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नासदासीन्नो सदासीत्तदानीं नासीद्रजो नो व्योमा परो यत् |
िकमावरीवः कुह कस्य शर्मन्नम्भः िकमासीद्गहनं गभीरम् ॥ १॥

न मृत्युरासीदमृतं न तर्िहन रात्र्या अह्न आसीत्प्रकेतः |
आनीदवातं स्वधया तदेकं तस्माद्धान्यन्न परः किञ्चनास ॥२॥

तम आसीत्तमसा गूहळमग्रे प्रकेतं सिललं सर्वाऽइदम् |
तुच्छ्येनाभ्विपिहतं यदासीत्तपसस्तन्मिहनाजायतैकम् ॥३॥

कामस्तदग्रे समवर्ततािध मनसो रेतः प्रथमं यदासीत् |
सतो बन्धुमसित िनरिवन्दन्हृिद प्रतीष्या कवयो मनीषा ॥४॥

ितरश्चीनो िवततो रश्िमरेषामधः स्िवदासीदुपिर स्िवदासीत् |
रेतोधा आसन्मिहमान आसन्त्स्वधा अवस्तात्प्रयितः परस्तात् ॥५॥

को अद्धा वेद क इह प्र वोचत्कुत आजाता कुत इयं िवसृष्िटः |
अर्वाग्देवा अस्य विसर्जनेनाथा को वेद यत आबभूव ॥६॥

इयं िवसृष्िटर्यत आबभूव यिद वा दधे यिद वा न |
यो अस्याध्यक्षः परमे व्योमन्त्सो अङ्ग वेद यिदवा न वेद ॥७॥

Then even nothingness was not, nor existence,
There was no air then, nor the heavens beyond it.
What covered it? Where was it? In whose keeping?
Was there then cosmic water, in depths unfathomed?

Then there was neither death nor immortality
nor was there then the torch of night and day.
The One breathed windlessly and self-sustaining.
There was that One then, and there was no other.

At first there was only darkness wrapped in darkness.
All this was only unillumined water.
That One which came to be, enclosed in nothing,
arose at last, born of the power of heat.

In the beginning desire descended on it -
that was the primal seed, born of the mind.
The sages who have searched their hearts with wisdom
know that which is kin to that which is not.

And they have stretched their cord across the void,
and know what was above, and what below.
Seminal powers made fertile mighty forces.
Below was strength, and over it was impulse.

But, after all, who knows, and who can say
Whence it all came, and how creation happened?
the gods themselves are later than creation,
so who knows truly whence it has arisen?

Whence all creation had its origin,
he, whether he fashioned it or whether he did not,
he, who surveys it all from highest heaven,
he knows - or maybe even he does not know.
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Summary

In this dissertation, we present a unified framework for stability, dissipativity, and op-

timality for stochastic nonlinear control systems. First, we develop a complete theory for

stochastic semistability. Semistability is the property whereby the solutions of a stochastic

dynamical system almost surely converge to (not necessarily isolated) Lyapunov stable in

probability equilibrium points determined by the system initial conditions. Specifically, we

developed Lyapunov and converse Lyapunov theorems for stochastic semistable nonlinear

dynamical systems. In particular, we provide necessary and sufficient Lyapunov conditions

for stochastic semistability and show that stochastic semistability implies the existence of a

continuous Lyapunov function whose infinitesimal generator decreases along the dynamical

system trajectories and is such that the Lyapunov function satisfies inequalities involving

the average distance to the set of equilibria.

Next, we develop a unified framework to address the problem of optimal nonlinear analy-

sis and feedback control for nonlinear stochastic dynamical systems. Specifically, we provide

a simplified and tutorial framework for stochastic optimal control and focus on connections

between stochastic Lyapunov theory and stochastic Hamilton-Jacobi-Bellman theory. In

particular, we show that asymptotic stability in probability of the closed-loop nonlinear sys-

tem is guaranteed by means of a Lyapunov function which can clearly be seen to be the

solution to the steady-state form of the stochastic Hamilton-Jacobi-Bellman equation, and

hence, guaranteeing both stochastic stability and optimality. In addition, we develop opti-

mal feedback controllers for affine nonlinear systems using an inverse optimality framework

tailored to the stochastic stabilization problem. These results are then used to provide exten-
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sions of the nonlinear feedback controllers obtained in the literature that minimize general

polynomial and multilinear performance criteria.

Using the aforementioned optimal nonlinear analysis and feedback control framework,

we also develop a unified framework to address the problem of optimal nonlinear analysis

and feedback control for partial stability and partial-state stabilization of stochastic dy-

namical systems. Partial asymptotic stability in probability of the closed-loop nonlinear

system is guaranteed by means of a Lyapunov function that is positive definite and decres-

cent with respect to part of the system state which can clearly be seen to be the solution

to the steady-state form of the stochastic Hamilton-Jacobi-Bellman equation, and hence,

guaranteeing both partial stability in probability and optimality. The overall framework

provides the foundation for extending optimal linear-quadratic stochastic controller synthe-

sis to nonlinear-nonquadratic optimal partial-state stochastic stabilization. Connections to

optimal linear and nonlinear regulation for linear and nonlinear time-varying stochastic sys-

tems with quadratic and nonlinear-nonquadratic cost functionals are also provided. We also

develop optimal feedback controllers for affine stochastic nonlinear systems using an inverse

optimality framework tailored to the partial-state stochastic stabilization problem and use

this result to address polynomial and multilinear forms in the performance criterion.

In many practical applications, stability with respect to part of the system’s states is

often necessary with finite-time convergence to the equilibrium state of interest. Finite-

time partial stability involves dynamical systems whose part of the trajectory converges

to an equilibrium state in finite time. Using our proposed analysis and control synthesis

framework, we address finite-time partial stability in probability and uniform finite-time

partial stability in probability for nonlinear stochastic dynamical systems. Specifically, we

provide Lyapunov conditions involving a Lyapunov function that is positive definite and

decrescent with respect to part of the system state, and satisfies a differential inequality

involving fractional powers for guaranteeing finite-time partial stability in probability. In

addition, we show that finite-time partial stability in probability leads to uniqueness of

xii



solutions in forward time and we establish necessary and sufficient conditions for almost

sure continuity of the settling-time operator of the nonlinear stochastic dynamical system.

Next, we develop a unified framework to address the problem of optimal nonlinear analysis

and feedback control design for finite-time partial stochastic stability and finite-time, partial-

state stochastic stabilization. Finite-time partial stability in probability of the closed-loop

nonlinear system is guaranteed by means of a Lyapunov function that is positive definite and

decrescent with respect to part of the system state and can clearly be seen to be the solution

to the steady-state form of the stochastic Hamilton-Jacobi-Bellman equation guaranteeing

both finite-time, partial-state stability and optimality.

Building on our optimal control framework, we extend our results to optimal and inverse

optimal stochastic differential games. Specifically, we consider a two-player stochastic dif-

ferential game problem over an infinite time horizon where the players invoke controller and

stopper strategies on a nonlinear stochastic differential game problem driven by Brownian

motion. The optimal strategies for the two players are given explicitly by exploiting connec-

tions between stochastic Lyapunov stability theory and stochastic Hamilton-Jacobi-Isaacs

theory. In particular, we show that asymptotic stability in probability of the differential

game problem is guaranteed by means of a Lyapunov function which can clearly be seen to

be the solution to the steady-state form of the stochastic Hamilton-Jacobi-Isaacs equation,

and hence, guaranteeing both stochastic stability and optimality of the closed-loop control

and stopper policies. In addition, we develop optimal feedback controller and stopper policies

for affine nonlinear systems using an inverse optimality framework tailored to the stochastic

differential game problem. These results are then used to provide extensions of the lin-

ear feedback controller and stopper policies obtained in the literature to nonlinear feedback

controllers and stoppers that minimize and maximize general polynomial and multilinear

performance criteria.

Finally, we develop stochastic dissipativity theory for nonlinear dynamical systems using

basic input-output and state properties. Specifically, a stochastic version of dissipativity

xiii



using both an input-output as well as a state dissipation inequality in expectation for con-

trolled Markov diffusion processes is presented. The results are then used to derive extended

Kalman–Yakubovich–Popov conditions for characterizing necessary and sufficient conditions

for stochastic dissipativity of stochastic dynamical systems using two-times continuously dif-

ferentiable storage functions. In addition, feedback interconnection stability in probability

results for stochastic dynamical systems are developed thereby providing a generalization of

the small gain and positivity theorems to stochastic systems.

xiv



Chapter 1

Introduction

1.1. Motivation and Goals

In the first part of this dissertation, we develop new and novel results for semistability of

stochastic dynamical systems. Semistability is the property of a dynamical system whereby

its trajectories converge to (not necessarily isolated) Lyapunov stable equilibria. Semista-

bility, rather than asymptotic stability, is the appropriate notion of stability for systems

having a continuum of equilibria. Examples of such systems arise in chemical kinetics [27],

adaptive control [18], compartmental modeling [46], thermodynamics [47] and, more recently,

collaborative control of a network of autonomous agents [53, 54]. In all these examples, the

system trajectories converge to limit points that depend continuously on the system initial

conditions.

It is important to note that semistability is not merely equivalent to asymptotic stability

of the set of equilibria. Indeed, it is possible for a trajectory to converge to the set of equilibria

without converging to any one equilibrium point as examples in [18] show. Conversely,

semistability does not imply that the equilibrium set is asymptotically stable in any accepted

sense. This is because stability of sets is defined in terms of distance (especially in case of

noncompact sets), and it is possible to construct examples in which the system is semistable,

but the domain of semistability contains no ε-neighborhood (defined in terms of the distance)

of the (noncompact) equilibrium set, thus ruling out asymptotic stability of the equilibrium

1



set. Hence, semistability and set stability of the equilibrium set are independent notions.

For linear deterministic systems, semistability was originally defined in [25] and applied

to matrix second-order systems in [15]. References [18] and [20] extended the notion of

semistability to nonlinear deterministic systems and give Lyapunov results for semistability.

Semistability was also addressed in [53, 54] for consensus protocols in nonlinear dynamical

networks, with [54] giving new Lyapunov theorems as well as the first converse Lyapunov

theorem for semistability which holds with a smooth (i.e., infinitely differentiable) Lyapunov

function. Extensions of semistability to stochastic dynamical systems has not been addressed

in the literature.

Under certain conditions nonlinear controllers offer significant advantages over linear

controllers. In particular, if the plant dynamics and/or system measurements are nonlin-

ear [12, 103], the plant/measurement disturbances are either nonadditive or non-Gaussian,

the performance measure considered in nonquadratic [11, 87, 93, 97, 100], the plant model is

uncertain [9, 70, 85], or the control signals/state amplitudes are constrained [21, 91], then

nonlinear controllers yield better performance than the best linear controllers.

In [14] the current status of continuous-time, nonlinear-nonquadratic optimal control

problems for deterministic dynamical systems was presented in a simplified and tutorial

manner. The basic underlying ideas of the results in [14] are based on the fact that the steady-

state solution of the Hamilton-Jacobi-Bellman equation is a Lyapunov function for the non-

linear system and thus guaranteeing both asymptotic stability and optimality [14,45]. Specif-

ically, a feedback control problem over an infinite horizon involving a nonlinear-nonquadratic

performance functional is considered. The performance functional is then evaluated in closed

form as long as the nonlinear nonquadratic cost functional considered is related in a spe-

cific way to an underlying Lyapunov function that guarantees asymptotic stability of the

nonlinear closed-loop system. This Lyapunov function is shown to be the solution of the

steady-state Hamilton-Jacobi-Bellman equation. The overall framework provides the foun-

2



dation for extending linear-quadratic control to nonlinear-nonquadratic problems. In this

dissertation, we build on the results of [14,15] to develop a unified framework to address the

problem of optimal nonlinear analysis and feedback control for stochastic dynamical systems.

The notions of asymptotic and exponential stability in dynamical systems theory imply

convergence of the system trajectories to an equilibrium state over the infinite horizon. In

many applications, however, it is desirable that a dynamical system possesses the property

that trajectories that converge to a Lyapunov stable equilibrium state must do so in finite

time rather than merely asymptotically. Most of the existing control techniques for deter-

ministic dynamical systems in the literature ensure that the closed-loop system dynamics of

a controlled system are Lipschitz continuous, which implies uniqueness of system solutions

in forward and backward times. Hence, convergence to an equilibrium state is achieved over

an infinite time interval.

In order to achieve convergence in finite time for deterministic dynamical systems, the

closed-loop system dynamics need to be non-Lipschitzian giving rise to non-uniqueness of

solutions in backward time. Uniqueness of solutions in forward time, however, can be pre-

served in the case of finite-time convergence. Sufficient conditions for deterministic dynam-

ical systems that ensure uniqueness of solutions in forward time in the absence of Lipschitz

continuity are given in [1,37,65,117], whereas [105,114] give sufficient conditions that ensure

uniqueness of solutions for stochastic dynamical systems in forward time in the absence of

a uniform Lipschitz continuity and a growth restriction condition on the system drift and

diffusion functions. In addition, it is shown in [105,114] that uniqueness of solutions in for-

ward time along with continuity of the system dynamics ensure that the system solutions are

sample continuous (i.e., almost surely continuous) functions of the system initial conditions

even when the dynamics are not Lipschitz continuous.

Finite-time convergence to a Lyapunov stable equilibrium, that is, finite-time stability,

was first addressed by Roxin [89] and rigorously studied in [17, 19] for time-invariant deter-

3



ministic systems using continuous Lyapunov functions. Extensions of finite-time stability

to time-varying nonlinear dynamical systems are presented in [49, 81], whereas extensions

of finite-time stability to stochastic dynamical systems are reported in [29, 116]. Another

important stability notion in many engineering applications is partial stability, that is, sta-

bility with respect to part of the system’s states. In particular, partial stability arises in the

study of electromagnetics [120], inertial navigation systems [98], spacecraft stabilization via

gimballed gyroscopes and/or flywheels [102], combustion systems [7], vibrations in rotating

machinery [72], and biocenology [88], to cite but a few examples. As noted above, the need

to consider partial stability in the aforementioned systems arises from the fact that stability

notions involve equilibrium coordinates as well as a hyperplane of coordinates that is closed

but not compact. Hence, partial stability involves motion lying in a subspace instead of

an equilibrium point. Extensions of partial stability in probability to stochastic dynamical

systems are addressed in [55,71,96].

For deterministic dynamical systems, finite-time stabilization, that is, the problem of

finding state-feedback control laws that guarantee finite-time stability of the closed-loop sys-

tem, as well as the problem of partial-state stabilization, wherein stabilization with respect

to a subset of the system state variables is desired has been considered in the literature. In

particular, finite-time stabilization of second-order systems was considered in [16,50]. More

recently, researchers have considered finite-time stabilization of higher-order systems [51]

as well as finite-time stabilization using output feedback [52]. Design of globally strongly

stabilizing continuous controllers for linear and nonlinear systems using the theory of homo-

geneous systems was studied in [19,86].

Optimal control for finite-time stabilization is addressed in [48], whereas the universal

controller given by Sontag [99] is extended in [80] to design a feedback controller for finite-

time stabilization. Alternatively, discontinuous finite-time stabilizing feedback controllers

have also been developed in the literature [44, 90, 92]. However, for practical implementa-

tions, discontinuous feedback controllers can lead to chattering due to system uncertainty
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or measurement noise, and hence, may excite unmodeled high-frequency system dynam-

ics. Finally, the problems of partial-state stabilization as well as the combined finite-time,

partial-state stabilization problem for deterministic dynamical systems have also been ad-

dressed in the literature [69, 72, 102]. The problems of finite-time stochastic stabilization,

optimal finite-time stochastic stabilization, optimal partial-state stochastic stabilization, as

well as the combined probelm of optimal finite-time, partial-state stochastic stabilization have

not been addressed in the literature.

A closely related problem to optimal control is the optimal differential game problem.

Differential games have been studied in various contexts in the literature including risk-

sensitive control [38], mathematical finance [23, 26], communication networks [10], and net-

work resource allocation [61]. The pioneering work on the subject involved a determinis-

tic two-player, zero-sum differential game problem whose solution is characterized by the

Hamilton-Jacobi-Isaacs equation [36, 43, 56]. Building on this work, [40] were the first to

extend the two-player, zero-sum differential game problem to a stochastic setting and prove

that the lower and the upper value functions of this game satisfy the dynamic programming

principle. Specifically, they showed that the lower and the upper value functions of this

game are the unique viscosity solutions of the associated stochastic Hamilton-Jacobi-Isaacs

equation. Furthermore, they showed that these solutions coincide under the Isaacs minimax

condition. In [39], the authors extend the results of [40] by relaxing the minimax Isaacs

condition and considering a saddle point property that generates approximately optimal

control strategies for the maximizing and minimizing players. In particular, even though

both players choose specific strategies, in the upper game characterized by the upper value

function the strategies chosen by the minimizer are restricted to a subclass of Elliott-Kalton

strategies [40].

Many physical and engineering systems are open systems, that is, the system behavior

is described by an evolution law that involves the system state and the system input with,

possibly, an output equation wherein past trajectories together with the knowledge of any
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inputs define future trajectories (uniquely or nonuniquely) and the system output depends

on the instantaneous (present) values of the system state. Dissipativity theory is a system-

theoretic concept that provides a powerful framework for the analysis and control design of

open dynamical systems based on generalized system energy considerations. In particular,

dissipativity theory exploits the notion that numerous physical dynamical systems have

certain input-output and state properties related to conservation, dissipation, and transport

of mass and energy.

Such conservation laws are prevalent in dynamical systems, in general, and feedback

control systems, in particular. The dissipation hypothesis on dynamical systems results in

a fundamental constraint on the system dynamical behavior, wherein the stored energy of

a dissipative dynamical system is at most equal to sum of the initial energy stored in the

system and the total externally supplied energy to the system. Thus, the energy that can be

extracted from the system through its input-output ports is less than or equal to the initial

energy stored in the system, and hence, there can be no internal creation of energy; only

conservation or dissipation of energy is possible.

The key foundation in developing dissipativity theory for deterministic nonlinear dy-

namical systems with continuously differentiable flows was presented by Willems [107, 108]

in his seminal two-part paper on dissipative dynamical systems. In particular, Willems [107]

introduced the definition of dissipativity for general nonlinear dynamical systems in terms

of a dissipation inequality involving a generalized system power input, or supply rate, and a

generalized energy function, or storage function. The dissipation inequality implies that the

increase in generalized system energy over a given time interval cannot exceed the general-

ized energy supply delivered to the system during this time interval. The set of all possible

system storage functions is convex and every system storage function is bounded from below

by the available system storage and bounded from above by the required energy supply.

In light of the fact that energy notions involving conservation, dissipation, and transport

6



also arise naturally for dissipative diffusion processes, it seems natural that dissipativity the-

ory can play a key role in the analysis and control design of stochastic dynamical systems.

Specifically, as in the analysis of deterministic dynamical systems, dissipativity theory for

stochastic dynamical systems can involve conditions on drift and diffusion system parameters

that render an input, state, and output system dissipative. In addition, robust stability for

stochastic dynamical systems with stochastic uncertainty can be analyzed by viewing the

uncertain stochastic dynamical system as an interconnection of stochastic dissipative dynam-

ical subsystems. Alternatively, stochastic dissipativity theory can be used to design feedback

controllers that add dissipation and guarantee stability robustness in probability allowing

stochastic stabilization to be understood in physical terms. As for deterministic dynami-

cal systems [45], stochastic dissipativity theory can play a fundamental role in addressing

stochastic robustness [112], risk-sensitive disturbance rejection [77], stability in probabil-

ity of feedback interconnections, and optimality with averaged performance measurers for

stochastic dynamical systems.

Even though several notions of stochastic dissipativity have been considered in the litera-

ture [22,101,112,118], a general theory of stochastic dissipativity and stochastic losslessness

involving connections between input-output and state properties, which include the notable

special cases of stochastic passivity and stochastic finite-gain nonexpansivity using extended

Kalman-Yakubovich-Popov conditions in terms of the drift and diffusion terms in the sys-

tem dynamics, and stability in probability of general feedback interconnections has not been

addressed.

1.2. Brief Outline of the Dissertation

In this dissertation, we develop stochastic extensions for each of the aforementioned

topics. Specifically, in Chapter 2, we develop Lyapunov and converse Lyapunov theorems

for stochastic semistable nonlinear dynamical systems. In Chapter 3, we develop a unified
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framework to address the problem of optimal nonlinear analysis and feedback control for

nonlinear stochastic dynamical systems. Specifically, we provide a simplified and tutorial

framework for stochastic optimal control and focus on connections between stochastic Lya-

punov theory and stochastic Hamilton-Jacobi-Bellman theory. In Chapter 4, we develop a

unified framework to address the problem of optimal nonlinear analysis and feedback control

for partial stability and partial-state stabilization of stochastic dynamical systems. Par-

tial asymptotic stability in probability of the closed-loop nonlinear system is guaranteed by

means of a Lyapunov function that is positive definite and decrescent with respect to part

of the system state which can clearly be seen to be the solution to the steady-state form

of the stochastic Hamilton-Jacobi-Bellman equation, and hence, guaranteeing both partial

stability in probability and optimality.

In Chapter 5, we address finite-time partial stability in probability and uniform finite-

time partial stability in probability for nonlinear stochastic dynamical systems. Specifically,

we provide Lyapunov conditions involving a Lyapunov function that is positive definite and

decrescent with respect to part of the system state, and satisfies a differential inequality

involving fractional powers for guaranteeing finite-time partial stability in probability. In

Chapter 6, we consider a two-player stochastic differential game problem over an infinite time

horizon where the players invoke controller and stopper strategies on a nonlinear stochastic

differential game problem driven by Brownian motion. The optimal strategies for the two

players are given explicitly by exploiting connections between stochastic Lyapunov stability

theory and stochastic Hamilton-Jacobi-Isaacs theory. In Chapter 7, we develop stochastic

dissipativity theory for nonlinear dynamical systems using basic input-output and state prop-

erties. Specifically, a stochastic version of dissipativity using both an input-output as well

as a state dissipation inequality in expectation for controlled Markov diffusion processes is

presented. Finally, in Chapter 8, we give conclusions and discuss potential future extensions

of the developed research.

8



Chapter 2

Lyapunov and Converse Lyapunov Theorems

for Stochastic Semistability

2.1. Introduction

Using a notion of stochastic semistability, almost sure consensus of multiagent systems

under distributed nonlinear protocols over random networks, wherein the evolution of each

link of the random network follows a Markov process, is addressed in [119]. In this chapter,

we extend the notion of semistability to nonlinear stochastic systems that have a continuum

of equilibrium solutions. In particular, we develop almost sure convergence and stochastic

Lyapunov stability properties to address almost sure semistability requiring the trajectories

of a nonlinear stochastic dynamical system to converge almost surely to a set of equilibrium

solutions, wherein every equilibrium solution in the set is almost surely Lyapunov stable.

Furthermore, we provide necessary and sufficient Lyapunov conditions for semistability and

show that semistability implies the existence of a continuous Lyapunov function whose in-

finitesimal generator decreases along the dynamical system trajectories and is such that the

Lyapunov function satisfies inequalities involving the average distance to the set of equilibria.

2.2. Notation, Definitions, and Mathematical Preliminaries

In this section, we establish notation, definitions, and develop mathematical preliminaries

necessary for developing the results in this dissertation. Specifically, R denotes the set of
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real numbers, R+ denotes the set of positive real numbers, R+ denotes the set of nonnegative

numbers, Z+ denotes the set of positive integers, Rn denotes the set of n × 1 real column

vectors, Rn×m denotes the set of n×m real matrices, Nn denotes the set of n×n nonnegative-

definite matrices, and Pn denotes the set of n× n positive-definite matrices. We write Bε(x)

for the open ball centered at x with radius ε, ‖ · ‖ for the Euclidean vector norm, ‖ · ‖F for

the Frobenious matrix norm, AT for the transpose of the matrix A, ⊗ for the Kronecker

product, ⊕ for the Kronecker sum, and In or I for the n× n identity matrix. Furthermore,

Bn denotes the σ-algebra of Borel sets in D ⊆ Rn and S denotes a σ-algebra generated on

a set S ⊆ Rn.

We define a complete probability space as (Ω,F ,P), where Ω denotes the sample space,

F denotes a σ-algebra, and P defines a probability measure on the σ-algebra F ; that is, P is

a nonnegative countably additive set function on F such that P(Ω) = 1 [6]. Furthermore, we

assume that w(·) is a standard d-dimensional Wiener process defined by (w(·),Ω,F ,Pw0),

where Pw0 is the classical Wiener measure [83, p. 10], with a continuous-time filtration

{Ft}t≥0 generated by the Wiener process w(t) up to time t. We denote a stochastic dynamical

system by G generating a filtration {Ft}t≥0 adapted to the stochastic process x : R+×Ω→ D

on (Ω,F ,Px0) satisfying Fτ ⊂ Ft, 0 ≤ τ < t, such that {ω ∈ Ω : x(t, ω) ∈ B} ∈ Ft, t ≥ 0,

for all Borel sets B ⊂ Rn contained in the Borel σ-algebra Bn. Here we use the notation

x(t) to represent the stochastic process x(t, ω) omitting its dependence on ω.

We denote the set of equivalence classes of measurable, integrable, and square-integrable

Rn or Rn×m (depending on context) valued random processes on (Ω,F ,P) over the semi-

infinite parameter space [0,∞) by L0(Ω,F ,P), L1(Ω,F ,P), and L2(Ω,F ,P), respectively,

where the equivalence relation is the one induced by P-almost-sure equality. In particular,

elements of L0(Ω,F ,P) take finite values P-almost surely (a.s.). Hence, depending on the

context, Rn will denote either the set of n× 1 real variables or the subspace of L0(Ω,F ,P)

comprising of Rn random processes that are constant almost surely. All inequalities and

equalities involving random processes on (Ω,F ,P) are to be understood to hold P-almost
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surely. Furthermore, E[ · ] and Ex0 [ · ] denote, respectively, the expectation with respect to

the probability measure P and with respect to the classical Wiener measure Px0 .

Given x ∈ L0(Ω,F ,P), {x = 0} denotes the set {ω ∈ Ω : x(t, ω) = 0}, and so on. Given

x ∈ L0(Ω,F ,P) and E ∈ F , we say x is nonzero on E if P({x = 0} ∩ E) = 0. Furthermore,

given x ∈ L1(Ω,F ,P) and a σ-algebra E ⊆ F , EP[x] and EP[x|E ] denote, respectively, the

expectation of the random variable x and the conditional expectation of x given E , with all

moments taken under the measure P. Here, for simplicity of exposition, we omit the symbol

P in denoting expectation, and similarly for conditional expectation. Specifically, we denote

the expectation with respect to the probability space (Ω,F ,P) by E[ · ], and similarly for

conditional expectation.

A stochastic process x : R+ × Ω → D on (Ω,F ,Px0) is called a martingale with respect

to the filtration {Ft}t≥0 if and only if x(t) is a Ft-measurable random vector for all t ≥ 0,

E[x(t)] <∞, and x(τ) = E[x(t)|Fτ ] for all t ≥ τ ≥ 0. If we replace the equality in the above

equation with “≤” (resp., “≥”), then x(·) is a supermartingale (resp., submartingale). A

random variable τ : Ω → [0,∞] is called a stopping time with respect to Ft if and only if

{ω ∈ Ω : τ(ω) ≤ t} ∈ Ft, t ≥ 0.

Finally, we write tr(·) for the trace operator, (·)−1 for the inverse operator, V ′(x) , ∂V (x)
∂x

for the Fréchet derivative of V at x, V ′′(x) , ∂2V (x)
∂x2

for the Hessian of V at x, and Hn for

the Hilbert space of random vectors x ∈ Rn with finite average power, that is, Hn , {x :

Ω → Rn : E[xTx] < ∞}. For an open set D ⊆ Rn, HDn
4
= {x ∈ Hn : x : Ω → D} denotes

the set of all the random vectors in Hn induced by D. Similarly, for every x0 ∈ Rn, Hx0
n

4
=

{x ∈ Hn : x
a.s.
= x0}. Furthermore, C2 denotes the space of real-valued functions V : D → R

that are two-times continuously differentiable with respect to x ∈ D ⊆ Rn.

Definition 2.1 [63]. Let (S,S) and (T,T) be measurable spaces, and let µ : S×T→ R+.

If the function µ(s, B) is S-measurable in s ∈ S for a fixed B ∈ T and µ(s, B) is a probability

measure in B ∈ T for a fixed s ∈ S, then µ is called a (probability) kernel from S to T .
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Furthermore, for s ≤ t, the function µs,t : S×S→ R is called a regular conditional probability

measure if µs,t(·,S) is measurable, µs,t(S, ·) is a probability measure, and µs,t(·, ·) satisfies

µs,t(x(s), B) = P(x(t) ∈ B|x(s)) = P(x(t) ∈ B|Fs) a.s., x(·) ∈ Hn. (2.1)

Any family of regular conditional probability measures {µs,t}s≤t satisfying the Chapman-

Kolmogorov equation [6] is called a semigroup of Markov kernels. The Markov kernels are

called time homogeneous if and only if µs,t = µ0,t−s holds for all s ≤ t.

Consider the nonlinear stochastic dynamical system G given by

dx(t) = f(x(t))dt+D(x(t))dw(t), x(0)
a.s.
= x0, t ∈ Ix(0), (2.2)

where, for every t ∈ Ix0 , x(t) ∈ HDn is a Ft-measurable random state vector, x(0) ∈ Hx0
n , D ⊆

Rn is an open set with 0 ∈ D, w(·) is a d-dimensional independent standard Wiener process

(i.e., Brownian motion) defined on a complete filtered probability space (Ω,F , {Ft}t≥0,P),

x(0) is independent of (w(t)− w(0)), t ≥ 0, f : D → Rn and D : D → Rn×d are continuous,

E , f−1(0)∩D−1(0) , {x ∈ D : f(x) = 0 and D(x) = 0} is nonempty, and Ix(0) = [0, τx(0)),

0 ≤ τx(0) ≤ ∞, is the maximal interval of existence for the solution x(·) of (2.2). An

equilibrium point of (2.2) is a point xe ∈ Rn such that f(xe) = 0 and D(xe) = 0. It is

easy to see that xe is an equilibrium point of (2.2) if and only if the constant stochastic

process x(·) a.s.
= xe is a solution of (2.2). We denote the set of equilibrium points of (2.2) by

E , {ω ∈ Ω : x(t, ω) = xe} = {xe ∈ D : f(xe) = 0 and D(xe) = 0}.

The filtered probability space (Ω,F , {Ft}t≥0,P) is clearly a real vector space with addition

and scalar multiplication defined componentwise and pointwise. A Rn-valued stochastic

process x : [0, τ ] × Ω → D is said to be a solution of (2.2) on the time interval [0, τ ] with

initial condition x(0)
a.s.
= x0 if x(·) is progressively measurable (i.e., x(·) is nonanticipating

and measurable in t and ω) with respect to the filtration {Ft}t≥0, f ∈ L1(Ω,F ,P), D ∈

L2(Ω,F ,P), and

x(t) = x0 +

∫ t

0

f(x(σ))dσ +

∫ t

0

D(x(σ))dw(σ) a.s., t ∈ [0, τ ], (2.3)
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where the integrals in (2.3) are Itô integrals.

Note that for each fixed t ≥ 0, the random variable ω 7→ x(t, ω) assigns a vector x(ω) to

every outcome ω ∈ Ω of an experiment, and for each fixed ω ∈ Ω, the mapping t 7→ x(t, ω)

is the sample path of the stochastic process x(t), t ≥ 0. A pathwise solution t 7→ x(t)

of (2.2) in (Ω, {Ft}t≥0,Px0) is said to be right maximally defined if x cannot be extended

(either uniquely or nonuniquely) forward in time. We assume that all right maximal pathwise

solutions to (2.2) in (Ω, {Ft}t≥0,Px0) exist on [0,∞), and hence, we assume (2.2) is forward

complete. Sufficient conditions for forward completeness or global solutions of (2.2) are given

in [76].

Furthermore, we assume that f : D → Rn and D : D → Rn×d satisfy the uniform

Lipschitz continuity condition

‖f(x)− f(y)‖+ ‖D(x)−D(y)‖F ≤ L‖x− y‖, x, y ∈ D\{0}, (2.4)

and the growth restriction condition

‖f(x)‖2 + ‖D(x)‖2F ≤ L2(1 + ‖x‖2), x ∈ D\{0}, (2.5)

for some Lipschitz constant L > 0, and hence, since x(0) ∈ HDn and x(0) is independent of

(w(t) − w(0)), t ≥ 0, it follows that there exists a unique solution x ∈ L2(Ω,F ,P) of (2.2)

forward in time for all initial conditions in the following sense. For every x ∈ HDn \{0} there

exists τx > 0 such that, if x1 : [0, τ1] × Ω → D and x2 : [0, τ2] × Ω → D are two solutions

of (2.2); that is, if x1, x2 ∈ L2(Ω,F ,P), with continuous sample paths almost surely, solve

(2.2), then τx ≤ min{τ1, τ2} and P
(
x1(t) = x2(t), 0 ≤ t ≤ τx

)
= 1.

A weaker sufficient condition for the existence of a unique solution to (2.2) using a notion

of (finite or infinite) escape time under the local Lipschitz continuity condition (2.4) without

the growth condition (2.5) is given in [113]. Moreover, the unique solution determines a Rn-

valued, time-homogeneous Feller continuous Markov process x(·), and hence, its stationary
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Feller transition probability function is given by
(
[67, Thm. 3.4], [6, Thm. 9.2.8]

)
P(x(t) ∈ B|x(t0)

a.s.
= x0) = P(0, x0, t− t0, B), x0 ∈ Rn, (2.6)

for all t ≥ t0 and all Borel subsets B of Rn, where P(σ, x, t,B), t ≥ σ, denotes the probability

of transition of the point x ∈ Rn at time instant s into the set B ⊂ Rn at time instant

t. Recall that every continuous process with Feller transition probability function is also

a strong Markov process [67, p. 101]. Finally, we say that the dynamical system (2.2) is

convergent in probability with respect to the closed set HDc
n ⊆ HDn if and only if the pointwise

limt→∞ s(t, x) exists for every x ∈ HDc
n .

Definition 2.2. A point p ∈ D is a limit point of the trajectory s(·, x) of (2.2) if there

exists a monotonic sequence {tn}∞n=0 of positive numbers, with tn → ∞ as n → ∞ , such

that s(tn, x)
a.s.→ p as n→∞. The set of all limit points of s(t, x), t ≥ 0, is the limit set ω(x)

of s(·, x) of (2.2).

Definition 2.3 [83, Def. 7.7]. Let x(·) be a time-homogeneous Markov process in HDn

and let V : D → R. Then the infinitesimal generator L of x(t), t ≥ 0, with x(0)
a.s.
= x0, is

defined by

LV (x0)
4
= lim

t→0+

Ex0 [V (x(t))]− V (x0)

t
, x0 ∈ D, (2.7)

where Ex0 denotes the expectation with respect to the probability measure Px0(x(t) ∈ B) ,

P(0, x0, t,B).

If V ∈ C2 and has a compact support, and x(t), t ≥ 0, satisfies (2.2), then the limit in

(2.7) exists for all x ∈ D and the infinitesimal generator L of x(t), t ≥ 0, can be characterized

by the system drift and diffusion functions f(x) and D(x) defining the stochastic dynamical

system (2.2) and is given by ([83, Thm. 7.9])

LV (x)
4
=
∂V (x)

∂x
f(x) +

1

2
tr DT(x)

∂2V (x)

∂x2
D(x), x ∈ D. (2.8)
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Definition 2.4 [75]. An open set D ⊂ Rn is said to be invariant with respect to (2.2) if,

for all x0 ∈ D, P (x(t) ∈ D) = 1, t ≥ 0.

The following definition introduces several notions of stability in probability.

Definition 2.5 [67, 75]. i) The equilibrium solution x(t)
a.s.≡ xe to (2.2) is Lyapunov stable

in probability if, for every ε > 0,

lim
x0→xe

Px0
(

sup
t≥0
‖x(t)− xe‖ > ε

)
= 0. (2.9)

Equivalently, the equilibrium solution x(t)
a.s.≡ xe to (2.2) is Lyapunov stable in probability

if, for every ε > 0 and ρ ∈ (0, 1), there exist δ = δ(ρ, ε) > 0 such that, for all x0 ∈ Bδ(xe),

Px0
(

sup
t≥0
‖x(t)− xe‖ > ε

)
≤ ρ. (2.10)

ii) The equilibrium solution x(t)
a.s.≡ xe to (2.2) is asymptotically stable in probability if it

is Lyapunov stable in probability and

lim
x0→xe

Px0
(

lim
t→∞
‖x(t)− xe‖ = 0

)
= 1. (2.11)

Equivalently, the equilibrium solution x(t)
a.s.≡ xe to (2.2) is asymptotically stable in proba-

bility if it is Lyapunov stable in probability and, for every ρ ∈ (0, 1), there exist δ = δ(ρ) > 0

such that if x0 ∈ Bδ(xe), then

Px0
(

lim
t→∞
‖x(t)− xe‖ = 0

)
≥ 1− ρ. (2.12)

iii) The equilibrium solution x(t)
a.s.≡ xe to (2.2) is globally asymptotically stable in prob-

ability if it is Lyapunov stable in probability and, for all x0 ∈ Rn,

Px0
(

lim
t→∞
‖x(t)‖ = 0

)
= 1. (2.13)

iv) The equilibrium solution x(t)
a.s.≡ xe to (2.2) is exponentially p-stable in probability if

there exist scalars α, β, and δ > 0, and p ≥ 1 such that if x0 ∈ Bδ(xe), then

Ex0 [‖x(t)‖p] ≤ α‖x0‖pe−βt. (2.14)
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If, in addition, (2.14) holds for all x0 ∈ Rn, then the equilibrium solution x(t)
a.s.≡ xe to

(2.2) is globally exponentially p-stable in probability. Finally, if p = 2, then we say that

the equilibrium solution x(t)
a.s.≡ xe to (2.2) is (globally) exponentially mean square stable in

probability.

The following lemma gives an equivalent characterization of Lyapunov and asymptotic

stability in probability in terms of class K, K∞, and KL functions. For the definitions of

class K, K∞, and KL functions see [45, p.162].

Lemma 2.1. i) The equilibrium solution x(t)
a.s.≡ xe to (2.2) is Lyapunov stable in prob-

ability if and only if for every ρ > 0 there exist a class K function αρ(·) and a constant

c = c(ρ) > 0 such that, for all x0 ∈ Bc(xe),

Px0 (‖x(t)− xe‖ > αρ(‖x0 − xe‖)) ≤ ρ, t ≥ 0. (2.15)

ii) The equilibrium solution x(t)
a.s.≡ xe to (2.2) is asymptotically stable in probability if

and only if for every ρ > 0 there exist a class KL function βρ(·, ·) and a constant c = c(ρ) > 0

such that, for all x0 ∈ Bc(xe),

Px0 (‖x(t)− xe‖ > βρ(‖x0 − xe‖, t)) ≤ ρ, t ≥ 0. (2.16)

Proof. i) Suppose there exist a class K function αρ(·) and a constant c = c(ρ) > 0 such

that, for every ρ > 0 and x0 ∈ Bc(xe),

Px0 (‖x(t)− xe‖ > αρ(‖x0 − xe‖)) ≤ ρ, t ≥ 0. (2.17)

Now, given ε > 0, let δ(ρ, ε) = min{c(ρ), α−1ρ (ε)}. Then, for x0 ∈ Bδ(xe) and t ≥ 0,

Px0 (‖x(t)− xe‖ > αρ(‖x0 − xe‖)) ≥ Px0 (‖x(t)− xe‖ > αρ(δ))

≥ Px0
(
‖x(t)− xe‖ > αρ(α

−1
ρ (ε))

)
≥ Px0 (‖x(t)− xe‖ > ε) .
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Therefore, for every given ε > 0 and ρ > 0, there exists δ > 0 such that, for all x0 ∈ Bδ(xe),

Px0
(

sup
t≥0
‖x(t)− xe‖ > ε

)
≤ ρ,

which proves that the equilibrium solution x(t)
a.s.≡ xe is Lyapunov stable in probability.

Conversely, for every given ε and ρ, let δ̄(ε, ρ) be the supremum of all admissible δ(ε, ρ).

Note that the function δ(·, ·) is positive and nondecreasing in its first argument, but not

necessarily continuous. For every ρ > 0 chose a class K function γρ(r) such that γρ(r) ≤

kδ̄(r, ρ), 0 < k < 1. Let c(ρ) = limr→∞ γρ(r) and αρ(r) = γ−1ρ (r), and note that αρ(·) is class

K [66, Lemma 4.2]. Next, for every ρ > 0 and x0 ∈ Bc(ρ)(xe), let ε = αρ(‖x0 − xe‖). Then,

‖x0 − xe‖ < δ̄(ε, ρ) and

Px0
(

sup
t≥0
‖x(t)− xe‖ > ε

)
≤ ρ (2.18)

implies

Px0 (‖x(t)− xe‖ > αρ(‖x0 − xe‖)) ≤ ρ, t ≥ 0. (2.19)

ii) Suppose there exists a class KL function β(r, s) such that (2.16) is satisfied. Then,

Px0 (‖x(t)− xe‖ > βρ(‖x0 − xe‖, 0)) ≤ ρ, t ≥ 0,

which implies that equilibrium solution x(t)
a.s.≡ xe is Lyapunov stable in probability. More-

over, for x0 ∈ Bc(ρ)(xe), the solution to (2.2) satisfies

Px0 (‖x(t)− xe‖ > βρ(‖c(ρ)‖, t)) ≤ ρ, t ≥ 0.

Now, letting t → ∞ yields Px0 (limt→∞ ‖x(t)− xe‖ > 0) ≤ ρ for every ρ > 0, and hence,

Px0 (limt→∞ ‖x(t)− xe‖ = 0) ≥ 1− ρ, which implies that the equilibrium solution x(t)
a.s.≡ xe

is asymptotically stable in probability.

Conversely, suppose that the equilibrium solution x(t)
a.s.≡ xe is asymptotically stable in

probability. In this case, for every ρ > 0 there exist a constant c(ρ) > 0 and a class K

function αρ(·) such that, for every r ∈ (0, c(ρ)], the solution x(t), t ≥ 0, to (2.2) satisfies

Px0
(

sup
t≥0
‖x(t)− xe‖ > αρ(r)

)
≤ Px0

(
sup
t≥0
‖x(t)− xe‖ > αρ(‖x0 − xe‖)

)
≤ ρ (2.20)
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for all ‖x0 − xe‖ < r. Moreover, given η > 0 there exists T = Tρ(η, r) ≥ 0 such that

Px0
(

sup
t≥Tρ(η,r)

‖x(t)− xe‖ > η

)
≤ ρ.

Let T ρ(η, r) be the infimum of all admissible Tρ(η, r) and note that T ρ(η, r) is nonnegative

and nonincreasing in η, nondecreasing in r, and T ρ(η, r) = 0 for all η ≥ α(r). Now, let

Wr,ρ(η) =
2

η

∫ η

η
2

T ρ(s, r)ds+
r

η
≥ T ρ(η, r) +

r

η

and note that Wr,ρ(η) is positive and has the following properties: i) For every fixed r and

ρ, Wr,ρ(η) is continuous, strictly decreasing, and limη→∞Wr,ρ(η) = 0; and ii) for every fixed

η and ρ, Wr,ρ(η) is strictly increasing in r.

Next, let Ur,ρ = W−1
r,ρ and note that Ur,ρ satisfies properties i) and ii) of Wr,ρ, and

T ρ(Ur,ρ(σ), r) < Wr,ρ(Ur,ρ(σ)) = σ. Therefore,

Px0 (‖x(t)− xe‖ > Ur,ρ(t)) ≤ ρ, t ≥ 0, (2.21)

for all ‖x0 − xe‖ < r. Now, using (2.20) and (2.21) it follows that

Px0
(
‖x(t)− xe‖ >

√
αρ(‖x0 − xe‖)Uc(ρ),ρ(t)

)
≤ ρ, ‖x0 − xe‖ < c(ρ), t ≥ 0.

Thus, inequality (2.16) is satisfied with βρ(‖x0 − xe‖, t) =
√
αρ(‖x0 − xe‖)Uc(ρ),ρ(t).

The following proposition gives a sufficient condition for a trajectory of (2.2) to converge

to a limit point. For this result, Dc ⊆ D denotes a positively invariant set with respect to

(2.2) and st(HDc
n ) denotes the image of HDc

n ⊂ HDn under the flow st : HDc
n → HDn ; that is,

st(HDc
n )

4
= {y : y = st(x0) for some x(0)

a.s.
= x0 ∈ HDc

n } .

Proposition 2.1. Consider the nonlinear stochastic dynamical system (2.2) and let x ∈

HDc
n . If the limit set ω(x) of (2.2) contains a Lyapunov stable in probability equilibrium

point y, then y
a.s.
= limt→∞ s(t, x) as x→ y, that is, ω(x)

a.s.
= {y} as x→ y.

Proof. Suppose y ∈ ω(x) is Lyapunov stable in probability and let Nε ⊆ Dc be an

open neighborhood of y. Since y is Lyapunov stable in probability, there exists an open
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neighborhood Nδ ⊂ Dc of y such that st(HNδn ) ⊆ HNεn as x→ y for every t ≥ 0. Now, since

y ∈ ω(x), it follows that there exists τ ≥ 0 such that s(τ, x) ∈ HNδn . Hence, s(t + τ, x) =

st(s(τ, x)) ∈ st(HNδn ) ⊆ HNεn for every t > 0. Since Nε ⊆ Dc is arbitrary, it follows that

y
a.s.
= limt→∞ s(t, x). Thus, limn→∞ s(tn, x)

a.s.
= y as x → y for every sequence {tn}∞n=1, and

hence, ω(x)
a.s.
= {y} as x→ y.

The following definition introduces the notion of stochastic semistability. For the state-

ment of this definition define dist(x, E) , infy∈E ‖x− y‖.

Definition 2.6. An equilibrium solution x(t)
a.s.≡ xe ∈ E of (2.2) is stochastically semistable

if the following statements hold.

i) For every ε > 0, limx0→xe Px0
(
sup0≤t<∞ ‖x(t)− xe‖ > ε

)
= 0. Equivalently, for every

ε > 0 and ρ ∈ (0, 1), there exist δ = δ(ε, ρ) > 0 such that, for all x0 ∈ Bδ(xe),

Px0
(
sup0≤t<∞ ‖x(t)− xe‖ > ε

)
≤ ρ.

ii) limdist(x0,E)→0 Px0 (limt→∞ dist(x(t), E) = 0) = 1. Equivalently, for every ρ > 0, there

exist δ = δ(ρ) > 0 such that if dist(x0, E) ≤ δ, then Px0 (limt→∞ dist(x(t), E) = 0) ≥

1− ρ.

The dynamical system (2.2) is stochastically semistable if every equilibrium solution of (2.2)

is stochastically semistable. Finally, the dynamical system (2.2) is globally stochastically

semistable if i) holds and Px0 (limt→∞ dist(x(t), E) = 0) = 1 for all x0 ∈ Rn.

Remark 2.1. If x(t)
a.s.≡ xe ∈ E only satisfies i) in Definition 2.6, then the equilibrium

solution x(t)
a.s.≡ xe ∈ E of (2.2) is Lyapunov stable in probability.

Definition 2.7. For ρ ∈ (0, 1), the ρ-domain of semistability is the set of points x0 ∈ D

such that if x(t), t ≥ 0, is a solution to (2.2) with x(0)
a.s.
= x0, then x(t) converges to a

Lyapunov stable in probability equilibrium point in D with probability greater than or equal

to 1− ρ.
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Note that if (2.2) is stochastically semistable, then its ρ-domain of semistability contains

the set of equilibria in its interior. Next, we present alternative equivalent characterizations

for stochastic semistability of (2.2).

Proposition 2.2. Consider the nonlinear stochastic dynamical system G given by (2.2).

Then the following statements are equivalent:

i) G is stochastically semistable.

ii) For every xe ∈ E and ρ > 0, there exist class K and L functions αρ(·) and βρ(·),

respectively, and δ = δ(xe, ρ) > 0 such that, if x0 ∈ Bδ(xe), then

Px0 (‖x(t)− xe‖ > αρ(‖x0 − xe‖)) ≤ ρ, t ≥ 0

and Px0 (dist(x(t), E) > βρ(t)) ≤ ρ, t ≥ 0.

iii) For every xe ∈ E and ρ > 0, there exist class K functions α1ρ(·) and α2ρ(·), a class L

function βρ(·), and δ = δ(xe, ρ) > 0 such that, if x0 ∈ Bδ(xe), then

Px0 (dist(x(t), E) > α2ρ(‖x0 − xe‖)βρ(t))

≤ Px0 (α1ρ(‖x(t)− xe‖) > α2ρ(‖x0 − xe‖)) ≤ ρ, t ≥ 0.

Proof. To show that i) implies ii), suppose (2.2) is stochastically semistable and let

xe ∈ E . It follows from Lemma 2.1 that for every ρ > 0 there exists δ = δ(xe, ρ) > 0 and a

class K function αρ(·) such that if ‖x0−xe‖ ≤ δ, then Px0 (‖x(t)− xe‖ > αρ(‖x0 − xe‖)) ≤ ρ,

t ≥ 0. Without loss of generality, we may assume that δ is such that Bδ(xe) is contained in

the ρ-domain of semistability of (2.2). Hence, for every x0 ∈ Bδ(xe), limt→∞ x(t)
a.s.
= x∗ ∈ E

and, consequently, Px0 (limt→∞ dist(x(t), E) = 0) = 1.

For every ε > 0, ρ > 0, and x0 ∈ Bδ(xe), define Tx0(ε, ρ) to be the infimum of T with the

property that Px0
(
supt≥T dist(x(t), E) > ε

)
≤ ρ, that is,

Tx0(ε, ρ) , inf

{
T : Px0

(
sup
t≥T

dist(x(t), E) > ε

)
≤ ρ

}
.
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For each x0 ∈ Bδ(xe) and ρ, the function Tx0(ε, ρ) is nonnegative and nonincreasing in ε, and

Tx0(ε, ρ) = 0 for sufficiently large ε.

Next, let T (ε, ρ) , sup{Tx0(ε, ρ) : x0 ∈ Bδ(xe)}. We claim that T is well defined. To show

this, consider ε > 0, ρ > 0, and x0 ∈ Bδ(xe). Since Px0
(

supt≥Tx0 (ε,ρ) dist(x(t), E) > ε
)
≤ ρ,

it follows from the sample continuity of s that, for every ε > 0 and ρ > 0, there exists

an open neighborhood U of x0 such that Px0
(
supt≥Tz(ε,ρ) dist(s(t, z), E) > ε

)
≤ ρ for every

z ∈ U . Hence, lim supz→x0 Tz(ε, ρ) ≤ Tx0(ε, ρ) implying that the function x0 7→ Tx0(ε, ρ)

is upper semicontinuous at the arbitrarily chosen point x0, and hence on Bδ(xe). Since an

upper semicontinuous function defined on a compact set achieves its supremum, it follows

that T (ε, ρ) is well defined. The function T (·) is the pointwise supremum of a collection

of nonnegative and nonincreasing functions, and hence is nonnegative and nonincreasing.

Moreover, T (ε, ρ) = 0 for every ε > max{αρ(‖x0 − xe‖) : x0 ∈ Bδ(xe)}.

Let ψρ(ε) , 2
ε

∫ ε
ε/2
T (σ, ρ)dσ+ 1

ε
≥ T (ε, ρ)+ 1

ε
. The function ψρ(ε) is positive, continuous,

strictly decreasing, and ψρ(ε) → 0 as ε → ∞. Choose βρ(·) = ψ−1(·). Then βρ(·) is

positive, continuous, strictly decreasing, and limσ→∞ βρ(σ) = 0. Furthermore, T (βρ(σ), ρ) <

ψρ(βρ(σ)) = σ. Hence, Px0 (dist(x(t), E) > βρ(t)) ≤ ρ, t ≥ 0.

Next, to show that ii) implies iii), suppose ii) holds and let xe ∈ E . Then it follows from

i) of Lemma 2.1 that xe is Lyapunov stable in probability. For every ρ > 0, choosing x0

sufficiently close to xe, it follows from the inequality Px0 (‖x(t)− xe‖ > αρ(‖x0 − xe‖)) ≤ ρ,

t ≥ 0, that trajectories of (2.2) starting sufficiently close to xe are bounded, and hence,

the positive limit set of (2.2) is nonempty. Since Px0 (limt→∞ dist(x(t), E) = 0) = 1 as

dist(x0, E) → 0, it follows that the positive limit set is contained in E as dist(x0, E) → 0.

Now, since every point in E is Lyapunov stable in probability, it follows from Proposition 2.1

that limt→∞ x(t)
a.s.
= x∗ as x0 → x∗, where x∗ ∈ E is Lyapunov stable in probability. If

x∗ = xe, then it follows using similar arguments as above that there exists a class L func-

tion β̂ρ(·) such that Px0
(

dist(x(t), E) > β̂ρ(t)
)
≤ Px0

(
‖x(t)− xe‖ > β̂ρ(t)

)
≤ ρ for every x0
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satisfying ‖x0 − xe‖ < δ and t ≥ 0. Hence, Px0
(

dist(x(t), E) >
√
‖x(t)− xe‖

√
β̂ρ(t)

)
≤ ρ,

t ≥ 0. Next, consider the case where x∗ 6= xe and let α1ρ(·) be a class K function. In

this case, note that Px0 (limt→∞ dist(x(t), E)/α1ρ(‖x(t)− xe‖) = 0) ≥ 1 − ρ, and hence, it

follows using similar arguments as above that there exists a class L function βρ(·) such that

Px0
(
dist(x(t), E) > α1ρ(‖x(t) − xe‖)βρ(t)

)
≤ ρ, t ≥ 0. Finally, note that α1ρ ◦ αρ is of class

K (by [66, Lemma 4.2]), and hence, iii) follows immediately.

Finally, to show that iii) implies i), suppose iii) holds and let xe ∈ E . Then it follows that

for every ρ > 0, Px0 (α1ρ(‖x(t)− xe‖) > α2ρ(‖x(0)− xe‖)) ≤ ρ, t ≥ 0, that is, Px0 [‖x(t) −

xe‖ > αρ(‖x(0) − xe‖)] ≤ ρ, where t ≥ 0 and αρ = α1ρ
−1 ◦ α2ρ is of class K (by [66,

Lemma 4.2]). It now follows from i) of Lemma 2.1 that xe is Lyapunov stable in probability.

Since xe was chosen arbitrarily, it follows that every equilibrium point is Lyapunov stable

in probability. Furthermore, Px0 (limt→∞ dist(x(t), E) = 0) ≥ 1− ρ. Choosing x0 sufficiently

close to xe, it follows from the inequality Px0 (‖x(t)− xe‖ > αρ(‖x0 − xe‖)) ≤ ρ, t ≥ 0, that

trajectories of (2.2) are almost sure bounded as x0 → xe, and hence, the positive limit set

of (2.2) is nonempty as x0 → xe. Since every point in E is Lyapunov stable in probability, it

follows from Proposition 2.1 that limt→∞ x(t)
a.s.
= x∗ as x0 → x∗, where x∗ ∈ E is Lyapunov

stable in probability. Hence, by Definition 2.6, (2.2) is stochastically semistable.

