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CHAPTER I

FLOATING-GATE DEVICES AND THE SYSTEM

Over recent decades, there have been notable advances in Field-Programmable Ana-

log Arrays (FPAAs) using Floating-Gate (FG) devices. Research on FG devices has

shown the capability of low-power analog computation and the possibility of neuro-

morphic applications, as well as modern FG FPAAs have increased the programming

parameter density and the arrays’ scale. However, users who design system-level ap-

plications do not have a solid design environment yet, compared to digital systems

(e.g., FPGAs). Therefore, to empower a wider community for analog-digital mixed

system designers, it is essential to establish a user friendly and extensible platform

on both hardware and software.

The purpose of this research is to create a low-power mixed-signal system design

environment using FG FPAAs. To achieve this, my research focused on implementing

a compact hardware, developing algorithms and tools, and establishing a solid cali-

bration flow. The first phase, implementing a compact hardware, involved developing

FG SoC FPAAs including an FG programming infrastructure and built-in self test

circuits, as well as designing smaller test boards to enable IoT embedded applica-

tions. Secondly, FG FPAA systems need to provide interfacing tools for application

designers. This required a synthesis toolset generating a switch list from the user’s

design and an FG programming algorithm compatible with the SoC FPAAs. Lastly,

a solid calibration flow solved the variation problem of each IC, which has been an

issue in typical analog system designs. By coordinating the development of these

three phases, it has been enabled to provide a powerful low-power system design en-

vironment, where system engineers consider analog circuits as black boxes, so they

1



can enjoy the design and implementation of higher level applications, as if they are

designing digital systems.
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CHAPTER II

SCALING OF FG DEVICES

Floating-Gate (FG) transistors, which have gates entirely surrounded by electrical in-

sulator, have been playing an important role in digital computations as a non-volatile

memory storage since it was originally reported in 1967 [1]. Flash memories, a class

of Electrically Erasable ROMs (EEPROMs) using FG transistors, have established

themselves in digital storage products such as memory cards, USB flash drives, and

Solid-State Drives (SSD). To increase the performance and reduce the price of flash

memories, recent research has been focusing on scaling down the size of the FG de-

vice [2], storing multiple bits information in a single FG transistor [3], and stacking

layers to a vertical direction [4].

Current EEPROM devices already store 4 bits (16 levels) in a single transistor

of 100nm x 100nm area in 32nm process [3, 5]. A good overview of EEPROM /

Flash history was presented at ISSCC2012 [6]. Recent data on EEPROM devices

shows commercially announced devices at 15nm (Hynix, IEDM) and 19nm (Toshiba

/ ScanDisk [7, 8] and Samsung [9]) as well as production of 32nm devices. From the

current EEPROM progress, such devices are expected to migrate to 7nm and 11nm

technology nodes; therefore the risk that the industry will not commercially produce

a 10nm floating-gate device is very low.

The FG transistors have also been essential in analog and mixed mode com-

putation, since the FG method was used for Field-Programmable Analog Array

(FPAA) [10] [11] systems. FG devices provide programmability enabling the tuning

of parameters/variables and mismatch compensation of transistors as well as recon-

figurability enabling changes of topology, program, and data flow. These advantages

3



Figure 1: Scaling of Floating-Gate FG devices. (a) The question of scaling these devices to more
modern processes (e.g. 130nm, 45nm CMOS). (b) Frequency response of FPAA architectures as a
function of minimum channel length. The results come from FPAA architecture modeling, CMOS
process modeling, and experimental data where available (350nm, 130nm, 40nm).

help system designers to reduce their time and efforts for the hardware development,

where a typical design cycle requires a long time of process including circuit design,

fabrication, packaging, and test platform design. It also helps designers to focus on

higher level of applications such as always-ON contextaware processors, acoustics,

vision, and robotics.

This chapter discusses scaling of Floating-Gate (FG) devices, and the resulting

implication to larger systems, such as large-scale Field Programmable Analog Arrays

(FPAA). Figure 1 shows our high level figure, connecting the properties of FG circuits

and systems in one technology (e.g. 350nm CMOS), and predicting the behavior and

advantages in smaller technologies. FG devices have been essential in demonstrating

programmable and configurable analog and mixed mode computation, although typ-

ically at processes like 350nm CMOS. The question of scaling these devices to more

modern processes (e.g. 130nm, 40nm CMOS), typical of other system ICs (e.g. FP-

GAs) remains, even though EEPROMs have moved to smaller and smaller linewidths(

< 20nm gate length), and continued growth expected.
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Figure 1 shows an important win of scaling FG devices is higher frequency re-

sponse, say through an FPAA fabric, and often lower power consumption due to

lower parasitic capacitances. Scaling of Floating-Gate (FG) devices is a key issue

when working to improve the density as well as raising the density of FG based mem-

ories, computing in memory systems, and FPAA. For example, how will an FPAA’s

operating frequency improve as the IC technology process is scaled down. Figure 1b

shows a modeling summary of the capability in frequency of a particular FPAA de-

vice architecture as a function of process geometry used. Although the initial FPAA

devices, built in 350nm process, have achieved frequencies in the 50-100MHz range

(i.e. [12]), scaled FPAA devices should enable significantly higher frequencies, en-

abling RF type signals at 40nm and smaller IC processes. Therefore the potential of

scaled down devices, and the resulting computation, from a 350nm process down to a

40nm process requires investigating both experimentally and analytically the effects

of a 40nm process.

2.1 350nm FG Devices as Baseline for Scaling Performance

This section addresses what is needed for a functional FG device, typical of a wide

range of circuit applications [12–14], as well as how these processes are characterized.

Figure 2 shows the fundamental plots to characterize the resulting FG devices, en-

abling an automated FG algorithm [15]. Figure 2a shows that the current-voltage

relationship is programmed through stored FG charge, resulting in a programmable

weighting factor (i.e. subthreshold) and/or a programmable threshold voltage (VT0,

i.e. above-threshold). Although one has a capacitive divider, we have typical current-

voltage relationships for a single curve. Changing the FG charge moves to a different

curve, either increasing it by electron tunneling, or decreasing it by hot-electron in-

jection. The resulting charge results in a voltage change on the FG node by the total

capacitance at the FG node, or CT , the sum of all capacitances at the FG node. A

5



Figure 2: Fundamental measured data on FG devices fabricated in a 350nm commercially available
CMOS process. (a) Channel Current vs. Gate Voltage: A FG pFET transistor has a similar
behavior to a pFET device, but with a different effective value for the subthreshold slope (UT /κ).
(b) Tunneling Current vs. Gate and Tunneling Voltage: Electron-tunneling erases our FG
devices; therefore, tunneling characterization finds the right applied erasing voltage, Vtun, and the
corresponding time required for erasing a device or an array. (c) Injection Current vs. Time:
Channel current measurement sequence (S curve) showing effect of successive fixed-drain pulse in-
jection, for multiple drain voltages. Started at a low current (≈ 100pA), the hot-electron injection
FG current increases the channel current to a nearly converged current of ≈ 100µA. (d) Change in
Injection Current vs. Injection Current: The change in the measured channel current versus
channel current from S curve measurements. This data representation enables characterization of
the exponential dependance on drain voltage (Vinj) on the change in channel current.

FG pFET transistor has a similar behavior to a pFET device, but with a different

effective value for the subthreshold slope (UT/κ for a typical FET device, where κ is

the capacitive voltage divider between gate and surface potential, and UT is the ther-

mal voltage (kT / q) ) due to the capacitive divider, the incoming (gate) capacitance

and (CT ), and a programmable flatband voltage that can move the curve throughout

6



the voltage range.

Because of the high quality gate insulators, the FG charge, once programmed, will

remain roughly unchanged months and years later (at the same temperature) (e.g.

[13,14]). We expect a typical FG device to change 1-100µV at room temperature over

a 10 year device lifetime as characterized by accelerated temperature measurements

for this 350nm CMOS process [14]. Long-term charge loss in floating-gate transistors

occurs due to the phenomenon of thermionic emission, classically described by the

simple model [16–19]

Q(t) = Q(0) exp
(
−ve−qφb/UT t

)
(1)

where Q(0) is the initial charge on the floating-gate, Q(t) is the floating-gate charge

at time t, v is the relaxation frequency of electrons in polysilicon, and qφb is the

effective Si-insulator barrier potential (Volts). In [13] it has been shown that this

model over-estimates the charge loss and that it does not follow such a simple curve,

but a classical starting point.

Figure 2b shows characterization of electron tunneling for a FG pFET in this

350nm CMOS process. Electron tunneling adds charge at the floating gate [20, 21].

Tunneling current increases the resulting FG voltage, decreasing the resulting current

measured from a pFET device connected to this FG [20]. The tunneling line sets the

tunneling voltage (Vtun) controlling the tunneling current; thus we can increase the

floating-gate charge by raising the tunneling line voltage. Tunneling arises from the

fact that an electron wavefunction has finite spatial extent [22,23]. For a thin enough

barrier, this spatial extent is sufficient for an electron to pass through the barrier.

Tunneling current depends on the exponential of a term proportional to the thickness

and proportional to the square-root of barrier energy (Ebarrier); the classic expression

for tunneling through a square barrier [22–24]

Itun = Itun0 exp

(
−2
√

2m∗

~
√
Ebarriert1

)
, (2)
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where t1 is the insulator thickness, m∗ is the effective mass of an electron, and Itun0 is

an experimentally determined constant for the particular insulator. An electric field

across the insulator, created by the voltage difference, reduces the thickness of the

barrier to the electrons on the floating gate, allowing some electrons to move through

the oxide. Fowler-Nordheim tunneling, or tunneling through a triangle barrier, models

electron tunneling current as [22]

Itun = Itun0 exp

(
−4
√

2m∗

3~
E

3/2
barrier

qE

)
= Itun0 exp

(
− Vo
Vtun − Vfg

)
(3)

where q is the charge of an electron, and E is the electric field in the insulator,

Et1 = Vtun − Vfg, and Vo = 4
√

2m∗

3q~ E
3/2
barriert1, typicaly an experimentally measured

parameter. Note that we can relate the pFET voltages as Vtun − Vfg = Vtun − Vdd +

VT0 + (Vdd − Vfg − VT0).

Figure 2c shows measurement for hot-electron injection sweeping through current

for an FG pFET in this 350nm CMOS process. Hot-electron injection enables pro-

gramming FG devices by decreasing the FG voltage to the particular target location.

Our approach for hot-electron injection is based around fundamental physics [25], as

well as fundamental FG device and circuit innovations using transistors operating

with subthreshold or near subthreshold bias currents [26]. The fundamental model

for hot-electron injection current (Iinj) is [25]

Iinj = Ise
f(Vfg ,Φdc), (4)

where Is is the channel current, Vfg is the floating-gate voltage, and Φdc is the drain-

to-channel potential for the pFET device; we often use a linearized exponential func-

tion for injection current

Iinj ≈ Iinj0

(
Is
Is0

)
eΦdc/Vinj (5)

where Vinj represents the one parameter for this linearization. The exponential depen-

dance of drain voltage on injection current will be utilized to enable a wide dynamic

8



range of programming step sizes with linearly-scaled, lower-precision gate and drain

voltages.

Figure 2c shows the characteristic positive feedback process for subthreshold chan-

nel currents, and the eventually saturating behavior for above-threshold channel cur-

rents, which we designate as an S curve for hot-electron injection given the shape of

the response [15,26]. For a starting drain current, injection decreases the FG voltage,

increasing the drain current, further decreasing the FG voltage [21]. The process

slows down as the current moves to above-threshold operation (defined as signifi-

cantly greater than threshold current, or Ith) because as the FG voltage decreases,

the increased drain current decreases the drain-to-channel voltage available for injec-

tion due to additional voltage drop across the channel [26]. Eventually, the resulting

injection current slows down, resulting in minimal change in FG voltage.

Figure 2d shows that we can get more information by extracting measured current

changes as a result of injection, the values required in FG programming algorithms.

From these S curves, we can find the change in current as a function of current, which

yields a straight line for subthreshold currents [15]. From these curves, one can, for

fixed current levels, curve fit to extract out the value of Vinj for that device at that

particular bias condition.

2.2 Scaling of FG devices

The following sections illustrate measured data for characterized FG devices fabri-

cated in 130nm and 40nm CMOS processes as carefully chosen representative pro-

cesses to show the impact of device scaling. The FG device uses a thicker insulator

MOSFET, available starting in 350nm CMOS processes. Thicker oxide or effective

insulator enable long (i.e. 10 year) charge storage lifetimes.

Figure 3a shows scaled pictures of different transistor sizes; the thicker insulator

device for 45nm process, although having a gate similar to a 250nm process enabling

9



Figure 3: FG MOSFET device structure. (a) Multiple picture of the resulting FG devices and
how to look at larger insulators but with smaller parasitics. A typical 250nm device, a typical 45nm
device, as well as a thicker insulator 45nm device are shown. (b) Single-poly cross-section typical
for FG devices, as used for 130nm and 45nm measurements. Practical devices often have additional
process-dependent modifications.

long-term storage, has drain-source parasitic capacitance similar to a 45nm process.

Minimizing these parasitics is critical for frequency performance for any implementa-

tion, as well as important for keeping routing fabric as small as possible. Decreasing

the entire size to a typical 45nm device with a thicker insulator, typical of EEPROM

type devices is possible.

Figure 3b shows the top level (e.g. layout) generic view of a single-poly FG device.

Practical devices have additional improvements; some are process dependent (and

therefore covered by NDA). This core structure, as shown, is used in every FG test

structure since it characterizes baseline performance of these devices, starting from

its initial introduction [27]. The structure is similar to the double-poly structure

10



Figure 4: Moving FG devices from 350nm to smaller line width processes with SiO2 gate insulator;
this example shows data from a 130nm CMOS process. FG devices are built from the larger insulator
thickness, available in all processes smaller than 350nm CMOS; the smaller insulator thickness allows
significant tunneling current even with no voltage across the insulator. Top Right: Typical FG
channel current versus gate voltage (coupling capacitively to the FG voltage), with the typical sub
threshold and above-threshold regions, effective κ from the input capacitor coupling, and resulting
threshold voltage (VT0 = 0.226V ) and threshold current (Ith). Bottom Left: Typical tunneling
current measured from two identical FG devices with extracted parameters. Bottom Right: Typical
injection current measured from a single FG device by continuous pulsing. The drain coupling for
these devices creates significant current increases due to pulsing, shifting injection towards above
threshold behavior for sub threshold currents.

shown in Fig. 2 of [13]. These devices do not put the gate coupling directly above the

gate electrode, as in EEPROM devices, but rather the gate is brought out for analog

control of the resulting device. One should never have contacts to the gate electrode;

contacts can significantly increase the resulting gate leakage.
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2.2.1 130nm and 40nm FG devices measurements

Figure 4 illustrates moving FG devices from 350nm to smaller line width processes

with SiO2 gate insulator; this example shows data from a 130nm CMOS process. FG

devices are built from the larger insulator thickness, available in all processes smaller

than 350nm CMOS; the smaller insulator thickness allows significant tunneling cur-

rent even with no voltage across the insulator. The insulator thickness is typically

the size of a 350nm CMOS insulator thickness (≈ 7nm); we expect (and measure)

similar (if not better) FG charge storage seen in the 350nm processes [14]. Figure 4

shows measurements of typical channel current versus gate voltage, typical tunneling

current versus gate voltage measured through channel current, and typical injection

current versus gate voltage (measured through channel current) and drain voltage.

These measurements show typical behavior seen in 350nm devices (e.g. Fig. 2).

At 45nm / 40nm one sees a major change in the resulting MOSFET device, in that

we have a change in gate insulator from the time-tested SiO2 to HfO2 to reduce gate

leakage in the thin insulator devices. Figure 5 shows a comparison of 350nm to 40nm

FG devices, with the opportunities and changes due to a change in the gate insulator.

The first question is whether these new FG devices hold charge, at least sufficiently

long for testing our systems, and further do we get sufficiently long hold-times to

expect anything close to 10 year lifetime results. Measurements to date have shown

FG devices that hold charge over days with negligible change in the stored charge. To

understand the effect, one looks at the square barriers between the 350nm and 40nm

devices in Fig. 5. The change in insulators do enable a thicker insulator but with a

smaller barrier potential (1.4eV [28] versus 3.0eV [24]), therefore for a square barrier

we would expect lower leakage than the 350nm device. The leakage for the typical

MOSFET at 40nm, due to the larger insulator is lower than the leakage for a 90nm

/ 130nm device. The FG device uses a thicker insulator to enable long(i.e. 10 year)

charge storage lifetimes; this insulator thickness results in leakage levels expected in
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Figure 5: Illustration comparing a 350nm FG FET and a 40nm FG FET. We compare the typical
device used for a 350nm FET device versus a thicker insulator available 40nm FET device that could
enable long-term lifetimes for FG devices. The key change in MOSFET topology at 40nm/45nm is
the use of HfO2 instead of SiO2. The higher ε of HfO2 (25) enables a much thicker material while
enabling increased coupling capacitance into the MOSFET surface potential (Ψ). The change in
insulators do enable a thicker insulator but with a smaller barrier potential (1.4eV versus 3.0eV),
therefore for a square barrier we would expect lower leakage than the 350nm device. From experi-
mentally built FG devices in 40nm IC process, we can measure the channel current for gate sweeps
and drain sweeps, enabled by having a FG device that holds charge (currently tested to timescales of
days with no degradation). From the measured drain current as a result of a FG gate sweep through
the pFET subthreshold region and near threshold region, we extrapolate an effective κ of 0.373,
and a threshold current of 100nA. From the measured drain current versus swept drain voltage we
extract the resulting gsr0 of these devices that includes the effect of overlap capacitances.

a 350nm device.

Figure 6 shows the concept and measurement of electron tunneling through the

HfO2 gate insulator. In both cases, electron tunneling is described by classic Fowler-

Nordheim tunneling. The modified 40nm FG FET insulator results in higher electron

tunneling current because of the smaller barrier to Si (1.4eV) versus the classic SiO2

to Si barrier (3.0eV). In regressing the tunneling data, we can assume for the region

used that we are in a typical MOSFET region, since these are designed to handle

higher voltages. For our above-threshold current measurement versus time, we can
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Figure 6: Measured drain current from a single 40nm FG device demonstrating electron tunneling
between sweeps. (a) Comparison between 350nm and 40nm processes for electron tunneling are
rooted in looking at the resulting band-diagrams. (b) One can take several gate sweep curves with
tunneling between the curves. Tunneling occurred at 6V supplied to Vtun, with delays on the order of
a minute between curve sweeps ( further indicating reasonable holding times from the FG devices ).
Curve sweeps were taken with Vtun at 2.0V. (c) We can measure the time course of tunneling. From
the resulting current (above-threshold) current measurements, we can extract floating-gate voltage
(Vdd - Vfg - VT0), enabling characterizing tunneling current versus tunneling terminal voltages (
Vtun - Vfg ). (d) We regressed tunneling current per unit total floating-gate capacitance (CT )
versus 1 / ( Vtun - Vfg ) enabling a direct comparison of the data with the theoretical expression
for Fowler-Nordheim tunneling. We also plot a curve fit to that theoretical expression in (3).

take our model of current-voltage relationship (verified by data to be reasonable) as

I =
κ2Ith
4U2

T

(Vdd − Vfg − VT0)2 → Vdd − Vfg − VT0 =
2UT
κ

√
I

Ith
(6)

where threshold current, Ith, as 2KU2
T/κ, K = µCox(W/L), and we extracted Ith as

100nA from our data on this particular device. From these measurements of Vfg, we
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can extract tunneling by writing KCL at the FG as

CT
dVfg
dt

= Itun(Vfg) (7)

The resulting formulation allows us to take a numerical derivative to see the resulting

tunneling current, enabling the plot in Fig. 6 and resulting curve fit of (3).

Figure 7 shows the discussion for the hot-electron injection process. The lower

energy barrier between HfO2 impacts channel hot-electron injection by reducing the

barrier for electrons injecting into the insulator.

Figure 7b shows the band diagram and the three steps required for hot-electron

injection. The first step requires movement of holes through the channel region.

The second step requires movement of holes through the drain-to-channel region,

resulting in high energy carriers impact ionization, creating a source of electrons for

the conduction band. The third step requires movement of electrons back through

the drain-to-channel region, resulting in high-energy electrons that can surmount the

insulator interface. For SiO2 barriers, a wide range of the effects were limited by hole

impact ionization and we expect in these processes that the correlation will be far

stronger. We expect that we will need similar voltages for injection across processes.

Qualitatively the results are similar to hot-electron injection in larger MOS de-

vices. Figure 7 shows a typical MOSFET injection characterization to determine

parameters for FG programming [15]. Figure 7d shows an incremental increase due

to injection. Often in programming algorithms, we make use of an effective linear

difference equation(s) for early steps in reaching target value [15]. These approaches

allow using simple fixed point functions for calculating FG injection pulses to reach

an analog FG target.

Figure 8 shows a progression in efficiency between the three processes for these

approaches in terms of required applied voltages. The change in insulator, with its

change in barrier height (3.0eV to 1.4eV for HfO2), makes 40nm significantly more

efficient in FG writing capability, while still enabling 10year lifetimes. For tunneling,
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Figure 7: Initial FG hot-electron injection through measured drain current versus gate voltage
sweep from a single 40nm FG device. (a) Initial tunneling to bring the initial curve into range. We
took a gate voltage sweep that included a sharp jump in current, performed a tunneling step to
return to a similar condition, and then took another gate sweep without auto ranging, eliminating
the step in current during measurement. During the major ammeter range change at 2µA, the
drain voltage dropped for a short time to a voltage below GND, enabling enough field on this FG
device to inject, as seen by the immediate step in current resulting from an decreased level of FG
charge. (b) MOSFET band diagram for channel hot-electron injection for sub threshold currents in
a 40nm CMOS technology. (c) Measured change in measured drain current for a fixed pulse width,
T, versus starting drain current, measured before the pulse at low injection voltages. We show these
measurements for three values of — Vds —. We extract the resulting slope at a fixed current (i.e.
10nA). This slope is 1/Vinj ; Vinj = 96.7mV. (d) Measured resulting current after an injection event
versus initial measured current.

we get a smaller Vo due to the lower starting barrier; the quantity Vo ∝ t1(Ebarrier)
3/2

remains nearly constant (less than 6% change) between 350nm and 40nm devices. For

injection, we get a significantly higher injection current and sharper slope (as seen by

Vinj), as a combination of efficiency and higher substrate doping. We expect similar
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Figure 8: Comparison of measured device parameters. All three devices showed FG retention
equivalent to less than 1mV room temperature drop over 10year lifetime.

behavior scaling down to 14nm devices give the similar insulator structure.

