
 

 

ENERGY EFFICIENT DATA DRIVEN DISTRIBUTED TRAFFIC SIMULATIONS 

 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

SaBra Alexandria Neal 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Computational Science and Engineering 

 

 

 

 

Georgia Institute of Technology 

May 2018 

 

 

COPYRIGHT © 2018 BY SABRA A. NEAL 
  



 

ENERGY EFFICIENT DATA DRIVEN DISTRIBUTED TRAFFIC SIMULATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

 

 

  

Dr. Richard Fujimoto, Advisor 

School of Computational Science and 

Engineering 

Georgia Institute of Technology 

 Dr. David Goldsman 

School of Industrial and Systems 

Engineering 

Georgia Institute of Technology 

 

 

  

Dr. Richard Vuduc 

School of Computational Science and 

Engineering 

Georgia Institute of Technology 

 Dr. Margaret Loper 

Georgia Tech Research Institute 

Georgia Institute of Technology 

 

 

  

Dr. Michael Hunter 

School of Civil and Environmental 

Engineering 

Georgia Institute of Technology 

  

   

  Date Approved:  March 30, 2018 



 

 iii 

ACKNOWLEDGEMENTS 

This thesis would not be possible without the time and knowledgeable contribution of 

my advisor Dr. Richard Fujimoto.  Dr. Fujimoto thank you for your advice and support 

throughout my doctoral studies.  I would also like to thank my committee members for 

their time and input: Dr. Michael Hunter, Dr. David Goldsman, Dr. Margaret Loper, and 

Dr. Richard Vuduc.  I must extend a thank you to my fellow graduate students who were 

always there to provide feedback whenever needed: Philip Pecher, Aradhya Biswas, 

Caleb Robinson, and Mark Jackson. 

I would also like to personally thank my personal support system. The completion 

of my thesis would not be possible without the unconditional love and support of my 

mother and father, Cynthia Neal and Charles Heyward.  Thank you to my aunt and uncle, 

Vermell and Larry Foster who have always treated me as their own child and were 

always there without hesitation whenever I needed anything. LaShonda Foster and 

Amber Neal thank you for being not only my cousins; but, also my sisters. You guys 

were always a flight, phone call, or text message away whenever I needed you. Thank 

you two personally for being there for me during the difficult times just as much as the 

good. Thank you to Katrina Oliver for all your help over the years even during my 

undergraduate years for providing advice, edits, or whatever else I needed in little to no 

time. Last, but not least I have to thank Mr. Barry Lindler, my high school computer 

science teacher for seeing my potential in the field of computing at a young age and not 

allowing me to ignore it. This degree wouldn’t even be fathomable without your faith in 

my abilities.  



 

 iv 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iii 

LIST OF TABLES vi 

LIST OF FIGURES vii 

LIST OF SYMBOLS AND ABBREVIATIONS x 

SUMMARY xi 

1 Introduction 1 
1.1 Literature Survey 5 

1.1.1 Discrete Event Simulation 5 
1.1.2 Traffic Simulations 7 
1.1.3 Distributed Simulations 10 
1.1.4 Interest Management 12 
1.1.5 High Level Architecture (HLA) 13 
1.1.6 Data Distribution Management 17 
1.1.7 Dynamic Data Driven Application Systems (DDDAS) 19 
1.1.8 Power And Energy 21 

1.2 Research Contributions 25 
1.3 Organization of Thesis 27 

2 Energy For OnLine Data-Driven Traffic Simulations 28 
2.1 Data-Driven Simulation Architecture 29 
2.2 Embedded Traffic Simulations 31 

2.2.1 Cellular Automata Model 33 
2.2.2 Queuing Model 35 
2.2.3 Embedded Simulations and Energy Consumption 37 

2.3 Communication 39 
2.3.1 Data Streaming 40 
2.3.2 Data Aggregation 40 
2.3.3 Data Communication and Energy Consumption 41 

2.4 Power of Computation vs. Communication 44 
2.5 Discussion 46 
2.6 Conclusion 47 

3 Power consumption of priority queues for discrete event simulations 49 
3.1 Power Model for Priority Queue Implementations 52 
3.2 Priority Queue Implementations 53 

3.2.1 Linear List 53 
3.2.2 Implicit Heap 53 
3.2.3 Explicit Heap 54 
3.2.4 Splay Tree 55 



 

 v 

3.3 Power and Energy Experiments 56 
3.4 Cache Hit Benchmark 58 
3.5 Priority Queue Power Consumption 59 
3.6 Priority Queue Swaps, Linear Comparisons, and Pointer Swaps 62 
3.7 Priority Queue Energy Model for Hold Operation 65 

3.7.1 Implicit Heap 65 
3.7.2 Explicit Heap 68 
3.7.3 Linked List 71 
3.7.4 Splay Tree 74 

3.8 Discussion 76 
3.9 Conclusion 80 

4 Energy FOR HLA DDM approaches 82 
4.1 Data Distribution Management 83 

4.1.1 Region Based Approach 84 
4.1.2 Grid Based Approach 85 

4.2 Energy tradeoffs 87 
4.2.1 Region Based Approach 87 
4.2.2 Distributed Region Based Approach 88 
4.2.3 Fixed Grid Based Approach 88 
4.2.4 Dynamic Sort Based Approach 89 
4.2.5 Grid Filtered Region Based Approach 90 

4.3 Scenario 90 
4.4 Experimental Setup 91 
4.5 Energy for Computations: Initial Multicast Group Association 93 
4.6 Energy For Computation: Update Multicast Join/Leave 95 
4.7 Energy For Communications: Update Messages 97 
4.8 Energy for Communications: Constraining Publication Regions 98 
4.9 Varying Grid Cell Size 101 
4.10 HLA DDM Energy Models 103 

4.10.1 HLA DDM Initial Computation Energy Models 103 
4.10.2 Model for Update Messages 113 

4.11 Conclusion 119 

5 Conclusion 120 

REFERENCES 122 

 

  



 

 vi 

LIST OF TABLES 

Table 3-1 Memory benchmark values 58 

Table 3-2 Implicit Heap Energy Constants 66 

Table 3-3 Explicit Heap Energy Constants 69 

Table 3-4  Linked List Energy Constants 72 

Table 3-5  Splay Tree Energy Constants 74 

Table 3-6 Swaps, Linear Comparisons, Tree Rotations Energy Constants 78 

Table 3-7 Explicit Heap and Splay Tree Search Energy Constants 79 

Table 4-1 Region Based Computation Constants 104 

Table 4-2 Distributed Region Based Computation Constants 106 

Table 4-3 Fixed Grid Based Computation Constants 109 

Table 4-4 Grid Filtered Region Based Computation Constants 111 

Table 4-5 Region and Distributed Region Based Update Constants 113 

Table 4-6 Fixed Grid Based Update Constants 115 

Table 4-7 Grid Filtered Region Based Update Constants 117 

 

 

  



 

 vii 

LIST OF FIGURES 

Figure 1-1  HLA Federation Structure 17 

Figure 1-2 DDDAS Control Loop 20 

Figure 2-1 Data Driven Simulation Architecture 30 

Figure 2-2 NGSIM study area 32 

Figure 2-3 Energy as traffic load varies 38 

Figure 2-4 Energy as simulation size varies 38 

Figure 2-5 Data streaming energy consumption 42 

Figure 2-6 Payload energy consumption 43 

Figure 2-7 Power as simulation size varies 45 

Figure 2-8 Data streaming power consumption 45 

Figure 3-1 Priority Queue Implementations Power 60 

Figure 3-2 Priority Queue Implementations Energy Consumption 61 

Figure 3-3 Priority Queue Implicit and Explicit Heap Swaps 62 

Figure 3-4 Priority Queue Linked List Linear Comparisons 63 

Figure 3-5 Priority Queue Splay Tree Pointer Swaps 63 

Figure 3-6 Priority Queue Average Time Per Hold Operation 64 

Figure 3-7 Priority Queue Implicit Heap Energy Model 67 

Figure 3-8 Priority Queue Implicit Heap Energy Model % of Error 67 

Figure 3-9 Priority Queue Explicit Heap Energy Model 70 

Figure 3-

10 

Priority Queue Explicit Heap Energy Model % of Error 70 

Figure 3-

11 

Priority Queue Linked List Energy Model 72 



 

 viii 

Figure 3-

12 

Priority Queue Linked List Energy Model % of Error 73 

Figure 3-

13 

Priority Queue Splay Tree Energy Model 75 

Figure 3-

14 

Priority Queue Splay Tree Energy Model % of Error 76 

Figure 4-1 Region Based Approach 85 

Figure 4-2 Fixed Grid Based Approach 86 

Figure 4-3 Computation: Initial matching  93 

Figure 4-4 Computation: Update matching  96 

Figure 4-5 Energy of communicating update messages  97 

Figure 4-6 Publication region constrained to one grid cell 99 

Figure 4-7 Publication region constrained to N grid cells 100 

Figure 4-8 Varying grid cell size 102 

Figure 4-9 Region Based Initial Computation Energy Model 104 

Figure 4-

10 

Region Based Initial Computation Energy Model % of Error 104 

Figure 4-

11 

Distributed Region Based Initial Computation Energy Model 107 

Figure 4-

12 

Distributed Region Based Initial Computation Energy Model 

% of Error 

107 

Figure 4-

13 

Fixed Grid Based Initial Computation Energy Model 109 

Figure 4-

14 

Fixed Grid Based Initial Computation Energy Model % of 

Error 

110 

Figure 4-

15 

Grid Filtered Region Based Initial Computation Energy Model 112 

Figure 4-

16 

Grid Filtered Region Based Initial Computation Energy Model 

% of Error 

112 



 

 ix 

Figure 4-

17 

Region and Distributed Based Messages Energy Model 114 

Figure 4-

18 

Region and Distributed Region Based Messages Energy 

Model % of Error 

114 

Figure 4-

19 

Fixed Region Based Update Messages Energy Model 116 

Figure 4-

20 

Fixed Region Based Update Messages Energy Model % of 

Error 

116 

Figure 4-

21 

Grid Filtered Region Based Update Messages Energy Model 118 

Figure 4-

22 

Grid Filtered Region Based Update Messages Energy Model 

% of Error 

118 

 

  



 

 x 

LIST OF SYMBOLS AND ABBREVIATIONS 

DDDAS Dynamic Data Driven Application Systems 

DDM Data Distribution Management  

DoD Department of Defense 

HLA High Level Architecture 

 

 

 

 

 

 

 

 

 

 

 

 



 

 xi 

SUMMARY 

With the growing capabilities of the Internet of Things and proliferation of mobile 

devices interest in the use of real-time data as a means for input to distributed online 

simulations has increased.  Online simulations provide users with the ability to utilize 

real-time data to make adaptations to the system, e.g., to adjust to unexpected events.  

One problem that arises when using these systems on mobile devices is that they are 

dependent upon the device’s stored energy.  It is vital to understand how all components 

of such a system use the stored energy in order to understand how to develop such 

systems for energy constrained environments.  

One aspect of this thesis is to examine the role that discrete event driven and 

cellular automata models have on energy consumption in embedded systems. Discrete 

event driven simulations are dependent on a future event list for execution. It is important 

to understand the affect of the data structure for the future event list on energy 

consumption when running such simulations in embedded systems.  This thesis presents a 

characterization of the relationship between the operations performed on the future event 

list and energy consumption.  

 Further, this thesis investigates the energy consumed in running a distributed 

Dynamic Data Driven Application System (DDDAS) for online traffic simulations in 

energy constrained environments. Such a system consists of embedded traffic simulations 

and requires a means of communication amongst the distributed simulations in order to 

characterize the behavior of the entire system.  Data Distribution Management (DDM) 

provides a means to manage communications in such a system. Understanding how the 



 

 xii 

components of DDM systems consume energy is essential to understanding how to 

design and use such a system in energy constrained environments. This thesis explores 

energy consumption in DDM systems.   

This thesis investigates an energy aware approach applicable for systems that are 

restricted to energy constrained environments.  The approach offers mechanisms to 

implement energy aware distributed simulations and communication mechanisms. This 

thesis assesses the role that discrete event driven and cellular automata models have on 

energy consumption in embedded systems. 

 



 

 1 

 

1 INTRODUCTION 

The Internet of Things is a growing paradigm that involves devices embedded in 

everyday objects that are interconnected via the Internet. This paradigm is quickly 

growing and researchers predict that by the year 2025 that Internet nodes will reside in 

everyday objects such as furniture and paper documents. Mobile phones, vehicles, and 

traffic sensors are some of the devices that currently have the ability to utilize unique 

addressing to communicate using the internet of things paradigm.   This paradigm 

includes growing use of mobile devices with increasing computing capabilities, well 

beyond basic voice communication. Energy and power consumption become a major 

concern for mobile devices operating on batteries.   

Prediction systems that forecast future traffic network states are utilizing real-time 

data in order to drive embedded distributed traffic simulations within mobile devices.  

These systems obtain real-time data from online systems, embedded sensors within the 

environment, crowdsourcing, etc. Communication is required among these data sources 

and distributed embedded traffic simulations.  

Dynamic Data Driven Application Systems (DDDAS) are a type of adaptive 

system that utilizes real-time data to drive the application [1]. DDDAS relies on real-time 

data to execute the embedded application systems.  One of the major concerns of relying 

on real-time data is retrieving and receiving real-time data from environmental embedded 

sensors to be received by mobile devices that are hosting the DDDAS application.  

DDDAS applications on mobile devices depend on data distribution management (DDM) 

in order to receive online data to drive simulation applications in order to make future 



 

 2 

state predictions.  The reliance on DDM requires an understanding of how DDM affects 

energy consumption on these mobile devices.  Gaining an understanding of the energy 

limitations of DDM on mobile devices make the use of DDDAS applications more 

appealing and applicable for situations such as natural disasters, emergency medical 

services, and improving transportation systems [2-4]. Thus far, very little work has 

examined the energy consumption properties of data-driven distributed simulations and 

DDM implementations. 

 A distributed DDDAS system requires a significant amount of data 

communication. Thus it is important to understand how this communication will affect 

energy consumption. We are particularly concerned about utilizing DDDAS to predict 

or/and improve vehicle transportation systems by utilizing real-time and online traffic 

data to drive the embedded traffic simulation within the DDDAS application. Our 

concern specifically lies in the area of energy consumption from running such 

applications in mobile environments and understanding the energy consumed by 

components of such a system. 

Transportation systems are essential for people to navigate through a town or city.  

Commuters typically want the most efficient route possible and those routes may change 

under different constraints such as time of day, location, type of transportation system, 

and weather conditions.  Traffic simulations give users the ability to understand the future 

state of the transportation system and make a decision concerning what route to take.  

Traffic simulations typically utilize historical traffic data; but, with the expansion of the 

Internet of Things and sensors real-time data can be used to drive traffic simulations to 

give a more accurate picture of future states of the transportation system.  



 

 3 

Interest management is concerned with routing information from data sources to 

data consumers. Interest management avoids broadcast communication used in early 

distributed simulation systems [5]. Receiving agents (federates) declare their interest in 

receiving certain data produced by data sources. Data sources are responsible for 

declaring information concerning the data they produce, and the interest management 

system is responsible for matching data interests with the data that is produced. 

Our focus in interest management concerns the Data Distribution Management 

(DDM) services defined in the High Level Architecture. In the context of the 

transportation simulation application these services are used to efficiently communicate 

state information among federates (sensors and embedded traffic simulations) in order to 

make accurate updated state predictions of the traffic network as whole. DDM is a set of 

services defined in the High Level Architecture that provides efficient communication for 

distributed simulations. Known DDM approaches are suitable for distributed simulation 

environments that are not energy dependent. We are concerned with understanding how 

to implement and use DDM to provide real-time information for embedded DDDAS 

applications including mobile devices. In energy constrained environments the question 

becomes how to implement and use the DDM services taking into consideration energy 

consumption.  Energy consumption in DDM has not been explored previously.   

Our motivating application is a DDDAS for transportation system management that 

utilizes embedded traffic sensors, providing real-time data for mobile devices that make 

predictions about the future state of the traffic network. Our interest lies in the energy 

constrained components of such a system, specifically, embedded traffic simulations and 

the DDM system used to communicate real-time sensor data and information shared 



 

 4 

among the simulations.   In the case of our motivating application our federates include 

the mobile devices distributed within the environment receiving data from traffic sensors 

within the traffic network, the mobile devices are responsible for requesting traffic data 

from sensors in which they are interested in receiving data from.   The mobile devices are 

then responsible for using the received data as input into the embedded traffic 

simulations. 

Energy consumption in this application can be broken down into that used for 

communication and that used for computation. Communication involves transmitting real 

time data between data sources and mobile devices that host the embedded traffic 

simulations. Questions that arise in such an application include the approach used to 

aggregate and send data and determining who receives what data and when.  These 

concerns are addressed by the interest management system. 

A second major focus of this research concerns the embedded traffic simulations 

operating within mobile devices. We explore the energy required by embedded data-

driven traffic simulations for communication and computation. Communication concerns 

include the amount and frequency to transmit data to the embedded simulation. 

Computation concerns include the type of traffic model that is used and how the 

operations needed to run the applications.  Data structures used to represent the traffic 

system play a major role in the amount of energy that is consumed by embedded traffic 

simulations when run on mobile devices.  We explore the energy requirements of a traffic 

simulations based on cellular automata and an event driven queuing model for traffic 

flow.  The sections follow discuss these topics in greater detail.  

 



 

 5 

1.1 Literature Survey 

Simulation is the act of mimicking a real world system or process over time.  Simulation 

models the system under study by representing the physical processes that occur in that 

system using characteristics, behaviors, and functions.  Simulation is often used to 

optimize operations, testing, education, and etc.   

1.1.1 Discrete Event Simulation  

Discrete event simulation models system operations using events that reflect operations 

that occurred during each distinct moment in time. Events are responsible for changing 

system state variables to reflect the state of the system at the time the event occurs.  

Discrete event simulation models typically include several software components: state 

variables, simulation clock, future event list, event procedures, and random number 

generators.  

The state of the system is represented using state variables. These variables 

pertain to different aspects of the system of interest to the modeler.  In the case of traffic 

simulations these state variables would represent quantities such as the location of 

vehicles in the network, state of traffic signal etc. Other state variables contain 

information used to compute metrics that are used to produce the outputs produced from 

the simulation such as the volume of vehicles in the system, average vehicle speed, etc.   

The simulation clock is responsible for keeping track of the current simulation 

time.  Simulation time is represented using a selected unit of measure. The clock is 

advanced to the time of an event when that event is processed. The amount of simulation 



 

 6 

time does not directly correspond the actual running time to execute the simulation 

model.  Events that are waiting to be processed are stored in a data structure called the 

future event list.  This list is responsible for holding all the events that are to be executed. 

As events are processed they add (schedule) new events into this list.  These events are 

typically prioritized by timestamp and stored in a priority queue data structure.   

Random number generators are used in discrete event simulators in order to 

generate random variables for system values such as vehicle inter-arrival times. These 

values are often selected using a given probability distribution to generate random values.  

Utilizing pseudo random number generators allows repeated executions of the simulation 

to generate identical results from one run to the next.  