2.3. Stochastic Semistability of Nonlinear Dynamical Systems

In this section, we develop necessary and sufficient conditions for stochastic semistability.

First, we present a sufficient condition for stochastic semistability.

Theorem 2.1. Consider the nonlinear stochastic dynamical system (2.2). Let Q be an

open neighborhood of E and assume that there exists a two-times continuously differentiable

function V : Q → R+ such that

V ′(x)f(x) +
1

2
tr DT(x)V ′′(x)D(x) < 0, x ∈ Q\E . (2.22)
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If every equilibrium point of (2.2) is Lyapunov stable in probability, then (2.2) is stochasti-

cally semistable. Moreover, if Q = Rn and V (x) → ∞ as ‖x‖ → ∞, then (2.2) is globally

stochastically semistable.

Proof. Since every equilibrium point of (2.2) is Lyapunov stable in probability by as-

sumption, for every z ∈ E , there exists an open neighborhood Vz of z such that s([0,∞) ×

Vz ∩ Bε(z)), ε > 0, is bounded and contained in Q as ε→ 0. The set Vε ,
⋃
z∈E Vz ∩ Bε(z),

ε > 0, is an open neighborhood of E contained in Q. Consider x ∈ Vε so that there exists

z ∈ E such that x ∈ Vz ∩ Bε(z) and s(t, x) ∈ HVz∩Bε(z)n , t ≥ 0, as ε→ 0. Since Vz ∩ Bε(z) is

bounded and invariant with respect to the solution of (2.2) as ε → 0, it follows that Vε is

invariant with respect to the solution of (2.2) as ε→ 0. Furthermore, it follows from (2.22)

that LV (s(t, x)) < 0, t ≥ 0, and hence, since Vε is bounded it follows from [75, Cor. 4.1]

that limt→∞ LV (s(t, x))
a.s.
= 0 as ε→ 0.

It is easy to see that LV (x) 6= 0 by assumption and LV (xe) = 0, xe ∈ E . Therefore,

s(t, x)
a.s.→ E as t→∞ and ε→ 0, which implies that limdist(x,E)→0 Px(limt→∞ dist(s(t, x), E) =

0) = 1. Finally, since every point in E is Lyapunov stable in probability, it follows from

Proposition 2.1 that limt→∞ s(t, x)
a.s.
= x∗ as x → x∗, where x∗ ∈ E is Lyapunov stable in

probability. Hence, by Definition 2.6, (2.2) is semistable. For Q = Rn global stochastic

semistability follows from identical arguments using the radially unbounded condition on

V (·).

Next, we present a slightly more general theorem for stochastic semistability wherein we

do not assume that all points in LV −1(0) are Lyapunov stable in probability but rather we

assume that all points in (η◦V )−1(0) are Lyapunov stable in probability for some continuous

function η : R+ → R+.

Theorem 2.2. Consider the nonlinear stochastic dynamical system (2.2) and let Q be

an open neighborhood of E . Assume that there exists a two-times continuously differentiable
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function V : Q → R+ and a continuous function η : R+ → R+ such that

V ′(x)f(x) +
1

2
tr DT(x)V ′′(x)D(x) ≤ −η(V (x)), x ∈ Q. (2.23)

If every point in the setM 4
= {x ∈ Q : η(V (x)) = 0} is Lyapunov stable in probability, then

(2.2) is stochastically semistable. Moreover, if Q = Rn and V (x) → ∞ as ‖x‖ → ∞, then

(2.2) is globally stochastically semistable.

Proof. Since, by assumption, (2.2) is Lyapunov stable in probability for all z ∈ M,

there exists an open neighborhood Vz of z such that s([0,∞) × Vz ∩ Bε(z)), ε > 0, is

bounded and contained in Q as ε → 0. The set Vε ,
⋃
z∈M Vz ∩ Bε(z) is an open neigh-

borhood of M contained in Q. Consider x ∈ Vε so that there exists z ∈ M such that

x ∈ Vz ∩ Bε(z) and s(t, x) ∈ HVz∩Bε(z)n , t ≥ 0, as ε → 0. Since Vz is bounded it follows

that Vε is invariant with respect to the solution of (2.2) as ε → 0. Furthermore, it follows

from (2.23) that LV (s(t, x)) ≤ −η(V (s(t, x))), t ≥ 0, and hence, since Vε is bounded and

invariant with respect to the solution of (2.2) as ε → 0, it follows from [75, Cor. 4.2] that

limt→∞ η(V (s(t, x)))
a.s.
= 0 as ε → 0. Therefore, s(t, x)

a.s.→ M as t → ∞ and ε → 0, which

implies that limdist(x,M)→0 Px (limt→∞ dist(s(t, x),M) = 0) = 1. Finally, since every point in

M is Lyapunov stable in probability, it follows from Proposition 2.1 that limt→∞ s(t, x)
a.s.
= x∗

as x → x∗, where x∗ ∈ M is Lyapunov stable in probability. Hence, by definition, (2.2) is

semistable. For Q = Rn global stochastic semistability follows from identical arguments

using the radially unbounded condition on V (·).

Example 2.1. Consider the nonlinear stochastic dynamical system on H2 given by

dx1(t) = [σ12(x2(t))− σ21(x1(t))]dt+ γ(x2(t)− x1(t))dw(t), x1(0)
a.s.
= x10, t ≥ 0, (2.24)

dx2(t) = [σ21(x1(t))− σ12(x2(t))]dt+ γ(x1(t)− x2(t))dw(t), x2(0)
a.s.
= x20, (2.25)

where σij(·), i, j = 1, 2, i 6= j, ar continuous and γ > 0. Equations (2.24) and (2.25)

represent the collective dynamics of two agents which interact by exchanging information.
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The information states of the agents are described by the scalar random variables x1 and

x2. The unity coefficients scaling σij(·), i, j ∈ {1, 2}, i 6= j, appearing in (2.24) and (2.25)

represent the topology of the information exchange between the agents. More specifically,

given i, j ∈ {1, 2}, i 6= j, a coefficient of 1 denotes that agent j receives information from

agent i, and a coefficient of zero denotes that agent i and j are disconnected, and hence,

cannot share any information.

The communication topology between the agents can be represented by a graph G having

two nodes such that G has a directed edge from node i to node j if and only if agent

j can receive information from agent i. Since the coefficients scaling σij(·), i, j ∈ {1, 2},

i 6= j, are constants, the communication topology is fixed. Furthermore, note that the

directed communication graph G is weakly connected since the underlying undirected graph

is connected; that is, every agent receives information from, or delivers information to, at

least one other agent.

Note that (2.24) and (2.25) can be cast in the form of (2.2) with

f(x) =

[
σ12(x2)− σ21(x1)
σ21(x1)− σ12(x2)

]
, D(x) =

[
γ(x2 − x1)
γ(x1 − x2)

]
,

where the stochastic term D(x)dw represents probabilistic variations in the information

transfer between the agents. Furthermore, note that since

eT
2 dx(t) = eT

2 f(x(t))dt+ eT
2D(x(t))dw(t) = 0, x(0)

a.s.
= x0, t ≥ 0,

where e2 , [1 1]T, it follows that dx1(t)+dx2(t) = 0, which implies that the total information

is conserved.

In this example, we use Theorem 2.1 to analyze the collective behavior of (2.24) and

(2.25). Specifically, we are interested in the consensus (i.e., state equipartitioning) behavior

of the agents. For this purpose, we make the assumptions σij(xj) − σji(xi) = 0 if and only

if xi = xj, i 6= j, and (xi − xj)[σij(xj) − σji(xi)] ≤ −γ2(x1 − x2) for i, j ∈ {1, 2}. The

first assumption implies that if the information (or energies) in the connected agents i and j
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are equal, then information exchange between the agents is not possible. This statement is

reminiscent of the zeroth law of thermodynamics, which postulates that temperature equality

is a necessary and sufficient condition for thermal equilibrium. The second assumption

implies that information flows from information rich agents to information poor agents and

is reminiscent of the second law of thermodynamics, which states that heat (energy) must flow

in the direction of lower temperatures. It is important to note that due to the stochastic term

D(x)dw capturing probabilistic variations in the information transfer between the agents,

the second assumption requires that the scaled net information flow (xi−xj)[σij(xj)−σji(xi)]

is bounded by the negative intensity of the diffusion coefficient given by 1
2
tr D(x)DT(x).

To show that (2.24) and (2.25) is stochastically semistable, note that E 4
= f−1(0) ∩

D−1(0) = {(x1, x2) ∈ R2 : x1 = x2 = α, α ∈ R} and consider the Lyapunov function

candidate V (x1, x2) = 1
2
(x1 − α)2 + 1

2
(x2 − α)2, where α ∈ R. Now, it follows that

LV (x1, x2) = (x1 − α)[σ12(x2)− σ21(x1)] + (x2 − α)[σ21(x1)− σ12(x2)]

+1
2
[(γ(x2 − x1))2 + (γ(x1 − x2))2]

= x1[σ12(x2)− σ21(x1)] + x2[σ21(x1)− σ12(x2)] + (γ(x1 − x2))2

= (x1 − x2)[σ12(x2)− σ21(x1) + γ2(x1 − x2)]

≤ 0, (x1, x2) ∈ R× R, (2.26)

which implies that x1 = x2 = α is Lyapunov stable in probability.

Next, it is easy to see that LV (x1, x2) 6= 0 when x1 6= x2, and hence, LV (x1, x2) < 0,

(x1, x2) ∈ R2\E . Therefore, it follows from Theorem 2.1 that x1 = x2 = α is stochastically

semistable for all α ∈ R. Furthermore, x(t)
a.s.→ 1

2
e2e

T
2 x(0)

a.s.
= 1

2
[x1(0) + x2(0)]e2 as t → ∞.

Note that an identical assertion holds for the collective dynamics of n agents with a connected

undirected communication graph topology. 4

Finally, we provide a converse Lyapunov theorem for stochastic semistability. For this

result, recall that LV (xe) = 0 for every xe ∈ E . Also note that it follows from (2.7) that
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LV (x) = LV (s(0, x)).

Theorem 2.3. Consider the nonlinear stochastic dynamical system (2.2). Suppose (2.2)

is stochastically semistable with a ρ-domain of semistability D0. Then there exist a continu-

ous nonnegative function V : D0 → R+ and a class K∞ function α(·) such that i) V (x) = 0,

x ∈ E , ii) V (x) ≥ α(dist(x, E)), x ∈ D0, and iii) LV (x) < 0, x ∈ D0\E .

Proof. Let Bx0 denote the set of all sample trajectories of (2.2) for which limt→∞ dist(x(t,

ω), E) = 0 and x({t ≥ 0}, ω) ∈ Bx0 , ω ∈ Ω, and let 1Bx0 (ω), ω ∈ Ω, denote the indicator

function defined on the set Bx0 , that is,

1Bx0 (ω)
4
=

{
1, if x({t ≥ 0}, ω) ∈ Bx0 ,
0, otherwise.

Note that by definition Px0 (Bx0) ≥ 1− ρ for all x0 ∈ D0. Define the function V : D0 → R+

by

V (x) , sup
t≥0

{
1 + 2t

1 + t
E [dist(s(t, x), E)1Bx(ω)]

}
, x ∈ D0, (2.27)

and note that V (·) is well defined since (2.2) is stochastically semistable. Clearly, i) holds.

Furthermore, since V (x) ≥ dist(x, E), x ∈ D0, it follows that ii) holds with α(r) = r.

To show that V (·) is continuous on D0\E , define T : D0\E → [0,∞) by T (z) , inf{h :

E [dist(s(h, z), E)1Bz(ω)] < dist(z, E)/2 for all t ≥ h > 0}, and denote

Wε ,

{
x ∈ D0 : Px

(
sup
t≥0

dist(s(t, x), E) ≤ ε

)
≥ 1− ρ

}
. (2.28)

Note that Wε ⊃ E is open and contains an open neighborhood of E . Consider z ∈ D0\E and

define λ , dist(z, E) > 0. Then it follows from stochastic semistability of (2.2) that there

exists h > 0 such that Pz
(
s(h, z) ∈ Wλ/2

)
≥ 1− ρ. Consequently, Pz

(
s(h+ t, z) ∈ Wλ/2

)
≥

1− ρ for all t ≥ 0, and hence, it follows that T (z) is well defined. Since Wλ/2 is open, there

exists a neighborhood Bσ(s(T (z), z) such that Pz
(
Bσ(s(T (z), z)) ⊂ Wλ/2

)
≥ 1 − ρ. Hence,

N ⊂ D0 is a neighborhood of z such that sT (z)(HNn ) , Bσ(s(T (z), z)).
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Next, choose η > 0 such that η < λ/2 and Bη(z) ⊂ N . Then, for every t > T (z) and

y ∈ Bη(z),

[(1 + 2t)/(1 + t)]E [dist(s(t, y), E)1By(ω)] ≤ 2E [dist(s(t, y), E)1By(ω)] ≤ λ.

Therefore, for each y ∈ Bη(z),

V (z)− V (y) = sup
t≥0

{
1 + 2t

1 + t
E [dist(s(t, z), E)1Bz(ω)]

}
− sup

t≥0

{
1 + 2t

1 + t
E [dist(s(t, y), E)1By(ω)]

}
= sup

0≤t≤T (z)

{
1 + 2t

1 + t
E [dist(s(t, z), E)1Bz(ω)]

}
− sup

0≤t≤T (z)

{
1 + 2t

1 + t
E [dist(s(t, y), E)1By(ω)]

}
. (2.29)

Hence,

|V (z)− V (y)|

≤ sup
0≤t≤T (z)

∣∣∣∣1 + 2t

1 + t
(E [dist(s(t, z), E)1Bz(ω)]− E [dist(s(t, y), E)1By(ω)])

∣∣∣∣
≤ 2 sup

0≤t≤T (z)
|E [dist(s(t, z), E)1Bz(ω)]− E [dist(s(t, y), E)1By(ω)]|

≤ 2 sup
0≤t≤T (z)

E [dist(s(t, z), s(t, y))] , z ∈ D0\E , y ∈ Bη(z). (2.30)

Now, since f(·) and D(·) satisfy (2.4) and (2.5), it follows from continuous dependence of

solutions s(·, ·) on system initial conditions [6, Thm. 7.3.1] and (2.30) that V (·) is continuous

on D0\E .

To show that V (·) is continuous on E , consider xe ∈ E . Let {xn}∞n=1 be a sequence in D0\E

that converges to xe. Since xe is Lyapunov stable in probability, it follows that x(t)
a.s.≡ xe is

the unique solution to (2.2) with x(0)
a.s.
= xe. By continuous dependence of solutions s(·, ·)

on system initial conditions [6, Thm. 7.3.1], s(t, xn)
a.s.→ s(t, xe)

a.s.
= xe as n→∞, t ≥ 0.

Let ε > 0 and note that it follows from ii) of Proposition 2.2 that there exists δ =

δ(xe) > 0 such that for every solution of (2.2) in Bδ(xe) there exists T̂ = T̂ (xe, ε) > 0 such
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that P
(
st(HBδ(xe)n ) ⊂ Wε

)
≥ 1 − ρ for all t ≥ T̂ . Next, note that there exists a positive

integer N1 such that xn ∈ Bδ(xe) for all n ≥ N1. Now, it follows from (2.27) that

V (xn) ≤ 2 sup
0≤t≤T̂

E[dist(s(t, xn), E)1Bxn (ω)] + 2ε, n ≥ N1. (2.31)

Next, it follows from [6, Thm. 7.3.1] that E[|s(·, xn)|] converges to E[|s(·, xe)|] uniformly on

[0, T̂ ]. Hence,

lim
n→∞

sup
0≤t≤T̂

E [dist(s(t, xn), E)1Bxn (ω)] = sup
0≤t≤T̂

E
[

lim
n→∞

dist(s(t, xn), E)1Bxn (ω)
]

≤ sup
0≤t≤T̂

dist(xe, E)

= 0, (2.32)

which implies that there exists a positive integer N2 = N2(xe, ε) ≥ N1 such that

sup
0≤t≤T̂

E [dist(s(t, xn), E)1Bxn (ω)] < ε

for all n ≥ N2. Combining (2.31) with the above result yields V (xn) < 4ε for all n ≥ N2,

which implies that limn→∞ V (xn) = 0 = V (xe).

Finally, we show that LV (x(t)) is negative along the solution of (2.2) on D0\E . Note that

for every x ∈ D0\E and 0 < h ≤ 1/2 such that P (s(h, x) ∈ D0\E) ≥ 1 − ρ, it follows from

the definition of T (·) that E [V (s(h, x))] is reached at some time t̂ such that 0 ≤ t̂ ≤ T (x).

Hence, it follows from law of iterated expectation that

E [V (s(h, x))] = E
[
E
[
dist(s(t̂+ h, x), E)1Bs(h,x)(ω)

] 1 + 2t̂

1 + t̂

]
= E

[
dist(s(t̂+ h, x), E)1Bx(ω)

] 1 + 2t̂+ 2h

1 + t̂+ h

[
1− h

(1 + 2t̂+ 2h)(1 + t̂)

]
≤ V (x)

[
1− h

2(1 + T (x))2

]
, (2.33)

which implies that

LV (x) = lim
h→0+

E [V (s(h, x))]− V (x)

h
≤ −1

2
V (x)(1 + T (x))−2 < 0, x ∈ D0\E ,

and hence, iii) holds.
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Chapter 3

Nonlinear-Nonquadratic Optimal and Inverse Optimal

Control for Stochastic Dynamical Systems

3.1. Introduction

Building on the results of [13, 45], in this chapter we present a framework for analyzing

and designing feedback controllers for nonlinear stochastic dynamical systems. Specifically,

we consider a feedback stochastic optimal control problem over an infinite horizon involv-

ing a nonlinear-nonquadratic performance functional. The performance functional can be

evaluated in closed form as long as the nonlinear-nonquadratic cost functional considered is

related in a specific way to an underlying Lyapunov function that guarantees asymptotic sta-

bility in probability of the nonlinear closed-loop system. This Lyapunov function is shown to

be the solution of the steady-state stochastic Hamilton-Jacobi-Bellman equation. The over-

all framework provides the foundation for extending linear-quadratic control for stochastic

dynamical systems to nonlinear-nonquadratic problems.

More specifically, in Section 3.2 we consider a nonlinear system with a performance func-

tional evaluated over the infinite horizon. The performance functional is then evaluated

in terms of a Lyapunov function that guarantees asymptotic stability in probability. This

result is then specialized to general polynomial and multilinear cost functionals. Then, in Sec-

tion 3.3, we state a nonlinear-nonquadratic stochastic optimal control problem and provide

sufficient conditions for characterizing an optimal nonlinear feedback controller guaranteeing
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asymptotic stability in probability of the closed-loop system. In Section 3.4, we develop op-

timal feedback controllers for affine nonlinear systems using an inverse optimality framework

tailored to the stochastic stabilization problem. This result is then used to derive extensions

of the results in [11,100] involving nonlinear feedback controllers minimizing polynomial and

multilinear performance criteria. Finally, in Section 3.5, we provide illustrative numerical

examples that highlight the stochastic optimal stabilization framework.

3.2. Stability Analysis and Nonlinear-Nonquadratic Cost Evalua-
tion of Nonlinear Stochastic Systems

In this section, we provide connections between Lyapunov functions and nonquadratic

cost evaluation. First, we provide sufficient conditions for local and global asymptotic and

exponential stability in probability for the nonlinear stochastic dynamical system (2.2). Here

we assume that f(0) = 0 and D(0) = 0, and hence, xe = 0 is an equilibrium point of (2.2).

Theorem 3.1 [67, Thm. 5.3, Corol. 5.1, and Thm. 5.11]. Consider the nonlinear stochas-

tic dynamical system (2.2) and assume that there exists a two-times continuously differen-

tiable function V : D → R such that

V (0) = 0, (3.1)

V (x) > 0, x ∈ D, x 6= 0, (3.2)

∂V (x)

∂x
f(x) +

1

2
tr DT(x)

∂2V (x)

∂x2
D(x) ≤ 0, x ∈ D. (3.3)

Then the zero solution x(t) ≡ 0 to (2.2) is Lyapunov stable in probability. If, in addition,

∂V (x)

∂x
f(x) +

1

2
tr DT(x)

∂2V (x)

∂x2
D(x) < 0, x ∈ D, x 6= 0, (3.4)

then the zero solution x(t) ≡ 0 to (2.2) is asymptotically stable in probability. Moreover, if

D = Rn and V (·) is radially unbounded, then the zero solution x(t) ≡ 0 to (2.2) is globally

asymptotically stable in probability. Finally, if there exist scalars α, β, γ > 0, and p ≥ 1,
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such that V : D → R satisfies

α‖x‖p ≤ V (x) ≤ β‖x‖p, x ∈ D, (3.5)

∂V (x)

∂x
f(x) +

1

2
tr DT(x)

∂2V (x)

∂x2
D(x) ≤ −γ‖x‖p, x ∈ D, (3.6)

then the zero solution x(t) ≡ 0 to (2.2) is exponentially p-stable in probability. Moreover, if

D = Rn and V (·) is radially unbounded, then the zero solution x(t) ≡ 0 to (2.2) is globally

exponentially p-stable in probability.

Remark 3.1. A more general stochastic stability notion can also be introduced here in-

volving stochastic stability and convergence to an invariant (stationary) distribution. In this

case, state convergence is not to an equilibrium point but rather to a stationary distribution.

This framework can relax the vanishing perturbation assumption D(0) = 0 and requires a

more involved analysis and synthesis framework showing stability of the underlying Markov

semigroup [78].

Next, we provide connections between Lyapunov functions and nonlinear-nonquadratic

cost evaluation. Specifically, we present sufficient conditions for stability and performance for

a given nonlinear stochastic dynamical system with a nonlinear-nonquadratic performance

measure. As in deterministic theory [14, 45], the cost functional can be explicitly evaluated

as long as it is related to an underlying Lyapunov function. For the following result, let

L : D → R with L(0) = 0 and let 1[t0,τm](t) denote the indicator function defined on the set

[t0, τm], m ∈ Z+, that is,

1[t0,τm](t)
4
=

{
1, if t ∈ [t0, τm],
0, otherwise.

Furthermore, let Bcost
x0

denote the set of all sample trajectories of the dynamical system (2.2)

for which limt→∞ ‖x(t, ω)‖ = 0 and x({t ≥ t0}, ω) ∈ Bcost
x0

, ω ∈ Ω. Finally, define

1Bcost
x0

(ω)
4
=

{
1, if x({t ≥ t0}, ω) ∈ Bcost

x0
,

0, otherwise.
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Theorem 3.2. Consider the nonlinear stochastic dynamical system given by (2.2) with

nonlinear-nonquadratic performance measure

J(x0,B
cost
x0

)
4
=

1

Px0
(
Bcost
x0

)Ex0 [∫ ∞
t0

L(x(t))1Bcost
x0

(ω)dt

]
. (3.7)

Furthermore, assume that there exists a two-times continuously differentiable function V :

D → R such that

V (0) = 0, (3.8)

V (x) > 0, x ∈ D, x 6= 0, (3.9)

V ′(x)f(x) +
1

2
tr DT(x)V ′′(x)D(x) < 0, x ∈ D, x 6= 0, (3.10)

L(x) + V ′(x)f(x) +
1

2
tr DT(x)V ′′(x)D(x) = 0, x ∈ D. (3.11)

Then the zero solution x(t)
a.s.≡ 0 to (2.2) is locally asymptotically stable in probability and,

for every ρ ∈ (0, 1), there exist δ = δ(ρ) and Bcost
x0

with Px0
(
Bcost
x0

)
≥ 1− ρ such that, for all

x0 ∈ Bδ(0) ⊂ D,

J(x0,B
cost
x0

) = V (x0). (3.12)

Finally, if D = Rn and V (x)→∞ as ‖x‖ → ∞, then the zero solution x(t)
a.s.≡ 0 to (2.2) is

globally asymptotically stable in probability and (3.12) holds with Px0
(
Bcost
x0

)
= 1, x0 ∈ Rn.

Proof: Conditions (3.8)–(3.10) are a restatement of (3.1)–(3.3), and hence, it follows

from Theorem 3.1 that the zero solution x(t)
a.s.≡ 0 of (2.2) is locally asymptotically stable

in probability. Consequently, for every ρ ∈ (0, 1), there exist δ = δ(ρ) and a set of sample

trajectories x({t ≥ t0}, ω) ∈ Bcost
x0

, ω ∈ Ω, such that, for all x0 ∈ Bδ(0) ⊆ D, Px0
(
Bcost
x0

)
≥

1− ρ.

Next, using (2.2) and Itô’s (chain rule) formula, it follows that the stochastic differential

of V (x(t)) along the system trajectories x(t), t ≥ t0, of (2.2) is given by

dV (x(t)) =

(
V ′(x(t))f(x(t)) +

1

2
tr DT(x(t))V ′′(x(t))D(x(t))

)
dt+

∂V (x(t))

∂x
D(x(t))dw(t).

(3.13)
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Hence, using (3.11) it follows that

L(x(t))dt+ dV (x(t)) =

(
L(x(t)) + V ′(x(t))f(x(t)) +

1

2
tr DT(x(t))V ′′(x(t))D(x(t))

)
dt

+
∂V (x(t))

∂x
D(x(t))dw(t)

=
∂V (x(t))

∂x
D(x(t))dw(t). (3.14)

Let {tn}∞n=0 be a monotonic sequence of positive numbers with tn → ∞ as n → ∞,

τm : Ω → [t0,∞) be the first exit (stopping) time of the solution x(t), t ≥ t0, from the set

Bm(0), and let τ
4
= limm→∞ τm. Now, multiplying (3.14) with 1Bcost

x0
(ω) and integrating over

[t0,min{tn, τm}], where (n,m) ∈ Z+ × Z+, yields∫ min{tn,τm}

t0

L(x(t))1Bcost
x0

(ω)dt

= −
∫ min{tn,τm}

t0

1Bcost
x0

(ω)dV (x(s)) +

∫ min{tn,τm}

t0

∂V (x(s))

∂x
D(x(s))1Bcost

x0
(ω)dw(s)

= V (x(t0))1Bcost
x0

(ω)− V (x(min{tn, τm}))1Bcost
x0

(ω)

+

∫ min{tn,τm}

t0

∂V (x(t))

∂x
D(x(t))1Bcost

x0
(ω)dw(t)

= V (x(t0))1Bcost
x0

(ω)− V (x(min{tn, τm}))1Bcost
x0

(ω)

+

∫ tn

t0

∂V (x(t))

∂x
D(x(t))1[t0,τm](t)1Bcost

x0
(ω)dw(t). (3.15)

Taking the expectation on both sides of (3.15) yields

Ex0
[∫ min{tn,τm}

t0

L(x(t))1Bcost
x0

(ω) dt

]

= Ex0
[
V (x(t0))1Bcost

x0
(ω)− V (x(min{tn, τm}))1Bcost

x0
(ω)

+

∫ tn

t0

∂V (x(t))

∂x
D(x(t))1[t0,τm](t)1Bcost

x0
(ω)dw(t)

]
= V (x0)Px0

(
Bcost
x0

)
− Ex0

[
V (x(min{tn, τm}))1Bcost

x0
(ω)
]
. (3.16)

Next, let Bm
x0

denote the set of all the sample trajectories x(t), t ≥ t0, of (2.2) such that

τm = ∞ and note that, by regularity of solutions [67, p. 75], Px0(Bm
x0

) → 1 as m → ∞.
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Now, noting that L(x) ≥ 0, x ∈ D, the sequence of random variables {fm,n}∞m,n=0 ⊆ H1,

where

fm,n
4
=

∫ min{tn,τm})

t0

L(x(t))1Bcost
x0

(ω)dt,

is a pointwise nondecreasing sequence in n and m of nonnegative Ft-measurable random

variables on Ω. Next, defining the improper integral∫ ∞
t0

L(x(t))1Bcost
x0

(ω)dt

as the limit of a sequence of proper integrals, it follows from the Lebesgue monotone con-

vergence theorem [3] that

lim
m→∞

lim
n→∞

Ex0
[∫ min{tn,τm}

t0

L(x(t))1Bcost
x0

(ω) dt

]

= lim
m→∞

Ex0
[

lim
n→∞

∫ min{tn,τm}

t0

L(x(t))1Bcost
x0

(ω) dt

]

= Ex0
[

lim
m→∞

∫ τm

t0

L(x(t))1Bcost
x0

(ω) dt

]
= Ex0

[∫ ∞
t0

L(x(t))1Bcost
x0

(ω)dt

]
= J(x0,B

cost
x0

)Px0
(
Bcost
x0

)
. (3.17)

Next, since the zero solution x(t)
a.s.≡ 0 of (2.2) is asymptotically stable in probability

and V (x(min{tn, τm})) is a positive supermartingale by [67, Lemma 5.4], it follows from [67,

Theorem 5.1] that

lim
m→∞

lim
n→∞

Ex0
[
V (x(min{tn, τm}))1Bcost

x0
(ω)
]

= lim
m→∞

Ex0
[

lim
n→∞

V (x(min{tn, τm}))1Bcost
x0

(ω)
]

= lim
m→∞

Ex0
[
V (x(τm))1Bcost

x0
(ω)
]

= Ex0
[

lim
m→∞

V (x(τm))1Bcost
x0

(ω)
]

= Ex0
[
V
(

lim
m→∞

x(τm)
)
1Bcost

x0
(ω)
]

= 0. (3.18)

Now, taking the limit as n → ∞ and m → ∞ on both sides of (3.16) and using (3.17) and

(3.18) yields (3.12).

35



Finally, for D = Rn global asymptotic stability in probability is direct consequence of

the radially unbounded condition on V (·), and hence, (3.12) holds with Px0
(
Bcost
x0

)
= 1 for

all x0 ∈ Rn.

Remark 3.2. Note that for global asymptotic stability in probability Px0
(
Bcost
x0

)
= 1

for all x0 ∈ Rn, and hence, 1Bcost
x0

(ω)
a.s.
= 1. In this case,

J(x0,B
cost
x0

)
4
=

1

Px0
(
Bcost
x0

)Ex0 [∫ ∞
t0

L(x(t))1Bcost
x0

(ω)dt

]
= Ex0

[∫ ∞
t0

L(x(t))dt

]
.

Thus, in the remainder of this section we omit the dependence on Bcost
x0

in the cost functional

for all the results concerning global asymptotic stability in probability.

It is important to note that if (3.11) holds, then (3.10) is equivalent to L(x) > 0, x ∈ D,

x 6= 0. Next, we specialize Theorem 3.2 to linear stochastic systems. For this result, let

A ∈ Rn×n, let σ ∈ Rd, and let R ∈ Rn×n be a positive-definite matrix.

Corollary 3.1. Consider the linear stochastic dynamical system with multiplicative

noise given by

dx(t) = Ax(t)dt+ x(t)σTdw(t), x(0) = x0 a.s., t ≥ 0, (3.19)

and with quadratic performance measure

J(x0)
4
= Ex0

[∫ ∞
0

xT(t)Rx(t)dt

]
. (3.20)

Furthermore, assume that there exists a positive-definite matrix P ∈ Rn×n such that

0 =

(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R. (3.21)

Then, the zero solution x(t)
a.s.≡ 0 to (3.19) is globally asymptotically stable in probability

and

J(x0) = xT0 Px0, x0 ∈ Rn. (3.22)
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Proof. The result is a direct consequence of Theorem 3.2 with f(x) = Ax, D(x) = xσT,

L(x) = xTRx, V (x) = xTPx, and D = Rn. Specifically, conditions (3.8) and (3.9) are

trivially satisfied. Now,

V ′(x)f(x) +
1

2
tr DT(x)V ′′(x)D(x) = xT(ATP + PA)x+

1

2
tr(xσT)T2P (xσT)

= xT

[(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)]
x,

and hence, it follows from (3.21) that L(x)+V ′(x)f(x)+ 1
2
trDT(x)V ′′(x)D(x) = 0, x ∈ Rn, so

that all the conditions of Theorem 3.2 are satisfied. Finally, since V (·) is radially unbounded,

the zero solution x(t)
a.s.≡ 0 to (3.19) is globally asymptotically stable in probability.

Next, we specialize Theorem 3.2 to linear and nonlinear stochastic systems with mul-

tilinear cost functionals. First, however, we give several definitions involving multilinear

functions and a key lemma establishing the existence and uniqueness of specific multilinear

forms. Define x[q] , x ⊗ x ⊗ · · · ⊗ x and
q

⊕ A , A ⊕ A ⊕ · · · ⊕ A, where x and A appear

q times and q is a positive integer. A scalar function ψ : Rn → R is q-multilinear if q is a

positive integer and ψ(x) is a linear combination of terms of the form xi11 x
i2
2 · · ·xinn , where

ij is a nonnegative integer for j = 1, . . . , n and i1 + i2 + · · · + in = q. Furthermore, a q-

multilinear function ψ(·) is nonnegative definite (resp., positive definite) if ψ(x) ≥ 0 for all

x ∈ Rn (resp., ψ(x) > 0 for all nonzero x ∈ Rn). Note that if q is odd, then ψ(x) cannot be

positive definite. If ψ(·) is a q-multilinear function, then ψ(·) can be represented by means

of Kronecker products, that is, ψ(x) is given by ψ(x) = Ψx[q], where Ψ ∈ R1×nq . Note that

every polynomial function can be written as a multilinear function; the converse, however,

is not true.

The following lemma is needed for several of the main results of this and subsequent

chapters.

Lemma 3.1. Let A ∈ Rn×n and σ ∈ Rd be such that A + 1
2
(q − 1)‖σ‖2In is Hurwitz,

and let h : Rn → R be a q-multilinear function. Then there exists a unique q-multilinear
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function g : Rn → R such that

0 =
1

2
tr(xσT)Tg′′(x)(xσT) + g′(x)Ax+ h(x), x ∈ Rn. (3.23)

Furthermore, if h(x) is nonnegative (resp., positive) definite, then g(x) is nonnegative (resp.,

positive) definite.

Proof. Let h(x) = Ψx[q] and define g(x)
4
= Γx[q], where Γ

4
= −Ψ(

q

⊕ (A + 1
2
(q −

1)‖σ‖2In))−1, and note that
q

⊕ (A + 1
2
(q − 1)‖σ‖2In) is invertible since A + 1

2
(q − 1)‖σ‖2In

is Hurwitz by assumption. Now, note that, for all x ∈ Rn,

g′(x)Ax+
1

2
tr(xσT)Tg′′(x)(xσT)

= (Γx[q])′Ax+
1

2
xT(Γx[q])′′x‖σ‖2

= Γ

(
q∑

iq=1

x⊗ · · · ⊗
ithq entry︷︸︸︷
In ⊗ · · · ⊗ x

)
Ax+

1

2
‖σ‖2

(
n∑
i=1

n∑
j=1

q∑
iq=1

q∑
jq=1,jq 6=iq

xiΓ(x⊗ · · ·

· · · ⊗
ithq entry︷︸︸︷
ei ⊗ · · · ⊗

jthq entry︷︸︸︷
ej ⊗ · · · ⊗ x)xj

)

= Γ

(
q∑

iq=1

x⊗ · · · ⊗
ithq entry︷︸︸︷
Ax ⊗ · · · ⊗ x

)
+

1

2
‖σ‖2

(
q∑

iq=1

q∑
jq=1,jq 6=iq

n∑
i=1

n∑
j=1

Γ(x⊗ · · ·

· · · ⊗
ithq entry︷︸︸︷
xiei ⊗ · · · ⊗

jthq entry︷︸︸︷
xjej ⊗ · · · ⊗ x)

)

= Γ

(
q∑

iq=1

In ⊗ · · · ⊗
ithq entry︷︸︸︷
A ⊗ · · · ⊗ In

)
x[q] +

1

2
‖σ‖2

(
q∑

iq=1

q∑
jq=1,jq 6=iq

Γ(x⊗ · · ·

· · · ⊗

ithq entry︷ ︸︸ ︷
(
n∑
i=1

xiei)⊗ · · · ⊗

jthq entry︷ ︸︸ ︷
(
n∑
j=1

xjej)⊗ · · · ⊗ x)

)

= Γ

(
q∑

iq=1

In ⊗ · · · ⊗
ithq entry︷︸︸︷
A ⊗ · · · ⊗ In

)
x[q] +

1

2
‖σ‖2Γ

(
q∑

iq=1

q∑
jq=1,jq 6=iq

x⊗ · · ·

· · · ⊗
ithq entry︷︸︸︷
x ⊗ · · · ⊗

jthq entry︷︸︸︷
x ⊗ · · · ⊗ x

)
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= Γ

(
q∑

iq=1

In ⊗ · · · ⊗
ithq entry︷︸︸︷
A ⊗ · · · ⊗ In

)
x[q]

+Γ

(
q∑

iq=1

In ⊗ · · · ⊗

ithq entry︷ ︸︸ ︷
1

2
(q − 1)‖σ‖2In⊗ · · · ⊗ In

)
x[q]

= Γ

(
q∑

iq=1

In ⊗ · · · ⊗

ithq entry︷ ︸︸ ︷
(A+

1

2
(q − 1)‖σ‖2In)⊗ · · · ⊗ In

)
x[q]

= Γ

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)
x[q]

= −Ψx[q]

= −h(x).

To prove uniqueness, suppose, ad absurdum, that ĝ(x) = Γ̂x[q] satisfies (3.23). Then it

follows that

Γ

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)
x[q] = Γ̂

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)
x[q].

Since
q

⊕ (A + 1
2
(q − 1)‖σ‖2In) is Hurwitz and e(

q
⊕(A+ 1

2
(q−1)‖σ‖2In))t = (e(A+

1
2
(q−1)‖σ‖2In)t)[q], it

follows that, for all x ∈ Rn,

Γx[q] = Γ

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)−1
x[q]

= −Γ

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)∫ ∞
0

e(
q
⊕(A+ 1

2
(q−1)‖σ‖2In))tx[q]dt

= −Γ

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)∫ ∞
0

(e(A+
1
2
(q−1)‖σ‖2In)t)[q]x[q]dt

= −Γ

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)∫ ∞
0

(e(A+
1
2
(q−1)‖σ‖2In)tx)[q]dt

= −Γ̂

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)∫ ∞
0

(e(A+
1
2
(q−1)‖σ‖2In)tx)[q]dt

= Γ̂x[q],

which shows that g(x) = ĝ(x), x ∈ Rn, leading to a contradiction.
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Finally, if h(x) is nonnegative definite, then it follows that, for all x ∈ Rn,

g(x) = −Ψ

(
q

⊕ (A+
1

2
(q − 1)‖σ‖2In)

)−1
x[q]

= Ψ

∫ ∞
0

e(
q
⊕(A+ 1

2
(q−1)‖σ‖2In))tx[q]dt

= Ψ

∫ ∞
0

(e(A+
1
2
(q−1)‖σ‖2In)tx)[q]dt

≥ 0.

If, in addition, x 6= 0, then e(A+
1
2
(q−1)‖σ‖2In)tx 6= 0, t ≥ 0. Hence, if h(x) is positive definite,

then g(x), x ∈ Rn, is positive definite.

Next, assume that
(
A+ 1

2
(q − 1)‖σ‖2In

)
is Hurwitz, where q ≥ 2 is a given integer, let

P be given by (3.21), and consider the case in which D(·) L(·), f(·), and V (·) are given by

D(x) = xσT,

L(x) = xTRx+ h(x), f(x) = Ax+N(x), V (x) = xTPx+ g(x), (3.24)

where h : D → R and g : D → R are nonlinear and nonquadratic, and N : D → Rn is

nonlinear. In this case, (3.11) holds if and only if

0 = xTRx+ h(x) + xT(ATP + PA)x+ 2xTPN(x) + g′(x)(Ax+N(x))

+
1

2
tr(xσT)T [2P + g′′(x)] (xσT), x ∈ D, (3.25)

or, equivalently,

0 = xT

[(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R

]
x

+
1

2
(xσT)Tg′′(x)(xσT) + g′(x)(Ax+N(x)) + h(x) + 2xTPN(x), x ∈ D. (3.26)

Since
(
A+ 1

2
‖σ‖2In

)
is Hurwitz, we can choose P to satisfy (3.21). Now, suppose N(x) ≡ 0

and let P satisfy (3.21). Then (3.26) specializes to

0 =
1

2
tr(xσT)Tg′′(x)(xσT) + g′(x)Ax+ h(x), x ∈ D. (3.27)
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Next, given h(·), we determine the existence of a function g(·) satisfying (3.27). Here,

we focus our attention on multilinear functionals for which (3.27) holds with D = Rn.

Specifically, let h(x) be a nonnegative-definite q-multilinear function, where q is necessarily

even. Furthermore, let g(x) be the nonnegative-definite q-multilinear function given by

Lemma 3.1. Then, since 1
2
tr(xσT)Tg′′(x)(xσT) + g′(x)Ax ≤ 0, x ∈ Rn, it follows that

xTPx+ g(x) is a Lyapunov function for (3.19). Hence, Lemma 3.1 can be used to generate

Lyapunov functions of specific multilinear structures.

To demonstrate the above discussion suppose h(x) in (3.24) is of the more general form

given by

h(x) =
r∑

ν=2

h2ν(x), (3.28)

where, for ν = 2, 3, . . . , r, h2ν : Rn → R is a nonnegative-definite 2ν-multilinear function.

Now, using Lemma 3.1, it follows that there exists a nonnegative-definite 2ν-multilinear

function g2ν : Rn → R satisfying

0 =
1

2
tr(xσT)Tg′′2ν(x)(xσT) + g′2ν(x)Ax+ h2ν(x), x ∈ Rn, ν = 2, 3, . . . , r. (3.29)

Defining g(x)
4
=
∑r

ν=2 g2ν(x) and summing (3.29) over ν yields (3.27). Since (3.11) is satisfied

with L(x) and V (x) given by (3.24), respectively, (3.12) implies that

J(x0) = xT0 Px0 + g(x0). (3.30)

To illustrate condition (3.27) with quartic Lyapunov functions let

V (x) = xTPx+ (xTMx)2, (3.31)

where P satisfies (3.21) and assume M is an n × n symmetric matrix. In this case, g(x) =

(xTMx)2 is a nonnegative-definite 4-multilinear function and (3.27) yields

h(x) = −4(xTMx)xTMAx− 1

2
tr(xσT)T

[
8MxxTM + 4(xTMx)M

]
(xσT) (3.32)

= −2(xTMx)xT

[(
A+

3

2
‖σ‖2In

)T

M +M

(
A+

3

2
‖σ‖2In

)]
x.
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Now, letting M satisfy

0 =

(
A+

3

2
‖σ‖2In

)T

M +M

(
A+

3

2
‖σ‖2In

)
+ R̂, (3.33)

where R̂ is an n × n symmetric matrix, it follows from (3.32) that h(x) satisfying (3.27) is

of the form

h(x) = 2(xTMx)(xTR̂x). (3.34)

If R̂ is nonnegative definite, then M is nonnegative definite, and hence, h(x) is a nonnegative-

definite 4-multilinear function. Thus, if V (x) is a quartic Lyapunov function of the form given

by (3.31), and L(x) is given by

L(x) = xTRx+ 2(xTMx)(xTR̂x), (3.35)

where M satisfies (3.33), then condition (3.27), and hence, (3.11) is satisfied.

The following proposition generalizes the above results to general polynomial cost func-

tionals.

Proposition 3.1. Let A ∈ Rn×n and σ ∈ Rd be such that A + 1
2
(2r − 1)‖σ‖2In is

Hurwitz, and let R ∈ Rn×n, R > 0, and R̂q ∈ Rn×n, R̂q ≥ 0, q = 2, . . . , r. Consider the

linear stochastic dynamical system (3.19) with performance measure

J(x0)
4
= Ex0

[∫ ∞
0

{
xT(t)Rx(t) +

r∑
q=2

[
(xT(t)R̂qx(t))(xT(t)Mqx(t))q−1

]}
dt

]
,

(3.36)

where Mq ∈ Rn×n, and Mq ≥ 0, q = 2, . . . , r, satisfy

0 =

(
A+

1

2
(2q − 1)‖σ‖2In

)T

Mq +Mq

(
A+

1

2
(2q − 1)‖σ‖2In

)
+ R̂q. (3.37)

Then there exists a positive-definite matrix P ∈ Rn×n such that

0 =

(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R (3.38)
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and the zero solution x(t)
a.s.≡ 0 to (3.19) is globally asymptotically stable in probability and

J(x0) = xT0 Px0 +
r∑
q=2

1
q
(xT0Mqx0)

q, x0 ∈ Rn. (3.39)

Proof. The existence of a positive-definite matrix P ∈ Rn×n for some R > 0 follows

from converse Lyapunov theory using the fact that A+ 1
2
‖σ‖2In is Hurwitz. The result now

is a direct consequence of Theorem 3.2 with f(x) = Ax, D(x) = xσT, L(x) = xTRx +∑r
q=2[(x

TR̂qx)(xTMqx)q−1], V (x) = xTPx +
∑r

q=2
1
q
(xT Mqx)q, and D = Rn. Specifically,

conditions (3.8) and (3.9) are trivially satisfied. Now,

V ′(x)f(x) +
1

2
tr DT(x)V ′′(x)D(x)

= xT(ATP + PA)x+
r∑
q=2

(xTMqx)q−1xT(ATMq +MqA)x

+
1

2
tr(xσT)T

[
2P + 4(q − 1)(xTMqx)q−2Mqxx

TMq + 2(xTMqx)Mq

]
(xσT)

= xT

[(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)]
x

+
r∑
q=2

(xTMqx)q−1xT

[(
A+

1

2
(2q − 1)‖σ‖2In

)T

Mq

+Mq

(
A+

1

2
(2q − 1)‖σ‖2In

)]
x,

and hence, it follows from (3.37) and (3.38) that L(x)+V ′(x)f(x)+ 1
2
trDT(x)V ′′(x)D(x) = 0,

x ∈ Rn, so that all the conditions of Theorem 3.2 are satisfied. Finally, since V (·) is radially

unbounded (3.19) is globally asymptotically stable in probability.

Remark 3.3. Proposition 3.1 requires the solutions of r−1 Lyapunov equations in (3.37)

to obtain a closed-form expression for the nonlinear-nonquadratic cost functional (3.36).

3.3. Stochastic Optimal Nonlinear Control

In this section, we consider a control problem involving a notion of optimality with respect

to a nonlinear-nonquadratic cost functional. We use the framework developed in Theorem 3.2
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to obtain a characterization of optimal feedback controllers that guarantee closed-loop local

and global stabilization in probability. Specifically, sufficient conditions for optimality are

given in a form that corresponds to a steady-state version of the stochastic Hamilton-Jacobi-

Bellman equation. To address the problem of characterizing stochastic optimal stabilizing

feedback controllers, consider the controlled nonlinear stochastic dynamical system G given

by

dx(t) = F (x(t), u(t))dt+D(x(t), u(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (3.40)

where, for every t ≥ t0, x(t) ∈ HDn , x(0) ∈ Hx0
n , D is an open set with 0 ∈ D, u(t) ∈ HU

m,

U ⊆ Rm is open set with 0 ∈ U , w(·) is a d-dimensional independent standard Wiener process,

F : D × U → Rn is jointly continuous in x and u with F (0, 0) = 0, and D : D × U → Rn×d

is jointly continuous in x and u with D(0, 0) = 0.

Here we assume that u(·) satisfies sufficient regularity conditions such that (3.40) has

a unique solution forward in time. Specifically, we assume that the control process u(·) in

(3.40) is restricted to the class of admissible controls consisting of measurable functions u(·)

adapted to the filtration {Ft}t≥t0 such that u(t) ∈ Hm, t ≥ t0, and, for all t ≥ s, w(t)−w(s) is

independent of u(τ), w(τ), τ ≤ s, and x(t0), and hence, u(·) is nonanticipative. Furthermore,

we assume that u(·) takes values in a compact, metrizable set U and the uniform Lipschitz

continuity and growth conditions (2.4) and (2.5) hold for the controlled drift and diffusion

terms F (x, u) and D(x, u) uniformly in u. In this case, it follows from Theorem 2.2.4 of [5]

that there exists a pathwise unique solution to (3.40) in (Ω, {Ft≥t0},Px0).

A measurable function φ : D → U satisfying φ(0) = 0 is called a control law. If u(t) =

φ(x(t)), t ≥ t0, where φ(·) is a control law and x(t), t ≥ t0, satisfies (3.40), then we call u(·)

a feedback control law. Note that the feedback control law is an admissible control since φ(·)

has values in U . Given a control law φ(·) and a feedback control law u(t) = φ(x(t)), t ≥ t0,

the closed-loop system (3.40) has the form

dx(t) = F (x(t), φ(x(t)))dt+D(x(t), φ(x(t)))dw(t) x(t0)
a.s.
= x0, t ≥ t0. (3.41)
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Next, we present a main theorem for stochastic stabilization characterizing feedback

controllers that guarantee local and global closed-loop stability in probability and minimize

a nonlinear-nonquadratic performance measure. For the statement of this result, let L :

D × U → R be jointly continuous in x and u, and, for every ρ ∈ (0, 1), define the set of

stochastic regulation controllers given by

S(x0, ρ) ,

{
u(·) : u(·) is admissible and x(·) given by (3.40) is such that Px0

(
Bu(·)
x0

)
≥ 1− ρ, where Bu(·)

x0

4
=
{
x({t ≥ t0}, ω) : lim

t→∞
‖x(t, ω)‖ = 0, ω ∈ Ω

} }
.

Theorem 3.3. Consider the nonlinear stochastic controlled dynamical system (3.40)

with performance measure

J
(
x0, u(·),Bu(·)

x0

) 4
=

1

Px0
(
B
u(·)
x0

)Ex0 [∫ ∞
t0

L(x(t), u(t))1
B
u(·)
x0

(ω)dt

]
, (3.42)

where u(·) is an admissible control and 1
B
u(·)
x0

(ω) denotes the indicator function of the set

B
u(·)
x0 . Assume that there exists a two-times continuously differentiable function V : D → R

and a control law φ : D → U such that

V (0) = 0, (3.43)

V (x) > 0, x ∈ D, x 6= 0, (3.44)

φ(0) = 0, (3.45)

V ′(x)F (x, φ(x)) +
1

2
tr DT(x, φ(x))V ′′(x)D(x, φ(x)) < 0, x ∈ D, x 6= 0, (3.46)

H(x, φ(x)) = 0, x ∈ D, (3.47)

H(x, u) ≥ 0, x ∈ D, u ∈ U, (3.48)

where

H(x, u)
4
= L(x, u) + V ′(x)F (x, u) +

1

2
tr DT(x, u)V ′′(x)D(x, u). (3.49)

Then, with the feedback control u(·) = φ(x(·)), the zero solution x(t)
a.s.≡ 0 of the closed-loop

system (3.41) is locally asymptotically stable in probability and, for every ρ ∈ (0, 1), there
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exist δ = δ(ρ) and B
φ(x(·))
x0 with Px0

(
B
φ(x(·))
x0

)
≥ 1− ρ such that, for all x0 ∈ Bδ(0) ⊆ D,

J
(
x0, φ(x(·)),Bφ(x(·))

x0

)
= V (x0). (3.50)

In addition, if x0 ∈ Bδ(0), then the feedback control u(·) = φ(x(·)) minimizes (3.42) in the

sense that

J
(
x0, φ(x(·)),Bφ(x(·))

x0

)
= min

u(·)∈S(x0,ρ)
J
(
x0, u(·),Bu(·)

x0

)
. (3.51)

Finally, if D = Rn, U = Rm, and V (x)→∞ as ‖x‖ → ∞, then the zero solution x(t)
a.s.≡ 0

of the closed-loop system (3.41) is globally asymptotically stable in probability and (3.51)

holds with ρ = 0 and Px0
(
B
φ(x(·))
x0

)
= 1, x0 ∈ Rn.

Proof. Local and global asymptotic stability in probability are a direct consequence

of (3.43)–(3.46) by applying Theorem 3.2 to the closed-loop system (3.41). Furthermore,

using (3.47), condition (3.50) is a restatement of (3.12) as applied to the closed-loop system.

Consequently, for every ρ ∈ (0, 1), there exist δ = δ(ρ) and a set of sample trajectories

x({t ≥ t0}, ω) ∈ B
φ(x(·))
x0 such that, for all x0 ∈ Bδ(0) ⊆ D, Px0

(
B
φ(x(·))
x0

)
≥ 1− ρ.

Next, let x0 ∈ Bδ(0), let u(·) ∈ S(x0, ρ), and let x(t), t ≥ t0, be the solution of (3.40).

Then using Itô’s (chain rule) formula it follows that

L(x(t), u(t))dt+ dV (x(t)) =

(
L(x(t), u(t)) + V ′(x(t))F (x, u(t)) +

1

2
tr DT(x(t), u(t))

·V ′′(x(t))D(x(t), u(t))

)
dt+

∂V (x)

∂x
D(x, u)dw(t),

and hence,

L(x(t), u(t))dt = −dV (x(t)) +H(x(t), u(t))dt+
∂V (x(t))

∂x
D(x(t), u(t))dw(t). (3.52)

Let {tn}∞n=0 be a monotonic sequence of positive numbers with tn → ∞ as n → ∞,

τm : Ω → [t0,∞) be the first exit (stopping) time of the solution x(t), t ≥ t0, from the set

Bm(0), and let τ
4
= limm→∞ τm. Now, multiplying (3.52) with 1

B
u(·)
x0

(ω) and integrating over
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[0,min{tn, τm}], where (n,m) ∈ Z+ × Z+, yields∫ min{tn,τm}

t0

L(x(t), u(t))1
B
u(·)
x0

(ω) dt

= −
∫ min{tn,τm}

t0

1
B
u(·)
x0

(ω)dV (x(t)) +

∫ min{tn,τm}

t0

H(x(t), u(t))1
B
u(·)
x0

(ω)dt

+

∫ min{tn,τm}

t0

∂V (x(t))

∂x
D(x(t), u(t))1

B
u(·)
x0

(ω)dw(t)

= V (x(t0))1B
u(·)
x0

(ω)− V (x(min{tn, τm}))1B
u(·)
x0

(ω)

+

∫ min{tn,τm}

t0

H(x(t), u(t))1
B
u(·)
x0

(ω)dt

+

∫ tn

t0

∂V (x(t))

∂x
D(x(t), u(t))1[t0,τm](t)1B

u(·)
x0

(ω)dw(t). (3.53)

Next, taking the expectation on both sides of (3.53) and using (3.48) yields

Ex0
[∫ min{tn,τm}

t0

L(x(t), u(t))1
B
u(·)
x0

(ω) dt

]

= Ex0
[
V (x(t0))1B

u(·)
x0

(ω)− V (x(min{tn, τm}))1B
u(·)
x0

(ω)

+

∫ min{tn,τm}

t0

H(x(t), u(t))1
B
u(·)
x0

(ω)dt

+

∫ tn

t0

∂V (x(t))

∂x
D(x(t), u(t))1[t0,τm](t)1B

u(·)
x0

(ω)dw(t)

]
(3.54)

≥ V (x0)Px0
(
Bu(·)
x0

)
− Ex0

[
V (x(min{tn, τm}))1B

u(·)
x0

(ω)
]
. (3.55)

Next, let Bm
x0

denote the set of all the sample trajectories of x(t), t ≥ t0, such that

τm = ∞ and note that, by regularity of solutions [67, p. 75], Px0(Bm
x0

) → 1 as m → ∞.

