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SUMMARY 

 Hybrid electric aircraft have been proposed as a means to achieve the ambitious 

fuel burn reduction goals which have been set for future air transports. Hybrid aircraft 

supplement the fuel they carry with batteries. This results in propulsion systems which 

can meet a thrust requirement in multiple ways until the battery runs out of charge. The 

choice of when to supplement the gas turbine with electrical power can change the fuel 

burn even if the same total amount of battery is used. This is due both to the weight 

change from fuel burn being different than that for battery usage and also to the changing 

fuel efficiency resulting from adding electrical power. In return, fuel efficiency depends 

on the thrust being produced, the electricity added and the flight condition. Choosing the 

proper power schedule for the electric motors is essential to an efficient flight and to an 

accurate estimate of fuel burn during design.  

 This thesis set out to determine a methodology for choosing the best power 

scheduling method for hybrid aircraft. In order to define this methodology, several 

research questions were posed: what impact do the power schedules have on the mission 

level fuel burn, what factors in the hybrid system design and operation have the greatest 

impact on the ideal power schedule, what baseline methods and optimization techniques 

provide the best performance and how does the choice of the best power schedules affect 

the larger problems in hybrid electric aircraft design and sizing.  

 An examination of the literature found that a small number of hybrid power 

schedules have been used in hybrid aircraft studies, but more advanced methods have 

been used to address the problem for hybrid cars. Based on the literature, hypotheses 

were formed for the research questions, and a methodology based on the hypotheses was 
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proposed for choosing a power scheduling method, called the Systematic Hybrid Aircraft 

Power Schedule Optimizer (SHAPSO). A set of experiments to settle the research 

questions was planned, with the intention of revising SHAPSO as needed if the 

hypotheses were disproven.  

 Before any experiments could be conducted on the performance of different 

hybrid power schedulers and scheduling methods, a hybrid system model had to be 

constructed. A set of hybrid electric component models was constructed within the gas 

turbine modeling tool NPSS in order to add hybrid capability to the tool. This enabled the 

modeling of a hybrid turbofan engine at a fidelity sufficient to capture the efficiency 

changes of each component due to the interactions between the electric power system and 

the gas turbine. With this model in hand, the drag polar and aircraft size and weight were 

all that were required to model the hybrid system. To enable the use of computationally 

expensive optimization techniques, a surrogate model was made of the hybrid turbofan. 

This reduced the computational burden of a call to the engine at the cost of baking in the 

component efficiencies assumed in the modeling phase. The battery was modeled 

separately from the surrogate to enable its size and efficiency to vary from case to case as 

required.  

 The first experiment involved testing several candidate power schedules and 

scheduling methods on a simple mission consisting of a single cruise segment at a 

constant Mach number and altitude. Three baseline power schedules were run, Constant 

Power, Power at Start and Power at End. These were compared in their resulting fuel 

burns against each other, as well as against the Optimal Control method and the global 

optimization method Dynamic Programming. Dynamic Programming found that the ideal 
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power schedule was linear, slowly increasing in power over the mission with a slope and 

height dependent on the battery size and mission length. Optimal Control found a similar 

power schedule with a lesser slope. Its fuel burn was only marginally worse than 

Dynamic Programming. Constant Power consumed only slightly more fuel than Optimal 

Control, but End Power burned 2-3% more fuel than Constant Power and Start Power 

another .5% more fuel than End Power. A Linear Power schedule was also found that 

showed marginally better performance than Dynamic Programming due to the resolution 

limitations of its implementation. These results showed that the power schedule does 

make a difference in fuel burn, but disproved the hypotheses that End Power was the best 

of the baseline schedules. The results also indicated that the most significant factor in the 

ideal power schedule was not the reduction of system weight from burning fuel earlier 

rather than later, as had been hypothesized. Instead the results suggested that the 

resistance of the battery may be the dominant factor determining the optimal power usage 

schedule. However the research questions could not be conclusively answered until a 

more complete mission was tested. In addition the margin of difference in fuel burn 

between Constant Power, Optimal Control and Dynamic Programming was found to be 

extremely small, requiring care to be taken to zero other errors. 

  Experiment #2 was similar to Experiment #1 but also included a climb segment 

and a descent segment to capture a more complete mission. The descent segment could 

not use hybrid power due to the operating assumptions of the hybrid turbofan, but the 

climb segment could use hybrid power and did so throughout drastically changing flight 

conditions. The methods tested were End Power, Climb Power, Constant Power, Optimal 

Control and Dynamic Programming. These were the same methods as in Experiment #1, 
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with the exceptions that the Start Power method was replaced with a Climb Power 

method and that the Linear schedule, found to be optimum in Experiment #1, was 

omitted. These changes were made because Start Power was the worst method in 

Experiment #1 but Climb Power has been proposed by other studies in the literature. Also 

the power schedules found by Dynamic Programming in Experiment #2 were not linear, 

eliminating the utility of the Linear power schedule. During the setup of Experiment #2 it 

was found that the fit of the hybrid engine surrogate model had to be very tight, as the 

optimizers would otherwise find any beneficial errors in the surrogate model and base 

their power schedules around these inaccurate efficiency gains. The length of the mission 

and the size of the battery were varied, as was the battery resistance in order to evaluate 

their impact on the power schedules. 

 The Experiment #2 results showed that the best of the baseline schedules was 

Constant Power, which did nearly as well as Dynamic Programming. Varying the battery 

resistance greatly reduced the difference between Constant Power and the other baselines 

but did not eliminate it, showing that the battery resistance was the primary factor driving 

the power schedules. Optimal Control did not always do better than Constant Power. This 

inspired two different improvements to the Optimal Control method to allow it to favor 

fuel more at one end of the mission than the other. These improved versions were able to 

match or slightly improve Dynamic Programming’s fuel burn due to the resolution limits 

on Dynamic Programming. The improved versions of Optimal Control required an 

increase in computational burden compared to the original Optimal Control but were still 

an order of magnitude faster than Dynamic Programming.  
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 Experiment #3 demonstrated part of the analysis that would be required to choose 

a battery size for a particular aircraft. End Power, Climb Power, Constant Power, Optimal 

Control, Weighted Optimal Control, and 2 Level Optimal Control were used to find the 

required fuel to fly distances from 500 to 2,000 nautical miles with each of four different 

batteries weighing 5,000, 10,000, 15,000, or 20,000 lbs. These fuel burns were then 

compared to the required fuel for the same system with no battery attached, flying on fuel 

alone. The total energy savings was then plotted against range for each battery and 

method. This chart could then be used to determine the most appropriate battery pack for 

a given mission set. 

 The Experiment #3 results showed a significantly higher energy savings across 

the energy limited region of the chart for Constant Power compared to the other baseline 

methods. This showed the impact that power schedules can have on energy consumption. 

Even when the battery resistance was lowered, the differences became smaller but 

persisted across the ranges examined. The other methods made marginal improvements to 

the Constant Power energy savings, on the order of .1% of the total energy at each range.  

 Based on these results the procedure within SHAPSO for choosing the 

appropriate power scheduling method for any hybrid electric architecture was updated. In 

the final version of SHAPSO, after defining the architecture itself, the optimization 

problem has to be defined, specifying the metric of interest and the available degrees of 

freedom. Once this is known the hybrid architecture has to be modeled at fidelity 

sufficient to capture the tradeoffs inherent to the problem. If this model takes too long to 

be used with the global optimization method of choice, a surrogate model is then made 

with a tight fit to capture the details of the model but speed execution. When the most 
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appropriate baseline schedule is unknown, candidate schedules are tested against one 

another to find the best. This baseline schedule is then compared to a global optimizer at 

a number of points to determine the difference between the baseline and ideal 

performance. If that difference is less than the accepted error of the model, the 

methodology chooses the baseline schedule for future operation of the architecture, until 

the model changes or the error is reduced. If the difference is more than the accepted 

error of the model the methodology tests other methods such as Optimal Control in 

increasing order of computational cost, until one is found that is closer to the ideal result 

than the error margin. If no method yields results closer than the error margin, the best of 

the methods and the global optimizer itself are compared and the methodology chooses 

between them depending on the relative cost of computational time and model 

performance.  

 This thesis improves the state of the art by establishing a consistent process for 

power schedule selection, SHAPSO, which is different than that used in previous studies. 

It also establishes the ideal power schedules for a common hybrid electric architecture, 

although the specific results are a function of the modeling, sizing and operational 

assumptions baked into the NPSS model. Future work would include readdressing some 

of these assumptions, adding degrees of freedom to the optimization problem, and 

including other factors in the objective function along with fuel cost, such as engine 

maintenance and battery costs. Future work would also include testing the methodology 

on a different hybrid electric architecture, preferably one with an ideal power schedule 

significantly better than any baseline schedule. This methodology would then enable 
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greater fuel savings with a fixed hardware aircraft and thus increase the utility of hybrid 

electric architectures.  
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INTRODUCTION 

 Since the beginning of the 21
st
 century there has been a renewed focus on 

reducing the CO2 emissions and improving the fuel efficiency of new transport aircraft. 

This focus has been shared by airframers, engine manufacturers and regulatory agencies. 

In 2007 NASA set goals for upcoming generations of aircraft, setting the ambitious goal 

of a 70% reduction in fuel burn by aircraft entering service in 2030-2035 when compared 

to a 2005 baseline vehicle [1]. These goals have been updated since, with the 2016 

revision shown in Table 1 below. In addition to evolutionary improvements to current 

conventional aircraft, these high goals have inspired revolutionary aircraft concepts such 

as drastic changes in planform and attempts to utilize boundary layer ingestion[2]. Other 

concepts have taken aim at the fuel burning propulsion system itself and have proposed 

augmenting the traditional gas turbine with electrical propulsion components to increase 

the efficiency of the system and supplement the fossil fuel burning gas turbines with 

electric power[4]. 

 

Table 1: NASA's Technology Goals for Future Subsonic Vehicles v2016.1[3] 

Technology Benefits 

Technology Generations 
(Technology Readiness Level = 5-6) 

Near Term 
2015-2025 

Mid Term 
2025-2035 

Far Term 
Beyond 2035 

Noise 
(cum below Stage 4) 

22-32 dB 32-42 dB 42-52 dB 

LTO NOx Emissions 

(below CAEP 6) 
70-75% 80% > 80% 

Cruise NOx Emissions 
(rel. to 2005 best in class) 

65-70% 80% > 80% 

Aircraft Fuel/Energy 

Consumption  
(rel. to 2005 best in class) 

40-50% 50-60% 60-80% 
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 Several different architectures have been proposed which use electrical 

components to augment the traditional gas turbine. These can be broadly characterized as 

Hybrid Electric systems, in which batteries are used as energy sources or energy storage 

elements, and Turboelectric systems, in which electrical components are used for power 

transmission but not significant storage[5, 6]. The two primary families of hybrid electric 

propulsion systems are the Series Hybrid, in which all thrust is produced using electric 

motors powered by batteries and gas turbine driven generators, and the Parallel Hybrid, 

in which gas burning engines producing thrust are augmented with electric power coming 

from batteries[7]. Both of these architectures have been proposed for use in air transports. 

Well studied examples are the parallel hybrid Boeing SUGAR Volt, the series hybrid 

NASA N3-X[8], and the EADS/Rolls-Royce eConcept which shows a compromise 

position--a series-parallel hybrid in which the generator produces thrust and is augmented 

by batteries[9, 10]. Similar architectures have been used for non-aerospace applications 

for years. Examples are series hybrid diesel-electric locomotives, parallel hybrid diesel-

electric submarines and series/parallel hybrid cars such as the GM Chevrolet Volt[11]. 

However, only recent and anticipated advances in power and energy density have made 

electric power systems light enough to contemplate their use in civil air transports[12].  

 These and other aircraft concepts are being developed to see how they compare as 

future air transports in the Far Term timeframe. Conceptual design processes such as 

Schutte et al.’s Environmental Design Space[13] size aircraft based on each architecture 

to perform missions of various ranges and payloads. These processes evaluate the aircraft 

performance over these missions in comparison to performance of other architectures and 

concepts. In the process the mission fuel burn over on-design missions and off-design 



3 

 

missions is evaluated through simulation of said missions. This is straightforward until 

aircraft with multiple energy sources are evaluated. These aircraft with multiple energy 

sources include hybrid electric vehicles. 

 For conventional aircraft, there is only one engine command which can produce 

the required thrust; however hybrid aircraft have a continuous range of power settings in 

which the sum of the electric and gas turbine systems produce the same thrust setting[14]. 

The decision on when to use battery and when to use fuel can alter the fuel burn of the 

mission. This is due to changes in vehicle weight over the mission, which change the 

thrust requirement, and changes in engine efficiency from hybrid power, which are a 

function of the thrust. The problem is further complicated by the limited amount of 

battery energy available before the battery is depleted. Without an optimal power 

schedule, the hybrid electric concepts are at a disadvantage against other Far Term 

concepts whose fuel burn is better understood.  

 Hybrid electric cars have addressed this problem with myriad control schemes, 

from hard coded rules to Stochastic Dynamic Programming[15]. Strategies which are 

optimized for the mission type at hand perform well; for example, the default behavior on 

the Chevrolet Volt, using battery only until it is depleted[16], works well for short trips in 

city driving. This strategy is not as effective over longer trips, where other strategies can 

result in fuel savings of 10% over certain distances[17]. Different optimization 

techniques have been used to find these strategies, and can be adapted to find the optimal 

power split for hybrid aircraft. 

 In order to choose the proper power scheduling method for a particular hybrid 

electric aircraft, a systematic procedure is required to evaluate different methods and 
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select the most appropriate one. In some cases the ideal schedule may be simple, while in 

others a computationally intensive method may be required to find the minimum fuel 

burn. In some cases the savings from the ideal schedule may be small enough that using a 

lower performing schedule may be justified by the increase in computation speed. The 

threshold where this switchover occurs will also vary based on the confidence in the 

precision of the model, the current stage of design and the number of ideal scenarios 

required for the related analysis.  

 This thesis sets out to define a methodology for determining the optimal 

operational schedules of hybrid electric architectures. This methodology should be 

capable of determining the optimal electric power schedule to be used for a given hybrid 

electric architecture, depending on the available computational resources and the fidelity 

of the available models. This should enable evaluation of hybrid electric architectures 

while taking their optimized performance into account and to better reflect how these 

architectures will be used in the Far Term timeframe. 
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 The outline of this thesis is shown in Figure 1. As shown in the figure, Chapter 2 

will discuss future hybrid electric aircraft concepts and the problem of finding the 

optimal power schedules for each. It will include a discussion of power schedule control 

in previous simulations. Chapter 3 will address the purpose of this thesis, identify and 

attempt to answer research questions pertaining to the purpose, and propose a 

methodology and an experimental plan to settle the research questions. Chapter 4 will 

discuss in detail the modeling of the hybrid electric architectures and the different 

optimization algorithms which are required to complete the experiments. Chapter 5 will 

describe the implementation and results of the experiments planned in Chapter 3. Chapter 

6 will discuss the results, the factors which determined them and propose any changes to 

the methodology based on the results. In addition Chapter 6 will discuss the contributions 

of this thesis and the remaining future work.   
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CHAPTER 2 

BACKGROUND INFORMATION 

 

 In order to better understand the problem of hybrid electric power scheduling in 

aircraft, it is necessary to examine the literature on hybrid aircraft and related problems. It 

is particularly helpful to have an understanding of the hybrid electric concepts which 

have been proposed and the degrees of freedom they add to the power control problem. 

This chapter will discuss several hybrid and turboelectric concepts in detail, 

demonstrating the diversity of proposed propulsion concepts and revealing the difficulty 

in modeling them without taking their differences into account.  

Definitions of Hybrid Architectures 

 When discussing the integration of electric power components into the propulsion 

system of an aircraft, it is important to define the different categories of hybrid and 

turboelectric power system architectures. This thesis adopts the convention described in 

Figure 2 below for distinguishing between the different architectures.  
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Figure 2: Hybrid Definition Diagram 

 

 A parallel hybrid is defined as a vehicle which draws its energy from both a 

battery and a conventionally fueled engine, with power from the gas turbine and the 

electric motors both mechanically driving fans. This can be accomplished by driving the 

same fans through use of common shafts or gearboxes, or by driving independent fans, 

but there is no intermediate conversion of the mechanical energy from the gas turbine 

into electrical energy before it is used to drive the fans.  

 In contrast a turboelectric, also known as a series hybrid propulsion system, does 

not contain significant energy storage elements, but uses a gas turbine as a source of 

electric power. This electric power is then used to drive one or more electric fans to 

produce thrust. An intermediate position exists between the turboelectric and 

conventional gas turbine architectures in which a gas turbine simultaneously drives a 

generator as in the turboelectric case and directly drives a propulsive fan. This partially 
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turboelectric architecture is still not a hybrid because it lacks a battery for electrical 

energy storage. 

  The series/parallel hybrid concept is the intermediate position between the parallel 

hybrid and the turboelectric system. A gas turbine is used to generate electrical energy 

but a battery is also present to store electric energy, recharged either between missions or 

in flight by the gas turbine when the power required for thrust is low.  

 Other configurations can be conceived to interlink these components to produce a 

propulsion system; however these are representative of the design space. The key 

distinction to be made is between the hybrid systems and the non-hybrid systems. Under 

this convention, a configuration is a hybrid only if it possesses a battery for electric 

energy storage. The problem then becomes determining when this energy storage should 

be used during a mission.  

Hybrid Electric and Turboelectric Aircraft Concepts 

 Since NASA set the Far Term goals for fuel burn, many different hybrid electric 

aircraft architectures have been proposed and studied in various levels of detail. Many 

combine the fuel savings of hybrid technology with other advanced technologies such as 

truss braced wings or boundary layer ingestion to achieve the Far Term goals. Four 

different concepts are discussed in detail below as examples of the four primary hybrid 

architectures: parallel hybrid, partially turboelectric, turboelectric, and series/parallel 

hybrid.  
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Boeing SUGAR Volt 

 

 

Figure 3: Boeing SUGAR Volt [18] 

 

 In the Phase I report of the Subsonic Ultra Green Aircraft Research (SUGAR) 

project, Boeing established current gen and Far Term baselines before evaluating several 

approaches to the Far Term goals[19]. Among the concepts explored in detail was the 

SUGAR Volt, a high wing regional aircraft with several propulsion system options. 

These options included a totally battery powered system, a fuel cell/Brayton cycle hybrid 

system and a battery/Brayton cycle hybrid system developed in partnership with GE and 

called the hFan[20]. The fuel cell and pure battery options were shown to be unfeasible 

with the projected power densities and efficiencies of the Far Term timeframe; however, 

the hFan proved promising enough for further study.  
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 This hFan became the archetypical hybrid electric turbofan engine, consisting of a 

gas turbine engine augmented by adding an electric motor to the fan shaft, as shown in 

Figure 4 below. This depicts a traditional turbofan engine, with a number of technology 

improvements from the Far Term era added and called out, including the hybrid motor 

shown mounted inside the tail cone, taking advantage of the empty space aft of the 

turbine. There is variation in where on the fan shaft the motor is mounted, from its 

termination at the tail cone as in the original drawing in Figure 4, to between the 

compressor and the fan[21], to a ring motor mounted on the tips of the fan and the 

nacelle[22].  

 

 

Figure 4: GE "hfan" from Boeing Far Term Study[23] 

 

 After borrowing a drag polar from the SUGAR High concept, Boeing explored 

the tradeoffs inherent to hybrids, in particular the benefits of flying at Maximum Takeoff 
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Gross Weight (TOGW) at all but the shortest missions. As shown in Figure 5 they 

investigated using any excess lifting capacity to carry more batteries. For this reason, 

they analyzed increasing the Maximum TOGW (MTOW) of the aircraft, increasing the 

wing area and structural weight, in order to allow more batteries to be carried and 

increase the potential fuel savings. This strategy is opposite the ordinary trend of 

reducing weight whenever possible, but was found to provide 10% fuel savings due to the 

additional battery energy[19]. 

 

 

Figure 5: Battery and Fuel Weight Vs. Range[19] 

 

 The variable proportions of battery weight to fuel (Jet-A) seen in Figure 5 show 

that the proportion of electric power to gas power is not constant with range. In fact the 

Boeing SUGAR Phase I report discusses differing uses of battery vs. jet fuel over the 

flight envelope, with longer range missions only using electric power for takeoff assist. 

An additional requirement for use at smaller airports is also discussed as a factor when 

choosing the amount of battery to load. This is because using battery for takeoff assist 

only minimizes takeoff weight while increasing takeoff thrust. As such the system would 
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have capability to independently select power levels to be used during takeoff, climb, and 

cruise depending on the length of the mission and the weight/takeoff budget 

available[19].  

 The SUGAR Phase II part 2 report[18] contains further refinements of the 

SUGAR volt design, exploring motor powers up to 8,000 HP. At this level the airplane 

could fly in cruise without using the gas turbine at all. This enables a “core shutdown” 

mission profile where the gas turbine is fully shut off partway through cruise and left off 

for the rest of the mission. In order to carry enough batteries to power an 8,000 HP motor, 

the core shutdown capable concept had its MTOW increased to 190,000 lbs. This was 

compared to the 150,000 lb. weight for the 1380 HP power assist baseline. The 8,000 HP 

motor achieved 10% fuel savings due to the increase in battery energy carried. The 

SUGAR Phase II part 2 report also considered regenerating electric power during descent 

to recharge the battery and increase the descent angle. This strategy was dismissed by the 

realization that any energy recovered could be reduced more simply by gliding at a 

shallower angle toward the airport.  

 Since the SUGAR Volt was proposed, it has been used as a prototypical design in 

works considering hybrid aircraft. Jagannath et al. [24] computed the performance of a 

similar parallel hybrid aircraft using a modified Breguet range equation set, assuming 

fixed levels of hybrid power during different segments of the aircraft’s mission. 

Similarly, Singh et al. used a similar propulsion system to the SUGAR Volt as his 

example when developing a hybrid system to minimize cost at current energy prices [25]. 

The SUGAR Volt is easy to use as a standard due to the abundant data provided about its 

airframe and propulsion systems in the SUGAR reports[18, 19].  
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 Other engine manufacturers have also proposed engines and corresponding 

vehicles along the same lines as the hFan and the SUGAR volt. UTRC’s Parallel Hybrid 

Geared Turbofan has the same general architecture as the SUGAR Volt. It exploits the 

hybrid power by shrinking the gas turbine core to make it ideal for cruising thrust while 

requiring electric power to provide the climb thrust[26]. Rolls-Royce’s Electrically 

Variable Engine is more similar to the hFan. It is sized to handle the entire mission 

without use of batteries but utilizes battery power to reduce fuel burn and overall 

emissions[27]. An X-plane concept has also been proposed, constructed out of a heavily 

modified DC-9 with a truss braced wing and hybrid engines added[28].  

STARC-ABL 

 

 

Figure 6: STARC-ABL Concept Aircraft[29] 

 

 A different application of electrical propulsion to a conventional airframe is the 

STARC-ABL concept proposed by Welstead et al. in 2016[30]. This concept, seen in 
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Figure 6, consists of a conventional fuselage with engines similar to the hFan used by the 

SUGAR Volt. However, instead of battery power being added to the fan as in the 

SUGAR Volt, electrical power is extracted from both engines and used to power a tail 

cone thruster for Boundary Layer Ingestion (BLI). This thruster is sized and mounted to 

ingest the boundary layer at the aft end of the fuselage, providing a drag reduction and 

effectively increasing the bypass ratio[29]. As presented it is a partially turboelectric 

concept, but with the addition of a battery it could become a series/parallel hybrid[5].  

NASA N3-X 

 

 

Figure 7: NASA N3-X Concept and Subset of Propulsion System[8, 31] 
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 STARC-ABL was originally proposed as a more conventional turboelectric 

alternative to the NASA N3-X, which was proposed by Felder et al. in 2009. This 

vehicle, shown in Figure 7, is a radical shift in aircraft design capable of meeting the CO2 

goals for long range high payload missions. A turboelectric drive consisting of 14 electric 

fans driven by two wingtip mounted gas turbine generators increases propulsive 

efficiency by increasing the effective bypass ratio and combines favorably with a hybrid 

wing body planform with BLI to enable a considerable reduction in TSFC. To overcome 

the turboelectric efficiency penalty from transforming power from mechanical to 

electrical and back, High Temperature Superconductors (HTS) are used in the power 

transmission system and for all motors and generators. HTS operations require a cooling 

system to maintain superconductivity, so cryogenic fuels (hydrogen and methane) and 

cryocooling are considered by Felder et al.[8] 

 Further work has refined the N3-X concept. Brown includes updated weight and 

efficiency estimates for the hybrid components using state of the art superconductors. He 

anticipates a complete hybrid powertrain efficiency of 98% and weight under 27,000 lbs. 

not including the gas turbine and the fans themselves[12]. Armstrong et al. approached 

the problem of flight reliability by laying out the power system architecture with the 

redundancy and protection systems necessary to keep a Turbo Electric Distributed 

Propulsion air transport flying in the event of engine, fan, or power system component 

failure. Armstrong et al. also explored the DC transmission voltage taking arcing 

considerations into account and added a small amount of electrical energy storage to 

handle transient loads[32]. Others have refined the aerodynamics of the concept[33], the 
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mail-slot nacelle[34], the noise and emissions[35], and the overall economic viability of 

the concept[36].  

 

EADS/Rolls-Royce eConcept 

 

 

Figure 8: EADS/Rolls-Royce eConcept Vehicle[10] 

 

 The eConcept vehicle, seen in Figure 8, is a series/parallel hybrid concept which 

uses six distributed BLI fans powered by a single turbogenerator and a large energy 

storage system. The decoupling of the propulsion from the power generation allows the 

two systems to be sized and operated differently. The turbine is sized for cruise operation 

and dependent on batteries for supplemental power during takeoff and climb. During 

cruise and descent the turbine’s excess power allows the batteries to be recharged. 
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Aiming at an entry into service date of 2050, the eConcept assumes superconducting 

machines and power transmission in addition to lithium air batteries with a specific 

energy density in excess of 1 kWh/kg [9, 10, 37].  

 Two different operating assumptions have been proposed for the eConcept’s 

battery usage: either the battery will be recharged on the ground between flights as in the 

SUGAR Volt[37], or it will be recharged by the gas turbine during cruise and by 

regenerative braking by the fans during descent[9]. The second method would reduce the 

infrastructure requirements on the ground by not requiring battery chargers at airports. 

The choice between these two alternatives could change the sizing of the system and 

would certainly change the ideal battery usage schedule. 

Other Hybrid Concepts 

 Other hybrid aircraft concepts have been proposed. These range from a smaller 

turboprop similar to the SUGAR Volt[38], to a nearer term turboelectric distributed 

concept with a more conventional airframe and either superconducting or non-

superconducting electrical systems [39, 40]. In addition, hybrid electric aircraft have been 

proposed at smaller scales, including general aviation[41] and multiple Unmanned Arial 

Vehicles (UAVs). In the case of UAV’s the hybrid technology often buys its way onto 

the proposed aircraft for reasons other than efficiency. This would include adding 

Vertical Takeoff and Landing (VTOL)[42] or adding quiet loiter capability using electric 

motors and some electric energy storage to aircraft which retain the range provided by 

their internal combustion engines[43].  
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 The hybrid electric concepts detailed above show the principal features of the 

design space as well as hybrid electric technology’s potential to supplement the energy 

provided from fuel, increase the effective bypass ratio, and enable drag reductions 

through BLI. They also demonstrate the different levels of coupling between the hybrid 

components and the gas turbine components, aerodynamically and electrically, from the 

tightly coupled SUGAR Volt, where the gas turbine sits behind the electrically 

augmented fan to the nearly independent eConcept, whose battery enables the electric 

fans and gas turbine to be controlled separately.  

