
Permutation Classifiers

Xinrui Zhou(1), Concettina Guerra(1), Jarek Rossignac(1),
Leo Rossignac-Milon(2)

(1) College of Computing, Georgia Institute of Technology,
TSRB Building, 85 5th St NW, Atlanta, GA, USA

(2) Axon, 1100 Olive Way 1300, Seattle, WA 98101, USA

Abstract

We consider permutations of a given set of n different symbols. We are
given two unordered training sets, T1 and T2, of such permutations that
are each assumed to contain examples of permutations of the corresponding
type, t1 and t2. Our goal is to train a classifier, C(q), by computing a sta-
tistical model from T1 and T2, which, when given a candidate permutation,
q, decides whether q is of type t1 or t2. We discuss two versions of this
problem. The ranking version focuses on the order of the symbols. Our Sep-
aration Average Distance Matrix (SADiM) solution expands on previously
proposed ranking aggregation formulations. The grouping version focuses on
contiguity of symbols and hierarchical grouping. We propose and compare
two solutions: (1) The Population Augmentation Ratio (PAR) solution com-
putes a PQ-tree for each training set and uses a novel measure of distance
between these and q that is based on ratios of population counts (i.e., of
numbers of permutations explained by specific PQ-trees). (2) The Difference
of Positions (DoP) solution is computationally less expensive than PAR and
is independent of the absolute population counts. Although DoP does not
have the simple statistical grounding of PAR, our experiments show that it
is consistently effective.

Keywords: Permutations, Classification, Average, Distance

Preprint submitted to Elsevier April 24, 2018

1. Introduction

1.1. Overall problem statement

In this paper, we discuss permutations (i.e, ordered sequences without
omission or repetition) of any given set of n different symbols. In our exam-
ples, we use the first n letters of the alphabet and consider their lexicographic
ordering (abcd) as the non-permuted, base (i.e., identity) permutation.

If p is such a permutation, we denote by p[i], for i in [1,n], the symbol
at position i in p, and by p−1[s] the position (i.e., integer in [1,n]) of symbol
s in p. For example, if p = cdab, then p[3] = a and p−1[a] = 3.

Our goal is to develop and validate representations, algorithms, and math-
ematical formulae for the following problem. We are given two training sets,
T1 and T2, of permutations. These training sets do not need to have the same
number of permutations and need not be disjoint: i.e., one or more permu-
tations may be included in both. Each training set contains permutations
that, in some application-dependent sense, are examples taken from a much
larger population of permutations. We seek a computational solution (an
algorithm and an associated digital model) that “learns” a binary classifier,
C, such that, for any candidate permutation q, C(q) returns a Boolean value
indicating whether q is more likely to be of type t1 (i.e., part of the popu-
lation illustrated by T1) or of type t2. Furthermore, in order to reduce the
computational cost of each classification query, we want its space and time
computational complexity to be only a function of n, the number of symbols,
but not of the number of permutations in the training sets, and certainly not
in the size of the populations defined by the training sets. Hence, we focus
on approaches that pre-compute and store a model of each population and
possibly of measures of statistical correlations between populations. We then
use the resulting model to evaluate C(q) for each query permutation, q.

1.2. Discussion

In this subsection, we discuss the intellectual merit of the problem ad-
dressed here, the nature of our contributions, and their novelty. Their limi-
tations and anticipated future work are discussed in the conclusion.

1.2.1. Merit

To appreciate the intellectual merit of the problem stated above, consider
first the two populations (set of permutations) of types t1 and of type t2. Let
us distinguish four situations: (1) the candidate permutation q is of type

2

t1 but not t2, (2) the reverse, (3) both, and (4) neither. Arguably, the
first two cases are easier to address. But in many applications, the latter
two are important and, for these, one may wish to qualify the answer with
a confidence measure. The challenge may be exacerbated when one of the
permutations is contained in the other or when they have drastically different
sizes.

Next, consider that we typically do not have a clean description of these
two populations. Instead, we have a set of examples of each. Hence, our
solution must somehow derive a model of each population from the corre-
sponding training set of examples. In some applications, the problem may
be exacerbated by random noise, which may be present both in the training
set and in the query.

Finally, consider that the features used to discriminate between permuta-
tion types may vary from one application to another. In some applications,
absolute order may be important. In others, adjacency or proximity between
pairs or groups of symbols may be important.

Hence, we may seek a solution which, based on empirical evidence, ap-
pears to be useful for a particular application. But validating it may require
having a ground truth benchmark. Or, we may seek a generic solution that
is grounded on a clear formulation involving probabilities or statistics and
try to argue that it may be useful for a broad class of applications.