Many of the above components are included in the simulation engine which 

usually includes the main loop of the simulation.  The engine initializes the system state 

variables, simulation clock, and schedules the initial simulation events.  The simulation 

engine is responsible for removing events from the event list as they are processed [6].  

One of the most widely used discrete simulation models is the queuing model.  

Queuing systems model service operations by utilizing one or more servers providing 

service to customers arriving in the system.  The components that encompass a queuing 

system include the arrival process, service mechanism, and queue discipline.  The arrival 

process characterizes the inter-arrival times of customers entering the system.  The 

service mechanism describes the number of servers in the system and the probability 

distribution used to determine the service time.  The queue discipline defines how the 



 

 7 

server selects the next customer, e.g., first-in-first out, last-in-first-out, or according to 

some prioritization scheme.   

1.1.2 Traffic Simulations 

Traffic simulations are used to analyze vehicle transportation systems.  The simulation 

model represents behaviors and functions of the system that researchers use as a tool to 

gain insight, find issues, and optimize the real world traffic network. Researchers are able 

to use variables that represent components of the transportation system to describe the 

state of the network.  Traffic simulation models are described as either discrete or 

continuous models.  A discrete model often represents the system using an event driven 

approach. A sequence of events reflect the total operation of the whole system over time 

and each event reflects a distinct point in time in which the system variables are changed 

to reflect the state of the system at that point in time.  A continuous model represents the 

system where state changes occur continuously over time. These models are usually 

represented using differential equations. 

Models utilize different levels of detail to reflect the dynamic behaviors of the 

system. Macroscopic, microscopic, and mesoscopic are the most widely used approaches.  

Macroscopic models view traffic as continuous flows. Microscopic models capture the 

behavior of individual vehicles and mesoscopic models capture the behavior of small 

groups of vehicles within the system but represent individual vehicles within the model. 

 

 

 



 

 8 

1.1.2.1 Macroscopic Simulation Models 

The macroscopic perspective of vehicle traffic simulations models traffic by using 

aggregated characteristics to reflect the state of the system such as the number of vehicles 

within the system.  This is a high level perspective. Individual vehicle behavior is not 

represented.  This perspective is used to model traffic flow in many different kinds of 

traffic networks. Continuous simulation models systems by utilizing differential 

equations to represent continuous changes to the system with respect to time [7]. 

Continuous traffic simulation models are often used to solve problems such as 

determining bottlenecks in traffic networks by using neural networks to determine real 

time traffic signal control [8, 9].  MASTER is a macroscopic traffic simulation model that 

is used to develop continuous traffic simulations based on gas kinetics and non local 

traffic [10]. Systems that support the development of macroscopic simulations include 

NETVACT, FREEFLO, CORFLO, KRONOS, METACOR, and AUTOS [11] . 

1.1.2.2 Microscopic Simulation Models 

Traffic simulations using the microscopic perspective are considered a fine-grained 

simulation approach that models the micro level dynamics of the vehicle traffic system.  

This approach models individual vehicles in the simulation.    This approach typically 

uses car following models to represent the behavior of individual vehicles.   

Cellular Automata simulations are microscopic simulation models.  Cellular 

automata operate by implementing a two-dimensional grid structure that defines cells by 

state values [12]. Each individual vehicle in the system occupies a cell within the grid 

structure; when a system update is made each cell’s new state is determined based on the 



 

 9 

state of its neighboring cells.  Nagel and Schreckenberg created a well-known cellular 

automata single-lane model that divides the road into cell segments. Each cell has a state 

that is considered occupied if a vehicle is present or empty if one is not.  The state of the 

cells change on every iteration based on the neighboring cells surrounding it [13]. Esser 

and Schreckenberg implemented an urban traffic network based on Nagal’s original 

model [14]. Statistics such as throughput, travel time and individual vehicle speed and 

location are computed in the model.  Cellular automata models derive macro level traffic 

flow behavior from micro level dynamics. 

 Microscopic traffic simulations are used to plan for many different types of 

situations. For example emergency evacuation, evaluating and understanding ramp 

control for freeway traffic control, and to manage dynamic traffic of often studied using 

microscopic simulation [15-17].  Well known microscopic traffic simulation systems 

include but are not limited to CARSIM, CORSIM, AVENUE, MITSIM, SIGSIM, and 

SIMNET [10].  

1.1.2.3 Mesoscopic Simulation Models  

The mesoscopic approach, like the microscopic model, is a low level perspective.  Traffic 

simulation models using this perspective are viewed using small groups.  Mesoscopic 

traffic simulation models view traffic using macro and micro level dynamics. Mesoscopic 

models can deal with individual vehicles as in microscopic models and are concerned 

with vehicle dynamics. Mesoscopic models follow two main approaches. One models 

vehicles in groups [18]. Synchronous timing is often used where time is advanced based 

on the chosen time unit or time step.  In event driven mesoscopic models the state of the 



 

 10 

model changes when an event occurs. Time is advanced by some variable amount 

depending on what occurs during the event. Mesoscopic models are considered more 

flexible than macroscopic models due to their ability to model individual vehicles, but are 

still limited in modeling detailed traffic operations [19].  Mesoscopic models are typically 

more computationally efficient than microscopic models.   

Systems such as DynaMIT, Dynemo, DYNASMART, and Metropolis are 

examples of mesoscopic transportation simulation models [10].  Dynameq and MEZZO 

are event based mesoscopic models [18]. MesoTS is a mesoscopic traffic simulation 

model used for predicting traffic conditions [20].  MESCOP is a mescoscopic traffic 

simulation model that evaluates and optimizes signal control plans [21].  This model aims 

to relieve the computational burden that occurs when optimizing complex control logic to 

create plans for traffic signals.  

1.1.3 Distributed Simulations 

Distributed simulations are simulation models that are executed on multiple processors in 

order to speed up overall execution or to execute large simulations that require more 

memory than is available on a single system.  The simulation model is typically broken 

up into logical processes and each processor is responsible for executing some number of 

logical processes.  Processors communicate utilizing messages to communicate their 

system state to other processors in order to obtain the state of the overall simulated 

system. Each logical process is responsible for maintaining its own state variables and 

simulation clock.  Synchronization and data distribution are used to create a distributed 



 

 11 

simulation that produces the same results as a sequential execution of the same 

simulation program.  

Synchronization mechanisms are used ensure the distributed simulation produces 

the same output as a sequential execution of the simulation. Synchronization mechanisms 

are categorized as conservative or optimistic.  Conservative synchronization uses 

blocking mechanisms such as deadlock avoidance, synchronous algorithms, and deadlock 

data detection and recovery in order to achieve synchronization.  For example, Chandy 

and Misra developed a deadlock prevention mechanism using null messages [22].   

Optimistic synchronization such as Time Warp detect out of order event 

executions and roll back the computation to recover from synchronization errors [23].  

Under this mechanism processes execute without regard for out of order event 

processing. Once an error is discovered the logical process is rolled back to a time before 

the error occurred.    Virtual time is synonymous with simulation time and is a global 

one-dimensional coordinate system.  Systems that use virtual time follow two 

fundamental rules [24]:  

1. “The virtual send time of each message must be less than its virtual receive time [24]. “ 

2. “The virtual time of each event in a process must be less than the virtual time of the 

next event at that process [24].”  

Data distribution is used in distributed simulation to communicate data such as 

state information among different objects making up the distributed simulation. An 

important difference between message passing systems is their use of synchronous or 



 

 12 

asynchronous message passing. In synchronous message passing communication happens 

between objects that must coordinate with each other on each communication. 

Synchronous message passing is typically used in object-oriented programming 

languages such as Java. With asynchronous message passing it is possible for the 

receiving object not to be executing when the sending object sends the message. In 

asynchronous message passing storing and retransmitting data requires additional 

operations. Synchronous message passing is comparable to a function call in which the 

message sender is the function caller and the message receiver is the called function. In 

synchronous message passing the sending procedure of a message does not stop until the 

receiving procedure receives the message. The implications of the sending and receiving 

procedure of synchronous message passing makes it unusable for some applications. 

Asynchronous message passing, unlike synchronous message passing, does not 

wait for a response from the receiver before continuing the execution of their procedure.  

Under asynchronous message passing the receiving procedure computes new values in 

order to send the results to the receiver, the message is buffered until the receiver is free 

to receive the message. 

1.1.4 Interest Management 

Interest management is a mechanism used in distributed simulations to distribute state 

information among entities in the simulation. For example, it was used in the Distributed 

Interactive Simulation (DIS) protocol [5].  Entities specify the information the wish to 

receive and data producers characterize the contents of messages they send. Interest 

management is used in large-scale distributed simulations in applications such as military 



 

 13 

war gamin and training systems. Morse created a taxonomy for such systems [5]. Data 

Distribution Service (DDS) [25] and the High Level Architecture (HLA) [7], are 

examples of systems using interest management.   

 Data Distribution Service is defined by the Object Management Group [26]. The 

DDS Data Centric Publish Subscribe (DCPS) interface focuses on delivering information 

to specified recipients.  DDS uses participant, writer, reader, publisher, subscriber, and 

topic entities. They are classes, extended from the DCPS interface.  The publisher is 

responsible for data issuance and may publish data of different data types. The writer is 

used in order to communicate data values and changes. The subscriber receives all the 

published data and makes sure it is available for the participant.  The reader then has 

access to the received data.  

1.1.5 High Level Architecture (HLA) 

High Level Architecture (HLA) is a general-purpose architecture that was created to 

promote and support interoperability amongst different simulations.  The Defense 

Modeling and Simulation Office (DMSO) defined HLA. It is maintained by the US 

Department of Defense (DoD) [7].  The designers of HLA had five principle goals behind 

the architecture [27]. 

1. “It should be possible to decompose a large simulation problem into smaller 

parts; smaller parts are easier to define, build correctly, and verify [27].”  

2. “It should be possible to combine the resulting smaller simulations into a 

larger simulation system [27].” 



 

 14 

3. “It should be possible to combine the smaller simulations with other, perhaps 

unanticipated simulations to form a new system [27].” 

4. “Those functions that are generic to component-based simulation systems 

should be separated from specific simulations [27].”  “The resulting generic 

infrastructure should be reusable from one simulation system to the next 

[27].” 

5. “The interface between simulations and generic infrastructure should insulate 

the simulations from changes in technology used to implement the 

infrastructure, and insulate the infrastructure from technology in the 

simulations [27].” 

Individual simulations are called federates and a distributed simulation system is 

called a federation under HLA terminology. HLA is defined by three IEEE standards: the 

framework and rules, the interface specification, and the object model template.  

The high-level architecture rules describe the underlying principles used in HLA.  

The rules are in place to ensure that simulation models follow the HLA standard. The 

rules are quoted below [28]: 

1. “Federations shall have an HLA federation object model (FOM), documented in 

accordance with the HLA object model template (OMT) [28].” 

2. “In a federation, all representation of objects in the FOM shall be in the federates, 

not in the run-time infrastructure (RTI) [28].” 

3. “During a federation execution, all exchange of FOM data among federates shall 

occur via the RTI [28].” 



 

 15 

4. “During a federation execution, federates shall interact with the run-time 

infrastructure (RTI) in accordance with the HLA interface specification [28].” 

5. “During a federation execution, an attribute of an instance of an object shall be 

owned by only one federate at any given time [28].” 

6. “Federates shall have an HLA simulation object model (SOM), documented in 

accordance with the HLA object model template (OMT) [28].” 

7. “Federates shall be able to update and/or reflect any attributes of objects in their 

SOM and send and/or receive SOM object interactions externally, as specified in 

their SOM [28].” 

8. “Federates shall be able to transfer and/or accept ownership of an attribute 

dynamically during a federation execution, as specified in their SOM [28].” 

9. “Federates shall be able to vary the conditions under which they provide updates 

of attributes of objects, as specified in their SOM [28].” 

10. “Federates shall be able to manage local time in a way that will allow them to 

coordinate data exchange with other members of a federation.” 

The object template model describes the information that is communicated between 

simulations. HLA standards require that every federate have an object model.  These 

object models are represented using a set of tables.  The object model template specifies 

how the information must be recorded in the object model.  The HLA requires that a 

federation object model (FOM) be defined that describes the shared object classes, 

attributes and interactions used in the federation.  The FOM uses the management object 

model (MOM), which holds the collection of classes and interactions.   In the currently 

implemented standard of HLA 1516-2010 this information is formatted using a XML file.  



 

 16 

All participating federates must use the same FOM.  The simulation object model (SOM) 

describes the shared object attributes and interactions used for a single federation.   

The interface specification defines how participating simulators interact using the 

run-time infrastructure (RTI).  The RTI provides an API that complies with the interface 

specification. The rules are in place to ensure that simulation models follow the standard. 

The interface specification defines six categories of services: federation management, 

declaration management, object management, ownership management, time 

management, and data distribution management. Federation management is responsible 

for defining how the federation is created and managed, e.g., services allow new 

federates to join the federation.  Declaration management services are used by federates 

to declare their intentions to publish and subscribe to data and interactions.  Object 

management services manage how federates manage, e.g., update objects that they 

“own.”  Ownership management services enable federates to gain or divest ownership of 

objects.  Time management services specify how federates use time in regards to object 

interactions and updates.  Data distribution management defines the services concerning 

the routing of data among federates in large-scale simulation executions.   



 

 17 

Figure 1-1: HLA Federation Structure [29] 

The major steps in the execution of a federation include: initialization, declaring the 

objects of common interest among federates; exchanging information and terminating 

execution.    

1.1.6 Data Distribution Management  

Data Distribution Management services are used to reduce traffic flow over the network.  

DDM is one category of services defined in the High Level Architecture Interface 

Specification.  The services are implemented by Run-Time Infrastructure software.  

DDM utilizes an N-dimensional coordinate system called a routing space to represent, for 

example, a geographical area.  Federates express their interest by defining subscription 

regions that characterize the information they are interested in receiving, and messages 

are associated with a publication region to characterize the content of the message. If an 



 

 18 

overlap is detected between a publication region and a federate’s subscription region, the 

message is sent to that subscribing federate.   

The region based and grid based DDM approaches are the most well-known 

approaches to implementing DDM services.  Several approaches have been proposed and 

implemented to overcome the drawbacks of these approaches. The hybrid based approach 

reduces the communication cost of the grid based approach and the matching cost of the 

region based approach by performing direct matching between publication and 

subscription regions within grid cells [30].  This approach helps to alleviate the irrelevant 

message problem that occurs in the grid based approach, but, duplicate messages can still 

occur.  Boukerche and Roy proposed the dynamic grid based approach whose goal is to 

reduce the number of multicast groups created under the grid based approach [31].  

Under this approach multicast groups are only allocated to a cell if an intersection is 

detected between the publication and subscription region [31].  Boukerche also proposed 

the grid filtered region based approach [32]. This approach combines the grid based and 

the hybrid based approach by using a threshold parameter to determine when matching 

needs to be performed between regions within a grid cell who’s area of coverage of the 

grid cell falls below the given threshold [32].  The effect of grid cell size on multicast 

group assignment and communication cost has been explored by Van Hook and Rak [33].  

Their findings concluded that irrelevant and duplicate messages are increased with the 

use of larger grid cells [33].  Many other approaches and mechanisms have been created 

to overcome the drawbacks of purely region based and fixed grid based approaches.  

Adaptive data distribution management optimizes DDM time, matching, and multicast 

group assignment [34].  Raczy also created the sort based DDM matching algorithm [35]. 



 

 19 

This algorithm sorts the coordinates on each extension. An extension of the sort based 

algorithm was also created to promote efficiency in large spatial environments [36].  Pan 

also created the dynamic sort-based approach [37]. This approach efficiently matches for 

selective region modifications.   

1.1.7 Dynamic Data Driven Application Systems (DDDAS) 

Dynamic data driven application systems are a type of on-line system that incorporates 

real time data into the executing system to improve the accuracy of the model, speed up 

the execution, and/or utilize the executing application to guide the measurement process 

[1]. DDDAS applications may be embedded within the physical system being monitored 

in order to utilize real-time data near its source. For example, embedded traffic 

simulations may be part of a sensor network where real-time traffic data is used as input 

to drive transportation simulations.  

The DDDAS control loop first incorporates real-time data into the executing 

application.  The executing application uses this data to measure and analyze the behavior 

of the physical system.  The embedded simulation makes future state predictions in order 

to develop recommendations to modify the system or instrumentation.  The DDDAS 

control loop then repeats this process.  An example of this cycle is illustrated in Figure 1-

2. 



 

 20 

Figure 1-2: DDDAS control loop [38] 

Wahle, Neuber, and Schreckenberg used a cellular automata traffic flow model 

for online simulation[39].  Their model gives users the ability to interpolate the traffic 

state between different check points and gather inform about areas that are not well 

instrumented [39].  This allows one to make improvements concerning the accuracy of 

traffic network predictions.   

Monitoring ecological development [2], forest fires [40], and tracking multiple 

targets in an ad-hoc sensor network are examples where a DDDAS system is embedded 

within the physical system [41]. Other examples include ocean forecasting [42], 

hurricane forecasting [2], emergency medical services [3], and optimizing surface 

transportation systems [43]. In situations where battery-powered mobile devices are used 

as the DDDAS platform energy consumption by DDDAS computations and 

communications is an important issue.  

 

 



 

 21 

1.1.8 Power And Energy  

The growing computation and communication capabilities of mobile devices make them 

attractive platforms for DDDAS applications. Mobile devices can provide a wide variety 

of sensor capabilities such as video, still images, audio, GPS, etc. An important concern 

for such devices is power and energy consumption.  Mobile devices are typically 

dependent on battery power. As such, it is important to understand the energy 

consumption and computing limitations of such devices.  Our concerns here is the energy 

consumed for communicating dynamic data to drive DDDAS components embedded 

within the mobile device and the energy consumed for traffic simulations.  

Dynamic voltage frequency scaling (DVFS) is a power saving technique.  DVFS 

reduces the frequency at which the processor is operating which in turn reduces the 

power consumption of the system.  Weiser was the first to propose lowering CPU 

frequency when clock cycles are being wasted [44].  Weiser later improved his initial 

approach by incorporating a performance monitoring unit which counts the instructions 

and memory requests per cycle to predict the system’s workload and allow a more energy 

efficient frequency to be selected.  Other researchers improved upon Weiser’s approach 

by creating a framework to automatically select the best model parameters from the 

hundreds of possible events that modern PMU’s could create, resulting in a saving of up 

to 20% in energy consumption [45].   

Communication is a significant source of energy-consumption in mobile systems.  

Researchers have developed energy aware network protocols to reduce energy 

consumption.  Mobile environments may utilize MANETS, i.e., mobile ad-hoc networks 

where mobile nodes communicate directly without the assistance of a preexisting 



 

 22 

infrastructure. Energy aware routing protocols aim to reduce the amount of energy 

expended when routing data between devices in MANETS.  For example, Singh, Woo 

and Raghavendra investigated the effects of a shortest path routing algorithm that was 

reported to achieve a 40 – 70% reduction in energy consumption [46] .  Their technique 

consist of using new power aware metrics to determine the best routes in MANETS based 

on battery power consumption at the mobile nodes [46].  Other protocols include the EE-

OLSR protocol which aims to improve the energy consumption of the traditional OLSR 

protocol [47].  Researchers have also conducted analyses of traditional routing protocols 

such as DSR, AODV, TORA, and DSDV with respect to energy use.  Their study shows 

that under pure demand conditions that DSR and AODV perform the best in MANET 

networks for mobile devices [48]. 