Although scaling of tunneling physics is straight-forward, scaling of hot-electron

injection physics for these pFET devices should receive additional discussion. Hot-

electron injection in pFET devices, operating at sub threshold and near threshold cur-

rents, are influenced mostly in the increased substrate doping allowed by the stronger

insulator capacitor coupling, as well as the different Si-insulator barrier height. The

substrate doping does not increase as fast because of the doping profile used for thicker

insulator devices; when this layer is removed, one expects higher electric fields and

lower impact-ionization and hot-electron injection voltages. Impact ionization always

occurs significantly before any further device breakdown effects. We have two re-

gions to consider, the hot-hole transport and resulting impact ionization that creates

the resulting conduction band electrons, and the hot-electron transport and resulting

electron injection efficiency.

The restoring force for the electron and hole high-field transport is primarily opti-

cal phonons, where first the carrier needs to gain more energy per unit distance than

the optical phonon restoring force (ER /λ) typically requiring a starting distance

(zcrit) for an increasing potential, and then the average carrier trajectory includes

field gained energy minus this required starting energy. The resulting distribution

function around this average trajectory is a local convolution of Gaussian functions,
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the eigenfunction of a linear diffusion equation (e.g. heat equation). We have dis-

cussed these fundamental transport details elsewhere [25].

Electrons in an electric field will gain energy faster than holes in an electric field,

as characterized by their typical mean free length for an optical phonon collision

of energy ER (≈ 63meV), where electrons ( λe) are approximately 6.5nm [25], and

holes ( λh) are approximately 4.2nm [29]. Although impact ionization can occur for

an electron or hole with energy of 1.1eV, requiring carriers to exceed this barrier,

electron impact ionization is known to be an efficient process for electron energies

above 2.3eV [25,30], and hole impact ionization is known to be an efficient process for

hole energies above 3.0eV [29]. The resulting created electrons, sometimes starting

with additional energy because of the impact ionization process, begin around the

highest field region, gaining energy as they accelerate to get over the 3.0eV (Si-SiO2)

or 1.4eV (Si-HfO2) barrier.

The 3.0eV barrier level for significant hole impact ionization would be the primary

limit the hot-election injection process when using a Si-SiO2 barrier (3.0eV) given the

significant difference between λh and λe, although some functional dependance is still

possible. The 2.3eV level for hot-electron impact ionization means we will get some

significant loss of electrons before reaching the Si-SiO2 barrier (3.0eV), while we have

negligible loss of electrons before reaching the Si-HfO2 barrier (1.4eV), resulting in

significantly higher injection current. For the Si-HfO2 barrier, the electron dynamics

can almost be approximated by a constant factor, and approximation often desired

(but not physically correct) between injection and impact ionization currents.

2.2.2 FG Switch Behavior

Because we have proven that FG devices are functional throughout a wide range

of CMOS IC processes, we now transition to looking at the scaling properties of

an FG MOSFET acting as one of multiple switches say in a small crossbar array
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(e.g. [12, 21]). The operating speeds of an FPAA array is, to first order, limited by

the FG MOSFET switch. We will analyze the high frequency behavior of a switch

in an array of switches (e.g. routing fabric). For this analysis, a programmed switch

is at one of two cases, when the switch is “off” and when the switch is “on”. A

programmed FG voltage can be set at significantly higher or lower voltages than

the power supply range. Our discussions focus on nFET and pFET devices; these

dynamics are effectively interchangeable with slight changes in parameters.

For the “off” switch case, we start with the channel in accumulation. Because the

switch value can be programmed outside the power supply, a slightly positive value

(above Vdd) will guarantee the device stays in accumulation for all applied voltages

including the GHz frequencies we are considering in this discussion. In accumulation,

we have no appreciable depletion capacitance, and therefore the capacitance between

the floating-gate terminal and the substrate is the oxide (or insulator0 capacitance

(Cox W L ). The effective conductance between source and drain is effectively zero,

being the conductance of two reverse-biased diodes. Gate length has little to do with

the off case (other than total gate capacitance) in accumulation.

With the zero conductance between source and drain, any potential communica-

tion between switches must happen through capacitive coupling. The gate to source-

drain junction capacitance, Cov, is the biggest issue in terms of signal feedthrough,

which scales proportionally to other device properties. Minimizing Cov decreases

the amount of capacitive signal feedthrough feedthrough, which could be further de-

creased by opening up drain-source regions (avoiding some of the self-aligned device).

Csb and Cdb p-n capacitors connected to signal GND (actually Vdd). Therefore, the

frequency-indpendant coupling gain from source to drain voltage would be the result-

ing capacitive divider network as C2
ov / (CT Cdb), where CT is the total capacitance of

the floating-gate node. Both terms result in a coupling less than 10−3; with multiple

switches in series, this value is nearly negligible. In a switch matrix, the resulting
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Figure 9: Maximum conductance for a MOSFET device is determined by the two-dimensional
carrier behavior. The channel electron oscillates along the triangle barrier created by the insula-
tor interface and MOS capacitor depletion region as it moves from source to drain regions. This
oscillation increases the number of elastic collisions, decreasing the carrier mobility, as seen by the
conductance saturating for higher gate voltages.

load capacitance is the sum of all of the capacitors on the line, further decreasing

this effect. Further, this effect is negligible in 350nm FPAA devices at low frequen-

cies, with no significant coupling has been measured whether in characterization or

in applications.

For the “on” switch case, we are primarily concerned with the frequency response

through the particular device. The MOSFET channel is biased far above threshold

behavior, operating in the ohmic regime. The FG voltage is not constrained between

the power supply rails, allowing the transistor to its maximum conductance point,

the point for high gate voltage where the source-to-drain conductance of channel is

approximately independent of gate voltage. This maximum conductance, or Rc, is
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roughly independent on process minimum channel length, where the conductance is

set by velocity saturation of electrons / holes for the MOSFET channel. For a device

with equal width and length, the nFET saturates around 3kΩ and pFET near 6kΩ.

Figure 9 presents the discussion for this maximum conductance, where an increase

in gate voltage increases number of collisions with Si–insulator barrier while carriers

effectively move from source to drain voltage. An on MOSFET switch typically would

have a small voltage between the source (Vs) and drain (Vd) voltages, resulting in

the MOSFET modeling

I = µC1
W

l
(Vg − VT0 − Vs/κ)(Vd − Vs), Qd ≈ Qs = Cins(Vg − VT0 − Vs/κ) (8)

where µ is the carrier mobility in the channel, C1 is the insulator capacitance per

unit area (ε1/t1), κ is the capacitive divider between Cins and the total capacitance

in the channel, VT0 is the threshold voltage, W and l are the width and length of the

MOSFET device, Qs and Qd are the channel charge at the source and drain edges

of the channel region, respectively. The measurement in Fig. 9 uses Vs = 0V, Vd

= 50mV for continuously ohmic operation, while sweeping Vg over a wide voltage

range. In this setup, Vs is set to the substrate (so Vs = 0); pFET are measured down

from their substrate held at Vdd (different for each technology). One would expect a

conductance (G) that linearly increases, after VT0, with Vg, as

G =
I

Vd − Vs = 50mV
= µC1

W

l
(Vg − VT0) (9)

Figure 9 shows measured data illustrating this initial linear behavior, as well as de-

viations from it leading towards conductance saturation.

The modeling for conductance saturation investigates the change of µ with gate

voltage; other terms remain nearly constant. Figure 9 shows that although we draw

carriers (e.g. electrons) moving in a straight line path through the channel from

Vs to Vd, we have a field in the orthogonal direction (gate direction) that pulls

these carriers towards the gate region. These carriers get pulled into the Si–insulator
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barrier, elastically colliding and reversing direction towards the substrate until the

electric field of the channel brings the carriers back towards equilibrium. From (8),

the electric field at the Si-insulator barrier

insulator :
Vg − VT0

t1
,

Si edge :ESi =
εins
εSi

Vg − VT0

t1
. (10)

The electric field in Si will decrease moving into the depletion region. A constant

electric field (linear change in potential) is expected at the boundary layer right at

the Si-insulator boundary. The additional elastic collisions will decrease the resulting

carrier mobility, µ,

µ =
qτ

m∗
,

1

τ
=

1

τ0

+
1

τgateE
(11)

where τ is the mean free time due to collisions, m∗ is the carrier effective mass,

τ0 is the mean free time due to typical restoration forces in the channel, such as

acoustic phonons, elastic scattering mechanisms, as well as any effects due to some

optical phonon behavior, and τgateE is the collision component due to average elastic

collisions with the Si–insulator barrier. Transit time would be the ratio of average

distance traveled over the average velocity of carriers. The energy of the carriers

through the channel is never high, roughly at the typical kT =q UT average energy

for a fermi distribution (Energy less than Fermi level), for an average distance traveled

(due to electric field) as UT /ESi. Velocity of carriers at lower ESi is proportional to

µESi. Velocity of carriers at higher ESi approaches velocity saturation, vsat; in this

region we get

τgateE =
UT
vsat

εSi
ε1

t1
Vg − VT0

(12)

For increasing Vg, the transport progresses starting in the region with a constant

τ0, resulting in classical linear increase in conductance, to the region where τ is

decreasing due to elastic collisions, resulting in a sub linear increase in conductance,
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to the region where τ is dominated by τgateE with large ESi. In this final region, where

the conductance saturates at Gmax, the current is expressed as

I → q

m∗
τgateE

ε1
t1

W

l
(Vg − VT0)(Vd − Vs)

=
qUT
m∗

ε1
t1

εSi
ε1

t1
Vg − VT0

1

vsat

W

l
(Vg − VT0)(Vd − Vs)

=
qUT
m∗

εSi
vsat

W

l
(Vd − Vs) (13)

Gmax =
I

Vd − Vs
=
qUT εSi
m∗vsat

W

l
(14)

where Gmax is not a function of typical device parameters, except for drawn tran-

sistor width and length. Gmax is not a function of the insulator thickness. Figure 9

shows 350nm, 130nm and 40nm nFET or pFET device measurements illustrating the

conductance saturation in each case.

The other side of the question is the resulting capacitance to set the resulting

time constant. For example, we can make wider MOSFET switches, decreasing the

resulting channel resistance, but increasing the resulting capacitance found in a dense

array of FG devices. Switch capacitance is primarily due to source-drain junctions,

Csb and Cdb, as well as a small capacitance through the FET gate oxide, through the

resulting capacitive network to other potentials. We identify the resulting capacitance

as Cs. The relative size of these capacitances typically scales quadratically with

scaling of process line width.

The design of such an array must discuss whether to have the well connected to

signal GND, which would be a solid GND even for RF frequencies, or have a high-

impedance connection. A useful high-impedance to each switch requires that each

switch be placed in a separate isolated well device, as well as having a high resistance

connection to the resulting well terminal.

Therefore, for a single switch, we see minimal additional coupling effects through

the switch. We expect there will be some effect of the RC effect in the channel
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Figure 10: Manhattan FPAA architecture, including the array of computation blocks and routing,
composed of Connection ( C ) and Switch ( S ) blocks. The routing infrastructure can effectively
be modeled as a distributed RC line. The lowest figure shows a typical routing fabric assuming a
single routing of C and S block switches, where Cc is the connection capacitance including the C
block lines, Rc is the C block switch resistance, and Rs is the unbuffered S block switch resistance.
m = typical number of switches needed for a connection.

(usually modeled by a resistor and inductor ) of course, around fT (max) due to

maximum conductance. The low frequency modeling directly applies to our modeling

approaches.

2.2.3 Routing Capacitance

Having working FG devices as well as modeling of individual switches, we move

towards modeling the frequency response of an FPAA fabric, justifying Fig. 1b. Figure

10 shows the basic Manhattan based routing structure used for our SoC FPAA device

(i.e. [12]). The approach includes a compartment for a Computational Analog Block

(CAB) or a Computational Logic Block (CLB), includes two Connection (“C”) blocks

to connect these devices, and includes one routing Switch (“S”) block. Using the
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Manhattan style routing enables direct interactions with existing tool flows (i.e. [31]).

We still hold that the routing fabric in this architecture is both useful for computation

as well as switching, particularly for local CAB / CLB routing as well as in the “C”

block routing. Other FPAA architectures show similar approaches and tradeoffs,

although this architecture mades these issues more explicit.

From a classical FPGA approach, one considers the capability of the device to

be solely in its components (CLBs, specialized blocks), and the routing fabric is

simply a mechanism to interconnect these components. Minimizing the effect of the

routing fabric reduces, from a circuit perspective, dead weight that can only degrade

the circuit. That approach requires minimizing the number of switches, each of

which adds resistance, as well as minimizing the resulting capacitance of the routing.

The routing infrastructure can effectively be modeled as a distributed RC line. The

architecture looks at the relationship of the resulting switch resistances, as well as

other circuit uses of the FG switch devices as a function of the number of CAB

inputs and number of tracks, as well as the typical number of switches needed for a

connection.

The SoC FPAA [12] enables programming experiments that characterize the fun-

damental properties of the configurable fabric by experimental measurements on the

configurable routing fabric. Figure 11 illustrates compiling (and measuring) two cir-

cuits to characterize precisely the behavior of these circuits, including load capacitance

of the fabric itself. This FPAA structure facilitates the direct characterization of the

resulting capacitance; coupled with the resistance of an on-switch, Rc. One can di-

rectly predict delays along each of these lines. Every experiment uses the same voltage

biasing, fixing the capacitance of p-n junction devices throughout this experiment.

The resulting measurements give a measurement of the resulting routing capacitance,

as well as enables, through the routing fabric, a range of tunable capacitor blocks.

Precise measurement of routing capacitances enables tuning, through programming
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Figure 11: FPAA characterization of routing capacitances. Initially, one first measures the current-
voltage relationship for a specific OTA device, shown in the inset, to exactly find the resulting Gm

(0.1547µA/V) of the device. That exact OTA with the same programmed current is used to measure
the time-constant of the step response (on a 1.2V dc for the 2.5V supply) for different (additive)
routing combinations. From the step responses measurement shown, a linear curve (in log amplitude)
fits to the time constant after removing the effect of the steady state voltage. The extracted routing
capacitance values for multiple measurement configurations are summarized.

switches, for precise capacitances where needed for matching. Matching of capaci-

tances and programmability of current sources by FG techniques dramatically reduces

the effect of mismatch in small cell sizes.

2.3 Conclusion

This chapter presented scaling of FG devices, and the resulting implication to larger

(FPAA) systems. The properties of FG circuits and systems in one technology (e.g.

350nm CMOS) are experimentally shown to roughly translate to FG circuits in scaled
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down processes in a way predictable through MOSFET physics concepts. This dis-

cussion addressed the question of scaling these devices to more modern processes, in

particular using the example processes of 130nm, 40nm CMOS, empowering moving

such approaches to smaller linewidths CMOS processes. Scaling FG devices results

in higher frequency response, (e.g FPAA fabric) as well as lower parasitic capacitance

and lower power consumption. An FPAA’s operating frequency improves as the IC

technology process is scaled down. FPAA architectures, limited to 50-100MHz fre-

quency ranges could be envisioned to operate at 500MHz-1GHz for 130nm line widths,

and operate around 4GHz for 40nm line widths.
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CHAPTER III

PROGRAMMING OF FG DEVICES

Fowler-Nordheim tunneling [22] enables erasing FG devices by increasing the FG

voltages, which is a global operation requiring a sufficiently high voltage (12 V) on the

tunneling junction of all the FG devices. Hot-electron injection enables programming

FG devices by decreasing the FG voltage to the particular target location, which

is an individual operation. The approach for hot-electron injection is based around

fundamental physics [25], as well as fundamental FG device and circuit innovations

using transistors operating with subthreshold or near subthreshold bias currents [26].

3.1 FG Programming Infrastructure

This section first discusses the infrastructure and programming framework, Figure 12

illustrates the standard for accessing the FG devices for programming. We show a

representative structure, including switches and active devices, typical of a Computa-

tional Analog Block (CAB) in an FPAA device. For programming, the entire circuitry

gets reconfigured into a single crossbar array. We program in a crossbar array because

hot-electron injection is a product of the current in the transistor channel and the

voltage between the drain and channel potentials (≈ near source voltage); by only

allowing current for a particular column, and only allowing a high voltage between

drain and source terminals on a particular row, we are assured that only the desired

device is affected. As a result of the nearly ideal selectivity due to the AND process

for hot-electron injection and resulting selectivity for each transistor’s current-voltage

response, this entire structure effectively collapses as a single FG pFET device with

a selected gate and drain terminal. We globally erase and restore devices by electron

tunneling effects, partially because of the limited selectivity of these two-terminal
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Figure 12: When using a heterogeneous array of FG devices, we require that all FG devices
are reconfigured into a single crossbar array of FG devices. In this configuration, we can program
using hot-electron injection with nearly perfect selectivity because a device requires channel current
and high voltage from drain-to-channel potential. Sometimes, we have additional control structures
to guarantee transistor currents are turned off when not selecting a column; for example, a switch
programmed ON will have some current in the case when its Vg is at Vdd. Reconfigurability between
program mode and run mode is essential to enabling programming of all potential FG elements.
The significance of this crossbar array and the gate and drain selecting multiplexers is that we can
talk about addressing, measuring, and programming a single device in the array; equivalent to a
device separated from the rest of the array.

devices typical of most physical two terminal devices. When we program a device, we

can measure the device properties in as close a situation as desired to the actual op-

eration, therefore minimizing the effect of parasitic elements degrading the resulting

programming accuracy when we move from program to run mode.

Figure 13 shows the board and on-chip infrastructure. Figure 13a shows the board

level infrastructure for programming and accessing the FG programming structure,

as well as the digital infrastructure for accessing the chip during normal programming

operation. Figure 13b shows the high level block diagram for the on-chip programming

structure, which includes utilizing an open-source µP, embedded 16k × 16 SRAM for

program and data memory, as well as the memory mapped registers which control the

elements for programming. We see in Fig. 12 that we simply need to control the gate
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Figure 13: Integrated infrastructure blocks including test board, high level IC schematic for pro-
gramming, and detailed programming schematic. (a) System interface block diagram used for pro-
gramming a representative FPAA device with the on-chip open-source MSP430 µP microprocessor
(µP) and memory. The primary off-chip infrastructure is µP IC controlled high-voltage power han-
dling (12V and 6V charge pump ICs); these components were left off chip to minimize the IC design
risk. A USB to serial converter IC was chosen to interface to the µP. (b) Core on-chip circuit in-
frastructure used for a µP based programming arrays of FG devices. The µP and integrated 16k x
16 SRAM block programming FG devices through a sequence of memory-mapped registers for the
DACs supplying the gate and drain voltages, the FG current measurement structure using a ramp
ADC, and two pFET transistors to convert from current to voltage. We estimate the processor re-
quires approximately 200pJ per simple instruction, including the local memory access. (c) Detailed
programming architecture showing the entire register map, including DACs, measurement ADC, and
row-column selection registers for the configurable device. As seen in Figure 12, we supply multiple
input voltages (DACs) and a cascade voltage to isolate the pFET devices from the measurement
circuitry. Further, we use additional DAC voltages for unselected pFET programming rows and/or
columns.

and drain voltage (through two separate DACs) and then measure the resulting de-

vice current, which is at the core of the structure. The accuracy of the gate and drain

DAC are not directly correlated to the final programmed accuracy; the frequency

and noise of the ADC, which is 14 bit, is directly related to the final programming
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accuracy. Figure 13c gives a better sense of the actual programmer complexity re-

quired for programming an entire crossbar array of FG devices, including selection

registers, control bits, DACs and ADCs, all implemented on-chip, to handle the re-

sulting integrated programming for a heterogeneous array of FG devices, including

the particular memory-mapped register locations. Once the infrastructure is charac-

terized to be functional, then this entire block becomes an IP block for any further

design; our recent designs all utilize this infrastructure, and as a result, the code is

compatible and reusable throughout these designs.

3.2 On-Chip Integrated FG Programming Algorithm

Our FG programming relies on a combination of electron-tunneling for erasing and

resetting FG devices and hot-electron injection for programming FG devices. Fig-

ure 14 shows the framework for our FG programming approach, with the resulting

tunneling and injection steps. Over the following subsections, we will discuss the

global erasing and initialization (reverse tunneling) steps, FG recovery by injection,

FG rough programming through open-loop injection, and the final short step of FG

fine programming through predictive FG calculations.

3.2.1 Global Array Erasure and Initialization

Erasing a block requires raising an entire block of tunneling junction voltages to a

sufficiently high voltage to result in a high FG voltage, which in turn results in a low

channel current (i.e. fA in a pFET device) while still allowing programming to the

desired target location. We initially tunnel all floating-gate values to a high voltage

that ensures a pFET device has no channel current, and then we perform a reverse

tunneling operation to bring floating-gate voltages to a small, but negligible, pFET

current for a gate selection voltage at 0V. Electron tunneling for erasing blocks is

a common approach for erasing FG devices [20, 21, 32–34]. The 12V charge-pump

IC is only operational during tunneling erase operation. One could choose to tunnel
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Figure 14: Algorithm steps for programming an array of FG devices. Top: Block diagram
of the key required programming steps. The overall programming sequence requires putting the
programming code into memory (for each operation), erasing and recovering devices through electron
tunneling, reverse tunneling, and an additional recovery injection step, injecting FG switches where
used, then using a sequence of course and fine injection phases to reach the target for subthreshold
and above-threshold currents. In each case, switch data is loaded into the data SRAM block,
programmed, and then additional pages of data are input to finish a phase, if necessary. The
final steps are loading the SRAM memory for the code desired (if necessary) for the IC operation,
and then switching the IC into run mode. Left: Graphical illustration of the FG programming
steps following the procedure for a range of FG devices starting and ending at a desired target
value. Right: Experimental Data showing actual trajectories of 4 FG devices through the first four
programming steps; Fig. 15 will show the remaining precision injection measurements. The goal is
to get devices close to target programming. Our devices operate in run mode, biasing Vg at roughly
0.6V; our measurements start with Vg at 0V to measure devices with low currents and enable FG
precision targeting for currents below the ≈ 1nA measured leakage current from the array.

the voltage just enough to reach a sufficiently low current and measure a few rep-

resentative currents, expecting that all devices are erased. Unfortunately, tunneling

current measurements for identical operating conditions show a variability of 2-3 (or

more), resulting in exponentially different rates between devices. Therefore, without

measuring all devices, we find it useful to simply tunnel enough so that each device’s
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FG voltage is sufficiently high.

