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SUMMARY 

 

The proliferation of sensors and data is the catalyst for traffic simulators to help monitor 

and manage transportation systems in real-time to improve key performance metrics and overall 

efficiency. As a specific instance, consider vehicle tracking. The future path of an arbitrary driver 

on a road network is uncertain (without any further information), while the benefit of using this 

knowledge grows each year. The Dynamic Data-Driven Application System (DDDAS) paradigm 

applied to transportation simulation mitigates this uncertainty.  

One contribution of this thesis is to define a DDDAS framework for managing 

transportation systems online. Real-time data is fed into a traffic simulation, which generates 

future states of the road network. Because the results of the system need to be both faster than 

real-time and accurate, the acceleration of the simulation execution and the accuracy of the 

prediction models are critical. The system can be used by both decision makers, such as traffic 

control agencies and law enforcement, as well as drivers with access to a mobile computer. 

Applications are abundant, as accurate transportation simulation results not only help decision 

makers from a top-down perspective (e.g., analyzing the impact of unexpected congestion), but 

also the end users themselves from a bottom-up perspective (e.g., automatic suggestions of user-

preferred routes in on-board technology).  

This thesis proposes a framework for vehicle tracking and trajectory prediction, as well 

as the efficient execution of simulations for transportation and other applications. The vehicle 

tracking framework follows a vehicle under investigation by detecting the vehicle from sensors, 

predicting likely future locations of the vehicle, and relocating the sensors in order to reacquire 

the vehicle. 
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With regard to trajectory prediction, a data structure that stores previously observed 

vehicle paths in a given area in order to predict the forward trajectory of an observed vehicle at 

any stage is proposed. Incomplete vehicle trajectories are looked up in a Past Tree, to predict 

future trajectories in another tree structure - a Future Tree. For a substantial portion of the trip, the 

Past Tree scheme was found to outperform a competing scheme which only utilizes the driver's 

partial trajectory before the point of prediction. 

Vehicle trajectory prediction models are compared in the context of a relatively large 

real-world dataset. The various approaches to route prediction have varying degrees of data 

required to predict future vehicle trajectories. Several extensions to previously proposed 

approaches were developed. Three approaches to vehicle trajectory prediction are examined to 

assess their accuracy on a realistic urban road network. These include an approach based on the 

intuition that drivers attempt to reduce their travel time, an approach based on neural networks, 

and an approach based on Markov models. These results highlight the benefit of exploiting 

dynamic data to improve the accuracy of transportation simulation predictions. A cascading 

Markov model scheme outperformed all other tested models. 

In the context of accelerating transportation simulations, there are often substantial 

similarities among these different simulation replications. In other cases, output statistics are 

independent of certain simulation computations. This thesis contributes computational methods to 

exploit these properties to speed up the simulation execution time, when the output statistics of 

interest focus on one or more attributes such as the trajectory of a certain “target” vehicle. By 

focusing on correctly reproducing the behavior of the target vehicle and its interaction with other 

modeled entities across the different replications and modifying the event handling mechanism, 

the execution time can be reduced. Up to 16-fold speedup were obtained compared to the 

conventional approach of running one instance per scenario. 
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An application-independent method for computation sharing is proposed as well. Many 

runs of a computer simulation are needed to model uncertainty and evaluate alternate design 

choices. Such an ensemble of runs often contains many commonalities among the different 

individual runs. Simulation cloning is a technique that capitalizes on this fact to reduce the 

amount of computation required by the ensemble. Granular cloning is proposed that allows the 

sharing of state and computations at the scale of simulation objects as small as individual 

variables, offering savings in computation and memory, increased parallelism and improved 

tractability of sample path patterns across multiple runs. The ensemble produces results that are 

identical to separately executed runs. Whenever simulation objects interact, granular cloning will 

resolve their association to subsets of runs though binary operations on tags. Algorithms and 

computational techniques required to efficiently implement granular cloning are presented. 

Results from an experimental study using a cellular automata-based transportation simulation 

model and a coupled transportation and land use model are presented providing evidence the 

approach can yield significant speed ups relative to brute force replicated runs.  
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1 INTRODUCTION 

 

With the advent of pervasive data feeds from mobile or static sensors, the proliferation of 

data, the widespread use of mobile applications by the public, and input/output devices used in 

the Internet of Things (e.g., augmented reality systems), real-time instrumentation data can be 

directly used in various applications to improve various key performance metrics. The abundance 

of real-time data has implications for a wide range of sectors, including public health, finance, 

and transportation systems. There exist many applications in these areas and the third among the 

listed examples – that is, transportation systems – serves as the focal point of much of this thesis.  

For transportation systems, real-time data can be used to improve the safety, fuel-

efficiency, and travel time of drivers at various levels. Some broad example applications include: 

- Travel time estimation. Cameras can detect a vehicle at different points and times on a 

freeway and compute travel time estimates to other drivers who may wish to take an 

alternative route. 

- Safety. Many modern vehicles already include crash avoidance or automatic emergency 

vehicle notification systems. Detailed information can immediately be communicated to 

nearby first responders, even when the driver is incapacitated. 

- Fuel efficiency. Modern car engines use an array of sensors and controllers for fuel-

efficient operations. An example is the recent trend of equipping combustion engines with 

direct injection. Various sensors dynamically determine the suitable amount of air and fuel 

to spray into the combustion chamber in order to improve fuel efficiency. 

- Sustainable urban development. Although the transportation application discussed in this 

thesis mainly concerns vehicle tracking, this thesis will touch upon other areas. For 
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example, new computational techniques to accelerate investigations of the impact of 

transportation on sustainable urban development are examined. 

(Darema, 2004) characterizes Dynamic Data-Driven Application Systems (DDDAS) as follows: 

In DDDAS instrumentation data and executing application models of these systems 

become a dynamic feedback control loop, whereby measurement data are dynamically 

incorporated into an executing model of the system in order to improve the accuracy of 

the model (or simulation), or to speed-up the simulation, and in reverse the executing 

application model controls the instrumentation process to guide the measurement process. 

DDDAS presents opportunity to create new capabilities through more accurate 

understanding, analysis, and prediction of the behavior of complex systems, be they 

natural, engineered, or societal, and to create decision support methods which can have 

the accuracy of full-scale simulations, as well as to create more efficient and effective 

instrumentation methods, such as intelligent management of Big Data, and dynamic and 

adaptive management of networked collections of heterogeneous sensors and controllers. 

DDDAS is a unifying paradigm, unifying the computational and instrumentation aspects 

of an application system, extends the notion of Big Computing to span from the high-end 

to the real-time data acquisition and control, and it’s a key methodology in managing and 

intelligently exploiting Big Data.  

In the context of this thesis, the application system component of DDDAS concerns 

vehicle traffic; however, one could envision other systems (not necessarily rooted in 

transportation) where the contributions may prove useful – including in three spatial dimensions.  

Microscopic traffic simulations are often used to gain insights into physical road systems where 

one wishes to investigate various operational scenarios. The dynamic data-driven component of 

DDDAS may be used to initialize the traffic simulation. Even if rush hour data had been available 

for use in a conventional traffic simulation, there is no guarantee that the intensity of the traffic 
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and/or the road context (with potential blockages and detours) would be representative of the 

physical system during the time window under investigation. The strength of DDDAS, in the 

context of microscopic traffic simulations that focus on the behavior of an individual entity, is 

that the initial state, and subsequent states, if the simulation state is updated in an on-line fashion, 

reflects an abstraction of the ground truth of the system under investigation (SUI). Even a slightly 

mischaracterized initial state may lead to dramatic inaccuracies as the model evolves. Whereas 

analytical methods alone tend to fail when evaluating unfamiliar scenarios (e.g., rare events such 

as traffic accidents at certain locations), traffic simulations with inaccurate data are likely to 

produce unusable output statistics - especially if the output statistics focus on observations of a 

single entity, rather than system-level aggregate metrics. The DDDAS paradigm offers an 

effective answer to both issues.  

Despite the potentially useful information supplied by mobile geospatial applications, 

only a miniscule fraction of intended trips is specified by drivers. Developers have not leveraged 

these elements into an ecosystem that allows stakeholders and drivers to make more informed 

decisions, without the need of troublesome user interaction in the form of manual data entry. 

While there has been research on static trajectory prediction - without accommodating 

functionality for temporal queries - this thesis proposes a dynamic framework, where data and 

simulation are used together to make dynamic (temporal) predictions on the future trajectory of a 

driver. This framework does not assume that any personal data for the vehicle under investigation 

(VUI) has been previously collected. This allows the prediction models outlined in this thesis to 

be used for any VUI in an area where trajectory data is available. The drawback is that VUI's who 

differ significantly from the behavior of the general population are difficult to track. As an 

example, consider a VUI which exhibits evasive and inefficient actions. A further limitation is 

that VUI's with a small and usual set of trajectories are not exploited by the models. Related 

works that address these scenarios will be summarized in Chapter 2. Depending on the objectives 
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of a simulation study, the marginal benefit of more precise and larger input data sets can range 

from nonexistent to critical. The application of this thesis examines the dynamic behavior of a 

specific VUI, which is sensitive to the accuracy of the data supplied to the application system. 

Suppose we wish to predict the position of a VUI at a time when a busy local event is taking 

place, and a conventional microscopic traffic simulation is initialized with estimated road 

conditions. Not only might the VUI have a high propensity to alter his/her path to a less busy path 

or detour (assuming he/she is informed of such paths), but the temporal estimates within typical 

road sections are likely to be inaccurate due to unanticipated areas of congestion.  

Because the analysis approach, in this context, is a microscopic traffic simulation, the 

computational load of even a moderately sized road network is significant. In order to tackle this 

challenge, a scheme to speed up the simulation execution will be presented. This scheme can be 

used in both serial and parallel computing architectures. 

This thesis builds upon the following concepts: DDDAS, microscopic traffic simulation, 

trajectory prediction, and simulation cloning. These concepts will be discussed in the following 

subsections. 

1.1 Dynamic Data Driven Application Systems 

In Dynamic Data-Driven Application Systems (Darema, 2004), real-time measurement 

data of a physical system are unified with the simulation system in a dynamic control loop. Data 

from sensors can be used by the simulation to improve the accuracy of its working model or 

speed up the execution of the system in order to improve the operation of the physical system or 

to adapt the measurement process itself. For example, one might use sensor data to reconfigure 

the sensor network or organize and filter the obtained data. Overall, the intent is to enhance the 

monitoring of the system under investigation (SUI) – e.g., for real-time decision support – and 

leverage the resulting benefits (including improvements in the SUI). 
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The paradigm has spawned fruitful research in many areas of science and engineering 

since its inception in 2000. Example DDDAS applications include: 

- Monitoring the spread of wildland fires. In (Mandel J. e., 2008) differential equations 

characterizing spread based on available fuel are derived using coefficients derived from 

historical wildfire data. A method that incorporates Kalman filters allows accurate tracking of 

fire propagation (temperatures) in the affected region, even when the initial location of the fire 

is chosen incorrectly. An extension of the simulation model also incorporates wind as a factor 

(Babak, 2009) and another extension of the data assimilation process using Sequential Monte 

Carlo methods is proposed in (Xue H. F., 2012). In another extension of the original model, 

the coupled fire spread model starts at a perimeter rather than a point (Mandel J. J., 2012). A 

DDDAS system for tracking specific fires using unmanned aerial vehicles is described in 

(Peng, 2014).  

- Emergency and disaster management. (Madey G. R., 2007) shows how cell phones can be 

used in an emergency or disaster situation as ad hoc mobile sensors. Subsequent work also 

investigated similar data for uses in efficient urban management (Steenbruggen, 2015). 

- Construction and waste management. (Song, 2012) proposes a scheme where real-time 

construction operation parameters are captured with sensors and used in a simulation of heavy 

construction operations. As the simulation receives data from the tracking sensors, the state of 

the models is constantly updated to reflect the changing physical system in order to improve 

the accuracy of future schedules. (Vahdatikhaki, 2014) presents a framework for a detailed 

capturing of the construction equipment. The authors of (Parashar, 2006) applied their 

DDDAS software stack - which was originally developed for their oil field DDDAS project 

(specifically, reservoir management) - for the management of the Ruby Gulch Waste 

Repository. 
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- Monitoring weather conditions and ocean forecasting. (Brotzge, 2006) discusses a DDDAS 

to forecast surface weather conditions with a network of small, low-power, and inexpensive 

radars that operate in a collaborative and adaptive (based on user needs and weather 

conditions) fashion. (McGovern, 2011) describes an approach to identify key features from 

spatiotemporal data for severe weather prediction (tornadoes). (Patrikalakis, 2004) introduces 

a DDDAS framework for modeling the evolution of the ocean state (surface water temperature, 

biological systems etc.). In climate science and meteorology, real-time (or near real-time) data 

acquisition has been coupled with relevant application systems prior to the introduction of 

DDDAS. For example, (Kunkel, Changnon, Lonnquist, & Angel, 1990) discuss how the 

Midwestern Climate Information System (MICIS) uses near-real-time precipitation and 

temperature data to predict soil moisture and crop yield risks (collected daily). (Reynolds & 

Marsico, 1993) augment the analysis of global sea surface temperatures (which is driven by 

in-situ sensors and satellite data) with the simulation of temperatures in ice-covered regions. 

These simulated temperatures become external boundary conditions for the updated solution, 

in order to remove high-latitude satellite sensor biases.   

- Optimizing supply networks. (Celik, 2010) describe a DDDAS framework where the fidelity 

of a simulation model is updated (selective data update) on-the-fly based on the computational 

resources available. The system is tested on a semiconductor supply chain as a case study.  

- Improving healthcare operations. (Barjis, 2011) surveys healthcare simulation and future 

research. As one of the non-traditional simulation efforts, Barjis highlights the benefits of 

running simulation models in parallel with routine operations and connecting the simulation 

model with the information systems of the facilities where data are collected dynamically  

(Gaba, 2004) and (Darema, 2004)). Real-time simulations are also investigated in (Bahrani, 

2013) to determine the impact of resource allocation on wait times in a case study of an Ontario 

hospital. 
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DDDAS has also been used in transportation systems (see (Fujimoto R. R.-K., 2006) and 

(Fujimoto R. M.-K., 2007)), which is the area disccused in this thesis. As a specific application, a 

vehicle tracking framework will be discussed where a vehicle under investigation is tracked by 

detecting the vehicle from sensors, predicting likely future locations of the vehicle, and relocating 

the sensors in order to reacquire the vehicle. Here, the prediction step makes use of real-time 

trajectory data, which is used by the microscopic traffic simulation to give temporal estimates of 

the VUI's future location. 

1.2 Microscopic Traffic Simulation 

Much of the work described in this thesis is related to traffic simulation in some fashion, 

whether it is the acceleration of the simulation execution, the evaluation of a trajectory prediction 

model, or the calibration of a model. Researchers have modeled transport and vehicle behavior on 

computers since the 1950's (Gerlough, 1955) for the purpose of enhancing the design and 

operation of traffic systems. For example, one could evaluate proposed infrastructure alternatives 

and inspect the impact on the mean travel time through the affected area. The impact of different 

signal timing procedures on congestion is another example application. Sometimes, there are 

analytical approaches (e.g., queueing theory) that could be used as an alternative to computer 

simulation. However, if numerous real-world entities and their interactions are incorporated, the 

benefits of using the analytical approach (simplicity, development speed, compactness and 

tractability) vanish. On the other hand, using real-world experiments on a road or road network 

may be prohibitively expensive or cause unacceptable conditions for drivers.  

At the conceptual level, the ideas of this thesis mainly focus on ground vehicle traffic 

without bicycles and pedestrians, although one could modify the concepts to apply them to other 

transportation modes as well. Another conceptual distinction concerns the granularity in the 

model used. Microscopic models view the entities at a detailed level where vehicles are 

characterized individually and their behavior is explicitly described. In a macroscopic model, the 
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vehicles are not individually separated, but incorporated in a more coarse-grained aggregate 

element. Mesoscopic models fall in between the previous two extremes and look at clusters of 

vehicles as the most atomic entity in the system. The objectives of a simulation study determine 

what level of detail is the most prudent. More details will usually increase the development time 

as well as the execution time of the simulation, while they can lead to more accurate output 

statistics, depending on what is analyzed. This thesis will focus on microscopic traffic simulation. 

Simulation models are distinguished by whether time and space are modeled as 

continuous or discrete quantities. Figure 1 illustrates simulation model examples that are used at 

the different intersections of these aspects. For example, partial differential equations can be used 

to model the system if both time and space are assumed to be continuous. The algorithms 

presented in this thesis are most easily implemented in discrete-time and discrete-space 

simulation models. However, they can be incorporated in other categories as well. In the 

trajectory prediction models (Chapters 2 and 3) one could encode road segments, as opposed to 

cells, as decision points, and in the accellerated simulation algorithm of Chapter 4, the simulation 

execution is modified when a certain type of vehicle changes its behavior upon an encounter with 

another type of vehicle. These properties are independent of whether time and space are modeled 

as continuous or discrete. 
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Figure 1: Classification of Transportation Simulations (Jorge Laval, Creative Commons) 

Because the methods of this thesis are most easily implemented and efficienctly executed 

in discrete-time and discrete-space models,  it is worthwhile to analyze the model listed at the 

relevant intersection in Figure 1: Cellular Automata (CA) models were developed by John von 

Neumann and Stanislaw Ulam in the 1940’s at Los Alamos National Laboratory (Schiff, 2008). 

CA's are grids that consist of cells. Each cell assumes a particular state and might change its state, 

as the simulation clock advances, subject to a set of rules. Conway's Game of Life (Gardner, 

1970) is perhaps the most well-known CA, where cells are either alive or dead and each cell 

changes its state based on the state of its neighbor cells.   CA's find application in many fields of 

science (Wolfram, 2002), engineering, mathematics, and computing. Many of the ideas presented 

in this thesis are evaluated on a CA model for road traffic (Nagel & Schreckenberg, 1992) that 
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was developed by the German physicists Kai Nagel and Michael Schreckenberg and will be 

described next. 

The Nagel-Schreckenberg model (NS) is a CA that is used to model roadway traffic. 

Emergent phenomena such as congestion appear in the model, just as they do in the real world. In 

addition, it has been shown (Daganzo, 2006) that NS is equivalent to other vehicle-following 

models. The NS model (Nagel & Schreckenberg, 1992) maps an area typically occuppied by a car 

into a cell. A cell encodes whether it is occuppied by a car or not and cars have an integer speed 

attribute associated with them. Additionally, a global maximum speed is usually defined. At each 

simulated timestep, four compact steps are repeated, in order, simultaneously to all cars. In order 

to model the desire of drivers to reach their destination in an efficient manner, the speed attribute 

of the cars is first incremented. In order to avoid collisions, cars will then reduce their speed 

attribute if they were to collide with the car in front of them at the current speed, assuming the 

vehicle in front of them remains stationary. To model the uncertainy in the ability of human 

drivers to maintain a constant speed, the speed attribute of each car is reduced with probability p 

(a fixed parameter). Finally, the positions of the cars is updated in the grid. Modifications to NS 

have also been developed since the publication of the initial paper, e.g., multiple lane models, 

models with more traffic elements such as traffic lights, models with adaptive parameters that 

change during runtime etc. Section 4.3 will discuss the NS algorithm in more detail as it is central 

for the ideas presented in Chapter 4. 

Tangentially related to this thesis are Intelligent Transportation Systems (ITS). ITS use 

communication, information, and computation technology on transportation infrastructure, 

vehicles, and users to offer services with the objective to enhance the safety (including 

environmental aspects), mobility, information awareness, efficiency, and productivity of users 

and stakeholders (e.g., traffic management) (Technology, n.d.) (EU Council, 2010). These 

technologies include smartphones, cameras, audio sensors, digital message boards, RFID, and 
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other tools. Example applications with respect to safety include a mechanism to automatically call 

an emergency hotline, notifications for drivers on the road about how to deal with hazardous road 

conditions, and general surveillance for homeland security.  

The framework described in this thesis can be integrated in intelligent transportation 

systems (ITS) to improve general driving safety and efficiency, as not only decision makers (e.g., 

law enforcement and traffic control agencies) can act on supplied information by regulating 

traffic, but also the drivers themselves may act in a favorable fashion as they are informed on a 

mobile computer. Applications are abundant, as accurate transportation simulation results not 

only help decision makers from a top-down perspective, but also the end users themselves from a 

bottom-up perspective (e.g., fuel-efficient, fast, convenient, or safe routes without the user 

needing to input his/her destination into mobile applications or on-board augmented reality 

systems). 

The vehicle tracking framework developed for this thesis is an example ITS that not only 

has uses in security and planning, but also for end users, as the examples at the beginning of this 

chapter illustrate. 

1.3 Trajectory Prediction 

Trajectory prediction refers to predicting any future location of an object based on its 

previous or current position(s), velocity, or other contextual data in different dimensions. 

Trajectory prediction finds use in the perception of animals (Gallistel, 2007), in air traffic to 

avoid collisions (Gong, 2004),  in interactive environments to avoid excessive communication 

(Cai W. F., 1999), in localization (Lin & et al., 2016), and many other areas. In the context of this 

thesis, the object of interest is a vehicle. A related, but easier, problem is destination prediction, 

where only the final position of the vehicle is relevant - not the path to reach any of the candidate 

destinations. Several interesting ideas have been proposed for the destination prediction problem. 

One example is based on the intuition that drivers pick efficient routes (Krumm J. , 2006). 
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Another destination prediction model that recently won a Kaggle competition is based on 

recurrent bidirectional neural networks (de Brébisson, 2015). Chapters 2 and 3 will discuss 

existing and new trajectory prediction methods in more detail. 