Energy Management in Hybrid Concepts 

 Analysis of any aircraft with multiple propulsion systems is dependent on 

assumptions of how the thrust requirement will be distributed between them. For aircraft 

with a single power source, such as conventional air transports and the N3-X, the most 

fuel efficient mission is accomplished with the most fuel efficient operation which meets 

the thrust demand at each instant. For conventional aircraft this is symmetric thrust 

between all engines. However, the N3-X can maintain straight flight while generating 

most of its electricity from one engine and idling the other. As long as the inactive engine 

has to be idling (and cannot be shutdown), the fuel required to keep the idling engine 

burning keeps this from being more efficient than operating the engines symmetrically 

except at low altitudes and power settings[44]. In contrast to conventional single power 

source aircraft, aircraft which have multiple power sources, for example batteries and 

fuel, which have differing costs and effects on aircraft weight, are no longer necessarily 

optimized over a mission by an instantaneous optimization. 
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 The SUGAR Phase II study evaluated the SUGAR Volt under different power 

assumptions to arrive at the 7500 HP motor equipped “engine shut down” power 

schedule alongside 1380 HP and 1750 HP motor equipped alternatives which were 

operated at maximum power throughout the mission[18]. The studies of the eConcept 

vehicle took the opposite approach: the gas turbine engine was simulated at full power 

over the entire mission with the batteries charging or discharging at whatever level was 

required to meet the thrust requirements. Both of these approaches allow the aircraft to be 

simulated, however a better use of the batteries was not attempted. In fact the SUGAR 

Phase II report states that its approach was taken due to time constraints and further 

optimization was planned [18]. Later studies of a SUGAR Volt type hybrid have used 

alternative power scheduling methods such as a piecewise linear schedule [45]or a 

different power for cruise and climb[46], but no single optimal schedule or method for 

optimizing schedules has been generally accepted for these hybrid aircraft. 

 This chapter has demonstrated the diversity of hybrid electric and turboelectric 

aircraft and propulsion system concepts. Each of these systems introduces additional 

control variables into the propulsion system operation, which must be set in order to 

simulate the system and determine its performance. For turboelectric systems such as the 

N3-X or STARC-ABL these variables can be set by instantaneously optimizing for fuel 

burn, but on hybrid systems the battery constraint limits the total amount of electric 

energy available during a mission. It is therefore necessary to use power differently 

depending on the available battery power and mission being flown. Different strategies 

for using the power during each mission have been proposed, but the industry has not 
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settled on a proper methodology for selecting a power schedule or schedule optimization 

method.  
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CHAPTER 3 

METHODOLOGY FORMULATION 

 In the previous chapter a representative set of hybrid and turboelectric aircraft 

were shown to have additional degrees of freedom in their propulsion system control 

compared to conventional aircraft. The control of these new degrees of freedom for 

turboelectric aircraft is performed by optimizing the instantaneous fuel burn across the 

mission. For hybrid aircraft, however, there is a complicating constraint on control 

caused by the limited electrical energy available from the battery. Due to this constraint 

the power schedules must be different on every mission depending on the mission 

requirements and available battery. There is a gap in the literature on what the power 

schedules should be and what methods should be used to select them. For this reason the 

purpose of this thesis is as follows: 

 

 This chapter will address a number of research questions and develop hypotheses 

pertaining to this purpose before proposing a methodology to meet the purpose.  

Research Question #1: How Important Is It to Use the Optimal Power Schedule? 

  Although it is clear that a power schedule must be used which utilizes all the 

available energy in the battery in order to minimize fuel burn, the impact of using one 

such schedule rather than another is not as clear. To determine the magnitude of 

Statement of Purpose 

 To Develop a Methodology for the Determination of Optimal Operational 

Schedules of Hybrid Electric Architectures 



23 

 

difference a power schedule can make, plug in hybrid electric cars should be examined as 

the closest analog system to hybrid aircraft that is currently in widespread service.  

Hybrid Car Power Control Schemes 

 The designers of hybrid electric cars have addressed the problem of power splits 

and battery energy management in their quest for increased miles per gallon. In recent 

years over 90% of the hybrid car fleet has adopted a transmission allowing electrical and 

gas power to be used in any ratio (within power limits) regardless of wheel speed [47]. 

The primary difference in the power scheduling of hybrid electric cars and hybrid electric 

aircraft is the stochastic nature of the power demands for automobiles. This is due to 

unknown terrain, traffic, and even required range from the car’s perspective when the 

journey begins. To deal with this, the Voltec system used by the Chevrolet Volt and 

shown in Figure 9 below, includes three clutches enabling the system to operate in four 

different modes during forward propulsion: one-motor all electric, two-motor all electric, 

series hybrid, and a parallel hybrid mode which uses the hybrid system as a continuously 

variable transmission.  
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Figure 9: Voltec Electric Drive System from Chevrolet Volt [11] 

 The Voltec system switches between the four modes based on the current location 

of the system on one of two torque/speed maps shown in Figure 10 below[11]. The map 

on the left is all electric while the one on the right is hybrid. 

 

 

Figure 10: Propulsion Mode Maps for Chevy Volt[11] 
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 The Chevrolet Volt switches between these two maps depending on the state of 

charge of the battery-if the battery is above the sustain level the system will stay on the 

all-electric map on the left, otherwise it will switch to the second map on the right. The 

driver can only set the current torque requirement with the throttle pedal and has the 

ability to raise the sustain level to ensure sufficient torque for mountain driving and to 

force a switch to the second map to preserve electricity for later[11].  

 This system of rules is called the Charge Depleting Charge Sustaining (CDCS) 

strategy, and it results in the car using its batteries for the first 40 miles or so and using 

fuel for the rest of the journey. This is fine for typical use, as a range of 40 miles a day 

means that the gas engine will rarely be turned on by a typical commuter. This has led to 

plug in hybrids such as the Volt also being known as Extended Range Electric 

Vehicles[48]. However for long journeys the CDCS strategy is not the best use of the 

battery pack. Tribioli et al. demonstrated an alternative battery usage strategy which 

spreads the battery over the first 110 miles before dropping to an all fuel mode. This 

strategy consumes 20% less fuel over that distance than the CDCS method used by 

Chevrolet[17].  

 The fuel burn minimization problem for hybrid cars can be formally stated as in 

Equation 1[49]:  

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑀𝑓 = ∫ 𝑚̇𝑓(𝑡)𝑑𝑡

𝑇𝑒𝑛𝑑

𝑇𝑠𝑡𝑎𝑟𝑡

 (1) 

 Where Mf is the total mission fuel burn and 𝑚̇𝑓 is the instantaneous fuel burn. The 

instantaneous fuel burn is the nonlinear function of the power demand and the applied 

electric power seen in Equation 2 below.  
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 𝑚̇𝑓(𝑡) = 𝑓𝑒𝑛𝑔𝑖𝑛𝑒(𝑃𝑟(𝑡), 𝑃𝑒(𝑡)) (2) 

 The electric power, Pe, is the free input controlled to minimize Mf. Pe may be 

positive or negative, but is subject to constraints on its magnitude and on the electric 

energy storage Es seen in Equations 3 thru 6 below. fstorage includes efficiency losses in 

the storage and power transmission systems, which will change when the system is 

recharging 

 𝑃𝑒,𝑚𝑖𝑛 ≤ 𝑃𝑒(𝑡) ≤ 𝑃𝑒,𝑚𝑎𝑥 (3) 

 
𝐸𝑠(𝑡) =  𝐸𝑠,𝑠𝑡𝑎𝑟𝑡 − ∫ 𝑓𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑃𝑒(𝜏))𝑑𝜏

𝑡

𝑇𝑠𝑡𝑎𝑟𝑡

 (4) 

 𝐸𝑠(𝑇𝑠𝑡𝑎𝑟𝑡) = 𝐸𝑠,𝑠𝑡𝑎𝑟𝑡 ,  𝐸𝑠(𝑇𝑒𝑛𝑑) = 𝐸𝑠,𝑒𝑛𝑑 (5) 

 𝐸𝑠,𝑚𝑖𝑛 ≤ 𝐸𝑠(𝑡) ≤ 𝐸𝑠,𝑚𝑎𝑥 (6) 

 This framework can capture plug in hybrids as well as hybrids in which the 

electric energy is all ultimately derived in fuel through the Es,start and Es,end parameters. 

These are assumed to be equal in the non-plugin case but are often equal to Es,max and 

Es,min in the plugin case. 

 Unlike most other parameters in the equation, the required power is not known 

ahead of time, requiring solutions which can be computed as the car moves along. 

Numerous test cycles have been used for testing proposed power split algorithms, such as 

the Japanese Drive Cycle[49], the FUDS cycle for urban driving [47], and the New 

European Driving Cycle[50] shown in Figure 11 as a velocity profile. This figure shows 

the unpredictable patterns of braking and acceleration experienced by an automobile. 

Strategies employed to solve this required power problem include Model Predictive 
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Control, Dynamic Programming, and Optimal Control. These are then often used to find 

a rule based strategy to quickly implement power changes in cars on the road [49, 51].  

 

 

Figure 11: New European Driving Cycle[50] 

 

Model Predictive Control 

 Model predictive control has been used to reduce the scale of the fuel burn 

minimization problem stated previously in Equation 1 by only considering a short amount 

of time in the future. This results in a formulation of the problem seen in Equation 7 

below, adapted from Borhan et al.[52] 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽 =  ∫ (𝑘𝑓𝑤̇𝑓(𝜏) + 𝑘𝑒𝑃𝑒(𝜏))
𝑡+∆𝑡

𝑡
𝑑𝜏  (7) 

 In this equation kf and ke are weighting factors for fuel and stored electric energy, 

respectively. The other equations are as before, except that the final state of the battery is 

not known. The penalty factors weighting battery use along with fuel use are included to 

compensate for this lack of knowledge. It can be observed that this problem collapses to 

instantaneous optimization if Δt is taken small enough. If Δt is large enough it will have 
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to solve the entire mission in advance. These equations are implemented in practice as 

summations over discrete time steps.[52]  

 To handle the unknown future demands of the driver, Ripaccioli et al.[53] used 

Markov chains to predict the most likely power requirements for the system. The Markov 

chains were derived from previous driving data such as standard driving cycles, and 

provide a probability that the next power demand will have one of a set of possible 

predetermined values. This enabled a 13% improvement in fuel burn when compared to a 

system expecting the current power demand to continue indefinitely. However a prescient 

system which knew the certain power demands in advance achieved a 29% fuel burn 

improvement in the same study [53]. 

Hybrid Aircraft Considerations 

 The hybrid electric aircraft control problem has some key differences from the 

hybrid electric car control problem. As previously mentioned, commercial air transports 

such as the SUGAR Volt are not subjected to unpredictable patterns of braking and 

accelerations such as those modeled by the New European Driving Cycle. Instead flights 

are planned before takeoff, with optimized trajectories within the constraints given by air 

traffic control and the current weather conditions. Although some of these constraints 

have random or unknown components, the problem can be considered as less stochastic 

than the car control problem, and during early design phases considered as nonrandom.  

 The aircraft mission typically consists of a single takeoff, climb, cruise, descent, 

and landing and does not have the many starts and stops of a car mission. Although some 

energy could be recovered during landing[54], regenerative braking on aircraft is not the 



29 

 

great energy source it is for automobiles and other land based hybrids[55]. However, 

there is one source of load variation that is unique to aircraft: a significant change in the 

mass of the vehicle as fuel is burned. 

 According to the Phase I report[19] the Boeing SUGAR Volt has a fuel capacity 

of 5,250 gallons of jet fuel. This amount of fuel weighs over 34500 lbs. which is over 

20% of the 154,900 lb. max weight of the aircraft. For comparison, the 2018 Chevrolet 

Volt has a fuel capacity of 8.9 gallons of gasoline, less than 2% of its 3543 lb. curb 

weight[56]. During a flight mission, whenever fuel is burned the aircraft weight 

decreases, but when electricity is used the battery maintains its weight. This weight 

change affects not only the amount of energy required to climb but also the amount of 

induced drag encountered by the aircraft during cruise. For a hybrid aircraft, this means 

that the total fuel burn should be less when using a power schedule which favors jet fuel 

at the beginning of the mission and electricity towards the end. This can be illustrated 

using the following notional charts: 
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Figure 12: Notional Mission Using Constant Power 

 

 

Figure 13: Notional Mission Using Battery at End 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
e

d
 F

u
e

l W
e

ig
h

t 
&

 F
ra

ct
io

n
 o

f 
To

ta
l P

o
w

e
r

Normalized Mission Time

Electrical Use

Gas Use

Fuel Left

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
o

rm
al

iz
e

d
 F

u
e

l W
e

ig
h

t 
&

 F
ra

ct
io

n
 o

f 
To

ta
l P

o
w

e
r

Normalized Mission Time

Electrical Use

Gas Use

Fuel Left



31 

 

 

Figure 14: Notional Mission Using Battery at Start 

 

 In Figure 12 thru Figure 14 three different power schedules are shown for a 

notional system flying a constant cruise with a constant specific fuel consumption (SFC) 

and electrical efficiency. In Figure 12 the electrical power provides a constant fraction of 

the thrust throughout the mission, but in Figure 13 the battery is used at twice the power 

level for the second half of the mission, and not at all for the first half. In Figure 14 the 

battery is instead used at the beginning. In the latter two cases the transition from battery 

to none was adjusted to cause the same amount of battery energy to be used in all three 

cases. The bend in the fuel weight histories when the power system changes modes can 

be clearly seen in the figures, and although they all have the same amount of fuel at the 

end of the mission, the system that uses the battery at the beginning (Figure 14) uses 2% 

more fuel in total than the constant power system (Figure 12), and the system that uses 

the battery at the end (Figure 13) uses 2% less than the constant system (Figure 12). This 

effect is reflected in their different initial fuel levels. 
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 This notional example employs a heavily abstracted hybrid; however it illustrates 

a potential effect which can drive the selection of an optimal power schedule. That effect 

is the change in weight from burning fuel earlier rather than later. Based on this example 

and anticipating some fraction of the 20% savings seen in hybrid cars from improving the 

power schedule, Hypothesis #1 was proposed: 

 

Research Question #2: What Factors Determine the Optimal Power Schedule? 

  In the previous section the reduction in vehicle weight from burning fuel earlier 

rather than later was identified as a factor that determines the relative performance of 

different power schedules. However, this notional example is very simple and does not 

include all the factors which may affect the optimal power schedule. These factors can be 

identified by considering the nature of the hybrid propulsion system and the missions in 

which it is used.  

Factors Inherent to the Vehicle and Propulsion System 

 The hybrid electric powertrain endeavors to displace fuel by applying a finite 

amount of electrical energy. The efficiency of the hybrid system in delivering this energy 

to the propulsion components limits the amount of fuel that the system can offset. In 

addition, any variations of that efficiency with power level are factors affecting the 

optimal power usage schedule.  

Hypothesis #1 

 The use of optimal power schedules over a typical aircraft mission will yield 

significant savings in fuel burn. 
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Electrical System Efficiencies 

 One variation of efficiency with power level is the discharge efficiency of the 

battery itself. Under steady load, a lithium ion battery can be modeled as an ideal battery 

with a series resistance. This resistance causes a loss proportionate to the square of the 

current drawn from the battery[57]. This loss penalizes use of higher power levels and 

therefore drives the optimal power schedule towards a constant power draw at the lowest 

level which uses all of the energy in the battery. 

 Other resistive losses in the system are found in the power cables between the 

battery and the motor and in the windings of the propulsion motors. However, unlike the 

losses in the battery, the resistance losses in the power cables can be decreased by using 

power electronics to increase the transmission voltage. This reduces the amount of 

current required to transmit the power. Increasing the transmission voltage can also 

enable a decrease in conductor weight but causes an increase in the required insulation 

and makes any protection equipment heavier[58]. In proposals which include 

superconducting technology, the cables and motors can have their DC resistive losses 

eliminated entirely at the cost of the added weight of thermal insulation and the cooling 

weight and energy consumption of the cooling system for the superconductors[12]. 

 The power electronics used to increase and regulate the DC voltage for power 

transmission from the batteries as well as the inverters used to drive the electric motors 

are other sources of power loss. These power electronic devices have efficiency maps 

which show a significant drop in efficiency at partial power levels[59]. These losses can 

be avoided by using a modular design, in which the power conversion is performed by a 

number of smaller modules acting in parallel. One possible design is shown below in 
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Figure 15. This design allows some modules to be deactivated at lower power levels 

while the remaining modules operate at peak efficiency[60].  

 

 

Figure 15: Scalable Inverter Module from UIUC[60] 

 The motor itself has losses including the resistance loss mentioned previously as 

well as windage loss, backiron loss, and bearing losses[61]. Unlike the resistance loss, 

these other losses are not a function of the motor power for most motor types. Instead 

these losses are a function of the motor speed and the amount of aerodynamic, 

electrodynamic and mechanical friction that must be overcome to turn at that speed. The 

losses are therefore more of a function of the mechanical coupling of the electric motor to 

the propulsion system rather than the power of the motor. 
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Impact of Hybrid Components on Propulsion System 

 The hybrid aircraft concepts discussed in Chapter 2 display some variety in 

coupling electric power into the propulsion system. The more turboelectric concepts such 

as the eConcept use electric fans to provide most of the thrust whether the gas turbines or 

the batteries are supplying the power. These systems’ battery power schedules are 

therefore only affected by the battery resistance and the drop in efficiency of the gas 

turbine at lower power levels. The gas turbine’s drop in efficiency at lower power levels 

is significant at altitude if the assumption is made that the gas turbine is not shut 

down[44].  

 Hybrids which have an electric motor mounted on the shaft of an otherwise 

conventional turbofan have a much tighter coupling between the gas turbine and the 

hybrid components. That is because they are directly connected mechanically and share a 

common aerodynamic flow. When the gas turbine is idled back as the electrical power 

provides a fraction of the thrust, an operability bleed may be required between the low 

pressure compressor and the high pressure compressor. The low pressure compressor is 

coupled to the motor and is spinning at a high power level, but the high pressure 

compressor is not mechanically coupled to the motor and is spinning at a low power level 

due to the reduced fuel flow. The operability bleed leaks a fraction of the core flow of air 

into the bypass stream in order to reduce flow through the core and protect the low 

pressure compressor from stalling [62]. The impact that this has on the efficiency of the 

gas turbine as a whole when changes are made in hybrid power could drive the optimal 

power usage schedule. 



36 

 

Factors Inherent to the Mission 

 The mission of an aircraft could be considered as a schedule of flight conditions 

and thrust requirements that the propulsion system has to handle and provide. It would 

not be surprising if these schedules had an effect on the optimal hybrid power usage 

schedule. The change in flight conditions also has a great impact on the performance of a 

gas turbine and was the deciding factor in the optimal setting of the turboelectric N3-X 

concept[44]. The effect of the changing flight conditions can be confounded with the 

changing thrust requirements since a typical mission consists of a single climb and 

descent, conducted at full and idle power respectively, with an intermediate power setting 

only seeing significant use in the cruise segment, at a high altitude and Mach number.  

 As mentioned in chapter 2, some hybrids have their power schedules fixed by this 

change between climb and cruise, as the gas turbine is sized too small to be able to 

provide the required climb thrust without the hybrid[26]. Aircraft without this constraint 

may still have their optimal power schedule driven by the changes in gas turbine 

efficiency and the acceptance of hybrid power as the thrust and flight conditions change. 

The weight change from burning fuel discussed earlier can compound with this effect as 

well, since reducing the vehicle weight lessens the amount of time spent in climb and 

reduces the required thrust during cruise. 

 Examining this research question has identified several potential factors that could 

determine the optimal hybrid power schedule for aircraft, including battery resistance and 

the mission requirements. The dependence of these factors on the specific architecture 

and sizing philosophy was also examined. Due to the large fuel fraction of aircraft weight 

compared to cars, the effect of burning fuel early to save weight seems to be the most 
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significant of these effects for parallel hybrids unconstrained by a sized down core. For 

this reason Hypothesis #2 was made as follows. 

 

Research Question #3: What is the Appropriate Baseline Schedule? 

 For any particular mission the power schedule can have any conceivable shape. 

The power schedule is constrained only by the maximum hybrid power the system can 

provide, the minimum power required by the system to meet the thrust requirements if 

any, the maximum amount of charging the system can accept and the total size of the 

battery, which effectively limits the integral of the power schedule to the available 

energy. In the absence of a known optimum scheduler or an optimization method, the 

shape of the power schedule can still be selected based on some understanding of the 

problem in an attempt to minimize the fuel burn of the system.  

 Each study of a hybrid electric aircraft has had to make some assumption about 

the power schedule in order to perform its analysis. The Boeing SUGAR studies have 

assumed a constant power use throughout climb and cruise for their primary designs but 

have also examined saving the power until the end of the mission, shutting down the gas 

turbine entirely and flying the last part of the mission using an 8,000 HP motor in their 

“core shutdown” case[18]. Other studies have adopted a piecewise linear schedule, 

defined by power levels at the beginning and end of climb and cruise. After finding the 

global optimum of this four variable scheme, these studies devised a pattern to follow, 

Hypothesis #2 

The reduction in aircraft weight resulting from burning fuel early in a mission is the 

dominant factor determining the optimal power usage schedule.  
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allowing the schedule to be set with a single variable to keep their variable count 

down[45]. Another scheme that has been used is to set the climb power to maximum and 

the cruise power to the constant value which zeros out the battery[46]. 

  The choice of a baseline schedule comes down to the answer to Research 

Question #2. If the dominant effect on the power schedule is the battery resistance, the 

baseline should be a constant power schedule. If the difference between climb and cruise 

is dominant, the baseline should be to use electric power at one level during climb and 

one level during cruise, likely at full power during climb. Hypothesis #2 states that the 

dominant factor will be the change in weight from burning fuel earlier rather than later, 

therefore Hypothesis #3 must be as follows. 

 

Research Question #4: What Methods Can Be Used to Find Better Hybrid Power 

Schedules? 

 The multiple potential driving factors in determining the ideal hybrid schedule are 

unlikely to cause the optimum to be one of the baseline schedules. In addition, just 

looking at the baseline schedules will never reveal how far the performance of the best of 

them is from the performance of the global optimum. Considering the entire power 

schedule space using a full factorial examination of all possible schedules is not very 

feasible. The number of potential schedules is  

Hypothesis #3 

The best baseline hybrid power schedule is to use the battery power as late in the 

mission as possible.  
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 𝑁𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠
𝑁𝑃𝑜𝑤𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑠  

 

(8) 

before the battery energy constraint is applied. Even with the constraint applied, for any 

reasonably high resolution this is infeasible.  

Dynamic Programming 

 Various authors have addressed the determination of the ideal power schedule 

when modeling hybrid aircraft. Bradley et al. [63] used a Dynamic Programming 

algorithm for their hybrid UAV modeling to decide when to use the battery to maximize 

endurance. Originally proposed in 1952 by Richard Bellman to tackle the time to climb 

problem[64], Dynamic Programming is based on Bellman’s Principle of Optimality, 

which states “An optimal policy has the property that, whatever the initial state and initial 

decision are, the remaining decisions must constitute an optimal policy with regard to the 

state resulting from the first decision.”[65]. Stated more plainly, this means that the path 

from any point on the optimal path to the end state must also be optimal. 

 Bradley e. al.’s implemented of Dynamic Programming by to discretizing the 

mission space into time steps and possible states of charge, then considering the possible 

ways to go from one charge state to another during one time step. This leads to an 

intractably large set of paths, especially when the mission is broken up into 10,000 time 

steps with 20,000 possible states of charge. However if an algorithm starts from the end 

of the mission where the final state is known (no fuel, empty battery), and works 

backwards, then at each time step the ideal method from getting from each state of charge 

to the end can be found and all other paths from that state of charge can be discarded. 
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This reduces the number of steps to be evaluated from 20,000^10,000 to 

10,000*20,000^2[63]. Dynamic Programming has also been applied to the car power 

management problem by authors including Lin et al.[51], Musardo et al.[66], and 

Kolmonovski et al.[67].  

Operation of Dynamic Programming for Hybrid Power Schedule Optimization 

 The application of Dynamic Programming to the hybrid power scheduling 

problem can best be explained by demonstrating the first few steps of its implementation. 

First the mission is divided into time steps such as the segments discussed above, and at 

the beginning of each segment the aircraft battery can only have specific values of State 

of Charge (SOC). This is as seen in the notional Figure 16. 

 

 

Figure 16: Discretization of Mission and State of Charge for Dynamic Programming 
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 The algorithm begins at the last time step, n, in which the required Pe to go to the 

known final state from each possible battery state in time step n-1 is computed along with 

the corresponding fuel burn as shown in Figure 17. This gives the minimum fuel, Mfi, 

which must still be in the aircraft at each of these states, which allows the corresponding 

aircraft weight to be computed as well. 

 

 

Figure 17: Last Three Time Steps in Dynamic Programming 

 

 As the process continues to the time n-2 there are many different paths to the final 

state at step n for each n-2 state, each of which is computed as shown in Figure 18. One 

of these paths will have a minimum fuel burn, and the others can be discarded, as the 

global optimum path will be locally optimal according to Bellman’s principle of 

optimality.  
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Figure 18: Optimal Path from Charge State 1, Time Step n-2, to End 

 

 This process is repeated for each state of charge at time step n-2, and the majority 

of paths from time step n-2 to the end are eliminated leaving only those shown in Figure 

19. Each state must only remember the minimum fuel to get to the end and the path that 

corresponds to it. This process can then be repeated until the starting state of charge at the 

starting time step is reached, at which point the minimum fuel burn and corresponding 

strategy will be known.  

 

 
Figure 19: Best Paths for Last Two Time Steps 
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Drawbacks of Dynamic Programming 

 In a survey paper, Perullo et al.[68] examined different potential approaches to the 

hybrid power scheduling problem, including Dynamic Programming, which he dismissed 

as being too slow for use with higher fidelity tools. Lin et al.[51], Musardo et al.[66], and 

Kolmonovski et al.[67], applied Dynamic Programming to hybrid cars and also noted that 

Dynamic Programming is not capable of real time operation because of its requirement 

for complete knowledge of the power demand. They used it either to find the power 

schedule with the minimum possible fuel burn for a vehicle or to tune a set of rules for 

use in real time. Kolmonovski went further and noted that the actual power demands of 

real road vehicles cannot be known in advance, and require Markov chain based 

Stochastic Dynamic Programming. Another alternative method was demonstrated by 

Miyazawa et al.[69], who, while optimizing the trajectory in space of aircraft at constant 

airspeed, used Dynamic Programming iteratively on a subset of the space centered on a 

candidate solution until the solution could not be improved. These modifications 

improved the computation time of Dynamic Programming but lost the guarantee of 

finding the global optimum promised by the optimality principle.  