Reverse tunneling turns the polarities around on the tunneling junction to bring

the resulting currents back towards a small but reasonable current for injection with

less device mismatch than tunneling. The reverse tunneling phase requires lower

voltages; for the 350nm IC process, voltages between 0V and 6V are used, resulting

in lower charge across the tunnel oxides. The resulting code for implementing these

two phases only requires applying the desired voltages, waiting a particular timeframe

(allowing the processor to shut down or download programming instructions), and

then resetting voltages to normal operating condition.

3.2.2 First Injection Step: FG Recovery

Once we have cleared all of the FG devices (FG voltage sufficiently high), we begin

the process of programming FG devices that have non-negligible current. FG pFET

devices that we do not program will stay in accumulation and pull negligible levels (

< 1pA) of current, even for scaled down devices. Further, our FG devices in run mode

are biased with Vg at roughly 0.6V, enabling the algorithm to observe lower current

values by measuring current at Vg at 0V. For the IC used for measurements, we had a

constant leakage current, due to the reverse-bias source–drain junction currents near

1nA, thereby enabling current measurements in 10-30pA range even with this high

leakage current. For a switch FG device, we typically measure 30pA of current for

Vg at 0.6V but 1nA for Vg at 0.0V; for other devices with larger capacitive coupling

into the FG, this effect is even stronger.

The initial process simply looks for a significant channel current (i.e. 20-30nA)

when measuring current at Vg = 0.0V for a switch element corresponding to 1nA for

Vg = 0.6V; levels for a significant channel current differ for different groups of FG

devices with different capacitive couplings. Further, we have a programming sequence

in parallel to what is shown in Fig. 14 for lower currents ( < 1nA for switches) where
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Figure 15: Movement from basic FG circuit array elements to course programming algorithm.
Path from FG to Vout: A crossbar network of indirect FG devices communicates through the
drain current outputting a voltage through 2 pFET devices directly related to the FG voltage. Each
FG device must be measured as well as enabled for hot-electron injection. Circuit Analysis: The
equivalent circuit from the FG voltage (Vfg) to the output voltage (Vout). Using the same size (or
similar size) pFET devices, each with the source and well voltage tied together that further implies
that κ values should match, the gain from the FG voltage to Vout of 2; the gain from Vg to Vout

depends on the capacitive coupling. Measured Data from Vout[n] (start) to Vout[n+1] (final) :
Measurement of the final value after injection for Vout on the current measurement versus the initial
value before injection for Vout on the current measurement for maximum injection drain voltage
pulse (6V). We approximately get two straight-line curves, one modeling the subthreshold part of
the regime and one modeling the above-threshold part of the regime. The resulting model enables
direct fixed point computation for the updates for the on-chip µP with a simple fixed point multiply
and addition operations.Vout to Course Programming: Using this data, the first initial injection
jumps requires simple operations (that can be stored in a table) due to the linear modeling, making
an open loop jump for a particular number of pulses or pulse width, based on the target value, as
well as for iterative jumps based on Vout measurement to get the FG voltage within a single pulse
spacing. Lower equations: The resulting extracted (and used) Vout equations expressed both in
measured voltage, as well as in measured 14-bit ADC codeword (a[n]).

we just simply inject until we have roughly 1nA of current for Vg = 0.0V, enabling

targeted currents between 30pA and 1nA as needed. One can modify the drain voltage

for the pulses to move the current values as close as desired.
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3.2.3 Approximate FG Programming by Injection

Target programming typically requires measuring channel current, comparing it with

the desired current, performing a range of calculations for the conditions (i.e. drain

voltage) during the next injection pulse, and repeating until it sufficiently converged.

Previously, these calculations were rather complex, particularly for a fixed-point em-

bedded processing environment, giving an opportunity to reformulate this approach

to fit better with fixed point arithmetic. These approaches build a path to having an

integrated custom programmer module.

We start by describing our measurement of the channel current at a compressed

FG voltage through the 14 bit ramp ADC, as shown in Fig. 15. We are measuring a

floating-gate pFET device through the drain current switched through the program-

ming crossbar infrastructure. Measuring current typically requires a conversion from

current to voltage, and we require potentially four to seven orders of magnitude in

our measurement. Therefore, we need some form of compression; in this case, a bet-

ter approach would be translating the current into a representation near the original

voltage difference from well voltage to floating-gate voltage. We use a pFET device

with the drain voltage tied to the gate voltage with the special case of the well volt-

age tied to the source voltage for our measurement circuitry. Figure 15 also shows

the reduced circuit to look at the resulting relationship between the FG voltage and

the resulting Vout. A straightforward, large signal analysis of this circuit (assuming

matched devices) shows

Vout = 2(Vdd − Vfg) (15)

Threshold voltage variations simply require adding terms to the resulting structure.

We look next at the resulting type S curves, taken from a FG switch element,

looking at this Vout, which is directly related to Vfg. Figure 15 shows a measurement

of Vout after an injection pulse (always for Vd to 0V for a 6V Vds) versus the initial

measured Vout; this process was repeated until reaching a near steady state solution.
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For these measurements, we used a pulse width of 10µs. We measure the output

through the ADC, which follows the linear relationship

Vout[n] = 0.0001602a[n] + 0.3490 (16)

where a[n] is the 14 bit integer code (0 through 16383) measured in the ADC (We

can keep all codes within the 14 bit code on the 16 bit processor). Figure 15 also

shows two straight-line curve fits to the resulting data, as well as the table for the

equation both in Vout and a, allowing simple, fixed point computations for targeted

programming.

Typically, we use a single pulse time width Tinj for every pulse, although the

timing could be modified where desired. Therefore, the better the computational

model, the fewer the number of pulses, and the shorter the resulting programming

time (assuming the computation is fast). At each step, we should be exponentially

decreasing the percentage change needed for the target, improving one bit of accuracy

per iteration. Many combinations of Vg and Vd schemes are possible for the algorithm.

Looking at the formulation of the experimental data in Fig. 15, we want to under-

stand why we get this useful formulation. We see for the S curves that we have expo-

nential growth in FG voltage (exponentially growing from an unstable equilibrium)

for subthreshold and near threshold measurements, and exponential convergence (ex-

ponentially decreasing towards a stable equilibrium) for higher above-threshold mea-

surements, so we are not surprised that we have two potential exponential functions

that are expressed by linear difference functions. In general, the difference equation

is of the form

x[n+ 1] = Ax[n] +B, (17)

which results in an exponential solution either away from (if A > 1) or towards (if A

< 1) a steady state solution ( −B/(A− 1) ).
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The dynamics are caused by hot-electron injection at the FG, which can be mod-

eled as [26]

CT
dVfg
dt

= −Iinj0e−κα∆Vfg/UT e−∆Vd/Vinj (18)

where CT is the total capacitance at the floating-gate node, Iinj0 is the injection

current at the Vfg and Vd bias point, α is 1−UT/Vinj, and ∆Vfg, ∆Vd are the changes

in Vfg, Vd from that bias point. In this case, we use the same Vd for all pulses, so ∆Vd

is zero, although we will use this formulation in the next subsection for precission FG

targeting. Moving the transition from ∆Vfg[n] to ∆Vfg[n+ 1] at iteration n requires

integrating the above equation. The FG voltage changes a small to moderate amount

per pulse in our experiments, defined as |∆Vfg[n + 1] − ∆Vfg[n]| < UT/κα. We get

the resulting expression in this case

∆Vfg[n+ 1] = ∆Vfg[n]− Iinj0Tinj
CT

(
1− κα∆Vfg[n]

UT

)
(19)

resulting in a linear difference equation where A− 1 =
καIinj0Tinj

CTUT
> 0 .

These dynamics stretch into the above-threshold region with the inflection around

2-3µA to finish the characteristic S curve; for larger currents the resulting drop in the

drain-to-channel potential dominates the overall behavior, resulting in an approximate

slope (empirically from theoretical above-threshold modeling [26]) for the next order

of magnitude of current as

CT
dVfg
dt
≈ −Iinj0

(
1− 0.16

κ(Vdd − Vfg)
Vinj

)
(20)

∆Vfg[n+ 1] = ∆Vfg[n]− Iinj0Tinj
CT

(
1− 0.16

κVdd
Vinj

+
0.16κ

Vinj
∆Vfg[n]

)
(21)

where we set the injection current parameter (Iinj0) around a new, higher level, and

resulting in a linear difference equation where A− 1 = −0.16TIinj0Tinj

CTVinj
< 0.

From this framework, the next stages for the programming algorithm include a

first injection phase, then a measured injection phase to get results within one pulse
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step, ready for the last sequences of fine programming. Figure 14 shows results of 4

representative trajectories where target levels are 0.5µA, 1µA, 5µA, and 10µA. Since

the starting drain current and measured Vout are roughly the same (≈ 1− 2nA), and

we have good matching between these parameters on an IC, we use a first injection

pulse to approximate but not overshoot the target level. From the extracted linear

curve, we can make a table (shown in Fig. 15) of the target value as a function of

number of pulses on a given device. We can equivalently have a longer pulse width

as well as multiple pulses being roughly equivalent.

The table is not large since in 29 steps we reach the cross over point, and in 48

pulses we are at the top of the second curve, resulting in under 500µs for this open-

loop programming step; a full 14 bit measurement, using a typical 25MHz clock, takes

roughly 1ms to complete, so these injection measurements, even at 6V, are shorter

than a full measurement. These approaches are not limited by the speed of the µP.

We can take this first step without requiring an additional measurement, reducing

some of the programming time.

Next, we measure the resulting device and calculate the number of pulses to reach

within one pulse of the target without overshooting the device. Effectively, if we had

zero mismatch in the array, this step would be unnecessary, but we use this step to

get devices within one injection step even with potential device mismatches. We will

repeat this step as needed.

3.2.4 Precise Targeted FG Injection Programming

Our programming approach starts by measuring the desired device current, comparing

that result with the desired target result, and computing the desired drain and/or

gate voltages used to reach the desired target without overshooting the desired result.

After the system applies the programming pulse, it proceeds to measure the new

device current and repeats until sufficient accuracy has been achieved.
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Figure 16: Precision programming measurements for subthreshold and above-threshold currents,
showing representative course injection, measured course injection (single Vd), and precision target
injection. (a) 4 target current measurements for subthreshold currents and (b) 4 representative
current measurements for above-threshold currents. We programmed several different FG devices
to these currents and summarize the average measurement error as well as the standard deviation
over the average current from these multiple measurements using this entire programming infras-
tructure. Since injection current and the change in floating-gate voltage is an exponential function of
drain (Vd) voltage, we can approximate the resulting drain pulse by pulling apart the floating-point
representation of the difference of target and measured values. (c) Percentage accuracy for target
programming for a range of currents, including the standard deviation after performing multiple
injection target programming rounds. (d) Values for relevant drain DAC codes, and their change
on the injection current through a change in Vd during the programming injection pulse. We as-
sume a constant Vinj of 150mV (typical value) for these calculations; in practice there is some weak
curvature to these calculations over this range of evaluation. A change of 4 (2 bits) occurs for the
transition through 7 codes or 210mV.

Targeted programming in one sense is the one aspect in this work that leans heavily

on previous history of FG programming algorithms, including targeted subthreshold

and near-threshold devices [34], adaptive targeting of subthreshold currents [33], and
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early efforts using on-chip ADC for current measurement [32]. In another sense,

our approach for this phase of programming takes a different turn by constraining

/ considering FG targeted programming using fixed-point, reduced arithmetic using

lower precision DACs than the precision of the targeted value, while still obtaining

the required high accuracy on a single floating-gate device.

Figure 16 shows representative measured subthreshold and above-threshold target

injection programming. We will compute, after a measurement, the resulting error

between the target value and measurement value; we will use that error to estimate the

optimal drain voltage, without overshoot, for the next injection pulse. The resulting

processing requires first finding the bit where we have the next significant error, then

finding the resulting drain DAC code to minimize the error for that bit, using the

resulting few bits of DAC code that are computed related to the next few bits of the

error approach. Our approach measures, pulses all devices, then repeats until error

is minimized to minimize affect of voltage transients after the injection supply ramps

up to, and down from, the 6V supply.

Fundamentally, the task is controlling the injection process through a sequence

of measurements and pulses of fixed time (Tinj), to hit the desired target in as few

pulses as possible without overshooting the target. The previous process moves Vfg

reasonably near its desired target (i.e. within 100mV), minimizing the amount of

FG dependance when modeling injection current as in (18). We can roughly ignore

the first and higher order Vfg terms in (18) by centering the baseline Vfg for our

analysis to the starting (or target) current location, both for subthreshold and above

VT current biasing. The pulses are modeled as

∆Vfg[n+ 1] ≈ ∆Vfg[n]− Iinj0Tinj
CT

e−∆Vd/Vinj (22)

where Vfg[n] is the floating-gate voltage at programming iteration n. Larger values

for Tinj linearly increase this voltage, where we now set Iinj0 to this phase injection

current at ∆Vd = 0, again assuming injection does not make huge changes through
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the integration.

Drain voltage results in an exponential factor for the Vfg change per iteration,

enabling the system to improve on MSB as well as LSB through a compressed, linear

drain voltage. Figure 16d shows a shift of nearly a factor of 1000 in injection current

change, resulting in a factor of 1000 change in the FG voltage, over a range of 1V

change in drain voltage, due to the exponential dependance between Vd and injection

current. An increase of 3.5 codes results in roughly a factor of two, corresponding

to correcting the next least significant bit for the resulting error. Typically, we will

tabulate the resulting error size and Vd required to get sufficiently close (i.e. at

least one additional binary bit of resolution) to the next iteration. The exponential

function between drain voltage and resulting FG charge / current change enables

a wide dynamic range of FG changes with a linear voltage range. This approach

does not require high-precision DAC components; the drain voltage (injection pulse)

control and gate voltage control are 7 bit DACs.

Although one could choose a drain voltage pulse for optimal convergence, we

give some safety margin resulting from mismatches in the Vinj parameter between

FG devices. Potentially, adaptive modeling for Vinj during programming could be

used, as initially proposed in [33], to decrease the total number of resulting pulses for

successful programming.

A practical issue with this current DAC implementation is a nonlinear step for

low voltages. We have a code for 0V, but the next code is typically 0.4V to 0.5V

with nearly linear spacing for higher values. For a typical value Vinj of 150mV, a

change of 450mV reduces the effect by a factor of roughly 20; having a pulse width

10 times greater (10µs → 100µs) roughly gets to the next least significant bit to

correct. Therefore, the algorithms have two cases, one for a full size drain-to-source

injection pulse, and one for a changing drain-to-source injection pulse with a wider

pulse width.
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The measuring ADC (14 bit) is the component that requires accuracy to program

the FG to a precise value. For targeted programming, one key issue not addressed

at this point is the accuracy of the resulting measurement, in particular what to

predict in terms of the noise, the shape of the noise, and if we average to improve the

resulting measured accuracy. The theoretical limitation in accuracy comes from using

a 14 bit ADC over the (roughly) 2V output voltage range, resulting from 1V shift in

FG voltage for the measured device. The LSB for the 14 bit ADC results in 61µV in

FG voltage accuracy, resulting in 0.166% error for subthreshold currents (κ = 0.7).

For a FG device, with the total FG capacitance of a small 16fF, this results in roughly

10µV for a single electron; a larger total FG capacitance results in a proportionally

lower voltage per electron.

These results show that Vout would not be the source of noise, but the noise

source tends to be a combination of comparator noise, input ramp noise, and clock

jitter into the resulting counter. The measured resulting noise at Vout through the 14

bit ADC for bias currents throughout the entire measured current range shows that

the noise is roughly 5 to 7 codes for a standard deviation (2 codes as a function of

USB power supply noise, lower noise at lower current), the noise is a weak function of

the resulting current (increases a factor of 2 over 4+ orders of magnitude in current),

even though the resulting 3-transistor circuit bandwidth is not constant, and the

resulting measured noise spectrum is flat, characteristic of thermal noise. Since the

noise follows a thermal noise spectrum, we expect that we can average the values to

get further accuracy. We find the measured noise occurs at roughly the 10-bit / 11-bit

measurement level ( < 1 - 2% for subthreshold currents); therefore we need to employ

averaging to get accurate measurements for the last 3 bits of accuracy. Averaging

4 samples results in 1 additional bit of accuracy; typically we use a maximum of 16

samples for the final accuracy.
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3.3 Conclusion

Figure 17 shows some of the summary particulars for this approach. Figure 17a shows

a typical switch list for the coordinates of the FG devices to be programmed, their

resulting current to be programmed (where relevant) or switch type, as well as the type

of floating-gate device (i.e. particular CT ) used. We programmed many FG devices

in a large array (over 200,000 devices) using these definitions that can be compiled

from higher level tools. Figure 17b shows the die photographs of the key components

for programming, including the programmer module (DACs, ADCs, etc.), the open

source MSP430 µP, and the resulting 16k x16 SRAM block used for data and memory.

The biggest issue in terms of size and power dissipation during programming is due to

SRAM size and communication. Figure 17c summarizes the memory requirements,

pulse and computation time for programming steps, and resulting energy estimate

required for performing these steps. Figure 17d shows the extrapolation of number of

FG elements that can be programmed given these time estimates, and extrapolating

the resolving speed if we increase the injection supply to 7V and 8V, utilizing the

faster injection efficiency at these speeds. Using a higher Vdd could drop the required

energy because the processor cycles dominates the power consumed for programming.

For Fig. 17c,d the time estimates do not include the required measurement time,

roughly 7ms per measurement requiring 0.5s to program a single targeted device,

which in the current implementation consumes most of the resulting programming

time. Practically, this limitation means we use injection supply at 6V. The Vout mea-

surement requires less than 1ms for currents less than 1nA; therefore this component

is not a limitation, and the measurement can be further accelerated as needed. The

resulting issue is measurement through a single 14 bit ramp ADC used in our IC

required to measure the full resolution using a 10MHz down sampled clock (from

20-25MHz processor clock). We see an opportunity in building more intelligence into

the ADC measurement based on variations on the ramp function. For example, we
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(b)

(c)

(a)

Figure 17: Summary particulars for the FG programming. (a) A switch list example. The first two
values are the list of coordinates, in row and column, in the FG crossbar array for programming, as
seen in Fig. 12. If the third value is an integer, we have a switch to program ON, where the integer
will indicate a particular switch type (0 being the typical default FG switch). The fourth value selects
one of multiple characterized FG CT values. (b) Die Photo of the programmer infrastructure, µP,
and SRAM memory (16k x 16) in 350nm CMOS process. The area of the SRAM memory is much
larger than the other two blocks. (c) Table of parameters for µP memory size, typical computation
time, and resulting energy estimate for that full operation; in all cases, the energy cost is dwarfed by
the energy required for the µP. All cases require a small fraction of the 16k byte program memory,
using almost all of the 16k byte data memory for loading switch data. Each case is independently
loaded into program memory as part of loading the programming data script.

can use the ADC as a threshold when we need a course target voltage. As another

example, we can see setting the ramp between 6-8bit linear DAC values to enable

faster precision measurement, increasing the ramp measurement by a factor of 64 or

further. We see these issues as being the next level question for programming large-

scale FG arrays. Further, as devices scale to millions of devices, we can visualize using

parallel measure and program components, organized for blocks of FG devices used

to minimize the programming time. The ramp ADC structure could easily become

a parallel bank of ADCs, and the small amount of µP assembly code could allow for

multiple device operation. The approach described could eventually be compiled into

(partial) custom digital hardware to further improve such parallelism with minimal
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Figure 18: Pictorial History of FG circuit programming algorithms developed at Georgia Tech
(GT), where we show the complexity for on-chip computation, as well as board and overall infras-
tructure required for a programming step. FG devices started from the original single transistor
synapse learning device [21], and developed into a range of FG circuit applications (one summary
in [20]). The approaches start with external bench top instruments programming a few FG de-
vices [20], to an interface PC board with simple interface to allow computer control [33], to a PC
board + FPGA board solution to perform the programming infrastructure along with MATLAB
programming control [34], to having some of the circuit infrastructure on board as a programmer
module [32], with an on-board microcontroller with MATLAB control of the programming algorithm,
to finally our current integrated solution with the entire programming control and infrastructure en-
tirely on the IC requiring no µP control over the process other than writing the proper file format
to the IC. At each level, we roughly increased the number of floating-gates routinely programmed
by an order of magnitude, going from 10, to 100, to 1k to 10k to our current structure routinely
programming arrays of 100k or larger, such as our current RASP 3.0 family of FPAA devices, further
enabling larger and larger system application solutions. Our approach also enables using both direct
and indirect programing, whether we have nFET or pFET devices.

Si die area.

This work presents the first integrated system to handle heterogeneously used

and programmed FG elements in a single modular approach. Figure 18 shows the

progression from the beginning of the programming approach of FG arrays, which

has been a systematic march towards on-chip integration, while in parallel continuing

to build structures enabling on-chip analog and digital signal processing, including

configurable architectures. In all cases, we have the capability to program a general

FG array, therefore requiring no predefined constraints except for basic configuration

rules during programming. The on-chip processor enables an embedded program-

ming approach not done outside of MATLAB, unlike other previous approaches. Our
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technical approach builds on a novel, fixed point, limited infrastructure, potentially

allowing a translation to verilog processing for a dedicated block, reducing the power

required (as compared to the µP for programming where required). In applications

requiring a µP, it often makes sense to utilize that resource directly. Typically when

downloading data into an IC from a USB device, low mW power requirements for

programming is rarely a concern.