1.4 Simulation Cloning 

Trajectory prediction models usually only estimate spatial values in the future. One could 

associate temporal information to these values with analytical models. However, to capture rare 

and context-specific information, traffic simulation may generate data that would otherwise be 

difficult to extrapolate from analytical models. At the scale of granular trajectory prediction, one 

would degrade the accuracy if the traffic simulation model were too coarse. At the same time, the 

execution of microscopic traffic simulation may be computationally expensive for large road 

networks and several simulation replications. Various algorithms exist to accelerate simulations 

and a suitable technique depends on the specific problem characteristics. A family of acceleration 

techniques use the concept of simulation cloning, which allows multiple alternative futures to be 

evaluated in parallel from a common decision point in the simulation execution; a mechanism 

based on virtual logical processes allows cloning to occur in the background in a computationally 

efficient manner where common computations are shared within a single physical process 

(Hybinette M. a., 2001). In time-sensitive situations, analysts may use simulation cloning in an 

interactive manner to evaluate different alternatives in a simulation model. Oftentimes, the 

number of possible scenarios is unbounded or many scenarios are not feasible based on real-

world constraints. In these situations, it is useful for a domain expert to enumerate a small set of 

key scenarios and quickly evaluate them based on metrics that are important in the particular 

domain. The possibly nonlinear relationships among the different metrics and how they need to 

be prioritized may also need to be evaluated in an ad-hoc manner by the domain expert. Section 

4.2 and Section 5.2 will discuss related works in this area in more detail before delving into the 

main computational contributions of this thesis. Section 5.3 discusses simulation cloning in detail. 
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1.5 Research Contribution and Thesis Organization 

The main contributions of this thesis are as follows: 

- A real-time DDDAS framework for monitoring transportation systems in an urban 

environment is proposed. In this application, the goal is to predict future system states of the 

road network. The framework tracks a vehicle under investigation by detecting the vehicle 

from sensors, predicting likely future locations of the vehicle, and relocating the sensors in 

order to reacquire the vehicle. The procedure can also be utilized for other transportation 

entities (e.g., pedestrians and bicyclists) and, more generally, for different application areas at 

various scales and dimensions. 

- A fast-access and compact data structure that stores previously observed vehicle paths in a 

given area in order to predict the forward trajectory of an observed vehicle at any stage is 

proposed. Across a synthetic and real data set, the algorithm outperforms a competing scheme 

in accuracy and access time; the competing scheme only uses the driver's partial trajectory 

before the point of prediction instead of using historical path data. The data structure can be 

used for other trajectory data (including higher dimensional data with multiple attributes) if 

the space that the object displaces is mapped to discrete points. If the space is continuous, one 

can superimpose a grid or define suitable clusters to discretize it.  

- To highlight the value of computationally efficient and accurate trajectory models to drive on-

line data-driven simulations, trajectory prediction models are compared against each other in 

the context of a relatively large real-world dataset. The approaches to route prediction have 

varying degrees of data required to predict future vehicle trajectories. Three approaches to 

vehicle trajectory prediction, along with original extensions, are examined to assess their 

accuracy on an urban road network. These include an approach based on the intuition that 

drivers attempt to reduce their travel time, an approach based on neural networks, and an 

approach based on Markov models. These results highlight the benefit of exploiting dynamic 
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data to improve the accuracy of transportation simulation predictions. A cascading Markov 

model scheme (an original contribution) outperforms all other tested models. It may be 

possible to utilize the cascading mechanism in completely different areas where predicting 

sequence patterns is useful (for example, to leverage cache hierarchy access patterns in 

computer systems).  

- A computational method to accelerate transportation simulations is developed. By exploiting 

similar properties among different simulation replications, the simulation execution time can 

be reduced, when the output statistics of interest focus on one or more attributes such as the 

trajectory of a certain “target” vehicle. Depending on the model characteristics, it is possible 

to approach a speedup proportional to the number of replications, compared to the 

conventional approach of running one instance per scenario. With some mild assumptions, the 

scheme can also be used for other agent-based models where objects travel within a network. 

- A general computational method, termed granular cloning, is proposed to accelerate ensemble 

studies. State sharing occurs at any scale allowed by the computer system and only the state 

that changes from the shared state is physically cloned. 

Chapter 2 discusses an efficient Markov model trajectory prediction algorithm and 

motivates trajectory prediction in the context of DDDAS, Chapter 3 compares several trajectory 

prediction models on a large dataset, Chapter 4 introduces an algorithm to accelerate the 

execution certain Monte-Carlo simulation models where the output statistics are collected on a 

single object that travels in a network, and Chapter 5 outlines the granular cloning approach to 

expose parallelism at the scale of any simulation object.  



15 

2 TRAJECTORY PREDICTION WITH PAST AND FUTURE 

TREES 1 

 

1This chapter includes content from (Pecher P. H., 2014) and (Fujimoto, et al., 2014). © 

2014 IEEE. Reprinted, with permission, from reference found under  (Pecher P. H., 2014) In 

reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE 

does not endorse any of Georgia Institute of Technology's products or services. Internal or 

personal use of this material is permitted. If interested in reprinting/republishing IEEE 

copyrighted material for advertising or promotional purposes or for creating new collective 

works for resale or redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to 

obtain a License from RightsLink. 

2.1 Introduction 

Computer simulation of road networks and transportation entities is a valuable tool for 

managing traffic and designing new construction projects. Some transportation models are small 

in scale and make many simplifying assumptions; others can be very sophisticated and 

computationally demanding. Many dynamic factors are present in the real world that are difficult 

to model and predict. For example, say, a particular event takes place that attracts one specific 

demographic; a simulation model can be made more accurate if it takes into account recently 

observed trajectories, rather than static turn frequencies at decision nodes. One way to view this 

information is via decision trees holding relative frequencies at each branching point. Observed 

trajectories can be stored in a tree data structure (Past Tree) where nodes represent past 

trajectories up to the given decision point and hold references to other trees (Future Trees) that 

store observed frequencies of the remaining trajectory. If the target entity is currently in an area 
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where trajectories have been observed in the past, population path similarity can be used to 

predict where a vehicle will turn or to generate realistic trajectories. For reasons that will become 

obvious in Section 2.4.1, we will subsequently refer to Past and Future Trees as simply Past 

Trees. We will also sometimes use the expression Method of Past Trees (or simply, Past Trees in 

the charts of Section 2.5) to specifically refer to the querying operation on Past Trees that outputs 

location estimates (see Section 2.4.2).  

Past Trees are useful for dynamic data-driven application systems - DDDAS (Darema, 

2004). The ability to modeling individual vehicles accurately is needed in a variety of 

applications. The analysis of emergent, macro-scale phenomena in real-time data-driven types of 

simulations can be of great interest to various stakeholders. To optimize systems for efficiency, 

for example, it is possible to model traffic congestion (Fujimoto R. M.-K., 2007) and evacuation 

models (Chaturvedi, 2006) with a high degree of validity. The data centers of web search 

providers have clustered equipment based on the expected workload in different domains (Marin, 

2013). Past Trees can model consumer preferences and assist in parameter tuning (Ye, 2008) and 

bottleneck analysis of computer networks. Past Trees may also be used in online simulations to 

determine an accident from cell phone data (Madey G. R.-L., 2006) (Madey G. R.-L., 2007) or in 

law enforcement applications (Fujimoto R. A., 2014). 

2.2 Motivating Context: DDDAS 

In order to set the problem context and motivation, a computational framework to model 

the movement of a mobile target vehicle in a road network (without access to perfect information) 

is first described. The objective is to predict the final destination of the target. This framework 

dynamically selects an appropriate prediction model at runtime based upon what data is currently 

available. 

Consider a directed graph for the road network G(V, E) with nodes representing 

intersections and links road segments. A target entity ET, resides at vertex n0 at time t0. ET travels 
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through G on directed edges and through vertices. If ET is on an edge, it is assumed, for 

simplicity, that ET is also mapped to the vertex to which the edge points. n=[n0, n1, n2, ..., nf] and 

a=[a0, a1, a2, ..., af] are used to denote the node-vector and the arc-vector of ET's true, realized 

path. n(t) and a(t) return the nearest vertex that is being approached by ET and ET's current edge 

for a given time t, respectively. s(t) returns a scalar between 0 and 1 denoting ET's position at t on 

a(t). 

At some later time t=tf, we wish to find ET's exact location (i.e., a(tF) and s(tF)).  In order 

to accomplish this final goal, probing entities E1, E2, E3, ..., ES are intermittently mobilized within 

the network, and each may test whether any one point in G contains ET at timestamps t1, t2, t3, ..., 

tk. 

The lag (in time units) between two consecutive rediscovery attempts is determined by 

ensuring that the likelihood of losing ET at the next test timestamp does not exceed a user set 

tolerance probability ploss. At the same time, we wish to maximize the lag within a test cycle, Δti 

and assume this likelihood increases monotonically as the candidate test interval decreases. 

For a fixed ploss, the critical lag Δti* is determined so that the probing entities may attempt 

to observe ET after the sum of Δti* and the previous test timestamp. This is accomplished by 

enumerating all paths that could potentially be reached by ET after Δti* time units. This is 

implemented with a microscopic, and data-driven traffic simulation that is called by a tree 

construction algorithm; see FIND-OFFSET below.  

If at any test timestamp, none of the S sensors observes ET, either ET is lost or ET stopped 

in the maximal hull that connects all vertices that can be reached after Δti* time units from the 

time of ET's last observed vertex. The search can occur in structured fashion, from the last 

observed point to the edge of the hull with S search paths that occur in parallel (along regions that 
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have the highest probability mass). In this final mode, each sensor has a fixed speed of testing a 

segment on an edge (length per time unit).   

Once S and ploss are determined, the S mobile probing entities are placed at the S 

locations most likely to contain ET at each rediscovery attempt, the third phase of the DDDAS 

loop described earlier. Therefore, the key is to construct an accurate conditional probability map 

of ET's location in G at time ti+1 given the last known positions of ET at time ti, ti-1, ..., t0. Several 

methods are presented to estimate (a(ti+1), s(ti+1)). 

To summarize, the high-level framework proceeds as follows: 

 

Figure 2: High-level location prediction procedure 

2.2.1 FIND-OFFSET: Determining the critical lag 

 

The objective of FIND-OFFSET is to find the critical lag to the next test, the maximum 

time that ET can go unobserved, while still satisfying ploss. This is done with a tree construction 

algorithm, where the vertices represent intersections and arcs represent roads between those 

intersections. The algorithm first starts in a global search (roughly, level-by-level) and then 

proceeds to engage in a local search with an S-element window (node-by-node) until the critical 

lag is identified. If ploss is 0, the algorithm can be sped up substantially by simply checking for 

cardinality and side-stepping the call to the evaluation function PROBABILITY-MAP (which is 

not redundant if ploss is 0 because the final test phase also invokes it).  
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2.2.2 PROBABILITY-MAP: Path Speculation 

 

In order to properly assess the likelihood of different locations, all relevant and available 

data must be considered. In accordance with the DDDAS paradigm, the system will automatically 

switch prediction modes, or 'tiers,' based on the data that becomes available during runtime 

(crowd-sourced or collected from other sources). There are three prediction tiers that this 

approach uses, with higher tiers utilizing more specific data, but with more promising accuracy. 

• Tier 1: No Data or Only Static Data. If no historical data is available, or only general 

information (popularity or population density of different zones), inferences can still be 

made from ET‘s trajectory that has been observed thus far. One particular clue to consider 

is efficiency. Krumm developed a static prediction model (Krumm J. , 2006) that assigns 

higher likelihoods to areas that are consistent with the path taken thus far. Thus, inefficient 

potential trajectories are given less weight. For use in the overall procedure, one additional 

factor can be conditioned against – time. Since we know when the next test will occur, all 

cells except the ones that could be reached after the critical lag can be excluded. 

• Tier 2: Past Trajectories of the Population. If ET is currently in an area where trajectories 

have been observed in the past, population path similarity information can be used. One 

way to store this information is via decision trees holding relative frequencies at each 

branching point. This method is discussed in Chapter 2.4. 

• Tier 3: Past Trajectories of ET. The ideal situation is to have actual data available from the 

person who is being tracked. (Laasonen, 2005) developed a model where similar routes of 

an individual are clustered. If an observed path is similar to an existing composite path, the 

composite path is merged with the observed path. Merging, in this case, refers to finding 

an alignment between two routes (via the dynamic programming procedure to the edit 

distance problem) and updating the position of intermediate locations with a new average. 
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A similarity index is used for inserting into the appropriate cluster when a new path is 

observed and when the future path is to be predicted from a current location. Instead of 

using a quadratic time edit distance algorithm, Laasonen suggests using a heuristic, 

inclusion similarity: 

I(r, t) = T/|t| 

where r refers to the composite path, t refers to the path whose similarity is being computed, 

and T refers to the number of elements in t that appear in r in the same order. Laasonen 

further makes use of factors such as the time of day, the particular weekday, relative 

frequency, and the previously observed base (a base refers to a place that is deemed 

important to a person and is crystallized when the person spends a significant amount of 

time at such a place).  

Our DDDAS can be decomposed into an analytics component and a simulation 

component. With regard to the former, a data structure that stores previously observed vehicle 

paths in a given area in order to predict the forward trajectory of an observed vehicle at any stage 

is proposed (it is compared against one other model in Section 2.5  and against further methods in 

Chapter 3). With regard to the acceleration of transportation simulation, there are often 

substantial similarities among these different simulation replications. This thesis explores 

computational methods to exploit these properties to speed up the simulation execution time in 

Chapters 4 and 5.  

2.3 Related Work 

With a motivating context for trajectory prediction discussed, we now reference some 

related literature. Destination estimation is an active field of research. The constraint on the 

models selected here, however, is that they must be at a conceptual scope that can be mapped 

directly to a general transportation simulation model. Prediction models for a highly domain-

specific area  such as handoffs of a mobile phone from antenna-to-antenna (Cheng, 2003), or 
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where the target is at an unknown position, but stationary (Sinclair, 2008), for example are 

inappropriate within general simulation frameworks. Those that extrapolate from direct vehicular 

motions (e.g., dead reckoning models; see (Cai W. F., 1999)) are too granular and impose an 

unrealistic behavior on a given vehicle entity. We also ignore models that depend on the 

identification of a particular vehicle and its historical data (Laasonen, 2005). 

In Section 2.3.1, we summarize a prediction model based on efficient routes (Krumm J. , 

2006). The model predicts based on the idea that drivers tend to make choices that are fairly 

efficient when attempting to reach their destination. Unlike Past Trees, Krumm's prediction 

model does not use any historical trajectory data. Nevertheless, we will use it as a benchmark in 

Section 2.5. 

2.3.1 Krumm's Prediction Model 

 

Krumm developed a static prediction model that assigns higher likelihoods to areas that 

are consistent with the path taken thus far. Thus, inefficient potential forward trajectories are 

given less weight than those that are consistent with efficient behavior. It is important to note that 

this model does not utilize previously recorded trajectories, outside the partial trajectory of the 

vehicle currently being observed. Krumm assigns each cell, ci, in a region an estimated 

probability, based on the observed path, S, taken thus far, using Bayes' Law: 

 

p(ci|S) =  
p(S|ci) × p(ci)

∑ p(S|ci) × p(ci)
Nc
j=1

 . 

  Krumm has empirically determined that the probability of an efficient cell transition is 

0.625 in a particular experiment in Seattle, WA. For a particular cell ci in the grid, each cell of the 

observed trajectory is multiplied by 0.625 if it brings the target closer to ci, and by 1-0.625 if not. 

This is then multiplied by an overall cell bias term p(ci) and normalized. Figure 3 shows how the 
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algorithm updates the probability map as more information about the route can be used; the cells 

visited by the actual route are colored green, while the predicted future cells are colored yellow, 

orange, and red. The higher the red color, the higher the likelihood assigned by the Krumm model. 

In the rightmost image the leftmost cells are assigned the lowest likelihood as they would be 

inconsistent with efficient routing behavior. 

 

Figure 3: Krumm visualization 

 

2.4 Past and Future Trees 

2.4.1 Conceptual Structure and Trajectory Insertions 

 

In order to make proper use of Past and Future Trees, a number of population trajectories 

must be sampled first. In the following conceptual description of the structures, we assume that 

this data has been collected already and has been inserted into the structures. A discussion on 

trajectory insertion (see Figure 4) follows this description. Querying Past Trees to make 

predictions (i.e., the Method of Past Trees) is discussed in the next section.  

  Every decision point in a region (e.g., the road on the western side on a particular 

intersection) is associated with an instance of a Past Tree and each node in a Past Tree links to an 

instance of a Future Tree (see Figure 4). The vertices of a Future Tree contain traversal counts as 

well as destination counts. If a partial trajectory, Tp=(e0, e1,...,ef), of a vehicle up to a decision point 

has been observed, the corresponding Past Tree is traversed in the reverse order of Tp (the root 

corresponds to ef). Traversing the Past Tree in this fashion is equivalent to conditioning against the 
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observed trajectory. This means that if no partial trajectory up to ef, had been observed, we would 

simply access the Future Tree associated with the Past Tree's root node. If the currently observed 

partial trajectory does not exist in the tree, the traversal only goes down to the node that does not 

have the requested child. Once the corresponding Future Tree is discovered, it is traversed to yield 

the measure of interest. Some of these metrics are discussed in the next two subsections (2.4.2 and 

2.4.3). For example, if one wishes to construct an estimated destination probability map, a breadth-

first search for positive destination counts can construct a frequency distribution, leading to the 

desired map. 

  In Figure 4 below, we assume no previous trajectories have been observed (i.e., this is the 

first trajectory being observed). Further, this trajectory will cause updates on every Past Tree 

adjacent to the realized path. However, for illustrative purposes, we will only focus on the updates 

to the Past Tree corresponding to the western side of Intersection 3, PastTree3, W. A vehicle has 

approached Intersection 3 by first traversing Intersection 1 and then Intersection 2. This partial 

trajectory is inserted into PastTree3, W (the solid black arcs). After that point, the remaining path is 

inserted in the Future Trees of all vertices in the path up to Intersection 3 (the lightly dotted arcs), 

so that any future read request on the Past Tree may access this particular observation for any partial 

trajectory that follows the same pattern up to the current decision point (irrespective of the length). 

The Future Tree's traversal counts are incremented if the vehicle traverses the given intersection 

and the destination counts are incremented if the vehicle stops in the given intersection's proximity 

(i.e., terminal point along the trajectory). As mentioned before, we assume this is the first trajectory 

being observed. Had the Past Tree already been partially populated, it could have been the case that 

no additional arcs would have had to be inserted. However, the counts would still need to be 

incremented.  
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Figure 4: Past & Future Tree visualization 
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2.4.2 The Method of Past Trees: Predicting Trajectories and Destinations 

 

  Once a Past Tree for a given decision point is populated, it can be used to make predictions 

for a vehicle approaching the given decision point. If the vehicle's trajectory up to the point has 

been observed, the given Past Tree can be queried to retrieve the corresponding Future Tree. 

Predictions regarding any future decision point can be made by considering the 

corresponding nodes at that depth of the Future Tree. It should be noted that this yields the nth 

decision into the future and, therefore, has limited use: These points could be asynchronous in the 

expected arrival time (e.g., the example travel times to the Future Tree nodes in Figure 6). A 

prediction for Δt time units into the future requires locations to be tagged with point estimates of 

the travel time it takes to reach the respective points. A general search algorithm can then return 

the set of feasibly reachable locations (the intersection of the Future Tree and the shaded line cut 

in Figure 6). The frequency distribution of the traversal counts in this set can then be used to 

build an estimated probability mass on the map. The following pseudocode (for a parallel shared-

memory machine), applied on the Future Tree of an observed vehicle, yields this prediction (a 

probability map):  



26 

 
Figure 5: Probability map generation algorithm 

 

  In general, this depth-synchronous implementation is not efficient, even if the underlying 

work-scheduler balances optimally: A time-parallel simulation (Kiesling, 2005) may 

simultaneously evaluate delays across road segments on differing depths and, therefore, offers the 

flexibility to saturate all the available processors with work. Nevertheless, we focus on this 

implementation for ease of exposition. The procedure expands all simple paths from the root node 

(Lines 3-4) until all the terminal vertices are tagged with a travel time greater than Δt; at this point, 

the potential locations of the vehicle are found. Pursuant to this goal, vertices are tagged with a 

point estimate of the travel time to reach the respective intersections by invoking the transportation 

simulation, simulateTravel, on Line 6; this subroutine returns the travel time on the road segment 

from vertex u to vertex w. Unless this subroutine is implemented in a trivial fashion (for example, 

by simply retrieving a point estimate from historical data and not considering live data), the 

execution time of this call will dominate the total runtime of the program. (The time used by this 

bottleneck primarily depends on the granularity of the simulation model; a computationally 

efficient microscopic traffic simulation model can be found in (Nagel & Schreckenberg, 1992).) If 

the cumulative travel time up to w is greater than Δt, simulateTravel will also return the predicted 

position of the vehicle at Δt (positionAtΔt). At this point, the observed traversal count is queried 
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from the corresponding Future Tree (from vertex w is the vehicle is closer to w than to u; otherwise 

the traversal count from u is used). This count is inserted into a map representing the frequency 

distribution at Δt (Line 10). After this map is populated, it is converted to a probability mass on the 

map and returned (Lines 17-18).  

 

 

 
Figure 6: The Future Tree is used to retrieve the potential locations of the vehicle Δt into the future. In this case, 

we identify all vertices that are reached from the current location within a time span of 23 seconds. The shaded 

line illustrates the possible locations at that time. 

  If the question is what destination the vehicle is likely to approach, the destination counts 

described in Section 2.1 are fetched with the help of any tree search procedure (e.g., breadth-first 

search). The non-zero destination count of every node in the future tree is inserted into the 

appropriate location in the frequency map, which is subsequently transformed into a probability 

map and returned. 

