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SUMMARY

This thesis discusses the application of control theory to the study of complex networks,

drawing inspiration from the behavior of social networks. There are three topic areas cov-

ered by the thesis. The first area considers the ability to control a dynamical system which

evolves over a network. Specifically, this thesis introduces a network controllability notion

known as herdability. Herdability quantifies the ability to encourage general behavioral

change in a system via a set-based reachability condition, which describes a class of de-

sirable behaviors for the application of control in a social network setting. The notion is

closely related to the classical notion of controllability, however ensuring complete con-

trollability of large complex networks is often unnecessary for certain beneficial behaviors

to be achieved. The basic theory of herdability is developed in this thesis.

The second area of study, which builds directly on the first, is the application of herd-

ability to the study of complex networks. Specifically, this thesis explores how to make

a network herdable, an extension of the input selection problem which is often discussed

in the context of controllability. The input selection problem in this case considers which

nodes to select to ensure the maximal number of nodes in the system are herdable. When

there are multiple single node sets which can be used to make a system completely herd-

able, a herdability centrality measure is introduced to differentiate between them. The

herdability centrality measure, a measure of importance with respect to the ability to herd

the network with minimum energy, is compared to existing centrality measures.

The third area explores modeling the spread of the adoption of a beneficial behavior

or an idea, in which the spread is encouraged by the action of a social network. A novel

model of awareness-coupled epidemic spread is introduced, where agents in a network are

aware of a virus (here representing something which should be spread) moving through the

network. If the agents have a high opinion of the virus, they are more likely to adopt it.

The behavior of this viral model is considered both analytically and in simulation.

xi



CHAPTER 1

INTRODUCTION

The modern world is increasingly understood as an interconnection of interacting parts, as

a large complex network which itself can be built on the interplay of various networks [1,

2]. The network representation has found its way into varied fields ranging from biology

and sociology to power systems and robotics [3, 4, 5].

Network representations, fueled by concepts from graph theory [6], have proven to

be powerful tools. In biology, analyzing graphs has helped reveal beneficial drug-drug

interactions [7] and helped drive understanding of properties of the human brain [8, 9, 10].

In the social and behavioral sciences, networks have helped expose the power of social

networks; showing, for example, that dieting can be transmitted by social networks [11].

In robotics, the ability to control the behavior of a network of interacting robots is driven

by the network structure of the communication between the robots [5].

The power of the network representation has lead to a field known generally as network

science. Network science concerns itself with such questions as how networks are formed

and how to discuss the structure of a network on two levels. A micro level, i.e. at the level of

local interactions between nodes in the network, as well as on a macro level, searching for

properties that hold across the network. This field has seen a surge in popularity recently,

as can be seen not only by the large number of recent network science textbooks [3, 12,

13, 14] but the large number of popular sciences books describing the ”new” science of

networks [15, 16, 17].

The fact that networks are a powerful representation tool to understand the behavior

of a system comes as no surprise to two rather distinct fields in the literature: that of the

social and behavioral sciences and of control theory. In the social sciences, the network

representation was developed beginning in the late 1940’s [18, 19, 20] and has proved
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useful in a wide range of social science sub-disciplines such as those that study the diffusion

of innovations, social influence, and group problem solving (see the introduction of [4] for

a full discussion).

Control theory as a field has also long been interested in networks as a representation

of the world, and in understanding how the properties of a system can be analyzed based

on its network representation [21, 22, 23, 24, 25]. There has also been work on updating

mainstays of the control literature to tackle the challenges faced in complex networks, such

as decentralized control [26, 27] or as was done in extending Lyapunov stability analysis

to consider connective stability of complex ecosystems [28, 29].

There has been a recent overlap between the field of network science and control theory.

As a result, control theory has received considerable attention from the complex networks

community and control theorists have expanded to new application areas in the study of

complex networks. Researchers from the study of complex networks are primarily inter-

ested in the theory of controllability and observability, seeing the ability to control the

behavior of a complex system as the ultimate test of the understanding of the behavior of

the system [30, 31]. For control theorists, there have been many new application domains

which are particularly amenable to study via the tools of control theory, among them the

study of epidemic spread over complex networks [32, 33, 34] and opinion dynamics [35].

This thesis concerns itself with the interplay between the study of complex networks

and control theory; particularly bringing ideas from the study of social networks to bear on

the development of new theory. Social networks, and other large complex networks such as

biological networks, require different modeling considerations than traditional engineered

systems as they are driven by different types of behavior than engineered systems. Interact-

ing with these systems in a meaningful way requires new models and new understanding

of control authority in these networks.
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CHAPTER 2

BACKGROUND

The following section takes a subset of a particularly wide literature, touching on topics

related to a varied set of disciplines, which is necessitated by the fundamentally cross dis-

ciplinary nature of the work presented in this thesis. This subset will provide the necessary

context for the work of the thesis by discussing control of networks, how node importance

is determined, and the spread of viruses, opinions, and products over networks.

Much of the work presented as background is related to the general problem of translat-

ing a known graph structure into a dynamical system that evolves over that graph structure.

Once this idea is treated more formally, and a number of basic definitions are introduced,

this chapter will show two methods for making that transition, within the broader context of

control of networks. The first approach assumes that the weights of the edges of the graph

are known, which leads to a specific dynamical system which can be analyzed. The other

approach assumes that the weights are unknown and asks about the properties of a system

over a range of possible weights, leading to the consideration of a class of linear systems.

2.1 Preliminaries/Definitions

The following thesis deals with the interplay between two mathematical objects, both of

which describe a large complex system. The first is a graph G = (V , E , w(·)) where V

is a set of n nodes, E is a set of possibly directed edges between nodes, and w(·) is a

weighting function which accepts an edge and returns a weight in R. The other object of

study is a dynamical system which evolves over the graph G. In most complex networks,

this dynamic can be highly nonlinear, however in order to gain understanding about the

properties of the network this dynamical system will be considered here to be a continuous
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time, linear system

ẋ = Ax+Bu

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m. We will assume that each node in

the network will have a single scalar state associated with it, which is why it holds that the

state vector x ∈ Rn. Note it is also possible to move in the other direction, i.e. a state

x ∈ Rn, and its accompanying linear system, gives rise to a graph structure with n nodes,

each of which represents one element of the vector x.

Much of the work presented in the sections that follow considers how to move from one

of these two representation of a system to the other, and how their relationship can provide

information about the behavior of the system. In the controls literature, it often the case that

the underlying graph structure is used to make concrete statements about the controllability

properties of the linear system [5, 21]. This is a case where one moves from a dynam-

ical system representation to a graph representation. In the complex networks and social

networks literature, properties of the dynamic which evolves over the graph are inferred

from the structure of the networks, though typically without a formal representation of the

dynamic which is assumed to evolving over that network [3, 12, 4]. Before discussing

either of these approaches, an introduction to the study of graphs is required.

2.1.1 Graph Theoretic Preliminaries

This section considers a number of basic concepts from the study of graph theory, providing

a tool set to discuss the properties of the graph G = (V , E , w(·)). Unless otherwise noted,

the provided definitions follow [36]. A quick digression on the definition of the graph as

weighted. Treating the graph G as weighted is the most general case of this graph represen-

tation. If the graph is to be unweighted, that implies for any edge ei, w(ei) = 1. It is also

common for the weights to be assumed to be positive in many complex network settings,

in such cases the weight represents a distance or an amount transfered. This thesis will

also consider the case where the edge weights are assumed to be negative, which in a so-
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cial networks setting represents a pair of agents that are enemies [12]. Having successfully

digressed, we now present a number of basic definitions from graph theory.

An arbitrary element of V will be referred to by vi for some index i. Denote the directed

edge from vi to vj as (vi, vj) or eij . An arbitrary element of E will be referred to by ei for

some index i. In the case of an undirected graph the neighborhood Ni of a node vi are all

nodes vj such that (vi, vj) ∈ E . The degree di of a node is equal to the number of network

neighbors, di = |Ni|. In the case of a directed graph, there are two neighborhood sets: the

in-neighborhoodN i
i and the out-neighborhoodN o

i . The in-neighborhood of vi is all nodes

vj such that (vj, vi) ∈ E and the out-neighborhood is all nodes vj such that (vi, vj) ∈ E .

Similarly each node i has an in-degree dii = |N i
i | and an out-degree doi = |N o

i |.

The graph can be represented by an adjacency matrix Ã(G) where the element ãij = 1

if (vj, vi) ∈ E . In the undirected case, the adjacency matrix Ã(G) is symmetric. De-

pending on the level of information required about a network, the graph G can also be

represented by a signed adjacency matrix Ãs(G) and a weighted adjacency matrix Ãs(G)

where ãsij = sign(w(eji)) and ãwij = w(eji). In the case of an unweighted graph these three

representations of the graph are equivalent.

In the case of an unweighted network, the graph can be represented as an incidence

matrixM(G) ∈ Rn×me whereme = |E|. The incidence matrix has a column corresponding

to each edge e = (vi, vj) ∈ E , and each row follows

M(G)ze =


1 if z = i

−1 if z = j

0 else.

In the case of an undirected network, an arbitrary orientation is assigned to each edge to

generate the incidence matrix.

The graph can also be represented by the graph Laplacian LG which for undirected,
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unweighted graphs satisfies

LG = D − Ã(G)

where D = diag(di). In the case of directed graphs, the in-Laplacian is defined similarly

as

LiG = Di − Ã(G),

where Di = diag(dii). The Laplacian also satisfies

LG = M(G)M(G)T ,

which immediately shows that the Laplacian is positive semidefinite. The Laplacian can

also be defined for the case of weighted networks, however such objects will not be used in

this thesis.

A walk from v0 to vp, π(v0, vp), is any alternating sequence of nodes and edges π(v0, vp) =

v0, e1, v1, e2, v2 . . . , vp−1, ep, vp such that vi ∈ V ∀i and ei = (vi−1, vi) ∈ E . The set of

walks from v0 to vp is θ(v0, vp). A node vj is reachable from vi, which will be written as

vi → vj , if θ(vi, vj) 6= ∅. Note that reachability is discussed within both graph theory and

control theory. This thesis will use the term reachable in both senses, with clarification only

if it is uncertain which notion of reachability is considered. The length of a walk, len(π),

is equal to the number of edges in π. A walk is a path if all nodes are distinct. A walk is a

cycle if the first and last node of the walk is the same.

A walk has an associated sign which follows

s(π) =
∏
ei∈π

s(ei).

For the purpose of this thesis, a walk also has an associated weight which follows

w(π) =
∏
ei∈π

w(ei).
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This is distinct from the weight of a walk as it is treated in many applications, such as

shortest path algorithms, which consider w(π) =
∑

ei∈π w(ei) [37].

A semi-walk from v0 to vk, πs(v0, vk), is a collection of nodes v0, v1, v2 . . . , vk−1, vk ∈

V , as well as k edges which satisfy (vi−1, vi) ∈ E ∨ (vi, vi−1) ∈ E . For convenience,

the semi-walk can be represented by πs = v0, ê1, v1, ê2, v2 . . . , vk−1, êk, vk where êi is the

element of {(vi−1, vi), (vi, vi−1)} that is contained in E .

Like a walk, the sign of a semi-walk follows s(πs) =
∏

êi∈πs s(êi) and the weight of

a semi-walk follows w(πs) =
∏

êi∈πs w(êi). A semi-walk is a semi-path if the nodes of

the semi-walk are distinct and a semi-walk is a semi-cycle if the first and last element of

the semi-walk are the same. A directed graph is weakly connected if there is a semi-walk

between any two vertices in the graph and is strongly connected if there is a walk between

any two vertices in the graph.

A graph is structurally balanced if all semi-cycles have a positive sign [38]. If a network

is structurally balanced, the nodes can be partitioned into two clusters, where all inter-

cluster edges are positive and all intra-cluster edges are negative. Structural balance is

a well studied property of social networks [12, 39], which has implications in control

[40, 41]. Despite the nice mathematical properties it provides, many real networks are not

structurally balanced, leading to questions of how close to balanced they are [42].

2.1.2 Positive Linear Systems

This section introduces some basic definitions from the study of positive linear systems

which will be used later. A system is positive if and only if for every non-negative initial

state and for every nonnegative input its state is nonnegative. The study of positive systems

covers subject areas ranging from epidemic spread and, more generally, compartmental

systems in biology to opinion dynamics and robotics [43, 44, 5, 45, 32, 33].

In the following discussion, all operations will be considered element-wise. If a matrix

satisfies A > 0 then it is element-wise non-negative. Similarly for A ≥ 0. A matrix A
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is said to be Metzler if A + αI ≥ 0 for some α ∈ R or, equivalently, all non-diagonal

elements of A are nonnegative [46].

For a continuous time linear system,

ẋ = Ax+Bu

if A is Metzler and B ≥ 0 then the system is positive.

Definition 2.1.1 ([46]). A positive system is said to be excitable if and only if each state

variable can be made positive by applying an appropriate nonnegative input to the system

initially at rest i.e. from [x(0) = 0].

Lemma 2.1.1 (Theorem 8 in [46]). A positive system is excitable if and only if there exists

at least one path from an input to each node in the underlying graph.

2.2 Control of Networks with Known Dynamics

In this section, some basic results on the control of networked systems will be presented in

the case that the dynamical system which evolves over G is known exactly, as is often the

case with an engineered network system.

2.2.1 The Consensus Algorithm

A prime example of an engineered networked system is a robotic network, where each

node vi ∈ V represents a robotic agent and each ei ∈ E represents communication be-

tween the agents [5, 47]. In the field of multi-agent robotics, the consensus or controlled

agreement dynamic is widely used to move from a given graph G to a dynamic over that

graph. This section will discuss the case where the graph is undirected and edge weights

are assumed positive (in fact 1), though we note that the problem of directed [5] and signed

consensus [40, 41] has also been considered.
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Given a network G the consensus algorithm has each agent in the network update its

state xi as

ẋi =
∑
j∈Ni

(xj − xi).

Under the consensus dynamic, each agent considers its network neighbors (in-neighbors in

the case of a directed graph) and changes its state based on the state of its neighbors. If the

state is the robot’s position, then the robot will attempt to move to the mean of its network

neighbors position. This dynamic can be equivalently expressed as

ẋ = −LGx.

If the graph is connected, then the state will converge to the agreement subspace x ∈

span (1n), as 1n is the only eigenvector of the Laplacian associated with the eigenvalue 0.

The consensus dynamic can be extended to the controlled agreement protocol which

incorporates the ability to control the position of the robotic network. To do so requires

that some nodes be designated leaders, which will be captured by the set L ⊂ {1, 2, . . . , n}

which will follow

ẋl = ul, ∀l ∈ L.

We are interested in studying the behavior of the remaining nodes in the network, the set

of followers F = {1, 2, . . . , n} \ L which have an associated subgraph Gf . By partitioning

the graph, one can represent the incidence matrix as

M(G) =

Mf

Ml

 ,
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where Mf ∈ Rnf×me , Ml ∈ Rnl×me , nl = |L|, and nf = |F |. Then this partition implies

L(G) =

Af Bf

BT
f Al


where Af = MfM

T
f , Al = MlM

T
l , and Bf = MfM

T
l . The system dynamic then becomes

ẋf = −Afxf −Bfu

y = BT
f xf .

(2.1)

Controllability of this system admits a graph theoretic characterization. We present the

results for the single input case here, though it has been extended to the case of multiple

inputs [5].

Definition 2.2.1. A permutation matrix, J, is a {0, 1}- matrix with a single nonzero element

in each row and column.

Definition 2.2.2. The system in Equation (2.1) is input symmetric if there exists a noniden-

tity permutation J such that

JAf = AfJ.

Then it is possible to show that

Theorem 2.2.1 (Theorem 10.15 from [5]). The system in Equation 2.1 is uncontrollable if

it is input symmetric.

As the name suggests, the permutation in Definition 2.2.2 captures symmetry with re-

spect to the selected input node. If nodes are symmetric with respect to an input then they

can not be controlled separately which leads to a decrease in controllability. In fact, the

number of groups of symmetric nodes determine the dimension of the controllable sub-

space [48]. This has been studied in some depth for leader follower networks [49]. The

effect of symmetry on controllability will be revisited in Chapter 4.

10



2.2.2 Input Selection

Often when interacting with a complex network, there are no existing interactions with

input and the problem facing the researcher considering the network is where to place the

appropriate control inputs to ensure desirable system properties are satisfied. This problem

is known as the input selection problem: given an autonomous system

ẋ = Ax

how does one design a B matrix that ensures system controllability. In the specific case of

multi-agent systems following consensus dynamics, this is known as the leader selection

problem. There are a number of results which hold specifically for the case of leader selec-

tion which will be discussed first before moving on to the general case of input selection

for an arbitrary but known system.

The leader selection problem was solved by determining whether a graph was input

symmetric with respect to a given input [50, 51], often considering whether specific

graph structures could be made controllable. Specifically the controllability of circulant

networks [52], path and cycle graphs [53], and grid graphs [54] have been considered.

The input selection problem has been addressed more generally in the case of ensuring

system controllability for a known network [55, 56, 57, 58]. These results where obtained

under specific assumptions on the structure of the B matrix that is to be designed. In one

case, the question is to create a B matrix with the minimal number of columns. This can

addressed by the application of classic controllability test, known as the Popov-Belevitch-

Hautus test, in the case of a linear system. In the complex networks community this method

is known by the name of ”exact controllability” [59].

If, instead, the question is to create a diagonal B with the minimum number of non-

zero elements, i.e. to find the minimum number of states with which to interact to ensure

system controllability, then finding a solution was shown to be NP-Hard [56]. A similar
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problem was also considered, that of selecting which state nodes to apply input to such

that reachability to a specific end point or subspace is ensured and was also found to be

NP-hard [58].

In the case where it is possible to select from a number of agents to insure controllabil-

ity, other considerations come into play. Selecting leader nodes while taking into account

worst case control energy, as quantified by the smallest eigenvalue of the controllability

grammian, was considered in [60]. A number of control energy centralities were intro-

duced in [61], some of which were extended to include considerations of robustness to

noise in [62].

2.2.3 Qualitative Systems Analysis

It is often the case when dealing with real systems that the parameters which govern the

system dynamics are unknown. The paradigm of Qualitative Systems Analysis asks what

can be said about a system for which only certain properties are known, specifically the

interconnection structure of the network. This section will discuss two sub areas of Qual-

itative Systems Analysis: structural controllability, which considers what the interaction

structure says about controllability of a network, and sign controllability which considers

what the sign of the interaction structure says about controllability of a network. There has

been a surge in interest on the qualitative controllability of complex networks following

the work of Liu et. al. [63]. This work applied the notion of structural controllability to

large complex networks, which lead to a characterization of both the whole network and

individual nodes based on controllability properties [63, 64, 65, 66, 67, 68, 69].

Structural Controllability

Structural controllability makes statements about the controllability properties of a system

based on solely on its structure, without worrying that the system parameters are perfectly

known [21, 22, 23]. Structured systems [70] as typically used in the complex networks
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literature, provides a set of rules to move from a graph structure of a complex network to

a linear dynamical system. The system matrices are said to be structured matrices, where

the structure of the system matrices is defined by which elements of the matrices are zero

and which are nonzero. Further these structured system matrices are related to the edge set

E of the graph, i.e. a nonzero element of the system matrices corresponds to a edge in E.

Consider a system

ẋ = Asx+Bsu,

where As, Bs are structured matrices, that is they consist of either zero or indeterminate

non-zero elements corresponding to an underlying graph. Specifically As has a non-zero

element at position ij if eji ∈ E . Let RnA × RnB denote the parameter space associated

with the structured system, where nA (nB) is the number of non-zero elements of As(Bs).

The matrices As,Bs are a specific incarnation of the matrices As, Bs, which are found by

fixing the non-zero parameter values.

Definition 2.2.3. A property holds generically for the structured system in Eq. (3.2) if it is

satisfied outside of a proper variety on the parameter space RnA × RnB .

Definition 2.2.4. A system is structurally controllable if it is generically controllable.

