
OPTIMIZING COMPUTATIONAL KERNELS IN QUANTUM CHEMISTRY

A Thesis
Presented to

The Academic Faculty

By

Matthew C. Schieber

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Computational Science and Engineering

Georgia Institute of Technology

May 2018

Copyright c©Matthew C. Schieber 2018

OPTIMIZING COMPUTATIONAL KERNELS IN QUANTUM CHEMISTRY

Approved by:

Dr. Sherrill, Advisor
School of Chemistry and Biochem-
istry, School of Computational
Science and Engineering
Georgia Institute of Technology

Dr. Chow
School of Computational Science
and Engineering
Georgia Institute of Technology

Dr. McDaniel
School of Chemistry and Biochem-
istry
Georgia Institute of Technology

Date Approved: April 23, 2018,

This thesis is dedicated to my parents.

ACKNOWLEDGEMENTS

I would like to thank my parents, Mike and Trish, for their love and support throughout my

life. Thank you so much for instilling the curiousity and dedication in me which made this

possible. My sisters, brothers, nieces, nephews, and cousins deserve my appreciation as

well.

I would like to sincerely thank my supervisor, Prof. Sherrill, for his guidance and support.

His belief in me provided encouragement throughout this entire process. I would also like

to thank Dr. Chow for co-advising me. The insights I learned from his courses made much

of this work possible. Also, I would like to thank Dr. Smith, who, without his mentorship

and guidance, none of this would have been possible. Collaborating with him was truly

inspiring.

I greatly appreciate the support of groupmates within the Sherrill Lab. Brandon, thank you

for your superb automation skills and willingness to run tests for me. Lori, thank you for

letting me bug you often about how to compile Psi4. Thank you Dom, Assim, Constance,

Carlos, and Yi for the support and fun times.

Last but not least, I would like to thank my girlfriend, Andrea, whose emotional and intel-

lectual support kept me above water throughout graduate school.

This research was supported by NSF grant ACI-1609842.

iv

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . viii

List of Figures . x

Chapter 1: Introduction and Background . 1

Chapter 2: Utilizing Spatial Sparsity . 6

2.1 Sparsity Masks . 6

2.2 Integral Construction . 8

2.3 Integral Transformation . 9

2.4 Results . 10

Chapter 3: Optimizing Integral Transformations 14

3.1 A Note on Disk-bound Index Blocking . 14

3.2 Memory Layout for Sparsity-utilized Transformations 17

3.3 Context Dependent Workflows . 19

3.4 Intermediate Recycling . 22

3.5 Results . 22

3.5.1 Parallel Scaling of Transformations 23

v

3.5.2 Performance Crossover Through Number of Transformations 26

3.5.3 Superior Workflows in Practice . 28

Chapter 4: Evaluating Coulomb and Exchange Matrices 31

4.1 Coulomb and Exchange Evaluations . 31

4.2 Results . 37

4.2.1 Multi-core Results . 38

4.2.2 Manycore Results . 42

Chapter 5: Conclusions . 44

References . 46

vi

LIST OF TABLES

2.1 Characteristics of benzene stack systems. N and Naux refer to the number
of primary and auxiliary basis functions, respectively. Mask sparsity refers
to the percentage of significant AO function pairs in the sparsity mask.
Mask sparsity increases with additional benzenes added to the stack. 11

2.2 Speedups obtained from sparsity screening at ten benzenes from data in
Figure 2.2. 12

3.1 Total memory required for sparse three-index AO integrals for adenine-
thymine dimer across various basis sets. The JK type auxiliary basis sets
were used. 14

3.2 Speedups obtainable via pre-transforming the 3-center integrals prior to
metric contraction for common occupied-virtual transformations. NAO and
Ni denote the number of atomic orbitals and occupied molecular orbitals,
respectively. 20

3.3 Characteristics of organoboron catalyst. NAO and Naux refer to the number
of primary and auxiliary basis functions, respectively. Mask sparsity refers
to the percentage of significant AO function pairs in the sparsity mask. . . . 23

3.4 Characteristics of organoboron catalyst systems across the cc-pVDZ, cc-
pVTZ, and cc-pVQZ basis sets. 27

3.5 Characteristics of systems for Store vs Direct algorithm comparisons. . . . 29

3.6 Computational times comparing the Direct and Store algorithms for three-
index integral construction and transformations. 30

3.7 Total procedure wall clock times comparing the Direct and Store algorithms. 30

vii

4.1 Total execution times for Self-Consistent Field procedures for various sys-
tems using Algorithms 10 and 11 and Algorithms 13 and 14 for exchange
and Coulomb matrix evaluations, respectively. Total wall times include
wall time for the entire program to execute. J and K compute time in-
dicates the total time spent in the Coulomb and exchange matrix evalua-
tion kernels, respectively. System descriptions including number of AO
basis functions, NAO, number of auxiliary basis functions, Naux, basis, and
number of atoms, Nat., are included. All rows are sorted by the product
NauxNAO. A speedup column is included for total wall time and is calcu-
lated as the total procedure time spent using Algorithms 11 and 14 dived
by the total procedure time spent using Algorithms 10 and 13. The experi-
ments were carried out using one node consisting of an Intel Core i7-5930K
processor (6 cores at 3.50GHz) and 64GB DRAM 39

4.2 Total execution times for Self-Consistent Field procedures for various sys-
tems using Algorithms 10 and 11 and Algorithms 13 and 14 for exchange
and Coulomb matrix evaluations, respectively. Total wall times include
wall time for the entire program to execute. J and K compute time indicates
the total time spent in the Coulomb and exchange matrix evaluation ker-
nels, respectively. System descriptions including number of AO basis func-
tions, NAO, number of auxiliary basis functions, Naux, basis, and number
of atoms, Nat., are included. All rows are sorted by the product NauxNAO.
A speedup column is included for total wall time and is calculated as the
total procedure time spent using Algorithms 11 and 14 dived by the total
procedure time spent using Algorithms 10 and 13. The experiments were
carried out using one node consisting of two Intel Xeon E5-2640 processors
(10 cores at 2.40GHz) and 256GB DRAM. 40

4.3 Total procedure execution times for a Self-Consistent Field procedure using
both Algorithms 10 and 13 and Algorithms 11 and 14 for exchange and
Coloumb matrix evaluations, respectively. The programs were executed on
one Knights Landing processor using a development version of PSI4. A
relative speedup is listed. 42

4.4 Total exchange matrix evaluation times within an Self-Consistent Field pro-
cedure using both Algorithms 10 and 11. The programs were executed on
one Knights Landing processor using a development version of PSI4. A
relative speedup is listed. 43

viii

LIST OF FIGURES

2.1 Schwarz sparsity masks used for benzene stacks containing 1, 5, and 10
benzenes spaced 3Å apart. Sparsity masks were obtained by evaluating
(µν|µν) < τ2

(µν|µν)max . 8

2.2 Comparison of execution times using sparsity screening (blue) against no
sparsity screening (orange). Execution time is plotted against number of
benzenes in a benzene stack from one to ten benzenes. Transformations
involved computing (ib|Q), where i and b denote occupied and virtual in-
dices, respectively. Cutoff refers to the Schwarz screening threshold. (a)
Computing the integrals. (b) Contracting AO integrals with the fitting met-
ric. (c) First transformation times only. (d) Sum of first and second trans-
formation times. 12

3.1 Transition state for organoboron addition to trifluooroacetone. Taken from
Ref. [18] . 23

3.2 Speedup and execution time plots obtained using our optimized memory
layout, BµPνµ , for sparsity screened 3-center integrals. Execution times in-
volve computing three common transformation classes: (ij|Q), (ib|Q), and
(ab|Q), where i, j and a, b denote occupied and virtual indices, respectively.
Graphs (a), (c), and (e) include speedups for constructing the integrals (or-
ange), transforming (blue), total time (red), and ideal (black). Graphs (b),
(d), and (f) plot total execution times. Construction times include both in-
tegral computations and metric contractions. Problem sizes were increased
by increasing basis set size using cc-pVXZ, X = D,T,Q. 25

3.3 Comparison of total execution times for the Store and Direct algorithms to
complete (ij|Q), (ib|Q), and (ab|Q) transformations across the cc-pVDZ,
cc-pVTZ, and cc-pVQZ basis sets. A scan from one to ten transformations
was performed. In each case, a crossover occurs as the Direct algorithm be-
comes more expensive. The crossover occurs in fewer iterations for trans-
formations involving larger MO spaces. With increasing basis set size, the
crossover point is shifted to the right for the (ij|Q) and (ib|Q) transforma-
tions and it is shifted slightly to the left for the (ab|Q) transformation. . . . 27

ix

3.4 Systems used for context dependent investigation of the Store and Direct
workflows. (a) Hexatriene. (b) Benzene and toluene in 20 water solvent
molecules. 29

x

SUMMARY

Density fitting is a rank reduction technique popularly used in quantum chemistry in

order to reduce the computational cost of evaluating, transforming, and processing the

4-center electron repulsion integrals (ERIs). By utilizing the resolution of the identity tech-

nique, density fitting reduces the 4-center ERIs into a 3-center form. Doing so not only

alleviates the high storage cost of the ERIs, but it also reduces the computational cost

of operations involving them. Still, these operations can remain as computational bottle-

necks which commonly plague quantum chemistry procedures. The goal of this thesis

is to investigate various optimizations for density-fitted version of computational kernels

used ubiquitously throughout quantum chemistry. First, we detail the spatial sparsity avail-

able to the 3-center integrals and the application of such sparsity to various operations,

including integral computation, metric contractions, and integral transformations. Next,

we investigate sparse memory layouts and their implication on the performance of the in-

tegral transformation kernel. Next, we analyze two transformation algorithms and how

their performance will vary depending on the context in which they are used. Then, we

propose two sparse memory layouts and the resulting performance of Coulomb and ex-

change evaluations. Since the memory required for these tensors grows rapidly, we frame

these discussions in the context of their in-core and disk performance. We implement these

methods in the PSI4 electronic structure package and reveal the optimal algorithm for the

kernel should vary depending on whether a disk-based implementation must be used.

xi

CHAPTER 1

INTRODUCTION AND BACKGROUND

Electron repulsion integrals (ERIs) and operations involving them pose a fundamental com-

putational problem for quantum chemistry. These 2-electron, 4-center integrals take the

form:

(µν|λσ) =
∫ ∫

µ(r1)ν(r1)r−112 λ(r2)σ(r2)dr1dr2, (1.1)

where µ, ν, λ, σ are atomic orbital (AO) basis functions and r1 and r2 are electron coordi-

nates [1]. For simplicity, we have assumed the orbitals are real functions, as is usually the

case in practice. Immediately, one should note the O(N4
AO) storage costs (where NAO is

the number of AO basis functions), which quickly limits the size of in-core investigations.