1.2.2. Contributions

In this paper, we propose solutions that are designed to work for the
four situations described above, including those where the query permuta-
tion belongs to both populations or to neither of them. We report tests on
synthetic benchmarks with different degree of noise (random perturbations).
We consider two versions of the problem: one for which the absolute order
of the symbols is the key discriminator and the other one for which a hi-
erarchy of groups of symbols or groups that always appear in a contiguous
sequence (some always in the same order, other not) is the key discrimina-
tor and where, in a group, the order may be partial. Finally, we propose
both a solution grounded in a probabilistic formulation and heuristics that,
according to our experimental results, appear to better match our intuition.

1.2.3. Novelty

A fair amount of prior art has been focused on formulating and comput-
ing distances between permutations and on constructing abstract models that

3

summarize or represent a population and may be computed from examples
in a given training set. Our solutions are built upon these pioneering results.
Specifically, we propose: (1) a new variant of the Kendall tau distance be-
tween permutations, (2) a novel statistical model of the central tendency and
variability of permutations in a training set, (3) a novel classifier based on
the above, (4) a formulation of the probability that a permutation is part of
a population that is implicitly defined by a set of example permutations, (5)
a novel classifier based on the above, (6) a heuristic model of the distance be-
tween two permutation sets that is based on statistics of position differences
between all pairs of symbols, and (7) a novel classifier based on the above.

1.3. Two versions of the problem and outline of our solutions

In this paper, we discuss two versions of of the permutation classification
problem: ranking and grouping. The solutions proposed here for each version
may be considered orthogonal to each other (you may choose to use one or
the other, depending on the application), or complementary (you may choose
to use both and combine their results).

1.3.1. Ranking problem

The ranking version of the problem may be illustrated by the following
simple example. To train our classifier, we ask men and women to rank a set
of n movies. Then, given a new candidate ranking, q, which is a permutation
of some nominal list of the movies, we guess the gender of its author. We
propose a solution that is formulated in terms of precedence relations (How
often was movie A ranked before movie B?), as for instance defined by ranking
aggregation formulations (7). We call our solution the Separation Average
Distance (SAD).

1.3.2. Grouping problem

The grouping version of this problem may be illustrated by the following
example. To train our classifier, we consider two tasks, t1 or t2, that each
may be accomplished by executing the same set of different actions, but pos-
sibly in a different order. We ask a few experts to order these actions for
task t1 and different experts to order them for task t2. We obtain two sets,
T1 and T2, of permutations on some nominal task order. These experts may
have organized actions carefully into groups (time-contiguous sequences, also
called intervals), for example, to reduce the blocking of sparse resources, and

4

may have ordered the actions in some of the groups to satisfy precedence con-
straints. They may even have conceived their own hierarchy of groups that
each comprise a contiguous sequence of three or more sub-groups. Because of
precedence constraints, the actions or sub-groups in some groups may have
always to be executed in the same order. However, we only record the order
in which they have arranged the actions. We do not have access to their
groups or hierarchy. Then, given a new candidate sequence (permutation),
q, of these actions, we guess whether q was designed to accomplish task t1
or t2. We propose two solutions to the grouping problem.

1.3.3. PAR solution to the grouping problem

Our Population Augmentation Ratio (PAR) solution computes a PQ-tree
for each training set. The PQ-tree, which was proposed in 1976 (4), defines
a population: The set of all different permutations that can be generated by
that PQ-tree. PAR builds upon a previously proposed measure of distance,
which we use to define the distance between a candidate permutation q and a
PQ-tree. It takes into account not only how many PQ-tree rules are violated
by the candidate permutation q, but also a measure of the probability that
q belongs to the population of each one of the two PQ-trees computed for
the two training sets. We define this probability in terms of relative change
in population size resulting from adding q to each given training set. This
relative change is small when the absolute population count is large. This
bias may be viewed as a drawback of the PAR solution.

1.3.4. DoP solution to the grouping problem

Our Difference of Positions (DoP) solution is computationally less ex-
pensive than PAR and is independent of the absolute population counts.
Although DoP does not have the simple statistical grounding of PAR, our
experiments show that it is consistently effective. DoP computes, for the
candidate q and for the two training sets, the n × n matrix (MT1 ,MT2 ,Mq)
of the average differences in position for each pair of symbols. The classifi-
cation of q is based the weighted sums of the absolute value of the elements
in MT1 −Mq and of the elements in MT2 −Mq. The weights are the same for
the two sums and are proportional to the overlap of the two distributions of
the corresponding position differences used to compute MT1 and MT2 .

5

2. Ranking Problem

The precedence relation plays a significant role in applications involving
rankings. One popular measure of distance of two permutations based on
precedence is the Kendall tau distance (KD). In the following, after a brief
review of the literature on precedence-based distance measures, we describe
a variant of the Kendall tau distance and its use for solving the ranking
problem.