This chapter focused on the IC design, integration, characterization, and algorith-

mic development for an Integrated Floating-Gate (FG) Programming system. We

used a recent FPAA IC enabled with an on-chip processor to experimentally demon-

strate this system [12]. We use hot-electron injection for precision programming

of FG devices due to the nearly ideal selectivity between devices, whereas we use

electron tunneling for global initialization because of their relatively poor device se-

lectivity. We presented the methods, approaches, and infrastructure, both on-chip

and on-board, for FG programming. We discussed this programming algorithm from

erasing, setting up FG charge to be ready for programming, methodology and ap-

proach for course programming steps, and methodology and approach for precision

targeting steps, all based on the opportunities afforded to us through the current

infrastructure.
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CHAPTER IV

RASP 3.0: A MIXED-MODE FG FPAA SOC

This chapter presents an integrated Ultra-Low Power System-On-Chip (SoC) Field-

Programmable Analog Array (FPAA) IC enabling configurable and programmable

analog and digital computation and interfacing. Figure 19 shows this IC fully in-

tegrates rapid reconfigurable analog–digital computation with configurable fabric of

interdigitated analog and digital computing blocks and with a microprocessor (µP,

open-source MSP430 [35]) enabling both computing and control, to address a wide

range of ultra-low power embedded system computational needs. This work builds

on early concepts of rapid reconfigurable analog blocks [36], as well as early concepts

of integrated digital blocks in analog fabric [11]. The integration of these different

concepts results in a jointly optimized FPAA performance, both in terms of high pa-

rameter density (number of programmable elements / area / normalized to process),

as well as high accessibility of each of the resulting computations due to its advanced

data flow handling. This IC was fabricated in a 350nm CMOS process; such ap-

proaches have recently been shown to be possible in scaled down IC processes [37].

This large-scale FPAA enables analog computational energy efficiency (e.g. MMAC

(/s)/W) x1000 lower than and a die area x100 smaller than digital solutions. This

capability enables low-power system computation, in the µW levels, enabling a whole

range of applications, particularly always-on context-aware processors. Computa-

tional efficiency, not including the energy required for communication, is measured

in equivalent Multiply and Accumulate (MAC) operations per unit time (some-

times implicit in the units) per unit power, fundamental computing operations found
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Figure 19: The RASP 3.0 integrating divergent concepts from previous multiple FPAA de-
signs [10, 11, 36] along with low-power digital computation, including a 16bit microprocessor (µP),
interface circuitry, and DACs + ADCs. The FPAA SoC die photo measures 12mm x 7mm, fabri-
cated in a 350nm standard CMOS process. The die photo identifies µP, SRAM memory, DACs, and
programming (DACs + ADC) infrastructure; the mixed array of the FPAA fabric is composed of
interdigitated Analog (A) and Digital (D) configurable blocks on a single routing grid. DACs and
programming infrastructure are accessed through memory-mapped registers.

in analog and digital computation. For example, both custom [38] and config-

urable implementations [39] of Vector-Matrix Multiplication (VMM) demonstrate 1-

10 MMAC(/s)/µW power ranges, while the digital MAC energy wall remains roughly

at 10MMAC(/s)/mW [40]. The saturation of computational digital computation en-

ergy efficiency [40] influenced this SoC FPAA, a representative of physical computing,

reducing energy requirements for embedded system applications (acoustics, vision,

communication, robotics) through x1000 energy efficiency improvement [41,42].

The chapter focuses on the description of the SoC FPAA IC and the resulting
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measurements of compiled circuits to show the resulting functionality. In each case,

the focus is not necessarily the most optimized circuit design, which would be com-

plete papers unto themselves, but showing good performance for a compiled IP block

that can be routinely used. The following sections describe this FPAA IC architec-

ture, basic analog and digital computational approaches, capacitance, timing, rapid

reconfigurability of the routing fabric, implementation of data converters in the mixed

mode fabric, and utilizing the routing fabric as part of the computation.

This chapter demonstrates (Section 4.2.3) the first embedded classifier structure

(command word recognition) compiled onto a single FPAA device, going from sensor

input (audio) to classified word, experimentally demonstrated in analog hardware;

this demonstration is a small fraction of the overall IC. The system power for this

compiled system on the SoC FPAA (23µW) is consistent with the x1000 improvement

factor (comparison of MACs) for physical computation over digital approaches, with

future opportunities for improved performance in the same IC.

Section 4.3 summarizes the SoC FPAA design, as well as presents the comparison

showing the SoC FPAA as the most sophisticated FPAA device built to date. The

presented SoC FPAA device maximizes both parameter area normalized to the process

node, nearly a factor of 500 improvement in area efficiency as typical of other analog

FPAA devices, as well as utilization and accessibility of the resulting computational

resources for the data flow. The closest high utilization structure (i.e. PSoC5) has

nearly a 600,000 factor less in parameter density than this SoC FPAA device.

4.1 The FPAA SoC IC Architecture

Figure 20 shows the block diagram for the RASP 3.0 FPAA IC based on a Manhattan

FPAA architecture, including the array of computation blocks and routing, composed

of Connection ( C ) and Switch ( S ) blocks. This configurable fabric effectively inte-

grates analog (A) and digital (D) components in a hardware platform easily mapped
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Figure 20: RASP 3.0 functional block diagram illustrating the resulting computational blocks and
resulting routing architecture. The infrastructure control includes a µP developed from an open-
source MSP 430 processor [35], as well as on chip structures include the on-chip DACs, current-to-
voltage conversion, and voltage measurement, to program each Floating-Gate (FG) device. The FG
switches in the Connection (C) Blocks, the Switch (S) Blocks, and the local routing are a single
pFET FG transistor programmed to be a closed switch over the entire fabric signal swing of 0 to
2.5V [43]. The Computational Analog Blocks (CAB) and Computational Logic Blocks (CLB) are
similar to previous approaches [11]. Eight, 4 input Boolean Logic Element (BLE) lookup tables with
a latch comprise the CLB blocks. Transconductance amplifiers, transistors, capacitors, switches, as
well as other elements comprise the CAB blocks.

towards compiler tools. The switchable analog and digital devices are a combination

of the components in the Computational Analog Blocks (CAB), in the Computa-

tional Logic Blocks (CLB), and in the devices in the routing architectures that are

programmed to non-binary levels. The architecture is based on Floating-Gate (FG)

device, circuit, and system techniques; we present the particular FG programming

approach elsewhere [15].

The interaction of analog computation, digital FPGA-like components, and a µP
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Figure 21: The SoC FPAA IC enables integration of Analog and Digital Blocks in the routing
fabric, as well as standard digital computation (i.e. µP) and infrastructure. This figure illustrates
demonstrates experimental measurements of heterogeneous programmable components from this
FPAA IC. Analog Block: Circuit diagram, compilation, and experimental measurement of a rep-
resentative single signal processing chain: second-order bandpass filter, amplitude detector, and
smoothing filter. Digital Block: Circuit diagram, compilation, and experimental measurement of
a representative digital function using the look-up tables in a CLB; illustrates the basic capability
in a single BLE element and register. Digital Computation / Infrastructure: Block diagram,
compilation, and experimental measurement demonstrating a complete loop using a CAB device,
the µP, a signal using (7-bit) DACs, the ramp ADC used in programming (14-bit), and a memory-
mapped General Purpose (GP) IO. Instrumenting and measuring analog and digital blocks requires
similar loops, employing all these capabilities as part of the FPAA computation.

infrastructure coming together creates a significant co-design space between these

three domains (analog, digital, µP). The analog computation combines significant

innovations, enabling integration of previous heterogeneous concepts [10,11,36], from

our earlier FPAA designs in ways not allowed or envisioned by the previous archi-

tectures. What is unique is the addition of digital low-power programmable and

configurable FPGA fabric, first attempted in [11] (and fully integrated in this work),

to fully streamline the routing of analog and digital signals through a continuous

fabric. With the routing fabric and characterization, integrating these capabilities

with an on-chip µP component and a range of digital communication ports com-

pletes the picture that this FPAA is a SoC computing device, not just an analog

signal-conditioning device.
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This FPAA further employs an open-source MSP 430 microprocessor (µP) with

on-chip structures for 7bit signal DACs, a ramp ADC, memory-mapped General Pur-

pose (GP) IO, and related components. The processor is able to send information to

and from the array through memory-mapped I/O special purpose peripherals. These

peripherals include 16 memory-mapped 7bit signal DACs for the architecture, allow-

ing measurements to be performed on chip, with the data taken by and stored in

the processor, as well as additional DACs (and one 14bit ramp ADC) for the FG

programming. The processor supplements the processing power of the digital portion

of the system and increases overall implementation flexibility; portions of a problem

can be mapped to reconfigurable analog, reconfigurable digital, or a general purpose

digital processor.

Figure 21 shows that our SoC FPAA approach enables integrated analog inter-

facing and computation with digital blocks, both FPGA and µP blocks. The analog

components show the compilation of an auditory processing chain for subband signal

detection. Where possible, one wants to compile key blocks into a single CAB to

minimize parasitic capacitances, as well as minimize global routing requirements.

4.2 Circuit measurements on RASP 3.0

Our approach further moves away from the classical FPGA approach, in a radical per-

spective, because the FG devices are programmed to analog levels; our routing fabric

is no longer dead weight, as we hypothesized previously [44], and fully implemented

in our SoC FPAA.

4.2.1 Routing Fabric Computation

Our routing fabric is capable of partial rapid reconfigurability, while using mostly FG

devices, by adding an additional set of switch configuration into the fabric. This rapid

reconfigurability comes by adding a row of T-gate switches set by a shift register into

the switch fabric; the I/O lines for the added T-gate row and the shift register signals
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Figure 22: The FPAA SoC includes a set of T-gate based switch elements in the routing fabric to
empower rapid reconfigurability. These switches are accessed through a shift register that enables
rapid change of configuration on a single clock cycle; different lines of the resulting C block and/or
local routing store the different configurations. The resulting switches, resulting shift register, and
switches connecting the block to the routing fabric are represented as a single volatile routing block.
Utilizing routing elements programmed as precise current source elements illustrates both using
them as an input to the shift register to scan through the individual signals, and using them as an
input to the shift register to accumulate the resulting outputs through the individual signals. It is
straight-forward to imagine a range of arbitrary waveform generation based on patterns stored in
routing fabric. This measurement gives a metric of programming accuracy in operational mode. The
accuracy for these switches were within 0.2 to 0.76 percent for programmed subthreshold currents for
uncorrected FG values; the resulting accuracy can be improved after such an initial measurement.
Further, some switches in the routing fabric use only a single pFET transistor (Direct Switches),
while some use two pFET transistors (Indirect Switches), where one device is used for computation
and one device is used for programming. The indirect switches show characteristically higher mis-
match for uncorrected FG programming due to the threshold voltage mismatch of the two pFET
devices. GND is signal GND; we bias the gate terminal for the FG devices at 0.6V.

are available through the routing fabric. These volatile switches are found directly at

the interface between the C block and the local interconnect; depending on desired

higher level of abstraction, these switches may be considered as part of either block.

One simple application of this technique is enabling a scan-chain for either digital or

analog circuit debugging.

Figure 22 shows an added routing structure component that enables rapid reconfig-

urability in the FPAA fabric. These techniques minimize the amount of intermediate
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data storage required for many computations, enabling data flow techniques for analog

processing. Intermediate data storage often requires the largest power and complex-

ity system cost. The rapid fabric reconfigurability can change between programmed

aspects in a single clock cycle or asynchronous request–acknowledge loop. SoC FPAA

shift register control signals are directed by locally routed signals in the fabric, thus

determining the controlling clock (CK) and data signals. Data stored in the FG fabric

would be as optimal as data stored in an off-chip nonvolatile memory without the

complexity of loading the resulting computation. Figure 22 shows using the routing

fabric elements, this time as a bank of parallel current sources, as well as a cascading

transistor. One easily sees an Arbitrary Waveform Generator that could be compiled

into the fabric; the circuit also becomes the non-volatile memory for the function,

eliminating outside memory and resulting complexity and energy requirements. The

measurements show the accuracy of the FG transistor programming, either in the FG

voltage or resulting channel current. The measured accuracy is tighter than 1 percent

for subthreshold currents, relating to less than 250µV variation.

Figure 22 discusses the programming accuracy for the direct and indirect switches,

where both are available within our routing fabric, sometimes in the same C block or

local interconnect block. The difference between directly programmed and indirectly

programmed FG devices is whether or not current measurements are made on the

circuit transistor or the injection transistor during the programming algorithm. In

the direct case, both the circuit and injection transistor are the same transistor. In

the indirect case, they are two separate transistors. The indirect FG device leads

to a more efficient switch (fewer parasitics), but one must account for the VT0 mis-

match between the two pFET devices. The direct FG device uses the same pFET

to program, measure, and compute, eliminating any VT0 mismatch, but requiring

additional transmission gates in the signal path for programming.
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Figure 23: Vector-Matrix Multiplication (VMM) as a computational block instantiated in C Block
routing fabric. The C Block forms a natural crossbar network typical for a VMM computation. The
basic behavior is illustrated by the data for a single VMM element in routing fabric; two pFET
transistors are required for source-input 4-quadrant multiplication. We independently measure the
resulting transresistance as 15MΩ. Further, we show an application of VMM integrated with the
volatile switch register block to enable rapid (single-clock) switching between weight vectors.

Computing Vector-Matrix Multiplication (VMM) solidifies the radical use of rout-

ing fabric as a computational element. Figure 23 shows implementation of a VMM in

the routing fabric of our FPAA structure. We implement this functionality either in

the C block or in the local CAB / CLB routing fabric, being that both structures are

naturally crossbar arrays. Longer discussion on VMMs in early FPAA routing fabric
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Figure 24: A compiled and measured Ramp Analog-to-Digital Converters (ADC) on the SoC
FPAA in the analog and digital enabled routing fabric. Ramp ADC: Circuit diagram, timing
diagram, and experimentally measured data for a compiled Ramp ADC. The circuit requires one
CAB, 3 BLEs, and 4 CLBs (24 registers for 12-bit Counter and Shift Register). When the ramp
crosses the input value, the open-loop OTA output switches. The first plot shows the OTA output
voltage as a function of time for multiple different input voltages (1V, 1.3V, 1.6V, 1.7V), and the
second plot shows the measured Vramp voltage (through a buffer). The voltage switches nearly when
the ramp equals the input voltage but with a 45mV offset. We present experimental data showing
the comparison points for an approximately linear ramp input voltage. The largest systematic error
is the curvature in the input ramp, generated by two FG routing switches charging up a single
capacitor. The overlap capacitance to the FG reduces the effective Early Voltage of a FG device.

is described elsewhere [39]. The VMM computation occurs through the memory de-

vice, using non-volatile voltage storage, directly in routing fabric; other approaches,

including traditional FPGA approaches, typically utilize memory separated from re-

quired computations. Further, we show integrated VMM and rapid reconfigurability

enabling switching between metrics in the FPAA architecture. This feature further

permits data flow architectures to do a particular computation right when data ar-

rives, reducing the need for short-term storage.
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4.2.2 Signal Processing Components

This section considers the behavior for some basic mixed-signal processing circuits

compiled and experimentally measured in this system, illustrating basic analog-digital

co-design approaches. Our first example is compiling two basic ADC devices in the

routing fabric; remember, compilation in our case refers to the user starting with

a high-level description of the IC and ending with an experimentally measured IC

utilized in the same places as a commercial IC.

Figure 24 shows circuit compilation at the analog–digital boundary through com-

pilation of multiple forms of ADCs as an example of integration of the capabilities.

Being able to both compile an ADC and the particular needed ADC allows for op-

timal power computation and heavy IP block reuse, blurring system lines between

analog and digital for more effective approaches of classifying raw analog data. The

design of the routing fabric was not a block of analog components and a block of

digital components with hard-build data converters in between, but rather a mixed

fabric to explicitly allow the lines to be blurred as the application requires.

Our second example is a basic FPAA classifier using a single Layer VMM +

Winner-Take-All (WTA) as a non-ADC conversion between analog and digital sig-

nals. Figure 25 shows a one-layer classifier approach based on the combination of a

VMM and a k-winner Winner-Take-All (WTA) circuit [45], that elegantly compiles

into routing fabric [46]. The one layer architecture can perform standard one-layer

hyperplane classifiers, while also performing tasks considered impossible for typical

one-layer Neural Network architectures (i.e. XOR). Figure 25 shows experimental

measurements for both of these cases: an XOR function and a linear approximator

function. The result experimentally verifies the universal approximator behavior of

this one-layer VMM+WTA architecture compiled on this RASP 3.0 FPAA structure.
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Figure 25: Instantiated FPAA classifier block based on a combination of a VMM with a Winner-
Take-All (WTA) block. (a) Circuit diagram for an N-input, M-output VMM+WTA classifier block,
including typical circuits compiled for the individual VMM and individual WTA blocks. The WTA
circuit is operated as a single winner circuit or as a k-WTA circuit, where up to k winners are
possible if their metric is above a basic threshold as originally described in [45]. (b) Experimental
measurements for a compiled 3-input, 3-output 1-layer VMM+WTA classifier verifying the XOR
functionality programmed into this classifier.

4.2.3 Analog Auditory Word Classification

We next show a complete analog signal processing application compiled in a SoC

FPAA; this system is the first compiled sequence of signal processing algorithms

shown on any FPAA / configurable device. The signal processing circuits compiled

and measured on this SoC FPAA show measured data for performing command word

recognition. We expect the SoC FPAA could be used for a variety of potential appli-

cations for sound / acoustics / speech, image processing and vision sensors, robotics,

and wireless communication.

We show an example application of auditory / speech classification looking at de-

tecting a command word in a sentence. Figure 26 shows the first application example

of an auditory classifier structure for a limited phrase, like a command word, that can
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Figure 26: Analog auditory word classification application compiled into the RASP 3.0, showing
the experimental waveforms from the IC. (a) Block diagram for the classifier algorithm, in a similar
representation used for our tool framework. (b) BPF center frequencies that are scaled evenly on a
log-frequency scale between 100Hz and 4kHz with a nearly constant Q (Q≈2). The programming
approach only accounted for part of the threshold voltage mismatch variations (indirect FG devices)
and did not consider effects of capacitor mismatch; additional techniques can be used for the existing
IC for tighter measurements. The peak gain was the largest variation between the filters; the Q was
roughly 2 with some variation. The center frequency for each of the filters, as shown, was monotonic
and fairly close to an ideal exponential spacing. (c) BandPass Filter (BPF) outputs and Amplitude
Detection for a single phrase from the TIMIT database. (d) Classification of word and components
for a TIMIT waveform, using a k-WTA with three outputs to detect the word “dark” in the resulting
phrase.

be classified through features in the averaged signal spectrum. Continuous-time spec-

trum decomposition used a bank of constant Q filters at the first processing stage,

using a bank of amplitude detection and filtering operations, and then a VMM +

WTA classifier block to classify each of the resulting spectrum into simple symbols.
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Table 1: Measured Power Numbers for Compiled Command-Word Classifier Function

Computational Block Average Power
C4 block power (12 blocks,
exp spaced from 100Hz to 4kHz) 4.86µW
Amplitude detection 3 µW
LPF (12 blocks) 3µW
VMM + WTA block 12.3µW
Total computation Power 23µW
Output signal buffers to
outside IC measurement 30µW

In a more complex speech recognition system, one might have the spectrum corre-

spond to phonemes or part of phonemes and build up the temporal representations

using temporal classification (i.e. HMM classification) to word spot the resulting

phonemes, syllables, and words. A simple command word application, required only

to distinguish between a few simple symbols, can be directly computed as a state

machine on the MSP430 processor; a next level of computation, say a simple Viterbi

decoder, could be directly implemented on the MSP430 processor as well.

Table 1 shows the power required for the compiled command-word classifier com-

putation by functional block, as well as the entire system, which requires 23µW for

the current implementation. The implementation is not optimal, particularly in the

LPF and classifier blocks, but shows the functional capability of the system at a very

low (23µW) power level; the LPF did not filter at a low enough rate, resulting in

5kHz bandwidth signals into the VMM, while the VMM could have been operated at

lower frequencies. Optimal biasing for these blocks could have resulted in a factor of

100 in the overall power budget, reducing the power by a factor of 3. We used buffers

to characterize the resulting output signals off-chip; routing the signals into the dig-

ital µP would nearly eliminate the need for the buffer power. When programming

the resulting system, we only partially accounted for the threshold voltage mismatch

due to indirect programming mechanisms and did not program around capacitance
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Table 2: Table of important SoC FPAA IC Parameters

Parameter Value Parameter Value
Number of CABs 98 Number of CLBs 98
On-Chip µP Open Source MSP430 µP clock frequency 0 - 50MHz
C block Line Cap. 160fF S Block Line Cap. 38fF
Vdd (analog) 2.5V Vdd (digital) 2.5V, 3.3V
Vdd Injection 6.0V Vdd Tunneling 12V
Program Memory 16k x 16 Data Memory 16k x 16
IC Process 350nm CMOS Die Size 12mm x 7mm
General Digital I/O 16 (in), 16(out) SPI ports 5
General Analog I/O 125 Analog Parameters 359,014

variations. A closer look at Fig 26b shows the center frequency for each of the fil-

ters is monotonic and fairly close to an ideal exponential spacing, the Q is roughly 2

with some variations. The peak gain shows the largest variations due to capacitance

(C2, in Fig. 21) mismatches, where this capacitance is the small parasitic capacitance

between the OTA terminals resulting in more device to device variation. The gain

variation can be eliminated by modifying the weights of the VMM block. This level

of programming is shown sufficient for this application, while further programming

accuracy possible in the system might be required in further applications.