The benefit of structural controllability is that it admits a structural answer to the ques-

tion of controllability, i.e. by inspecting the graph of the system, the structural controllabil-

ity of that system can be determined. There are two sets of structural conditions which can

be used to quantify structural controllability. The first set of conditions uses two network

structures, a stem and a bud, which are shown in Figure 2.1.

The graph P is called a cactus if and only if one can write P = S ∪B1 ∪B2 ∪ · · · ∪Bp

where S is a stem and B1, B2, . . . Bp are buds such the origin ei for bud Bi is the only node

inBi that belongs to S∪B1∪B2∪· · ·∪Bi−1. If the graph GA,B is a cactus, then the system

(As, Bs) is structurally controllable.
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Figure 2.1: (a) A stem (b) a bud with origin e

Structural controllability can also be equivalently expressed as there being no dilations

and no non-accessible nodes in the graph GA,B.

Definition 2.2.5. Consider S any set of nodes in the graph and T (S) the set of nodes that

have an edge which enters a member of S. A dilation occurs when for some S, |T (S)| <

|S|.

Definition 2.2.6. A node is accessible if there is a path from an input to the node. Equiva-

lently, a set S is non-accessible if T (S) = ∅.

Figure 2.2 shows examples of a non-accessible node and a dilation.

Structural Input Selection

The question of structural input selection is also of some interest to the study of structural

controllability, similar to the case of controllability. Liu et al expanded structural control-

lability to the analysis of large complex networks [63]. They found that the number of

unmatched nodes in a maximum matching on a bipartite representation of a directed graph

determined the number of nodes needed to ensure structural controllability. The nodes se-

lected via this method tended to have lower degree than the average degree of the network.
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Figure 2.2: (a) Accessibility: Node 4 is non accessible as there is no path from the input to
the node (b) A dilation: here 2 nodes have in-bound edges from 1 node

This suggests that structural controllability based driver node selection avoids hubs, which

matches well with the fact that dilations degrade controllability. Other work has shown

that an estimate of the number of driver nodes needed can be derived from the average

betweenness centrality and the average closeness centrality of a network, suggesting that

degree centrality might not be appropriate to characterize network controllability [71].

This work has been expanded to consider subsets of the problem of ensuring complete

controllability, for example whether the state can be controlled to specific areas of interest

in the state space or if the certain nodes of the graph can be controlled [64, 65, 66]. This

work has also been expanded to a control centrality measure, which ranks the importance

of node i based on the generic rank of the controllable subspace while node i is the sole

node which receives input [72].

Despite the popularity of the work on structural controllability there is an assumption

made in the original analysis of networks that bears further examination. It has been shown

that if the internal dynamics of all nodes of a network are assumed to have a finite time
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constant, or equivalently all nodes are assumed to have a self loop, then the system can

always be controlled via one input [73]. The analysis done by Liu et al assumes an infinite

time constant for most of the nodes in the networks under investigation, as these networks

tend not to have self loops. As almost all systems considered for application of these control

principles have a finite time constant for internal nodal dynamics, this raises serious issues

about the applicability of structural controllability driven driver node selection.

As opposed to the case of controllability, where it was determined to NP-Hard, finding

the minimum number of manipulated state variables to ensure structural controllability can

be done in polynomial time [74].

Extensions

A number of problems similar to the structural controllability problem have been addressed

in the literature. Strong structural controllability has been considered, in which the condi-

tion of controllability must hold for all values of the parameters as opposed to all parameters

outside of a zero measure set [75]. Sign controllability has also been considered, which

asks whether the sign pattern of the system matrices determines the controllability of the

matrix [76, 77, 78, 79]. While the specific results of sign controllability will not be used in

the thesis, it is interesting to note the general approach used, which is based on the study

of sign solvable linear system [80].

A signing is a diagonal matrix with elements on the diagonal that are in {0,−1, 1}.

A vector is called balanced if it is the zero vector or it has both positive and negative

elements. A vector is unisigned if it is not balanced. The set of signings S such that the

columns of SX are all balanced is denoted B(X). Central to the study of sign solvability

is the concept of an L-matrix. A matrix X is an L-matrix if all matrices that share the same

sign pattern have linearly independent rows. Equivalently X is an L-matrix if and only if

B(X) = ∅ [80]. In the context of sign controllability often the objective is to show that the

matrix [A B] is an L-matrix [78]. In the thesis the concept of an L-matrix is too strong for
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what will be considered, and as such other conditions will be studied.

2.3 Characterizing Importance in Complex Networks: Centrality Measures

There is an extensive literature on characterizing complex networks, which spans the work

of varied research communities such as statistical physics and social network analysis,

as well as the control community. We refer the reader to [3] for a discussion on other

characterizations of complex networks.

This survey focuses on the problem of determining node importance in complex net-

works. This problem has been addressed in a number of different ways, though this chapter

will focus on finding which node in the network maximizes some desired graph structure

based objective function. The objective function for this problem is known as a centrality

measure, and it is of interest to determine the highest centrality node. In the context of

social network analysis, these objectives are structural properties that are determined to

be important by external verification. There is great interest in determining not only the

appropriate structural property but how to efficiently compute it.

A centrality measure characterizes the importance of a node in a network, based directly

on the structure of the graph. Unless otherwise noted the presented measures are for an

unweighted network, though extensions exist for many of the measures in the case of a

weighted network [81, 82, 83]. In order to provide context for these centrality measures,

when appropriate they will be discussed in a social networks context. In a (unweighted)

social network, a node in the network represents a person and an edge represents that they

are friends.

2.3.1 Degree Centrality

The degree centrality of a node i in an undirected graph is defined to be

cdi =
∑
j

ãij.
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In a directed graph, there are two measures: the in-degree

cidi =
∑
j

ãij

and the out-degree

codi =
∑
i

ãij.

Degree centrality captures a very basic notion of importance in a graph. In a social

network, the person with the highest degree centrality has the most friends in the network

and as such will likely be important.

2.3.2 Eigenvector Centrality

A extension of the degree centrality is eigenvector centrality, which accounts not only for

number of neighbors (as degree centrality does) but also for the relative importance of those

neighbors. It does so by describing the centrality of a node as the sum of its neighbors

centralities. Specifically the centrality vector satisfies

Ãce = λce

where λ is the largest eigenvalue of the adjacency matrix Ã. Considering this equation for

an element i of ce, shows that

cei =
1

λ

∑
j

Ãijc
e
j .

Eigenvalue centrality has the property that cei can be high if agent i has a lot of low influence

neighbors or a few high influence neighbors.

2.3.3 Katz Centrality

Degree centrality can be interpreted as counting all walks of length 1 that either leave (out-

degree) or enter (in-degree) a node [84]. This notion is extended to walks of all lengths by
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[85]. Each walk is weighted by a constant α > 0 and by the length of the walk giving:

cki =
∞∑
k=1

∑
j

αk(ãij)
k.

Note that in an unweighted network, (ãij)
k = 1 if there is a path of length k from node j

to node i. In the case that α < 1
λ

, where λ is the largest eigenvalue of the network then the

above sum converges to

cki = (I − αA)−1 1n. (2.2)

The expression in Equation (2.2) shows that katz centrality can also be seen as an ex-

tension of eigenvector centrality. Consider the equation

x = αAx+ 1n

which is similar to the update law of eigenvector centrality however each node is assigned

a centrality of 1 to start the process. This update law converges to Equation (2.2).

In this light, α is a weight that determines how similar to eigenvector centrality the

calculated katz centrality is. Modifying the α parameter to be as high as possible has

allowed katz centrality to be used in cases when eigenvector centrality provides illogical

answers [3].

Katz centrality, of all the structure based centrality measures, has seen the most interest

from the general networks community. It has been linked to an evolving centrality dynamic

over the network [86], has been shown to be the best predictor of neuronal firing [9], and it

has been shown that with the appropriate formulation of an infinite horizon optimal control

problem, it is optimal to control the node with the highest Katz centrality [87].
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2.3.4 Closeness Centrality

Like katz centrality, there are other centrality measures that are based on paths between

nodes. One such is closeness centrality, which asks which node in the network is closest to

the other nodes in the network. Closeness centrality follows:

cci =
1∑

j d(i, j)
,

where d(i, j) is the shortest path distance between node j and node i. Closeness centrality

is an intuitive notion of centrality. In the case of a social network, if the objective is to

spread a message throughout the network, the person who has the least hops to everyone

else in the network is the person to give the message to.

2.3.5 Betweenness Centrality

Another path based centrality is betweenness centrality which follows

cbi =
∑
j 6=k 6=i

σj,k(i)

σj,k
,

where σj,k is the number of shortest paths between node j and node k and σj,k(i) is the

number of shortest paths between node j and node k that pass through node i. A high be-

tweenness centrality node will be part of many shortest paths between other nodes, and has

a natural interpretation as a centrality measure: a person with high betweenness centrality

will control information flow in a network.

2.4 Spreading Phenomena in Networks

A central issue in complex networks is understanding spreading processes over networks,

whether the object that is spreading be viruses, ideas, or any host of other things. This sec-

tion will discuss the spread over networks of viruses, opinions, and products/innovations.
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Aspects of these three sets of spreading models will be unified in Chapter 5 to form a new

model for the spread of adoptive phenomena, i.e. those spreading objects which agents

should adopt (like a beneficial behavior), as opposed to viruses, which they should not.

2.4.1 Epidemic Models

One of the most fundamental spreading processes is that of a virus. Understanding viral

spread has important ramifications as viral spread needs to be understood if major viral

outbreaks are to be mitigated. Studying how viruses spread began in the early 20th century

[88]. There are various models of epidemic spread, which cover the multitude of behavior

that is possible for a virus [89, 3]. This section will present two models, the Susceptible-

Infected (SI) model and the Susceptible-Infected-Susceptible (SIS) model.

Susceptible Infected Model

The SI model is the most basic model of a viral infection. This model will be considered

here in the fully mixed setting, i.e. each agent has an equal chance of coming into contact

with every other agent over a given time interval. This model can be extended to the case

of an interaction structure which is represented by a network, however we will leave that

treatment to the main object of study; the SIS model.

In the SI model, the population can either be susceptible to infection or infected with

the virus which is spreading through the population. Once an agent is infected they remain

infected. This infection happens with rate β. Let s(t) to be the fraction of individuals in the

population that are susceptible at time t and i(t) to be the fraction of infected individuals.

As the population can only be either susceptible or infected, s = 1 − i. This leads to a

dynamic in i of
di

dt
= βsi

= β(1− i)i
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Figure 2.3: The SI Model: (a) The transition between disease states. (b) The infection over
time.

and starting from i(0) = i0 gives

i(t) =
i0e

βt

1− i0 + i0eβt
.

Plotting the number of infected individuals shows that the fraction of infected individuals

forms an S-shaped curve, shown in Figure 2.3. This S-curve is important for the study of

viral phenomena and, as will be seen, is related also to the study of diffusion of innovations.

Susceptible Infected Susceptible Model

One way to extend the SI model is to allow for the agents in the population to recover. In

this case, when the agents are no longer infected it is assumed that they will once again

become susceptible to infection leading to the SIS model. The agents transition from being

infected to being once again susceptible with rate δ. The transitions are shown in Figure
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Figure 2.4: The SIS Model: (a) The transition between disease states. (b) The infection
over time when β > δ.

2.4. The state of infection in the network follows

i(t) = i0
(β − δ)e(β−δ)t

β − δ + βi0e(β−δ)t .

The long term behavior of the system depends on the relative values of β and δ. When

β > δ, i.e. the population becomes infected at a higher rate than it heals, the SIS model

also shows an S-curve behavior. However, unlike the SI model which converges to i = 1,

the SIS model will converge to a fixed fraction of the population i(t) = β−δ
β

< 1. This

steady state value is known as an endemic equilibrium.

When δ > β, i.e. the population heals at a higher rate than it is infected, the endemic

state goes to 0. This is often discussed in terms of the basic reproduction number Ro = β
δ
.

When Ro = 1 there is a transition in the equilibrium behavior of the the system.

The SIS model as presented here, makes the assumption that the population is well

mixed. There are a number of ways to extend the model to the case where the interactions

between agents are mediated by a network structure. We consider here the Mean Field SIS
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model [32], in which the probability of infection of agent i follows

i̇i = −δiii + (1− ii)
∑
j∈Ni

βijij

where δi is the healing rate of agent i and βij is the infection rate from agent j to agent i.

If δ and β are uniform then there will not be an endemic equilibrium if

β

δ
<

1

λmax(ÃG)

. In the case where δ and β can vary across nodes, the disease-free equilibrium is stable if

λmax(BÃG − diag(δi)) < 0n,

where B is the matrix of βij (see Lemma 2 of [90] for a proof).

Network SIS Models have been studied widely studied [91, 92, 34], and have included

consideration of SIS models with dynamically scaled β parameters [93, 94, 95], as well as

with changing or switching graph structures [96, 97, 98, 99, 100]. The SIS model has also

been used to model the spread of innovations in social networks, however the predictions

of this model for innovation spread have been called into question [92].

2.4.2 Opinion Dynamics

Opinion dynamics have been of interest in sociology since the canonical models of Abelson

and DeGroot [45, 101], and have since become of interest to the controls community in the

form of the consensus algorithm discussed previously [5]. This section will introduce a

number of continuous time models of opinion dynamics. Most of these models have a

discrete time counterpart which will be mentioned briefly.
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Abelson Opinion Dynamics

The Abelson opinion dynamic model is one of the oldest opinion dynamic models. If xi is

the opinion of agent i then agent i updates its opinion as

ẋi =
∑
j∈Ni

(xj − xi) .

Notice that the Abelson opinion dynamic model is exactly the consensus equation pre-

sented previously. Therefore this model predicts that the opinions of the agents converge to

universal agreement. This property, while beneficial for the problem of robotic rendezvous,

does not accurately model how humans update their opinions in social settings. Dissatis-

faction with the universal agreement properties of this model has driven much research in

the field of opinion dynamics.

The discrete time counterpart of this model is known as DeGroot opinion dynamics

model [101], which has been extended to the Friedkin-Johnson model [102], in which

agents update their opinions based on their neighbors opinions as well as their initial opin-

ion.

Bounded Confidence Opinion Dynamics

One model which attempts to break the universal agreement of the Abelson opinion dy-

namic model is the bounded confidence model [103, 104] which follows

ẋi =
∑
Ni

p(xj, xi)(xj − xi).

where

p(oj, oi) =


1 if ‖oj − oi‖ < ε

0 if else.

In the bounded confidence model, an agent will update their opinion based on whichever
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Figure 2.5: The Bounded Confidence Model: The evolution on a complete graph with 100
agents and ε = .01.

of its network neighbors it has a similar opinion to and ignore all neighbors which have a

sufficiently different opinion. Over time this model predicts that distinct clusters will form

in which each agent in the cluster will have the same opinion. Figure 2.5 shows the evo-

lution of a complete graph with random starting conditions. In the discrete time case, this

model is referred to as the Hegelsman-Krause model [105].
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Signed Consensus

Another extension of the Abelson opinion dynamic considers negative interactions between

agents. The Signed Consensus or Altafini model [41] which is of the form

ȯi =
∑
N Ō

i

|aij|(sign(aij)oj − oi), (2.3)

where N Ō
i is a signed set, with negative edges for the neighbors node i distrusts.

If the opinion graph is structurally balanced, then it can give a bipartite consensus,

meaning all the members of one group converge to a value and all the members of the

other group converge to the negative of that value [41, 38]. Alternatively, if the graph is

structurally unbalanced then the opinions converge to 0N [41, 106].

2.4.3 Innovations Spread Models

The question of how innovations spread has been a focal point of the sociology literature

for a number of years. This section will deal with the dominant paradigm within this liter-

ature, the paradigm known as diffusion of innovations. Once the diffusion of innovations

paradigm has been discussed, a selection of other adoption will be reviewed, specifically

models that look at the interplay between opinion and adoption behavior.

Diffusion of Innovations

The dominant paradigm for the spread of products is that of diffusion of innovations, which

was introduced by [107] and was later popularized by the work of [108].1 Diffusion of

Innovations as a paradigm began with the study of the adoption of hybrid seed corn. Hybrid

seed corn has a number of properties, such as better drought tolerance and higher yield,

which makes it superior to the corn that was being used widely at the time. A pair of

1 Interestingly enough the diffusion of innovations paradigm, as the paradigm is itself an innovation in the
study of diffusion, has been an object of meta-study [109, 110, 111].
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rural sociology researchers tracked the adoption of hybrid seed corn over the course of a

10 year period, starting around 1930. The main findings included that the communication

about hybrid seed corn was crucial for the adoption of the corn, as knowledge of the hybrid

seed corn preceded adoption of the corn. Those that adopted the hybrid seed corn early

heard from sales people about the corn and then spread the information to their friends and

neighboring farms.

This work was extended by Everett Rogers [108]. Rogers, postulated that the four main

elements for the spread of an innovation are the properties of the innovation itself, time,

how information about the innovation is communicated and the social system in which

information about the innovation is communicated. It was also found that adoption over

time of the innovation followed an S-curve, similar to the behavior of the epidemic models

mentioned previously. As such, many attempts to model the diffusion of innovation are

rooted in the use of epidemic models.

Opinion-Adoption Models

There have been few works that study the interplay between product adoption and opinion

dynamics, i.e. allowing a consumer’s opinion about the quality or value of a product affect

his/her decision to purchase or adopt it. These opinions change dynamically because they

are influenced by the opinions and decisions of their network neighbors.

One such model is the model of Kalish. Before diving into this model, we must discuss

the model of Bass [112], as the work of Kalish is an extension of the Bass model to include

awareness. This model considers the interplay between innovation and imitation. The

population is split into two categories of adopters. A small fraction of the population are

innovators, who will adopt early and without any of their neighbors having adopted. The

rest of the population are imitators, who will become more likely to adopt as more people

adopt. Bass considered the case where the probability that an agent purchase a product at
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time T given that no purchase has been made is

P (T ) = p+
q

m
Y (T )

where p is the probability of adopting at time 0, Y (T ) are the total number of those who

have bought until time T , m is the initial number sold and q is the coefficient of imitation,

reflecting the pressure to adopt the innovation. This leads to an adoption rate of the form

Ẏ (t) = (N − Y (t))(p+
q

m
Y (T ))

where N is the total size of the population.

Kalish proposed a coupled adoption and awareness model that includes advertising

[113]. Let I(t) be the fraction of the population aware at time t, A(t) be an advertising

effort and f(A(t)) be the likelihood that a random agent will be exposed to the advertising.

Then if ba is the information transfer rate of the agent that has adopted and bi is the infor-

mation transfer rate of the agent that is aware of the product but has not adopted then the

information dynamic follows

İ = (1− I)

(
f(A) + baI + (bi − ba)

Y

N

)

Kalish also took the price of the product P into account as well as the uncertainty

of the value of the product which is parameterized by u. The model also assumes that

the consumer can only adopt the product in the case where they are aware of it. Then

considering a likelihood of adoption k gives

Ẏ =

(
N

(
PN

uY

)
I − Y

)
k

Similar to the first SIS model mentioned in Section 2.4.1, both Bass’s and Kalish’s
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model assumes full connectivity of the graph and models the system with only two differ-

ential equations, aggregating the population into one group. There are some other models

which base the interaction dynamic on a network structure, such as the Continuous Opinion

Discrete Action (CODA) model; which provides a model of discrete product adoption with

Bayesian opinion updates [114]. However the Bayesian opinion update only depends on

the adoption actions of network neighbors, not their opinions.

Threshold Models

The diffusion of innovations has also been modeled through the use of threshold models

for a variety of innovations and behaviors [115, 116, 117, 118]. The core of these models is

that an agent will consider the behavior of its network neighbors and if a sufficient number

of them has adopted the innovation (i.e. the number of adopting neighbors is above a

threshold), the agent will also adopt. Differences in thresholds cause the varied adoption

behavior seen in social networks: agents with low thresholds will adopt early causing other

agents with higher thresholds to adopt. The study of these models often seeks to understand

how the distribution of thresholds affects adoption behavior.

2.5 Conclusion

In this chapter, a number of concepts from the study of complex networks were introduced.

