through sonification. This naturally 

leads to the question: what is the working definition of the 

term “exocentric environment”? 

The term “exocentric environment” has its origins within 

the context of immersive environments where it suggests an 

out-of-body experience [11], or an immersive environment 

that completely encompasses the user [17], [18]. What is 

particular to this definition is that the observer is not 

considered the center of the experience (as would be the case 

if we were to observe the immersive environment through 

their point of view), but rather as one subject with a unique 

and adjustable vantage point. In the context of sonification 

an exocentric environment does not treat the listener as the 

center of the listening environment. Instead the listener is a 

mobile actor who can navigate the space and adaptively 

interact with the real world to enhance their capacity to 

localize and discriminate various concurrent sounds. This 

specific meaning of “exocentric environment” is used 

throughout this paper. We will return to it at the end of the 

paper where we propose a new set of guidelines for studying 

the human capacity for location-aware audio pattern 

recognition. 

3. LITERATURE REVIEW

To better understand the current state of sonification research 

and its limits we present a cross-disciplinary review of 21st 

century literature in the field of sonification in a number of 

scholarly communities, including the Association for 

Computing Machinery (ACM), the Audio Engineering 

Society (AES), the Institute of Electrical and Electronics 

Engineers (IEEE), and the International Conference on 

Auditory Displays (ICAD). The overall goal is to identify 

similarities, patterns, obstacles, and promising areas for 

future studies. 

The Association for Computing Machinery (ACM) 

science cohort’s early research has yielded promising results 

hinting at sonification’s potential both as an independent 

form of representing data and, when coupled with a visual 

feedback, as a means of broadening cognitive bandwidth [2], 

[10]. Since 1999 the entire community has produced 28 

publications on the topics of sonification and spatialization 

[11], a number of which mention spatialization in contexts 

outside of audio environments. Most of these reduce spatial 

data to a single-dimensional output [12], or rely on 

approaches (e.g., headphones) that decouple aural perception 

from other sensory inputs [13]. This is unlike any other 

domain of human sensory perception. For example, in 

studying visual perception, even if the experimenters 

immobilize the user’s head, the user still retains the ability to 

create a spatial image through eye movement. Some research 

has gone as far as to suggest that sound is an inherently non-

spatial medium [14], although this argument is easily refuted. 
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Recent areas of research include assistive technologies [15]–

[20], reflective practice [21] and biofeedback that all but 

ignores our human auditory spatial capacity [22]–[28], or 

implements a spatial component in an egocentric way [29]–

[31]. Studies of this type often yield discouraging data [32]. 

A few researchers have focused on studying infrastructure for 

the delivery of spatial information [33]. There are notable 

exceptions [34]–[36] that focus on perception and cognition 

of spatially delivered stimuli, and even go as far as 

simulating elements of an exocentric environment [34]. 

However, none of these studies focus on spatial aural 

perception in a true exocentric environment. 

Similarly, a review of the Audio Engineering Society 

(AES) community’s output over the past 6 years offers three 

notable publications on the topic of sonification [37]–[39], 

none of which utilize the exocentric environment. A number 

of publications [37]–[45] either do not concern themselves 

with audio spatialization, or study it in isolated scenarios not 

directly related to sonification. Recent Institute of Electrical 

and Electronics Engineers (IEEE) literature echoes the ACM 

and AES trend. Topics can be categorized as fundamental 

studies [46]–[49], aggregators [50], [51], contextual 

spatialization algorithms [52], spatially sonifying data using 

virtual solutions [3], [26], [53]–[55], or sonification without 

any spatial component [56]. The best resource for 

sonification and spatialization research is found in the 

International Conference on Auditory Displays (ICAD) 

community, which annually publishes 50-70 papers that 

focus on sonification, spatialization, or both. Below we cite 

those most relevant to our theme. 

The reasons for the apparent disparity between research 

and broad adoption are undoubtedly numerous and not yet 

fully annotated. Gregory Kramer talks about “clear parallels 

between the composer’s role in [auditory displays] and the 

graphic artist’s role in data visualization.” He goes on to state 

that “Improved aesthetics will likely reduce display fatigue” 

[57], suggesting that part of the challenge in sonification 

processes is the ability to deliver content that is not tiring. 

Solving it will in great part depend on context-aware case-

specific solutions.  