Now, noting that for all u(.) ∈ S(x0, ρ),∫ ∞
0

∣∣∣L(x(t), u(t))1
B
u(·)
x0

(ω)
∣∣∣ dt a.s.

< ∞,

let the random variable

g
4
= sup

t≥0,m>0

∫ min{t,τm}

0

∣∣∣L(x(s), u(s))1
B
u(·)
x0

(ω)
∣∣∣ ds.
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In this case, the sequence in n and m of Ft-measurable random variables {fm,n}∞m,n=0 ⊆ H1

on Ω for all (n,m) ∈ Z+ × Z+, where

fm,n
4
=

∫ min{tn,τm}

0

L(x(t), u(t))1
B
u(·)
x0

(ω)dt

satisfies |fm,n|
a.s.
< g, (n,m) ∈ Z+ × Z+. Now, defining the improper integral∫ ∞

0

L(x(t), u(t))1
B
u(·)
x0

(ω)dt

as the limit of a sequence of proper integrals, it follows from the dominated convergence

theorem [3] that

lim
m→∞

lim
n→∞

Ex0
[∫ min{tn,τm}

t0

L(x(t), u(t))1
B
u(·)
x0

(ω)dt

]

= lim
m→∞

Ex0
[

lim
n→∞

∫ min{tn,τm}

t0

L(x(t), u(t))1
B
u(·)
x0

(ω)dt

]

= Ex0
[

lim
m→∞

∫ τm

t0

L(x(t), u(t))1
B
u(·)
x0

(ω)dt

]
= Ex0

[∫ ∞
t0

L(x(t), u(t))1
B
u(·)
x0

(ω)dt

]
= J

(
x0, u(·),Bu(·)

x0

)
Px0
(
Bu(·)
x0

)
. (3.56)

Next, using the fact that u(.) ∈ S(x0, ρ) and V (·) is continuous, it follows that for

every m > 0, V (x((min{tn, τm})) is bounded for all n ∈ Z+. Thus, using the dominated

convergence theorem [3] and the fact that ‖x(t, ω)‖ → 0 as t → ∞ for all x({t ≥ t0}, ω) ∈

B
u(·)
x0 , we obtain

lim
m→∞

lim
n→∞

Ex0
[
V (x(min{tn, τm}))1B

u(·)
x0

(ω)
]

= lim
m→∞

Ex0
[

lim
n→∞

V (x(min{tn, τm}))1B
u(·)
x0

(ω)
]

= Ex0
[

lim
m→∞

V (x(τm))1
B
u(·)
x0

(ω)
]

= Ex0
[
V
(

lim
m→∞

x(τm)
)
1
B
u(·)
x0

(ω)
]

= 0. (3.57)

Now, taking the limit as n→∞ and m→∞ on both sides of (3.55) and using the fact that

u(.) ∈ S(x0, ρ), (3.56), (3.57), and J
(
x0, φ(x(·)),Bφ(x(·))

x0

)
= V (x0) yields (3.51).
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Finally, for D = Rn global asymptotic stability in probability of closed-loop system is

direct consequence of the radially unbounded condition on V (·), and hence, Px0
(
B
φ(x(·))
x0

)
=

1 for all x0 ∈ Rn. In this case, the proof of (3.51) follows using identical arguments as in the

proof of the local result.

Note that (3.47) is the steady-state stochastic Hamilton-Jacobi-Bellman equation. To

see this, recall that the stochastic Hamilton-Jacobi-Bellman equation is given by ([6])

∂

∂t
V (t, x(t)) + min

u∈U
H

(
t, x(t), u,

∂

∂x
V (t, x(t)),

∂2

∂x2
V (t, x(t))

)
= 0, t ≥ t0, (3.58)

which characterizes the optimal control for stochastic time-varying systems on a finite or

infinite interval. For infinite horizon time-invariant systems, V (t, x) = V (x), and hence,

(3.58) reduces to (3.47) and (3.48). Conditions (3.47) and (3.48) guarantee optimality with

respect to the set of admissible stabilizing controllers S(x0, ρ). However, it is important to

note that an explicit characterization of the set S(x0, ρ) is not required. In addition, the

optimal stabilizing feedback control law u = φ(x) is independent of the initial condition x0.

Finally, in order to ensure asymptotic stability in probability of the closed-loop system (3.40),

Theorem 3.3 requires that V (·) satisfy (3.43), (3.44), and (3.46), which implies that V (·) is

a Lyapunov function for the closed-loop system (3.40). However, for optimality V (·) need

not satisfy (3.44) and (3.46). Specifically, if V (·) is a two-times continuously differentiable

function such that (3.43) is satisfied and φ(·) ∈ S(x0, ρ), then (3.47) and (3.48) imply (3.50)

and (3.51).

The optimal feedback control φ(·) that guarantees global asymptotic stability in proba-

bility gives Px0
(
B
φ(·)
x0

)
= 1, and hence, 1

B
φ(·)
x0

(ω)
a.s.
= 1. Moreover, all the admissible controls

u(·) that guarantee global attraction in probability satisfy Px0
(
B
u(·)
x0

)
= 1 for all x0 ∈ Rn,

and hence, ρ = 0 and 1
B
u(·)
x0

(ω)
a.s.
= 1. In this case,

J
(
x0, u(·),Bu(·)

x0

)
=

1

Px0
(
B
u(·)
x0

)Ex0 [∫ ∞
t0

L(x(t), u(t))1
B
u(·)
x0

(ω)dt

]

= Ex0
[∫ ∞

t0

L(x(t), u(t))dt

]
(3.59)
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and

J
(
x0, φ(·),Bφ(·)

x0

)
=

1

Px0
(
B
φ(·)
x0

)Ex0 [∫ ∞
t0

L(x(t), φ(x(t)))1
B
φ(·)
x0

(ω)dt

]

= Ex0
[∫ ∞

t0

L(x(t), φ(x(t)))dt

]
. (3.60)

Thus, in the remainder of the chapter, we omit the dependence on B
φ(·)
x0 and B

u(·)
x0 in the cost

functional and we write S(x0) for S(x0, ρ) for all the results concerning globally stabilizing

controllers in probability.

Next, we specialize Theorem 3.3 to linear stochastic dynamical systems and provide

connections to the stochastic optimal linear-quadratic regulator problem with multiplicative

noise. For the following result let A ∈ Rn×n, B ∈ Rn×m, σ ∈ Rd, R1 ∈ Pn, and R2 ∈ Pm be

given.

Corollary 3.2. Consider the linear controlled stochastic dynamical system with multi-

plicative noise given by

dx(t) = [Ax(t) +Bu(t)] dt+ x(t)σTdw(t), x(0)
a.s.
= x0, t ≥ 0, (3.61)

and with quadratic performance measure

J(x0, u(·)) 4= Ex0
[∫ ∞

0

[xT(t)R1x(t) + uT(t)R2u(t)]dt

]
, (3.62)

where u(·) is an admissible control. Furthermore, assume that there exists a positive-definite

matrix P ∈ Rn×n such that

0 =

(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R1 − PBR−12 BTP. (3.63)

Then, with the feedback control u = φ(x)
4
= −R−12 BTPx, the zero solution x(t)

a.s.≡ 0 to

(3.61) is globally asymptotically stable in probability and

J(x0, φ(x(·))) = xT0 Px0, x0 ∈ Rn. (3.64)
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Furthermore,

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), (3.65)

where S(x0) is the set of regulation controllers for (3.61) and x0 ∈ Rn.

Proof. The result is a direct consequence of Theorem 3.3 with F (x, u) = Ax + Bu,

D(x, u) = xσT, L(x, u) = xTR1x + uTR2u, V (x) = xTPx, D = Rn, and U = Rm. Specif-

ically, conditions (3.43) and (3.44) are trivially satisfied. Next, it follows from (3.63) that

H(x, φ(x)) = 0, and hence, V ′(x)F (x, φ(x)) + 1
2
tr DT(x, φ(x))V ′′(x)D(x, φ(x)) < 0 for all

x ∈ Rn and x 6= 0. Thus, H(x, u) = H(x, u)−H(x, φ(x)) = [u− φ(x)]TR2[u− φ(x)] ≥ 0 so

that all the conditions of Theorem 3.3 are satisfied. Finally, since V (·) is radially unbounded

the zero solution x(t)
a.s.≡ 0 to (3.61), with u(t) = φ(x(t)) = −R−12 BTPx(t), is globally

asymptotically stable in probability.

The optimal feedback control law φ(x) in Corollary 3.2 is derived using the properties of

H(x, u) as defined in Theorem 3.3. Specifically, since H(x, u) = xTR1x+uTR2u+xT(ATP +

PA)x+ 2xTPBu+ ‖σ‖2xTPx it follows that ∂2H
∂u2

= R2 > 0. Now, ∂H
∂u

= 2R2u+ 2BTPx = 0

gives the unique global minimum of H(x, u). Hence, since φ(x) minimizes H(x, u) it follows

that φ(x) satisfies ∂H
∂u

= 0 or, equivalently, φ(x) = −R−12 BTPx.

3.4. Inverse Optimal Stochastic Control for Nonlinear Affine Sys-
tems

In this section, we specialize Theorem 3.3 to affine in the control systems. Specifically,

we construct nonlinear feedback controllers using a stochastic optimal control framework

that minimizes a nonlinear-nonquadratic performance criterion. This is accomplished by

choosing the controller such that the mapping of the infinitesimal generator of the Lyapunov

function is negative definite along the closed-loop system trajectories while providing suffi-

cient conditions for the existence of asymptotically stabilizing (in probability) solutions to

the stochastic Hamilton-Jacobi-Bellman equation. Thus, these results provide a family of
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globally stabilizing controllers parameterized by the cost functional that is minimized.

The controllers obtained in this section are predicated on an inverse optimal stochastic

control problem [34,42,57,58,79,82,95]. In particular, to avoid the complexity in solving the

stochastic steady-state Hamilton-Jacobi-Bellman equation we do not attempt to minimize a

given cost functional, but rather, we parameterize a family of stochastically stabilizing con-

trollers that minimize some derived cost functional that provides flexibility in specifying the

control law. The performance integrand is shown to explicitly depend on the nonlinear sys-

tem dynamics, the Lyapunov function for the closed-loop system, and the stabilizing feedback

control law, wherein the coupling is introduced via the stochastic Hamilton-Jacobi-Bellman

equation. Hence, by varying parameters in the Lyapunov function and the performance in-

tegrand, the proposed framework can be used to characterize a class of globally stabilizing

in probability controllers that can meet closed-loop system response constraints.

Consider the nonlinear stochastic affine in the control dynamical system given by

dx(t) = [f(x(t)) +G(x(t))u(t)] dt+D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0, (3.66)

where f : Rn → Rn satisfies f(0) = 0, G : Rn → Rn×m, D : Rn → Rn×d satisfies D(0) = 0,

D = Rn, and U = Rm. Furthermore, we consider performance integrands L(x, u) of the form

L(x, u) = L1(x) + L2(x)u+ uTR2(x)u, (3.67)

where L1 : Rn → R, L2 : Rn → R1×m, and R2 : Rn → Pm so that (3.42) becomes

J(x0, u(·)) = Ex0
[∫ ∞

0

[L1(x(t)) + L2(x(t))u(t) + uT(t)R2(x(t))u(t)]dt

]
. (3.68)

Theorem 3.4. Consider the nonlinear controlled affine stochastic dynamical system

(3.66) with performance measure (3.68). Assume that there exists a two-times continuously

differentiable function V : Rn → R and a function L2 : Rn → R1×m such that

V (0) = 0, (3.69)
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L2(0) = 0, (3.70)

V (x) > 0, x ∈ Rn, x 6= 0, (3.71)

V ′(x)

[
f(x)− 1

2
G(x)R−12 (x)LT

2 (x)− 1

2
G(x)R−12 (x)GT(x)V ′T(x)

]
+

1

2
tr DT(x)V ′′(x)D(x) < 0, x ∈ Rn, x 6= 0, (3.72)

and V (x)→∞ as ‖x‖ → ∞. Then the zero solution x(t)
a.s.≡ 0 of the closed-loop system

dx(t) = [f(x(t)) +G(x(t))φ(x(t))]dt+D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0, (3.73)

is globally asymptotically stable in probability with the feedback control law

φ(x) = −1
2
R−12 (x)[V ′(x)G(x) + L2(x)]T, (3.74)

and the performance measure (3.68), with

L1(x) = φT(x)R2(x)φ(x)− V ′(x)f(x)− 1

2
tr DT(x)V ′′(x)D(x), (3.75)

is minimized in the sense that

J(x0, φ(x(·))) = min
u(·)∈S(x0)

J(x0, u(·)), x0 ∈ Rn. (3.76)

Finally,

J(x0, φ(x(·))) = V (x0), x0 ∈ Rn. (3.77)

Proof. The result is a direct consequence of Theorem 3.3 with D = Rn, U = Rm,

F (x, u) = f(x) + G(x)u, D(x, u) = D(x), and L(x, u) = L1(x) + L2(x)u + uTR2(x)u.

Specifically, with (3.67) the Hamiltonian has the form

H(x, u) = L1(x) + L2(x)u+ uTR2(x)u+ V ′(x)(f(x) +G(x)u) +
1

2
tr DT(x)V ′′(x)D(x).

Now, the feedback control law (3.74) is obtained by setting ∂H
∂u

= 0. With (3.74), it follows

that (3.69), (3.71), and (3.72) imply (3.43), (3.44), and (3.46), respectively. Next, since V (·)

is two-times continuously differentiable and x = 0 is a local minimum of V (·), it follows that
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V ′(0) = 0, and hence, since by assumption L2(0) = 0, it follows that φ(0) = 0, which implies

(3.45). Next, with L1(x) given by (3.75) and φ(x) given by (3.74), (3.47) holds. Finally,

since H(x, u) = H(x, u) − H(x, φ(x)) = [u − φ(x)]TR2(x)[u − φ(x)] and R2(x) is positive

definite for all x ∈ Rn, condition (3.48) holds. The result now follows as a direct consequence

of Theorem 3.3.

Note that (3.72) is equivalent to

LV (x)
4
= V ′(x)[f(x) +G(x)φ(x)] +

1

2
tr DT(x)V ′′(x)D(x) < 0, x ∈ Rn, x 6= 0, (3.78)

with φ(x) given by (3.74). Furthermore, conditions (3.69), (3.71), and (3.78) ensure that

V (·) is a Lyapunov function for the closed-loop system (3.73). As discussed in [45], it

is important to recognize that the function L2(x), which appears in the integrand of the

performance measure (3.67), is an arbitrary function of x ∈ Rn subject to conditions (3.70)

and (3.72). Thus, L2(x) provides flexibility in choosing the control law.

With L1(x) given by (3.75) and φ(x) given by (3.74), L(x, u) can be expressed as

L(x, u) = uTR2(x)u− φT(x)R2(x)φ(x) + L2(x)(u− φ(x))

−V ′(x)[f(x) +G(x)φ(x)]− 1

2
tr DT(x)V ′′(x)D(x)

=
[
u+ 1

2
R−12 (x)LT

2 (x)
]T
R2(x)

[
u+ 1

2
R−12 (x)LT

2 (x)
]
− V ′(x)[f(x)

+G(x)φ(x)]− 1

2
tr DT(x)V ′′(x)D(x)− 1

4
V ′(x)G(x)R−12 (x)GT(x)V ′T(x).(3.79)

Since R2(x) > 0, x ∈ Rn, the first term on the right-hand side of (3.79) is nonnegative, while

(3.78) implies that the second, third, and fourth terms collectively are nonnegative. Thus,

it follows that

L(x, u) ≥ −1
4
V ′(x)G(x)R−12 (x)GT(x)V ′T(x), (3.80)

which shows that L(x, u) may be negative. As a result, there may exist a control input u for

which the performance measure J(x0, u) is negative. However, if the control u is a regulation

controller, that is, u ∈ S(x0), then it follows from (3.76) and (3.77) that

J(x0, u(·)) ≥ V (x0) ≥ 0, x0 ∈ Rn, u(·) ∈ S(x0). (3.81)
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Furthermore, in this case, substituting u = φ(x) into (3.79) yields

L(x, φ(x)) = −V ′(x)[f(x) +G(x)φ(x)]− 1

2
tr DT(x)V ′′(x)D(x), (3.82)

which, by (3.78), is positive.

Next, we specialize Theorem 3.4 to linear stochastic systems controlled by nonlinear

controllers that minimize a polynomial cost functional. For the following result let σ ∈ Rd,

R1 ∈ Pn, R2 ∈ Pm, and R̂q ∈ Nn, q = 2, . . . , r, be given, where r is a positive integer, and

define S
4
= BR−12 BT.

Corollary 3.3. Consider the linear controlled stochastic dynamical system (3.61). As-

sume that there exist P ∈ Pn and Mq ∈ Nn, q = 2, . . . , r, such that

0 =

(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R1 − PSP, (3.83)

0 =

(
A+

1

2
(2q − 1)‖σ‖2In − SP

)T

Mq +Mq

(
A+

1

2
(2q − 1)‖σ‖2In − SP

)
+ R̂q,

q = 2, . . . , r. (3.84)

Then, the zero solution x(t)
a.s.≡ 0 of the closed-loop system

dx(t) = (Ax(t) +Bφ(x(t)))dt+ x(t)σTdw(t), x(0)
a.s.
= x0, t ≥ 0, (3.85)

is globally asymptotically stable in probability with the feedback control law

φ(x) = −R−12 BT

(
P +

r∑
q=2

(xTMqx)q−1Mq

)
x, (3.86)

and the performance measure (3.68) with R2(x) = R2, L2(x) = 0, and

L1(x) = xT

(
R1 +

r∑
q=2

(xTMqx)q−1R̂q +

[ r∑
q=2

(xTMqx)q−1Mq

]T
S

·
[ r∑
q=2

(xTMqx)q−1Mq

])
x, (3.87)
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is minimized in the sense of (3.76). Finally,

J(x0, φ(x(·))) = xT0 Px0 +
r∑
q=2

1
q
(xT0Mqx0)

q, x0 ∈ Rn. (3.88)

Proof. The result is a direct consequence of Theorem 3.4 with f(x) = Ax, G(x) = B,

D(x) = xσT, L2(x) = 0, R2(x) = R2, and

V (x) = xTPx+
r∑
q=2

1

q
(xTMqx)q.

Specifically, (3.69)–(3.71) are trivially satisfied. Next, it follows from (3.83), (3.84), and

(3.86) that

V ′(x)[f(x)− 1
2
G(x)R−12 (x)GT(x)V ′T(x)] +

1

2
tr DT(x)V ′′(x)D(x)

= −xTR1x−
r∑
q=2

(xTMqx)q−1xTR̂qx− φT(x)R2φ(x)

−xT
[

r∑
q=2

(xTMqx)q−1Mq

]T
S

[
r∑
q=2

(xTMqx)q−1Mq

]
x,

which implies (3.72), so that all the conditions of Theorem 3.4 are satisfied.

Corollary 3.3 requires the solutions of r−1 modified Riccati equations in (3.84) to obtain

the optimal controller (3.86). It is important to note that the derived performance measure

weighs the state variables by arbitrary even powers. Furthermore, J(x0, u(·)) has the form

J(x0, u(.)) = Ex0
[∫ ∞

0

{
xT(t)

(
R1 +

r∑
q=2

(xT(t)Mqx(t))q−1R̂q

)
x(t) + uT(t)R2u(t)

+φT
NL(x(t))R2φNL(x(t))

}
dt

]
,

where φNL(x) is the nonlinear part of the optimal feedback control

φ(x) = φL(x) + φNL(x),

where φL(x)
4
= −R−12 BTPx and φNL(x)

4
= −R−12 BT

∑r
q=2(x

TMqx)q−1Mqx.
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Remark 3.4. Corollary 3.3 generalizes the stochastic nonlinear-nonquadratic optimal

control problem considered in [100] to polynomial performance criteria. Specifically, unlike

the results of [100], Corollary 3.3 is not limited to sixth-order cost functionals and cubic

nonlinear controllers but rather addresses a polynomial performance criterion of an arbitrary

even order.

Remark 3.5. General nonquadratic cost functions can result in nonlinear controllers

that yield a faster than exponential closed-loop system response. Alternatively, when the

nonlinear-nonquadratic performance measure involves terms of order xp, where p < 2, then

we have a subquadratic cost criterion, which pays close attention to the system state near

the origin. In this case, the optimal controller is sublinear, and hence, exhibits finite settling

time behavior [48]. This is further discussed in Chapter 5.

Next, we specialize Theorem 3.4 to linear stochastic systems controlled by nonlinear

controllers that minimize a multilinear cost functional. For the following result recall the

definition of S and let R1 ∈ Pn, R2 ∈ Pm, and R̂2q ∈ N (2q,n), q = 2, . . . , r, be given, where r

is a given integer and N (k,n) , {Ψ ∈ R1×nk : Ψx[k] ≥ 0, x ∈ Rn}.

Corollary 3.4. Consider the linear controlled stochastic dynamical system (3.61). As-

sume that there exist P ∈ Pn and P̂q ∈ N (2q,n), q = 2, . . . , r, such that

0 =

(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R1 − PSP, (3.89)

0 = P̂q

[
2q

⊕
(
A+

1

2
(2q − 1)‖σ‖2In − SP

)]
+ R̂2q, q = 2, . . . , r. (3.90)

Then the zero solution x(t)
a.s.≡ 0 of the closed-loop system (3.85) is globally asymptotically

stable in probability with the feedback control law

φ(x) = −R−12 BT(Px+ 1
2
g′

T
(x)), (3.91)
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where g(x)
4
=
∑r

q=2 P̂qx
[2q], and the performance measure (3.68) with R2(x) = R2, L2(x) = 0,

and

L1(x) = xTR1x+
r∑
q=2

R̂2qx
[2q] + 1

4
g′(x)Sg′

T
(x), (3.92)

is minimized in the sense of (3.76). Finally,

J(x0, φ(x(·))) = xT0 Px0 +
r∑
q=2

P̂qx
[2q]
0 , x0 ∈ Rn. (3.93)

Proof. The result is a direct consequence of Theorem 3.4 with f(x) = Ax, G(x) = B,

D(x) = xσT, L2(x) = 0, R2(x) = R2, and V (x) = xTPx +
∑r

q=2 P̂qx
[2q]
0 . Specifically,

(3.69)–(3.71) are trivially satisfied. Next, it follows from (3.89)–(3.91) that

V ′(x)[f(x)− 1
2
G(x)R−12 (x)GT(x)V ′T(x)] +

1

2
tr DT(x)V ′′(x)D(x)

= −xTR1x−
r∑
q=2

R̂2qx
[2q] − φT(x)R2φ(x)− 1

4
g′(x)Sg′

T
(x),

which implies (3.72) so that all the conditions of Theorem 3.4 are satisfied.

Note that since

g′(x)(A− SP )x+
1

2
tr(xσT)Tg′′(x)(xσT) =

r∑
q=2

P̂q

[
2q

⊕
(
A+

1

2
(2q − 1)‖σ‖2In − SP

)]
x[2q],

it follows that (3.90) can be equivalently written as

0 =
1

2
tr(xσT)Tg′′(x)(xσT) + g′(x)(A− SP )x+

r∑
q=2

R̂2qx
[2q], x ∈ Rn,

and hence, it follows from Lemma 3.1 that there exists a unique P̂q ∈ N (2q,n) such that (3.90)

is satisfied.

Remark 3.6. Corollary 3.4 generalizes the deterministic nonlinear feedback controller

results obtained by Bass and Webber in [11] to stochastic nonlinear feedback control.
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3.5. Illustrative Numerical Examples

In this section, we present two numerical examples to demonstrate the efficacy of the

proposed approach.

Example 3.1. First, we consider an academic example involving the two-state controlled

nonlinear stochastic dynamical system given by

dx1(t) = −x1(t)dt+ u1(t)dt+ x22(t)dw(t), x1(0)
a.s.
= x10, t ≥ 0, (3.94)

dx2(t) = −x32(t)dt+ u2(t)dt+ x1(t)dw(t), x2(0)
a.s.
= x20, (3.95)

and note that (5.97) and (5.98) can be cast in the form of (3.66) with f(x) = [−x1, −x32]T,

G(x) = I2, and D(x) = [x22, x1]
T, where x

4
= [x1 x2]

T. To construct an inverse optimal

globally stabilizing control law for (5.97) and (5.98), let V (x) = 1
2
x21 + 1

2
x22 and let L(x, u) =

L1(x) +L2(x)u+uTR2u, where R2 > 0. Now, L2(x) = xT satisfies (3.70) so that the inverse

optimal control law (3.74) is given by φ(x) = −R−12 x. In this case, the performance measure

(3.68), with L1(x) = xTR−12 x+ 1
2
x21 + 1

2
x42, is minimized in the sense of (3.76). Furthermore,

since V (x) is radially unbounded and

LV (x) = −xTR−12 x− 1
2
x21 − 1

2
x42 < 0, x ∈ R2, x 6= 0, (3.96)

the feedback control law φ(x) = −R−12 x is globally stabilizing in probability.

Let x(0) = [1, −1]T a.s. and R2 = 4I2. Figure 3.1 shows the sample average along with

the standard deviation of the controlled system state versus time, whereas Figure 3.2 shows

the sample average along with the standard deviation of the corresponding control signal

versus time for 20 sample paths. 4

Example 3.2. Consider the pitch axis longitudinal dynamics model of the F-16 fighter

aircraft system for nominal flight conditions at 3000 ft and Mach number of 0.6 with stochas-

tic disturbances given by ([45])

dx(t) = [Ax(t) +Bu(t)] dt+ x(t)σTdw(t), x(0)
a.s.
= x0, t ≥ 0, (3.97)
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Figure 3.1: Sample average along with the sample standard deviation of the closed-loop
system trajectory versus time; x1(t) in blue and x2(t) in red.

Figure 3.2: Sample average along with the sample standard deviation of the control signal
versus time; u1(t) in blue and u2(t) in red.

where x
4
= [x1 x2 x3]

T, u
4
= [u1 u2]

T, x1 is the pitch angle, x2 is the pitch rate, x3 is the angle
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of attack, u1 is the elevator deflection, u2 is the flaperon deflection, and

A =

 0 1.00 0
0 −0.87 43.22
0 0.99 −1.34

 , B =

 0 0
−17.25 −1.58
−0.17 −0.25

 , σ = 0.5.

In order to design an inverse optimal control law for the controlled stochastic dynamical

system (3.97) consider the Lyapunov function candidate given by

V (x) = xTPx+
3∑
q=2

1

q
(xTMqx)q, (3.98)

where P ∈ Pn and Mq ∈ Nn, q = 2, 3. Now, letting L(x, u) = L1(x) + uTR2u, where R2 > 0,

it follows from Corollary 3.3 that

P =

 0.3773 0.0039 −0.0307
0.0039 0.0032 0.0010
−0.0307 0.0010 0.0906

 , M2 =

 0.0740 −0.0778 −0.0266
−0.0778 0.0836 0.0236
−0.0266 0.0236 0.0354

 ,
M3 =

 0.0005 −0.0003 −0.0013
−0.0003 0.0008 −0.0011
−0.0013 −0.0011 0.0140

 ,
satisfy (3.83) and (3.84) for R1 = 0.3I3, R2 = 0.01I2, R̂2 = 0.1I3, and

R̂3 =

 0 0 0
0 0.05 0
0 0 0.05

 .
In this case, the feedback control law

φ(x) = −R−12 BT

(
P +

3∑
q=2

(xTMqx)q−1Mq

)
x

globally stabilizes in probability the controlled dynamical system (3.97). Furthermore, the

performance measure (3.68), with

L1(x) = xT

(
R1 +

3∑
q=2

(xTMqx)q−1R̂q +

[ 3∑
q=2

(xTMqx)q−1Mq

]T
S

·
[ 3∑
q=2

(xTMqx)q−1Mq

])
x,

61



is minimized in the sense of (3.76).

Figure 6.6 shows the sample average along with the standard deviation of the controlled

system state versus time, whereas Figure 6.7 shows the sample average along with the stan-

dard deviation of the corresponding control signal versus time for x(0)
a.s.
= [0.5, −0.1, 0.1]T

for 20 sample paths. This controller is compared with the Speyer controller [100] involving a

sixth-order cost functional and a cubic-order controller (q = 2 in (3.98)) in Figures 3.5 and

3.6. 4

Figure 3.3: Sample average along with the sample standard deviation of the closed-loop
system trajectory versus time; x1(t) in blue, x2(t) in red, and x3(t) in green.
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Figure 3.4: Sample average along with the sample standard deviation of the control signal
versus time; u1(t) in blue and u2(t) in red.

Figure 3.5: Sample average along with the sample standard deviation of the closed-loop
system trajectory versus time; x1(t) in blue, x2(t) in red, and x3(t) in green.
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Figure 3.6: Sample average along with the sample standard deviation of the control signal
versus time; u1(t) in blue and u2(t) in red.
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Chapter 4

Partial-State Stabilization and Optimal Feedback

Control for Stochastic Dynamical Systems

4.1. Introduction

In this chapter, we extend the framework developed in [69] to address the problem of

optimal partial-state stochastic stabilization. Specifically, we consider a notion of optimality

that is directly related to a given Lyapunov function that is positive definite and decrescent

with respect to part of the system state. In particular, an optimal partial-state stochastic

stabilization control problem is stated and sufficient Hamilton-Jacobi-Bellman conditions are

used to characterize an optimal feedback controller. Another important application of partial

stability and partial stabilization theory is the unification it provides between time-invariant

stability theory and stability theory for time-varying systems [28,45]. We exploit this unifi-

cation and specialize our results to address optimal linear and nonlinear regulation for linear

and nonlinear time-varying stochastic systems with quadratic and nonlinear-nonquadratic

cost functionals.

More specifically, in Section 4.2, we establish additional notation, definitions, and present

some basic results on partial stability of nonlinear stochastic dynamical systems. Then, in

Section 4.3, we consider a stochastic nonlinear system with a performance functional eval-

uated over the infinite horizon. The performance functional is then evaluated in terms of a

Lyapunov function that guarantees partial asymptotic stability in probability. We then state
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a stochastic optimal control problem and provide sufficient conditions for characterizing an

optimal nonlinear feedback controller guaranteeing partial asymptotic stability in probabil-

ity of the closed-loop system. These results are then used to address a stochastic optimal

control problem for uniform asymptotic stabilization in probability of nonlinear time-varying

stochastic dynamical systems.

In Section 4.5, we specialize the results developed in Section 4.3 to affine in the control

dynamical systems as well as provide connections to the time-varying, stochastic linear-

quadratic regulator problem [64]. In Section 4.5, we develop optimal feedback controllers

for affine stochastic nonlinear systems using an inverse optimality framework tailored to the

partial-state stochastic stabilization problem. This result is then used to derive time-varying

extensions of the results in [11,100] involving nonlinear feedback controllers minimizing poly-

nomial and multilinear performance criteria. In Section 4.6, we provide several illustrative

numerical examples that highlight the optimal partial-state stochastic stabilization frame-

work.

4.2. Definitions and Mathematical Preliminaries

In this chapter, we consider nonlinear stochastic autonomous dynamical systems G of the

form

dx1(t) = f1(x1(t), x2(t))dt+D1(x1(t), x2(t))dw(t), x1(t0)
a.s.
= x10, t ≥ t0, (4.1)

dx2(t) = f2(x1(t), x2(t))dt+D2(x1(t), x2(t))dw(t), x2(t0)
a.s.
= x20, (4.2)

where, for every t ≥ t0, x1(t) ∈ HDn1
and x2(t) ∈ Hn2 are such that x(t)

4
=
[
xT1 (t), xT2 (t)

]T
is a Ft-measurable random state vector, x(t0) ∈ HDn1

× Hn2 , D ⊆ Rn1 is an open set with

0 ∈ D, w(t) is a d-dimensional independent standard Wiener process (i.e., Brownian motion)

defined on a complete filtered probability space (Ω,F , {Ft}t≥t0 ,P), x(t0) is independent of

(w(t)−w(t0)), t ≥ t0, and f1 : D×Rn2 → Rn1 is such that, for every x2 ∈ Rn2 , f1(0, x2) = 0

and f1(·, x2) is locally Lipschitz continuous in x1, and f2 : D × Rn2 → Rn2 is such that,
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for every x1 ∈ D, f2(x1, ·) is locally Lipschitz continuous in x2. In addition, the function

D1 : D × Rn2 → Rn1×d is continuous such that, for every x2 ∈ Rn2 , D1(0, x2) = 0, and

D2 : D × Rn2 → Rn2×d is continuous.

A Rn1+n2-valued stochastic process x : [t0, τ ]×Ω→ D×Rn2 is said to be a solution of (4.1)

and (4.2) on the interval [t0, τ ] with initial condition x(t0) = x0 a.s., if x(·) is progressively

measurable (i.e., x(·) is nonanticipating and measurable in t and ω) with respect to {Ft}t≥t0 ,

f(x1, x2) , [fT
1 (x1, x2), f

T
2 (x1, x2)]

T ∈ L1(Ω,F ,P), D(x1, x2) , [DT
1 (x1, x2), D

T
2 (x1, x2)]

T ∈

L2(Ω,F ,P), and

x(t) = x0 +

∫ t

t0

f(x(s))ds+

∫ t

t0

D(x(s))dw(s) a.s., t ∈ [t0, τ ], (4.3)

where the integrals in (4.3) are Itô integrals. Note that for each fixed t ≥ t0, the random

variable ω 7→ x(t, ω) assigns a vector x(ω) to every outcome ω ∈ Ω of an experiment, and

for each fixed ω ∈ Ω, the mapping t 7→ x(t, ω) is the sample path of the stochastic process

x(t), t ≥ t0. A pathwise solution t 7→ x(t) of (4.1) and (4.2) in (Ω, {Ft}t≥t0 ,Px0) is said

to be right maximally defined if x cannot be extended (either uniquely or non-uniquely)

forward in time. We assume that all right maximal pathwise solutions to (4.1) and (4.2)

in (Ω, {Ft}t≥t0 ,Px0) exist on [t0,∞), and hence, we assume that (4.1) and (4.2) is forward

complete. Sufficient conditions for forward completeness or global solutions to (4.1) and (4.2)

are given by Corollary 6.3.5 of [6].

Furthermore, we assume that f : D × Rn2 → Rn1+n2 and D : D × Rn2 → R(n1+n2)×d

satisfy the uniform Lipschitz continuity condition

‖f(x)− f(y)‖+ ‖D(x)−D(y)‖F ≤ L‖x− y‖, x, y ∈ D × Rn2 , (4.4)

and the growth restriction condition

‖f(x)‖2 + ‖D(x)‖2F ≤ L2(1 + ‖x‖2), x ∈ D × Rn2 , (4.5)

for some Lipschitz constant L > 0, and hence, since x(t0) ∈ HDn1
×Hn2 and x(t0) is indepen-

dent of (w(t) − w(t0)), t ≥ t0, it follows that there exists a unique solution x ∈ L2(Ω,F ,P)
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of (4.1) and (4.2) in the following sense. For every x ∈ HDn1
×Hn2 there exists τx > 0 such

that, if xI : [t0, τ1] × Ω → D × Rn2 and xII : [t0, τ2] × Ω → D × Rn2 are two solutions of

(4.1) and (4.2); that is, if xI, xII ∈ L2(Ω,F ,P), with continuous sample paths almost surely,

solve (4.1) and (4.2), then τx ≤ min{τ1, τ2} and P
(
xI(t) = xII(t), t0 ≤ t ≤ τx

)
= 1. Suffi-

cient conditions for forward existence and uniqueness in the absence of the uniform Lipschitz

continuity condition and growth restriction condition can be found in [105,114].

A solution t 7→ [xT1 (t), xT2 (t)]T is said to be regular if and only if Px0(τ e = ∞) = 1

for all x(0) ∈ HDn1
× Hn2 , where τ e is the first stopping time of the solution to (4.1) and

(4.2) from every bounded domain in D × Rn2 . Recall that regularity of solutions imply

that solutions exist for t ≥ t0 almost surely. Here, we assume regularity of solutions to

(4.1) and (4.2), and hence, τx = ∞ [67, p.75]. Moreover, the unique solution determines

a Rn1+n2-valued, time-homogeneous Feller continuous Markov process x(·), and hence, its

stationary Feller transition probability function is given by
(
[67, Th. 3.4], [6, Thm. 9.2.8]

)
P(x(t) ∈ B|x(t0)

a.s.
= x0) = P(t − t0, x0, 0, B) for all x0 ∈ D × Rn2 and t ≥ t0, and all Borel

subsets B of D × Rn2 , where P(s, x, t,B), t ≥ s, denotes the probability of transition of the

point x ∈ D × Rn2 at time instant s into the set B ⊂ D × Rn2 at time instant t. Finally,

recall that every continuous process with Feller transition probability function is also a strong

Markov process [67, p. 101].

Definition 4.1 [83, Def. 7.7]. Let x(·) be a time-homogeneous Markov process in HDn1
×

Hn2 and let V : D × Rn2 → R. Then the infinitesimal generator L of x(t), t ≥ 0, with

x(0) = x0 a.s., is defined by

LV (x0)
4
= lim

t→0+

Ex0 [V (x(t))]− V (x0)

t
, x0 ∈ D × Rn2 . (4.6)

If V ∈ C2 and has a compact support, and x(t), t ≥ t0, satisfies (4.1) and (4.2), then

the limit in (4.6) exists for all x ∈ D ×Rn2 and the infinitesimal generator L of x(t), t ≥ t0,

can be characterized by the system drift and diffusion functions f(x) and D(x) defining the
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stochastic dynamical system (4.1) and (4.2) with system state x(t), t ≥ t0, and is given by

([83, Thm. 7.9])

LV (x)
4
=
∂V (x)

∂x
f(x) +

1

2
tr DT(x)

∂2V (x)

∂x2
D(x), x ∈ D × Rn2 . (4.7)

In the following definition we introduce the notion of stochastic partial stability.

Definition 4.2. i) The nonlinear stochastic dynamical system G given by (4.1) and (4.2)

is Lyapunov stable in probability with respect to x1 uniformly in x20 if, for every ε > 0 and

ρ ∈ (0, 1), there exist δ = δ(ρ, ε) > 0 such that, for all x10 ∈ Bδ(0),

Px0
(

sup
t≥t0
‖x1(t)‖ ≤ ε

)
≥ 1− ρ (4.8)

for all t ≥ 0 and all x20 ∈ Rn2 .

ii) G is asymptotically stable in probability with respect to x1 uniformly in x20 if G is

Lyapunov stable in probability with respect to x1 uniformly in x20 and

lim
x10→0

Px0
(

lim
t→∞
‖x1(t)‖ = 0

)
= 1 (4.9)

uniformly in x20 for all x20 ∈ Rn2 .

iii) G is globally asymptotically stable in probability with respect to x1 uniformly in x20 if G

is Lyapunov stable in probability with respect to x1 uniformly in x20 and Px0
(

limt→∞ ‖x1(t)‖

= 0
)

= 1 holds uniformly in x20 for all (x10, x20) ∈ Rn1 × Rn2 .

Remark 4.1. It is important to note that there is a key difference between the stochastic

partial stability definitions given in Definitions 4.2 and the definitions of stochastic partial

stability given in [96]. In particular, the stochastic partial stability definitions given in [96]

require that both the initial conditions x10 and x20 lie in a neighborhood of origin, whereas

in Definition 4.2 x20 can be arbitrary. As will be seen below, this difference allows us to unify

autonomous stochastic partial stability theory with time-varying stochastic stability theory.
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An additional difference between our formulation of the stochastic partial stability problem

and the stochastic partial stability problem considered in [96] is in the treatment of the

equilibrium of (4.1) and (4.2). Specifically, in our formulation we require the weaker partial

equilibrium condition f1(0, x2) = 0 and D1(0, x2) = 0 for every x2 ∈ Rn2 , whereas in [96] the

author requires the stronger equilibrium condition f1(0, 0) = 0, f2(0, 0) = 0, D1(0, 0) = 0,

and D2(0, 0) = 0.

Remark 4.2. As far as the analysis and synthesis problem considered in Chapter 3,

a more general stochastic stability notion can also be introduced here involving stochastic

stability and convergence to an invariant (stationary) distribution. In this case, state conver-

gence is not to an equilibrium point but rather to a stationary distribution. This framework

can relax the vanishing perturbation assumption D1(0, x2) = 0, x2 ∈ Rn2 , and requires a

more involved analysis and synthesis framework showing stability of the underlying Markov

semigroup [78].

As shown in [45] and [28], an important application of deterministic partial stability the-

ory is the unification it provides between time-invariant stability theory and stability theory

for time-varying systems. A similar unification can be provided for stochastic dynamical

systems. Specifically, consider the nonlinear time-varying stochastic dynamical system given

by

dx(t) = f(t, x(t))dt+D(t, x(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (4.10)

where, for every t ≥ t0, x(t) ∈ HDn , D ⊆ Rn, D is an open set with 0 ∈ D, f(t, 0) = 0,

D(t, 0) = 0, and f : [t0,∞)×D → Rn and D : [t0,∞)×D → Rn×d are jointly continuous in

t and x, and satisfy (4.4) and (4.5) for all x ∈ D uniformly in t for all t in compact subsets

of [t0,∞). Now, defining x1(τ) , x(t) and x2(τ) , t a.s., where τ , t − t0, it follows that

the solution x(t), t ≥ t0, to the nonlinear time-varying stochastic dynamical system (4.10)

can be equivalently characterized by the solution x1(τ), τ ≥ 0, to the nonlinear autonomous
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stochastic dynamical system

dx1(τ) = f(x2(τ), x1(τ))dτ +D(x2(τ), x1(τ))dw(t), x1(0)
a.s.
= x0, τ ≥ 0, (4.11)

dx2(τ) = dτ, x2(0)
a.s.
= t0. (4.12)

Note that (4.11) and (4.12) are in the same form as the system given by (4.1) and (4.2),

and Definition 4.2 applied to (4.11) and (4.12) specializes to the definitions of uniform

Lyapunov stability in probability, uniform asymptotic stability in probability, and global

uniform asymptotic stability in probability of (4.10); for details see [6, 68].

Next, we provide sufficient conditions for partial stability of the nonlinear stochastic

dynamical system given by (4.1) and (4.2).

Theorem 4.1. Consider the nonlinear stochastic dynamical system (4.1) and (4.2).

Then the following statements hold:

i) If there exist a two-times continuously differentiable function V : D × Rn2 → R and

class K functions α(·), β(·), and γ(·) such that, for all (x1, x2) ∈ D × Rn2 ,

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), (4.13)

∂V (x1, x2)

∂x1
f1(x1, x2) +

∂V (x1, x2)

∂x2
f2(x1, x2) +

1

2
tr DT

1 (x1, x2)
∂2V (x1, x2)

∂x21
D1(x1, x2)

+
1

2
tr DT

2 (x1, x2)
∂2V (x1, x2)

∂x22
D2(x1, x2) ≤ −γ(‖x1‖), (4.14)

then the nonlinear dynamical system given by (4.1) and (4.2) is asymptotically stable in

probability with respect to x1 uniformly in x20.

ii) If there exist a two-times continuously differentiable function V : Rn1×Rn2 → R, class

K∞ functions α(·) and β(·), and a class K function γ(·) satisfying (4.13) and (4.14), then

the nonlinear dynamical system given by (4.1) and (4.2) is globally asymptotically stable in

probability with respect to x1 uniformly in x20.

Proof: i) Let x20 ∈ Rn2 , let ε > 0 be such that Bε(0) ⊆ D, let ρ > 0, and define Dε,ρ ,

{x1 ∈ Bε(0) : V (x1, x20) < α(ε)ρ}. Since V (·, ·) is continuous and V (0, x2) = 0, x2 ∈ Rn2 , it
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follows that Dε,ρ is nonempty and there exists δ = δ(ε, ρ) > 0 such that V (x1, x20) < α(ε)ρ,

x1 ∈ Bδ(0). Hence, Bδ(0) ⊆ Dε,ρ. Next, it follows from (4.14) that V (x1(t), x2(t)) is a

(positive) supermartingale [67, Lemma 5.4], and hence, for every x1(0) ∈ HBδ(0)n1 ⊆ HDε,ρn1 ,

it follows from (4.13) and the extended version of the Markov inequality for monotonically

increasing functions [41, p. 193] that

Px0
(

sup
t≥0
‖x1(t)‖ ≥ ε

)
≤ sup

t≥0

Ex0 [α(‖x1(t)‖)]
α(ε)

≤ sup
t≥0

Ex0 [V (x1(t), x2(t))]

α(ε)

≤ Ex0 [V (x1(0), x2(0))]

α(ε)

≤ ρ,

which proves partial Lyapunov stability in probability with respect to x1 uniformly in x20.

To prove partial asymptotic stability in probability with respect to x1, note that it follows

from (4.13) and (4.14) that

LV (x1, x2) ≤ −γ(‖x1‖) ≤ −γ ◦ β−1(V (x1, x2)), (x1, x2) ∈ D × Rn2 .

Furthermore, it follows from partial Lyapunov stability in probability that Bε(0) × Rn2 is

an invariant set with respect to the solutions of (4.1) and (4.2) as ε → 0, and hence, using

Corollary 4.2 of [75] with η(·) = γ◦β−1(·) it follows that limt→∞ γ◦β−1(V (x1(t), x2(t)))
a.s.
= 0.

Furthermore, using the properties of the class K functions α(·), β(·), and γ(·) it follows that

limt→∞ V (x1(t), x2(t))
a.s.
= 0, which yields limt→∞ α(‖x1(t)‖) ≤ limt→∞ V (x1(t), x2(t))

a.s.
= 0.

Hence, limt→∞ x1(t)
a.s.→ 0 as x10 → 0, which proves partial asymptotic stability in probability

with respect to x1 uniformly in x20.

ii) Finally, for D = Rn1 globally asymptotically stable in probability with respect to x1

uniformly in x20 is direct consequence of the radially unbounded condition on V (·, ·) using

standard arguments and the fact that α(·) and β(·) are class K∞ functions.
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4.3. Stochastic Optimal Partial-State Stabilization

In the first part of this section, we provide connections between Lyapunov functions and

nonquadratic cost evaluation. Specifically, we consider the problem of evaluating a nonlinear-

nonquadratic performance measure that depends on the solution of the stochastic nonlinear

dynamical system given by (4.1) and (4.2). In particular, we show that the nonlinear-

nonquadratic performance measure

J(x10, x20) , Ex0
[∫ ∞

0

L(x1(t), x2(t))dt

]
, (4.15)

where L : Rn1 × Rn2 → R is jointly continuous in x1 and x2, and x1(t) and x2(t), t ≥ 0,

satisfy (4.1) and (4.2), can be evaluated in a convenient form so long as (4.1) and (4.2)

are related to an underlying Lyapunov function that is positive definite and decrescent with

respect to x1 and proves asymptotic stability in probability of (4.1) and (4.2) with respect

to x1 uniformly in x20.

Theorem 4.2. Consider the nonlinear stochastic dynamical system G given by (4.1) and

(4.2) with performance measure (4.15). Assume that there exist a two-times continuously

differentiable function V : Rn1 × Rn2 → R, class K∞ functions α(·) and β(·), and a class K

function γ(·) such that, for all (x1, x2) ∈ Rn1 × Rn2 ,

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), (4.16)

∂V (x1, x2)

∂x1
f1(x1, x2) +

∂V (x1, x2)

∂x2
f2(x1, x2) +

1

2
tr DT

1 (x1, x2)
∂2V (x1, x2)

∂x21
D1(x1, x2)

+
1

2
tr DT

2 (x1, x2)
∂2V (x1, x2)

∂x22
D2(x1, x2) ≤ −γ(‖x1‖), (4.17)

L(x1, x2) +
∂V (x1, x2)

∂x1
f1(x1, x2) +

∂V (x1, x2)

∂x2
f2(x1, x2)

+
1

2
tr DT

1 (x1, x2)
∂2V (x1, x2)

∂x21
D1(x1, x2) +

1

2
tr DT

2 (x1, x2)
∂2V (x1, x2)

∂x22
D2(x1, x2) = 0.

(4.18)

Then the nonlinear stochastic dynamical system G is globally asymptotically stable in prob-
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ability with respect to x1 uniformly in x20 and, for all (x10, x20) ∈ Rn1 × Rn2 ,

J(x10, x20) = V (x10, x20). (4.19)

Proof: Let x1(t) and x2(t), t ≥ t0, satisfy (4.1) and (4.2). Then (4.16) and (4.17) are

a restatement (4.13) and (4.14), and hence, it follows from Theorem 4.1 that the system G

is globally asymptotically stable in probability with respect to x1 uniformly in x20. Conse-

quently, Px0
(

limt→∞ ‖x1(t)‖ = 0
)

= 1 holds for all initial conditions (x10, x20) ∈ Rn1 ×Rn2 .

Next, using Itô’s (chain rule) formula, it follows that the stochastic differential of V (x1(t),

x2(t)) along the system trajectories x1(t) and x2(t), t ≥ t0, is given by

dV (x1(t), x2(t)) =

(
∂V (x1(t), x2(t))

∂x1
f1(x1(t), x2(t)) +

∂V (x1(t), x2(t))

∂x2
f2(x1(t), x2(t))

+
1

2
tr DT

1 (x1(t), x2(t))
∂2V (x1(t), x2(t))

∂x21
D1(x1(t), x2(t))

+
1

2
tr DT

2 (x1(t), x2(t))
∂2V (x1(t), x2(t))

∂x22
D2(x1(t), x2(t))

)
dt

+
∂V (x(t))

∂x
D(x1(t), x2(t))dw(t). (4.20)

Hence, using (4.18) it follows that

L(x1(t), x2(t))dt+ dV (x1(t), x2(t))

=

(
L(x1(t), x2(t)) +

∂V (x1(t), x2(t))

∂x1
f1(x1(t), x2(t)) +

∂V (x1(t), x2(t))

∂x2
f2(x1(t), x2(t))

+
1

2
tr DT

1 (x1(t), x2(t))
∂2V (x1(t), x2(t))

∂x21
D1(x1(t), x2(t))

+
1

2
tr DT

2 (x1(t), x2(t))
∂2V (x1(t), x2(t))

∂x22
D2(x1(t), x2(t))

)
dt

+
∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

=
∂V (x(t))

∂x
D(x1(t), x2(t))dw(t). (4.21)

Let {tn}∞n=0 be a monotonic sequence of positive numbers with tn → ∞ as n → ∞,

τm : Ω→ [t0,∞) be the first exit (stopping) time of the solution x1(t) and x2(t), t ≥ t0, from
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the set Bm(0), and let τ
4
= limm→∞ τm. Now, integrating (4.21) over [t0,min{tn, τm}], where

(n,m) ∈ Z+ × Z+, yields∫ min{tn,τm}

t0

L(x1(t), x2(t)) dt

= −
∫ min{tn,τm}

t0

dV (x1(t), x2(t)) +

∫ min{tn,τm}

t0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

= V (x1(t0), x2(t0))− V (x1(min{tn, τm}), x2(min{tn, τm}))

+

∫ min{tn,τm}

t0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t). (4.22)

Next, taking the expectation on both sides of (4.22) yields

Ex0
[∫ min{tn,τm}

t0

L(x1(t), x2(t)) dt

]

= Ex0
[
V (x1(t0), x2(t0))− V (x1(min{tn, τm}), x2(min{tn, τm}))

+

∫ min{tn,τm}

t0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

]
= V (x10, x20)− Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))] . (4.23)

Now, noting that L(x1, x2) ≥ 0, (x1, x2) ∈ Rn1 × Rn2 , the sequence of random variables

{fn,m}∞n,m=0 ⊆ H1, where

fn,m
4
=

∫ min{tn,τm}

t0

L(x1(t), x2(t))dt,

is a pointwise nondecreasing sequence in n and m of nonnegative Ft-measurable random

variables on Ω. Moreover, defining the improper integral∫ ∞
t0

L(x1(t), x2(t))dt

as the limit of a sequence of proper integrals, it follows from the Lebesgue monotone con-

vergence theorem [3] that

lim
m→∞

lim
n→∞

Ex0
[∫ min{tn,τm}

t0

L(x1(t), x2(t)) dt

]

= lim
m→∞

Ex0
[

lim
n→∞

∫ min{tn,τm}

t0

L(x1(t), x2(t)) dt

]
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= Ex0
[

lim
m→∞

∫ τm

t0

L(x1(t), x2(t)) dt

]
= Ex0

[∫ ∞
t0

L(x1(t), x2(t)) dt

]
= J(x10, x20). (4.24)

Next, since G is globally asymptotically stable in probability with respect to x1 uniformly

in x20, V (·, ·) is continuous, V (x1(t), x2(t)), t ≥ t0, is positive supermartingale by (4.17)

and [67, Lemma 5.4] it follows from [67, Theorem 5.1] that

lim
m→∞

lim
n→∞

Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))]

= lim
m→∞

Ex0
[

lim
n→∞

V (x1(min{tn, τm}), x2(min{tn, τm}))
]

= Ex0
[

lim
m→∞

lim
n→∞

V (x1(min{tn, τm}), x2(min{tn, τm}))
]
. (4.25)

Now, it follows from (4.16) that

V (x10, x20)− Ex0
[

lim
m→∞

lim
n→∞

β (‖x1(min{tn, τm})‖)
]

≤ V (x10, x20)− Ex0
[

lim
m→∞

lim
n→∞

V (x1(min{tn, τm}), x2(min{tn, τm}))
]

≤ V (x10, x20)− Ex0
[

lim
m→∞

lim
n→∞

α (‖x1(min{tn, τm})‖)
]
, (4.26)

and hence, taking the limit as n→∞ and m→∞ on both sides of (4.23), using (4.24) and

(4.25), and using the continuity of α(·) and β(·), we obtain

V (x10, x20)− Ex0
[
β
(

lim
m→∞

lim
n→∞

‖x1(min{tn, τm})‖
)]

≤ J(x10, x20) ≤ V (x10, x20)− Ex0
[
α
(

lim
m→∞

lim
n→∞

‖x1(min{tn, τm})‖
)]
.

(4.27)

Finally, using Px0
(

limt→∞ ‖x1(t)‖ = 0
)

= 1 for all (x10, x20) ∈ Rn1 × Rn2 , (4.19) is a

direct consequence of (4.27).