From the section on the control of networks, it was shown that the underlying graph struc-

ture of a system has important implications for the ability to control the system. For both

consensus and structural dynamics, symmetry with respect to an input was shown to be a

sufficient condition for a lack of controllability. It was also shown that input selection is a

hard problem for known systems. Finally the spreading behavior of epidemics, opinions,

and products was discussed through sociological theory and a number of models. The the-

ory highlighted that the spreading behavior of products is similar to that of epidemics and

that opinion is a vital component of product spread.
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CHAPTER 3

HERDABILITY

This chapter introduces the notion of herdability, a control theoretic notion that is particu-

larly applicable to understanding the behavior of complex networks. This section expands

upon the results in [119].

A system is completely herdable if all the elements of the state can be brought above

a threshold by the application of a control input. Thresholds capture an important class of

behavior in biological and social systems, in which a system reaches a tipping point and as

a result the behavior of a system may change dramatically. Examples of behavior driven

by thresholds include the firing of a neuron [120], quorum sensing in bacteria [121], and

collective social action [115, 116].

Herdability is a set reachability condition, asking if the state can be driven to the set

where all elements of the state are above a given threshold. As such, herdability captures

the ability to apply input to encourage a general change in behavior. This is a different

approach to addressing the challenges of interacting with large, complex networks. As

has been shown in Chapter 2 often these large scale systems dealt with by taking into ac-

count uncertainty in the dynamics, as exemplified by structural controllability. Herdability

instead asks for a looser condition as the end goal.

The applicability of herdability while interacting with large complex networks can be

best shown via an example from the context of social networks. Consider the case where

the state of a dynamical system represents the percentage of a given community that will

vote for a political candidate. These communities interact with each other via a network

structure which is based on friendships between communities, proximity and a host of other

factors. We are on the campaign staff of Candidate X and have a control input, in that we

are able to advertise for our candidate. This advertising effort can be distributed in a given
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community to encourage them to vote for or against a certain candidate, with the goal of

having Candidate X win.

If this large complex system was completely controllable, that would imply that each

community could be driven to a specific desired voting percentage for Candidate X, specif-

ically a voting percentage that is completely unrelated to the voting percentage of neigh-

boring communities. Now while that may sound appealing (or potentially horrifying), this

level of control over the voting behavior of a population would be very expensive to achieve

and is unnecessary. An advertising campaign is successful if the state can be driven high

enough for Candidate X to win, regardless of whether communities can be made to vote

at any specific percentage as would be required by complete controllability. Instead of in-

sisting on complete controllability, if the campaign staff selects the advertising effort such

that the system is herdable to the point where the voting percentage of each community is

above 50%, then Candidate X has won.

3.1 Characterizing Herdability

In this section, the basic theory of the herdability of continuous time, linear dynamical

systems is presented as well as a characterization of herdability based on system matrices

such as the controllability grammian Wc and controllability matrix C. All the necessary

concepts from the study of linear systems, as well as the form of the various matrices have

been summarized in Appendix B. Of course before characterizing herdability, the following

definitions of herdability are required.

Definition 3.1.1. The state i of a linear system is d-herdable if ∀x(0) ∈ Rn , there exists a

finite time tf and an input u(t), t ∈ [0, tf ] such that (x(tf ))i ≥ d under control input u(t).

If the system is d-herdable for any d ≥ 0 it will be said to be herdable. In the case of

linear systems, d-herdability for d > 0 and herdability are equivalent. As the following

discussion concerns itself with the analysis of linear systems, we will refer only to the

herdability of such systems.
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Definition 3.1.2. The state i of a linear system is herdable if ∀x(0) ∈ Rn, h ≥ 0, there

exists a finite time tf and an input u(t), t ∈ [0, tf ] such that (x(tf ))i ≥ h under control

input u(t).

Definition 3.1.3. A set of states, X ⊆ {1, 2, . . . , n}, is herdable if each individual state in

X is herdable together, i.e. if ∀x(0) ∈ Rn and h ≥ 0, there exists a finite time tf and an

input u(t), t ∈ [0, tf ] such that (x(tf ))i ≥ h, ∀i ∈ X under control input u(t).

Definition 3.1.4. A linear system is completely herdable if all states in the system are

herdable together.

To translate the definition of herdability to a necessary and sufficient condition for herd-

ability requires some basic concepts from the study of linear systems, specifically the rela-

tion between the reachable subspace and the controllability grammian Wc and controllabil-

ity matrix C discussed in Appendix B.

It is possible to characterize the herdability of a system based on its controllability

matrix. With Lemma B.0.1 it is possible to prove the following Theorem, which gives a

necessary and sufficient condition for the herdability of a subset of states.

Theorem 3.1.1. A set of states X ⊆ {1, 2, . . . , n} in a linear system is herdable if and only

if there is exists a vector k ∈ range(C) that satisfies (k)i > 0 for all i ∈ X .

Proof. Define the set K to be the set that contains the positive elements of k, K = {p | p >

0 ∧ ∃ i such that (k)i = p}.

(k ∈ range(C) ⇒ X is herdable) Consider the problem of controlling all states in

the set X to be greater than some lower threshold h ≥ 0 from an initial condition x(0).

Suppose there is a k ∈ range(C), that satisfies (k)i > 0 if i ∈ X . As k ∈ range(C), ∃ααα

such that

Cααα = k.

If

γ >
maxj (h1n − eAtx(0))j

minK
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and v = γααα then for all i ∈ X it holds that

(Cv)i > (h1n − eAtx(0))i.

As the range of C is the same as the reachable subspace, ∃u(·) such that for all i ∈ X

(eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ)i > h

then all states in X can be made larger that h and as h is arbitrary the subset of states X is

herdable.

(X is herdable⇒ k ∈ range(C)) As the set of state nodes X is herdable, each element

of X can be made larger than some h∗ > 0 from any initial condition. Consider the initial

condition x(0) = 0n. Then by the herdability of the set X there exists a vector k∗ that

satisfies (k∗)i > h∗ ∀i ∈ X and an input u(·) such that

∫ t

0

eA(t−τ)Bu(τ)dτ = k∗

Then (k∗)i > 0 ∀i ∈ X by the definition of h∗. By the definition of R[0, t], k∗ ∈ R[0, t]

and consequently k∗ ∈ range(C) by Lemma B.0.1.

Corollary 3.1.2. A linear system is completely herdable if and only if there exists an

element-wise positive vector k ∈ range(C).

A similar statement can be made about the controllability grammian Wc of a system,

following directly from Lemma B.0.1 and Theorem 3.1.1.

Corollary 3.1.3. A set of states X ⊆ {1, 2, . . . , n} in a linear system is herdable if and

only if there is exists a vector k ∈ range(Wc) that satisfies (k)i > 0 for all i ∈ X . A linear

system is completely herdable if and only if there exists an element-wise positive vector

k ∈ range(Wc).
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There is also a necessary condition for herdability which arises based on the character-

ization of Theorem 3.1.1.

Theorem 3.1.4. If a linear system is completely herdable then there exists an element-wise

positive vector k ∈ range([A B]).

Proof. If a linear system is completely herdable, then by Theorem 3.1.1, there is an element-

wise positive vector k ∈ range(C). As such there exists a y ∈ Rnm such that

Cy = k

. Dividing y into n subcomponents, with each yi ∈ Rm:

y =



y1

y2

...

yn


gives that

k = Cy

= By1 + ABy2 + · · ·+ An−1Byn

= By1 + A(By2 + ABy3 + · · ·+ An−2yn).

Then k ∈ range([AB]) as

k =

[
A B

]By2 + ABy3 + · · ·+ An−2yn

y1

 .

While Theorem 3.1.4 is only a necessary condition, it can still be valuable for designing

the interaction with the system via the selection of a B matrix. In the case that the A matrix
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is such that there are no element-wise k ∈ range(A) thenB can be designed such that there

is an element-wise k ∈ range(A), with relatively little computational cost. However as

Theorem 3.1.4 is a necessary condition, other more expensive methods would be required

to verify system herdability.

The final result of this section is a lemma which is useful to show that a system is

not completely herdable and therefore useful for showing other necessary conditions for

complete herdability.

Lemma 3.1.5. A state i is herdable if and only if ∃j such that

(C)i,j 6= 0.

Proof. ((C)i,j 6= 0 ⇒ i Herdable) If (C)i,j 6= 0 then by appropriate choice of the j-th

element of a vector z it holds for a positive constant w that:

(Cz)i = w

Then there is a vector k ∈ range(C) with (k)i > 0 and vxi is herdable by Theorem 3.1.1.

(Herdable ⇒ (C)i,j 6= 0 ) Suppose the contrary. Then by assumption ∀j (C)i,j = 0.

Consider making x(t) ≥ h from an initial state x(0) = 0n. As ∀j (C)i,j = 0, it holds that

∀z ∈ range(C), (z)i = 0 and by Lemma B.0.1 for any reachable x(t) ∀t ≥ 0, (x(t))i = 0

and state i is not herdable.

As will be seen, determining the element-wise positive vector k which shows that the

system is herdable is non-trivial in the case where the system is herdable but not control-

lable. Checking that a specific vector is in range(C) is easy but verifying that there exists

any element-wise positive vector in range(C) can be computationally expensive. As such

many of the results presented in the next section are cases when sufficient conditions for

herdability can be determined relatively efficiently.
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3.2 Sufficient Conditions for Herdability

The section provides a number of sufficient conditions for herdability based on the structure

of the controllability matrix C and controllability grammian Wc.

To do so requires the following set of definitions from the study of qualitative systems,

which we recall from Chapter 2. A vector is balanced if it is the zero vector or contains

both positive and negative elements. A vector is unisigned if its non-zero elements all have

the same sign. A unisigned vector is positive (negative) if all non-zero elements have a

positive (negative) sign.

Definition 3.2.1. A state i in the system is strictly herdable, if there ∃k ∈ R[0, t] such that

k is unisigned and ki 6= 0.

Definition 3.2.2. A state i is loosely herdable if all vectors k ∈ R[0, t] such that ki 6= 0 are

balanced.

Verifying that a state is indeed loosely herdable can be difficult, as such this section

focuses on verifying that a state is strictly herdable with low computation cost. As an

example of loose herdability consider the signed dilation shown in Figure 3.1. If the dilation

has the same sign, both nodes are strictly herdable; while if the signs are different the nodes

are loosely herdable. Selecting to herd a loosely herdable node drives other nodes out of

the herding set, as can be seen from the signed dilation in Figure 3.1b.

u

x1 x2

+ +

(a)

u

x3 x4

− +

(b)

Figure 3.1: Both nodes in 3.1a are strictly herdable, while both nodes in 3.1b are loosely
herdable
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This section now considers the implications of the definition of strict herdability, first

in the context of the controllability matrix. Let S be the set of nodes such that for all i ∈ S

there exists a unisigned column of C with a non-zero element at position i.

Lemma 3.2.1. Each element of S is strictly herdable.

Proof. By the definition of S, for node is ∈ S there exists a js such that (C)is,js 6= 0 and

each non-zero element of (C):,js , has the same sign. If (C)is,js > 0, then (C):,js ∈ range(C)

and the node is is strictly herdable. Alternatively if (C)is,js < 0, then the positive unisigned

vector −(C):,js ∈ range(C) and the node is is strictly herdable.

Let D = {1, 2, . . . , n} \ S. If l ∈ D there exists a j such that (C)l,j 6= 0, then the

column vector (C):,j is balanced.

Definition 3.2.3. Node z balances node l at j if it has a different sign than l in the column

(C):,j and favors node l at j if it has the same sign as l in the column (C):,j .

Lemma 3.2.2. If for l ∈ D there exists a j such that l is opposed only by strictly herdable

nodes at j then l is strictly herdable.

Proof. Let Ŝ be the set of nodes which oppose l at j. By definition of strictly herdable

nodes, for each s ∈ Ŝ there exists a vector vs such that vss > 0 and each non-zero element

of the vector vs has the same sign. Consider the set of vectors S = {vs, b} where b = (C):,j ,

the vector where l is opposed by the elements of Ŝ. Then ŝ =
∑

s v
s+sign(bl)b is a vector

which is positive at l, at each node that favors l and at each node s ∈ Ŝ. As ŝ ∈ range(C),

l is strictly herdable.

The following result shows why strictly herdable nodes are important.

Theorem 3.2.3. All states i ∈ {1, 2, . . . , n} are strictly herdable if and only if the system

is completely herdable.
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Proof. (Sufficiency) As each state i ∈ {1, 2, . . . , n} is strictly herdable, there exists a vector

ki ∈ range(C) which is element-wise non-negative and kii > 0. Then the element wise

positive k =
∑

i k
i ∈ range(C) and the system is completely herdable.

(Necessity) As the system is completely herdable, there is an element-wise positive

vector k ∈ range(C). Then for each state i ∈ {1, 2, . . . , n} ki > 0 and the other elements

are nonnegative, so state i is strictly herdable.

These results provide a way to check for the herdability of a system efficiently from the

controllability grammian, simply by inspecting the columns of C. A similar set of results

hold for the columns of the controllability grammian Wc though they are not described

here. As will be seen shortly, the controllability matrix has the advantage of being related

to the underlying graph structure of the network, which can present further opportunities

for determining system herdability.

3.3 Characterizing Dynamical Systems via Graphs

This section presents a characterization of a dynamical system as a signed, directed graph.

This characterization will allow an exploration of the relationship between the ability to

control a system and the structure of the interactions between the states as well as the

interaction between the inputs and the states of the system.

A continuous time, linear system can be represented by three graphs; each of which

contains different levels of information about the interactions between the states and inputs.

The first is an unweighted, unsigned directed graph G = (V , E), where V is the vertex

(equivalently node) set and E is the edge set. This graph is commonly used in the study of

structural controllability to represent a class of systems which share the same structure. The

second graph is a signed graph Gs = (V , E , s(·)) where s(·) accepts an edge and returns

a label in {+1,−1}, which is the sign of the edge. This signed graph represents a class

of systems whose edge weights have the same sign pattern. Similarly this representation

was used in the study of sign controllability to represent a class of systems which share the
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same sign structure. The third graph is a weighted graph Gw = (V , E , w(·)) where w(·)

accepts an edge and returns a weight in R. The weighted graph is the representation of a

single system.

As will be seen later, the weighted graph Gw can be directly related to the controllability

matrix C and therefore the controllability properties of the system. The following sections

focus on the interplay between Gs and Gw, in that the presented structural results are cases

where the results for the herdability of a system based on the weighted Gw can be extended

to all signed graphs with the same sign structure Gs regardless of the weights of the edges in

Gw, a notion similar to strong structural controllability and sign controllability as discussed

in Chapter 2. This notion is called sign herdability.

Definition 3.3.1. A system is completely sign herdable if all systems which share the same

sign structure Gs are completely herdable.

The formal definition of the graphs follows. The set of vertices satisfies V = Vx ∪

Vu, Vx ∩Vu = ∅, where Vx = {vx1, vx2, . . . , vxn} is a set of vertices representing the states

of the system and Vu = {vu1, vu2, . . . , vum} is a set of nodes representing the inputs to

the system. An arbitrary element of V will be referred to by vi for some index i, as will

arbitrary elements vxi ∈ Vx and vui ∈ Vu. The state i will now be interchangeably referred

to by the node vxi as will the input j and the node vuj .

The edge set satisfies E = Ex∪Eu where the edges in Ex represent interactions between

states of the system, while the edges in Eu represent interactions between the inputs and the

states. Denote the directed edge from vi to vj as (vi, vj). Then (vxi, vxj) ∈ Ex ⇔ A(j, i) 6=

0 and (vui, vxj) ∈ Eu ⇔ B(j, i) 6= 0. An arbitrary element of E will be referred to by

ei for some index i. By partitioning the node and edges sets, it is possible to define the

state subgraph Gx = (Vx, Ex), which captures only interactions between states as well as

the input subgraph Gu = (V , Eu) which captures interactions from the inputs to the states.

Note that the input nodes do not interact with each other nor is it possible to have an edge of

the form (vxi, vuj), which would imply that the states influences the evolution of the input.
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When considering the signed graph Gs, s((vxi, vxj)) = sgn(A(j, i)) and s((vui, vxj)) =

sgn(B(j, i)). Similarly for Gw, w((vxi, vxj)) = A(j, i) and w((vui, vxj)) = B(j, i).

As an example, consider the system

ẋ =


−1 0 0

5 0 2

4 −3 0

+


0 −2

2 0

0 3

u (3.1)

which is translated into Gs and Gw in Figure 3.2.

u2u1

x3x2

x1

(a)

u2u1

x3x2

x1

−

++

−

+

−
++

(b)

u2u1

x3x2

x1

−2

32

−1

2

−3
54

(c)

Figure 3.2: The graphs of the system in in Equation (3.1). 3.2a: G the unsigned, unweighted
graph. 3.2b: Gs the signed graph. 3.2c: Gw the weighted graph

To begin classifying a continuous time, linear system based on the signed graph Gs, we

define two basic types of sets. LetN j
d be the set of nodes reachable from vuj via at least one

negative walk of length d. Similarly Pjd is the set of nodes reachable from vuj through at

least one positive walk of length d. If there is only one input to the system, the superscript

will be dropped to refer to Nd and Pd instead of N 1
d and P1

d . Figure 3.3 shows an example

of these sets.

As will be seen, the sets Pjd andN j
d can provide sufficient information to determine the

sign-herdability of a continuous time, linear system. To show this requires classifying the

structure of the weighted graph Gw. Consider the total weight of positively signed walks
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u

x1 x2

x3 x4

− +

+
−

−

Figure 3.3: An example ofNd and Pd: N1 = {x1},N2 = {x3, x4}, P1 = {x2}, P2 = {x4}

from input vuj to node vxi with length d,

ρ+
j→i,d =

∑
π∈θ+

d (vuj ,vxi)

w(π),

where θ+
d (vuj, vxi) is the set of positive walks of length d from vuj to vxi. From the defi-

nition of Pjd , it holds that ρ+
j→i,d > 0 if vxi ∈ Pjd and 0 else. Similarly the total weight of

negatively signed walks from input vuj to node vxi with length d is

ρ−j→i,d =
∑

π∈θ−d (vuj ,vxi)

w(π),

where θ−d (vuj, vxi) is the set of negative walks of length d from vuj to vxi and it follows that

ρ−j→i,d < 0 if vxi ∈ N j
d and 0 else. The weight of all walks from input vuj of length d is

ρj→i,d = ρ+
j→i,d + ρ−j→i,d.

It is possible that based on the sets Pjd andN j
d that there be a 0 path weight even though

paths exist. Consider the example shown in Figure 3.4. The signed graph represents all
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u

x1

x3x2

x4

+

+
+

+−

Figure 3.4: An example of a signed graph where the sets Nd and Pd do not uniquely
determine the sign of ρj→i,d, as there is the possibility that two paths cancel each other out

systems of the form

ẋ =



0 0 0 0

−α1 0 0 0

α2 0 0 0

0 α3 α4 0


x +



β1

0

0

0


u

where α1, α2, α3, α4, β1 > 0. Here the total walk weight to node vx4 at length 2 is

ρ1→4,2 = β1 (α2α4 − α1α3)

which can be positive, negative or zero depending on the values of the various constants.

The case where the sign of ρj→i,d is determined byN j
d and Pjd is shown in the following

Lemmas. These Lemmas follow directly from the definitions of the sets Pjd and N j
d and as

such are presented without proof.

Lemma 3.3.1. If vxi ∈ Pjd ∧ vxi /∈ N
j
d then ρj→i,d > 0.

Lemma 3.3.2. If vxi ∈ N j
d ∧ vxi /∈ P

j
d then ρj→i,d < 0.

It is possible to relate ρj→i,d with the system matrices A,B and ultimately the control-
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lability properties of the system. Define a weighted adjacency matrix Ãw for Gwx , where

(Ãw)i,j = w((vxj, vxi)) if (vxj, vxi) ∈ Ex and (Ãw)i,j = 0 if not. Define a weighted adja-

cency matrix B̃w for Gwu , where (B̃w)i,j = w((vuj, vxi)) if (vuj, vxi) ∈ Eu and (B̃w)i,j = 0

if not. Note that from the definition of the weight of an edge, Ãw = A and B̃w = B. Then

(Ad−1B)i,j is the sum of the weight of all walks of length d from vuj to vxi. More formally:

Lemma 3.3.3.