Moreover, various fundamental operations involving ERIs are also costly. Here we focus

on two types of operations. The first is the construction of the Coulomb and exchange

matrices:

Jµν = (µν|λσ)Dλσ (1.2)

Kµν = (µλ|νσ)Dλσ, (1.3)

where Jµν , Kµν , and Dλσ are the Coulomb, exchange, and density matrices, respectively.

Note that the use of the Einstein summation notation implies summations over indices.

Evaluating the 4-center ERIs according to (1.2) and (1.3) requires O(N4
AO) operations,

which is a heavy computational burden that plagues even the most basic quantum chemistry

procedures. For example, the Fock matrix for Restricted Hartree-Fock is built in the AO

1

basis as:

Fµν = Hµν + 2Jµν −Kµν (1.4)

Hartree-Fock is the simplest quantum chemistry procedure, also known as the Self-Consistent

Field approach, because it involves iteratively reconstructing the Fock matrix until conver-

gence. Except for very large systems with large degrees of spatial sparsity, the most com-

putationally demanding operation for this method is the evaluation of the Coulomb and

exchange matrices.

The second fundamental operation considered here involves the transformation of the

ERIs from the AO basis to the molecular orbital (MO) basis. This operation is written as:

(pq|rs) = CµpCνq(µν|λσ)CλrCσs, (1.5)

where p, q, r, s denote MO indices and each MO is expanded as a linear combination of

AO’s as φp(r2) =
∑

µCµpµp(r2). These integral transformations scale as O(N4
AONp)

(where Np is the size of the smallest subset of MO’s required in the target integrals). The

transform serves as a major bottleneck for perturbative correlation methods like second-

order Møller-Plesset perturbation theory (MP2).

To overcome the drastic cost of evaluation, transforming, and processing the 4-center

ERIs, various approximations and screening techniques have been developed. Density fit-

ting [2, 3, 4, 5, 6] is one method for alleviating these costs that has been gaining popularity

in electronic structure theory [7, 8, 9, 10, 11]. By utilizing the resolution of the identity

technique, density fitting reduces the rank of the 4-center ERIs and approximates them

2

using a 3-center form:

(µν|P) =
∫ ∫

µ(r1)ν(r1)r−112 P (r2)dr1dr2 (1.6)

[J]PQ =

∫ ∫
P (r1)r−112 Q(r2)dr1dr2 (1.7)

(µν|λσ) ≈ (µν|P)[J]−1PQ(Q|λσ) (1.8)

Here we have introduced an auxiliary basis P,Q and the Coulomb fitting metric [J]PQ

[12]. In practice, permuational symmetry is almost always used so that only one set of

these 3-center integrals need be built:

BP
µν = (µν|Q)[J]−

1
2

PQ (1.9)

(λσ|µν) ≈ BP
µνB

P
λσ (1.10)

In this work, tensors labeled B indicate integrals that have been contracted with the fit-

ting metric. The rank-reduced 3-center ERIs have a storage requirement of O(NauxN
2
AO),

which allows many more investigations to be run in-core compared to the original 4-center

ERIs. Using the 3-center ERIs, the Coulomb and exchange matrices are evaluated as:

Jµν = BP
µνB

P
λσDλσ (1.11)

Kµν = BP
µλB

P
νσDλσ (1.12)

Using (1.11), the Coulomb matrix is evaluated inO(NauxN
2
AO) operations, which is a great

success for reducing computational complexity. On the other hand, (1.12) still requires

O(NauxN
3
AO) operations. Since Naux is always larger than NAO, evaluating (1.12) is actu-

ally more expensive than evaluating (1.3). This leaves the exchange matrix evaluation as

the major bottleneck for most density-fitted procedures. One method for alleviating this

bottleneck involves employing knowledge of the form of the density matrix. In Hartree-

3

Fock theory, the density matrix is

Dλσ = CλiCσi, (1.13)

where i indicates an occupied MO, and there are far fewer occupied MO’s than there are

AO basis functions. Since MO spaces are often much smaller than AO spaces, it is possible

to lower the complexity prefactor when building the exchange matrix. Decomposing the

density matrix and rewriting the Coulomb and exchange matrix evaluations, we get:

Jµν = BP
µνB

P
λσCλiCσi (1.14)

Kµν = BP
µλB

P
νσCλiCσi (1.15)

Both (1.14) and (1.15) requiresO(NauxN
2
AONi) operations. This technique is not beneficial

for Coulomb matrix evaluations, since the complexity of (1.14) is actually higher than that

of (1.11). However, (1.15) reduces the complexity of exchange matrix evaluation by NAO
Ni

,

where Ni denotes the number of occupied orbitals, which provides moderate speedups in

practice.

Moreover, density fitting also improves the cost of integral transformations. Applying

(1.10) to (1.5), we get:

BP
pq = BP

µνCµpCνq (1.16)

(pq|rs) ≈ BP
pqB

P
rs (1.17)

The formal computational scaling of this operation is O(NauxNpNqNrNs). However, in

practice, algorithms based on density fitting often involve contracting the transformed

three-index integrals, BP
pq, with other terms, rather than explicit formulation of (pq|rs)

as actual intermediates. Therefore, optimizing these procedures will primarily focus on

optimizing the computation of BP
pq via (1.16).

4

Although density fitting makes considerable progress towards reducing the storage and

computation complexity when using the ERIs, there is still work to be done. Importantly,

(1.15) and (1.16) still serve as major computational bottlenecks for iterative and pertur-

bative methods, respectively. In my research, I have sought out and implemented various

optimizations to further improve the density fitting regime. The essence of my work in-

volves the union of sparsity screening, good parallel scaling, minimizing disk I/O, and

optimal contraction paths. In Chapter 2, I discuss the spatial sparsity of the three-index

integrals and the utilization of such sparsity for integral construction, metric contractions,

and integral transformations. In Chapter 3, I focus on (1.15) by discussing blocking proce-

dures, sparse memory layouts, disk implications, and workflow optimizations. Chapter 4

focuses on (1.14) by formulating exchange matrix builds based on different sparse memory

layouts and details the scalability of the resulting algorithms on multi-core and manycore

architectures. Finally, Chapter 5 summarizes the results and makes suggestions for future

work.

5

CHAPTER 2

UTILIZING SPATIAL SPARSITY

For all but the smallest molecules, spatial sparsity is very important for achieving compu-

tational savings in quantum chemistry. There exist two primary forms of spatial sparsity in

the 3-center integrals (µν|P), Eq. (1.6). The first form results from the Gaussian product

µ(r1)ν(r1) diminishing with the overlap of the two AO Gaussians. This product diminishes

rapidly with distance between the Gaussian function centers and is also highly sensitive to

their degree of locality. If the overlap between two AO Gaussians is insignificant, then it

becomes unnecessary to compute any shell triplet featuring this AO Gaussian pair. Utiliz-

ing this pairwise sparsity requires only an estimation of the significant AO Gaussian pairs.

Once this spatial sparsity is applied and insignificant AO function pairs are screened, the

complexity of computing the 3-center integrals becomes O(NauxN
1−2
AO), where the lower

bound is achieved for sufficiently sparse systems. Another type of spatial sparsity in (1.6)

involves the auxiliary function, which is more complicated to utilize; see [11]. In this the-

sis, I focus on the former, pairwise sparsity which is featured in the product µ(r1)ν(r1).

Utilizing this sparsity not only speeds up the computation of the three-index integrals, but

when the integrals are stored in a sparse format, then this sparsity can be utilized in later

operations such as the fitting metric contraction and basis transformations.

2.1 Sparsity Masks

The pairwise sparsity available to the 3-center integrals can be determined via an estimation

of significant AO function pairs. An implementation will require a two dimensional sparsity

mapping structure which keeps track of the significant pairs. We refer to these structures as

sparsity masks, which are NAO by NAO Boolean matrices denoted as Sbµν . The superscript

b reminds the reader that the structure is of Boolean type. The element Sbµν will be true if

6

the product µ(r)ν(r) is estimated to be significant and false otherwise.

For efficiency, it is common to compute batches of density fitted integrals in shell

triplets:

(MN |Q) = {(µν|P), µ ∈M, ν ∈ N,P ∈ Q}, (2.1)

where M and N denote shells of AO functions, and P denotes a shell of auxiliary basis

functions. A shell is simply a collection of all angular momentum components of a given

radial function, e.g., px, py, pz for p shell. An individual integral (µν|P) is bounded by

the Schwarz inequality (µν|P) ≤
√

(µν|µν)(P |P). We can eliminate entire shells of

integrals, (MN |Q), by computing and storing the maximum (µν|µν) that occurs for a

given shell µ ∈ M, ν ∈ N . We use a relative cutoff tolerance τ and neglect shells for

which

(MN)max <
τ 2

(µν|µν)max
, (2.2)

where (MN)max is the maximum (µν|µν) within a shell pair (M,N) and (µν|µν)max is

the global maximum (µν|µν). In addition, even for shell pairs that are not screened out,

we can apply function-level screening and avoid computation of (µν|P), where

(µν|µν) < τ 2

(µν|µν)max
. (2.3)

Using this strategy, a sparsity mask can be easily constructed. Figure 2.1 includes

illustrations of sparsity masks for benzene stacks with 1, 5, and 10 benzenes spaced 3Å

apart. As sparsity increases, the number of significant AO function pairs contained in

these masks becomes O(N1−2
AO), where the lower bound is obtained for sufficiently sparse

systems.