Optimal Control 

 Because other authors have found Dynamic Programming to be too time 

consuming they have only used it to check their answers developed using Optimal 

Control[17]. Optimal Control theory focuses on finding a continuous solution to an 

optimization problem, as opposed to Dynamic Programming’s discretization. This 

continuous solution is found by application of Pontryagin’s Minimum Principle which 
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establishes necessary conditions for control inputs to be optimal[70]. In particular the 

Hamiltonian must be minimized by the control inputs at all times. For each instant of the 

hybrid car problem, the Hamiltonian is given in Equation 9 below, where Pe is the control 

variable, SOC is the State of Charge of the battery, and λ is the costate. [71]  

 𝐻 = 𝑤̇𝑓(𝑃𝑒) + λ𝑆𝑂𝐶̇ (𝑃𝑒 , 𝑆𝑂𝐶)  (9) 

 This costate determines the relative cost of electric power compared to fuel, and 

must be chosen before the Pe which minimizes H can be found. Kim et al. [71] found that 

if 𝑆𝑂𝐶̇  is not a function of 𝑆𝑂𝐶, which was the case for the Toyota Prius battery when 

SOC only varies over a small range, λ becomes a constant, chosen to cause the system to 

meet the desired SOC(Tend) value. Having picked the proper value of λ for several 

standard driving cycles, Kim et al. demonstrated performance that nearly equaled 

Dynamic Programming which he used to find the true optimum. [71] 

 Building on the success of this method, other authors have attacked the problem 

by looking at the energy stored in the batteries of non-plugin hybrids as though it was 

equivalent to an additional fuel tank[72, 73]. Sciaretta et al. in particular minimizes a 

metric J given by Equation 10 below, where ΔEf is the fuel energy in one time step, ΔEe 

is the electrical energy over the one time step, and s(t) is an equivalence function which 

determines the relative cost of electricity and fuel.  

 𝐽 = ∆𝐸𝑓 + 𝑠(𝑡)∆𝐸𝑒 (10) 

 Sciaratta et al. calls s(t) the heart of the EMCS (Equivalent Minimum 

Consumption Strategy), and develops it as a function of the system efficiency in charging 

and discharging, the expected free recharge energy (a function of terrain/traffic 

conditions selected by the user), the state of charge of the battery, and the probability that 
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the system will have a net loss or gain in stored charge over the mission. This 

probabilistic approach allows the system to operate in real time without knowing the 

mission cycle in advance [73].  

 Optimal control has also been used in flightpath optimization, in which air 

transports select altitude and airspeed schedules to minimize fuel consumption within 

constraints set by air traffic control rules and a required arrival time. Varying airspeed 

alone using Optimal Control while on a fixed flight path and arrival time was found by 

Franco et al.[74] to save half a percent of fuel burn when the arrival time is nonstandard.  

 Tibioli et al. [17] and the other hybrid car researchers who used Optimal Control 

checked by Dynamic Programming have indicated that Dynamic Programming is an 

effective, if time consuming method whose guarantee of global optimum gives it a 

slightly better solution than Optimal Control. Expecting these trends to continue for 

hybrid aircraft, Hypothesis #4 is stated as follows: 

 

  

Hypothesis #4 

Dynamic Programming will prove effective in finding the global optimum hybrid 

power schedule but take too long to be practical in design. Optimal Control will find 

almost as good a solution quickly enough to be practical. 
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Research Question #5: How Does the Choice of Optimal Schedules Affect Other 

Problems in Hybrid System Design? 

 

 

Figure 20: Diagram of Nested Problems 

 

 The hybrid power scheduling problem for aircraft is a nested problem within 

those that have to be solved to reach the Far Term fuel burn goals mentioned in the 

introduction. This is conceptualized in Figure 20 above. In order to determine the 

performance of a hybrid aircraft concept, and in order to find the optimal size of its 

hybrid components, a power schedule must be found or assumed. Optimizing that power 

schedule may allow a smaller battery pack to be chosen or may demonstrate that one 

concept has higher fuel savings potential in comparison to other concepts.  

 An example of the battery sizing trade is shown in Figure 21, a plot of fuel burn 

savings and energy savings vs. range for aircraft at MTOW with different sized batteries. 

Each of the battery curves show a peak fuel savings point, corresponding to the shortest 

range at which the entire battery can be emptied during the hybrid mission. At ranges less 
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than this, the power schedule uses full hybrid power whenever the propulsion system can 

accept it. At longer ranges the power schedule is constrained by the energy in the battery. 

It is in these longer capacity limited segments that an optimized power schedule could be 

found to increase the performance[46].  

 

 

Figure 21: Battery Sizing Trade for Rolls-Royce's Electrically Variable Engine (EVE)[46] 

 

 The choice of which power system to use for a proposed aircraft is a function of 

the expected use of the aircraft in the airlines’ fleets. Examining the use profile of single 

aisle aircraft in 2013 seen in Figure 22, many missions are short enough that even the 

smaller batteries considered in Figure 21 could power the hybrid systems at full power 
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during the entire mission. However for all but the largest battery sizes, a majority of the 

missions are longer than the power limited range [14].  

 

 

Figure 22: Typical Single Aisle Fleet Operations (2013)[14] 

 

 Considering that it is not possible to further optimize the power usage schedule in 

the power limited case, Hypothesis #5 is as follows. 

 

 Optimizing the power schedule should cause benefit in the battery sizing, 

aircraft/engine sizing, and concept selection problems depending on the proposed mission 

set. Proposing a mission set and solving these problems is beyond the scope of this thesis. 

Hypothesis #5 

Using the proper power schedule will improve performance when the system is 

battery capacity limited. 
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Revisiting the Research Questions 

 In pursuit of the purpose stated above, To Develop a Methodology for the 

Determination of Optimal Operational Schedules of Hybrid Electric Architectures, the 

research questions and hypotheses were as follows: 

Research Question #1: How important is it to use the optimal power schedule? 

Hypothesis #1: The use of optimal power schedules over a typical aircraft mission 

will yield significant savings in fuel burn. 

Research Question #2: What factors determine the optimal power schedule? 

Hypothesis #2: The reduction in aircraft weight resulting from burning fuel early 

in a mission is the dominant factor determining the optimal power usage schedule.  

Research Question #3: What is the appropriate baseline schedule? 

Hypothesis #3: The best baseline hybrid power schedule is to use the battery 

power as late in the mission as possible.  

Research Question #4: What methods can be used to find better hybrid power schedules? 

Hypothesis #4: Dynamic Programming will prove effective in finding the global 

optimum hybrid power schedule but take too long to be practical in design. 

Optimal Control will find almost as good a solution quickly enough to be 

practical. 

Research Question #5: How does the choice of optimal schedules affect other problems 

in hybrid system design? 

Hypothesis #5: Using the proper power schedule will improve performance when 

the system is battery capacity limited. 
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 Assuming these hypotheses are correct, a methodology can be to determine the 

optimum operational schedules of any aircraft’s hybrid electric architecture.  

Proposed Methodology 

 

 

Figure 23: Systematic Hybrid Aircraft Power Schedule Optimizer (SHAPSO) 

  

 This thesis proposes a methodology called the Systematic Hybrid Aircraft Power 

Schedule Optimizer (SHAPSO). This methodology, shown in graphical form in Figure 

23, starts with the system definition in which a particular hybrid aircraft is defined in 

terms of the propulsion architecture and sizing. At this stage the technology level for all 

calculations and assumptions is defined. The battery size and the hybridization level, that 

is the ratio of electric power system size to conventional engine size, are also specified.  
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 With the system defined it is possible to define the optimization problem which 

needs to be solved by an optimal operational schedule. The optimization problem is 

defined in terms of the number of free variables the system has, the objective function 

which defines the best optimization, and the constraints on the systems operation. In the 

typical problem such as that considered by hybrid cars, the overall power output of the 

hybrid system and the vehicle position are controlled by the driver or pilot and are a 

function of the terrain or environment. Thus they are not free variables to be controlled 

by any optimizer. So at this defining stage these systems would only have the power 

division between the battery and the fuel as a free variable. The objective function can be 

defined here as minimization of total mission fuel burn, as shown in Figure 23 and in 

Equation 11: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽 =  ∫ 𝑤̇𝑓𝑑𝑡
𝑡𝑓𝑖𝑛𝑖𝑠ℎ

𝑡𝑠𝑡𝑎𝑟𝑡

  (11) 

where J is the objective function, 𝑤̇𝑓 is the fuel burn, and tstart and tend are the start and end 

times of the mission respectively. In addition, system constraints such as starting and 

ending states of charge and other limits on power level are identified at this stage and 

included in the rest of the analysis.  

 After the optimization problem is defined for a set system and technology level, it 

is possible to select or construct models of that system of a sufficient fidelity to capture 

the trades being optimized. These can be simple models of the parts of the system not 

directly affected by the hybrid power system state, such as the aircraft structure or 

aerodynamics, coupled with detailed models of the propulsion system itself. An example 

would be using component level models of the gas turbine to find exactly how its 
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performance is affected by the electric power being used at any time while using far 

simpler models for the aerodynamics or fuselage mass. In this fashion a point mass and 

basic wing area/drag polar combination can be used in the same model as a detailed 

Numerical Propulsion System Simulation (NPSS) model of a gas turbine.  

 With detailed models in hand the optimization of the power schedules can be 

approached using the sub-procedure shown in Figure 24. Because a later step includes 

applying a global optimizer to the problem, it is necessary to first check and see if the 

model can be executed quickly enough to use such the global optimizer with the available 

computational resources. Engine models made in tools such as NPSS can take several 

seconds to converge for a single time step of the simulation, but global optimizers can 

require many millions of time steps to be simulated. An engine deck can be created to 

speed this up by running the complex engine model at a sufficient number of points 

throughout the likely operational space (in flight condition and power settings), and 

recording the performance of the engine. These recorded points can then be used to 

approximate the behavior of the full model with an execution time that can be as short as 

a table lookup. Using the engine deck for all algorithms avoids inaccuracies that could 

happen if one algorithm used the engine model directly while another used the engine 

deck. It provides commonality between the tests which helps reveal the difference 

between the power schedules. 
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Figure 24: Procedure for Selecting Power Schedule Optimizer 

  

 With the engine deck in hand, the system can be simulated using Optimal Control 

on any possible mission. Sweeping the range with different battery sizes and comparing 

the fuel burn to the fuel burn of the system with no battery should yield curves similar to 

Figure 21 on page 46. The fuel burn could be computed for all payload/range 

combinations and multiplied by each flight’s frequency to come up with a fleet fuel 

savings. 

 The next step in the procedure is to check the performance of Optimal Control at 

a small number of payload/range combinations using the global optimizer, Dynamic 

Programming. The number of points chosen depends on the available computational 

resources and the variation of missions of interest. Not only is the total fuel burn 
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determined for each method of interest but the power schedules as well. A comparison of 

the power schedules would reveal if Dynamic Programming is finding an entirely 

different solution or just one slightly different from the Optimal Control solution. 

 The final decision point in this sub-procedure is to evaluate the difference 

between the Optimal Control results and those from the global optimizer. It may be that 

the global solution is better than the Optimal Control solution by a large enough margin 

to justify using the global optimizer despite the high computational cost. If this is not the 

case, then Optimal Control should be used on the hybrid architecture to find the optimal 

schedules for each case required.  

 After this power scheduling method is chosen it is possible to perform the final 

step of SHAPSO and determine the power schedules for the system and apply them to the 

model to find the mission performance. The optimized power schedules will require less 

fuel and can be fed back into the sizing step to enable more accurate trades in the aircraft, 

propulsion system, and hybrid power system sizing.  

 

  Testing the Methodology 

 The SHAPSO methodology could be applied to any hybrid architecture and 

shown to determine a method for finding the optimal power schedule. However this 

would not directly prove that SHAPSO should be adopted in future hybrid studies. 

Because SHAPSO is based on the hypotheses posed to the research questions, its value 

can better be assessed after performing a series of experiments to test the hypotheses 

themselves. These experiments will consist of tests of different power schedules and 
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methods of optimization on a hybrid aircraft concept. The resulting schedules and fuel 

burns will be sufficient to address the research questions. Therefore a modeling 

framework must be constructed sufficient to conduct tests of different power schedules 

and scheduling methods. 

Modeling Framework Construction 

 In order to perform the experiments, the first three steps of SHAPSO, as seen in 

Figure 23 on page 50, will be performed to construct a modeling framework 

representative of that built during an application of SHAPSO for design and evaluation of 

a hybrid concept. The system architecture, size, and technology levels will be chosen 

based on an existing hybrid aircraft study to ensure that it is representative. The 

optimization problem will then be defined conservatively to concentrate on the new 

hybrid operational freedoms without attempting to simultaneously optimize the flight 

path. With this done and modeling assumptions defined, a detailed model will be 

constructed to serve as a testbed for the experiments. These preliminary steps and the 

modeling effort are described in Chapter 4 before the experiments in Chapter 5. 

Experimental Plan  

 The experimental plan is designed to address the five research questions and 

thereby determine if SHAPSO is a good methodology for determining the optimal 

operational schedules for hybrid electric architectures. Accordingly, the first step is to 

address Research Question #1: How important is it to use the optimal operational 

schedule? Hypothesis #1 states that the use of optimal power schedules over a mission 

should produce savings in fuel burn. If Hypothesis #1 is incorrect, and the choice of 
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power schedule does not affect fuel burn, SHAPSO is not needed. Experiment #1 will 

therefore be a simplified test problem, simulating flights consisting of a single cruise 

segment of varying length with different payloads and battery size. The power schedule 

for these flights is varied by trying several different parametric schedules and 

optimization methods. These shall include: running full motor power from the beginning 

of the mission until the battery is depleted, running full motor power from some time 

point until the end of the mission (inherited from the Chevrolet Volt[17]), selecting the 

starting point to deplete the battery (inherited from the Core Shutdown case from the 

SUGAR Phase II report[18]), and running at a constant motor power throughout the 

mission (inherited from the other cases in the SUGAR Phase II report[18]). Hypothesis 

#1 will be confirmed if there is a difference in the mission fuel burn between the different 

methods. 

 Experiment #1 will also shed some light on Research Questions #2-#4, by 

including several baseline schedules, Dynamic Programming, and Optimal Control in the 

set of power schedules and schedulers to be evaluated. It shall address Research Question 

#3 by finding which of the baseline schedules is the best for the cruise-only case. 

Determining which of these baseline schedules performs better may address Research 

Question #2 by identifying the dominant factor determining the optimal operational 

schedules. Research Question #4 will be addressed by comparing the performance of 

Dynamic Programming and Optimal control. However the answers to these three 

questions will not be fully determined by the partial mission analysis in Experiment #1. 

This is because the mission evaluated in Experiment #1 lacks the climb and descent 
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segments. The hypotheses of Research Questions #2-#4 are all proposed for a full 

mission. 

 Experiment #2 will expand on Experiment #1 by evaluating all these power 

schedules and schedulers on a full mission, which consists of a climb segment, cruise 

segment, and descent segment, with varying total mission distance, payload and battery 

weights. This evaluation will answer Research Questions #2-#4 and confirm or disprove 

Hypotheses #2-#4. The performance of the power schedules across the different missions 

will confirm or deny Hypothesis #3 which states that saving the battery power until the 

end of the mission is the best baseline schedule. The performance of Optimal Control 

relative to Dynamic Programming in terms of solution found and computational burden 

will confirm or deny Hypothesis #4 by finding whether Optimal Control is as effective in 

finding the optimum as Dynamic Programming and determining if Dynamic 

Programming is so slow that it would be difficult to select with SHAPSO. The optimal 

schedule found with Dynamic Programming along with the performance of the different 

baseline schedules should provide enough data to address Hypothesis #2 and find 

whether the weight of the fuel burned earlier in a mission rather than later in a mission is 

indeed the dominant factor determining the optimal power schedule. 

 These first two experiments will impact the fourth step of SHAPSO in which the 

power scheduler is actually chosen. Research Question #5 asks how the choice of optimal 

operational schedules affects the other problems in hybrid system design. This addresses 

the overall SHAPSO methodology and how it feeds back from the fifth step to the first to 

address design problems such as the battery pack sizing for the hybrid system. 

Experiment #3 addresses this research question by performing the battery sizing sweep-
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finding fuel burn as a function of range with different installed battery packs- using the 

different power schedules tested in Experiments #1 and #2. If the different power 

schedules produce very similar performance than there would be no change in the choice 

of battery pack. At that point Hypothesis #5, which predicted an improvement in 

performance would change optimal battery pack sizing, would be disproven.  

 These three experiments address all five research questions as seen in Figure 25 

below. Experiment #1 will answer Research Question #1 and shed some light on 

Research Questions #2-#4, but questions #2-#4 cannot be fully answered without testing 

the different power schedules on the entire mission. Experiment #2 will apply the 

different power schedules to the entire mission and fully address Research Questions #2-

#4. Research Question #5 will be addressed by Experiment #3, which will apply the 

different power schedules to the problem of battery sizing.  
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Figure 25: Applicability of Experiments to Research Questions 

 

 In order to perform each of these experiments, a modeling environment will be 

required to simulate a hybrid aircraft and its mission performance. This model will have 

to have a detailed enough propulsion system to capture the tradeoff between fuel and 

electric power at each time step and the influence this tradeoff has on the mission fuel 

burn. The rest of the aircraft model does not need to have the same level of detail but 

must be sufficiently described in order to give a representative profile of flight conditions 

and thrust requirements delivered to the engine. The model must also capture the change 
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in the thrust requirement and mission performance as a function of the aircraft weight, 

which changes as fuel is burned.  

 After the aircraft model is complete, Experiments #1 - $3 may be performed and 

Hypotheses #1-#5 can be evaluated. The experimental results should also show particular 

solutions for this particular aircraft architecture. An analysis of the experimental results 

should determine the merit of SHAPSO and identify any ways in which it could be 

improved. Chapter 4 will describe the modeling framework required to simulate the 

hybrid aircraft architecture and perform the experiments. Chapter 5 will discuss the 

implementation of the experimental plan, the results of the experiments themselves and 

the final answers to the Research Questions. The final conclusions from the experiments 

and any changes made to SHAPSO will be given in Chapter 6. 
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CHAPTER 4 

FRAMEWORK FOR HYBRID ELECTRIC AIRCRAFT POWER 

SCHEDULE TESTING 

 The first three steps of SHAPSO, the hybrid power scheduling methodology 

proposed in Chapter 3, are to define the architecture, aircraft size, and assumptions, to 

define the optimization problem and to develop a detailed model of the system which can 

be used to address the optimization problem. Before the experimental plan can be applied 

to test the later steps and determine the overall utility of SHAPSO, the preliminary steps 

must be undertaken and a modeling environment must be constructed. This framework 

starts with the definition of the hybrid aircraft, its architecture, size, hybridization level, 

and the technology factors assumed. With these known, the optimization problem can be 

defined in terms of free variables and an objective function. After all these are defined, 

models of the aircraft and its propulsion system can be developed which are tailored to 

answer the optimization problem under the defined set of assumptions.  

 This chapter will develop the framework required for later testing of the 

experimental plan from Chapter 3. First, the hybrid aircraft, technology and operating 

assumptions will be selected and defined. Next, the optimization problem will be stated 

along with its associated assumptions. Finally, a modeling environment will be chosen 

and required models constructed which can capture the effects of the free variables in the 

optimization problem on the objective function.  
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Example Hybrid Electric Concept 

 The hybrid electric aircraft concept defined by an architecture and sizing point in 

the first step of SHAPSO was chosen to be a concept that has previously been studied, 

that is representative of a possible nearer-term hybrid civil transport and that did not have 

a fixed hybrid power schedule. The specific concept is a power split hybrid electric air 

transport, based on the aircraft described and sized by Perullo et al. in [27]. This concept, 

consists of an advanced truss braced wing airframe based on the Boeing TTBW X-plane 

seen in [75] and in Figure 26 below. It is equipped with two powersplit turbofan engines 

similar to the Rolls-Royce Electrically Variable Engine (EVE), in which an electric 

machine is mounted on the fan shaft and augments the gas turbine with electric power.  

 

 

Figure 26: Boeing SUGAR Volt, a Concept With Similar Configuration[76] 
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 This concept carries with it some operational assumptions. The electrical power 

augmenting the gas turbine is sourced from batteries which are fully charged on the 

ground, discharged fully or as much as possible during the mission and carried for the 

entire mission. The engine is sized to be capable of flying the entire mission using no 

battery power, only fuel, but the addition of batteries allows for fuel to be offset with 

electric energy[45]. This conservative approach represents an early hybrid concept, 

possibly easier to certify but also capable of operating from airports without recharging 

facilities if necessary.  

 The technology assumptions for this concept were also drawn from Perullo et al. 

who assumed a 750 Wh/kg battery energy density and an electric propulsion system 

power density (including the motors, power converters, and power cables) of 5 hp/lb, 

drawing these assumptions from the earlier Boeing SUGAR reports. The gas turbine 

technology levels were set to represent TRL 6 advancements by the year 2025, with the 

Rolls-Royce Ultrafan as a guide. It anticipates 25% improvement in fuel burn and 

emissions over the current state of the art. [27] 

 This particular aircraft is sized to carry a 150 passenger payload, with a MTOW 

of 152,000 lbs and an empty weight of 83,684 lbs. as shown in Table 2. Since 150 

passengers corresponds to 35,000 lbs, this leaves over 30,000 lbs. for the fuel and the 

battery packs which is not included in the empty weight. The hybrid power system was 

sized by Perullo et. al. to have 3500 Hp. motors assisting each engine, however the size 

of the batteries, while fixed for any particular mission, has not been finally determined 

and can only be selected after a trade study has been performed evaluating the different 

options[46]. This is a motivation for using SHAPSO to find the best algorithm for 
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controlling the power schedules of the candidate batteries and allow a comparison of 

optimal battery pack performance. 

 

Table 2: Modeled Aircraft Properties[45] 

Property Value Units 

Empty Weight 83683.9 Lbs. 

Max Payload Weight 35000 Lbs. 

MTOW 152398 Lbs. 

Takeoff Thrust (Total) 47504 Lbs. 

Cruise L/D 22.75  

 

 

 The aggressive cruise Lift to Drag ratio (L/D) seen in Table 2 is achieved both 

through the application of advanced aerodynamics, for example the truss-braced wing’s 

high aspect ratio, and also through a lower cruise speed. In an effort to achieve NASA’s 

far term goals for fuel burn, the aircraft was designed to cruise at 37700 ft. at Mach .7. 

This reduction in speed increases the mission time. In addition, designing the wing to 

take advantage of the lower speed makes it impossible to fly at Mach .8 due to the 

different wing sweep, wave drag considerations and the change in required engine size. 

SHAPSO is intended to work for hybrid architectures regardless of cruise speed. 

However it may be expected that faster aircraft, which have a lower percentage of their 

drag coming from lift induced drag, should see a smaller reduction in required thrust over 

a mission as the fuel weight diminishes. This change in lift induced drag would impact 

the answer to Research Question #3, which asked which of the baseline schedules would 

give the most fuel burn savings, as the diminished importance of weight would make 
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Constant Power a better power schedule compared to End Power, which is based on the 

changing thrust requirements due to weight change. 

 This particular aircraft architecture was selected for use in the experiments for 

several reasons. First, it is a relatively well developed concept, with publications on 

designs similar to this one going back to 2011 detailing the assumptions and technology 

factors necessary to make it work. Second, it has a power schedule unconstrained by 

mission requirements, not needing electric power to climb but having a 3,500 HP electric 

motor, capable of draining the battery in all but the shortest missions with the largest 

batteries. This requires some power schedule decisions to be made and could therefore 

see great benefit from SHAPSO. Third, it has a deeply interconnected propulsion system 

architecture. This architecture should demonstrate the effects of all the factors that could 

shape the ideal power schedule discussed regarding Research Question #2. Finally there 

seems to be interest in carrying a similar concept forward to a technology demonstrator, 

which makes the ideal usage schedule and algorithms of significant interest[28].  

Optimization Problem Definition 

 The second step in SHAPSO is to define the optimization problem in the 

operation of the hybrid architecture. This includes defining the objective function and 

identifying the free variables that can be chosen to optimize the function. In the case of 

this hybrid architecture, the battery is fully discharged or discharged as much as possible 

during every mission and recharged on the ground from grid power. This follows from 

assumptions that grid power will be preferred over jet fuel due to cost or emissions and 

that it is detrimental to carry battery capacity which is unused. If the first assumption was 
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incorrect, the feedback loop of SHAPSO used for battery sizing would size down the 

battery. Since the electricity consumption is fixed, any objective of minimizing emissions 

or energy costs can be accomplished minimizing mission fuel burn.  

 The independent variable of primary interest is the hybrid power setting which for 

this hybrid concept, sized to be capable of operating without power, can be set very 

freely. The power setting can be any value between zero and the lesser of 3500 Hp (the 

size of the electric motors) or the amount of power that the gas turbine can accept. The 

electric motor limit is active during climb and cruise, but when the engine thrust is 

reduced to idle during descent, the engine cannot accept hybrid power. Additional 

independent variables could be introduced by varying the flight condition, either 

changing the climb schedule, the cruise point, or allowing step cruise or cruise climb 

operations. In addition to greatly increasing the computational burden, Attempting to 

optimize on these variables would potentially bring the aircraft into conflict with air 

traffic control rules. These rules typically assign altitudes based on traffic needs rather 

than aircraft efficiency. If air traffic control rules were ignored, aircraft would climb to 

the highest altitude they could reach while maintaining required excess power in order to 

take advantage of the lower air density. This might drive the outer loop battery selection 

process further towards smaller batteries that would enable a higher cruise. For the 

purposes of this SHAPSO demonstration, the aircrafts intended cruise conditions will be 

maintained, a constant Mach .7 cruise at 37,700 ft.  

 With the independent variables defined, stating the objective function to be 

minimized is the next step. The objective function can be stated as seen in Equation 11 

below: to find the power schedule Pe(t) which minimizes Wf, the mission fuel burn, 
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equals the integral of the instantaneous fuel burn wf which is an instantaneous function 

varying with time through the mission and with the electric power added. 

  
𝐹𝑖𝑛𝑑 𝑃𝑒(𝑡) 𝑡𝑜 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊𝑓 =  ∫ 𝑤̇𝑓(𝑃𝑒(𝑡), 𝑡)𝑑𝑡

𝑡𝑓𝑖𝑛𝑖𝑠ℎ

𝑡𝑠𝑡𝑎𝑟𝑡

  (12) 

Modeling the Hybrid Electric Architecture 

 The third step of SHAPSO is to build a model of the hybrid architecture with 

sufficient detail to allow the evaluation of the objective function identified in step two. 

This means the model needs to be at a higher fidelity in the areas affected by the 

independent variables, such as the propulsion system, than it does in the areas which are 

not affected by the independent variables, such as the model of the aircraft structure. In 

addition, the choice of modeling tool and the design of the models will reflect any 

assumptions that have been made, both about the performance of the architecture and its 

components and also about the fidelity required to make the models. 

Modeling Assumptions 

 Many of the key modeling assumptions have already been mentioned when 

describing the hybrid architecture and technology level in step one of SHAPSO: the gas 

turbine and the airframe technologies being set at a 2025 TRL 6 level, the truss braced 

wing and cruise conditions of Mach .7 at 37700 f, and the step two assumption of a fixed 

climb and cruise profile. The primary technology assumptions are those which affect the 

electrical components, specifically that the electric powertrain exclusive of batteries has a 

power density of 5 hp/lb, and that the battery has an effective energy density of 750 

Wh/kg. The chemistry of such a battery is unknown, as is the efficiency curve of future 
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power electronics. Therefore the efficiency of the battery will be estimated with a simple 

resistance and the power electronics will be modeled with a single bulk efficiency.  