The following corollary to Theorem 4.2 considers the nonautonomous stochastic dynam-

ical system (4.10) with performance measure

J(t0, x0) , Ex0
[∫ ∞

t0

L(t, x(t))dt

]
, (4.28)
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where L : [t0,∞)×Rn → R is jointly continuous in t and x, and x(t), t ≥ t0, satisfies (4.10).

Corollary 4.1. Consider the nonlinear time-varying stochastic dynamical system (4.10)

with performance measure (4.28). Assume that there exist a two-times continuously differ-

entiable function V : [t0,∞) × Rn → R, class K∞ functions α(·) and β(·), and a class K

function γ(·) such that, for all (t, x) ∈ [t0,∞)× Rn,

α(‖x‖) ≤ V (t, x) ≤ β(‖x‖), (4.29)

∂V (t, x)

∂t
+
∂V (t, x)

∂x
f(t, x) +

1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x) ≤ −γ(‖x‖), (4.30)

−∂V (t, x)

∂t
= L(t, x) +

∂V (t, x)

∂x
f(t, x) +

1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x). (4.31)

Then the stochastic nonlinear dynamical system (4.10) is globally uniformly asymptotically

stable in probability and J(t0, x0) = V (t0, x0) for all (t0, x0) ∈ [0,∞)× Rn.

Proof: The result is a direct consequence of Theorem 4.2 with n1 = n, n2 = 1, x1(t−t0) =

x(t), x2(t−t0) = t, f1(x1, x2) = f1(x2, x1) = f(t, x), f2(x1, x2) = 1, D1(x1, x2) = D1(x2, x1) =

D(t, x), D2(x1, x2) = 0, and V (x1, x2) = V (x2, x1) = V (t, x).

Next, we use the framework developed in Theorem 4.2 to obtain a characterization of

stochastic optimal feedback controllers that guarantee closed-loop, partial-state stabilization

in probability. Specifically, sufficient conditions for optimality are given in a form that

corresponds to a steady-state version of the stochastic Hamilton-Jacobi-Bellman equation.

To address the problem of characterizing partially stabilizing feedback controllers, consider

the nonlinear controlled stochastic dynamical system

dx1(t) = F1(x1(t), x2(t), u(t))dt+D1(x1(t), x2(t), u(t))dw(t), x1(0)
a.s.
= x10, t ≥ 0,

(4.32)

dx2(t) = F2(x1(t), x2(t), u(t))dt+D2(x1(t), x2(t), u(t))dw(t), x2(0)
a.s.
= x20, (4.33)

where, for every t ≥ 0, x1(t) ∈ Hn1 , x2(t) ∈ Hn2 , u(t) ∈ Hm, F1 : Rn1 × Rn2 × Rm → Rn1 ,

F2 : Rn1 ×Rn2 ×Rm → Rn2 , D1 : Rn1 ×Rn2 ×Rm → Rn1×d, D2 : Rn1 ×Rn2 ×Rm → Rn2×d,

and F1(0, x2, 0) = 0 and D1(0, x2, 0) = 0 for every x2 ∈ Rn2 .
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Here we assume that u(·) satisfies sufficient regularity conditions such that (4.32) and

(4.33) has a unique solution forward in time. Specifically, we assume that the control pro-

cess u(·) in (4.32) and (4.33) is restricted to the class of admissible controls consisting of

measurable functions u(·) adapted to the filtration {Ft}t≥0 such that u(t) ∈ Hm, t ≥ 0, and,

for all t ≥ s, w(t) − w(s) is independent of u(τ), w(τ), τ ≤ s, and x(0) = [xT1 (0), xT2 (0)]T,

and hence, u(·) is nonanticipative. Furthermore, we assume u(·) takes values in a compact,

metrizable set U and the uniform Lipschitz continuity and growth conditions (4.4) and (4.5)

hold for the controlled drift and diffusion terms F (x1, x2, u) , [FT
1 (x1, x2, u), FT

2 (x1, x2, u)]T

and D(x1, x2, u) , [DT
1 (x1, x2, u), DT

2 (x1, x2, u)]T uniformly in u. In this case, it follows from

Theorem 2.2.4 of [5] that there exists a pathwise unique solution to (4.32) and (4.33) in

(Ω, {F}t≥0,Px0).

A measurable function φ : Rn1 × Rn2 → Rm satisfying φ(0, x2) = 0, x2 ∈ Rn2 , is called a

control law. If u(t) = φ(x1(t), x2(t)), t ≥ 0, where φ(·, ·) is a control law and x1(t) and x2(t)

satisfy (4.32) and (4.33), then we call u(·) a feedback control law. Note that the feedback

control law is an admissible control since φ(x1(t), x2(t)) ∈ Hm, t ≥ 0. Given a control law

φ(·, ·) and a feedback control law u(t) = φ(x1(t), x2(t)), t ≥ 0, the closed-loop system (4.32)

and (4.33) is given by

dx1(t) = F1(x1(t), x2(t), φ(x1(t), x2(t)))dt+D1(x1(t), x2(t), φ(x1(t), x2(t)))dw(t),

x1(0)
a.s.
= x10, t ≥ 0, (4.34)

dx2(t) = F2(x1(t), x2(t), φ(x1(t), x2(t)))dt+D2(x1(t), x2(t), φ(x1(t), x2(t)))dw(t),

x2(0)
a.s.
= x20. (4.35)

Next, we present a main theorem for partial-state stabilization in probability charac-

terizing feedback controllers that guarantee partial closed-loop stability in probability and

minimize a nonlinear-nonquadratic performance functional. For the statement of this result,

let L : Rn1 × Rn2 × Rm → R be jointly continuous in x1, x2, and u, and define the set of
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partial regulation controllers given by

S(x1(0), x2(0)) ,
{
u(·) : u(·) is admissible and x1(·) given by (4.32)

satisfies Px0
(

lim
t→∞
‖x1(t)‖ = 0

)
= 1
}
.

Note that restricting our minimization problem to u(·) ∈ S(x1(0), x2(0)), that is, inputs

corresponding to partial-state null convergent in probability solutions, can be interpreted as

incorporating a partial-state system detectability condition through the cost.

Theorem 4.3. Consider the nonlinear controlled stochastic dynamical system G given

by (4.32) and (4.33) with performance functional

J(x10, x20, u(·)) , Ex0
[∫ ∞

0

L(x1(t), x2(t), u(t)) dt

]
, (4.36)

where u(·) is an admissible control. Assume that there exist a two-times continuously dif-

ferentiable function V : Rn1 ×Rn2 → R, class K∞ functions α(·) and β(·), a class K function

γ(·), and a control law φ : Rn1 × Rn2 → Rm such that, for all (x1, x2) ∈ Rn1 × Rn2 ,

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), (4.37)

V ′(x1, x2)F (x1, x2, φ(x1, x2)) +
1

2
tr DT(x1, x2, φ(x1, x2))V

′′(x1, x2)

·D(x1, x2, φ(x1, x2)) ≤ −γ(‖x1‖), (4.38)

φ(0, x2) = 0, (4.39)

H(x1, x2, φ(x)) = 0, (4.40)

H(x1, x2, u) ≥ 0, (x1, x2, u) ∈ Rn1 × Rn2 × Rm, (4.41)

where

H(x1, x2, u)
4
= L(x1, x2, u) + V ′(x1, x2)F (x1, x2, u)

+
1

2
tr DT(x1, x2, u)V ′′(x1, x2)D(x1, x2, u). (4.42)

Then, with the feedback control u = φ(x1, x2), the closed-loop system given by (4.34) and

(4.35) is globally asymptotically stable in probability with respect to x1 uniformly in x20 and

J(x10, x20, φ(x1(·), x2(·))) = V (x10, x20), (x10, x20) ∈ Rn1 × Rn2 . (4.43)
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In addition, if (x10, x20) ∈ Rn1 × Rn2 , then the feedback control u(·) = φ(x1(·), x2(·)) mini-

mizes J(x10, x20, u(·)) in the sense that

J(x10, x20, φ(·, ·)) = min
u(·)∈S(x1(0),x2(0))

J(x10, x20, u(·)). (4.44)

Proof: Global asymptotic stability in probability with respect to x1 uniformly in x20 is

a direct consequence of (4.37) and (4.38) by applying Theorem 4.1 to the closed-loop system

given by (4.34) and (4.35). Furthermore, using (4.40), condition (4.43) is a restatement of

(4.19) as applied to the closed-loop system.

Next, let (x10, x20) ∈ Rn1 ×Rn2 , let u(·) ∈ S(x1(0), x2(0)), and let x1(t) and x2(t), t ≥ 0,

be solutions of (4.32) and (4.33). Then, using Itô’s (chain rule) formula, the stochastic

differential of V (x1(t), x2(t)) along the system trajectories (x1(t), x2(t)), t ≥ 0, is given by

dV (x1(t), x2(t)) = LV (x1(t), x2(t))dt+
∂V (x(t))

∂x
D(x1(t), x2(t), u(t))dw(t). (4.45)

Hence, using (4.7) and (4.42) yields

L(x1(t), x2(t), u(t))dt =− dV (x1(t), x2(t)) + (L(x1(t), x2(t), u(t)) + LV (x1(t), x2(t))) dt

+
∂V (x(t))

∂x
D(x1(t), x2(t), u(t))dw(t)

=− dV (x1(t), x2(t)) +H(x1(t), x2(t), u(t))dt

+
∂V (x(t))

∂x
D(x1(t), x2(t), u(t))dw(t). (4.46)

Now, it follows from (4.37) that

Ex0
[

lim
t→∞

α(‖x1(t)‖)
]
≤ Ex0

[
lim
t→∞

V (x1(t), x2(t))
]
≤ Ex0

[
lim
t→∞

β(‖x1(t)‖)
]
. (4.47)

Using the continuity of α(·) and β(·), and the fact that Px0 (limt→∞ ‖x1(t)‖ = 0) = 1 for all

u(·) ∈ S(x1(0), x2(0)), it follows from (4.47) that

0 = Ex0
[
α
(

lim
t→∞
‖x1(t)‖

)]
≤ Ex0

[
lim
t→∞

V (x1(t), x2(t))
]
≤ Ex0

[
β
(

lim
t→∞
‖x1(t)‖

)]
= 0.

(4.48)
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Let {tn}∞n=0 be a monotonic sequence of positive numbers with tn → ∞ as n → ∞,

τm : Ω→ [0,∞) be the first exit (stopping) time of the solution x1(t) and x2(t), t ≥ 0, from

the set Bm(0), and let τ
4
= limm→∞ τm. Now, integrating (4.46) over [t0,min{tn, τm}], where

(n,m) ∈ Z+ × Z+, yields∫ min{tn,τm}

0

L(x1(t), x2(t), u(t)) dt

= −
∫ min{tn,τm}

0

dV (x1(t), x2(t)) +

∫ min{tn,τm}

0

H(x1(t), x2(t), u(t))dt

+

∫ min{tn,τm}

0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

= V (x1(0), x2(0))− V (x1(min{tn, τm}), x2(min{tn, τm}))

+

∫ min{tn,τm}

0

H(x1(t), x2(t), u(t))dt

+

∫ min{tn,τm}

0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t). (4.49)

Next, taking the expectation on both sides of (4.49) and using (4.41) yields

Ex0
[∫ min{tn,τm}

0

L(x1(t), x2(t), u(t)) dt

]

= Ex0
[
V (x1(0), x2(0))− V (x1(min{tn, τm}), x2(min{tn, τm}))

+

∫ min{tn,τm}

0

H(x1(t), x2(t), u(t))dt

+

∫ min{tn,τm}

0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

]
= V (x10, x20)− Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))]

+Ex0
[∫ min{tn,τm}

0

H(x1(t), x2(t), u(t))dt

]
≥ V (x10, x20)− Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))] . (4.50)

Now, noting that for all u(.) ∈ S(x1(0), x2(0)),∫ ∞
0

|L(x1(t), x2(t), u(t))| dt
a.s.
< ∞,

define the random variable

g
4
= sup

t≥0,m>0

∫ min{t,τm}

0

|L(x1(s), x2(s), u(s))| ds.
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In this case, the sequence of Ft-measurable random variables {fn,m}∞n,m=0 ⊆ H1 on Ω, where

fn,m
4
=

∫ min{tn,τm}

0

L(x1(t), x2(t), u(t))dt,

satisfies |fn,m|
a.s.
< g.

Next, defining the improper integral∫ ∞
0

L(x1(t), x2(t), u(t))dt

as the limit of a sequence of proper integrals, it follows from dominated convergence theorem

[3] that

lim
m→∞

lim
n→∞

Ex0
[∫ min{tn,τm}

0

L(x1(t), x2(t), u(t))dt

]

= lim
m→∞

Ex0
[

lim
n→∞

∫ min{tn,τm}

0

L(x1(t), x2(t), u(t))dt

]

= Ex0
[

lim
m→∞

∫ τm

0

L(x1(t), x2(t), u(t))dt

]
= Ex0

[∫ ∞
t0

L(x1(t), x2(t), u(t))dt

]
= J(x10, x20, u(·)). (4.51)

Finally, using the fact that u(.) ∈ S(x1(0), x2(0)) and V (·, ·) is continuous, it follows

that for every m > 0, V (x1(min{tn, τm}), x2(min{tn, τm})) is bounded for all {tn}∞n=0. Thus,

using the dominated convergence theorem we obtain

lim
m→∞

lim
n→∞

Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))]

= Ex0
[

lim
m→∞

lim
n→∞

V (x1(min{tn, τm}), x2(min{tn, τm}))
]
.

(4.52)

Now, taking the limit as n → ∞ and m → ∞ on both sides of (4.50) and using the fact

u(·) ∈ S(x1(0), x2(0)), (4.48), (4.51), (4.52), and J(x10, x20, φ(x1(·), x2(·))) = V (x10, x20)

yields (4.44).

Note that (4.40) is the steady-state, stochastic Hamilton-Jacobi-Bellman equation for

the nonlinear controlled stochastic dynamical system (4.32) and (4.33) with performance
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criterion (4.36). Furthermore, conditions (4.40) and (4.41) guarantee optimality with re-

spect to the set of admissible partially asymptotically stabilizing in probability controllers

S(x0(0), x2(0)). However, it is important to note that an explicit characterization of S(x1(0),

x2(0)) is not required. In addition, the stochastic optimal asymptotically stabilizing in prob-

ability with respect to x1 uniformly in x20 feedback control law u = φ(x1, x2) is independent

of the initial condition (x10, x20) and is given by

φ(x1, x2) = arg min
u∈S(x1(0),x2(0))

[
L(x1, x2, u) + V ′(x1, x2)F (x1, x2, u)

+
1

2
tr DT(x1, x2, u)V ′′(x1, x2)D(x1, x2, u)

]
. (4.53)

Remark 4.3. Setting n1 = n and n2 = 0, the nonlinear controlled stochastic dynamical

system given by (4.32) and (4.33) reduces to

dx(t) = F (x(t), u(t))dt+D(x(t), u(t))dw(t), x(0)
a.s.
= x0, t ≥ 0. (4.54)

In this case, (4.37) implies that V (·) is positive definite with respect to x and the conditions

of Theorem 4.3 reduce to the conditions given in Chapter 4 of [68] characterizing the classical

stochastic optimal control problem for time-invariant systems on an infinite interval.

Finally, we use Theorem 4.3 to provide a unification between optimal partial-state stochas-

tic stabilization and stochastic optimal control for nonlinear time-varying systems. Specifi-

cally, consider the nonlinear time-varying controlled stochastic dynamical system

dx(t) = F (t, x(t), u(t))dt+D(t, x(t), u(t))dw(t), x(t0) = x0 a.s., t ≥ t0, (4.55)

with performance measure

J(t0, x0, u(·)) , Ex0
[∫ ∞

t0

L(t, x(t), u(t))dt

]
, (4.56)

where, for every t ≥ t0, x(t) ∈ Hn, u(t) ∈ Hm, L : [t0,∞)×Rn×Rm → R, F : [t0,∞)×Rn×

Rm → Rn and D : [t0,∞)×Rn ×Rm → Rn×d are jointly continuous in t, x, and u, F (t, ·, u)
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and D(t, ·, u) is Lipschitz continuous in x for every (t, u) ∈ [t0,∞) × Rm, and F (t, x, ·) and

D(t, x, ·) is Lipschitz continuous in u for every (t, x) ∈ [t0,∞) × Rn. For the statement of

the next result, define the set of regulation controllers

S(t0, x(t0)) ,
{
u(·) : u(·) is admissible and x(·) given by (4.55)

satisfies Px0
(

lim
t→∞
‖x(t)‖ = 0

)
= 1
}
.

Corollary 4.2. Consider the nonlinear time-varying controlled stochastic dynamical sys-

tem (4.55) with performance measure (4.56) where u(·) is an admissible control. Assume

that there exist a two-times continuously differentiable function V : [t0,∞)×Rn → R, class

K∞ functions α(·) and β(·), a class K function γ(·), and a control law φ : [t0,∞)×Rn → Rm

such that, for all (t, x) ∈ [t0,∞)× Rn,

α(‖x‖) ≤ V (t, x) ≤ β(‖x‖), (4.57)

∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(t, x)) +

1

2
tr DT(t, x, φ(t, x))

·∂
2V (t, x)

∂x2
D(t, x, φ(t, x)) ≤ −γ(‖x‖), (4.58)

φ(t, 0) = 0, (4.59)

L(t, x, φ(t, x)) +
∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(t, x))

+
1

2
tr DT(t, x, φ(t, x))

∂2V (t, x)

∂x2
D(t, x, φ(t, x)) = 0, (4.60)

L(t, x, u) +
∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, u)

+
1

2
tr DT(t, x, u)

∂2V (t, x)

∂x2
D(t, x, u) ≥ 0, (t, x, u) ∈ [t0,∞)× Rn × Rm. (4.61)

Then, with the feedback control u = φ(t, x), the closed-loop system given by (4.55) is

globally uniformly asymptotically stable in probability and J(t0, x0, φ(·, ·)) = V (t0, x0) for

all (t0, x0) ∈ [0,∞) × D0. In addition, if (t0, x0) ∈ [0,∞) × Rn, then the feedback control

u(·) = φ(·, x(·)) minimizes J(x0, u(·)) in the sense that

J(t0, x0, φ(·, ·)) = min
u(·)∈S(t0,x(t0))

J(t0, x0, u(·)). (4.62)
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Proof: The proof is a direct consequence of Theorem 4.3 with n1 = n, n2 = 1, x1(t −

t0) = x(t), x2(t − t0) = t, F1(x1, x2, u) = F1(x2, x1, u) = F (t, x, u), F2(x1, x2, u) = 1,

D1(x1, x2, u) = D1(x2, x1, u) = D(t, x, u), D2(x1, x2, u) = 0, φ(x1, x2) = φ(x2, x1) = φ(t, x),

and V (x1, x2) = V (x2, x1) = V (t, x).

Note that (4.60) and (4.61) give the stochastic Hamilton-Jacobi-Bellman equation

−∂V (t, x)

∂t
= min

u∈S(t0,x(t0))

[
L(t, x, u) +

∂V (t, x)

∂x
F (t, x, u)

+
1

2
tr DT(t, x, u)

∂2V (t, x)

∂x2
D(t, x, u)

]
, (t, x) ∈ [t0,∞)× Rn,(4.63)

which characterizes the optimal control

φ(t, x) = arg min
u∈S(t0,x(t0))

[
L(t, x, u) +

∂V (t, x)

∂x
F (t, x, u)

+
1

2
tr DT(t, x, u)

∂2V (t, x)

∂x2
D(t, x, u)

]
(4.64)

for time-varying stochastic systems on a finite or infinite interval.

4.4. Partial-State Stochastic Stabilization for Affine Dynamical
Systems and Connections to the Time-Varying Linear-Quad-
-ratic Regulator Problem

In this section, we specialize the results of Section 4.3 to nonlinear affine in the control

stochastic dynamical systems of the form

dx1(t) = [f1(x1(t), x2(t)) +G1(x1(t), x2(t))u(t)] dt+D1(x1(t), x2(t))dw(t),

x1(0)
a.s.
= x10, t ≥ 0, (4.65)

dx2(t) = [f2(x1(t), x2(t)) +G2(x1(t), x2(t))u(t)] dt+D2(x1(t), x2(t))dw(t),

x2(0)
a.s.
= x20, (4.66)

where, for every t ≥ 0, x1(t) ∈ Hn1 and x2(t) ∈ Hn2 , u(t) ∈ Hm, and f1 : Rn1 × Rn2 → Rn1 ,

f2 : Rn1 ×Rn2 → Rn2 , G1 : Rn1 ×Rn2 → Rn1×m, G2 : Rn1 ×Rn2 → Rn2×m, D1 : Rn1 ×Rn2 →
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Rn1×d, and D2 : Rn1 × Rn2 → Rn2×d are such that f1(0, x2) = 0 and D1(0, x2) = 0 for

all x2 ∈ Rn2 ; and F (x1, x2, u)
4
= [
(
f1(x1, x2) + G1(x1, x2)u

)T
,
(
f2(x1, x2) + G2(x1, x2)u

)T
]T,

D(x1, x2, u)
4
= [DT

1 (x1, x2, u), DT
2 (x1, x2, u)]T satisfy (4.4) and (4.5) uniformly in u. Further-

more, we consider performance integrands L(x1, x2, u) of the form

L(x1, x2, u) = L1(x1, x2) + L2(x1, x2)u+ uTR2(x1, x2)u, (x1, x2, u) ∈ Rn1 × Rn2 × Rm,

(4.67)

where L1 : Rn1 × Rn2 → R, L2 : Rn1 × Rn2 → R1×m, and R2(x1, x2) ≥ N(x1) > 0,

(x1, x2) ∈ Rn1 × Rn2 , so that (4.36) becomes

J(x10, x20, u(·)) = Ex0
[∫ ∞

0

[
L1(x1(t), x2(t)) + L2(x1(t), x2(t))u(t)

+ uT(t)R2(x1(t), x2(t))u(t)
]

dt

]
. (4.68)

For the statement of the next result, define

f(x1, x2) , [fT
1 (x1, x2), f

T
2 (x1, x2)]

T, G(x1, x2) , [GT
1 (x1, x2), G

T
2 (x1, x2)]

T,

D(x1, x2) , [DT
1 (x1, x2), D

T
2 (x1, x2)]

T.

Theorem 4.4. Consider the controlled nonlinear affine stochastic dynamical system

(4.65) and (4.66) with performance measure (4.68). Assume that there exist a two-times

continuously differentiable function V : Rn1 × Rn2 → R, class K∞ functions α(·) and β(·),

and a class K function γ(·) such that

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), (x1, x2) ∈ Rn1 × Rn2 , (4.69)

V ′(x1, x2)
[
f(x1, x2)− 1

2
G(x1, x2)R

−1
2 (x1, x2)L

T
2 (x1, x2)

−1
2
G(x1, x2)R

−1
2 (x1, x2)G

T(x1, x2)V
′T(x1, x2)

]
+1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ Rn1 × Rn2 ,
(4.70)

L2(0, x2) = 0, x2 ∈ Rn2 , (4.71)
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0 = L1(x1, x2) + V ′(x1, x2)f(x1, x2) + 1
2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)

−1
4

[V ′(x1, x2)G(x1, x2) + L2(x1, x2)]R
−1
2 (x1, x2) [V ′(x1, x2)G(x1, x2) + L2(x1, x2)]

T
,

(x1, x2) ∈ Rn1 × Rn2 . (4.72)

Then, with the feedback control

u = φ(x1, x2) = −1
2
R−12 (x1, x2)

[
L2(x1, x2) + V ′(x1, x2)G(x1, x2)

]T
, (4.73)

the closed-loop system

dx1(t) = [f1(x1(t), x2(t)) +G1(x1(t), x2(t))φ(x1(t), x2(t))] dt+D1(x1(t), x2(t))dw(t),

x1(0)
a.s.
= x10, t ≥ 0, (4.74)

dx2(t) = [f2(x1(t), x2(t)) +G2(x1(t), x2(t))φ(x1(t), x2(t))] dt+D2(x1(t), x2(t))dw(t),

x2(0)
a.s.
= x20, (4.75)

is globally asymptotically stable in probability with respect to x1 uniformly in x20 and the

performance measure (4.68) is minimized in the sense of (4.44). Finally,

J(x10, x20, φ(x1(·), x2(·)) = V (x10, x20), (x10, x20) ∈ Rn1 × Rn2 . (4.76)

Proof: The result is a consequence of Theorem 4.3 withD = Rn1 , U = Rm, F (x1, x2, u) =

f(x1, x2) + G(x1, x2)u, and L(x1, x2, u) = L1(x1, x2) + L2(x1, x2)u + uTR2(x1, x2)u. Specifi-

cally, the feedback control law (4.72) follows from (4.53) by setting

∂

∂u

[
L1(x1, x2) + L2(x1, x2)u+ uTR2(x1, x2)u+ V ′(x1, x2)

(
f(x1, x2) +G(x1, x2)u

)
+

1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)
]

= 0. (4.77)

Now, with u = φ(x1, x2) given by (4.73), conditions (4.69), (4.70), and (4.72) imply (4.37),

(4.38), and (4.40), respectively.

Next, since V (·, ·) is two-times continuously differentiable and, by (4.69), V (0, x2), x2 ∈

Rn2 , is a local minimum of V (·, ·), it follows that V ′(0, x2) = 0, x2 ∈ Rn2 , and hence, it
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follows from (4.71) and (4.73) that φ(0, x2) = 0, which implies (4.39). Finally, since

L(x1, x2, u) + V ′(x1, x2)[f(x1, x2) +G(x1, x2)u] + 1
2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)

= L(x1, x2, u) + V ′(x1, x2)[f(x1, x2) +G(x1, x2)u]

+ 1
2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)− L(x1, x2, φ(x1, x2))

− V ′(x1, x2)[f(x1, x2) +G(x1, x2)φ(x1, x2)]− 1
2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)

= [u− φ(x1, x2)]
TR2(x1, x2)[u− φ(x1, x2)]

≥ 0, (x1, x2) ∈ Rn1 × Rn2 , (4.78)

condition (4.41) holds. The result now follows as a direct consequence of Theorem 4.3.

Next, we use Theorem 4.4 to address the classical time-varying, linear-quadratic stochas-

tic optimal control problem. Specifically, consider the linear time-varying stochastic dynam-

ical system

dx(t) = [A(t)x(t) +B(t)u(t)] dt+ x(t)σT(t)dw(t), x(t0)
a.s.
= x0, t ≥ t0, (4.79)

with performance measure

J(t0, x0, u(·)) = Ex0
[∫ ∞

t0

[
xT(t)R1(t)x(t) + uT(t)R2(t)u(t)

]
dt

]
, (4.80)

where, for all t ≥ t0, x(t) ∈ Hn and u(t) ∈ Hm, σ : [t0,∞) → Rd, A : [t0,∞) → Rn×n, and

B : [t0,∞) → Rn×m are continuous and uniformly bounded, and R1 : [t0,∞) → Rn×n and

R2 : [t0,∞) → Rm×m are continuous, uniformly bounded, and positive definite, and hence,

there exist γ, µ > 0 such that R1(t) ≥ γIn > 0 and R2(t) ≥ µIm > 0 for all t ≥ t0.

Corollary 4.3. Consider the linear time-varying stochastic dynamical system (4.79)

with quad- ratic performance measure (4.80) and let P : [t0,∞) → Rn×n be a continuously

differentiable, uniformly bounded, positive definite solution of

−Ṗ (t) =

(
A(t) +

1

2
‖σ(t)‖2In

)T

P (t) + P (t)

(
A(t) +

1

2
‖σ(t)‖2In

)
+R1(t)
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− P (t)B(t)R−12 (t)BT(t)P (t), lim
tf→∞

P (tf ) = P , t ∈ [t0,∞), (4.81)

where P satisfies (4.81). Then, with the feedback control

u = φ(t, x) = −R−12 (t)BT(t)P (t)x, (t, x) ∈ [t0,∞)× Rn, (4.82)

the stochastic dynamical system (4.79) is globally uniformly asymptotically stable in prob-

ability and

J(t0, x0, φ(·, ·)) = xT0 P (t0)x0, (t0, x0) ∈ [0,∞)× Rn. (4.83)

Furthermore, the feedback control u(·) = φ(·, x(·)) minimizes (4.80) in the sense of (4.62).

Proof: The result is a consequence of Theorem 4.4 with n1 = n, n2 = 1, x1(t−t0) = x(t),

x2(t−t0) = t, f1(x1, x2) = f1(x2, x1) = A(t)x, f2(x1, x2) = 1, G1(x1, x2) = G1(x2, x1) = B(t),

G2(x1, x2) = 0, D1(x1, x2) = D1(x2, x1) = xσT(t), D2(x1, x2) = 0, L1(x1, x2) = L1(x2, x1) =

xTR1(t)x, L2(x1, x2) = 0, R2(x1, x2) = R2(x2, x1) = R2(t), V (x1, x2) = V (x2, x1) = xTP (t)x,

α(‖x1‖) = α‖x‖2, β(‖x1‖) = β‖x‖2, and γ(‖x1‖) = γ‖x‖2, for some α, β, γ > 0. Specifically,

since P (·) is uniformly bounded and positive definite, there exist constants α > 0 and β > 0

such that αIn ≤ P (t) ≤ βIn, t ≥ t0, and hence,

α‖x‖2 ≤ V (t, x) ≤ β‖x‖2, (t, x) ∈ [t0,∞)× Rn, (4.84)

which verifies (4.69).

Next, (4.82) is a restatement of (4.73). Now, note that, with Ã(t) , A(t) + B(t)K(t),

K(t) , −R−12 (t)BT(t)P (t), and R̃(t) , R1(t) + P (t)B(t)R−12 (t)BT(t)P (t), (4.81) can be

equivalently written as

−Ṗ (t) =

(
Ã(t) +

1

2
‖σ(t)‖2In

)T

P (t) + P (t)

(
Ã(t) +

1

2
‖σ(t)‖2In

)
+ R̃(t),

lim
tf→∞

P (tf ) = P , t ∈ [t0,∞), (4.85)

where Ã(t), t ≥ t0, characterizes the closed-loop dynamics of the closed-loop system (4.79)

and (4.82) given by

dx(t) = Ã(t)x(t)dt+ x(t)σT(t)dw(t), x(t0)
a.s.
= x0, t ≥ t0. (4.86)
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Next, computing the infinitesimal generator LV (t, x) along the trajectories of the closed-loop

system (4.86) gives

LV (t, x) = xTṖ (t)x+ 2xTP (t)Ã(t)x+ ‖σ(t)‖2xTP (t)x

= xT

[
Ṗ (t) +

(
Ã(t) +

1

2
‖σ(t)‖2In

)T

P (t) + P (t)

(
Ã(t) +

1

2
‖σ(t)‖2In

)]
x

= −xTR̃(t)x, (t, x) ∈ [t0,∞)× Rn

≤ −γ‖x‖2, (t, x) ∈ [t0,∞)× Rn, (4.87)

which verifies (4.70).

Finally, it follows from (4.81) that

xTR1(t)x+ φT(t, x)R2(t)φ(t, x) +
∂V (t, x)

∂t

+
∂V (t, x)

∂x

[
A(t)x+B(t)φ(t, x)

]
+

1

2
tr (xσT(t))T

∂2V (t, x)

∂x2
(xσT(t))

= xT
[
Ṗ (t) +

(
A(t) +

1

2
‖σ(t)‖2In

)T

P (t) + P (t)

(
A(t) +

1

2
‖σ(t)‖2In

)
+R1(t)− P (t)B(t)R−12 (t)BT(t)P (t)

]
x

= 0, (t, x) ∈ [t0,∞)× Rn, (4.88)

which verifies (4.72). The result now follows as a direct consequence of Theorem 4.4.

Corollary 4.3 gives sufficient conditions for global uniform asymptotic stability (in proba-

bility) and optimality of the linear stochastic dynamical system (4.79) with the state feedback

control law (4.82).

4.5. Inverse Optimal Stochastic Control

In this section, we construct state feedback controllers for nonlinear affine in the control

stochastic dynamical systems that are predicated on an inverse optimal control problem

[2, 42,57,79,82].
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Theorem 4.5. Consider the nonlinear controlled affine stochastic dynamical system

(4.65) and (4.66) with performance measure (4.68). Assume there exist a two-times con-

tinuously differentiable function V : Rn1 × Rn2 → R, class K∞ functions α(·) and β(·), and

a class K function γ(·) such that, for all (x1, x2) ∈ Rn1 × Rn2 ,

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), (4.89)

V ′(x1, x2)

[
f(x1, x2)−

1

2
G(x1, x2)R

−1
2 (x1, x2)L

T
2 (x1, x2)−

1

2
G(x1, x2)R

−1
2 (x1, x2)

·GT(x1, x2)V
′T(x1, x2)

]
+

1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2) ≤ −γ(‖x1‖), (4.90)

L2(0, x2) = 0. (4.91)

Then, with the feedback control

u = φ(x1, x2) = −1

2
R−12 (x1, x2)

[
L2(x1, x2) + V ′(x1, x2)G(x1, x2)

]T
, (4.92)

the closed-loop system given by (4.74) and (4.75) is globally asymptotically stable in prob-

ability with respect to x1 uniformly in x20 and the performance functional (4.68), with

L1(x1, x2) = φT(x1, x2)R2(x1, x2)φ(x1, x2)− V ′(x1, x2)f(x1, x2)

−1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2), (4.93)

is minimized in the sense of (4.44). Finally, (4.43) holds.

Proof: The proof is identical to the proof of Corollary 4.4.

Next, we specialize Theorem 4.5 to linear time-varying stochastic systems controlled by

nonlinear controllers that minimize a polynomial cost functional generalizing the results of

[69] and [45] to the stochastic setting. Specifically, consider the linear time-varying stochastic

dynamical system

dx(t) = [A(t)x(t) +B(t)u(t)] dt+ x(t)σT(t)dw(t), x(t0)
a.s.
= x0, t ≥ t0, (4.94)

where, for all t ≥ t0, x(t) ∈ Hn, u(t) ∈ Hm, and σ : [t0,∞) → Rd, A : [t0,∞) → Rn×n, and

B : [t0,∞) → Rn×m are continuous and uniformly bounded. For the following result, let
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R1 : [t0,∞) → Rn×n, R2 : [t0,∞) → Rm×m, and R̂q : [t0,∞) → Rn×n, q = 2, . . . , r, where r

is a positive integer, be continuous, uniformly bounded, and positive definite matrices, that

is, there exist γ, µ, µ̂q > 0, q = 2, . . . , r, such that R1(t) ≥ γIn > 0, R2(t) ≥ µIm > 0, and

R̂q(t) ≥ µ̂qIm > 0, for all t ≥ t0. Furthermore, we consider performance integrands in (4.56)

of the form

L(t, x, u) = L1(t, x) + L2(t, x)u+ uTR2(t, x)u, (t, x, u) ∈ [t0,∞)× Rn × Rm, (4.95)

where L1 : [t0,∞) × Rn → R, L2 : [t0,∞) × Rn → R1×m, and R2(t, x) ≥ N(x) > 0,

(t, x) ∈ [t0,∞)× Rn, so that (4.56) becomes

J(t0, x0, u(·)) = Ex0
[∫ ∞

t0

[
L1(t, x(t)) + L2(t, x(t))u(t) + uT(t)R2(t, x(t))u(t)

]
dt

]
. (4.96)

Corollary 4.4. Consider the linear controlled time-varying stochastic dynamical system

(4.94), where u(·) is admissible. Assume that there exist a uniformly bounded, continuously

differentiable, positive definite P : [t0,∞)→ Rn×n and continuously differentiable, uniformly

bounded, nonnegative definite Mq : [t0,∞)→ Rn×n, q = 2, . . . , r, such that

−Ṗ (t) =

(
A(t) +

1

2
‖σ(t)‖2In

)T

P (t) + P (t)

(
A(t) +

1

2
‖σ(t)‖2In

)
+R1(t)− P (t)S(t)P (t),

lim
tf→∞

P (tf ) = P , t ∈ [t0,∞), (4.97)

−Ṁq(t) =

(
A(t) +

1

2
(2q − 1)‖σ(t)‖2In − S(t)P (t)

)T

Mq(t)

+Mq(t)

(
A(t) +

1

2
(2q − 1)‖σ(t)‖2In − S(t)P (t)

)
+ R̂q(t),

lim
tf→∞

Mq(tf ) = M q, q = 2, . . . , r, t ∈ [t0,∞), (4.98)

where S(t) , B(t)R−12 (t)BT(t) and P and M q satisfy (4.97) and (4.98), respectively. Then

the zero solution x(t) ≡ 0 of the closed-loop system

dx(t) = [A(t)x(t) +B(t)φ(t, x)] dt+x(t)σT(t)dw(t), x(t0) = x0 a.s., t ≥ t0, (4.99)

is globally uniformly asymptotically stable in probability with feedback control

u = φ(t, x) = −R−12 (t)BT(t)

(
P (t) +

r∑
q=2

(xTMq(t)x)q−1Mq(t)

)
x, (4.100)
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and the performance functional (4.96) with R2(t, x) = R2(t), L2(t, x) = 0, and

L1(t, x) = xT

(
R1(t) +

r∑
q=2

(xTMq(t)x)q−1R̂q(t)

+

[
r∑
q=2

(xTMq(t)x)q−1Mq(t)

]T
S(t)

[
r∑
q=2

(xTMq(t)x)q−1Mq(t)

])
x, (4.101)

is minimized in the sense of (4.62). Finally,

J(t0, x0, φ(·, ·)) = xT0 P (t0)x0 +
r∑
q=2

1

q

(
xT0Mq(t0)x0

)q
, (t0, x0) ∈ [0,∞)× Rn. (4.102)

Proof: The result is a consequence of Theorem 4.5 with n1 = n, n2 = 1, x1(t−t0) = x(t),

x2(t−t0) = t, f1(x1, x2) = f1(x2, x1) = A(t)x, f2(x1, x2) = 1, G1(x1, x2) = G1(x2, x1) = B(t),

G2(x1, x2) = 0, D1(x1, x2) = D1(x2, x1) = xσT(t), D2(x1, x2) = 0, L1(x1, x2) = L1(x2, x1) =

L1(t, x), where L1(t, x) is given by (4.101), L2(x1, x2) = 0, R2(x1, x2) = R2(x2, x1) = R2(t),

V (x1, x2) = V (x2, x1) = xTP (t)x +
∑r

q=2
1
q
(xTMq(t)x)q, α(‖x1‖) = α‖x‖2, β(‖x1‖) =

β‖x‖2 +
∑r

q=2
1
q
β̂qq‖x‖2q, and γ(‖x1‖) = −γ‖x‖2 −

∑r
q=2 σ̂qβ̂

q−1
q ‖x‖2q, for some α, β, γ,

β̂q, and σ̂q > 0, q = 2, . . . , r. Specifically, since P (·) and Mq(·) are uniformly bounded

and, respectively, positive and nonnegative definite, there exist constants α, β, and β̂q > 0,

q = 2, . . . , r, such that αIn ≤ P (t) ≤ βIn and 0 ≤Mq(t) ≤ β̂qIn, t ≥ t0, and hence,

α‖x‖2 ≤ V (t, x) ≤ β‖x‖2 +
r∑
q=2

1

q
β̂qq‖x‖2q, (t, x) ∈ [t0,∞)× Rn, (4.103)

which verifies (4.89).

Next, (4.100) is a restatement of (4.92). Now, let φ(t, x) = φ1(t, x) + φ2(t, x), where

φ1(t, x) , −R−12 (t)BT(t)P (t)x, (4.104)

φ2(t, x) , −R−12 (t)BT(t)
r∑
q=2

(xTMq(t)x)q−1Mq(t)x. (4.105)

Computing the infinitesimal generator LV (t, x) along the trajectories of the closed-loop

system (4.99) gives

LV (t, x) = xT
(
Ṗ (t)x+ P (t)A(t) + AT(t)P (t)

)
x+ 2xTP (t)B(t)φ(t, x) + ‖σ(t)‖2xTP (t)x
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+
r∑
q=2

(xTMq(t)x)q−1
[
xT
(
Ṁq(t) +Mq(t)A(t) + AT(t)Mq(t)

)
x

+ 2xTMq(t)B(t)φ(t, x) + (2q − 1)‖σ(t)‖2xTMq(t)x
]

= xT

(
Ṗ (t) + P (t)

(
A(t) +

1

2
‖σ(t)‖2In

)
+

(
A(t) +

1

2
‖σ(t)‖2In

)T

P (t)

− P (t)S(t)P (t)

)
x− xTP (t)S(t)P (t)x+ 2xTP (t)B(t)φ2(t, x)

+
r∑
q=2

(xTMq(t)x)q−1
[
xT(Ṁq(t) +Mq(t)(A(t) +

1

2
(2q − 1)‖σ(t)‖2In − S(t)P (t))

+ (A(t) +
1

2
(2q − 1)‖σ(t)‖2In − S(t)P (t))TMq(t))x+ 2xTMq(t)B(t)φ2(t, x)

]
,

(t, x) ∈ [t0,∞)× Rn. (4.106)

Now, using (4.97) and (4.98), (4.106) yields

LV (t, x) = −xT
(
R1(t) +

r∑
q=2

(xTMq(t)x)q−1R̂q(t)

)
x− xTP (t)S(t)P (t)x

− 2xT

[
r∑
q=2

(xTMq(t)x)q−1Mq(t)

]T
S(t)

[
r∑
q=2

(xTMq(t)x)q−1Mq(t)

]
x

− 2xTP (t)S(t)
r∑
q=2

(xTMq(t)x)q−1Mq(t)x

≤ −xTR1(t)x− xT
r∑
q=2

(xTMq(t)x)q−1R̂q(t)x

≤ −γ‖x‖2 −
r∑
q=2

(β̂q‖x‖2)q−1σ̂q‖x‖2

≤ −γ‖x‖2 −
r∑
q=2

σ̂qβ̂
q−1
q ‖x‖2q, (t, x) ∈ [t0,∞)× Rn, (4.107)

and hence, (4.90) holds.

Finally, note that

φT(t, x)R2(t)φ(t, x) = xTP (t)S(t)P (t)x+ 2xTP (t)S(t)
r∑
q=2

(xTMq(t)x)q−1Mq(t)x
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+ xT

[
r∑
q=2

(xTMq(t)x)q−1Mq(t)

]T
S(t)

[
r∑
q=2

(xTMq(t)x)q−1Mq(t)

]
x,

(4.108)

which, using the first equality in (4.107), implies

LV (t, x) = −xTR1(t)x− xT
r∑
q=2

(xTMq(t)x)q−1R̂q(t)x− φ(t, x)R2(t)φ(t, x)

− xT
[

r∑
q=2

(xTMq(t)x)q−1Mq(t)

]T
S(t)

[
r∑
q=2

(xTMq(t)x)q−1Mq(t)

]
x

= −L1(t, x)− φT(t, x)R2(t)φ(t, x), (4.109)

where L1(t, x) is given by (4.101), and thus, (4.93) is verified. The result now follows as a

direct consequence of Theorem 4.5.

Finally, we specialize Theorem 4.5 to linear time-varying stochastic systems controlled

by nonlinear controllers that minimize a multilinear cost functional. For the following result,

recall x[k] , x⊗x⊗· · ·⊗x and
q
⊕A , A⊕A⊕· · ·⊕A, with x and A appearing k times, where

k is a positive integer. Furthermore, recall N (k,n) , {Ψ ∈ R1×nk : Ψx[k] ≥ 0, x ∈ Rn} and

let P̂q : [t0,∞)→ R1×n2q
, R̂2q : [t0,∞)→ R1×n2q

, q = 2, . . . , r, where r is a positive integer,

and R2 : [t0,∞) → Rm×m be continuous and uniformly bounded, R̂2q(t), P̂q(t) ∈ N (2q,n),

and R2(t) ≥ µIm > 0, for some µ > 0 and for all t ≥ t0.

Corollary 4.5. Consider the linear controlled time-varying stochastic dynamical sys-

tem (4.94), where u(·) is admissible. Assume that there exist a continuously differentiable,

uniformly bounded, positive definite P : [t0,∞) → Rn×n and continuously differentiable,

uniformly bounded P̂q : [t0,∞)→ R1×n2q
, q = 2, . . . , r, such that P̂q ∈ N (k,n),

−Ṗ (t) =

(
A(t) +

1

2
‖σ(t)‖2In

)T

P (t) + P (t)

(
A(t) +

1

2
‖σ(t)‖2In

)
+R1(t)− P (t)S(t)P (t),

lim
tf→∞

P (tf ) = P , t ∈ [t0,∞), (4.110)

− ˙̂
Pq(t) = P̂q(t)

[
2q
⊕(A(t) +

1

2
(2q − 1)‖σ(t)‖2In − S(t)P (t))

]
+ R̂2q(t), lim

tf→∞
P̂q(tf ) = P̂ q,

q = 2, . . . , r, t ∈ [t0,∞), (4.111)
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where S(t) , B(t)R−12 (t)BT(t) and P and P̂ q satisfy (4.110) and (4.111), respectively. Then

the zero solution x(t) ≡ 0 of the closed-loop system (4.99) is globally uniformly asymptoti-

cally stable in probability with the feedback control law

φ(t, x) = −R−12 (t)BT(t)

(
P (t)x+

1

2
g′T(t, x)

)
, (4.112)

where g(t, x) ,
∑r

q=2 P̂q(t)x
[2q], and the performance functional (4.96) with R2(t, x) = R2(t),

L2(t, x) = 0, and

L1(t, x) = xTR1(t)x+
r∑
q=2

R̂2q(t)x
[2q] +

1

4
g′(t, x)S(t)g′T(t, x), (4.113)

is minimized in the sense of (4.62). Finally,

J(t0, x0, φ(·, ·)) = xT0 P (t0)x0 +
r∑
q=2

P̂q(t0)x
[2q]
0 , (t0, x0) ∈ [0,∞)× Rn. (4.114)

Proof: The result is a consequence of Theorem 4.5 with n1 = n, n2 = 1, x1(t−t0) = x(t),

x2(t−t0) = t, f1(x1, x2) = f1(x2, x1) = A(t)x, f2(x1, x2) = 1, G1(x1, x2) = G1(x2, x1) = B(t),

G2(x1, x2) = 0, D1(x1, x2) = D1(x2, x1) = xσT(t), D2(x1, x2) = 0, L1(x1, x2) = L1(x2, x1) =

L1(t, x), where L1(t, x) is given by (4.113), L2(x1, x2) = 0, R2(x1, x2) = R2(x2, x1) = R2(t),

V (x1, x2) = V (x2, x1) = xTP (t)x+
∑r

q=2 P̂q(t)x
[2q], α(‖x1‖) = α‖x‖2, β(‖x1‖) = β‖x‖2, and

γ(‖x1‖) = −γ‖x‖2, for some α, β, γ > 0. Specifically, since P (·) is uniformly bounded and

positive definite there exist constants α, β > 0 such that αIn ≤ P (t) ≤ βIn. In addition,

since P̂q(t) ∈ N (2q,n), q = 2, . . . , n, for all t ≥ t0, it follows that

α‖x‖2 ≤ V (t, x) ≤ β‖x‖2, (t, x) ∈ [t0,∞)× Rn, (4.115)

which verifies (4.89).

Computing the infinitesimal ch4:generator LV (t, x) along the trajectories of the closed-

loop system (4.99) gives

LV (t, x) = xT
(
Ṗ (t) + P (t)A(t) + AT(t)P (t)

)
x+ 2xTP (t)B(t)φ(t, x)
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+
1

2
tr (xσT(t))T2P (t)xσT(t) +

r∑
q=2

˙̂
Pq(t)x

[2q] + g′(t, x)(A(t)x+B(t)φ(t, x))

+
1

2
tr (xσT(t))Tg′′(t, x)xσT(t)

= xT

(
Ṗ (t)x+ P (t)

(
A(t) +

1

2
‖σ(t)‖2In

)
+

(
A(t) +

1

2
‖σ(t)‖2In

)T

P (t)

− P (t)S(t)P (t)

)
x− xTP (t)S(t)P (t)x− xTP (t)S(t)g′T(t, x) +

r∑
q=2

˙̂
Pq(t)x

[2q]

+ g′(t, x)

[
(A(t)− S(t)P (t))x− 1

2
S(t)g′T(t, x)

]
+

1

2
tr (xσT(t))Tg′′(t, x)xσT(t)

(4.116)

for all (t, x) ∈ [t0,∞)× Rn. Next, noting that

g′(t, x)(A(t)− S(t)P (t))x+
1

2
tr (xσT(t))Tg′′(t, x)xσT(t)

=
∂

∂x

[
r∑
q=2

P̂q(t)x
[2q]

]
(A(t)− S(t)P (t))x+

1

2
xT

∂2

∂x2

[
r∑
q=2

P̂q(t)x
[2q]

]
x‖σ(t)‖2

=
r∑
q=2

P̂q(t)

(
2q∑
iq=1

x⊗ · · · ⊗
ithq entry︷︸︸︷
In ⊗ · · · ⊗ x

)
(A(t)− S(t)P (t))x

+
r∑
q=2

1

2
‖σ(t)‖2

(
n∑
i=1

n∑
j=1

2q∑
iq=1

2q∑
jq=1,jq 6=iq

xiP̂q(t)(x⊗ · · ·

· · · ⊗
ithq entry︷︸︸︷
ei ⊗ · · · ⊗

jthq entry︷︸︸︷
ej ⊗ · · · ⊗ x)xj

)

=
r∑
q=2

P̂q(t)

(
2q∑
iq=1

x⊗ · · · ⊗

ithq entry︷ ︸︸ ︷
(A(t)− S(t)P (t))x⊗ · · · ⊗ x

)

+
r∑
q=2

1

2
‖σ(t)‖2

(
2q∑
iq=1

2q∑
jq=1,jq 6=iq

n∑
i=1

n∑
j=1

P̂q(t)(x⊗ · · ·

· · · ⊗
ithq entry︷︸︸︷
xiei ⊗ · · · ⊗

jthq entry︷︸︸︷
xjej ⊗ · · · ⊗ x)

)

=
r∑
q=2

P̂q(t)

(
2q∑
iq=1

In ⊗ · · · ⊗

ithq entry︷ ︸︸ ︷
(A(t)− S(t)P (t))⊗ · · · ⊗ In

)
x[2q]
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+
r∑
q=2

1

2
‖σ(t)‖2

(
2q∑
iq=1

2q∑
jq=1,jq 6=iq

P̂q(t)(x⊗ · · ·

· · · ⊗

ithq entry︷ ︸︸ ︷
(
n∑
i=1

xiei)⊗ · · · ⊗

jthq entry︷ ︸︸ ︷
(
n∑
j=1

xjej)⊗ · · · ⊗ x)

)

=
r∑
q=2

P̂q(t)

(
2q∑
iq=1

In ⊗ · · · ⊗

ithq entry︷ ︸︸ ︷
(A(t)− S(t)P (t))⊗ · · · ⊗ In

)
x[2q]

+
r∑
q=2

1

2
‖σ(t)‖2P̂q(t)

(
2q∑
iq=1

2q∑
jq=1,jq 6=iq

x⊗ · · · ⊗
ithq entry︷︸︸︷
x ⊗ · · · ⊗

jthq entry︷︸︸︷
x ⊗ · · · ⊗ x

)

=
r∑
q=2

P̂q(t)

(
2q∑
iq=1

In ⊗ · · · ⊗

ithq entry︷ ︸︸ ︷
(A(t)− S(t)P (t))⊗ · · · ⊗ In

)
x[2q]

+
r∑
q=2

P̂q(t)

(
2q∑
iq=1

In ⊗ · · · ⊗

ithq entry︷ ︸︸ ︷
1

2
(q − 1)‖σ(t)‖2In⊗ · · · ⊗ In

)
x[2q]

=
r∑
q=2

P̂q(t)

(
2q∑
iq=1

In ⊗ · · · ⊗

ithq entry︷ ︸︸ ︷
((A(t)− S(t)P (t)) +

1

2
(q − 1)‖σ(t)‖2In)⊗ · · · ⊗ In

)
x[2q]

=
r∑
q=2

P̂q(t)

[
2q
⊗(A(t) +

1

2
(2q − 1)‖σ(t)‖2In − S(t)P (t))

]
x[2q], (4.117)

it follows from (4.110), (4.111), and (4.117), that

LV (t, x) = −xTR1(t)x− xTP (t)S(t)P (t)x− xTP (t)S(t)g′T(t, x)

+
r∑
q=2

(
˙̂
Pq(t) + P̂q(t)

[
2q
⊗(A(t) +

1

2
(2q − 1)‖σ(t)‖2In − S(t)P (t))

])
x[2q]

− 1

2
g′(t, x)S(t)g′T(t, x)

= −xTR1(t)x− xTP (t)S(t)P (t)x− xTP (t)S(t)g′T(t, x)

−
r∑
q=2

R̂2q(t)x
[2q] − 1

2
g′(t, x)S(t)g′T(t, x). (4.118)

Finally, note that

φT(t, x)R2(t)φ(t, x) =

(
xTP (t) +

1

2
g′(t, x)

)
S(t)

(
P (t)x+

1

2
g′T(t, x)

)
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= xTP (t)S(t)P (t)x+
1

4
g′(t, x)S(t)g′T(t, x) + xTP (t)S(t)g′T(t, x),

(4.119)

which, using (4.118), implies that

LV (t, x) = −xTR1(t)x−
r∑
q=2

R̂2q(t)x
[2q] − 1

4
g′(t, x)S(t)g′T(t, x)− φT(t, x)R2(t)φ(t, x)

(4.120)

for all (t, x) ∈ [t0,∞) × Rn, and hence, (4.90) holds with γ(‖x‖) = −γ‖x‖2. In addition,

writing (4.120) as

LV (t, x) = −L1(t, x)− φT(t, x)R2(t)φ(t, x), (4.121)

where L1(t, x) is given by (4.113), and thus, (4.93) is verified. The result now follows as a

direct consequence of Theorem 4.5.

4.6. Illustrative Numerical Examples

In this section, we provide two illustrative numerical examples to highlight the opti-

mal and inverse optimal partial-state asymptotic stabilization framework developed in this

chapter.

Example 4.1. (Optimal Partial Stabilization of a Rigid Spacecraft). Consider

the rigid spacecraft with stochastic disturbances given by

dω1(t) = [I23ω2(t)ω3(t)− α1ω1(t) + u1(t)]dt+ σ1ω1(t)dw(t), ω1(0)
a.s.
= ω10, t ≥ 0,

(4.122)

dω2(t) = [I31ω3(t)ω1(t)− α2ω2(t) + u2(t)]dt+ σ2ω2(t)dw(t), ω2(0)
a.s.
= ω20, (4.123)

dω3(t) = [I12ω1(t)ω2(t)]dt+ σ3ω3(t)dw(t), ω3(0) = ω30 a.s., (4.124)

where I23 , (I2− I3)/I1, I31 , (I3− I1)/I2, I12 , (I1− I2)/I3, I1, I2, and I3 are the principal

moments of inertia of the spacecraft such that I1 > I2 > I3 > 0, α1 ≥ 0 and α2 ≥ 0 reflect

dissipation in the ω1 and ω2 coordinates of the spacecraft, u1 and u2 are the spacecraft control
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moments, and w(t) is a standard Wiener process. Here, the state-dependent disturbances

can be used to capture perturbations in atmospheric drag for low altitude (i.e., < 600

km) satellites from the Earth’s residual atmosphere as well as J2 perturbations due to the

nonspherical mass distribution of the Earth and its nonuniform mass density. For details

see [33, 62]. For this example, we seek a state feedback controller u = [u1, u2]
T = φ(x1, x2),

where x1 = [ω1, ω2]
T and x2 = ω3, such that the performance measure

J(x10, x20, u(·)) = Ex0
[∫ ∞

0

[
xT1 (t)R1x1(t) + uT(t)u(t)

]]
dt, (4.125)

where R1 > 0, is minimized in the sense of (4.44), and (4.122)–(4.124) is globally asymptot-

ically stable in probability with respect to x1 uniformly in x20.