7

Figure 2.1: Schwarz sparsity masks used for benzene stacks containing 1, 5, and 10 ben-
zenes spaced 3Å apart. Sparsity masks were obtained by evaluating (µν|µν) < τ2

(µν|µν)max .

2.2 Integral Construction

Now, we are equipped to discuss the resulting algorithms when applying the integral spar-

sity to important operations such as integral construction and transformation. To write more

readable algorithms, we employ some tensor notation and write APµν to represent the pre-

contracted 3-center integrals (µν|P). To prune these integrals using sparsity, the following

algorithm can be employed:

Algorithm 1 Prune APµν using sparsity

Require: AO integrals: APµν , screening mask: Sbµν
for µ = 0 to µ = NAO − 1 do
APµνS

b
µν → APµνµ

end for
return APµνµ

Here we have introduced the symbol νµ, which indicates that ν is restricted to AO func-

tions which are spatially close enough to µ to survive the Schwarz screening process. The

superscript in νµ indicates a dependence of ν according to µ. Algorithm 1 is purely peda-

gogical, as one would never build the full APµν integrals and then prune them for sparsity.

Rather, sparsity screening would be applied as the integrals are constructed and insignifi-

cant function triplets are never computed. The computation and storage of APµνµ scales as

8

O(NauxN
1−2
AO). Moreover, the costly metric contraction becomes

BQ
µνµ = APµνµ [J]

− 1
2

PQ (2.4)

and scales as O(N2
auxN

1−2
AO), where the lower bound is achieved for sufficiently sparse

systems.

2.3 Integral Transformation

The transformation of APµν (or BQ
µνν) from the AO basis to the MO basis is an essential

operation for many quantum chemistry procedures. The operation requires two MO matri-

ces: Cµp, Cνq, where p, q are MO space indices. These matrices will be identical if p and

q run over the full space of MOs, but could be different if p and q belong to two differ-

ent subsets of MOs (e.g., occupied orbitals and unoccupied orbitals). A first contraction

APpν = APµνCµp will half-transform the integrals and costs O(NauxN
2
AONp). The second

contraction APpq = APpνCνq will cost O(NauxNAONpNq). Note the first contraction should

involve the smaller of Np and Nq in order to reduce complexity. Also, the first contraction

is comparably more expensive than the latter since the size of the AO space is larger than

any MO space. Therefore, reducing the cost of the first contraction would alleviate a bot-

tleneck overall. Thankfully, we can exploit the sparsity of APµνµ . To do so, we carry out

a looping DGEMM through the µ index and apply the sparsity mask to the orbital matrix

Cµp. Algorithm 2 illustrates the resulting process:

9

Algorithm 2 Transform sparse integrals APµνµ to MO spaces.

Require: Sparse AO integrals: APµνµ , orbital matrices: Cµp, Cνq, screening mask: Sbµν

for µ = 0 to µ = NAO − 1 do

CνqS
b
µν → Cνµq

APµνµCνµq → APµq

end for

APµqCµp → APpq

return APpq

2.4 Results

All methods were implemented in the PSI4 electronic structure software package [13]. The

parallelism in PSI4 relies on the shared memory programming model using OpenMP and

carries out matrix multiplications using Intel’s Math Kernel Library.

We demonstrate the performance of our Schwarz screening implementation by measur-

ing the performance when computing the 3-center integrals, contracting the fitting metric,

and transforming the integrals into an MO basis. The experiment employed an ideal sparse

system: stacked benzenes. Execution times were recorded for each successive benzene

added to the stack, from one to ten benzenes, with each benzene spaced 5Å apart. Trans-

formation time involved the wall time required to carry out the common occupied-virtual

transformation, as would be required by density-fitted MP2:

(ib|Q) = (λσ|Q)CσiCλb (2.5)

Where i, j and a, b denote occupied and virtual spaces, respectively. Algorithm 2 was

implemented and used to carry out these transformations. The cc-pVTZ and cc-pVTZ-jkfit

basis sets were used for primary and auxiliary basis sets, respectively. The characteristics

of each system are listed in Table 2.1. The mask sparsity listed in Table 2.1 refers to

10

the percentage of non-significant AO function pairs appearing in the sparsity mask. The

experiment was carried out using one node consisting of an Intel Core i7-5930K processor

(6 cores at 3.50GHz) and 50GB DRAM. The results are plotted in Figure 2.2. Figure

2.2 (a), (b), (c), and (d) involve time to compute the 3-index integrals, contract the fitting

metric, perform the first transformation step: (µν|Q)Ciµ → (iν|Q), and total transform

time, respectively. Note that our novel contribution involves the application of the sparsity

screening in the transformation step.

Table 2.1: Characteristics of benzene stack systems. N andNaux refer to the number of pri-
mary and auxiliary basis functions, respectively. Mask sparsity refers to the percentage of
significant AO function pairs in the sparsity mask. Mask sparsity increases with additional
benzenes added to the stack.

Benzenes N Naux Mask Sparsity (%)

1 264 654 2.6

2 528 1308 24.7

3 792 1962 43.6

4 1056 2616 55.3

5 1320 3270 63.1

6 1584 3924 68.6

7 1848 4578 72.7

8 2112 5232 75.9

9 2376 5886 78.4

10 2640 6540 80.4

11

(a) (b)

(c) (d)

Figure 2.2: Comparison of execution times using sparsity screening (blue) against no spar-
sity screening (orange). Execution time is plotted against number of benzenes in a benzene
stack from one to ten benzenes. Transformations involved computing (ib|Q), where i and
b denote occupied and virtual indices, respectively. Cutoff refers to the Schwarz screening
threshold. (a) Computing the integrals. (b) Contracting AO integrals with the fitting metric.
(c) First transformation times only. (d) Sum of first and second transformation times.

The cost of the first contraction becomes O(NauxN
1−2
AO Np). The remaining sparsity in the

half-transformed APνq is unrelated to the original sparsity mask.

Table 2.2: Speedups obtained from sparsity screening at ten benzenes from data in Figure
2.2.

Operation Speedup at 10 benzenes

Construction 10.6

Metric Contraction 37.8

First Transformation 25.8

Total Transformation 5.5

12

Clearly, Figure 2.2 reveals significant time reductions for all procedures measured. Ta-

ble 2.2 reinforces that operations with higher complexity scaling have the largest time re-

duction, with the caveat that total transformation time includes portions without sparsity

utilization. In the integral computations (Figure 2.2 (a)), we construct the sparse integrals

using function screening; however, we still compute them in shells for efficiency. There-

fore the acquired speedup is slightly less dramatic compared to the metric contraction and

transformation procedures (Figure 2.2 (b) and (c), respectively) due to select functions

being screened in cases where the entire shell is not screened. Note that the metric contrac-

tion is by far the most expensive operation, which should in one part highlight the boon of

sparsity utilization and in another part illustrate the pertinence of our workflow investiga-

tion in Chapter 3 of this thesis. Lastly, our proposal outlined in Algorithm 2 for applying

sparsity screening to integral transformations is proven viable by Figure 2.2 (c). Note that

significant reductions are obtained for the first transformation; however, the sparsity mask

constructed is not helpful for the second transformation step. With sparsity utilization, the

first step scales as O(NauxN
1−2
AO p), whereas the second transformation step will still scale

asO(NauxNpNq). In this work we have not gone on to consider sparsity of the MO indices,

which would typically require transformation to local orbitals.

13

CHAPTER 3

OPTIMIZING INTEGRAL TRANSFORMATIONS

3.1 A Note on Disk-bound Index Blocking

The size of tensors grows rapidly in quantum chemistry. The 3-center integrals of den-

sity fitting are no exception. Often, the size of the AO three-index integrals will exceed

64GB of RAM for small systems when a large basis set such as aug-cc-pVQZ is used,

even with sparsity screening. Table 3.1 illustrates this point by listing the total memory

required for sparse three-index AO integrals for the adenine-thymine dimer across various

basis sets. Once the memory required exceeds what is available, it is necessary for any

implementation to begin reading and writing these tensors to and from disk-based memory.

For any field this can be a major slowdown, but it is especially critical to performance when

high-dimensional data is involved.

Table 3.1: Total memory required for sparse three-index AO integrals for adenine-thymine
dimer across various basis sets. The JK type auxiliary basis sets were used.

Basis Memory Required NAO Naux

cc-pVDZ 1.0GB 321 1583

aug-cc-pVDZ 4.4GB 536 1986

cc-pVTZ 5.4GB 724 1831

aug-cc-pVTZ 22.0GB 1127 2482

cc-pVQZ 24.3GB 1375 2575

aug-cc-pVQZ 91.4GB 2026 3534

cc-pV5Z 93.3GB 2334 3687

aug-cc-pV5Z 316.1GB 3293 5014

To illustrate this issue, we will introduce an adapted tensor notation which better in-

14

dicates memory layout. We denote an n-dimensional tensor as Tab...n, where the indices

from left to right go from the slowest-running to the fastest-running indices. Here, a is

the slowest-running index, b is the next slowest-running index, and n is the fastest-running

index. The choice of memory layout plays a crucial role when indices are being accessed.

Iterating through the slowest-running index, a, would require the largest memory strides

whereas adjacent elements of the fastest-running index, n, are contiguous in memory.

Now, we can consider two possible forms for the three-center integrals: APµν or AµPµ.

If these tensors are too large to fit into memory, we must read and write pieces of them to

and from disk-based memory. To accomplish this, we must choose an index to block across.