 A change in most of these assumptions would result in a change in the empty 

weight of the aircraft. For example, if the battery energy density is less than 750 Wh/kg, 

or if 20 % of the battery must remain unused for battery life, safety, or reserve power 

reasons, a larger battery with the required available energy must be carried giving a 

corresponding change in the aircraft weight. Similar calculations would be required for 

changes to either the power density of the electrical system or the structural weight 

assumptions. If the payload is decreased to match the increase in empty weight, the 

optimal power schedule can be expected to have no net change. However, if instead the 

payload weight is not decreased, the power schedule may be slightly more sensitive to the 

weight of the aircraft because the induced drag will be a larger component of the required 

cruise power. If the gas turbine assumptions are too optimistic, and the specific fuel burn 

is higher than expected, this may have a stronger effect on the power schedules, again 

causing more fuel burn early and battery usage later. On the other hand, if the cruise 

conditions are changed to a higher speed, this will reduce the impact of the weight change 

by producing more parasitic drag and less induced drag by proportion. 

 In addition to these technical and operational assumptions, there are assumptions 

particular to a modeling effort itself. In particular, there is an assumption to be made as to 

which transients are important and which can be neglected. Modeling a mission for any 

aircraft is inherently a transient problem, as the flight conditions, required power settings, 

and weight change throughout the mission. However many of the transients in the aircraft 

can be neglected due to their short duration with respect to the mission and their small 
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effect on cumulative power and fuel consumption. These include inertia of the gas turbine 

components and electric machines, voltage transients in the power converters, and the 

maneuvering required to change flight conditions such as the transition from climb to 

cruise. Therefore the airframe, engine, and hybrid components can be modeled with 

steady state models, with the steady state updated at each time step with the current 

vehicle weight, flight condition, and battery state of charge.  

Modeling of Electric Components 

 The electrical systems can be modeled as a set of components which pass 

electrical power around as a voltage, current and frequency. Each component can be 

captured as a set of equations relating the inputs to the outputs and including any losses. 

In addition, an estimate of the mass of each component as a function of peak system 

power is required to compute the total system weight.  

Motors/Generators 

 All motors and generators, collectively called electric machines, can be modeled 

as ideal machines with added losses [77]. Significant losses include resistive losses 

(resistivity of the copper windings), windage losses (due to air resistance on the rotor), 

and backiron losses (losses from induced currents in the magnetic material, typically iron, 

used to focus the magnetic field). Bearing losses can also be included in total losses; 

however, some designs escape this by including bearing losses in losses attributed to the 

gas turbine[45].  

 To compute the specific losses applicable to the motor in this architecture, a 

motor type has to be selected. Based on the existing literature[18], the Switched 
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Reluctance Motor was selected as the appropriate type to use in the high temperature 

environment on the inside of a gas turbine[78]. Examples of the Switched Reluctance 

Motor have been tested as early as 2005 by Brown et al.[79], although other more recent 

work is exploring the potential of Permanent Magnet Synchronous Motors[80], despite 

their greater sensitivity to temperature.  

 The ideal motor behavior and the losses inherent to switched reluctance motors 

can be computed as follows: The resistance loss is given by Equation 13 below. 

 𝑃𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 = 𝑅𝐼2 (13) 

 The resistance R is computed from the number of motor phases, stator area, and 

the number of wire turns per motor phase and wire gauge as detailed in Perullo et al. [81] 

The windage power loss, due to aerodynamic drag as a function of the mechanical speed 

𝜔 is given by Equation 14 below. 

 
𝑃𝑤𝑖𝑛𝑑𝑎𝑔𝑒 = 𝑐𝑑𝜋𝜔2 (𝑃𝑚𝑎𝑥

.3 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2
)

3

 (14) 

 cd is a drag coefficient estimated based on Vrancik[82] and the diameter is 

computed using the drawings from the h-fan included in the Boeing SUGAR reports[19]. 

Similarly the backiron losses can be calculated from Equation 15 from Huynh et al.[81, 

83]  

 
𝑃𝑏𝑎𝑐𝑘𝑖𝑟𝑜𝑛 = (𝐾ℎ𝐵𝑝

2𝑓 + 𝐾𝑐(𝐵𝑝𝑓)
2

+ 𝐾𝑒(𝐵𝑝𝑓)
1.5

) (
𝑀𝑜𝑡𝑜𝑟 𝑊𝑒𝑖𝑔ℎ𝑡

176 
) (15) 

 In this equation, Bp is the peak magnetic field intensity, Kh Kc and Ke are 

magnetic constants for the backiron material, and f is the electrical frequency (in Hz), 

found with Equation 16, where npoles is the number of magnetic poles in the motor. 
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 𝑓 =
𝜔

𝜋𝑛𝑝𝑜𝑙𝑒𝑠
 (16) 

 These losses are subtracted from the ideal power such that for a motor the 

efficiency (𝜂𝑚𝑜𝑡𝑜𝑟) is given by Equation 17. 

 
 𝜂𝑚𝑜𝑡𝑜𝑟 =  

𝑃𝑚𝑒𝑐ℎ

𝑃𝑚𝑒𝑐ℎ + 𝑃𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 + 𝑃𝑤𝑖𝑛𝑑𝑎𝑔𝑒 + 𝑃𝑏𝑎𝑐𝑘𝑖𝑟𝑜𝑛
 (17) 

 Thus the motor is modeled as having a mechanical power equal to the electric 

power input minus the losses. Generators can be modeled in the same manner with care 

taken to ensure that the electrical power is equal to the mechanical power minus the 

losses.  

Power Converters (Rectifiers, Inverters, DC transformers) 

 Power converters are required to connect each electric machine and each battery 

to the high voltage DC power distribution system. These converters come in different 

types: an inverter generates AC to drive each motor, a rectifier is used to make DC from a 

machine used only as a generator and DC-DC converters are used to connect batteries to 

the high voltage distribution cables. Each of these has its own electric topology of 

switching and passive components oscillating at hundreds of Hz. With our assumptions 

about timescales, this means each is represented as a bulk efficiency and a power density. 

For higher fidelity modeling the efficiency can be a function of the input and output 

voltages and frequencies or simply the power if an efficiency map is available. In order to 

model the hybrid architecture chosen, an inverter efficiency map and a DC-DC converter 

efficiency map were required, and were found at [59, 84] and shown in Figure 27 and 



72 

 

Figure 28. These were normalized such that 100% power corresponds to the design 

power of the hybrid power system.  

 

Figure 27: Inverter Efficiency Map[84] 

 

Figure 28: DC-DC Converter Efficiency Map[59] 
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Cables 

 Having assumed that cables between the power electronics and the motors and 

batteries are very short, the only cables of significant length are those between the bus 

and the power electronics. These carry high voltage DC power. The cables can be 

captured as a resistive loss using Equations 18 and 19 as dictated by Ohm’s Law, where 

V is voltage, I is current, and R is the cable’s resistance. 

 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 − 𝐼𝑖𝑛𝑅𝑐𝑎𝑏𝑙𝑒 (18) 

 𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛 (19) 

Bus 

 The Bus is a mathematical construct intended for use in multi-input/multi-output 

systems in which there are forks in the flow of power from source to use. Even in the 

single-input/single-output case, the bus can be captured by Equations 20 and 21, where Vi 

and Ii are defined such that Ii is positive into the bus, and i = 1, 2, 3… is each input. 

 𝑉𝑖 = 𝑉𝑏𝑢𝑠 ∀𝑖 (20) 

 ∑ 𝐼𝑖

𝑖

= 0 (21) 

 Thus all current into the bus flows out, and the bus is the point where the system 

voltage is enforced. Other points in the system have voltages which are slightly higher or 

lower than the stated system voltage depending on the current and resistance through 

each cable.  
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Batteries 

 Unlike the other electric components, the batteries used in Far Term hybrid 

modeling do not yet exist. The motors and power electronics would be sized and shaped 

during detailed design, but the batteries will have to use a chemistry that hasn’t yet been 

used commercially in order to reach 750 Wh/kg. Battery performance can be portrayed 

on Ragone charts such as that in Figure 29, which depicts state of the art Lithium Ion 

batteries from 2010 [85]. Ragone charts show a battery’s power density and energy 

density as a trade-off, both within a single battery, and in a family of batteries. Each of 

the five battery curves represent capability of individual battery types, while intersecting 

lines indicate the time it takes to discharge a given amount of energy at the rated power. 

Because the battery performing the best between one and eight hours is the High Energy 

Lithium Ion, this is the best conventional battery for aircraft using electric assist during 

cruise. The existing High Energy Lithium Ion battery can be captured with an exact curve 

fit, however the proposed Far Term batteries cannot. Therefore a Thévenin Equivalent 

Circuit model of the batteries will be needed. In addition the size of individual cells of 

future batteries is unknown, so for convenience the battery will be made up of 1 kg cells 

arranged in series and parallel.  
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Figure 29: Lithium-Ion Ragone Chart (digitized from [85]) 

 

 The Thévenin equivalent circuit model of a battery, seen in Figure 30, treats the 

battery as an ideal battery in series with a resistor and can be described with three 

parameters: the open circuit voltage (Vth), the resistance (Rth), and the ampacity of the 

battery (the amount of current that can be drawn from the circuit before it shuts off). 

These parameters can be extracted from a battery’s Ragone chart through the following 

equations. 
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Figure 30: Thévenin Equivalent Circuit Battery Model 

 

 
𝐼 =

𝐴𝑚𝑝𝑎𝑐𝑖𝑡𝑦 

𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒
 (22) 

 𝑃𝑜𝑤𝑒𝑟𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑉𝐼 = (𝑉𝑜𝑐 − 𝐼𝑅)𝐼 (23) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 ∗ 𝑃𝑜𝑤𝑒𝑟𝐷𝑒𝑛𝑠𝑖𝑡𝑦

= (𝑉𝑜𝑐 − 𝐼𝑅)𝐼 ∗ 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 

(24) 

 Sweeping the value of endurance in these equations gives the entire Ragone 

curve. This can be used to fit existing Ragone curves, demonstrated below using some of 

the Li-Ion curves in Figure 31. The requisite values of ampacity, resistance, and voltage 

used to match each of the three curves in Figure 31 are shown in Table 3. 
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Figure 31: Ragone Chart with Thévenin Fit of Medium Power Li-Ion Battery 

 

Table 3: Parameters to Match Li-Ion Batteries 

 High Energy Medium Power High Power 

Ampacity (Ah/kg) 40 34 29 

R (Ohms/ 1kg cell) 0.01 0.0035 0.002 

Open Circuit Voltage (Volts) 4 4 4 

 

 This approach can be used to match any battery with available Ragone 

information. However many future battery technologies are not developed sufficiently for 

Ragone curves to be available, and only have anticipated power density and energy 

density numbers such as those in Table 4.  
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Table 4: Future Battery Performance Parameters 

Chemistry Info Energy Density 

(Wh/kg) 

Power Density 

(W/kg) 

Source 

Li-S Claimed in 2017 400 1800 [86] 

Li-Air 2030’s 2000 640 [87] 

 

 Mapping these battery performance estimates to the Thévenin equivalent circuit 

parameters requires some assumptions as to their location on the Ragone chart. If the 

numbers given are for peak energy density and peak power density, which occur at each 

end of the Ragone curve, the battery could have any amount of internal resistance losses 

at peak power, as shown in Figure 32. Scaled curves from the medium power and high 

energy lithium ion batteries are shown for comparison. Because these scaled curves are 

close to the 50% loss curve, the 50% loss curve can be used to estimate the performance 

of future batteries in absence of higher fidelity data.  

 

 

Figure 32: Alternative Ragone Curves for Lithium-Sulfur Batteries 
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 The SUGAR Volt modeling effort assumed 750 Wh/kg batteries with no limit on 

power density. That effort used mission profiles which consumed battery power over 

long periods instead of in short bursts where power limits would be significant[18, 19]. 

For the purpose of these experiments, and in the absence of actual cell chemistry from 

2030, 750 Wh/kg cells will be approximated by retaining the power density/energy 

density ratio of a lithium ion cell while scaling the mass of the battery to match the 750 

Wh/kg metric.  

Modeling of Hybrid Engines 

 In order to capture the effects of the hybrid components on the gas turbine, the gas 

turbine needs to be modeled with a sufficient level of fidelity that the impact of the 

electric motor’s torque on the fan shaft will be reflected in the fuel efficiency of the gas 

turbine core. In lieu of a dedicated hybrid gas turbine modeling tool, a component based 

gas turbine modeling tool can be used which examines the performance of conventional 

gas turbine components when attached to an unconventional system. This can be 

accomplished by modeling the system in the Numerical Propulsion System Simulation 

(NPSS) tool, an industry standard gas turbine modeling tool viewed by NASA to serve as 

a virtual wind tunnel during the development of advanced propulsion systems[88].  

 NPSS can be considered as consisting of three different parts. First it is an object 

oriented modeling environment. This modeling environment utilizes a c like syntax with 

which different models can be constructed and different functions and scripts can be 

written and run to command the models to operate while recording their output. Second, 
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NPSS includes a solver. When properly configured to move a model’s independent 

variables and track the dependent equations, this solver can solve systems of nonlinear 

equations and thereby cause the model to converge on a solution. Thirdly, NPSS includes 

a library of standard gas turbine component models which can be used to construct 

engine models. These models can be used as is, modified to include known efficiencies or 

efficiency maps to match experimental data, or replaced component by component with 

higher fidelity models depending on the availability of maps and calibration data and on 

the desired fidelity of the model[89].  

 The conventional gas turbine components in the hybrid architecture were modeled 

in this fashion, using standard NPSS library components for the inlets, shafts, burner, and 

nozzles, and using elements with modified performance maps for the fan, compressors, 

turbines, and gearbox required for this two spooled, geared hybrid turbofan. Along with 

the component weight models, the efficiency maps of these components were tuned to 

match trusted data from the literature, such as previous hybrid engine studies by GE or 

NASA studies describing the meeting of the Far Term goals. Matching the efficiency 

maps to trusted data was necessary because untuned component models can cause the 

system efficiency to be in error by as much as 20%[90].  

 In addition to modeling the conventional gas turbine components, NPSS was used 

to model the electric components of the hybrid. This was done by creating custom NPSS 

components for each of the hybrid components which captured the hybrid components’ 

performance as described in the previous section. Because NPSS did not have a native 

interface for electrical connections between components that would match the mechanical 

and fluid connections, the electric components were built around the NPSS DataPort. The 
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DataPort was used then to send arrays containing the electrical values between the 

different electric components. The electric motor was connected to the low speed shaft 

using a standard shaft port, allowing it to drive the fan alongside the low speed turbine 

[62]. 

 The model constructed using these standard and custom components was 

sufficient to model a hybrid electric propulsion system. However the system so modeled 

was found to have trouble in certain states of operation. Specifically, under conditions of 

less than maximum thrust with a high level of electric assist, the low pressure compressor 

would sometimes stall. That was because it was spinning faster than usual when 

compared to the high pressure compressor due to its sharing a shaft with the electric 

motor. This meant the low pressure compressor was trying to force more air through the 

core than the high pressure compressor could accept and so caused the low pressure 

compressor to stall. This problem was solved by adding an operability bleed to vent some 

of this air between the two compressors out into the bypass stream. This strategy 

recovered some of the work from compressing the air by augmenting the bypass stream 

but still traded some efficiency for stability. To prevent bleeding more air than required 

for stability, a duplicate engine model called a shadow engine was run simultaneously. 

This shadow engine was a model of an identical engine producing the same amount of 

thrust, but with the hybrid power set to zero. The operability bleed in the main model was 

then set such that the stall margin in the low pressure compressor of the main model was 

the same as that in the shadow engine. This allowed the engine model to converge at the 

flight conditions expected for the hybrid aircraft mission [90].  
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 In anticipation of the fourth step of SHAPSO, determining the appropriate hybrid 

power scheduling method, the speed of the NPSS model was considered. For every flight 

condition, power setting, and hybrid assist setting at which the fuel burn, thrust, and 

power draw are desired, the NPSS model must solve all of the continuity equations 

inherent in the operation of a gas turbine such as ensuring that the net torque on every 

shaft is zero. Depending on the fidelity of the model and the available computational 

resources, this may take an unacceptably long amount of time. This is particularly true if 

the model is to be queried very many times as in the case of a Dynamic Programming 

simulation. Instead of querying the high fidelity model at each step of the simulation, a 

precomputed engine deck can be used, computed before the mission is simulated by 

stepping the engine through the entire flight envelope and saving the engine performance 

data. This reduces an engine call to a table lookup of the form seen in Equation 25. 

 [𝑡ℎ𝑟𝑢𝑠𝑡, 𝑓𝑢𝑒𝑙 𝑏𝑢𝑟𝑛] = 𝐸𝑛𝑔𝑖𝑛𝑒𝐷𝑒𝑐𝑘(𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒, 𝑀𝑎𝑐ℎ, 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑑𝑒) (25) 

 The power code used in Equation 25 is a standard for normalizing the throttle 

command, such that a power code of 50 is maximum power and 21 is minimum power at 

the current flight condition. In practice the engine deck can be an interpolation between a 

set of points which are sampled only as finely as necessary to achieve the desired 

precision. 

 Incorporating hybrid components and the inherent additional degree of propulsive 

freedom into the engine requires increasing the engine deck to have the form given in 

Equation 26 below. 
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 [𝑡ℎ𝑟𝑢𝑠𝑡, 𝑓𝑢𝑒𝑙 𝑏𝑢𝑟𝑛, 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑝𝑜𝑤𝑒𝑟]

= 𝐸𝑛𝑔𝑖𝑛𝑒𝐷𝑒𝑐𝑘(𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒, 𝑀𝑎𝑐ℎ, 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑑𝑒, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑑𝑒) 

(26) 

 The electric power code is defined such that 0 is no battery power in use and 50 is 

the maximum battery power usable under current conditions, constrained by the electric 

system size or by the maximum power the gas turbine can accept at the current flight 

condition without violating some engine constraint. The increase to four dimensions for 

the table lengthens the time it takes to generate the engine deck, which can change its 

usefulness in speeding up mission analysis. 

Modeling of Airframe 

 For the purposes of a hybrid propulsion system study, the airframe must be 

modeled to a degree that will allow the thrust requirements of the aircraft to be calculated 

for every phase of flight. The airframe can be captured with a wing area, an empty 

weight, and a drag polar. No short term effects such as control surface deflections or 

gusts need to be considered. For the Boeing SUGAR Volt, the wing area, empty weight 

and drag polar derived from the Boeing SUGAR High concept can be found in the 

Boeing SUGAR Phase 1 report[19]. This concept included an extremely high aspect ratio 

wing in order to reduce the induced drag. This high aspect ratio wing used a truss to 

reduce the bending stress and therefore the weight of the required structure and was 

referred to as a Truss Braced Wing (TBW). The wing design also took advantage of a 

reduction in aircraft cruise speed to reduce the wing sweep, further decreasing the 

structural weight and increasing the L/D ratio, but limiting the aircrafts maximum speed.  
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 Different assumptions about the amount of battery to be carried resulted in 

different proposed airframes by the time the SUGAR Phase 2 Volume 2 report[18] was 

completed. This report contains different aircraft concepts with differing weight and wing 

area, but the same drag polar. This drag polar can be digitized and used to model similar 

aircraft including the hybrid concept selected for Experiments #1 thru #3. With a drag 

polar in hand it was only necessary to size the wing to handle the specific aircraft gross 

weight. 

Mission Modeling 

 To model an aircraft mission, the equations of motion and the aircraft 

performance must be integrated through all the mission phases from takeoff to 

touchdown. Each phase can be broken up into segments within which the forces on the 

aircraft, including weight, are assumed constant. At the end of each segment the forces 

are computed and the change in distance, energy height, battery charge, and fuel are 

recorded. 

 The cruise phase of the mission, which has a constant altitude and Mach number 

is broken into N segments of equal distance with length ds given by Equation 27 below. 

 
𝑑𝑠 =  

𝑃ℎ𝑎𝑠𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
 (27) 

 At the beginning of each segment, the required thrust is computed from the 

weight of the aircraft and the flight condition (specified by an altitude (alt) and Mach 

number (Mn)) by the airframe model as specified in Equation 28 below.  

 𝑇ℎ𝑟𝑢𝑠𝑡𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝐷𝑟𝑎𝑔 ((𝑊𝑒 + 𝑊𝑏𝑎𝑡𝑡 + 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑊𝑓𝑢𝑒𝑙), 𝑎𝑙𝑡, 𝑀𝑛) (28) 
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 From the required thrust and a chosen hybrid strategy (which sets the Electric 

Power Code (EPC)) the fuel burn and battery consumption can be computed by varying 

the power code (PC) until the engine deck gives the required thrust as shown in Equation 

29 below. 

 [𝑇ℎ𝑟𝑢𝑠𝑡𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝑤̇𝑓 , 𝑃𝑒] = 𝐸𝑛𝑔𝑖𝑛𝑒𝐷𝑒𝑐𝑘(𝑎𝑙𝑡, 𝑀𝑛, 𝑃𝐶𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝐸𝑃𝐶𝑐ℎ𝑜𝑠𝑒𝑛) (29) 

 The time required to complete each segment, dt, can be calculated from the 

airspeed and the distance of each segment through Equation 30. 

 
𝑑𝑡 =  

𝑑𝑠

𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑(𝑎𝑙𝑡, 𝑀𝑛)
 (30) 

 At the end of the segment the fuel and battery consumed can be calculated using 

dt and Equation 31. The process can repeat with a new thrust required computed from the 

new wf and any change in the hybrid strategy. 

 𝑤𝑓,𝑛+1 = 𝑤𝑓,𝑛 − 𝑤̇𝑓𝑑𝑡,  𝐵𝑎𝑡𝑡𝑛+1 =  𝐵𝑎𝑡𝑡𝑛 − 𝑃𝑒𝑑𝑡 (31) 

 Mission phases with a change in altitude are discretized by energy height, He, 

adding the kinetic energy to the altitude to find the height that corresponds to the 

aircraft’s mechanical energy through Equation 32, where g is the acceleration due to 

gravity. 

 
𝐻𝑒 = 𝑎𝑙𝑡 +

(𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑(𝑎𝑙𝑡, 𝑀𝑛))
2

𝑔
 (32) 

 The energy height change, dh, in each segment is given by Equation 33. 

 
𝑑ℎ =  

𝐻𝑒,𝑒𝑛𝑑 − 𝐻𝑒,𝑠𝑡𝑎𝑟𝑡

𝑛𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
 (33) 

 For climb dh will be positive and for descent it will be negative. The throttle 

setting is fixed during these segments, typically at full power during climb and idle power 
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during descent. The difference between thrust and drag determines the change in energy 

height through the specific excess power computed in Equation 36, with the change in 

energy height given by Equation 37. 

 [𝑇ℎ𝑟𝑢𝑠𝑡, 𝑤̇𝑓 , 𝑃𝑒] = 𝐸𝑛𝑔𝑖𝑛𝑒𝐷𝑒𝑐𝑘(𝑎𝑙𝑡, 𝑀𝑛, 𝑃𝐶𝑐𝑙𝑖𝑚𝑏/𝑑𝑒𝑠𝑐𝑒𝑛𝑡, 𝐸𝑃𝐶𝑐ℎ𝑜𝑠𝑒𝑛) (34) 

 𝐷𝑟𝑎𝑔 =  𝐷𝑟𝑎𝑔 ((𝑊𝑒 + 𝑊𝑏𝑎𝑡𝑡 + 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑊𝑓𝑢𝑒𝑙), 𝑎𝑙𝑡, 𝑀𝑛) (35) 

 
𝑃𝑠 =

(𝑇ℎ𝑟𝑢𝑠𝑡 − 𝐷𝑟𝑎𝑔)𝑎𝑖𝑟𝑠𝑝𝑒𝑒𝑑(𝑎𝑙𝑡, 𝑀𝑛)

𝑊𝑒 + 𝑊𝑏𝑎𝑡𝑡 + 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑊𝑓𝑢𝑒𝑙
 (36) 

 𝑑𝐻𝑒
𝑑𝑡

⁄ =
𝑃𝑠

𝑔
 (37) 

 These equations allow the time for each segment to be calculated and the fuel 

burn and battery depletion to be calculated as before. As the aircraft climbs or descends, 

the split in the energy height between altitude and airspeed must be defined by a climb 

schedule, which specifies both for any value of the energy height. The distance travelled 

during these each mission phase is computed by integrating the airspeed and used when 

computing the length of the mission and the required length of the cruise segment.  

 The fuel burn, battery and distance are integrated over the mission and compared 

to the fuel and battery carried and the total mission length desired. If they do not match, 

the mission must be resimulated with a new guess for the length of the cruise segment, 

the starting wf and potentially a change in the hybrid schedule. 

 The mission can also be simulated in reverse by reversing the integration of 

distance, energy height, energy, and fuel usage. This should produce the same result for 

total fuel consumption, cruise length and battery usage, but should allow some changes in 

the mission setup by. For example, simulating the mission in reverse would allow 
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computing the fuel burn in one pass instead of guessing a starting weight and finding if it 

is consumed by the end. Instead, a guess and check method could be applied to the 

distance travelled during the climb segment. The choice of integration order is driven by 

an attempt to reduce the number of guess and check loops within the requirements of the 

optimization method used.  

 With models of sufficient fidelity to address the optimization problem under 

consideration, the third step of SHAPSO is completed. It is now possible to begin to 

address the three research questions by following the experimental plan. In Chapter 5 the 

fourth and fifth steps of SHAPSO will be applied to the test hybrid architecture as a 

means to answer the research questions and find the importance of the hybrid power 

schedule, the factors determining the ideal hybrid power schedule, the best baseline 

hybrid power schedules and optimization methods and to determine how the ideal hybrid 

power schedule can affect the other choices in hybrid aircraft design.  

  



88 

 

CHAPTER 5 

IMPLEMENTATION AND RESULTS OF EXPERIMENTS 

 The experiments laid out at the end of Chapter 3 establish how to address the 

research questions and prove or disprove the value of SHAPSO. The first experiment is 

designed to answer Research Question #1: How important is it to use the optimal power 

schedule. The first experiment will answer this question by testing the impact of different 

power schedules on fuel burn over a simple cruise segment. It also examines the 

effectiveness of different optimization methods in finding more efficient power 

schedules, providing some insight into Research Questions #2-#4. The second experiment 

is intended to answer these three Research Questions: Question #2: What factors 

determine the optimal power schedule, Question #3: What is the appropriate baseline 

schedule and Question #4: What methods can be used to find better hybrid power 

schedules. Experiment #2 will do this by testing each of these methods on an entire 

mission, including climb, cruise and descent, and comparing their performances. Finally, 

the third experiment sweeps through many ranges and battery sizes to answer Research 

Question #5: How does the choice of optimal schedules affect other problems in hybrid 

system design. It will do this by using the different power schedules and optimization 

methods developed in Experiments #1 and #2 during the battery sizing process. This 

chapter details the implementation of these experiments utilizing the framework 

discussed in Chapter 4, as well as the results of the experiments and the answers to the 

research questions. 
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Experimental Setup 

 In order to perform each of the experiments, it was first necessary to devise not 

only the different control strategies to be tested but also a common testing environment 

capable of simulating a hybrid electric aircraft being controlled in different ways. This 

simulation tool had to be able to simulate a fixed aircraft, to which each of the methods 

could be applied in turn, each method attempting to find the ideal solution to the same 

problem so that their results could be compared. There is precedent for extending the gas 

turbine simulation tool NPSS beyond the simulation of the engine and the hybrid 

components to the performance of the mission simulation[91, 92]. Many of the schedules 

and methods are compatible with this approach. However but the global optimizer of 

interest, Dynamic Programming, requires many parallel calculations instead of a single 

integrated execution order and is difficult to implement in NPSS. Although NPSS 

therefore was not suitable for the entire simulation, NPSS could still be used to generate 

an engine deck as discussed in Chapter 4. This engine deck was portable and could be 

translated into multiple modeling environments. 