Power and energy have been heavily studied in several areas. Energy aware 

practices have been developed to give programmers guidance concerning how they 

should program applications for mobile devices [49].  Carroll analyzed the power 

consuming components of mobile devices [50].  He examined the power consumption 

distribution among CPU, memory, touch screen, graphics hardware, audio, storage, and 

various network interfaces. He created a plethora of scenarios that reflect typical usages 

of a cellular device and measured the power consumption of the different components of 

the device under various conditions. His results showed that much of the device’s power 

consumption is attributed to the GSM (global system for mobile communication) module 

and the display [50].  These results also showed that aggressive backlight dimming could 

save a great deal of power.  The RAM, audio, and subsystems were the lowest power 

consuming components in his analysis, although in some cases the RAM can consume 



 

 23 

more power than the CPU.   Here, we are concerned with software concerns considering 

that our application is applicable to different mobile hardware platforms.   

Techniques to conserve energy for computations performed on mobile devices have 

been widely investigated.  One technique includes off loading computation to the cloud to 

save energy [51].  Kumar and Lu investigated this concept and discovered that off 

loading computations to the cloud could possibly save energy [51]; but, not all 

applications will become energy efficient when migrating computation to the cloud. 

Designers of the system should consider the overhead that could occur from this 

technique such as privacy, security, reliability, and data communication before off 

loading.  Energy scale down is another approach that researchers have explored as design 

mechanisms for mobile applications [49].  This approach involves both hardware and 

software scaling of features and energy use to meet design goals [52].  One determines 

energy scale down by having a high end and a low end design point. The designer aims 

their efforts toward the low end design point in order to use as little energy as possible.  

These designs points are determined by considering each component in the general 

purpose device and comparing it to the requirements of the applications using that device.  

Energy for communication on mobile devices must be considered when designing 

applications.  Energy costs for communications have been examined for peer-to-peer 

applications [53], network interfaces [54] , ad-hoc network [54], radio interfaces [55], 

and radio networks [56].  Studies comparing the energy consumption of network activity 

in 3G, GSM, and WiFi have found that tail energy is wasted in high power states after 

data transfers are complete [56].  To overcome this problem Balasubramanian and 

Venkataramani created the TailEnder protocol that reduces tail energy consumption by 



 

 24 

scheduling transfers to minimize the cumulative energy consumed while meeting user 

specific deadlines [56].   

Energy profilers are often utilized in order to measure energy consumption of 

mobile systems.  Trepn is an example of a software tool that was developed by 

Qualcomm to measure power of Android systems [57].  Recent work on profiling 

distributed simulations has been conducted [58]. Power Tutor is a software application 

that was developed to aid the design and selection of power efficient software for 

embedded systems [59]. The application informs users of power consumption to aid 

application design and use.  WattsOn, like PowerTutor is a software application that 

allows developers to estimate the energy consumption of applications during 

development [60].  Utlizing techniques such as the energy foot print of mobile hardware 

systems [61], fine grained system trace calling [62], and self constructive approaches 

where mobile systems automatically generate their energy model without any external 

assistance through a smart battery interface  have been conducted to gain an 

understanding of how energy is dispersed in mobile devices [61, 62] . 

 

 

 

 

 

 

 

 



 

 25 

1.2 Research Contributions 

This thesis focuses on the energy consumption of components of a DDDAS for 

embedded traffic simulations in mobile environments. This research considers the 

development and utilization of the High Level Architecture Data Distribution 

Management services to disseminate dynamic data to drive transportation system 

simulations. 

1. Energy comparison between queuing model and cellular automata based 

embedded traffic simulation [63].   A study comparing the energy consumed by 

an event driven queuing network model and a cellular automata traffic simulation 

for an arterial road network in a section of midtown Atlanta was completed to 

examine their energy consumption on mobile devices. This study showed the 

effect of levels of traffic flow and simulation size on the overall energy 

consumption of these traffic simulators.   

2. Demonstrated that data clustering can produce efficient energy 

consumption for communicating in mobile environments [63].  This work 

examined the effect that varying message size and aggregating messages on 

energy consumption when communicating data from mobile devices. These 

results demonstrate that communicating aggregated data for moderate sized 

message payloads can result in significant energy conservation in mobile devices.  

3. Energy comparison between four different priority queue implementations 

for future event list of discrete event simulations [64].  A study evaluating the 

implicit heap, explicit heap, linked list, and splay tree data structures used as 

priority queues for future event list was completed. This work represents the first 



 

 26 

study of energy consumption for future event list implementations in discrete 

event simulations.  The evaluations were made using the hold model.  This study 

examined the key operations of each data structure and their effects on overall 

energy consumption. A model for predicting the energy consumed for a hold 

operation for the implicit heap, explicit heap, linked list, and splay tree data 

structures was developed. Each prediction model reflects the energy consumption 

to the energy causing components of each data structure and the energy constants 

associated with that behavior for priority queue sizes that can fit within the L1 

cache of the embedded system hardware and those which cannot completely fit 

within the L1 cache.  

4. Created an energy efficient distributed region based approach [65].  A 

distributed region based data distribution management approach was developed 

that has the communication efficiency of the centralized region based approach 

without the reliance on a central controller.  The computation efficiency for 

initial multicast group assignment and communication update efficiency for the 

distributed region based approach was analyzed relative to the centralized region 

based approach, fixed grid based approach, and grid filtered region based 

approach. 

5. An energy comparison of initial matching computation for multicast group 

association [65]. The effect of the initial computation on energy consumption in 

region based and grid based approaches was examined.  These results show that 

grid based data distribution management approaches consume less energy 



 

 27 

initially than region based approaches because a comparison against every region 

within the routing space is not needed.  

6. An energy evaluation of constraining grid cells for grid based data 

distribution approaches [65]. The affect that varying DDM components on 

energy for communicating DDM updates was examined. These experiments 

explored the effect of varying grid cell size, constraining publishing regions to 

one grid cell, and constraining publication regions to N grid cells on energy 

consumption. Experimental analysis shows that utilizing constraints on grid cells 

can gain communication efficiency approaching region based data distribution 

management approaches.  

1.3 Organization of Thesis 

This thesis is organized as followed. Chapter 2 details the work done in the area of traffic 

simulations and energy consumption. Here we present the simulations evaluated and 

experiments conducted for evaluating energy use.  Chapter 3 details the work in the area 

of energy consumption of priority queues of future event list for discrete event 

simulations. Chapter 4 describes the work done in the area of HLA DDM approaches and 

energy consumption. We describe the details of the approaches compared and evaluated 

the energy consumption for computation and communication.   

 

 

 



 

 28 

2 ENERGY FOR ONLINE DATA-DRIVEN TRAFFIC 

SIMULATIONS 

Energy consumption is an on-going concern in mobile and embedded computing systems 

powered by the device’s battery. With the growing use of real-time data for traffic 

prediction applications one must understand tradeoffs between energy consumption for 

communications and computations under certain performance and accuracy constraints in 

order to ensure effective operation. For example, question might concern the approach 

used to model the system and the amount and frequency with which data should be 

collected to drive the simulation computations. This information is necessary to develop 

power and energy aware techniques to optimize energy use.  

This study examines the energy consumed by data-driven simulations in predicting 

future states of a transportation network. The system utilizes sensor data specifying 

traffic flow on various road segments as input and makes future state predictions of an 

arterial traffic network.  The future state predictions may then be distributed to other 

simulations, e.g., using the ad-hoc distributed simulation approach in order to enable state 

predictions of the entire network [66]. Energy utilized by the system for simulation in the 

area of computation and communication is analyzed to gain an understanding of the 

energy consuming components of such a system in an energy constrained environment.  

 

 

 

 



 

 29 

2.1 Data-Driven Simulation Architecture 

Ad-hoc distributed simulation is defined as a set of simultaneously executing, 

autonomous simulations connected through a wireless network [66]. Each simulation is 

responsible for modeling a portion of the overall system determined locally by the 

simulator itself. Each simulator communicates state predictions to other simulations to 

model the system as a whole.  

Each simulation is a logical process (LP) in conventional distributed simulation 

terminology and is executed on a mobile device.  The mobile devices are connected 

through a wireless network.  Each device is responsible for connecting to a sensor or 

sensors within the environment in which it operates in order to obtain local traffic state 

information. Each sensor collects data information such as speed, acceleration, and 

direction of vehicles that pass through its sensor range. Each sensor communicates this 

information to nearby mobile devices and the data is then used directly or is aggregated 

to be used as input for the embedded simulations within the mobile device. Predicted 

simulator states, e.g., future flow rates on various links may be then transmitted to other 

simulators.  

Here, we focus on one simulator of an ad-hoc distributed simulation.  We consider 

the energy used by the simulator and that of the communications used to drive the 

simulation and to communicate results produced by the simulator that are distributed to 

other simulations in the ad-hoc distributed simulation. 

The proposed energy model represents the different components of a DDDAS ad-

hoc distributed simulation.  This model separates the energy consumption of the total 

system into three major components: data communication, data aggregation, and the 



 

 30 

embedded traffic simulations.  The model illustrates each major component in such a 

system that affects energy consumption. The system depicted in Figure 2-1 collects data 

from sensors spread across the area under study, sends data that was either unaggregated 

or aggregated at the sensor to the mobile device and uses the data sent in order to drive 

the embedded simulations on the device to simulate an updated state of the traffic 

network. 

 

 

 

 

 

 

 

 

 

 

Figure 2-1: Data Driven Simulation Architecture 

 

Energy for data communication in the mobile device includes receiving data from the 

sensor network and sending predicted state information to other simulations (LPs). There 

are several options to transmitting data from the sensor network to the LP. Assuming data 

is sampled at some given rate, one could simply send each data update directly to the LP. 

Alternatively, the data samples could be collected in the sensor and periodically a 

collected set of measurements could be sent as a single message. Still another option is to 



 

 31 

aggregate the data within the sensor, and transmit an aggregated value, e.g., an average 

flow rate or the parameters for a probability distribution to the LP. Each of these options 

will result in different amounts of energy consumption in the system and will impact the 

results computed by the distributed simulation. For example, aggregating data within the 

sensor and sending the aggregated results will likely reduce energy consumption to 

transmit the data, but at the cost of providing less detailed information to the simulation 

and introducing delays before the online data can be incorporated into the simulation 

predictions. 

 The embedded data-driven simulations are responsible for making future state 

predictions of the traffic network.  The amount of energy required by simulations may be 

significant, and requires exploration. The energy consumed by the simulation includes 

energy required by the CPU as well as energy used in the memory system and 

transmitting instructions and data between the two. These depend on the specific 

modeling approach that is used. Here, we focus on the energy used by transportation 

models using two widely used abstractions. As discussed momentarily, a model based on 

cellular automata is evaluated as well as a second based on queuing network abstractions 

implemented as a discrete event simulation. 

2.2 Embedded Traffic Simulations 

The cellular automata and queuing network models were configured to simulate the 

traffic of the arterial road network along Peachtree St. located in midtown Atlanta, GA 

(see Figure 2-2). This area was selected because of the availability of data. Specifically, 

traffic data from the NGSIM data set was utilized as the input to develop our simulation 

models [67].  The data was collected on November 8, 2006 during a fifteen-minute time 



 

 32 

frame from 4:00 PM to 4:15PM. The area includes five intersections, four that are 

signalized and six road segments. The data set consists of data pertaining to individual 

vehicle trajectories with time and location stamps, from which the link travel times of 

individual vehicles could be calculated.  Figure 3 reflects a visual representation of the 

NGSIM data set area. In this study, link travel time refers to the time from when a vehicle 

enters the arterial link to the time when the vehicle passes the stop-bar at the end of the 

link. Intersection travel time is excluded. 

 

 

 

 

 

 

 

Figure 2-2: NGSIM Study Area 

Both simulation models use the same input parameters and assumptions that were 

used as the basis for all simulations used in this study.  Both models were developed in C 

and implemented as an Android native application. The output of each model is the 

average travel time for vehicles that are traversing the section of Peachtree St. described 



 

 33 

earlier. The model was validated by comparing the average travel times produced by the 

model to those observed in the NGSIM data set. 

It was assumed that there were no pedestrians or emergency vehicles. Further the 

simulation excludes U-turns, aggressive driver behavior, adverse weather conditions, 

road construction, and vehicle accidents.  Due to data limitations these aspects were not 

included in the models.  The inter-arrival time of vehicles entering the simulated area 

were assumed to be independent and identically distributed following an exponential 

distribution. We assume that the destination zones of our model have unlimited capacity 

so that once a vehicle reaches its destination it departs from the system instantaneously. 

The input parameters of each model include the historical traffic data collected from 

the NGSIM data set. Signal timings for each traffic light and probability of vehicle turns 

for each origin and destination zone were derived from the dataset. The parameters that 

were varied outside of the given parameters include the traffic intensity and the 

simulation time.  

 To simplify our model we assumed that all vehicles were the same length. We 

also assumed that all vehicles are identical, and travel with the same acceleration and 

maximum velocity parameters and had instantaneous deceleration. We assumed that the 

safe distance between vehicles is uniform for all vehicles.  

2.2.1 Cellular Automata Model 

Our cellular automata model was implemented in C using the two-lane cellular automata 

modeling approach. The two lane model approach was proposed and implemented by 

Rickert and Nagel [68]. The model consists of the following modules: cells, vehicles, and 



 

 34 

road segments.   The simulation environment includes a two-dimensional array of 69 X 

89 cells. Each cell was set to the size of 7.5 meters and can hold at most one vehicle at 

any instant. A cell can be in one of five states at any time:  empty, normal, source, sink, 

or a traffic light. A normal cell is one that is a part of a road segment. A source cell 

represents a location where vehicles enter the system. A sink cell represents the location 

within the model where vehicles leave the system. A traffic light cell represents a cell 

where a traffic light is located. Vehicles are stopped based on the state of the traffic light 

and assigned a turn probability if applicable. An empty cell represents a cell that is 

currently not occupied by a vehicle. Each cell has a row and column location, id for the 

street on which it is currently located, the direction in which vehicles travel, and an array 

of turn probabilities for a vehicle that occupy that cell. Each vehicle has an id, vehicle 

arrival time, departure time, total time in the system, arrival street, and departure street. 

The vehicles velocity corresponds to the number of cells the vehicle can proceed forward. 

The overall system executes in a time-stepped manner. The tick time pertains to the 

overall simulation time in seconds.  For each time step vehicles are added to the 

simulation system and traffic lights are updated.  Each road segment of cells pertaining to 

the vehicle lanes are evaluated in an s-shaped pattern checking vehicles against the flow 

of traffic.  Each road segment begins its evaluation at the end of the road allowing 

vehicles closest to exiting the road segment the ability to move first. This then allows the 

vehicles behind it to have the ability to move forward since once they evaluate the cell 

before them it is considered empty. Vehicles that have the possibility to move forward to 

the next traffic cell are moved to the next available cell.  A vehicle has the ability to 

move if the next forwarding cell is empty. If the forwarding cell is a cell pertaining to an 



 

 35 

intersection the vehicle turns in accordance with the intersection’s turn probability.  

These probabilities are pre-computed and hard coded into the simulation from an input 

file based on the data from the NGSIM data set.  A vehicle moves forward a set number 

of cells based on the vehicle’s current velocity. As long as the vehicle’s velocity is below 

the maximum velocity for all vehicles the vehicle accelerates v + acceleration steps ahead 

in the system so long as room permits for that number of cells for the vehicle to proceed. 

If the vehicle is not able to proceed v = v + acceleration steps ahead it proceeds to move 

as many cells as it can towards the value v that are available.  If a vehicle reaches a cell 

that contains a traffic light, a vehicle is now in an intersection and the vehicle is assigned 

a turn probability, which is preset at initialization of the traffic network based on the data 

from the NGSIM data set.  If a vehicle is assigned to turn its direction property is 

changed and it now proceed in that direction.    

Intersection traffic light states are updated each time step. The state of the light 

changes based on the length of the phase of each state as determined based on the 

information provided from the NGSIM dataset. This sequence continues until the 

simulation cycle is completed.  

2.2.2 Queuing Model 

In the queuing model simulation traffic lanes are represented using queues that hold 

vehicles occupying the lane.  The model is event driven. Events with smaller timestamps 

are processed first and continued until all events have been processed or the simulation 

has completed. 

The discrete event queuing model was also implemented in C. The model consists of 

the following modules: simulation engine, simulation application, event, vehicle, 



 

 36 

intersection, section, priority queue, and linked-list and implements a standard event-

oriented execution paradigm. The model is driven by the simulation engine which holds 

the main loop that continuously executes until no events remain or the set simulation end 

time has been reached. The priority queue is implemented using a binary heap. The 

simulation application module is responsible for initialization of system variables that 

start the simulation and calculating output values such as the average travel time.  The 

simulation application is responsible for processing the callback functions and event 

handlers that implement event processing routines. The event handlers include global 

arrival and departure events and events for each intersection that handle vehicle events 

which include: arrival, entering, crossing, and departing.   

Traffic signal changes are also a part of intersection events. These events are 

responsible for switching the state of the traffic light when called.  Events are created 

using the event module, which creates an event object. Each object has the attributes of 

an event type including the timestamp and callback function.  Vehicles are created using 

the vehicle module. Each vehicle created has a set origin, destination, id, lane id, and 

velocity. Section modules represent road lanes between traffic intersections.  Each 

section module object maintains values to attribute to the number of vehicles occupied in 

each section and a flag indicating congestion.  Intersection modules hold attributes 

corresponding to a road network intersection. Each lane of the intersection is represented 

using a queue into which vehicles are placed once they enter each intersection. The 

intersection module is also responsible for handling traffic light signal changes where 

signal lights states are based on phase lengths. If a vehicle is within an intersection during 



 

 37 

a green light phase, vehicle events are scheduled to progress the vehicle forward to the 

next street section of the system.  

2.2.3 Embedded Simulations and Energy Consumption 

The embedded simulations represent the main computational portion of the DDDAS 

system.  Each model is responsible for modeling the vehicle throughput of the arterial 

network. The cellular automata model must update the position of each vehicle every 

time step in the simulation. The queuing model is event driven and does not need to 

process state updates of each vehicle so frequently. However, a priority queue is needed 

to hold the set of pending events, and a significant amount of energy must be expended 

inserting and removing events.  

Experiments were completed to measure the energy consumption as vehicle arrival 

rate (Figure 2-3) and simulation size (Figure 2-4) are varied. Energy was measured using 

the Trepn profiler app installed on an Android LG Nexus 5x cellular phone [57]. It is 

seen that the cellular automata model consumes more energy than the queuing model in 

these experiments.  The cellular automata model must access each vehicle within the road 

segments each loop iteration causing the need for more computation operations to be 

performed resulting in larger energy consumption. 