2.1. Prior art on distances between permutations

The Kendall tau distance counts the number of inversions occurring be-
tween two permutations p and q, i.e. the number of pairs of symbols that
appear in opposite order. Formally,

KD = |{(x, y) : (p−1[x] < p−1[y]) 6= (q−1[x] < q−1[y])}|

Interestingly, when one of the two permutations is the identity, abc · · · ,
this measure corresponds to the number of swaps of pairs of adjacent symbols
needed to sort the other permutation (13) and, as such, the KD is also
referred to as the bubble-sort distance. Relations of the Kendall tau with
other distances, such as Spearman footrule and Caley distance, have been
extensively studied and are reviewed in (14).

In the context of rank aggregation, where the term ranking is used instead
of permutation, the Kendall tau distance has been used to define a consensus
ranking for a given set of rankings. In other words: to find a permutation
that minimizes the sum of the distances from all permutations of the set
(10; 7). Such minimization approach produces a result in accordance with
the Concorced criterion (10): For a given pair of symbols (a, b), if a precedes
b in the majority of rankings, then a should precede b in the consensus rank-
ing. Finding a consensus ranking that minimizes the Kendall tau distance is
known to be NP-hard (1; 7).

2.2. Proposed classification based on precedence relations

Given a training set T of permutations on n symbols, the precedence
relation may be represented in terms of an n×n separation average distance
matrix (SADiMT). An entry of the matrix corresponds to a pair of symbols
x and y and gives the ratio of the number of times symbol x is preferred over
y in the set of permutations over the total number of permutations.

6

The separation average matrix (SADiMq) for a query permutation q is
similarly defined: it is an n×n binary matrix, in which a coefficient value of
1 means that x precedes y in the q and a 0 means the reverse.

The separation average distance (SAD) of q from the set T is defined by
the following formula:

SAD(q,T) =
∑
x,y

(SADiMT [x, y]− SADiMq[x, y])2

An interesting property of the separation average distance matrix is that
it has a simple relation with the Borda score. The Borda score assigns a
score of 0 to the last symbol of a permutation, a score of 1 to the second last
and so on. The total Borda score of a symbol over a set of permutations is
computed over all permutations of the set. It is easy to show that the sum
of the entries of row x of the separation average distance matrix SADiMT is
equal to the Borda score of x on T.

Our classification based on SAD is defined as follows. If T1 and T2 are
two training sets, the query q will be classified as follows:{

type t1 if SAD(q,T1) < SAD(q,T2)

type t2 otherwise.
(1)

3. Grouping problem: Population Augmentation Ratio (PAR)

The ranking version of the problem, discussed above, may be relevant
to applications for which the absolute order of the symbols is of primary
importance. In this section, we focus on the grouping version, for which
adjacency and partial, relative order is important.

3.1. Groups

We start by defining a few terms. A population is a set of permutations
of a given number, n, of symbols. We consider a set T of permutations
that are assumed to be examples of some population P(T). To define P(T),
we define a hierarchy of groups. A group of T is a set of symbols that
appear as a contiguous group in all permutations in T. Note that, while
contiguous, the symbols of a group may be listed in different orders in the
various permutations in T. Clearly, the set of all n symbols is a group, which
we call the full group. There is unique decomposition of each group into its

7

children, i.e., subgroups, which are each either a symbol or a group, and so
recursively.

We distinguish three types of groups.

Ordered: The children of an O-group appear always in the same order in all
the permutations of T. We could decide to consider that each symbol
is an O-group.

Reversible: The children of an R-group appear are present in only and
exactly two different orders, one being the reverse of the other, in the
permutations of T. An R-group has at least 2 elements.

Arbitrary: An A-group is a group that is neither ordered nor reversible. An
A-group has at least three elements.

3.2. ORA-tree

The hierarchical decomposition of the full group into O-, R-, and A-groups
may be represented by an ORA-tree, which has symbols as leaves and groups
as internal nodes. The root of the tree is the full group.

The children of an O-node, which represents an O-group, are listed in the
order in which they appear in all permutations of T. However, the children
of R-nodes may be listed in one or the other valid orders and the children of
an A-nodes may be listed in any order (even if that particular order is not
used in any of the permutations in T).

Below, we explain how to compute the ORA-tree, ORA(T), of any set T
of permutations.