There are other more pervasive challenges in the current 

sonification literature that are inherently tied to human 

ecology [58], or the ways in which we perceive our 

environment. Studying how we perceive spatial sound in a 

natural environment makes it difficult to decouple different 

sensory mechanisms, so the results of such studies may differ 

significantly from outcomes in which such mechanisms are 

studied in isolation. Despite this apparent bias, a vast 

majority of sonification projects and studies focus on 

simulating virtual environments, often by relying on an 

implementation that decouples the user from their immediate 

environment and eliminates input from other senses [59]. 

The most common examples of this are studies that rely on a 

headphone-based delivery system that utilizes discrete [60], 

stereo [26], [28], [61]–[63], or some form of head-related 

transfer function (HRTF)-based implementation [5], [54], 

[64]–[67], [68].  

The aforesaid citations represent a snapshot of a larger 

volume of examples, so they should not be considered 

exhaustive. Instead, they are meant to offer examples of each 

of the aforesaid categorizations. A considerably smaller 

number of research projects explore spatial sound [55], [69], 

with a majority continuing to be linked primarily to 

kinematic data [70]. Interestingly, one paper [55] considers 

spatialization approaches like Vector Based Amplitude 

Panning (VBAP) [71] to be inadequate because of implicit 

assumptions that data perception should be decoupled from 

the perceiver’s vantage point. In contrast, spatialization 

studies can be approached as an opportunity for users to 

traverse a simulated exocentric environment akin to the way 

they interact with the real world [34], [72], using their 

vantage point in a natural way to attain greater clarity. For 

instance, a user approaching one part of an audio display can 

naturally generate and process amplitude disparities in the 

overall image, allowing them to more easily separate sources 

of particular interest. The result is akin to the cocktail party 

effect [73], in which we tend to stand in proximity to key 

points of interest, facing them to ensure we have a clear 

understanding of their locus and that they stand out above the 

environmental noise floor. 

4. DISCUSSION

The aforesaid literature review offers two noteworthy 

observations. First, there appears to be little overlap in 

institutional knowledge between different scientific 

communities. This limits the impact of the ensuing 

scholarship and leads to inefficiency and redundancy. This 

issue is certainly not limited to the sonification research, and 

it undoubtedly stifles progress. 

Second, of all the extant research only a small subset is 

concerned with studying human spatial aural perception. This 

is surprising considering how integral the immersive spatial 

component is to human auditory perception. Further, of those 

projects that do explore the spatial context, virtually all focus 

on some form of simulation of spatial content, most 

commonly utilizing HRTF or similar approaches to 

spatializing sound. In doing so, such implementations are 

hampered by idiosyncrasies. For example, headphones 

restrict the ability to convincingly place sound in front of the 

listener, and in and of themselves are unable to address the 

front-back confusion. These issues are naturally mitigated by 

head movement in real-world applications, yet in many 

studies they are rendered ineffective by the delivery 

methodology. Because simulations often do not account for 

head movement, such ambiguities may be compounded. 

Finally, the addition of other simulated spatial sound 

perception (e.g. head tracking) may create its own 

idiosyncrasies, such as those stemming from latency. 

The vast majority of research in sonification is focused 

on placing the listener at the center of a space with optimal 

loudspeaker distances and phasing. The goal is often to 

identify limits of human perception when the audio 

component is decoupled from the other senses. This kind of 

foundational knowledge is essential to understanding the 

core capacity of human auditory perception, but it is hardly 

representative of the way in which humans interact with 

auditory cues in the real world. Humans naturally process 

data concurrently from different senses to mitigate limitations 

that stem from one sensory input. For instance, head 

movement is a simple kinematic approach that can help 

minimize the impact of the cone of confusion and/or front-to-

back ambiguity in spatial auditory perception. One’s location 

and orientation can help to identify critical details that may 

stimulate a more comprehensive understanding of the 

surrounding environment and its stimuli. Instead of placing 

the listener in an egocentric environment where they are 

ideally equidistant to every loudspeaker around them, 

allowing user to move and disrupt the loudspeaker distance 

equilibrium recontextualizes such a space into an immersive 
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exocentric environment where user’s interaction with the 

surrounding stimuli is more similar to the way we naturally 

perceive the world around us. To date, only one study [74] 

has shown interest in exploring such an exocentric 

environment, and it has yet to provide any tangible or 

reproducible data. 