 



 

 38 

  Figure 2-3: Energy as Traffic Load Varies 

Figure 2-4: Energy as Simulation Size Varies 

 

 These results quantify the energy cost of using a more detailed model. Figure 2-3 

indicates that increasing the inter arrival rate of vehicles in the system results in an 



 

 39 

increase in energy consumption due to the increased number of vehicles in the system.  

Energy consumption in the cellular automata model is impacted to a larger degree than 

the queuing model as the arrival rate increases. A larger arrival rate results in more 

vehicles residing in the system. As the cellular automata model must update the state of 

every vehicle in the system every time step and make updates according to its 

neighboring cells an increase in arrival rate should reflect an increase in energy.  Whereas 

the queuing model must only process events for vehicles at the front of each queue that 

have been scheduled at each iteration. This impact of additional vehicles on energy usage 

will be less.  

Figure 2-4 shows the results of increasing simulation size. In the cellular automata 

simulation the number of cells increases in proportion to network size. Our results show 

the original network size based on the configuration of the area under study and 

simulations of areas a factor of four and six times as large. For these experiments the 

network was replicated by the set input parameters to increase the number of cells in the 

cellular automata model, and to increase the number of queues and events in the queuing 

discrete event model.  All instances of this experiment use an arrival rate of 1 vehicle 

every 5 seconds. 

2.3 Communication 

The data streaming and data aggregation models were written as a Java Android 

application.  This application mimics communications of data between sensors and the 

distributed simulations through a wireless network.   

 



 

 40 

2.3.1 Data Streaming 

A data streaming application was created that is composed of a TCP server socket that 

communicates to TCP clients sockets over the wireless network.  The server socket 

creates a thread that controls the execution of communication between the server socket 

and client socket.  The server thread is responsible for establishing a connection with the 

client socket through a given port. Once the connection is established a thread is created 

to either send or receive data. 

 The receive thread is responsible for receiving data through the port in which a 

connection has been established.  The received thread establishes an input stream in order 

to accept data streams sent from the client.  The thread continuously accepts data until it 

is interrupted which occurs if a connection is lost.  

 The send thread is responsible for sending data through the port in which the 

connection has been established.  Like the receive thread the sending thread establishes a 

connection from the client in order to begin sending data.  The thread continuously sends 

data until the connection with the client has ended. 

2.3.2 Data Aggregation 

Data aggregation is the process of gathering data into summary form.  For the purpose of 

this work data aggregation was used in order to aggregate traffic information in order to 

drive the embedded traffic simulations.  The data aggregation process was set to 

aggregate information on the client side, which is the sensor in this case.   

Aggregating data on the client side assumes that the client is a part of the sensor 

network.  The client collects traffic information and as the information is collected 



 

 41 

aggregates the values.  The aggregated values involve summarizing the number of 

vehicles and the arrival rates of vehicles. These summarized values are then sent to the 

DDDAS application over the wireless network. The DDDAS application has the option 

of receiving the values in a set interval fashion.  This option alleviates the need to receive 

continuous data until the sensor has gained enough information to aggregate or the level 

of traffic is not heavy enough for the change in summary values to occur. 

2.3.3 Data Communication and Energy Consumption 

Experiments were performed to evaluate energy consumption. The experimental setup is 

intended to mirror a DDDAS embedded traffic simulation system where the execution 

process includes the system receiving real-time sensor data that is aggregated and used as 

input in the embedded traffic simulations. The simulations produce future state 

predictions that are sent to other simulations making up the ad-hoc distributed simulation. 

All energy consumption measurements were evaluated utilizing direct measurements 

from the Trepn profiler app installed on an Android LG Nexus 5x cellular phone.  The 

profiler was utilized with the Delta settings enabled, which allows the application to 

collect power data of the entire system during a baseline interval.  The average power 

value is then determined and subtracted from power values determined for the running 

application in order to give an accurate power measurement of the application.  

 Data streaming experiments were conducted utilizing the Android phone as the 

server with the DDDAS application installed on the mobile device.  All communication 

occurred through a WLAN network using the 802.11g protocol. A laptop was utilized to 

represent a sensor in the sensor network and communicated collected sensor data to the 

mobile device.  The experiments show how energy consumption varies with message 



 

 42 

sizes.  The results show measurements when sending and receiving data continuously, 

and sending data at different payloads between the mobile device and the laptop (sensor).   

 

Figure 2-5: Data Streaming Energy 

 

 

 

 

 

 

 

 

 

 

 



 

 43 

 

Figure 2-6: Payload Energy Consumption 

 Figure 2-5 shows the results of receiving and sending data messages from the sensor 

and mobile device.  The results show that receiving data streams on the mobile device 

requires significantly less energy than sending data from the mobile device.  Both figures 

show that in the case of sending and receiving data the energy consumption increases 

with message size, as one would expect.  When receiving data messages energy 

consumption similarly increase with message size.  The sending energy consumption 

shows a steady but more significant increase.  

 Figure 2-6 shows the results from an experiment sending 100,000,000 bytes of 

data using messages of different sizes. As the message size increases the number of 

messages that need to be send decreases in proportion, and although the power need to 

transmit larger messages increases the overall transmission time is smaller resulting in 

less energy consumption.  This illustrates that collecting data samples in the DDDAS 



 

 44 

system can conserve energy and sending them as a larger message rather then 

immediately sending each sample as it is collected. The drawback of this approach is an 

increased delay to transmit each individual sample. The same experiment was 

implemented and energy measured on the receiving side of the mobile device. Similar 

results were obtained. 

2.4 Power of Computation vs. Communication 

DDDAS systems in mobile environments require energy for both communication of data 

and simulation computations.  Figure 2-7 and Figure 2-8 show the average power 

consumption (energy per unit time) drawn from sending and receiving data continuously 

and the power drawn by both simulation models under different arrival rate inputs. Our 

experiments show that energy consumption for communication dominates energy 

consumption of the overall system for this traffic network configuration.  Communication 

energy can be reduced by sending data with larger message payload sizes. 

 

 

 

 

 

 



 

 45 

Figure 2-7: Power as Simulation Size Varies 

Figure 2-8: Data Streaming Power 

 

 



 

 46 

2.5 Discussion 

The results from our study give insights into the energy consumption of computation and 

communication in embedded traffic simulation systems.  The increase in traffic volume 

entering the simulation system reflects an increase in energy consumption with the 

cellular automata model consuming overall more energy than the queuing model.  This 

was a reflection of the nature of the simulation model.  Cellular automata models update 

and check every vehicle within the model for each simulation time step update where as 

the queuing model updates the vehicle at the top of each queue representing the traffic 

network accounting to less vehicles being updated, this requires more memory access 

instructions to be executed to update each vehicle within the cellular automate model.  

Frequent memory access reflects increase in overall access time, which reflects an 

increase in energy consumption required to complete the task.  

The experimental results in the communication study shows that continuous data 

streaming is not an effective technique to save energy for communication operations in 

energy constrained environments. Our experiments also illustrate that staggering 

communication with large data packets could lead to saving energy.   These savings 

could be attributed to sending larger packets less often lead to large data overhead but 

since fewer messages are being sent the overall overhead need to complete 

communication is small compared to sending smaller packets more frequently.  

 

 

 

 



 

 47 

2.6 Conclusion 

The presented work describes an architecture for distributed simulation systems that are 

embedded in energy constrained mobile platforms. A DDDAS application system for 

predicting vehicle traffic flow was created and implemented in order to understand the 

energy consumption for different components of such a system.  The major components 

were divided into computation and communication.   

 The computation components of such a system were defined to be the embedded 

traffic simulations that are responsible for making future state predictions of the traffic 

network. We compared the widely used cellular automata simulation model and a 

queuing network simulation. Our experiments show that when energy is the focus the 

cellular automata model consumes more energy.  The CA model’s energy consumption 

increases more rapidly as model size and traffic density increase.   

 The communication components of the system involved communication between 

the distributed simulation systems embedded on the mobile device and a sensor or 

sensors within the traffic network. Our experiments show that communication consumes 

a significant amount of energy.  Sending messages from the mobile device holding the 

distributed simulation consumes far more energy than receiving messages.  Greater 

energy efficiency is obtained by packing multiple data samples into a single message 

rather than sending multiple messages, but at the cost of increased delay to receive 

sampled data. Further, we observed that for these experiments the energy to send data 

greatly exceeds that required for the simulation computation and receiving messages, 

though this result depends on the size of the modeled network and the traffic load.  



 

 48 

Our work illustrates the energy trends one might encounter under different 

communication and embedded simulation models used in a DDDAS system designed for 

predicting traffic network states that are driven by real time data streams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 49 

3 POWER CONSUMPTION OF PRIORITY QUEUES FOR 

DISCRETE EVENT SIMULATIONS 

The priority queue implementation holding the list of future events is central to discrete 

event simulations. Mobile computing now allows the possibility of executing online 

discrete event simulations that are driven by dynamic real time data as was illustrated in 

the previous chapter. The simulation system must be energy efficient in order to be 

effectively deployed in energy constrained environments such as mobile systems 

operating from battery power. Memory hierarchy and memory access plays a critical role 

on the overall energy consumption of priority queue implementations. This study 

investigates the effect that memory access has on power consumption for four widely 

used priority queue implementations: linked list, implicit heap, explicit heap, and splay 

tree.   

The emergence of mobile and edge computing has created the possibility of running 

simulations on mobile devices, raising new problems and concerns. For example, 

dynamic data-driven application systems (DDDAS) feature a control loop involving 

sensing an operational system, utilizing analytics to optimize the system or to adapt the 

instrumentation system, and then deploying recommendations made by the analytics 

system [69]. On-line simulation clearly plays an important role in such systems. The 

energy and power consumption of simulations are major concerns in mobile DDDAS 

deployments because reduced energy consumption can lead to longer battery life, or the 

use of smaller, lighter weight batteries. 



 

 50 

 In cloud and high performance computing environments power consumption is 

similarly a major impediment to achieving increased levels of performance due to 

limitations in dissipating heat from electronic circuits. Power consumption has been cited 

as a key hurdle in achieving exascale performance in supercomputers. The U.S. 

Department of Energy has set a goal of 20 megawatts as the maximum power consumed 

by an exascale supercomputer [70]. The Thermal Design Power (TDP) is the amount of 

heat generated by a computer chip or component during normal operation for which the 

cooling system has been designed [71]. Power capping used in some systems places a 

maximum amount of power that can be consumed by a computer server. A typical goal 

for an HPC application might be to minimize execution time subject to staying within the 

specified power cap constraint. Further, power consumption in data centers used for 

cloud computing applications is a major operating expense; electricity is a major cost in 

operating data centers. It is estimated that in total, data centers consumed approximately 

70 billion kW-hours or about 1.8% of the total electricity consumption in the U.S. in 

2014 [72]. As such, reducing power consumption is increasing in importance for high 

performance and cloud computing applications. 

In order to effectively run discrete event simulation systems on these types of 

systems an understanding of the energy consumed by all components of the simulation is 

needed. The priority queue data structure used for the future event list in discrete event 

simulation drives the overall execution of many simulation systems.  Understanding the 

energy consuming components of this data structure is important for understanding the 

overall energy consumption of executing a discrete event simulation. This chapter 

examines and compares the energy consumption of four different implementations of the 



 

 51 

future event list in order to gain an understanding of where the energy is consumed and 

which implementation is effective for energy constrained environment when running a 

discrete event simulation. 

Priority queues must implement enqueue and dequeue operations of events in 

discrete event simulations.  An enqueue involves inserting a future event into the list.  

The dequeue operation is responsible for deleting the event from the list with the highest 

priority, or the smallest timestamp in a discrete event simulation. Discrete event 

simulations also sometimes require an operation to delete an arbitrary event to implement 

certain operations, however, this aspect is not considered here. The selected 

implementation determines how these operations are completed and plays a vital role in 

the overall execution of the discrete event simulation. Because many simulations contain 

only a modest amount of computation per event, the time to access the priority queue can 

have a large impact on the execution time of the simulation program. 

The hold model is the standard method used to evaluate priority queue 

implementations. A hold operation involves a dequeue operation followed by an enqueue 

operation [73, 74]. The latter involves enqueueing a new event with timestamp T units 

into the simulated future where T is determined by drawing a random number from some 

probability distribution. Standard techniques can be used to measure the average time per 

hold operation performed on a queue of constant size. Although the hold model has 

certain deficiencies, e.g., the size of the priority queue remains fixed (plus/minus one), it 

provides a useful starting point for the present study. 

 



 

 52 

3.1 Power Model for Priority Queue Implementations 

Priority queues for the future event list drive the execution of a discrete event simulation 

and running such a simulation on an energy constrained device requires an understanding 

of where the most power is drawn.  A power model is essential to characterize such 

power consumption.  The main hardware components of interest here are the processor 

and memory system. Therefore, we developed a power model that includes the power 

consumed for computations and memory access of priority queue implementations. This 

relationship between computation power and memory access power are captured in the 

equations below. 

PQPower = computation_power + memory_access_power 

 

computation_power = computation_current* computation_voltage 

 

memory_access_power = (cache_access_current*cache_access_voltage) + 

 (extmem_access_current *extmem_access_voltage)  

The elements of this power model include the power consumed for computation 

and for memory accesses. The computation power can be characterized by two major 

operations performed on the priority queue: comparison and data movement (e.g., swap) 

operations. Comparisons are made to find the correct location to place events within the 

priority queue. Depending on the implementation the complexity can range from O(N) to 

O(log N) for the data structures examined here.   Data movement involves swapping 

positions between elements within the priority queue in order to maintain priority order. 

The power consumed to perform memory access includes the operations of accessing 

memory to swap events in the priority queue to maintain properties of the priority queue. 



 

 53 

The overall power consumption depends on the frequency of occurrence of computations 

and memory accesses to implement these operations. 

3.2 Priority Queue Implementations 

The priority queue implementations evaluated in our study include the linear list, implicit 

heap, explicit heap, and splay tree. These are described next. 

3.2.1 Linear List 

The linear list implementation for the future event list keeps events stored in order using 

a linear singularly linked list data structure.  The event with the highest priority is stored 

at the head of the list.  Events are inserted or enqueued into the list using a linear search, 

searching by starting at the head of list first, in order to find the correct location to place 

the event.  The enqueue operation on the linear list has a computational complexity of 

O(N) with N being the number of events. The dequeue operation consist of deleting the 

event at the head of the list with the highest priority and has complexity O(1).  

3.2.2 Implicit Heap 

The implicit heap implementation is a complete binary tree with nodes maintaining the 

heap property, i.e., every node’s timestamp is smaller than that of their children. The root 

node holds the smallest time stamped event overall.  Implicit heaps can perform enqueue 

and dequeue operations with a complexity of O (log N) time. Implicit heaps use an array 

in order to store events.  The children of node i are stored in positions 2i and 2i+1 in the 

array.   Use of an array allows implicit heaps to have good spatial locality, which is 

advantageous in cache memory systems, especially when the data structure fits within the 



 

 54 

cache.  By storing the data into an array the elements are able to be stored in contiguous 

memory locations.  This property is important for energy consumption because assesses 

to main memory require a significant amount of energy to drive address and data lines 

and to access DRAM.  

The enqueue operation for an implicit heap operates by inserting a value to the 

end of the heap and placing the node in the proper place within the heap by traversing up 

the heap comparing the priority of the node to its parent to make sure it does not violate 

the heap property.  The dequeue operation for an implicit heap operates by deleting the 

head node of the priority queue, moving the last item in the heap to the root position, and 

traversing and swapping elements down the tree in order to maintain the heap property. If 

the number of elements in the heap exceeds the size of the array that has been allocated, a 

resize operation is required to either extend the size of the array, or if this is not possible, 

to allocate a new array and copy the existing heap elements to the new array. Similarly, if 

the size of the heap is much smaller than the size of the array, it may be desirable to 

resize the heap downward to allow the memory to be used for other purposes. Heap 

resizing can be a time consuming operation if the heap contains many elements. 

3.2.3 Explicit Heap 

Like the implicit heap, the explicit heap uses a complete binary tree with nodes 

maintaining the heap property.  The explicit heap also performs enqueue and dequeque 

operations with a worst case complexity of O (log N). Explicit heaps use pointers to store 

heap data elements rather than through the use of array indices. The enqueue and dequeue 

operate in the same manner as the implicit heap except an additional operation is required 



 

 55 

to locate the last element in the heap. In the implementation used here memory for heap 

nodes are allocated by separate dynamic memory allocation operations, e.g., using 

malloc() in C. The explicit heap therefore eliminates the need for resizing operations. 

However, the explicit heap loses some of the spatial locality properties realized through 

the array in the implicit heap because memory obtained via malloc() may not be 

contiguous with memory previously allocated for other nodes in the heap. Further, use of 

explicit pointers increases the amount of memory required for each heap node, increasing 

the memory footprint of heap nodes and reducing the efficiency of the memory hierarchy. 

With regard to energy this can lead to less effective use of cache memory in the explicit 

heap implementation, possibly leading to greater energy consumption. In addition, the 

increased time for memory operations will lead to greater static energy consumption. 

3.2.4 Splay Tree 

The splay tree is a self-balancing binary search tree. Using explicit pointers for links, it 

has O(log N) average amortized time complexity of enqueue and dequeue operations 

[75].  The splay tree uses a heuristic called a splay operation to help rebalance the tree 

after insertion and deletion operations are performed and bring the last accessed key to 

the root of the tree. Splay tree enqueue operations consider four cases.  If the tree is 

empty a node is allocated and stored in the root of the tree.  The second case uses the 

splay function which is the operation of moving a node to the root of the tree.  The splay 

tree performs standard binary search tree search operation in order to find a given item 

(with a specified key) within the tree.  If the key for the given value being entered into 

the tree is already there then that key is splayed and becomes the new root of the tree, 

else if the key isn’t present then the last accessed node is splayed and becomes the root of 



 

 56 

the tree.  Otherwise, if the key of the node being entered is the same as the key of the root 

node then nothing has to be done since the key is already present.  If third case is not true 

then we allocate memory for a new node and compare the root’s key with the given key 

to be inserted.  If the given key is smaller than the root’s key then the root node becomes 

the right child of the new node, and the left child of the root node becomes the left node 

of the new root node.  Otherwise if the given key is greater than the root the root becomes 

the left child of the new node.   

The dequeue operation performs in a similar matter. It has four cases as well. If the 

root is null it simply returns the root.  The second case checks if the given key is in the 

tree and makes it the new root. If not then the last accessed leaf node now becomes the 

new root.  If the given root is not present then delete the root of the tree.  The last case is 

if the given key is present then split the tree into two trees, one for the left sub tree and 

the other for the right sub tree.  If the root of the left sub tree is null then return the root of 

the right sub tree. Else splay the node with the maximum value of the left sub tree, then 

make the root of the right sub tree the right child of the root of the left sub tree and return 

the root of the left sub tree. 

3.3 Power and Energy Experiments 

To evaluate the power and energy consumption of the priority queue implementations we 

utilized the Jetson TK1 development boards with ARM 32-bit CPU with 4 cores 

operating at 2.3 GHz and 2 GB memory running Linux 3.10.40 operating system.  The 

L1 cache energy and power measurements were completed using the PowerMon2 power 

measurement system.  All implementations were created using the C programing 



 

 57 

language and compiled and ran using the gcc 4.8.4 compiler.   For all evaluations we ran 

our implementations with one cpu core powered on and the other three cores powered 

down and we also performed the experiments with only the low power core on. 