2.4.3 Generating Simulation Trajectories 

 

Suppose we have constructed a subgraph that represents some road-connected 

intersections and now we wish to generate and route vehicle entities within. The following 

pseudocode illustrates these steps at a high level:   
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Figure 7: Route generation algorithm 

 

  Vehicle instances will still be created as usual (e.g., from a non-homogeneous Poisson 

process). Once the entity is in the model and reaches a decision point, the simulation engine will 

query the past tree corresponding to a decision point for the trajectory taken up to that point. This, 

then yields a reference to the corresponding Future Tree. At Depth 1 of the tree, the observed 

frequency counts of all sibling nodes are read and inserted into a list, traversalCountBoundaryList 

(Lines 2-5). A random number (Line 6) is then transformed to a decision from this empirical 

frequency distribution via its c.d.f. (Line 7) and assigns it as the next location of the vehicle entity 

(Line 8). However, the vehicle entity may stop at that point. To account for this, we first realize the 

next intersection (Lines 1-8) and then condition against it (Lines 9-10). Both the destination and 

the traversal counts are known, so whether the vehicle stops can be inferred from a Bernoulli 

realization with success probability equal to the destination count divided by the sum of the 

destination count and the traversal count of the realized vertex (Line 10).  

 

2.4.4 Space-Efficient Storage 

 

The naive storage mechanism (i.e., a tree for each decision point) has much redundancy, 

but offers fast access to the future likelihoods (in fact, linear time in the trajectory length taken 

thus far). One observed trajectory will cause insertions into every tree along its path.  This 

redundancy causes much wastage of storage. More precisely, suppose the length of the typical 
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trajectory is n and the total number of observed trajectories is T. This vector of size O(n) is 

pushed into n Past Trees, but in each Past Tree it is replicated n times because it is recorded for 

each partial trajectory up to the point represented by the tree. The total storage requirement in this 

representation is thus O(T × n3).  

  A sensible approach would be to cut off the tree at a certain depth – usually one should 

expect diminishing returns on accuracy when going down the Past Tree at significant depths. The 

results in Section 2.5 truncate the Past Trees at Depth 3. 

  A better approach, reducing the storage requirement from O(T × n3) to O(T × n), is to use 

an array indexed by directed intersection identifiers (this is with almost no loss of generality as a 

different identification scheme can be coupled with a hashing rule with no performance loss in the 

average case). Each cell in the array will hold a reference to the head of a linked list. Such a linked 

list will simply contain pointers to trajectories containing the corresponding directed intersection 

identifiers (see Figure 8). Every time a trajectory is observed, all linked lists that contain a directed 

intersection of that trajectory will be augmented by one more reference. Thus, the storage 

requirement and the total insertion costs are limited to O(T × n). The potential for a highly skewed 

length distribution (on the collection of trajectories on directed intersection identifiers) motivates 

the use of lists, rather than arrays. Once a prediction is requested (when a vehicle has entered a 

particular directed intersection), a significant number, k, of previously observed trajectories are 

queried: The corresponding header can be accessed in constant time (random access with a specific 

directed intersection id) which allows for the extraction of the k trajectories of interest. Building a 

corresponding tree (by parsing and inserting the k trajectories) takes linear time in the size of the 

trajectories if partial trajectories outside of the currently observed one are omitted, leading to a total 

cost of O(k × n). 
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Figure 8: Illustration of the space-efficient storage scheme. Trajectory 292 is stored (only once) at location 

0x46b3. Since it contains Intersection 4 and 5, the lists of these two intersections contain pointers to the 

trajectory's memory location. 

 

2.5 Experimental Evaluation 

To evaluate the accuracy of Past Trees, separate experiments were performed on 

randomly generated input as well as real-world data. Both experiments are run on cellular 

automata (CA) and generate two different error plots each (lower quantities are more desirable). 

In both cases, the directed graph representation introduced in Section 2.4.1 can be mapped in one-

to-one correspondence with the CA if the appropriate cell transition rules are added. 

  The Method of Past Trees is compared to the method described in 2.3.1 (Krumm J. , 2006), 

which does not require previously collected trajectories. Whether the data acquisition and storage 

costs for Past Trees are acceptable depends on the added value from the increased accuracy for a 

given application. These costs scale with the desired sample size and the size of the target area. 

2.5.1 Synthetic Experiment: Setup 

 

A computational experiment was performed to sample the degree of accuracy provided 

by Past Trees. Here, the input (i.e., the trajectories of the drivers) is generated synthetically. 
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  The model is based on a 20-cell-by-20-cell cellular automaton that approximates a two-

dimensional metric space; this discretized plane serves as a conceptual model of a real-world 

region with pervasive road network coverage. 200 trajectories are sampled as follows: The origin 

and destination are first sampled by the pseudo-random selection of two cells. In this selection, 

some cells are more likely to be realized than others because cell popularity is assigned - at the 

beginning of the simulation - from a probability distribution that mimics the population 

distribution of US cities. Each cell is assigned a probability by first sampling the lognormal 

distribution with µ=7.28 and σ=1.75 (which is a good fit for the population distribution of the 

United States - see (Eeckhout, 2004)), evaluating the density at those realizations, and then 

normalizing these values into a probability mass. Further, positive correlation is forced upon the 

popularities of neighboring cells (ρ=0.3): Less (more) popular cells are more likely to be near less 

(more) popular cells.  

  After the origin and destination are determined, the cells in between them are generated. 

At each intermediate cell, the vehicle will transition to a cell that is in accordance with the most 

efficient route with probability 0.625, and to one that is not with probability 1-0.625; we call this 

behavior the desire for efficiency. Each cell also has a statically assigned 10% chance of being an 

entry point that leads into a predetermined tunnel of neighboring cells, a preferred path. The 

length of a preferred path is geometrically distributed with a mean of five cells. A cell that leads 

into a preferred path is privileged to temporarily override the desire for efficiency until the 

vehicle exits the preferred path. Preferred paths (and their entry points) are randomly generated at 

the beginning of the simulation experiment and don't change during the execution. In this 

scenario, preferred paths have a mean length of five cells. The rationale of including preferred 

paths is to model unexplained trends within the population. Of the 200 simulated trajectories, 

80% are first used to populate the trees; the remaining 20% are used to predict destinations and 

compute errors. The depth of Past Trees is limited to three cells. 
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2.5.1.1 Synthetic Experiment: Results 
 

Figure 9 shows the mean accuracy as a function of the fraction of the trip completed 

(ensemble averages across the 0.2*200=40 trajectories). At each transition of any trajectory in the 

test set, the error model queries the Past and Future Trees of the current cell for all potential 

destinations of the vehicle. It then computes the rectilinear distance from the vehicle's current 

position to the center of the estimated probability mass (the predicted destination) as well as the 

rectilinear distance from the vehicle's current position to the actual destination. The error in 

Figure 9 is the absolute value of the difference of these two values.  

Across all the simulated trajectories, for each cell transition, an error is computed and 

inserted into the bin corresponding to the tenths precision bin of the trip completion fraction. 

Then, for every completed trip fraction bin, the average error is selected. 0.8*200 = 160 

trajectories were used to populate the trees. 

  As the vehicle entity approaches its destination, more data can be used because the partial 

trajectory up to the given cell is available: In the case of Krumm, it points towards efficient 

behavior, and in the case of Past Trees it points towards previously observed trajectories that are 

similar. This explains the steady improvement to a trip completion of 0.7. The increase of the plot 

at the end of the trip is a result of the vehicle approaching its destination relatively quickly and 

thus decreasing the first term mentioned above (distance to actual destination), while the second 

term (distance to predicted destination) is exposed to diminishing returns. 
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Figure 9: Error plots of the mean absolute difference between actual and predicted rectilinear distance to 

destination 

  Figure 10 simply shows the rectilinear distance between the predicted and actual 

destination. This quantity hovers around 10 cells for both prediction models (with a slight 

improvement towards the end of the trip). This is reasonably close in a 20-by-20 grid; no miracles 

are to be expected in a scenario where the trajectories of vehicles almost exhibit the patterns of 

2D random walks with cell transitions that are independent of one another.  

 
Figure 10: Error plots of the mean rectilinear distance between actual and predicted destination. 

 

 

0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Trip Completion

Mean absolute difference between actual and predicted 
rectilinear distance to destination [Cells]

Past Trees

Krumm

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Trip Completion

Mean rectilinear distance between actual and predicted 
destination [Cells]

Past Trees

Krumm



34 

2.5.2 Real-World Traces: Setup and Results 

 

  A deterministic simulation was performed using the detailed NGSIM Peachtree Street 

dataset, collected between 4p and 4:15p on November 8th, 2006 in Atlanta, GA (Community, 

2014). The road segment was modeled as a 30-by-3 cellular automaton and the first 80% of the 

461 observed trajectories were used to populate the trees (the remaining 20% were used to test the 

model). 

  The following plot illustrates the error computed in the same fashion as illustrated in 

Subsection 2.5.1.1 for Figure 9. It should be noted here that Krumm's model is not well-suited for 

an almost one-dimensional environment as the estimated destination probabilities will just be 

uniform across the entire road. Because the sample size is small, the first 80% of each trajectory 

use superimposed Past Trees for each cell. 

 

 
Figure 11: Error plots of the mean absolute difference between actual and predicted rectilinear distance to 

destination. 

  Figure 12 presents errors in the same way as Figure 10. For the Past Tree errors, the 

increased values towards the end of a trip are the result of time not being considered in the 

models: As the vehicle entity is in one of the final cells, the model assumes that the partial 
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trajectory up to the current point is indifferent from one that is near the center of the trajectory, 

which leads to an estimated cell much farther away. This may be avoided by not only 

incrementing destination counts, but also noting the progress along the trajectory during the data 

collection phase.  

 
Figure 12: Error plots of the mean rectilinear distance between actual and predicted destination. 

 

2.6 Conclusion and Future Work 

 

A structure to store trajectories along road segments was introduced. Past Trees can be 

used to either generate trajectories for simulation entities or to predict likely destination of a 

vehicle whose path is being observed. The experimental results show that the structure gives a 

solid prediction framework. Modeling vehicular movement is clearly of great economic value as 

driver behavior and traffic management can be made more efficient.  
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mentioned above that every decision point has one past tree associated with it, it can be very 

useful to have multiple trees to account for factors such as seasonality (the same tree can be used 

if it is 'colored') or other factors like congestion level.  Traffic exhibits seasonal characteristics; 

for example, drivers might opt for a particular pathway during rush hour in order to avoid 

congestion in other areas. 

  It seems reasonable that more recent collections are most heavily correlated with present 

and near-future trajectories. For example, a popular sports game may tilt historical behavior into a 

particular direction.  If paths are proactively collected in a particular area, exponential smoothing 

can adapt to recent trends. 
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3 DATA-DRIVEN VEHICLE TRAJECTORY PREDICTION2 

 

2This chapter includes content from (Pecher, Hunter, & Fujimoto, 2016) and (Hunter, et 

al., 2016). 

3.1 Introduction  

Route or trajectory prediction algorithms attempt to predict the path that a vehicle will 

follow assuming its current position is known, but the vehicle’s final destination is unknown. 

These algorithms assume other information is available such as the trajectory taken by the vehicle 

thus far and/or the routes taken by other vehicles in its vicinity or derived from historical 

information. As discussed later, several algorithms have been developed to predict future 

trajectories. 

Trajectory and destination prediction finds applications in many areas. For example, in 

military applications focusing on aerial attack of stationary and unknown ground target (Sinclair, 

2008) and to determine mobility patterns of cell phone users for desirable antenna handoffs for 

moving vehicles (Cheng, 2003). It has been suggested that advertising signs can be targeted for 

nearby locations based on trajectories of approaching travelers (Miklušcák, 2012). Similarly, 

mobile apps may suggest restaurants, hotels, or other services based on the driver's expected 

trajectory (Krumm J. , 2006). Law enforcement could make use of these models as decision 

support tools to track the movement of individuals by iteratively sensing the location of a target 

vehicle, estimating its future location, and redeploying mobile probing entities to locations where 

it is likely to reside in the future (see Section 2.2). The fuel efficiency of hybrid vehicles can be 

improved if the system knows the planned route of the driver in advance; automated generation of 

this information eliminates the need for the driver to explicitly specify this information 

(Johannesson, 2007) (Deguchi, 2004). This is especially true for routine trips, where the accuracy 
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of personalized trajectory prediction schemes can be particularly good (Laasonen, 2005) 

(Ashbrook, 2003) (Patterson, 2004) (Simmons, 2006). Further, the need for such capability is 

seen in that it has been observed that in practice, in only approximately 1% of all trips does the 

user specify his/her intended destination (Krumm J. , 2009). 

Here, we are concerned with the use of trajectory prediction algorithms in the context of 

dynamic data-driven applications systems (DDDAS) (Darema, 2004). Recall that DDDAS 

systems involve the use of a control loop that iteratively (1) senses the current state of the system, 

(2) predicts future system states, and (3) relocates or reconfigures monitoring devices or deploys 

changes in the operational system to optimize its behavior along one or more dimensions. One 

use of trajectory prediction is to predict routes to be used by faster-than-real-time microscopic 

transportation simulation. Such simulations may predict temporal and spatial properties of 

congestion likely to arise in the future in order to provide travelers with useful information for 

decision-making, e.g., to determine if an alternate route should be chosen. Today, more drivers 

are taking advantage of applications that use real-time data to inform them of traffic information 

such as existing congestion or obstructions (e.g., the mobile app Waze). Accurate simulation 

results may advise these users of suggested routes and departure times that reduce congestion 

(Miklušcák, 2012) or reduce travel time globally or individually; we note that these objectives 

may conflict, and do not necessarily result in identical policies (Roughgarden, 2002).  

Similarly, online simulations are often used by transportation engineers to manage the 

transportation network itself through means such as varying traffic signal timing, ramp metering, 

or providing travelers with information or recommendations to plan their travel activities. 

Transportation engineers routinely use microscopic transportation simulation in order to gain 

insights in traffic, e.g., to determine desirable traffic control policies or logistical considerations 

of construction projects under a variety of scenarios (Fujimoto R. H.-K., 2007). Desired output 
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statistics for these models may include the level of congestion and travel times on roads of 

interest.  

Among other factors, the accuracy of these simulation results depends on the validity of 

the simulation model data that they use. Specifically, these simulators depend on knowledge of 

what routes will likely be taken by vehicles in the transportation network. Data-driven 

transportation simulations require dynamically collected data both to capture the current state of 

the system as well as to predict future system states. An important question concerns what data 

and how much data needs to be collected to make reliable predictions. This research specifically 

examines the value of utilizing past vehicle trajectory information to provide information for 

routes likely to be taken by vehicles in the future. Trajectory predictions allow the simulators to 

use more sophisticated vehicle entity behavior than independent turn probabilities at each 

intersection.  

Sources of dynamic traffic data are numerous. The government uses toll collection 

transponders, embedded roadway loop detectors (Miklušcák, 2012), automatic license plate 

recognition, satellite imagery etc., and companies use information collected from drivers who 

carry smartphones (e.g., Google Maps) and other technologies.  Technologies such as Bluetooth 

and WiFi detectors offer the ability to obtain partial trajectory information of individual vehicles 

in real-time in an operational transportation network. 

Our hypothesis is that dynamic data significantly improves route prediction models. In 

the evaluation of the prediction models, our aim is to highlight the performance improvement that 

dynamic data-driven models yield over those that do not utilize such data.  The predictive power 

of dynamic data in urban computing is seen in other areas as well. For example, (Yuan J. Z., 

2011) proposes a cloud-based scheme to predict the travel time of a driver along candidate routes 

using dynamic data: traffic conditions, time of day, weather, driver behavior, etc. As a result, this 
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system allows GPS navigation systems to find the fastest route for a user, outperforming models 

that do not utilize this type of dynamic data. 

Here, we compare methods to predict a driver's future trajectory given the observation of 

the partial trajectory traversed by the vehicle thus far. For the vehicle whose travel is being 

predicted we do not assume that we have historical travel information, i.e., common destinations 

used by that driver in the past. Reliance on such data may be problematic due to privacy 

concerns. This assumption allows the models to be easily applied to different vehicles in a 

DDDAS application, but will offer lower accuracy than personalized models since the preferred 

routine destinations of a particular driver are not known. Work by other authors have been used to 

predict a vehicle’s future destination, irrespective of the future route taken to reach it. For 

example, Krumm's destination prediction model, described later, is based on efficient routes 

(Krumm J. , 2006).  A modified form of Krumm’s model is evaluated in this study.  

Here, we discuss different methods to predict the trajectory (or route) of a driver on an 

urban road network and compare their accuracy utilizing the T-Drive trajectory data set. This data 

set consists of GPS trajectories of over ten thousand taxicabs (15 million data points) in Beijing, 

China. The performance of the models is measured by how often the next zone (a 1.25 km x 1.25 

km square) visited by the vehicle falls within a predicted zone. Our results demonstrate that using 

route data collected for other drivers substantially improves the accuracy of forward trajectory 

prediction in the T-Drive data set.  

While our primary goal is to show the value of trajectory prediction to drive on-line data-

driven simulations, our contributions extend further. First, several proposed trajectory prediction 

algorithms are compared using a common dataset. Second, this chapter examines the benefit of 

utilizing dynamic data from other vehicle trajectories in trajectory prediction algorithms. Third, 

several extensions to previously published prediction algorithms are developed and evaluated.  
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The next section reviews the destination prediction literature. This is followed by a 

description of the models examined in this study. The performance of the models using the T-

Drive data set is presented, followed by a discussion of future work. 

3.2 Related Work 

Early work in destination prediction was developed by Krumm (Krumm J. , 2006). This 

work utilizes a Bayesian model that uses the immediate past trajectory taken by a vehicle to 

predict the vehicle’s intended destination. An underlying assumption used in this work is that 

drivers utilize efficient routes in order to reach their intended destination. 

An efficient Markov model for destination and trajectory prediction is presented in 

Chapter 2. When a prediction is requested, a data structure is traversed that holds the partial 

trajectory observed for the vehicle thus far. This data structure subsequently provides the 

empirical distribution of the forward trajectory.  

Trajectory prediction using artificial neural networks is described in (Miklušcák, 2012). 

The previous five locations visited by the target vehicle are used to estimate the future trajectory 

by training a feed-forward artificial neural network with two hidden layers consisting of 500 

neurons each. These three approaches – Krumm’s approach, Markov models, and neural 

networks are discussed in greater detail later. 

In 2008, a Carnage Mellon University group published the PROCAB model 

(Probabilistic Reasoning from Observed Context-Aware Behavior) (Ziebart, 2008). This model 

uses the current context (e.g., accidents or congestion) and the user's preferences (e.g., fuel 

efficiency or safety) in order to predict his/her actions, rather than just focus on previous actions 

for prediction. The model maps actions into a Markov Decision Process (MDP), where 

intersections are encoded as states and road segments are encoded as transitions. State transitions 

are associated with a cost, namely the sum-product of road segment features and cost weights 
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obtained from collected training data. The model assumes that drivers attempt to minimize the 

cost to reach their destination. For destination prediction, it has been reported that PROCAB 

outperformed Krumm's Predestination algorithm for the first half of the trip. The PROCAB 

implementation used in (Ziebart, 2008) takes into account specific road features such as the 

number of lanes and speed limit. A further challenge in the context of the work discussed here is 

we assume the destination is unknown; one of the inputs used by (Ziebart, 2008) for trajectory 

prediction is the actual destination of the target vehicle. 

In (Gui, 2009) the authors suggest using a personalization profile of smartphone users for 

localized searches. User activities and on-device probing entities are queried to build a context 

profile, including demographical features and previous user activities. The weights of this 

information along with an environmental profile (weather, temperature, etc.) are trained via an 

artificial neural network. These profiles are used to rank personalized queries (e.g., local 

businesses). One could envision utilizing the same model to predict destinations or routes, similar 

to PROCAB. 

In (Amini, 2012) the authors use Krumm’s destination prediction model based on 

efficient routes, but truncate the destination sample space to locations reachable within 30 

minutes from the trip’s starting location, citing a study (Hu, 2001) that concluded that most 

driving trips end before that amount of time. 

In (Simmons, 2006) a hidden Markov model (HMM) is used to estimate a particular 

driver’s destination and route, by using his/her previous trajectories along with driving time. 

Because personal identification is not specified in the data files of the T-Drive trajectory sample, 

we apply our Markov model (see Section 3.3.3) without discrimination towards any particular 

driver. That is, we train our model using the trajectories of many different drivers, rather than rely 

on individualized routes.   
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In (Persad-Maharaj, 2008), historical trajectories are converted into polygons by adding a 

10 meter radius around the observed path. This data is then stored in a database. As soon as a 

prediction is requested, a polyline is formed through the requesting driver’s observed GPS points 

and the database is checked for any intersecting polygon. If there are multiple results, further 

filters are applied to obtain the prediction. For example, match of the driver id would rank that 

particular polygon higher than one from another driver. 

Sub-Trajectory Synthesis (SubSyn) (Xue A. Z., 2013) addresses the data sparsity 

problem, as well as privacy concerns, by synthetically generating trajectories from existing 

routes. These existing routes are decomposed into two-pair nodes and a 1st order Markov Model 

is used to generate the new trajectories. 

Some of the approaches described above are not well suited for use of the T-Drive data 

set for evaluation. In some cases, necessary information such as source-destination information 

for trips are not known. Inference of this information from taxi trajectories is not straightforward. 

Further, the T-Drive sample data is not at a suitable temporal granularity for effective evaluation 

of some methods; for example, speed data cannot be easily derived. 

3.3 Prediction Models 

The three prediction models compared in this study are described next. These include 

Krumm’s model along with several extensions developed during the course of this study, a model 

based on artificial neural networks, and a Markov model. Some of these approaches use trajectory 

information collected from other vehicles. An approach to store this trajectory information, 

termed Past and Future Trees, is also briefly discussed. 
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3.3.1 Krumm's Destination Prediction Algorithm Based on Efficient Routes 

 

Krumm developed a destination prediction model based on the intuition that drivers 

reduce their minimum remaining travel time to their destination as the trip time increases 

(Krumm J. , 2006), that is, drivers tend to the shortest path to a destination rather than more 

circuitous routes. As already shown in Figure 3 previously, Figure 13  again illustrates this 

intuition. In (Krumm J. , 2006) Seattle was divided into cells measuring 1 km x 1 km.  For the 

study, it was observed that when drivers transitioned between cells they reduced the potential 

minimum travel time to their destination 62.5% of the time.  Krumm utilizes this driver tendency 

to seek efficient paths to estimate the probability that a given location (i.e. cell) is the driver’s 

destination given the current partial path (i.e. the partial route of the traveler to their current 

location).  That is, suppose a driver has now traversed a partial trajectory P and we wish to 

determine the estimated probability of the driver's destination being a cell ci. Each probability 

Pr(P|ci) is computed by a product of {p, (1 - p)}, where p = 0.625 and the number of factors is 

equal to the partial trajectory length (there is a surjective mapping from the cells of the partial 

trajectory to {p, (1 - p)}). A factor of p is selected when the partial trajectory cell brings the 

vehicle closer to the candidate destination ci and (1-p) otherwise. All of these candidate Pr(P|ci)'s 

are then multiplied with the prior probability Pr(ci), if the cell bias is known, and normalized, so 

that their sum equals 1 for a valid probability mass of the Pr(ci|P)’s.  