 An engine deck based model could be constructed using any programming 

language. These languages include a new effort in NPSS or more common programming 

languages such as MATLAB or Java. MATLAB was chosen primarily because of its 

built in parallel computing toolbox which was expected to shorten the execution time of 

the Dynamic Programming method significantly. In addition MATLAB is relatively easy 

to debug and was available on all of the computers used for development. MATLAB’s 

other features, particularly the MATLAB Coder toolbox, were found to be very helpful 
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when conducting Experiments #2 and #3. The mission modeling equations from Chapter 

4 were therefore implemented in MATLAB. 

Study Aircraft and Propulsion System Model 

 As described in Chapter 4, the aircraft used for this study is a 150 passenger air 

transport resembling the Boeing SUGAR Volt concept. It has truss braced wings which 

provide a high aspect ratio and low drag and 3,500 HP electric motors mounted to the 

low speed spool on each of its turbofan engines. It was based on the final aircraft model 

from Armstrong et al. [45, 93] and has the characteristics listed in Table 5 below.  

 

Table 5: Modeled Aircraft Properties[45] 

Property Value Units 

Empty Weight 83683.9 Lbs. 

Max Payload Weight 35000 Lbs. 

MTOW 152398 Lbs. 

Takeoff Thrust (Total) 47504 Lbs. 

Cruise L/D 22.75  

 

 The aircraft’s properties were derived from Armstrong et al., and the drag polar 

was derived from the Boeing SUGAR reports as also done by Armstrong et al.[18, 45] 

The engine performance was captured by creating an NPSS model using the hybrid 

components discussed in Chapter 4. An engine deck was then created by running the 

model at a sweep of flight conditions, thrust and electric assist settings while recording 

the net thrust, fuel consumption and expended battery power. Of note is that the electric 

power commands to the engine were indexed in shaft horsepower, up to the motors’ 

maximum power of 3,500 HP, while the power draw was logged as the battery terminal 
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power in watts. In addition the battery terminal power included the losses between the 

motor and the battery. These losses included the inverter and battery controller loss 

models whose efficiency curves were given in Chapter 4. Due to these losses the 

electrical power in watts was not a simple conversion of the shaft power in HP. This was 

because the total efficiency of the power transmission system was <90% across the 

envelope when the inverter and DC transformer maps were combined.  

 The electric power was recorded at the battery terminals when generating the 

engine deck. This required the battery model to be implemented separately in MATLAB 

using the same Thévenin equivalent circuit equations discussed in Chapter 4. So unlike 

the other hybrid components, whose performance was baked into the engine deck, the 

battery could be resized to be larger or smaller or it could have its internal resistance 

changed without regenerating the entire engine deck.  

 Along with the aircraft and engine model, some technology assumptions were 

inherited from Armstrong et al. [45]. In particular the battery energy density was assumed 

to be 750 Wh/kg, and the engine was assumed to be incapable of recharging the battery in 

flight and to be unable to accept electric boost at thrusts lower than cruise thrust. These 

assumptions confined all battery power scheduling to the climb and cruise segments of a 

mission, with the descent segment flown conventionally with the engine at idle and no 

electric assist.  

 The initial attempt to convert the NPSS results into an engine model for use in 

MATLAB was to create a four dimensional table (Mach, Alt, Throttle, and Electric 

Boost) and use linear interpolation to find any intermediate values of output variables 

needed. However the results of the linear interpolation were found inadequately smooth 
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as described later in the discussion of Optimal Control. The data was instead used to fit a 

surrogate model for each of the output variables (thrust, fuel burn, electricity usage). 

These models were treated as a truth model for the duration of the experiments, and were 

used by all of the MATLAB models.  

Experiment #1: Constant Speed Cruise Segment 

 Research Question #1 asks: “How important is it to use the optimal power 

schedule?” Although different factors are identified in Chapter 3 which may affect the 

mission performance as a function of the power schedule, the actual impact of these 

factors is not certain until an experiment is conducted. Hypothesis #1 states that the use 

of optimal power schedules over a typical aircraft mission will yield significant savings 

in fuel burn. Experiment #1 is intended to address this hypothesis over an even simpler 

mission than typical, by testing different baseline power schedules and optimization 

methods over only an aircraft mission’s cruise segment. If there is a significant difference 

in aircraft fuel burn between the different power schedules, Hypothesis #1 will be 

confirmed. Different baseline power schedules and optimization methods will be tested 

for different payloads and ranges to capture the cruise segment of a typical aircraft 

mission.  

 In addition to answering Research Question #1, Experiment #1 will also shed 

light on Research Questions #2-#4. Research Question #2 asks what factors determine the 

optimal power schedule, and the related Research Question #3 asks what the appropriate 

baseline power schedule is for hybrid aircraft. Both of these questions will be addressed 

somewhat by Experiment #1 as specified, as the relative performance of the different 
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power schedules will show which is appropriate for a cruise segment and shed light on 

the factors which determine the optimal power schedule. Similarly Research Question #4, 

which asks what methods can be used to find better hybrid power schedules than these 

baseline schedules, will be addressed by the application of Optimal Control and Dynamic 

Programming to the cruise segment’s power schedules. However none of Research 

Questions #2-#4 can be definitively answered without including the entire aircraft 

mission and the additional complications involved in the climb and descent segments. 

Final answers to these research questions will have to wait until Experiment #2. 

Implementation 

 The first step in implementing Experiment #1 was to code the engine deck 

equations and the drag polar into MATLAB functions that could then be called by the 

main simulation code. In addition the battery resistance model was coded into functions 

allowing the state of charge change to be determined as a function of battery power, 

battery size, and time step. The reverse process was also coded which calculated the 

power required to cause a given state of charge change. This done, the mission could be 

simulated by following the basic steps laid out in Figure 33.  

 As shown in the figure, the first step is to initialize all the variables to their 

starting values. These variables include the amount of fuel and battery state of charge. 

After logging these variables in the time history, the aircraft weight and drag can be 

computed by adding the current fuel weight to the no fuel weight and using the drag polar 

to calculate the current drag from the current flight condition and weight. For a cruise 

segment this drag is the required thrust, which corresponds to an engine power setting 
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that can be looked up using the engine deck. With the power setting defined, the hybrid 

power setting is chosen based on whichever power schedule or scheduling method is 

being simulated. The engine deck is then called to find the current fuel burn and battery 

consumption. These values for this fuel burn and battery consumption, along with the 

aircraft speed, are integrated over the time step and added or subtracted as required from 

the fuel weight, battery state of charge, and distance from start. If the mission is complete 

the simulation ends, otherwise the time step is logged and the next weight and drag 

calculation is started. This simple procedure works for the methods other than Dynamic 

Programming by changing only the direction of integration and the section of code in 

which the power setting is actually chosen.  

 

 

Figure 33: Mission Simulation Procedure 
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 One remaining choice common to all the methods was the determination of the 

size of the simulation time step. Decreasing the size of the time step increases the 

simulation time for all methods but reduces the integration error. An early version of the 

Optimal Control code was used to measure the integration error as a function of time step 

and find the largest time step which had an acceptable error. The results of this study are 

shown in Figure 34 below. 

 

 

Figure 34: Experiment #1 Time step Study 
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hence the computation time by a factor of ten as well, the mission fuel burn computed 

remains the same. The knee of the curve comes after the time step is increased past .01 

hr. A time step of .05 hr shows a fuel burn of about 5040 lbs. over the same mission 

which would represent an unacceptable 1% error in mission fuel burn. Based on this 

study .01 hr time steps were the largest time steps which could be used without 

significant error when compared to .0001 hr. time steps. .01 hour time steps were 

therefore used across all methods so that any integration errors would be consistent.  

 With this framework complete the different methods, Constant Power, End 

Power, Start Power, Optimal Control and Dynamic Programming, could be implemented. 

Each method was used in missions of different lengths, battery sizes, and payload 

weights to find the fuel required at the beginning of the cruise segment such that the fuel 

weight at the end of the cruise segment was zero.  

Baseline Methods 

 For the purposes of Experiment #1, three different baseline power schedules were 

considered. In keeping with Hypothesis #3, one of these was to save the battery energy 

until as late in the mission as possible. This meant that the maximum power, 3,500 shaft 

HP on each engine, was implemented from some point in the mission until the end. This 

method was integrated in reverse for ease of control, allowing the motor power to be set 

solely as a function of the battery SOC. At the time step in which maintaining full power 

would cause the SOC to go above 100%, the power was instead set to exactly fill the 

battery. 
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 The complement of this power schedule, the Chevrolet Volt strategy of using the 

maximum allowed battery power at the beginning of the mission until it runs out, was 

implemented as well. This was calculated in the same manner as the End Power method, 

but instead of simulating the mission in reverse, the simulation was run from the 

beginning until the battery reached 0% SOC instead. This required iterating to converge 

on the correct amount of fuel to start the mission, so that the tanks would be empty within 

1 millionth of a pound of fuel when the mission was completed.  

 Running the mission at a Constant Power schedule was the third baseline method 

included. At the same point of the simulation at which the starting fuel weight was 

determined in the start power case, to make sure exactly none is left at the end, the motor 

power for the entire mission was also computed to ensure there was no charge left in the 

battery at the end of the mission, to within .000001%.  

Optimal Control 

 Optimal Control is one of the methods that was used to optimized the battery and 

fuel use on these experimental missions. Optimal Control can be implemented as an 

instantaneous optimization strategy, in which the cost function J is minimized at each 

time step. Based on Kim et al. the cost function can be constant throughout the mission 

assuming that the efficiency of the battery is not a function of its charge, which is true for 

the Thévenin equivalent circuit model used in this model[71]. The resulting cost function 

is shown in Equation 38 below, where J is the cost, 𝑤̇𝑓 is the fuel burn rate, Pe is the 

electric power, and λ is a weighting factor. 

 𝐽 = 𝑤̇𝑓 + 𝜆𝑃𝑒 (38) 
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 Instead of varying the power level in order to zero the battery, as in Constant 

Power, in Optimal Control it is λ that is varied so that it converges on the battery SOC, 

which must be depleted at the end of the mission. In addition Wf and the range of the 

cruise segment are varied so that they converge on the mission fuel weight and the 

mission length respectively. 

 Accordingly, the Optimal Control equations were programmed into the Decide 

Power Setting step. This was implemented with an execution of the built in MATLAB 

function for finding a minimum on a bounded interval, fminbnd(). Power levels were 

varied between 0 and 3,500 HP to find the minimum value of the weighted sum of fuel 

burn and battery power. The weighting on fuel burn was fixed at 10,000 to handle the 

unit discrepancy between pounds of fuel per hour and watts. This caused the battery 

power weighting required to deplete the battery to be a number between 2.5 and 4 

depending on the mission and the battery size. This battery weighting was then set at the 

mission level using MATLAB’s nonlinear root finding function, fzero()[94].  

 The early runs of the optimal control code revealed a problem with using linear 

interpolation when the power schedules started to look like the one shown in Figure 35 

below. This figure shows the electric power setting chosen by Optimal Control over the 

mission elapsed time. Ignoring a final time step at which the power is set to zero due to a 

depleted battery, the power chosen is exactly 1000 Hp. of electric power until about 1.35 

hours of elapsed time at which it drops to exactly 900 Hp. of electric power. The 

schedules were also completely flat except for jumps as seen in this example. In addition 

the motor powers chosen by this method were exact multiples of 100 Hp. - the same 

points which had been sampled to create the engine deck. At some point through the 
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mission, the weight change (and resulting thrust change) caused the cost function value at 

one multiple of 100 Hp. electric assist to be better than the next, but the intermediate 

settings were never chosen. This was due to Optimal Control finding shortcomings in the 

engine deck.  

 

 

Figure 35: Optimal Control Power History Using Interpolated Engine Deck 
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minimizer may pick either one or any point in between. In all other cases, a minimizer 

will generally pick the vertex closest to the true minimum, but it will always choose a 

vertex.  

 

Figure 36: Linear Interpolation Notional Example 
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for another, or simply introduced a different set of artificial minima from the set derived 

by linear interpolation. The next attempt to improve the engine deck was to use the data 

table to fit a surrogate model. A set of neural network equations was fit to the same data 

table used with the interpolation method. This had the advantage of being guaranteed to 

be smooth enough to find a minimum in a continuous manner, but the disadvantage of not 

quite going through all the points which were sampled from NPSS. In order to create a 

tight fit and make sure all the sample points were included for Experiment #1, the neural 

networks were only fit for the cruise condition (Mach =.7, Altitude = 37700 ft.) which is 

assured during this experiment, and a very tight match was obtained. This surrogate 

model was used for Experiment #1, and a second surrogate model was made including all 

four dimensions to be used for the remaining two experiments.  

Dynamic Programming 

 Because of its parallel nature, Dynamic Programming does not fit within the same 

experimental framework as the other methods, which use a sequential integration of time 

steps. The Dynamic Programming code starts by initializing the known, final state of the 

mission. From that point it evaluates every possible state transition to get there from the 

next to last time step. Each state is defined by the state of the battery, which for 

Experiment #1 could only have a state of charge that was a multiple of 1/100,000 of full 

at each time step of .01 hr. This set the minimum possible increment of shaft power at 

~2.5 Hp., depending on the exact efficiency of the system at each point. For each time 

step each of these 100,001 states was evaluated in parallel, finding the fuel burn required 

to get one time step closer to the end of the mission, transitioning to any valid state of 
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charge. The fuel burn is a function of the fuel weight already accumulated at those valid 

states of charge, with invalid states identifiable by the invalid fuel weight with which 

they were seeded. Each point except the final empty battery state is initialized to have 

100,000 lbs. of fuel. As mentioned in Chapter 3 and shown in Figure 37, the fuel burn 

required to traverse any valid edge of the battery state/ mission time step graph is 

computed, and the lowest sum of (fuel burn this step) + (fuel burn from next step to the 

end) is saved as the minimum fuel burn to the end from this step. The path from this state 

towards that minimum fuel state is then saved in a path matrix. The final mission 

schedule is found by looking at the path matrix- starting from the start of the mission at 

the 100% battery point, and following the matrix back to the end of the mission. 

 

 

Figure 37: Parallelization in Dynamic Programming 
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tracked variable (thrust history, fuel weight, etc.) showing the value at every state of 

charge/time history for the ideal path from that point to the end. This approach quickly hit 

a memory limit as each matrix would have ~20 million values. Instead of remembering 

these matrices, only column vectors containing the values for the previously evaluated 

time step were ever used, overwritten at each time step. The exception was for the path 

matrix which only contains the integer indexes of the next battery state.  

 This path matrix was then used to generate the time history of the optimal path by 

using a translation script that ran through the path matrix to extract the power used to 

drain the battery at each time step. This power history was then used in a version of the 

code used in other methods, running the motor power from a schedule instead of 

choosing it using Optimal Control. If this did not result in exactly consuming the battery 

due to some slight mismatch between the Dynamic Programming code and the other 

codes, the other methods were run to the exact same final battery state for consistency, 

whether this was slightly more or less than zero charge remaining. For Optimal Control 

in experiment #1 this was done by manipulating the first or last time steps, which caused 

discontinuities in the schedule.  

 Dynamic Programming was massively sped up by using the MATLAB’s parallel 

computing toolbox. This evaluated each state in parallel during a time step as shown in 

Figure 37, using MATLAB’s built in parallelized for loop, parfor[94]. The evaluation 

was also sped up by constraining the transitions examined to those which could be 

reached using a nonnegative motor power which was less than the maximum. This 

eliminated two parts of the path matrix as unreachable. Towards the end of the mission 

there is a maximum battery charge which can be drained by the mission’s completion, 
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and at the beginning there is a minimum charge that can be reached by draining the 

battery at maximum rate. For the standard battery, sized such that at full power it will 

totally discharge in 250 nmi. when flying at cruise speed, this can eliminate a quarter of 

the path matrix for a 1000 nmi. mission as unreachable, thus speeding the evaluation.  

Experiment #1 Results 

 The unknowns going into Experiment #1 were amount of the fuel burn for each 

method, the motor power schedules determined by Optimal Control and Dynamic 

Programming, and the length of time these methods would require to calculate their 

results. The experimental model was run with six different variations of payload, mission 

duration, and available battery. The results were found to be consistent across all these 

cases.  

Optimal Power Schedules 

 The power schedules for a 1,000 nmi. mission carrying 25,000 lbs. of payload and 

equipped with a 10,457 lb. battery are shown in Figure 38 below. This shows the 

Dynamic Programming in blue, the Constant Power in yellow, and the Optimal Control 

in Grey and Orange for Reverse and Forward respectively. The two Optimal Control 

curves lie on top of each other for all but the first and last time steps. The instantaneous 

optimization schedules (Start Power and End Power) instantaneously minimized fuel 

burn by going to maximum power (3,500 Hp.) for the first or last quarter of the mission 

respectively when they ran out of power. Start and End power are not shown here in 

order to highlight the other schedules, which only vary from 860 to 1040 Hp.  
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Figure 38: Experiment #1 1,000 nmi. 25,000 lb. Payload, 10,457 lb. Battery, .7 Mach, 37,700 ft. 

 

 Both Optimal Control and Dynamic Programming chose linear schedules, 

although Dynamic Programming chose one with a steeper slope. The stair step effect 

found with Dynamic Programming is a result of the resolution used- the minimum 
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all cases tested, as demonstrated in the two cases shown below in Figure 39 and Figure 
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Power, in yellow, is bisected in both cases by Optimal Control and Dynamic 

Programming. However, the average power and the slope chosen by Dynamic 

Programming and Optimal Control in each case is greater for the shorter ranges and 

lesser for the longer ranges. This reduction in power with increasing range is an expected 

consequence of having more distance of travel per kWh of energy in the battery in Figure 

39 compared to Figure 40.  
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Figure 39: Experiment #1 1,250 nmi. 25,000 lb. Payload, 10,457 lb. Battery, .7 Mach, 37,700 ft. 

 

Figure 40: Experiment #1 750 nmi. 35,000 lb. Payload, 20,914 lb. Battery, .7 Mach, 37,700 ft. 
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Equation 39 below) with slope m and intercept b, and varying b to consume the battery 

and varying m to find the minimum fuel burn. 

 𝑦 = 𝑚𝑥 + 𝑏 (39) 

 This Linear Power schedule can be seen to track the Dynamic Programming 

schedule nearly exactly, in many cases running right through the stair step schedule set 

by the resolution-limited Dynamic Programming. This suggests that in the case of the 

single cruise segment a linear power schedule may be the best baseline method, as it is a 

simple enough formula to be listed as such alongside Constant Power and Power at End. 

However, the performance of the schedules is determined not by the graph of the power 

setting but by the fuel burn results. 

Fuel Burn Results 

 The fuel burn results from each of these methods and cases are given in Table 6 

and Table 7 below. Dynamic Programming was expected to be the global optimum, so 

the percentage difference for each method compared to Dynamic Programming is given 

as well.  

 
Table 6: Experiment #1 Results, 10,457 lb. Battery, 25,000 lb. Payload 
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Range (nmi) Dyn 

Prog 

Opt 

Ctrl F 

Opt 

Ctrl R 

Const Power 

at Start 

Power 

at End 

Linear 

Fuel 
Burn 
(lbs.) 

750 3543.15 3543.18 3543.19 3543.20 3719.02 3697.65 3543.15 

1000 5114.72 5114.86 5114.86 5114.93 5314.21 5295.48 5114.72 

1250 6681.10 6681.36 6681.36 6681.49 6893.24 6868.30 6681.10 

% more 
than 

D.Prog 

750 0% .00071% .00093% .00147% 4.96% 4.36% -0.0000014% 

1000 0% .00262% .00275% .00397% 3.90% 3.53% 0.00003% 

1250 0% .00392% .00392% .00587% 3.18% 2.80% -0.000002% 
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Table 7: Experiment #1 Results, 20,914 lb. Battery, 35,000 lb. Payload 
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Range (nmi) Dyn 

Prog 

Opt 

Ctrl F 

Opt Ctrl 

R 

Const Power 

at Start 

Power 

at End 

Linear 

Fuel 
Burn 
(lbs.) 

750 2660.33 2660.47 2660.47 2660.57 2741.86 2728.51 2660.33 

1000 4259.34 4259.67 4259.21 4259.81 4405.48 4376.82 4259.34 

1250 5864.34 5864.97 5864.96 5865.17 6053.84 6009.70 5864.34 

% more 
than 

D.Prog 

750 0% 0.00528% 0.00522% 0.00914% 3.07% 2.56% -0.00001% 

1000 0% 0.00791% -0.00301% 0.0110% 3.43% 2.76% -0.00001% 

1250 0% 0.0107% 0.0105% 0.0142% 3.23% 2.479% -0.00001% 

 

 Considering the three baseline methods first; using the battery at the start of the 

mission was expected to be the worst of these cases based on Hypothesis #2, and it was. 

In each case it performed over 3% worse than the optimum and .5% worse than any other 

method. Less expected was that using constant motor power would outperform saving the 

battery energy until the end of the mission. The difference between saving the power 

until the end and using it all at the start, reflecting the Hypothesis #2 effect of burning 

fuel early rather than late, hovered around .5% to .75% of the mission fuel burn. The 

difference between either schedule and Constant Power was consistently 2-4%, indicating 

that one of the other effects was more dominant. The performance of the Linear Power 

schedule compared to the Constant Power schedule illustrates the small power schedule 

change that the weight change effect has on aircraft flying on as simple a mission as this 

constant speed cruise.  

  Integrating Optimal Control in the forward or reverse direction was found to give 

almost identical results, but as promised, Optimal Control performed nearly as well as 

Dynamic Programming. The Linear Power schedules with the form given in Equation 39 

lie right over the Dynamic Programming schedules on the graphs and are an 
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improvement over Dynamic Programming due to the resolution limitations of the 

Dynamic Programming method.  

 However the most surprising result was that the overall difference between 

Constant Power and the optimal solution found by Dynamic Programming was very 

slight. This was judged to be due to the relatively invariant nature of the problem- the 

thrust required at the beginning and the end of cruise varied by no more than 3% over any 

of these cases. Therefore the ideal assist level for the engine should not vary by very 

much. The difference between using Constant Power and saving the battery for the end of 

the mission was found to be equal to the battery resistance. Even though each case used 

the same battery and depleted an identical fraction of the battery, the amount of 

electricity actually applied to the gas turbine was as much as 10% higher compared to 

Start Power or End Power when passed through the battery resistance at the lower power 

level used by Constant Power.  

Execution Time 

 The execution time for each of the methods varied not only with the length of the 

mission but with stage of development, as slight improvements were made to speed up 

Dynamic Programming in particular. However by the end of Experiment #1, the 

execution time of the non-Dynamic Programming methods was down to a few minutes 

each per case on a standard workstation. Dynamic Programming took as much as 15 days 

to execute on an otherwise unoccupied workstation with 10 cores working in parallel at 4 

GHz. This verified the hypothesis that only Dynamic Programming would take an 
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unreasonable amount of execution time. The magnitude of the difference in execution 

time exceeded expectations.  

Experiment #1 Conclusion 

 The research questions were reevaluated upon the completion of Experiment #1. 

Research Question #1 asked “how important it is to use the Optimal Power Schedule”, 

and Hypothesis #1 stated that “the use of optimal power schedules over a typical aircraft 

mission will yield significant savings in fuel burn.” Looking at the results of Experiment 

#1 as detailed in Table 6 and Table 7, the difference in fuel burn for aircraft which varied 

only in power schedule was 3% or more between the most optimal and least optimal 

power schedules. Although this savings is only over a single segment of a typical aircraft 

mission, it is certainly significant, amounting to as much as a passenger’s weight in fuel.  

 Research Question #2 asked “what factors determine the optimal power 

schedule,” with Hypothesis #2 proposing that “the reduction in aircraft weight resulting 

from burning fuel early in a mission is the dominant factor determining the optimal 

power usage schedule.” This hypothesis was disproven by the results of Experiment #1, 

as these results show clearly that the power schedule most favoring this factor, Power at 

End, performed the second worst of the power schedules tested. The results in Table 6 

and Table 7 suggest instead that the battery resistance and other factors driving the 

optimal power schedule towards Constant Power must be the dominant factors. However 

Research Question #2 cannot be answered for certain until all the possible factors are 

evaluated. These factors would include the changes in an aircraft’s thrust setting or the 
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influence of an aircraft’s weight which would be included in a simulation which contains 

a climb segment. 

 Research Question #3 asked “what is the appropriate baseline schedule?”, and 

Hypothesis #3 followed Hypothesis #2 and proposed that “the best baseline hybrid power 

schedule is to use the battery power as late in the mission as possible.” This hypothesis 

was disproven by the results of Experiment #1, which show that the Constant Power 

schedule outperforms the Power at End schedule across every scenario tested. Based on 

the optimal power schedule found by Dynamic Programming, an additional baseline 

power schedule was identified in Linear Power. The Linear Power Schedule is the best 

performing schedule for this single cruise segment. However it is unlikely to be the best 

performing schedule over the complete aircraft mission. The Linear Power schedule will 

only need to be examined over the complete mission if the optimal power schedule 

determined by Dynamic Programming continues to be linear. The best baseline power 

schedule for the complete mission, and therefore the answer to Research Question #3, 

will have to be found with an additional experiment considering the entire aircraft 

mission. 

  Research Question #4 asked “what methods can be used to find better hybrid 

power schedules?” and Hypothesis #4 proposed “Dynamic Programming will prove 

effective in finding the global optimum hybrid power schedule but take too long to be 

practical in design. Optimal Control will find almost as good a solution quickly enough to 

be practical.” The results of Experiment #1 show that Dynamic Programming, found the 

optimal solution limited only by the resolution implemented. Dynamic Programming also 

identified an additional promising baseline method. However, Dynamic Programming 
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took weeks to execute, showing it is not practical in design without a great change in 

implementation or available computing hardware. The solution calculated by Optimal 

Control was nearly as good as that found by Dynamic Programming and determined in a 

fraction of the time. Thus the speed and accuracy of Optimal Control would enable it to 

be used in a design study. Hypothesis #4 is therefore conditionally confirmed, conditional 

on the fact that this is a mission segment and not a complete mission simulation, which 

could make either method perform differently.  

 Besides answering the research questions themselves, Experiment #1 showed an 

unexpectedly good performance of Constant Power. This suggests that SHAPSO might 

be improved by modifying it to take advantage of baseline methods if they perform close 

enough to optimal. This modification will have to wait until the entire mission is tested to 

see if the performance of the baseline methods holds for the entire mission. That and the 

pending results of Research Questions #2-#4 confirm the need of Experiment #2 to be a 

test across the entire mission. The only change to the planned Experiment #2 comes from 

the results of the run time measurements of Dynamic Programming. These indicate that 

some improvement to the execution of that method may be warranted to allow the 

experiment to run faster. 