Note that (4.122)–(4.124) with performance measure (4.125) can be cast in the form of

(4.65) and (4.66) with performance measure (4.68). In this case, Theorem 4.4 can be applied

with n1 = 2, n2 = 1, m = 2,

f(x1, x2) = f̃(x1, x2)− Ax1, f̃(x1, x2)
4
=
[
I23ω2ω3, I31ω3ω1, I12ω1ω2

]T
,

A ,

[
α1 0 0
0 α2 0

]T
, G(x1, x2) =

[
1 0 0
0 1 0

]T
, D(x1, x2) =

[
σ1ω1 σ2ω2 σ3ω3

]T
,

L1(x1, x2) = xT1R1x1, L2(x1, x2) = 0, and R2(x1, x2) = I2 to characterize the optimal par-

tially stabilizing controller. Specifically, in this case (4.72) reduces to

0 = xT1R1x1 + V ′(x1, x2)f̃(x1, x2)− V ′(x1, x2)Ax1 +
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)

− 1

4
V ′(x1, x2)G(x1, x2)G

T(x1, x2)V
′T(x1, x2), (x1, x2) ∈ Rn1 × Rn2 . (4.126)

Now, choosing V (x1, x2) = xT1 Px1, where P > 0, it follows from (4.126) that

0 = xT1R1x1 + V ′(x1, x2)f̃(x1, x2)− 2xT1 PHx1 + xT1 ΣPΣx1 − xT1 PPx1, (4.127)

where H ,

[
α1 0
0 α2

]
, Σ ,

[
σ1 0
0 σ2

]
, and V ′(x1, x2)f̃(x1, x2) = 0 only if P = ρJ , where

ρ > 0 and J ,

[
−I31 0

0 I23

]
. In this case, (4.127) and P = ρJ imply that

0 = R1 − 2ρJH̃ − ρ2J2, (4.128)
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Figure 4.1: A sample average along with the sample standard deviation of the closed-loop
system trajectories versus time; ω1(t) in blue, ω2(t) in red, and ω3(t) in green.

where H̃ = H − 1
2
Σ2. Hence, (4.69) holds with α(‖x1‖) = ρ λmin(J)‖x1‖2 and β(‖x1‖) =

ρ λmax(J)‖x1‖2, where λmin(·) and λmax(·) denote minimum and maximum eigenvalues, re-

spectively, and (4.70) holds with γ(‖x1‖) = λmin(R1)‖x1‖2.

Since all of the conditions of Theorem 4.4 hold, it follows that the feedback control law

(4.72) given by

φ(x1, x2) = −1

2
R−12 (x1, x2)G

T(x1, x2)V
′T(x1, x2) = −ρJx1, (x1, x2) ∈ Rn1 × Rn2 , (4.129)

guarantees that the stochastic dynamical system (4.122)–(4.124) is globally asymptotically

stable in probability with respect to x1 uniformly in x20 and J(x10, x20, φ(x1(·), x2(·))) =

xT10Px10 for all (x10, x20) ∈ Rn1 × Rn2 .

Let I1 = 20 kg · m2, I2 = 15 kg · m2, I3 = 10 kg · m2, ω10 = π/3 Hz, ω20 = π/4 Hz,

ω30 = π/5 Hz, α1 = 1.1668 Hz, α2 = 0.2 Hz, σ1 = 1 , σ2 = 0.4 , σ3 = 0.1, and R1 =[
5 0
0 0.54

]
Hz2. Figure 4.1 shows the sample average along with the standard deviation of
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Figure 4.2: A sample average along with the sample standard deviation of the control
signal versus time; u1(t) in blue and u2(t) in red.

the controlled system state versus time for 20 sample paths for ρ = 2.5 Hz/(N ·m2). Note

that x1(t) = [ω1(t), ω2(t)]
T → 0 a.s. as t → ∞, whereas x2(t) = ω3(t) does not converge

to zero. Figure 4.2 shows the sample average along with the standard deviation of the

corresponding control signal versus time Finally, J(x10, x20, φ(x1(·), x2(·))) = 2.2132 Hz3. 4

Example 4.2. (Thermoacoustic Combustion Model). In this example, we con-

sider control of thermoacoustic instabilities in combustion processes. Engineering applica-

tions involving steam and gas turbines and jet and ramjet engines for power generation and

propulsion technology involve combustion processes. Due to the inherent coupling between

several intricate physical phenomena in these processes involving acoustics, thermodynam-

ics, fluid mechanics, and chemical kinetics, the dynamic behavior of combustion systems is

characterized by highly complex nonlinear models [32, 84]. The unstable dynamic coupling

between heat release in combustion processes generated by reacting mixtures releasing chem-
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ical energy and unsteady motions in the combustor develop acoustic pressure and velocity

oscillations that can severely affect operating conditions and system performance.

Consider the nonlinear stochastic dynamical system adopted from [32,45] given by

dq1(t) = [−α1q1(t)− βq1(t)q2(t) cos q3(t) + u(t)]dt+ σ1q1(t)dw(t),

q1(0)
a.s.
= q10, t ≥ 0, (4.130)

dq2(t) = [−α2q2(t) + βq21(t) cos q3(t) + u(t)]dt+ σ2q2(t)dw(t), q2(0)
a.s.
= q20 6= 0, (4.131)

dq3(t) =

[
2θ1 − θ2 − β

(
q21(t)

q2(t)
− 2q2(t)

)
sin q3(t)

]
dt+ σ3q1(t)q2(t)dw(t), q3(0)

a.s.
= q30,

(4.132)

representing a time-averaged, two-mode thermoacoustic combustion model with state de-

pendent stochastic disturbances, where α1 > 0 and α2 > 0 represent decay constants, θ1

and θ2 ∈ R represent frequency shift constants, β =
(
(γ + 1)/8γ

)
ω1, where γ denotes the

ratio of specific heats and ω1 is the frequency of the fundamental mode, σ1, σ2, and σ3 are

such that α1 >
1
2
σ2
1 and α2 >

1
2
σ2
2 and represent augmentation factors of the variance of the

state dependent stochastic disturbance, and u is the control input signal. As shown in [32]

and [84], only the first two states q1 and q2 representing the modal amplitudes of a two-mode

thermoacoustic combustion model are relevant in characterizing system instabilities since the

third state q3 represents the phase difference between the two modes [115]. Hence, we require

asymptotic stability of q1(t), t ≥ 0, and q2(t), t ≥ 0, which necessitates partial stabilization.

For this example, we seek a state feedback controller u = φ(x1, x2), where x1 = [q1, q2]
T

and x2 = q3, such that the performance measure

J(x1(0), x2(0), u(·)) =

∫ ∞
0

[
xT1 (t)R1x1(t) + u2(t)

]
dt, (4.133)

where

R1 = ρ

[
2α1 − σ2

1 + ρ ρ
ρ 2α2 − σ2

2 + ρ

]
, ρ > 0, (4.134)

is minimized in the sense of (4.44), and (4.130)–(4.132) is globally asymptotically stable with

respect to x1 uniformly in x20.
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Figure 4.3: A sample average along with the sample standard deviation of the closed-loop
system trajectories versus time; q1(t) in blue, q2(t) in red, and q3(t) in green.

Note that (4.130)–(4.132) with performance measure (4.133) can be cast in the form of

(4.65) and (4.66) with performance measure (4.68). In this case, Theorem 4.4 can be applied

with n1 = 2, n2 = 1, m = 1, f(x1, x2) =
[
−α1q1−βq1q2 cos q3, −α2q2 +βq21 cos q3, 2θ1−θ2−

β
( q21
q2
−2q2

)
sin q3

]T
, G(x1, x2) =

[
1 1 0

]T
, D(x1, x2) =

[
σ1q1 σ2q2 σ3q1q2

]T
, L1(x1, x2) =

xT1R1x1, L2(x1, x2) = 0, and R2(x1, x2) = 1 to characterize the optimal partially stabilizing

controller. Specifically, (4.72) reduces to

0 = xT1R1x1 + V ′(x1, x2)f(x1, x2) +
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)

− 1

4
V ′(x1, x2)G(x1, x2)G

T(x1, x2)V
′T(x1, x2), (x1, x2) ∈ Rn1 × Rn2 ,

(4.135)

which implies that V ′(x1, x2) = 2ρ [q1, q2, 0]. Furthermore, since V (0, x2) = 0, x2 ∈ R,

V (x1, x2) = ρ xT1 x1, which is positive definite with respect to x1, and hence, (4.69) holds.

Since all of the conditions of Theorem 4.4 hold, it follows that the feedback control (4.73)

given by

φ(x1, x2) = −1

2
R−12 (x1, x2)G

T(x1, x2)V
′T(x1, x2)
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Figure 4.4: A sample average along with the sample standard deviation of the control
signal versus time.

= −ρ
[
1 1 0

] [
q1 q2 0

]T
= −ρ

[
1 1 0

] [x1
0

]
, (x1, x2) ∈ Rn1 × Rn2 , (4.136)

guarantees that the dynamical system (4.130)–(4.132) is globally asymptotically stable with

respect to x1 uniformly in x20 and J(x10, x20, φ(x1(·), x2(·))) = ρ xT10x10 for all (x10, x20) ∈

R2 × R.

Let α1 = 5 Hz, α2 = 45 Hz, σ1 = 2 , σ2 = 5 , σ3 = 1 , γ = 1.4, ω1 = 1 Hz, θ1 = 4 Hz,

θ2 = 32 Hz, ρ = 1 Hz, q10 = 4, q20 = 2, and q30 = 10. Figure 4.3 shows the sample average

along with the standard deviation of the controlled system state versus time, whereas Figure

4.4 shows the sample average along with the standard deviation of the corresponding control

signal versus time for 20 sample paths. Note that x1(t) = [q1(t), q2(t)]
T a.s.→ 0 as t → ∞,

whereas x2(t) = q3(t) is unstable. Finally, J(x1(0), x2(0), φ(x1(·), x2(·))) = 20 Hz. 4
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Chapter 5

Stochastic Finite-Time Partial Stability, Partial-State

Stabilization, and Finite-Time Optimal

Feedback Control

5.1. Introduction

In this chapter, we extend the framework developed in [14] and [45] to address the prob-

lem of optimal finite-time stabilization as well as partial-state stabilization for stochastic

dynamical systems. The problems of finite-time stochastic stabilization, optimal finite-time

stochastic stabilization, optimal partial-state stochastic stabilization, as well as the combined

problem of optimal finite-time, partial-state stochastic stabilization have not been addressed

in the literature. In this chapter, we address these problems by considering a notion of

optimality that is directly related to a given Lyapunov function that is positive definite and

decrescent with respect to part of the system state, and satisfies a differential inequality

involving fractional powers. In particular, an optimal finite-time, partial-state stochastic

stabilization control problem is stated and sufficient stochastic Hamilton-Jacobi-Bellman

conditions are used to characterize an optimal feedback controller. The steady-state solu-

tion of the stochastic Hamilton-Jacobi-Bellman equation is clearly shown to be a Lyapunov

function for part of the closed-loop system state that guarantees both finite-time partial

stability in probability and optimality. In addition, we explore connections of our approach

with inverse optimal control [34,42,57,79,82], wherein we parametrize a family of finite-time,
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partial-state stabilizing stochastic feedback controllers that minimize a derived cost func-

tional. As discussed in Chapter 4, another important application of deterministic partial

stability and partial stabilization theory is the unification it provides between time-invariant

stability theory and stability theory for time-varying systems [28, 45]. We exploit this uni-

fication and specialize our results to address the problem of optimal finite-time control for

nonlinear time-varying stochastic dynamical systems.

The contents of this chapter are as follows. In Section 5.2, we establish additional notation

and several definitions for finite-time, partial-state stability for equilibria of Markov diffusion

dynamical systems that have unique solutions in forward time. In Section 5.3, we give a

Lyapunov theorem for finite-time, partial stability in probability. Specifically, we present

sufficient conditions for finite-time partial stability in probability of nonlinear stochastic

dynamical systems using Lyapunov functions that are positive definite with respect to part

of the system’s state and additionally satisfy a differential inequality involving fractional

powers. These results are then specialized to provide sufficient conditions for finite-time

stability of nonlinear time-varying stochastic dynamical systems.

In Section 5.4, we consider a nonlinear stochastic system with a performance functional

evaluated over the infinite horizon. The performance functional is then evaluated in terms

of a Lyapunov function that guarantees finite-time partial stability in probability. We then

state a stochastic optimal control problem and provide sufficient conditions for characterizing

an optimal nonlinear feedback controller guaranteeing finite-time partial stability in proba-

bility of the closed-loop system. These results are then used to construct optimal finite-time

controllers for nonlinear time-varying stochastic dynamical systems. In Section 5.5, we spe-

cialize the results developed in Section 5.4 to affine in the control dynamical systems as well

as develop optimal feedback controllers for affine nonlinear systems using an inverse opti-

mality framework tailored to the finite-time, partial-state stochastic stabilization problem.

In Section 5.6, we provide two illustrative numerical examples that highlight the optimal

finite-time, partial-state stochastic stabilization framework.
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5.2. Definitions and Mathematical Preliminaries

In this section, we consider nonlinear stochastic autonomous dynamical systems G of the

form

dx1(t) = f1(x1(t), x2(t))dt+D1(x1(t), x2(t))dw(t), x1(t0)
a.s.
= x10, t ≥ t0, (5.1)

dx2(t) = f2(x1(t), x2(t))dt+ +D2(x1(t), x2(t))dw(t), x2(t0)
a.s.
= x20, (5.2)

where, for every t ≥ t0, x1(t) ∈ Hn1 and x2(t) ∈ Hn2 are such that x(t)
4
=
[
xT1 (t), xT2 (t)

]T
is a

Ft-measurable random state vector, x(t0) ∈ Hn1 ×Hn2 , w(·) is a d-dimensional independent

standard Wiener process (i.e., Brownian motion) defined on a complete filtered probability

space (Ω,F , {Ft}t≥t0 ,P), x(t0) is independent of (w(t)−w(t0)), t ≥ t0, and f1 : Rn1 ×Rn2 →

Rn1 is such that, for every x2 ∈ Rn2 , f1(0, x2) = 0 and f1(·, x2) is continuous in x1, and

f2 : Rn1 × Rn2 → Rn2 is such that, for every x1 ∈ Rn1 , f2(x1, ·) is continuous in x2. In

addition, the function D1 : Rn1 × Rn2 → Rn1×d is continuous such that, for every x2 ∈ Rn2 ,

D1(0, x2) = 0, and D2 : Rn1 × Rn2 → Rn2×d is continuous.

A Rn1+n2-valued stochastic process x : [t0, τ ] × Ω → Rn1+n2 is said to be a solution of

(5.1) and (5.2) on the interval [t0, τ ] with initial condition x(t0)
a.s.
= x0 if x(·) is progressively

measurable (i.e., x(·) is nonanticipating and measurable in t and ω) with respect to {Ft}t≥t0 ,

f(x1, x2) , [fT
1 (x1, x2), f

T
2 (x1, x2)]

T ∈ L1(Ω,F ,P), D(x1, x2) , [DT
1 (x1, x2), D

T
2 (x1, x2)]

T ∈

L2(Ω,F ,P), and

x(t) = x0 +

∫ t

t0

f(x(s))ds+

∫ t

t0

D(x(s))dw(s) a.s., t ∈ [t0, τ ], (5.3)

where the integrals in (5.3) are Itô integrals. As in Chapter 4, we assume that all right

maximal pathwise solutions to (5.1) and (5.2) in (Ω, {Ft}t≥t0 ,Px0) exist on [t0,∞), and

hence, we assume (5.1) and (5.2) is forward complete.

Furthermore, we assume that f : Rn1+n2 → Rn1+n2 and D : Rn1+n2 → R(n1+n2)×d satisfy

the uniform Lipschitz continuity condition, modulo the origin,

‖f(x)− f(y)‖+ ‖D(x)−D(y)‖F ≤ L‖x− y‖, x, y ∈ Rn1+n2\{0}, (5.4)
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and the growth restriction condition ‖f(x)‖2+‖D(x)‖2F ≤ L2(1+‖x‖2), x ∈ R(n1+n2)\{0}, for

some Lipschitz constant L > 0, and hence, since x(t0) ∈ Hn1 ×Hn2 and x(t0) is independent

of (w(t) − w(t0)), t ≥ t0, it follows that there exists a unique, up to equivalence, solution

x ∈ L2(Ω,F ,P) of (5.1) and (5.2) modulo the origin. Specifically, the nonlinear dynamical

system given by (5.1) and (5.2) possesses unique solutions in forward time for all initial

conditions except possibly at x1
a.s.
= 0 in the following sense. For every x ∈ Hn1 ×Hn2 there

exists τx > 0 such that, if xI : [t0, τ1] × Ω → Rn1+n2 and xII : [t0, τ2] × Ω → Rn1+n2 are two

solutions of (5.1) and (5.2) with xI(0) = xII(0) = x, then τx ≤ min{τ1, τ2} and xI(t)
a.s.
= xII(t),

t0 ≤ t ≤ τx. Without loss of generality, we assume that for every (x1, x2), τx is chosen to be

the largest such number in R+. In this case, given x = [xT1 , x
T
2 ]T ∈ Hn1 × Hn2 , we denote

by the measurable map sx(·) , s(·, x1, x2), corresponding to a unique strongly continuous

contraction semigroup, the trajectories or the unique solution curves of (5.1) and (5.2) on

[0, τx) satisfying s(0, x1, x2) = [xT1 , x
T
2 ]T and we denote by sx1(·) the partial trajectories or

the unique solution curves of (5.1) on [0, τx). Sufficient conditions for forward existence

and uniqueness in the absence of the uniform Lipschitz continuity condition and growth

restriction condition can be found in [105,114].

The following definition introduces different notions of stochastic finite-time partial sta-

bility.

Definition 5.1. The nonlinear stochastic dynamical system G given by (5.1) and (5.2)

is (globally) stochastic finite-time stable with respect to x1 if there exists an operator T :

Hn1 × Hn2 → H
[0,∞)
1 , called the stochastic settling-time operator, such that the following

statements hold:

i) Finite-time, partial-state convergence in probability. For every (x1(0), x2(0)) ∈ Hn1 ×

Hn2 , s
x(0)(t) is defined on [0, T (x1(0), x2(0))), where x(0) = [x1(0)T, x2(0)T]T, s

x(0)
1 (t) ∈ Hn1

for all t ∈ [0, T (x1(0), x2(0))), and

Px0
(

lim
t→T (x1(0),x2(0))

‖sx(0)1 (t)‖ = 0

)
= 1.
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ii) Partial Lyapunov stability in probability. For every ε > 0, ρ ∈ (0, 1), and x2(0) ∈ Hn2 ,

there exists δ = δ(ρ, ε, x2(0)) > 0 such that, for every x1(0) ∈ HBδ(0)\{0}n ,

Px0
(

sup
t∈[0,T (x1(0),x2(0)))

‖sx(0)1 (t)‖ ≤ ε

)
≥ 1− ρ.

iii) Finiteness of the stochastic settling-time operator. For every x ∈ Hn1 × Hn2 the

stochastic settling-time operator T (x) exists and is finite with probability one, that is,

Ex [T (x)] <∞.

The nonlinear stochastic dynamical system G is (globally) stochastic finite-time stable

with respect to x1 uniformly in x2(0) if G is stochastic finite-time stable with respect to x1

and the following statement holds:

iv) Partial uniform Lyapunov stability in probability. For every ε > 0 and ρ ∈ (0, 1) there

exists δ = δ(ρ, ε) > 0 such that, for every x1(0) ∈ HBδ(0)\{0}n ,

Px0
(

sup
t∈[0,T (x1(0),x2(0)))

‖sx(0)1 (t)‖ ≤ ε

)
≥ 1− ρ, x2(0) ∈ Hn2 .

The nonlinear stochastic dynamical system G is (globally) strongly stochastic finite-time

stable with respect to x1 uniformly in x20 if G is uniformly stochastic finite-time stable with

respect to x1 and the following statement holds:

v) Finite-time partial uniform convergence in probability. For every (x1(0), x2(0)) ∈

Hn1 ×Hn2 , s
x(0)(t) is defined on [0, T (x1(0), x2(0))) and

Px0
(

lim
t→T (x1(0),x2(0))

‖sx(0)1 (t)‖ = 0

)
= 1,

uniformly in x2(0) for all x2(0) ∈ Hn2 .

As noted in Chapter 4, an important application of partial stability theory is the unifica-

tion it provides between time-invariant stability theory and stability theory for time-varying

systems. Specifically, consider the nonlinear time-varying stochastic dynamical system given
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by

dx(t) = f(t, x(t))dt+D(t, x(t))dw(t), x(t0)
a.s.
= x0, t ∈ Ix0,t0 , (5.5)

where, for every t ∈ It0,x0 , x(t) ∈ Hn is a Ft-measurable random state vector, It0,x0 ⊆ [t0,∞)

is the maximal interval of existence of a solution x(t) of (5.5), and f : It0,x0 × Rn → Rn

and D : It0,x0 × Rn → Rn×d are such that, for every (t, x) ∈ It0,x0 × Rn, f(t, 0) = 0 and

D(t, 0) = 0, and f(·, ·) and D(·, ·) are jointly continuous in t and x.

In this chapter, we assume that the nonlinear time-varying stochastic dynamical system

(5.5) possesses unique solutions forward in time for all initial conditions except at x = 0

and, given x(t0) ∈ Hn, we denote by the measurable map st0,x(t0)(·) , s(·, t0, x(t0)) the

trajectories or the unique solution curves of (5.5) on It0,x(t0) satisfying s(0, t0, x(t0)) = x(t0).

Now, defining x1(τ) , x(t) and x2(τ) , t a.s., where τ , t− t0, it follows that the solution

x(t), t ∈ It0,x0 , to the nonlinear time-varying stochastic dynamical system (5.5) can be

equivalently characterized by the solution x1(τ), τ ∈ Tt0,x0 , to the nonlinear autonomous

stochastic dynamical system

dx1(τ) = f(x2(τ), x1(τ))dτ +D(x2(τ), x1(τ))dw(τ), x1(0)
a.s.
= x0, τ ∈ Tt0,x0 , (5.6)

dx2(τ) = dτ, x2(0)
a.s.
= t0, (5.7)

where Tt0,x0 , {τ ∈ R+ : τ = t − t0, t ∈ It0,x0}. Note that (5.6) and (5.7) are in the same

form as the system given by (5.1) and (5.2), and hence, Definition 5.1 applied to (5.6) and

(5.7) specializes to the following definition.

Definition 5.2. The nonlinear stochastic dynamical system (5.5) is (globally) stochastic

finite-time stable if there exists an operator T : [0,∞)×Hn → H[t0,∞)
1 , called the stochastic

settling-time operator, such that the following statements hold:

i) Finite-time convergence in probability. For every (t0, x(t0)) ∈ [0,∞) × Hn, st0,x(t0)(t)

is defined on [t0, T (t0, x(t0))) and

Px0
(

lim
t→T (t0,x(t0))

‖st0,x(t0)(t)‖ = 0

)
= 1.
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ii) Lyapunov stability in probability. For every ε > 0, ρ ∈ (0, 1), and t0 ∈ [0,∞), there

exists δ = δ(ε, ρ, t0) > 0 such that, for every x(t0) ∈ HBδ(0)\{0}n ,

Px0
(

sup
t∈[0,T (t0,x(t0)))

‖st0,x(t0)(t)‖ ≤ ε

)
≥ 1− ρ.

iii) Finiteness of the stochastic settling-time operator. For every t ∈ [t0,∞) and x ∈ Hn

the stochastic settling-time operator T (t, x) exists and is finite with probability one, that is,

Et,x [T (t, x)] <∞.

The nonlinear stochastic dynamical system (5.5) is (globally) uniformly stochastic finite-

time stable if (5.5) is (globally) stochastic finite-time stable and the following statement

holds:

iv) Uniform Lyapunov stability in probability. For every ε > 0 and ρ ∈ (0, 1) there exists

δ = δ(ε, ρ) > 0 such that, for every x(t0) ∈ HBδ(0)\{0}n ,

Px0
(

sup
t∈[0,T (t0,x(t0)))

‖st0,x(t0)(t)‖ ≤ ε

)
≥ 1− ρ, t0 ∈ [0,∞).

The nonlinear stochastic dynamical system (5.5) is (globally) strongly uniformly stochastic

finite-time stable if (5.5) is uniformly stochastic finite-time stable and the following statement

holds:

v) Finite-time uniform convergence in probability. For every (t0, x(t0)) ∈ [0,∞) × Hn,

st0,x(t0)(t) is defined on [t0, T (t0, x(t0))) and

Px0
(

lim
t→T (t0,x(t0))

‖st0,x(t0)(t)‖ = 0

)
= 1,

uniformly in t0 for all t0 ∈ [0,∞).

Remark 5.1. The notion of finite-time stability introduced here is different from the

same term discussed in [35]. Specifically, the term finite-time stability discussed in [35] deals

with systems whose operation is constrained to a fixed finite interval of time and requires

bounds on the system state variables.
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5.3. Stochastic Finite-Time Partial Stability Theory

In this section, we address finite-time partial stability in probability for equilibria of

Markov diffusion processes that have unique solutions. Sample continuity and uniqueness

render the system solutions continuous with respect to the system initial conditions, and

hence, the solutions define a time-homogeneous semigroup of Markov kernels. The follow-

ing proposition shows that if the nonlinear stochastic dynamical system (5.1) and (5.2) is

stochastic finite-time stable with respect to x1, then (5.1) and (5.2) possesses a unique so-

lution s(·, x1(0), x2(0)) defined on R+ × Hn1 × Hn2 for every x1(0) ∈ Hn1 and, for every

x2(0) ∈ Hn2 ,

Px0
(

sup
t≥T (x1(0),x2(0))

‖s1(t, x1(0), x2(0))‖ = 0

)
= 1,

where x(0) , [x1(0)T, x2(0)T]T and T (0, x2(0)) , 0 a.s.

Proposition 5.1. Consider the nonlinear stochastic dynamical system G given by (5.1)

and (5.2). Assume that G is globally stochastic finite-time stable with respect to x1 and let

T : Hn1×Hn2 → H
[0,∞)
1 be defined as in Definition 5.1. Then, for every (x1(0), x2(0)) ∈ Hn1×

Hn2 , there exists a unique solution s(t, x1(0), x2(0)) = [sT1 (t, x1(0), x2(0)), sT2 (t, x1(0), x2(0))]T,

t ≥ 0, to (5.1) and (5.2) defined on R+ × Hn1 × Hn2 such that s1(t, x1(0), x2(0)) ∈ Hn1 ,

t ∈ [0, T (x1(0), x2(0))), and such that Px0
(
supt≥T (x1(0),x2(0)) ‖s1(t, x1(0), x2(0))‖ = 0

)
= 1,

where x0 , [xT10, x
T
20]

T and T (0, x2(0)) , 0 a.s.

Proof: It follows from the partial Lyapunov stability in probability of (5.1) and (5.2)

with respect to x1 that x1(t)
a.s.≡ 0, t ≥ 0, is the unique solution of (5.1) satisfying x1(0)

a.s.
= 0

for all x2(0) ∈ Hn2 . Thus, s1(t, 0, x2(0))
a.s.
= 0 for all t ≥ 0 and x2(0) ∈ Hn2 . Next, let T (·, ·)

be as in Definition 5.1, and let (x1(0), x2(0)) ∈ HRn1\{0}
n1 ×Hn2 . Furthermore, define

x1(t) ,

{
s1(t, x1(0), x2(0)), 0 ≤ t < T (x1(0), x2(0)),

0, t ≥ T (x1(0), x2(0)).
(5.8)
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Note that by construction, the stochastic differential of x1(·) is sample continuous (i.e., almost

surely continuous) on R+ \ {T (x1(0), x2(0))} and satisfies (5.1) on R+\{T (x1(0), x2(0))}.

Furthermore, since f1(·, ·) and D1(·, ·) are jointly continuous,

lim
t→T−(x1(0),x2(0))

dx1(t)
a.s.
= lim

t→T−(x1(0),x2(0))

(
f1(x1(t), x2(t))dt+D1(x1(t), x2(t))dw(t)

)
a.s.
= lim

t→T+(x1(0),x2(0))

(
f1(x1(t), x2(t))dt+D1(x1(t), x2(t))dw(t)

)
a.s.
= lim

t→T+(x1(0),x2(0))
dx1(t),

and hence, x1(·) has a sample continuous stochastic differential at T (x1(0), x2(0)) and x1(·)

satisfies (5.1). Hence, it follows from the assumptions on f2(·, ·) and D2(·, ·) that, given x1(t),

t ≥ 0, there exists x2(t) such that x(t) = [xT1 (t), xT2 (t)]T is solution of (5.1) and (5.2) for all

(x1(0), x2(0)) ∈ HRn1\{0}
n1 ×Hn2 and t ≥ 0.

Given (x1(0), x2(0)) ∈ Hn1 × Hn2 , to show uniqueness, up to equivalence, assume y1(·)

satisfies (5.1) for all t ≥ 0. In this case, x1(t)
a.s.
= y1(t) for all t ∈ [0, T (x1(0), x2(0))) by the

uniqueness assumption in Section 5.2. In addition, by sample continuity, x1(t)
a.s.
= y1(t) at

t = T (x1(0), x2(0)), and hence, x1(t)
a.s.
= y1(t) for all t ∈ [0, T (x1(0), x2(0))], which implies

that y1(x1(0), x2(0)))
a.s.
= 0. Now, partial Lyapunov stability in probability with respect to

x1 implies that y1(t)
a.s.
= 0 for t > T (x1(0), x2(0)), which proves uniqueness of x1(·). Hence,

uniqueness of x(·) = [xT1 (·), xT2 (·)]T immediately follows from the assumptions in Section 5.2.

This proves the result.

It follows from Proposition 5.1 and the assumptions on f2(·, ·) and D2(·, ·) that if the

nonlinear stochastic dynamical system (5.1) and (5.2) is stochastic finite-time stable with

respect to x1, then it defines a global semiflow onHn1×Hn2 ; that is, the solution curve s(·, ·, ·)

of (5.1) and (5.2) satisfies the consistency property s(0, x1, x2) = [xT1 , x
T
2 ]T and the semigroup

property s(t, s1(τ, x1, x2), s2(τ, x1, x2))
a.s.
= s(t + τ, x1, x2) for every (x1, x2) ∈ Hn1 ×Hn2 and

t, τ ∈ R+. Furthermore, s(·, ·, ·) satisfies s1(T (x1(0), x2(0)) + t1, x1(0), x2(0))
a.s.
= 0 for all

(x1(0), x2(0)) ∈ Hn1 ×Hn2 and t1 ≥ 0. It is easy to see from Definition 5.1 that

T (x1(0), x2(0)) = inf{t ∈ R+ : s1(t, x1(0), x2(0)) = 0}, (x1(0), x2(0)) ∈ HRn1\{0}
n1

×Hn2 .
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In general, stochastic finite-time partial stability does not imply that the stochastic

settling-time operator T (·, ·) is sample continuous. The following proposition shows that

the stochastic settling-time operator T (·, ·) of a stochastic finite-time partially stable system

is jointly sample continuous on Hn1 ×Hn2 if and only if it is sample continuous at (0, ·).

Proposition 5.2. Consider the nonlinear stochastic dynamical system G given by (5.1)

and (5.2). Assume G is stochastic finite-time stable with respect to x1. Let T : Hn1×Hn2 →

H[0,∞)
1 be the stochastic settling-time operator. Then the following statements hold:

i) If t1 ≥ 0 and (x1(0), x2(0)) ∈ Hn1 ×Hn2 , then

T (s1(t1, x1(0), x2(0)), s2(t1, x1(0), x2(0)))
a.s.
= max{T (x1(0), x2(0))− t1, 0}. (5.9)

ii) T (·, ·) is jointly sample continuous on Hn1 ×Hn2 if and only if T (·, ·) is jointly sample

continuous at (0, x2), x2 ∈ Hn2 .

Proof: i) It follows from Definition 5.1 that

T (x1(0), x2(0)) = inf{t ∈ R+ : s1(t, x1(0), x2(0)) = 0} (5.10)

for all (x1(0), x2(0)) ∈ HRn1\{0}
n1 × Hn2 . Hence, T (s1(t1, x1(0), x2(0)), s2(t1, x1(0), x2(0))) =

inf{t2 ∈ R+ : s1(t2, s1(t1, x1(0), x2(0)), s2(t1, x1(0), x2(0))) = 0}. Now, for 0 ≤ t1 ≤ T (x1(0),

x2(0)), the semigroup property and (5.10) imply that

T (s1(t1, x1(0), x2(0)), s2(t1, x1(0), x2(0)))

= inf{t2 ∈ R+ : s1(t2, s1(t1, x1(0), x2(0)), s2(t1, x1(0), x2(0))) = 0}
a.s.
= inf{t2 ∈ R+ : s1(t1 + t2, x1(0), x2(0)) = 0}
a.s.
= T (x1(0), x2(0))− t1.

Alternatively, for 0 ≤ T (x1(0), x2(0)) ≤ t1, T (s1(t1, x1(0), x2(0)), s2(t1, x1(0), x2(0)))
a.s.
= 0,

which proves (5.9).
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ii) Necessity is immediate. To prove sufficiency, suppose that T (·, ·) is jointly sample

continuous at (0, x2), x2 ∈ Hn2 . Let (x1, x2) ∈ Hn1 × Hn2 and consider the sequences

{x1n}∞n=1 ∈ Hn1 converging pointwise to x1 and {x2n}∞n=1 ∈ Hn2 converging pointwise to x2.

Let τ− = lim infn→∞ T (x1n, x2n) and τ+ = lim supn→∞ T (x1n, x2n) be pointwise limits. Note

that τ−, τ+ ∈ HR+

1 and τ−
a.s.

≤ τ+.

Next, let {x1nm}∞m=0 ∈ Hn1 be a subsequence of {x1n} and {x2nm}∞m=0 ∈ Hn2 be a subse-

quence of {x2n} such that T (x1nm , x2nm)
a.s.→ τ+ as m→∞. The sequence {(T (x1, x2), x1nm ,

x2nm)}∞m=1 converges in HR+

1 × Hn1 × Hn2 to (T (x1, x2), x1, x2) almost surely as m →

∞. Since s1(T (x1, x2) + t1, x1, x2)
a.s.
= 0 for all t1 ≥ 0 and since all solutions to (5.1)

and (5.2) are sample continuous in their initial conditions [6, Thm. 7.3.1], it follows that

s1(T (x1, x2), x1nm , x2nm)
a.s.→ s1(T (x1, x2), x1, x2)

a.s.
= 0 as m → ∞. Thus, since T (0, x2) is

sample continuous for all x2 ∈ Hn2 , it follows that

T (s1(T (x1, x2), x1nm , x2nm), s2(T (x1, x2), x1nm , x2nm))
a.s.→ T (0, s2(T (x1, x2), x1, x2))

a.s.
= 0.

(5.11)

Now, with t1 = T (x1, x2), x1(0) = x1nm , and x2(0) = x2nm , it follows from (5.9) and

(5.11) that T (s1(T (x1, x2), x1nm , x2nm), s2(T (x1, x2), x1nm , x2nm))
a.s.
= max {T (x1nm , x2nm) −

T (x1, x2), 0} and max {T (x1nm , x2nm) − T (x1, x2), 0}
a.s.→ 0 as m → ∞. Thus, max {τ+ −

T (x1, x2), 0}
a.s.
= 0, which implies that τ+

a.s.

≤ T (x1, x2).

Finally, let {x1nk}∞k=0 ∈ Hn1 be a subsequence of {x1n} and {x2nk}∞k=0 ∈ Hn2 be a sub-

sequence of {x2n} such that T (x1nk , x2nk)
a.s.→ τ− as k → ∞. It follows from τ−

a.s.

≤ τ+ and

τ+
a.s.

≤ T (x1, x2) that τ− ∈ HR+

1 , and hence, the sequence {(T (x1nk , x2nk), x1nk , x2nk)}∞k=1

converges pointwise to (τ−, x1, x2) as k → ∞. Since s1(·, ·, ·) is jointly sample continu-

ous, it follows that s1(T (x1nk , x2nk), x1nk , x2nk)
a.s.→ s1(τ

−, x1, x2) as k → ∞. Now, since

s1(T (x1, x2)+t1, x1, x2)
a.s.
= 0 for all t1 ≥ 0, s1(T (x1nk , x2nk), x1nk , x2nk)

a.s.
= 0 for each k. Hence,

s1(τ
−, x1, x2)

a.s.
= 0 and, by the definition of the settling-time operator, T (x1, x2)

a.s.

≤ τ−. Now,

it follows from τ−
a.s.

≤ τ+, τ+
a.s.

≤ T (x1, x2), and T (x1, x2)
a.s.

≤ τ− that τ−
a.s.
= T (x1, x2)

a.s.
= τ+,
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and hence, T (x1n, x2n)
a.s.→ T (x1, x2) as n → ∞, which proves that T (·, ·) is jointly sample

continuous on Hn1 ×Hn2 .

Next, we present sufficient conditions for stochastic finite-time partial stability using a

Lyapunov function involving a scalar differential inequality.

Theorem 5.1. Consider the nonlinear stochastic dynamical system G given by (5.1) and

(5.2). Then the following statements hold:

i) If there exist a two-times continuously differentiable function V : Rn1×Rn2 → R, a class

K∞ function α(·), a continuously differentiable function r : R+ → R+, a continuous function

k : [0,∞)→ R+ such that k(‖x2(t)‖) is Ft-submartingale, and, for all (x1, x2) ∈ Rn1 × Rn2 ,

V (0, x2) = 0, (5.12)

α(‖x1‖) ≤ V (x1, x2), (5.13)

V ′(x1, x2)f(x1, x2) +
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2) ≤ −k(‖x2‖)r(V (x1, x2)), (5.14)∫ ε

0

dv

r(v)
<∞, ε ∈ [0,∞), (5.15)

r′(v) > 0, v > 0, (5.16)

then G is globally stochastic finite-time stable with respect to x1. Moreover, there exists a

settling-time operator T : Hn1 ×Hn2 → H
[0,∞)
1 such that

Ex0 [T (x1(0), x2(0))] ≤ q−1

(∫ V (x10,x20)

0

dv

r(v)

)
, (x10, x20) ∈ Rn1 × Rn2 , (5.17)

where q : [0,∞)→ [0,∞) is continuously differentiable and satisfies

q̇(t) = Ex0 [k(‖x2(t)‖)], q(0) = 0, t ≥ 0. (5.18)

ii) If there exist a two-times continuously differentiable function V : Rn1×Rn2 → R, class

K∞ functions α(·) and β(·), a continuous function k : [0,∞)→ R+ such that k(‖x2(t)‖) is Ft-

submartingale, a continuously differentiable function r : R+ → R+, such that (5.13)–(5.16)

hold, and

V (x1, x2) ≤ β(‖x1‖), (x1, x2) ∈ Rn1 × Rn2 , (5.19)
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then G is globally stochastic finite-time stable with respect to x1 uniformly in x20. Moreover,

there exists a stochastic settling-time operator T : Hn1×Hn2 → H
[0,∞)
1 such that (5.17) holds.

iii) If there exist a two-times continuously differentiable function V : Rn1 × Rn2 → R,

class K∞ functions α(·) and β(·), and a continuously differentiable function r : R+ → R+

such that (5.13)–(5.16), and (5.19) hold with k(‖x2‖) = k ∈ R+, x2 ∈ Rn2 , then G is globally

strongly stochastic finite-time stable with respect to x1 uniformly in x20. Moreover, there

exists a stochastic settling-time operator T : Hn1 ×Hn2 → H
[0,∞)
1 such that

Ex0 [T (x1(0), x2(0))] ≤
∫ V (x10,x20)

0

dv

kr(v)
, (x10, x20) ∈ Rn1 × Rn2 . (5.20)

Proof. i) Let x1 ∈ Rn1 , x20 ∈ Rn2 , ε > 0, and ρ > 0, and define Dε,ρ , {x1 ∈

Bε(0) : V (x1, x20) < α(ε)ρ}. Since V (·, ·) is continuous and V (0, x2) = 0, it follows that

Dε,ρ is nonempty and there exists δ = δ(ε, ρ, x20) > 0 such that V (x1, x20) < α(ε)ρ, x1 ∈

Bδ(0). Hence, Bδ(0) ⊆ Dε,ρ. Next, it follows from (5.14) that V (x1(t), x2(t)) is a (positive)

supermartingale [67, Lemma 5.4], and hence, for every x1(0) ∈ HBδ(0)n1 ⊆ HDρn1 , it follows from

(5.13), with α(·) ∈ K∞, and the extended version of the Markov inequality for monotonically

increasing functions [41, p. 193] that

Px0
(

sup
t≥0
‖x1(t)‖ ≥ ε

)
≤ sup

t≥0

Ex0 [α(‖x1(t)‖)]
α(ε)

≤ sup
t≥0

Ex0 [V (x1(t), x2(t))]

α(ε)

≤ Ex0 [V (x1(0), x2(0))]

α(ε)

≤ ρ,

which proves partial Lyapunov stability in probability with respect to x1.

To prove global partial asymptotic stability in probability, it follows from (5.14) and

[75, Corollary 4.2] that limt→∞ k(‖x2(t)‖)r(V (x1(t), x2(t))
a.s.
= 0. Since k(‖x2(t)‖) is Ft-

submartingale, it follows that limt→∞ r(V (x1(t), x2(t))
a.s.
= 0, which, since r : R+ → R+,
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further implies that limt→∞ V (x1(t), x2(t))
a.s.
= 0. Now, it follows from (5.13) that

lim
t→∞

α(‖x1(t)‖) ≤ lim
t→∞

V (x1(t), x2(t))
a.s.
= 0,

which implies Px0 (limt→∞ ‖x1(t)‖ = 0) = 1. Hence, G is globally partially asymptotically

stable in probability and the stochastic settling-time operator T (x1(0), x2(0)) ≤ ∞ almost

surely [29].

Next, we show that T (x1(0), x2(0)) is finite with probability one and satisfies (5.17), and

hence, Ex0 [T (x1(0), x2(0))] < ∞. Define T0
4
= T (x1(0), x2(0)), x(t)

4
= [xT1 (t), xT2 (t)]T, and

α(V )
4
=
∫ V
0

dv
r(v)

, V ∈ R+. Now, using Itô’s (chain rule) formula the stochastic differential of

V (x(t)) along the system trajectories x(t), t ≥ 0, is given by

dV (x(t)) = LV (x(t))dt+
∂V

∂x
D(x(t))dw(t).

Next, using (5.14) it follows that∫ T0

0

k(‖x2(τ)‖)dτ =

∫ T0

0

k(‖x2(τ)‖)r(V (x(τ)))

r(V (x(τ)))
dτ

≤
∫ T0

0

− LV (x(τ))

r(V (x(τ)))
dτ

≤
∫ T0

0

− dV (x(t))

r(V (x(τ)))
+

∫ T0

0

1

r(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ)

=

∫ T0

0

−dα(V ))

dV
dV (x(t)) +

∫ T0

0

1

r(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ). (5.21)

Once again, using Ito’s (chain rule) formula it follows that

dα(V (x(t))) =

[
∂α(V (x))

∂x
f(x(t)) +

1

2
tr DT(x)

∂2α(V (x))

∂x2
D(x)

]
dt+

∂α(V (x))

∂x
dw(t)

=

[
dα(V ))

dV

∂V (x)

∂x
f(x(t)) +

1

2
tr DT(x)

∂

∂x

(
dα(V )

dV

∂V (x)

∂x

)
D(x)

]
dt

+
dα(V ))

dV

∂V (x)

∂x
dw(t)

=
dα(V ))

dV

[(
∂V (x)

∂x
f(x(t)) +

1

2
tr DT(x)

∂2(V (x))

∂x2
D(x)

)
dt+

∂V (x)

∂x
dw(t)

]
+

1

2
tr DT(x)

(
∂V (x)

∂x

)T
d2α(V )

dV 2

(
∂V (x)

∂x

)
D(x)dt
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=
dα(V ))

dV
dV (x(t)) +

1

2
tr DT(x)

(
∂V (x)

∂x

)T
d2α(V )

dV 2

(
∂V (x)

∂x

)
D(x)dt.

(5.22)

Hence, it follows from (5.21) and (5.16) that∫ T0

0

k(‖x2(τ)‖)dτ ≤
∫ T0

0

−dα(V (x(τ))) +

∫ T0

0

1

r(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ)

+

∫ T0

0

1

2
trDT(x)

(
∂V (x)

∂x

)T
d2α(V )

dV 2

(
∂V (x)

∂x

)
D(x)dτ

= α(V (x(0)))− α(V (x(T0))) +

∫ T0

0

1

r(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ)

−
∫ T0

0

r′(V )

r2(V )

1

2
tr

(
∂V (x)

∂x
DT(x)

)T(
∂V (x)

∂x
D(x)

)
dτ

≤
∫ V (x(0))

0

dv

r(v)
−
∫ V (x(T0))

0

dv

r(v)
+

∫ T0

0

1

r(V (x(τ)))

∂V

∂x
D(x(τ))dw(τ).

(5.23)

Taking the expectation on both sides of (5.23) and using the fact that x(0)
a.s.
= x0 and

x(T0)
a.s.
= 0 yields

Ex0
[∫ T0

0

k(‖x2(τ)‖)dτ
]
≤
∫ V (x0)

0

dv

r(v)
. (5.24)

Next, since q : [0,∞) → R is continuously differentiable and satisfies (5.18), and, by

assumption, the process k(‖x2(t))‖) is a positive Ft-submartingale, it follows that q(·) is

convex, monotonically increasing, and invertible. Hence, applying Jensen’s inequality [41, p.

109], Fubini’s theorem [4, p. 410], and the law of iterated expectation on the random variable

q(T (x1(0), x2(0))) yields

Ex0 [T (x1(0), x2(0))] = q−1(q(Ex0 [T (x1(0), x2(0))]))

≤ q−1(Ex0 [q(T (x1(0), x2(0)))])

= q−1
(
Ex0

[∫ T0

0

Ex0 [k(‖x2(τ)‖)] dτ

])
= q−1

(
Ex0

[
Ex0

[∫ T0

0

k(‖x2(τ)‖)dτ |T0)
]])

= q−1
(
Ex0

[∫ T0

0

k(‖x2(τ)‖)dτ
])
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≤ q−1

(∫ V (x0)

0

dv

r(v)

)
, (5.25)

which shows that T (x1(0), x2(0)) is finite with probability one. Moreover, it follows from the

stochastic finite-time stability of G with respect to x1 and Proposition 5.1 that T (·, ·) can be

extended to HR+

1 and T (0, x20)
a.s.
= 0.

ii) Let ρ > 0, x10 ∈ Rn1 , and x20 ∈ Rn2 . Since α(·) and β(·) are class K∞ functions, it

follows that, for every ε > 0, there exists δ = δ(ε, ρ) > 0 such that β(δ) ≤ α(ε)ρ. Now,

(5.14) implies that V (x1(t), x2(t)) is a (positive) supermartingale, and hence, it follows from

(5.13) and (5.19) that, for all (x1(0), x2(0)) ∈ HBδ(0)n1 ×Hn2 ,

Px0
(

sup
t≥0
‖x1(t)‖ > ε

)
≤ sup

t≥0

Ex0 [α(‖x1(t)‖)]
α(ε)

≤ sup
t≥0

Ex0 [V (x1(t), x2(t))]

α(ε)

≤ Ex0 [V (x1(0), x2(0))]

α(ε)

≤ β(δ)

α(ε)

≤ ρ.

Hence, for every x1(0) ∈ HBδ(0)n1 , x1(t) ∈ HBε(0)n1 , t ≥ 0, which proves uniform Lyapunov

stability in probability with respect to x1. Stochastic finite-time partial convergence follows

as in the proof of i), implying global stochastic finite-time stability of G with respect to

x1 uniformly in x20. In addition, the existence of a stochastic settling-time operator T :

Hn1 ×Hn2 → H
[0,∞)
1 that verifies (5.17) follows as in the proof of i).

iii) Global uniform stochastic finite-time stability of G with respect to x1 directly follows

from ii). Now, using similar arguments as in the proof of i), q−1(·) = 1
k
(·) directly follows

from (5.18) with k(‖x2‖) = k ∈ R+, x2 ∈ Rn2 . Now, the existence a stochastic settling-time

operator T : Hn1 × Hn2 → H
[0,∞)
1 such that (5.20) holds follows as in the proof of i) and

(5.17). Since Ex0 [T (x1(0), x2(0)])] is not a function of x(t), t ≥ 0, strong stochastic finite-

time convergence of G with respect to x1 uniformly in x20 is immediate. Hence, the nonlinear
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stochastic dynamical system G is globally strongly stochastic finite-time stable with respect

to x1 uniformly in x20.

Remark 5.2. If r(V ) = cV θ, where c > 0 and θ ∈ (0, 1), then r(·) satisfies (5.15) and

(5.16). In this case, (5.17) becomes

Ex0 [T (x1(0), x2(0)] ≤ q−1

(
V (x10, x20)

1−θ

c(1− θ)

)
.

For deterministic dynamical systems, this specialization recovers the finite-time, partial-state

stability results given in [69] and the finite-time, full-state stability results given in [17].

Example 5.1. Consider the nonlinear stochastic dynamical system given by

dx1(t) = [−x1(t)− x
1
3
1 (t)x22(t)]dt+ x1(t)dw(t), x1(0)

a.s.
= x10, t ≥ 0, (5.26)

dx2(t) = x2(t)dt+ x2(t)dw(t), x2(0)
a.s.
= x20. (5.27)

To show that (5.26) and (5.27) is globally stochastic finite-time stable with respect to x1

uniformly in x20, consider the Lyapunov function candidate V (x1, x2) = x
4
3
1 and let D = R.

Clearly, (5.12), (5.13), and (5.19) hold, and

LV (x1, x2) =
4

3
x

1
3
1

(
−x1 − x

1
3
1 x

2
2

)
+

2

9
x

4
3
1 ≤ −

4

3
x22x

2
3
1 = −k(‖x2‖) (V (x1, x2))

1
2 , (5.28)

where k(‖x2‖) = 4
3
‖x2‖2. Furthermore,

Lk(‖x2‖) =
8

3
x22 +

4

3
x22 = 4x22 ≥ 0,

and hence, k(‖x2(t)‖) is a positive Ft-submartingale. Hence, it follows from iii) of Theorem

5.1 that (5.26) and (5.27) is globally stochastic finite-time stable with respect to x1 uniformly

in x20. 4

The following results specialize Propositions 5.1 and Theorem 5.1 to nonlinear time-

varying stochastic dynamical systems.
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Proposition 5.3. Consider the nonlinear stochastic dynamical system G given by (5.5).

Assume that G is globally stochastic finite-time stable and let T : [0,∞)×HRn\{0}
n → H[t0,∞)

1

be defined as in Definition 5.2. Then, for every (t0, x(t0)) ∈ [0,∞) × Hn, there exists a

solution s(t, t0, x(t0)), t ≥ t0, unique up to equivalence, to (5.5) such that s(t, t0, x(t0)) ∈

Hn, t ∈ [t0, T (t0, x(t0))), and such that Px0(supt≥T (t0,x(t0)) ‖s(t, t0, x(t0))‖ = 0) = 1, where

T (t0, 0) , 0.

Proof: The result is a direct consequence of Proposition 5.1 with n1 = n, n2 = 1, x1(t−

t0) = x(t), x2(t− t0) = t, f1(x1, x2) = f1(x2, x1) = f(t, x), D1(x1, x2) = D1(x2, x1) = D(t, x),

f2(x1, x2) = 1, D2(x1, x2) = D2(x2, x1) = 0, and T (x10, x20) = T (x20, x10) = T (t0, x0).

Theorem 5.2. Consider the nonlinear dynamical system G given by (5.5). Then the

following statements hold:

i) If there exist a two-times continuously differentiable function V : [t0,∞) × Rn → R,

a class K∞ function α(·), a continuous monotonically increasing function k : [t0,∞) → R+,

and a continuously differentiable function r : R+ → R+ such that (5.15) and (5.16) hold,

and, for all (t, x) ∈ [t0,∞)× Rn,

V (t, 0) = 0, (5.29)

α(‖x‖) ≤ V (t, x), (5.30)

∂V (t, x)

∂t
+
∂V (t, x)

∂x
f(t, x) +

1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x) ≤ −k(t)r(V (t, x)), (5.31)

then G is globally stochastic finite-time stable. Moreover, there exists a a stochastic settling-

time operator T : [t0,∞)×Hn → [t0,∞) such that

Ex0 [T (t0, x(t0))] ≤ q−1

(∫ V (t0,x0)

0

dv

r(v)

)
, (t0, x0) ∈ [0,∞)× Rn, (5.32)

where q : [0,∞)→ R is continuously differentiable and satisfies

q̇(t) = k(t), q(0) = 0, t ≥ 0. (5.33)
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ii) If there exists a two-times continuously differentiable function V : [t0,∞) × Rn →

R, class K∞ functions α(·) and β(·), a continuous monotonically increasing function k :

[t0,∞) → R+, and a continuously differentiable function r : R+ → R+ such that (5.30)–

(5.31) hold and

V (t, x) ≤ β(‖x‖), (t, x) ∈ [t0,∞)× Rn, (5.34)

then G is globally uniformly stochastic finite-time stable. Moreover, there exists a stochastic

settling-time operator T : [0,∞)×Hn → H[t0,∞)
1 such that (5.32) holds.

iii) If there exists a two-times continuously differentiable function V : [t0,∞)×Rn → R,

class K∞ functions α(·) and β(·), and a continuously differentiable function r : R+ → R+

such that (5.15), (5.16), (5.30)–(5.31), and (5.34) hold with k(t) = k ∈ R+, t ≥ t0, then

G is globally strongly uniformly stochastic finite-time stable. Moreover, there exists a a

stochastic settling-time operator T : [0,∞)×Hn → H[0,∞)
1 such that

Et0,x0 [T (t0, x(t0))] ≤
∫ V (t0,x0)

0

dv

kr(v)
, (t0, x0) ∈ [0,∞)× Rn. (5.35)

Proof: The result is a direct consequence of Theorem 5.1 using a similar construction

as in the proof of Proposition 5.3.