 

Figure 13: The red cells are assumed to be more likely because they are consistent (in efficiency) with the partial 

route taken so far (rectilinear distance). 

In algorithm format, the prediction algorithm operates as follows:  
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Figure 14: Krumm's efficient route prediction algorithm. 

 

In the above algorithmic description, Pr(P|ci) is abbreviated as p_c and the cell bias is 

assumed to be unknown. If the cell bias is known, the probability estimate on Line 8 can be 

scaled accordingly. 

In Section 3.4.1 we modify this algorithm to use it for trajectory prediction, or more 

precisely, for the next transition in the trajectory. 

3.3.2 Artificial Neural Networks 

 

Artificial neural networks (ANN’s) map input values to output values and are often used 

to approximate complex functions (e.g., recognizing handwritten digits). For trajectory 

prediction, the input layer may encode some number of previously visited locations and the 

output layer may represent one or more projected future locations. ANN’s consist of nodes called 

neurons (as they are inspired by the brain) and edges that connect them. In a feed-forward ANN 

(see Figure 15), information flows from the input layer to the output layer, via one or more 

hidden layers. The nodes in any layer are fully connected to the nodes of their preceding layer. 

Edges have weights associated with them that determine the strength of the signal sent by the 

preceding neuron. Typically, the product of the weight and the signal is then received by the 
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neuron to which that the edge points. The signal sent by a neuron is determined by its activation 

function. Sigmoid functions are commonly used in feed-forward ANN’s. One of them is the 

logistic function, (1+exp(-x))-1, where x is the total input signal to the receiving neuron. For most 

values of x, the sigmoid function evaluates to a real number either close to 0 or close to 1. A 

popular, supervised learning algorithm for training feed-forward ANN’s (i.e., determining the 

edge weights) is the backpropagation algorithm. Usually, the initial weights are randomized after 

which they are modified to minimize the error via gradient descent.  

Since ANN’s are often used in prediction to map relevant factors to an estimated output 

when training data is available, it seems reasonable to assume that we can utilize them for 

trajectory prediction as well. Just as in the other trajectory prediction models, the partial trajectory 

of the target vehicle can be used as the input and the output layer can encode a future location of 

the vehicle. The design of the ANN, including the encoding of the input and output neurons and 

the architecture of the hidden layers is not trivial. (Miklušcák, 2012) outlines three neuron 

encoding schemes and opts for the third one in the experiment: (i) A single neuron encodes the 

location, (ii) each possible location value is associated with a dedicated neuron, and (iii) a neuron 

encodes a bit in the binary representation.  The learning parameters must also be selected 

carefully, in order to avoid oscillations, high errors, and/or under-training. (Miklušcák, 2012) 

evaluates the trajectory prediction accuracy of a feed-forward artificial neural network (Figure 

15) with sigmoid activation functions on artificially generated data.  The input layer consists of 

the five previously visited locations in the trajectory where each location has multiple input 

neurons representing the integral location id in binary form. Two hidden layers of 500 neurons 

are used. Using a training set of 2000, the authors attain a success rate of almost 99% and 64% in 

their synthetically generated datasets, where the former quantity is tested on a dataset described 

as an easy data set with very little stochasticity while the latter quantity is tested on a dataset 

described to contain a considerable amount of random decisions. 
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Figure 15: The edges have weights associated with them that set the strength of the value being sent. The circles 

are neurons that typically send values close to 0 or close to 1. 

 

In order to reduce the training time to an amount comparable to the other tested models, 

we reduce the hidden layer count to just one and the hidden layer size to just seven neurons. With 

our fixed learning parameters, ANN’s with more hidden layers and/or larger hidden layer sizes 

performed worse in our profiling tests.  

3.3.3 Markov Models and Trajectory Storage 

 

Chapter 2 proposes a data structure that serves as the fast backbone of an arbitrary-order 

Markov model. This data structure can be used for a simple trajectory prediction algorithm if it is 

used to store historical trajectories. If queried order is sufficiently high and/or the data is 

sufficiently sparse, the future trajectory distribution is obtained from the maximal order for which 

data is available. A tolerance for minimum sample size can be set by the user. The emphasis on 

speed makes this implementation especially useful for embedded applications and/or simulation 

engines where realizations have to be drawn quickly. Historical route data is stored in Past and 

Future Trees and the data are queried on demand. The Past Tree of a location is queried with the 

partial trajectory traversed by the target vehicle up to that location. A Future Tree that contains 

the future trajectory distribution is then returned by the Past Tree. If the user wishes to get an 

estimate of the location of the target vehicle at some defined time in the future, the model invokes 
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a microscopic traffic simulation. If storage is more important than access time, a hashtable 

implementation may be used instead (see Figure 16).  

 

Figure 16: All trajectories that contain the cell 24 are being pointed to by the column 24. Empirical distributions 

of any Markov order can be obtained quickly by traversing this column. 

 

Suppose the target vehicle is at cell 24, a prediction for the next cell is requested, and the 

partial trajectory so far is supplied. The 24th column can be accessed in constant time and its 

elements can be traversed comparing the elements with the partial trajectory observed so far. An 

empirical distribution can now be constructed by collecting a sufficient number of partial-

trajectory matches along this column. 

The models discussed thus far – in their current implementation – statically predict the 

future route with some spatial discretization, but do not specify point estimates for the time 

needed to reach the points along that route and do not return the projected location at a specific 

future time. If, rather than the next cell, the projected location of the target vehicle at Δt time units 
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into the future is requested, one can construct a decision tree, T, that enumerates all possible paths 

in a breath-first fashion. Leaf nodes are tagged with the expected travel time to the intersections 

represented by those nodes until they exceed Δt. Once all leaf nodes exceed Δt, all locations 

expected to be reached at Δt time units into the future are tagged with the likelihoods stored in the 

Past Trees (or with those returned by the models of Section 3.3.1 and 3.3.2), and normalized to 

yield a valid probability mass. For example, if Past Trees are used and all the relevant leaf nodes 

of T have been enumerated and flagged, the Past Tree column of last observed location of the 

target vehicle is retrieved (Figure 16), a suitable number of matches of the partial trajectory 

observed thus far is queried from this column, and used to build an empirical distribution of 

future locations.  Each path from the root node of T to a flagged node can now be used to retrieve 

the estimated probability from the empirical distribution. All these estimated probabilities are 

then divided by their sum in order to scale them to a valid probability mass.  

3.3.4 Generating Routes from Probability Maps 

 

The prediction models described above generate probability maps indicating the 

likelihood the vehicle will reside at particular locations in the future. It is straightforward to use 

the probability maps to generate future routes. These models can also be used to simulate entity 

routing in microscopic traffic simulation. For example, if an ANN estimates the next-transition 

probabilities, one can input a random number into the inverse c.d.f. of the empirical distribution 

and generate a next location. This next location, along with the previously visited locations, can 

be used as an input to the ANN and this process can be repeated. In the same fashion, the 

probability map returned by Krumm’s prediction model based on efficient routes can be used to 

generate a cell. Lastly, Past Trees can be traversed quickly to construct an empirical distribution 

function of the next transition and random numbers can be used to obtain a sample of the next 

decision. In all these cases, a destination should be realized at some point of the simulated trip. 
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3.4 Experimental Evaluation 

The data set used for evaluating the accuracy of the models is the T-Drive sample dataset 

published by Microsoft Research (Yuan J. Z., 2011) (Yuan J. Z., 2010). It consists of 15 million 

GPS points collected from over 10,000 taxicabs from February 2 to February 8, 2008, in Beijing. 

The sampling interval between two consecutive GPS coordinates is variable with a mean of 177 

seconds (average distance: 623m), but can be as long as 600 seconds. It is important to note that 

the dataset consists of tour-based data and not origin-destination pairs. In other words, all the 

origin-destination pairs of sub-trajectories (taxi trips) are hidden in the tours of each taxicab file. 

The taximeter data of the T-Drive sample data set is not published (as of January, 2016). In our 

experimental evaluation, we discretize the road network into a two-dimensional grid. 

From the T-Drive Sample Dataset, we focus on an area that is approximately 100km × 

100km: longitude from 116.0 to 117.1 (inclusive) and latitude from 39.6 to 40.5 (inclusive), in 

decimal degrees. This area was selected by isolating grid cells that have over 100,000 data points 

at the resolution of 0.1 decimal degrees in both dimensions (approx. 10km × 10km). This region 

is overlaid with a 96-wide and 80-high cell grid, where each cell maps to a 1.25km × 1.25km 

area. The relatively coarse grid size was chosen because of the long median sampling interval in 

the dataset. Finer resolutions would require one to speculate on the path taken by the taxicab 

between successive reported locations. This is also the reason, in general, why the turn ratio at 

intersections cannot be determined with certainty in this data sample. To obtain consistent results, 

we use the same size for all cells; using variable cell sizes (e.g., determined by the variable 

sample intervals) could result in an arbitrary grid schema. Taxicab files are only considered if 

they fall within the above mentioned region. Taxicabs frequently visit certain, popular hubs to 

drop-off or pick-up passengers. In order to avoid utilizing these “artificial” trips we use a simple 

heuristic of ignoring the top 5% of the most popular cells, which are more likely to be hub 

locations, from the results. 
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We use the first 80% of filtered data points to train the models, and the last 20% of 

filtered data points to test the models.  All interior cells in the grid contain eight neighbors (see 

Figure 17). 

 

Figure 17: The next zone visited by the taxicab is uncertain, but is restricted to eight possible zones. 

 

We consider the partial trajectory of the taxicab in question in order to predict the next 

cell visited. To evaluate the accuracy of the models, we assume that we can probe i grid cells, 

ranging from one to eight, for the presence of the vehicle. For each model, let A(i) denote the 

measured cumulative probability of capturing the vehicle by greedily selecting the i most 

probable cells as estimated by the respective model. The objective is to achieve a high probability 

of detection for small i. In this section, if a model m2 is described to be x% better or improved 

than model m1 (for a specific number of observed grid cells i),  x is derived from the distance 

A(i)m2 - A(i)m1 - not from a ratio of the two terms. 

The test system uses an Intel i7 6700 CPU, 32GB of DDR4-2133 main memory, and a 

Samsung 840 Evo 1TB solid state disk. Neuroph v2.92 is used for the artificial neural networks in 

section Feed-Forward Artificial Neural Network.  

3.4.1 The Efficient Route Model and Extensions 
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We modify the efficient route algorithm from Section 3.3.1: 

 

Figure 18: Modified efficient route algorithm (changes in bold) 

 

We use a less strict condition, on Line 4, to determine whether the vehicle opted for 

efficient transitions, in order to achieve better accuracy of the prediction of the next transition in 

the T-Drive sample. In most applications, the sample space of the destination is orders of 

magnitude greater than the immediate trajectory, so a more discriminatory algorithm is likely to 

perform better for the prediction of the destination. We also tune the p parameter (Line 5 and 7), 

denoting the fraction of time a transition is efficient, with respect to the T-Drive sample training 

set. Lastly, rather than use just the static cell popularity or no adjustment at all, the candidate 

Pr(P|ci)'s are scaled by the 2nd order Markov estimates on Line 8. Markov(start, end) uses the 

subsequence of P, which starts with cell start (inclusive) and ends with cell end (inclusive), as 

arguments, and returns the corresponding Markov probability estimate. The indexing into P is 

assumed to be zero-based. We will refer to the condition on Line 4 with the term isCloser in the 

subsequent discussion. 

For the modified Krumm route efficiency model without any historical data for the prior, 

we noticed very minor changes in the prediction accuracy for low i, as the efficiency likelihood 

parameter p is varied from 0.55 to 0.95 (using 0.1 increments). Among these, the best results 
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were obtained with p=0.75. In Figure 19, the dark blue plot visualizes the performance, A(i), of 

this model. This plot, as well as all other plots in Section Experimental Evaluation, is derived 

from evaluating the test set - the last 20% of the data points. 

 

Figure 19: Cumulative likelihood for recapturing the target vehicle at the next cell transition using the path 

efficiency models (Krumm) with a p=0.75 parameter. 

 

In the Seattle dataset, used in the original study, a value of p equal to 0.65 offered the 

best results. However, due to the different road network (Seattle vs. Beijing), the different driving 

population (Microsoft employees vs. cab drivers), slightly different grid size (1.25 km vs. 1.25 

km), different objective function (distance to destination vs. next transition) or simply random 

noise (due to hidden factors) we found that setting  p equal to 0.75 performed slightly better in 

this context. We experimented with dynamically varying the strength of the p parameter for the 

observed partial trajectory, using higher p parameter values for more current cell transitions than 

in older transitions. This results in slightly worse performance than a constant p=0.75 for all 

transitions.  Thus, for all subsequent variations of the Krumm route efficiency model, we use 
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p=0.75. We also note that truncating the partial route traversed by the taxicab to two or three cells 

did not yield any benefits. In other words, using the entire partial trajectory of the taxicab yielded 

superior results than just considering a limited horizon. Lastly, when deciding if a cell transition 

is efficient, different distance functions can be used. When we opted for Euclidian distance, rather 

than rectilinear distance, we obtained slightly worse results. As a result of these two 

considerations, partial trajectories for the efficient route models will not be truncated and 

rectilinear distances will be used. 

One important algorithm modification that led to the previously mentioned results was 

the replacement of the efficiency random variable. In the original model, a transition is 

considered efficient if it brings the vehicle closer to the candidate cell relative to any other 

previously visited cell of the partial trajectory traversed thus far. Instead, we consider a transition 

efficient if it brings the vehicle closer to the candidate cell relative to the previously visited cell 

only. The original random variable results in slightly worse reacquisition likelihoods as the red-

colored plot in Figure 19 illustrates. To be clear, the term strict isCloser exclusively refers to the 

conditional expression in Line 4 of the first algorithm listed in Section 3.3.1. 

The original efficiency standard is stricter, as the comparison is relative to all previously 

visited cells. The sample space of potential destinations is much larger than just the next 

transition and if the efficiency standard is strict, a large area of potential destinations can be 

virtually eliminated (with very small assigned probabilities). Our objective is to predict the 

immediate trajectory, rather than the destination, a likely reason for the better performance of the 

lax conditional (the conditional on Line 4 of the algorithm listed at the beginning of this section). 

For all subsequent variations of the Krumm route efficiency model, we only consider a cell 

transition efficient if it brings the vehicle closer to the candidate cell compared to the previously 

visited cell only. 
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3.4.2 Markov Models 

 

To evaluate the Markov models, we use the Past Tree implementation from Chapter 2.We 

do not set a sample size limit; in other words, we use relevant observations from the entire 

training set to populate the Past Trees. In our discussion, the term order-i refers to using the 

previous i locations of the target vehicle to make the next prediction.  The results of Figure 20 are 

obtained from the pure order 1, 2, and 3 Markov models: 

 

 

Figure 20: Cumulative likelihood for recapturing the target vehicle at the next cell transition using 1st, 2nd, and 

3rd-order Markov models (Past Tree implementation). 

 

Due to over-fitting or data sparsity, the order-3 model performs worse than the order-2 

and order-1 model. The order-2 Markov model performs slightly better than the order-1 variant 

for i=1,2,3 because directional information can be inferred from the previous two destinations. 

However, there is a slight drop off in this advantage as i increases and the implementation of the 
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order-1 model is easier. Below i=6, every Markov model outperforms the models that do not have 

historical data (the blue and red plots in Figure 19) and the i=1 accuracy is over twice as high in 

the Markov model results. Even though the models without historical data directly infer the 

immediate future trajectory from the behavior (route to current location) of the target vehicle 

itself, the data of other vehicles that engaged in the same behavior offers better point estimates on 

average.  

Figure 21 shows the results of Markov models that attempt to use estimates from the next 

lower orders, after a candidate cell could not be found in the higher order model (due to lack of 

data). In other words, the estimate is extracted from the highest order model that has the candidate 

location available. If there is still a miss of the candidate cell in the order-1 model, the static cell 

popularity is used. There is little benefit of this cascading fallback mechanism at order-1, 

compared to the plain order-1 model, as the data available at order-1 is quite abundant (i.e., rare 

fallbacks to static cell popularities). However, the order-2 fallback estimates are on average 1% 

better from i=1 to i=3 and 4% better from i=5 to i=7, compared the plain order-2 model. The 

order-2 fallback model performs slightly better than the order-3 fallback model. 
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Figure 21: Cumulative likelihood for recapturing the target vehicle at the next cell transition using 1st, 2nd, and 

3rd-order Markov models with a cascading fallback mechanism towards lower orders. 

 

If we define the prior (i.e., the cell bias Pr(ci)) in the Krumm route efficiency model as 

the static cell popularity (how much has each cell been visited by a vehicle in the training 

dataset), rather than just a uniform constant (in the case where no vehicle density data is 

available), and then normalize these probabilities for only the eight possible cells, we obtain a 

significantly improved (relative to the basic route efficiency model) distribution function, as can 

be seen in the dark blue-colored plot of Figure 22. 
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Figure 22: Cumulative likelihood for recapturing the target vehicle at the next cell transition using the modified 

Krumm models and dynamic data. 

 

When we replace the prior (or the cell bias) in the Krumm route efficiency model with 

order-2 fallback probability estimates, we obtain reacquisition likelihoods that are improved 

further (the red-colored plot in Figure 22). 

These results illustrate the power of using dynamic data in this particular application. 

Compared to the original route efficiency model, the probability of correctly predicting the target 

vehicle’s location more than doubles at i=1. This advantage is crucial if there are several trials 

(reacquisition attempts), translating into savings in tracking resources and/or the more likely 

successful tracking of the target vehicle. 
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3.4.3 Feed-Forward Artificial Neural Network 

 

For the feed-forward artificial neural network results, we use a single hidden layer with 

seven neurons in order to reach a training time comparable to the other models. Our profiling 

experiments showed that adding significantly more or less than seven neurons to the hidden layer 

and adding more than one hidden layer worsened the results, fixing the learning parameters 

described shortly. Omitting the hidden layer completely worsened the results. The activation 

functions are hyperbolic tangent and the edge weights are learned with the backpropagation 

algorithm. Because we opt for binary encodings of the input (of the five previously visited nodes, 

as in the setup in (Miklušcák, 2012)) and our cells are identified with 12 bits, we have 60 (=5×12) 

input neurons in total. The first six binary values of a binary cell identifier encode the row index, 

and the last six values encode the column index. The output consists of eight neurons, denoting 

the prediction of the next cell visited (direction relative to the current cell of the vehicle; see 

Figure 17), a higher output value being interpreted as a higher likelihood of the next cell visited 

matching with the cell associated with the given output neuron. Given a step size of 0.2 (based on 

our results, just slightly better than 0.8), a maximum error of 0.1 (based on our results, as good as 

0.01), at most five learning cycles (better than lower values and just as good as most higher 

values), and including the 5% most popular cells, we obtain the results depicted in Figure 23. The 

value(s) in parentheses, after the abbreviation ANN, refer to the number of neurons in the hidden 

layer(s). 
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Figure 23: Cumulative likelihood for recapturing the target vehicle at the next cell transition using a feed-

forward artificial neural network with one hidden layer, consisting of seven nodes. 

 

The learning parameters are fixed for each ANN model. The performance of ANN(7) and 

ANN(15,15,15,15,15) is virtually the same. The ANN(7) results are superior to random guessing 

and the models that are only aware of the partial trajectory traversed by the target vehicle. 

Training and testing ANN(7) took 25.7 sec and 2.3 seconds of CPU time, respectively. One 

possible explanation of the change at i=4 is that most of the variation in the output is captured by 

the most significant bit of the most recent node’s row and column index.  

3.5 Comparison of the Models 

Figure 24 shows the best performing members of the discussed model families. The light 

blue plot shows the performance of the ANN with one hidden layer of seven neurons 
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Figure 24: Cumulative likelihood for recapturing the target vehicle at the next cell transition using the best-

performing submodels. 

 

The order-2 Markov model with the fallback mechanism outperforms all other models for 

i<7. The preference for efficiency appears to already be implicit in the data. We have also 

evaluated a tournament predictor (not shown) that uses the estimates from either the hybrid model 

(efficiency scaled by order-2 fallback estimates) or the order-2 fallback model, depending on how 
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well each model has performed in the current context (the trip progress and specific last two cells 

visited). For i<5, the tournament predictor performs worse than just the order-2 fallback model. 

While the pure efficiency prediction does not take into account specific features of the Beijing 

road network or other dynamic factors (dark blue), it is – in its modified form (yellow) - able to 

leverage the information that is implicit in the historical order-2 Markov estimates. The modified 

Krumm model, using the order-2 Markov fallback model in the cell bias term, performs slightly 

worse than just the pure order-2 Markov model at i=1, perhaps due to the power law nature of 

popular locations and thus the strong preference of drivers to transition to certain cells. With 

higher i, however, the skewness of the transition distribution reduces and drivers are likely to still 

be in transit, when efficiency is still very much relevant. Further investigation is needed to 

determine appropriate hyper parameters, architectures, and training heuristics to train deep neural 

networks for trajectory prediction. Our simple ANN architecture is able to outperform the Order-

2 Markov model (without fallback) only after i=3, but is dominated by the efficiency-Markov 

hybrid model across all i.  