Experiment #2: Application to Entire Mission 

 Using an experiment involving only the cruise segment of a Flight mission, 

Hypothesis #1 is now confirmed: “the use of optimal power schedules over a typical 

aircraft mission will yield significant savings in fuel burn”. The next experiment, 

Experiment #2, is designed to answer Research Questions #2 thru #4. Research Question 
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#2 asks “what factors determine the optimal power schedule?” with Hypothesis #2 stating 

“the reduction in aircraft weight resulting from burning fuel early in a mission is the 

dominant factor determining the optimal power usage schedule.” This hypothesis was 

shown to be incorrect in Experiment #1, but the true dominant factor in the complete 

mission could not be found without simulating the entire mission. Likewise Hypothesis 

#3 proposes that “the best baseline hybrid power schedule is to use the battery power as 

late in the mission as possible.” This hypothesis was shown to be false for Experiment 

#1, but the best baseline schedule for a typical mission requires testing of a typical 

mission profile. Research Question #4 addresses optimization methods for the power 

schedule, and these methods will now have to deal with the complexities of climb and 

descent. To test these questions Experiment #2 was chosen to be a test of the different 

baseline methods and optimization methods over a complete air transport mission. The 

best performing baseline method will then be directly identified, answering Research 

Question #3, and the performance of Dynamic Programming and Optimal Control will be 

measured, proving or disproving Hypothesis #4. The shape of the optimal schedules will 

be found with Dynamic Programming and the performance of the different baseline 

schedules will shed enough light on the factors determining the optimal power schedule 

to answer Research Question #2.  
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Figure 41: Typical Complete Mission Profile, 1000 nmi. Mission 

 

 The complete air transport mission, seen in Figure 41, is a more complex problem 

than a single cruise segment mission for multiple reasons. Not only does the flight 

condition and thrust vary greatly through the climb segment, at higher thrust than cruise, 

but the time and distance to climb is affected by the aircraft weight, and hence can be 

different for aircraft which use different schemes to reduce fuel weight. The cruise 

distance must be therefore varied in order to meet the targeted total mission range, as 

highlighted in Figure 41, for each payload/range/power schedule combination. 

Accounting for changes in these factors is expected to bring out differences between the 

different power scheduling methods and impact the answers to the research questions.  

 Even before modeling is started, the technical assumptions in the engine deck 

constrain the operation of the aircraft during climb and descent. The engine is modeled 

under the assumption that the engine cannot produce more thrust than the maximum non-
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adding electric power causes the engine core to reduce fuel flow and maintain the same 

thrust. Therefore any climbing aircraft at full thrust will produce the same thrust at a 

given flight condition regardless of power scheme. In addition the engine cannot accept 

electric assist at low thrust levels, as the gas turbine has to remain lit under the operating 

assumptions. During descent, the gas turbine is at idle thrust and so electric assist cannot 

be used.  

 Before applying the methods to the complete mission, the framework had to be 

modified to handle climb and descent, the time step size had to be revisited, and each 

method had to be adapted to the different problem. 

Modeling Framework Changes 

 To model a climb or a descent segment, the thrust is set to max or to idle 

respectively, and the change in energy height over each time step is calculated as 

explained in Chapter 4. This change in energy height could come from changing the 

altitude, the Mach number or both, so climb and descent schedules are required to 

translate an energy height into a Mach number and an altitude.  

 The ideal climb path for minimum fuel is an optimization problem in itself for 

conventionally fueled aircraft and was the problem which initially inspired the 

formulation of Dynamic Programming[64]. Besides the tradeoff between drag polars, 

engine performance, fuel to climb, and distance/time taken to climb, operational aircraft 

have air traffic regulations to consider when planning their ascents. There is potential for 

hybrid propulsion systems to change the optimum climb schedule depending on the use 

of battery power. Conventional gas turbine engines lapse in thrust with altitude as air 
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density increases, due to the reduced working fluid for the fan and the reduced oxygen to 

burn. But electric components only lose working fluid and are not dependent on oxygen, 

potentially improving their relative performance during climb. However for consistency 

it was decided to use a fixed climb schedule and descent schedule for all tests, using a 

procedure which did not utilize battery power. 

 The engine and airframe models, with hybrid power turned off, were entered into 

NASA’s FLight OPtimzation System (FLOPS) software in order to actually calculate the 

optimal schedules[95]. FLOPS was configured to find the minimum fuel to distance 

climb for an air transport. It produced the schedules which are shown in Figure 42 and 

Figure 43 below. Each of these figures shows the altitude in blue and the Mach number in 

red as a function of the aircraft’s energy height. While the altitude represents the greater 

part of the aircraft’s potential energy, and increases nearly linearly with energy height, 

the increase in Mach number is not applied uniformly on either schedule. The wrinkles 

show strange behavior at 10,000 ft in order to comply with speed limits that occur 

beneath this altitude, and the Mach number of the Climb schedule hooks up at the high 

end as the final acceleration occurs at altitude as the aircraft departs its ideal climb 

condition and eases into cruise. The descent schedule generally is at a lower Mach 

number at any altitude, reflecting the reduced drag and increased glide distance that 

occurs at this lower speed. Although adjusting the climb schedule was found to affect the 

resulting power schedules, these original schedules were used for all of the experiments 

in this thesis. 
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Figure 42: Climb Schedule 

 

 

Figure 43: Descent Schedule 
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 Integration errors during the cruise segment are caused by the fuel burn and 

power consumption being considered constant throughout a time step. However during 

climb and descent the climb and descent rates are also held constant within a time step 

and therefore also produce integration errors in energy height. These errors cause a more 

drastic impact than those in the cruise segment as the climb rate in particular lapses with 

altitude. To find the appropriate time step for simulating climb with minimal integration 

errors, a study was again performed. This study calculated time to climb, distance to 

climb and fuel burn on a mission without added power assist as a function of time step. 

The results are shown in Figure 44 below, and show the climb distance and climb time 

diverging faster than the fuel burn as the time step is increased from one ten thousandth 

of an hour to a hundredth. As the error at .01 or even .005 hour was too great, the time 

step of .001 hour was chosen for simulating the climb and descent segments, while the 

cruise segment was still simulated at .01 hour. 
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Figure 44: Experiment #2 Time Step Study 
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Implementation of Each Method 

Dynamic Programming 

 With each method the two key tasks were to implement climb and to handle the 

climb-cruise transition. The descent segment is precomputed separately as it did not 

contain any battery usage. The climb segment poses some difficulty as the different 

parallel evaluations created by Dynamic Programming have different aircraft weights and 

therefore different climb rates. The parallel evaluations of the climb segment, starting at 

top of climb, diverge in altitude as they descend due to these weight differences. 

However the optimal path of interest, which uses the least fuel, also climbs the fastest, 

and therefore will be the first to complete the segment. Under this reasoning, the climb 

segment continues until one of the paths reaches the bottom of climb, and this first path is 

always the one which has completely consumed the battery and used the minimum 

amount of fuel.  

 The splice between cruise and climb is accomplished by changing the end of the 

cruise code and the starting point of the climb code, since the mission is executed in 

reverse. Instead of truncating the space at the end of the cruise code, as was done in 

Experiment #1, the cruise code progresses until the path matrix has the ideal path from 

any battery charge at the beginning of cruise to the end of cruise and the fuel weight 

vector has all the fuel levels corresponding to these states of charge. This fuel vector is 

then passed to the climb code at the point where the code is not truncated at the beginning 

and starts from all 100,001 levels with 100,001 different starting fuel levels. The path 
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which reaches the ground first is then traced back through both path matrices, and the 

power schedule extracted.  

 Instead of rerunning the power schedule time step for time step as in experiment 

#1, the energy height and power schedule are both saved during the original execution of 

Dynamic Programming and used to create an energy height based power schedule for 

climb and a distance based motor power schedule for cruise. These schedules are read 

during the “Decide Power Setting” block of the conventional simulation code used for the 

other methods, linearly interpolating the current power setting from these correlated 

vectors. This prevents a slight mismatch in time segments from causing the motor to turn 

on at altitudes other than that selected by Dynamic Programming during climb. Any 

small error left in the remaining battery power is eliminated by scaling the entire power 

schedule up or down slightly until the battery is exactly consumed. 

 Due to the increased number of time steps and the elimination of some space-

truncation methods, the execution time of Dynamic Programming was prohibitively long 

when using the same execution methods as Experiment #1. So instead of using the 

parallel computing toolbox, the MATLAB Coder toolbox was used to compile the 

Dynamic Programming code into C functions which executed hundreds of times faster. 

Conflicting versions of MATLAB and the compilers prevented the compiled code from 

using parallelization. Despite this the execution time was brought down to about 24 hours 

on a standard workstation, depending on the length of the mission being simulated. If 

parallelization were used, the execution time could possibly be brought down to 6 hours 

or less. In comparison, the same Matlab compilers were used on the other methods and 

brought their execution time down to less than 5 seconds per case.  
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 Because of the long execution time, the Dynamic Programming runs were only 

used as the baseline for the other methods, which ran to exactly the same point in 

distance and battery consumption. This enabled a fair comparison to be drawn between 

them.  

Constant Power 

 The Constant Power case was run using the same power schedule testing script 

which was used to get the final Dynamic Programming results, but the assigned power 

schedule was a constant value over the mission. The battery power was varied by an outer 

loop solver in order to set the power schedule to be a constant value which exactly 

drained the battery over the course of the mission. In addition an outer loop solver was 

used to lengthen or shorten the cruise segment so that it would cover the same distance as 

the original Dynamic Programming run for each case.  

Full Power During Climb 

 With the addition of the climb segment, a new baseline power schedule called 

Climb Power was used in place of the Start Power schedule used in Experiment #1. In the 

Climb Power schedule, the highest constant power possible is used during climb with the 

remainder of the battery used up at a constant power over the cruise segment. This 

change in power schedule was implemented by making a slight modification of the 

Constant Power code. The code was set to check if the battery is above the (precomputed) 

size required to run the entire climb segment at full power. If so, the code set power to 

full during climb and to the existing constant power level during cruise, using the same 

solver setup as Constant Power. If the battery is smaller than the minimum required for 
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climb at full power, the code sets the power during cruise to zero and varies the climb 

power using the Constant Power solver. 

Save Power Until End 

 The original Hypothesis #3 method was carried forward into Experiment #2, 

despite its failure in Experiment #1, in order to see how well it performed in the full 

mission. Because the engine could not accept hybrid power during descent, this meant 

that the maximum power was used during the last part of the cruise segment. The battery 

power start point was chosen by a solver in order to empty the battery, with the very first 

time step turning the battery power on at an intermediate level calculated to exactly 

empty the battery despite the discrete time simulation.  

Optimal Control 

 The Optimal Control implementation began with the same code as the Constant 

Power implementation in order to eliminate errors from different integration schemes or 

from handling the climb/cruise transition differently. The only two changes made to this 

code were located in the power selection step and in the outer loop. The power selection 

step was changed by minimizing the weighted sum of fuel burn and battery power at each 

time step. The outer loop was changed by varying the weighting of electrical power in the 

sum of electrical power and fuel burn in order to cause the battery to be exactly emptied, 

just as in Experiment #1. Unlike Experiment #1 the power schedules found during initial 

testing of Optimal Control were unexpected. An early example is in Figure 45 below. 
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Figure 45: Optimal Control 900 nmi, 20,457 lb. Battery, 35,000 lb. Payload, Early Engine Surrogate 

 

 This unexpected hump in the blue Motor Power curve during climb became 

apparent whenever the cruise thrust was high (due to a heavy load) and the available 

battery power was above a certain level. Closer examination of the engine deck under the 

weightings used here revealed that Optimal Control had found an island in the engine 

deck, where added power causes the greatest reduction in fuel burn. This is shown in 

Figure 46 below, which shows the difference in fuel burn between a single engine run 

with zero motor power and an engine run with 1,500 HP of motor power across the climb 

schedule.  

0

5000

10000

15000

20000

25000

30000

35000

40000

0

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2 2.5

A
lt

it
u

d
e 

(f
t)

M
o

to
r 

P
o

w
er

 (
H

p
)

Time (hr)

Motor Power Altitude



125 

 

 

Figure 46: Fuel Savings from 1,500 HP of Assist at Full Thrust along Climb Schedule, One Engine 

 

 The peak in at 25,000 ft. showed up in the mission battery power histories only 

when there was not greater fuel savings to be had during cruise. The same delta between 

zero assist and 1,500 HP assist was graphed for cruise conditions, sweeping the power 

code from maximum thrust (power code of 50) to below the typical cruise thrust levels 

(between 42 and 44), as seen in Figure 47. For light missions the cruise thrust was low 

enough that Optimal Control used the entire battery during cruise. If the vehicle was 

heavy enough that the cruise power code was 44 or more, the Optimal Control solver 

would preferentially use the battery power during climb to take advantage of the 

efficiency curve seen in Figure 46, producing power histories like those seen in Figure 

45. 
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Figure 47: Fuel Savings from 1500 HP of Assist at Cruise Conditions, One Engine 

 

 Looking at the engine decks it became clear that the Optimal Control algorithm 

was working as intended, and finding a source of fuel savings that had not been 

previously found, although early runs of Dynamic Programming also found the same 
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the cruise thrust level was high enough. The next thing to check was the surrogate model 
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climb due to the grid spacing of the data table. The results, shown in Figure 48 below, 
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350

360

370

380

390

400

410

420

36 38 40 42 44 46 48 50

A
b

so
lu

te
 F

u
el

 B
u

rn
 S

av
in

gs
 (

lb
/h

r)

Power Code



127 

 

data as well as required. The expected behavior would have the engine surrogate model 

tracing a line neatly through the engine data points, or nearly so. However Figure 45 

shows an error of 20% or more, and a trend that reverses the actual trend, showing a 

maximum savings at 30000 ft instead of a minimum savings at 35000 ft.  

 

 

Figure 48: Comparison of Engine Model to Source Data at Mach .6, Full Thrust 
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where only thrust and hybrid assist could change. Another was fit to descent, where thrust 

is at idle and hybrid power cannot be used. And a third was created for the climb 

segment, using data resampled from the NPSS model along the fixed climb schedule, 

with a tight fit exploiting the facts that thrust is always at maximum during climb and that 

each altitude has a corresponding Mach number. This climb engine deck remained the 

most difficult to fit, but the resulting statistics are shown in Table 8 below. They show a 

very small average error for all three response variables, small standard deviations, and 

R-squared values practically or actually equal to 1, indicating a very tight fit.  

 

Table 8: Properties of Engine Surrogate Model During Climb 

Property Value 

Fuel Burn R-Squared .9999935 

Fuel Burn Mean Error .00105% 

Fuel Burn Error Standard Deviation . 18% 

Net Thrust Error R-Squared .999998 

Net Thrust Mean Error .00000863% 

Net Thrust Error Standard Deviation .00886% 

Battery Power R-Squared 1 

Battery Power Mean Error -.00000376% 

Battery Power Error Standard Deviation .008863% 

 

 This tight fit was only made possible by fixing the cruise flight conditions and the 

climb and descent schedules. These restrictions prevent any studies on the impact of 

changing the cruise altitude or optimizing the climb. The resulting model was compared 

to the source data, which was also taken along the climb schedule, with the results seen in 

Figure 49 below. This shows a fit that very nearly follows the data. Of note, the 

additional data taken for this model along the climb schedule is more available for 
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comparisons of fit along the climb schedule than the data used for the model discussed in 

Experiment #1. Importantly this surrogate model not only tracks the value of the points, it 

shares the trends of the real data and can be expected to have maxima and minima in the 

same places as the NPSS model if the NPSS model were run directly. This fit is still not 

perfect, but it does capture the trends of the physics based model well enough that the 

same general power schedules should be found by the different optimization methods. 

Therefore it was used for the duration of Experiments #2 and #3. 

 

Figure 49: New Surrogate Model Fuel Savings from 3,500 HP Hybrid Power 
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measurement of electricity consumed was at the terminals of the battery. This 

measurement did not account for the losses within the battery-the battery resistance, 

which increases with the square of the power drawn and is a function of the size of the 

battery. To take this into account and properly disincentivize higher power levels, the 

cost function was augmented by including the efficiency of the battery in the Optimal 

Control score function. The efficiency equations from the battery model were based on 

the efficiency of one of the cells in the battery, having a nominal voltage, resistance, and 

size. The power through one nominal cell is given by Equation 40 below. 

 
𝑆𝑐𝑎𝑙𝑒𝑑𝑃𝑜𝑤𝑒𝑟 = 𝑃𝑜𝑤𝑒𝑟 ∗

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐶𝑒𝑙𝑙

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝐵𝑎𝑡𝑡𝑒𝑟𝑦
 (40) 

 The current draw from that battery is greater than it would be for an ideal battery 

due to the voltage drop from the internal resistance. The resulting quadratic equation for 

the current through one cell is shown in Equation 41 below. 

 

𝐼𝑐𝑒𝑙𝑙 =

(𝑉𝑐𝑒𝑙𝑙,𝑖𝑑𝑒𝑎𝑙 − √𝑉𝑐𝑒𝑙𝑙,𝑖𝑑𝑒𝑎𝑙
2 − 4𝑅𝑐𝑒𝑙𝑙 ∗ 𝑆𝑐𝑎𝑙𝑒𝑑𝑃𝑜𝑤𝑒𝑟)

2𝑅𝑐𝑒𝑙𝑙
 

(41) 

 The Voltage drop is therefore given by Equation 42, and the battery efficiency by 

Equation 43. 

 𝑉𝑑𝑟𝑜𝑝 = 𝐼𝑐𝑒𝑙𝑙𝑅𝑐𝑒𝑙𝑙 (42) 

 
𝐸𝑓𝑓𝑏𝑎𝑡𝑡 =

𝑉𝑐𝑒𝑙𝑙,𝑖𝑑𝑒𝑎𝑙 − 𝑉𝑑𝑟𝑜𝑝

𝑉𝑐𝑒𝑙𝑙,𝑖𝑑𝑒𝑎𝑙
 (43) 

 This makes the cost function being minimized by Optimal Control to be that 

given in Equation 44. 



131 

 

 
𝑐𝑜𝑠𝑡 =  𝑤̇𝑓 + 𝜆

𝑃𝑜𝑤𝑒𝑟

𝐸𝑓𝑓𝑏𝑎𝑡𝑡
 (44) 

Experiment #2 Results 

 One question not directly listed in chapter 3 but related to Research Questions #2 

and #3 is: “What actually is the global optimum power schedule?” The Dynamic 

Programming results show that the power schedules vary depending on the range and 

available battery but have a peak power during the lower part of climb and use a linear 

schedule during cruise as found in Experiment #1. This can be seen in Figure 50 and 

Figure 51 below which depict the motor power level vs. distance from start as determined 

by Dynamic Programming. Figure 50 shows that the aircraft carrying the larger battery at 

short range uses hybrid assist throughout the mission. In the case with a smaller battery at 

long range shown in Figure 51 the system instead turns it off during the latter part of 

climb to conserve power for cruise.  
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Figure 50: Dynamic Programming Power Schedule, 20,000 lb. Battery, 25,000 lb. Payload, 1,000 nmi. 

Mission 

 

Figure 51: Dynamic Programming Power Schedule, 10,000 lb. Battery, 25,000 lb. Payload, 1,500 nmi. 

Mission 
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 The baseline methods tested in accordance with Research Question #3 performed 

as seen below in Table 9. Because the numbers are still close together, the percent 

difference compared to the optimal performance found with Dynamic Programming is 

shown in Table 10. These tables show that Constant Power remains the best of the 

baseline schedules across the tests, and is therefore the answer to Research Question #3: 

“What is the best baseline power schedule” for this hybrid aircraft system. Instead of the 

Experiment #1 Start Power method, an alternative baseline schedule, Climb Power, was 

introduced in this experiment as described on page 122. This method uses full motor 

power during climb and a lower constant motor power, chosen to empty the battery, 

during cruise. This performed better against End Power than Start Power did in 

Experiment #1, which sheds light on Research Question #2 showing that the fuel burn 

savings effect of using power at the end of the mission is not as strong as anticipated. 

 

Table 9: Fuel Burn (lbs.) of Baseline Schedules and Dynamic Programming 

Range 
(nmi.) 

Battery (lbs.)  Dynamic  
Programming 

Constant  End Power Climb Power 

1500 20000 8251.302 8251.736 8393.431 8301.243 

1479 10000 8837.758 8840.286 9019.024 9004.342 

1000 20000 5012.323 5013.39 5089.516 5026.975 

1000 10000 5803.615 5803.656 5964.37 5920.508 

 

Table 10: % Increase in Fuel Burn of Baseline Schedules vs. Dynamic Programming 

Range (nmi) Battery (lbs) Constant  End Power Climb Power 

1500 20000 0.005% 1.723% 0.605% 
1479 10000 0.029% 2.051% 1.885% 
1000 20000 0.021% 1.540% 0.292% 
1000 10000 0.001% 2.770% 2.014% 
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 In order to further explore Research Question #2 and the relative weights of the 

different influences on power schedule performance, these four power schedule choices 

were repeated using a battery with reduced resistance, setting the resistance to 50% and 

0% of its original value. The complete set of these results is shown in Table 11 and Table 

12 below, showing the absolute values and the percent difference from the Dynamic 

Programming results respectively. 

 
Table 11: Fuel Burn (lbs.) of Baseline Schedules and Dynamic Programming With Reduced Battery 

Resistance 

Resistance Range 
(nmi.) 

Battery 
(lbs.) 

Dynamic  
Programming 

Constant  End Power Climb 
Power 

50% 1500 20000 8216.237 8216.658 8304.123 8250.05 
50% 1500 10000 8951.344 8955.944 9045.427 9047.864 
50% 1000 20000 4906.793 4908.81 4951.507 4916.331 
50% 1000 10000 5771.589 5771.592 5855.039 5830.682 

0% 1500 20000 8177.491 8180.551 8220.555 8201.58 
0% 1500 10000 8929.162 8938.118 8958.876 8984.579 
0% 1000 20000 4896.577 4900.028 4918.289 4904.257 
0% 1000 10000 5739.59 5742.307 5768.92 5768.275 

 

 

 

Table 12: % Increase in Fuel Burn of Baseline Schedules vs. Dynamic Programming at Reduced 

Battery Resistances 

Resistance Range (nmi) Battery (lbs) Constant  End Power Climb Power 

50% 1500 20000 0.005% 1.070% 0.412% 
50% 1500 10000 0.051% 1.051% 1.078% 
50% 1000 20000 0.041% 0.911% 0.194% 
50% 1000 10000 0.000% 1.446% 1.024% 

0% 1500 20000 0.037% 0.527% 0.295% 
0% 1500 10000 0.100% 0.333% 0.621% 
0% 1000 20000 0.070% 0.443% 0.157% 
0% 1000 10000 0.047% 0.511% 0.500% 
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 The reduction in battery resistance improves the relative performance of the End 

Power and Climb Power schedules, and worsens the performance of Constant Power in 

almost every case when compared to the new global optimum schedules. However 

despite that, Constant Power still outperforms the other baseline methods in every case. 

The significant improvements in the other methods show that battery resistance is the 

dominant factor in the typical case, but the hybrid engine’s performance alone is still 

enough to drive a preference for Constant Power over these methods. Notable too is that 

the Climb Power method does better than the End Power method except on the longer 

missions with the smaller batteries. On these missions, the fuel burned late in the mission 

must be carried the furthest. 

 Further insight into Research Question #2: “What factors determine the optimal 

power schedule?” and a more direct evaluation of Research Question #4: “What methods 

can be used to find better hybrid power schedules?” are given by the performance of 

Optimal Control when compared to Dynamic Programming, shown for all twelve of these 

cases in Table 13 and Table 14 below. These tables again show the mission fuel burn for 

the full mission with the range specified, a fixed payload of 25000 lbs, and the battery 

and battery resistance as shown. The differences in performance are better seen in Table 

14 as a percentage difference, which show that both Constant Power and Optimal Control 

consume slightly more fuel than Dynamic Programming. Dynamic Programming 

continues to outperform Optimal Control and Constant Power as expected. 
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Table 13: Dynamic Programming, Constant Power, and Optimal Control Fuel Burn, lbs. 

Resistance Range (nmi.) Battery (lbs.) Dynamic 
Programming 

Constant 
Power  

Optimal 
Control 

100% 1500 20000 8251.302 8251.736 8252.707 
100% 1479 10000 8837.758 8840.286 8840.091 
100% 1000 20000 5012.323 5013.39 5012.929 
100% 1000 10000 5803.615 5803.656 5803.798 

50% 1500 20000 8216.237 8216.658 8217.291 
50% 1500 10000 8951.344 8955.944 8955.608 
50% 1000 20000 4906.793 4908.81 4907.069 
50% 1000 10000 5771.589 5771.592 5771.71 

0% 1500 20000 8177.491 8180.551 8180.011 
0% 1500 10000 8929.162 8938.118 8937.3 
0% 1000 20000 4896.577 4900.028 4897.136 
0% 1000 10000 5739.59 5742.307 5741.921 

 

 

Table 14: Optimal Control and Constant Power % Increase in Fuel Burn Compared to Dynamic 

Programming 

Resistance Range (nmi) Battery (lbs) Constant 
Power 

Optimal 
Control 

100% 1500 20000 0.005% 0.017% 
100% 1479 10000 0.029% 0.026% 
100% 1000 20000 0.021% 0.012% 
100% 1000 10000 0.001% 0.003% 

50% 1500 20000 0.005% 0.013% 
50% 1500 10000 0.051% 0.048% 
50% 1000 20000 0.041% 0.006% 
50% 1000 10000 0.000% 0.002% 

0% 1500 20000 0.037% 0.031% 
0% 1500 10000 0.100% 0.091% 
0% 1000 20000 0.070% 0.011% 
0% 1000 10000 0.047% 0.041% 

 

 

 Surprisingly, for most of these cases, Optimal Control actually performs worse 

than Constant Power as a power scheduling method. To look closer at the differences, the 
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power schedules for one case are shown in Figure 52 below. This figure shows the 

constant power in red being slightly more than the Optimal Control power level during 

cruise, while Dynamic Programming strikes a linear schedule in cruise reminiscent of 

Experiment #1. During climb both Optimal Control and Dynamic Programming use 

maximum power at low altitudes but drop to lower power levels at the end of climb. 

Optimal Control is using more power than Dynamic Programming at the beginning of the 

mission but less at the end and lacks the slope during cruise that Dynamic Programming 

consistently applies. It was realized that the Optimal Control equations never directly 

evaluate applying power at one end of the mission to applying it the other. Thus it 

neglects the effect of changing fuel weight on the power schedules. This inspired 

improvements to Optimal Control.  

 

 

Figure 52: Power Schedules at 100% Battery Resistance, 20,000 lb. Battery, 1,000 nmi. Mission 
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Improvements to Optimal Control 

 As became evident in the Experiment #2 results, a fundamental weakness of 

Optimal Control is that it does not directly evaluate the effect of burning more fuel in one 

part of the mission on the thrust required in another part of the mission. Instead it simply 

finds the instances at which applied battery power could most reduce fuel burn 

instantaneously. This is reflected in the cost function optimized in each time step of 

Optimal Control, shown in Equation 45 below. 

 𝐽 = 𝐴𝑤̇𝑓 + 𝜆𝑃𝑒  (45) 

 The factor A was fixed in the Optimal Control runs to this point. Its value was set 

at a constant value of 10000 which chosen to handle the difference in units, as 𝑤̇𝑓 is in 

pounds of fuel per hour and 𝑃𝑒 is in watts. The factor on the electrical power, λ, is varied 

by the mission level solver for each case. It is set to the value which when used at every 

time step in the mission causes the total mission electric power consumption to exactly 

consume the battery. If λ is calculated and left alone to continue ensuring the battery is 

fully utilized, changing the weighting factor on the fuel, A, over the course of the mission 

becomes a simple way to make Optimal Control account for the amount of energy used to 

carry fuel to a certain point in the mission and encourage burning fuel earlier rather than 

later. The question was how much to vary the fuel weighting, and according to what 

schedule. 