For example, if we choose to block across the P index, then we will partition the basis of

P into discrete blocks: Pi ∈ {P}. Then, we will read and write only those blocks of P

along with all of µ and ν for that given block. The latency of these operations is bounded

by the movement of a physical read-write head, so it is critically important to ensure that

read and writes are as contiguous as possible. In the case of P blocking, the APµν tensor is

far superior to AµPν since the former will yield entirely contiguous operations whereas the

latter will require strided operations.

Unfortunately, within the density fitting regime, different operations are optimal under

different blocking schemes. For example, consider the construction of the full three-index

AO integrals according to (1.9). To accomplish this, the initial integrals, APµν , are computed

and then contracted with the fitting metric. If the AOs are too large to fully fit in-core, then

we must choose an index, P or µ, to block across. Consider the following two algorithms

that block across either index, respectively:

15

Algorithm 3 Construct the full AO integrals BP
µν by blocking across the P index.

Require: Coulomb metric: [J]
− 1

2
PQ

Initialize: BQ
µν = 0

for block Pi ∈ {P} do

Compute: APiµν

Contract: APiµν [J]
− 1

2
PiQ
→ BQ

µν

Write: BQ
µν += BQ

µν

end for

return BQ
µν

Algorithm 4 Construct the full AO integrals BP
µν by blocking across the µ index.

Require: Coulomb metric: [J]
− 1

2
PQ

for block µi ∈ {µ} do

Compute: APµiν

Contract: APµiν [J]
− 1

2
PQ → BQ

µiν

Write: BQ
µiν

end for

return BQ
µν

Of the two algorithms, only Algorithm 4 would respect the memory constraints of a

blocking procedure. Note that after the contraction APiµν [J]
− 1

2
PiQ
→ BQ

µν in Algorithm 3,

the full 3-dimensional quantity BQ
µν is returned, which would immediately violate memory

constraints. For this operation, only one blocking method is possible. If we are constrained

to blocking across the µ index, then the tensor form AµPν will yield superior disk per-

formance, as it would allow for completely contiguous read operations. The purpose of

this illustration is to remind the reader that for large enough systems, disk performance is

crucially important, therefore memory layout should be considered carefully.

16

3.2 Memory Layout for Sparsity-utilized Transformations

Algorithm 2 revealed a technique that can be used to utilize sparsity when carrying out

three-index integral transformations. Although utilizing sparsity is imperative for cost re-

duction, an optimal implementation must be tailored to fully exploit modern computing

hardware. Multi-core processors consisting of upwards of ten cores are found commonly

both at the desk of computational chemists and in commodity computing clusters. More-

over, the birth of Intel’s manycore architecture and the advent of Graphics Processing Units

(GPUs) further necessitate that scientific computing exploits every means of parallelism.

Although the density fitting technique has been shown to be challenging to exploit in mas-

sively parallel algorithms [14], it remains an essential technique for accelerating compu-

tations of small to intermediate size chemical systems. The communication overhead that

hinders large scale parallelism for density fitting is nominal for single node investigations,

but even a single multi-core processor contains viable parallelism that can be challenging

to fully exploit. Coupling the cost reduction of sparsity approximations with a finely tuned

parallel code is crucial to performance.

Maximizing parallelism in Algorithm 2 will require careful implementation design.

The choice of memory layout for the sparse 3-dimensional integral tensors will affect both

algorithmic complexity and parallel scalability. For the three-center integrals, we use APµν

to denote a memory layout with the auxiliary index P as the slowest-running index. The

APµν layout is intuitive, as it allows looping through P and direct application of the sparsity

mask for each submatrix. The resulting sparse form APµνµ contains submatrices of identi-

cal structure. However, another form, AµPν , must be considered. The sparse form AµPνµ

results in submatrices of differing sizes. However, some advantages may be ascertained.

We sought to determine which of these two sparse memory layouts, APµνµ or AµPνµ , is

optimal for transforming the integrals into an MO basis. Algorithms 5 and 6 illustrate the

difference:

17

Algorithm 5 Transforming sparse integrals using APµνµ form.

Require: Sparse AO integrals: APµνµ , orbital matrices: Cµp, Cνq, screening mask: Sbµν

for P = 0 to P = Naux − 1 do

for µ = 0 to µ = NAO − 1 do

Trim from dense to sparse: CνqSbµν → Cνµq

APµνµCνµp → APµp

end for

end for

return APµp

Final transform: APµqCµp → APpq

return APpq

Algorithm 6 Transforming sparse integrals using AµPνµ form.

Require: Sparse AO integrals: AµPνµ , orbital matrices: Cµp, Cνq, screening mask: Sbµν

for µ = 0 to µ = NAO − 1 do

Trim from dense to sparse: CνqSbµν → Cνµq

AµPνµCνµq → AµPq

end for

return AµPq

Final transform: AµPqCµp → ApPq

return ApPq

To carry out the first step of the transformation, both algorithms must loop through the

slowest-running index of the integrals. Operations within this loop should be parallelized.

The number of iterations for this step are greater in Algorithm 5 than in Algorithm 6 since

Naux will always be larger than NAO. Conversely, the matrix-matrix multiplications occur-

ring in Algorithm 6 are larger. As a result, Algorithm 6 will benefit from delegating larger

problem sizes to highly optimized level 3 BLAS routines.

18

However, the crucial difference is ascertained when one considers which index, µ or P ,

would be most appropriate to block across for a disk-bound implementation. If we choose

to block across µ, the result of the final transformation, APpq, would be incomplete, and

a full cumulative disk write of O(NauxNpNp) size would be necessary for each block of

µ. Moreover, there is a chance this operation could be altogether impossible if memory

constraints would be violated by having a full APpq tensor in memory. On the other hand,

blocking across the P index would not pose this problem, as no contractions occur across

the P index. Therefore, blocking across P is the only scalable solution.

Now, if it is necessary to block across P , consider the implications for Algorithms 5

and 6. For Algorithm 5, this means that if the blocks over P are very small, e.g. < 10,

then the parallelized loops will have very few iterations. Typically, the fewer the iterations

the worse the parallel scalability as the workloads are much more susceptible to being

unbalanced. To the contrary, Algorithm 6 will not suffer this drawback and is therefore the

better option. Since Algorithm 6 contains higher concurrency and utilizes larger matrix-

matrix multiplications, we propose that it will yield enhanced parallel scaling.

3.3 Context Dependent Workflows

Equation (1.9) demonstrates the necessity of the fitting metric when using the 3-center

density-fitted integrals. Unfortunately, the metric contraction in equation (1.9) comes at

the heavy price of O(N2
auxN

2
AO) operations. Considering that Naux can be 2-3x larger

than NAO, this can be an extremely costly operation. One remedy for cost reduction is to

transform the 3-center integrals prior to contracting them with the metric:

AQpq = AQµνCµpCνq (3.1)

BP
pq = [J]

− 1
2

PQA
Q
pq (3.2)

Since Np and Nq are often much smaller than NAO, the speedup of O(N
2
AO

NpNq
) can be sub-

19

stantial. Table 3.2 illustrates the potential benefit for some commonly used transformed

integrals using occupied and virtual spaces. Orbital indices i, j denote occupied spaces and

a, b denote virtual spaces.

Table 3.2: Speedups obtainable via pre-transforming the 3-center integrals prior to metric
contraction for common occupied-virtual transformations. NAO and Ni denote the number
of atomic orbitals and occupied molecular orbitals, respectively.

Transformation NAO
Ni

= 2 NAO
Ni

= 5 NAO
Ni

= 10

(Q|ij) 4 25 100

(Q|ia) 4 6.25 11.1

(Q|ab) 4 1.56 1.23

The speedups in Table 3.2 are undoubtedly beneficial and this technique is commonly

used in practice. However, we propose that this technique will be a disadvantageous in

certain contexts. Namely, applying this workflow to methods using many transformations

will increase cost unnecessarily. Using this method, a metric contraction is necessary for

each transformation, whereas only one contraction is required if this technique is not used.

If many transformations occur, the cost of contracting the metric for each transformation

will eventually outweigh the speedups attainable in Table 3.2. Therefore, both workflows

must be considered when carrying out 3-center integral transformations. Algorithm 7 and

8 illustrate the corresponding workflows:

20

Algorithm 7 The ”Store” algorithm - contract metric then transform.

Require: AO integrals: APµν , fitting metric: [J]
− 1

2
PQ, orbital matrices: Cµp, Cνq

Compute: AQµν

Contract metric: APµν [J]
− 1

2
PQ → BQ

µν

Save: BQ
µν

for all transformation spaces: Cµp, Cνq do

Transform: BQ
µνCµpCνq → BQ

pq

end for

return BQ
pq

Algorithm 8 The ”Direct” algorithm - transform then contract metric.

Require: AO integrals: APµν , fitting metric: [J]
− 1

2
PQ, orbital matrices: Cµp, Cνq

Compute: AQµν

for all transformation spaces: Cµp, Cνq do

Transform: APµνCµpCνq → APpq

Contract metric: APpq[J]
− 1

2
PQ → BQ

pq

end for

return BQ
pq

Hereafter we refer to the Store algorithm being the workflow that contracts the metric and

then transforms the integrals. Conversely, we refer to the Direct algorithm as the workflow

that transforms the integrals then contracts the metric.

Depending on the context, either the Store or Direct algorithm may be superior. We pro-

pose the Store algorithm will be superior for procedures requiring many transformations.

This includes contexts which iteratively recompute transformations, such as density-fitted

multiconfigurational self-consistent field (DFMCSCF) [15], as well as contexts involving a

large number of transformations spaces, such as density-fitted symmetry-adapted perturba-

tion theory (SAPT) [16, 17]. Conversely, the Direct algorithm will be superior in contexts

21

requiring a small number of transformations. Most notably, this includes density-fitted

second-order Møller-Plesset perturbation theory (DFMP2) [10].