As a final section, an array of granular-displacement real-time prediction methods are 

compared against each other. Here, the assumption is that one is given the route of the driver, but 

wishes to construct the continuous displacement of the vehicle over time. The displacement 

function can then be used to compute a variety of other observables (velocity, acceleration, jerk, 

and - with other information - momentum, energy, etc.). 

3.6 Displacement Inference Approach 

The Displacement Inference approach seeks to utilize historic and near-real time data to 

construct a predicted trajectory of the client. In the current implementation, the Displacement 

Inference approach implementation is on a segment-by-segment basis, where a segment consists 

of the section of roadway between two adjacent intersections and the downstream intersection. 

The overall vehicle trajectory is then the accumulation of the predicted vehicle trajectories over 
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each traversed segment. In this current effort only arterial corridors are considered, although other 

segment definitions could be considered, such as between freeway ramp junctions.  In the least-

informed approach, trajectory prediction uses simple averaging or sampling of the segment 

historic or near-real time data. However, alternatives are explored where a given segment 

trajectory prediction may be conditioned on other predicted or near-real time behavior such as 

stopping (e.g., was the vehicle predicted to stop at an upstream intersection?), path similarity 

(e.g., sample only vehicles with similar upstream or downstream routes), or other trip variables. 

Implementation. In the implementation of the Displacement Inference models, a routing 

table defines what road segments a given vehicle will traverse for a given route, in time order. An 

example of a routing table is R = [4, 3, 2], where the numbers encode roadway segments. The 

routes are determined based on the driver input origin-destination pair. 

In several of the prediction models, a trail (also, called history, window, or sub-sequence 

in other literature) of realized random variables is used in the prediction of the vehicle trajectory 

for a segment. For example, if a vehicle is predicted to stop at a segment intersection the 

likelihood of stopping at the downstream segment intersection will be conditioned on the 

realization of a stop at the upstream intersection. In some prediction models, the trail is 

multidimensional and contains multiple random variables (stops and time at crawl speed, for 

example). The key type in each model defines the random variable(s) used for the respective 

model. 

The variable segment_trail (-k) expresses a past trail of segment identifiers of length k, up 

to, but not including the current segment. For example, an instance of segment_trail (-2) for 

Segment 3 may be [1,2,3]. In other words, the vehicle has traversed Segments 1 and 2 and now 

needs information about its potential behavior on Segment 3, conditioned on it previous path. As 

another example an instance of segment_trail (+2) for Segment 3 may be [3,4,5]. In other words, 
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the vehicle will traverse Segments 4 and 5 in the future, and now some information about its 

potential behavior on Segment 3 is desired, conditioned on its future path. 

Different models may use different trail lengths, referred to here as a lag; this is 

sometimes referred to as depth and order. For instance, we may condition the likelihood of 

stopping on a given segment by the predicted stopping on the previous k segments. In the 

subsequent discussions, M(k) will refer to a Markovian predictor that has a lag of k. Although 

most of the investigated random processes are unlikely to be memoryless, in this effort models 

are referred to as being Markovian by collapsing the current trail into the current state, even if the 

Markov property is still violated for lower lag values. Hash tables are used for some of the 

models, which are keyed by the exact match of the trail (of some random variable(s) over a 

window of size lag). Currently the returned value is a mean value obtained from observations in 

the training set that share the same trail.  

The current prediction models make use of a kinematics tuple in the format <mean 

running time, mean running speed, mean crawl time, mean crawl speed> (abbreviated in variable 

format as <tr, vr, tc, vc>), defined below: 

• Mean crawl time refers to the average time the vehicle spends on a segment at a speed of less than 

5 mph, including time stopped. 

• Mean crawl speed refers to the average speed of the vehicle on the segment while its speed is less 

than 5 mph. 

• Mean running time and mean running speed are defined in terms of the velocity complement (over 

5 mph) of the preceding definitions, respectively.  

It is important to distinguish these categories to generate accurate predictions of 

emissions. A vehicle trajectory is constructed by accumulating the predicted speeds vi for time 

∆ti, for all i over trip duration T. Where vi is the speed over ∆ti at time step ti of the total trip time 

T. Thus, the sum of ∆ti over all i is T. For example, the predicted segment vehicle trajectory 
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represented by kinematic tuple <22, 35, 12, 3> would be the vehicle traveling at 35 mph for 22 

seconds followed by 3 mph for 12 seconds.  The next traversed segment’s kinematic tuple 

represents the next portion of the vehicle trip.   

Global Segment Estimation. This method seeks to predict vehicle trajectories using the 

global (historic) average travel times and speeds of prior vehicles that traverse a segment during a 

similar time period (e.g., peak travel period data). During the training phase, the kinematics tuple 

is updated for each observed segment. There is no further conditioning; the key consists solely of 

the segment identification number (id). During the training phase, the data structure being 

populated is segment_to_kinematics_tuple, which is keyed by segment id and has values <tr, vr, 

tc, vc>. During the testing phase, a vehicle’s segment routing table is supplied to the prediction 

model in its sequential ordering. To produce a trajectory for each segment the segments 

kinematics tuple is retrieved, i.e., the mean running speed and the mean running time, followed 

by the mean crawl speed and the mean crawl time. The trip trajectory is then constructed through 

the accumulation of the individual segment trajectories. 

Local(n) Segment Estimation. This method is similar to the Global Segment Estimation, 

although it reduces data needs by using only the data from the n-most-recent vehicles to traverse 

the segment, rather than all historical data. During the training phase, the predicted kinematics 

tuple is estimated from the preceding n vehicles that traversed each particular segment. The 

segment_to_kinematics_tuple is again keyed by segment id and also has floating point values <tr, 

vr, tc, vc>. During the testing phase, the vehicle trip trajectory is then constructed in the same 

manner as in the Global Segment Estimation, however, using the Local(n) Segment Estimation 

kinematics tuples.   

Segment M(-k) Estimation. This method seeks to improve the prediction for a client 

vehicle by sampling only those vehicles that travel the same k prior segments. During the training 

phase, the kinematics tuple <tr, vr, tc, vc> over the considered segment is estimated for each 
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segment trail of lag k. An example (for k=2) is <[1, 2, 3]> which means that the vehicle has 

traversed Segment 1 and 2; the relevant segment for the kinematics information extraction and 

tuple update is Segment 3, as this is the last element (i.e., the segment of interest) in the segment 

trail. The data structure is segment_trail_to_kinematics_tuple, which is keyed by segment_trail(k) 

(a vector) and has values <tr, vr, tc, vc> (i.e., the kinematics tuple). During the testing phase, the 

segment routing table of each tested vehicle is supplied to the prediction model. The vehicle trip 

trajectory is then constructed in the same manner as in the Global Segment Estimation, however, 

using the Segment M(-k) Estimation kinematics tuples. 

Segment M(+k) Estimation Ignoring Stops.  This is identical to the previous model, with 

the exception that the conditioning for each segment occurs over the future routing table. For 

example (if k=2), [3, 4, 5] supplied as a key from a test vehicle means that we wish to obtain the 

kinematics tuple for Segment 3 given that the vehicle will traverse Segments 4 and 5 immediately 

thereafter. 

Segment M(-k) Estimation Including Stops. Here stop information, is included in the 

conditioning, attempting to further improve prediction by not only conditioning on similar paths 

but also on similar stop histories on those paths. During the training phase, the kinematics tuple 

<tr, vr, tc, vc> over the considered segment is estimated for each stopped-segment trail of lag k. An 

example (for k=2) is <[1, 2, 3], [true, false]>, which means that the vehicle has traversed Segment 

1 and 2, and has stopped in Segment 1 (the first element of the stop list is true), but not Segment 2 

(the second element is false); the relevant segment for the kinematics information extraction and 

tuple update is Segment 3, as this is the last element (i.e., the segment of interest) in the segment 

trail. The data structure is segment_stop_trail_to_kinematics_tuple, which is keyed by 

<segment_trail(k), stopped_trail(k)> (each of these is a vector) and has values <tr, vr, tc, vc>. 

During the testing phase, the segment routing table along with the stop history of each tested 

vehicle is supplied to the prediction model. The dimensionality of the input is larger as the 
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conditioning occurs over not only the visited segments, but also the stop history of the visited 

segments. Upon querying, only the point estimates generated from the training set that share the 

exact segment trail and stop history of the visited segments are considered.   During the testing 

phase, the vehicle trip trajectory is then constructed in the same manner as in the Global Segment 

Estimation. 

Evaluation. For the evaluation of these models, we used the Federal Highway 

Administrations Next Generation Simulation (NGSIM) data. This data contains high-resolution 

vehicle trajectory data collected for enhancing existing traffic flow models and developing new 

microscopic models (NGSIM Community Home., n.d.). The current efforts utilize NGSIM data 

collected on the Peachtree Street in Atlanta, Georgia, between 10th Street and 14th Street. The 

section is approximately 2,100 feet in length, with five intersections and two to three arterial 

through lanes in each direction. Figure 25 depicts the section. The speed limit on this corridor is 

35 mph with multiple midblock driveways. The data were collected from 4:00 p.m. to 4:15 p.m. 

on November 8, 2006, at a resolution of 10 frames per second. These data provide complete 

coverage of all vehicle trajectories on this section of roadway, during the specified time, resulting 

in one of the most robust data sets available. In the current evaluation of the models, only NGSIM 

vehicle trip trajectories that cover the entirety of all segments traversed are considered.  This 

avoids the complication of incomplete trajectories in the tables. Most of these trajectories have [1, 

2, 3, 4, 5]-realized segment routing tables (i.e., the entire corridor is visited). Future efforts will 

expand to include vehicles that with partial segment data.  
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Figure 25: Peachtree Street from 10th Street to 14th Street (Map data: Google, 2018) 

 

The NGSIM data was used to “train” the model (to establish conditional performance 

distributions), allowing each model to run and predict vehicle trajectories. While robust, the 

NGSIM is limited in size so this effort does not reserve a subset of the data for comparison to the 

predictions. Current efforts are limited to a comparison of the quality of the prediction with the 

training data. However, ongoing efforts are using simulated data sets and probe vehicle data to 

further explore the robustness of the predicted trajectories.  

Data Preprocessing. The NGSIM data were first loaded into client memory by using a 

table data structure. To provide the segment prediction models with the required point estimates, 

dictionaries are first populated to map segment identifiers to mean velocities and mean travel 

times. The latter is calculated by counting the number of rows (in the table) along each specific 

segment id, for each vehicle id (each row corresponds to a tenth-of-a-second). Further, the 

minimum and maximum y-coordinates for each segment are extracted from the dataset. 
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Vehicle Trajectory Generation. Before control is given to the main training and testing 

loops, the predicted and actual trajectory containers, as well as the Markov tables are initialized. 

In the first main loop structure, the first and last row for each considered vehicle in the NGSIM 

data are first obtained. The direction of travel and all visited intersections along a trajectory are 

saved for each vehicle. The relevant Markov tables are populated and the actual trajectory is 

stored in a container. As mentioned previously, the kinematics tuple is the central piece of 

information used for the models. It contains point estimates for the stop duration, the stop 

velocity, the running duration, and the running velocity. The trajectories are built segment-by-

segment. The following subroutine shows how this is accomplished for a given segment. The 

inputs are kinematics, the kinematics tuple, and trajectory, a reference to the working 

trajectory being built. Figure 26 shows how the trajectories are generated for a specific segment 

using the variable names from the kinematics tuple. 

  

Figure 26: Flow graph of trajectory generation procedure for a single segment 
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First, the trajectory is augmented, for each tenth-of-a-second (0.1 second) timestep, with 

the displacement values inferred from the run speed point estimate of the kinematics tuple (vr) 

over the expected run duration (tr). Second, the vehicle’s trajectory is extended with the crawl 

movement over the expected crawl duration. The model assumes that vehicles first travel in an 

unobstructed fashion, and then slow down in response to intersection queues. For each tenth-of-a-

second within each interval, the procedure takes the last accumulated displacement that was 

appended and adds the next value to it. In this case, the value is based upon the historical travel 

speeds (vr and vc) across the segment. Both crawling and running could occur on the same 

segment. Further, the stopping speed (i.e., speed less than 5 mph) is inferred from historical 

information across that segment. 

Figure 27 shows the observed NGSIM trajectory of NGSIM Vehicle 17 in red, along with 

the predicted trajectories; the line colors for the respective prediction models may be decoded by 

the included legend. 

  

Figure 27: Actual and Predicted Trajectories in the Space-Time Diagram 
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The accumulated displacement of the vehicle is plotted against the elapsed travel time. 

The given vehicle traversed all five segments of the data set. The predicted trajectories appear to 

capture the overall behavior of Vehicle 17 from 40 seconds to 120 seconds. The underpredicted 

crawl duration, during the first 20 seconds, in Segment 1 results in overestimation of the 

displacement throughout the trajectory (for all the models). The deceleration curves of the actual 

trajectory are relatively smooth compared to the predicted trajectories. Future research is aimed at 

resolving both these issues: the accurate modeling of intersection stop times, as well as the 

smoothing of the deceleration curves. 

3.7 Conclusion and Future Work 

This chapter examined different route prediction models on the real-world T-Drive 

trajectory data sample collected in Beijing, China. All of the models tested can be executed 

reasonably quickly, even on mobile devices and/or simulation engines. For models making use of 

large data-sets, queries may be performed in the cloud. Some of the models are provided with the 

current trajectory of the driver, up to just before the tested zone, while others are provided with a 

relatively large training set of previously observed trajectories.  In all cases where the model is 

permitted to use historical route data, rather than just the observed partial route, we observe 

substantial improvement in the forward-trajectory prediction accuracy on the T-Drive trajectory 

data sample - especially the order-2 Markov models and the Krumm-Markov hybrid model.  

We would like to emphasize the value of exploiting dynamic data, in accordance with the 

DDDAS paradigm, for the vehicle tracking problem (see Section 2.2). It becomes especially 

important to improve the single trial reacquisition probability, when the scheme is repeated for a 

tracked vehicle. In any case, the economies of scale of the data acquisition costs should be 

compared to the tracking equipment acquisition and maintenance costs combined with the utility 

of recapturing the target vehicles. The value of successful trajectory prediction is observed in 

many commercial and non-commercial applications and is likely to grow as the penetration of 
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smartphones and augmented reality devices increases. The models may also be used to generate 

accurate trajectories for entities in microscopic traffic simulation. 

Areas of future work include examining more factors and blended models on potentially 

different conceptual models; for example, roads being modeled rather than zones by randomly 

selecting among possible subsections in trajectories whose sampling interval may be relatively 

long. Another area of future work is to investigate the impact in the accuracy of simulation output 

statistics, when these prediction models are used instead of the traditional inputs. Rather than just 

predict the forward trajectory statically, one can envision predicting the forward trajectory by 

incorporating time.  
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4 EXECUTION OF REPLICATED TRANSPORTATION 

SIMULATIONS WITH UNCERTAIN VEHICLE 

TRAJECTORIES3 

 

3This chapter includes content from (Philip Pecher, 2015). 

4.1 Introduction 

In some Monte-Carlo simulation applications, the output statistics are constrained to 

observations collected on a single entity that moves in a network. This type of simulation is 

usually executed several times in order to capture uncertainties of the underlying system. Across 

these replications, there are often substantial similarities in state and behavior. The method 

described here tries to leverage these similarities in order to reduce the computation time, while 

still maintaining the same results as the traditional approach of “brute force” replications. To 

illustrate this concept, we focus on microscopic traffic simulation and motivate the need for 

computational acceleration in the context of Dynamic Data-Driven Application Systems 

(DDDAS). 

There are many applications that utilize microscopic traffic simulation models driven by 

online data to analyze and optimize operational transportation systems (e.g., see (Suh, Hunter, & 

Fujimoto, 2014)).  

As an example, we again posit a motivating DDDAS application concerned with tracking 

the location of a vehicle where continuous surveillance is either not possible or not desirable. 

Recall such a DDDAS deployment may repeatedly execute a cycle that includes (1) detecting the 

current location of the vehicle, (2) predicting the likelihood of possible locations some time into 

the future, and (3) focusing surveillance efforts on the most likely future locations, e.g., by re-
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positioning probing entities or concentrating data analysis efforts in certain areas (Fujimoto R. A., 

2014). Realizing this DDDAS application may require the completion of many replicated 

simulation runs. For instance, the second step involves executing a set of replicated simulation 

runs where each run models the target vehicle following a different potential route to reach some 

(potentially unknown) destination. In addition, to further optimize sensor repositioning other 

unknowns may need to be captured such as changing traffic conditions and travel time variability 

within a traffic condition. In this chapter we propose to exploit the similarities among these runs 

to optimize execution time or minimize needed computational resources.   

For example, in runs that only differ according to the route taken by the target vehicle the 

trajectory of vehicles not impacted by the target vehicle will remain the same across the different 

runs. Further, the output statistics of interest may not require portions of the simulation to be 

completed at all as simulation computations concerning vehicles far away from the target as the 

target approaches its destination will not affect statistics related to the target vehicle. The focus of 

this research is to develop and evaluate techniques to reduce the amount of computation required 

given these similarities, thereby reducing the time required to gain future estimates and/or reduce 

the computational resources that are required for the DDDAS application. 

Here we present an algorithm to accelerate the generation of results from N similar, 

replicated simulation runs without loss of accuracy. In other words, the results that are produced 

should be identical to those produced by a brute-force approach of completing N independent 

simulation runs. The problem is stated as follows. Let ET denote the target vehicle, i.e., the 

vehicle of interest. Let us assume its position is known at time t0 and that a prediction model has 

determined a set of possible future paths and their likelihoods. The simulation now aims to 

determine the time at which ET reaches certain user-specified points along each of these paths.  

After extracting real-time information such as current traffic conditions throughout the region, the 

traditional approach would perform N replications each simulating ET using a different route. Our 
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goal is to minimize the amount of computation that must be performed while still computing the 

same results as the traditional replicated approach. An extension of this work is to consider 

multiple replications using a single route, e.g., to consider the impact of stochastic or other 

variations, however, we will not explore this direction here. 

4.2 Related Work 

An application such as this requires one to predict a set of likely destinations for the 

target vehicle. There have been numerous efforts that have developed methods to predict this 

destination set. For example, in Chapter 2 the routes the vehicle might take and aspects such as 

traffic congestion that will impact its travel time are considered. A prediction model that assigns 

destinations a higher likelihood if they are consistent with the path taken thus far can be found in 

(Krumm J. , 2006). Neural networks have also been investigated for use in destination prediction 

(Mikluščák, Gregor, & Janota, 2012). If limited data are available, the SubSyn algorithm from 

(Xue A. Z., 2013) can be used to synthesize new trajectories from previously collected ones. A 

summary of relevant models can be found in (Pournajaf, Xiong, & Sunderam, 2014). Given these 

and other efforts the purpose of this chapter is not to modify a previous prediction method. 

Rather, the aim is to illustrate how one can quickly execute a traffic simulation that projects the 

most probable positions of the vehicle at some point in time into the future. 

Sharing computation among replicated simulation runs in the context of cloning running 

simulations is described in (Hybinette & Fujimoto, 2001), which served as motivation and the 

starting point for this work. The approach described here differs in three ways. First, the approach 

described here focuses on transportation simulations though many of the ideas can be generalized 

to other applications.  Second, we introduce speculative execution as a means to improve 

performance. This involves considering the output statistics produced by the simulation in order 

to determine those simulation computations that must be completed.  Third, like the approach 

described in (Hybinette & Fujimoto, 2001) portions of the simulation are replicated as needed 
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during the computation as the different replications diverge using a technique called incremental 

cloning. Here, incremental cloning is applied to selected state variables as needed rather than an 

entire simulation process, yielding a more efficient implementation. 

Another related approach is called updateable simulations (Ferenci, Fujimoto, Ammar, 

Perumalla, & Riley, 2002). This is a technique that first executes a baseline simulation run, 

creates a log of the entire execution, and then computes the results for other replications by 

determining the computations that are different and updating the log, thereby reusing results from 

the baseline run. The updateable simulation approach analyzes the events of the baseline 

simulation for potential speedups in the management of the Future Event List (FEL) for 

subsequent runs. The approach described here does not require completion of a baseline run and 

the creation of an event history log, nor the management of an FEL. Further, for each different 

scenario, the updatable simulation algorithm must explicitly execute another run (albeit with 

reduced computation), which is avoided with the algorithm presented here. Lastly, the reuse 

discussed here does not stem from unchanged events, but rather from the invariance in certain 

state variables across the different scenarios.  

The approach described here uses the concept of minimum propagation delays, i.e., the 

minimum amount of simulation time that must elapse before one object in the simulation can 

affect another. This is a familiar one in the parallel discrete event simulation literature. Stemming 

from its origins captured in a term called lookahead (Chandy & Misra, 1979), this concept is 

generalized as the distance between objects and used to synchronize parallel simulations, e.g., see 

the work described in (Ayani, 1988), among others. Here, distance between objects is exploited to 

help determine those computations that may affect the statistics produced by the simulation in 

order to improve the efficiency of the proposed algorithm, especially the tagging mechanism 

described later. For example, if statistics are needed for the target vehicle ET at simulation time T, 
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one can use the distance between objects concept to determine those vehicles that might affect the 

statistics concerning ET at time T.  

4.3 Simulation Algorithm 

For this study we use the (Nagel & Schreckenberg, 1992) model for traffic based on 

cellular automata. Although the concepts presented here generalize to other temporal and spatial 

resolutions, it is straightforward to illustrate the concepts used in the simulation algorithm with 

the Nagel-Schreckenberg model. In this model, a road is mapped to an array of neighboring cells. 

Each cell either contains a vehicle or is empty. A vehicle, at any given time, includes a speed 

attribute that is represented as an integer. A global maximum speed is also defined. At each time 

step, the following actions are applied to every cell-occupying vehicle: 

1. The speed of the vehicle is incremented if the vehicle is not at the maximum speed. 

2. The current vehicle speed is compared to the number of empty cells in front of the vehicle. 

If the number of empty cells is smaller, the speed is reduced to the empty cell count (in 

order to avoid a potential collision).  