This classifier system, compiled on this FPAA, is consistent with the x1000 im-

provement factor in computation (measured in equivalent multiplication and accu-

mulate, or MAC, operations), is similar to systems developed for VMMs (custom and

compiled) [39], as well as other custom classifier networks [46–50]. The VMM+WTA

classifier, being a universal approximator [46], can generate the same classification

functions as other Radial Basis Function networks or Guassian Mixture Model net-

works [47, 48], as well as related algorithms [50]. This case shows a full system for

an embedded classifier structure, going from sensor input (audio) to classified word,

and further, is experimentally demonstrated in configurable analog hardware utilizing

high-level design tools.
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Table 3: Summary of Application Complexity of Analog and Digital Elements. The
chip has 98 CLBs and 98 CABs

Measured System CAB (devices) CLB (devices)
C4 + LPF + Amplitude Detect 1 CAB (4 OTAs, 1 cap)

Digital block 0 1 CLB (1 BLE)

Ramp ADC 1 CAB (1 OTA, 1nFET, 3 CLBs

1 switch, 2 fabric pFETs) (24 registers, 1 BLE)

Sigma-Delta Modulator 1 CAB (4 OTAs, 1 switch)

VMM + WTA (XOR) 3 CABs (1 per WTA input,

VMM in local routing)

Command Word Classifier 12 CABs (filterbank) + 8 CAB

(WTA, 3transitors, routing)

4.3 Conclusion

This chapter presented an IC that integrates divergent concepts from multiple previ-

ous FPAA designs along with low-power digital computation and interface circuitry

(i.e. DACs, ADCs). We showed through discussion and measured data that this uni-

fied structure enables a wide range of SoC computing options that can be optimized

for multiple parameters, showing the most sophisticated FPAA capability built to

date; we hope that the success of this IC inspires additional devices built in the near

future. Table 3 illustrates most of the circuits presented, compiled, and experimen-

tally measured in this section, as well as a summary of the resources used in each

case. Table 2 shows the table of parameters for the resulting SoC FPAA. Largest

signal processing functions shown to date [11, 36, 51] take a small percentage of the

available IC.

Figure 27 plots various FPAA devices showing the Percentage of Control Path

implemented versus Analog Parameter Density. Figure 27 shows two key metrics for

FPAA approaches based on a collection of published FPAA devices [10, 11, 36, 43,

51, 54, 56–63]. We define analog parameter density as the number of programmable

parameters per mm2, normalized to a 1µm CMOS node. Analog parameter density
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Figure 27: Using data from generations of FPAA devices, built at GT and elsewhere, various
FPAA devices are plotted as the Percentage of Control Path implemented versus Analog Parameter
Density. Recent FPAA ICs, like the dynamically reconfigurable FPAA or FPAADD device, begin to
effectively maximize both parameters. Analog Parameter Density is the number of analog parameters
per mm2, normalized to a 1µm process (or analog parameter density). Analog parameters directly
sets the complexity possible by the particular FPAA device.

determines critically the IC computation complexity, particularly when using rout-

ing as computation. Figure 27 shows FG based FPAAs enable ≈ 1000 parameter

density improvement, providing increased computation on a single device; FG device

alternatives require a DAC at every node or dynamic techniques.

Table 4 shows another comparison among FPAA devices in table form, as an up-

dated table following along the comparison made for one of Georgia Tech’s first general

purpose FPAA device [10]. Previous papers have more detailed discussion on early

FPAA work, and we invite the interested reader to read these comparisons [10, 64].
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Table 4: FPAA Comparison Table

Num of

Ref. Process CAB/CLB CAB/CLB CAB Architecture Capability

Area parameters elements lines

This 350nm 98/98 OTAs, FETs, FG, 55 FG, 16-bit µP, Ana./Dig.

Work 84mm2 359,014 T-gates, multiply, rapid reconfig, Circuits,

8, 4-input BLEs Manhattan Full SP

[11] 350nm 108/108 OTAs, FETs, 20 FG, Ana./Dig.

25mm2 80,000 T-gates, Manhattan Circuits

4, 3-input BLEs

[36] 350nm 78/ 0 OTAs, FETs, FG 30 FG crossbar Ana. circuits

25mm2 76,000 1 stage SP

[10] 350nm 32 / 0 OTAs, FETs, FG 40 FG crossbar Ana. circuits

9mm2 50,000

[51] 250nm 16 / 0 log-domain ODE

100mm2 416 SRAM crossbar simulation
[52], [53], 130nm 7 / 0 1 Digitally 4 Minimal OTA Basic OTA

[54], [55] 1mm2 58 tuned OTAs routing circuits

The table shows the impact of the FG-based FPAA devices, compared against other

approaches, the most advanced of the non-FG devices being presented by Cowan, et.

al. [51]. The highest frequency response devices by Becker, et. al, operate at expected

frequencies given the IC process, but otherwise, are extremely simple in structure and

capability [52–55]. Although one possible second metric is maximum measured fre-

quency, normalized to 1µm process, the maximum analog frequency response being

directly related to process technology for devices from 1µm CMOS to 40nm CMOS.

Designing an SoC FPAA devices requires maximizing both metrics, so that we

have a large number of programmable parameters and resulting computation, as well

as having the infrastructure to get data communicated to these processing devices.

Our second metric is to describe the amount of control flow (mostly digital) relative

to the amount of analog and digital data flow capability. Practically, the ability to

get data to all of the processors can be a primary limitation for a series of application

spaces, such as image processing, where data does not always arrive in the desired
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order for the computation. Recent RASP based FPAA designs [11,36] have started to

focus on improving this second metric while not losing the analog parameter density

efficiency. The presented SoC FPAA device maximizes both metrics, being nearly a

factor of 500 improvement in area efficiency as typical of other analog FPAA devices,

but with high utilization of the resulting computational resources; the closest high

utilization structure (i.e. like PSoC5) is nearly a 600,000 factor improvement.
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CHAPTER V

SYSTEM CALIBRATION

This chapter illustrates a calibration flow for an integrated FG programming system

for a large-scale Field Programmable Analog Array (FPAA), including characteriz-

ing the FG programming infrastructure and hot-electron injection parameters in the

integrated SoC FPAA, calculating the EKV model parameters for the golden FETs,

calibrating the compiled DAC and ADC blocks that interfaces between the on-chip

µP and compiled analog circuits in the array.

5.1 Calibration on digital / analog systems

Digital system design is enhanced when an algorithm can be directly ported to any

number of equivalently designed systems, with effectively the same performance for all

devices. Although digital SoC systems require a calibration (e.g., a clock speed, bad

memory blocks, internal voltage regulators) and precision components (e.g., a clock

crystal, oscillator), this process is independent of the algorithm, performed away from

system programmers.

One rarely expects this property in analog systems, even when some form of

programmability is possible. Every system is handled in a special way; a mismatch

is the primary limiting factor for analog systems (e.g., [65]) resulting from the fact

that “not all transistors are created equal.”1 Typically an ADC and filters (e.g., Gm-

C topologies) utilize programmable elements to deal with mismatches; larger analog

systems significantly effect larger levels of algorithm modification. One can reduce

calibration via an increased device area to reduce mismatches, resulting in a larger die

1 [66], Chapter 5, p. 72
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area and cost, implying higher power consumption as well as lower levels of system

integration.

This chapter describes bringing analog computation towards the expected (digi-

tal) system techniques, where a one-time calibration of a batch of devices enables the

same algorithm at similar performance levels to be downloaded to all devices. Figure

28 illustrates the concept of enabling algorithms to be directly downloaded to a large

number of FG analog programmable and configurable ICs using a single calibration

flow. Our primary need for calibration is to account for the threshold voltage mis-

match (VT0) between two pFETs for indirect FG programming [67], where previous

characterization initially shows VT0 mismatches between these devices [68].

5.2 FG FPAA Architecture, Programming, Compilation

The infrastructure for FPAA systems has been integrated onto a chip to increase area

efficiency, as well as analog parameter density [70], [52] to enable more complicated

applications [12], [71]. Figure 29 shows the PCB and IC level architecture of the

latest version of the FG FPAA family [12]. The IC comprises an FPAA fabric array,

an FG programming infrastructure, a µP (open-source MSP430 [35]), and 16 k × 16

SRAM. The FG programming infrastructure includes a 7-bit gate DAC, a 7-bit drain

DAC, a pFET diode I-V converter, and a 14-bit ramp ADC, interfacing with the µP

through memory mapped registers.

The PCB consists of power components regulating 2.5 V / 3.3 V, charge pump

units handling high voltages (6 V / 12 V), and Input/Output pins for external con-

nection (to be used with voltage generators, voltmeters, ammeters, etc.). Some of the

external pins are connected to the array to provide direct input or enable measure-

ments, and some are connected to the FG programming infrastructure in calibration

mode.

The FPAA array includes Computational Analog Blocks (CAB), Computational
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Figure 28: Separation of calibration and algorithm enables the same algorithm implementations
at similar performance levels in both digital and analog systems. Digital systems enable a single
algorithm directly downloaded to a large number of ICs (m), however classical analog systems need
each algorithm to be tuned for each particular application. The digital approach, especially a digital
SoC system including µP, SRAM and analog components (e.g., a clock crystal, oscillator [69]) and
providing several Vdd for low-power consumption, requires a calibration on a clock speed, bad memory
blocks, and internal voltage regulators, as well as precision components due to the mismatches [42],
whereas this process is independent of the algorithm. This work focuses on developing a single
calibration flow to bridge the gap, enabling algorithms directly to be downloaded to (m) FG analog
programmable and configurable ICs.

Logic Blocks (CLB) and routing switches composed of Connection (C), Switch (S) and

Input/Output (I/O) blocks. Each CAB includes local routing switches for connecting

the inputs/outputs of a CAB to its elements such as Operational Transconductance

Amplifiers (OTA) with and without FG inputs, nFETs, pFETs, capacitors, and T-

gates. Each CLB includes local routing switches with BLE lookup table circuits.

FG switches can be be used for computation (e.g., VMM) as well as for connections

between CAB/CLB/IO blocks.
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Figure 29: The FG FPAA system interface between the on-chip µP and external devices (e.g.,
computer / tablet) is a USB, which provides the system power (5 V) as well. The PCB includes
voltage regulators for the power supply (2.5 V / 3.3 V) to the IC, charge pumps to generate 6 V
and 12 V for the injection and electron tunneling, and pins for a measurement or calibration. The
IC consists of a µP, 16 k × 16 SRAM, an FPAA fabric array, and an FG program infrastructure
comprised of a 7-bit gate DAC, a 7-bit drain DAC, an I-V converter, and a 14-bit ramp ADC.
The FPAA fabric array is composed of Computational Analog Blocks (CAB), Computational Logic
Blocks (CLB), Connection (C) blocks, Switch (S) blocks, and Input/Output (I/O) blocks. “∗”
indicates each calibration step in Fig. 31

Figures 30a and 30b show the compilation flow from designing a high-level ap-

plication in Scilab/Xcos (open-source programs similar to MATLAB/Simulink) by a

user to measuring the output. When the user compiles the design, each chip’s cali-

bration information is integrated with it. As shown in Fig. 30, a switch list refers to

an FG VT0 mismatch table, an input vector refers to a calibrated DAC table, program

assembly codes (prog codes) and lookup tables for programming refer to FG device

parameters and program infrastructure characterization tables. These generated files
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Figure 30: The design and test flow includes the compilation and programming of FG devices. (a)
The design compilation interfaces between high level application designs and the FG FPAA IC. A
circuit designed by a user in XCOS is compiled to a switch list, input vectors, and program codes,
which are transmitted to and executed by the IC. The calibrated IC information is integrated into
the compilation process, including converting the measured data sent by the IC to real values (e.g.,
voltage). (b) The system employs electron tunneling to erase and hot electron injection to program
FG devices. (c) The measured current at the end of the recover injection is set to 1 nA by using
the FG’s gate capacitive coupling, which is characterized in the calibration flow. (d) It shows the
tunneling and injection conditions. Coarse injection, which modulates the pulse width at a fixed
drain voltage (0 V), requires S-curve characterization for the pulse width table. Similarly, precise
injection, which modulates the drain voltage at a fixed pulse width (10 µs), requires a 7-bit drain
DAC characterization.

are sent to the FG FPAA IC, which programs the switches and measures data. When

the output is sent back, the characterized ADC table is used to map the hex codes

to their analog values (e.g. voltages). The programming of FG devices relies on a

combination of electron tunneling and hot-electron injection. Figure 30c shows a pro-

gram sequence from tunneling to precise injection, and Fig. 30d shows the terminal

voltage condition of the FG device for each step.

Erasing FG devices is a global operation requiring a sufficiently high voltage (12

V) on the tunneling junction of all the FG devices, which results in a low channel

current (∼fA). Reverse tunneling, also a global operation, requires a lower voltage
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and 4, but the external measurement device is no longer necessary after the calibration. In particular,
the ammeter, which is large and heavy compared to the FG SoC FPAA system, is not in use after
step 2. Each step has been automated to enable a mass chip calibration and then integrated into
the compilation flow.

(6 V) on all the terminals of the FG device except the tunneling junction, resulting

in a current of a few pA which is at a proper range for injection. During recover

injection, each FG is programmed to a current of 1 nA. Since the leakage from the

array and drain decoder is several hundreds pA, the current in the recover injection

is measured by using the gate capacitive coupling effect of the FG device. 20 - 30 nA

of current, measured in the recover injection, with Vg at 0 V, corresponds to 1 nA

when measured with Vg at 0.6 V in the coarse injection, which is the next step. The

effective FG capacitive coupling with a different Vg is characterized in the calibration

flow and integrated into the programming algorithm during the compilation.

Hot-electron injection current (Iinj) in subthreshold or near subthreshold oper-

ation [25], [26] is Iinj ∝ Ise
f(Φdc), where Is is the channel current and Φdc is the

drain-to-channel potential. Qfg (charge on the floating-gate) (Qfg =
∫
Iinjdt) is a
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Figure 32: A characterization of the on-chip FG programming infrastructure circuits is shown.
The gate DAC which converts a 7-bit code to an output voltage through a current bank is measured
by an external voltmeter. With two different supply voltages (Vdd) for the FG injection and current
measurement, the gate DAC has the output voltage in roughly 2 V to 5 V with Vdd at 6 V and
0.6 V to 2 V with Vdd at 2.5 V. A 7-bit drain DAC consisting of a current bank, a resistor, and a
buffer is characterized by an external voltmeter. Body-source connected two pFET diodes convert
the FG current (Iprog) to Vprog and a ramp ADC converts Vprog to a 14-bit code. Based on the
characterization by an external voltage generator and ammeter, EKV parameters (κ, VT0, Ith) and
the slope (m) and y-intercept (b) on the ramp ADC of each chip are calculated.

function of time and voltage between source and drain. Coarse injection fixes Vd at

0 V for fast electron injection and controls the time of drain pulse, requiring char-

acterization of the pulse width table to calculate the number of unit pulses (10 µs)

to program an FG at a close range from the target current. Precise injection fixes

the drain pulse width and controls the drain voltage for precise electron injection,

requiring characterization of a 7-bit drain DAC.

5.3 Calibration of FG SoC FPAA

This section illustrates five steps of the calibration flow shown in Fig. 31 and shows

non-linear classifier results working in multiple calibrated chips. Off-chip equipment

used for the calibration step 1, 2 and 4 includes Analog Discovery for generating or

measuring voltage and Keithley 6485 Picoammeter for measuring currents through
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the external pins. The automated calibration script communicates with those external

devices through a USB interface.

5.3.1 Step1: Gate & Drain DACs, I-V Converter, and Ramp ADC

The characterization of the on-chip programming infrastructure in Fig. 32 is the first

step of the FG SoC FPAA IC calibration. The gate of an FG device is controlled by

a 7-bit gate DAC consisting of a current bank and a resistor with a current mirror,

where the 7-bit code steers currents, and the mirrored current and resistor set the

DAC output voltage. A current bank includes seven kinds of current sources and seven

pFETs controlling the amount of the current based on the code. The gate DAC is

calibrated through external voltmeter with two different supply voltages (Vdd), 6 V

for injection and 2.5 V for current measurements. The output voltage is in a range

from 2 V to 5 V with a Vdd of 6V and in a range from 0.6 V to 2 V with a Vdd of 2.5

V. The 7-bit drain DAC has a structure similar to the gate DAC, but the resistor is

connected to ground without a current mirror and it has a buffer to drive the drain

line. The drain DAC is also calibrated through an external voltmeter, which has an

output voltage in the range of 0.5 V to 2.2 V.
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Table 5: Transistor equations

Ohmic Saturation

sub Vth Ithe
κ(Vg−VT0)/UT

(
e−Vs/UT − e−Vd/UT

)
Ithe

(κ(Vg−VT0)−Vs+σVd)/UT

above Vth
Ith
4U2

T

(
(κ(Vg − VT0)− Vs)2 − (κ(Vg − VT0)− Vd)2

)
Ith
4U2

T
(κ(Vg − VT0)− Vs + σVd)

2

Table 6: Programming infrastructure Parameters

Chip 1 Chip 2 Chip 3

I-V
converter

κ 0.716 0.707 0.699
Ith 2.8µA 3.1µA 3.2µA
VT0 0.785V 0.847V 0.828V

Ramp
ADC

m 4490 5709 5474
b -1445 -1991 -1679

The drain of FG device is connected to the I-V converter when measuring current

(Iprog). The I-V converter consists of two pFETs that have their body connected

to the source. The two pFET diode connected transistors are characterized through

an external voltage generator and ammeter, which results in the Iprog-Vprog curve.

When we assume that the FG transistor is matched with two pFET diode connected

transistors in the I-V converter, the relationship between Vfg and Vprog [15] is given

by Vprog = 2(Vdd − Vfg). The source current of the FG pFET is given in

Iprog = Ith ln2
(
1 + eκ(Vdd−Vfg−VT0)/2UT

)
, (23)

where κ (“kappa”) is the fractional change in the surface potential due to a fractional

change in the applied gate voltage, UT is the thermal voltage, VT0 is the threshold

voltage, Ith is the threshold current. κ, VT0, and Ith are calculated from the measured

Iprog-Vprog curve.

A Ramp ADC, which interfaces with the µP, converts Vprog to a 14-bit code. The

slope and y-intercept is calculated based on the 14-bit code - Vprog measurement.

Table 6 shows programming infrastructure parameters in multiple chips.
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5.3.2 Step2: EKV modeling of golden FETs

Modeling of MOSFET devices’ transconductance characteristics is essential for a high

level analog system simulation before the measurement. It also provides an environ-

ment to the user that does not need an ammeter. The EKV model [72], [73] is

well-known as a MOS transistor model to illustrate a FET’s behavior. The equation

of nFET Id in the EKV model is

Id =Ith ln2
(
1 + e(κ(Vg−VT0)−Vs+σ(Vd−Vs))/2UT

)
− Ith ln2

(
1 + e(κ(Vg−VT0)−Vd−σ(Vd−Vs))/2UT

) (24)

σ is UT/VA, where VA it the Early voltage. (24) includes all equations of the

ohmic/saturation current in the sub/above threshold region shown in Fig. 33.

Figure 33 shows EKV parameters (κ, Ith, VT0, and σ) which are extracted from the

measured I-V curves taken from a golden set, compiled at a fixed location in each chip,

of the nFET and the pFET. Characterizing the golden nFET and pFET means one

can always figure out the relationship between current and voltage, as well as calibrate

between different devices. κ, Ith, and VT0 for nFET and pFET are calculated based

on Id-Vg curves sweeping Vg with a fixed Vd and Vs. First, each starting value for VT0

and Ith is set to the x-axis intercept in a linear line extracted from
√
Id - Vg curve

and twice the value of Id when Vg is VT0 via a cubic-spline interpolation, respectively.

Then, the optimal Ith to minimize the curvature of the EKV model inverse expression

is found in the interval between one tenth and ten times the initial value of Ith, which

results in κ and the final VT0. σ for nFET and pFET is calculated from
√
Id-Vd curves

sweeping Vd with a fixed Vg and Vs. In each characterization, Vg and Vd are set by

external voltage generators, and Id is measured through an external ammeter. Table

5 shows the transistor equations of the ohmic/saturation current in the sub/above

threshold region. Table 7 shows measured nFET and pFET EKV parameters in

multiple chips.
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Table 7: nFET, pFET EKV Parameters

Chip 1 Chip 2 Chip 3

nFET

κ 0.887 0.781 0.856
Ith 61.8nA 64.1nA 86.9nA
VT0 0.391V 0.390V 0.418V
σ 0.0039 0.00049 0.0023

pFET

κ 0.742 0.772 0.723
Ith 100nA 107nA 118.41nA
VT0 0.697V 0.714V 0.705V
σ 0.0029 0.0022 0.0029
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Figure 34: FG devices require a characterization of the FG programming parameters. (a) Gate
capacitive coupling offsets between Vout measured with Vg at 0 V and 0.6 V in the injection and
current-measurement loop are calculated and set for each chip’s recover injection. As Vout increases,
the offset decreases due to the increase of the MOSFET depletion capacitor. (b) S-curves are
measured for the pulse width table in the coarse program. The injection-measurement loop starts
from the Vout corresponding to 1 nA in current. The pulse width table is calculated based on the
linear relation on Vout(final)-Vout(start). (c) We have five kinds of FG devices in the FG SoC FPAA.
Each gate capacitive coupling offset and pulse width table for each FG device is measured in an
automated calibration script.

5.3.3 Step3: Gate coupling offset and Injection characterization

FG programming parameters are calibrated without any external equipment. Figure

34a shows the calibration of the gate capacitive coupling offset required for the recover
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Table 8: Gate Coupling parameters

FG Chip 1 Chip 2 Chip 3

∆Vout
@1nA

SWC (Ind.) 0.190V 0.224V 0.243V
SWC (Dir.) 0.205V 0.268V 0.256V

OTA 0.226V 0.270V 0.282V
FG OTA 0.317V 0.383V 0.388V

MITE 0.358V 0.429V 0.426V

injection in the target program. Vout, the output voltage of the two pFET diodes,

is measured with Vg at 0 V and 0.6 V, while applying a 10 µs injection pulse with

Vd at 0 V. κeff (= κC/CT ), which is proportional to ∆Vout measured at different Vg,

decreases as Vout increases since the MOSFET depletion capacitance increases. The

slope changes around the boundary of the sub- and above-threshold currents (∼ 0.7

µA) since the current with Vg = 0 V is in the above threshold region although the

current with Vg = 0.6 V is still in the subthreshold region.