 Instead of trying to invent a penalty schedule for fuel from scratch, the amount of 

fuel required to carry weight to a certain point was measured. A version of the Optimal 
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Control code was created which carried an additional penalty weight for part of the 

mission. The distance that the weight was carried before being dropped was then varied 

from the start of the mission to the end. The total mission fuel burn as a function of the 

distance the penalty weight was carried is shown in Figure 53 for a 100 lb. penalty weight 

carried to different points in the first 800 nmi. of a 1,000 nmi. mission. Descent was 

excluded since no electrical power can be used in descent. The mission fuel burn 

increases most rapidly as the payload is carried through climb, with the taper off of the 

curve roughly corresponding to the decrease in climb rate with altitude, indicating the 

increase in work simply to lift the extra 100 lb. weight to altitude. However it still costs a 

pound of fuel to carry the 100 lb. penalty weight through the cruise segment.  

 

 

Figure 53: Mission Fuel Burn vs. Distance Penalty Weight Carried 
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gradual increase in fuel burn as the payload is carried through cruise. Instead of trying to 

find a general form of this penalty function for all missions, the curve was generated for 

each mission and adapted into a penalty function. First this fuel burn number was 

normalized by the mean of the curve, and then scaled to change the magnitude of the cost 

variation using Equation 46 below, where FuelBurn(x) is the mission fuel burn having 

carried a 100lb. payload x nmi. as in Figure 53, and Mean(FuelBurn) is the average of the 

same curve over all distances in the mission. 

 
𝐹𝑢𝑒𝑙𝐶𝑜𝑠𝑡(𝑥) = 1000 (1 + 𝑆𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 (

𝐹𝑢𝑒𝑙𝐵𝑢𝑟𝑛(𝑥)

𝑀𝑒𝑎𝑛(𝐹𝑢𝑒𝑙𝐵𝑢𝑟𝑛)
− 1))  

 

(46) 

 The scale factor determining the magnitude of the effect to minimize fuel burn 

was sought experimentally and found to be different for different payload/range 

combinations. Rather than fixing it at some compromise point, the minimization 

procedure was included in the final method, called Weighted Optimal Control. The 

resulting power schedules are in many cases significantly closer to Dynamic 

Programming than the original Optimal Control is as shown in Figure 54. This figure 

shows the purple Weighted Optimal Control line tracking the blue Dynamic 

Programming line nearly exactly for the bottom half of climb and the first half of cruise, 

differing slightly by using less power in the second half of climb and more in the second 

half of cruise.  
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Figure 54: Power Schedules for 1,000 nmi. Mission, 25,000 lb. Payload, 20,000 lb. Battery 100% 

Resistance 
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Figure 55: Two Level Optimal Control 
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Figure 56: Comparison of Different Power Scheduling Methods, 1,000 nmi. Mission, 25,000 lb. 

Payload, 20,000 lb. Battery 100% Resistance 
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if the original Optimal Control had the lowest fuel burn. Weighted Optimal Control and 

Two Level Optimal Control can be seen to have a better fuel burn than the original 

Optimal Control in Table 15 below. In fact they surpass Dynamic Programming in a few 

of the cases. As the Linear schedule demonstrated in Experiment #1, it is possible to do 

slightly better than Dynamic Programming due to Dynamic Programming’s resolution 

limits which limit power choices to ~26 HP increments during the climb segment 

 
Table 15: Experiment 2: % Fuel Burn Savings Compared to Dynamic Programming 

Resistance Range 
(nmi) 

Battery 
(lbs)  

Baseline Schedules Optimal Control 

End 
Power 

Climb 
Power 

Constant  Original Weighted Two 
Level 

100% 1500 20000 1.723% 0.605% 0.005% 0.017% -0.005% 0.002% 

100% 1479 10000 2.051% 1.885% 0.029% 0.026% 0.022% 0.018% 

100% 1000 20000 1.540% 0.292% 0.021% 0.012% 0.000% 0.004% 

100% 1000 10000 2.770% 2.014% 0.001% 0.003% -0.002% 0.000% 

50% 1500 20000 1.070% 0.412% 0.005% 0.013% -0.010% 0.000% 

50% 1500 10000 1.051% 1.078% 0.051% 0.048% 0.040% -0.013% 

50% 1000 20000 0.911% 0.194% 0.041% 0.006% -0.001% 0.003% 

50% 1000 10000 1.446% 1.024% 0.000% 0.002% -0.005% -0.003% 

0% 1500 20000 0.527% 0.295% 0.037% 0.031% 0.009% 0.021% 

0% 1500 10000 0.333% 0.621% 0.100% 0.091% 0.043% 0.005% 

0% 1000 20000 0.443% 0.157% 0.070% 0.011% -0.021% 0.008% 

0% 1000 10000 0.511% 0.500% 0.047% 0.041% 0.032% 0.036% 

 

 

Execution Times 

 The increase in complexity in Experiment #2, in particular the increase in the 

number of time steps due to the .001hr step used during climb, increased the runtime of 

every method significantly. Dynamic Programming, as done in Experiment #1, became 

infeasible with the available hardware when the number of required steps as much as 

tripled for the long, heavy cases with many climb time steps. Fortunately MATLAB 
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includes a coder toolbox (called MATLAB coder) which enables MATLAB functions to 

be compiled into C or C++ code with only slight modifications. Certain built in functions 

are not compatible with this toolbox (such as the MATLAB standard atmosphere 

reference function, which had to be replaced by a custom version). Other functions 

require specific combinations of available compilers and versions of MATLAB, such as 

the parallel computing toolbox. Even with the loss of parallel computing the execution 

time for Dynamic Programming was reduced by a factor of over 100 by converting from 

the interpreted MATLAB script to this precompiled C code. If the compiled code could 

have been parallelized, execution times may have gotten even lower. However the 

required software was not available. 

 Between the increased number of time steps, changed space-truncation methods 

from the addition of climb, and the implementation of compiled code, the final Dynamic 

Programming code executed a case in approximately 12 hrs., depending on the length of 

the mission. This was on a single desktop less powerful than the one used in Experiment 

#1. The same Matlab Coder toolbox was also used to bring down the runtime of the 

Optimal Control and Constant Power codes, bringing their execution times down to 

approximately 2 seconds per case when executed in a batch mode. Optimal Control and 

Constant Power are therefore much more suited for use in a trade study scenario in which 

many runs are required. The improved versions of Optimal Control took a little longer to 

execute, typically under 1 minute for 2 Level Optimal Control and up to 5 minutes for 

Weighted Optimal Control. 
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Experiment #2 Conclusions 

With the completion of Experiment #2 the answers to Research Questions #2 thru 

#4 can be assessed in the light of complete mission simulations. Research Question #2 

was “What factors determine the optimal power schedule?” For these particular hybrid 

propulsion system, sized aircraft, and technology/operational assumptions, the resistance 

of the battery can be identified as the primary driver of the optimal power schedule, 

firmly disproving Hypothesis #2 which stated “The reduction in aircraft weight resulting 

from burning fuel early in a mission is the dominant factor determining the optimal 

power usage schedule.” Research Question #3 asked the related question: “What is the 

appropriate baseline schedule?” The baseline power schedule which minimizes the effect 

of battery resistance, Constant Power, is the best of the baseline schedules tested under 

these circumstances, disproving Hypothesis #3 as well, since it predicted that “The best 

baseline hybrid power schedule is to use the battery power as late in the mission as 

possible.” However the battery resistance is not the only effect driving the selection of 

Constant Power for this combination, as seen in the performance in the reduced battery 

resistance cases. These cases show that the combination of the hybrid component 

efficiencies along with the gas turbine’s response to shaft power inputs is sufficient to 

favor a constant power input.  

 The originally hypothesized dominant effect, the change in weight as fuel is 

burned, does have a noticeable effect on the operation of Optimal Control. When Optimal 

Control is enhanced to take this into account, it performs closer to Dynamic 

Programming while still running many times faster than that method. Even the original 

Optimal Control performs nearly as well as Dynamic Programming depending on the 
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acceptable tolerances. Taking this into account, the answer to Research Question #4: 

“What methods could be used to find better hybrid power schedules?” can now be 

determined. Hypothesis #4 predicted “Dynamic Programming will prove effective in 

finding the global optimum hybrid power schedule but take too long to be practical in 

design. Optimal Control will find almost as good a solution quickly enough to be 

practical.” This is now conditionally confirmed, with at least a modified Optimal Control 

performing as well or better than Dynamic Programming in a fraction of the time, and 

even the original Optimal Control never finding a solution more than .1% greater in total 

fuel burn than Dynamic Programming.  

However the most impressive result of Experiment #2, if less surprising after the 

results of Experiment #1, is that Constant Power achieved very nearly the same fuel burn 

as the optimal methods. This is only necessarily true for this particular engine model 

operating under the operational assumptions, for example requiring the gas turbine core 

to always be lit, but it still holds true even if the battery is replaced with an ideal battery. 

Based on this result it may be necessary to modify the proposed methodology to enable 

utilization of baseline methods if their performance is close enough to the optimum. This 

will be considered in Chapter 6 after the conclusion of the experiments. 

Confidence in Small Results 

 The optimization of operational schedules is inherently a quest to make small 

improvements to a system without changing the hardware or mission. This is in contrast 

to the selection of different architectures or sizing of hybrid power systems themselves, 

which can make great strides towards achieving NASA’s Far Term goals by making large 
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changes to the system hardware. Even considering this modest expectation, the power 

savings from optimizing schedules in this case were smaller than expected; with the 

difference in fuel burn between Constant Power and the best power schedule found being 

less than a pound in some cases. As the results of these experiments are intended to shape 

the final methodology, it is important to take a moment to examine the potential sources 

of error and assess the confidence that can be taken in these small savings found in 

Experiments #1 and #2 before continuing with Experiment #3. 

 The largest sources of error in these results when compared to a physical hybrid 

architecture are the NPSS engine model and the surrogate model used to find the fuel 

burn at every time step. The NPSS model captures the interaction between the hybrid and 

the conventional gas turbine components but does not contain the advanced proprietary 

component maps that an engine design company would have available to capture the 

performance of each part of the engine with highest accuracy. The data the NPSS model 

produced was a challenge to fit, as has been described, and was finally captured with a 

three part fit which still shows discrepancies with the original data when examined as 

closely as Optimal Control requires, as seen in Figure 57 below. However this engine 

surrogate model was used in every method in Experiments #2 and #3, and can therefore 

be considered a truth model for the purpose of comparing these power scheduling 

methods.  
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Figure 57: Example Fit Error of Final Surrogate; Fuel Burn Savings from 3,500 Hp Assist During 

Climb 

 

 Another significant source of error is the integration error inherent to discrete time 
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fuel burn errors to a minimum. Any remaining error was minimized by integrating every 
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order to be consistent with Dynamic Programming. A similar approach of keeping any 

errors consistent was adopted by creating a single mission simulation code for each 
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 Another potential source of error is the convergence criteria used in every 

simulation to select free variables. Even in the simple Constant Power method, it is 

necessary to guess and converge on not only the amount of power which exactly empties 

the battery but also on the exact length of the cruise segment which will cause the total 

mission length to exactly match the other methods. The choice to run the mission in 

reverse eliminates the required guessing for the starting weight of the fuel, but the length 

of the climb segment is different for each optimization method depending on the 

instantaneous weight of the aircraft. Due to its execution time, Dynamic Programming is 

not run with a convergence on mission length. Instead it uses a starting guess computed 

from Constant Power and utilizes whatever mission length falls out. The other methods 

converge to this new mission length to within 1 part in 10
8
. In addition the same tolerance 

is used for the battery SOC for each method which ensures that all methods are solving 

the exact same problem. 

 One final consideration is the methods themselves and the reliability of 

determining their best answer. The baseline methods only have one free variable, which 

is set based on the available battery energy in a well behaved manner. Dynamic 

Programming is an exhaustive search which evaluates every schedule achievable within 

its discretization scheme in a systematic manner, finding the global optimum every time.  

 The Optimal Control variants are also deterministic. However unlike the other 

methods their performance depends on finding the minimum of continuous functions. 

The cost function of the instantaneous fuel burn and battery power minimized at the heart 

of Optimal Control is relatively well behaved, due to the surrogate model. However the 

outer loop which varies the weighting factor in Weighted Optimal Control and which is 
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also used to vary the cost of the fuel during climb for the Two Level Optimal Control is 

not guaranteed to be free of local optima. The results obtained by these two methods may 

be a function of the starting points of the minimizer if the minimizer is susceptible to 

local optima. If the wrong minimum is chosen a method would find a valid but slightly 

less optimal schedule. This does not seem to have been an issue in the Experiment #2 

results and the near optimal schedules found by these methods.  

 With confidence in the results, Research Question #5 can now be considered, 

bringing the methods tested in Experiment #2 to bear on an actual hybrid system design 

study.  

Experiment #3: Application to Battery Sizing Trade Study 

 Research Question #5 asks “How does the choice of optimal schedules affect 

other problems in hybrid system design?” These problems would include the trade studies 

required to size different parts of the hybrid architecture. The best way to demonstrate the 

effectiveness of these methods when performing conceptual design trade studies is to 

perform one such study and examine the results using different methods. An example of 

one problem that must be solved in the implementation of hybrid aircraft is sizing the 

battery which can be done without changing any other part of the aircraft design. The 

same aircraft can be used with different size batteries which displace fuel at the cost of 

carrying the battery weight. If batteries were as fluid as jet fuel this would lead to a 

different ideal battery weight being used on each mission. In order to select a single fixed 

battery or small set of batteries, a trade study can be performed to find the impact of the 

non-ideal sized battery. Hypothesis #5 posits that “Using the proper power schedule will 
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improve performance when the system is battery capacity limited.” A proper power 

schedule should allow more capability to be extracted from smaller batteries in such a 

study. To perform the study for a fixed payload the battery size is set to each of the 

different prospective values and run for every range of interest, resulting in a family of 

curves showing energy or fuel savings vs range for each battery size as seen in Figure 58 

below from a study of the Rolls-Royce EVE. Fuel savings is plotted as a function of 

battery size and range in the large chart and energy savings is shown in the inset. 

Depending on the power schedule adopted, these curves will be slightly different, 

demonstrating the merits of the different methods. 

 

Figure 58: Battery Sizing Trade for Rolls-Royce's Electrically Variable Engine (EVE)[46] 
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To implement this analysis the Experiment #2 methods can be called as functions 

by a master script performing the sweep. Attempting to use Dynamic Programming on 

such a sweep of cases would take impractically long, so the sweeping comparison was 

only done with Constant Power and the Optimal Control variants. Dynamic Programming 

was only used to spot check and demonstrate how close these results are to the global 

optimum. In addition to these methods, the conventional case, using no battery power, 

had to be modeled at each range. The power limited case also had to be detected and 

simulated over ranges too short for Optimal Control to have any effect. 

Power Limited Cases 

Some conditions of battery and range do not lend themselves to optimization. 

Many cases at lower ranges with larger batteries will be unable to empty the entire 

battery before landing, even running the motor at maximum power throughout climb and 

cruise. These cases’ power schedules cannot be further optimized through Optimal 

Control or Dynamic Programming and instead must be run at maximum power with the 

final amount of electricity used tracked and accounted for in the energy savings 

calculations. Longer distance missions can simply use up the maximum capacity of the 

battery.  

Calculations for these cases were performed using the same code used for 

simulating constant power missions. However, instead of setting the power to exactly 

empty the battery, the mission was run at full power and at the end of the mission the 

amount of unused battery power was recorded. If the value of unused battery power was 

negative, the result was discarded and the other methods were used instead. The same 



154 

 

code was used to run the conventional case for comparison, setting both the battery 

weight and the power used to zero but leaving the electrical system weight included in 

the empty weight to simulate what the exact same aircraft could do if the battery alone 

were removed.  

Trade Study Implementation  

 The battery trade study implementation was performed by systematically 

sweeping through battery sizes and ranges with each of the above codes. First the 

baseline was established using zero battery power and zero battery weight at each range 

to find the conventional fuel burn. Then for each of the battery sizes tested the range was 

increased from a minimum of 500 nmi. by 50 nmi. increments, and the power limited 

case was run, saving the amount of electricity used and the fuel burned in each case to the 

results matrices for every optimization method. When the power limited case returned a 

negative battery energy remaining, that case was rerun using each optimization method, 

and all longer ranges with that battery were run with the optimization methods without 

retrying the power limited code. 

 Unlike the earlier experiments, not every case used the entire battery; therefore 

comparisons strictly of fuel burn would not capture the difference in energy consumption 

of the different methods and the no hybrid baseline. Instead the total energy was used for 

comparison, using the heating value of the fuel burned and the amount of energy 

removed from the battery. The total energy was therefore given by Equation 47, shown 

below. 
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 𝑇𝑜𝑡𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦 (𝑀𝐽)

= (𝐹𝑢𝑒𝑙𝐵𝑢𝑟𝑛 (𝑙𝑏𝑠))
43.5 (

𝑀𝐽
𝑘𝑔

)

2.2 (
𝑙𝑏𝑠
𝑘𝑔

)

+ (𝐵𝑎𝑡𝑡𝑊𝑒𝑖𝑔ℎ𝑡 (𝑙𝑏𝑠))(%𝐵𝑎𝑡𝑡𝑈𝑠𝑒𝑑) (𝐸𝑛𝑒𝑟𝑔𝑦𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑊ℎ

𝑘𝑔
)) (

3600
𝐽

𝑊ℎ

106 𝐽
𝑀𝐽

) 

 

(47) 

 To enable the use of a 5,000 lb. battery, some modifications to the baseline power 

scheduling algorithms were necessary due to the battery’s limited energy capacity and its 

higher cell resistance (for the 100% battery resistance case). The limited energy available 

meant that the Climb Power method could not run full power during the entire climb 

segment. Instead in this method and at this battery size the power was set to zero during 

cruise and to whatever constant value during climb which would empty the battery. In 

addition the cell resistance limits the maximum power that can be drawn from a battery, 

which is not a limiting factor for 10,000 lb. and greater battery sizes. However the 

reduced cell count of a 5,000 lb. battery brought down this limit enough that for that 

battery size the maximum power for all methods was reduced to 2,500 Hp.  

Baseline Method Results 

 The energy savings for different battery sizes and ranges with 25,000 lbs. of 

payload and standard battery resistance are shown in Figure 59 below for each of the 

baseline methods. Figure 59 shows the savings as a percentage reduction in total energy 

use compared to the all fuel case at the same range and payload, carrying no battery. For 

the larger battery sizes, the figure shows no difference between the different methods left 

of the peak. This is expected because the cases left of peak are the power limited cases 
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where the battery cannot be drained before the mission ends. All of the methods tested 

reduce to full power at these power limited ranges. At longer ranges, the figure shows 

that Constant Power outperforms the others, with end power consistently doing worse 

than climb power as could be expected from the Experiment #2 results. In fact as the 

ranges increase only Constant Power continues to provide a fuel savings, as End Power 

and Climb Full Power have negative savings for all batteries at the 2000 nmi. mission.  

 

 

Figure 59: Energy Savings Carrying 25,000 lb. Payload with Different Battery Sizes and Baseline 

Schedules 
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batteries, which have a higher resistance due to their size. The non-constant schedules 

even have a net energy loss at ranges as low as 800 nmi., while the Constant Power 

schedule remains in the black at all ranges. The actual battery which an airframer would 

select based on this chart depends on the range the aircraft is expected to fly, but in all 

energy limited cases Constant Power outperforms the other baseline methods. 

 The same battery size and range study was performed using the baseline methods 

with the 50% resistance and ideal batteries as well. The results are seen in Figure 60 and 

Figure 61 below. These figures show that the absolute energy savings increases as the 

battery is made more ideal and as more energy becomes available to offset fuel. In 

addition, the difference between the three baseline methods gets quite small with an ideal 

battery.  

 

Figure 60: Energy Savings with 50% Battery Resistance, Baseline Schedules, 25,000 lb. Payload 
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Figure 61: Energy Savings with Ideal Battery, Baseline Schedules, 25,000 lb. Payload 
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Figure 62: Optimal Control Variants' Energy Savings Compared to Constant Power, 100% Battery 

Resistance 
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two subfigures show that the Optimal Control methods come very close to the global 

optimum, sometimes doing better than Dynamic Programming but never more than .02% 

worse. Similar plots were made for the 50% resistance and ideal battery cases, showing 

similar trends but a slightly higher maximum difference. These are shown on the 

following pages as Figure 63 and Figure 64. These show a maximum improvement over 

constant power of .16% in the 0% resistance 5000 lb. battery case at 2000 nmi. However, 

the absolute energy savings compared to no battery in these figures are at a minimum as 

was seen before in Figure 61. 

 

Figure 63: Optimal Control Variants' Energy Savings Compared to Constant Power, 50% Battery 

Resistance 
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Figure 64: Optimal Control Variants' Energy Savings Compared to Constant Power, 0% Battery 

Resistance 
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Experiment #3 Execution Time 

 Each of the original Optimal Control runs continues to execute in under 2 

seconds, but the improved Optimal Control methods call the Optimal Control code many 

times per run and take significantly longer. The Two Level Optimal Control takes 

approximately 80 seconds per run, and the Weighted Optimal Control can take 3 minutes, 

although all times are a function of the mission length. The sweeps performed in Figure 

59 and Figure 62 were performed in the same run of code and took approximately 6 hours 

to execute for the 4 batteries converging at 31 distances, with the power limited cases 

running faster than the others. The Dynamic Programming cases shown each took 12-18 

hours to execute during Experiment #2, depending on mission length, making them 

unsuitable for such sweeps.  

Experiment #3 Conclusions 

 The results of the trade study clearly illustrate that there is a significant difference 

in performance between a good power schedule and a poor one. For energy limited cases, 

the performance of Constant Power compared to the other baseline methods was 

significantly better. Research Question #5, which asked “How does the choice of optimal 

schedules affect other problems in hybrid system design?” is answered with a 

confirmation of Hypothesis #5: “Using the proper power schedule will improve 

performance when the system is battery capacity limited.” This analysis would enable 

some systems to use smaller batteries, which are typically not only lighter, but less 

expensive. The dominance of the battery resistance’s influence on the power schedules 
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can also be seen by observing the disappearance of performance differences in the ideal 

battery case.  

 The small magnitude of even the greatest difference between the best Optimal 

Control variant and Constant Power confirms that changes need to be made to SHAPSO. 

There must be some evaluation of whether the optimal methods provide an increase in 

performance over baseline methods that is significant and worth the additional 

computational burden of using an advanced method over a simple baseline method.  

Exploring the Technology Assumptions 

 The technology and aircraft size assumptions set before the start of Experiment #1 

and maintained through the subsequent experiments predict great improvement over the 

state of the art by the Far Term timeframe of this design. To show that SHAPSO is not 

dependent on these specific assumptions, some of the assumptions were changed and the 

battery sizing study from Experiment #3 was repeated. Within the modeling environment 

some assumptions are hard to change, for example the engine deck is only valid along the 

climb schedule used to generate it. Therefore the climb schedule was kept fixed. Instead 

the most ambitious of the technology assumptions, the 750 Wh/kg effective battery 

energy density, was reduced to 550 or even 400 Wh/kg. The effects of this change can be 

seen in Figure 65 and Figure 66 below. These figures show the performance of the 

different baseline schedules, with 550 Wh/kg and 400 Wh/kg batteries respectively, as a 

percentage fuel burn savings compared to carrying no battery at all. These can be 

compared to Figure 59, which used 750 Wh/kg batteries. For these tests the battery 
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resistance per cell was left at the original level, but each pack contained fewer cells due 

to their decreased energy density, resulting in less energy to be used to offset fuel.  

 

Figure 65: Energy Savings Carrying 25,000 lb. Payload with Different Battery Sizes and Baseline 

Schedules, 550 Wh/kg 
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Figure 66: Energy Savings Carrying 25,000 lb. Payload with Different Battery Sizes and Baseline 

Schedules, 400 Wh/kg 
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density. Based on this it is even more crucial for the proper power schedules to be used 

for battery energy densities less than 750 Wh/kg.  

 A second assumption that was tested was a design assumption. The hybrid 

architecture tested in Experiments #1-#3 was equipped with a 3500 Hp electric motor 

augmenting each of its turbofan engines. Many of the power schedules found never 

reached 3500 Hp of use, raising the question of how the results would change if the 

motor power was reduced to a maximum of 2500 Hp or 2000 Hp. This reduction in motor 

power reduces the freedom of the different algorithms to use a fixed battery at different 

times, but would also reduce the weight of the system. This study is shown in Figure 67 

and Figure 68, which show the fuel savings of 2500 Hp and 2000 Hp motor equipped 

engines compared to flying the same aircraft without a battery. These figures can be 

compared to Figure 59 for the 3500 Hp case, and like Figure 59 these figures were 

generated with 750 Wh/kg batteries with 100% of the original estimated pack resistances. 



167 

 

 

Figure 67: Energy Savings Carrying 25,000 lb. Payload with Different Battery Sizes and Baseline 

Schedules, 2500 Hp Motor 

 

 

Figure 68: Energy Savings Carrying 25,000 lb. Payload with Different Battery Sizes and Baseline 

Schedules, 2000 Hp Motor 
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 As expected each of these figures show that the power limited case extends much 

further into the mission and has a lower fuel savings value due to the tighter power limits. 

These power limits reduce the amount of the tested mission envelope in which the 

baseline schedules can show any differences and start their curves off from a lower peak. 

The curves do not diverge as much as they do in Figure 59 because End Power and Climb 

Power cannot reach the high power levels they could in the 3500 Hp case and therefore 

cannot sustain as great as a resistance loss. The restrictions on power level and resistance 

loss are seen even more in the 2000 Hp case than in the 2500 Hp, showing that tightening 

the allowed motor power does cause all power schedules to converge. Despite this, 

Constant Power is still outperforming the other baseline methods by enough to improve 

the performance of any of these battery packs for selection in a battery sizing study. 

Therefore, determining that the proper power schedule is still of importance when flying 

at greater than the power limited ranges.  

Revisiting the Research Questions 

 With the experiments complete, the final answers to the research questions can be 

determined. Each of the five research questions shall be considered before the answers 

are used to update the methodology.  

1. How important is it to use the optimal power schedule? 

Hypothesis: The use of optimal power schedules over a typical aircraft mission 

will yield significant savings in fuel burn. 
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 Hypothesis #1 was found to be correct. In all three experiments the difference 

between the optimal power schedule and some of the baseline schedules was as much as 

3%, despite discharging an identical battery to displace fuel.  

2. What factors determine the optimal power schedule? 

Hypothesis: The reduction in aircraft weight from burning fuel early is the 

dominant effect determining the optimal power usage schedule. 

 Hypothesis #2 was found to be incorrect for the hybrid aircraft tested under these 

assumptions. The impact of battery resistance was seen to be the largest factor in shaping 

the optimal power schedule, driving the answer towards Constant Power. When the 

battery resistance was eliminated the engine model itself also contributed to the Constant 

Power schedule through the drop in turbine efficiency with increased motor power. The 

effect of burning fuel early rather than late was seen to have an impact of around .5% of 

the fuel burn when comparing Start Power to End Power in Experiment #1. While that 

contributed to the effectiveness of Weighted Optimal Control, its impact was dwarfed by 

the 2% impact of battery resistance. 

3. What is the appropriate baseline schedule? 

Hypothesis: The best baseline hybrid power schedule is to use the battery power 

as late in the mission as possible.  