3. If the vehicle's speed is positive, it is decremented with probability p (this is a predefined 

parameter). 

4. The vehicle advances forward by the number of cells equal to the corresponding speed. 

Since 1992, multi-lane models have been proposed where it is possible for vehicles to 

overtake each other. This aspect is not modeled here, however, the algorithm proposed below 

easily generalizes to multi-lane models. 

The approach used here is summarized as follows. The source of variation among the 

replications stems from different routes taken by the target vehicle ET. To simplify the discussion, 

we assume the statistics of interest are concerned with properties of ET, e.g., its temporal-spatial 

trajectory through the road network over time. We superimpose N computational sequences, each 
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modeling one trajectory of ET onto a single run where ET is absent. Each such trajectory is 

produced by what is referred to as a virtual instance of ET, i.e., a virtual vehicle (VV). The other 

non-target vehicles in the simulation are called model vehicles (MV's). Whereas the traditional 

approach simulates one instance of ET and all of the MVs for each of the N replications, here the 

single superimposed replication simulates N VVs, and initially one set of MVs. Each VV is 

therefore logically associated with one replication in the traditional, brute force approach. 

If an MV interacts with a VV and as a result behaves differently compared to the case 

where ET is absent, the simulated trajectory of MV is erroneous; for example, MV may need to 

reduce its speed to account for the VV. In this case the MV is referred to as a hazardous MV. A 

hazardous MV is at risk of causing errors in the output statistics, however, a hazardous MV may 

not actually affect these statistics. For example, if the correct behavior is the MV should slow 

down, its corrected behavior may not have any impact on the trajectory of VV, which is the focus 

of the simulation. Additional MVs that interact with a hazardous MV may also become 

hazardous. In order to determine if the output statistics have been compromised, a tagging 

mechanism is used to flag “hazardous” MV's and their actions. Once a hazard is confirmed to 

have impacted the output statistics, a new execution path is created (a physical "clone," using the 

terminology from (Hybinette & Fujimoto, 2001) that explicitly computes the events for the 

specific VV that originally caused its first tag to appear. During certain timesteps, the simulation 

may clear tags that are guaranteed not to cause any errors in the output statistics. It should also be 

noted that in most cases, one superimposed replication may not capture sufficient variation in the 

environment. In order to capture not only variation among the attributes of ET, but also the 

simulation environment, the modeler may use a batching scheme for a set of superimposed 

replications. Section 4.4 shows how many VV's should be realized within a single superimposed 

replication for a particular case study. 
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4.3.1 Superimposed Execution Before Hazards Arise 

 

In the following illustration, we adapt the original Nagel-Schreckenberg model for our 

purposes. We assume that the parameter p is only global for MV's. Each ET instance realizes its 

own pi parameter from a predefined density before it spawns. Further, each cell may contain any 

number of vehicles in the proposed approach, but there may at most be one MV contained within 

one cell (the reason for this will be explained shortly). Each vehicle samples a routing sequence 

from a probability table before it spawns and owns this sequence throughout its lifetime. All 

vehicles (MV's and VV's) will execute all four steps outlined in the previous section during each 

time step. In the examples below, we assume that the output statistics of interest are limited to 

measurements of the target entity ET, namely the time taken to reach the final point of the routing 

sequence. 

The left part of Figure 28 illustrates the traditional replicated approach executing the 

model. Each array of cells is a subsection of the road in a given replication at timestep 44. The 

speed reduction probability attribute pi of each ET instance is depicted; the routing sequence 

attribute, which governs the vehicle's behavior at intersections, is not displayed. One instance of 

the target vehicle, ET (the cells with light orange shading), is shown for each replication. The 

model vehicle (light grey shading) in the rightmost cell has not been influenced by ET in all three 

replications. It is important to note that the behavior of the environment does not change across 

replications, unless the environment is influenced by ET. Note that the model vehicle shown in the 

leftmost cell in replications 2 and 3 has reduced its speed in Replication 1, prior to Timestep 44, 

due to the presence of a rather slow instance of ET. Thus, the leftmost cell in replication 1 is 

empty while it is occupied in replications 2 and 3. 



80 

 

Figure 28: The traditional execution approach (left) and the proposed approach (right) 

 

The right part of Figure 28 shows a snapshot of the simulation where the three 

replications are superimposed into one execution. Note that all three VVs appear in the 

superimposed execution. During collision detection (Step 2 of the Nagel-Schreckenberg 

algorithm) all vehicles will react to MV, but MVs will ignore virtual vehicles. This implies that it 

is possible for a cell to now contain both zero or one MV along with any number of VV's. Virtual 

vehicles do not interact with other virtual vehicles because they logically reside in different 

replications. VVs do interact with MVs, however. Lastly, MVs react to other MVs as in the 

traditional approach. The fact that they ignore VV's can create hazards. For example, the leftmost 

cell of the superimposed simulation is shown to contain a vehicle, even though that cell is empty 

in replicated simulation 1 (shown on the left). This vehicle represents a hazard for replication 1 in 

the superimposed simulation. In the following we refer to this vehicle as model vehicle A. 
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4.3.2 Speculative Execution with Hazards 

 

As noted above, in replication 1 shown in left part of Figure 28 MV A was missing from 

the leftmost cell at Timestep 44, but is present in the superimposed simulation as well as the other 

two replications; the superimposed simulation represents the location of A in the absence of the 

virtual vehicle. This invalid state does not directly pose a problem because the desired output 

statistics are concerned with the virtual vehicle, and the virtual vehicle’s behavior is not affected 

by A. However, it is possible A does affect another model vehicle B, e.g., a fast moving vehicle 

that overtakes A and then interacts with the VV. Unless precautions are taken the VV's output 

statistic may be incorrect if the behavior of B is not taken into account in the superimposed 

simulation. To address this problem, A is flagged as a hazard. When B interacts with A it too is 

also flagged as a hazard, and when B interacts with the VV the error is detected, and a corrective 

action, termed a rollback, must be executed.  

The approach used here is termed speculative execution because VV’s behavior is 

modeled assuming VV is oblivious to the impact that VV has on the rest of the simulation. This 

will not impact the results of the simulation so long as VV’s impact on the rest of the simulation 

do not affect VV itself. If this assertion turns out to be incorrect, as exemplified by the above 

example, corrective actions are required to ensure the output statistics produced by the simulation 

match the brute-force replicated approach. 

Once a model vehicle alters its behavior because of a virtual vehicle in front of it, there 

are now two states to consider: 

• State A. The model vehicle does not consider the virtual vehicle and checks if there is 

another vehicle present in the road segment it tries to traverse in the current timestep. This 

is the valid state for all virtual vehicles except the one that was ignored. 
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• State B.  The model vehicle considers the virtual vehicle during the collision detection step. 

This is an invalid state for all virtual vehicles except the one that was considered. 

Because there are more virtual vehicles beyond the one being considered, it is beneficial 

to simulate using state A. In order to confirm whether this causes an error for the virtual vehicle 

that was ignored by the model vehicle, two possible sources of error must be considered: 

• Error-Source 1. Had the model vehicle been blocked by the virtual vehicle, it could have 

caused model vehicles behind it (upstream) to slow down. In response, those model vehicles 

could alter their behavior (routing sequence, aggression etc.) and impact the virtual vehicle 

at some point in the future. 

• Error-Source 2. The model vehicle behavior that ignores the virtual vehicle can also cause 

errors. While the virtual vehicle can ignore the specific model vehicle that passed through 

it, the model vehicle can now influence the behavior of other model vehicles in front of it 

that can impact the passed virtual vehicle. 

In either of these situations two error-causing events may occur: 

• Error I. The virtual vehicle encounters a model vehicle that it should not have encountered. 

• Error II. The virtual vehicle does not encounter a model vehicle that it should have 

encountered. 

If a model makes Error-Source 1 possible, one can simply clone the model vehicle and 

consequently run the scenario of the virtual vehicle along with the superimposed scenario, rather 

than to use the tagging rules (which are discussed shortly) for both the passing model vehicle and 

an alternative (blocked) instance of the same model vehicle. Which mechanism is more efficient 

(explicit cloning vs. two tagging sources) depends on the specific application. If the traffic 

intensity is high, it is likely that explicitly cloning all vehicles could be computationally intensive. 
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At the same time a high traffic intensity is likely to trigger a rollback when the tagging 

mechanism is used. 

If only Error-Source 2 is possible, a forward tagging mechanism may alternatively be 

used to detect errors (explicit cloning could still be the better option for certain models). As soon 

as a model vehicle overlaps or overtakes a virtual vehicle, a tag is added to the model vehicle. A 

tag contains the id of the virtual vehicle, an occurrence count, and a flag that specifies whether 

this is the first model vehicle affected (this would be set to true as this is the first time the 

particular occurrence count-id combination has been observed). Whenever another model entity 

slows down - in the collision detection step - as a result of a tagged model entity in front of it, the 

tag is copied (with the flag field now being false). Additionally, when a tagged model entity 

reaches an intersection, the tag is added to the intersection. As soon as the virtual vehicle 

encounters one of its prior tags (at an intersection or in the collision detection step), the 

simulation explicitly executes the replication with the given virtual vehicle as the sole instance of 

ET (as in the traditional approach) and the virtual vehicle along with all its tags are removed from 

the superimposed model. If other statistics from the virtual vehicle were collected, they must be 

rolled back. A virtual vehicle that encounters its tag on a model vehicle in front of it implies an 

Error I, while an encounter with its tag on an intersection could imply an Error II. The listing in 

Figure 29 shows the full algorithm, which replaces step 2 of the Nagel-Schreckenberg algorithm. 
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Figure 29: Modified collision detection logic. 

 

As model vehicles may own any number of tags, a list (of tags) is associated with them.  

For any tag, if flag is true, it means that the model vehicle overtook or overlapped with a virtual 

vehicle at some point. If it is false, it means that the model vehicle came into contact with another 

tagged model vehicle at some point. If the model is more sophisticated and contains traffic signals 

for example, tags must be copied every time there is a conditional link. For example, if a tagged 

model vehicle reaches an intersection, and, because of its presence causes the light to switch from 

green to red for another lane, the tag will have to be copied to every model vehicle in the stopped 

lane. 
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4.4 Experimental Evaluation 

In order to evaluate the speedup of the superimposed approach, a synthetic simulation 

experiment (with randomly generated input) was performed with varying numbers of virtual 

vehicles on a road network. These experiments do not flush redundant tags using the minimum 

propagation delay techniques. The implementation is sequential; a work-optimal parallel version 

could easily be created by partitioning the cell regions and mapping them to logical processes 

(LP). Each LP would execute the algorithm listed previously for the cell transitions of its 

vehicles. Once a vehicle exits the region of a given LP, a message is sent to the LP that owns the 

neighboring region of cells.  

4.4.1 Experimental Setup 

 

The simulated transportation network has a Manhattan style topology consisting of nine 

north-south and nine east-west two-way roads. The intersection-to-intersection distance measures 

100 cells. Each vehicle has a randomly selected intersection as its destination and will take a 

shortest path to it. Model vehicles are generated at the end points of each two-way road. Two 

scenarios will be considered. The "low traffic" scenario will generate a model vehicle with 

probability 0.1 for each source cell during each timestep, while the "high traffic" scenario will use 

a probability of 0.5. Model vehicles have a maximum speed of 3 cells per timestep and a p=0.5 

deceleration parameter. The simulation runs for 500 timesteps and uses the superimposed Nagel-

Schreckenberg algorithm with the tagging mechanism. The target vehicle ET, is released at 

Timestep 3 and varies its deceleration parameter (0.2, 0.25, 0.3, 0.35, 0.6, 0.65, 0.7, and 0.75), its 

maximum speed (2, 3, 4, and 5 cells per tick), and its destination (uniformly selected among all 

intersections). 
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4.4.2 Speedup vs. Number of Replications and Traffic Intensity 

 

Figure 30 shows the execution times for the naive approach of running one replication 

per realization of ET (Brute Force Execution Mode) and the superimposed approach with the 

tagging mechanism (Virtual Vehicle Execution Mode).  The green and grey lines cover data 

points from the high and low traffic scenarios, respectively. As the number of replications 

increase, the VVEM execution time grows more slowly than the BFEM execution times. The ET 

travel paths were verified to yield identical results for both execution modes. At 64 replications, 

the speedup of VVEM (relative to BFEM) is 5.8 for the low traffic scenario, while it is 1.65 for 

the high traffic scenario. This is intuitive because in highly congested systems, many model 

vehicles will be able to overtake the virtual vehicles. As a result, more model vehicles will be 

tagged, and their tag propagation rate is also much higher. Subsequently, the probability of 

having to spawn physical clones increases. The results show that one should opt for larger batch 

sizes when using VVEM - especially when modeling a highly congested network. The test 

computer is an Intel Core i5-3550 with 16 GB DDR3 RAM running Windows 7 64bit. 

 
Figure 30: Execution time results by scenario 
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4.4.3 Speedup vs. Relative Speed Differences 

 

Because the main VVEM run is, in most cases, only slightly more computationally 

intensive than a traditional replication, the VVEM speedup is equal to approximately N/(1+C), 

where N is the number of replications (all N replications are executed by BFEM) and C is the 

number of physical clones triggered by VVEM. The number of triggered clones is primarily 

dependent on how many model  vehicles are able to overtake the virtual vehicles. This metric, in 

turn, is directly related to the traffic intensity and the speed of the general traffic relative to the 

virtual vehicles. This is a result of model vehicles being tagged as they overtake the slow virtual 

vehicles and propagating the tag further. This increases the probability of a clone being triggered. 

Figure 31 shows the VVEM speedup for different values of the global speed limit parameter V 

(used by MV's) as well as the traffic scenario (high vs. low). Each scenario is run five times (in 

both VVEM and BFEM) for N=16 virtual vehicles for all permutations of low & high VV 

deceleration probability set (<0.2, 0.25, 0.3, 0.35> vs. <0.6, 0.65, 0.7, 0.75>) and a low & high 

VV maximum speed (<2, 3> vs. <4, 5>). The average speedup is displayed for each scenario. It is 

clear that a lower speed limit results in a higher speedup as the model vehicles are less likely to 

overtake the virtual vehicles (independent of the traffic intensity) and, thus, less likely to trigger 

physical clones. It is also noticeable that (comparatively) fast virtual vehicles result in a very high 

speedup (although it is more extreme in the low traffic scenario) as model vehicles are less likely 

to have to slow down and be tagged. 
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Figure 31: Speedup for different relative speed tendencies 

 

4.4.4 Tag Memory Footprint  vs. Traffic Intensity and Speed Limit 

 

A VVEM replication uses more memory than a single BFEM replication because the tags 

from VV-MV collisions need to be stored as they are spread throughout the simulation 

environment. Figure 32 shows the rate of growth in memory requirements as the traffic intensity 

increases; no tag flushing procedure was used in those iterations. One could clear tags of VV's 

that have reached their destination as well as tags of MV's that cannot reach the corresponding 

VV based on the minimum propagation delay. The values were computed at Timestep 350 using 

64 VV's. 

.  

Figure 32: Memory requirements for storing the tags 
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4.5 Conclusion and Future Work 

An algorithm to speed up replicated traffic simulations was presented. The concepts can 

also be applied to other models, but the benefits are particularly well-suited for models with 

similar characteristics. Three of these characteristics are the local movement of entities (triangle 

inequality), low connectivity (vertices with low degree), and simple output collection (travel time 

of ET). The experimental results show that the execution time grows slowly as the number of ET 

instances increases. 

An area of future research is to investigate what heuristics can be used to determine how 

and when tags should be cleared. There is an overhead from performing a check, but there are 

also gains from fewer comparisons and reduced storage requirements. One can also envision a 

hybrid between execution with and without error detection where heuristics will compute the 

probability of a certain error occurring (e.g., given a macroscopic analysis of the traffic intensity). 

It is also worthwhile to study what models benefit from the superimposed approach and its 

performance using real-world network configurations.  Under what circumstances is it 

worthwhile to physically clone, rather than verify whether an error occurs via the tagging rules? 

There is also a bias-variance tradeoff present. The analyst may simplify the model and speed up 

the execution. This will cause a reduction in the half-width for fixed computation time. However, 

using a more sophisticated model may reduce the bias at the expense of computational time 

(because certain optimizations cannot be used). 
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5 GRANULAR CLONING: INTRA-OBJECT PARALLELISM IN 

ENSEMBLE STUDIES4 

 

4This chapter includes content from (Pecher, Crittenden, Lu, & Fujimoto, 2018). 

5.1 Introduction 

Computer simulation shows its strength by its flexibility to model a vast set of domains. 

However, its power is limited by the accuracy of the underlying model and the computational 

performance of the simulations. This paper focuses on alleviating the latter constraint. State 

changes are either driven by event-scheduling or by time-stepping though simulated time. The 

method described in this paper, termed granular cloning, can be utilized in both time-traversal 

modes, in both serial and parallel computer architectures, and – for parallel systems – in both 

optimistic and conservative synchronization protocols. Granular cloning exploits redundant 

computations across multiple runs of a model at the scale of individual simulation objects. Since 

it only affects common computations the results are equivalent to explicitly enumerating these 

runs. The runs are differentiated by random inputs and/or variations in the model scenarios. 

In stochastic simulation, randomness is injected in input variables to model uncertainty of 

the system under investigation (SUI). The performance of granular cloning is improved with the 

use of common random numbers because the pseudorandom number steams can be shared by all 

the logical runs. If one wishes to introduce variability, granular cloning can be further improved 

by altering individual elements of the stream or augmenting the stream with more elements. 

In many simulation studies, the objective is to find a feasible policy that leads to desirable 

output statistics. The number of feasible configurations often grows exponentially with the 

number of controllable discrete factors one is considering. Consider a network with ten nodes 

where one wishes to place one of three different router models at each node. The number of 
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possible configurations is 310. While there are methods for efficiently searching the often 

nonconvex configuration space, many runs will still be required.  For each scenario, it is also 

desirable to complete many runs to obtain a point estimate of the output statistic with low bias 

and spread.  

When variation is introduced into a set of runs of a certain model, the collective is 

referred to as an ensemble. An ensemble study may have a set of objectives, including 

characterizing (e.g., for validation) or optimizing certain model parameters (Fujimoto, Bock, 

Chen, Page, & Panchal, 2016). Whatever the way variation is introduced, random input or 

scenario variation, granular cloning superimposes all runs of an ensemble into one run and only 

explicitly stores the actual and most granular state differences across these runs, rather than larger 

supersets of state. Ensembles may be batched together based on a partitioning that is favorable for 

granular cloning. These conditions are discussed later. For example, suppose we model a particle 

p in a neighborhood of other particles and some gaps of “empty” space. We wish to investigate 

the evolution of the neighborhood for two different polarity values of p (two different versions). 

If most of the simulation state remains the same for both versions, it would be inefficient to 

explicitly store two sets of the entire state. We only allocate memory for neighboring particles if 

they are affected differently for a version compared to the other version. The number of objects 

with state differences for a given version in this example tends to grow monotonically with 

simulated time. Explicit enumeration of all runs would be wasteful because of the common states 

and behaviors across the runs. The technique is generally applicable for Monte-Carlo simulation, 

although one could construct adversarial models where the runs are completely different at model 

initialization, in which case the approach collapses into explicit enumeration of runs. At the same 

time, the technique incurs a small overhead whenever different simulation objects interact with 

each other. However, there are heuristics that can be used to reduce the overhead cost, which 

depend on the object interactions of the underlying application. 
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The next section describes related work. In Section 5.3, we define the notation and 

terminology from the simulation cloning literature (Hybinette & Fujimoto, 2001) along with 

cloning concepts. Section 5.4 describes how cloning can be extended to state objects within LP’s. 

Section 5.5 brings attention to the quantitative conditions under which computational 

performance can be harvested without loss in output accuracy; this is expressed in a simple 

mathematical inequality that is intuitive from a geometric view.  Experimental results of use cases 

are given in Section 5.6, varying key parameters that affect the computational performance. 

5.2 Related Work 

The concept of cloning memory segments has been used extensively since Von Neumann 

introduced it for fault tolerance in 1956 (Neumann, 1956). Since then, it has influenced modern 

relational database systems, distributed memory management, and other areas of computer 

systems. In addition to describing this historical context in detail, (Hybinette & Fujimoto, 2001) 

contains a survey of domain-specific simulation models where cloning has been used previously. 

Common themes in the relevant literature include computation sharing (reuse of common state or 

events) and incremental simulation. 

Reducing the execution time and memory requirements of replicated simulation instances 

without affecting the accuracy of output statistics has been investigated in both domain specific 

and general (yet, typically, simulation-engine-specific) settings. Domain-specific use cases 

generally allow more state to be logically shared by grouping together similar replications at 

suitable times during the execution, and/or otherwise exploit the underlying application’s specific 

characteristics for space/time efficiency. Relevant examples include the following. 

In Chapter 4, we presented a lazy evaluation and speculative execution scheme for 

physical cloning of vehicle objects in microscopic traffic simulation.  Vehicle objects that are 

independent of output statistics propagate tags containing the replication numbers they “touch.” 

Their numbers are compared to vehicle objects that have a dependency on output statistics. If 
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there is a version match between the vehicle types, a physical clone must be launched via a 

rollback to a relevant saved state for explicit computation. (Lentz, Manolakos, Czeck, & Heller, 

1997) apply incremental cloning to test different signature paths in a digital logic simulation for 

potential faults. The “offspring” (clone) of a “parent” is limited to four logical output values. 

(Vakili, 1992) uses a so-called standard clock scheme (an implementation of single-clock 

multiple systems, or SCMS) approach to execute – on a SIMD computer system - the same events 

simultaneously across multiple synchronized replications, which are parametrized differently 

(e.g., different service disciplines in a queue). The injected positive correlation makes this 

approach especially useful in simulation-based optimization (ranking & selection), albeit for a 

restricted class of applications. 