To evaluate the performance of the priority queue implementations we used the 

hold model. The simulation engine drives discrete event simulations, which hold the 

future event list.  The future event list is responsible for holding the events that represent 

the system. Each event is responsible for holding a sequence of operations that reflect a 

process that occurs in the real system.  Each event is executed once it is retrieved from 

the future event list, an execution of an event can lead to a creation of a new event that is 

then placed in the future event list.  Executing and inserting events drive the execution of 

the discrete event simulation until all events or processed or the simulation time has 

completed, which ever comes first.   The hold model is a widely used to measure priority 

queue performance [76].  The priority queue is initialized to contain N events. Sequences 

of hold operations are then performed where each operation involves removing the 

highest priority (smallest timestamp) event, and inserting a new event known as a 

dequeue operation. The time stamp of the new event is obtained by adding the current 

simulation time, i.e., the timestamp of the last event that was removed, with a random 

value drawn from a fixed exponential probability distribution, known as an enqueue 

operation. In these experiments the size of the priority queue was varied while keeping 

the number of hold operations constant. 

 

 



 

 58 

3.4 Cache Hit Benchmark 

To determine the power consumption for a cache hit we implemented a simple two-

dimensional array and performed memory access operations. An integer array of size 100 

x 100 was implemented in C and pre filled with zeros. In order to determine the power 

consumed when cache hits dominate we accessed the first four hundred and fifty values 

in contiguous memory one thousand times and computed the average power drawn by 

one cache hit. We repeated the same experiment accessing locations within the array that 

are contiguous we instead accessed locations within the array that were not stored in the 

L1 cache. To determine the power consumption for a cache miss we implemented a two 

dimensional array that could not completely fit in the cache.  An integer array of size 500 

x 500 was implemented in C and filled with zeros.  We staggered the locations that were 

accessed by accessing locations at the end of the array to ensure that we obtained a cache 

hit and did this for four hundred fifty locations within the array one thousand times.  This 

allowed us to obtain the average power drawn for a cache miss. These benchmark values 

give us a baseline to use for constants for our power model to determine the power 

consumption for future event list implementations. 

Table 3-1:Memory Benchmark Value 

Cache hit power  3.893331 watts 

Cache miss power  4.348888 watts 

 

 



 

 59 

3.5 Priority Queue Power Consumption 

An evaluation for small priority queues that fit in the L1 cache was first performed using 

the hold model to provide baseline data. This configuration was designed to keep the 

number of cache misses and references to main memory to a minimal level. Figure 3-1 

shows the average power drawn in performing ten million hold operations for the four 

priority queue implementations using different queue sizes. The same evaluation was also 

performed for large priority queues that do not fit in the cache in order to assess the 

impact of cache misses on power which is also display in the same graph to the right of 

the vertical black line.  The black line indicates the point at which the queue no longer 

fits within the L1 cache. Figures 3-2 shows the average energy drawn for the same 

experiment amongst the four implementations. Figures 3-4 show the execution time for 

completing one hold operation for the four implementations evaluated when performing 

this experiment.  



 

 60 

Figure 3-1: Priority Queue Implementations Power 

 The graphs indicate that the implicit heap yields the least power drawn, for both 

large and small queues. Figure 3-1 indicates that as the size of the queue increases but 

stays within the cache that the power consumed by the implicit heap and linear list 

remains about the same, but increases significantly for the implicit heap and splay tree. 

The linked list draws the most power at a queue size of 1000 but consumes less power 

than the explicit heap and splay tree when the queue size reaches 4000. For large queues 

that do not fit in the cache, shown to the right of the black vertical line, the implicit heap 

again consumes the least amount of power, and this amount does not vary significantly as 

the queue size is increased. Power in the other implementations does increase with queue 

size. We attribute the power draw increases for the explicit and splay tree to an increase 

in the rate of the number of swaps performed per second in order to maintain the data 

structure. We analyze this in section 3.6.  



 

 61 

Figure 3-2: Priority Queue Implementations Energy Consumption 

While the power measurements indicate the rate of energy consumption, the next 

set of curves show the overall energy consumption, which is affected by the time required 

to perform enqueue and dequeue operations. The energy consumption for small and large 

queue sizes shown in figure 3-2, the figure indicates similar trends in energy consumption 

for small and large queues. The linked list consumes the most energy due to the time 

required to perform hold operations; this is shown in figures 3-3.  The implicit heap 

consumes the least amount of energy. This result is a direct consequence of the small 

amount of power drawn and time needed to execute hold operations in this 

implementation.  From these results one would conclude that where power, energy, and 

time are a concern the implicit heap is the best implementation among those examined. 

The explicit heap is second; this is also a consequence of the amount of time needed to 

execute hold operations.  



 

 62 

3.6 Priority Queue Swaps, Linear Comparisons, and Pointer Swaps 

The average number of swaps and comparisons per second were compared for the four 

implementations.  The implicit heap, explicit heap, and splay tree swap elements in order 

to maintain the heap property or to rebalance of the tree.  The linked list implementation 

performs comparisons amongst the elements inserted into the list but does not require 

swaps.  These experiments performed ten million hold operations. The size of the priority 

queue was varied from one thousand to four thousand elements for small queues that fit 

in the cache and large queues varying in size from ten thousand to forty thousand 

elements.  

Figure 3-3:Priority Queue Implicit & Explicit Heap Swaps 



 

 63 

 

 
Figure 3-4:Priority Linked List Implementation Linear Comparisons 

 

 
Figure 3-5: Priority Queue Splay Tree Pointer Swaps 

The results indicated in figure 3-4 show that the linked list implementation 

produces the highest rate of comparisons per second for small queues and the smallest 

rate for large queues.  This is consistent with the nature of the data structures.  For the 



 

 64 

tree based implementations, as the size of the tree grows more swaps are required for 

each priority queue operation in order to not only place events in the correct location but 

also to maintain the structure of the tree. The linked list structure is not changed when 

events are inserted.  

 The average time per hold operation in executing the priority queue 

implementations using the hold model for evaluation is shown in the graphs below. We 

compare the average time per hold operation for both small (Figure 3-6) and large queues 

sizes indicated to the right of vertical black line. 

Figure 3-6:Priority Queue Implementations Average Time Per Hold 

Figure 3-6 shows that for both large and small queues the average time per hold 

operation increases with the size of the queue.  We also see that the pattern is the same 

amongst the four implementations for both the small and large queues, the implicit heap 

performs its hold operations with the quickest time with the linked list implementation 



 

 65 

performing hold operations with the longest time per hold.   The linked list time per hold 

is attributed to fact that the enqueue operation performs a linear search in order to insert 

events into the queue which requires and O(N) complexity whereas in the other three 

implementations enqueue operations have O(log N) complexity.  All implementations 

have their time per hold rate increase with the size of the queue regardless if the queue 

fits within the cache as shown in Figure 3-6 or does not fit within the cache as shown to 

the right of the vertical black line in figure 3-6. 

3.7 Priority Queue Energy Model for Hold Operation 

The preceding results show the overall energy and power consumption of four different 

priority queue implementations: implicit heap, explicit heap, linked list, and splay tree 

data structures.  We examine how the size of the priority queue affects the overall energy, 

power, time per hold, and number swaps and comparisons as we increase the size of the 

priority queue. Examining the data from these experiments provides insight toward 

understanding and creating a model for each implementation that can predict the amount 

of energy expended for performing one hold operation.  We evaluate how each prediction 

model changes as the size of the priority queue fits within the cache (32 KB), and 

exceeds the size of the cache of the development board. 

3.7.1 Implicit Heap 

The implicit heap is an array implementation of the priority queue.  To enqueue into the 

implicit heap requires that a node be inserted at the end of the heap. Since the implicit 

heap is an array implementation we can access the end of the heap in O(1) time. Once a 

node is inserted into the heap we must ensure that heap order is still intact. To ensure 



 

 66 

heap order a heapify operation is performed. We heapify the newly inserted node up the 

heap by performing swaps between nodes in the heap until the order is restored.  To 

dequeue from the heap we swap the last element in the heap with root.  We then delete 

the last node from the heap, which is now the root. We then perform the heapify 

operation starting at the root heapfying down the heap to restore heap order by swapping 

nodes.  The heapify operation performs in O(log n) time with n being the number of 

elements in the heap. Our energy model below shows the components of the implicit 

heap data structure that affects the energy needed to perform one hold operation on an 

implicit heap.   

Energy = C1 + C2S 

C2 = time_swap * power_swap 

S = number of swaps 

 

Table 3-2: Implicit Heap Energy Constants 

 

 

C1 reflects the constant base energy needed for the implicit heap on the 

development board.  C2 represents the energy needed to perform one swap operation on 

an implicit heap.  This constant is based on the time and power needed to perform a swap 

operation.  We evaluate the energy per hold as we increase the number of swaps.   Our 

model compared to the experimental results is shown in the graphs below for implicit 

heaps whose size fit within the cache and those whose size cannot fit completely within 

the cache. Table 3-2 shows the constant values used for our prediction model for implicit 

heaps within and not within the cache. 

 C1 C2 

In Cache 4.00E-07J 

 

1.44E-08J 

Out Cache 5.00E-07J 

 

1.60E-08J 



 

 67 

Figure 3-7:PQ Implicit Heap Energy Model 

Figure 3-8: PQ Implicit Heap Energy Model % of Error 

Figure 3-7 displays our experimental results in blue and our predicted results in 

red.  The data suggests that the relationship between energy consumption and performing 



 

 68 

one hold operation is linearly dependent on the number of swaps that are need to 

complete a dequeue followed by an enqueue when using an implicit heap. Figure 3-7 also 

shows that more swaps are needed when using a larger heap and the effects of accessing 

memory that is not located in the cache.  Figure 3-7 compares the measurements with 

predictions from the model when we use heaps who size fit within the cache cannot 

completely fit within the cache indicated by the data to right of the vertical black line.  

The constant values using implicit heaps with sizes larger than the cache and accessing 

locations within the heap that may not be located in the graph are shown in column 2 of 

table 3-2.  It is seen that there is good agreement between the values predicted by the 

model and those observed in the measurements. 

3.7.2 Explicit Heap 

The explicit heap is a pointer implementation of the priority queue. It performs the 

enqueue and dequeue operations in the exact same manner as the implicit heap.  The 

difference between the implicit and explicit heap is that since it is implemented using 

pointers we can not guarantee that memory allocated for nodes within the heap are 

contiguous in memory.  We also do not have a O(1) access to the last node within the 

heap; rather, O(log n) time to find the last element within the heap.  This requires more 

energy to perform a hold operation when using an explicit heap.  Our energy model 

showing the energy needed to perform one dequeue followed by an equeue are displayed 

below.  

Energy = C1 + C2S + C3D 

C2 (swap energy) = time_swap * power_swap 

C3  = energy to search 

D (depth) = log (Num elements in heap 



 

 69 

Table 3-3: Explicit Heap Energy Constants 

The prediction model for the explicit heap includes the energy consuming 

components of the hold operation.  C1 represents the base energy needed to store an 

explicit heap on the development board.  C2 represents the energy needed to swap 

between elements within the heap when heapify operations are performed.  C3 represents 

the energy needed to search for the last element in the heap when performing a dequeue 

operation; this value is dependent on the depth of the heap which depends on the size of 

the heap. Table 3-3 shows the constant values used in our prediction model for values C1, 

C2, and C3 for heaps that fit within the cache and heaps that cannot completely fit within 

the cache.  

 C1 C2 C3 

In Cache 5.50E-07J 

 

2.00E-08J 3.00E-07J 

Out Cache 6.60E-07J 

 

2.50E-08J 3.50E-07J 



 

 70 

Figure 3-9: PQ Explicit Heap Energy Model 

Figure 3-10: PQ Explicit Heap Energy Model % of Error 

Figure 3-9 compares the results from the prediction model to experimental 

measurements as we increase the number of swaps.  Like the implicit heap we see that as 



 

 71 

more swaps are needed to complete a hold operation data accessed through pointer 

references may not reside within the cache memory.  This access operation may require 

the need for more energy depending on the memory access pattern.  Figure 3-9 shows the 

prediction model that takes into account these out of cache memory accesses that may be 

occurring once we perform hold operations on heaps who size cannot completely fit 

within the cache. More swap operations are required and more energy is consumed to 

reach the last element within the heap.  

3.7.3 Linked List 

The linked list implementation is also a pointer implementation of the priority queue 

where the underlying structure is a linear list of nodes that are in order based on priority.  

From a practical perspective this implementation is only useful for priority queues of 

small sizes.   To perform an enqueue operation on a linked list requires that we compare 

the inserted value to the values already in the list to find the appropriate location to store 

the inserted value. The enqueue operation in a linked list takes O(n) time, with n being 

the number of elements in the list.  The dequeue operation on a linked list priority queue 

implementation requires that we remove the root node from the list and make the next 

node within the list the new root.  This operation requires O(1) time.  Our focus for the 

prediction model for the linear list implementation of a priority queue is on the amount of 

energy needed to perform a linear comparison between nodes.  Since a link list is a 

pointer implementation we are typically dealing with non-contiguous memory locations 

in order to access the pointers within the list. This property can affect the search energy.  

The prediction model for the linked list implementation is as follows:  



 

 72 

Energy = C1 + C2Comps 

C2 = time_compare * power_compare 

Comps = number of comparisons 

 

The prediction model uses C1 to represent the base energy needed to maintain a 

linked list data structure.  The energy to compare nodes within the link list is represented 

by the value C2 shown in table 3-4.   The value of C2 is determined by the product of the 

time required to compare elements with the power required to make a comparison 

between two nodes. 

Table 3-4: Linked List Energy Constants 

Figure 3-11: Priority Queue Linked List Energy Model 

 C1 C2 

In Cache 1.00E-08J 9.00E-08J 

Out Cache 1.70E-08J 9.30E-08J 



 

 73 

 

Figure 3-12: PQ Linked List In Cache Memory % of Error 

 The linked list model shows a linear relationship between the size of the list and 

the numbers of comparisons needed to perform a hold operation on the linked list 

implementation.  These results demonstrate that as the number of comparisons needed to 

complete a hold operation increases that the overall energy consumption increases 

linearly.  This trend is seen in Figure 3-12 when the linked list fits within the cache and 

when it does not, respectively shown to right of the vertical black line in the figure. Our 

in-cache model when compared to the experimental values show that as we get closer to 

linked list sizes near the size of the L1 cache that our prediction model doesn’t begin to 

hold as well.  This maybe a reflection that we are now accessing values outside of the 

cache requiring in a need for more energy to be exerted to perform enqueue and dequeue 

operations. This requires an adjustment to the constant values for prediction energy 

consumption for linked list whose total size cannot fit within the cache.   



 

 74 

3.7.4 Splay Tree 

The splay tree implementation, like the implicit and explicit heap, is another variation of 

the binary tree data structure.  The splay tree uses splay operations to keep commonly 

accessed nodes near the root to take advantage of locality.  Like the explicit heap the 

splay tree implementation uses pointers to connect nodes within the data structure. Splay 

trees maintain balance by using the splay operation to perform rotations on the tree to 

bring needed nodes to the root of the tree. An enqueue operation requires O(log n) 

amortized time complexity, but has a worst case time of O(n) for individual operations. 

Predicting the amount of energy needed to perform a hold operation, i.e., a dequeue 

followed by an enqueue operation, requires determining the energy needed to perform a 

splay operation.  The enqueue operation requires a search to find the next empty location 

within the tree.  Once the inserted element is placed in the tree, a splay operation is 

performed to (approximately) restore balance to the tree.   The splay operation requires 

that rotations be performed and within those rotations nodes swap pointers to their right 

and left children in each sub tree.  Our prediction model for one hold operation reflects 

the relationship between these three operations and is shown in the equation below.  

Energy = C1 + C2R+ C3D 

C2 (rotation energy) = time_swap * power_swap 

C3  = rotation energy 

D (depth) = log(num elements) 

R  = number of rotations 

 

Table 3-5: Splay Tree Energy Constants 

 C1 C2 C3 

In Cache 6.00E-07J 

 

1.70E-07J 1.64E-07J 

Out Cache 6.50E-08J 

 

2.00E-07J 1.67E-07J 



 

 75 

This model associates the base energy needed for a splay tree with the number of 

swaps required and the number of rotations needed to complete an enqueue and dequeue 

operation using the splay tree data structure. C1 represents the base energy, C2 represents 

the energy need to complete a rotation within the tree during a splay operation, and C3 

represents the energy needed to perform a search for the last element within the tree 

during an enqueue operation.  D represents the depth of the tree.  

Figure 3-13: PQ Splay Tree In Cache Memory 



 

 76 

Figure 3-14: PQ Splay Tree In Cache Memory % of Error 

Figure 3-13 shows that as we increase the size of the tree to no longer fit within the 

cache more energy is needed to search for the last node and rotate the nodes within the 

tree to maintain balance.  

3.8 Discussion 

Our study gives an overview of how the implicit heap, explicit heap, linked list, and splay 

tree priority queue implementations perform under the hold operation.  As the size of the 

priority queues increase we see a change in the behavior of the energy consumption and 

attribute that to memory access.  The implicit heap performs with the least amount of 

energy consumption amongst the implementations evaluated.  We attribute this behavior 

to the nature of the underlying data structure of the implicit heap, an array.  Since arrays 

take advantage of using local locality we can guarantee that for implicit heaps that fit 

within the cache that they are contiguous in memory, which is advantageous for energy 



 

 77 

consumption. To further evaluate our assumption that memory access in the cache versus 

outside of the cache affects overall energy consumption under the hold operation we 

dissect each data structures operations performed during the hold operation to illustrate 

the energy consumption behavior. Our investigation attributes the relationship of the 

implicit heap to the number of swaps required to perform one hold operation for queues 

who’s size can fit within the cache and sizes which cannot completely fit within the 

cache.  Our prediction model shows for all priority queue implementations that as we 

increase the number of swaps needed and the size of the priority queue we get closer to 

maximum L1 cache size of the board and our prediction percent of error begins to widen.  

We then reformulate the constants for our prediction model in order to gain a closer 

predication for priority queue sizes that cannot completely fit within the cache. This is 

done for all data structures. Our explicit heap implementation is also dependent upon the 

number of swaps that are needed to complete a hold operation where as the linked list is 

dependent on the number of comparisons between nodes within the list.  The splay tree 

implementation is dependent upon the rotations needed to be performed during the splay 

operation that occur when a hold operation is executed. This gives us further validation 

that accessing memory outside of the cache requires more energy than accessing values 

within the cache despite what underlying data structure is used amongst the data 

structures of our investigation. The energy constants required to perform the operations  

(implicit swap, explicit swap, linear comparison, and tree rotation) that drive the energy 

consumption for the four implementations are displayed in Table 3-6 below. 