Note that, given an ORA-tree, one can always compute a summary set,
T’, of only three permutations that yield the same ORA-tree. The justifica-
tion of this claim and the key idea of this computation is that an A-group,
such as ’abc’ that has three children (symbols, not groups) should not be
confused with an R-group or with an A-group that has non-symbol children.
This is not possible if T’ contains only two permutations: For example, list-
ing in T’ only ‘abc’ and ‘cba’ would be interpreted as an R-group with 3
children and listing only ‘abc’ and ‘bac’ would be interpreted as an O-group
with two children, one of which, ‘ab’, is an R-group. But listing ‘abc’, ‘cba’,
and ’bca’ can only be interpreted as an A-group. From this example, we see
that three permutations may be needed for T’. One can show that three are

8

sufficient, because A-groups with more than three elements can be unambigu-
ously captured in T’ using only two summary permutations. For example,
listing ‘abcd’ and ‘cadb’ defines an A-group.

A candidate permutation p is valid (with respect to T) if it respects the
contiguity and order constraints of each node of the ORA-tree derived from
T. We define the population, P(T), of T as the set of all valid permutations.
Hence, when T’ is the summary set of T, P(T′) = P(T).

3.3. Incremental computation of the ORA-tree

The first permutation p yields an ORA-tree with a single O-node root
that represents the full group. This is the most constrained version of T
possible as it implies that the P(T) contains only p.

Then, for each consecutive permutation p in T, we perform a recursive
(post-order) tree traversal and decide, for each node, N, of the current tree,
whether p breaks any rule (ordering or grouping) encoded by N.

If grouping and ordering are respected by p, then all the children of N
represent valid groups and we leave N untouched.

If all children report that their grouping is respected, but the ordering
of the children is not respected by p, we re-label N as either an R-node or
an A-node (an R-nodes is appropriate if N used to be an R-node or when it
used to be an O-node and the elements in N appear in the exact opposite
order in p).

If at least one child of N reports that its grouping is not respected, we
attempt to “repair” the problem by rearranging the groups in N. If this is
impossible, we report the incorrect grouping problem to the parent of N,
which will either resolve the problem, or pass it on to its parent, and so on.

An implementation of this algorithm is provided in (12).

3.4. PAR measure and classification

Assume that we are given two training sets, T1 and T2, and have com-
puted their ORA-tree. We are given a candidate permutation q. We want
to assess whether q is more likely to be of type t1 or t2.

We could do so by counting, for each ORA-tree, how many constraints
are violated (not satisfied) by q. q violates the constraint associated with
a node N of the tree if the children of N are not each corresponding to a
contiguous interval of symbols in q or if the order in which these intervals
appear in q does not correspond to the orders defined by the node-type of

9

N. We could also consider giving different weights to the node, depending on
their type and size.

We propose to do the above by considering the relative growths of the
population size that results from adding q to T1 and to T2. This formula-
tion provides a simple and unifying measure that takes into account all the
violations suggested above and gives them a weight that is proportional to
their impact on population growth.

Let |P| denote the size (i.e., permutation count) of population P. Also,
let T + q denote the set of permutations that is the union of q and of all
permutations in T.

We propose to measure the “distance” between q and T using a new mea-
sure, which we call the Population Augmentation Ratio (PAR). It is defined
by log(|P(T + q)|/|P(T)|). Note that this distance is zero when q is in P(T)
and that its maximal value is log(n!/|P(T))|.

As an example, consider a set T of permutations on n symbols with four
non-overlapping groups of length 5, 4, 3, and 2. A query permutation can
share any combination of such groups with T or no group at all. Figure 1
lists all such combinations and the corresponding PAR values for n = 100.
The rows are sorted by increasing values of PAR.

We classify q as being of type t1 when log(|P(T1+q)|/|P(T1)|) < log(|P(T2+
q)|/|P(T2)|). Note that, in some cases, q may agree with more groups of T2

than of T1, and still be classified as being of type t1.

3.5. Practical implementation of the PAR classification

Except for toy cases where n is small, we cannot use floats or doubles
to compute |P(T + q)|/|P(T)| with sufficient accuracy to support precise
classification. Hence, we use the following approach. Note that log(|P(T +
q)|/|P(T)|) can be written as log(|P(T + q)|)− log(|P(T1)|). Therefore, our
classification test can be rearranged into the following form: we classify q as
being of type t1 when

log(|P(T1 + q)||P(T2)|) < log(|P(T2 + q)||P(T1)|). (2)

Now, notice that P(T1 + q)P(T2) is the product,
∏n

k=2 k
E[k], of non-

negative integers k for k in [2,n], each raised to an integer power, which
we denote by E[k].

Hence, log(|P(T1 + q)||P(T2))| is the sum,
∑n

k=2E[k]log(k). Therefore,
our strategy is to compute the entries EL[k] for the left-side of the inequality
(2) and the entries ER[k] for the right-side.