Example 5.2. Consider the nonlinear time-varying stochastic dynamical system given

by

dx(t) = [−x(t)− t (x(t))
1
3 ]dt+ x sin tdw(t), x(t0)

a.s.
= x0, t ≥ t0. (5.36)

To show that the zero solution x(t)
a.s.≡ 0 to (5.36) is globally uniformly stochastic finite-time

stable, consider the Lyapunov function candidate V (t, x) = x
4
3 and let D = R. Clearly,

(5.29), (5.30), and (5.34) hold, and

∂V (t, x)

∂t
+
∂V (t, x)

∂x
f(t, x) +

1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x)

=
4

3
x

1
3

(
−x− tx

1
3

)
+

2

9
x

4
3 sin2 t

= −4

3
tx

2
3 − 10

9
x

4
3
1 −

2

9
x

4
3
1

(
1− sin2 t

)
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≤ −4

3
tx

2
3

= −k(t) (V (t, x))
1
2 , (5.37)

where k(t) = 4
3
t > 0, t ≥ t0. Hence, it follows from iii) of Theorem 5.2 that the zero solution

x(t)
a.s.≡ 0 to (5.36) is globally uniformly stochastic finite-time stable. 4

5.4. Stochastic Optimal Finite-Time, Partial-State Stabilization

In the first part of this section, we provide connections between Lyapunov functions and

nonquadratic cost evaluation. Specifically, we consider the problem of evaluating a nonlinear-

nonquadratic performance measure that depends on the solution of the nonlinear stochastic

dynamical system given by (5.1) and (5.2). In particular, we prove stochastic finite-time

partial stability of (5.1) and (5.2), and show that the nonlinear-nonquadratic performance

measure

J(x10, x20) , Ex0
[∫ ∞

0

L(x1(t), x2(t))dt

]
, (5.38)

where x0 , [xT10, x
T
20]

T, L : Rn1 × Rn2 → R is jointly continuous in x1 and x2, and x1(t)

and x2(t), t ≥ 0, satisfy (5.1) and (5.2), can be evaluated in a convenient form so long as

(5.1) and (5.2) are related to an underlying Lyapunov function that is positive definite and

decrescent with respect to x1 and is related to an underlying Lyapunov function satisfying

an appropriate differential inequality.

Theorem 5.3. Consider the nonlinear stochastic dynamical system G given by (5.1) and

(5.2) with performance measure (5.38). Assume that there exists a two-times continuously

differentiable function V : Rn1 ×Rn2 → R, class K∞ functions α(·) and β(·), a continuously

differentiable function r : R+ → R+, a continuous function k : [0,∞) → R+ such that

k(‖x2(t)‖) is Ft-submartingale such that (5.13)–(5.16) and (5.19) hold, and, for all (x1, x2) ∈

Rn1 × Rn2 ,

L(x1, x2) + V ′(x1, x2)f(x1, x2) +
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2) = 0. (5.39)
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Then the nonlinear stochastic dynamical system G is stochastic finite-time stable with respect

to x1 uniformly in x20 and there exists a settling-time operator T : Hn1 × Hn2 → H
[0,∞)
1

such that (5.17) holds and satisfies (5.18). In addition, J(x10, x20) = V (x10, x20) for all

(x10, x20) ∈ Rn1 × Rn2 .

Proof: Let x1(t) and x2(t), t ≥ 0, satisfy (5.1) and (5.2). Then, it follows from Definition

4.1 and (5.14) that

LV (x1(t), x2(t)) = V ′(x1(t), x2(t)f(x1(t), x2(t)) +
1

2
tr DT(x1(t), x2(t)V

′′(x1(t), x2(t))

·D(x1(t), x2(t)) ≤ −k(‖x2(t)‖)r(V (x1(t), x2(t))), t ≥ 0. (5.40)

Thus, it follows from Theorem 5.1 that G is globally stochastic finite-time stable with respect

to x1 uniformly in x20. In addition, it follows from Theorem 5.1 that there exists a settling-

time operator T : Hn1 ×Hn2 → H
[0,∞)
1 such that (5.17) holds. Now, using Ito’s (chain rule)

formula it follows that the stochastic differential of V (x1(t), x2(t)) along the trajectories of

(x1(t), x2(t)), t ≥ 0, is given by

dV (x1(t), x2(t)) = LV (x1(t), x2(t))dt+ V ′(x1(t), x2(t))D(x1(t), x2(t))dw(t), t ≥ 0. (5.41)

Hence, using (5.39) it follows that

L(x1(t), x2(t))dt+ dV (x1(t), x2(t))

=

(
L(x1(t), x2(t)) +

∂V (x1(t), x2(t))

∂x1
f1(x1(t), x2(t)) +

∂V (x1(t), x2(t))

∂x2
f2(x1(t), x2(t))

+
1

2
tr DT

1 (x1(t), x2(t))
∂2V (x1(t), x2(t))

∂x21
D1(x1(t), x2(t))

+
1

2
tr DT

2 (x1(t), x2(t))
∂2V (x1(t), x2(t))

∂x22
D2(x1(t), x2(t))

)
dt

+
∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

=
∂V (x(t))

∂x
D(x1(t), x2(t))dw(t). (5.42)

Let {tn}∞n=0 be a monotonic sequence of positive numbers with tn → ∞ as n → ∞,

τm : Ω→ [t0,∞) be the first exit (stopping) time of the solution x1(t) and x2(t), t ≥ t0, from
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the set Bm(0)× Rn2 , and let τ
4
= limm→∞ τm. Now, integrating (5.42) over [t0,min{tn, τm}],

where (n,m) ∈ Z+ × Z+, yields∫ min{tn,τm}

t0

L(x1(t), x2(t)) dt

= −
∫ min{tn,τm}

t0

dV (x1(t), x2(t)) +

∫ min{tn,τm}

t0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

= V (x1(t0), x2(t0))− V (x1(min{tn, τm}), x2(min{tn, τm}))

+

∫ min{tn,τm}

t0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t). (5.43)

Next, taking the expectation on both sides of (5.43) yields

Ex0
[∫ min{tn,τm}

t0

L(x1(t), x2(t)) dt

]

= Ex0
[
V (x1(t0), x2(t0))− V (x1(min{tn, τm}), x2(min{tn, τm}))

+

∫ min{tn,τm}

t0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

]
= V (x10, x20)− Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))] . (5.44)

Now, noting that L(x1, x2) ≥ 0, (x1, x2) ∈ Rn1 × Rn2 , the sequence of random variables

{fn,m}∞n,m=0 ⊆ H1, where

fn,m
4
=

∫ min{tn,τm}

t0

L(x1(t), x2(t))dt,

is a pointwise nondecreasing sequence in n and m of nonnegative Ft-measurable random

variables on Ω. Moreover, defining the improper integral∫ ∞
t0

L(x1(t), x2(t))dt

as the limit of a sequence of proper integrals, it follows from the Lebesgue monotone con-

vergence theorem [3] that

lim
m→∞

lim
n→∞

Ex0
[∫ min{tn,τm}

t0

L(x1(t), x2(t)) dt

]

= lim
m→∞

Ex0
[

lim
n→∞

∫ min{tn,τm}

t0

L(x1(t), x2(t)) dt

]
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= Ex0
[

lim
m→∞

∫ τm

t0

L(x1(t), x2(t)) dt

]
= Ex0

[∫ ∞
t0

L(x1(t), x2(t)) dt

]
= J(x10, x20). (5.45)

Next, since G is globally stochastic finite-time stable in probability with respect to x1

uniformly in x20, V (·, ·) is continuous, and V (x1(t), x2(t)), t ≥ t0, is positive supermartingale

by (5.14) and [67, Lemma 5.4], it follows from [67, Theorem 5.1] that

lim
m→∞

lim
n→∞

Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))]

= lim
m→∞

Ex0
[

lim
n→∞

V (x1(min{tn, τm}), x2(min{tn, τm}))
]

= Ex0
[

lim
m→∞

lim
n→∞

V (x1(min{tn, τm}), x2(min{tn, τm}))
]
. (5.46)

Now, it follows from (5.13) and (5.19) that

V (x10, x20)− Ex0
[

lim
m→∞

lim
n→∞

β (‖x1(min{tn, τm})‖)
]

≤ V (x10, x20)− Ex0
[

lim
m→∞

lim
n→∞

V (x1(min{tn, τm}), x2(min{tn, τm}))
]

≤ V (x10, x20)− Ex0
[

lim
m→∞

lim
n→∞

α (‖x1(min{tn, τm})‖)
]
, (5.47)

and hence, taking the limit as n→∞ and m→∞ on both sides of (5.44), using (5.45) and

(5.46), and using the continuity of α(·) and β(·), we obtain

V (x10, x20)− Ex0
[
β
(

lim
m→∞

lim
n→∞

‖x1(min{tn, τm})‖
)]

≤ J(x10, x20) ≤ V (x10, x20)− Ex0
[
α
(

lim
m→∞

lim
n→∞

‖x1(min{tn, τm})‖
)]
.

(5.48)

Now, J(x10, x20) = V (x10, x20) for all (x10, x20) ∈ Rn1 × Rn2 , is a direct consequence of

(5.48) by using the fact that limt→T (x1(0),x2(0)) x1(t)
a.s.
= limt→∞ x1(t)

a.s.
= 0 and α(·) and β(·)

are class K∞ functions. Finally, if k(x2) = k ∈ R+, x2 ∈ Rn2 , then globally strong stochastic

finite-time stability is direct consequence of ii) of Theorem 5.1.
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The following corollary to Theorem 5.3 considers the nonautonomous stochastic dynam-

ical system (5.5) with performance measure

J(t0, x0) , Ex0
[∫ ∞

t0

L(t, x(t))dt

]
, (5.49)

where L : [t0,∞)× Rn → R is jointly continuous in t and x, and x(t), t ≥ t0, satisfies (5.5).

Corollary 5.1. Consider the nonlinear time-varying stochastic dynamical system (5.5)

with performance measure (5.49). Assume that there exists a continuously differentiable

function V : [t0,∞) × Rn → R, class K∞ functions α(·) and β(·), and a continuously

differentiable function r : R+ → R+ such that (5.15), (5.16), (5.30), (5.31), and (5.34) hold,

and, for all (t, x) ∈ [t0,∞)× Rn,

0 =
∂V (t, x)

∂t
+ L(t, x) +

∂V (t, x)

∂x
f(t, x) +

1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x). (5.50)

Then the nonlinear time-varying stochastic dynamical system (5.5) is globally uniformly

stochastic finite-time stable and there exists a settling-time operator T : [0,∞) × HD0
n →

H[t0,∞)
1 such that (5.32) holds and satisfies (5.33). In addition, J(t0, x0) = V (t0, x0) for all

(t0, x0) ∈ [0,∞)× Rn.

Proof: The result is a direct consequence of Theorem 5.3.

Next, we use the framework developed in Theorem 5.3 to obtain a characterization of

stochastic optimal feedback controllers that guarantee closed-loop stochastic finite-time par-

tial stabilization. Specifically, sufficient conditions for optimality are given in a form that

corresponds to a steady-state version of the stochastic Hamilton-Jacobi-Bellman equation.

To address the problem of characterizing stochastic finite-time partially stabilizing feedback

controllers, consider the controlled stochastic nonlinear dynamical system

dx1(t) = F1(x1(t), x2(t), u(t))dt+D1(x1(t), x2(t), u(t))dw(t), x1(0)
a.s.
= x10, t ≥ 0,

(5.51)

dx2(t) = F2(x1(t), x2(t), u(t))dt+D2(x1(t), x2(t), u(t))dw(t), x2(0)
a.s.
= x20, (5.52)
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where, for every t ≥ 0, x1(t) ∈ Hn1 , F1 : Rn1×Rn2×Rm → Rn1 , F2 : Rn1×Rn2×Rm → Rn2 ,

D1 : Rn1 × Rn2 × Rm → Rn1×d, D2 : Rn1 × Rn2 × Rm → Rn2×d, and F1(0, x2, 0) = 0 and

D1(0, x2, 0) = 0 for every x2 ∈ Rn2 .

Here once again we assume that u(·) satisfies sufficient regularity conditions such that

(5.51) and (5.52) has a unique solution forward in time. Specifically, we assume that

the control process u(·) in (5.51) and (5.52) is restricted to the class of admissible con-

trols consisting of measurable functions u(·) adapted to the filtration {Ft}t≥0 such that

u(t) ∈ Hm, t ≥ 0, and, for all t ≥ s, w(t) − w(s) is independent of u(τ), w(τ), τ ≤ s, and

x(0) = [xT1 (0), xT2 (0)]T, and hence, u(·) is nonanticipative. Furthermore, we assume u(·)

takes values in a compact, metrizable set U and the uniform Lipschitz continuity (5.4) and

growth restriction condition ‖f(x)‖2 + ‖D(x)‖2F ≤ L2(1 + ‖x‖2), x ∈ R(n1+n2) \{0}, hold

for the controlled drift and diffusion terms F (x1, x2, u) , [FT
1 (x1, x2, u), FT

2 (x1, x2, u)]T and

D(x1, x2, u) , [DT
1 (x1, x2, u), DT

2 (x1, x2, u)]T uniformly in u. In this case, it follows from

Theorem 2.2.4 of [5] that there exists a pathwise unique solution to (5.51) and (5.52) in

(Ω, {F}t≥0,Px0).

A measurable function φ : Rn1 × Rn2 → Rm satisfying φ(0, x2) = 0, x2 ∈ Rn2 , is called a

control law. If u(t) = φ(x1(t), x2(t)), t ≥ 0, where φ(·, ·) is a control law and x1(t) and x2(t)

satisfy (5.51) and (5.52), then we call u(·) a feedback control law. Note that the feedback

control law is an admissible control since φ(·, ·) has values in Hm.

Definition 5.3. Consider the controlled stochastic nonlinear dynamical system given

by (5.51) and (5.52). The feedback control law u = φ(x1, x2) is globally strongly stochastic

finite-time stabilizing with respect to x1 uniformly in x20 if the closed-loop system (5.51) and

(5.52) with u = φ(x1, x2) is globally strongly stochastic finite-time stable with respect to x1

uniformly in x20.

Next, we present a main theorem for strong stochastic finite-time, partial-state stabi-

lization characterizing feedback controllers that guarantee closed-loop stochastic finite-time
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partial stability and minimize a nonlinear-nonquadratic performance functional. For the

statement of this result, let L : Rn1 ×Rn2 ×Rm → R be jointly continuous in x1, x2, and u,

and define the set of partial regulation controllers given by

S(x1(0), x2(0)) , {u(·) : u(·) is admissible and x1(·) given by (5.51)

satisfies x1(t)
a.s.→ 0 as t

a.s.→ T (x1(0), x2(0))},

where T : Hn1 ×Hn2 → H
[0,∞)
1 is the stochastic settling-time operator. Note that restricting

our minimization problem to u(·) ∈ S(x1(0), x2(0)), that is, inputs corresponding to partial-

state null convergent in probability solutions, can be interpreted as incorporating a partial-

state system detectability condition through the cost. In addition, since stochastic finite-

time partial convergence is a stronger condition than asymptotic partial-state convergence in

probability, S(x1(0), x2(0)) includes the set of all partial-state null asymptotically convergent

in probability controllers.

Theorem 5.4. Consider the controlled stochastic nonlinear dynamical system G given

by (5.51) and (5.52) with performance functional

J(x10, x20, u(·)) , Ex0
[∫ ∞

0

L(x1(t), x2(t), u(t)) dt

]
, (5.53)

where u(·) is an admissible control. Assume that there exists a two-times continuously

differentiable function V : Rn1 ×Rn2 → R, class K∞ functions α(·) and β(·), a continuously

differentiable function r : R+ → R+, and a control law φ : Rn1×Rn2 → Rm such that (5.13),

(5.15), (5.16), and (5.19) hold, and

V ′(x1, x2)F (x1, x2, φ(x1, x2)) +
1

2
tr DT(x1, x2, φ(x1, x2))V

′′(x1, x2)D(x1, x2, φ(x1, x2))

≤ −r(V (x1, x2)), (x1, x2) ∈ Rn1 × Rn2 ,
(5.54)

φ(0, x2) = 0, x2 ∈ Rn2 , (5.55)

H(x1, x2, φ(x)) = 0, (x1, x2) ∈ Rn1 × Rn2 , (5.56)

H(x1, x2, u) ≥ 0, (x1, x2, u) ∈ D × Rn2 × Rm, (5.57)
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H(x1, x2, u)
4
= L(x1, x2, u) + V ′(x1, x2)F (x1, x2, u) +

1

2
tr DT(x1, x2, u)V ′′(x1, x2)D(x1, x2, u).

Then, with the feedback control u = φ(x1, x2), the closed-loop system given by (5.51) and

(5.52) is globally strongly stochastic finite-time stable with respect to x1 uniformly in x20

and there exists a stochastic settling-time operator T : Hn1 ×Hn2 → H
[0,∞)
1 such that (5.20)

holds. In addition, if (x10, x20) ∈ Rn2 × Rn2 , then J(x10, x20, φ(x1(·), x2(·))) = V (x10, x20)

for all (x10, x20) ∈ Rn1 × Rn2 , and the feedback control u(·) = φ(x1(·), x2(·)) minimizes

J(x10, x20, u(·)) in the sense that

J(x10, x20, φ(·, ·)) = min
u(·)∈S(x10,x20)

J(x10, x20, u(·)). (5.58)

Proof: Global strong stochastic finite-time stability with respect to x1 uniformly in

x20 are a direct consequence of (5.13), (5.19), and (5.54) by applying Theorem 5.1 to the

closed-loop system given by (5.51) and (5.52) with u = φ(x1, x2). In addition, it follows

from Theorem 5.1 that there exists a stochastic settling-time operator T : Hn1 × Hn2 →

H[0,∞)
1 such that (5.17) holds and x1(t)

a.s.→ 0 as t
a.s.→ T (x1(0), x2(0)) for all initial conditions

(x1(0), x2(0)) ∈ Hn1×Hn2 . Furthermore, using (5.56), condition J(x10, x20, φ(x1(·), x2(·))) =

V (x10, x20) is a restatement of J(x10, x20) = V (x10, x20) as applied to the closed-loop system.

Next, let (x1(0), x2(0)) ∈ Hn1 ×Hn2 , let u(·) ∈ S(x1(0), x2(0)), and let x1(t) and x2(t),

t ≥ 0, be solutions of (5.51) and (5.52). Then, using Ito’s (chain rule) formula it follows

that the stochastic differential of V (x1(t), x2(t) along the trajectories of (x1(t), x2(t)), t ≥ 0,

is given by

dV (x1(t), x2(t)) = LV (x1(t), x2(t))dt+ V ′(x1(t), x2(t))D(x1(t), x2(t))dw(t), t ≥ 0. (5.59)

Hence, using the definition of H(x1, x2, u) and (5.59) yields

L(x1(t), x2(t), u(t))dt = L(x1(t), x2(t), u(t))dt− dV (x1(t), x2(t)) + LV (x1(t), x2(t))dt

+ V ′(x1(t), x2(t))D(x1(t), x2(t))dw(t)

= −dV (x1(t), x2(t)) +H(x1(t), x2(t), u(t))dt
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+ V ′(x1(t), x2(t))D(x1(t), x2(t))dw(t), t ≥ 0. (5.60)

Now, it follows from (5.13) and (5.19) that

Ex0
[

lim
t→T (x1(0),x2(0))

α(‖x1(t)‖)
]
≤ Ex0

[
lim

t→T (x1(0),x2(0))
V (x1(t), x2(t)))

]
≤ Ex0

[
lim

t→T (x1(0),x2(0))
β(‖x1(t)‖)

]
. (5.61)

Using the continuity of α(·) and β(·), and the fact that G is strongly stochastic finite-time

stable with respect to x1 uniformly in x20, it follows that

0 = Ex0
[
α

(
lim

t→T (x1(0),x2(0))
‖x1(t)‖

)]
≤ Ex0

[
lim

t→T (x1(0),x2(0))
V (x1(t), x2(t))

]
≤ Ex0

[
β

(
lim

t→T (x1(0),x2(0))
‖x1(t)‖

)]
= 0. (5.62)

Let {tn}∞n=0 be a monotonic sequence of positive numbers with tn → ∞ as n → ∞,

τm : Ω→ [0,∞) be the first exit (stopping) time of the solution x1(t) and x2(t), t ≥ 0, from

the set Bm(0)× Rn2 , and let τ
4
= limm→∞ τm. Now, integrating (5.60) over [t0,min{tn, τm}],

where (n,m) ∈ Z+ × Z+, yields∫ min{tn,τm}

0

L(x1(t), x2(t), u(t)) dt

= −
∫ min{tn,τm}

0

dV (x1(t), x2(t)) +

∫ min{tn,τm}

0

H(x1(t), x2(t), u(t))dt

+

∫ min{tn,τm}

0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

= V (x1(0), x2(0))− V (x1(min{tn, τm}), x2(min{tn, τm}))

+

∫ min{tn,τm}

0

H(x1(t), x2(t), u(t))dt

+

∫ min{tn,τm}

0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t). (5.63)

Next, taking the expectation on both sides of (5.63) and using (5.57) yields

Ex0
[∫ min{tn,τm}

0

L(x1(t), x2(t), u(t)) dt

]
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= Ex0
[
V (x1(0), x2(0))− V (x1(min{tn, τm}), x2(min{tn, τm}))

+

∫ min{tn,τm}

0

H(x1(t), x2(t), u(t))dt

+

∫ min{tn,τm}

0

∂V (x(t))

∂x
D(x1(t), x2(t))dw(t)

]
= V (x10, x20)− Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))]

+Ex0
[∫ min{tn,τm}

0

H(x1(t), x2(t), u(t))dt

]
≥ V (x10, x20)− Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))] . (5.64)

Now, noting that for all u(.) ∈ S(x1(0), x2(0)),∫ ∞
0

|L(x1(t), x2(t), u(t))| dt
a.s.
< ∞,

define the random variable

g
4
= sup

t≥0,m>0

∫ min{t,τm}

0

|L(x1(s), x2(s), u(s))| ds.

In this case, the sequence of Ft-measurable random variables {fn,m}∞n,m=0 ⊆ H1 on Ω, where

fn,m
4
=

∫ min{tn,τm}

0

L(x1(t), x2(t), u(t))dt,

satisfies |fn,m|
a.s.
< g.

Next, defining the improper integral
∫∞
0
L(x1(t), x2(t), u(t))dt as the limit of a sequence

of proper integrals, it follows from the dominated convergence theorem [3] that

lim
m→∞

lim
n→∞

Ex0
[∫ min{tn,τm}

0

L(x1(t), x2(t), u(t))dt

]

= lim
m→∞

Ex0
[

lim
n→∞

∫ min{tn,τm}

0

L(x1(t), x2(t), u(t))dt

]

= Ex0
[

lim
m→∞

∫ τm

0

L(x1(t), x2(t), u(t))dt

]
= Ex0

[∫ ∞
t0

L(x1(t), x2(t), u(t))dt

]
= J(x10, x20, u(·)). (5.65)

134



Finally, using the fact that u(.) ∈ S(x1(0), x2(0)) and V (·, ·) is continuous, it follows

that for every m > 0, V (x1(min{tn, τm}), x2(min{tn, τm})) is bounded for all {tn}∞n=0. Thus,

using the dominated convergence theorem we obtain

lim
m→∞

lim
n→∞

Ex0 [V (x1(min{tn, τm}), x2(min{tn, τm}))]

= Ex0
[

lim
m→∞

lim
n→∞

V (x1(min{tn, τm}), x2(min{tn, τm}))
]
. (5.66)

Now, taking the limit as n → ∞ and m → ∞ on both sides of (5.64) and using the fact

u(·) ∈ S(x1(0), x2(0)), (5.62), (5.65), (5.66), and J(x10, x20, φ(x1(·), x2(·))) = V (x10, x20)

yields (5.58).

Note that (5.56) is the steady-state, stochastic Hamilton-Jacobi-Bellman equation for

the nonlinear controlled stochastic dynamical system (5.51) and (5.52) with performance

criterion (5.53). Furthermore, conditions (5.56) and (5.57) guarantee optimality with respect

to the set of admissible stochastic finite-time partially stabilizing controllers S(x1(0), x2(0)).

However, it is important to note that an explicit characterization of S(x1(0), x2(0)) is not

required. In addition, the optimal strongly stochastic finite-time stabilizing with respect to

x1 uniformly in x20 feedback control law u = φ(x1, x2) is independent of the initial condition

(x10, x20) and is given by

φ(x1, x2) = arg min
u∈S(x1(0),x2(0))

[
L(x1, x2, u) + V ′(x1, x2)F (x1, x2, u)

+
1

2
tr DT(x1, x2, u)V ′′(x1, x2)D(x1, x2, u)

]
. (5.67)

Finally, we use Theorem 5.4 to provide a unification between optimal stochastic finite-

time, partial-state stabilization and optimal stochastic finite-time control for stochastic non-

linear time-varying systems. Specifically, consider the controlled nonlinear time-varying

stochastic dynamical system

dx(t) = F (t, x(t), u(t))dt+D(t, x(t), u(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (5.68)
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with performance measure

J(t0, x0, u(·)) , Ex0
[∫ ∞

t0

L(t, x(t), u(t))dt

]
, (5.69)

where, for every t ≥ t0, x(t) ∈ Hn, u(t) ∈ Hm, and L : [t0,∞) × Rn × Rm → R, F :

[t0,∞)× Rn × Rm → Rn, and D : [t0,∞)× Rn × Rm → Rn×d are jointly continuous in t, x,

and u. For the statement of the next result, define the set of regulation controllers

S(t0, x(t0)) , {u(·) : u(·) is admissible and x(·) given by (5.68)

satisfies x(t)
a.s.→ 0 as t

a.s.→ T (t0, x(t0))},

where T : [t0,∞)×Hn → H(t0,∞)
1 is the stochastic settling-time operator.

Corollary 5.2. Consider the controlled stochastic nonlinear time-varying dynamical sys-

tem (5.68) with performance measure (5.69) where u(·) is an admissible control. Assume

that there exists a two-times continuously differentiable function V : [t0,∞) × Rn → R,

class K∞ functions α(·) and β(·), a continuously differentiable function r : R+ → R+, and a

control law φ : [t0,∞) × Rn → Rm such that (5.15), (5.16), (5.30), (5.31), and (5.34) hold,

and

∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(t, x)) +

1

2
tr DT(t, x, φ(t, x))

∂2V (t, x)

∂x2
D(t, x, φ(t, x))

≤ −r(V (t, x), (t, x) ∈ [t0,∞)× Rn, (5.70)

φ(t, 0) = 0, t ∈ [t0,∞), (5.71)

L(t, x, φ(t, x)) +
∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(t, x)) +

1

2
tr DT(t, x, φ(t, x))

·∂
2V (t, x)

∂x2
D(t, x, φ(t, x)) = 0, (t, x) ∈ [t0,∞)× Rn, (5.72)

L(t, x, u) +
∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, u) +

1

2
tr DT(t, x, u)

∂2V (t, x)

∂x2

·D(t, x, u) ≥ 0, (t, x, u) ∈ [t0,∞)× Rn × Rm. (5.73)

Then, with the feedback control u = φ(t, x), the closed-loop system given by (5.68) is globally

strongly uniformly stochastic finite-time stable and there exists a stochastic settling-time
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operator T : [t0,∞) × Hn → H[t0,∞)
1 such that (5.35) holds. In addition, if (t0, x0) ∈

[0,∞)×Rn, then J(t0, x0, φ(·, ·)) = V (t0, x0) for all (t0, x0) ∈ [0,∞)×Rn, and the feedback

control u(·) = φ(·, x(·)) minimizes J(t0, x0, u(·)) in the sense that

J(t0, x0, φ(·, ·)) = min
u(·)∈S(t0,x(t0))

J(t0, x0, u(·)). (5.74)

Proof: The proof is a direct consequence of Theorem 5.4.

Note that (5.72) and (5.73) give the classical stochastic Hamilton-Jacobi-Bellman equa-

tion

−∂V (t, x)

∂t
= min

u∈S(t0,x(t0))

[
L(t, x, u) +

∂V (t, x)

∂x
F (t, x, u) +

1

2
tr DT(t, x, u)

∂2V (t, x)

∂x2

·D(t, x, u)

]
, (t, x) ∈ [t0,∞)× Rn, (5.75)

which characterizes the optimal control

φ(t, x) = arg min
u∈S(t0,x(t0))

[
L(t, x, u) +

∂V (t, x)

∂x
F (t, x, u) +

1

2
tr DT(t, x, u)

∂2V (t, x)

∂x2
D(t, x, u)

]
(5.76)

for time-varying stochastic systems on a finite or infinite interval.

5.5. Finite-Time Stabilization for Affine Dynamical Systems and
Connections to Inverse Optimal Control

In this section, we specialize the results of Section 5.4 to stochastic nonlinear affine

dynamical systems of the form

dx1(t) =
[
f1(x1(t), x2(t)) +G1(x1(t), x2(t))u(t)

]
dt+D1(x1(t), x2(t))dw(t), (5.77)

dx2(t) =
[
f2(x1(t), x2(t)) +G2(x1(t), x2(t))u(t)

]
dt+D2(x1(t), x2(t))dw(t), (5.78)

where, for every t ≥ 0, x1(t) ∈ Hn1 , x2(t) ∈ Hn2 , u(t) ∈ Hm, and f1 : Rn1 × Rn2 → Rn1 ,

f2 : Rn1 ×Rn2 → Rn2 , G1 : Rn1 ×Rn2 → Rn1×m, G2 : Rn1 ×Rn2 → Rn2×m, D1 : Rn1 ×Rn2 →

Rn1×d, and D2 : Rn1 × Rn2 → Rn2×d are such that f1(0, x2) = 0 and D1(0, x2) = 0 for all
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x2 ∈ Rn2 , and f1(·, ·), f2(·, ·), G1(·, ·), G2(·, ·), D1(·, ·), and D2(·, ·) are jointly continuous in

x1 and x2 in Rn1×Rn2 . Furthermore, we consider performance integrands L(x1, x2, u) of the

form

L(x1, x2, u) = L1(x1, x2) + L2(x1, x2)u+ uTR2(x1, x2)u, (x1, x2, u) ∈ Rn1 × Rn2 × Rm,

(5.79)

where L1 : Rn1 × Rn2 → R, L2 : Rn1 × Rn2 → R1×m, and R2(x1, x2) ≥ N(x1) > 0,

(x1, x2) ∈ Rn1 × Rn2 , so that (5.53) becomes

J(x10, x20, u(·)) = Ex0
[ ∫ ∞

0

[
L1(x1(t), x2(t)) + L2(x1(t), x2(t))u(t)

+ uT(t)R2(x1(t), x2(t))u(t)
]
dt

]
. (5.80)

For the statement of the next result, define

f(x1, x2) , [fT
1 (x1, x2), f

T
2 (x1, x2)]

T, G(x1, x2) , [GT
1 (x1, x2), G

T
2 (x1, x2)]

T, (5.81)

F (x1, x2, u) , f(x1, x2) +G(x1, x2)u, D(x1, x2) , [DT
1 (x1, x2), D

T
2 (x1, x2)]

T. (5.82)

Theorem 5.5. Consider the controlled stochastic nonlinear affine dynamical system

(5.77) and (5.78) with performance measure (5.80). Assume that there exists a two-times

continuously differentiable function V : Rn1 × Rn2 → R, class K∞ functions α(·) and β(·),

and a continuously differentiable function r : R+ → R+ such that (5.15) and (5.16) hold,

and for all (x1, x2) ∈ Rn1 × Rn2 ,

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖), (5.83)

V ′(x1, x2)

[
f(x1, x2)−

1

2
G(x1, x2)R

−1
2 (x1, x2)L

T
2 (x1, x2)−

1

2
G(x1, x2)R

−1
2 (x1, x2)

·GT(x1, x2)V
′T(x1, x2)

]
+

1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2) ≤ −r(V (x1, x2)), (5.84)

L2(0, x2) = 0, (5.85)

0 = L1(x1, x2) + V ′(x1, x2)f(x1, x2) +
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)−
1

4

[
V ′(x1, x2)

138



·G(x1, x2) + L2(x1, x2)

]
R−12 (x1, x2)

[
V ′(x1, x2)G(x1, x2) + L2(x1, x2)

]T
. (5.86)

Then, with the feedback control

u = φ(x1, x2) = −1

2
R−12 (x1, x2)

[
L2(x1, x2) + V ′(x1, x2)G(x1, x2)

]T
, (5.87)

the closed-loop system (5.77) and (5.78) is globally strongly stochastic finite-time stable

with respect to x1 uniformly in x20 and there exists a stochastic settling-time operator

T : Hn1 × Hn2 → H
[0,∞)
1 such that (5.20) holds. In addition, J(x10, x20, φ(x1(·), x2(·)) =

V (x10, x20), (x10, x20) ∈ Rn1 ×Rn2 , and the performance measure (5.80) is minimized in the

sense of (5.58).

Proof: The result is a consequence of Theorem 5.4 with

L(x1, x2, u) = L1(x1, x2) + L2(x1, x2)u+ uTR2(x1, x2)u.

Specifically, the feedback control law (5.87) follows from (5.67) by setting

∂

∂u

[
L1(x1, x2) + L2(x1, x2)u+ uTR2(x1, x2)u+ V ′(x1, x2)

[
f(x1, x2) +G(x1, x2)u

]
+

1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)

]
= 0. (5.88)

Now, with u = φ(x1, x2) given by (5.87), conditions (5.83), (5.84), (5.15), (5.16), and (5.86)

imply (5.13), (5.19), (5.54), and (5.56), respectively.

Next, since V (·, ·) is continuously differentiable and, by (5.83), V (0, x2), x2 ∈ Rn2 , is a

local minimum of V (·, ·), it follows that V ′(0, x2) = 0, x2 ∈ Rn2 , and hence, it follows from

(5.85) and (5.87) that φ(0, x2) = 0, x2 ∈ Rn2 , which implies (5.55). Finally, since

L(x1, x2, u) + V ′(x1, x2)[f(x1, x2) +G(x1, x2)u] +
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)

= L(x1, x2, u) + V ′(x1, x2)[f(x1, x2) +G(x1, x2)u]

+
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)− L(x1, x2, φ(x1, x2))− V ′(x1, x2)

· [f(x1, x2) +G(x1, x2)φ(x1, x2)]−
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2)
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= [u− φ(x1, x2)]
TR2(x1, x2)[u− φ(x1, x2)]

≥ 0, (x1, x2) ∈ Rn1 × Rn2 , (5.89)

condition (5.57) holds. The result now follows as a direct consequence of Theorem 5.4.

The following corollary to Theorem 5.5 considers the nonautonomous dynamical system

dx(t) = [f(t, x(t)) +G(t, x(t))u(t)]dt+D(t, x(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (5.90)

with performance measure

J(t0, x0, u(·)) = Et0,x0
[∫ ∞

t0

[
L1(t, x(t)) + L2(t, x(t))u(t) + uT(t)R2(t, x(t))u(t)

]
dt

]
, (5.91)

where, for every t ≥ t0, x(t) ∈ Hn and u(t) ∈ Hm, f : [t0,∞)×Rn → Rn, G : [t0,∞)×Rn →

Rn×m, and D : [t0,∞)×Rn → Rn×d are such that f(t, 0) = 0, D(t, 0) = 0 for all t ∈ [t0,∞),

f(·, ·) and G(·, ·) are jointly continuous in x1 and x2 on Rn1 × Rn2 , L1 : [t0,∞) × Rn → R,

L2 : [t0,∞)× Rn → R1×m, and R2(t, x) ≥ N(x) > 0, (t, x) ∈ [t0,∞)× Rn.

Corollary 5.3. Consider the controlled stochastic nonlinear affine dynamical system

(5.90) with performance measure (5.91). Assume that there exists a two-times continuously

differentiable function V : [t0,∞) × Rn → R, class K∞ functions α(·) and β(·), and a

continuously differentiable function r : R+ → R+ such that (5.15) and (5.16) hold, and, for

all (t, x) ∈ [t0,∞)× Rn,

α(‖x‖) ≤ V (t, x) ≤ β(‖x‖), (5.92)

∂V (t, x)

∂t
+
∂V (t, x)

∂x

[
f(t, x)− 1

2
G(t, x)R−12 (t, x)LT

2 (t, x)− 1

2
G(t, x)R−12 (t, x)

·GT(t, x)

(
∂V (t, x)

∂x

)T
]

+
1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x) ≤ −r(V (t, x)), (5.93)

L2(t, 0) = 0, (5.94)

0 = L1(t, x) +
∂V (t, x)

∂t
+
∂V (t, x)

∂x
f(t, x) +

1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x)

− 1

4

[
∂V (t, x)

∂x
G(t, x) + L2(t, x)

]
R−12 (t, x)

[
∂V (t, x)

∂x
G(t, x) + L2(t, x)

]T
. (5.95)

140



Then, with the feedback control

u = φ(t, x) = −1

2
R−12 (t, x)

[
L2(t, x) +

∂V (t, x)

∂x
G(t, x)

]T
, (5.96)

the closed-loop system (5.90) is globally strongly uniformly stochastic finite-time stable and

there exists a stochastic settling-time operator T : [0,∞) × Hn → H[t0,∞)
1 such that (5.35)

holds. In addition, J(t0, x0, φ(·, x(·))) = V (t0, x0) for all (t0, x0) ∈ [0,∞) × Rn, and the

performance measure (5.91) is minimized in the sense of (5.74).

Proof: The proof is a direct consequence of Theorem 5.5.

Finally, we construct state feedback controllers for stochastic nonlinear affine in the

control dynamical systems that are predicated on an inverse optimal control problem [34,42].

Theorem 5.6. Consider the controlled nonlinear affine stochastic dynamical system

(5.77) and (5.78) with performance measure (5.80). Assume there exists a two-times contin-

uously differentiable function V : Rn1 × Rn2 → R, class K∞ functions α(·) and β(·), and a

continuously differentiable function r : R+ → R+ such that (5.83)–(5.85) hold. Then, with

the feedback control (5.87), the closed-loop system given by (5.77) and (5.78) is globally

strongly stochastic finite-time stable with respect to x1 uniformly in x20 and there exists a

stochastic settling-time operator T : Hn1×Hn2 → H
[0,∞)
1 such that (5.20) holds. In addition,

the performance functional (5.80), with

L1(x1, x2) =φT(x1, x2)R2(x1, x2)φ(x1, x2)− V ′(x1, x2)f(x1, x2)

− 1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2),

is minimized in the sense of (5.58) and J(x10, x20, φ(x1(·), x2(·))) = V (x10, x20).

Proof: The proof is identical to the proof of Theorem 5.5.

The following corollary to Theorem 5.3 considers the nonautonomous stochastic dynam-

ical system (5.90) with performance measure (5.91).
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Corollary 5.4. Consider the controlled stochastic nonlinear affine dynamical system

(5.90) with performance measure (5.91). Assume there exists a two-times continuously

differentiable function V : [t0,∞) × Rn → R, class K∞ functions α(·) and β(·), and a

continuously differentiable function r : R+ → R+ such that (5.92)–(5.94) holds. Then,

with the feedback control (5.96), the closed-loop system given by (5.90) is globally strongly

uniformly stochastic finite-time stable and there exists a stochastic settling-time operator

T : [0,∞) × Hn → H[t0,∞)
1 such that (5.35) holds. In addition, the performance functional

(5.91), with

L1(t, x) = φT(t, x)R2(t, x)φ(t, x)− ∂V (t, x)

∂t
− ∂V (t, x)

∂x
f(t, x)− 1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x),

is minimized in the sense of (5.74) and J(t0, x0, φ(·, x(·))) = V (t0, x0).

Proof: The proof is identical to the proof of Theorem 5.6.

5.6. Illustrative Numerical Examples

In this section, we provide two numerical examples to highlight the stochastic finite-time,

partial-state stabilization framework developed in the chapter.

Example 5.3. Consider the controlled nonlinear time-varying stochastic dynamical sys-

tem given by

dx1(t) =
[
−x

1
3
1 (t) + tx2(t) + u1(t)

]
dt+ x1(t) sinx2(t)dw(t), x1(0)

a.s.
= x10, t ≥ 0, (5.97)

dx2(t) =
[
−x

1
3
2 (t)− tx1(t) + u2(t)

]
dt+ sin tx2(t)dw(t), x2(0)

a.s.
= x20. (5.98)

Note that (5.97) and (5.98) can be cast in the form of (5.90) with f(t, x) = [−x
1
3
1 +tx2, −x

1
3
2 −

tx1]
T, G(t, x) = I2, and D(t, x) = [x1 sinx2, sin tx2]

T, where x
4
= [x1 x2]

T. For this example,

we use Corollary 5.4 to construct an inverse optimal globally strongly uniformly finite-time

stabilizing control law for (5.97) and (5.98). Let V (t, x) = V (x) = 1
2
αx21 + 1

2
αx22, α > 0,

let L(t, x, u) = L1(t, x) + L2(t, x)u + uTR2(t, x)u, where R2(t, x) > 2αI2, and note that
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L2(t, x) = αxT satisfies (5.94) so that the inverse optimal control law (5.96) is given by

φ(t, x) = −αR−12 (t, x)x. In this case, the performance functional (5.91), with L1(t, x) =

α2xTR−12 x+ αx
4
3
1 + αx

4
3
2 − 1

2
αx21 sin2 x2 − 1

2
αx22 sin2 t, is minimized in the sense of (5.74).

Next, since (5.92) holds with α(‖x‖) = β(‖x‖) = V (x) and

∂V (t, x)

∂t
+
∂V (t, x)

∂x

[
f(t, x)− 1

2
G(t, x)R−12 (t, x)LT

2 (t, x)− 1

2
G(t, x)R−12 (t, x)

·GT(t, x)

(
∂V (t, x)

∂x

)T
]

+
1

2
tr DT(t, x)

∂2V (t, x)

∂x2
D(t, x)

= −αx
4
3
1 − αx

4
3
2 − α2xTR−12 x+ 1

2
αx21 sin2 x2 + 1

2
αx22 sin2 t

≤ −α(x
4
3
1 + x

4
3
2 )− αxT(αR−12 − 1

2
I2)x

≤ −ρ(V (t, x))
2
3 , (t, x) ∈ [0,∞)× R2, (5.99)

where ρ = 2
2
3α

1
3 , (5.93) holds with r(v) = ρv

2
3 . Hence, it follows from Corollary 5.4 that the

feedback control law φ(t, x) is globally strongly uniformly stochastic finite-time stabilizing.

Moreover, there exists a stochastic settling-time operator T : [0,∞)×H2 → H[0,∞)
1 such that

Et0,x0 [T (t0, x(t0))] ≤
3

2
‖x0‖

2
3 , (t0, x0) ∈ [0,∞)× R2, (5.100)

and

J(t0, x0, φ(t, x(·))) =
1

2
α‖x0‖2, (t0, x0) ∈ [0,∞)× R2. (5.101)

For x(0)
a.s.
= [2, −1]T, α = 1, and R2 = 4I2, Figure 6.2 shows a sample state trajectory

of the controlled system versus time, whereas Figure 6.3 shows the corresponding sample

control signal versus time. 4

Example 5.4. Consider the spacecraft with one axis of symmetry and with stochastic

disturbances given by

dω1(t) = [I23ω2(t)ω3(t) + u1(t)]dt+ σω1(t)dw(t), ω1(0)
a.s.
= ω10, t ≥ 0, (5.102)

dω2(t) = [−I23ω3(t)ω1(t) + u2(t)]dt+ σω2(t)dw(t), ω2(0)
a.s.
= ω20, (5.103)
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Figure 5.1: Closed-loop system sample trajectory versus time.
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Figure 5.2: Control signal versus time.

dω3(t) = [α3u1(t) + α4u2(t)]dt+ σω3(t)dw(t), ω3(0)
a.s.
= ω30, (5.104)

where I23 , (I2− I3)/I1, I1, I2, and I3 are the principal moments of inertia of the spacecraft

such that 0 < I1 = I2 < I3, ω1 : [0,∞) → H1, ω2 : [0,∞) → H1, and ω3 : [0,∞) → H1

denote the components of the angular velocity vector with respect to a given inertial reference
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frame expressed in a central body reference frame, w(·) is a standard Wiener process with

intensity σ > 0, α3 and α4 ∈ R, and u1 and u2 are the spacecraft control moments. Here,

the state-dependent disturbances can be used to capture perturbations in atmospheric drag

for low altitude (i.e., < 600 km) satellites from the Earth’s residual atmosphere as well as

J2 perturbations due to the nonspherical mass distribution of the Earth and its nonuniform

mass density. For details see [33,62].

For this example, we apply Theorem 5.6 to find an inverse optimal globally partial-state

stabilizing control law u = [u1, u2]
T = φ(x1, x2), where x1 = [ω1, ω2]

T and x2 = ω3, such that

the spacecraft is stochastic finite-time spin-stabilized about its third principle axis of inertia,

that is, the stochastic dynamical system (5.102)–(5.104) is globally stochastic strongly finite-

time stable with respect to x1 uniformly in x2(0). Note that (5.102)–(5.104) can be cast in the

form of (5.77) and (5.78), with n1 = 2, n2 = 1, m = 2, f(x1, x2) =
[
I23ω2ω3, −I23ω3ω1, 0

]T
,

G(x1, x2) =

[
1 0 α3

0 1 α4

]T
, and D(x1, x2) = σ [x1, x2]

T.

To construct an inverse optimal controller for (5.102) and (5.103), let V (x1, x2) =
(
xT1 x1

)α
,

where 1
2
< α < 1, L(x1, x2, u) = L1(x1, x2) + L2(x1, x2)u+ uTu, and let

L2(x1, x2) = 2
[
I23ω3ω2 + σ2(2α− 1)ω1, −I23ω3ω1 + σ2(2α− 1)ω2

]
. (5.105)

Now, the inverse optimal control law (5.87) is given by

u = φ(x1, x2) =

[
−αω1‖x1‖2(α−1) − I23ω3ω2 − σ2(2α− 1)ω1

−αω2‖x1‖2(α−1) + I23ω3ω1 − σ2(2α− 1)ω2

]
(5.106)

and the performance functional (5.80), with

L1(x1, x2) =
(
α‖x1‖2α−1 + σ2(2α− 1)‖x1‖

)2
+ (I23ω3‖x1‖)2 − ασ2(2α− 1)‖x1‖α, (5.107)

is minimized in the sense of (5.58). Furthermore, since (5.83) holds with α(‖x1‖) = β(‖x1‖) =

V (x1, x2) and, since, for all (x1, x2) ∈ R2 × R,

V ′(x1, x2)

[
f(x1, x2)−

1

2
G(x1, x2)L

T
2 (x1,x2)−

1

2
G(x1, x2)G

T(x1, x2)V
′T(x1, x2)

]
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+
1

2
tr DT(x1, x2)V

′′(x1, x2)D(x1, x2) = −2α2(xTx)2α−1 = −2α2(V (x1, x2))
2α−1
α , (5.108)

(5.84) holds with r(v) = 2α2v
2α−1
α . Hence, with the feedback control law φ(x1, x2) given by

(5.106), the closed-loop system (5.102) and (5.103) is globally stochastic finite-time stable

with respect to x1 uniformly in x20. Moreover, there exists a stochastic settling-time operator

T : H2 ×H1 → H[0,∞)
1 such that

Ex0 [T (x1(0), x2(0)] ≤ 1

2α(1− α)

(
ω2
10 + ω2

20

)2(1−α)
, (x10, x20) ∈ R2 × R, (5.109)

where x10 = [ω10, ω20]
T and x20 = ω30, and

J(x10, x20, φ(x1(·), x2(·))) =
(
ω2
10 + ω2

20

)2α
, (x10, x20) ∈ R2 × R. (5.110)

For I1 = I2 = 4 kg ·m2, I3 = 20 kg ·m2, ω10 = −2 Hz, ω20 = 2 Hz, ω30 = 1 Hz, α3 =
√
2
2

,

α4 = −
√
2
2

, σ = 1
3
, and α = 4/5, Figure 5.3 shows a sample trajectory along with the

standard deviation of the state trajectories x1(t), t ≥ 0, of the controlled system versus

time. Figure 5.4 shows a sample path along with the standard deviation of the corresponding

control signal versus time for x1(0)
a.s.
= [−2, 2]T and x2(0)

a.s.
= 1 for 15 sample paths. Finally,

J(x10, x20, φ(x1(·), x2(·))) = 5.28 Hz2. 4
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Figure 5.3: A sample trajectory along with the sample standard deviation of the closed-
loop system trajectories versus time; ω1(t) in blue, ω2(t) in red, and in green is a sample
trajectory of ω3(t).
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Figure 5.4: A sample path along with the sample standard deviation of the control signal
versus time; u1(t) in blue and u2(t) in red.
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Chapter 6

Stochastic Differential Games and Inverse Optimal

Control and Stopper Policies

6.1. Introduction

Building on the results of Chapter 3, in this chapter we present a two-player stochastic

differential game framework for designing optimal feedback control and stopper policies for

each player. Specifically, we consider feedback stochastic optimal control policies for attain-

ing higher utilities or lower costs over an infinite horizon involving a nonlinear-nonquadratic

performance functional. The performance functional can be evaluated in closed form as

long as the nonlinear-nonquadratic cost functional considered is related in a specific way

to an underlying Lyapunov function that guarantees asymptotic stability in probability of

the nonlinear differential game problem. This Lyapunov function is shown to be the solu-

tion of the steady-state stochastic Hamilton-Jacobi-Isaacs equation. The overall framework

provides the foundation for extending linear-quadratic controller and stopper policies for

stochastic differential games to nonlinear-nonquadratic differential games with polynomial

and multilinear cost functionals.

More specifically, in Section 6.2, we state a nonlinear-nonquadratic stochastic differential

game problem and provide sufficient conditions for characterizing optimal nonlinear feedback

controller and stopper policies guaranteeing asymptotic stability in probability of the closed-

loop system and providing a minimax solution to the differential game problem. Then, in
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Section 6.3, we develop an inverse optimal framework tailored to the stochastic differential

game problem. This result is then used to derive optimal nonlinear feedback controller and

stopper policies that minimize and maximize general polynomial and multilinear performance

criteria. Finally, in Section 6.4, we provide two illustrative examples that highlight the

proposed stochastic differential game framework.

6.2. Stochastic Differential Games and Optimal Control and Stop-
per Policies

In this section, we consider a two-player stochastic differential game problem, wherein

the two players (i.e., controller strategy and stopper strategy) attempt to control the state

of the system so as to minimize and maximize, respectively, a given nonlinear-nonquadratic

performance measure. Our framework considers control and stopper strategies involving a

notion of optimality that is directly related to a specified Lyapunov function. Specifically,

sufficient conditions for optimal game strategies are given in a form that corresponds to a

steady-state version of the stochastic Hamilton-Jacobi-Isaacs equation.

To address the problem of characterizing stochastic optimal stabilizing feedback laws

for the controller and stopper of the stochastic differential game, consider the two-player

stochastic differential game described by the nonlinear stochastic differential game problem

G given by

dx(t) = F (x(t), u(t), v(t))dt+D(x(t), u(t), v(t))dw(t), x(0)
a.s.
= x0, t ≥ 0, (6.1)

where, for every t ≥ 0, x(t) ∈ HDn , x(0) ∈ Hx0
n , D is an open with 0 ∈ D, u(t) ∈ HU1

m1
,

U1 ⊆ Rm1 is open with 0 ∈ U1, v(t) ∈ HU2
m2

, U2 ⊆ Rm2 is open with 0 ∈ U2, w(·) is a d-

dimensional independent standard Wiener process, x(0) is independent of (w(t)−w(0)), t ≥

0, F : D × U1 × U2 → Rn is jointly continuous in x, u, and v with F (0, 0, 0) = 0, and

D : D × U1 × U2 → Rn×d is jointly continuous in x, u, and v with D(0, 0, 0) = 0.

Here we assume that u(·) and v(·) satisfy sufficient regularity conditions such that the
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system (6.1) has a unique solution forward in time. Specifically, we assume that the control

and stopper policies in (6.1) are restricted to the class of admissible policies consisting of

measurable functions u(·) and v(·) adapted to the filtration {Ft}t≥0 such that u(t) ∈ HU1
m ,

t ≥ 0, v(t) ∈ HU2
m2

, t ≥ 0, and, for all t ≥ s, w(t) − w(s) is independent of u(τ), v(τ),

τ ≤ s, and u(·) and v(·) take values in compact metrizable sets U1 and U2. Furthermore, we

assume that the uniform Lipschitz continuity and growth conditions (2.4) and (2.5) hold for

the controlled drift and diffusion terms F (x, u, v) and D(x, u, v) uniformly in u and v. In

this case, it follows from Theorem 2.2.4 of [5] that there exists a pathwise unique solution

to (6.1) in (Ω, {Ft≥0},Px0).

A measurable function φ : D → U1 (resp., ψ : D → U2) is called a control (resp., stopper)

law. If u(t) = φ(x(t)) and v(t) = ψ(x(t)), t ≥ 0, where φ(·) and ψ(·) are control and

stopper laws, and x(t), t ≥ 0, satisfies (6.1), then we call u(·) and v(·) feedback control and

feedback stopper laws. Note that the feedback control (resp., stopper) law is an admissible

control (resp., stopper) since φ(·) (resp., ψ(·)) has values in U1 (resp., U2). Given a control

and a stopper law φ(·) and ψ(·), and feedback control and stopper laws u(t) = φ(x(t)) and

v(t) = ψ(x(t)), t ≥ 0, the closed-loop system (6.1) has the form

dx(t) = F (x(t), φ(x(t)), ψ(x(t)))dt+D(x(t), φ(x(t)), ψ(x(t)))dw(t) x(0)
a.s.
= x0, t ≥ 0.

(6.2)

Next, we define the strategies along with the strategy spaces for the controller and stop-

per. For the statement of this result, let L : D × U1 × U2 → R be jointly continuous in x,

u, and v, and let 1[0,τm](t) denote the indicator function defined on the set [0, τm], m ∈ Z+,

that is,

1[0,τm](t)
4
=

{
1, if t ∈ [0, τm],
0, otherwise.

Furthermore, let B
u(·),v(·)
x0 denote the set of all sample trajectories of (6.1) with controls law

u(·) and stopper law v(·) for which limt→∞ ‖x(t, ω)‖ = 0 and x({t ≥ 0}, ω) ∈ B
u(·),v(·)
x0 ,
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ω ∈ Ω. Finally, define

1
B
u(·),v(·)
x0

(ω)
4
=

{
1, if x({t ≥ 0}, ω) ∈ B

u(·),v(·)
x0 ,

0, otherwise.

Here we consider the nonlinear-nonquadratic performance measure (or payoff function) given

by

J(x0, u(·), v(·)) 4= 1

Px0
(
B
u(·),v(·)
x0

)Ex0 [∫ ∞
0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

]
, (6.3)

and, we assume that the regulation controller policy and strategy is such that the payoff

function (6.3) is well defined. This is shown in Theorem 6.1 below. Furthermore, since

there can exist several different types of solutions for a differential game problem, includ-

ing minimax, Nash, and Stackelberg solutions [8], the following definitions are required for

developing our minimax differential game framework.