(Ad−1B)i,j = ρj→i,d.

Proof. The result will be shown via proof by induction on d. Consider the case of d = 1.

By the definition of the weight of an edge:

(B)i,j = ρj→i,1.

Consider the weight of all walks of length d from an input vuj to a state node vxi. By

assumption, (Ad−2B)i,j = ρj→i,d−1. As Ad−1B = AAd−2B, it follows that

(Ad−1B)i,j =
n∑
k=1

(A)i,kρj→k,d−1.

As a walk of length d is the concatenation of a walk of length d− 1 and a walk of length 1,

it follows from the definition of the weight of a walk that

n∑
k=1

(A)i,kρj→k,d−1 = ρj→i,d.

As C is the concatenation of matrix products from B to An−1B, Lemma 3.3.3 shows

that the herdability of a continuous time linear system is determined by walks on Gw which

have lengths from 1 to n. Further:

Lemma 3.3.4. (C)i,(m(d−1)+j) = ρj→i,d.
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Proof. From Lemma 3.3.3,

(Ad−1B)i,j = ρj→i,d.

From the definition of the controllability matrix, the sub-matrix

(C):,m(d−1)+1:md = Ad−1B.

The result follows.

3.4 A Necessary Condition for Complete Herdability

This section shows how graph structure and system herdability are related by providing a

necessary condition for complete herdability of a system known as input connectability.

It also explores some examples that show why input connectability is only a necessary

condition. These examples have been explored in previous sections, though in less depth.

Definition 3.4.1. A graph is input connectable (equivalently, accessible) if

⋃
vuj∈Vu

Rj = Vx,

where Rj is the set of nodes reachable from vuj: Rj = {vxi ∈ Vx | vuj → vxi}.

If a single node is not herdable then the system is not completely herdable. As such,

Lemma 3.1.5 can be used to show the following:

Theorem 3.4.1. If a system is completely herdable, then it is input connectable.

Proof. Suppose not. Then by assumption, there exists a node vxi such that vxi /∈
⋃
j Rj

and as such there is no walk from an input to vxi. If there is no walk to vxi, then (C)i,: = 0n

by Lemma 3.3.4 and the node will not be herdable by Lemma 3.1.5. As such, the system

is not completely herdable.
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Consider the following two examples that show why input connectability is only a nec-

essary condition and not a sufficient condition. These examples motivate the the condition

of Theorem 3.5.1 in Section 3.2, which ensures that the system is input connectable and

that the cases presented in these examples do not occur.

The first example has to do with the structure of the signed graph Gs. We return to the

example of the signed dilation, which is shown again in Figure 3.5.

u

x1 x2

+ +

(a)

u

x1 x2

− +

(b)

Figure 3.5: The systems represented by the graph structure in 3.5a are completely herdable,
while 3.5b shows a graph structure that is never completely herdable

Figure 3.5a represents systems of the form

ẋ =

0 0

0 0

x +

β1

β2

u

where β1, β2 > 0, which gives a controllability matrix:

C =

β1 0

β2 0


And by inspection,

range(C) = span



β1

β2



 .

This system is always completely herdable.
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On the other hand, Figure 3.5b can be translated to systems of the form:

ẋ =

0 0

0 0

x +

−β1

β2

u

where β1, β2 > 0. This gives a controllability matrix:

C =

−β1 0

β2 0


And by inspection,

range(C) = span



−β1

β2



 .

Here either vx1 or vx2 can be made larger than any threshold h ≥ 0 but not both. This

example illustrates a fundamental trade off when herding signed digraphs, which is that at

a given distance from the input eitherNd or Pd can be herded but not both. In the language

of social networks, it is not possible to simultaneously convince an enemy and a friend.

It turns out that Figure 3.5a is an example of a positive system. In the case of a positive

system, input connectability is a necessary and sufficient condition for complete herdability.

Theorem 3.4.2. A positive linear system is completely herdable if and only if it is input

connectable.

Proof. (Sufficiency) By Theorem 8 of [46], an input connectable, positive linear system is

excitable. Then there is an element-wise positive vector in the reachable subspace, which

is also the range of the controllability matrix by Lemma B.0.1. Then by Corollary 3.1.2,

the system is completely herdable.

(Necessity) Follows from Theorem 3.4.1.

The second example that shows why input connectability is only a necessary condition

and not a sufficient condition can be seen based on the weighted graph Gw, specifically
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the cancellation of walk weights from an input to a state node. It is possible that a node

be included in both N j
d and Pjd which could lead to a combination of weights such that

ρj→i,d = 0. If the only walks to vxi are of length d then the node vxi is not herdable, as is

the case for vx4 in Figure 3.4. The following lemma shows a condition which ensures this

undesirable interaction does not occur.

Lemma 3.4.3. If vxk ∈ N j
d ∪ P

j
d ∧ vxk /∈ N

j
d ∩ P

j
d then ρj→i,d 6= 0.

Proof. Suppose the contrary. Then

ρj→k,d = 0

ρ+
j→k,d + ρ−j→k,d = 0.

As vxk ∈ N j
d ∪ P

j
d it holds that

ρ+
j→k,d > 0, ρ−j→k,d < 0

which implies that

vxi ∈ Pjd , vxi ∈ N
j
d

vxi ∈ Pjd ∩N
j
d

It is also possible to show that such a condition will not hold in a generic sense, which

requires a brief digression into structural herdability. Consider a system

ẋ = Asx+Bsu, (3.2)

which was described in Section 2.2.3.
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Definition 3.4.2. A node i is individually structurally herdable if the node i is generically

individually herdable.

Theorem 3.4.4. If node i is accessible, then node i is individually structurally herdable.

Proof. By Lemma 3.1.5, the herdability of a node is equivalent to a non-zero weight path

from an input. As node i is accessible, assume that there is path of length d from input

node j. Then the weight of this path ρj→i,d, is a polynomial in the edge weights. The set

O = {Ãs, B̃s ∈ RnA × RnB |ρj→i,d = 0} is a proper variety. This can be seen by the fact

that it is possible to select an edge weight combination that is results in a non-zero path

weight (i.e. O is not the full parameter space) nor is it empty. Equivalently perturbing a

single edge weight by epsilon will results in a non-zero path weight. As such the weight of

the path is non-zero generically.

Even though a node is individually structurally herdable, accessibility does not imply

structural herdability of groups of nodes. The counter example is the signed dilation shown

most recently in Figure 3.5.

For this graph the set of edge weights where the two nodes are not herdable at the same

time is not zero measure, as the weights can both be perturbed by some ε and the system is

still not herdable. The information about the presence of dilations in the underlying system

graph is captured in the matrix [A B], as A and B serve as weighted adjacency matrices for

the graph. This hints at a connection here between the structural herdability of the system

and the matrix [A B] which has yet to be fully explored.

This section has explored a necessary condition for system herdability based on the

structure of the underlying graph structure. In the next section, a number of sufficient

conditions will be presented.
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3.5 Using the Sets Pjd and N j
d to Determine Herdability

This section considers two variants on the theme of using the sets Pjd and N j
d to determine

system herdability. The first recasts the sufficient conditions of Section 3.1 in terms of the

underlying graph structure of the system. The second considers whether, given the sets Pjd

and N j
d how one can determine whether the system is completely herdable.

3.5.1 Sufficient Graph Conditions for Herdability

This section will now consider the sufficient condition of Section 3.1 in light of the char-

acterization of the controllability matrix given in Lemma 3.3.4. The following Theorems

provide a case where the composition of the sets Pjd andN j
d uniquely determines the herd-

ability of the graph, i.e. one is able to show the sign-herdability of the system.

Theorem 3.5.1. If for each vxi ∈ Vx, there exists a distance d and an input vuj such that

vxi ∈ N j
d ∪ P

j
d and N j

d = ∅ Y Pjd = ∅, where Y denotes exclusive OR, then the system is

completely sign herdable.

Proof. Consider the herdability of a node vxi which satisfies vxi ∈ N ji

di
∪ Pj

i

di
and N ji

di
=

∅YPj
i

di
= ∅ for some di and vuji . The fact thatN ji

di
= ∅YPj

i

di
= ∅ implies thatN ji

di
∩Pj

i

di
= ∅,

and as such it must be that vxi ∈ N ji

di
∪ Pj

i

di
and vxi /∈ N ji

di
∩ Pj

i

di
.

From Lemma 3.3.4 and Lemma 3.4.3, this implies (C)i,m(di−1)+ji 6= 0. Additionally,

as N ji

di
= ∅ Y Pj

i

di
= ∅, Lemma 3.3.1 and Lemma 3.3.2 show that all nonzero elements of

(C):,m(di−1)+ji have the same sign and that the sign does not depend on the edge weights.

Each node is strictly sign herdable by Lemma 3.2.1. As this hold for all vxi, the system is

completely herdable Theorem 3.2.3. As the conditions only rely on the sign of the edges,

the system is completely sign herdable.

Theorem 3.5.1 is an extension of Lemma 3.2.1 to the sign structure of the network.

Consider the following definition which allows the extension of Lemma 3.2.2.
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Definition 3.5.1. A node vxi is said to be sign balanced if there exists a distance d and

an input vuj such that vxi ∈ N j
d ∪ P

j
d , vxi /∈ N j

d ∩ P
j
d , and all nodes that balance vxi at

distance d from an input vuj are sign herdable.

Theorem 3.5.2. If all nodes are herding balanced then the system is completely sign herd-

able.

Proof. As for each vxi there exists a distance d and an input vuj such that vxi ∈ N j
d ∪ P

j
d ,

vxi /∈ N j
d ∩ P

j
d , there is a column of C whose sign with respect to vxi is always consistent

regardless of the weight of the edges in the walks that connect the input vuj and vxi. As it is

balanced by sign herdable nodes, node vxi is strictly sign herdable. As all nodes are strictly

sign herdable then the whole system is sign herdable by Theorem 3.2.3.

Theorem 3.5.1 and Theorem 3.5.2, as well as Lemmas 3.2.1 and 3.2.2 (their counterpart

based on the controllability matrix C), provide sufficient conditions to verify that a node is

strictly herdable. However as they are only sufficient there are completely herdable systems

which can not be identified by verifying the conditions of Lemmas 3.2.1 and 3.2.2 and

Theorems 3.5.1 and 3.5.2. Figure 3.9 shows a simple example.

u

x1 x2 x3

+
+

−

++

+

Figure 3.6: An example of a completely herdable graph which can not be identified by
inspecting the columns of C nor the sets N j

d and Pjd
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3.5.2 The Subset Herdability Problem

This section will now consider another version of the herdability problem, that of deter-

mining the herdability of a system from the sets N j
d and Pjd , which will be called the

subset herdability problem. Admittedly this ignores any information about the weights of

walks and as such only in specific cases (i.e. the system is sign herdable) is a solution to

this problem a solution to the general herdability problem. Note that the sufficient condi-

tions presented earlier in this section are instances when there is a solution to the subset

herdability problem that herds all nodes and it coincides with the solution based on the

controllability matrix.

The subset herdability problem is NP-hard, to show this consider the NP-hard Maxi-

mum Coverage Problem.

Definition 3.5.2. Given a number γ and a collection of sets S = {S1, S2, . . . , Sz}. The

Maximum Coverage Problem asks that we find the collection of at most γ elements of S

that maximizes the number of elements covered, |
⋃γ

1 Si|.

Theorem 3.5.3. The subset herdability problem is NP-hard.

Proof. Subset herdability is an instance of the Maximum Coverage Problem. To see this

consider this reformulation of the set-based herdability problem. The set-based herdability

problem considers a collection of 2mn sets, which are the sets N j
d and Pjd for distances up

to n and for each of the m inputs. The task is to select at most mn of those sets, where an

arbitrary selected set will be denoted with Si, such that the most states are herded, i.e. such

the number of state nodes contained in |
⋃mn

1 Si| is maximized.

Maximum Coverage is a NP-hard problem, however with subset herdability there is a

restriction on which sets can be chosen to form a cover. This is because bothN j
d and Pjd for

some fixed d and j can not be selected simultaneously. Instead subset herdability involves

solving an extension of the Maximum Coverage Problem known as Maximum Coverage
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u

x1 x2

+

−

+

−

Figure 3.7: An example where the subset herdability problem returns an invalid result

with Group Budgets[122]. It has been shown that the greedy algorithm is in the best case

a 2-factor approximation, i.e. that |G| ≥ 1
2
|O| where G is the set selected by the greedy

algorithm and O is the optimal set[122].

As mentioned previously, it is possible that the solution to the subset herdability prob-

lem does not lead to a viable solution to the original herdability problem, based on the

weights. To see an example as to why, consider a modification of the signed dilation shown

below.

This leads to a system of the form:

ẋ =

0 −α1

0 α2

x +

 β1

−β2

u

and a controllability matrix of

C =

 β1 β2α1

−β2 −β2α2


A greedy algorithm would add x1 at the first distance and x2 at the second distance (or

vice versa). If β1α2 = β2α1 then the columns are linearly dependent and it is only possible

to herd one node, i.e. the greedy algorithm returned an infeasible solution.
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3.5.3 Subset Selection: Directed Out-branchings

If a system is not completely herdable, it is still possible to control a subset of the system

nodes to enter the set Hd. This section presents such a selection procedure in the special

case of graphs that are a rooted out-branching. In such cases the structure of the system

allows a greedy algorithm to return a solution that is always feasible.

A directed graph, Ĝ = (V̂ , Ê) is a rooted out-branching if it has a root node vi ∈ V̂

such that for every other node vj ∈ V̂ there is a single directed walk from vi to vj . The

case considered here is that of a single input, input rooted out-branching, which means that

every node vxi ∈ V̂x has a single in-bound walk from the single input vu. The unique walk

from vu to vxi in the input-rooted out-branching will be referred to as πt(vu, vxi). Consider

the maximum walk length between vu and a state node, which is

dmax = max
vxi∈V̂x

len(πt(vu, vxi)).

Let Hu be the set of nodes made larger than some lower threshold h ≥ 0 via a signal from

the input vu.

Theorem 3.5.4. In an input rooted, out-branching, Hu follows

Hu =
dmax⋃
d=1

Xd,

where Xd ∈ {Pd,Nd, ∅}.

Proof. Consider the ability to herd a node vxi and assume that len(πt(vu, vxi)) = di. As

there is only one walk from vu to vxi it holds that (C)i,d = 0, ∀d ∈ D, such that d 6= di

and (C)i,di 6= 0. Further vxi is either in Pd or in Nd but can not be in both as there is

only one path to vxi. Then if vxi is in Pdi , ρu→i,d > 0 by Lemma 3.3.1 and consequently

(C)i,di > 0 by Lemma 3.3.4 or if vxi is in Ndi , ρu→i,d < 0 by Lemma 3.3.2 and (C)i,di < 0

by Lemma 3.3.4.
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Then it follows that (C):,di uniquely determines the ability to herd all nodes at distance

di. If αdi = 1 then ((C):,diαdi)i > 0, ∀i such that vxi ∈ Pdi and Pdi is herdable by

Theorem 3.1.1. If αdi = −1 then ((C):,diαdi)j > 0, ∀i such that vxi ∈ Ndi and Ndi

is herdable by Theorem 3.1.1. Finally if αdi = 0 then (C):,diαdi = 0n and no nodes are

herded. Then by the appropriate choice of αdi the set of nodes that can be herded at distance

di from u, Xdi must be one of {Pd,Nd, ∅}.

Construct a vector ααα ∈ Rn where ∀d ∈ {1, 2, . . . , dmax}

(ααα)d =


1 so that Xd = Pd,

−1 so that Xd = Nd,

0 so that Xd = ∅,

and where the remaining n − dmax elements are 0. Then Cααα shows the herdability of the

set of nodes
⋃dmax

d=1 Xd.

Corollary 3.5.5. The maximal collection of nodes, H∗u, that can be herded in a input rooted

out-branching satisfies

|H∗u| =
dmax∑
l=1

max(|Nl|, |Pl|).

In the case of an single input, input connectable, directed out-branching where ∀d ∈

{1, 2, . . . , dmax}, Nd = ∅ Y Pd = ∅, Corollary 3.5.5 shows that |H∗u| = n, or equivalently

that the system is completely herdable. Figure 3.8 shows an example of selecting the set of

nodes that can be herded in an input rooted, out-branching.

The graph in Figure 3.8 can be translated into the following class of systems:
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u

x1 x2

x5 x6x3 x4

− +

− +− +

Figure 3.8: An example of an input rooted out-branching

ẋ =



0 0 0 0 0 0

0 0 0 0 0 0

−α1 0 0 0 0 0

α2 0 0 0 0 0

0 −α3 0 0 0 0

0 α4 0 0 0 0


x +



−β1

β2

0

0

0

0


u

where α1, α2, α3, α4, β1, β2 > 0. The system has a controllability matrix:

C =



−β1 0 0 0 0 0

β2 0 0 0 0 0

0 α1β1 0 0 0 0

0 −α2β1 0 0 0 0

0 −α3β2 0 0 0 0

0 α4β2 0 0 0 0
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where

range(C) = span







−β1

β2

0

0

0

0


,



0

0

α1β1

−α2β1

−α3β2

α4β2






As such the possible sets of herded nodes are {1, 3, 6}, {1, 4, 5}, {2, 3, 6}, {2, 4, 5}.

The result of Theorem 3.5.4 is similar in nature to the k-walk controllability theory[64].

The k-walk theory shows that for each d ∈ {1, 2, . . . , dmax} one element of eitherNd or Pd

can be controlled. In the graph given in Figure 3.8, the possible sets of nodes that can be

controlled are {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}{2, 5}, {2, 6}. As a consequence

of the k-walk theory, the maximal collection of nodes that are controlled in a directed out-

branching from input vu, C∗u, satisfies

|C∗u| = dmax.

In the case of herding a network, Corollary 3.5.5 shows that the maximal collection of

nodes, H∗u, will satisfy

dmax ≤ |H∗u| ≤ n.

Therefore in the worst case, the same number of nodes can be herded as can be controlled

and depending on the network structure many more nodes can be herded. Note that the

results of Theorem 3.5.4 do not extend directly to the multi-input out-branching case, as in

a multiple input out-branching the sets Pjd andN j
d no longer uniquely determine the ability

to herd a node.
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3.6 Determining Pjd and N j
d

The previous sign herdability results all depend on the sets N j
d and Pjd , which must be

determined from the graph structure. To find the setsN j
d and Pjd requires the use of a graph

traversal algorithm. Unfortunately determining N j
d and Pjd via graph traversal involves

considering all paths between an input node and a state node in the graph, of which there

are potentially an exponential number. Let us consider the graph traversal algorithm in

more depth.

The graph traversal can be done via a modified Breadth First Search, which allows

nodes and edges to be revisited. Unfortunately this will increase the time complexity of the

algorithm, in some cases by a lot. If A has an underlying graph which is a directed acyclic

graph then each node will be visited once for each in-bound edge and each edge will be

visited based on the number of times the node which is at its tail is visited. This is a linear

time operation, and as such this graph traversal method is appropriate for a graph which is

a directed acyclic graph.

If A is not acyclic then there is a possibility that the time complexity of the algorithm

grow exponentially in the number of state nodes. The first restriction which may improve

the time complexity of the algorithm is to only consider paths of up to length n from

inputs as it has been previously demonstrated that these paths determine the controllability

properties of the system. Unfortunately, even given this restriction the time complexity of

the algorithm can be quite large. Consider the worst case graph for this algorithm, which is

a complete graph with self loops, i.e. A is 1n×n. If theB matrix is 1n×1. i.e there is a single

input which interacts with each nodes, then for this graph at distance d from an input, each

node will be visited nd−1 times. Then when the algorithm terminates at a distance n from

an input, each node will have been visited nn−1 times, or a total time complexity of O(nn)

based purely on node visits. Essentially using the graph algorithm is only feasible in the

case of directed acyclic graphs.
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It is possible to approximate the sets N j
d and Pjd based on the controllability matrix

of the system. The time complexity of this operation is dominated by calculating the last

element of the controllability matrix (An−1B) which takes O(n2.3727log(n − 1) + (n2m))

time. As discussed previously, when calculating the controllability matrix there is a chance

that paths will cancel on the graph. This means that the approximate sets N̂ j
d and P̂jd

determined via this method can be used to determine the herdability of a particular graph

but not all graphs with the same sign pattern. However, if it can be shown that an additional

property holds for the graph, then the controllability matrix determines the setsN j
d and Pjd

exactly and statements can be made about the sign-herdability of the system.