10

To compute the table EL[] of exponents for the left side of the inequality
(2), which corresponds to |P(T1 + q)||P(T2))|, we first initialize its elements
to 0. Then, we traverse the trees of T1 +q and of T2 via a standard recursive
traversal. At an O-node, we do not change any exponent. At an R-node, we
increment the exponent EL[2], because there are two possibility for ordering
such a node. At an A-node of m children, we increment the exponent EL[k],
for all values of k in [2,m].

To compute the table ER[] of exponents for |P(T2+q)||P(T1))|, we proceed
similarly.

The ORA-trees for T1 + q and for T2 + q are computed by using one
iteration of the incremental computation of an ORA-tree, we described above.

We simplify both sides of the inequality (2). To do so, we reduce cor-
responding exponents on both sides by the same amount so that, for any
k, log(k) appears only on one side. For example, 5 log(3) + 4 log(4) <
8 log(3) + 2 log(4) is simplified to 2 log(4) < 3 log(3).

Finally, we evaluate the left and right expressions and compare them.
An interesting alternative for using a non-incremental construction of the

ORA-trees of T + q for various candidate permutations q is to (1) compute
the ORA-tree of T, (2) compute the 3 permutations of the summary set T’
of that tree, and (3), construct the ORA-tree of the 4 permutations in T′+q.

3.6. Extension to more than two training sets

A possible extension of the PAR solution proposed here is to consider
several training sets, Ti. To estimate the type, ti, of a candidate permutation,
q, one could identify the smallest of the distances log(|P(Ti + q)|/|P(Ti)|).

3.7. Prior Art

In this subsection, we briefly review closesly related prior art.

3.7.1. PQ-trees

The ORA-tree is a simple extension of the previously proposed PQ-tree
(4), in which A-nodes are called P-nodes and in which O-nodes and R-nodes
are not distinguished and both called Q-nodes. Efficient algorithms for find-
ing P- and Q-groups have been proposed in (2; 6; 8; 16). The PQ-tree may be
trivially obtained from an ORA-tree, but doing so may correspond to a loss

11

of information (1 bit per Q-node) and may increase the corresponding pop-
ulation significantly. The latter observation has implications one the PAR
distance and classification test proposed above.

The original PQ-tree paper (4) includes an incremental construction in
which contiguity constraints (groups) are added one-at-a-time. Hence, it
cannot be used to provide the incremental construction, one-permutation-at-
a-time, proposed above.

Applications of PQ-trees in computational biology have been considered
in (11). The PC-tree variant of a PQ-tree, in which Q-nodes corresponds to
reversible (clockwise or counterclockwise) cyclic orderings of children have
been proposed in (15) to simplify the testing of the planarity of undirected
graphs.

3.7.2. Adjacency distance

The adjacency distance is perhaps the simplest measure that takes into
account the proximity of symbols. Given two permutations p and q, it is
based on the adjacency relation between symbols and counts the number of
times a pair of symbols is adjacent in one permutation, but not in the other.
It is defined as:

AD = n− 1− adjp,q

where n is the size of the permutations and adjp,q is the number of pairs that
are adjacent in both p and q (13). AD is an integer between 0 and n-1.

3.7.3. Interval distance

The interval distance between two sets of permutations, was proposed in
(2). Basically, the interval distance counts the number of groups, in the paper
referred to as common intervals, that are lost in each of the two sets when the
sets are merged. More precisely, let T1 and T2 be two sets of permutations
on n symbols, with c1 and c2 common intervals, respectively. Let c be the
number of common intervals shared the permutations of the union T1∪T2 of
the two sets, the interval distance between T1 and T2 is defined as:

IN(T1, T2) = c1 + c2 − 2c.

Although this measure is relatively easy to compute, it has limitations;
for instance, it does not take into account the length of common intervals,
which appears to be an important factor in establishing dissimilarity of the
sets.

12

4. Grouping problem: Difference of Positions (DoP)

Here we focus on the classification problem when noise is present in the
training sets. In such cases the measure PAR is not applicable since a few
transpositions of the symbols may completely alter the structure of the tree.
To address this problem, we start pre-processing the training sets T1 and T2

and the query q to derive their representation in terms of the n×n matrices,
MT1 , MT2 , and Mq, the difference of positions matrices. An entry in each
matrix corresponds to a pair of symbols [x, y] and its value depends on the
relative positions of symbols x and y in the permutations of the set. We
assign a weight to each entry of the two matrices MT1 MT2 that reflects the
relevance of that pair in discriminating between T1 and T2. The weight of
an entry is the same for MT1 and MT2 . The classification of q is based the
weighted sums of the absolute value of the elements in MT1 −Mq and of the
elements in MT2 −Mq.