Unlike these prior efforts, the granular cloning approach described here does not rely on 

domain-specific properties. Although domain-specific methods can exploit knowledge of the 

given application, general techniques are by definition more flexible. As discussed next, more 

general techniques have been developed. It is possible that combinations of these techniques 

complement each other if they exploit different aspects of the underlying application. 

An example of a more general technique is the parallel cloning scheme introduced by 

(Hybinette & Fujimoto, 2001) that applies to the distributed LP event-scheduling paradigm. It is 

summarized in Section 5.3 because our granular cloning scheme will be described with similar 

terminology and notation. Just as with parallel cloning, granular cloning also makes heavy use of 

set-manipulation algorithms. Furthermore, the underlying mechanism for both algorithms consists 

of sharing state logically, while incrementally allocating physical memory. However, granular 

cloning offers a much finer grained mechanism that focuses on cloning individual objects rather 

than entire logical processes, and is agnostic to the underlying simulation executive paradigm. 

(Chen, Turner, Cai, Gan, & Low, 2005) have extended the distributed cloning algorithms for the 
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High Level Architecture (HLA) along with HLA’s data distribution management (DDM) in 

(Chen, et al., 2010). 

(Ferenci, Fujimoto, Ammar, Perumalla, & Riley, 2002)  present an incremental scheme 

termed updatable simulation, where one first logs the events and sample path of a baseline run 

and hopes to reuse the state modifications from it for subsequent runs. Subsequent runs then 

determine what horizon of logged events can be reused at a given timestep where an event is to be 

processed. In the ideal case, a sequence of r >> 1 events can be composed together, rather than 

separately, to act on the current state. If the runs are sufficiently different, the event horizon r will 

be zero at each event-processing timestep and nothing can be reused. The staged simulation 

technique discussed in (Walsh & Sirer, 2003) caches previous event invocations, decomposes 

them, reuses previously computed and/or similar results, and reorders restructured events for their 

efficient scheduling. (Stoffers, Schemmel, Dustmann, & Wehrle, 2016) extend automatic 

memoization to impure functions where side effects are permitted (subject to a few constraints). 

Granular cloning differs from these approaches in that it does not rely on reusing previously 

computed results. 

Granular cloning is perhaps most closely related to recent work by (Li, Cai, & Turner, 

2017) which focuses on tree-based cloning algorithms for agent-based models. A cloning tree 

contains nodes that map to simulation instances (versions) that have a different parameter than 

their parents. Each such instance is associated with two data structures: AgentPool and Context. 

The former contains agents whose characteristics are unique to that instance, while the latter 

contains references to shared agents in ancestor nodes. During the execution of an instance, the 

relevant agents from a child’s ancestors are copied. A child instance performs clone condition 

checking as follows. If a Context agent (shared with an ancestor node) senses a parameter 

variation or an agent in the respective AgentPool, a clone is generated and moved to the 

AgentPool. Execution of simulation instances within the clone tree occur level-by-level in a 
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breadth-first manner. In contrast to this simulation instance-hierarchical scheme, granular cloning 

does not use a tree hierarchy; rather, it associates tags with object realizations and clone condition 

checking occurs by comparing the tags of interacting objects. Granular cloning accesses relevant 

objects in arrays rather than by tree traversal. A bit masking scheme is used to efficiently 

implement version management. Superficially, granular cloning applies to granular subsets of 

state, while by (Li, Cai, & Turner, 2017) applies to agent objects, though potentially one could 

adapt their algorithm to encompass the same scale. Furthermore, at any given timestep, the 

parallelism in (Li, Cai, & Turner, 2017) is limited by the available nodes at any level of the clone 

tree (batch-by-batch); in granular cloning, all objects may be executed concurrently at any 

timestep.  

Granular cloning utilizes a kind of data dependency detection for interacting objects (or 

state variables thereof). Granular cloning compares properties of versions associated with these 

objects. Detecting various properties of data dependencies with the end goal of accelerating 

simulation execution has been studied in other works as well. (Quaglia & Baldoni, 1999) 

investigate data dependencies associated with a simulation object over several events. The 

scheme can be used to accelerate certain optimistic simulations by increasing event-level 

parallelism. The definition of “intra-object parallelism” in (Quaglia & Baldoni, 1999) differs from 

the usage in this thesis and in (Henriksen, 1995). In (Quaglia & Baldoni, 1999), the parallelism 

refers to the state transitions (i.e., events) that an object is exposed to, while here (and in 

(Henriksen, 1995)) it refers to the variations in the object’s state. (Marziale, Nobilia, Pellegrini, & 

Quaglia, 2016) measure the amount of data dependencies across processes in order to create 

suitable groups of these processes (“granular LPs”) dynamically in a Time Warp-based 

environment. The grouping that is derived from dependencies in (Marziale, Nobilia, Pellegrini, & 

Quaglia, 2016) applies to subsets of state (logical processes), while they apply to subsets of runs 

in this chapter. Furthermore, the grouping sequence for granular cloning is unique. 
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5.3 Background: Cloning in Parallel Simulations 

(Hybinette & Fujimoto, 2001) introduce the concept of simulation cloning in the context 

of distributed and interactive simulations where the analyst can intervene and dynamically 

evaluate alternative futures (clones, identified by a version number that is incremented 

chronologically: i = 1, 2, 3, …) at decision points and find a policy that offers advantages over 

others. A decision point must specify how a given clone differs in its state from a given reference 

version and at which timestep it occurs. However, different courses of action may also be defined 

a priori to evaluate different scenarios and inject uncertainty into certain input variables; they can 

also be triggered by certain conditions at runtime. Clones are generated by specifying them at 

decision points or through certain interactions between logical processes (LPs). The underlying 

system architecture used in (Hybinette & Fujimoto, 2001) is based on distributed LPs and the 

executive operates with the event-scheduling paradigm. The physical system is mapped into a 

model in the computer and the state of this model is partitioned into LPs (identified with j = A, B, 

C, …). During runtime, LPs exchange time-stamped messages to change their state and schedule 

new events; an LP only changes its state after processing an event (scheduled by itself or with a 

message received from another LP). Consider a simulation that evaluates two scenarios where, at 

some timestep tb > 0, some partial component of the state differs among them. 

Simulation cloning makes use of computation sharing because: 

- the sample path up to the decision point is only computed once. The set of virtual logical 

processes (VLP) being mapped to by each clone are shared by a shared memory region in the 

computer system, namely the corresponding physical logical processes (PLP), and  

- only the VLP’s that differ in their state after the decision point are explicitly duplicated (as a 

PLP) in memory and processed separately and in parallel; the VLP’s that are identical continue 

to be shared within a corresponding PLP. As the given clone starts affecting state in other 
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VLP’s, further PLP’s will be incrementally spawned. An important point with respect to one 

key contribution of this chapter is that the algorithm in [1] clones an entire VLP, even if there 

is just a small difference in a state object within the VLP.  

VLP’s exchange virtual messages among each other, but each virtual message maps to a 

single physical message and each VLP maps to a single PLP. Whenever several virtual instances 

are mapped to a particular physical instance (that is, if they have the same state), computations 

are essentially shared. A given VLP is identified by (i) the LP identifier and (ii) the version of the 

clone it refers to. A given version is associated with a set of VLP’s for every LP in the model. 

It is useful to define some notation prior to delving into the actual cloning algorithm. As 

mentioned before, the entire state of a model is partitioned into LP’s (identified by j= A, B, C,…) 

and each version (identified by i = 1, 2, 3, …) maps to a set of VLP’s. Subsequently, we will refer 

to a particular VLP as V(i, j). If, for fixed j, several VLP’s map to the same PLP (only if they 

share the same state), the corresponding PLP is denoted P(i, j) and i is the minimum version 

number of the VLP’s pointing to P(i,j). 

To implement simulation cloning, one must alter the simulation executive to incorporate 

(i) message cloning and (ii) process cloning. Message cloning simply refers to a simple 

mechanism whereby a message sent from a PLP (sharing several versions in a set called 

VSendSet) and received by a PLP (sharing several versions in a set called VRcvSet) must be 

forwarded to other PLP’s mapped to from versions contained in VSendSet that are not in 

VRcvSet. Process cloning occurs when a PLP is mapped to by versions not contained in a 

receiving message. The respective message may cause a modification in the state of all versions 

that the PLP represents, which would clearly be invalid for the states that are not in the message’s 

VSendSet. The full process cloning algorithm from (Hybinette & Fujimoto, 2001) is (SC denotes 

the complement of set S with respect to the universe of versions): 
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(1)  Get VSendSet from message 

(2) Get VRcvSet from local state 

(3) VPsUnaffected = VSendSetC ∩ VRcvSet 

(4) VPsMoveToClone = VPsUnaffected 

(5) VPsRequested = VSendSet ∩ VRcvSet 

(6) If (!(PhysicalReceiver ∩ VPsRequested)) then 

VPsMoveToClone = VPsRequested 

(7) If ( VPsMoveToClone ≠ {}) then 

Cloned PLP = min(VPsMoveToClone) 

5.4 Granular Cloning 

5.4.1 Intuition 

 

A straightforward extension to simulation cloning approach from (Hybinette & Fujimoto, 

2001) is to replace the process cloning step with one that only clones state differences. An 

associative map is maintained for each PLP that maps a given version i to a record that contains 

information regarding where and how a PLP differs from shared state. In Figure 33, an LP 

modeling an airport initially shares the state for versions 1 and 2 and receives an airliner arrival 

event that only occurs in version 1. To maintain correctness for version 2, simulation cloning now 

copies the entire LP state prior to handling of the arrival. Granular cloning instead only duplicates 

the state that the arrival event handler would modify. These duplicated state variables are now 

valid for version 2 (airliner absent), while the variables they were copied from may now be safely 

overridden for the version 1 arrival event.   
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Figure 33: Rather than duplicate the entire LP, granular cloning only duplicates the state that changes. ©Free-

Photos, Creative Commons 0 

 

Relative to the parallel cloning scheme from Section 5.3, granular cloning should perform 

well if a given LP owns 

1. a sufficiently large partition of the entire state space, 

2. event handlers where state changes tend to be fragmented over the state variables, rather 

than over its entire state, 

3. event handlers where unmodified state variables are insensitive to the changes to the state 

variables that are modified. 

One could, of course, simply take the parallel cloning scheme and redefine each LP to 

encompass only a single state object. In doing so, however, one potentially increases the 

communication between the LP’s which can significantly degrade performance. 
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If - instead of the event-scheduling based approach - the simulation executive uses a 

timestepped agent-based model (ABM), which may be part of a federation, one can associate 

each agent, and any state object in general, with a set of versions (a version set). This not only 

comes with all the benefits discussed before (i.e., savings in space and time because of shared 

computations), but also through increasing the parallelism in a shared memory machine (under 

certain circumstances), especially if the number of replications is a soft constraint. For a given 

version v (out of V total runs), an ABM typically executes, over several iterations (depending on 

the input model), for each timestep < T, the behavior of e < E agents. Within a fixed version, 

timestep, and entity, a kernel (or, transition function) is typically executed that reads from various 

state objects of the previous timestep, and writes to the given agent’s state objects for the current 

timestep. 

Figure 34 shows a so-called time-space diagram (see (Fujimoto R. M., 1989)) of a 

concrete example. 

 
Figure 34: Time-space diagram for granular cloning split. 
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The horizontal axis measures simulated time and the vertical axis contains discrete state 

space objects (in memory). The lines within the quadrants represent sample paths, here denoting 

simply the presence of a given physical state object. The state objects use a similar notation as 

that used for PLP’s in Section 5.3. Here, the superscript refers to the versions mapping to the state 

object and the subscript denotes the identifier for the state object. At t=15, the kernel of A for its 

sole version set {1, 2} is executed, depicted as c1. A kernel is a sequence of instructions computed 

for a version set of a single agent (called the kernel object) and is not permitted to write to any 

other object. If any write operation in the kernel depends on a read operation of other objects, the 

intersection of the read sources’ version sets is compared to the version set of the kernel object. If 

the kernel object contains members not present in the intersection of the read sources, the kernel 

object splits. If one were to not split the kernel object, the state of the kernel object would be 

overwritten for the versions that are contained in it, but not in the read sources, potentially leading 

to errors. 

5.4.2 Formulation 

 

As summarized before, a timestepped ABM - from a high-level view - typically has the 

following operational scheme: 

for s in scenarios 

    initialize_model(s) 

    for t in timesteps 

        for a in agents 

            a.kernel /*also called transition  

                      or step */ 

Algorithm 1: Agent-based model - operational outline (traditional) 
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When granular cloning is applied to these kinds of models, it obviates the need to 

explicitly enumerate the scenarios (since all of them are superimposed). However, at runtime, 

granular cloning needs to perform some bookkeeping, in order to trace dependencies between 

objects that are now associated with versions (versioned objects). As the simulation progresses, 

versioned objects that originally shared state across all versions start to diverge from the shared 

state to a version-specific state. From a high-level view, the operational scheme for granular 

cloning applied to a timestepped ABM looks like: 

initialize_model(scenarios) 

for t in timesteps 

    for a in agents 

        for vo in a.versionedobjects 

            a.GC_interaction /*kernel with    

                             granular cloning */ 

Algorithm 2: Agent-based model - operational outline (granular cloning) 

In some sense, the outermost loop in Algorithm 1 has been logically replaced with the 

innermost loop in Algorithm 2. However, we hope to iterate over fewer than 

scenarios.number (the total number or runs, or versions) in the innermost loop of 

Algorithm 2 by exploiting common state across the versionedobjects. The degree of 

reduction (or state-sharing) needs to be sufficiently high to offset the additional overhead that 

occurs in a.GC_interaction (in Algorithm 2) relative to a.kernel (in Algorithm 1).   

Most of what follows in this subsection is concerned with the details of the last line 

(a.GC_interaction) in Algorithm 2. In fact, a.GC_interaction is presented as 

Algorithm 3 and represents the high-level granular cloning kernel management by ensuring that 

versioned objects that diverge from any shared state have the kernel applied to them as well. In 

order to (i) report potential diverging splits in versioned objects and to (ii) dispatch the actual 

kernel function on versioned objects, Algorithm 3 calls Algorithm 4 (GC_transition()). (i) is 

computed in Algorithm 5 (handle_conflicts()). The following diagram summarizes this 

granular cloning mechanism: 
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Algorithm 2

•ABM executive with granular cloning

•Iterates over timesteps, agents, and intra-agent 
realizations

•Calls Algorithm 3 to execute transitions correctly

Algorithm 3

•GC_interaction()

•Dispatches granular cloning-based transitions for 
existing versioned objects and for discovered divergent 
versioned objects

•Calls Algorithm 4 to determine whether divergence 
occurs and to exeucte the kernel

Algorithm 4

•GC_transition()

•Traces dependencies among versioned objects and 
creates additional versioned objects if necessary

•Executes the kernel for non-divergent versioned 
objects

•Calls Algorithm 5 to track dependencies and determine 
if divergence occurs.

Algorithm 5

•handle_conflicts() 

•Tracks dependencies and determines whether 
versioned objects with shared state would be 
overridden by another version object which is mapped 
to fewer versions
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Granular cloning for agent-based models is differentiated from conventional execution in 

that it needs to preserve the integrity of the superimposed sample path. Before executing any 

transition function, granular cloning first ensures that no version-specific state of the kernel object 

is being wrongly overwritten for a dependency that does not match that version (this check is 

done in a function called handle_conflicts()). If there is a version conflict, the current 

kernel object needs to be split. The split object is handled after the current kernel object. At a high 

level, the kernel management algorithm for a set of kernel objects – here, 

versionedobjects, is as follows: 

VersionObj[] split_versionedobjects 
for VersionObj versioned_obj in versionedobjects 

    GC_transition(versioned_obj,  

      split_versionedobjects) 

while split_versionedobjects.has_elements 

    GC_transition(split_versionedobjects.pop,  

      split_versionedobjects 

Algorithm 3: High-level granular cloning kernel management 

 

The variable split_versionedobjects maintains potential split kernel objects that 

fragment from the currently considered kernel object and still need to be handled by the kernel. 

For example, suppose a given kernel object, versioned_obj, is associated with versions 1 and 

3, and the granular cloning transition manager GC_transition() determines that 

versioned_obj needs to be split from the version set {1,3} into {1} and {3}. In this case, 

GC_transition() will only override the kernel object corresponding to the intersection of the 

versions sets of all read sources. Suppose, in our example, the intersection is {1}. Now, the kernel 

object for {3} is still unhandled and still needs to be processed. In the while-block of the granular 

cloning kernel manager, we simply execute the kernel for all these split objects until they are all 

handled. 
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A given object’s version set is encoded in unsigned integers where bits are set for 

corresponding version indices; granular cloning makes heavy use of bit manipulation. For 

example, the following binary value encodes a mapping to versions 1 and 3 (1-based indexing) 

among 32 total versions: 

0000 0000 0000 0000 0000 0000 0000 0101 

The granular cloning-wrapped kernel function GC_transition() performs the 

following steps: 

GC_transition()(VersionObj vo, VersionObj[]    

  splits) 

    VersionObj[] potential_splits =  

      vo.handle_conflicts() 

    Versions unaffected_versions 

    if potential_splits.has_splits            

        splits.emplace_back(potential_splits) 

        unaffected_versions =  

          potential_splits.get_versions() 

    vo.skernel(unaffected_versions) 

Algorithm 4: Low-level granular cloning kernel wrapping 

 

As previously mentioned, splits is an output argument that will store unhandled 

versioned objects in case we need to split the current kernel object vo. Whether splitting will 

occur depends on the comparison of the version set of vo and the versions of all objects we read 

in the kernel (i.e., all dependencies of the kernel object vo). The handle_conflicts() 

method determines if the version set intersection of all objects that are being read in the kernel 

(all dependencies) are a strict subset of the kernel object vo’s version set. If they represent a strict 

subset, the unhandled split version objects need to be stored in splits. The version set of the 

unhandled split version objects are maintained in the unaffected_versions variable. 

Finally, we execute the superimposed kernel, skernel(), for the kernel object vo, but only for 

the versions that are not included in the unhandled splits – that is, the logical complement of 

unaffected_versions.  For the complement of unaffected_versions we can be sure 
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that we can read the corresponding version sets from all the read sources because 

handle_conflicts() already filtered out the maximal version set we can manage (by the 

definition of set intersection). 

In handle_conflicts(), a tie breaker rule will determine what version number 

serves as the foundation of integrity checking. An arbitrary selector, like the filtering for the 

minimum version, will denoted with SEL. Once that version is determined, one must filter 

neighboring objects for corresponding sets. Consider the following example: 

{2}-Read→{1,2}←Read-{1} 
↑ 

Read 
| 

{1,2} 
 

In this case, the min-selector uses version 1. The intersection of {1,2} and {1} is {1} and 

so we split {1,2} into {1} and {2}. We update {1} with the kernel and leave the state mapped to 

version set {2} unaffected; {2} will be handled in the while-loop of Algorithm 3 later. The state 

of the kernel object (after the split, only associated with {1}) does not only depend on the state of 

the versioned object to the right, but also on one on the bottom. The while-loop of Algorithm 3 

ensures that any fragment of the current kernel object will be handled by the read sources that are 

omitted (those fragments will potentially be split further). 

Without an automated runtime that can inspect all object identifiers of a kernel 

invocation, it is necessary for the user to specify what objects the kernel accesses. In many 

ABM’s the read sources consist of some neighborhood – in a given coordinate system - around 

the kernel object. For example, in Conway’s Game of Life (Conway, 1970), a given kernel object 

(a cell that can assume a state of 1 or 0), which is located in a 2D grid, reads from its eight 

neighbors. In the general handle_conflicts() method (listed in Algorithm 5), it is assumed 

that one can access the entire state of the previous timestep (OLD)  as well as the read sources 

relative to the kernel object (NBR) by some defined addressing scheme (i.e., coordinate system for 
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most ABM’s). There are more general variants for handle_conflicts() and some of them 

may be more efficient for a particular application. One can also engineer optimized versions for 

specific application where certain characteristics are exploited. For example, one fairly common 

characteristic among cellular automata is that all the versions are present (with mutual 

exclusivity) for each element of NBR. 

VersionObj handle_conflicts() 

    Version ref_version = SEL(this.versions) 

    VersionObj[] read_sources =  

      get_sources(this, OLD, NBR) 

    VersionObj[] ref_vo = filter(read_sources,  

      ref_version) 

    Version working =  

      intrsct(getversions(ref_vo),this.versions) 

    For Version v in  

      working.get_onehots_except(ref_version) 

        working = intrsct(working,    

          getversions(filter(read_sources, v))) 

    if working != this.versions 

        VersionObj res(this.state, working) 

        res.set_splits(true) 

        return res 

    else 

        VersionObj res(WILDCARD_S, WILDCARD_V) 

        res.set_splits(false) 

        return res 

Algorithm 5: One possible general variant of handle_conflicts()  

 

Algorithm 5 first arbitrarily picks a reference version from the kernel object’s version set 

with the selector function SEL. It then proceeds to collect all the kernel dependencies and filters 

those objects with the reference version that was just selected. A working version set is then used 

to determine whether there is version-consistency between the dependencies’ (ref_vo) and the 

kernel object’s respective version sets. The intersection ensures that we enter  skernel() with 

the maximal version set that is still common among all dependencies (and the kernel object itself) 

and preservers correctness. The for-loop ensures that transitive dependencies of non-reference 

versions are captured. To crystalize this in a small example: 
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 {2,4}-Read→{1,2,3}←Read-{1,2} 

Using a min-selector, we would have a reference version of 1. working would capture 

{1,2}∩{1,2,3}={1,2} before entering the for-loop. If we did not have the for-loop intersections, 

the skernel() would later only read the dependency on the right (associated with version set 

{1,2}). However, the kernel object is also associated with version 2. Version 2 depends on the 

left-versioned object that is associated with {2,4}. Therefore, to preserve correctness, one must 

include transitively linked versions as well. The for-loop grabs all non-reference versions from 

working and then tries to find these transitive dependencies. The conditional branch at the end 

simply reports back to the caller whether a split needs to occur. If there are elements in the kernel 

object that are not present in the relevant read sources, a split occurs. Otherwise, the version sets 

are synchronized which is indicated by a flag in the returned object. 