First consider the following of extension of Lemma 3.3.1 and Lemma 3.3.2, which

captures the behavior that is desired to capture the sign-herdability of a network.

Theorem 3.6.1. If ∀i ∈ {1, 2, . . . , n} it holds that for each d and j such that Ci,m∗(d−1)+j 6=

0, i satisfies vxi ∈ Pjd ∧ vxi /∈ N
j
d or vxi ∈ N j

d ∧ vxi /∈ P
j
d , then the sign pattern of the

controllability matrix does not depend on weights of the graph.

Proof. If the condition of the theorem holds, then every non-zero element of C is associated

only with paths of the same sign and as such will have the same sign as the paths no matter

the weights on the graphs.

If the underlying graph of the system satisfies Theorem 3.6.1, the system is sign-

consistent. Clearly this theorem depends on knowledge of the sets N j
d and Pjd , which

is infeasible computationally when the underlying graph structure is not a directed acyclic

graph. However it is possible to show a stronger condition more easily.

Theorem 3.6.2. If the system graph is structurally balanced, then for all i ∈ {1, 2, . . . , n}

it holds that for each d and j such that Ci,m∗(d−1)+j 6= 0, i satisfies vxi ∈ Pjd ∧ vxi /∈ N
j
d or

vxi ∈ N j
d ∧ vxi /∈ P

j
d .

Proof. Suppose not. Then there exists an i such that there is a d and j where vxi ∈ Pjd ∧

vxi ∈ N j
d . This implies there are one or more positive paths of length d from j and one or
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more negative paths of length d from j. Without loss of generality, consider one positive

path and one negative path from input j to node i. These paths form a semi-cycle in the

graph. One of the paths is negative and must have an odd number of negative edges. The

other is positive and must have an even number of negative edges. As such the semi-cycle

must have an odd number of negative edges, i.e. the semi-cycle must have negative weight,

which implies that the graph is not structurally balanced.

To see why structural balance is only a sufficient condition consider the graph in Figure

3.9. As can be seen from the graph, structural balance ignores the lengths of the paths

which connect an input to a state node.

u

x1

x2

+

−
−

Figure 3.9: An example of a graph which is sign consistent but not structurally balanced

Structural balance can be determined in linear time[123], which implies that Theo-

rem 3.6.2 makes it possible to characterize the sign herdability of a system from the con-

trollability matrix with little extra computational cost.

3.7 Cardinality Herding

As determining the herdability of a system based on the sign pattern of the underlying

graph is NP-Hard and potentially returns infeasible solutions, there is a need for another

method to determine the herdability of a system. We propose a computational method to

determine the herdability of a system based on the controllability matrix C. The cardinality
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herding problem solves the following linear program:

max
u

n∑
i=1

(Cu)i

subject to Cu ≤ 1n.

(3.3)

Once the linear program is solved, the number of positive elements of the resultant vector

Cu is examined to determine how many states have been herded. As will be seen in Section

4.2, this relatively simple optimization problem can be used to show that a large portion of

a given network is herdable from one node.

3.8 Conclusion

In this chapter, the basic theory of herdable systems was presented. The definition of

herdability was shown to translate to a simple condition based on three matrices: the con-

trollability grammian, the controllability matrix, and the matrix [A B]. As verifying this

condition can be quite difficult a number of sufficient conditions where shown. Further a

method for verifying this condition by inspecting the columns of the matrix under consid-

eration was developed, which provides a computationally efficient but incomplete method

to understand the herdability properties of a system.

The characterization of herdability based on the controllability matrix was extended to

consider the underlying graph of the dynamical system. It was shown that a certain loss

of symmetry, as shown by a balanced vector in the range of the controllability subspace,

ensured that a system was no longer complete herdable. Additionally it was shown that as

herdability is only dependent on the sign of an interaction, any characterization of herd-

ability based on the controllability matrix can be extended to a class of systems with the

same sign pattern if it can shown that the sign of the columns of the controllability matrix

do not depend on the underlying edge weights.
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CHAPTER 4

HERDABILITY INPUT SELECTION

This chapter considers the application of herdability to the study of complex networks by

discussing the input selection problem: given an existing network structure, which node(s)

should be selected to ensure that the system is completely herdable. Two versions of this

problem will be discussed, one which focuses specifically on the context of positive systems

and the other which considers the general case. This chapter considers and extends the work

in [124].

4.1 Positive Systems

In Chapter 3, it was shown that an input connectable positive system is completely herdable.

This section considers the following modification of the input selection problem: how to

select a minimal subset, H, consisting of NH state nodes that ensures that the system is

input connectable. Input connectability will in turn ensure that, under the assumption that

the system dynamic is positive, that the system will therefore be herdable. Each element of

H is called a herding node.

Note that herdability, as a set reachability condition, can always be achieved via one

input node. The consideration then is which state nodes to communicate with. Therefore

the results presented here do not explicitly depend on the structure of the B matrix and

hold for the commonly used structures of B matrix, i.e. either a zero-one column vector or

a diagonal matrix [56, 58].

Consider now the problem of making a given system herdable by finding an input con-

nectable cover for a network. The solution to this problem is called a Herding Cover, as

controlling the root nodes of the Herding Cover ensures herdability of a positive system.

Of additional interest is insuring that the Herding Cover has the fewest possible number of
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root nodes. Before discussing the problem of finding a minimal Herding Cover, consider

the Set Cover Problem.

Definition 4.1.1 (Set Cover Problem). Given a universe U of n elements, a collection of

subsets of U say S = {S1, S2, . . . , Sk} with non-negative costs specified, the minimum set

cover problem asks for a minimum cost collection of sets whose union is U [125].

The task of finding the minimum set cover is a classic example of a NP-Hard problem,

see [125] for discussion and the hardness proof. Mapping the Herding Cover problem to

the Set Cover problem shows that finding a minimal Herding Cover is NP-Hard.

Theorem 4.1.1. Finding the minimum number of nodes to ensure herdability is NP-hard.

Proof. For a network with n nodes, define U = {1, . . . , n} as the universe set. For each

node i in the network, assign the set Si which are the nodes that can be reached through

a spanning tree originating at node i. Assign each set Si with a cost of 1. With cost of 1

for each set, the minimum cost solution selects the minimum number of sets to cover the

network. Finding a minimal Herding Cover is then equivalent to this incarnation of the Set

Cover Problem and is therefore NP-Hard.

The solution to the set cover problem can be approximated via a greedy algorithm [125].

In this section, the following greedy algorithm will be implemented in order to determine

the herdability properties of complex networks as follows. First find the directed spanning

tree rooted at each individual node. This gives rise to the sets S1,S2, . . . ,Sn, where the

elements of Si are the nodes that are in a directed spanning tree rooted at node i. The set of

root nodes, H, is increased based on the set of uncovered nodes, U . A node is uncovered

if it is not contained in
⋃
k∈H Sk. At each iteration of the greedy algorithm, all unselected

nodes j ∈ {1, 2, . . . , n} \ R are considered and the node that covers the most elements of

U is added to H. This is a Hn factor approximation algorithm, where Hn =
∑n

z=1
1
z

[125].

While in general finding the minimal Herding Cover is NP-Hard, it is possible to char-

acterize some properties of a Herding Cover. The following Theorem provides bounds for
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the number of root nodes needed for a minimal Herding Cover (NH).

Theorem 4.1.2. The minimum number of roots needed to ensure input connectability of a

directed network is bounded by

Nw ≤ NH ≤
Nw∑
i=1

max(N s
i − 1, 1)

where Nw is the number of weakly connected components and N s
i is the number of strongly

connected components in weakly connected component i.

Proof. (Nw ≤ NH) Consider each weakly connected component in turn. If a directed

spanning tree exists with covers all nodes in the weakly connected component, then the

root of the directed spanning tree will be selected to make the weakly connected component

input connectable. If a directed spanning tree exists for each weakly connected component,

then Nw roots will form a Herding Cover.

(NH ≤
Nw∑
i=1

max(N s
i − 1, 1)) Consider each weakly component in turn. There are two

cases:

• (Case 1 N s
i > 1) Consider a weakly connected component with Ns > 1 strongly

connected components. In this case,N s−1 ≥ 1 and the graph requires at mostN s−1

nodes to form a herding cover. Suppose not, then there is a minimal herding cover

with N s nodes. This implies that each of the N s strongly connected components is

disjoint because if there were a path between any two strongly connected components

then both could be covered by one root node. Then there are in fact N s weakly

connected components, a contradiction.

• (Case 2 N s
i = 1) If N s

i = 1, then weakly connected component i is in fact a strongly

connected component and one node is sufficient to cover this weakly connected com-

ponent.

Both cases imply that for each weakly connected component, at most max(N s − 1, 1) root

64



nodes are needed for a minimal cover. Summing over each weakly connected component

gives the upper bound.

The upper bound holds in the case of the inverted star shown in Figure 4.1(a) which

requiresN?−1 nodes to ensure herdability, whereN? is the number of nodes in the inverted

star graph. In this configuration, the number of strongly connected components N s
? within

the weakly connected component is N s
? = N?. As links are added moving away from the

center hub, N s
? decreases along with the number of required nodes to herd the network.

N s
t = 5

NH = 4
N s
t = 4

NH = 2

(a) (b)

Figure 4.1: Herding Cover of a Network: (a) An inverted star graph where the upper bound
is tight. (b) An example where the bound is not tight.

Theorem 4.1.2 can be extended to the following corollaries. Corollary 4.1.4 in particu-

lar will motivate the discussion in Section 4.1.1.

Corollary 4.1.3. If the graph is undirected or consists of disjoint strongly connected com-

ponents,

NH = Nw

.

Proof. If the graph is undirected or consists of disjoint strongly connected components,

∀i ∈ {1, 2, . . . Nw}, N s
i = 1 and so the upper bound becomes

Nw∑
i=1

max(0, 1) = Nw.
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Then Nw ≤ NH ≤ Nw.

Corollary 4.1.4. If the directed graph G is strongly connected and the interaction dynamic

is such that the system is positive, then any one node set forms the root of a Herding Cover.

Proof. If the system is strongly connected, then whichever node is chosen as an input node

there will be a path to all nodes in the network by the definition of strong connectivity.

Further if the system is a positive system then the system is an excitable, positive system

and the system is herdable.

The characterization of herdability provided in Corollary 4.1.4 allows us to consider in

greater depth how herdability differs from controllability. The primary difference comes

from the inherent inability of controllability analysis to deal with symmetry with respect

to an input. This symmetry occurs due to dilations in the underlying graph, an example is

which is shown in Figure 4.2(a). This graph represents systems of the form

ẋ =


0 0 0

α1 0 0

α2 0 0

x+


β1

0

0

u.

The controllability matrix follows

C =


1 0 0

0 α1 0

0 α2 0

 .

Symmetry causes a rank deficiency in the controllability matrix, forcing the symmetric

nodes to be controlled in constant relation to each other, where the constant is dependent

on the relative edge weights. The inability of the symmetric nodes to be controlled sep-

arately of each other violates the controllability condition. As herdability looks only at

herding the state to be larger than some threshold, the herdability condition is satisfied

66



even when the symmetric nodes are controlled to the same point. An illustrative case of

symmetric systems is the star graph, shown in Figure 4.2(c). The fact that symmetry de-

grades controllability explains why past analysis of controllability of complex networks

has found that driver node selection avoids hubs [63].

(a) (b) (c)

Figure 4.2: The Effect of Symmetry on Control: (a) A dilation: Two nodes (x2 and x3) have
in-bound edges from one node. Nodes x2 and x3 are both symmetric with respect to the
control input u making the system uncontrollable. (b) Controllability analysis will select 3
nodes as driver nodes in order to ensure controllability of the system. (c) Herdability can
select the middle node as symmetry does not necessarily degrade the ability to herd the
network.

Table 4.1 shows results for analysis of the fraction of herding nodes, nH , compared with

the fraction of driver nodes, nc, from the controllability analysis of [63]. These results are

approximate in the case of directed networks and exact in the case of undirected networks.

Across all considered networks nH ≤ nc. In 15 of the 24 networks, Table 4.1 shows that

influencing complex networks requires communication with fewer nodes than controlling

the network as nH < nc. There are some networks, such as the Western US Power Grid,

where nH << nc. These networks consist of a single strongly connected component,

which can be made herdable with one herding node as shown in Corollary 4.1.4.
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Table 4.1: For each network, the table shows the number of node N , the number of edges
L, whether the network is Undirected or Directed, the ratio of number of herding nodes to
number of weakly connected components nw = NH

Nw
, the fraction of herding nodes nH =

NH

N
, the fraction of driver nodes nc = Nc

N
, the fraction associated with the theoretical upper

bound nu =
∑

i∈Nw
max(Ns

i −1,1)

N
.

Type Name N L Dir. nw nH nu nc
Collaboration Astro-Physics[126] 16,706 242,502 U 1 0.062 0.062 0.080

Condensed Matter Physics[126] 16,726 95,188 U 1 0.071 0.071 0.108
Cond. Mat. Physics 2003[126] 31,163 240,058 U 1 0.051 0.051 0.090
Cond. Mat. Physics 2005[126] 40,421 351,384 U 1 0.045 0.045 0.083
High Energy Physics[126] 8,361 31,502 U 1 0.159 0.159 0.208
Network Science[127] 1,589 5,484 U 1 0.249 0.249 0.260
Jazz[128] 198 5,484 U 1 0.005 0.005 0.005
General Relativity[129] 26,196 28,980 U 1 0.813 0.813 0.827

Biological C. Elegans Neural [130] 306 2,345 D 3.7 0.121 0.212 0.190
Protein Interaction[131] 2,114 4,480 U 1 0.197 0.197 0.462
Dolphin Social [132] 62 318 U 1 0.016 0.016 0.032

Infrastructure Western US Power Grid [130] 4,941 13,188 U 1 0.0002 0.0002 0.116
Top Airports[133] 500 5960 U 1 0.002 0.002 0.250
Football Games[134] 115 1,226 U 1 0.009 0.009 0.009

Online UCIonline[83] 1,899 20,296 D 138 0.291 0.315 0.323
Political Blogs[135] 1,490 19,025 D 1.89 0.340 0.460 0.471

Friendship Third Grade[136] 22 177 D 1 0.046 0.046 0.046
Fourth Grade[136] 24 161 D 1 0.042 0.042 0.042
Fifth Grade[136] 22 103 D 1 0.046 0.046 0.046
Highschool[137] 73 243 D 2 0.137 0.233 0.178
Fraternity[138] 58 1,934 U 1 0.017 0.017 0.017
EIES 1[139] 32 650 D 1 0.031 0.031 0.031
EIES 2[139] 32 759 D 1 0.031 0.031 0.031
Mine[140] 15 88 U 1 0.067 0.067 0.067
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4.1.1 Herdability Centrality

If the system is herdable from any one node, a secondary issue arises of selecting which

one node to use as the herding node. To select between nodes in a strongly connected

component, a new herdability centrality measure is proposed which takes into account the

energy required to drive the system into the set Hd. Herdability centrality explicitly takes

the dynamics of the system into account, unlike many existing centrality measures which

carry implicit assumptions about the network processes they describe [141].

While many networks are not necessarily strongly connected, any directed graph can be

broken down into a non-overlapping set of strongly connected components, allowing each

strongly connected component to be considered individually to determine the herdability

centrality. The strongly connected components of a graph can be found in linear time via

Kosaraju’s algorithm [142].

Consider the problem of entering the set Hd = {x ∈ Rn|xi ≥ d} from the origin with

minimal control energy:

J(B, d) = min
u(t)

∫ tf

0

‖u(τ)‖2dτ

s.t. ẋ(t) = Ax(t) +Bu(t), t ∈ [0, tf ]

x(tf ) ∈ Hd

x(0) = 0n,

(4.1)

where the minimum energy, J , is parameterized by the structure of the interaction with

control inputs, which is given in the matrix B, and by d > 0 which is assumed to be fixed.

The formulation in Equation (4.1) can be contrasted with the minimum energy optimal

control problem as typically studied, i.e. in the context of completely controllable systems.

Specifically, in such cases the desired end position of the system is typically a desired final

point xf instead of the set H. In general, for systems that are not completely controllable,

there is no guarantee that a desired xf or even H can be reached. However if the system
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is herdable, then by definition the reachable subspace from 0n, R(0) intersects the set Hd.

As such it is possible to characterize the form of the minimum energy to reachHd.

Lemma 4.1.5. If the system is herdable, then the minimum energy to reach Hd is of the

form

xTfW
+
c xf ,

where xf ∈ Hd∩R(0), andW+
c is the Moore-Penrose pseudo-inverse of the Controllability

Grammian.

Proof. If the network is herdable then ∃xf ∈ Hd ∩ R(0). This reachable xf allows the

use of a number of properties of the controllability grammian. To reach ∀xf ∈ R(0) ∩Hd

requires an input u(t) that satisfies
∫ t

0
eA(t−τ)Bu(τ)dτ = xf . This u(t) will have the form

u(t) = BT eAtp where Wcp = xf . The equation Wcp = xf has at least one solution as

R(0) = range(Wc) i.e. that xf ∈ range(Wc). These solutions are of the form

p∗ = W+
c xf + [I −W+

c Wc]xf

with p∗ = W+
c xf as the unique solution in the range ofWc, whereW+

c can here refer to any

generalized inverse [143]. If W+
c refers specifically to the Moore Penrose Inverse (or any

generalized reflexive inverse) the form of the minimum energy to reach xf is xfW+
c xf .

With the analytical expression for the minimum energy to reach xf , it is possible to

re-frame the earlier energy minimization problem as the problem of choosing the optimal

xf in the setHd ∩R(0). The optimization becomes the following:
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min
xf

xTfW
+
c xf

s.t. xf ≥ d

xf ∈ R(0)

x(0) = 0n

(4.2)

Here the problem can once again be simplified further based on properties of the con-

trollability grammian. As Wc is a symmetric, real matrix, the eigenvectors of Wc are mutu-

ally orthogonal and the eigenvectors with non-zero eigenvalues span the range ofWc [144].

When rank(Wc) = r ≤ n there are r eigenvectors {v1, . . . , vr} associated with the r non-

zero eigenvalues λ1, . . . , λr which form an orthonormal basis for range(Wc). Therefore if

xf ∈ range(Wc) then xf can represented as

xf =
r∑
i=1

αivi. (4.3)

Then using that vi are orthonormal and also eigenvectors of W+
c with associated eigenval-

ues 1
λi

, substituting in Equation (4.3) gives

xTfW
+
c xf =

(
r∑
i=1

αivi

)T

W+
c

(
r∑
i=1

αivi

)

=

(
r∑
i=1

αivi

)T ( r∑
i=1

αi
λi
vi

)

=
r∑
i=1

α2
i

λi
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The optimization in Equation (4.2) becomes

min
α

r∑
i=1

α2
i

λi

s.t. V α ≥ d,

where

V = [v1 . . . vr] .

4.1.2 Calculating Herdability Centrality

With a simplified version of the minimum energy optimal control problem in hand, it is

possible to move to calculating the herdability centrality of each node in the network. In

order to calculate herdability centrality, each state node of the herdable system is considered

in turn as the sole input node allowing the calculation of Ji = J(ei, d), where ei ∈ Rn is 1

at position i and 0 elsewhere, and d > 0 is fixed. The quantity Ji is the minimum energy

to reach H using only node i as control input. In order to compare the minimum energy

across nodes, the herdability centrality for node i, Hci, is defined as

Hci =
min
k
{Jk}

Ji

Herdability centrality is normalized to be between 0 and 1. As reaching H with mini-

mum energy is the chosen metric when interacting with these networks, the node(s) with

minimum energy to reachH across all nodes will have the highest herdability centrality.