3.4 Intermediate Recycling

Quantum chemistry procedures can require numerous integral transformations. For exam-

ple, an unrestricted Hartree-Fock (UHF) based SAPT procedure will employ 24 unique

integral transformations. Since all transformations are carried out at the same stage of the

computation, one should build an implementation that queues the transformations, gathers

information, and deploys strategic contraction paths. As mentioned previously, the first

contraction of these integral transformations APpν = APµνCµp should always be carried out

on the smallest MO index p possible. Thereafter, transformations using the same inter-

mediate, APpν , should all occur at the same time to avoid recomputing APpν . For example,

suppose two sets of transformed integrals are required, APuv andAPup, where u, v << N are

indices restricted to some small ”active” subspace of MOs and p is a general MO index

where Np ≈ NAO. For both transformations, the first step will be:

APµνCµu → APuν (3.3)

If this is recognized beforehand, then this operation need only be carried out once and the

intermediate APuν can be recycled for both transformations. The speedup of doing so is

O(2NAO+Nv+Np
NAO+Nv+Np

), which as Np → NAO approaches 50%. Although the benefit is modest, it

must be considered for optimized procedures.

3.5 Results

All methods were implemented in the PSI4 electronic structure software package [13]. The

parallelism in PSI4 relies on the shared memory programming model using OpenMP and

carries out matrix multiplications using Intel’s Math Kernel Library.

22

3.5.1 Parallel Scaling of Transformations

To measure parallel scaling, we performed integral transformations for the boron catalyst

system shown in Figure 3.1. We varied the problem size by adjusting the ζ level for the

Dunning correlation-consistent basis sets with ζ = D, T, Q. The characteristics of these sys-

tems are included in Table 3.3. Note that while parallel scaling typically improves for larger

systems (i.e. due to larger workloads), this is not guaranteed in a sparsity regime. Larger

systems may contain more sparsity; more sparsity will result in more striding, copying,

and irregular sizing, which will hinder parallel scaling. Nonetheless, our method outlined

in Algorithm 2 is designed to utilize sparsity while also obtaining maximum parallel effi-

ciency.

Figure 3.1: Transition state for organoboron addition to trifluooroacetone. Taken from Ref.
[18]

Table 3.3: Characteristics of organoboron catalyst. NAO and Naux refer to the number of
primary and auxiliary basis functions, respectively. Mask sparsity refers to the percentage
of significant AO function pairs in the sparsity mask.

Basis NAO Naux Mask Sparsity (%)

cc-pVDZ 671 3277 29.6

cc-pVTZ 1566 3856 41.1

cc-pVQZ 3040 5593 50.2

23

For each system, we performed the three common transformations:

(ij|Q) = (λσ|Q)CσiCλj, (3.4)

(ib|Q) = (λσ|Q)CσiCλb, (3.5)

(ab|Q) = (λσ|Q)CσaCλb, (3.6)

where i and j refer to occupied orbitals, and a and b refer to unoccupied orbitals. The

experiment was carried out using one node consisting of an Intel Xeon E5-2630 processor

(10 cores at 2.20GHz) and using 24GB DRAM. Figure 3.2 includes plots of both speedups

and execution times for each system.

24

(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Speedup and execution time plots obtained using our optimized memory layout,
BµPνµ , for sparsity screened 3-center integrals. Execution times involve computing three
common transformation classes: (ij|Q), (ib|Q), and (ab|Q), where i, j and a, b denote
occupied and virtual indices, respectively. Graphs (a), (c), and (e) include speedups for
constructing the integrals (orange), transforming (blue), total time (red), and ideal (black).
Graphs (b), (d), and (f) plot total execution times. Construction times include both integral
computations and metric contractions. Problem sizes were increased by increasing basis
set size using cc-pVXZ, X = D,T,Q.

At ten cores, speedups for total computation time were recorded as 9.09, 9.56, and

25

8.93 for ζ = D, T, Q, respectively. The improvement in scaling between ζ = D to ζ = T

may be attributed to larger system sizes. The sizes of the sparsity screened AO integrals

were 10.38GB and 55.70GB for these systems, respectively. In the latter case, the 24GB

of memory at the compute node was fully used and work for each thread was increased to

maximal levels. Conversely, when the system size was increased again using ζ = Q, the

memory constraint did not allow for further increase in work per thread. The hindrance

in scaling from ζ = T to ζ = Q is explained by the workload imbalance incurred by the

increase in sparsity.

3.5.2 Performance Crossover Through Number of Transformations

In this section, we reveal the contexts in which either the Store or Direct algorithms are

superior. First, we analyzed performance when applying either algorithm to carry out each

of the three common integral transformations: (Q|ij), (Q|ib), and (Q|ab). Doing so reveals

the crossover in computational complexity that occurs between the two algorithms. For few

transformations, the Direct algorithm will be superior as it benefits from the speedups given

in Table 3.2. However, if many transformations occur, we propose the Store algorithm will

become superior as it avoids the costly metric contraction for each transformation.

We applied both algorithms to each transformation using the same boron catalyst sys-

tem in Figure 3.1. To reveal the crossover in computational work between the two al-

gorithms, the execution times to carry out one to ten transformations were recorded. To

reveal additional trends, we varied the system size by adjusting the basis set size using ζ =

D, T, Q. The characteristics of these systems are described in Table 3.3. The experiments

were carried out using one node consisting of an Intel Core i7-5930K processor (6 cores at

3.50GHz) and 50GB DRAM. The results are plotted in Figure 3.3.

26

Table 3.4: Characteristics of organoboron catalyst systems across the cc-pVDZ, cc-pVTZ,
and cc-pVQZ basis sets.

Basis NAO Naux Nocc Nvirt

cc-pVDZ 671 3277 129 542

cc-pVTZ 1566 3856 129 1437

cc-pVQZ 3040 5593 129 2911

Figure 3.3: Comparison of total execution times for the Store and Direct algorithms to
complete (ij|Q), (ib|Q), and (ab|Q) transformations across the cc-pVDZ, cc-pVTZ, and
cc-pVQZ basis sets. A scan from one to ten transformations was performed. In each case,
a crossover occurs as the Direct algorithm becomes more expensive. The crossover occurs
in fewer iterations for transformations involving larger MO spaces. With increasing basis
set size, the crossover point is shifted to the right for the (ij|Q) and (ib|Q) transformations
and it is shifted slightly to the left for the (ab|Q) transformation.

If only one transformation occurs, then the speedups of Table 3.2 enable the Direct

algorithm to be superior. However, the Direct algorithm must carry out expensive metric

27

contractions for every transformation. As the number of transformations increase, the ex-

pense of these contractions overtakes the speedups of pre-transforming the integrals. Note

that a crossover between the two algorithms occurs in each system. This finding supports

our conjecture that the Store algorithm is advantageous in contexts where many transfor-

mations occur. This includes iterative methods where the transformations are carried out in

each iteration, such as MCSCF, as well as methods which require many transformations,

such as SAPT. Conversely, the Direct algorithm is advantageous for methods requiring few

transformations, such as DFMP2.

Additionally, the crossover point shifts to the left as the transformation spaces get larger

(ij, ia, ab), occurring in fewer transformations. This finding is supportive of the proposed

speedups in Table 3.2. Therefore procedures using anything larger than a (ib|Q) transfor-

mation will receive nominal benefits from employing the Direct algorithm and may incur

slowdowns if many transformations occur. Last, the crossover point shifts to the right for

the (ij|Q) and (ib|Q) transformations as larger basis sets are used. This will allow for con-

tinued benefits with more transformations. Conversely, the crossover shifts to the left for

the (ab|Q) transformation for larger basis sets. Either of these findings are elucidated by

the increasing ratio of Naux
NAO

.

3.5.3 Superior Workflows in Practice

In the previous section, we determined the Direct algorithm will be superior in methods

such as DFMP2, while the Store algorithm will be superior in methods such as MCSCF.

After determining the contexts in which either algorithm prevail, we sought to reveal their

benefits when applied in practice. To do so, we employed either algorithm in the contexts of

different procedures and systems. For procedures, we tested DFMCSCF and DFMP2. We

ran these procedures on the systems included in Figure 3.4. Figure 3.4 (a) is a hexatriene

molecule. Figure 3.4 (b) is benzene and toluene solvated by 20 water molecules. Table 3.4

lists the characteristics of each system, which includes the basis set, the number of primary

28

and auxiliary basis functions, and the mask sparsity.

(a) (b)

Figure 3.4: Systems used for context dependent investigation of the Store and Direct work-
flows. (a) Hexatriene. (b) Benzene and toluene in 20 water solvent molecules.

Table 3.5: Characteristics of systems for Store vs Direct algorithm comparisons.

System Primary Basis Auxiliary Basis Naux Nvirt

Hexatriene cc-pVQZ cc-pVQZ-jkfit 570 1044

Hexatriene cc-pVQZ cc-pVQZ-rifit 570 1232

Benzene-Toluene jun-cc-pVDZ jun-cc-pVDZ-jkfit 867 3849

Benzene-Toluene jun-cc-pVDZ jun-cc-pVDZ-rifit 867 2901

The experiments were carried out using one node consisting of an Intel Core i7-5930K

processor (6 cores at 3.50GHz) and 60GB DRAM. The results are included in Tables 3.6

and 3.7. Table 3.6 includes the total computation time spent in operations involving the

three-index integrals. These times will reflect the algorithmic benefits illustrated in Fig-

ure 3.3. Table 3.7 includes the total time required to execute the program. These times

reflect total procedure times, which include many operations extraneous to the three-index

integrals.

29

Table 3.6: Computational times comparing the Direct and Store algorithms for three-index
integral construction and transformations.

System Procedure DIRECT STORE Speedup

Hexatriene DFMCSCF 42.3s 7.8s 5.4x

Hexatriene DFMP2 2.9s 6.0s 2.1x

Benzene-Toluene DFMCSCF 438.1s 104.8s 4.2x

Benzene-Toluene DFMP2 31.4s 61.2s 1.9x

Table 3.7: Total procedure wall clock times comparing the Direct and Store algorithms.