 



 

 78 

Table 3-6: Swaps, Linear Comparisons, Tree Rotation Energy Constants 

 Implicit Swap 

Energy 

Explicit Swap 

Energy 

Linear 

Comparison 

Energy 

Tree Rotation 

Energy 

In Cache 1.44E-08J 2.00E-08J 9.00E-08J 1.70E-07J 

Out Cache 1.60E-08J 2.50E-08J 9.30E-08J 2.000E-07J 

When comparing the energy driving operations between each implementation the 

constants validate that the implicit heap is the most energy efficient implementation. 

Overall energy efficiency is gained by the amount of energy that is needed to perform an  

implicit swap in an implicit heap.  This behavior is a reflection of the amount of time that 

it takes to perform an implicit swap, the time her is a consequence of the implicit heap 

taking advantage of spatial locality that is gained when the underlying data structure is an 

array.  The explicit heap performs the same swap operation between elements but does 

not use spatial locality, under this implementation pointers are used and do not guarantee 

spatial locality, finding a pointer in memory to retrieve an element requires more time 

than an implicit heap implementation leading to more energy consumption which is 

reflected by the constant values displayed in Table 3-6.  The constant energy value to 

perform a linear comparison also is a reflection of the amount of time it takes to search 

through the linked list to determine where an inserted value fits within the list.  This 

constant value could be different depending on the distribution used in order to determine 

the priority of the future event inserted in the list.  The linked list implementation could 

be useful for simulation applications that require very little events required to be store in 



 

 79 

the future event list. The user may gain overall energy consumption when the list has less 

than fifty items in the tree.  The energy required to perform a hold operation in a linked 

list requires only 1.00E-08J for queues that fit within the cache and 1.70E-08J for queues 

that do not completely fit within the cache.  The implicit heap, explicit heap, and splay 

tree implementations require 4.00E-07J or greater to perform a hold operation on their 

data structures. They are more energy efficient for larger applications because they save 

more overall energy consumption when performing swaps in the heap implementations 

and rotation on the splay tree implementation.  The table also reflects that when 

comparing all four operations that performing a rotation in a splay tree requires the most 

energy consumption.  This raises the question of why is a splay tree implementation 

faster than a linked list implementation.  The splay is a hierarchal implementation who 

performs its insert and delete in O(log n), so although performing a rotation takes longer 

than a linear comparison the number of rotations that need to be performed to complete 

an insertion into a splay versus inserting into a linked list requires less overall time 

leading to significantly less energy consumption overall.  Another behavior that is 

apparent when comparing energy constants of the data structures evaluated is the energy 

required to search for the last element in an explicit heap in comparison to a splay tree.  

These constant values are reflected in table 3-7 below. 

Table 3-7: Explicit Heap and Splay Tree Search Energy Constants 

 Explicit Heap Search 

Energy 

Splay Tree Search Energy 

In Cache 3.00E-07J 1.64E-07J 



 

 80 

Out Cache 3.50E-07J 1.67E-07J 

Table 3-7 shows that searching for the last element within a splay tree requires less 

energy than in an explicit heap.  The splay tree uses rotations in order to keep the height 

of the tree balance, it is a self optimizing data structure that uses the splay operation to 

keep frequently accessed items close to the root.  These would be an advantage for 

someone who needs to use a priority queue in an application where they know the height 

of the tree where be small.  They could gain energy efficiency overall from taking 

advantage of the small amount of energy that is needed to search for the last element in 

the tree when performing an enqueue or dequeue operation versus using an explicit heap 

implementation.  This gives us insight under which situations that each implementation 

may advantageous to use over others. 

3.9 Conclusion 

Utilizing mobile devices to execute embedded discrete event simulations requires an 

understanding of how each component of the simulation affects overall energy 

consumption. We have conducted a study focusing on characterizing and understanding 

where power is consumed for four different priority queue implementations of the future 

event list in discrete event simulations.  Our study compares the linked list, implicit heap, 

explicit heap, and splay tree implementations of the priority queue. We evaluate the 

average power used to execute a hold operation as we vary the queue size.   Our results 

indicate that the implicit heap consumes the least power, energy, and time as queue size 

increases. The implicit heap can exploit local locality of memory references because its 



 

 81 

underlying data structure is an array, which utilizes contiguous memory locations. This 

helps ensure higher cache hit rates resulting in fast access and lower power consumption.  

The linked list implementation does not exhibit this degree of memory locality and 

requires a search of time complexity O(N) for enqueue operations, leading to longer 

search time and overall more energy consumption than the tree implementations as the 

size of the queue increases.   

The explicit heap implementation, like the linked list uses pointers to link nodes. 

This implementation’s underlying data structure is a tree which performs enqueue and 

dequeue operations with O(log N) time complexity.  This allows the time needed to 

search during the enqueue operation to be minimal but the access time required to access 

nodes is larger than the implicit heap because events may not be placed in contiguous 

memory.  

We implemented models to predict energy consumption in performing enqueuer and 

dequeue operations for all four implementation to highlight the causes of energy 

consumption in executing enqueuer and dequeue operations.  These prediction models 

show the relationship among the operations needed for each implementation to execute a 

priority queue operations on an embedded system. Our models show that as we perform a 

hold operation on priority queue sizes that cannot fit within the cache that the energy 

needed to perform a hold operation increases, but this effect can be captured by 

modifying constant values used by the model. Empirical measurements show excellent 

agreement between the model and measurements. We conclude that among the priority 

queues considered in this study the implicit heap is the best data structure to use in so far 



 

 82 

as the hold model represents typical behavior for the simulation program being used.  We 

also conclude that exploiting locality in memory offers a significant benefit to reducing 

overall energy consumption. 

4 ENERGY FOR HLA DDM APPROACHES 

Data distribution management (DDM) is a set of services defined in the High Level 

Architecture to distribute information in distributed simulation environments [7]. DDM 

services are implemented by Run-Time Infrastructure (RTI) software. Several different 

approaches to implementing the DDM services have been proposed including grid-based 

implementations, region-based implementations, and hybrid approaches that utilize a 

combination of ideas from the grid and region-based approaches [30]. These approaches 

have certain computation and communication requirements that are necessary to perform 

DDM operations.  To our knowledge no work has been conducted to date examining 

DDM services from the standpoint of energy consumption. This is the focus of the work 

described here.  We examine the well-known region based and grid based approach along 

with two other DDM approaches to gain an understanding of the energy consumption 

properties of using DDM in energy constrained environments. 

Dynamic Data Driven Application Systems (DDDAS) are applications that 

continuously monitor, analyze, and adapt operational systems in order to better assess 

and/or optimize their behavior [1]. Applications arise in many areas such as natural 

disaster management, transportation and manufacturing, among others [4, 77, 78]. Many 

DDDAS applications involve sensing and computation on mobile devices, utilizing 

communications through wireless networks. Energy consumption in these applications is 



 

 83 

a major concern because battery life often limits the effectiveness of DDDAS 

applications utilizing mobile platforms.  

With the growing use of mobile devices research in the area of mobile computing has 

increased.  Mobile devices have the ability to provide real-time information that can be 

used as input to real-time applications such as DDDAS. Sensors such as GPS, cameras, 

accelerometers, and environmental sensors are becoming more widely deployed. The 

dependency on battery power for mobile devices makes it vital to understand the energy 

consuming properties of running applications on mobile systems. 

We are concerned with understanding how to implement and use DDM to provide 

real-time information to run embedded DDDAS applications within mobile devices.  

These DDDAS applications are used to make predictions and analyze systems such as 

traffic networks. 

4.1 Data Distribution Management  

Data Distribution Management services are used to reduce traffic flow over the network.  

DDM services are defined in the High Level Architecture Interface Specification.  The 

services are implemented by Run-Time Infrastructure software.  DDM utilizes an N-

dimensional coordinate system called a routing space to represent, for example, a 

geographical area.  Federates express their interest by defining subscription regions that 

characterize the information they are interested in receiving. Each message is associated 

with a publication region to characterize the content of the message. If an overlap is 

detected between a message publication region and a federate’s subscription region, the 

message is sent to that subscribing federate.  The region based and grid based DDM 

approaches are the most well known approaches to implementing DDM services.  Several 



 

 84 

other approaches have been proposed and implemented to overcome the drawbacks of 

these approaches. 

4.1.1 Region Based Approach 

The region based approach manages interests by performing a matching computation 

between all publication and subscription regions defined within the routing space [79].  

This approach incurs a O(N2) computation cost where N is the number of subscription / 

publication regions.  Although costly this approach is efficient in communicating 

messages.  A multicast group is defined for each publication region within the routing 

space. Once an overlap is detected between a publication region and a subscription 

region, the subscribing federate joins the multicast group associated with that publication 

region.  If a subscription region changes, the new subscription region must be compared 

against each other publication region to determine which groups it should leave or join. 

Similarly, if a publication region is changed, it must be compared against every other 

subscription region to determine the new composition of its multicast group. This 

approach is sometimes called the brute force approach because it is a direct 

implementation of the DDM services. 



 

 85 

 

 

 

 

 

 

 

 

 

Figure 4-1: Region Based Approach 

An example illustrating this approach is shown in Figure 4-1. Two multicast groups 

are created, one for P1 and one for P2. Federates subscribing the region S2 join the group 

for P1 and those subscribing to S1 subscribe to the group for P2. Messages associated 

with publication region P1 are thus routed to federates subscribed using region S2. 

4.1.2 Grid Based Approach 

Grid based DDM aims to eliminate the need to directly match regions against each other 

to determine region overlap between publication and subscription regions. The grid based 

approach implements DDM by partitioning the routing space into fixed size grid cells 

[80].  A multicast group is defined for each grid cell within the grid structure. The grid 

cells are used to determine overlap between publication regions and subscription regions 

within the routing space.  Federates determine those grid cells for which their publication 

regions overlap and send each message to the associated multicast group(s). Similarly, 

federates subscribe to groups associated with cells that overlap with their subscription 



 

 86 

regions. The grid based approach is considered to be more computationally efficient and 

scalable than the region based approach.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Grid Based Approach 

The drawback to the grid-based approach is it lacks communication efficiency. 

Subscribing federates can receive irrelevant and duplicate messages under this approach. 

The example in Figure 4-2 illustrates the grid-based approach.  A message sent with 

publication region P1 is sent to groups 21, 22, 14, and 15. Two of these messages are sent 

to federates subscribed to region S2, resulting in duplicate messages. Similarly, messages 

sent with publication region P2 are sent to federates subscribed to S3 through multicast 

group 11, even though P2 and S3 do not overlap.    

 

 

 



 

 87 

4.2 Energy tradeoffs 

Tradeoffs arise concerning energy consumption for different data distribution 

management approaches.  Every DDM approach must perform operations such as: 

interest matching, processing changes to regions, and communicating distributed 

simulation messages using the DDM services. The difference among DDM approaches 

concerns how they perform and handle these operations and the effects they have on 

energy consumption. 

4.2.1 Region Based Approach 

The region-based approach typically uses a central controller to handle DDM operations. 

The central controller is responsible for comparing all publishing regions against all 

subscription regions in order to determine which multicast groups subscribing federates 

should join. When a region changes publishing federates broadcast an update messages to 

all subscribing federates.  The initial establishment of multicast groups using this 

approach is computation intensive. The matching computation is O(N2) where N is the 

number of publication or subscription regions. Each publication region must be compared 

against all subscription regions in the routing space to determine which regions overlap. 

Subsequent changes to a publication or subscription regions require computation of 

complexity O(N). Therefore, the frequency at which a federate changes its subscription 

regions has an significant impact on energy consumption.  

Although the region-based approach is computationally intensive it is efficient in 

terms of communications.  The region-based approach does not create irrelevant or 

duplicate messages that occur in grid based approaches, as discussed later. Subscribing 



 

 88 

federates only receive messages for publication regions that overlap with their 

subscription regions. The use of a central controller can limit scalability, however. 

4.2.2 Distributed Region Based Approach 

The use of a central controller can limit scalability. To address this issue we propose a 

distributed region based approach. This approach uses R controllers.  Each controller is 

responsible for a fixed area of the routing space and manages publication and 

subscription regions that lie within their assigned area. Subscription regions that overlap 

more than one area require communication among the corresponding controllers 

responsible for those regions to determine the multicast groups a subscribing federate 

must join and which controllers must be notified when a region changes. This alleviates 

the scalability issue in the original region based approach. Since direct matching still 

occurs under this approach the communication of distributed simulation messages 

through the DDM system is still just as efficient as the original region based approach; 

federates do not send or receive duplicate or irrelevant messages thereby improving 

energy consumption relative to the grid-based approaches described later. 

4.2.3 Fixed Grid Based Approach 

The use of a grid structure greatly reduces the computation needed for DDM operations 

by avoiding the matching computations required by the region-based approaches. But, it 

leads to irrelevant and duplicate messages, as discussed earlier.  The number of irrelevant 

and duplicate messages depends on the size of the grid cell. Thus, grid cell size plays an 

important role on grid based DDM approaches.  Small grid cells can lead to many 



 

 89 

duplicate messages. While large grid cells reduce the number of duplicate messages, they 

increase the number of irrelevant messages. 

4.2.4 Dynamic Sort Based Approach 

The dynamic sort based approach aims to reduce the expense of executing region 

modification by using a time stepped approach. Traditionally committing region 

modifications every time step leads to costly computation and a high communication 

overhead.  To overcome this drawback region modifications are usually committed 

periodically.  In each time step of the simulation only a small subset of regions used in 

the federation are modified. The dynamic sort based approach was created by Pe in order 

to dynamically match region modifications [37]. The algorithm works based on the 

condition that the regions new upper (lower) bound is greater (less) than its previous 

upper (lower) bound limit. Once a change in the region’s bound has been detected then 

that triggers the algorithm to perform re-matching between the two regions.  The dynamic 

sort based algorithm maintains four-sorted list per dimension in order to not have 

wasteful processing during selective region modifications. The algorithm maintains a 

bounds list for each of the upper and lower bound of each dimension, which is generally 

two. The shift of a federate’s extents in each bound does not tend to change by a large 

margin during each time step of the simulation. This small margin change is because the 

federate is bounded by a maximum speed.  This means that it is not necessary to check 

against all update regions but only those within bounds of the new extents of the 

federate’s subscribing region which is a small subset of all subscription regions apart of 

the federation.  



 

 90 

4.2.5 Grid Filtered Region Based Approach 

The grid filtered region based approach increases scalability and reduces the number of 

irrelevant and duplicate messages. Like the grid-based approach, this approach utilizes a 

grid structure to perform interest management operations. Boukereche created this 

approach in order to reduce the irrelevant message problem that incurs in the grid based 

approach [32]. This method uses a threshold parameter that indicates the percentage of 

area a region must cover within the grid cell before it joins the grid cell’s multicast group.  

This threshold triggers matching computations between regions within grid cells. Those 

publication regions whose area of coverage of the grid exceeds the threshold are placed in 

a full coverage list for the cell. The same is done for publication regions that are placed in 

a full coverage list for subscription regions.  These regions need not perform matching 

within the cell.  Those regions whose area of coverage is below the threshold are placed 

in partial coverage lists for publishers and subscribers.  All publication regions within the 

partial coverage list are matched against all subscription regions within the partial 

coverage subscriber’s list.   This reduces the number of irrelevant message by using 

direct matching computations. 

4.3 Scenario 

These experiments focus on a vehicle traffic application.  The envisioned system is a 

Dynamic Data Driven Application System (DDDAS) using mobile devices.  These 

devices, e.g., smart phones, utilize traffic volume data from sensors embedded within the 

arterial traffic network. A two-dimensional routing space is used that corresponds to a 

traffic network measuring 50 by 50 kilometers.  The embedded sensors are placed at each 



 

 91 

intersection of the traffic network and detect vehicles traveling in the North and South 

direction. Sensor devices publish data such as measurements of traffic volume; thus, their 

publication region corresponds to an area surrounding the location of the sensor. 

Subscription regions represent areas of interest for a mobile vehicle and are typically 

distant from the location of the vehicle. Specifically, vehicles express interest in receiving 

data from sensors that are located 805 meters (0.5 miles) away from their current location 

in their current direction of travel, which is either North or South bound in the arterial 

traffic network.  The embedded sensors have a sensor range of approximately 400 meters. 

Each moving vehicle is a subscribing federate and the embedded traffic sensors are 

publishing federates. The arterial road network contains vehicles that are assigned a 

random position within the arterial road network and travel either north or south, moving 

with a constant velocity of 20 meters per second.  

4.4 Experimental Setup 

These experiments utilized the LG Nexus 5x cellular phone with a Qualcomm 

Snapdragon 808 processor, 2GB memory, and 16GB storage as the mobile computing 

platform. The phone runs the Android version 6.0.1 (Android Marshmallow) operating 

system. Computation experiments are explicitly performed on the Jetson TK1 

development boards with ARM A15 32-bit CPU with 4 cores operating at 2.3 GHz and 2 

GB memory. Energy and power measurements were performed using a PowerMon2 

power measurement system for measurements that were evaluated on the board [81].  The 

Trepn profiler application was used to perform measurements on the Android phone [57]. 

To evaluate the computation energy of the four DDM approaches – region based, 

distributed region based, fixed grid based, grid filtered region based, and the dynamic sort 



 

 92 

based – we perform all computations on the Jetson development board. Each approach’s 

matching component was run on the board and the energy consumption was measured to 

determine the average amount of energy consumed.   

To evaluate the energy needed for communication we assumed that one RTI client 

communicates with the development board through TCP sockets over a WLAN network.  

The client for this experiment was the Nexus 5x mobile device that performed all DDM 

operations.  This was implemented by creating an Android application using Android 

Studio.  All communication was performed between the mobile device, which acted as 

the central controller in the case of region-based approaches, and the publishing federate 

in the case of grid based approaches.  Wireless communication was performed between 

the mobile device and the board with the device receiving 1000 byte messages and the 

board sending 1000 byte messages.  The mobile device mimics the full operation of what 

would happen during communication under the traffic scenario described earlier.  In the 

case of the region-based approaches the device sends a message to the server indicating 

its subscription region.  The server (board) then performs matching between the client’s 

region and the known other regions within the routing space to initially set up the 

multicast groups.  The server then communicates with the client to indicate what 

multicast groups it should join.  In the case of the grid based approach the client performs 

its own interest matching computation by determining which grid cells its subscription 

region overlaps, and then joins the designated multicast groups.  Energy consumed by the 

client for messages sent and received under each approach was then measured.  

All experiments assume that two central controllers are used for the distributed region 

based approach and the threshold for the grid filtered region based approach is set to 0.6.  



 

 93 

The grid cell size is set to 20m x 20m, publication regions are 40m x 40m and 

subscription regions are 80m x 80m.   

4.5 Energy for Computations: Initial Multicast Group Association 

We define computation energy to be the energy used to compute the matching component 

of the DDM approaches. An evaluation of the energy used to determine the matching 

component of each DDM approach as the number of subscribing federates increase are 

shown in Figure 4-3. 

  Figure 4-3: Computation Energy as federates increase 

The results show the energy cost of using a purely region based DDM approach in 

comparison to grid based DDM. The region based matching cost is O(N2) to initialize 

DDM operations since every publication region is compared against every subscription 

region.   