For the purpose of calculating herdability centrality of existing complex networks, the

largest strongly connected component of each considered network is used as the underlying

interaction topology. The dynamics are assumed to be consensus dynamics, though the

model presented here is related to the model of Taylor, which captures the effect of an

external source of information on the opinion of an agent [145]. When node i is the sole
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herding node, the consensus dynamics are as follows:

ẋj(t) =
∑
z∈Nj

(xz(t)− xj(t)), ∀j 6= i

ẋi(t) =
∑
k∈Ni

(xk(t)− xi(t)) + u(t)− xi(t),

where Ni is the set of nodes with edges entering node i. It’s important to note that this

model provides a stable A matrix allowing the calculation of the controllability grammian

Wc. While the simulation results presented here make use of consensus dynamics, it pos-

sible to calculate herdability centrality in this formulation for any herdable, stable linear

dynamic.

In order to improve efficiency of the calculation, the final time is taken to be tf =∞ as

the infinite horizon controllability grammian can be solved for efficiently, if A is stable, as

the solution to the continuous time Lyapunov equation:

AWc +WcA+BBT = 0.

As mentioned previously, the more general framework of herdability allows hubs to be

selected to herd complex systems, though it is not known a priori that hubs will indeed be

selected. Figure 4.3(a) shows that the center node of the hub has the highest herdability

centrality, and therefore requires the least energy to reachHd. Figure 4.3(b) shows that the

introduced herdability centrality tends to select nodes that have higher than average degree,

suggesting that using herdability centrality to select herding nodes targets hubs.

4.1.3 Comparison to Other Centrality Measures

Given that herdability centrality tends to select high degree nodes, the question becomes

whether it is possible to forgo the computationally expensive herdability centrality calcula-
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Figure 4.3: Herdability Centrality and Hubs: (a) Herdability centrality of a hub. The middle
node has the highest herdability centrality. (b) Plot of average degree of the complete
network vs average degree of the top 10% most herdable nodes, with a line representing
average network degree. The top 10% most herdable nodes of each graph all have greater
than average degree.

tion in favor of an inexpensive degree centrality calculation, or some other graph structure

based centrality measure.

Figure 4.4 shows that while high herdability centrality nodes tend to have high degree,

the highest in-degree node does not necessarily have high herdability centrality. Further this

holds for all centrality measures considered. As shown in Figure 4.4, in 8 of the 19 networks

considered the traditional centrality measures overlap with the highest herdability centrality

nodes. However, there is no single centrality measure which can be used reliably to select

the herding node that reaches the set H with minimum control energy across nodes. The

overlap between herdability centrality and existing measures tends to occur in undirected

networks, which concurs with past results that have shown that centrality measures are

often correlated in undirected networks[146]. Examining the directed networks shows that

size of the network seems to have no impact on overlap with existing centrality measures.

For example, in the Fifth Grade Friendship network, N = 22, all considered centrality
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Figure 4.4: Selecting the Highest Herdability Node via Other Centrality Measures: Each
subgraph considers a different centrality measure and shows the highest (in red) and lowest
(in blue if present) herdability centrality of the node(s) identified as having the highest value
for each respective centrality across all considered networks. Within each categorization
(Direct or Undirected) the networks are ordered with the smallest networks on the left and
the largest on the right. In all undirected Networks, all calculated centrality measures have
high herdability centrality. In some directed networks, In-Degree, Eigenvector, and Katz
centrality identify high herdability nodes.
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measures select a node with low herdability centrality.

It is not entirely clear what causes this lack of overlap between existing centrality mea-

sures and herdability measures. It may be that as the dynamics being used are consensus

dynamics, the overlap would be better if existing centrality measures were applied to the

meta-structure determined by the graph automorphism, as the graph automorphism has

been shown to determine the controllability of consensus dynamics [5].

4.2 Signed Networks

This section considers the question of which single node can be selected to herd a signed

complex network, or, in the case that it is not possible to herd the complete network, which

node can be used to herd the largest number of nodes.

Answering the input selection problem depends on the analysis of the herdability of a

system discussed in Chapter 3. Recall, that there were three characterizations of the herd-

ability of a system based on various system matrices: a necessary and sufficient condition

based on the controllability grammian Wc or the controllability matrix C and a necessary

condition based on the matrix [A B].

There are some caveats for each of these methods. As mentioned previously, the test

based on [AB] is only a necessary condition. As such this test can only provide an upper

bound for system herdability but it can be verified by considering a matrix in Rn×(n+m).

There is a matrix test which deals with a smaller matrix than in the case of [A B],

namely the controllability grammian Wc ∈ Rn×n. The controllability grammian has the

additional advantage that, if it can be computed, it can be computed in linear time for the

case of the infinite horizon controllability grammian. However there is a major caveat for

this method in that A must be stable for the controllability grammian to be computed. As

will be seen, under the assumptions used here to move from a network representation to a

dynamical system representation this test can not be used.

The third test is based on the controllability matrix C, which can be quite computation-
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ally expensive. To calculate the full controllability matrix C requires O(n2.3727log(n−1)+

(n2m)) time and the resulting matrix that must be analyzed C ∈ Rn×nm. However, the

controllability matrix does have the advantage that if the complex network is structurally

balanced then the controllability matrix test gives information about the sign herdability of

a system. Additionally if the system is unstable, the controllability matrix can be partially

computed, which gives some information about the herdability of the system.

A collection of complex networks from the literature are used in the analysis. The net-

works are summarized in Table 4.2. Each network has been checked for structural balance,

based on the linear time algorithm of [123]. None of the networks examined are structurally

balanced, i.e. the controllability matrix results hold for a specific weight combination and

not for all networks that share the same sign pattern.

Each network referenced in Table 4.2, has an associated signed adjacency matrix Ãs(G).

It is assumed that the dynamics of the linear system which evolves over the network follows

A = Ãs(G). Under these assumptions, all of the systems were shown to be unstable, and

as such the matrix product Am →∞ for some m < n. This implies that the controllability

matrix can not be fully computed. However as mentioned previously, partial information

on system herdability can be obtained.

To analyze a network, each node is considered in turn as the sole input. To consider

the ability to herd from node i, it is assumed that B = ei and the herdability of the system

is considered via the controllability matrix. For each network the controllability matrix

is calculated and then the sets Pd and Nd are approximated by checking the sign of each

column of C. Once the approximate Pd and Nd are obtained, the sets are iterated through

until the conditions of Lemmas 3.2.1 and 3.2.2 are no longer met. This is contrasted of

the results of the cardinality herding linear program. Given the size of these networks,

a random sample of 100 nodes was taken as potential input nodes for the three Slashdot

networks. Table 4.2 shows the highest and lowest percentage of nodes that can be herded

for the various methods.
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Table 4.2: Signed networks used to test system herdability: Each network has its name,
number of nodes N , number of edges L, % Pos the fraction of positive edges, [AB]h the
highest percentage of that can be herded based on the necessary condition on [AB], Hh

the highest percentage of the network that can be herded based on the sign of C, Hl the
lowest percentage of the network that can be herded based on the sign of C, Ch the highest
percentage of the network that can be herded based on cardinality herding of C, and Ch the
lowest percentage of the network that can be herded based on cardinality herding of C.

Network Name N L % Pos [A B]h Hh Hl Ch Cl
Bitcoin Alpha[147] 5,881 35,592 93 86.175 22.522 0.026 83.109 0.026
Bitcoin OTC[147] 3,783 24,186 89 79.221 17.650 0.017 76.365 0.017

Slashdot 11/06/08[148] 77,357 516,575 77 50.385 0.019 0.001 38.517 0.001
Slashdot 02/16/09[148] 81,871 545,671 77 49.562 0.024 0.001 36.699 0.001
Slashdot 02/21/09[148] 82,144 549,202 77 50.464 0.052 0.001 35.789 0.001

Based on Table 4.2, one can see that, even in the best case, the sign pattern of the con-

trollability matrix predicts that only a small fraction of the network can be herded. Solving

the cardinality herding problem from Equation (3.3) shows that large fractions of the net-

work can be herded, up to 83% from one node. The highest percentage of herded nodes for

each network is also lower than the upper bound based on the analysis of [A B], suggesting

that the answer is reasonable. It’s also interesting to note that the gap between the upper

bound and the maximum percentage herded based on cardinality herding is related to the

fraction of positive edges in the network. When there are more negative edges the system

is harder to herd.

The results of Table 4.2 show the best and worst case for the various algorithms. The

question remains whether these are outliers, special nodes which are optimal to choose for

herdability. The smallest network is the Bitcoin Alpha network, and as such the percentage

of nodes that can be herded was calculated for every node. The results are shown in Figure

4.5 and Figure 4.6. The sign pattern of the controllability matrix C suggests that certain

nodes can herd significantly more nodes that others. However, as shown in Figure 4.6,

based on cardinality herding problem the opposite is true, most nodes can herd 70 − 80%

of the network. This suggests that many nodes can be selected to herd the a large portion

of the network.
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Figure 4.5: Percent of system nodes herded based on the sign pattern of the controllability
matrix when taking each node as the sole input in turn.
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Figure 4.6: Percent of system nodes herded based on the cardinality herding analysis of the
controllability matrix when taking each node as the sole input in turn.
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4.3 Conclusion

In this chapter, herdability input selection was discussed in two contexts: under the as-

sumption that the underlying system is positive and under the assumption that it is not. In

the positive systems context, determining an minimal set of inputs to determine herdability

was shown to be NP-Hard; similar to the results for controllability. By using approximate

algorithms, the fraction of nodes required to ensure herdability was computed, and it was

shown empirically that for many complex networks, herdability picks fewer nodes than

controllability. Existing centrality measures, while providing an intuitive explanation of

how a network dynamic should evolve, were shown to inadequately capture the behavior

of the network dynamics, implying that other considerations, specifically consideration of

the system dynamic, are needed in order to provide more realistic measures of importance.

In the general case, the herdability of signed complex networks was considered and it was

shown by simulation that a large portion of a network can be herded by one node and that

in one network, many nodes can be selected to herd the network.
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CHAPTER 5

ADOPTIVE SPREAD MODELING

This chapter marks the transition from the discussion of threshold driven social network

phenomena to spread modeling; from exploring how to drive a system above a threshold to

examining the behavior of a specific epidemic spread model with information. This model

describes behavior when the idea, habit or product that is spreading over a network is en-

couraged to spread by the agent’s information. In doing so, a link has been formed between

the fields of epidemic modeling, opinion dynamics and the diffusion of innovations. This

section expands upon the results in [149].

5.1 The Coupled Adoptive Spread Model

In this chapter, the standard SIS epidemic ODE dynamics are modified to incorporate the

coupling between the “epidemic-like” spread of adoption behavior and the opinion ex-

change dynamics. For ease of narration, we will refer to the object being adopted as a

product, though there are other objects whose adoption can be modeled by the coupled

model present here. The adoption dynamics occur over a weighted, directed network GA

of n agents, or nodes. The opinion dynamics occur over a weighted digraph GO with the

same node set as GP , but whose edges may or may not coincide with GP . We denote the

neighborhood set of agent i as NX
i for X = A,O.

Each node i has an adoption probability xi ∈ [0, 1] for the product, which represents

how likely the consumer is to adopt the product (xi = 0 means the consumer has not

adopted, xi = 1 means the consumer has). The consumer represented by node i also has

an opinion oi ∈ [0, 1], modeling how much the consumer values the product (oi = 0 means

very averse to the product, oi = 1 means very receptive to the product). The adoption

dynamics for each node evolve as a function of time:
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ẋi = fi(x, o)

≡ −δixi(1− oi) + (1− xi)oi

∑
NA

i

βijxj + βii

 (5.1)

where δi > 0 is the drop rate for agent i, βij ≥ 0 is the exogenous adoption rate, and βii ≥ 0

is the endogenous adoption rate. The parameters βij are the weights on the adoption graph.

The opinion dynamic model that will be considered in conjunction with the adoptive

spread model in Equation (5.1) is the canonical Abelson model, which is discussed in

Chapter 2. The modified Abelson dynamics follow

ȯi = gi(x, o) ≡
∑
j∈NO

i

woij(oj − oi) + wxi (xi − oi) , (5.2)

where woij ≥ 0 is the weight on the opinion network and wxi > 0 is a weight that represents

the quality of the product. In the following discussion, it is assumed that woij = 1, ∀i, j.

The last term of Equation (5.2) moves an agent’s opinion toward its adoption state. Hence,

an agent’s opinion is affected by its neighbor’s opinions and its own adoption level.

Translating the opinion into vector form, shows that the opinion dynamic satisfies

ȯ = Wx− (Lo +W )o

where LO is the (in) graph Laplacian of the opinion network and W = diag (wxi ).
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By combining Equations (5.1) and (5.2), the adoption-opinion dynamic follows

ẋi = −δixi(1− oi) + (1− xi)oi

∑
NA

i

βijxj + βii


ȯi =

∑
j∈NO

i

woij(oj − oi) + wxi (xi − oi)
(5.3)

It is assumed the initial conditions xi(0), oi(0) ∈ [0, 1] ∀i are known. As will be shown

later, xi(0), oi(0) ∈ [0, 1] ∀i implies xi(t), oi(t) ∈ [0, 1] ∀i, t ≥ 0. Hence, xi(t) and oi(t)

are functions from [0,∞) to [0, 1]. When convenient, we denote the aggregate 2n-state

vector by z = [xT , oT ]T .

5.2 Analysis of the Coupled Dynamic

For the coupled adoption opion model in Equation (5.3), each xi represents a probability

of adoption, or the proportion of a subpopulation that has adopted, and each oi is a scaled

opinion. As such the proposed model is only meaningful for xi, oi ∈ [0, 1]. As such the

model must be show to be well-posed with respect to xi(t).

Lemma 5.2.1. For the model in Equation (5.1), if x(0) ∈ [0, 1]n and o(t) ∈ [0, 1]n for all

t ≥ 0, then xi(t) ∈ [0, 1] for all t ≥ 0.

Proof. Assume o(t) ∈ [0, 1] for all t ≥ 0.

If xi(0) = 0 and xj(0) ∈ [0, 1] for all j 6= i, then by Equation (5.1), ẋi(0) ≥ 0, driving

xi(t) ≥ 0 for t > 0, since βij ≥ 0.

If xi(0) = 1 and xj(0) ∈ [0, 1] for all j 6= i, then by Equation (5.1), ẋi(0) = −δixi(1−oi) ≤

0, driving xi(t) ≤ 1 for t > 0, since δi ≥ 0.

Since there exists a derivative by Equation (5.1), xi(t) is continuous. Therefore since

xi(0) ∈ [0, 1] for all i, and the above has shown that for t such that xi(t) = 1, ẋi(t) ≤ 0

and for t such that xi(t) = 0, ẋi(t) ≥ 0, it holds that xi(t) ∈ [0, 1] for all t ≥ 0.
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As the proper behavior of the adoptive spread model is dependent on the behavior of

the opinion model, the combined model is now shown to be well-posed in the opinion.

Proposition 5.2.2. For the model in Equation (5.2), if x(0) ∈ [0, 1]n and o(0) ∈ [0, 1]n ,

then xi(t), oi(t) ∈ [0, 1] for all t ≥ 0.

Proof. If oi(0) = 0, x(0) ∈ [0, 1]n, and oj(0) ∈ [0, 1] for all j 6= i, then by Equation (5.2),

ȯi(0) ≥ 0, driving oi(t) ≥ 0 for t > 0. If oi(0) = 1, x(0) ∈ [0, 1]n, and oj(0) ∈ [0, 1] for

all j 6= i, then by Equation (5.2), ȯi(0) ≤ 0, driving oi(t) ≤ 1 for t > 0.

Since there exists a derivative by Equation (5.2), oi(t) is continuous. Therefore since

oi(0) ∈ [0, 1] for all i, and the above has shown that for t such that oi(t) = 1, ȯi(t) ≤ 0 and

for t such that oi(t) = 0, ȯi(t) ≥ 0, it holds that oi(t) ∈ [0, 1] for all t ≥ 0.

As the preceding argument holds for all i ∈ {1, 2, . . . , N} this implies o(t) ∈ [0, 1]n.

By applying Lemma 5.2.1, it also holds that x(t) ∈ [0, 1]n.

Having shown the well-posedness of the adoption model, the properties of the adoptive

spread model will now be discussed by considering the partial derivatives of the function

in Equation (5.1). Note

∂fi
∂xi

= −δi(1− oi)− oi

∑
NA

i

βijxj + βii

 , (5.4)

which is always negative under the assumptions of Lemma 5.2.1 since βij, δi ≥ 0. The

other set of partial derivatives with respect to x is

∂fi
∂xj

=


(1− xi)oiβij if j ∈ NA

i , j 6= i

0 if j /∈ NA
i ∪ {i},

which is always non-negative under the assumptions of Lemma 5.2.1 and since βij ≥ 0.
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Considering the derivatives with respect to opinion shows that

∂fi
∂oi

= δixi + (1− xi)

∑
NA

i

βijxj + βii

 (5.5)

which is always non-negative under the assumptions of Lemma 5.2.1 and since βij, δi ≥ 0.

Finally,

∂fi
∂oj

= 0 ∀j 6= i. (5.6)

As in the classic SIS epidemic model, the adoption of network neighbors encourages the

consumer to adopt. In the new coupled model, the opinion of the consumer modifies the

impact of adoption in Equation (5.4) and encourages adoption via Equation (5.5).

Consider the behavior of the opinion dynamic model via the partial derivatives of the

function in Equation (5.2).

∂gi
∂xi

= wxi (5.7)

∂gi
∂xj

= 0 ∀j 6= i

∂gi
∂oi

= −dOi − wxi

∂gi
∂oj

=


1 if j ∈ NO

i ∀j 6= i

0 if j /∈ NO
i ∪ {i},

(5.8)

where dOi is the (in)degree of node i in the opinion network. Here the agent’s adoption state

and the opinion of their network neighbors affects the opinion of the agent.
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5.3 The Stability of 12n and 02n

This system has at least two equilibrium points, z∗ ∈ {02n, 12n}, i.e. the equilibrium is

either no one adopts the product and everyone has an opinion equal to zero, or everyone

adopts the product and has an opinion equal to one. These equilibria have a mirrored con-

dition for stability, though to see this requires discussing both local and asymptotic stability

results. The discussion of the stability of these two equilibria requires some concepts from

matrix analysis which are summarized in Appendix A.

Lemma 5.3.1. The equilibrium point z∗ = 02n is locally stable if ∀i, δi > βii.

Proof. The Jacobian of the dynamics can be written in block form as:

J(z) =

 ∂f
∂x

∂f
∂o

∂g
∂x

∂g
∂o

 .
The first n rows of the Jacobian are governed by Equations (5.4) - (5.6) while the second n

rows are governed by Equations (5.7)-(5.8).

Consider the Jacobian matrix at the equilibrium point

z∗ = 02n:

J(z∗) =

 diag (−δi) diag (βii)

W −(LO +W )

 .
As δi > βii ∀i and the graph Laplacian is diagonally dominant, J(z∗) is diagonally

dominant. The first n rows of J(z∗) are strictly diagonally dominant while the second n

rows of J(z∗) are merely diagonally dominant. However for all j ∈ {n+ 1, n+ 2, . . . , 2n}

the element of the Jacobian a(j−n)j = wxj . Then as wxi > 0 ∀i the Jacobian is weakly

chained diagonally dominant and therefore nonsingular.

As the diagonal elements of J(z∗) are negative, the Gershgorin disc theorem shows that

the Jacobian is Hurwitz, and thus z∗ = 02n is a locally stable equilibrium.
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Having shown local stability of the equilibrium z∗ = 02n, the asymptotic stability of

the equilibrium z∗ = 02n is now shown.

Consider the matrix

P =

−B̄ B̄

W −(Lo +W )


where B̄ = diag

(∑
NA

i
βij + βii

)
.

Lemma 5.3.2. If δi >
∑
βij + βii, then the coupled dynamic satisfies ż ≤ Pz.