Figure 34b illustrates the calibration of the coarse injection characteristic, i.e.

S-curve, which is measured in the loop of injection with Vd at 0 V and current mea-

surement with Vg at 0.6 V. The injection current in the S-curve, which exponentially

grows from an unstable equilibrium for the sub / near threshold and exponentially

converges towards a stable equilibrium, forms two linear lines crossing at the current

of 2.1 µA on the Vout(final)-Vout(start) plot [15]. The pulse width table, which shows

the number of injection pulses to reach Vout(final) from Vout(start), is calculated based

on the S-curve measurement. Figure 34c shows the FG device structure in an FG

FPAA array. Five kinds of FG devices exist; Indirect and direct switches for connec-

tion or computation (e.g., VMM), an FG device for OTA bias, an FG device at the

input of the FG OTA, and an input bias FG for Multiple-Input Translinear Element

(MITE). The gate coupling offset and the pulse width table for each FG device are

calibrated respectively in each chip, shown in Table 8 and 9.
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Table 9: Pulse Width parameters

FG Chip 1 Chip 2 Chip 3

m1/b1

SWC (Ind.) 0.953/0.114 0.945/0.121 0.894/0.228
SWC (Dir.) 0.880/0.200 0.873/0.199 0.805/0.318

OTA 1.060/-0.050 1.045/-0.036 1.026/-0.015
FG OTA 1.081/-0.077 1.029/-0.009 1.001/0.032

MITE 1.049/-0.038 1.021/-0.003 1.007/0.0184

m2/b2

SWC (Ind.) 0.930/0.145 0.938/0.121 0.947/0.111
OTA 0.941/0.130 0.978/0.047 0.964/0.076

FG OTA 0.973/0.059 0.944/0.117 0.924/0.166
MITE 0.959/0.093 0.965/0.077 0.957/0.095

5.3.4 Step4: Signal DACs and Compiled DAC/ADC blocks

Figure 35 shows the calibration of DACs and ADCs, which provides a mixed-signal

design environment for users and eliminates the need for external equipment for mea-

surement. Signal DACs, consisting of a current bank and a resistor, interface with

the µP through memory mapped registers. Signal DACs could be used as arbitrary

waveform generators by the user. The input is compiled as a vector on the SRAM.

The run-mode assembly code sends the input vector uploaded on SRAM to a memory

mapped register at a given frequency. A signal DAC is calibrated by connecting Vout

to an external voltmeter through an I/O block in the array.

An FG OTA DAC, a compiled block in a CAB to set a DC voltage, comprises an

FG OTA in a unity-gain follower configuration. Vin(+) is connected to Vdd, Vin(−) is

connected to Vout. Vfg(−) is

Vfg(−) = Vfg(+) +Qinj/CT + Vout · C/CT (25)

where Qinj is the injected charge to the FG node, CT is the total capacitance of the

FG. Vout is

Vout = −Qinj

CT
/(

1

Av
+

C

CT
) (26)

where Av is the gain of an FG OTA. A digital input DC voltage set by the user in the

Xcos design is converted to a corresponding value of Qinj/CT based on the Qinj/CT

- Vout curve, calibrated through an external voltmeter for calibration.
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Figure 35: A signal DAC is a dedicated circuit in the IC, but other DAC and ADCs are compiled
blocks in CABs. Signal DAC: Vout of 16 7-bit on-chip signal DACs are calibrated by an external
voltmeter through I/O blocks in the array. FG OTA DAC: A feedback FG OTA in a CAB operates
as a DC DAC. Vout is set by Qinj , the offset of injected charge on two input FG nodes. The FG
OTA DAC block is calibrated through an external voltmeter. MITE ADC: Vin of a Multiple-Input
Translinear Element (MITE) device in a CAB couples Vfg, which is measured by a pFET diode I-V
converter and a 14-bit ramp ADC in the program infrastructure. A calibrated signal DAC is used to
apply Vin. (Compiled) Ramp ADC: A compiled ramp ADC block including two FG pFETs, an
nFET, a capacitor, an OTA in a CAB converts Vin to 8-bit codes, interacting with the µP through
GPIO.

A MITE ADC is implemented with a Multiple-Input Translinear Element (MITE)

[74] block in a CAB and the programming infrastructure. The surface potential of the

MITE FG pFET is capacitively coupled by Vin. By measuring the increase/decrease

in the current through the I-V converter and the program ramp ADC, Vin with analog

voltage is converted to a 14-bit digital code. A previously calibrated signal DAC is

applied to Vin to minimize the use of external equipment.

A compiled Ramp ADC includes two FG pFETs, a capacitor, an nFET, and an
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OTA in a CAB. The µP resets the ramp ADC by turning the nFET on and counts

clock cycles until the output of the OTA is flipped from Vdd to gnd. The slope of the

ADC depends on the capacitor’s size and the bias current of the FG pFETs. The

compiled Ramp ADC has an 8-bit code.

5.3.5 Step5: VT0 Mismatch map

A threshold voltage (VT0) mismatch due to the indirect FG structure [67] and small

device sizes causes errors in the analog computation. Especially since FG switches

are used for computation (e.g., VMM), as well as connections between analog/digital

elements, it is essential to measure and compensate for VT0 mismatches. Figure 36

shows a VT0 mismatch characterization of FG devices. The indirect pFET’s drain is

connected to the mismatch measurement block in Fig. 36a. A compiled mismatch

measurement block includes a reference FG device, a pFET, an FG OTA DAC and

an open-loop FG OTA in a CAB. The FG OTA’s gain, AV (∼10), is measured by

a MITE ADC ahead of the mismatch characterization. The FG OTA DAC and the

FG OTA’s input offset between (+) and (-) are set to have Vout at 1.25 V. Then, the

VT0 mismatch, causing the difference between Imeas and Imeas(ref), is calculated from

∆Vout. ∆VT0 is ∆Vout/(Av · κ).

Figure 36b shows an example of a mismatch table. The first and second elements

are the row and column address of an FG device, respectively. Each VT0 mismatch

value in the third column is directly added to Vfg of each FG device, which was

calculated from the target current in the switch list and will be converted to a hex

code. This allows the algorithm to compensate for δVT0 between the two transistors.

Figure 36c shows a mismatch distribution and grayscale map before and after

mismatch compensation. Due to the small size (W / L = 1.8 u / 0.6 u) of the FG

device, FG devices have a wide range of VT0 mismatches from -35 mV to 36 mV.

The mismatch table compensates those VT0 mismatches, as a result, the standard
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Figure 36: The characterized mismatch table compensates VT0 mismatches effectively. (a) A
compiled block in a CAB measures VT0 mismatch. After FG devices are programmed at a fixed
current (e.g., 50 nA), the current difference between Imeas and Imeas(ref) is converted to a voltage
by pFET, then amplified by FG OTA having a gain of ∼10. A VT0 mismatch value is calculated
from the measured Vout. (b) In an example of a mismatch table, the first two elements represent the
row and column address of FG devices. The third element indicates each VT0 mismatch value. (c) It
compares the results of the VT0 mismatch compensation on 392 FG devices (14 rows X 28 columns)
in a CAB. In the grayscale map and mismatch distribution graph, a wide range of VT0 mismatches
(σ = 14.3 mV) due to the small size of FG pFETs are compensated by the mismatch map, resulting
in σ = 1.04 mV.

deviation (σ) decreases from 14.3 mV to 1.04 mV. Table 10 shows that the VT0

mismatch compensation effectively decreases σ values in multiple chips.

A boolean function XOR using a VMM and WTA, showing a non-linear classi-

fication, is tested with the calibrated FG SoC FPAA system. Figure 37a shows the

circuit, weight information, input, and expected output logic. The XOR, the third

WTA’s output, functions as a combination of the input voltage (X1, X2) and weights.

The WTA drives the output low when it has a higher current compared to the other

WTAs. The input voltage by signal DACs to represent “1” and “0” is set to 2.5V and
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Figure 37: A nonlinear classifier is tested on multiple chips. (a) A boolean function XOR, as an
example of a nonlinear classifier, is implemented with a VMM+WTA structure [46]. A combination
of inputs and Weights (W) determines the WTAs’ output voltage, in which the winner has a low
voltage (“1”). VT0 mismatches on the VMM weights and FG pFETs for WTA bias currents (IWTA)
cause a malfunction. (b) The VT0 mismatch compensation integrated into the compilation of the FG
FPAA system brings the decision boundary to the right operation range in the measured hyperplane.
(c) Vout with the VT0 mismatch compensation shows the same results with the XOR truth table in
all three chips.

Table 10: Mismatch map

Chip 1 Chip 2 Chip 3
σstart 14.3mV 15.2mV 13.1mV
σfinal 1.04mV 1.77mV 1.21mV

2.3V respectively. The experiment includes the calibrated on-chip DACs and ADC as

an input and output, as well as utilizes the characterized programming infrastructure,

FG parameters, and the VT0 mismatch table.

Due to the VT0 mismatches on the weights and pFET biases, the XOR without

a mismatch compensation results in an incorrect classification. Figure 37b shows

a measured hyperplane, where Vout corresponding to X1 and X2 is presented with

grayscaled values. It is clear that the VT0 mismatch compensation enables decision

boundaries for XOR function resulting in “1” when X1 and X2 is “1”, “0” or “0”,

“1.” Figure 37c shows results of three different ICs for the XOR classification. Results
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without a mismatch compensation shows failures due to the VT0 mismatches, where

the expected output is “1010”. The Vout with a mismatch compensation shows the

expected XOR results in multiple chips.

5.4 Conclusion

A calibration flow for an integrated FG programming system for a large-scale Field

Programmable Analog Array (FPAA) has been presented. We focused on character-

izing the FG programming infrastructure and hot-electron injection parameters in the

integrated SoC FPAA, calculating the EKV model parameters for the golden FETs,

calibrating the compiled DAC and ADC blocks that interfaces between the on-chip

µP and compiled analog circuits in the array. VT0 mismatches due to the indirect

FG structure are characterized through a compiled mismatch measurement block. A

compiled classifier implementing XOR function using a VMM and WTA on different

chips shows the effectiveness of the VT0 mismatch-map compensation integrated into

the compilation flow.

In our recent work, we have been focusing on an implementation of FG SoC FPAA

ICs including an on-chip FG programming infrastructure and providing a high analog

parameter density [12], developing an FG programming algorithm to achieve precise

target currents [15], and providing a high-level design tool supporting a graphical

design environment and compiling it to necessary files (e.g., assembly program codes)

[75]. The standardized and automated calibration method in the system, remained

as the last piece of this puzzle, is required to enable users to design analog circuits

without considering the device variation; even users with little exposure to an analog

circuit and system design (e.g., users from the signal processing community) can

design function blocks with abstracted blocks for a top-level design [76].

An iterative approach for measuring the input and output voltages of a VMM to

find the VT0 mismatch based on calculated output currents was implemented in [77].
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However, the iterative approach requires new calibration routine for each specific ap-

plication. A calibration flow to characterize hot-electron injection parameters in a

mechanical usage monitoring the system employing FG devices was shown in [78]. A

previous work [68] modeled FG devices’ mismatch and characterized some of the ana-

log devices in a CAB, providing an inspiration for the fully implemented system-level

automated calibration presented here. The proposed calibration method includes all

necessary parts for the FG SoC FPAA system from characterization of the program-

ming infrastructure, MOSFETs, threshold voltage mismatch, and FG devices to the

compiled DAC and ADC blocks. The µP and SRAM integrated into the SoC IC sim-

plified the calibration scripts by allowing the use of compact and efficient assembly

codes, which enabled calibration at a more complicated system level. Since the cali-

brated information is integrated into the compilation in the analog design flow, users

can focus on more complicated applications (e.g., large neuromorphic systems [42])

as if they are designing digital circuits.
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CHAPTER VI

APPLICATION DESIGN TOOLS

Automated or semi-automated Computer-Aided Design (CAD) tools have played a

decisive role in the development and design of digital and mixed-signal systems. Au-

tomated synthesis tools in digital systems convert a Hardware Description Language

(HDL) design written by a system designer into a layout in custom digital IC or

routing and logic information in Field-Programmable Gate Array (FPGA) system.

In analog systems, semi-automated design tools (e.g. Cadence Virtuoso) provide

numerous functions to help users to design, simulate, and verify the circuits. Al-

though CAD tools in digital and analog systems have achieved remarkable progress

for decades in each area, the application designer still does not have a unified system

for digital-analog design flow; it is required to define digital and analog parts at the

first stage, test each custom IC / FPGA, and integrate two parts at the system level

in Fig. 38.

A large-scale Floating-Gate (FG) Field Programmable Analog Arrays (FPAA)

is a solution to provide a unified mixed-signal system. FG System-on-Chip (SoC)

FPAAs, including analog-digital mixed arrays and FG programming infrastructure

with micro-processor and SRAM [12], have been developed. Tools for graphical high-

level design environment [75] and FG programming algorithms to precisely target

FGs [15] have been integrated for seamless connection to the FPAA.

The focus of this chapter is on CAD tools to bridge the gap between the high-

level user design and the hardware, which are essential for FPAA productive use and

development since individuals could only go as far as the tools are capable. The first

requirement for the tools is to use existing, working FPAA devices. Devices have
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Figure 38: Comparison of two different hardware implementation flows. To implement an applica-
tion (e.g. speech recognition), system designers have been taking a traditional approach to separate
the algorithm into digital and analog parts, which results in using different tools and requiring ef-
forts on digital / analog interface after testing each custom IC. Floating-Gate (FG) FPAA system
provides a mixed-signal design and test flow on FPAA ICs, which is enabled by a synthesis tool,
“x2c” meaning Xcos to Chip, compiling the design into necessary hardware files (e.g. switch list).

been characterized [79] and used in classes by multiple students [80] and numerous

collaborators [81]. The compilation tools generating a switch list for the FG pro-

gramming are based on Versatile Place and Route (VPR) due to its capability as

well as a possibility of improvements and contribution from a wider CAD community.

A second reason is to explore different FPAA architectures. This chapter will talk

about the CAD tool for compiling on an already built FPAA [12] architecture and a

graphical design environment, as it is the critical first step, where things are based

around a working FPAA device.

6.1 CAD tools for Mixed Mode Design

This section introduces different CAD tools used for FPGAs and FPAAs and tool

requirements for FG FPAAs.

86



FPGAs have look-up tables as a basic unit which has enabled reconfigurable /

reprogrammable digital system design post-fabrication of ICs, for over three decades

based on CAD tools’ support. Verilog-to-Routing (VTR) [82], [31] is one of the open-

source tools for FPGAs, where ODIN II transforms a given digital circuit described

in a Verilog code to a Berkeley Logic Interchange Format (BLIF) [83] netlist, ABC

optimizes BLIF netlist by synthesizing logic and performing technology mapping,

and Versatile Place and Route (VPR) maps the BLIF to the placement of CLBs and

routing track configuration on the FPGA architecture.

Similarly, reconfigurable analog CAD tools for CAB-based FPAAs have been pro-

posed [84], [85]. A tool called Generic Reconfigurable Array Specification and Pro-

gramming Environment (GRASPER) [85] is a solution for an automated place and

route in FPAA systems. This tool takes a SPICE netlist as an input, places analog

circuits based on Modified Hyper-edge Coarsening (MHEC) order of cells [86], and

generates optimized switches.

In case of FG SoC FPAA one has to handle both CAB and CLB with an integrated

processor, it has been essential to develop a new automated design flow enabling

mixed-signal applications, as well as for it to be an open-source software for wider

adoption / development of such tools. Although one might consider a modified version

of GRASPER as an option, the tool has limitations in scalability on different hardware

architectures and capability to cover digital circuits. Also, the high-level graphical

interface of GRASPER is based on MATLAB Simulink, which constrains the outreach

of the tool set.One might consider utilizing Verilog and extending ODIN II but the

compilation tool needs to fit with the high level design tool, sci2blif [75], provide a

graphical design environment, and convert the design to a BLIF file directly.
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Figure 39: x2c compilation flow. (a) Compilation tools and the resulting files. sci2blif converts
graphical design file (.xcos) into blif netlist file (.blif) and I/O list (.pads). VPR places the blocks
and calculates necessary tracks for global routing. vpr2swc maps the FG addresses based on the
place and route information. (b) Snapshot of VPR usage in an example. VPR provides a graphical
interface, where a user can check the place and route results visually.

6.2 Compilation tools to generate a switch list

We provide a mixed-signal system design environment using Xcos in Scilab [87] and a

Graphical User Interface (GUI) for compiling and testing the system, which are based

on open-source codes. On the GUI, “New Design” starts a new application design,

“Compile Design” creates necessary files for programming FG devices and built-in self

test of the system. “Program Design” sends programming files to the USB-connected

FG FPAA IC and programs FG devices. “Take Data” tests the system and shows

measured output data. For the users who do not have access to FG FPAA ICs, “Send

Email” enables testing of the design by compiling it to a remote system via a simple

PoP protocol [81].

We propose a tool set to provide a high-level graphical design environment in

Xcos / Scilab and also compiles it to a switch list which is transferred to the FG SoC

FPAA and programmed for the application, while handling heterogeneous elements

for mixed-signal circuits in different hardware architectures, as well as relying on
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a completely open-source codes. Figure 39a shows the proposed compilation flow

integrating three different open-source tools, sci2blif [75], VPR [31], and vpr2swc.

In the next subsections, we summarize sci2blif and VPR and then focus on vpr2swc

developed in this work and solutions to challenges caused by using VPR for analog

design.

6.2.1 sci2blif: Xcos → blif

Xcos is a graphical system design environment in Scilab, which is an open-source soft-

ware with similar functions to Matlab. A user designs a system in Xcos by dragging

blocks from a palette browser, connecting blocks’ inputs and outputs, and setting

parameters such as bias current or DC voltage conditions. Analog / digital elements

and basic functional blocks (e.g. I/O, ADC, DAC, LPF, etc.) are predefined in the

Xcos library, also user-defined functional blocks can be added to the library through

a macro block generation tool.

sci2blif converts block level information in Xcos into a blif netlist and a pad file,

which are inputs to VPR. The blif netlist has a description of the block, connections,

and parameters. Each FG parameter in a block is described with “]” and “&.” A

pad file includes necessary input / output information and connected I/O blocks.

sci2blif also builds a file set to be transferred to SRAM and generates assembly

codes to be executed by µP. For example, the tool converts the user-defined input

vector to a HEX file when it compiles “ARB GEN” block, which is a DAC applying

voltage values stored in SRAM at a given frequency. “Measure Voltage” block, an

ADC using FG device and programming infrastructure in the IC, requires the tool

creating a specific assembly code interfacing with µP for data acquisition.

Figure 40 illustrates converting from Xcos visual representation to blif files for the

analog components; the digital procedures are similar, although typically simpler.

Scilab saves the graph as a data structure, shown in Figure 6a, that describes the
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Figure 40: sci2blif Xcos model to blif/Verilog net list to put into VPR. (a) The data structure
for a single set of blocks is an array with the block information, as well as link information. Blocks
are enumerated by when they are created in Xcos; links are enumerated by where they are located
on the block. This data structure transforms to blif representation for VPR. (b) The resulting data
structure of the Xcos network only allows for a single input and output for a particular link; therefore
requiring additional blocks included to handle when converting a single output going to multiple
inputs.

Xcos file contents. The block objects are listed first, followed by the link objects, and

then, they are listed by link numbers.

The high-level Xcos file is converted into three passes over the data structure. The
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first pass parses data over the blocks portion to determine the number of blocks that

are compiled to CAB/CLB, input blocks and output blocks. The input and output

block object numbers are saved in two separate vectors (a and b, respectively). B is

the number of blocks; I is the number of inputs; and O as the number of outputs.

Finally, the data object is represented as a matrix, G, of size [(B + I + O) × B], that

contains the net numbers corresponding to each of the blocks to be compiled.

The second pass parses data to determine which blocks input or output port

is connected to another blocks input or output port. Each link is represented by

two values: the source and destination in data. The information provided is the

block number, port number (ports on blocks are numbered top-down for inputs and

outputs) and if the port is an input or output. The net number is placed in the matrix

mentioned above. The third pass parses data to generate resulting blif statements for

compilation. The input and output vectors and the matrix are used to put the nets of

inputs and outputs at the beginning of the blif file. Then, for each case, the command

for each block is identified, where the net numbers are retrieved from the matrix using

the block number. Figure 6c shows when users connect an output of a block to at

least two inputs, an extra small block is inserted into the Xcos internal representation,

increasing the number of blocks and links that is removed before generating blif file.

6.2.2 VPR: blif → route

We utilize VPR tool to calculate optimized place and route of blocks. Figure 39b

shows a graphical result of VPR for a mixed-signal system. The VPR architecture

file is customized to include CABs, as well as CLBs, in the fabric array. The global

routing structure is directly applied to VPR, where S-blocks switch the direction of

routing (North, South, East, West).
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Figure 41: Detailed tool flow and configuration of VPR and vpr2swc. Architecture file (.xml) for
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CLB and I/O blocks corresponding to the hardware. vpr2swc creates a switch list of global routing,
local routing, and FG parameters for analog / digital devices based on the architecture file (.py)
including array information, offsets, and FG parameters.

Figure 41 shows how to configure the VPR architecture file and specify the tool op-

tions in our compilation flow. Architecture file with “.xml” extension requires defini-

tion of array blocks, which are I/O pad blocks, CABs, and CLBs. North, South, East,

and West I/O pad blocks have 6 pins connecting the array. CAB uses <pb type>

tag, to specify the properties of a complex block, for defining analog elements and

macro-blocks consisting of analog elements. CAB includes the definition of 24 pins (6

pins in each direction), which can be assigned to input or output. <Interconnection>

tag maps inputs and outputs of each block to CAB’s pins. <complete> tag connect-

ing input/output to any pin at the output/input is used for general blocks, while

<direct> tag is used for specified blocks such as Vector-Matrix Multiply (VMM).

Similarly in CLB, Look-Up-Tables (LUT) and Flip-Flops (FF) in BLE are defined

as a complex block with the <pb type> tag, the <complete> tag connects inputs /
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outputs of blocks to CLB pins. CLB has 16 input / 8 output pins ( 4 input and 2

output pins to each direction).