 

 94 

 The distributed region based approach performs matching in the same manner as 

the region based approach. It designates a subset of regions to each central controller in 

the routing space based on the coordinates of the region.  Each controller performs 

matching on the regions that are in their domain as well as those that cross multiple 

domains.  This reduces the amount of energy consumption used for matching because the 

cost is divided among multiple controllers.  Utilizing a subset of central controllers 

allows the number of regions that must be compared to be reduced which in turn reduces 

the energy consumption cost compared to the centralized region based approach. 

The fixed grid based approach consumes the least amount of energy out of all the 

approaches compared in this study.  The matching operation in this approach involves 

federates determining the grid cells with which their regions overlap. The increase in 

energy is due to each federate determining the overlapping grid cells and adding 

themselves to the list of federates in the multicast group. 

In the grid filtered region based approach computation energy is similar to that of the 

fixed grid based approach. Federates again match themselves to grid cells by determining 

those cells with which their regions overlap.  This approach performs matching by 

utilizing a threshold parameter that allows region matching to be conducted between 

publication and subscription regions within the grid cell whose area of coverage falls 

below the threshold.  Those regions within each grid cell whose coverage is above the 

threshold automatically join the multicast group for that grid cell.  

 

 

 



 

 95 

4.6 Energy For Computation: Update Multicast Join/Leave 

Updating multicast group association is defined as the action of federates joining  and 

leaving the current multicast to join the multicast group reflecting their current interest. 

Depending on the DDM approach in execution the operations of joining and leaving is 

performed differently. In order to implement a federate’s updated interest, the matching 

operation must be performed on a subset of the regions.  This performance requires 

computation every time a modification request is made which will lead to some energy 

cost. An evaluation of what that energy cost is between different DDM approaches for 

this modification to be made under different update rates is reflected below.  This 

experiment consisted of evaluating the energy consumption of five hundred federates 

modification their interest expression during a five minute time frame.  For each update 

rate each approach evaluated the changes made to joining and leaving multicast groups to 

reflect each federate’s current interest.  



 

 96 

  Figure 4-4: Energy of Join/Leaving Multicast Groups 

 Figure 4-4 shows the data collected from varying the rate at which modification 

are made to update multicast groups reflecting subscribing federate’s interest.  Over all 

the approaches evaluated updating frequently requires overall more computation causing 

an increase in energy consumption.  The fixed grid based approach consumed the least 

amount of energy amongst the approaches evaluated because of its O(1) computation 

used to match regions to overlapping grid cells.  The dynamic sort based approach keeps 

an updated sorted list of the extents of all regions in the federation eliminating the need to 

compare against all regions when an update region makes a modification to its extent. It 

decreases the computation that is needed in a strictly region based approach leading to 

less energy consumption compared to region based approaches.   

 



 

 97 

4.7 Energy For Communications: Update Messages  

Update messages are defined to be data messages sent by publishers to subscribers to 

transmit simulation data. Figure 4-5 shows the average amount of energy consumed by 

one RTI client (federate) in receiving messages for each update message sent by a 

publisher, including irrelevant and duplicate messages. 

Figure 4-5: Energy of communicating update messages 

 

The results show the communication tradeoffs that occur when utilizing region-based 

approaches compared to grid based approaches.  The fixed grid based approach consumes 

the most energy among the five approaches while the region based and distributed region 

based approaches consume the least amount of energy. 

The region based and distributed region based approaches consume more energy for 

matching computation but use less energy for communications.  The matching 

computation ensures that no irrelevant or duplicate messages occur in the region-based 



 

 98 

approaches.  This reduces energy consumption.  Sending fewer messages reduces the 

time needed to send and receive messages.  

The grid region based approach consumes less energy than the fixed grid approach 

but still uses more energy than the region based approaches and the sort-based approach.  

The use of the grid structure results in duplicate messages, but adding the threshold 

parameter eliminates the irrelevant message problem.  The use of direct matching among 

those regions that do not exceed the threshold avoids irrelevant messages. This in turn 

eliminates irrelevant messages leading to a reduction in the number of messages received 

during an update and leads to a reduction in energy consumption.  This experiment 

suggests that this approach achieves a balance between computation and communication 

with respect to energy consumption.  It consumes little energy for computation and a 

small amount of energy for communication. 

4.8 Energy for Communications: Constraining Publication Regions 

Constraining the publication region to one grid cell will allow grid based DDM 

approaches to gain efficiency in federate interest matching.  By constraining the 

publication regions irrelevant and duplicate messages are eliminated.  Under this 

constraint subscription regions cannot overlap grid cells that partially contain a 

publication region due to the fact the publication region occupies the entire grid cell. This 

eliminates the irrelevant message problem. Duplicate messages also will not occur under 

this constraint because publication regions only occupy one grid cell so update messages 

are sent to only one multicast group.  In the current grid based DDM approach 

publication regions that overlap multiple grid cells join multiple multicast groups and any 

subscription region that is part of those groups will receive the update messages produced 



 

 99 

by the publishing federate.  If a subscribing federate joins multiple multicast groups that a 

publication region has also joined they will receive the same message multiple times 

leading to duplicate messages.   

Figure 4-6: Publication region constrained to one grid cell 

Figure 4-6 shows the energy consumption when constraining publication regions to 

one grid cell.  We see that as we vary the size of the subscription region we increase the 

number of update messages; but, the effect is the same regardless of using the region 

based or grid based approach.  This result is due to the fact that there are no irrelevant 

messages.  The results also show that duplicate messages are eliminated under this 

constraint since the publication region only matches to one grid cell it only send update 

messages to one multicast group. Subscription regions under grid-based approaches can 

only overlap any publication region once since it is contained to one grid cell.  This 

experiment illustrates that placing constraints on DDM regions enables one to gain the 

communication efficiency of region-based approaches and the computation efficiency of 



 

 100 

grid based approaches.  Constraining publication regions to one grid cell allows the 

region based and grid-based approaches evaluated in this study to consume relatively the 

same amount of energy.  This constraint may not always be suitable for all scenarios, 

especially when the publication regions are not all the same size. 

4.8.1.1 Energy for Communications: Constraining Publication Region to N Grid Cells 

Varying the number of grid cells that the publication region encompasses allows us to 

understand the effects that grid cell size on the number of update messages a federate 

receives under different DDM approaches. We evaluate this effect by varying the number 

of grid cells covered by a publication region. 

Figure 4-7: Publication region constrained to N grid cells 

 Figure 4-7 shows that as we increase the number of grid cells encompassed by the 

publication region we increase the number of duplicate messages that a subscribing 



 

 101 

federate will receive.  Since the publication region in this experiment is bounded to the 

extents of the cells there are no irrelevant messages. Fixing the publication region to the 

bounds of the grid cells allows duplicate messages to occur under the grid filtered region 

based approach because every covered grid cell will automatically join a multicast group 

because they will always surpass the threshold boundary. Utilizing this constraint makes 

grid filtered region based use just as many messages as fixed grid based would because 

they both will not incur irrelevant messages but duplicate messages will still occur. 

4.9 Varying Grid Cell Size 

Grid based approaches are directly affected by the grid cell size.  Smaller grid cells tend 

to lead to more duplicate messages and larger grid cells tend to lead to more irrelevant 

messages.  In the following experiment we examine the effect that grid cell size has on 

energy consumption. We examine this effect while leaving the publication and 

subscription regions a static size for each grid cell size. 

 



 

 102 

Figure 4-8: Varying grid cell size 

Figure 4-8 shows the impact that grid cell size has on grid based DDM approaches.  

We see that larger grid cell size greatly impacts the energy consumption of the fixed grid 

based approach.  An interesting phenomenon is the small effect that grid cell size has on 

the grid filtered region-based approach as the grid cell size increases.  Here we see that a 

change in energy consumption for this approach does not occur until the grid cell size is 

at the largest size evaluated where we see a decrease in energy.  This shows that utilizing 

a threshold of 0.6 to trigger direct matching between regions that fall below this threshold 

in the grid filtered region based approach gives a trend similar to a region based approach 

energy consumption when large grid cell sizes are used. 

 

 

 



 

 103 

4.10 HLA DDM Energy Models 

The work presented so far in this chapter examined on a broad level the energy and 

power consumption of using different High Level Architecture data distribution methods 

as a means to setup communication between federates in a distributed simulation.  To 

gain a deeper understanding of how and which HLA DDM method is useful in different 

situations it is beneficial to have predictive models.  Below we illustrate our prediction 

models for predicting computation and communication energy consumption of four 

different data distribution management methods.  

4.10.1 HLA DDM Initial Computation Energy Models 

The following section explores the energy dependent components for each data 

distribution approach that was evaluated to create an energy prediction model for initial 

computation of multicast group assignment for federates in the distributed simulation.   

4.10.1.1 Region Based: Initial Computation  

The region based DDM method performs computation by comparing every subscribing 

region and publication region in the federation to determine overlapping regions.  This 

method is dependent upon a central controller that performs all the matching 

computations.  Our prediction model shows the relationship between the number of 

matches that must be performed for each subscribing federate to determine those 

publishing federates from which they will receive updates.   

 Energy = C1+C2Nc
 



 

 104 

Table 4-1:Region Based Computation Model Constants 

C1 C2 

6.00E-10 .1184 

The prediction model for the region based approach quantifies energy consumption as a 

function of the number of comparisons needed. The base power needed for each 

comparisons is indicated by the value C1 and the rate of change is shown by the value of 

rate in Table 4-1.  

Figure 4-9: Region Based Initial Computation Energy Model 

 

 



 

 105 

Figure 4-10: Region Based Computation Energy Energy Model % of Error 

Figure 4-9 compares the experimental results with values computed by the model.  The 

figure shows that predicted values are close to experimental measurements. Figure 4-9 

verifies that the energy needed for the region based approach has a direct relationship to 

the number of computations that are performed between publishing and subscribing 

regions .   

4.10.1.2 Distributed Region Based: Initial Computation 

Distributed region based DDM is an approach designed to be more scalable than the 

region based DDM approach.  The routing space is divided amongst a give number of 

regional controllers. Each controller is responsible for performing the matching operation 

between publishing and subscribing federates in their area of responsibility in the routing 

space. Those federate’s whose publication regions or subscription regions are within 

multiple sub areas of the divided routing space amongst regional controllers, are matched 



 

 106 

against publishers and subscribers in those sub regions as well by those regional 

controllers. Those regional controllers must communicate in order for the matching to 

take place.  The model for the distributed region based approach follows the same 

formula for the region based computation, determines the amount of energy needed to 

compute the overlaps between federates to determine who communicates with whom.   

Table 4-2: Distributed Region Based Computation Model Constants 

The distributed region based approach is similar to the region based approach. If 

we compare the constant values in table 4-2 and table 4-1 we see that the distributed 

region based constants are higher. The constant values here reflect the overall energy 

consumption needed to compute the distributed region initial computation for using four 

regional controllers.  Even though the constants are higher the overall energy 

consumption is lower because we have to compare fewer regions under this approach.    

C1 C2 

3.00E-06 .0208 



 

 107 

Figure 4-11: Distributed Region Based Initial Computation Energy Model Results 

Figure 4-12: Distributed Region Based Computation Initial Computation Energy Model 

           % of Error 

Figure 4-11 compares model predictions with experimental measurements in 

computing the initial multicast group assignments.  Comparing figure 4-9 and figure 4-11 



 

 108 

we see that the distributed region based approach is able to compute the same initial 

multicast group assignments by using fewer comparisons amongst all of the controllers. 

The distributed region based approaches requires fewer comparisons and is more scalable 

because it does not depend on a central controller.  

4.10.1.3 Fixed Grid Based: Initial Computation 

The fixed grid based approach avoids the initial matching computation required by the 

region based approach. Each federate determines the grid cells that overlap with their 

subscription regions and joins the multicast group assigned to those grid cells.  Federates 

send messages to the multicast groups assigned to the grid cells overlapping their 

publication region.  The model for this approach predicts the amount of energy for each 

federate to determine and join the multicast groups of their overlapping grid cells: 

Energy = C1+C2G 

 The energy needed for the fixed grid based approach is linear in the number of 

grid cells that each federate must join, which depends on the size of the federate’s 

subscription region and the size of the grid cells.  C1 represents the base energy needed to 

perform the fixed grid based computation and C2 is the amount of energy needed for each 

grid association.  G represents the number of grid cells that federates  associate 

themselves to during initial computation for determining multicast group assignment. The 

values in table 4-3 show the constant values for the experiments performed here.  The 

grid cells used here are 20 meters by 20 meters and the subscription regions are 80 meters 

by 80 meters.  Each subscription region covers sixteen grid cells.  



 

 109 

Table 4-3: Fixed Grid Based Computation Model Constants 

C1 C2 

.0175 4.00E-06 

 Comparison of model predictions and measurements for the initial computation in 

the fixed grid based scheme are shown in figure 4-13 and figure 4-14.  

Figure 4-13: Fixed Grid Based Initial Computation Energy Model 



 

 110 

Figure 4-14: Fixed Grid Based Computation Energy Model % of Error 

Model predictions agree well with measurements in computing multicast group 

assignments for grid cells as the number of grid cells increases, although a few 

measurements yielded differences ranging from 10% to 15%.   

4.10.1.4 Grid Filtered Region Based: Initial Computation 

The grid filtered region based method reduces the number of irrelevant messages in the 

fixed grid based approach. An irrelevant message occurs when a publication and 

subscription region both overlap with a common grid cell but the regions do not 

themselves overlap.  Recall that this approach uses a threshold value is used to reduce the 

number of irrelevant messages.  The threshold reflects the percentage of the grid cell area 

the federate’s region must cover in order to be apart of the grid cells multicast group.  

Each grid cell maintains four list, publishing federate fully covered, subscribing federate 

fully covered, publishing federate partially covered, and subscribing federates partially 



 

 111 

covered. All publishing federates apart of the publishing federate fully covered list and 

publishing federates apart of the subscribing federate fully covered list automatically join 

the multicast group of that grid cell.  All publishing federates apart of the publishing 

federate partially covered list are checked for direct overlap between all subscribing 

federates of the subscribing federate partially covered list, federates who have a direct 

overlap join the multicast group of the grid cell.  

Table 4-4: Grid Filtered Region Based Computation Constants 

C1 C2 

.0283 5.00E-06 

The grid filtered region based approach, like the fixed grid based approach, 

performs the initial computation operation by determining those grid cells with which 

that federate’s regions overlap.  In this approach one additional step is needed to 

determine if direct comparisons between regions within the grid cell need to be 

performed. C1 in our model indicates the base energy needed to perform computation; C2 

represents the energy needed to perform each grid association and threshold hold 

comparison. G represents the number of grid cells. We compare our model predictions 

and experimental measurements in Figures 4-15 and 4-16. 



 

 112 

Figure 4-15: Grid Filtered Region Based Initial Computation Energy Model Results 

Figure 4-16: Grid Filtered Region Based Initial Computation Energy Model % of Error 

The experimental results are based on the scenario presented in section 4.3. In 

comparing figure 4-12 and figure 4-13 we see that the overall energy consumption 



 

 113 

required to compute the initial multicast group association for grid based computation is 

less than the energy required for grid filtered region based.  This is due to the extra 

computation needed to compare the threshold in each grid cell to help alleviate the 

irrelevant message problem in the fixed grid based approach. 

4.10.2 Model for Update Messages 

This section outlines the relationship between the number of messages needed under each 

approach for the first update that is sent by federates for the scenario presented in section 

4.3.  We present the energy models and compare predictions to experimental results for 

the region, distributed region, fixed grid based, and grid filtered region based data 

distribution management methods.  

4.10.2.1 Region and Distributed Region Based Update Message Model 

The region and distributed region based approaches produce the same number of 

messages. The differences in these two approaches concerns the determination of 

multicast group assignments and was presented in sections 4.1.10.1 and 4.1.10.2.  Below 

we present the energy prediction model for receiving update messages. 

Energy = C1+ C2M 

Table 4-5: Region and Distributed Region Based Constants 

C1 C2 

.0003J .0049J 



 

 114 

Figure 4-17: Region & Distributed Region Based Update Messages Energy 

Figure 4-18:Region and Distributed Region Based Update Messages Energy Model % of  

         Error 

 

 

 

 



 

 115 

4.10.2.2 Fixed Grid Based Update Message Energy Model 

Each grid cell in the routing space is assigned a multicast group federates whose 

subscription regions overlap that grid cell join the multicast group assigned to the cell. 

Energy consumption is a function of the number of messages produced by an update (M), 

i.e., the number of cells with which the publication region overlaps. 

Energy = C1+ C2M 

C1 represents the baseline amount of energy needed to receive messages and C2 

represents the amount of energy expended to receive each message.  The values for these 

constants are shown in Table 4-6 below. 

Table 4-6: Fixed Grid Based Update Constants 

 

 

 

 

 

 

C1 C2 

0.0214J .000269J 



 

 116 

Figure 4-19: Fixed Grid Based Update Messages Energy 

Figure 4-20: Fixed Grid Based Update Messages Energy Model % of Error 

 

 



 

 117 

4.10.2.3 Grid Filtered Region Based Update Message Energy Model 

The grid filtered region based approach uses a grid structure like the fixed grid based 

approach as well as an additional threshold parameter.  We show below the correlation 

between the number of messages produced and the energy consumption expended to 

receive those messages below.  

Energy = C1 + C2M 

We see this same relationship for all methods evaluated. C1 represents the 

baseline energy needed to receive messages. C2 represents the amount of energy needed 

to receive each message. M represents the number of messages received. The constant 

values for these variables for grid filtered region based approach are reflected in table 4-7 

below. 

Table 4-7: Grid Filtered Region Based Update Constants 

C1 C2 

.0206J .000251J 

 



 

 118 

Figure 4-21: Grid Filtered Region Based Update Messages Energy Model 

Figure 4-22: Grid Filtered Region Based Update Messages Energy Model % of Error 

 

 



 

 119 

4.11 Conclusion  

Using data distribution management in an energy-constrained environment requires 

an understanding of the energy consumed by the components of DDM operations.  We 

analyze the energy required for computation and communication operations of five DDM 

approaches.  Our experimental results quantify the high amount of energy consumption 

required in a centralized region based approach.  We also conclude that in the area of 

communication that grid based DDM approaches can be costly in energy consumption 

when sending update messages due to the occurrence of irrelevant and duplicate 

messages.  To overcome this problem we examined the effects of adding constraints on 

overall energy consumption when a DDM update is performed.  We conclude that 

restricting publication regions to one grid cell eliminates irrelevant and duplicate 

messages; but, utilizing this constraint may not always be suitable for the application if 

publication regions of different sizes are needed.  We study the effects that grid cells have 

on updated messages by constraining publication regions to an integral numbers of grid 

cells. We see that as we increase N the grid cell size become smaller resulting in less 

filtering at the destination to reduce irrelevant messages; but this comes at the cost of an 

increased number of duplicate messages.  We also conclude that overall grid cell size 

with no constraints causes an increase in energy as grid cell size increases for grid based 

approaches. 