Proof. Consider the adoption dynamic for the case where the adoption parameters satisfy

δi >
∑
βij + βii and when the state satisfies xi = oi /∈ {0, 1} or xi 6= oi:

ẋi = −δixi(1− oi) + (1− xi)oi

∑
NA

i

βijxj + βii


≤ −δixi(1− oi) + (1− xi)oi

∑
NA

i

βij + βii


< −

∑
NA

i

βij + βii

xi(1− oi)

+ (1− xi)oi

∑
NA

i

βij + βii


= (oi − xi)

∑
NA

i

βij + βii

 .

When xi = oi ∈ {0, 1} then ẋi = 0 and (oi − xi)
(∑

NA
i
βij + βii

)
= 0 so

ẋi = (oi − xi)

∑
NA

i

βij + βii

 .
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Translating this to matrix form gives that

ż ≤

−B̄ B̄

W −(Lo +W )

 z
ż ≤ Pz.

Lemma 5.3.3. The eigenvalues of P are non-positive.

Proof. P is diagonally dominant and has negative diagonal entries. By the Gershgorin disc

theorem the eigenvalues are non-positive.

It is interesting to note that the eigenvalues of P do not depend explicitly on the struc-

ture of the opinion graph GO, i.e. Lemma 5.3.3 can be shown without enforcing a con-

nectivity constraint on GO. This is related to the fact that the graph Laplacian is always

diagonally dominant independent of the structure of the underlying graph. This has im-

plications for the behavior under a different opinion dynamic which will be introduced in

Section 5.5.

Under the assumptions that the opinion graph is undirected and
∑
NA

i
βij+βii = wxi , ∀i

then the above matrix P is symmetric which implies that it is negative semi-definite.

If the opinion graph is directed, the graph LaplacianLo is no longer symmetric, however

the symmetric part Psym = 1
2
(P + P T ) of the matrix P can be considered instead and

the same condition on the parameters follows. Therefore in the following discussion, the

opinion graph will be treated as undirected for notational convenience.

The case where P is symmetric gives the following characterization of the asymptotic

stability of 02n.

Theorem 5.3.4. If δi >
∑
NA

i
βij + βii, ∀i and

∑
NA

i
βij + βii = wxi , ∀i then 02n is

asymptotically stable on [0, 1]2n \ 12n.
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Proof. Consider the Lyapunov function V (z) = 1
2
zT z. Then when xi 6= 1 and oi 6= 1, ∀i

V̇ (z) = zT ż

≤ zTPz

≤ 0.

(5.9)

As P is negative semi-definite, it has an eigenvalue at 0 which has a corresponding eigen-

vector z ∈ span(12n). In order to show that V can be used to show stability via Lyapunov’s

direct method, consider the behavior of V̇ in the case of zTPz = 0.

If xi = oi and xi = xj, ∀i, j then Pz = 02n and Equation (5.9) shows that V̇ ≤ 0.

Consider the dynamics for xi when xi = oi 6= 0 and xi = xj, ∀i, j and

ẋ∗i = −δix∗i (1− o∗i ) + (1− x∗i )o∗i

∑
NA

i

βijx
∗
j + βii


= −δix∗i (1− x∗i ) + (1− x∗i )x∗i

∑
NA

i

βijx
∗
j + βii


= x∗i (1− x∗i )

−δi +
∑
NA

i

βijx
∗
j + βii


< x∗i (1− x∗i )

−δi +
∑
NA

i

βij + βii


< 0

Considering the opinion dynamic

ȯi =
∑
j∈NO

i

(oj − oi) + wxi (xi − oi)

=
∑
j∈NO

i

(xj − xi) + wxi (xi − xi)

= 0
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Then
V̇ = xT ẋ+ oT ȯ

= xT ẋ

< 0.

Note that it is possible that if the opinion graph GO is disconnected, there will be multi-

ple eigenvectors corresponding to the eigenvalue 0, however the analysis still holds when

considering each such eigenvector in turn.

When xi = oi = 0, ∀i, the Lyapunov function satisfies V (02n) = 0 and V̇ (02n) = 0.

Outside of the cases considered above, zTPz < 0 as P is negative semi-definite and z is

not the eigenvector corresponding to 0 which shows V̇ < 0.

Then V (z) > 0 z 6= 02n by the form of the Lyapunov function and V̇ (z) < 0 z 6= 02n

which shows the stability of 02n.

The results for the equilibrium point z∗ = 12n follow similarly.

Lemma 5.3.5. The equilibrium point z∗ = 12n is locally stable if ∀i,
∑
NA

i
βij + βii > δi.

Proof. Consider the Jacobian matrix at the equilibrium point z∗ = 12n

J(z∗) =

 diag

−∑
NA

i

βij − βii

 diag (δi)

W −(LO +W )

 .
Similarly to the case of the equilibrium at 02n the condition that

∑
NA

i
βij+βii > δi and

the fact that wxi > 0 shows that J(z∗) is weakly chained diagonally dominant and the fact

that the diagonal elements are negative shows the Jacobian is Hurwitz by the Gershgorin

disc theorem. As the Jacobian is Hurwitz, z = 12n is a locally stable equilibrium.

Theorem 5.3.6. If βii > δi, ∀i and if δi = wxi , ∀i, then 12n is asymptotically stable on

[0, 1]2n \ 02n.

Proof. To show asymptotic stability of 12n, consider the change of variables x̂i = 1 − xi

and ôi = 1− oi.
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Then ˙̂xi = −ẋi and ˙̂oi = −ȯi. It follows that:

˙̂xi = δixi(1− oi)− (1− xi)oi

∑
NA

i

βijxj + βii


= δi(1− x̂i)ôi − x̂i(1− ôi)

∑
NA

i

βij(1− x̂j) + βii


and

˙̂oi =
∑
NO

i

(oi − oj) + wxi (oi − xi)

=
∑
NO

i

(ôj − ôi) + wxi (x̂i − ôi)

Consider the dynamic in x̂i

˙̂xi = δi(1− x̂i)ôi − x̂i(1− ôi)

∑
NA

i

βij(1− x̂j) + βii


≤ δi(1− x̂i)ôi − x̂i(1− ôi) (βii)

< δi(1− x̂i)ôi − x̂i(1− ôi) (δi)

= δi(ôi − x̂i)

Then the matrix

P̂ =

−D D

W −(Lo +W )

 ,
where D = diag (δi), satisfies

˙̂z ≤ P̂ ẑ.

By similar logic to that in Lemma 5.3.3, P̂ is negative semidefinite if δi = wxi , ∀i. Then

as in Theorem 5.3.4, one can use ẑT ẑ as a Lyapunov function to show stability of 12n.

The conditions for stability of 12n and 02n are summarized in Table 5.1. It is interesting

to note that the conditions for local stability of 02n (δi > βii) is the complement of the
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Table 5.1: Summary of Stability Conditions

Equilibrium Local Asymptotic
02N δi > βii δi >

∑
NA

i
βij + βii

12N

∑
NA

i
βij + βii > δi βii > δi

condition for asymptotic stability of 12n (δi < βii) and that the same holds for the local

stability of 12n when compared to the asymptotic stability of 02n. Additionally these con-

ditions are similar in form to the condition for the unmodified SIS epidemic model, where

λmax(BÃ(GA) − diag(δi)) < 0n implies the stability of 0n. However the conditions pre-

sented here do not depend on the graph structure of GA which suggests there may be other,

tighter bounds on the parameters to show stability of these equilibrium points.

5.4 An Unstable Equilibrium

If the stability conditions presented previously for the stability of z∗ = 12n or z∗ = 02n

are not satisfied, there is the possibility that a third equilibrium point exists for the system.

One class of these equilibria is studied and is shown to be unstable.

Lemma 5.4.1. If ∃z∗ such that for all i it holds that δi =
∑
NA

i
βijx

∗
j + βii, x∗i = o∗i and∑

j∈NO
i
xj − xi = 0 then z∗ is an equilibrium point.

Proof. Consider the dynamic in xi at the point z∗ under the assumption that δi =
∑
NA

i
βijx

∗
j+

βii:

ẋi = −δi(1− o∗i )x∗i + (1− x∗i )o∗i

∑
NA

i

βijx
∗
j + βii


= −δi(1− o∗i )x∗i + (1− x∗i )o∗i δi

= δi(o
∗
i − x∗i )
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then ẋi = 0 if o∗i = x∗i . Substituting the condition into the dynamic in oi gives

ȯi =
∑
j∈NO

i

(o∗j − o∗i ) + x∗i − o∗i

=
∑
j∈NO

i

(x∗j − x∗i ) + x∗i − x∗i

=
∑
j∈NO

i

(x∗j − x∗i )

Then if
∑

j∈NO
i

(x∗j − x∗i ) = 0, ȯi = 0. If these conditions hold for all i then z∗ is an

equilibrium point.

Theorem 5.4.2. If the equilibrium described in Lemma 5.4.1 exists and the graph G =

(V, EA ∪ EO) is connected, it is unstable.

Proof. Consider the Jacobian at the equilibrium point z∗, the properties of which are de-

scribed in Lemma 5.4.1. The derivatives of the adoption dynamic at z∗ follow

∂fi
∂xi

= −δi

∂fi
∂xj

=


(1− x∗i )x∗iβij if j ∈ NA

i , j 6= i

0 if j /∈ NA
i ∪ {i}

∂fi
∂oi

= δi

∂fi
∂oj

= 0, ∀j 6= i.

The Jacobian can be written as

J(z∗) =

 ∂f
∂x

D

W −(Lo +W )


where D = diag(δi). If the graph G = (V, EP ∪ EO) is connected, the Jacobian is irre-
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ducible, which allows the application of Lemma A.0.3. Consider a vector y of the form

y =



α1

α2

...

αn

1n


where αi = 1 + εi and

0 < εi <

∑
NA

i
βij(1− x∗i )x∗i
δi

.

Then consider the matrix product J(z∗)y. The first n rows follow:

− δiαi + αi

∑
NA

i

βij(1− x∗i )x∗i

+ δi

> −δiαi +

∑
NA

i

βij(1− x∗i )x∗i

+ δi

> −δiεi +

∑
NA

i

βij(1− x∗i )x∗i


> −

∑
NA

i

βij(1− x∗i )x∗i

+

∑
NA

i

βij(1− x∗i )x∗i


= 0.

The last n rows follow
αiw

x
i − dOi − wxi +

∑
NO

i

1

= (αi − 1)wxi

= εiw
x
i

> 0.
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As y is element-wise positive and the resulting vector J(z∗)y is element-wise positive, by

Lemma A.0.3, α(J(z∗)) > 0 and the equilibrium point is unstable.

For such systems, it holds that in the long term they will converge to a state of universal

agreement, i.e. z∗ = 12n or z∗ = 02n. As both equilibria are locally stable, which of the

two equilibrium points is reached will depend on the initial condition, as will be explored

further in the simulation section.

5.5 Varying Opinion Networks

As noted previously the non-positivity of the eigenvalues of the P and P̂ matrices, which

are used to characterize the stability of the equilibria of the coupled adoption behavior, do

not depend on the structure of the opinion graph. Therefore the results for the stability of

the equilibria of the coupled adoption model can be extended to two cases: the bounded

confidence opinion dynamic model and the time-varying Abelson opinion dynamic model.

5.5.1 Bounded Confidence

The first varying opinion network is an extension of the Abelson opinion dynamic model;

the bounded confidence model, discussed in Chapter 2, which when coupled with the adop-

tion dynamic follows:

ȯi = gi(x, o) =
∑
j∈NO

i

p(oj, oi)(oj − oi) + wxi (xi − oi). (5.10)

where

p(oj, oi) =


woij if ‖oj − oi‖ < τ

0 if else.

Under the bounded confidence model, agents will sever a link in the opinion graph if the

agents have sufficiently different opinions and maintain or reintroduce the link if the re-

spective opinions are closer than τ . This behavior is essentially a state dependent switch
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between opinion graph topologies. These opinion graphs may not be connected, to the

point where each agent has no neighbors in the opinion graph.

However the structure of the coupling with the adoption dynamic ensures that condi-

tions for asymptotic equilibria z∗ ∈ {02n, 12n} are the same. Proving this requires the

definitions from the study of switched systems, which are summarized in Appendix C.

Theorem 5.5.1. If δi >
∑
NA

i
βij + βii, ∀i and

∑
NA

i
βij + βii = wxi , ∀i then 02n

is uniformly asymptotically stable on [0, 1]2n \ 12n under the bounded confidence opinion

dynamic.

Proof. Consider the finite collection of opinion graph topologies Ĝo = {G1
o ,G2

o , . . . ,Gso}

which the bounded confidence model can switch between. The original opinion graph Go ∈

Ĝo, and also the empty opinion graph G∅o ∈ Ĝo. Consider the graph Gio which consists of k

connected subgraphs. Then under the opinion dynamic on Gio and if δi >
∑
NA

i
βij+βii, ∀i

the dynamics follow

ż ≤ Piz

where

Pi =



−B̄ B̄

W −





L1
o 0 . . . 0

0 L2
o . . . 0

0 0
. . . 0

0 0 . . . Lko


+W




,

though a permutation may be required to the opinion dynamic into this form. The matrix Pi

is negative semidefinite as it is diagonally dominant with negative diagonal elements and

symmetric by the assumption on the parameters.
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Under G∅o and if δi >
∑
NA

i
βij + βii, ∀i the dynamics follow

ż ≤

−B̄ B̄

W −W

 z = P∅z.

The matrix P∅ is also negative semidefinite as it is diagonally dominant with negative

diagonal elements and symmetric by the assumption on the parameters.

Then under any opinion graph Gj ∈ Ĝo the function V (z) = 1
2
zT z satisfies

V̇ ≤ ztPjz

≤ 0.

By similar logic to that used in Theorem 5.3.4 and Theorem 5.3.6 one can show that

V̇ (z) < 0, ∀z 6= 02n.

As the set of possible graph topologies is finite, V (x) = 1
2
zT z serves as a common Lya-

punov function by Definition C.0.2 and can be used to show that the system is uniformly

asymptotically stable by Theorem C.0.1.

The theorem for the stability of the equilibrium point z∗ = 12n is presented without

proof as the proof follows from the proof of Theorem 5.3.6 with similar logic to that in the

proof of Theorem 5.5.1.

Theorem 5.5.2. If βii > δi, ∀i and if δi = wxi , ∀i, then 12n is asymptotically stable on

[0, 1]2n \ 02n under the bounded confidence opinion dynamic.
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5.5.2 Time-Varying Networks

In this section, an extension of the coupled adoption dynamic in Equations (5.1) and (5.2) is

considered, which allows for time-varying network effects. Consider the following model

ẋi = −δixi(1− oi) + (1− xi)oi

∑
NA

i

βij(t)xj + βii


ȯi =

∑
NO

i

woij(t)(oj − oi) + wxi (xi − oi) ,

where the weight associated with the opinion graph GO and the weight associated with

the adoption graph GA are now allowed to vary with time. Let supt βij(t) = β̂ij and

suptw
o
ij(t) = ŵoij .

Theorem 5.5.3. If δi >
∑
NA

i
β̂ij + βii, ∀i and

∑
NA

i
β̂ij + βii = wxi , ∀i then 02N is

asymptotically stable on [0, 1]2n \ 12n.

Proof. Consider the adoption dynamic under time-varying network effects for the case

δi >
∑
β̂ij + βii
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ẋi = −δixi(1− oi) + (1− xi)oi

∑
NA

i

βij(t)xj + βii


≤ −δixi(1− oi) + (1− xi)oi

∑
NA

i

βij(t) + βii


≤ −δixi(1− oi) + (1− xi)oi

∑
NA

i

β̂ij + βii


< −

∑
NA

i

β̂ij + βii

xi(1− oi)

+ (1− xi)oi

∑
NA

i

β̂ij + βii


= (oi − xi)

∑
NA

i

β̂ij + βii


Similarly for the opinion dynamic,

ȯi =
∑
NO

i

woij(t)(oj − oi) + wxi (xi − oi)

≤
∑
NO

i

ŵoij(oj − oi) + wxi (xi − oi) ,

Then the dynamic follows

ż ≤

−B̂ B̂

W −
(
L̂o +W

)
 z = Psupz

where L̂o is the graph Laplacian of the weighted network with weights ŵoij .

Psup is negative semi-definite and the function V (z) = 1
2
zT z shows asymptotic stability

of 02n.

Theorem 5.5.4. If βii > δi, ∀i and if δi = wxi , ∀i, then 12n is asymptotically stable on

[0, 1]2n \ 02n.
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Proof. Consider the dynamic in x̂i = 1− xi

˙̂xi = δi(1− x̂i)ôi − x̂i(1− ôi)

∑
NA

i

βij(t)(1− x̂j) + βii


≤ δi(1− x̂i)ôi − x̂i(1− ôi) (βii)

< δi(1− x̂i)ôi − x̂i(1− ôi) (δi)

= δi(ôi − x̂i)

The dynamic in ôi = 1− oi follows

˙̂oi =
∑
NO

i

woij(t)(ôj − ôi) + wxi (x̂i − ôi)

≤
∑
NO

i

ŵoij(ôj − ôi) + wxi (x̂i − ôi)

Then the coupled dynamic in ẑ satisfies

˙̂z ≤

−D D

W −(L̂o +W )

 = P̂supz.

The matrix P̂sup is negative semi-definite and the function V (z) = 1
2
zT z shows the asymp-

totic stability of 12n.

5.6 Simulation

Having analyzed the behavior of the proposed model, the behavior of these models will

now be examined via simulation. Figure 5.1, 5.2, and 5.3 show the long term behavior

of the opinion dynamic and the adoption dynamic under a number of conditions on the

underlying system. The simulation is run on an undirected, unweighted geometric random

network with thirty nodes, serving as both the opinion and product network, GO and GA.

The initial conditions are chosen uniformly at random from [0, 1]2n and are the same for all

100



figures. The parameters of the adoption model are chosen randomly and it is verified that

they satisfy the various stability conditions.

Figure 5.1 and 5.2 confirm the stability as shown in Theorems 5.3.4 and 5.3.6. Figure

5.3 shows that without coupling with the opinion dynamics the adoption model will con-

verge to an endemic equilibrium. Figure 5.4 shows the behavior of the coupled model, in

the case where the opinion dynamic is the bounded confidence model. Figure 5.4 shows that

outside of the nonlinearities induced by the bounded confidence modification, the Abel-

son and bounded confidence opinion dynamics have qualitatively similar behaviors and as

noted in Theorems 5.5.1 and 5.5.2 share stability conditions.

The opinion dynamics presented here induce outcomes of all adopt or all not-adopt

when coupled with the adoption dynamic. This reflects scenarios where a new technology

or idea either becomes the new standard or completely fails to get adopted. Examples

of a new innovation being widely adopted are the invention of the steam engine and the

administration of antibiotics. The practice of boiling water is an example of an innovation

that failed to spread in the Peruvian village of Los Molinas, due to the inhabitants viewing

it as incompatible with cultural beliefs. [108]. It is possible to introduce other opinion

models and produce very different behavior in the model. The rest of this section considers

in simulation the behavior of coupling with two new opinion dynamic models which are

described below.

Other Opinion Dynamic Models

The first opinion dynamic model is the Signed Consensus or Altafini Model. Due to the

possibility of negative opinions, the assumption of Lemma 5.2.1, that o(t) ∈ [0, 1] for all

t ≥ 0, is difficult to meet. Therefore the adoption model requires a small change when
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Figure 5.1: Evolution of the coupled model in the case where ∀i δi >
∑
NA

i
βij + βii
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Figure 5.2: Evolution of the coupled model in the case that ∀i βii > δi
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Figure 5.3: Evolution of the model when there is no coupling between the opinion and the
adoption dynamics. With no coupling, the condition of Figure 5.2 produces an endemic
equilibrium in the adoption dynamic
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Figure 5.4: Evolution of the bounded confidence model coupled with the adoption model
in the case that ∀i βii > δi
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employing Altafini-type dynamics. The complete model is

ẋi = fi(x, ō)

ȯi =
∑
N Ō

i

|aij|(sign(aij)oj − oi) + wxi (xi − ōi), (5.11)

where ōi = oi + .5, it is assumed that oi(0) ∈ [−.5, .5], ∀i, and the notation in Equation

(5.11) is the same as in Equation (2.3). Note that when there are no negative edges this

reduces to the Abelson model in Equation (5.2). When negative edges are present and the

graph is structurally balanced the system can converge to a split equilibrium, that is, where

some nodes are completely infected and some nodes are completely healthy.