System Procedure DIRECT STORE Speedup

Hexatriene DFMCSCF 173.0s 145.6s 1.2x

Hexatriene DFMP2 35.1s 40.5s 1.2x

Benzene-Toluene DFMCSCF 5138.7s 4811.8s 1.1x

Benzene-Toluene DFMP2 852.7s 856.0s 1.0x

Both Tables 3.6 and 3.7 reveal that the Direct algorithm is superior for DFMP2 whereas

the Store algorithm is superior for DFMCSCF. The computational speedups can be substan-

tial, reaching 5.4x for DFMCSCF with the hexatriene system. However, Table 3.7 reveals

these speedups are considerably dampened for the overall procedure time. This is true

because the operations involving the three-index integrals are not the most expensive com-

putations occurring within these procedures.

30

CHAPTER 4

EVALUATING COULOMB AND EXCHANGE MATRICES

4.1 Coulomb and Exchange Evaluations

From Chapter 1, we wrote the most efficient evaluations of the three-index ERIs to build

the Coulomb and exchange matrices as:

Jµν = BP
µνB

P
λσDλσ (4.1)

Kµν = BP
µλB

P
νσCλpCσp, (4.2)

where (4.1) and (4.2) are evaluated in O(N2
AONaux) and O(N2

AONauxNp) operations, re-

spectively. In self-consistent-field methods like Hartree-Fock and density functional the-

ory, the density matrix is constructed by summing over only occupied molecular orbitals

(Np = Nocc). The exchange matrix evaluation is a major bottleneck within the density

fitting regime. The focus of this chapter is on analyzing and improving exchange builds

to take advantage of sparsity, optimize parallel scaling, and to minimize disk operations.

Thankfully, it turns out that Algorithm 6 is easily extendable to (4.2). In fact, if one uses

orbital matrices to build the exchange matrix as in (4.2), the half-transformed intermediate

generated during integral transformations, BµPq, is actually identical to the intermediate

when building the exchange matrix. Moreover, the memory layout of BµPq is ideal for the

subsequent contraction to form K. We will consider the possibility that we want to build

”generalized” matrices, where perhaps two different matrices C are used (this is not rele-

vant for self-consistent-field energies, but can arise in other circumstances, for example, in

SAPT). A generalized Coulomb matrix can be constructed as in (4.1), but where the density

matrix is not an SCF density matrix, but a generalized density matrix:

31

Dλσ = CλpC
′
σp (4.3)

and likewise a generalized exchange matrix can be written

Kµν = BP
µλB

P
νσCλpC

′
σp. (4.4)

Again, the contraction index p does not necessarily run over all MO’s, but is typically

restricted to some subset, like occupied orbitals. The following exchange evaluation algo-

rithm results:

Algorithm 9 Building the K matrix.

Require: Sparse AO integrals: BµPνµ , orbital matrices: Cµp, C ′νp, screening mask: Sbµν

for µ = 0 to µ = NAO − 1 do

Trim from dense to sparse: CνpSbµν → Cνµp

BµPνµCνµp → TµPp

if C ′νp! = Cνp then

Trim from dense to sparse: C ′νpS
b
µν → C ′νµp

BµPνµC
′
νµp → T ′µPp

else

T ′µPp = TµPp

end if

end for

TµPpT
′
νPp → Kµν

return Kµν

We have used T tensors to indicate intermediates. Algorithm 9 is an ideal candidate for

32

building the K matrix, as it both utilizes sparsity and maximizes concurrency. However,

while it may be assumed that both J and K can always fit within in-core memory con-

straints, the same is not true for the three-index AO integrals. Therefore, we must consider

the behavior of Algorithm 9 when the in-core memory is constrained such that it becomes

necessary to perform blocking operations across the P index. Then, the algorithm becomes:

Algorithm 10 Building the K matrix using BµPνµ , blocking across P

Require: Sparse AO integrals: BµPνµ , orbital matrices: Cµp, C ′νp, screening mask: Sbµν

for block Pi ∈ {P} do

Read from disk: BµPiνµ

for µ = 0 to µ = NAO − 1 do

Trim from dense to sparse: CνpSbµν → Cνµp

BµPνµCνµp → TµPp

if C ′νp! = Cνp then

Trim from dense to sparse: C ′νpS
b
µν → C ′νµp

BµPνµC
′
νµp → T ′µPp

else

T ′µPp = TµPp

end if

end for

Kµν = Kµν + TµPipT
′
νPip

end for

return Kµν

Unfortunately, this algorithm will require strided disk operations when reading the BµP iνµ

tensor into memory. Since poor disk I/O can drastically decrease performance, it is often

better to force disk operations to be contiguous and transpose any tensors as necessary in

core memory. Since it is best to block across the P index (as discussed in Chapter 3), a

33

better memory layout for the sparse integrals is the BPµνµ form, since this form will allow

for completely contiguous reads from disk memory. Another possible algorithm can then

be formulated:

Algorithm 11 Building the K matrix using BPµνµ , blocking across P

Require: Sparse AO integrals: BPµνµ , orbital matrices: Cµp, C ′νp, screening mask: Sbµν

for block Pi ∈ {P} do

Read from disk: BPiµνµ

for µ = 0 to µ = NAO − 1 do

Copy: BPiµνµ → bPiνµ

Trim from dense to sparse: CνpSbµν → Cνµp

bPiνµCνµp → TµPip

if C ′νp! = Cνp then

Trim from dense to sparse: C ′νpS
b
µν → C ′νµp

bPiνµCνµp → T ′µPip

else

T ′µPip = TµPip

end if

end for

Kµν = K + TµPipT
′
νPip

end for

return Kµν

Here, we used a buffer, bP iνµ , to transpose pieces ofBP iµνµ while looping over µ. Although

this algorithm may involve a strided copy and additional memory usage, the disk reads

for the BP iµνµ tensor are completely contiguous. For smaller investigations, the three-

index AO integrals can be fit completely in-core and Algorithm 10 should yield superior

performance. However, for larger systems, the strided disk reads in Algorithm 10 may

cause performance degradation to the point that Algorithm 11 will become superior.

34

Although the exchange matrix evaluation is the primary computational bottleneck, it is

important to note how the above integral formats will affect Coulomb matrix evaluations.

To build the Coulomb matrix, the sparsity mask can be applied directly to the density

matrix. The following algorithm results:

Algorithm 12 Building the J matrix.

Require: Sparse AO integrals: BP
µνµ , density matrix: Dµν , screening mask: Sbµν

Trim from dense to sparse: DµνS
b
µν → Dµνµ

BP
µνµDµνµ → T P

T PBP
µνµ → Jµνµ

Unpack from sparse to dense: Jµνµ → Jµν

return Jµν

Moreover, the corresponding disk-based implementations for theBµPνµ andBPµνµ integral

formats are listed in Algorithms 13 and 14, respectively.

35

Algorithm 13 Building the J matrix using BµPνµ , blocking across P

Require: Sparse AO integrals: BµPνµ , density matrix: Dµν , screening mask: Sbµν

for block Pi ∈ P do

Read from disk: BµPiνµ

Initialize: TPi = 0

for µ = 0 to µ = NAO − 1 do

Copy to sparse: DµνS
b
µν → dνµ

TPi = TPi +BµPiνµdνµ

end for

TPiBPiµνµ → Jµνµ

Unpack from sparse to dense: Jµνµ → J
{Pi}
µν

Jµν = Jµν + J
{Pi}
µν

end for

return Jµν

Algorithm 14 Building the J matrix using BPµνµ , blocking across P

Require: Sparse AO integrals: BPµνµ , density matrix: Dµν , screening mask: Sbµν

for block Pi ∈ P do

Read from disk: BPiµνµ

Trim from dense to sparse: DµνS
b
µν → Dµνµ

BPiµνµDµνµ → T Pi

T PiBPiµνµ → Jµνµ

Unpack from sparse to dense: Jµνµ → J
{Pi}
µν

Jµν = Jµν + J
{Pi}
µν

end for

return Jµν

Here, we have used the superscript in J{Pi}µν to indicate the contribution to Jµν correspond-

36

ing to the Pi block. Note that Algorithm 13 is likely inferior to Algorithm 14, with both

necessary loops and copies as well as non-contiguous disk reads. However, since Coulomb

matrix evaluation requires considerably less compute time than the exchange matrix eval-

uations, the time required by Algorithms 13 and 14 will be nearly trivial compared to the

exchange form. Moreover, note that the disk reads in Algorithms 10 and 13 as well as in

Algorithms 11 and 14 will be occurring simultaneously. The J andK computational kernel

will generally take this form:

Algorithm 15 Coulomb and exchange matrix evaluation kernel.

Require: Sparse AO integrals: BP
µνµ , density matrix: Dµν , orbital matrices: Cµp, C

′
νp,

screening mask: Sbµν

Initialize temps.

for block Pi ∈ P do

Read from disk: BPi
µνµ

Jµν = Jµν + ComputeJ(BPi
µνµ , Sbµν , Dµν)

Kµν = Kµν + ComputeK(BPi
µνµ , Sbµν , Cµp, C ′νp)

end for

return Jµν , Kµν

An implementation of this kernel will involve using the BµPνµ integral form with Algo-

rithms 10 and 13 or the BµPνµ integral form with Algorithms 11 and 14. In the next

section, we discuss the performance of these choices in practice.

4.2 Results

All methods were implemented in the PSI4 electronic structure software package [13]. The

parallelism in PSI4 relies on the shared memory programming model using OpenMP and

carries out matrix multiplications using Intel’s Math Kernel Library. Currently, the state of

the art for exchange matrix evaluations in PSI4 is Algorithm 11. However, we conjecture

37

that Algorithm 10 could provide considerable speedups as it eliminates entirely a strided,

level 1 BLAS copy.

4.2.1 Multi-core Results

First, we reveal the performance of the above algorithms on multi-core processors. We

implemented Algorithms 10 and 13 and incorporated them into a development version

of PSI4. Then, we used PSI4’s Self-Consistent Field procedure to produce energies for

various systems and basis set combinations. The systems used involved a protein-drug

complex, where the drug molecule is omitted and the atoms of the protein are added in a

series according to distance from the center of the drug molecule.