4.1. Difference of Positions Matrix

The difference of positions matrix (DoP), MT , associated with the set T
of m permutations on n symbols is an n×n matrix whose elements MT [x, y]
are the average over all permutations p ∈ T of the absolute value of difference
in position of x and y in T, that is:

MT[x, y] = 1/m
∑
p∈T

|p−1[x]− p−1[y]| (3)

Example: Let T = {abcd, acbd, bcad} contain m = 3 permutations on
n = 4 symbols. The DoP matrix of the set T is:

a b c d
a 0 5/3 4/3 7/3
b 5/3 0 1 2
c 4/3 1 0 5/3
d 7/3 2 5/3 0

where, for instance, MT[a, b] = (1 + 2 + 2)/3 is the sum of the absolute
distances of a from b in all three permutations divided by the number of
permutations.

13

An interesting property of the matrix is that the sum of its elements
depends only on the number n of symbols of the permutations, but is in-
dependent of the number of permutations of T, as well as of the specific
permutations of the set. More precisely, in the Appendix A we prove that
the average of the non-zero (off diagonal) elements of the difference of posi-
tions matrix MT is equal to (n + 1)/3, i.e.

1/n(n− 1)
∑
x,y

M[x, y] = (n + 1)/3 (4)

4.2. Classification using the DoP distance

We now introduce the Difference of Positions (DoP) distance between the
query permutation q and each of the two training sets based on the differ-
ences of positions matrices MT1 and MT2 and Mq. Crucial to the definition
of this measure is the way we assign a weight to each entry-pair, MT1 [x, y]
and MT2 [x, y]. This common weight, denoted by W[x, y], is computed from
the two statistics on the values |p−1[x]−p−1[y]| in permutations of T1 and in
permutations of T2. The graph of the distribution of values |p−1[x]−p−1[y]|
determines a curve. Assuming normal distributions, we compute the areas
under the curve of the two distributions of such values. They are denoted
by a1 and a2, while the overlap area of the two distributions is denoted by o
(see Fig. 2). The weight is then defined as:

W[x, y] = 1− o/(a1 + a2− o) (5)

This weight is a measure of overlap of two distributions and is similar to
other statistical measures of similarity of discrete and continuous distribu-
tions, such as the Bhattacharyya distance, the Hillerson distance, and the
overlapping coefficient (3; 5; 9).

Given the query q, we define the difference of positions distances DoP(q,T1)
and DoP(q,T2) of q from T1 and T2, respectively, as weighted differences of
the matrices.

DoP (q,T1) =
∑
x<y

W [x, y] |Mq[x, y]−MT1 [x, y]| (6)

DoP (q,T2) =
∑
x<y

W [x, y] |Mq[x, y]−MT2 [x, y]| (7)

14

Finally, q will be classified as belonging to T1 if

DoP(q,T1) < DoP(q,T2)

otherwise to T2.

4.3. Results on synthetic test sets using the distance DoP

To evaluate the performance of the proposed classification method, we run
experiments on synthetic data using the DoP distance. The goal was to assess
the ability of the method to make correct decisions when the permutations
of the training sets shared proximity of some symbols. We generated sets
of permutations with well-defined groups and computed the accuracy of the
classification on large sets of queries as the fraction of correct predictions
over all queries.

Given two training sets T1 and T2, we generated two sets of queries: Q1

and Q2 such that T1 + Q1 and T2 + Q2 have the same PQ-trees as T1 and
T2, respectively. Next, to assess the robustness of the model we introduced
chaos in the permutations of Q1 and Q2 and determined the loss in accuracy
as a function of the amount of chaos. Chaos was obtained by applying
transposition operations, that is by changing the order of the elements in
a query. In a transposition, two randomly selected symbols x and y were
swapped. The symbols need not belong to a group. We remark here that
for a query generated by injecting chaos in a permutation of Q1 (Q2), we
consider correct the classification that places it in the set T1 (T2). Finally,
we added noise by including, in the training sets, permutations with symbols
in random orders.

We report here the results obtained with sets T1 and T2 of permutations
on the 26 characters of the alphabet and of sizes 100, 1,000 and 10,000.
The permutations of set T1 have k groups, while those of T2 have h groups,
where k and h are random number in the range [1-5]. The size of the groups
are randomly assigned in the range [2-6]. Each group has probability p of
having a nested group inside it. Each set of queries Q1 and Q2 consists of 500
permutations. In figure 3 we report the accuracy of the classification results
for values of the parameter chaos equal to 0, 2, 4, and 6; the parameter
noise varies from 0% up to 70%. The results of the prediction on the sets
Q1 and Q2 (the queries are permutations in the population of the PQ-tree of
either T1 and T2 and no noise nor chaos is present) are very accurate with
an accuracy very close to 100 % (first row of the table).