5. A CASE FOR IMMERSIVE EXOCENTRIC

SONIFICATION 

We posit that studying the way we perceive the world 

through sound should be inherently holistic. It is worth 

noting that the spatial dimension of human hearing capacity 

is inextricably linked with stimuli perceived using our other 

senses, particularly sensations related to head rotation, head 

position, and visual cues related to location awareness. For 

instance, to minimize the so-called cone of confusion for 

sounds to the left and right of our head where there pinna is 

unable to create filtering variance, we commonly rotate our 

head to change our perspective relative to the sound source 

and better pinpoint a sound. Inability to do so vastly limits 

our capacity to locate sounds, and may result in errant 

conclusions. For example, studies that do not account for this 

capacity may conclude that our spatial hearing capacity 

seems lower than it actually is. 

Even in a reductionist approach to studying human sight, 

we do not prevent users from moving their eyes or head. 

These are, after all, critical elements that enhance our ability 

to see because our eyes only have a very narrow area where 

we can clearly perceive details; the edges of our field of view 

are blurry, but still sensitive to motion and change. It is the 

brain that constructs a holistic image as our eyes scan our 

surroundings using eye muscles, and this process is further 

enhanced by our head and body motion. In studying aural 

perception it therefore makes sense that we should allow and 

encourage movement, particularly in immersive three-

dimensional environments, thereby encouraging ecological 

validity of the ensuing research data. By moving within the 

space we refine and improve our ability to locate sound 

sources. For example, those of us who have placed calls to 

our cellphones in order to find them in cluttered 

environments can vouch for the advantage of walking around 

while listening for its ring. As we search, the ability to move 

throughout the space enables us to use the loudness of the 

ringtone, as well as any potential reflections to our 

advantage. 

Coupling head position, body movement and position 

awareness with our hearing perception enhances the way we 

interact with our environment, and it comes naturally to us. 

We don’t have to train for it. We simply interact. 

Now, consider a walkable High Density Loudspeaker 

Array (HDLA) environment with loudspeakers all around 

you, including above and below. As you move around the 

space, you are able to get closer to a particular sound, 

thereby naturally attenuating the perception of other sounds 

while concurrently using your spatial memory to generate a 

comprehensive spatial map. In such an environment you can 

interact with sonified data in the same way you interact with 

the real world. The ensuing immersive exocentric 

environment offers unique opportunities for immersive 

exocentric sonification. Here the sonification emanates from 

the space perimeter and does not require the user to remain in 

one location to explore the volume and phase characteristics 

of the immersive sound field. 

When considering exocentric sonification, it is worth 

noting that the varying distance between the loudspeakers 

and a listener navigating the space is not detrimental. Rather, 

it is an advantage that more closely resembles the way we 

interact with the world. There may be phasing artifacts and 

other unforeseen interactions. Yet, the same are commonly 

experienced in the real world and while they may adversely 

affect the overall aural image, the advantage of cross-

pollinating sensory input, as well as the ensuing amplitude 

differences are likely to offset any such shortcomings by 

significantly improving our spatial resolution. Consider the 

way we perceive movies on traditional cinema screens that, 

depending on where we sit, may be too large to fit within our 

peripheral vision. Under such circumstances, some of the 

areas on the edge of the large screen are much farther from 

our eyes than others, leading to unusual distortions to the 

image’s perspective in respect to our vantage point. Yet, our 

brain understands this is a flat image and we happily 

reconstruct it as such in our heads without any concern for its 

observed physical distortion. By extension, akin to Layer 

Based Amplitude Panning algorithm (LBAP) [75], in the 

exocentric environment speakers within the same horizontal 

layer share the same elevation, much like a row of pixels on a 

screen. Once we have the overall awareness of the visual 

(e.g. TV) or aural (e.g. HDLA front defined by its 

loudspeakers) canvas, our brains are capable of 

compensating for such physical inconsistencies in favor of 

maintaining consistent relationship between the individual 

loudspeakers, or, as is the case with its visual counterpart, 

between the pixels on a screen. 

The immersive exocentric environment and, by 

extension, immersive exocentric sonification focuses solely 

on the space’s perimeter where the loudspeakers are located. 