The experiments were carried out on two separate architectures. The first includes

one node consisting of an Intel Core i7-5930K processor (6 cores at 3.50GHz) and 64GB

DRAM. The results for this architecture are included in Table 4.1. The second architecture

includes one node consisting of two Intel Xeon E5-2640 processors and 256GB DRAM.

The results for this architecture are included in Table 4.2.

38

Table 4.1: Total execution times for Self-Consistent Field procedures for various systems
using Algorithms 10 and 11 and Algorithms 13 and 14 for exchange and Coulomb matrix
evaluations, respectively. Total wall times include wall time for the entire program to ex-
ecute. J and K compute time indicates the total time spent in the Coulomb and exchange
matrix evaluation kernels, respectively. System descriptions including number of AO basis
functions, NAO, number of auxiliary basis functions, Naux, basis, and number of atoms,
Nat., are included. All rows are sorted by the product NauxNAO. A speedup column is
included for total wall time and is calculated as the total procedure time spent using Al-
gorithms 11 and 14 dived by the total procedure time spent using Algorithms 10 and 13.
The experiments were carried out using one node consisting of an Intel Core i7-5930K
processor (6 cores at 3.50GHz) and 64GB DRAM

Total Wall Time J Compute Time K Compute Time
NAO Naux Basis Nat. 10 & 13 11 & 14 spdup Alg. 14 Alg. 13 Alg. 10 Alg. 11
147 721 DZ 15 3.8 4.7 1.2 0.1 0.0 0.5 0.6
247 912 aDZ 15 5.8 7.7 1.3 0.2 0.1 1.4 2.1
338 842 TZ 15 7.5 9.9 1.3 0.2 0.2 2.3 3.3
294 1442 DZ 30 12.4 18.1 1.5 0.3 0.3 5.6 7.1
529 1154 aTZ 15 18.7 29.9 1.6 0.8 0.8 7.4 13.1
375 1837 DZ 39 25.4 36.8 1.4 0.5 0.5 13.3 16.6
650 1205 QZ 15 24.7 43.8 1.8 1.2 1.1 11.1 19.3
494 1824 aDZ 30 35.3 54.8 1.6 1.0 0.9 18.1 25.7
676 1684 TZ 30 46.0 74.7 1.6 1.2 1.2 28.2 38.6
522 2558 DZ 54 72.3 109.2 1.5 1.1 0.9 48.8 56.8
631 2328 aDZ 39 81.5 132.9 1.6 2.1 2.0 46.8 65.1
603 2953 DZ 63 117.2 166.9 1.4 1.3 1.1 83.2 92.4
866 2150 TZ 39 109.3 176.6 1.6 2.5 2.4 74.7 97.6
1058 2308 aTZ 30 145.5 278.9 1.9 4.6 4.7 91.0 138.6
756 3696 DZ 81 231.3 328.3 1.4 1.8 1.6 176.3 190.9
878 3240 aDZ 54 232.0 394.4 1.7 4.6 4.4 161.9 206.3
1300 2410 QZ 30 218.0 376.1 1.7 5.6 5.8 148.7 198.3
1204 2992 TZ 54 332.5 504.1 1.5 4.9 4.7 256.8 302.4
1015 3744 aDZ 63 403.1 640.8 1.6 6.3 6.1 305.2 361.9
1357 2954 aTZ 39 385.9 726.9 1.9 10.5 12.3 259.2 376.6
974 4766 DZ 103 629.3 845.3 1.3 3.6 3.2 520.0 549.7
1394 3458 TZ 63 601.7 850.5 1.4 6.6 6.2 492.8 551.2
1670 3089 QZ 39 1153.5† 933.4 0.8 12.8† 13.2 395.5† 504.7
1275 4698 aDZ 81 898.9 1379.0 1.5 10.6 10.7 711.5 813.2
1758 4341 TZ 81 1372.3 1839.0 1.3 10.2 9.8 1176.8 1269.1
1886 4108 aTZ 54 3811.0† 2164.0 0.6 25.8† 26.2 931.2† 1183.4
1641 6050 aDZ 103 4406.9† 3528.3 0.8 23.9† 24.6 1958.4† 2161.9
2320 4294 QZ 54 4280.4† 2741.3 0.6 26.3† 25.0 1377.2† 1611.1
2185 4754 aTZ 63 5744.9† 4594.0† 0.8 37.3† 37.0† 1727.3† 2063.1†

2258 5589 TZ 103 5474.8† 4710.6 0.9 23.5† 20.2 3228.0† 3381.7
2690 4973 QZ 63 6892.9† 4581.9 0.7 39.5† 33.7 2598.4† 2893.4
2760 5988 aTZ 81 11294.6† 9350.0† 0.8 64.6† 63.4† 4003.6† 4669.9†

3405 6276 QZ 81 14075.7† 11354.3† 0.8 70.6† 54.7† 6318.9† 6829.2†

3542 7696 aTZ 103 28136.3† 23132.6† 0.8 144.4† 124.7† 11201.2† 12464.4†

† Indicates a disk-based implementation was used.

39

Table 4.2: Total execution times for Self-Consistent Field procedures for various systems
using Algorithms 10 and 11 and Algorithms 13 and 14 for exchange and Coulomb matrix
evaluations, respectively. Total wall times include wall time for the entire program to ex-
ecute. J and K compute time indicates the total time spent in the Coulomb and exchange
matrix evaluation kernels, respectively. System descriptions including number of AO basis
functions, NAO, number of auxiliary basis functions, Naux, basis, and number of atoms,
Nat., are included. All rows are sorted by the product NauxNAO. A speedup column is
included for total wall time and is calculated as the total procedure time spent using Al-
gorithms 11 and 14 dived by the total procedure time spent using Algorithms 10 and 13.
The experiments were carried out using one node consisting of two Intel Xeon E5-2640
processors (10 cores at 2.40GHz) and 256GB DRAM.

Total Wall Time J Compute Time K Compute Time
NAO Naux Basis Nat. 10 & 13 11 & 14 spdup Alg. 13 Alg. 14 Alg. 10 Alg. 11
147 721 DZ 15 2.9 3.4 1.2 0.1 0.0 0.1 0.2
247 912 aDZ 15 3.8 5.2 1.4 0.2 0.2 0.4 0.7
338 842 TZ 15 5.0 6.5 1.3 0.2 0.3 0.6 1.1
294 1442 DZ 30 7.5 9.4 1.3 0.2 0.2 1.1 1.6
529 1154 aTZ 15 8.8 13.4 1.5 0.7 0.9 1.7 3.7
375 1837 DZ 39 10.5 17.7 1.7 0.4 0.5 2.5 4.1
650 1205 QZ 15 11.4 18.7 1.6 0.9 1.1 2.2 4.7
494 1824 aDZ 30 14.7 22.9 1.6 0.8 1.1 3.6 6.5
676 1684 TZ 30 17.3 30.6 1.8 1.2 1.3 5.1 8.4
522 2558 DZ 54 21.8 39.3 1.8 0.9 1.0 7.4 10.6
631 2328 aDZ 39 27.2 50.2 1.8 1.8 2.2 8.3 16.4
962 1668 aQZ 15 27.2 45.5 1.7 2.8 3.6 6.6 15.9
603 2953 DZ 63 29.1 57.0 2.0 1.1 1.2 11.4 16.2
866 2150 TZ 39 34.5 60.5 1.8 2.0 2.6 11.0 19.6
1058 2308 aTZ 30 45.5 86.8 1.9 3.8 5.2 15.6 34.2
756 3696 DZ 81 50.4 102.6 2.0 1.6 1.8 23.1 30.5
878 3240 aDZ 54 62.4 119.8 1.9 3.6 5.0 25.0 45.7
1300 2410 QZ 30 58.4 105.1 1.8 4.4 5.8 20.6 40.1
1204 2992 TZ 54 71.0 133.6 1.9 3.8 5.0 32.8 51.4
1015 3744 aDZ 63 88.0 169.5 1.9 4.6 5.9 38.1 64.0
1357 2954 aTZ 39 96.2 181.1 1.9 7.7 11.4 36.8 81.7
974 4766 DZ 103 112.8 226.0 2.0 3.3 3.4 60.1 78.2
1394 3458 TZ 63 103.2 217.8 2.1 4.4 6.1 50.9 75.9
1670 3089 QZ 39 119.9 221.4 1.8 7.8 12.3 50.0 96.9
1275 4698 aDZ 81 175.7 345.9 2.0 7.6 11.1 86.3 135.9
1924 3336 aQZ 30 184.9 346.0 1.9 14.5 25.0 67.4 154.0
1758 4341 TZ 81 207.3 386.2 1.9 7.2 10.0 122.3 164.5
1886 4108 aTZ 54 262.0 471.2 1.8 14.7 25.8 117.9 221.8
1641 6050 aDZ 103 416.8 798.6 1.9 13.8 23.3 231.3 352.0
2320 4294 QZ 54 328.4 646.8 2.0 18.9 26.2 173.0 273.0
2185 4754 aTZ 63 399.4 704.1 1.8 23.4 33.2 195.4 322.9
2474 4284 aQZ 39 481.1 814.1 1.7 35.4 50.0 171.6 395.6
2258 5589 TZ 103 495.3 884.8 1.8 15.1 18.8 329.3 420.6
2690 4973 QZ 63 495.4 837.5 1.7 22.0 30.8 265.5 389.7
3405 6276 QZ 81 1042.8 1713.8 1.6 42.9 42.0 598.9 814.3

† Indicates a disk-based implementation was used.

40

Note that the † symbol is used to indicate when a disk-based implementation is required.

For Algorithm 11, it is possible to store up to half of the AO function pairs by applying

permutational symmetry. The necessary copy, BPiµνµ → bPiνµ , allows for this. Doing so

effectively halves the memory requirement for Algorithm 11 with respect to Algorithm 10.