Based on the architecture file, VPR places and routes the elements from blif netlist

and pads information. The use of “-fix pins” option locks each I/O pad to a desired

location listed in the pads file and results in the output file (.place) which includes

details such as block name and locations. In certain applications one can customize

the .place file where the system designer can assign a specific location for a block in

the Xcos design. The option “-route” invokes this functionality to create a route file

(.route) including switch / source block locations and track numbers.

VPR runs with a default options of “-nodisp” which hides the graphical interface,

“-route chan width = 17” indicating the number of tracks, “timing analysis = Off”

turning off the timing analysis while performing global routing. Although the global

routing optimization here is based on congestion information, a timing driven opti-

mization can be integrated into this system by measuring and modeling line resistance

and capacitance [37].

6.2.3 vpr2swc: route → a switch list

As the final step of the compilation process, a vpr2swc code developed in python

calculates FG addresses and creates a switch list. Figure 41 shows the configuration

of vpr2swc architecture file and how to map global / local routing and FG devices to

FG addresses.

The architecture file (.py) includes information on physical arrangement of the

array and offsets for FG devices, which varies according to different FG FPAA IC

architecture. Row and column addresses of CAB / CLB / I/O blocks are described in

the array information. The .py file defines FG offsets for global routing, where Chanx

in C-block connects horizontal tracts to vertical pins, Chany in C-block connects

vertical tracks to horizontal pins, and the tracks intersect in S-block, as well as local
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Figure 42: FG mapping for local routing and analog / digital / I/O elements. vpr2swc calculates
row and column address from FG address map sharing FG node with each corresponding FG device
in the routing map. Local switch matrix in the routing map connects global routing lines, gnd, and
Vdd to input / output of analog / digital / I/O elements. Local switches in I/O block connect global
routing lines to I/O elements as well as DACs, ADCs, µP. vpr2swc adds FG device addresses in the
elements (e.g. OTA, FG LUT, I/O buffers) into the switch list.

routing and analog / digital / I/O devices in blocks.

vpr2swc reads and parses routing file to get necessary information for global rout-

ing. The routing of each net begins on a Opin (a certain output pin), goes through

Chanx and Chany, and ends on a Ipin (a certain input pin). (x,y) location and pin /

track numbers of each channel are described at each line. Based on pin, track, and FG

offsets defined in the architecture file, the tool creates C-block FG switch addresses

from pin number in Opin / Ipin and track number in Chanx / Chany and S-block

FG switch addresses from track numbers in two adjacent Chanx or Chany.

A list of local switches and FG parameters in CAB / CLB / I/O blocks, handled by

VPR as black boxes, is generated based on the FG offsets defined in the architecture
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file and block location information assigned by the placement. vpr2swc parses the

placement file and integrates circuit parameter information described in blif netlist.

Figure 42 shows detailed configuration of blocks, including local routing and ele-

ments in the recent FG FPAA IC [12]. Local switches in routing map enables connec-

tion of local lines, which are inputs / outputs of block elements, to global lines from

C-block, to the power rails gnd / Vdd, as well as interconnection between local lines.

Each FG switch in the routing map corresponds to an FG address which shares the

same FG node and has a row and column address.

Analog elements in CAB include two Operational Transconductance Amplifiers

(OTA) using a FG device for bias current, two OTAs using FG devices for the input

transistors and a bias current, four capacitors using FG devices for selecting capacitor

sizes, two nFETs, two pFETs, four Transmission gates (T-gate), and two N-mirrors.

Digital elements in CLB are comprised of eight Basic Logic Elements (BLEs) made

of 4-input Look-Up Tables (LUT), a Flip-Flop (FF), and FG switches for the logic

configuration. A FG switch is set to program the user-defined logic and is embedded

in the LUT. The FG switch also enables a sequential or combinational logic based on

whether the output is either routed through a FF or not respectively. Local switches

of I/O block enable connection to pad on PCB as well as DAC, ADC, General-Purpose

Input/Output (GPIO) that interface with the µP. A user could also route the output

via a digital/analog buffer, or choose an unbuffered pad.

Since VPR and blif netlist have been developed for the description of logic gates in

FPGAs, extending it to heterogeneous systems is accompanied by two big challenges,

listed in Fig. 43. One challenge is to handle the input / output directionality of

analog circuits. Logic circuits, e.g. AND gate, function with explicitly defined input

and output ports. On the other hand, the ports of analog circuits are close to a

concept of bus, which requires bidirectional definition depending on the application.

As an example a Shift Register (SR) block could be configured in multiple ways. A
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Figure 43: Challenges on applying VPR to analog system. Directionality of input / output:
VPR originally designed for FPGA handles element blocks with explicitly defined inputs and outputs,
which functions on logic circuits (e.g. AND gate). On the other hand, input or output of analog
circuits are required to be defined bidirectionally. The architecture file of FG FPAA defines global
lines in CAB as bus A / B, which allows analog blocks to have different definition on the same
global line depending on the application. The example of Shift Register (SR) shows two blocks
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provide multiple drivers for a single net, it is a required function for analog circuits, shown in the
examples of voltage divider or WTA. We enable this functionality by using output joint blocks in
global routing or generating macro block with local routing.

user could compile a shift register having either 16 inputs / 1 output or 1 inputs / 16

inputs for a variety of usages. We modified CAB definition in VPR architecture file

to map each physical port to have either input or output, which enables bus concept

of input / output for analog blocks.

Another challenge is conflict arising from connection of multiple outputs. VPR

does not allow multiple drivers for a single net since it is regarded as a logical error in

digital circuits. In analog circuits, however, multiple outputs on a single node is im-

portant for its functionality. For example, a voltage divider using two OTAs requires

combining two outputs of OTAs to a single node, a Winner-Take-All (WTA) circuit

has an architecture which requires a common current bias and hence multiple outputs

of the WTA have to be connected to an input. A macro block approach provides a
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design and used as a parameter by the placer.

solution by routing locally inside the CAB, encapsulating complex circuits with in-

terconnections on a node for multiple outputs. As a global routing level solution, we

provide a joint block allowing multiple inputs to be driven by an output, which is

compatible with VPR.

6.3 Advanced Design Tools

The tools introduced so far enabled compilation of the user’s design by creating a

switch list. In this section, we introduce advanced tools for generating macro block

and customizing block’s location to support complicated and specific system design,

as well as designing Vector-Matrix Multiply (VMM) blocks to enable power and

area efficient computation by using routing FG devices. Figure 44 shows the whole

compilation flow integrating two advanced tools.
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6.3.1 Macro Block: Encapsulating complex circuits

The tool abstracts complex mixed signal circuits to a high-level block by two differ-

ent methods of encapsulation as illustrated in Fig. 45. The first is macro-blif block

integrating circuits into a blif netlist. The tool extracts the inputs, outputs, intercon-

nections, and FG parameters from the original circuit design and adds a compilation

description of the macro block to the Xcos library. For internal nets, unique net

names using the user-defined macro block name are assigned to avoid errors which

may arise from overlapped net names in a blif file. The second is macro-CAB block

integrating circuits into FG switches in a CAB. The macro-CAB block generation

tool provides a Xcos file that analog elements and interconnection FG switches in

CAB are predefined, which includes mapping information of each FG address corre-

sponding to each FG device. A new user-defined macro-CAB block is designed by
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modifying the provided Xcos file. FG devices are used for interconnecting analog

element by connecting there inputs to outputs or gnd / Vdd, as well as for setting the

bias value of a circuit, for example a bias of an OTA, by specifying a targeted current.

After the inputs, outputs, and names of parameters with default values are set by the

user in the Xcos design, the tool generates a macro-CAB block, which encapsulates

the users design, and its necessary files to add Xcos library and architecture files for

VPR and vpr2swc.

Macro-CAB block enables compact design, which means efficient area and lower

parasitic capacitors, using the limited number of analog elements in a CAB. On the

other hand, macro-blif block is not limited by the number of elements in the CAB

and hence is suitable for system-level design.

Customizing the placement of blocks in a specific CAB in the FPAA fabric is

required for certain applications. For example, a ramp ADC calibrated with a CAB

needs to be compiled at a fixed location, since the slope of the ramp changes de-

pending on the capacitor mismatch and biasing current. A Gm-C filter which is

sensitive to parasitic node capacitance is also an example, where we can calculate

routing capacitance based on [12] when the block location is fixed, and set the filter

parameters.

For Customizing the placement of blocks, a user sets the location of the block in

the Xcos design by changing a block parameter, “Fix location”. The tool searches

the block name in the placement (having a suffix .place) file and swaps the location

for the defined value.

6.3.2 VMM: computation with routing

Vector-Matrix Multiply (VMM) block is a core component for variety of signal pro-

cessing and machine learning algorithms, performing a multiply operation between a

vector inputs and a matrix of weights trained. FG devices on routing nodes, storing

99



Classification

Image convolution

(e.g.) vmm16x16 - SR

WVin

VMM (Vector-Matrix Multiply)

Iout

Iout = W  Vin

Winner-Take-All (WTA)

Shift Regster

VMM (Macro-CAB)

(a)

(b)(c)

VMM (Macro-blif)

Integrator

<pb_type> vmm8x8 <\pb_type>
<interconnection>
<direct cab.in[7:0] vmm8x8.in[7:0]>
<direct vmm8x8.out[7:0] cab.out[7:0]>
<\interconnection>

.blif

Architecture File (.xml)

Architecture File (.py)

vmm8x8_fg, [[33,10], [32,11], ...]

vmm8x8_weight[0:63], [[32,2], [32,3],

[32,4], ...]

.subckt vmm8x8 in[0]=net1 ... out[0]=net17 ...

#vmm8x8_fg & vmm8x8_weight= [50e-9, ... ]

.subckt vmm8x8 in[0]=net8 ... out[0]=net25 ...

#vmm8x8_fg & vmm8x8_weight= [50e-9, ... ]

.subckt shift_register in[0]=net17 ... out[0]=net33

#shift_register_fg

Global Lines

L
o

ca
l 

L
in

es

Vin1 Iout1 Vin2 Iout2

W11

W12

W13

S W21

W22

W23

S

Vin8 Iout8

W81

W82

W83

(e.g.) Vmm8x8

S: Switch program

W: Weight (Target program)

VMM
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the weight and converting a voltage input linearly into a current, enable a power-

efficient and compact implementation of VMMs. Figure 46a shows examples of the

application, an analog classifier combining VMM with a WTA [46] and an image

convolution combining VMM with shift register and integrator [36].

Figure 46b illustrates an example of 8×8 VMM implementation with a macro-CAB

block in local routing. In local routing fabric, FG devices connected to inputs (Vin)

are programmed to a target current level corresponding to each weight values. The

converted currents in a row are summed to each output (Iout) through a programmed

switch. To pair the weight matrix with dedicated FG switches in the local routing,
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Table 11: System compilation examples

No. of blocks
No. of FGs Ref.

CAB CLB I/O
DAC+Com drain+ADC 2 0 2 40

DAC+Volt div+ADC 2 0 2 44

ABC+ABC 1 1 4 63 [12]
DAC+LPF+ADC 2 0 1 39 [81]

Universal Approximator 7 0 4 222 [75]
Speech processing 5 0 3 131 [88]
Speech Classifier 19 0 5 995 [12]

the inputs / outputs of VMM block are assigned to fixed global lines by using “direct”

option in the architecture file.

Based on the VMM blocks, which are special type of macro-CAB blocks, it is easy

to extend a VMM block with large number of input / output by using macro-blif

block. An example of 16×16 VMM with shift register is shown in Fig. 46c. The

description in the architecture file for blif file includes four of 8×8 VMMs and a shift

register.

6.4 System Examples

Table 11 shows several system design examples based on the compilation using the

proposed tools in this work. The table includes number of blocks in the placement

file and number of FG devices created in the switch list. In this section, we illustrate

three different systems built using a low pass filter, universal approximator, and a

speech classifier as a complex system design example using macro blocks, where each

functionality of the system has been proved with experimental data [12], [75], [81], [88].

Figure 47a shows a Xcos design and the VPR result of a first-order low-pass filter

(LPF) system with a DAC and an ADC. An OTA connecting the output to (-) input

and a FG device ADC using FG infrastructure are integrated into macro-CAB blocks,

respectively. A dedicated circuit converting user-defined input vector into a voltage on

FG SoC FPAA is utilized. The tool creates switch list based on the VPR placement
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Figure 47: System examples using FG SoC FPAA. (a) DAC + Low-Pass Filter (LPF) + ADC.
(b) Universal approximator. XOR is implemented by using VMM + WTA. (c) Speech classifier.

and routing, and the experimental results have been proved in [81].

A boolean function XOR using a VMM and Winner-Take-All (WTA) is an ex-

ample of universal approximator [46]. Figure 47b shows the Xcos design, weight

information, the expected input / output logic, and the resulted VPR placement

and routing. The second and third input of the circuit and the weights forms the

XOR output on the third output of the WTA. A macro-blif block including VMM,

WTA, and a bias current FG nFET mirror circuit is implemented. A shift register

block and GPIO logic signals are employed to measure the third output of WTA. The

experimental results based on the compiled switch list have been introduced in [75].
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Figure 47c shows an example of speech classification detecting a word in a sen-

tence. A macro-CAB block, “Speech,” in Xcos design integrates band-pass filter

(BPF), amplitude detection, and low-pass filter (LPF). Twelve speech blocks per-

form continuous-time decomposition with different Q values on BPF. A VMM +

WTA block classify each of the resulting spectrum into simple symbols. A shift regis-

ter block and ADC are employed to measure intermediate nodes. Location of speech

blocks are customized for the performance, the experimental results have been shown

in [12].

6.5 Conclusion

This chapter presented a mixed-signal co-design environment using FG SoC FPAAs.

The tools developed in this work take an essential role in the compilation flow, con-

verting a user’s Xcos design into a switch list and enabling experimental measurements

in the same integrated design tool framework. The tool set is an open source setup

provided in a Virtualbox package with Linux Ubuntu OS 1.

We expect our tools to empower a wider community for analog and digital system

designers, as well as share the opportunities with VTR community. This work opens

up interesting questions in the optimization capabilities of the VPR. For example, we

employed a “Joint” block to solve the incompatibility problem of multiple outputs on

a single node, which results in using an extra block. Also, a constraint on the VPR

array structure, in which CAB / CLB should be arranged in a column direction,

limits the flexibility of the array structures. We believe that an extended version of

VTR / VPR covering both FPGA and FPAA can cope with the problems in easier

and more efficient way.

This work starts the discussion on formulating the benchmarks for analog / mixed

1http://users.ece.gatech.edu/phasler/FPAAtool/index.html
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computation. Benchmarks imply understanding computation, which required the ef-

fort of this work and parallel efforts to reach a point where developing a reasonable

benchmark is possible. A benchmark likely would be composed of components seen

in Fig. 47, although they are not at the necessary complexity for a well formulated

benchmark. The initial benchmarks include small number of CLBs and CABs, how-

erver, we believe more complicated system-level benchmarks (e.g., Image convolution

/ classification or speech recognition) will fully utilize most of digital/analog blocks.

One can infer more about the computation by choosing the right benchmark.

Digital computation benchmarks are about matrix equation solutions (e.g.LINPACK

[89]), including LU decomposition. Analog / mixed computation benchmarks would

look at different optimization metrics such as Ordinary Differential Equations (ODE)

and Partial Differential Equations (PDE) [90]. The system examples illustrated here

show, what the benchmarks can be, on the path and are beginning to be clear for

such systems. These would be the critical next steps as we move forward from our

efforts.
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CHAPTER VII

A REMOTE FG FPAA SYSTEM

This chapter discusses a novel remote test system, enabled by configurable analog–

digital ICs to create a simple interface for a wide range of experiments; a wide range

of previous remote test systems have to spend considerable time developing their

hand-tailored configurable system [91–96]. Figure 48 remote test system requires

no additional setup, other than the experimental system, other than simple email

handling, which is available over almost all network systems without affecting the

network. Independent of distance, the system enables users anywhere with an internet

connection sufficient to send and receive email, opportunities both in academic as well

as research and industrial applications. This approach minimizes computer support

setup and maintenance, relieving the pressure overworked computer support staff,

particularly in cost-conscious academic environments, trying to keep pace to maintain

a larger number of computing systems.

The remote test infrastructure is enabled through a single digital external digital

interface to an analog–digital programmable and configurable IC system, empowered

using large-scale Field Programmable Analog Array (FPAA) device(s) [12]. This

approach gives a simple digital peripheral using a standard interface (i.e. USB),

enabling a small Internet of Things (IoT) block interfaced through an email system

to an open-source design / control tool. Our open-source tool platform empowers the

user to do seamless low-power analog-digital co-design in a single environment [75].

The resulting controlling device, whether it be directly connected through this digital

port (i.e. phone or tablet) or through a network, can be a potentially simple OS

enabling all features on the resulting system, including sensory / actuation devices
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Figure 48: Remote test system based on FPAA devices that can be used within our current
framework of high-level, open-source Xcos/Scilab tools. With a single button click in the graphical
tool, the system will email the resulting targeting code for the FPAA device to a server location, to
be picked up by the remote system, that compiles, runs, and then emails back the target results.

connected to this remote platform.

POP email communication fits with the limited operations required, easy to code,

and keeps the resulting computation requirements for operation as minimal as pos-

sible, particularly for academic environments. Email protocol simplifies individual

access while requiring effectively zero administrative support. Other educational re-

mote test systems require the user to take control of the system, usually through a

log-in. This remote system approach differs from the area of one-way updating FPGA

software, or remote FPGA reconfiguration for a device in the field [97,98].

The following sections present the resulting FPAA based remote test setup in-

cluding, overviewing the remote-tool structure, presenting multiple system examples,

while presenting the range of user interfacing, expanding the remote user application

as well as measurement capability.
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Figure 49: System perspective using a remote test system to utilize mixed-signal configurable
systems. (a) Classical approach when considering analog IC design and testing that have an analog
component under test, along with all of the required board (or bench) infrastructure required. (b)
For these mixed signal ICs, the IC is an entire system, acting as a peripheral through a USB port
and/or optional SPI port. Also, the resulting analog to test, if making a complete parallel to the
system in (a), is a small part of the overall available computing infrastructure.

7.1 Remote Tool Framework

Figure 50 shows the perspective of our remote testing approach. When one thinks of

testing an analog IC, or even a mixed mode IC, one tends to visualize, in the best case,

a test setup like Fig. 49a. Such systems mostly have a single or a group of analog ICs,

some controlled switches, and an infrastructure to connect to a computer to control

the entire setup as well as run the testing interface. When looking at a remote

testing system, the testing interface layer requires further complication depending on

the particular system.

In comparison, Fig. 49b shows the FPAA system used, the FPAA IC is a full

system with a processor, requiring only simple interfacing to the outside world through

107



USB or say SPI ports, appearing to be a standard peripheral to a typical device. Such

an approach enables a family of configurable hardware, utilizing a single configurable

framework and tool infrastructure to control the resulting device. This difference

in configuration provides the opportunity for empowering our remote test system or

classroom use, research groups, as well as interested users. Integrating this approach

into an existing tool framework keeps compatibility for a range of applications, and

not limited to just an academic or research application.

Figure 50 shows the framework for the remote system approach. The resulting

structure should be easy to use on both the user and remote server side, requiring

minimal user maintenance, using an integrated user tool platform, and having as few

location constrains as possible. The tool platform [75], implemented in Xcos / Scilab

(an open source clone for MATLAB / Simulink), simulates designs as well as enables

experimental measurements after compiling to SoCs in the same integrated design

tool framework. The open-source toolset is setup as an Ubuntu 12.04 Virtual Machine

(VM)1 enabling use in classrooms as well as research and development groups.

Our modifications to the high level Xcos tools on the user side required extending

the GUI interface, as well as updating the (python) code to enable emailing the

resulting compiled FPAA targeting file out from the VM. The user will receive their

resulting data to their email location as an attached representation of the measured

results; the user can move this data into Scilab or another analysis / plotting tool of

their choice. By using an email based system, one would not expect real-time control

occurring through the resulting email network.

The small remote server code framework minimizes resulting system overhead,

utilizing standard email servers to enable a relatively stable remote platform capable

with nearly zero administrative overhead. The remote server will periodically check

for email on the server, POP the resulting message from the server, check its control

1available at http://users.ece.gatech.edu/phasler/FPAAtool/index.html
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Figure 50: Detailed flow for the remote test system implementation. The design toolset in scilab /
Xcos allows the user to “send email” in addition to “program FPAA.” When that option is chosen,
the resulting file is sent by email into the cloud. The resulting email is POP-ed off the server, the
resulting programming files are extracted and executed, the resulting data measurement is performed
on the device, and the results are sent back by email to the original sender. The user can directly
use the results in Scilab or any other data analysis program to observe their data as well as complete
their analysis. The resulting flow is enabled by having a highly configurable analog / mixed-mode
system with a simple digital interface through USB, really enabling the connection as a typical
digital peripheral.

syntax, and have the object code ready for programming. Recent FPAA devices

now enable Floating-Gate (FG) device programming entirely on the device as an

input data stream; therefore the entire data stream, including µP code to execute

programming, simply looks like a single stream of data to the system. Encapsulating

this entire structure in a single file requires small, unix-based code to communicate

the file to be programmed. After the device is programmed and the input data is

loaded into the processor, the IC proceeds to compute the resulting function, also

storing data in local or in the remote server memory. The resulting output data

results are pulled together and sent out by email to the host’s chosen email address.

This approach enables programming by any small embedded devices (after de-

sign), particularly those with direct USB connections (tablet, phone) allowing min-

imal (linux) code for programming and operation. Whether remote or not, these
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Figure 51: Possible approaches for mixed-mode computing systems. Implementation could be (a)
a single FPAA device, (b) a board of FPAA devices, or even (c) a board with no FPAA devices
but with programmable parameters and topology for a resulting board encoded in the resulting
technology file.

concepts allow an easy approach for networks of remote sensor nodes; for example an

Internet of Things (IoT) approach enabling real-time sensor processing that can send

context aware results while requiring minimal support overhead for the approach.