While there are ways of simulating sounds within the space, 

particularly when using the wave field synthesis (WFS) [76] 

and the ambisonics [77], they are prone to idiosyncrasies that 

limit the human ability to move and study such sources from 

different vantage points. If we were to consider the ensuing 

speaker front or perimeter as one canvas, we could project 

and move data across it. For initial studies the most obvious 

data choices may be inherently spatial data, such as 

geographical or geospatial data that limit the need for 

arbitrary assignment of variables to the spatial component. 

We posit that immersive exocentric sonification presents an 

opportunity to enhance and consolidate sonification research. 

This approach has not been adequately studied, and it has the 

potential to change the foundation of our understanding of 

human spatial aural pattern recognition. 

6. REAL-WORLD APPLICATIONS

Studying human auditory perception in isolation is an 

important step towards understanding the limits of human 

sensory mechanisms and is a critical precursor to the 

immersive exocentric sonification. Yet, the application of 

such findings in real-world scenarios without considering 

other complementing sensory dimensions may lead to 

misleading conclusions, including lower perceived human 

spatial auditory perception capacity. As such, one could 

argue that studying human spatial hearing without 

incorporating head and more importantly body movement 

and location may be just as misleading as studying human 

vision while disallowing head, body, and eye movement. The 

immersive exocentric approach to sonification described 
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above aims to address this potential pitfall and is rooted in 

the way we interact with our world. As a result, it feels 

natural and intuitive. 

Its applicability can be seen both on micro and macro 

scales, as well as in natural and human-made environments. 

Let us return to the aforesaid example of how we may want 

to search for a misplaced smartphone in our home. 

Commonly we resort to calling it to hear the source of its 

ring. As the smartphone rings, rather than standing in one 

place we move around and typically closer to the source to 

improve our spatial resolution that is often impeded by 

physical and acoustic obstacles. We may want to consider 

this a micro scale natural environment. 

Now imagine a large space equipped with a cutting-edge 

technology capable of monitoring human presence, motion, 

location, and user input, while offering a multisensory 

immersion in a complex dataset. Such an immersive 

environment is commonly referred to as the “decision 

theater” [78]. This macro scale human-made environment 

presents another case scenario where both the spatial aural 

and multisensory data immersion can take place and where 

listener location, motion, and orientation can help amplify 

their understanding of the data and the ensuing patterns. For 

instance, as they move closer to the edge of the space 

populated by an aural (e.g. a loudspeaker array) display, 

listeners attain greater spatial resolution and can effectively 

amplify specific sources of interest and consequently the 

perceived signal (source of interest) to noise (other sounds) 

ratio due to change in their proximity and orientation. 

As evidenced by the literature review, virtual immersive 

spatial sonification has greatly benefited from the advances 

in immersive technologies, allowing for the incorporation of 

head rotation. Its utilization is steadily increasing. Yet, even 

in virtual immersive auditory environments that focus solely 

on the head rotation, it is worth considering that rotation also 

includes translation, allowing for ears to be closer to the 

source. If such scenarios were to utilize virtual sources 

placed in close proximity to the listener’s head, such an aural 

spatial image stands to benefit from the increased spatial 

resolution due to head movement. This, arguably micro-scale 

human-made environment could have a far-reaching impact 

from spatial aural cues in operating equipment (e.g. cars and 

airplanes), to data rich environments and “decision theaters” 

that provide multisensory feedback with the goal of 

broadening cognitive bandwidth. 

The immersive exocentric sonification may have 

applications in a number of scientific domains, both as a 

novel methodology for data analysis and as a teaching tool. 

To determine the extent of its utility the initial research needs 

to focus on using physical, real-world environments and 

inherently spatial datasets to the extent possible, thereby 

minimizing reliance on the virtual and its limitations and 

idiosyncrasies. Such an approach requires an immersive 

HDLA facility. One such facility is Virginia Tech Cube. It is 

a configurable immersive studio measuring 50x40x32 feet. It 

is equipped with 24 motion-capture cameras and 149 of 

individually addressable loudspeakers distributed over the 

ceiling and walls to create a flexible and powerful immersive 

audio environment. Since its introduction in 2013, the 

facility has been used in dozens of research projects, ranging 

from scientific to artistic. 