For this reason, Algorithm 10 is forced to resort to a disk-based implementation sooner

than Algorithm 11.

The results in Table 4.1 and Table 4.2 confirm our analysis of Algorithms 10 and 11. For

small enough investigations, procedures using Algorithm 10 will always be more efficient.

Total time spent in the exchange matrix evaluation kernel is always smaller for Algorithm

10. Moreover, the speedups obtained on the two-processor architecture (Table 4.2) are

larger than what was obtained on the one-processor architecture (Table 4.1). This result

reveals the importance of memory locality and data movement on non-uniform memory

access (NUMA) architectures. Algorithm 11 requires a strided level 1 BLAS operation and

this additional data movement especially hinders performance on NUMA architectures.

Only when the procedures switch to a disk-based implementation do strided reads of the

BµPνµ tensor result in a performance switch when using the two integral memory layouts.

Moreover, since the scaling of the Coulomb matrix evaluation is an entire factor smaller

than the exchange matrix evaluation, its required time is almost trivial overall.

Lastly, note that the total time spent in the J andK evaluations does not entirely account

for the differences in performance. The remaining difference involves the computation of

BP
µνµ , which with a metric contraction scaling as O(N2

auxN
2
AO), can be the most expensive

operation of an SCF procedure. Even though Algorithm 10 does not apply permutational

symmetry, it can be more efficient for this operation as both the contractions and disk writes

are contiguous.

41

4.2.2 Manycore Results

Here we examine the performance of the above algorithms on Intel’s Knights Landing

manycore processor. We implemented Algorithms 10 and 13 and incorporated them into

a development version of PSI4. Then, we used PSI4’s Self-Consistent Field procedure to

produce energies for the system in Figure 3.1 using the cc-pVTZ basis set. The experiments

were carried out using one node consisting of one Knights Landing processor. Procedures

were repeated using varying numbers of cores. Tables 4.3 and 4.4 include total procedure

times and exchange matrix evaluation times, respectively.

Table 4.3: Total procedure execution times for a Self-Consistent Field procedure using
both Algorithms 10 and 13 and Algorithms 11 and 14 for exchange and Coloumb matrix
evaluations, respectively. The programs were executed on one Knights Landing processor
using a development version of PSI4. A relative speedup is listed.

Cores 10 & 13 11 & 14 Speedup

1 3881.67 8828.52 2.3

2 2278.7 4833.24 2.1

4 1289.95 2454.99 1.9

8 703.25 1290.01 1.8

16 421.24 735.1 1.7

32 302.46 507.31 1.7

64 280.56 467.03 1.7

42

Table 4.4: Total exchange matrix evaluation times within an Self-Consistent Field pro-
cedure using both Algorithms 10 and 11. The programs were executed on one Knights
Landing processor using a development version of PSI4. A relative speedup is listed.

Cores Alg. 10 Alg. 11 Speedup

1 1695.519 4217.851 2.5

2 979.497 2368.849 2.4

4 477.094 1159.278 2.4

8 242.393 572.458 2.4

16 125.677 291.958 2.3

32 73.627 188.214 2.6

64 64.841 180.905 2.8

Again, Algorithm 10 is shown to be superior to Algorithm 11 for in-core procedures.

Tables 4.3 and 4.4 reveal the most substantial speedups yet, which can be attributed to the

increased NUMA issues for Algorithm 11 on the Knights Landing processor. Moreover, the

parallel scaling of Algorithm 10 is superior to Algorithm 11. However, the implementation

using Algorithms 10 and 13 is shown to scale worse overall.

43

CHAPTER 5

CONCLUSIONS

The work in this thesis sought to optimize the computational kernels within the density fit-

ting technique in quantum chemistry. Chapter 2 introduced the use of the Schwarz sparsity

screening method for integral computations, metric contractions, and integral transforma-

tions. The corresponding implementation and comparison against a non-screening ver-

sion revealed the drastic importance of utilizing sparsity in quantum chemistry. Although

the speedups obtained are considerable, future work should investigate tighter screening

techniques involving the spatial sparsity between auxiliary functions. Chapter 3 detailed

various optimizations for the integral transformations kernel. First, we identified an ideal

sparse memory layout to optimize the parallel scalability and revealed its efficacy on multi-

core processors. Then, we performed an analysis of the Direct and Store workflows and

revealed its applications in practice, showing that the Direct workflow is superior in the

context of DFMP2 whereas the Store workflow is superior in the context of DFMCSCF.

For future work, we recommend that this analysis be applied further to other contexts, such

as SAPT. In chapter 4 we discussed two sparse memory layouts, BPµνµ and BµPνµ , and

their corresponding evaluation algorithms. Importantly, we showed that procedures using

Algorithm 10 will always outperform Algorithm 11 if the implementation is entirely in-

core. If memory is too constrained and a disk-based implementation is necessary, then

procedures using Algorithm 11 will become faster as it yields more ideal disk operations.

The crossover in performance between the two algorithms was revealed via an extensive

investigation on multi-core and manycore processors across various systems and basis sets.

For future work, we recommend investigating optimizations of the disk reads in Algorithm

10. For example, it may be possible to avoid the strided disk reads in Algorithm 10 and 13

if the tensor blocks are preemptively known and stored in separate files.

44

REFERENCES

[1] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry. Dover Publications, Inc.,
1988.

[2] J. L. Whitten, “Coulombic potential-energy integrals and approximations,” J. Chem.
Phys., vol. 58, pp. 4496–4501, 1973.

[3] B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, “Applicability of LCAO-X-alpha
methods to molecules containing transition-metal atoms - nickel atom and nickel
hydride,” Int. J. Quantum Chem. Symp., vol. 11, p. 81, 1977.

[4] B. I. Dunlap, J. D. Connolly, and J. R. Sabin, “On some approximations in applica-
tions of Xα theory,” J. Chem. Phys., vol. 71, pp. 3396–3402, 1979.

[5] B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, “On first-row diatomic molecules
and local density models,” J. Chem. Phys., vol. 71, pp. 4993–4999, 1979.

[6] R. A. Kendall and H. A. Fruchtl, “The impact of the resolution of the identity approx-
imate integral method on modern ab initio algorithm development,” Theor. Chem.
Acc., vol. 97, pp. 158–163, 1997.

[7] C. D. Sherrill, “Frontiers in electronic structure theory,” J. Chem. Phys., vol. 132,
p. 110 902, 2010.

[8] M. Feyereisen, G. Fitzgerald, and A. Komornicki, “Use of approximate integrals in
ab initio theory. an application in mp2 calculations,” Chem. Phys. Lett., vol. 208,
pp. 359–363, 1993.

[9] F. Weigend, “A fully direct ri-hf algorithm: Implementation, optimized auxiliary
basis sets, demonstration of accuracy and efficiency,” Phys. Chem. Chem. Phys.,
vol. 4, pp. 4285–4291, 2002.

[10] D. E. Bernholdt and R. J. Harrison, “Large-scale correlated electronic structure cal-
culations: The ri-mp2 method on parallel computers,” Chem. Phys. Lett., vol. 250,
pp. 477–484, 1996.

[11] H.-J. Werner, F. R. Manby, and P. J. Knowles, “Fast linear scaling second-order
Møller-Plesset perturbation theory (MP2) using local and density fitting approxima-
tions,” J. Chem. Phys., vol. 118, no. 18, pp. 8149–8160, 2003.

45

[12] A. E. DePrince and C. D. Sherrill, “Accuracy and efficiency of coupled-cluster the-
ory using density fitting/cholesky decomposition, frozen natural orbitals, and a t1-
transformed hamiltonian,” J. Chem. Theory Comput., vol. 9, pp. 2687–2696, 2013.

[13] R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E.
G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F.
Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P.
Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A.
Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill, “Psi4 1.1: An open-
source electronic structure program emphasizing automation, advanced libraries, and
interoperability,” J. Chem. Theory Comput., vol. 13, pp. 3185–3197, 2017.

[14] M. Katouda and T. Nakajima, “MPI/OpenMP hybrid parallel algorithm of resolution
of identity second-order Møller-Plesset perturbation calculation for massively par-
allel multicore supercomputers,” J. Chem. Theory Comput., vol. 9, pp. 5373–5380,
2013.

[15] E. G. Hohenstein, N. Luehr, I. S. Ufimtsev, and T. J. Martı́nez, “An atomic orbital-
based formulation of the complete active space self-consistent field method on graph-
ical processing units,” J. Chem. Phys., vol. 142, p. 224 103, 2015.

[16] J. F. Gonthier and C. D. Sherrill, “Density-fitted open-shell symmetry-adapted per-
turbation theory and application to π-stacking in benzene dimer cation and ionized
DNA base pair steps,” J. Chem. Phys., vol. 145, p. 134 106, 2016.

[17] R. M. Parrish, T. M. Parker, and C. D. Sherrill, “Chemical assignment of symmetry-
adapted perturbation theory interaction energy components: The functional-group
sapt partition,” J. Chem. Theory Comput., vol. 10, pp. 4417–4431, 2014.

[18] K. Lee, D. L. Silverio, S. Torker, D. W. Robbins, F. Haeffner, F. W. van der Mei,
and A. H. Hoveyda, “Catalytic enantioselective addition of organoboron reagents
to fluoroketones controlled by electrostatic interactions,” Nat Chem, vol. 8, no. 8,
pp. 768–777, 2016, Article.

46

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Utilizing Spatial Sparsity
	Sparsity Masks
	Integral Construction
	Integral Transformation
	Results

	Optimizing Integral Transformations
	A Note on Disk-bound Index Blocking
	Memory Layout for Sparsity-utilized Transformations
	Context Dependent Workflows
	Intermediate Recycling
	Results
	Parallel Scaling of Transformations
	Performance Crossover Through Number of Transformations
	Superior Workflows in Practice

	Evaluating Coulomb and Exchange Matrices
	Coulomb and Exchange Evaluations
	Results
	Multi-core Results
	Manycore Results

	Conclusions
	References