15

A good performance of the classifier is also observed when the noise is
below 50%, that is at least half the permutations in each training set have
the same PQ-tree. More precisely, the accuracy is above 95% when no chaos
is present and above 78% otherwise. When the size of the training sets is
large (10,000) even at high rate of noise (70%) above 97% of the queries are
correctly classified.

The computation of the proposed distances is fast. The classification ap-
proach has been implemented in Python and run of a standard PC (Intel Core
i7-7700HK @ 2.8GHz). The running times in seconds for the classification of
10,000 queries permutations of size 26 are reported in Table 1 that separates
the pre-processing time to build the DoP matrix from the classification time.

N. of permutations in T1 and T2

100 1,000 10,000
Preprocessing 0.17 0.4 2.5

Classification (10,000 queries) 2.2 2.2 2.2

Table 1: Running times for the classification of 10,000 queries

As a last note, the DoP distance is able to identify patterns of not nec-
essarily consecutive elements that occur at approximately the same distance
from each other, as such it may be viewed as an extension of these group-
based recipes and hence captures information that is not captured in the
PQ-tree.

5. Conclusions and summary

We proposed measures of distance of permutations for the binary classifi-
cation of query permutations. We considered different criteria for the design
of such measures: one that emphasizes the importance of the precedence
and the other of the contiguity of symbols. Another criterion is whether the
distances are exact or approximate and therefore whether they are relatively
immune to noise in the data.

The foundation of our exact measure PAR is the data structure PQ-tree.
Our DoP distance is also based on groups and is relatively insensitive to the
presence of noise in the data. Orthogonal to these three measures is the
SAP distance that builds upon the notion of precedence and Kendall tau
distance. On synthetic data generated with well-defined patterns of groups

16

SAP provides a classification that does not reflect in any way the presence
of groups (results not shown in the paper).

An issue that arises in applications involving rankings is that of incom-
plete permutations, i.e. permutations with missing symbols. For instance,
in video application viewers may rank different sets of movies. In biological
applications, such are classification of genomes based on the order of genes
in different organisms, not all genes may be present in all organisms. We ad-
dress the issue of incompleteness in a companion paper (17) where we extend
our proposed distance DoP to deal with such cases.

6. Acknowledgements

C. Guerra and X. Zhao were in part supported by the United States -
Israel Binational Science Foundation (BSF) grant 2014028.

7. References

[1] J. Barthold III, C.A. Tovey, M.A. Trick, Voting schemes for which it
can be difficult to tell who won the election, Social Choice and Welfare,
6, 2 (1989) 157165.

[2] A. Bergeron, J. Stoye, On the similarity of sets of permutations and its
applications to genome comparison. J Comput Biol. 3, 7 (2006)1340-5.

[3] A. Bhattacharyya, On a measure of divergence between two multinomial
populations. The Indian, Journal of Statistics (1933-1960), 7, 4 (1946)
401406.

[4] K.S. Booth G.S. Lueker, Testing for the consecutive ones property, in-
terval graphs and graph planarity using PQ-tree algorithms. J. Comput.
Syst. Sci. 13 (1976) 335379

[5] E. Choi, C. Lee, Feature extraction based on the Bhattacharyya dis-
tance. Pattern Recognition, 36, 8 (2003) 17031709.

[6] D. Doerr, J. Stoye, S. Bfocker, K. Jahn, Identifying gene clusters by
discovering common intervals in indeterminate strings. BMC Bioinfor-
matics, 15 (Suppl. 6):S2 (2014).

17

[7] C. Dwork, et al. Rank aggregation methods for the web. Proceedings of
the 10th international conference on World Wide Web. ACM (2001).

[8] S. Heber, R. Mayr, J. Stoye, Common Intervals of Multiple Permuta-
tions, Algorithmica, 60, 2 (2011) 175206, DOI 10.1007/s00453-009-9332-
1.

[9] H.F. Inman, E.L. Bradley, Jr, The overlapping coefficient as a measure of
agreement between probability distributions and point estimation of the
overlap of two normal densities. Communications in Statistics - Theory
and Methods, 18 (1989) 10.

[10] J. Kemeny, Mathematics without numbers, (1959), Daedalus 88, 577591.

[11] G.M. Landau, L. Parida, O. Weimann Gene Proximity Analysis across
Whole Genomes via PQ Trees. J. Computational Biology, 12, 10 (2005)
12891306.

[12] L. Rossignac-Milon, LeoRoss/PQ Tree. GitHub, (2018).
https://github.com/leoRoss/PQTree

[13] C.R. Reeves, Landscapes, operators and heuristic search. Annals of Op-
erations Research, 86 (1999) 473-490.