 Hypothesis #3 followed naturally from Hypothesis #2, and was also found to be 

incorrect. Of the baseline methods tested, Constant Power performed the best across all 

three missions, although an additional baseline method, Linear Power, was added to 

Experiment #1 after seeing the linear answer found by Dynamic Programming. Linear 

Power was practically the optimal schedule. No such method applicable to the entire 
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mission was identified in Experiment #2, although another method may be discovered for 

other systems.  

4. What methods can be used to find better hybrid power schedules? 

Hypothesis: Dynamic Programming will prove effective in finding the global 

optimum hybrid power schedule but take too long to be practical in design. 

Optimal Control will find almost as good a solution quickly enough to be 

practical. 

 Hypothesis #4 was confirmed in Experiments #1 and #2, as Optimal Control 

executed much faster than Dynamic Programming and found a fuel burn within .1% of 

Dynamic Programming in every case. However the performance of Optimal Control was 

worse than that of Constant Power until it was augmented. The original Optimal Control 

method was not equipped to detect savings from burning fuel earlier in the mission. 

However modified Optimal Control methods were developed that not only consistently 

outperformed Constant Power but in some cases also found a lower fuel burn than the 

resolution limited Dynamic Programming. 

5. How does the choice of optimal schedules affect other problems in hybrid system 

design? 

Hypothesis: Using the proper power schedule will improve performance when the 

system is battery capacity limited. 

 Hypothesis #5 was confirmed by a comparison of using the different baseline 

methods of optimization to calculate the fuel displacement of different battery sizes at the 

beginning of Experiment #3. There is no optimization of power schedules to be done 

when the system is power limited, seen left of the peaks in the Experiment #3 graphs, but 
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a significant savings was seen in the battery capacity limited parts of the curves, seen to 

the right of the peaks. In these sections the Constant Power schedule and the Optimal 

Control variants outperformed End Power and Climb Power by 1-2% over many ranges. 

This improvement could make the difference between choosing one battery or another 

depending on the set of ranges an aircraft is intended to fly. The improvement in 

performance of the Constant Power and Optimal Control variant schedules was still 

present even if the assumptions on battery energy density or the design motor power level 

were changed. 

 With the research questions answered, the conclusion in Chapter 6 will consider 

how the results reflect on SHAPSO and its utility in the hybrid architecture design 

process. The results will also be used to improve SHAPSO, and future work will be 

identified which could utilize or improve SHAPSO for continued research.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 This thesis set out to create a methodology for determining optimal operational 

schedules for hybrid electric architectures. These aircraft propulsion architectures use the 

energy carried in a finite battery to reduce the fuel required to carry out a mission. Use of 

an optimal operational schedule would allow such a system to minimize the fuel burn 

without changing any of the hardware or mission parameters and thus extract more 

performance out of a fixed system with only an increased computational cost.  

 In Chapter 2 the current literature on hybrid aircraft was surveyed to determine 

the types of hybrid electric systems which have been considered for aircraft. From these a 

hybrid turbofan similar to the Boeing SUGAR Volt was selected as a representative 

hybrid system to use to develop the methodology. In Chapter 3 a series of research 

questions were posed. These asked what impact the operational schedule has on the fuel 

burn, what factors affect the ideal operational schedule, what the best baseline schedules 

are, what optimization algorithms can be used with the hybrid architectures and what 

impact the choice of operational schedule has on the battery sizing and other hybrid 

sizing problems. Hypotheses were made for each of these questions based on the 

available literature on hybrid aircraft and hybrid electric cars, and a methodology, 

SHAPSO, was proposed based on these hypotheses. A series of experiments was then 

proposed to settle the research questions and determine the value of the methodology. 

Chapter 4 described the modeling process which was used to create a hybrid turbofan 
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model sufficient to carry out these experiments. The implementation and results of the 

experiments were given in Chapter 5.  

 This final chapter is divided into four sections. The first section discusses the 

results of the experiments used to determine the methodology. It also discusses 

modifications to SHAPSO that can be made in the light of the experimental results. These 

modifications are demonstrated by applying SHAPSO to the system modeled in Chapter 

4. The second section discusses potential improvements that could be made to this 

methodology in the future. The third section summarizes the contributions of this thesis 

to the state of the art, and the final section examines future work on the problem of 

Hybrid Electric Power Scheduling.  

Summary of Experimental Results and Changes to SHAPSO 

 The methodology detailed at the end of Chapter 5 was created based on the 

answers to research questions first posed in Chapter 3 pertaining to the impact of optimal 

operational schedules on the performance of the hybrid architecture. Each of those 

questions had a corresponding hypothesis which was confirmed or disproved by the 

experiments detailed in Chapter 5. These experiments showed that for the representative 

hybrid architecture used in this analysis the performance of a Constant Power baseline 

schedule was significantly better than that of the other baseline schedules tested, which 

were Start Power, End Power, and Climb Power. This fuel burn savings for the Constant 

Power schedule was largely due to the influence of the battery resistance on the hybrid 

system’s efficiency. The experiments also showed that the performance of a Constant 

Power baseline power schedule was slightly worse than the performance of the power 
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schedules determined using Dynamic Programming and the variants of Optimal Control 

across multiple ranges and battery sizes. However the small margin between the 

performances of Constant Power and the optimization methods merits changes to 

SHAPSO in order to take advantage of near optimal baseline schedules 

 

Modifications to SHAPSO from Experimental Results 

 

Figure 69: Systematic Hybrid Aircraft Power Schedule Optimizer (SHAPSO) 
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neglected the potential utility of simple baseline schedules. The final power scheduling 

selection procedure is seen in Figure 70 below, with changes or additions to the original 

depicted in green. 

 

Figure 70: Updated Methodology for Determining Optimal Operational Schedules for Hybrid 

Electric Architectures 
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Control. A surrogate model can be smoother than an engine deck, enabling intermediate 

points to be chosen. It is important however that the surrogate model be a very good fit to 

the source data, as any ripples in the fit can produce anomalies in the power schedule, as 

was discovered during the development of Experiment #2. 

 The next step in the procedure is to identify the appropriate baseline method for 

power scheduling the architecture. For some systems there is an established baseline in 

the literature, but for others there are multiple candidate baseline power schedules from 

which to choose. In the latter case each should be implemented and tested in order to 

identify the best known power schedule. If the best baseline schedule is not listed or 

tested, it may become apparent in a later step from looking at the global optimal 

schedules, similar to the discovery of the Linear schedule in Experiment #1.  

 The following step is to run a small sample of points through a global optimizer 

method such as Dynamic Programming, and compare the results to the baseline. The 

number of points examined depends on the available computational resources, but should 

sample different ranges and battery sizes to find the optimum performance across the 

possible missions.  

 The next decision point depends on the stage of design, the confidence in the 

model, and the confidence in the underlying technology and mission assumptions made 

in the modeling effort. There is a threshold value of the smallest fuel savings that is held 

to be significant. A 1% fuel burn savings when multiplied by the amount of fuel an 

aircraft burns in its lifetime is a large amount, significant in cost and in CO2 emissions. A 

.01% fuel burn savings on the other hand is likely smaller than the modeling error, or the 

impacts of other unknown variables such as the weather, air traffic congestion, or even 



177 

 

the exact weight of the passengers. The threshold at which significant fuel savings occurs 

must be decided by the designer based on their knowledge of their model and the 

estimated error due to known and unknown sources. This threshold of significant fuel 

savings becomes the margin of significance used in comparing schedules.  

 If the amount of fuel savings predicted by the global optimum is a smaller 

improvement over the amount predicted by the baseline schedule than this margin of 

significance, the methodology concludes that the baseline is sufficient and should be used 

until the uncertainty in the model is reduced to less than the difference. If the difference 

in fuel burn is greater than the margin of significance, the global optimizer may still not 

be the best option due to the computational burden. For this reason the next step in the 

methodology is to evaluate alternative methods such as Optimal Control, Two Level 

Optimal Control, and Weighted Optimal Control, in order of increasing computational 

burden.  

 The methodology’s selection of operational scheduler therefore chooses the least 

computationally expensive method which predicts fuel savings within the margin of 

significance of the global optimum. If none of the other methods produce savings within 

this margin, a final decision is made after evaluating both the difference between the 

savings of the best of these methods and the global optimizer and the difference in 

computational cost. If the computational cost is prohibitive, the less computationally 

expensive method is used. Otherwise the global optimizer is the final choice.  
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Example Application of the Methodology 

 

 

Figure 71: Procedure Example, Experiment #2 System/Assumptions, .2% Fuel Burn Significant 
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baseline schedules were compared. Constant Power was found to save the most fuel. 

Using Dynamic Programming as the global optimizer, the maximum observed difference 

in fuel burn between the Constant Power schedule and the Dynamic Programming 

schedule was .021% using the original assumption about battery resistance. If the 

confidence interval for the model is .2%, this would complete the methodology with 

Constant Power selected as the final schedule, as shown in the flowchart in Figure 71 

above.  

 

 

Figure 72: Procedure Example, Experiment #2 System, Ideal Battery, .05% Fuel Burn Significant 
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 However, if the battery assumption was changed to the ideal battery and the 

confidence interval of the model was .05%, the .09% increase in fuel burn of the baseline 

methods over Dynamic Programming would cause the methodology to turn to the 

Optimal Control variants as illustrated in Figure 72. In this case the methodology would 

settle on Two Level Optimal Control because it is the fastest method which stays within 

the .05% bounds of Dynamic Programming.  

 This logical progression from the least expensive scheduler to the most expensive 

in search of the first one with sufficient performance should work for all hybrid 

architectures. Depending on the architecture, different baseline schedules may be 

required, and different optimization methods may be added to the “Test Other Methods” 

step. However this procedure should still identify the optimal operational schedules for 

hybrid electric architectures.  

Technology, Operational, and Architectural Causes of Near Constant Optimal 

Schedules  

 As detailed in Chapter 5, we can have sufficient confidence in the results to adopt 

a modified version of SHAPSO. However questions remain on why a baseline schedule 

performed so well compared to a globally optimized schedule. This may be caused by the 

technology assumptions, the design of the hybrid gas turbine and the operational 

assumptions inherited from previous studies.  

 The technology assumptions impacting the efficiency of the electrical system in 

offsetting fuel at different power levels influence the ideal battery power schedule. These 

assumptions were included in the efficiency maps baked into the engine surrogate 
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models. According to these efficiency maps the motor and power electronics are 

inefficient at low power settings. This made low nonzero power choices uncommon 

among the optimal schedules. Another assumption is the efficiency loss within the gas 

turbine engine caused by the engine’s acceptance of additional shaft power. This could be 

addressed in the future by an engine optimized for the acceptance of additional power, 

possibly even at the expense of fuel consumption during conventional operation.  

 The most conspicuous technology assumption is the battery resistance, which 

drives the motor power down with losses that are proportionate to the square of the 

power. This was shown in Experiments #2 and #3 to be the single largest factor 

determining the poor performance of the non-constant baseline schedules. Battery 

resistance severely penalized any use of full hybrid power during a mission. The 

resistance level of the baseline batteries was set by comparison with modern batteries 

such as those shown in Figure 73. Batteries of the future may be expected to be available 

with a lower internal resistance and a higher power density than those modeled in this 

thesis. However, as seen in Figure 73 this would reduce the available energy density of a 

fixed technology level battery. It is expected that an aircraft application will use the 

battery with the highest energy density it can afford, especially considering the battery’s 

reserve capacity, not considered in this thesis, which reduces the effective energy density. 

Because of the battery’s reserve capacity, this may require the actual energy density to be 

1,000 Wh/kg to achieve these results.  
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Figure 73: Ragone Chart for 2010 State of the Art Batteries[85] 
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without electric assist, prohibiting boosting the engine thrust with the motor to achieve a 

higher climb rate. In addition, the engine was designed under the assumption that the core 

would never shutdown, dictating a minimum fuel burn even during descent. This differed 

from the core shutdown configuration seen in the Boeing SUGAR Phase II report[18].  

 Surprisingly another factor affecting the power schedule is the drag polar of the 

aircraft. The architecture used in these studies ultimately inherits the truss braced wing 

from Armstrong et al.[45] and has an extremely high L/D ratio of 22.75. This high ratio 

means that as the 8,000 lbs. of fuel burns in some of these cases, the required thrust of the 

vehicle only increases by 300 lbs., a relatively small change in the operation of a 150,000 

lb. vehicle. If the induced drag were higher a larger change in thrust could change the 

operating point of the engine, encouraging a less constant use of hybrid power. On the 

other hand the higher penalty on weight makes it less likely that a hybrid propulsion 

system would ever be used on such an aircraft. 

 A final factor worth mentioning is the limited power of the hybrid system. The 

Chevrolet Volt, whose optimization in Tribioli et al. [17] drove the formulation of 

Hypothesis #4, is capable not only of shutting down and restarting its engine, but of 

maintaining all but the highest required output power on electrical power alone. The 

batteries carried in the 120 mile case (which they optimized by an additional 20% in fuel 

burn) were large enough to carry the Volt 1/3 of the distance (40 miles) without any 

gasoline usage. The only comparable hybrid architecture for aircraft is the SUGAR Volt 

Core Shutdown case. Unlike the Chevrolet Volt, it cannot relight its engines and pays a 

penalty for carrying so much weight[18]. However the larger motors and batteries 
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involved in the Core Shutdown model would give the optimizers more freedom to find 

the most optimal schedule. 

 Further work developing SHAPSO may benefit from a test case with a more 

varied ideal schedule. The first assumption to change for such an architecture is the 

requirement that the core remains lit during the entire mission. A system enabling core 

shutdown and relight would likely require a larger hybrid power level which would also 

enable more operational schedules. It may even be possible to shut down one core and 

leave the other burning, maintaining symmetric flight by utilizing electric power on one 

engine and jet fuel on the other. Architectures such as the eConcept with separate flow 

paths may be a good choice as well.  

 An additional consideration which would drive more interesting schedules is 

recharging. Although the electricity generated by burning jet fuel at altitude is unlikely to 

be cheaper than electricity generated at the ground, in systems where the net battery use 

in a mission is constrained to be zero a non-constant power schedule is guaranteed, and 

optimization of the recharging schedule may be an interesting test case.  

Potential Improvements to the Methodology 

 The methodology as stated in Chapter 5 is capable of determining the optimal 

operational schedules for hybrid electric architectures, but it has room for improvement. 

A test case with more varied optimal operational schedules may assist in developing its 

improvements. 
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Resolution 

 The time step used during Experiment #1 was identified as being too large for use 

in the climb and descent segments of Experiment #2. This was due to the integration 

errors on the rate of climb. More problematic in the experimental results is the propensity 

of the other methods to edge out the global optimizer, Dynamic Programming, due to the 

resolution of Dynamic Programming’s choice of power. The minimum power step during 

climb which is required to drain 1/100,000 of the battery in .001 hr., works out to ~26 

HP. or about .75% of the maximum available hybrid power. Increasing the number of 

battery states that Dynamic Programming is allowed to have by a factor of 10 or 100 

would bring this down to 2.6 or .26 HP. respectively. This calculation would most likely 

be sufficient to find the global optimum schedule. However this would increase the 

computational burden 100 or 10,000 fold and require the implementation of parallel 

processing and possibly a move off of desktop systems into a parallel computing cluster.  

Additional Methods 

 The methodology as expressed in Chapter 5 does not specify exact methods to be 

used such as Dynamic Programming and Optimal Control. It is compatible with any 

method which meets the criteria of being a guaranteed global optimizer or a power 

schedule optimization method. Replacing the global optimizer with a faster one and/or 

finding other suitable methods could improve the execution time or final answer of the 

methodology.  
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Global Optimizers 

 Dynamic Programming was chosen as the global optimizer due to the prevalence 

of its use in the literature for hybrid electric cars, in which it is the benchmark for other, 

faster, methods[17]. However, once the discretization scheme used for Dynamic 

Programming has reduced the problem to one of the shortest path between nodes, many 

other algorithms are available that could find the solution. 

 One well known method for solving shortest path problems is Dijkstra’s 

algorithm, first published by E. W. Dijkstra in 1959[96]. This method is closely related to 

Dynamic Programming, as Dijkstra also worked from the principle that any subset of the 

ideal path is itself the ideal path from the intermediate point to the end[97]. Dijkstra’s 

original algorithm is designed for more general sets of nodes than the time step defined 

ones used in the hybrid car problem, where each state transition must go from one time 

step to the next. However modifications of Dijkstra’s algorithm for such graphs have 

been made which make it much faster and suitable for such problems[98]. 

 Even faster convergence might be possible using A* algorithms, which attempt to 

reduce the number of state transitions that have to be modeled by using a heuristic to 

estimate the minimum possible fuel burn from each state to the end[99]. This can 

eliminate areas of the space where too much fuel has already been burned to possibly be 

optimal. However, if this heuristic is too conservative, it only slows down the algorithm, 

and if it is too aggressive, it may not find the global optimum. It may be difficult to split 

the difference and achieve a net time savings compared to Dynamic Programming.  
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Other Methods 

 The methodology of this thesis can be adapted to test any algorithm that can be 

applied to the power scheduling problem. Depending on the factors included in the 

system model, different methods may be needed. In later stages of design it may be of 

interest to add stochastic effects to the system model, such as wind or reserve mission 

requirements, and to test algorithms that can handle such effects, such as Model 

Predictive Control or Stochastic Dynamic Programming which are used in hybrid cars. 

These algorithms could show the sensitivity of the ideal fuel burn to stochastic effects by 

comparing their performance to that of the global optimizer [100, 101].  

Additional Variables 

 Experiments #1-#3 only considered an aircraft which flies a specific climb and 

descent schedule to a fixed cruise condition of Mach = .7 at 37,700 ft., however there 

may be gains to be had from flying a hybrid system at different flight conditions. If the 

cruise conditions were added to the algorithm, the algorithm might find that certain 

power schedules enable or favor flying at a higher or lower cruise altitude. Aircraft 

typically fly a step cruise, slowly increasing their altitude throughout a mission as they 

get lighter. Hybrid power considerations may favor a schedule in which fuel is burned 

early in the mission to step to a higher altitude where there is less drag. At this higher 

altitude the hybrid components could outperform the gas turbine further due to the 

decrease in thrust lapse. This would increase the efficiency of the system. 

 The climb and descent schedules were also fixed for this thesis using conventional 

fuels, attempting to get the best range per pound of fuel over the total climb segment. 
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This optimum climb schedule may change with the addition of electric power, especially 

if the hybrid system is sized to allow a higher thrust with power added than it can achieve 

in conventional operation. If core shutdown or other hybrid operation is allowed during 

descent the descent schedule may change as well.  

 Including additional variables such as climb rate or altitude in the optimization 

schemes would increase the computational burden on the optimizer, adding an entire 

extra dimension to the space optimized by Dynamic Programming and hence a drastic 

increase in the computation time. This could be offset by use of more advanced 

computational hardware.  

Optimization Objective 

 In the fixed battery case considered by this thesis, the only objectives of the 

optimization methodology were to reduce the fuel burn during the mission and find the 

best method for doing so. The energy carried in the battery was completely used. This 

was under the justification that most of the cost of using the energy would still be 

expended if it was not used. That cost would be that incurred by carrying the battery’s 

weight. Completely using all of the energy in the battery remains the strategy even if the 

objective becomes decreasing carbon emissions. In fact, carbon emissions could 

potentially be worse for electricity than for jet fuel. Therefore a smaller battery or no 

battery should be carried if the entire battery is not to be used.  

 In the 2017 update to NASA on the Rolls-Royce Electrically Variable Engine, 

Armstrong et al. pointed out that hybrid operation of parallel hybrid turbofans reduces the 

temperature at the exhaust of the burner and hence increases engine life if used to offset 
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the hottest part of the mission [46]. This raises the prospect of scheduling power not only 

to minimize fuel burn over the course of the mission but to maximize engine life, 

weighing a turbine temperature decrease in one part of the mission against a fuel burn 

increase from not having hybrid power available at a different part of the mission. This is 

particularly interesting because maximum life increase would require maximum hybrid 

power application. This would directly counter the penalty on maximum hybrid power 

imposed by the battery resistance.  

Contributions 

Hybrid Engine Modeling 

 In order to capture the performance of the electric components of a hybrid electric 

propulsion system, and their interplay with the gas turbine components, a set of electric 

component models was created in the gas turbine modeling tool NPSS. Models created 

for the motor, bus, power electronics, cable, and battery components, along with a 

scheme for interconnecting these electrical components, allowed for the modeling of 

many different hybrid electric architectures. With the addition of a generator element 

these models can be used to model most turboelectric architectures as well. These 

components are not specific to propulsion system modeling and have the potential to be 

used to model the electric part of gas turbine based power generation systems for 

terrestrial or airborne applications. 
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Hybrid Aircraft Mission Modeling 

 The mission simulation equations that govern the change in fuel weight, battery 

state of charge and aircraft altitude and distance were implemented in a MATLAB tool to 

enable analysis of hybrid aircraft mission performance from an engine surrogate model, 

aircraft weight and drag polar. This tool is not specific to the drag polar and engine model 

seen in this thesis, as can be seen from the iterations on the surrogate model performed in 

the setup of Experiments #1 and #2. Any hybrid electric aircraft could be modeled in the 

system by entering its weight, drag polar and surrogate and having its performance over 

the mission determined with any power schedule or scheduling method desired. With 

only slight modifications this could include propulsion systems incorporating recharging 

or asymmetric propulsion system operations.  

Hybrid Aircraft Operational Schedules 

 The hybrid system chosen as the example system is based on a popular hybrid 

architecture seen in studies by NASA and Rolls-Royce. This system has been operated 

under different power schedules by different authors[18, 46, 93]. The superior 

performance of the Constant Power schedule is therefore of interest, even though it is 

only known to apply to this particular engine model operating under this set of 

technology assumptions and operational requirements. For systems with different 

architectures, sizes, or even higher fidelity models, the operational scheduling tool 

developed in this thesis has direct application for determining its power schedule and 

performance. This is particularly true of the Dynamic Programming method, which can 

be used to identify the global minimum fuel burn and the shapes of the optimal schedules 
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themselves. After the shapes of the schedules are found, they may admit capture by a 

simpler parametric scheme.  

Future Work 

 This thesis has concentrated on the optimization of the power schedules for hybrid 

electric aircraft under a certain set of assumptions in isolation from other aspects of 

aircraft design and operation. Although hybrid electric aircraft such as the one modeled in 

this thesis are years away from commercial adoption and many of their technologies 

remain uncertain, the power scheduling problem is significant due to the effect it can 

have on other problems within hybrid electric aircraft design. In addition to potentially 

improving the methodology mentioned above, future work is needed on these larger 

problems impacted by the operational schedules’ performance.  

Battery Selection 

 As seen in Experiment #3, the energy savings curves for a given hybrid 

architecture are a strong function of the battery size at each range the hybrid aircraft flies 

and are improved through the application of optimal operational schedules. The battery 

size can therefore be chosen based on an expected distribution of missions for a proposed 

aircraft. One aspect of this problem which has not been considered is the application of 

multiple sizes of battery. This would involve allowing a single airframe to have different 

detachable batteries to use depending on payload and range. The number of batteries and 

ultimate feasibility of interchanging batteries at each airport is an economic consideration 

but the proper sizes to choose and the fuel burn savings they would achieve can be 

computed using the framework developed in this thesis. 
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 Hybrid Propulsion System Selection and Sizing 

 Although no air carrier will be optimizing a fleet of hybrid electric airliners in the 

next couple of years, designers of the next generation of aircraft are already starting to 

make choices about the level of hybridization future aircraft will have. In this thesis the 

test scenario given at the end of Experiment #3 demonstrated the change in performance 

that occurs if the previously fixed electric motor size of 3,500 Hp. on each fan was 

reduced to 2,500 or 2,000 Hp. There is a tradeoff to be made in this sizing, trading extra 

weight on long missions against additional savings on short missions. A higher fidelity 

engine model may also examine the tradeoff between the difficulty in designing an 

engine with a larger embedded motor and potential energy losses from bending the flow 

path around the electric machine against the energy savings the larger machines provide 

when they are turned on. The analysis of each option requires solving the nested battery 

sizing and power scheduling problems and will determine if the core shutdown 

scheduling option is viable. This problem also will determine the final capability of a 

hybrid architecture and will enable the selection or rejection of each hybrid electric 

architecture altogether.  
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APPENDIX A: ADDITIONAL OPTIMAL SCHEDULES 

 In Chapter 5 only some of power schedules found using the different methods 

were plotted as needed to demonstrate the utility of the methods. The full set of optimal 

power schedules found may be of interest, as well as the full table of the raw fuel burn 

values. These are included below. 

 

Table 16: Experiment #2 Absolute Fuel Burn, lbs. 

Batt 
R 

Range 
(nmi) 

Battery 
Weight 
(lbs.)  

Global 
Optimizer 

Baseline Schedules Optimal Control 

Dynamic 
Prog 

End 
Power 

Climb 
Power 

Const.  Original Weight. Two 
Level 

100% 1500 20000 8251.30 8393.43 8301.24 8251.74 8252.71 8250.88 8251.44 
100% 1479 10000 8837.76 9019.02 9004.34 8840.29 8840.09 8839.66 8839.33 
100% 1000 20000 5012.32 5089.52 5026.98 5013.39 5012.93 5012.35 5012.54 
100% 1000 10000 5803.62 5964.37 5920.51 5803.66 5803.80 5803.51 5803.62 

50% 1500 20000 8216.24 8304.12 8250.05 8216.66 8217.29 8215.44 8216.21 
50% 1500 10000 8951.34 9045.43 9047.86 8955.94 8955.61 8954.90 8950.19 
50% 1000 20000 4906.79 4951.51 4916.33 4908.81 4907.07 4906.76 4906.95 
50% 1000 10000 5771.59 5855.04 5830.68 5771.59 5771.71 5771.28 5771.43 

0% 1500 20000 8177.49 8220.56 8201.58 8180.55 8180.01 8178.26 8179.18 
0% 1500 10000 8929.16 8958.88 8984.58 8938.12 8937.30 8933.03 8929.62 
0% 1000 20000 4896.58 4918.29 4904.26 4900.03 4897.14 4895.54 4896.97 
0% 1000 10000 5739.59 5768.92 5768.28 5742.31 5741.92 5741.43 5741.64 
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Figure 74: Original Resistance, 20,000 lb. Battery, 1,500 nmi. 

 

 

Figure 75: Original Resistance, 10,000 lb. Battery, 1,500 nmi. 
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Figure 76: Original Resistance, 20,000 lb. Battery, 1,000 nmi. 

 

 

Figure 77: Original Resistance, 10,000 lb. Battery, 1,000 nmi. 
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Figure 78: 50% Resistance, 20,000 lb. Battery, 1,500 nmi. 

 

 

Figure 79: 50% Resistance, 10,000 lb. Battery, 1,500 nmi. 
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Figure 80: 50% Resistance, 20,000 lb. Battery, 1,000 nmi. 

 

 
Figure 81: 50% Resistance, 10,000 lb. Battery, 1,000 nmi. 
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Figure 82: 0% Resistance, 20,000 lb. Battery, 1,500 nmi. 

 

 

Figure 83: 0% Resistance, 10,000 lb. Battery, 1,500 nmi. 
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Figure 84: 0% Resistance, 20,000 lb. Battery, 1,000 nmi. 

 

 

Figure 85: 0% Resistance, 10,000 lb. Battery, 1,000 nmi. 
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