Introducing the Altafini opinion dynamic produces rich behavior in the couple adoption

opinion model. For example, if negative edges are introduced then the point 02n is no longer

an equilibrium point. Figure 5.5 shows the adoption behavior under identical conditions for

a 6 node network with δi >
∑

j∈NO
i
βij + βii,∀i but where the first graph has no negatives

edges in the opinion dynamic and the second graph has negative edges. This is discussed

more fully in [150].

The second model is a threshold driven model of opinion dynamics where individuals

update their opinions using a weighted average of the opinions and product adoptions of

friends, combined with a threshold. The threshold represents how stubborn or receptive one

is to the influence of neighbors. As will be seen in the following simulations, this allows

for polarization in opinions, resulting in coexistence of adopters and non-adopters.

Consider opinion dynamics defined by

ȯi = gi(x, o) = oi(1− oi) (hi(x, o)− τi) , (5.12)
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Figure 5.5: Adoption without and with Negative Edges
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Figure 5.6: Dynamics of the Abelson coupled model (top row) and threshold-based model
(bottom row). In each model, all individual opinions oi(t) (left panels) and adoptions xi(t)
(center panels) are shown converging to their equilibrium values o∗i , x

∗
i = 0 or 1. The

right panels indicate the final equilibrium layout over the 30 node geometric network. Red
nodes indicate x∗i = 1 and blue nodes denote x∗i = 0. The largest diameters indicate
oi(0) = 1 and the smallest diameters indicate oi(0) = 0. The network for the SIS dynam-
ics is depicted by the gray (positive) edges. For a video of these simulations please see
youtu.be/U0bWaXCeayY.

where

hi(x, o) =

∑
NO

i
woijoj +

∑
NP

i
wxijxj∑

NO
i
woij +

∑
NP

i
wxij

.

The woij ∈ [0, 1] represents node i’s valuation of node j’s opinion, and the wxij ∈ [0, 1]

represents the influence j’s adoption decision has over i’s opinion. The opinion threshold,

τi ∈ [0, 1], is a measure of stubbornness to opinion change. If τi = 1, no amount of

influence will force an increase in oi. However, if τi = 0, any amount of influence increases

oi.

Figure 5.6 shows a representative simulation of the Abelson and threshold-based dy-

namics. In this run, the Abelson dynamics quickly converge to the all not-adopt consensus.
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The threshold-based dynamic takes longer to converge to a stable equilibrium. Note that the

final equilibrium outcome is heavily dependent on the initial opinions, as there are many

possible stable fixed points the dynamics could converge to. As such there are individuals

whose opinion oi(t) changes directions before finally settling at either o∗i = 0 or 1. The

simulation of the two models is run on the same undirected, unweighted geometric random

network with thirty nodes as before. The parameters are δi = 1, βij = .15, τi = .5 for all

nodes i, j. The initial condition of the simulations, chosen uniformly at random on [0, 1]2n,

are the same for both models.

The behavior of this coupled system leads the question: does influence from the adop-

tion or opinion network drive the dynamics, or do they drive each other? Uncoupled from

the opinion dynamics, the adoption state x(t) would converge to its endemic equilibrium

x∗ � 0, as shown in Figure 5.3. Without opinions, each node reaches an intermediate

value of adoption x∗i whose value depends on its position in the network. When coupled

with opinions for both Abelson and threshold-based dynamics, the xi(t) are driven to ei-

ther x∗i = 0 or 1, with their final opinions agreeing with their final adoption decisions.

Given the difference in possible equilibria outcomes between the two models, the coupled

opinion-adoption model is sensitive to the choice of opinion dynamic. Thus, opinions have

a significant role in determining the final adoption state.

The adoptions xi(t) in the coupled systems follow closely the trajectories of the opin-

ions for both Abelson and threshold-based models. In the case of the Abelson model it is

difficult to determine which dynamic drives the state as the two processes evolve on similar

time scales. The threshold opinion model depends on the neighborhood structure of the

nodes as can be seen in Figure 5.6, which shows the final state of the time series data.

The final state of simulations of the bounded confidence, shown in Equation (5.10),

and Altafini models, Equation (2.3), are shown in Figure 5.8. The coupled bounded confi-

dence dynamics converge to the all adopt equilibrium, exhibiting the same behavior as the

Abelson model. The coupled Altafini dynamics can exhibit final behavior similar to the
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Figure 5.7: The equilibria of a simulation of the two models: (Left) the equilibrium of
Equations (5.1), (5.2) and (Right) the equilibrium of Equations (5.1), (5.12). The red nodes
indicate x∗i = 1 and blue nodes denote x∗i = 0. The largest diameters indicate oi(0) = 1
and the smallest diameters indicate oi(0) = 0.

threshold-based opinion model. However, static negative edges must be specified to attain

such polarization. Hence while the threshold model has the possibility to reveal structure

in a network, the Altafini model requires structure to be explicitly defined.

Together Figure 5.6 and Figure 5.8 show that the Abelson and Threshold opinion mod-

els considered in this section are sufficient to influence the outcome of the product spread

away from the endemic state and to capture diverse equilibrium outcomes, even over a

simple graph. In supplementary videos (see figure captions for URLs), xi(t) is plotted as a

function of color, where xi = 1 is indicated by red (r) and xi = 0 is indicated by blue (b)

and the color interpolates between the two. So at time t the color for agent i is given by

rxi(t) + b(1− xi(t)). The opinion of agent i oi(t) is indicated by the diameter of the node.

The largest diameter indicates oi = 1 and the smallest diameter indicates oi = 0. The graph

structure is binary and indicated by gray edges.
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Figure 5.8: The equilibria of simulations employing the Abelson model (Left), the Bounded
Confidence model (Middle), and the Altafini model (Right) with the same conditions as
the simulations in Figure 5.6 except dotted lines indicate negative edges, β = .5, and the
confidence parameter ε = .1: large nodes correspond to x∗i = 1 and small nodes correspond
to x∗i = 0. The largest diameters indicate oi(0) = 1 and the smallest diameters indicate
oi(0) = 0. The network for the SIS dynamics is depicted by the gray (positive) edges. For
a video of this simulation please see youtu.be/BXVidqntYtA

Unstable Equilibria

As mentioned in Section 5.4, there exists an unstable equilibrium if 12n and 02n are both

locally stable, i.e. δi <
∑

j∈NA
i
βij+βii and δi > βii. This section considers the behavior of

such an equilibrium in simulation. To facilitate analysis, the graph structure considered here

is a completely connected 4 node graph for both GO and GA. When D = diag(.5, .4, .6, .3)

and

B =



0 .3 .35 .35

.15 0 .3 .35

.6 .3 0 .3

.2 .15 .25 0


the point z = 0.52n is an equilibrium point, however it is unstable. When the initial con-

dition for this system is not z = 0.52n, then the long term behavior of the system depends

on x(0) as shown in Figure 5.10 and Figure 5.9. The mean of x(0) and o(0) is plotted

with a blue asterisk. If the mean of both x(0) and o(0) is below the equilibrium is below

0.5 the system converges to 02n and if the means are above 0.5 the system converges to

12n. This makes the equilibrium at 0.52n a threshold that could be studied in the context of

herdability.
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Figure 5.9: Adoption and Opinion for “High” Initial Condition. The mean of the initial
condition is shown with a blue asterisk.
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Figure 5.10: Adoption and Opinion for “Low” Initial Condition. The mean of the initial
condition is shown with a blue asterisk.
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5.7 Conclusion

In this chapter, the behavior of an epidemic spread model with beneficial interactions from

an opinion dynamic was considered. The Abelson opinion dynamic was considered in-

depth, and the stability of three equilbirum points was studied. It was found that under the

assumption that there is always interaction between an agent’s opinion and their adoption

behavior (i.e. that wxi > 0) that there are ranges of the parameter values for which the

specifics of the network structure don’t impact the stability of the system. Specifically

these parameters capture products that are either break away hits (βii > δi) or terrible

flops (δi >
∑

j∈NO
i
βij + βii. These results allowed the asymptotic stability results to

be extended to time-varying opinion networks, however there may be tighter bounds for

asymptotic stability which rely on network structure.

The behavior of the coupled model under a variety of opinion dynamics was considered

in simulation and it was shown that the opinion dynamic chosen has a large impact on the

behavior of the model. The presence of an intermediate unstable equilibrium was also

studied in simulation. In such a case, both 12n and 02n are locally stable and if the state

can be driven above the unstable equilibrium, a threshold, then the system will eventually

converge to 12n. This suggests that this is a system which should be studied in the context

of herdability.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis discussed the application of control theory in complex networks, drawing in-

spiration from two sets of phenomena seen in social networks. The first phenomenon from

social networks was the threshold behavior of social action. This led to the study of herd-

ability, which expands the discussion of control of networks beyond controllability. In

doing so, herdability encourages a more thorough examination of the behaviors that can be

achieved when complete controllability is not satisfied.

It was shown that if the system dynamic was positive, then input connectability was a

necessary and sufficient condition for complete herdability. In the language of social net-

works, if everyone in the network is friends then as long as a message relayed to the system

will eventually reach everyone, the system is completely herdable. The assumption that the

underlying system is positive is equivalent to asking that the weight of edges between nodes

is positive. It’s interesting to note that this holds for most complex network structures that

have been extracted from data, for a number of reasons. As an example, the Stanford Large

Network Dataset Collection 1 has 61 networks from a variety of sources and 8 of them have

negative edges between nodes. Essentially, most complex networks are treated as easy to

herd.

It was also shown that when selecting between nodes via herdability centrality, high

degree nodes are chosen. When the controllability of complex networks was first consid-

ered, the fact that selecting nodes for controllability avoids high degree nodes was touted as

’‘unintuitive” [63]. From a complex networks perspective, degree is an important indicator

1The Stanford Large Network Dataset Collection is hosted at snap.stanford.edu/data/.
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of the ability to influence behavior. By showing the case for which degree does matter,

herdability centrality allows the unspoken assumptions of the complex networks field to be

examined more clearly.

The work on herdability of complex systems has provided perspective on the general

complex networks field, by providing a mathematical theory that makes plain the complex

networks ’‘intuition” about a system. Herdability also considers the primary assumption

of the work on controllability of networks: that symmetry with respect to input, a suffi-

cient condition for loss of controllability in consensus and structured systems, produces

un-desirable behavior. Herdability allows symmetry, which then encourages the explo-

ration of the potential benefit of control under symmetry.

The second phenomenon from social networks expanded upon in this thesis was the

diffusion of innovations, a process which involves the interaction of opinions about an

innovation and the adoption of the innovation by others. Modeling this behavior lead to the

third and final area of study: a novel model of adoptive behavior that takes opinions into

account when describing spread over a complex network. By examining the parameters

of this model, a set of conditions where shown which described whether an innovation

was a viral hit or a major flop. It was shown that if δi < βii, ∀i then 12n, the viral hit

equilibrium, was asymptotically stable. The self infection parameter βii is an indicator of

innovativeness and product quality, where an agent with a high βii is going to be an early

adopter. Essentially if the population is innovative or the product is good, then the product

is going to be a hit.

The case where both the hit and the flop equilibrium points were locally stable was con-

sidered in simulation and it appears that there is emergent threshold behavior for this model.

This suggests that under Abelson opinion dynamics, a company attempting to spread the

innovation can advertise until this threshold is reached and then let the adoption dynamics

take over. A number of other models where shown in simulation to markedly change the

behavior of the model, suggesting that choosing the right opinion dynamic is important to
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using this model to make predictions about the adoption of an innovation.

6.2 Future Work

This thesis presents a foundation for understanding certain classes of behavior in complex

networks. Of particular importance is the study of herdability which hints at a fundamental

limitation in interacting with complex systems. Much of the future work that can be built

off this thesis is to see how the notion of herdability can be used to better understand com-

plex network systems. Specifically, there are areas of great interest to theory of complex

networks, specifically time varying, nonlinear, and multiplex networks, which are as yet

not well understood in the context of herdability theory. There is also a need to examine

online social network behavior in the light of herdability.

Additionally, many applications in complex networks deal with interacting with large

systems. Another possible line of research is to understand how to make the tools to ver-

ify properties of herdability scale better, to increase applicability to the study of complex

networks.

Finally the adoption model shown in Chapter 5 has yet to be fully explored. The sim-

ulations show that as the opinion dynamic changes, so does the behavior of the adoptive

spread. Fully characterizing how varying models of opinion spread affect the proposed

model are important not only in the context of the model but could lead to better under-

standing of the underlying process of adoption. This also points to the broader need to

understand the coupling of opinion dynamic models with other types of models; leading to

socio-technological or socio-ecological models, such as in [151].

At the core of this thesis lies a pair of questions: how can control theory lead to better

understanding in the field of network science? How can networks science lead to new

theoretical considerations for control theory? These questions form an ever evolving cycle.

Take for example, herdability which takes an idea of how social and biological networks

function, translates it into a mathematical theory and then returns to consider what that
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theory tells us about complex networks. Given the wide range of research areas which are

driven by an understanding of a system as a network, this cycle continues; leading to a

more detailed understanding of the modern, network-driven world.
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APPENDIX A

LINEAR ALGEBRA

This section presents a number of definitions from the study of Linear Algebra which are

used to show the stability properties of the adoption dynamic considered in Chapter 5.

Unless otherwise stated the discussion follows [144].

Theorem A.0.1. The Gershgorin Disc Theorem

For A ∈ Rn×n let

Ri =
∑
j 6=i

‖aij‖ for i = 1, 2, . . . , n

and consider the n Gershgorin discs

{z ∈ C : ‖z − aii‖ ≤ Ri} for i = 1, 2, . . . , n

Then the eigenvalues of A are in the union of the Gershgorin discs

n⋃
i=1

{z ∈ C : ‖z − aii‖ ≤ Ri}

The Gershgorin Disc Theorem together with the following definitions will provide the

tools used to characterize equilibria.

Definition A.0.1. A matrix A is diagonally dominant if

|aii| ≥
∑
j 6=i

|aij| ∀i

Definition A.0.2. The matrix is strictly diagonally dominant if

|aii| >
∑
j 6=i

|aij| ∀i
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Consider a diagonally dominant matrix A and let

J = {i ∈ {1, 2, . . . , n} : |aii| >
∑
j 6=i

|aij|}.

Any row j such that j ∈ J is said to be a strictly diagonally dominant row.

Definition A.0.3. A matrix A is weakly chained diagonally dominant if it is

• diagonally dominant

• for all i /∈ J there is a sequence of nonzero elements of A of the form aii1 , ai1i2 , . . . , airj

with j ∈ J .

The second condition can be equivalently expressed as the existence of a walk from i

to j on the directed graph of A. Weakly chained diagonally dominant matrices have the

following characterization given in [152]:

Lemma A.0.2. A weakly chained diagonally dominant matrix is nonsingular.

A diagonally dominant matrix with negative diagonal entries has eigenvalues with non-

positive real part by the Gershgorin disc theorem and cannot have eigenvalues on the imag-

inary axis; a strictly diagonally dominant matrix with negative diagonal entries has eigen-

values with negative real part by the Gershgorin disc theorem. As seen in Chapter 5 this

characterization is quite powerful.

Recall also the following condition for Metzler matrices from [153]:

Lemma A.0.3. Let A be an irreducible Metzler Matrix

• If there exists x > 0 such that Ax > λx then α(A) > λ.

• If there exists x > 0 such that µx > Ax then µ > α(A).

For a matrix A, α(A) = maxλ∈eig(A) Re(λ), where Re() denotes the real part of a

complex number and eig(A) is the set of eigenvalues of A.
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APPENDIX B

CONTROL OF LINEAR SYSTEMS

In this section, basic definitions from the theory of linear systems are presented which

underlie the study of network controllability, which occur in Chapters 2, 3, and 4. This

section follows [154] but any text on linear systems theory will do.

When studying the response of a linear system to an input, there are two paired concepts

which form the basis for the understanding of the system behavior under input. A state

x ∈ Rn is reachable if there exists an input that can drive the system from 0n to x in finite

time. A state x ∈ Rn is controllable if there an input that can drive the system from x to

0n in finite time. For a continuous time, linear system these concepts are equivalent, that

is if a state is reachable then it is controllable and vice versa. As such the terms are used

interchangeably to describe the behavior of a system. This section begins with a number of

definitions.

Definition B.0.1. The reachable subspaceR[0, t] of a continuous time, linear system is

R[0, t] =

{
x1 ∈ Rn : ∃u(·),x1 =

∫ t

0

eA(t−τ)Bu(τ)dτ

}
.

Definition B.0.2. A continuous time, linear system is completely controllable if ∀ x(0), xf ∈

Rn there exists a finite time T and an input u(t), t ∈ [0, T ] s.t. x(T ) = xf under control

input u(t). Equivalently, a continuous time, linear system is completely controllable if

R[0, t] = Rn.

Instead of calculating the reachable subspace directly, there are two matrices which

are studied instead. As will be seen, these matrices given information about the reachable

subspace but can computed efficiently.
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Definition B.0.3. The controllability matrix C of a linear system is

C =
[
B,AB,A2B, . . . , An−1B

]
Definition B.0.4. The Controllability Grammian on the time interval [0, t], Wc[0, t], of a

continuous time, linear system is

Wc[0, t] =

∫ t

0

eAτBBT eA
T τdτ.

The infinite horizon controllability grammian (t = ∞) can be solved for efficiently, if

A is stable, as the solution to the continuous time Lyapunov equation:

AWc +WcA+BBT = 0.

Lemma B.0.1. Theorem 11.5 from [154]

R[0, t] = range(C) = range(Wc[0, t]).

Then the next two Lemmas follow directly from Lemma B.0.1 and Definition B.0.2:

Lemma B.0.2. A continuous time, linear system is completely controllable if and only if

rank(C) = n.

Lemma B.0.3. A continuous time, linear system is completely controllable if and only if

rank(Wc[0, t]) = n.

Note that in continuous time linear systems, the reachable subspace does not depend ex-

plicitly on the time interval used and as such the time interval will be omitted for notational
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convenience.

Another problem from the control of linear systems, which will be expanded upon in

Chapter 4, is how to drive a system between two states with minimum energy. Consider the

problem of driving a system from the origin to the state xf with minimal control energy:

J = min
u(t)

∫ tf

0

‖u(τ)‖2dτ

s.t. ẋ(t) = Ax(t) +Bu(t), t ∈ [0, tf ]

x(tf ) = xf

x(0) = 0n,

If the system is completely controllable, this optimization problem has an optimal solution

of

u∗(τ) = BT eA
T (t−τ) (Wc)

−1 xf [0 ≤ τ ≤ tf ].

The resulting minimum energy is

∫ tf

0

‖u∗(τ)‖2 dτ = xTf (Wc)
−1 xf .
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APPENDIX C

SWITCHING SYSTEMS

In this appendix a few definitions from the study of switched systems will be presented,

which follow [155]. Consider a family of systems

ẋ = fp(x), p ∈ P (C.1)

which has a switching signal σ(t) : [0,∞) → P which determines the switches between

systems. This gives rise to a switched system,

ẋ = fσ(x). (C.2)

Definition C.0.1. A switched system is uniformly asymptotically stable if it is asymptoti-

cally stable for all switching signals.

Definition C.0.2. A positive definite C1 function V is a common Lyapunov function for the

family of systems in Eq. (C.1) if there is a positive definite continuous function W such that

∂V

∂t
fp(x) ≤ −W (x) ∀x 6= 0, ∀p ∈ P

or equivalently if P is compact and

∂V

∂t
fp(x) < 0 ∀x 6= 0, ∀p ∈ P .

Theorem C.0.1 (Theorem 2.1 from [155]). If all systems in the family in Eq. (C.1) share a

common Lyapunov function, then the switched system in Eq. (C.2) is uniformly asymptoti-

cally stable.
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