Definition 6.1 [39, Def. 2.1]. An Elliott-Kalton strategy for the stopper is a mapping

β : U1 → U2 such that if u(t)
a.s.≡ û(t), then v(t) = β(û(t)) maximizes (6.3) with a stopper

strategy space SEK consisting of the set of all such stopper strategies. Similarly, the Elliott-

Kalton strategy for the controller is a mapping α : U2 → U1 such that if v(t)
a.s.≡ v̂(t), then

u(t) = α(v̂(t)) minimizes (6.3) with a controller strategy space CEK consisting of the set of

all such controller strategies.

Given x0 ∈ Rn, the upper and lower values of the stochastic differential game are defined

by

V +(x0)
4
= sup
SEK

inf
U1
J(x0, u(·), β(u(·))), (6.4)

V −(x0)
4
= inf
CEK

sup
U2

J(x0, α(v(·)), v(·)). (6.5)

Note that in general V −(x0) ≤ V +(x0); however, if the Isaacs minimax condition holds [40],

then V +(x0) = V −(x0). Moreover, it follows from the Definition 6.1 that if (6.5) holds, then

the controller has an advantage over the stopper. Specifically, in this case, the controller
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has an informational advantage at each time t, and hence, the class of admissible controller

strategies CEK should be restricted to eliminate this advantage. This is done by restricting

the set of controller strategies CEK to a set of progressively measurable strategies.

Definition 6.2. A controller strategy α(·) ∈ CEK is strictly progressively measurable if,

for each stopper strategy β(·) ∈ SEK, the equations u = α(v) and v = β(u) have a unique

solution. In this case, we denote the set of strictly progressively measurable strategies by CS.

If the controller strategy α(·) ∈ CS, then it can be shown that ([39])

V +(x0) ≤ inf
CS

sup
U2

J(x0, α(v(·)), v(·)), (6.6)

and hence, V +(x0) = V −(x0).

Definition 6.3. The saddle point property for the upper game holds if there exists a real

valued function V : D → R and controller and stopper strategies αε(·) ∈ CS and βε(·) ∈ SEK,

where ε > 0, such that the following conditions hold:

i) V (x)− ε ≤ infu∈U1 J(x, u(·), βε(u(·))).

ii) supv∈U2 J(x, αε(v(·)), v(·)) ≤ V (x) + ε.

Next, we present a main theorem for the two-player stochastic differential game problem

characterizing feedback controller and stopper policies that guarantee closed-loop stability

in probability and optimize a nonlinear-nonquadratic performance functional. For the state-

ment of this result, define the set of stochastic regulation controller policies and strategies

given by

S(x0, ρ) ,

{
u(·) ∈ U1 : u(·) = α(v(·)), v(·) ∈ U2, α(·) ∈ CS, and x(·) given by (6.1)

is such that Px0
(
Bu(·),v(·)
x0

)
≥ 1− ρ

}
.
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Theorem 6.1. Consider the nonlinear two-player stochastic differential game problem

(6.1) with performance functional (6.3) where the stopper strategy is an Elliott-Kalton strat-

egy and the controller strategy is a strictly progressively measurable strategy. Assume that

there exist a two-times continuously differentiable function V : D → R and control and

stopper laws φ : D → U1 and ψ : D → U2, with strategies α(·) ∈ CS and β(·) ∈ SEK, such

that

V (0) = 0, (6.7)

V (x) > 0, x ∈ D, x 6= 0, (6.8)

φ(0) = 0, (6.9)

ψ(0) = 0, (6.10)

V ′(x)F (x, φ(x), ψ(x)) +
1

2
tr DT(x, φ(x), ψ(x))V ′′(x)D(x, φ(x), ψ(x)) < 0, x 6= 0, (6.11)

H(x, φ(x), ψ(x)) = 0, x ∈ D, (6.12)

H(x, u, ψ(x)) ≥ 0, x ∈ D, u ∈ U1, (6.13)

H(x, φ(x), v)) ≤ 0, x ∈ D, v ∈ U2, (6.14)

φ(x) = α(ψ(x)), (6.15)

ψ(x) = β(φ(x)), (6.16)

where

H(x, u, v)
4
= L(x, u, v) + V ′(x)F (x, u, v) +

1

2
tr DT(x, u, v)V ′′(x)D(x, u, v). (6.17)

Then, with the feedback control and stopper policies u(·) = φ(x(·)) and v(·) = ψ(x(·)),

the zero solution x(t)
a.s.≡ 0 of the closed-loop system (6.2) is locally asymptotically sta-

ble in probability and, for every ρ ∈ (0, 1), there exist δ = δ(ρ) and B
φ(x(·)),ψ(x(·))
x0 with

Px0
(
B
φ(x(·)),ψ(x(·))
x0

)
≥ 1− ρ such that, for all x0 ∈ Bδ(0) ⊆ D,

J(x0, φ(x(·)), ψ(x(·))) = V (x0). (6.18)

In addition, if x0 ∈ Bδ(0), then the feedback control and stopper policies u(·) = φ(x(·)) and
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v(·) = ψ(x(·)) optimize J(x0, u(·), v(·)) in the sense that

J(x0, φ(x(·)), ψ(x(·))) = min
u(·)∈S(x0,ρ)

max
v(·)∈U2

J(x0, u(·), v(·)). (6.19)

Finally, if D = Rn, U1 = Rm1 , U2 = Rm2 , and

V (x)→∞ as ‖x‖ → ∞, (6.20)

then the zero solution x(t)
a.s.≡ 0 of the closed-loop system (6.2) is globally asymptotically

stable in probability and (6.19) holds with ρ = 0 and Px0
(
B
φ(x(·)),ψ(x(·))
x0

)
= 1, x0 ∈ Rn.

Proof. Local and global asymptotic stability in probability are a direct consequence of

(6.7)–(6.11) by applying Theorem 3.1 to the closed-loop system (6.2). Consequently, for every

ρ ∈ (0, 1), there exist δ = δ(ρ) and a set of sample trajectories x({t ≥ 0}, ω) ∈ B
φ(x(·)),ψ(x(·))
x0

such that, for all x0 ∈ Bδ(0) ⊆ D, Px0
(
B
φ(x(·)),ψ(x(·))
x0

)
≥ 1− ρ.

Next, let x0 ∈ Bδ(0), let u(·) ∈ S(x0, ρ), and let x(t), t ≥ 0, be the solution of (6.1).

Then, using Itô’s chain rule formula it follows that

L(x(t), u(t), v(t)dt+ dV (x(t)) =

(
L(x, u, v) + V ′(x)F (x, u, v) +

1

2
tr DT(x, u, v)V ′′(x)

·D(x, u, v)

)
dt+

∂V (x)

∂x
D(x, u, v)dw(t),

and hence,

L(x(t), u(t), v(t))dt = − dV (x(t)) +H(x(t), u(t), v(t))dt

+
∂V (x(t))

∂x
D(x(t), u(t), v(t))dw(t). (6.21)

Let {tn}∞n=0 be a monotonic sequence of positive numbers with tn → ∞ as n → ∞,

τm : Ω → [0,∞) be the first exit (stopping) time of the solution x(t), t ≥ 0, from the set

Bm(0), and let τ
4
= limm→∞ τm. Now, multiplying (6.21) with 1

B
u(·),v(·)
x0

(ω) and integrating

over [0,min{tn, τm}], where (n,m) ∈ Z+ × Z+, yields∫ min{tn,τm}

0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω) dt
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= −
∫ min{tn,τm}

0

1
B
u(·),v(·)
x0

(ω)dV (x(t)) +

∫ min{tn,τm}

0

H(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

+

∫ min{tn,τm}

0

∂V (x(t))

∂x
D(x(t), u(t), v(t))1

B
u(·),v(·)
x0

(ω)dw(t)

= V (x(t0))1B
u(·),v(·)
x0

(ω)− V (x(min{tn, τm}))1B
u(·),v(·)
x0

(ω)

+

∫ min{tn,τm}

0

H(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

+

∫ tn

0

∂V (x(t))

∂x
D(x(t), u(t), v(t))1[t0,τm](t)1B

u(·),v(·)
x0

(ω)dw(t). (6.22)

Next, taking the expectation on both sides of (6.22) yields

Ex0
[∫ min{tn,τm}

0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω) dt

]

= Ex0
[
V (x(t0))1B

u(·),v(·)
x0

(ω)− V (x(min{tn, τm}))1B
u(·),v(·)
x0

(ω)

+

∫ min{tn,τm}

0

H(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

+

∫ tn

0

∂V (x(t))

∂x
D(x(t), u(t), v(t))1[t0,τm](t)1B

u(·),v(·)
x0

(ω)dw(t)

]
= V (x0)Px0

(
Bu(·),v(·)
x0

)
− Ex0

[
V (x(min{tn, τm}))1B

u(·),v(·)
x0

(ω)
]

+ Ex0
[∫ min{tn,τm}

0

H(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

]
. (6.23)

Next, let Bm
x0

denote the set of all the sample trajectories of x(t), t ≥ 0, such that

τm = ∞ and note that, by regularity of solutions [67, p. 75], Px0(Bm
x0

) → 1 as m → ∞.

Now, noting that for all u(.) ∈ S(x0, ρ),∫ ∞
0

∣∣∣L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)
∣∣∣ dt a.s.

< ∞,

let the random variable

g
4
= sup

t≥0,m>0

∫ min{t,τm}

0

∣∣∣L(x(s), u(s), v(s))1
B
u(·),v(·)
x0

(ω)
∣∣∣ ds.

In this case, the sequence in n and m of Ft-measurable random variables {fm,n}∞m,n=0 ⊆ H1

on Ω for all (n,m) ∈ Z+ × Z+, where

fm,n
4
=

∫ min{tn,τm}

0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt
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satisfies |fm,n|
a.s.
< g, (n,m) ∈ Z+ × Z+. Now, defining the improper integral∫ ∞

0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

as the limit of a sequence of proper integrals, it follows from the dominated convergence

theorem [3] that

lim
m→∞

lim
n→∞

Ex0
[∫ min{tn,τm}

0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

]

= lim
m→∞

Ex0
[

lim
n→∞

∫ min{tn,τm}

0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

]

= Ex0
[

lim
m→∞

∫ τm

0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

]
= Ex0

[∫ ∞
0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

]
= J (x0, u(·), v(·))Px0

(
Bu(·),v(·)
x0

)
. (6.24)

Next, using the fact that u(.) ∈ S(x0, ρ) and V (·) is continuous, it follows that for

every m > 0, V (x((min{tn, τm})) is bounded for all n ∈ Z+. Thus, using the dominated

convergence theorem [3] and the fact that ‖x(t, ω)‖ → 0 as t → ∞ for all x({t ≥ 0}, ω) ∈

B
u(·),v(·)
x0 , we obtain

lim
m→∞

lim
n→∞

Ex0
[
V (x(min{tn, τm}))1B

u(·),v(·)
x0

(ω)
]

= lim
m→∞

Ex0
[

lim
n→∞

V (x(min{tn, τm}))1B
u(·),v(·)
x0

(ω)
]

= Ex0
[

lim
m→∞

V (x(τm))1
B
u(·),v(·)
x0

(ω)
]

= Ex0
[
V
(

lim
m→∞

x(τm)
)
1
B
u(·),v(·)
x0

(ω)
]

= 0. (6.25)

Now, taking the limit as n→∞ and m→∞ on both sides of (6.23) and using (6.24), (6.25),

and (6.12), yields (6.18). Since α(·) ∈ CS, there exist φ(·) and ψ(·) such that (6.15) and (6.16)

are satisfied and it follows from Theorem 3.4 of [39] that the saddle point property holds.

Moreover, using the Issacs minimax condition it follows from (6.12)–(6.16) that u(·) = φ(x(·))

and v(·) = ψ(x(·)) are the optimal feedback control and stopper laws and (6.19) holds.
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Finally, for D = Rn global asymptotic stability in probability of closed-loop system is di-

rect consequence of the radially unbounded condition on V (·), and hence, Px0
(
B
φ(x(·)),ψ(x(·))
x0

)
= 1 for all x0 ∈ Rn and (6.19) holds for ρ = 0.

Note that (6.12) is the steady-state stochastic Hamilton-Jacobi-Isaacs equation. To see

this, recall that the lower and upper stochastic Hamilton-Jacobi-Isaacs equations have the

form ([24])

∂

∂t
V −(t, x(t)) +H−

(
t, x(t),

∂

∂x
V −(t, x(t)),

∂2

∂x2
V −(t, x(t))

)
= 0, t ≥ 0, (6.26)

∂

∂t
V +(t, x(t)) +H+

(
t, x(t),

∂

∂x
V +(t, x(t)),

∂2

∂x2
V +(t, x(t))

)
= 0, (6.27)

with lower and upper Hamiltonians given by

H−(t, x(t), p,X) = sup
u∈U1

inf
v∈U2

H(t, x, p,X, u, v), (6.28)

H+(t, x(t), p,X) = inf
v∈U2

sup
u∈U1

H(t, x, p,X, u, v), (6.29)

where

H(t, x, p,X, u, v) = L(t, x, u, v) + pTF (t, x, u, v) +
1

2
tr DT(t, x, u, v)XD(t, x, u, v). (6.30)

Equations (6.26) and (6.27) characterize the optimal control and stopper policies for a two-

player stochastic time-varying differential game problem on a finite or infinite interval. For

infinite horizon time-invariant differential games, with the controller constrained to a strictly

progressively measurable strategy, the Isaacs minimax condition V −(t, x) = V +(t, x) = V (x)

holds, and hence, (6.26) and (6.27) reduce to (6.12)–(6.16).

Conditions (6.12)–(6.16) guarantee optimality with respect to the set of admissible stabi-

lizing controllers S(x0, ρ). However, it is important to note that an explicit characterization

of the set S(x0, ρ) is not required. In addition, the optimal stabilizing feedback control

u = φ(x) and feedback stopper v = ψ(x) laws are independent of the initial condition x0.

Finally, in order to ensure asymptotic stability in probability of the closed-loop system (6.1),

Theorem 6.1 requires that V (·) satisfy (6.7), (6.8), and (6.11), which implies that V (·) is
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a Lyapunov function for the closed-loop system (6.1). However, for optimality V (·) need

not satisfy (6.8) and (6.11). Specifically, if V (·) is a two-times continuously differentiable

function such that (6.7) is satisfied and φ(·) ∈ S(x0, ρ), then (6.12)–(6.16) imply (6.18) and

(6.19).

The optimal feedback control and stopper policy φ(·) and ψ(·) that guarantee global

asymptotic stability in probability give Px0
(
B
φ(·),ψ(·)
x0

)
= 1, and hence, 1

B
φ(·),ψ(·)
x0

(ω)
a.s.
= 1.

Moreover, all the admissible control laws u(·) and stopper laws v(·) that guarantee global

attraction in probability satisfy Px0
(
B
u(·),v(·)
x0

)
= 1 for all x0 ∈ Rn, and hence, ρ = 0 and

1
B
u(·),v(·)
x0

(ω)
a.s.
= 1. In this case,

J (x0, u(·), v(·)) =
1

Px0
(
B
u(·),v(·)
x0

)Ex0 [∫ ∞
0

L(x(t), u(t), v(t))1
B
u(·),v(·)
x0

(ω)dt

]

= Ex0
[∫ ∞

0

L(x(t), u(t), v(t))dt

]
(6.31)

and

J (x0, φ(·), ψ(·)) =
1

Px0
(
B
φ(·),ψ(·)
x0

)Ex0 [∫ ∞
0

L(x(t), φ(x(t)), ψ(x(t)))1
B
φ(·),ψ(·)
x0

(ω)dt

]

= Ex0
[∫ ∞

0

L(x(t), φ(x(t)), ψ(x(t)))dt

]
. (6.32)

Thus, in the remainder of the chapter, we omit the dependence on B
φ(·),ψ(·)
x0 and B

u(·),v(·)
x0

in the cost functional and we write S(x0) for S(x0, ρ) for all the results concerning globally

stabilizing controllers in probability.

Next, we specialize Theorem 6.1 to linear stochastic differential games and provide con-

nections to the linear-quadratic stochastic differential game problem with multiplicative

noise. For the following result let A ∈ Rn×n, B ∈ Rn×m1 , C ∈ Rn×m2 , σ ∈ Rd, R1 ∈ Pn,

R2 ∈ Pm1 , and R3 ∈ Pm2 be given.

Corollary 6.1. Consider the linear-quadratic stochastic differential game problem with

multiplicative noise given by

dx(t) = [Ax(t) +Bu(t) + Cv(t)] dt+ x(t)σTdw(t), x(0)
a.s.
= x0, t ≥ 0, (6.33)
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and with quadratic performance functional

J(x0, u(·), v(·)) 4= Ex0
[∫ ∞

0

[xT(t)R1x(t) + uT(t)R2u(t)− vT(t)R3v(t)]dt

]
, (6.34)

where u(·) and v(·) are admissible and u(·) is constrained to a strictly progressively measur-

able strategy. Furthermore, assume that BR−12 BT ≥ CR−13 CT and there exists a positive-

definite matrix P ∈ Rn×n such that

0 =

(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R1 − PBR−12 BTP + PCR−13 CTP. (6.35)

Then, with the feedback control law u = φ(x)
4
= −R−12 BTPx and feedback stopper law

v = ψ(x)
4
= R−13 CTPx, the zero solution x(t)

a.s.≡ 0 to (6.33) is globally asymptotically stable

in probability and

J(x0, φ(x(·)), ψ(x(·))) = xT0 Px0, x0 ∈ Rn. (6.36)

Furthermore,

J(x0, φ(x(·)), ψ(x(·))) = min
u(·)∈S(x0)

max
v∈U2

J(x0, u(·), v(·)), (6.37)

where S(x0) is the set of regulation controllers for (6.33) and x0 ∈ Rn.

Proof. The result is a direct consequence of Theorem 6.1 with F (x, u, v) = Ax+Bu+Cv,

D(x, u, v) = xσT, L(x, u, v) = xTR1x+ uTR2u− vTR3v, V (x) = xTPx, φ(x) = −R−12 BTPx,

ψ(x) = R−13 CTPx, D = Rn, U1 = Rm1 , and U2 = Rm2 . Specifically, first note that the

controller and stopper policies are decoupled in the system dynamics and the payoff function,

and hence, u = α(v)
4
= fu(x) and v = β(u)

4
= fv(x). Thus, (6.15) and (6.16) are satisfied

with fu(x) = φ(x) and fv(x) = ψ(x). Now, conditions (6.7)–(6.10) are trivially satisfied.

Next, it follows from (6.35) that H(x, φ(x), ψ(x)) = 0, and hence, V ′(x)F (x, φ(x), ψ(x))+

1
2
tr DT(x, φ(x), ψ(x))V ′′(x)D(x, φ(x), ψ(x)) < 0 for all x ∈ Rn and x 6= 0. Thus, H(x, u,

ψ(x)) − H(x, φ(x), ψ(x)) = [u − φ(x)]TR2[u − φ(x)] ≥ 0 and H(x, φ(x), v) − H(x, φ(x),

ψ(x)) = −[v−ψ(x)]TR3[v−ψ(x)] ≤ 0 so that all the conditions of Theorem 6.1 are satisfied.

Finally, since V (·) is radially unbounded the zero solution x(t)
a.s.≡ 0 to (6.33), with u(t) =
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φ(x(t)) = −R−12 BTPx(t) and v(t) = ψ(x(t)) = R−13 CTPx(t), is globally asymptotically

stable in probability.

The optimal feedback control and stopper laws φ(x) and ψ(x) in Corollary 6.1 are derived

using the properties of H(x, u, v) as defined in Theorem 6.1. Specifically, since H(x, u, v) =

xTR1x + uTR2u − vTR3v + xT(ATP + PA)x + 2xTPBu + 2xTPCv + ‖σ‖2xTPx it follows

that ∂2H
∂u2

= R2 > 0 and ∂2H
∂v2

= −R3 < 0. Now, ∂H
∂u

= 2R2u + 2BTPx = 0 gives the

unique global minimizer of H(x, u, v), whereas ∂H
∂v

= −2R3v + 2CTPx = 0 gives the unique

global maximizer of H(x, u, v). Hence, since φ(x) (resp., ψ(x)) minimizes (resp., maximizes)

H(x, u, v) it follows that φ(x) (resp., ψ(x)) satisfies ∂H
∂u

= 0 (resp., ∂H
∂v

= 0) or, equivalently,

φ(x) = −R−12 BTPx (resp., ψ(x) = −R−13 CTPx).

Finally, we close this section by noting that the existence of a positive-definite solution P

satisfying (6.35) can be guaranteed using H∞ theory. Specifically, it follows from standard

H∞ theory [106] that (6.35) has a positive-definite solution if and only if the Hamiltonian

matrix

H =

[
A+ 1

2
‖σ‖2In CTR−13 C −BR−12 BT

−R1 −
(
A+ 1

2
‖σ‖2In

)T ]
has no purely imaginary eigenvalues.

6.3. Inverse Optimal Stochastic Differential Games for Nonlinear
Affine Systems

In this section, we specialize Theorem 6.1 to affine in the control and stopper differ-

ential game policies. Specifically, we construct nonlinear feedback controllers and stoppers

using a stochastic differential game framework that minimizes and maximizes, respectively,

a nonlinear-nonquadratic performance criterion. This is accomplished by choosing the con-

troller and stopper policies such that the mapping of the infinitesimal generator of the

Lyapunov function is negative along the closed-loop system trajectories while providing suf-

ficient conditions for the existence of asymptotically stabilizing (in probability) solutions
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to the stochastic Hamilton-Jacobi-Isaacs equation. Thus, these results provide a family of

globally stabilizing controller and stopper policies parameterized by the cost functional that

is optimized.

The controller and stopper policies obtained in this section are predicated on an inverse

optimal stochastic differential game problem. The related inverse optimal control problem

is discussed in Chapter 3. In particular, to avoid the complexity in solving the stochastic

steady-state Hamilton-Jacobi-Isaacs equation we do not attempt to optimize a given cost

functional, but rather, we parameterize a family of stochastically stabilizing controllers that

optimize some derived cost functional that provides flexibility in specifying the control and

stopper policies. The performance integrand is shown to explicitly depend on the nonlinear

system dynamics, the Lyapunov function for the closed-loop system, and the stabilizing

feedback control law as well as the stopper law, wherein the coupling is introduced via

the stochastic Hamilton-Jacobi-Isaacs equation. Hence, by varying the parameters in the

Lyapunov function and the performance integrand, the proposed framework can be used to

characterize a class of globally stabilizing in probability controllers that can meet closed-loop

system response constraints.

Consider the nonlinear affine in the control and stopper two-player stochastic differential

game problem given by

dx(t) = [f(x(t)) +G1(x(t))u(t) +G2(x(t))v(t)] dt+D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0,

(6.38)

where f : Rn → Rn satisfies f(0) = 0, G1 : Rn → Rn×m1 , G2 : Rn → Rn×m2 , D : Rn → Rn×d

satisfiesD(0) = 0, D = Rn, U1 = Rm1 , and U2 = Rm2 . Furthermore, we consider performance

integrands L(x, u, v) of the form

L(x, u, v) = L1(x) + L2u(x)u+ uTR2(x)u− L2v(x)v − vTR3(x)v, (6.39)

where L1 : Rn → R, L2u : Rn → R1×m1 , L2v : Rn → R1×m2 , R2 : Rn → Pm1 , and R3 : Rn →
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Pm2 so that (6.3) becomes

J(x0, u(·), v(·)) = Ex0
[ ∫ ∞

0

[L1(x(t)) + L2u(x(t))u(t) + uT(t)R2(x(t))u(t)

− L2v(x(t))v(t)− vT(t)R3(x(t))v(t)]dt

]
. (6.40)

Theorem 6.2. Consider the nonlinear two-player stochastic differential game problem

(6.38) with performance functional (6.40) where u(·) and v(·) are admissible and u(·) is

constrained to a progressively measurable strategy. Assume that there exist a two-times

continuously differentiable function V : Rn → R and functions L2u : Rn → R1×m1 and

L2v : Rn → R1×m2 such that

V (0) = 0, (6.41)

L2u(0) = 0, (6.42)

L2v(0) = 0, (6.43)

V (x) > 0, x ∈ Rn, x 6= 0, (6.44)

V ′(x)

[
f(x)− 1

2
G1(x)R−12 (x)LT

2u(x)− 1

2
G1(x)R−12 (x)GT

1 (x)V ′T(x)− 1

2
G2(x)R−13 (x)LT

2v(x)

+
1

2
G2(x)R−13 (x)GT

2 (x)V ′T(x)

]
+

1

2
tr DT(x)V ′′(x)D(x) < 0, x ∈ Rn, x 6= 0, (6.45)

and

V (x)→∞ as ‖x‖ → ∞. (6.46)

Then, the zero solution x(t)
a.s.≡ 0 of the closed-loop system

dx(t) = [f(x(t))+G1(x(t))φ(x(t))+G2(x(t))ψ(x(t))]dt+D(x(t))dw(t), x(0)
a.s.
= x0, t ≥ 0,

(6.47)

is globally asymptotically stable in probability with the feedback control and stopper laws

φ(x) = −1
2
R−12 (x)[V ′(x)G1(x) + L2u(x)]T, (6.48)

ψ(x) = 1
2
R−13 (x)[V ′(x)G2(x)− L2v(x)]T, (6.49)
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and the performance functional (6.40), with

L1(x) = φT(x)R2(x)φ(x)− ψT(x)R3(x)ψ(x)− V ′(x)f(x)− 1

2
tr DT(x)V ′′(x)D(x), (6.50)

is optimized in the sense that

J(x0, φ(x(·)), ψ(x(·))) = min
u(·)∈S(x0)

max
v(·)∈U2

J(x0, u(·), v(·)), x0 ∈ Rn. (6.51)

Finally,

J(x0, φ(x(·)), ψ(x(·))) = V (x0), x0 ∈ Rn. (6.52)

Proof. The result is a direct consequence of Theorem 6.1 with D = Rn, U1 = Rm1 ,

U2 = Rm2 , F (x, u, v) = f(x) + G1(x)u + G2(x)v, D(x, u, v) = D(x), and L(x, u, v) =

L1(x)+L2u(x)u+uTR2(x)u−L2v(x)v−vTR3(x)v. Specifically, with (6.39) the Hamiltonian

has the form

H(x, u, v) = L1(x) + L2u(x)u+ uTR2(x)u− L2v(x)v − vTR3(x)v

+ V ′(x)(f(x) +G1(x)u+G2(x)v) +
1

2
tr DT(x)V ′′(x)D(x).

Now, the feedback control and stopper laws (6.48) and (6.49) are obtained by setting ∂H
∂u

= 0

and ∂H
∂v

= 0. With (6.48) and (6.49), it follows that (6.41), (6.44), (6.45), and (6.46) imply

(6.7), (6.8), (6.11), and (6.20), respectively. Furthermore, since the controller and stopper

are decoupled in the cost and system dynamics, it follows from the information neutrality

that the optimal strategy for the controller is given by α(v) = φ(x), v ∈ U2, and the optimal

strategy for the stopper is given by β(u) = ψ(x), u ∈ U1. Thus, conditions (6.15) and (6.16)

are trivially satisfied.

Next, since V (·) is two-times continuously differentiable and x = 0 is a local minimum of

V (·), it follows that V ′(0) = 0, and hence, since by assumption L2u(0) = 0 and L2v(0) = 0,

it follows that φ(0) = 0 and ψ(0) = 0, which implies (6.9) and (6.10). Next, with L1(x)

given by (6.50) and φ(x) and ψ(x) given by (6.48) and (6.49), respectively, (6.12) holds.

Finally, since H(x, u, ψ(x))−H(x, φ(x), ψ(x)) = [u−φ(x)]TR2[u−φ(x)] and H(x, φ(x), v)−

164



H(x, φ(x), ψ(x)) = −[v − ψ(x)]TR3[v − ψ(x)], and R2(x) and R3(x) are positive definite for

all x ∈ Rn, conditions (6.13) and (6.14) hold. The result now follows as a direct consequence

of Theorem 6.1.

Note that (6.45) is equivalent to

LV (x)
4
= V ′(x)[f(x)+G1(x)φ(x)+G2(x)ψ(x)]+

1

2
tr DT(x)V ′′(x)D(x) < 0, x ∈ Rn, x 6= 0,

(6.53)

with φ(x) and ψ(x) given by (6.48) and (6.49), respectively. Furthermore, conditions (6.41),

(6.44), and (6.53) ensure that V (·) is a Lyapunov function for the closed-loop system (6.47).

As discussed in [45], it is important to recognize that the functions L2u(x) and L2v(x), which

appear in the integrand of the performance functional (6.39), are an arbitrary function of

x ∈ Rn subject to conditions (6.42), (6.43) and (6.45). Thus, L2u(x) and L2v(x) provide

flexibility in choosing the control and stopper policies.

With L1(x) given by (6.50) and φ(x) and ψ(x) given by (6.48) and (6.49), repectively,

L(x, u, v) can be expressed as

L(x, u, v) = uTR2(x)u− φT(x)R2(x)φ(x)− vTR3(x)v + ψT(x)R3(x)ψ(x)

+L2u(x)(u− φ(x))− L2v(x)(v − ψ(x))− V ′(x)[f(x) +G1(x)φ(x)

+G2(x)ψ(x)]− 1

2
tr DT(x)V ′′(x)D(x)

=
[
u+ 1

2
R−12 (x)LT

2u(x)
]T
R2(x)

[
u+ 1

2
R−12 (x)LT

2u(x)
]

−
[
v + 1

2
R−13 (x)LT

2v(x)
]T
R3(x)

[
v + 1

2
R−13 (x)LT

2v(x)
]

−V ′(x)[f(x) +G1(x)φ(x) +G2(x)ψ(x)]− 1

2
tr DT(x)V ′′(x)D(x)

−1
4
V ′(x)G1(x)R−12 (x)GT

1 (x)V ′T(x) + 1
4
V ′(x)G2(x)R−13 (x)GT

2 (x)V ′T(x).(6.54)

Since R2(x) > 0 and R3(x) > 0, x ∈ Rn, the first and last term on the right-hand side

of (6.54) is nonnegative, while (6.53) implies that the third, fourth, fifth, and sixth terms

collectively are nonnegative. Thus, it follows that

L(x, u, v) ≥−
[
v + 1

2
R−13 (x)LT

2v(x)
]T
R3(x)

[
v + 1

2
R−13 (x)LT

2v(x)
]
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− 1
4
V ′(x)G1(x)R−12 (x)GT

1 (x)V ′T(x), (6.55)

which shows that L(x, u, v) may be negative. As a result, there may exist control and stopper

policies u and v for which the performance functional J(x0, u, v) is negative. However, if the

control u is a regulation controller, that is, u ∈ S(x0), then it follows from (6.51) and (6.52)

that

J(x0, u(·), v(·)) ≥ V (x0) ≥ 0, x0 ∈ Rn, u(·) ∈ S(x0). (6.56)

Next, we specialize Theorem 6.2 to linear stochastic differential games characterized by

nonlinear controllers and stoppers that, respectively, minimize and maximize a polynomial

cost functional. For the following result let σ ∈ Rd, R1 ∈ Pn, R2 ∈ Pm1 , R3 ∈ Pm2 , and

R̂q ∈ Nn, q = 2, . . . , r, be given, where r is a positive integer, and define S1
4
= BR−12 BT,

S2
4
= CR−13 CT, and S

4
= S1 − S2.

Corollary 6.2. Consider the two-player stochastic differential game problem with mul-

tiplicative noise given by

dx(t) = [Ax(t) +Bu(t) + Cv(t)] dt+ x(t)σTdw(t), x(0)
a.s.
= x0, t ≥ 0, (6.57)

where u(·) and v(·) are admissible and u(·) is constrained to a strictly progressively measur-

able strategy. Assume that S is nonnegative definite and there exist P ∈ Pn and Mq ∈ Nn,

q = 2, . . . , r, such that

0 =

(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R1 − PSP, (6.58)

0 =

(
A+

1

2
(2q − 1)‖σ‖2In − SP

)T

Mq +Mq

(
A+

1

2
(2q − 1)‖σ‖2In − SP

)
+ R̂q,

q = 2, . . . , r. (6.59)

Then, the zero solution x(t)
a.s.≡ 0 of the closed-loop system

dx(t) = (Ax(t) +Bφ(x(t)) + Cψ(x(t)))dt+ x(t)σTdw(t), x(0)
a.s.
= x0, t ≥ 0, (6.60)
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is globally asymptotically stable in probability with the feedback control and stopper policies

φ(x) = −R−12 BT

(
P +

r∑
q=2

(xTMqx)q−1Mq

)
x, (6.61)

ψ(x) = R−13 CT

(
P +

r∑
q=2

(xTMqx)q−1Mq

)
x, (6.62)

and the performance functional (6.40), with R2(x) = R2, R3(x) = R3, L2u(x) = 0, L2v(x) =

0, and

L1(x) = xT

(
R1 +

r∑
q=2

(xTMqx)q−1R̂q +

[ r∑
q=2

(xTMqx)q−1Mq

]T
S

·
[ r∑
q=2

(xTMqx)q−1Mq

])
x, (6.63)

is optimized in the sense that

J(x0, φ(x(·)), ψ(x(·))) = min
u(·)∈S(x0)

max
v(·)∈U2

J(x0, u(·), v(·)), x0 ∈ Rn. (6.64)

Finally,

J(x0, φ(x(·)), ψ(x(·))) = xT0 Px0 +
r∑
q=2

1
q
(xT0Mqx0)

q, x0 ∈ Rn. (6.65)

Proof. The result is a direct consequence of Theorem 6.2 with f(x) = Ax, G1(x) = B,

G2(x) = C, D(x) = xσT, L2u(x) = 0, L2v(x) = 0, R2(x) = R2, R3(x) = R3, and

V (x) = xTPx+
r∑
q=2

1

q
(xTMqx)q.

Specifically, (6.41)–(6.44) and (6.46) are trivially satisfied. Next, it follows from (6.58),

(6.59), and (6.61) that

V ′(x)[f(x)− 1
2
G1(x)R−12 (x)GT

1 (x)V ′T(x) + 1
2
G2(x)R−13 (x)GT

2 (x)V ′T(x)]

+
1

2
tr DT(x)V ′′(x)D(x)

= −xTR1x−
r∑
q=2

(xTMqx)q−1xTR̂qx− φT(x)R2φ(x)

167



+ψT(x)R3ψ(x)− xT
[

r∑
q=2

(xTMqx)q−1Mq

]T
S

[
r∑
q=2

(xTMqx)q−1Mq

]
x,

= −xTR1x−
r∑
q=2

(xTMqx)q−1xTR̂qx

−xT
(
P +

r∑
q=2

(xTMqx)q−1Mq

)
S

(
P +

r∑
q=2

(xTMqx)q−1Mq

)
x

−xT
[

r∑
q=2

(xTMqx)q−1Mq

]T
S

[
r∑
q=2

(xTMqx)q−1Mq

]
x,

which implies (6.45), so that all the conditions of Theorem 6.2 are satisfied.

Corollary 6.2 requires the solutions of r−1 modified Riccati equations in (6.59) to obtain

the optimal controller and stopper policies (6.61) and (6.62), respectively. It is important

to note that the derived performance functional weighs the state variables by arbitrary even

powers.

Next, we specialize Theorem 6.2 to linear stochastic differential games characterized

by nonlinear controller and stopper policies that, respectively, minimize and maximize a

multilinear cost functional. For the following result recall the definitions of x[q]
4
= x⊗x⊗· · ·⊗x

and
q

⊕ A
4
= A ⊕ A ⊕ · · · ⊕ A, where x and A appear q times and q is positive integer.

Furthermore, recall the definition of S and let R1 ∈ Pn, R2 ∈ Pm1 , R3 ∈ Pm2 , and R̂2q ∈

N (2q,n), q = 2, . . . , r, be given, where r is a given integer and N (k,n) , {Ψ ∈ R1×nk : Ψx[k] ≥

0, x ∈ Rn}.

Corollary 6.3. Consider the two-player stochastic differential game problem (6.57) where

u(·) and v(·) are admissible and u(·) is constrained to a strictly progressively measurable

strategy. Assume that S is nonnegative definite and there exist P ∈ Pn and P̂q ∈ N (2q,n),

q = 2, . . . , r, such that

0 =

(
A+

1

2
‖σ‖2In

)T

P + P

(
A+

1

2
‖σ‖2In

)
+R1 − PSP, (6.66)

0 = P̂q

[
2q

⊕
(
A+

1

2
(2q − 1)‖σ‖2In − SP

)]
+ R̂2q, q = 2, . . . , r. (6.67)
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Then the zero solution x(t)
a.s.≡ 0 of the closed-loop system (6.60) is globally asymptotically

stable in probability with the feedback control and stopper policies

φ(x) = −R−12 BT(Px+ 1
2
g′

T
(x)), (6.68)

ψ(x) = R−13 CT(Px+ 1
2
g′

T
(x)), (6.69)

where g(x)
4
=
∑r

q=2 P̂qx
[2q], and the performance functional (6.40) with R2(x) = R2, R3(x)

= R3, L2u(x) = 0, L2v(x) = 0, and

L1(x) = xTR1x+
r∑
q=2

R̂2qx
[2q] + 1

4
g′(x)Sg′

T
(x), (6.70)

is minimized in the sense of (6.51). Finally,

J(x0, φ(x(·))) = xT0 Px0 +
r∑
q=2

P̂qx
[2q]
0 , x0 ∈ Rn. (6.71)

Proof. The result is a direct consequence of Theorem 6.2 with f(x) = Ax, G1(x) = B,

G2(x) = C, D(x) = xσT, L2u(x) = 0, L2v(x) = 0, R2(x) = R2, R3(x) = R3, and V (x) =

xTPx +
∑r

q=2 P̂qx
[2q]. Specifically, (6.41)–(6.44) are trivially satisfied. Next, it follows from

(6.66)–(6.69) that

V ′(x)[f(x)− 1
2
G(x)R−12 (x)GT(x)V ′T(x)

+1
2
G2(x)R−13 (x)GT

2 (x)V ′T(x)] +
1

2
tr DT(x)V ′′(x)D(x)

= −xTR1x−
r∑
q=2

R̂2qx
[2q] − φT(x)R2φ(x) + ψT(x)R3ψ(x)

−1
4
g′(x)S1g

′T(x) + 1
4
g′(x)S2g

′T(x)

= −xTR1x−
r∑
q=2

R̂2qx
[2q] − (Px+ 1

2
g′

T
(x))TS(Px+ 1

2
g′

T
(x))− 1

4
g′(x)Sg′

T
(x)

which implies (6.45) so that all the conditions of Theorem 6.2 are satisfied.

Note that since

g′(x)(A− SP )x+
1

2
tr(xσT)Tg′′(x)(xσT) =

r∑
q=2

P̂q

[
2q

⊕
(
A+

1

2
(2q − 1)‖σ‖2In − SP

)]
x[2q],
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it follows that (6.67) can be equivalently written as

0 =
1

2
tr(xσT)Tg′′(x)(xσT) + g′(x)(A− SP )x+

r∑
q=2

R̂2qx
[2q], x ∈ Rn,

and hence, it follows from Lemma 3.1, withA and h(x) replaced by (A−SP ) and
∑r

q=2 R̂2qx
[2q],

respectively, that there exists a unique P̂q ∈ N (2q,n) such that (6.67) is satisfied.

6.4. Illustrative Numerical Examples

In this section, we present two numerical examples to demonstrate the efficacy of the

proposed differential game framework.

Example 6.1. In this example, we seek a stabilizing control policy of a quadrotor he-

licopter (i.e., a quadcopter) subject to an adversary stopper policy and a stochastic state

disturbance. The coordinate systems and free body diagram for the quadcopter are shown

in Figure 6.1. Specifically, the inertial frame is defined by the axes xI, yI, and zI, and the

body frame B is attached to the quadcopter with the xB axis denoting the forward flight

direction and the zB axis denoting the perpendicular direction to the plane of the rotors with

an upward orientation corresponding to perfect hover.

The linearized quadcopter dynamics about a perfect hover equilibrium point [104] are

given bym 0 0
0 m 0
0 0 m

r̈x(t)r̈y(t)
r̈z(t)

 =

 0 −mg 0
mg 0 0
0 0 1

 φ(t)
θ(t)∑4
i=1 Ti(t)

+

 0
0
−mg

 , t ≥ 0, (6.72)

IxB 0 0
0 IyB 0
0 0 IzB

φ̈(t)

θ̈(t)

ψ̈(t)

 =

 0 ` 0 −`
` 0 −` 0
kr −kr kr −kr



T1(t)
T2(t)
T3(t)
T4(t)

 , (6.73)

where, for every t ≥ 0, rx(t), ry(t), and rz(t) denote the position of the quadcopter, φ(t),

θ(t), and ψ(t) denote the angular position of the quadcopter, m = 0.5 kg is the mass of the

quadcopter, g = 9.81 m/sec2 is the gravitational constant, ` = 0.17 m is the moment arm from
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mg

F3

F4
F2

F1

M1

M2

M3

M4

xI

yI

zI

xB

yB

zB

Figure 6.1: Coordinate systems and forces/moments acting on a quadcopter.

the body of the quadcopter to the motor, I = diag[IxB , IyB , IzB ] is the mass moment of inertia

matrix for the quadcopter in the body frame, with IxB = 0.0036 kg ·m2, IyB = 0.0036 kg ·m2,

and IzB = 0.0070 kg ·m2, and Ti(t), t ≥ 0, i = 1, . . . , 4, denotes the thrusts generating the

torques Mi(t), t ≥ 0, i = 1, . . . , 4, where Mi(t) = krTi(t) and kr = 0.0245 m.

Formulating (6.72) and (6.73) as a differential game problem gives (6.33) where the state

vector is given by x(t) = [rT(t),ΦT(t), ṙT(t), Φ̇T(t)]T ∈ R12, where r(t) = [rx(t), ry(t), rz(t)]
T

and Φ(t) = [φ(t), θ(t), ψ(t)]T, the control is given by u(t) = [T1(t)− g/4, T2(t)− g/4, T3(t)−

g/4, T4(t) − g/4]T, and the stopper is given by v(t) = [v1(t), v2(t), v3(t), v4(t)]
T. Note that

the control u(t), t ≥ 0, compensates for the constant offset term appearing in the dynamics

of r̈z(t), t ≥ 0, in (6.73). Here, w(·) is a one-dimensional standard Wiener process with

variance σ = 0.5. Furthermore, A ∈ R16×16 is such that A(1,7) = A(2,8) = A(3,9) = A(4,10) =

A(5,11) = A(6,12) = 1, A(7,5) = −g, and A(8,4) = g, and with all the other entries in A being

171



zero. Finally, B ∈ R12×4 and C ∈ R12×4 are given by

B = C =



0 0 0 0
...

...
...

...
0 0 0 0
1
m

1
m

1
m

1
m

0 `
IxB

0 − `
IxB

`
IyB

0 − `
IyB

0
kr
IzB

− kr
IzB

kr
IzB

− kr
IzB


. (6.74)

Here we design an optimal minimax solution using Corollary 6.1 with x0 = [0.4, −0.2, 0.1,

0.1, 0.1, −0.1, 0.05, −0.05, 0.05, −0.05, 0.05, −0.05]T, R2 = 0.1I12, and R3 = I12. Figure

6.2 shows the sample average along with the standard deviation of the controlled system

state versus time, whereas Figures 6.3 and 6.4 show the sample average along with the stan-

dard deviation of the corresponding control and stopper signals versus time for 20 sample

paths, respectively. 4

Figure 6.2: Sample average along with the sample standard deviation of the closed-loop
system trajectory versus time.
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Figure 6.3: Sample average along with the sample standard deviation of the control signal
versus time.

Example 6.2. Consider the nonlinear affine in the control and stopper stochastic dif-

ferential game problem given by (6.38) capturing the inverted pendulum dynamics shown in

Figure 6.5 with states x(t) = [θ(t), θ̇(t)]T ∈ R2 and control and stopper policies u(t) ∈ R,

t ≥ 0, and v(t) ∈ R, t ≥ 0. Here, w(·) denotes a one-dimensional standard Wiener process

with variance σ = 0.3. In this case,

f(x) =

[
θ̇

mgL sin θ/I

]
, G1(x) = G2(x) = G =

[
0

1/I

]
, D(x) = σ

[
0

θ̇

]
, (6.75)

where m, g, L, and I are constant with mgL = 1 N ·m and I = 1 kg ·m2. For this problem

we consider the performance measure

J(x0, u(·), v(·)) = Ex0
[ ∫ ∞

0

[L1(x(t)) + uT(t)R2u(t)− vT(t)R3v(t)]dt

]
, (6.76)

with R2 = 0.25 and R3 = 1.

Here we use Theorem 6.2 to construct an inverse optimal globally stabilizing controller

and stopper policies for the inverted pendulum problem. Consider the Lyapunov function
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Figure 6.4: Sample average along with the sample standard deviation of the stopper signal
versus time.

candidate given by

V (x) =
1

2
θ̇2 + α

(
θθ̇ +

1

2
θ2
)

+
1

2
θ2 − (1− cos θ), (6.77)

where α ∈ (0, 1], and note that 1
2
θ2 − (1 − cos θ) ≥ 0, θ ∈ R, with equality holding only if

θ = 0. Moreover, note that

1

2
θ̇2 + α

(
θθ̇ +

1

2
θ2
)

=
1− α

2
θ̇2 +

α

2
(θ + θ̇)2 ≥ 0, (θ, θ̇) ∈ R× R, α ∈ (0, 1],

and hence, V (x) > 0, x ∈ R2, x 6= 0, and V (x)→∞ as ‖x‖ → ∞. Finally, using θ sin θ ≤ θ2

note that

V ′(x)

[
f(x)−1

2
G1R

−1
2 GT

1 V
′T(x) +

1

2
G2R

−1
3 GT

2 V
′T(x)

]
+

1

2
tr DT(x)V ′′(x)D(x)

= (1 + α)θθ̇ + αθ̇2 + αθ sin θ − R−12

2
(θ̇ + αθ)2 +

R−13

2
(θ̇ + αθ)2 +

σ2

2
θ̇2

≤
(
α− rα2

2

)
θ2 + (1 + α− rα)θθ̇ +

(
α− r

2
+
σ2

2

)
θ̇2, (θ, θ̇) ∈ R× R,

(6.78)
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Figure 6.5: Inverted Pendulum.

where r
4
= R−12 −R−13 .

With α = 0.9, (6.78) yields

V ′(x)

[
f(x)−1

2
G1R

−1
2 GT

1 V
′T(x) +

1

2
G2R

−1
3 GT

2 V
′T(x)

]
+

1

2
tr DT(x)V ′′(x)D(x)

≤− 0.315θ2 − 0.8θθ̇ − 0.555θ̇2

=− 0.015θ2 − 0.3

(
θ +

4

3
θ̇

)2

− 0.0216θ̇2

< 0, (θ, θ̇) 6= (0, 0), (6.79)

and hence, it follows from Theorem 6.2 that the zero solution x(t)
a.s.≡ 0 of the closed-loop

inverted pendulum system is globally asymptotically stable in probability with the feedback

control and stopper policies

φ(x) = −1
2
R−12 V ′(x)GT,

ψ(x) = 1
2
R−13 V ′(x)GT.

Furthermore, the performance functional (6.76), with

L1(x) = φT(x)R2φ(x)− ψT(x)R3ψ(x)− V ′(x)f(x)− 1

2
tr DT(x)V ′′(x)D(x),

is optimized in the sense that

J(x0, φ(x(·)), ψ(x(·))) = min
u(·)∈S(x0)

max
v(·)∈U2

J(x0, u(·), v(·)), x0 ∈ Rn.
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With x(0)
a.s.
= [π, 0]T, Figure 6.6 shows the sample average along with the standard

deviation of the controlled system state versus time, whereas Figures 6.7 and 6.8 show the

sample average along with the standard deviation of the corresponding control and stopper

signals versus time for 10 sample paths, respectively. 4

Figure 6.6: Sample average along with the sample standard deviation of the closed-loop
system trajectory versus time.
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Figure 6.7: Sample average along with the sample standard deviation of the control signal
versus time.

Figure 6.8: Sample average along with the sample standard deviation of the stopper signal
versus time.
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Chapter 7

Dissipativity Theory for Nonlinear Stochastic

Dynamical Systems: Input-Output and State

Properties, and Stability of Feedback

Interconnections

7.1. Introduction

In this chapter, we develop stochastic dissipativity and losslessness notions for nonlinear

stochastic dynamical systems. Specifically, a stochastic version of dissipativity using both an

input-output as well as a state dissipation inequality in expectation for controlled Markov

diffusion processes is presented. Furthermore, we show that the average stored system energy

in a dissipative stochastic dynamical system is a supermartingale with respect to the system

filtration and is bounded from below by the mean energy that can be extracted from the

system and bounded from above by the mean energy that can be delivered to the stochastic

dynamical system in order to transfer it from the origin to an arbitrary nonempty closed or

open subset in the state space over a finite stopping time. Moreover, we develop necessary and

sufficient extended Kalman-Yakubovich-Popov conditions in terms of the drift and diffusion

dynamics for characterizing stochastic dissipativity via two-times continuously differentiable

storage functions.

Finally, using the concepts of stochastic dissipativity for stochastic dynamical systems

with appropriate storage functions and supply rates, we construct smooth Lyapunov func-
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tions for stochastic feedback systems by appropriately combining the storage functions for

the forward and feedback subsystems. General stability criteria are given for Lyapunov,

asymptotic, and exponential mean square stability in probability for feedback interconnec-

tions of stochastic dynamical systems. In the case where the supply rate involves the net

system power or weighted input-output energy, these results provide extensions of the clas-

sical positivity and small gain theorems to stochastic dynamical systems.

7.2. Stochastic Dissipative and Exponentially Dissipative Dynam-
ical Systems

In this section, we introduce the definition of stochastic dissipativity and stochastic loss-

lessness for general stochastic dynamical systems in terms of an inequality in expectation

involving generalized system power input, or supply rate, and a generalized energy function,

or storage function. In particular, we consider open dynamical systems wherein the system

interaction with the environment is explicitly taken into account through the system inputs

and system outputs. Specifically, the environment acts on the dynamical system through the

system inputs and system disturbance, and the dynamical system reacts through the system

outputs.

We begin by considering nonlinear stochastic dynamical systems G of the form

dx(t) = F (x(t), u(t))dt+D(x(t), u(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (7.1)

y(t) = H(x(t), u(t)), (7.2)

where, for every t ≥ t0, x(t) ∈ HDn , D is an open set with 0 ∈ D, u(t) ∈ HU
m, U ⊆ Rm,

y(t) ∈ HY
l , Y ⊆ Rl, w(·) is a d-dimensional independent standard Wiener process and is

independent of x(t0), F : D × U → Rn, D : D × U → Rn×d, and H : D × U → Y . For the

dynamical system G given by (7.1) and (7.2) defined on the state space HDn , U and Y define

an input and output space, respectively, consisting of measurable bounded HU
m-valued and

HY
l -valued stochastic processes on the semi-infinite interval [0,∞). The set HU

m contains the
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set of input values with measurable sample paths satisfying a nonanticipativity condition,

that is, for every u(·) ∈ U and t ∈ [0,∞), u(t) ∈ HU
m, and for all t ≥ s, w(t) − w(s) is

independent of u(τ), w(τ), τ ≤ s, and x(t0). The set HY
l contains the set of output values,

that is, for every y(·) ∈ Y and t ∈ [0,∞), y(t) ∈ HY
l . The spaces U and Y are assumed to be

closed under the shift operator, that is, if u(·) ∈ U (respectively, y(·) ∈ Y), then the function

defined by uT
4
= u(t + T ) (respectively, yT

4
= y(t + T )) is contained in U (respectively, Y)

for all T ≥ 0. We assume that F (·, ·), D(·, ·), and H(·, ·) are continuously differentiable

mappings in (x, u) and G has at least one equilibrium so that, without loss of generality,

F (0, 0) = 0, D(0, 0) = 0, and H(0, 0) = 0.

Furthermore, for the nonlinear stochastic dynamical system G we assume that the re-

quired uniform Lipschitz and growth restriction conditions given by (2.4) and (2.5) for the

existence and uniqueness of solutions are satisfied, that is, u(·) satisfies sufficient regularity

conditions such that the system (7.1) has a unique solution forward in time. For the dynam-

ical system G given by (7.1) and (7.2), a function r : U × Y → R such that r(0, 0) = 0 is

called a supply rate if r(u(t), y(t)), is locally Lebesgue integrable for all input-output pairs

satisfying (7.1) and (7.2), that is, for all input-output pairs u(·) ∈ U and y(·) ∈ Y satisfying

(7.1) and (7.2), r(·, ·) satisfies

E
[∫ t2

t1

|r(u(s), y(s))|ds
]
<∞, t1, t2 ≥ 0.

Definition 7.1. A stochastic dynamical system G of the form (7.1) and (7.2) is stochas-

tically dissipative with respect to the supply rate r(u, y) if the dissipation inequality

0 ≤ E
[
E
[∫ τ

t0

r(u(s), y(s))ds|x(t0)
a.s.
= 0

]]
(7.3)

is satisfied for all Ft-stopping times τ
a.s.

≥ t0 and all u(·) ∈ U along the sample paths of G.

A stochastic dynamical system G of the form (7.1) and (7.2) is stochastically exponentially

dissipative with respect to the supply rate r(u, y) if there exists a constant ε > 0 such that
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the stochastic exponential dissipation inequality

0 ≤ E
[
E
[∫ τ

t0

eεsr(u(s), y(s))ds|x(t0) = 0

]]
(7.4)

is satisfied for all Ft-stopping times τ
a.s.

≥ t0 and all u(·) ∈ U along the sample paths of G.

A stochastic dynamical system G of the form (7.1) and (7.2) is lossless with respect to the

supply rate r(u, y) if G is stochastically dissipative with respect to the supply rate r(u, y)

and the dissipation inequality (7.3) is satisfied as an equality for all t ≥ t0 and all u(·) ∈ U

with x(t0)
a.s.
= x(t)

a.s.
= 0 along the sample paths of G.

In the following we shall use either 0 or t0 to denote the initial time for G. Next, define

the available storage Va(x0) of the nonlinear stochastic dynamical system G by

Va(x0)
4
= − inf

u(·), τ
a.s.
≥ 0

E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]
= sup

u(·), τ
a.s.
≥ 0

E
[
E
[
−
∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]
, (7.5)

where x(t), t ≥ 0, is the solution to (7.1) with x(0)
a.s.
= x0 and admissible input u(·) ∈ U .

The supremum in (7.5) is taken over all Ft-measurable inputs u(·), all the finite Ft-stopping

times τ
a.s.