To assess the impact of the proposed immersive 

exocentric sonification, the authors are currently leveraging 

the said Cube through an externally funded effort to study its 

utility for scientific data analysis, as well as to compare its 

capacity to the existing approaches, including virtual 

counterparts. Of particular interest is the capacity of the 

immersive exocentric sonification and its unique affordances 

to reveal correlations and inter-relationships between 

measured variables that are not easily revealed by 

conventional analysis techniques, such as visual inspection of 

standard two- and three-dimensional graphs. Our project title 

is SADIE, an acronym for Spatial Audio Data Immersive 

Experience. The main objectives of the study are to 

experiment with various sonification techniques, to uncover 

differences in spatial aural perception between the traditional 

egocentric approaches and an immersive exocentric 

environment, and to determine whether test subjects within 

the exocentric environment can experience an enhanced 

ability to detect subtle relationships between variables that 

represent real-world data. 

7. SADIE

The SADIE project utilizes inherently spatial data 

representing an esoteric realm in Earth’s geophysical 

environment, the ionosphere. We focus on the altitude range 

occupied by satellites in low-Earth orbit (LEO), where 

satellites, suborbital rockets, and ground-based radars have 

accumulated data since the dawn of the space age. This 

medium is inherently complex, consisting of three distinct 

particle populations: neutral gases, ions, and electrons. All 

three gases occupy the same volume of space simultaneously, 

and they interact with each other via collisions, pressure 

gradients, and electromagnetic forces. These forces affect the 

temperatures, velocities, densities, and global distributions of 

all three species. In addition, the geomagnetic field 

constrains the motions of the charged particles, but does not 

affect the neutrals. All of the physical parameters described 

above vary as functions of season, location, solar activity 

levels, and time. The result is an extremely complex domain 

that is only partially understood despite decades of research.  

The dataset is inherently four-dimensional, and is 

commonly represented with latitude, longitude, altitude, and 

time as the independent variables. By initially restricting our 

study to a specific range of altitudes we collapse the 4D 

space into a 3D domain that can be represented as sounds in 

the Cube. A test subject immersed in the environment hears 

sounds from all directions that represent the ion, electron, 

and neutral gas densities and temperatures. These are 

generally enhanced in areas where sunlight is most intense, 

so in a simulated (and temporally accelerated) 24-hour day a 

user standing at the center of the Cube hears the sound field 

representing these variables rotate around his/her observing 

point. In addition, the medium has natural variations in the 

fundamental variables that change significantly with latitude. 

For example, auroras occur primarily at high latitudes, while 

other geophysical phenomena are restricted to mid and 

equatorial domains. Naturally occurring changes in solar 

radiation fluxes, coupled with seasonal and diurnal variations 

of the polar axis relative to the ecliptic plane, provide a 

continually varying environment that is inherently complex, 

and difficult to analyze with conventional techniques. 

Since the data maps naturally onto the 3D space 

represented by the Cube, we limit potential idiosyncrasies 

that could arise due to arbitrary spatial mapping. Our 

approach mimics as closely as possible the human interaction 

with real world stimuli, which can emanate from any 

direction with minimal technology-induced idiosyncrasies. 

SADIE users are free to navigate the ensuing immersive 
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exocentric environment, and by doing so they fundamentally 

change the amplitude relationships between spatially 

distributed aural stimuli, as well as azimuth and elevation 

relationships with the patterns of interest. By moving within 

the space users modify and enhance their natural interaction 

with the environment—they build a location-aware image of 

the sonified data and use motion to improve their ability to 

pinpoint specific sources. We see this initial case study as a 

fundamental step in uncovering the extent of the human 

capacity to perceive and process exocentric sonification of 

data, and we look forward to reporting on the outcomes at the 

next conference. 

8. CONCLUSION

In this paper the authors have presented a review of the 21st 

century sonification literature from the several key scholarly 

communities. By reviewing similarities and differences 

among the cited research, the authors have presented a case 

for a new vector in sonification research—immersive 

exocentric sonification that leverages the way humans 

interact with the real world while minimizing any potential 

idiosyncrasies that may arise from interacting with the real 

world through egocentric technology (e.g. head motion and 

location). Further, by clarifying its purpose and potential, this 

paper presents immersive exocentric sonification as a holistic 

and potentially unifying approach to studying human spatial 

aural perception. We anticipate that this approach may 

challenge and redefine the traditional understanding of its 

limits. Lastly, we briefly describe an example project 

designed to investigate advantages in data analysis and 

understanding that may accrue from using a unique facility 

conducive to the newly proposed approach. 
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