Figure 51 shows FPAA IC board design, as well as systems using additional pro-

grammable components. The high-level graphical tool enables a user to be able to try

different approaches to optimize the system performance, allowing consideration of

tradeoffs of power, system utilization, time to market, etc. Digital Hardware-Software

CoDesign is an established, although unsolved, discipline (e.g. [99]). Including of

programmable and configurable analog computation to current digital approaches

requires revisiting existing tradeoffs. The approach is focused to enable system de-

signers to integrate useful systems, while still enabling circuit experts to continue to

develop creative and reusable designs within the same tool flow.
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Figure 52: An example of the entire tool flow for a Low-Pass Filter (LPF) computation. (a)
The user chooses basic design options through the FPAA Tools GUI, which starts running when
the Scilab tools are started in the distributed Ubuntu Virtual Machine (VM). (b) Snapshot of the
Xcos palette for FPAA blocks. There are four sections, namely the Analog, Digital, Input/Output
and Complex Blocks; the Analog, Digital and I/O blocks consists of basic elements in different tiles
of a chip. Complex blocks are pre-defined circuit blocks made of more than one basic element.
(c) Simulation results for 4 input and output computation. Lines, and resulting blocks, allow for
vectorized as well as scalar inputs. Inset shows the Xcos diagram; the user sets parameters for
simulation or for compiling into IC. (d) Experimental results for a 1 input and output computation.

7.2 Remote System Overview Examples

Figure 52 shows an initial full tool example of the graphical interface and results

for a first-order Low-Pass Filter (LPF) system, showing both simulation results and

experimental results from the remote test system. Figures 53, 55, 56, 57 show more

complex tool examples using this remote system. Xcos gives the user the ability

to create, model, and simulate analog and digital designs [75]. The Xcos editor is
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Table 12: Components of Single Programming File

Function Data Type Core Files
erasing Compiled tunnel revtun CAB.elf
and initialization (assembly) switch program.elf
measuring outputs Compiled voltage meas.elf
input (e.g. DAC) data data input vector
FG block data output info
Switch list info data switch info
(num, address) target info
Course Prog Tinj data pulse width table offset d1o2
Fine prog Vd table data Vd table 30mV

standard blocks that are compartmentalized into classes or palettes that range from

mathematical operations to digital signal processing. The editor allows the internal

simulator to utilize the functionality of each block to compute the final answer. Our

tool structure took advantage of user-defined blocks and palettes that can interact

with Scilab inherent blocks.

Figure 52a shows the FPAA Tool GUI and grey buttons with the labels: New De-

sign, Choose Design, Open Design, Compile Design, Program Design, and Take Data;

these buttons open a new Xcos editor window, select a previously saved design, view

the design in Xcos editor, convert the information in Xcos file into a programmable

format, program hardware for the current Xcos file selected, and cause the hardware

to be in the mode to take data, respectively. It includes a button which is labeled

email, and a top box that one can put in an email address. These two small but-

tons on the tool framework show the minimal additional user overhead for using the

remote system.

Our Xcos [87] tool uses user-defined blocks and libraries. When the user opens

the Xcos editor, a palette browser is displayed, as shown in Fig. 52b. The browser

lists Scilab’s collection of palettes as well as user defined palettes. One selects from

a palette of available blocks to build the resulting system, which can be composed
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Figure 53: One basic voltage measurement scheme utilized in the SoC FPAA [12] for low-speed
measurements utilizing the entire IC infrastructure. The µP design is an open-core MSP 430 proces-
sor with on-chip structures for 7-bit signal DACs, a ramp ADC, memory mapped General Purpose
(GP) IO and related components. The measurement through a FG transistor in a CAB utilizes
the processor, signal DACs and memory mapped register, a typical loops for instrumenting and
measuring analog and digital blocks; Often, the FPAA computation utilizes all of these capabilities.

of a mixture of analog (blif), digital (verilog, blif), and software (assembly language)

components.

The single programming file, attached to the email for programming the remote

system, is a compressed structure of multiple files. The tools output a single pro-

gramming file, a combination of multiple files, that is used for FG programming and
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Figure 54: Our approach is enabled through a single port of communication, through a USB
port to a self contained programmable and configurable mixed-signal IC through its programmable
interface. This simplicity results in understanding both the analog and digital capability of the
FPAA IC, and the resulting input and output blocks for the system as well as the resulting system
control, at the level allowed for the high-level tool framework (Xcos / Scilab). The entire IC is
the computing system, and all components are part of the computation. A typical user will often
use digital (GPIO) or analog (DAC through GPIO) input blocks, interfaced through the SRAM
memory and µP control, and will often use digital as well as analog compiled ADC through GPIO
or Vmeasure through slower and more accurate 14bit ADC. The tool framework compiles down the
resulting analog, digital, and µP components, as well as the vector input into the system.

SRAM memory setup for the SoC FPAA [15]. The design tools can process the down-

loading of this file, as well as other devices (e.g. remote computer, tablet). The SoC

FPAA devices now enable Floating-Gate (FG) device programming entirely on the

device as an input data stream, therefore the entire data stream, including µP code

to execute programming, simply looks like a single stream of data to the system. The

FPAA utilizes an open-source µP, embedded 16k × 16 SRAM for program and data

memory, as well as the memory mapped registers for FG programming. We give the

file definition in Table I. We expect this structure will remain stable across future gen-

erations; fortunately, each programming file is self contained for programming since

it includes its own code and parameters for programming.
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7.3 The Range of User Interfacing Expands Remote User
Capability

Figure 54 shows the remote server was partially enabled by a simple digital (USB)

interface, with simple interfacing between the FPAA IC (or multiple ICs) to the

resulting USB infrastructure to the host device. The input data, output data, FG

programming, and other control functions all move through a single standard digital

USB interface; the device to the remote system looks like any other embedded, USB

peripheral, where the tools handle a similar case whether the board is local to the

tools or emailed to the remote server. The setup uses no external pins; one could

connect multiple devices, heterogeneous devices, and additional sensors, but to the

external world, the device is still a simple USB connected device.

The practical issue is understanding the particular interfacing options available

on the FPAA, as well as the computation possible on the FPAA device. The USB

interface is connected through serial interfaces, a simple serial (8n1) interface through

an FTDI 2232D IC on the board.

Figure 54 shows the high-level blocks representation, similar to the correspond-

ing Xcos diagram, both including computational blocks, as well as input and output

blocks available and their interfacing into the µP / SRAM memory block. The arbi-

trary waveform generator connects data to a vector input representation versus time

in the Scilab workspace that gets converted, where needed (i.e. DAC devices), as well

as packed with the programming file; the interface for the data is directly set by the

high-level tools. A short list of potential on-chip interfacing options for moving data

in and out of the µP / SRAM memory are:

• General Purpose Input / Output (GPIO) memory mapped digital registers

• Hardware interrupts based on routed fabric signals

• Signal DAC through memory mapped registers
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Figure 55: For the remote system, one key aspect is the range of potential methods for voltage
measurement in the fabric to connect to the µP device. Typically, these devices include direct digital
inputs, with resulting level comparisons, Analog-to-Digital Converters (ADC), as well as a range of
other classifier components. One can compile a Ramp ADC in the routing fabric to operate at a
range of sample frequencies and resolution.

• Compiled ADC coupled with FG elements in the fabric through GPIO registers

These approaches are all voltage-mode inputs and outputs, consistent with level=1

block definition for system building [76]. Further, blocks can have some assembly code

(or completely assembly code) as part of the functionality, therefore would interact

with memory, potentially, more directly. Where necessary, one can measure currents

through compiled transimpedance amplifiers, switched capacitor network, and related

circuit techniques. One key constraint on any algorithm is efficiently using the 16k

x 8 SRAM data space either to hold data, or buffer data coming through the serial

communication from the host system running the remote interface.

One representative question would be the types of Analog-to-Digital Converter

(ADC) blocks, and their applicability for a configurable architecture. Figure 55 shows

a programmed ADC block, a ramp ADC. An important question is what type of ADCs

to compile in such a configurable system, particularly in a compiled system with a
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Figure 56: Measurement of the compiled 8-bit ramp ADC used in the FPAA device. 4kSPS ADC
for this 8-bit ramp conversion integrates the compare + ramp functions compile into a single CAB,
routing the digital output bit to GPIO. This simple ADC polls for the digital bit to change while
counting in the processor; more advanced blocks utilize interrupts and compiled counter blocks in
the CLBs for the conversion. The ADC is not meant to be the highest precission component, but a
very small, monotonic ADC calibrated for the resulting response as necessary. A compiled system
for a first-order low-pass filter using these components, where the output load capacitance is implied
(output going into the ADC), because of the node capacitance from the routing infrastructure. The
programmed corner frequency of the LPF is 150Hz. The resulting device is measured by applying
a linear chirp input signal going from 25Hz to 250Hz, showing the resulting signal attenuation, as
expected, as well as the resulting signals from the input 7-bit DAC as well as the 8-bit ramp-ADC
(4kSPS). The output of the ADC inverts the resulting response from the original signal.

high density of FG devices available. One would not expect an architecture with

lower latency than a pipelined 1-bit ADC architecture, primarily because a require-

ment for a smaller latency delay would likely result in analog computation. These

pipelined devices are typically used mostly for acquisition of data, often for circuit de-

bugging opportunities. Algorithmic converters, being related to the pipelined ADCs,

would most likely win over successive-approximation ADCs because of not requiring

the design of a separate DAC for the system; we estimate achieving an algorithmic

converter in 1-2 CABs in a typical architecture. The approaches get closure on the

most promising ADC IP blocks to compile down for these architectures.

Figure 56 shows a simple compiled ramp ADC converter to illustrate the flow

from input SRAM memory data to the computed output SRAM memory data. The

resulting simple 8bit ramp ADC illustrates using the digital infrastructure and µP

to move analog signals into stored SRAM memory. The simplicity only requires

part of a single CAB element while still giving reasonable monotonic performance
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with some curvature due to the nonideality of the current source element creating the

ramp; Measurement examples use 4kSPS ADC sampling. Figure 56 shows a complete

computing loop for data through a board used as a remote test, where the starts data

loaded into SRAM as part of the programming structure, processes through one of

multiple memory mapped 7bit DACs, through a first-order LPF block programmed

with a corner frequency of 150Hz, through the above ADC block, to arrive back as

stored solution vector in SRAM that is transmitted back to the user.

Figure 57 shows a more complex example using the remote FPAA system, a

parallel bank of bandpass filters and amplitude detection typically used for low-power

sub band analysis, as another example of co-design between assembly, analog, and

digital components and interfacing. The corner frequencies are programmed between

100Hz and 750Hz, seen by the different peaks in the chirp response in Fig. 57. This

example uses the same SRAM memory, 7bit input DAC, and compiled ADC. A similar

chirp signal linearly varies between 25 and 1kHz.

7.4 Conclusion

This chapter presented a novel remote test system, enabled by configurable analog–

digital ICs to create a simple interface for a wide range of experiments. Our remote

test system requires no additional setup, resulting both from using highly configurable

FPAA devices, as well as from the advancement of straight-forward digital interfaces

for the resulting experimental FPAA system. An analog–digital programmable and

configurable IC system, enabled by FPAA device(s), requiring a single digital external

digital interface opens opportunities for a simple remote test infrastructure. The

system overhead requirements are straightforward, requiring simple email handling,

available over almost all network systems with no additional requirements.

Opportunities appear both in academic, as well as research and industrial appli-

cations. This technical platform enables collaborators in different areas to investigate
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Figure 57: Block diagram (similar to Scilab / Xcos definition) and output results for a bank of 6
BandPass Filter (BPF) and Amplitude detect elements compiled and measured through a remote
FPAA board. The input chirp signal, a linear sweep between 25Hz and 1kHz, is stored on-chip SRAM
to be played through a memory-mapped DAC. The output signals went through a demultiplexing
module, compiled using the shift-registers located in routing fabric, and then through the same 8-bit
ramp ADC module; this measurement only used the upper half of the positive values (effectively
6bit). The linear frequency sweep with time is illustrated, as well as the resulting outputs of all 6
frequency channels, each programmed to a different frequency location (exponentially spaced).

items on a single platform; setting up a system is straight-forward and capable for

multiple systems. These approaches have been utilized as part of a graduate level class

at GT [100]. Our novel open-source tool platform empowers the user to do seamless

low-power analog-digital CoDesign in a single environment. Our FPAA SoCs consist

of an integrated processor, I/O peripherals, and an FPAA comprised of analog and

digital components [12], although the approaches can be extended to other platforms.

Our approach integrates multiple open-source tools, using Scilab and VPR, to develop

a coherent user-friendly design flow, with a custom software toolkit that generates

and implements high-level simulation and experimental measurement of the resulting

hardware system [75]. The ability to seamlessly move between tools designed for a

board in hand as well as a remote test system has greatly improved the student’s

interest in using either hardware platform, as well as kept development complexity
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for such a complex laboratory course under control.

This approach gives a simple digital peripheral using a standard interface (i.e.

USB), enabling a small Internet of Things (IoT) block interfaced through an email

system to an open-source design / control tool. The resulting controlling device,

whether it be directly connected through this digital port (i.e. phone or tablet) or

through a network, can be a potentially simple OS enabling all features on the result-

ing system, including sensory / actuation devices connected to this remote platform.

We chose a POP email system among the many alternatives for system commu-

nication. First, the simple structure of a POP email system (see for example [101])

fits with the limited operations required, easy to code, and keeps the resulting com-

putation requirements for operation as minimal as possible. POP supports simple

download-and-delete, where this system only requires connection, message retrieval,

and temporary storage (local). Anything more complex is extra overhead with little

function. Email is ubiquitous, particularly for students. The wide variety of email

services (e.g. Gmail) results in many painless options, without the need for server

infrastructure. A simple POP server keeps the control code small allowing systems ex-

tending to small, remote platforms (e.g. devices worn on the body, etc.), particularly

where low power battery operation is possible.

Second, starting from the inspiration of academic classroom experiences, the use

of email protocol simplifies individual access while requiring effectively zero adminis-

trative support. For example, this remote system is being used in a graduate course

this Spring 2016 [100]. This remote system approach allows a host system to even be

operated anywhere, such as a coffee shop, without significantly affecting the system

users. Most can get some form of a wireless network allowing basic email protocols

on that network. Any administrative barrier for faculty to set up technology for their

classes tends to result in the approach not being ever implemented. This remote

system provides an alternate path through the constraints of the layers of resources

120



and administration of those resources. We expect such a system can have significant

research impact ease of collaborators having shared systems opens up options for

remote sensing and computing nodes with nearly zero required resource support.

Other remote test systems used in education typically require the user to remotely

log-in to the system, and effectively take control of the system. From one of the classic

circuit measurement systems [102], one sees attempts for remote test structure to

replace a large number of dedicated lab stations with expensive equipment, similar to

the setups used at Caltech (CNS 182) and later at GT utilizing even the earliest FPAA

devices [100]. Additional remote systems have attempted other concepts having users

log-in and control a remote computer [103–107], as well as debates over the right use

of remote hardware for classes [103]. These approaches involve using a hardware

board (e.g. Spartan 3 or Arduino board) and using graphical languages like Labview

(e.g. [108]). Much of the time on the system relates to the user thinking about their

problem, rather than performing operations on their experiment; the system gets

around these issues, while using a tool approach identical when a physical board is

used.

This remote system approach is different from the area of one-way updating FPGA

software for a device in the field. Remote FPGA reconfiguration already utilizes in-

ternet connections on allowed networks (with any resulting permission overhead), and

can update FPGAs using protocol like User Datagram Protocol (UDP) [109]. Xlinix

provides direct developer support when using external devices (e.g. CPLD) [97], or

even cases using the FPGA as part of the updating infrastructure [98]. Hardware sys-

tems are designed for in-field FPGA updating [110], including space applications [111].

This remote system looks towards an expanded purpose, while also not being sub-

jected to any network infrastructure constraints.

We expect the building of such a system raises a host of additional issues as users

begin to consider these approaches. For example, the current system has limited
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security features in its initial development. Going forward, one would want a form

of authorization (i.e. a user access code) as part of the email message. Using a

reduced email based system does reduce a significant amount of potential security

issues compared to a web-based system, as well as we don’t need to support a wide

range of internet browsers. The linux based system and email retrieval system is used

to download files, extract resulting targeting files, and use those files for targeting; we

do not use an entire email browser for the resulting system, eliminating many potential

virus issues. The biggest security issue seems to be uncompressing the resulting files,

where that is the only place we need to execute anything on the files, and should be

developed as a trusted source. We also expect a host of issues will arise as people

work with such a system where outside groups, say running the remote system, might

have exposure to the user’s designs, and resulting Intellectual Property; we expect

current approaches towards individual security will be used where applicable.
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CHAPTER VIII

CONCLUSIONS

The subject of this research is to create a programmable and reconfigurable system

design environment enabling low-power mixed-signal processing and built-in self test

from the user application design to the measurement. To accomplish it, I have focused

on implementing a compact hardware, developing algorithms and tools, and establish-

ing a solid calibration flow. By combining these three components, signal-processing

engineers are able to implement low-power embedded system without a long time of

tape-out IC development cycle as well as without considering the hardware varia-

tion. This powerful platform also enables exploring and implementing nontraditional

solutions such as analog-digital mixed, or neuromorphic computational techniques.

Recently the need for IoT devices has been increasing. Although a lot of sensors

have been developed, the processing is still poor in power. Also, low power com-

putation hardware and the design tools are essential in AI assistant or embedded

vision devices based on machine learning. The timing for the transition of the FG

technology to real products is perfect for this opportunity. I look forward to making

the transition happen and making a huge impact on the industry.

8.1 Research Summary

Chapter 2 provided an overview of floating-gate technology and experimental results

of floating-gate devices at technology nodes smaller than 350nm, which shows the

possibility of reconfigurable systems with scaled-down FG devices. Experimental

data from a 130nm and a 40nm CMOS process of floating-gate transistors exhibit the

ability to retain charge and modify charge via electron tunneling and hot-electron in-

jection. Also, FG switch behavior and routing capacitance on floating-gate transistors
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in very deep sub-micron nodes have been discussed.

Chapter 3 described the basics of programming the charge on a floating-gate

transistor and introduced an FG programming algorithm using on-chip integrated

programming infrastructure. We use hot-electron injection for precision program-

ming of FG devices due to the nearly ideal selectivity between devices, whereas we

use electron tunneling for global initialization because of their relatively poor device

selectivity. On-chip integrated programming infrastructure, including µP, SRAM,

DACs, ADCs, and current-voltage converter, enables an FG programming algorithm

requiring only a few fixed-point computations compared previous MATLAB-based

algorithms requiring extensive floating-point computations.

Chapter 4 introduced the RASP 3.0 chip that integrates divergent concepts from

multiple previous FPAA designs along with low-power digital computation and in-

terface circuitry (i.e. DACs, ADCs). This IC fully integrates rapid reconfigurable

analog-digital computation with configurable fabric of interdigitated analog and digi-

tal computing blocks and with a microprocessor (µP, open-source MSP430) enabling

both computing and control. We showed measured data that this unified structure

enables a wide a wide range of SoC computing options that can be optimized for

multiple parameters, showing the most sophisticated FPAA capability built to date.

Chapter 5 introduced a calibration flow for an integrated FG programming system

for a large-scale Field Programmable Analog Array (FPAA), including characteriz-

ing the FG programming infrastructure and hot-electron injection parameters in the

integrated SoC FPAA, calculating the EKV model parameters for the golden FETs,

calibrating the compiled DAC and ADC blocks that interfaces between the on-chip

µP and compiled analog circuits in the array. VT0 mismatches due to the indirect

FG structure are characterized through a compiled mismatch measurement block. A

compiled classifier implementing XOR function using a VMM and WTA on different

chips shows the effectiveness of the VT0 mismatch-map compensation integrated into
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the compilation flow.

Chapter 6 introduced application design tools for a mixed-signal co-design environ-

ment using FG SoC FPAAs, which are based on open-source codes. sci2blif converts

block level information in Xcos, which is a graphical system design environment in

Scilab, into a blif netlist. vpr2swc calculates FG addresses and creates a switch list

from a route information generated by using VPR tool. Advanced design tools for

macro blocks and Vector-Matrix Multiply (VMM) help users to design system level

of applications.

Chapter 7 introduced a remote test system, enabled by configurable analog-digital

ICs to create a simple interface for a wide range of experiments. The remote test

system requires no additional setup, resulting both from using highly configurable

FPAA devices, as well as from the advancement of straight-forward digital interfaces

for the resulting experimental FPAA system. The system overhead requirements are

straightforward, requiring simple email handling, available over almost all network

systems with no additional requirements.

8.2 List of Contributions

• Analysis and test of RASP3.0 IC. The design of IC and test board was done

by previous members in our group. I tested the functionality of element blocks

(e.g., DACs, ADCs, a shift register) and the VMM operation using routing

devices. I designed and measured a nonlinear classifier with a VMM + WTA

structure. This work has been published in a TVLSI [12].

• Development of an FG programming algorithm for FG SoC FPAAs. Based

on the analysis of the FG device’s operation, I developed assembly code mod-

ules and Scilab scripts, enabling the erase, switch programming, and precise

programming, while interfacing with the on-chip µP. The work has resulted in

TVLSI [15].
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• Measurement and analysis of scaled devices. This work has been done in collab-

oration with Farhan Adil. I measured Id-Vg curves on 130nm and 40nm devices,

and routing resistance and capacitance in 350nm, which resulted in a JLPEA

publication [37].

• Tool development for the design compilation. The initial framework was made

by Richard Wunderlich. I put a lot of efforts on debugging the tools / technology

files to get a correct switch list, and improved it by adding functions (e.g.,

fix location, macro blocks) enabling mixed signal processing. This has been

submitted to DAEM.

• Development of a remote system. I collaborated with Ishan Kumal Lal to

develop the initial python codes handling emails and Sahil Shah to manage and

improve the codes when it is used for GT classes. This work has been published

in JLPEA [81].

• Development of calibration flow. I designed a calibration flow for FG FPAA ICs

and developed codes including GUI. This work has been published to TVLSI

[79].

• Design of RASP3.1 using IBM 130nm process. This work has been done in

corporation with Sahil Shah.

• Design of a small version of RASP3.0 PCB board for commercialization.
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