The skernel() method behaves exactly like the traditional kernel with the exception 

that we have to filter for the version set of the kernel object among the read sources, namely for 

vo.get_versions() \ unaffected_versions (where \ is the set minus operator) and 

separate out the split version set from the kernel object.  Read sources that are associated with 

version sets that represent a strict superset of the kernel object version set are treated exactly like 

those that are associated with vo.get_versions() \ unaffected_versions. The 

additional versions in the superset simply refer to state being shared with other versions. Since we 

do not write to the read objects, the presence of the additional versions is irrelevant. 

For event-scheduled simulation executives, granular cloning is compatible with both 

optimistic and conservative synchronization protocols. For the latter, each LP will proceed to 

execute local events up to the synchronization point without violating local causality. The only 

difference compared to the traditional approach is that messages and objects are associated with 

versions and, whenever events are processed, the comparison of “version set”-tags occurs (via the 
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granular cloning algorithms described). For situations in which the lookahead value is state-

dependent, local causality is guaranteed if the lookahead values are derived across all versions of 

a given LP (there may exist further optimizations whereby correctness can be ensured if this is 

relaxed). For optimistic synchronization protocols, the same granular cloning algorithms are used 

during normal execution. However, during rollbacks one needs to ensure that anti-messages 

annihilate messages with the same version set and that state saving captures the version sets 

associated with simulation objects (message acknowledgements are also version set specific). A 

straggler message may trigger a “global” rollback (i.e., for all versions) even if it only affects a 

few versions. Although forward progress is guaranteed with a global rollback (as in traditional 

Time Warp), it may cause rollback thrashing. To counteract this, it may be possible to modify the 

granular cloning rollback mechanism to preemptively query a rollback’s version dependencies 

across LPs and only affect an isolated subset of the versions, while the execution of unaffected 

versions can proceed in parallel (since the rollback does not apply to them). These extensions are 

beyond the scope of this thesis. 

5.4.3 Optimizations and Heuristics 

 

As previously mentioned, it is possible to optimize the general approach for 

handle_conflicts() for a specific kernel. For example, sometimes a particular state value 

of the kernel object determines that few other objects need to be read than if the state of the 

current kernel object is assumed to be unknown. However, it should be emphasized that this is not 

necessary for granular cloning - unlike some other methods for computation sharing. Algorithm 6 

shows a simplified version of an optimized handle_conflicts(). It exploits the 

application-specific fact that the kernel reads from at most one object and that we can “look 

ahead” which object will be read based on the current state of the kernel object. 
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VersionedObj handle_conflicts() 

    if this.state == STATE0 

        VersionedCell[] neighbor =  

          OLD[get_index()+NBR[0]] 

        for VersionedObj lvn in neighbor   

            /*assume neighbor is sorted by min  

            Version*/ 

            if versions.has_a_match(    

              lvn.get_versions()) and     

              !versions.is_contained_in( 

              lvn.versions)  

                return VersionedCell( 

                    this.state,  

                    this.versions.diff(                     

                     this.versions.intersection(  

                       lvn.versions 

                        ) 

                    ) 

                ) 

    else if this.state == STATE1 /* remaining cases */  

    return VersionedCell() //no conflict 

Algorithm 6: An application-specific variant of the handle_conflicts() method 

(applied on the kernel object) that exploits the property that there is at most one object 

dependency by peeking at the kernel object’s state and then filtering the read sources. 

 

Algorithm 6 first decides where in the old state of the model environment, OLD, it needs 

to look for the relevant object. As mentioned, the correct location depends on the state of the 

kernel object. In order to avoid displaying redundant code, only one of the conditional branches is 

shown completely (the one for STATE0). The algorithm then iterates over the versioned instances 

of the object and tries to discern whether the relevant instance is in (version-)conflict with the 

kernel object’s version set. If so, it returns the split object. If not, the end of the function will 

return an empty object. The caller will then be able to discern whether the returned object is split 

or not. 

This is just a small sample of possible optimizations. There are many properties that can 

be exploited, ranging from (i) dense and globally-sensitive version sets to (ii) sparse, localized, 

and clustered version sets. In applications that fall under the former category (i), it may be the 



111 

case that explicitly enumerating sample paths corresponding to single versions after the branching 

point outperforms the general handle_conflicts() scheme; in this case, the computations 

are only shared up to the branching point. For applications in the latter category (ii), where one 

wishes to simulate many versions, it may prove fruitful to abandon the unsigned integer 

representation and instead adopt a compressed representation of version sets. Indices could be 

used to map to particular version sets in aggregate data structures. 

5.5 Expected Performance for Agent-Based Granular Cloning 

Intuitively, one expects better performance (more shared computation) if the state 

variation is introduced late and if there is a slow spread of version-differentiated sample path 

relative to the entire state space. Better performance is also expected if the overhead from 

granular cloning is much smaller than the transition function. 

Consider an agent based simulation (ABS) that simulates E agents over T (>0) timesteps 

(t is a particular timestep) over R runs (r is a particular run). At a given run, timestep, and for a 

given agent, a kernel (or, transition function) with work Wkernel is executed. Although the Wkernel 

for granular cloning is slightly more complex than the one for traditional execution, the same 

factor will be used for both: The only additional granular cloning overhead is a potential split of 

the kernel object (which is a constant-time operation). Both the traditional and the granular 

cloning kernels access interacting objects in constant time. The key for the former is the object id, 

while for the latter it consists of both the object id and relevant version set. After p % of these 

timesteps, decision points are injected whereby the state S(t) differs from the baseline sample path 

(which is identified with version id, r = 1). At each timestep after ⌈p*T⌉, each agent reads the 

state of Eread (≤E) agents. 1 ≤ ϱ(t) ≤ R is a function that – for granular cloning - returns the 

average number of version sets at timestep t across all agents E. κconflicts (> 1) scales Wkernel by the 

additional overhead from handle_conflicts(). 
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The speedup of granular cloning vs. traditional replicated execution is approximated by: 

 

𝐸 × 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 × 𝑇 × 𝑅 

𝐸 × 𝜅𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 × 𝑊𝑘𝑒𝑟𝑛𝑒𝑙 × ∑ 𝜚(𝑡)𝑇
𝑡=0

 =
𝑇 × 𝑅 

𝜅𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 × ∑ 𝜚(𝑡)𝑇
𝑡=0

 

 

Without a mechanism for re-merging split objects, ϱ(t) is monotonically increasing. 

Furthermore, ϱ(t) cannot exceed R for any t because a version number is the most atomic element 

of an object and, by assumption, no more than R runs are simulated. Therefore, 𝑇 × 𝑅 ≥

∑ 𝜚(𝑡)𝑇
𝑡=0 . Figure 35 shows three example growth rates of ϱ(t) with overlaid trendlines. The 

fastest-rising curve ϱ’(t) would not be expected to yield a significant speedup and, depending 

upon the implementation of handle_conflicts(), the scaling with κconflicts may even 

dominate the payoff expression above the curve 𝑇 × 𝑅 − ∑ 𝜚(𝑡)𝑇
𝑡=0 . The growth rates primarily 

depend on the percentage of the total state space that is being read in an object’s kernel at a point 

in time. A constant number (without any noticeable bias for detecting certain types of state 

variables) would likely yield the linear ϱ’’(t) divergence pattern in Figure 35.   

 

 
Figure 35: Lower growth rates yield better performance for granular cloning. 

 

5.6 Empirical Evaluation 

The performance of granular cloning is evaluated with two models, both of which are 

described in more detail later. In brief, they consist of: 



113 

(i) a cellular automaton- (CA-) based traffic simulation on a 1D grid, which is a 

boundary case of the Nagel-Schreckenberg traffic model (Nagel & Schreckenberg, 1992). 

(ii) a distributed setting that simulates a basic integrated transportation and land use 

model (ITLUM), where one process executes (i) and another process executes a land use model 

from (Lu, Noonan, Crittenden, Jeong, & Wang, 2013). The execution of both processes occurs in 

a synchronous fashion per timestep.  

The ITLUM benchmark is a useful test case because in many usage scenarios replicated 

runs will often only modify one model, e.g., the land use or the transportation model, but not 

both. As such, this is an interesting test case to explore the benefits of cloning in general, and 

granular cloning in particular. Further, ITLUM represents a class of simulations of practical 

interest to communities concerned with urban planning and the sustainable growth of cities. 

For both models, the number of runs is limited to 32; the version tags assigned to objects 

are 32-bit unsigned integers. In settings with more runs, one could assign wider tags for even 

greater speedups. The machine that generated these results uses an Intel Core i7 6700 ™ (4 

physical cores, 8 logical) and 32GB DDR4 memory. All programs were compiled from C++ and 

the distributed implementation uses MSMPI. Unit tests were successfully completed to ensure 

that states of the granular cloning match the explicit execution of the same runs. 

The next three subsections discuss the conceptual models, and the two subsections 

thereafter report the performance results. Opportunities for attractive applications as well as 

limitations in adversarial problems due to tradeoffs are highlighted.  

5.6.1 Conceptual Model: CA Traffic Simulation 

 

A 1D CA models one road in a neighborhood. Each cell of the array is either set or 

cleared, the former representing a cell by a vehicle and the latter the absence of a vehicle.  At 
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discrete timesteps every vehicle will move forward (towards the right) by one cell if the cell 

ahead is clear. Vehicles “wrap around” when they reach the rightmost cell. The initial array state 

is populated randomly. This ruleset is referred to as Wolfram Rule 184 which is also used to 

model several other systems. However, there is a slight modification relative to this behavior that 

is described by Wolfram Rule 184. A vehicle will sample random cells in front of it and not move 

forward if the perceived traffic intensity is deemed too high, namely with probability p = 1-

[0.9+0.1*ESTIMATED_TRAFFIC_INTENSITY], where ESTIMATED_TRAFFIC_INTENSITY is 

determined by the ratio [number of sampled cells that are occupied]/[number of sampled cells]. 

In the experimental design, the number of sampled cells is varied with powers of two to 

illuminate its impact on the speedup. The length of the 1D array and the number of timesteps are 

also varied in the performance section. 

5.6.2 Conceptual Model: Land Use Model 

 

The land use model used is a translation from the Netlogo model of (Lu, Noonan, 

Crittenden, Jeong, & Wang, 2013) into C++. A detailed description of the model is beyond the 

scope of this chapter, but can be found in the reference guide of (Lu, Noonan, Crittenden, Jeong, 

& Wang, 2013). At a high level, the ABM maintains a 24x24 grid that represents 9 square miles 

of greenfield, which is developed with single-family dwellings over a 30-year period. It also 

contains on the order of 100 input, output and state variables. The agents in the model include 

homebuyers and developers, which interact with the local government (taxation and infrastructure 

improvements) and the grid. In each of the 30 time steps: 

1. 1000 homebuyers bid on up to 10 properties,  

2. property transactions are settled,  

3. new properties are constructed, and  
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4. local taxes are collected to improve the infrastructure.  

The model was developed to compare two stormwater development policies against each 

other to find out how many apartment homebuyers they would incentivize. 

5.6.3 Conceptual Model: ITLUM 

 

The two models from the previous subsections were coupled into an ITLUM. During the 

4th phase of the land use model of (Lu, Noonan, Crittenden, Jeong, & Wang, 2013), namely the 

tax collection and infrastructure improvement phase, the transportation cost savings of a 

neighborhood are derived from the degradation of the road infrastructure and depreciation of 

public transit. However, these variables were fixed in the original model. Using an actual 

transportation simulation to determine these variables dynamically may improve the credibility 

and validity of the results. The traffic intensity of the neighborhood roads is understood to be 

proportional to the population density of the neighborhood. These communication ideas inspire 

the federation sequencing pipeline for the ITLUM shown in Figure 36. 

 
Figure 36: ITLUM Federation Sequencing Pipeline 

 

As the ratio between (i) the execution time of one epoch of the land use node and (ii) the 

execution time of one epoch of the transportation node approaches 0, the speedup of the ABS 

dominates the overall speedup. 
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5.6.4 Evaluation: CA Traffic Simulation on a Single Process 

 

Figure 37 shows the speedup of the granular cloning approach executing 32 versions in 

one single replication, compared to the traditional approach of executing a single version for each 

of 32 replications. Each of the 32 replications alters the state at a uniformly drawn timestep at a 

uniformly drawn cell. The speedups were determined using measured CPU times for a single 

process executing the transport model only. 

 

 
Figure 37: Speedup of the transport model of three different cell-to-timestep ratios 

 

The three lines refer to three different scenarios differentiated by the space-to-time ratio 

(the cell-count divided by the time-step count). The speedup is less impressive if there are only a 

few timesteps relative to the numbers of cells because a given version has less time available to 

propagate its specific behavior into the global state. The speedup increases with the 

computational load in the transition function as the relative overhead of the granular cloning 

algorithm diminishes. The computational load is injected by enhancing the traffic intensity 

sampling resolution of the given driver (see the description of the transportation conceptual 
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model above). It should be noted that merging versions that share the same state together at 

certain intervals in the granular cloning mode did not improve the performance significantly. 

Figure 38 shows, for the 10 space-to-time ratio, the speedup if one realizes the 

differences among the replications late. As mentioned above, the differences among the 32 

replications are uniformly drawn in the 1D grid space and across all timesteps. However, if one 

restricts the realized timesteps to only be drawn in the last 20% or 50% of timesteps, the version-

specific local state perturbations have fewer opportunities to propagate through the global state 

space. This directly translates into computational savings in memory and execution time. As can 

be seen in the figure, the jump from the 50% scenario to the 20% scenario is less dramatic. Early 

branches pose a significant computational burden on granular cloning. In an adversarial scenario, 

the speedup is less than 1 because the physical sample path is equivalent to that in the traditional 

approach and one cannot reap the benefits of shared computations up to the decision point. The 

shared computations after the decision point are out-shadowed by the granular cloning overhead. 

With regard to the performance model from Section 5.5, ϱ(t) for this particular model would 

exhibit a linear growth trend based on the kernel which attempts to detect collisions. 

 
Figure 38: Speedup of the transport model if uniform scenario alterations are drawn in restricted time intervals 
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5.6.5 Evaluation: ITLUM on Two Processes 

 

The following tables show the speedup results of the combined ITLUM model described 

above for 30 simulated years each. The speedup quantities are not measured relative to sequential 

execution of the two processes separately; rather, they are relative to the parallel execution of the 

two processes where only the transport model uses the traditional approach of explicitly 

enumerating all the replications: S = Tparallel,traditional / Tparallel,granular. A column headed by the 

expression STI=IC denotes speedup figures that were obtained from models where IC instructions 

in the transition function for each object’s update in the next timestep were computed. The data 

exchanged between the two simulators in a synchronized/blocking fashion. This is also why the 

speedup quantities in the following tables are derived from wall-clock intervals. If they were 

based on CPU time, they could be misleading as a result of the platform context-switching from a 

blocking process. However, the drawback is that platform-specific factors may pollute the times. 

Nevertheless, a second set of replications confirmed that the numbers were close to those in the 

first set. 

Table 1: Speedup for cellcount/timesteps = 100 and start of decision points commences at timestep=0 

Cell 

count 

STI=4 STI=32 

1,000 0.93 1.03 

10,000 1.04 3.39 

 

Table 2: Speedup for cellcount/timesteps = 100 and start of decision points commences halfway through 

Cell 

count 

STI=4 STI=32 

1,000 1.01 1.07 

10,000 1.13 3.29 
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Table 3: Speedup for cellcount/timesteps = 10 and start of decision points commences at timestep=0 

Cell 

count 

STI=4 STI=32 

1,000 0.99 1.35 

10,000 0.92 3.07 

 

Table 4: Speedup for cellcount/timesteps = 10 and start of decision points commences halfway through 

Cell 

count 

STI=4 STI=32 

1,000 1.00 1.66 

10,000 1.11 4.11* 

 

 

In the entry marked with * was also evaluated with a transition function count of 64 and 

128, which resulted in speedups of 4.89 and 5.96, respectively. Since the only speedups that can 

be reaped in take place in the transport simulator, it determines the overall speedup provided it 

takes longer per epoch than the land use simulator. Because of reasons discussed before, the 

instruction count of the driver’s transition function has a significant impact on the overall 

speedup. In general, especially high performance is expected when there is a large number of 

runs, the variation is introduced late, the behavior (transition function or event handler) is 

complex in relation to the overhead, and/or when individual objects do not have the opportunity 

to quickly affect the entire state space in a unique fashion. 

5.6.6 Evaluation: 2x4 XOR-HOLD (Event-Scheduling on Eight Processes) 

 

In addition to these agent-based and timestepped models, granular cloning was also 

compared against traditional simulation cloning in a distributed event-scheduling setting (with 8 

processes). The benchmark used here is 2x4 XOR-HOLD (2 LPs, 4 versions each) using a 
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conservative barrier synchronization based approach. In addition to simply processing and 

scheduling events (HOLD), LPs in XOR-HOLD also own state variables (represented as an 

integer array) and modify them in their (sole) event handler. More specifically, they access their 

array at an index randomly sampled by the sender and apply logical exclusive OR of the sender’s 

corresponding value to their own value at that index. Versions are realized as random variations 

in individual state variables (integers) at the start of the simulation. When the array sizes are set to 

100,000 and the number of total events processed per LP set to 300,000, the obtained average 

speedup is 1.68 (standard error = 0.08). The speedup was again based on wallclock time until the 

simulation terminates using each method.  

5.7 Conclusion and Future Work 

The granular cloning framework offers performance improvements without loss in 

accuracy for a broad range of simulation applications where one wishes to execute several runs 

that share similar sample paths. Instead of being restricted to the scale of extended partitions of 

the state space, the explicit state representation occurs at the exact minimal scale where state 

differs. Our experimental results show order-of-magnitude speedup in some cases and illustrate 

that performance is increased when: 

- the number of replications is large, 

- the transition functions (in timestepped models) or the event handlers (in event-

scheduling models) are relatively complex, and  

- the state among runs is similar, especially at the beginning of the run, so that the 

framework may reuse more shared computations, rather than duplicate redundant work. In many 

applications, the replication-specific variation tends to explode throughout the state space as 

simulated time increases. 
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There are interesting further research questions related to granular cloning. For example, 

how should one batch together runs of various scenarios to apply simulation-based optimization 

methods (scenarios vs. random input)? Another research topic lies in approximate computing: 

One could reduce the overhead of granular cloning interactions selectively, which relaxes 

correctness; in this fashion, bias is traded off for variance. It is also an open question of whether 

there are more efficient algorithms to keep track of the state-version associations, especially for 

common applications. Another open research area is how different simulation acceleration 

techniques contribute to speedup when they are used in groups across a broad range of 

benchmarks. 

We plan to release a general-purpose library that allows users to encapsulate their 

simulation objects into granular cloning objects as well as the interactions among these objects 

into granular cloning interactions. As in the simulation cloning library of (Hybinette & Fujimoto, 

2001), the granular cloning runtime will manage the bookkeeping of the varying state of a given 

object to the replication number (version) internally. 
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6 CONCLUSIONS AND FUTURE WORK 

 

This thesis discussed how DDDAS can be used to manage transportation systems by 

integrating trajectory prediction with accelerated simulation models (including land use and 

transportation models).  With these tools, it is possible to accurately project future traveler states 

both spatially and with temporal estimates. Acquiring these results faster-than-real-time has the 

potential to benefit both regulatory stakeholders and the travelers themselves.  

In the application direction, it is possible to expand into further areas of relevant research 

and integrate heterogeneous modules together (by using different assumptions and focusing on 

different urban subsystems). Application-focused research could investigate best practices and 

key challenges in integrating various sub-models. For example, beyond land use and 

transportation models, one could incorporate utility supply systems and air pollution models.   

In terms of methodology, several ways to accelerate simulation models have been 

presented, along with possible heuristic enhancements. Beyond the aspect of computational 

acceleration, improved tractability and transparency is another benefit of these methods. For 

certain models, it can be highly advantageous to explore a breadth of scenarios before executing a 

small number of runs in depth. Defining suitable real-time application programming interfaces 

(API) into these acceleration schemes may have implications for a whole host of other areas in 

the simulation model construction life cycle. Simulation output analysis routines, ranking & 

selection algorithms, and simulation-based optimization can access more scenarios concurrently 

than by sequentially enumerating individual runs, while simultaneously preserving common 

sample path data that would have been unsaved. Moreover, validation methods can be enhanced 

as state-access to a large set of runs can expose germane factors in the physical system. 
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Simulation verification is more credible if more test cases can be pushed through over a fixed 

time period.  

For some more concrete cases of possible future research that could be explored in the 

context of this thesis material: 

- The trajectory prediction models could be enhanced further by designing metamodels that use 

different “submodels” that have displayed superior performance for particular types of queries. 

Based on the data availability, it could also be possible to include more factors - such as time, 

weather, and special events – in the prediction models. Investigating a suitable interface 

between trajectory prediction analytics and path planning algorithms may also prove fruitful.  

- For both the specific “virtual entity” and the more general “granular cloning” execution 

schemes, one can incorporate relaxations at various points of the respective algorithms which 

would sacrifice correctness in order to provide further speedups. These relaxations could occur 

selectively based on certain computationally inexpensive heuristics, so that a small amount of 

bias may be traded in for tighter confidence intervals in the output statistics. In the other 

direction, it is also possible to include heuristics for both algorithms which maintain 

correctness, but trigger preemptive cloning in situations where the density of entities and their 

interactions are high. This would allow the simulation execution to sidestep possible overheads 

in simulation time frames where the respective acceleration scheme would yield little benefit.   

- The “virtual entity” scheme may also incorporate heuristics to flush tags that are guaranteed 

or unlikely to be used later. Future work in “virtual entities” can also include the generalization 

of the scheme to multiple target vehicles simultaneously.  

- A significant amount of research could be conducted on coupling granular cloning with output 

analysis algorithms. Certain subsets of runs upon which key performance indicators depend 

upon can be investigated.  
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