  



 

 120 

5 CONCLUSION  

The goal of this work was to explore and understand the energy constraining components 

of using real time data to drive on line distributed traffic simulations.  Our research 

provides some light into the energy and power consuming components of such a system, 

an area that has not been extensively explored in prior research.  The major components 

evaluated include the embedded traffic simulation itself, different priority queue 

implementations used for discrete event simulations, real time data communication, and 

the communication architecture used for communicating data within the distributed 

simulation.  

We conducted a study on the implications that the simulation model plays on energy 

consumption for a specific transportation network.  Our measurements indicated that a 

cellular automata model had higher energy consumption than queueing network based 

discrete simulation model. This was attributed to the fact that the cellular automata must 

evaluate every vehicle within the system during every time step, whereas the discrete 

simulation only evaluates vehicles that are at the front of each queue during each 

executed event. While these results are specific to a particular implementation operating 

on one hardware configuration, these results may help guide other explorations of energy 

consumption in traffic simulation models. 

Many discrete event simulations rely on an efficient future event list implementation. 

A comparison of four different priority queue implementations, - a linked list, implicit 

heap, explicit heap, and splay tree - revealed that the memory system plays an important 

role on energy consumption.  The power, energy, and time could be estimated by 



 

 121 

measuring the number of comparisons and swaps required by each implementation. The 

implicit heap consumed the least amount of energy and power among these four 

implementations, in part, due to good reference locality that appeared to result in 

improved cache performance.   

Communicating real time data plays a vital role in on line traffic simulations.  We 

assessed the consequences of different strategies for sending data.  Our measurements 

illustrated the benefits of data aggregation on energy consumption. 

The High Level Architecture data distribution management services provide methods 

that aim to efficiently distribute simulation data.  Our investigations revealed that when 

comparing purely region based approaches to grid based approaches, the initial 

computation needed in region base approaches incurs a significant energy cost of whereas 

irrelevant and duplicate messages in grid based approaches represent a significant energy 

overhead.  A distributed version of the region based approach helps to reduce the amount 

of computation required and increases scalability.  The grid based approaches perform 

well in determining initial multicast group assignment.  The irrelevant message problem 

is alleviated in the grid filtered region based approach by using a threshold parameter to 

compare subscribing and publishing federates. From an energy perspective, the fixed grid 

approach was most efficient for initial determination of group membership and the region 

based or distributed region based approach is most efficient for communications. Placing 

constraints on regions yielded less energy consumption.  Placing constraints on grid cells 

could allow one to achieve communication efficiency close to a region based approach 

when this technique can be applied.  



 

 122 

REFERENCES 

[1] F. Darema, "Dynamic data driven applications systems: A new paradigm for 

application simulations and measurements," in Computational Science-ICCS 

2004, ed: Springer, 2004, pp. 662-669. 

[2] G. Allen, "Building a dynamic data driven application system for hurricane 

forecasting," Computational Science–ICCS 2007, pp. 1034-1041, 2007. 

[3] M. Gaynor, M. Seltzer, S. Moulton, and J. Freedman, "A dynamic, data-driven, 

decision support system for emergency medical services," Computational 

Science–ICCS 2005, pp. 61-100, 2005. 

[4] J. Mandel, L. Bennethum, M. Chen, J. Coen, C. Douglas, L. Franca, et al., "Towards 

a dynamic data driven application system for wildfire simulation," Computational 

Science–ICCS 2005, pp. 197-227, 2005. 

[5] K. L. Morse, Interest management in large-scale distributed simulations: Information 

and Computer Science, University of California, Irvine, 1996. 

[6] A. M. Law, W. D. Kelton, and W. D. Kelton, Simulation modeling and analysis vol. 

2: McGraw-Hill New York, 1991. 

[7] I. S. Association, "1516–2010-IEEE Standard for modeling and simulation (M&S) 

High Level Architecture (HLA)," ed, 2012. 

[8] D. Srinivasan, M. C. Choy, and R. L. Cheu, "Neural networks for real-time traffic 

signal control," IEEE Transactions on Intelligent Transportation Systems, vol. 7, 

pp. 261-272, 2006. 

[9] D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber, "MASTER: macroscopic 

traffic simulation based on a gas-kinetic, non-local traffic model," Transportation 

Research Part B: Methodological, vol. 35, pp. 183-211, 2001. 

[10] V. Adamo, V. Astarita, M. Florian, M. Mahut, and J. Wu, "Modelling the spill-

back of congestion in link based dynamic network loading models: a simulation 

model with application," in 14th International Symposium on Transportation and 

Traffic Theory, 1999. 



 

 123 

[11] S. A. Boxill and L. Yu, "An evaluation of traffic simulation models for supporting 

its," Houston, TX: Development Centre for Transportation Training and 

Research, Texas Southern University, 2000. 

[12] A. Adamatzky, Game of life cellular automata vol. 1: Springer, 2010. 

[13] K. Nagel and M. Schreckenberg, "A cellular automaton model for freeway 

traffic," Journal de physique I, vol. 2, pp. 2221-2229, 1992. 

[14] J. Esser and M. Schreckenberg, "Microscopic simulation of urban traffic based on 

cellular automata," International Journal of Modern Physics C, vol. 8, pp. 1025-

1036, 1997. 

[15] M. Hasan, M. Jha, and M. Ben-Akiva, "Evaluation of ramp control algorithms 

using microscopic traffic simulation," Transportation Research Part C: Emerging 

Technologies, vol. 10, pp. 229-256, 2002. 

[16] M. Jha, K. Moore, and B. Pashaie, "Emergency evacuation planning with 

microscopic traffic simulation," Transportation Research Record: Journal of the 

Transportation Research Board, pp. 40-48, 2004. 

[17] Q. Yang and H. N. Koutsopoulos, "A microscopic traffic simulator for evaluation 

of dynamic traffic management systems," Transportation Research Part C: 

Emerging Technologies, vol. 4, pp. 113-129, 1996. 

[18] J. Barceló, Fundamentals of traffic simulation vol. 145: Springer, 2010. 

[19] W. Burghout, H. N. Koutsopoulos, and I. Andreasson, "A discrete-event 

mesoscopic traffic simulation model for hybrid traffic simulation," in Intelligent 

Transportation Systems Conference, 2006. ITSC'06. IEEE, 2006, pp. 1102-1107. 

[20] A. S. Malik, H. M. Tawfik, and M. Adeel, "SmartRNA: A Road Network 

Analysis Simulator," in Engineering Sciences and Technology, 2005. SCONEST 

2005. Student Conference on, 2005, pp. 1-6. 

[21] T. Balasha and T. Toledo, "MESCOP: A Mesoscopic Traffic Simulation Model to 

Evaluate and Optimize Signal Control Plans," Transportation Research Record: 

Journal of the Transportation Research Board, pp. 1-9, 2015. 



 

 124 

[22] K. M. Chandy and J. Misra, "Distributed simulation: A case study in design and 

verification of distributed programs," IEEE Transactions on software 

engineering, pp. 440-452, 1979. 

[23] D. Jefferson and H. Sowizral, "Fast Concurrent Simulation Using the Time Warp 

Method, Part I: Local Control," The Rand Corporation, Santa Monica, California 

USADecember 1982. 

[24] D. R. Jefferson, "Virtual time," ACM Trans. Program. Lang. Syst., vol. 7, pp. 

404-425, 1985. 

[25] G. Pardo-Castellote, "OMG Data-Distribution Service: architectural overview," in 

23rd International Conference on Distributed Computing Systems Workshops, 

2003. Proceedings., 2003, pp. 200-206. 

[26] R. Joshi and G.-P. Castellote, "A comparison and mapping of data distribution 

service and high-level architecture," Technology, The Netherlands. His research 

interests include parallel and distributed computing, component based 

architectures, and embedded systems, 2006. 

[27] F. Kuhl, R. Weatherly, and J. Dahmann, Creating computer simulation systems: 

an introduction to the high level architecture: Prentice Hall PTR, 1999. 

[28] D. RTI, "1.3-Next Generation Programmer's Guide Version 5," DoD, DMSO, 

2002. 

[29] J. S. Dahmann and K. L. Morse, "High Level Architecture for simulation: an 

update," in Proceedings. 2nd International Workshop on Distributed Interactive 

Simulation and Real-Time Applications (Cat. No.98EX191), 1998, pp. 32-40. 

[30] G. Tan, Y. Zhang, and R. Ayani, "A hybrid approach to data distribution 

management," in Distributed Simulation and Real-Time Applications, 2000.(DS-

RT 2000). Proceedings. Fourth IEEE International Workshop on, 2000, pp. 55-

61. 

[31] A. Boukerche and A. Roy, "Dynamic grid-based approach to data distribution 

management," Journal of Parallel and Distributed Computing, vol. 62, pp. 366-

392, 2002. 



 

 125 

[32] A. Boukerche, N. J. McGraw, C. Dzermajko, and K. Lu, "Grid-filtered region-

based data distribution management in large-scale distributed simulation 

systems," in Simulation Symposium, 2005. Proceedings. 38th Annual, 2005, pp. 

259-266. 

[33] S. J. Rak and D. J. Van Hook, "Evaluation of grid-based relevance filtering for 

multicast group assignment," in Proc. of 14th DIS workshop, 1996, pp. 739-747. 

[34] C. Raczy, J. Yu, G. Tan, S. Tay, and R. Ayani, "Adaptive data distribution 

management for HLA RTI," in Proceedings of 2002 European Simulation 

Interoperability Workshop, 2002. 

[35] C. Raczy, G. Tan, and J. Yu, "A sort-based DDM matching algorithm for HLA," 

ACM Trans. Model. Comput. Simul., vol. 15, pp. 14-38, 2005. 

[36] K. Pan, S. J. Turner, W. Cai, and Z. Li, "An Efficient Sort-Based DDM Matching 

Algorithm for HLA Applications with a Large Spatial Environment," presented at 

the Proceedings of the 21st International Workshop on Principles of Advanced 

and Distributed Simulation, 2007. 

[37] K. Pan, S. J. Turner, W. Cai, and Z. Li, "A dynamic sort-based DDM matching 

algorithm for HLA applications," ACM Trans. Model. Comput. Simul., vol. 21, 

pp. 1-17, 2011. 

[38] J. Song, B. Xiang, X. Wang, L. Wu, and C. Chang, "Application of dynamic data 

driven application system in environmental science," Environmental Reviews, vol. 

22, pp. 287-297, 2014. 

[39] J. Wahle, L. Neubert, J. Esser, and M. Schreckenberg, "A cellular automaton 

traffic flow model for online simulation of traffic," Parallel Computing, vol. 27, 

pp. 719-735, 2001. 

[40] R. Rodríguez, A. Cortés, and T. Margalef, "Injecting dynamic real-time data into 

a DDDAS for forest fire behavior prediction," in Computational Science–ICCS 

2009, ed: Springer, 2009, pp. 489-499. 

[41] I. D. Schizas and V. Maroulas, "Dynamic Data Driven Sensor Network Selection 

and Tracking," Procedia Computer Science, vol. 51, pp. 2583-2592, 2015. 



 

 126 

[42] N. Patrikalakis, J. McCarthy, A. Robinson, H. Schmidt, C. Evangelinos, P. Haley, 

et al., "Towards a dynamic data driven system for rapid adaptive interdisciplinary 

ocean forecasting," Dynamic Data-Driven Application Systems. Kluwer Academic 

Publishers, Amsterdam, 2004. 

[43] R. Fujimoto, R. Guensler, M. Hunter, H.-K. Kim, J. Lee, J. Leonard, et al., 

"Dynamic data driven application simulation of surface transportation systems," 

Computational Science–ICCS 2006, pp. 425-432, 2006. 

[44] M. Weiser, B. Welch, A. Demers, and S. Shenker, "Scheduling for reduced CPU 

energy," in Proceedings of the 1st USENIX conference on Operating Systems 

Design and Implementation, 1994, p. 2. 

[45] D. C. Snowdon12, E. Le Sueur, S. M. Petters, and G. Heiser, "A platform for os-

level power management," The European Professional Society on Computer 

Systems 2009, 2009. 

[46] S. Singh, M. Woo, and C. S. Raghavendra, "Power-aware routing in mobile ad 

hoc networks," in Proceedings of the 4th annual ACM/IEEE international 

conference on Mobile computing and networking, 1998, pp. 181-190. 

[47] F. De Rango, M. Fotino, and S. Marano, "EE-OLSR: energy efficient OLSR 

routing protocol for mobile ad-hoc networks," in Military Communications 

Conference, 2008. MILCOM 2008. IEEE, 2008, pp. 1-7. 

[48] J.-C. Cano and P. Manzoni, "A performance comparison of energy consumption 

for mobile ad hoc network routing protocols," in Modeling, Analysis and 

Simulation of Computer and Telecommunication Systems, 2000. Proceedings. 8th 

International Symposium on, 2000, pp. 57-64. 

[49] R. Mayo and P. Ranganathan, "Energy consumption in mobile devices: why 

future systems need requirements–aware energy scale-down," Power-Aware 

Computer Systems, pp. 301-463, 2005. 

[50] A. Carroll and G. Heiser, "An analysis of power consumption in a smartphone," 

2010. 

[51] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, "A survey of computation 

offloading for mobile systems," Mobile Networks and Applications, vol. 18, pp. 

129-140, 2013. 



 

 127 

[52] R. N. Mayo and P. Ranganathan, "Energy consumption in mobile devices: why 

future systems need requirements–aware energy scale-down," in International 

Workshop on Power-Aware Computer Systems, 2003, pp. 26-40. 

[53] J. K. Nurminen and J. Noyranen, "Energy-Consumption in Mobile Peer-to-Peer - 

Quantitative Results from File Sharing," in 2008 5th IEEE Consumer 

Communications and Networking Conference, 2008, pp. 729-733. 

[54] L. M. Feeney and M. Nilsson, "Investigating the energy consumption of a 

wireless network interface in an ad hoc networking environment," in Proceedings 

IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth 

Annual Joint Conference of the IEEE Computer and Communications Society 

(Cat. No.01CH37213), 2001, pp. 1548-1557 vol.3. 

[55] T. Pering, Y. Agarwal, R. Gupta, and R. Want, "<i>CoolSpots</i>: reducing the 

power consumption of wireless mobile devices with multiple radio interfaces," 

presented at the Proceedings of the 4th international conference on Mobile 

systems, applications and services, Uppsala, Sweden, 2006. 

[56] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, "Energy 

consumption in mobile phones: a measurement study and implications for 

network applications," in Proceedings of the 9th ACM SIGCOMM conference on 

Internet measurement conference, 2009, pp. 280-293. 

[57] T. Profiler, "Qualcomm," ed. 

[58] A. Biswas and R. Fujimoto, "Profiling energy consumption in distributed 

simulations," in Proceedings of the 2016 annual ACM Conference on SIGSIM 

Principles of Advanced Discrete Simulation, 2016, pp. 201-209. 

[59] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang, et al., "Accurate 

online power estimation and automatic battery behavior based power model 

generation for smartphones," in Hardware/Software Codesign and System 

Synthesis (CODES+ ISSS), 2010 IEEE/ACM/IFIP International Conference on, 

2010, pp. 105-114. 

[60] R. Mittal, A. Kansal, and R. Chandra, "Empowering developers to estimate app 

energy consumption," in Proceedings of the 18th annual international conference 

on Mobile computing and networking, 2012, pp. 317-328. 



 

 128 

[61] J. Dongarra, H. Ltaief, P. Luszczek, and V. M. Weaver, "Energy footprint of 

advanced dense numerical linear algebra using tile algorithms on multicore 

architectures," in Cloud and Green Computing (CGC), 2012 Second International 

Conference on, 2012, pp. 274-281. 

[62] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, "Fine-grained power 

modeling for smartphones using system call tracing," in Proceedings of the sixth 

conference on Computer systems, 2011, pp. 153-168. 

[63] S. Neal, R. Fujimoto, and M. Hunter, "Energy consumption of Data Driven traffic 

simulations," in 2016 Winter Simulation Conference (WSC), 2016, pp. 1119-1130. 

[64] S.Neal and R.Fujiimoto, "Power Consumption of Future Event List 

Implementations in Discrete Event Simulation," in 2018 Spring Simulation-

ANNS, Baltimore, MD, 2018. 

[65] S. A. Neal and R. M. Fujimoto, "Energy consumption of HLA data distribution 

management approaches," in 2017 Winter Simulation Conference (WSC), 2017, 

pp. 810-820. 

[66] R. Fujimoto, M. Hunter, J. Sirichoke, M. Palekar, H. Kim, and W. Suh, "Ad hoc 

distributed simulations," in Proceedings of the 21st International Workshop on 

Principles of Advanced and Distributed Simulation, 2007, pp. 15-24. 

[67] U. FHWA, "Department of Transportation: ngsim: next generation simulation," 

ed, 2007. 

[68] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, "Two lane traffic 

simulations using cellular automata," Physica A: Statistical Mechanics and its 

Applications, vol. 231, pp. 534-550, 1996. 

[69] F. Darema, "Dynamic Data Driven Applications Systems: A New Paradigm for 

Application Simulations and Measurements," presented at the International 

Conference on Computational Science, Kraków, Poland, 2004. 

[70] N. Leavitt, Big Iron Moves Toward Exascale Computing vol. 45, 2012. 

[71] S. Huck, "Measuring Processor Power," Intel Corporation2011. 



 

 129 

[72] A. Shehabi, S. J. Smith, D. A. Sartor, R. E. Brown, M. Herrlin, J. G. Koomey, et 

al., "United States Data Center Energy Usage Report," Lawrence Berkeley 

National Laboratory LBNL-1005775, June 2016. 

[73] W. M. McCormack and R. G. Sargent, "Analysis of future event set algorithms 

for discrete event simulation," Commun. ACM, vol. 24, pp. 801-812, 1981. 

[74] J. H. Kingston, "Analysis of tree algorithms for the simulation event list," Acta 

Informatica, vol. 22, pp. 15-33, April 01 1985. 

[75] D. D. Sleator and R. E. Tarjan, "Self-adjusting binary trees," presented at the 

Proceedings of the fifteenth annual ACM symposium on Theory of computing, 

1983. 

[76] D. W. Jones, "An empirical comparison of priority-queue and event-set 

implementations," Communications of the ACM, vol. 29, pp. 300-311, 1986. 

[77] H. Chen, J. Wang, and L. Feng, "Research on the Dynamic Data-driven 

Application System Architecture for Flight Delay Prediction," JSW, vol. 7, pp. 

263-268, 2012. 

[78] Q. Long, "A framework for data-driven computational experiments of inter-

organizational collaborations in supply chain networks," Information Sciences, 

vol. 399, pp. 43-63, 2017. 

[79] J. Danjel and J. O. C. Van Hook, "Data distribution management in RTI 1.3," in 

Proceedings of the Simulation Interoperability Workshop (SIW), 2004. 

[80] G. Tan, R. Ayani, Y. Zhang, and F. Moradi, "Grid-based data management in 

distributed simulation," in Simulation Symposium, 2000.(SS 2000) Proceedings. 

33rd Annual, 2000, pp. 7-13. 

[81] D. Bedard, R. Fowler, M. Linn, and A. Porterfield, "PowerMon 2: Fine-grained, 

integrated power measurement," Renaissance Computing Institute, Tech. Rep. TR-

09-04, 2009. 

 