[14] T. Schiavinotto, T. Sttzle, A review of metrics on permutations for
search landscape analysis. Computers operations research 34, 10 (2007)
3143-3153.

[15] W.-K. Shih, W.-L. Hsu, A new planarity test. Theoretical Computer
Science. 223 (1-2): 179191 (1999). doi:10.1016/S0304-3975(98)00120-0.

[16] T. Uno, M. Yagiura, Fast algorithms to enumerate all common intervals
of two permutations. Algorithmica, 26 (2000) 290309.

[17] X. Zhou, A. Amir, C. Guerra, G. Landau, J. Rossignac, EDoP distance
between sets of incomplete permutations: Application to bacteria clas-
sification based on gene order (2018) (submitted).

18

8. Appendix A

Properties of the DoP Matrix
The difference of positions matrix is clearly symmetric and its diagonal ele-
ments are zero. We prove the following:

Given a set T of m permutations on n symbols, the average of the non-
zero (off diagonal) elements of the difference of positions matrix MT is equal
to (n + 1)/3, i.e.

1/n(n− 1)
∑
x,y

M[x, y] = (n + 1)3 (8)

Proof. We first show that the sum in (1) is independent of the permutations
in T and of m. We show that by showing that every permutation contributes
the same amount to the

∑
x,y

M [x, y], therefore the average does not change

when permutations are added/removed from T. More precisely, we show that
if p is any permutation on n symbols (thus m = 1) then

∑
x,y

M[x, y] = 2
n−1∑
j=0

j∑
j=0

i (9)

In fact, let p = x1x2 · · ·xn, then the sum of the absolute values of the
distance of symbol xi to all other symbols is given in the table below:

x1 : 1 + 2 + · · ·+ n− 1
x2 : 1 + 1 + 2 + · · ·+ n− 2

x3 : 1 + 2 + 1 + 2 + · · ·+ n− 3
x4 : 1 + 2 + 3 + 1 + 2 + · · ·+ n− 4

· · ·
xn−1 : 1 + 2 + · · ·+ n− 2 + 1

xn : 1 + 2 + · · ·+ n− 1

where the values in red in each row represent the distances of xi to the
symbols to its right in p; black values represent the distances to the symbols
to the left of xi. It is easy to see (because of symmetry) that the sum over all
xi of black values is the same as that of red values; furthermore, each sum is

equal to
n−1∑
j=0

j∑
i=0

i. This proves equality (9). The black sum (and the red sum)

is a well-known sum referred to as the (n− 1)th tetrahedral number, Tetn−1,

19

because of the way the integers can be geometrically arranged in a triangular
tetrahedron. It is given by:

Tetn−1 = 1/6(n− 1)n(n + 1) (10)

From (9) and (10) the equality 8 is immediately derived. The difference of
position matrix associated to the query q, is well characterized. It contains
the same set of values which are independent of q, although assigned to
different entries of the matrix for different queries. More precisely, the matrix
has n− 1 entries with value 1, n− 2 entries with value 2 and so on.

20

Figure 1: The PAR distance values for all combinations of queries from a set T of permu-
tations on 26 symbols

21

Figure 2: Distribution of |p−1[x] − p−1[y]| in two training sets. The two normal curves
representing the distribution of the values |p−1[x]−p−1[y]| in T1 and T2 are plotted in a
reference system where the values |p−1[x] − p−1[y]| are in increasing order on the x axis
while their frequencies are on the y axis. The area a1 is that of the blue and green regions,
while a2 is the area of the yellow and green regions. The overlap area, denoted by o, is
that of the green region.

22

Figure 3: Results on synthetic data for different values of the parameters chaos and noise

23

	Introduction
	Overall problem statement
	Discussion
	Merit
	Contributions
	Novelty

	Two versions of the problem and outline of our solutions
	Ranking problem
	Grouping problem
	PAR solution to the grouping problem
	DoP solution to the grouping problem

	Ranking Problem
	 Prior art on distances between permutations
	Proposed classification based on precedence relations

	Grouping problem: Population Augmentation Ratio (PAR)
	Groups
	ORA-tree
	Incremental computation of the ORA-tree
	PAR measure and classification
	Practical implementation of the PAR classification
	Extension to more than two training sets
	Prior Art
	PQ-trees
	Adjacency distance
	Interval distance

	Grouping problem: Difference of Positions (DoP)
	Difference of Positions Matrix
	Classification using the DoP distance
	Results on synthetic test sets using the distance DoP

	Conclusions and summary
	Acknowledgements
	References
	Appendix A