≥ 0, and all system sample paths with initial value x(0)
a.s.
= x0 and terminal

value left free. Note that Va(x) ≥ 0 for all x ∈ D since Va(x) is the supremum over a

set of numbers containing the zero element (τ
a.s.
= 0). When the final state is not free

but rather constrained to x(t)
a.s.
= 0 corresponding to the equilibrium of the uncontrolled

system, then Va(x0) corresponds to the virtual available storage. The available storage of

a nonlinear stochastic dynamical system G is the maximum amount of average storage, or

generalized average stored energy, which can be extracted from the nonlinear stochastic

dynamical system G at any finite stopping time τ .

Similarly, define the available exponential storage Va(x0) of the nonlinear dynamical sys-

tem G by

Va(x0)
4
= − inf

u(·), τ
a.s.
≥ 0

E
[
E
[∫ τ

0

eεtr(u(t), y(t))dt|x(0)
a.s.
= x0

]]
, (7.6)
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where x(t), t ≥ 0, is the solution to (7.1) with x(0)
a.s.
= x0 and admissible input u(·) ∈ U .

Note that if we define the available exponential storage as the time-varying function

V̂a(x0, t0) = − inf
u(·), τ

a.s.
≥ t0

E
[
E
[∫ τ

t0

eεtr(u(t), y(t))dt|x(t0)
a.s.
= x0

]]
, (7.7)

where x(t), t ≥ t0, is the solution to (7.1) with x(t0)
a.s.
= x0 and admissible input u(·), it

follows that, since G is time invariant,

V̂a(x0, t0) = −eεt0 inf
u(·), τ

a.s.
≥ 0

E
[
E
[∫ τ

0

eεtr(u(t), y(t))dt

]]
= eεt0Va(x0). (7.8)

Hence, an alternative expression for the available exponential storage function Va(x0) is given

by

Va(x0) = −e−εt0 inf
u(·), τ

a.s.
≥ t0

E
[
E
[∫ τ

t0

eεtr(u(t), y(t))dt|x(t0)
a.s.
= x0

]]
. (7.9)

V̂a(x0, t0) given by (7.7) defines the available storage function for nonstationary (time-

varying) stochastic dynamical systems. As shown above, in the case of stochastic expo-

nentially dissipative systems, V̂a(x0, t0) = eεt0Va(x0).

Next, we show that the available storage (resp., available exponential storage) is finite

and zero at the origin if and only if G is stochastically dissipative (resp., stochastically

exponentially dissipative). For this result we require three more definitions.

Definition 7.2. A nonlinear stochastic dynamical system G is completely stochastically

reachable if, for all x0 ∈ D ⊆ Rn and ε > 0, there exist a finite random variable τBε(x0)
a.s.

≥ 0,

called the first hitting time, defined by τBε(x0)(ω) , inf{t ≥ 0 : x(t, ω) ∈ Bε(x0)}, and a

square integrable input u(t) defined on [0, τBε(x0)] such that the state x(t), t ≥ 0, can be

driven from x(0)
a.s.
= 0 to x(τBε(x0)) and E [τx0 ] < ∞, where τx0 , supε>0 τBε(x0) and the

supremum is taken pointwise.

Definition 7.3. Consider the nonlinear stochastic dynamical system G given by (7.1)

and (7.2). A measurable function Vs : D → R is called a storage function for G with a
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supply rate r(·, ·) if Vs(·) is bounded from below and Vs(x(t))−
∫ t
t0
r(u(s), y(s))ds, t ≥ t0, is a

Ft-supermartingale for all t0, t ≥ 0, where x(t), t ≥ t0, is the solution of (7.1) with u(·) ∈ U ;

or, equivalently,

E [Vs(x(t))|Ft0 ] ≤ Vs(x(t0)) + E
[∫ t

t0

r(u(s), y(s))ds|Ft0
]
, t > t0. (7.10)

Remark 7.1. If Vs(·) is lower bounded, then we can always shift Vs(·) so that, with

minor abuse of notation, Vs(x) ≥ 0, x ∈ Rn, and Vs(0) = 0. Without loss of generality, in

the remainder of the chapter we assume that all storage functions are nonnegative.

Inequality (7.10) is a dissipation inequality in expectation and reflects the fact that some

of the supplied generalized energy to the open dynamical system G is stored, and some is

dissipated. The dissipated generalized energy is nonnegative and is given by the difference

of what is supplied and what is stored. In addition, the amount of generalized stored energy

is a function of the state of the dynamical system.

Definition 7.4. Consider the nonlinear stochastic dynamical system G given by (7.1)

and (7.2). A measurable function Vs : D → R is called an exponential storage function for G

with a supply rate r(·, ·) if Vs(·) is bounded from below and eεtVs(x(t))−
∫ t
t0
eεsr(u(s), y(s))ds,

t ≥ t0, is a Ft-supermartingale for all t0, t ≥ 0, where x(t), t ≥ t0, is the solution of (7.1)

with u(·) ∈ U ; or, equivalently,

E
[
eεtVs(x(t))|Ft0

]
≤ eεt0Vs(x(t0)) + E

[∫ t

t0

eεsr(u(s), y(s))ds|Ft0
]
, t > t0. (7.11)

Theorem 7.1. Consider the nonlinear stochastic dynamical system G given by (7.1) and

(7.2), and assume that G is completely stochastically reachable. Then G is stochastically

dissipative (resp., stochastically exponentially dissipative) with respect to the supply rate

r(u, y) if and only if the available system storage Va(x0) given by (7.5) (resp., the available

exponential storage Va(x0) given by (7.6)) is finite for all x0 ∈ D and Va(0) = 0. Moreover, if
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Va(0) = 0 and Va(x0) is finite for all x0 ∈ D, then Va(x), x ∈ D, is a storage function (resp.,

exponential storage function) for G. Finally, all nonnegative definite storage functions (resp.,

exponential storage functions) Vs(x), x ∈ D, for G satisfy

0 ≤ Va(x) ≤ Vs(x), x ∈ D. (7.12)

Proof: Suppose G is dissipative with respect to the supply rate r(u, y). Since G is completely

reachable it follows that for every x0 ∈ D and ε > 0, there exist a finite first hitting time

τBε(x0)
a.s.

≥ 0 and an admissible input û(·) ∈ U defined on [0, τBε(x0)] such that x(0)
a.s.
= 0

and P
(
x(τBε(x0)) ∈ Bε(x0)

)
= 1. Now, since G is dissipative with respect to the supply rate

r(u, y) and x(0)
a.s.
= 0 it follows that

E
[
E
[∫ τ

0

r(u(s), y(s))ds|x(0)
a.s.
= 0

]]
≥ 0

for all u(·) ∈ U and all stopping times τ
a.s.

≥ 0, or, equivalently,

E

[
E

[∫ τx0

0

r(u(s), y(s))ds|x(0)
a.s.
= 0 +

∫ τ

τx0

r(u(s), y(s))ds|x(0)
a.s.
= 0

]]
≥ 0, τ

a.s.

≥ τx0
a.s.

≥ 0.

Therefore,

E
[
E
[∫ τx0

0

r(u(s), y(s))ds|x(0)
a.s.
= 0, u = û

]]
+ E

[
E

[∫ τ

τx0

r(u(s), y(s))ds|Fτx0

]]
≥ 0,

τ
a.s.

≥ τx0
a.s.

≥ 0,

and hence,

E

[
E

[∫ τ

τx0

r(u(s), y(s))ds|Fτx0

]]
≥ −E

[
E
[∫ τx0

0

r(u(s), y(s))ds|x(0)
a.s.
= 0, u = û

]]
,

τ
a.s.

≥ τx0
a.s.

≥ 0,

which implies that there exists a function W : D → R such that

E

[
E

[∫ τ

τx0

r(u(s), y(s))ds|Fτx0

]]
≥ W (x0) > −∞, τ

a.s.

≥ τx0
a.s.

≥ 0. (7.13)
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Next, it follows from (7.13) and the strong Markov property of solutions [74] that, for all

x ∈ D,

Va(x) = − inf
u(·), τ

a.s.
≥ 0

E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]

= − inf
u(·), τ

a.s.
≥ 0

E

[
E

[∫ τ+τx0

τx0

r(u(t), y(t))dt|x(τx0)
a.s.
= x0

]]

= − inf
u(·), τ

a.s.
≥ 0

E

[
E

[∫ τ+τx0

τx0

r(u(t), y(t))dt|Fτx0

]]
≤ −W (x), (7.14)

and hence, the available storage Va(x) <∞, x ∈ D. Furthermore, with x(0)
a.s.
= 0, it follows

that for all admissible inputs u(t), t ≥ 0,

E
[
E
[∫ τ

0

r(u(s), y(s))ds|x(0)
a.s.
= 0

]]
≥ 0, τ

a.s.

≥ 0, (7.15)

which implies that

sup
u(·), τ

a.s.
≥ 0

[
−E

[
E
[∫ τ

0

r(u(s), y(s))ds|x(0)
a.s.
= 0

]]]
≤ 0, (7.16)

or, equivalently, Va(0) ≤ 0. However, since Va(x) ≥ 0, x ∈ D, it follows that Va(0) = 0.

Conversely, suppose Va(0) = 0 and Va(x0), x0 ∈ D, is finite. Now, it follows from (7.5)

(with τ
a.s.
= 0) that Va(x0) ≥ 0, x0 ∈ D. Next, let x(t), t ≥ 0, satisfy (7.1) with admissible

input u(t), t ∈ [t0, T ]. Since −Va(x0), x0 ∈ D, is given by the infimum over all admissible

inputs u(·) in (7.5), it follows that for all admissible inputs u(·) ∈ U and Ft-stopping times

τ
a.s.

≥ 0,

−Va(x0) ≤ E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]
,

which, since by assumption Va(0) = 0, further implies

0 ≤ E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
.

Hence, G is dissipative with respect to the supply rate r(u, y).
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To prove that Va(x) given by (7.5) is a storage function let τ
a.s.

≥ 0 be the Ft-stopping

time, x ∈ D, and t ≥ 0, and note that since V (x) <∞ by assumption,

Va(x) = sup
u(·), τ

a.s.
≥ 0

E
[
E
[
−
∫ τ

0

r(u(s), y(s))ds|x(0)
a.s.
= x

]]

≥ sup
u(·), τ

a.s.
≥ t

E
[
E
[
−
∫ τ

0

r(u(s), y(s))ds|x(0)
a.s.
= x

]]

= sup
u([0,t])

E

[
E
[
−
∫ t

0

r(u(s), y(s))ds|x(0)
a.s.
= x

]

+ sup
u(t+·), τ

a.s.
≥ t

E
[
E
[
−
∫ τ

t

r(u(s), y(s))ds|x(t)

]
|x(0)

a.s.
= x

]]

= sup
u([0,t])

E

[
E
[
−
∫ t

0

r(u(s), y(s))ds|x(0)
a.s.
= x+ Va(x(t))|x(0)

a.s.
= x

]]
. (7.17)

Now, let τ̂ , τ be finite Ft-stopping times such that 0
a.s.

≤ τ̂
a.s.

≤ τ . Then, using the strong

Markov property of solutions to (7.1) [74], it follows from (7.17) that

E
[
−
∫ τ

0

r(u(s), y(s))ds|Fτ̂ + Va(x(τ))|Fτ̂
]

= −
∫ τ̂

0

r(u(s), y(s))ds+ E
[
−
∫ τ

τ̂

r(u(s), y(s))ds|Fτ̂ + Va(x(τ))|Fτ̂
]

≤ −
∫ τ̂

0

r(u(s), y(s))ds+ E [Va(x(τ̂))|Fτ̂ ]

= −
∫ τ̂

0

r(u(s), y(s))ds+ Va(x(τ̂)). (7.18)

Therefore, Va(x(t))−
∫ t
0
r(u(s), y(s))ds, t ≥ 0, is a Ft-supermartingale, and hence, Va(·) is a

storage function for G.

Next, if Vs(x), x ∈ D, is a nonnegative-definite storage function, then it follows from

Doob’s optional-stopping theorem [111, Thm. 10.10] that, for all Ft-stopping times τ
a.s.

≥ 0

and x0 ∈ D,

Vs(x(0)) ≥ E
[
−
∫ τ

0

r(u(t), y(t))dt+ Vs(x(τ))|x(0)

]
≥ E

[
−
∫ τ

0

r(u(t), y(t))dt|x(0)

]
,
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and hence, with x(0)
a.s.
= x0, it follows that

Vs(x0) = E[Vs(x(0))] ≥ −E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]
,

which further implies

Vs(x0) ≥ − inf
u(·), τ

a.s.
≥ 0

E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]
= Va(x0),

yielding (7.12).

Finally, the proof for the stochastic exponentially dissipative case follows an identical

construction and, hence, is omitted.

The following corollary to Theorem 7.1 shows that the nonlinear stochastic dynamical

system G is stochastically dissipative (resp., stochastically exponentially dissipative) with re-

spect to the supply rate r(·, ·) if and only if there exists a storage function (resp., exponential

storage function) Vs(·) satisfying (7.10) (resp., (7.11)).

Corollary 7.1. Consider the nonlinear stochastic dynamical system G given by (7.1)

and (7.2), and assume that G is completely stochastically reachable. Then G is stochastically

dissipative (resp., stochastically exponentially dissipative) with respect to the supply rate

r(u, y) if and only if there exists a nonnegative measurable function Vs : D → R satisfying

Vs(0) = 0 and Vs(x(t))−
∫ t
t0
r(u(s), y(s))ds, t ≥ t0 (resp., eεtVs(x(t))−

∫ t
t0
eεsr(u(s), y(s))ds,

t ≥ t0), is a Ft-supermartingale for all t0, t ≥ 0, where x(t), t ≥ t0, is the solution of (7.1)

with u(·) ∈ U .

Proof: The result is immediate from Theorem 7.1 with Vs(x) = Va(x).

The following theorem provides conditions for guaranteeing that all storage functions

(resp., exponential storage functions) of a given stochastically dissipative (resp., stochasti-

cally exponentially dissipative) nonlinear stochastic dynamical system are positive definite.

For this result we require the following definition.
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Definition 7.5. A nonlinear stochastic dynamical system G is zero-state observable if

u(t)
a.s.≡ 0 and y(t)

a.s.≡ 0 implies x(t)
a.s.≡ 0.

Theorem 7.2. Consider the nonlinear stochastic dynamical system G given by (7.1) and

(7.2), and assume that G is completely stochastically reachable and zero-state observable.

Furthermore, assume that G is stochastically dissipative (resp., stochastically exponentially

dissipative) with respect to the supply rate r(u, y) and there exists a function κ : Y → U such

that κ(0) = 0 and r(κ(y), y) < 0, y 6= 0. Then all the storage functions (resp., exponential

storage functions) Vs(x), x ∈ D, for G are positive definite, that is, Vs(0) = 0 and Vs(x) > 0,

x ∈ D, x 6= 0.

Proof: It follows from Theorem 7.1 that the available storage Va(x), x ∈ D, is a storage

function for G. Next, suppose there exists x ∈ D, x 6= 0, such that Va(x) = 0, which implies

that

0 = sup
u(·), τ

a.s.
≥ 0

E
[
E
[
−
∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= x

]]

≥ sup
τ
a.s.
≥ 0

E
[
E
[
−
∫ τ

0

r(κ(y(t)), y(t))dt|x(0)
a.s.
= x

]]
≥ 0,

and, hence, r(κ(y(t)), y(t))
a.s.
= 0 almost everywhere t ≥ 0. Since there exists a function

κ : Y → U such that κ(0) = 0 and r(κ(y), y) < 0, y 6= 0, it follows that y(t)
a.s.
= 0 almost

everywhere t ≥ 0. Now, since G is zero-state observable it follows that x = 0, and hence,

Va(x) = 0 if and only if x = 0. The result now follows from (7.12). Finally, the proof for the

exponentially dissipative case is identical.

If Vs(·) is two-times continuously differentiable, then an equivalent statement for the

stochastic dissipativeness of G with respect to the supply rate r(u, y) can be characterized

by the infinitesimal generator L.
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Proposition 7.1. Consider the nonlinear stochastic dynamical system G given by (7.1)

and (7.2). If Vs : D ⊆ Rn → R is two-times continuously differentiable and has a compact

support, then G is stochastically dissipative with respect to supply rate r(·, ·) if and only if

LVs(x) ,
∂V (x)

∂x
F (x, u) +

1

2
tr DT(x)

∂2V (x)

∂x2
D(x) ≤ r(u,H(x, u)), (x, u) ∈ D×U. (7.19)

Proof: Suppose G is dissipative with respect to the supply rate r(u, y) and with a storage

function Vs(x), x ∈ D. Then, for every h > 0, it follows from Definition 7.3 that

E
[
Vs(x(t+ h))|Ft −

∫ t+h

t0

r(u(s), y(s))ds|Ft
]
≤ Vs(x(t))−

∫ t

t0

r(u(s), y(s))ds, (7.20)

which implies

E[Vs(x(t+ h))|Ft]− Vs(x(t)) ≤ E
[∫ t+h

t0

r(u(s), y(s))ds|Ft
]
−
∫ t

t0

r(u(s), y(s))ds

= E
[∫ t+h

t

r(u(s), y(s))ds|Ft
]
. (7.21)

Using the Markov property of solutions, taking the expectation, and letting x(t)
a.s.
= x, x ∈ D,

and u(t)
a.s.
= u, u ∈ U , yields

E
[
E
[
Vs(x(t+ h))|x(t)

a.s.
= x, u(t)

a.s.
= u

]]
− Vs(x)

≤ E
[
E
[∫ t+h

t

r(u(s), H(x(s), u(s)))ds|x(t)
a.s.
= x, u(t)

a.s.
= u

]]
.

Now, dividing both sides by h and taking the limit as h→ 0+ yields

lim
h→0+

1

h

[
E
[
E
[
Vs(x(t+ h))|x(t)

a.s.
= x, u(t)

a.s.
= u

]]
− Vs(x)

]
≤ lim

h→0+

1

h

[
E
[
E
[∫ t+h

t

r(u(s), H(x(s), u(s)))ds|x(t)
a.s.
= x, u(t)

a.s.
= u

]]]
= r(u,H(x, u)).

Since Vs ∈ C2 and has a compact support by assumption, (7.19) follows from [83, Thm. 7.9].

Conversely, if Vs ∈ C2 and has a compact support, and satisfies (7.19), then the infinites-

imal generator operator L of the process V (x(t)), t > t0, where x(t), t > t0, is solution of
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(7.1), is given by (7.19) [83, Thm. 7.9]. Now, letting 0 ≤ t1 ≤ t2,

E
[
Vs(x(t2))|Ft1 −

∫ t2

0

r(u(s), y(s))ds|Ft1
]
− E

[
Vs(x(t1))|Ft1 −

∫ t1

0

r(u(s), y(s))ds|Ft1
]

= E [(Vs(x(t2))− Vs(x(t1))) |Ft1 ]− E
[∫ t2

t1

r(u(s), y(s))ds|Ft1
]

= E
[∫ t2

t1

dVs(t)|Ft1
]
− E

[∫ t2

t1

r(u(s), y(s))ds|Ft1
]

= E
[∫ t2

t1

LVs(t)|Ft1
]
− E

[∫ t2

t1

r(u(s), y(s))ds|Ft1
]

≤ 0, (7.22)

which shows that Vs(x(t))−
∫ t
0
r(u(s), y(s))ds, t ≥ 0, is Ft-supermartingale, and hence, Vs(·)

is a storage function, and, by definition, G is stochastically dissipative with respect to the

supply rate r(u, y).

Similarly, an equivalent statement for stochastic exponential dissipativeness of G with

respect to the supply rate r(u, y) is

LVs(x) + εVs(x) ≤ r(u,H(x, u)). (7.23)

Next, we introduce the concept of a required supply of a nonlinear stochastic dynamical

system. Specifically, define the required supply Vr(x0) of the nonlinear stochastic dynamical

system G by

Vr(x0) = inf
u(·), τx0

a.s.
≥ 0

E
[
E
[∫ τx0

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
, (7.24)

where x(t), t ≥ 0, is the solution to (7.1). The infimum in (7.24) is taken over all system

sample paths starting from x(0)
a.s.
= 0 at time t = 0 and ending at x(τx0)

a.s.
= x0 at time t = τx0 ,

and all times t ≥ 0 or, equivalently, over all admissible inputs u(·) which drive the dynamical

system G from the origin to x0 over the time interval [0, τx0 ]. If the system is not reachable

from the origin, then we define Vr(x0) =∞. It follows from (7.24) that the required supply

of a nonlinear stochastic dynamical system is the minimum amount of generalized average

energy that has to be delivered to the dynamical system in order to transfer it from an initial
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state x(0)
a.s.
= 0 to a given state x(τx0)

a.s.
= x0. Similarly, define the required exponential supply

of the nonlinear dynamical system G by

Vr(x0) = inf
u(·), τx0

a.s.
≥ 0

E
[
E
[∫ τx0

0

eεtr(u(t), y(t))dt|x(0)
a.s.
= 0

]]
, (7.25)

where x(t), t ≥ 0, is the solution to (7.1) with x(0)
a.s.
= 0 and x(τx0)

a.s.
= x0. Note that since,

with x(0)
a.s.
= 0, the infimum in (7.24) is zero it follows that Vr(0) = 0.

Next, using the notion of a required supply, we show that all storage functions are

bounded from above by the required supply and bounded from below by the available storage,

and hence, a stochastic dissipative dynamical system can deliver to its surroundings only a

fraction of its generalized stored energy and can store only a fraction of the generalized work

done to it.

Theorem 7.3. Consider the nonlinear stochastic dynamical system G given by (7.1) and

(7.2), and assume that G is completely stochastically reachable. Then G is stochastically

dissipative (resp., stochastically exponentially dissipative) with respect to the supply rate

r(u, y) if and only if 0 ≤ Vr(x) < ∞, x ∈ D. Moreover, if Vr(x) is finite and nonnegative

for all x ∈ D, then Vr(x), x ∈ D, is a storage function (resp., exponential storage function)

for G. Finally, all nonnegative storage functions (resp., exponential storage functions) Vs(x),

x ∈ D, for G satisfy

0 ≤ Va(x) ≤ Vs(x) ≤ Vr(x) <∞, x ∈ D. (7.26)

Proof: It follows from the definition of Vr(·) that for every stopping time τ
a.s.

≥ 0,

Vr(x(τ)) = inf
u(·), τ

a.s.
≥ 0

E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]
. (7.27)

Now, suppose G is dissipative with respect to the supply rate r(u, y) then, by definition,

0 ≤ E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
<∞
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for all Ft-stopping times τ
a.s.

≥ 0 and admissible inputs u(·). Therefore,

0 ≤ inf
u(·), τ

a.s.
≥ 0

E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
= E[Vr(x(τ))] <∞,

which, with τ = τx, x ∈ D, implies Vr(x) = E[Vr(x(τx))], and hence, 0 ≤ Vr(x) <∞.

Conversely, suppose 0 ≤ Vr(x) <∞, x ∈ D. Therefore, for all τ
a.s.

≥ 0,

0 ≤ E[Vr(x(τ))]

= inf
u(·), τ

a.s.
≥ 0

E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
≤ E

[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
.

Hence, G is dissipative with respect to the supply rate r(u, y). To prove that Vr(·) given by

(7.24) is a storage function, let τ̂ , τ be finite Ft-stopping times such that 0
a.s.

≤ τ̂
a.s.

≤ τ . Then,

it follows from (7.27) that

Vr(x(τ)) = inf
u(·), τ

a.s.
≥ 0

E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]
≤ inf

u(·), τ
a.s.
≥ τ̂

a.s.
≥ 0

E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]
≤ inf

u(·), τ̂
a.s.
≥ 0

E
[∫ τ̂

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]
+ E

[∫ τ

τ̂

r(u(t), y(t))dt|x(τ̂)

]
= Vr(x(τ̂)) + E

[∫ τ

τ̂

r(u(t), y(t))dt|x(τ̂)

]
. (7.28)

Using the strong Markov property of the solution x(t), t ≥ 0 of (7.1) [74], it follows from

(7.28) that

E
[
−
∫ τ

0

r(u(s), y(s))ds|Fτ̂ + Vr(x(τ))|Fτ̂
]

= E
[
−
∫ τ̂

0

r(u(s), y(s))ds|Fτ̂ −
∫ τ

τ̂

r(u(s), y(s))ds|Fτ̂
]

+ E [Vr(x(τ))|Fτ̂ ]

= E
[
−
∫ τ̂

0

r(u(s), y(s))ds|Fτ̂
]

+ E
[
Vr(x(τ))|Fτ̂ −

∫ τ

τ̂

r(u(s), y(s))ds|Fτ̂
]

≤ −
∫ τ̂

0

r(u(s), y(s))ds+ Vr(x(τ̂)). (7.29)

192



Therefore, Vr(x(t)) −
∫ t
0
r(u(s), y(s))ds, t ≥ 0, is Ft-supermartingale, and hence, Vr(·) is a

storage function for G.

Next, if Vs(x), x ∈ D, is a nonnegative-definite storage function, then it follows from

Doob’s optional-stopping theorem [111, Thm. 10.10] that, for all Ft-stopping times τ
a.s.

≥ 0,

Vs(x(0)) ≥ E
[
−
∫ τ

0

r(u(t), y(t))dt|x(0) + Vs(x(τ))|x(0)

]
,

Now, let x(0)
a.s.
= 0 and τ = τx, x ∈ D, and since Vs(0) = 0, it follows that

0 = E[Vs(x(0))]

≥ −E
[
E
[∫ τx

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
+ E

[
E
[
Vs(x(τx))|x(0)

a.s.
= 0

]]
= −E

[
E
[∫ τx

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
+ Vs(x),

and hence,

Vs(x) ≤ inf
u(·), τx

a.s.
≥ 0

E
[
E
[∫ τx

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
= Vr(x) <∞,

which implies (7.26).

Finally, the proof for the stochastic exponentially dissipative case follows a similar con-

struction and, hence, is omitted.

As a direct consequence of Theorems 7.1 and 7.3, we show that the set of all possible

storage functions of a stochastic dynamical system forms a convex set parameterized by

the system available storage and the system required supply. An identical result holds for

exponential storage functions.

Proposition 7.2. Consider the nonlinear stochastic dynamical system G given by (7.1)

and (7.2) with available storage Va(x), x ∈ D, and required supply Vr(x), x ∈ D, and assume

G is completely stochastically reachable. Then, for every α ∈ [0, 1],

Vs(x) = αVa(x) + (1− α)Vr(x), x ∈ D, (7.30)

is a storage function for G.
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Proof: The result is a direct consequence of the definition of storage function by noting

that if Va(x(t)) −
∫ t
0
r(u(s), y(s))ds, t ≥ 0, and Vr(x(t)) −

∫ t
0
r(u(s), y(s))ds, t ≥ 0, are

Ft-supermartingales, then Vs(x(t))−
∫ t
0
r(u(s), y(s))ds, t ≥ 0, is a Ft-supermartingale.

In light of Theorems 7.1 and 7.3 we have the following result on lossless stochastic dy-

namical systems.

Theorem 7.4. Consider the nonlinear stochastic dynamical system G given by (7.1) and

(7.2), and assume G is completely stochastically reachable to and from the origin. Then G is

lossless with respect to the supply rate r(u, y) if and only if there exists a storage function

Vs(x), x ∈ D, such that Vs(x(t))−
∫ t
0
r(u(s), y(s))ds, t ≥ 0, is a Ft-martingale. Furthermore,

if G is lossless with respect to the supply rate r(u, y), then Va(x) = Vr(x), and hence, the

storage function Vs(x), x ∈ D, is unique and is given by

Vs(x0) = −E
[
E
[∫ τ0

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]
= E

[
E
[∫ τx0

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
, (7.31)

where x(t), t ≥ 0, is the solution to (7.1) with admissible u(·) ∈ U and for every τ0, τx0
a.s.

≥ 0

such that x(τ0)
a.s.
= 0 and x(τx0)

a.s.
= x0, x0 ∈ D.

Proof: Suppose G is lossless with respect to the supply rate r(u, y). Since G is completely

reachable to and from the origin it follows that, for every x0 ∈ D, there exist finite τx0
a.s.

≥ 0

and admissible u(·) ∈ U on [0, τx0 ] such that x(τx0)
a.s.
= x0 for x(0)

a.s.
= 0. Let τ

a.s.

≥ 0 be

a Ft-stopping time and note that by the strong Markov property of the solution x(t) of

(7.1) [74],

0 = E
[
E
[∫ τ0+τx0

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
= E

[
E

[(∫ τx0

0

r(u(t), y(t))dt+

∫ τ0+τx0

τx0

r(u(t), y(t))dt

)
|x(0)

a.s.
= 0

]]

= E
[
E
[∫ τx0

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
+ E

[
E

[∫ τ0+τx0

τx0

r(u(t), y(t))dt|Fτx0

]]
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= E
[
E
[∫ τx0

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
+ E

[
E

[∫ τ0+τx0

τx0

r(u(t), y(t))dt|x(τx0)
a.s.
= x0

]]

= E
[
E
[∫ τx0

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
+ E

[
E
[∫ τ0

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]
≥ inf

u(·), τx0
a.s.
≥ 0

E
[
E
[∫ τx0

0

r(u(t), y(t))dt|x(0)
a.s.
= 0

]]
+ inf

u(·), τ
a.s.
≥ 0

E
[
E
[∫ τ

0

r(u(t), y(t))dt|x(0)
a.s.
= x0

]]
= Vr(x0)− Va(x0), (7.32)

which implies that Vr(x0) ≤ Va(x0), x0 ∈ D. However, since by definition G is stochastically

dissipative with respect to the supply rate r(u, y) it follows from Theorem 7.3 that Va(x0) ≤

Vr(x0), x0 ∈ D, and hence, every storage function Vs(x0), x0 ∈ D, satisfies Va(x0) = Vs(x0) =

Vr(x0). Furthermore, it follows that the inequality in (7.32) is indeed an equality, which

implies (7.31).

Next, let τ1, τ2 be two Ft-stopping times such that τ0
a.s.

≥ τ1
a.s.

≥ τ2
a.s.

≥ 0, x(τ0)
a.s.
= 0. It

follows from (7.31) that

Vs(x(t)) = −E
[∫ τ0

t

r(u(s), y(s))ds|x(t)

]
, τ0

a.s.

≥ t,

and hence,

E
[
Vs(x(τ1))−

∫ τ1

0

r(u(s), y(s))ds|Fτ2
]

= E
[
−E

[∫ τ0

τ1

r(u(s), y(s))ds|x(τ1)

]
−
∫ τ1

0

r(u(s), y(s))ds|Fτ2
]

= E
[
−E

[∫ τ0

τ2

r(u(s), y(s))ds|x(τ2)

]
−
∫ τ2

0

r(u(s), y(s))ds|Fτ2
]

= E
[
Vs(x(τ2))−

∫ τ2

0

r(u(s), y(s))ds|Fτ2
]

= Vs(x(τ2))−
∫ τ2

0

r(u(s), y(s))ds,

which implies that Vs(x(t))−
∫ t
0
r(u(s), y(s))ds, t ≥ 0, is a Ft-martingale.

Conversely, if there exists a storage function Vs(x), x ∈ D, such that

Vs(x(t))−
∫ t

0

r(u(s), y(s))ds, t ≥ 0,
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is a Ft-martingale, then it follows from Corollary 7.1 that G is stochastically dissipative with

respect to the supply rate r(u, y). Furthermore, for every u(·) ∈ U , t ≥ 0, and x(t0)
a.s.
=

x(t)
a.s.
= 0, it follows from (7.10) (with an equality) that∫ t

t0

r(u(s), y(s))ds
a.s.
= 0,

which implies that G is stochastically lossless with respect to the supply rate r(u, y).

7.3. Extended Kalman-Yakubovich-Popov Conditions for Nonlin-
ear Stochastic Dynamical Systems

In this section, we show that stochastic dissipativeness, stochastic exponential dissipa-

tiveness, and stochastic losslessness of nonlinear affine stochastic dynamical systems G of the

form

dx(t) = [f(x(t)) +G(x(t))u(t)]dt+D(x(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (7.33)

y(t) = h(x(t)) + J(x(t))u(t), (7.34)

where for t ≥ t0, x(t) ∈ HDn , D is an open set with 0 ∈ D, u(t) ∈ U ⊆ Rm, y(t) ∈ Y ⊆ Rl,

f : D → Rn, G : D → Rn×m, D : D → Rn×d, h : D → Rl, and J : D → Rl×m, can be

characterized in terms of the system functions f(·), G(·), D(·), h(·), and J(·). We assume

that f(·), G(·), D(·), h(·), and J(·) are continuously differentiable mappings and G has at

least one equilibrium so that, without loss of generality, f(0) = 0, D(0) = 0, and h(0) = 0.

Furthermore, for the nonlinear stochastic dynamical system G we assume that the required

properties for the existence and uniqueness of solutions in forward time are satisfied.

For the following result we consider the special case of dissipative systems with quadratic

supply rates [108]. Specifically, set D = Rn, U = Rm, Y = Rl, let Q ∈ Sl, R ∈ Sm, and

S ∈ Rl×m be given, where Sq denotes the set of q × q symmetric matrices, and assume

r(u, y) = yTQy + 2yTSu + uTRu. Furthermore, we assume that there exists a function

κ : Rl → Rm such that κ(0) = 0 and r(κ(y), y) < 0, y 6= 0, and the available storage Va(x),

x ∈ Rn, for G is a two-times continuously differentiable function.
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Theorem 7.5. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be zero-state observable

and completely stochastically reachable. G is stochastically dissipative with respect to the

quadratic supply rate r(u, y) = yTQy +2yTSu + uTRu if and only if there exist functions

Vs : Rn → R, ` : Rn → Rp, and W : Rn → Rp×m such that Vs(·) is two-times continuously

differentiable and positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′s (x)f(x) + 1
2
tr DT(x)V ′′s (x)D(x)− hT(x)Qh(x) + `T(x)`(x), (7.35)

0 = 1
2
V ′s (x)G(x)− hT(x)(QJ(x) + S) + `T(x)W(x), (7.36)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x)−WT(x)W(x). (7.37)

If, alternatively,

N (x)
4
= R + STJ(x) + JT(x)S + JT(x)QJ(x) > 0, x ∈ Rn, (7.38)

then G is stochastically dissipative with respect to the quadratic supply rate r(u, y) = yTQy

+2yTSu + uTRu if and only if there exists a two-times continuously differentiable function

Vs : Rn → R such that Vs(·) is positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0 ≥ V ′s (x)f(x) +
1

2
tr DT(x)V ′′s D(x)− hT(x)Qh(x) + [1

2
V ′s (x)G(x)− hT(x)(QJ(x) + S)]

·N−1(x)[1
2
V ′s (x)G(x)− hT(x)(QJ(x) + S)]T. (7.39)

Proof: First, suppose that there exist functions Vs : Rn → R, ` : Rn → Rp, and W :

Rn → Rp×m such that Vs(·) is two-times continuously differentiable and positive definite, and

(7.35)–(7.37) are satisfied. Then for every admissible input u(·) ∈ U , t1, t2 ∈ R, t2 ≥ t1 ≥ t0,

it follows from (7.35)–(7.37) that

E
[∫ t2

t1

r(u, y)dt|Ft1
]

= E
[∫ t2

t1

[
yTQy + 2yTSu+ uTRu

]
dt|Ft1

]
= E

[ ∫ t2

t1

[
hT(x)Qh(x) + 2hT(x)(S +QJ(x))u

+uT(JT(x)QJ(x) + STJ(x) + JT(x)S +R)u
]
dt|Ft1

]
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= E
[ ∫ t2

t1

[
V ′s (x)(f(x) +G(x)u) + 1

2
tr DT(x)V ′′s (x)D(x) + `T(x)`(x)

+2`T(x)W(x)u+ uTWT(x)W(x)u
]
dt|Ft1

]
= E

[∫ t2

t1

[
LVs(x) + [`(x) +W(x)u]T[`(x) +W(x)u]

]
dt|Ft1

]
≥ E [Vs(x(t2))|Ft1 ]− Vs(x(t1)),

where x(t), t ≥ 0, satisfies (7.33) and LVs(·) denotes the infinitesimal generator of the storage

function along the trajectories x(t), t ≥ t0, of (7.33). Now, the result is immediate from

Corollary 7.1.

Conversely, suppose that G is stochastically dissipative with respect to a quadratic supply

rate r(u, y). Now, it follows from Theorem 7.1 that the available storage Va(x) of G is finite

for all x ∈ Rn, Va(0) = 0, and

E [Va(x(t2))|Ft1 ] ≤ Va(x(t1)) + E
[∫ t2

t1

r(u(t), y(t))dt|Ft1
]
, t2 ≥ t1, (7.40)

for all admissible u(·) ∈ U . Dividing (7.40) by t2 − t1 and letting t2 → t1 it follows that

LVa(x(t)) ≤ r(u(t), y(t)), t ≥ 0, (7.41)

where x(t), t ≥ t0, satisfies (7.33) and

LVa(x(t))
4
= V ′a(x(t))(f(x(t)) +G(x(t))u(t)) +

1

2
tr DT(x(t))V ′′a (x(t))D(x(t))

denotes the infinitesimal generator of the available storage function along the trajectories

x(t), t ≥ t0. Now, with t = t0, it follows from (7.41) that

V ′a(x0)(f(x0) +G(x0)u) + 1
2
tr DT(x0)V

′′
a (x0)D(x0) ≤ r(u, y(t0)), u ∈ Rm. (7.42)

Next, let d : Rn × Rm → R be such that

d(x, u)
4
= −LVa(x) + r(u, y)

= −V ′a(x)(f(x) +G(x)u)− 1
2
tr DT(x)V ′′a (x)D(x) + r(u, h(x) + J(x)u). (7.43)
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Now, it follows from (7.41) that d(x, u) ≥ 0, x ∈ Rn, u ∈ Rm. Furthermore, note that

d(x, u) given by (7.43) is quadratic in u, and hence, there exist functions ` : Rn → R and

W : Rn → Rp×m such that

d(x, u) = [`(x) +W(x)u]T[`(x) +W(x)u]

= −V ′a(x)(f(x) +G(x)u)− 1
2
tr DT(x)V ′′a (x)D(x) + r(u, h(x) + J(x)u)

= −V ′a(x)(f(x) +G(x)u)− 1
2
tr DT(x)V ′′a (x)D(x) + (h(x) + J(x)u)TQ(h(x) + J(x)u)

+2(h(x) + J(x)u)TSu+ uTRu.

Now, equating coefficients of equal powers yields (7.35)–(7.37) with Vs(x) = Va(x) and the

positive definiteness of Vs(x), x ∈ Rn, follows from Theorem 7.2.

Finally, to show (7.39) note that (7.35)–(7.37) can be equivalently written as[
A(x) B(x)
BT(x) C(x)

]
= −

[
`T(x)
WT(x)

] [
`(x) W(x)

]
≤ 0, x ∈ Rn, (7.44)

where A(x)
4
= V ′s (x)f(x) + 1

2
tr DT(x)V ′′s (x)D(x) − hT(x)Qh(x), B(x)

4
= 1

2
V ′s (x)G(x) −

hT(x)(QJ(x) +S), and C(x)
4
= −(R+STJ(x)+JT(x)S+JT(x)QJ(x)). Now, for all invertible

T ∈ R(m+1)×(m+1) (7.44) holds if and only if T T(7.44)T holds. Hence, the equivalence

of (7.35)–(7.37) to (7.39) in the case when (7.38) holds follows from the (1,1) block of

T T(7.44)T , where

T 4
=

[
1 0

−C−1(x)BT(x) I

]
.

This completes the proof.

Note that the assumption of complete stochastic reachability in Theorem 7.5 is needed

to establish the existence of a nonnegative-definite storage function Vs(·) while zero-state

observability along with the existence of a function κ : Rl → Rm such that κ(0) = 0 and

r(κ(y), y) < 0, y 6= 0, ensures that Vs(·) is positive definite. In the case where the existence

of a two-times continuously differentiable positive-definite storage function Vs(·) is assumed

for G, then G is stochastically dissipative with respect to the quadratic supply rate r(u, y)

with storage function Vs(·) if and only if (7.35)–(7.37) are satisfied.
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Remark 7.2. If (7.35) and (7.39) in Theorem 7.5 are, respectively, replaced by

0 = V ′s (x)f(x) + εVs(x) + 1
2
tr DT(x)V ′′s (x)D(x)− hT(x)Qh(x) + `T(x)`(x), (7.45)

0 ≥ V ′s (x)f(x) + εVs(x) + 1
2
tr DT(x)V ′′s (x)D(x)− hT(x)Qh(x)

+[1
2
V ′s (x)G(x)− hT(x)(QJ(x) + S)]N−1(x)[1

2
V ′s (x)G(x)− hT(x)(QJ(x) + S)]T, (7.46)

where ε > 0, then it can be shown that Theorem 7.5 provides necessary and sufficient

conditions for stochastic exponential dissipativity.

Finally, we provide necessary and sufficient conditions for the case where G given by

(7.33) and (7.34) is lossless with respect to a quadratic supply rate r(u, y).

Theorem 7.6. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, and let G be zero-state observable and

completely stochastically reachable. G is stochastically lossless with respect to the quadratic

supply rate r(u, y) = yTQy+2yTSu+uTRu if and only if there exists a function Vs : Rn → R

such that Vs(·) is two-times continuously differentiable and positive definite, Vs(0) = 0, and,

for all x ∈ Rn,

0 = V ′s (x)f(x) + 1
2
tr DT(x)V ′′s (x)D(x)− hT(x)Qh(x), (7.47)

0 = 1
2
V ′s (x)G(x)− hT(x)(QJ(x) + S), (7.48)

0 = R + STJ(x) + JT(x)S + JT(x)QJ(x). (7.49)

Proof: The proof is analogous to the proof of Theorem 7.5.

Using (7.35)–(7.37) it follows that

E
[∫ t

t0

r(u(s), y(s)ds|Ft0
]

= E [Vs(x(t))|Ft0 ]− Vs(x(t0))

+E
[∫ t

t0

[`(x(s)) +W(x(s))u(s)]T[`(x(s)) +W(x(s))u(s)]ds|Ft0
]
, (7.50)

which can be interpreted as a generalized energy balance equation, where E [Vs(x(t))|Ft0 ]−

Vs(x(t0)) is the stored or accumulated generalized energy of the system and the second path-

dependent term on the right corresponds to the dissipated generalized energy of the system.
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Rewriting (7.50) as

LVs(x) = r(u, y)− [`(x) +W(x)u]T[`(x) +W(x)u], (7.51)

yields a generalized energy conservation equation which shows that the rate of change in

generalized system energy, or generalized power, is equal to the external generalized system

power input minus the internal generalized system power dissipated.

Note that if G with a two-times continuously differentiable positive-definite storage func-

tion is stochastically dissipative with respect to the quadratic supply rate r(u, y) = yTQy +

2yTSu+ uTRu, and if Q ≤ 0 and u(t)
a.s.≡ 0, then it follows that

LVs(x(t))
a.s.

≤ yT(t)Qy(t)
a.s.

≤ 0, t ≥ 0. (7.52)

Hence, the zero solution x(t)
a.s.≡ 0 of the undisturbed (u(t)

a.s.≡ 0) nonlinear stochastic system

(7.33) is Lyapunov stable in probability. Alternatively, if G with a two-times continuously

differentiable positive-definite storage function is exponentially dissipative with respect to

the quadratic supply rate r(u, y) = yTQy+ 2yTSu+uTRu, and if Q ≤ 0 and u(t)
a.s.≡ 0, then

it follows that

LVs(x(t))
a.s.

≤ −εVs(x(t)) + yT(t)Qy(t)
a.s.

≤ −εVs(x(t)), t ≥ 0. (7.53)

Hence, the zero solution x(t)
a.s.≡ 0 of the undisturbed (u(t)

a.s.≡ 0) nonlinear stochastic system

(7.33) is asymptotically stable in probability. If, in addition, there exist scalars α, β > 0 and

p ≥ 1 such that

α‖x‖p ≤ Vs(x) ≤ β‖x‖p, x ∈ Rn, (7.54)

then the zero solution x(t)
a.s.≡ 0 of the undisturbed (u(t)

a.s.≡ 0) nonlinear stochastic dynamical

system (7.33) is exponentially p-stable in probability.

Next, we provide several definitions of nonlinear stochastic dynamical systems which are

stochastically dissipative or stochastically exponentially dissipative with respect to supply

rates of a specific form.
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Definition 7.6. A stochastic dynamical system G of the form (7.1) and (7.2) with m = l

is stochastically passive (respectively, stochastically exponentially passive) if G is stochasti-

cally dissipative (respectively, stochastically exponentially dissipative) with respect to the

supply rate r(u, y) = 2uTy.

Definition 7.7. A stochastic dynamical system G of the form (7.1) and (7.2) is stochas-

tically nonexpansive (respectively stochastically exponentially nonexpansive) if G is stochas-

tically dissipative (respectively, stochastically exponentially dissipative) with respect to the

supply rate r(u, y) = γ2uTu− yTy, where γ > 0 is given.

Example 7.1. Consider the nonlinear dynamical system given by

dx1(t) = x2(t)dt, x1(0)
a.s.
= x10, t ≥ 0, (7.55)

dx2(t) = [−g(x1(t))− ax1(t) + u(t)]dt+ σx2(t)dw(t), x2(0)
a.s.
= x20, (7.56)

y(t) = bx1(t) + x2(t), (7.57)

where 0 < b, b+ 1
2
σ2 < a, xg(x) > 0, x ∈ R, x 6= 0, and g(0) = 0. To examine the stochastic

passivity of (7.55)–(7.57) consider the storage function

Vs(x1, x2) = α
2
[βa2x21 + 2βax1x2 + x22] + α

∫ x1

0

g(s)ds, (7.58)

where α > 0 and β ∈ (0, 1). Note that Vs(x1, x2) is positive definite and radially unbounded.

Now, computing LVs(x1, x2) yields

LVs(x1, x2) = α[βa2x1 + βax2 + g(x1)]x2 + α(βax1 + x2)[−g(x1)− ax2 + u] + 1
2
ασ2x22

= −αβax1g(x1) + α[(β − 1)a+ 1
2
σ2]x22 + α(βax1 + x2)u. (7.59)

Setting α = 1 and β = b/a < 1 if follows that

LVs(x1, x2) = uy − bx1g(x1)− (a− b− 1
2
σ2)x22 ≤ uy, (7.60)

which shows that (7.55)–(7.57) is stochastic passive. 4
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The following results present the nonlinear versions of the Kalman-Yakubovich-Popov

positive real lemma and the bounded real lemma for passive and nonexpansive stochastic

dynamical systems.

Corollary 7.2. Let G be zero-state observable and completely stochastically reachable.

G is stochastically passive if and only if there exist functions Vs : Rn → R, ` : Rn → Rp,

and W : Rn → Rp×m such that Vs(·) is two-times continuously differentiable and positive

definite, Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′s (x)f(x) + 1
2
tr DT(x)V ′′s (x)D(x) + `T(x)`(x), (7.61)

0 = 1
2
V ′s (x)G(x)− hT(x) + `T(x)W(x), (7.62)

0 = J(x) + JT(x)−WT(x)W(x). (7.63)

If, alternatively,

J(x) + JT(x) > 0, x ∈ Rn, (7.64)

then G is stochastically passive if and only if there exists a two-times continuously differ-

entiable function Vs : Rn → R such that Vs(·) is positive definite, Vs(0) = 0, and, for all

x ∈ Rn,

0 ≥ V ′s (x)f(x) + 1
2
tr DT(x)V ′′s (x)D(x) + [1

2
V ′s (x)G(x)− hT(x)]

·[J(x) + JT(x)]−1[1
2
V ′s (x)G(x)− hT(x)]T. (7.65)

Proof: The result is a direct consequence of Theorem 7.5 with l = m, Q = 0, S = Im,

and R = 0. Specifically, with κ(y) = −y it follows that r(κ(y), y) = −2yTy < 0, y 6= 0, so

that all the assumptions of Theorem 7.5 are satisfied.

Corollary 7.3. Let G be zero-state observable and completely stochastically reachable.

G is stochastically nonexpansive if and only if there exist functions Vs : Rn → R, ` : Rn → Rp,

and W : Rn → Rp×m such that Vs(·) is two-times continuously differentiable and positive
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definite, Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′s (x)f(x) + 1
2
tr DT(x)V ′′s (x)D(x) + hT(x)h(x) + `T(x)`(x), (7.66)

0 = 1
2
V ′s (x)G(x) + hT(x)J(x) + `T(x)W(x), (7.67)

0 = γ2Im − JT(x)J(x)−WT(x)W(x), (7.68)

where γ > 0. If, alternatively,

γ2Im − JT(x)J(x) > 0, x ∈ Rn, (7.69)

then G is stochastically nonexpansive if and only if there exists a two-times continuously

differentiable function Vs : Rn → R such that Vs(·) is positive definite, Vs(0) = 0, and, for all

x ∈ Rn,

0 ≥ V ′s (x)f(x) + 1
2
tr DT(x)V ′′s (x)D(x) + hT(x)h(x) + [1

2
V ′s (x)G(x) + hT(x)J(x)]

·[γ2Im − JT(x)J(x)]−1[1
2
V ′s (x)G(x) + hT(x)J(x)]T. (7.70)

Proof: The result is a direct consequence of Theorem 7.5 with Q = −Il, S = 0, and

R = γ2Im. Specifically, with κ(y) = − 1
2γ
y it follows that r(κ(y), y) = −3

4
yTy < 0, y 6= 0, so

that all the assumptions of Theorem 7.5 are satisfied.

Example 7.2. Consider the nonlinear controlled stochastic dynamical system given by

dx1(t) = x2(t)dt, x1(0)
a.s.
= x10, t ≥ 0, (7.71)

dx2(t) = [−a sinx1(t)− bx2(t) + u(t)]dt+ σx2(t)dw(t), x2(0)
a.s.
= x20, (7.72)

y(t) = x2(t), (7.73)

where a, b > 0. Note that (7.71)–(7.73) can be written in the state space form (7.33) and

(7.34) with x = [x1, x2]
T, f(x) = [x2, −a sinx1 − bx2]T, G(x) = [0, 1]T, D(x) = [0, σx2]

T,

h(x) = x2, and J(x) = 0. To examine the stochastic nonexpansivity of (7.71)–(7.73) consider
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the storage function Vs(x) = a(1 − cosx1) + 1
2
x22 satisfying Vs(x) ≥ 0, x ∈ R2. Now, using

Corollary 7.3 it follows from (7.70) that

0 ≥
[
a sinx1 x2

] [ x2
−a sinx1 − bx2

]
+ 1

2

[
0 σx2

] [ a cosx1 0
0 1

] [
0
σx2

]
+ h2(x)

+ 1
4γ2

[
a sinx1 x2

] [ 0
1

] [
0 1

] [ a sinx1
x2

]
, (7.74)

or, equivalently,

0 ≥ (1 + 1
2
σ2 − b)h2(x) + 1

4γ2
h2(x). (7.75)

Hence, (7.75) is satisfied if γ ≥ 1√
2[2b−2−σ2]

. 4

Finally, we note that if (7.61) and (7.65) in Corollary 7.2 are replaced, respectively, by

0 = V ′s (x)f(x) + εVs(x) + 1
2
tr DT(x)V ′′s (x)D(x) + `T(x)`(x), (7.76)

0 ≥ V ′s (x)f(x) + εVs(x) + 1
2
tr DT(x)V ′′s (x)D(x) + [1

2
V ′s (x)G(x)− hT(x)]

·[J(x) + JT(x)]−1[1
2
V ′s (x)G(x)− hT(x)]T, (7.77)

where ε > 0, and (7.66) and (7.70) in Corollary 7.3 are replaced, respectively, by

0 = V ′s (x)f(x) + εVs(x) + 1
2
tr DT(x)V ′′s (x)D(x) + hT(x)h(x) + `T(x)`(x), (7.78)

0 ≥ V ′s (x)f(x) + εVs(x) + 1
2
tr DT(x)V ′′s (x)D(x) + hT(x)h(x) + [1

2
V ′s (x)G(x) + hT(x)J(x)]

·[γ2Im − JT(x)J(x)]−1[1
2
V ′s (x)G(x) + hT(x)J(x)]T, (7.79)

where ε > 0 and γ > 0, then Corollaries 7.2 and 7.3 present the nonlinear versions of

the Kalman-Yakubovich-Popov strict positive real lemma and strict bounded real lemma for

exponentially passive and exponentially nonexpansive stochastic dynamical systems, respec-

tively.

7.4. Stability of Feedback Interconnections of Dissipative Stochas-
tic Dynamical Systems

In this section, we consider feedback interconnections of stochastic dissipative dynam-

ical systems. Specifically, using the notion of stochastically dissipative and stochastically
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exponentially dissipative dynamical systems, with appropriate storage functions and supply

rates, we construct Lyapunov functions for interconnected stochastic dynamical systems by

appropriately combining storage functions for each subsystem. The feedback system can be

nonlinear and either dynamic or static. In the dynamic case, for generality, we allow the

nonlinear feedback system (compensator) to be of fixed dimension nc that may be less than

the plant order n.

We begin by considering the nonlinear stochastic dynamical system G given by (7.33)

and (7.34) with the nonlinear stochastic feedback system Gc given by

dxc(t) = [fc(xc(t)) +Gc(uc(t), xc(t))uc(t)]dt+Dc(xc(t))dwc(t), xc(0)
a.s.
= xc0, t ≥ 0, (7.80)

yc(t) = hc(uc(t), xc(t)) + Jc(uc(t), xc(t))uc(t), (7.81)

where xc ∈ Rnc , uc ∈ Rl, yc ∈ Rm, fc : Rnc → Rnc satisfies fc(0) = 0, Gc : Rl ×Rnc → Rnc×l,

Dc : Rnc → Rnc×dc satisfies Dc(0) = 0, hc : Rl × Rnc → Rm satisfies hc(0, 0) = 0, Jc :

Rl × Rnc → Rm×l, and wc(·) is a dc-dimensional independent standard Wiener process such

that, for all t ≥ s, wc(t)−wc(s) is independent of xc(τ), wc(τ), τ ≤ s, and xc(0). We assume

that fc(·), Gc(·), Dc(·), hc(·, ·), and Jc(·, ·) are continuously differentiable mappings and

the required properties for the existence and uniqueness of solutions in forward time of the

feedback interconnection of G and Gc are satisfied. Here and henceforth we assume that the

negative feedback interconnection of G and Gc is well posed, that is, det[Im+Jc(y, xc)J(x)] 6=

0 for all y, x, and xc.

The following results give sufficient conditions for Lyapunov, asymptotic, and exponential

mean square stability in probability of the feedback interconnection of G and Gc.

Theorem 7.7. Consider the closed-loop system consisting of the nonlinear stochastic

dynamical systems G and Gc with input-output pairs (u, y) and (uc, yc), respectively, and

with uc = y and yc = −u. Assume G and Gc are zero-state observable and stochastically

dissipative with respect to the supply rates r(u, y) and rc(uc, yc) and with two-times contin-

uously differentiable, positive definite, and radially unbounded storage functions Vs(·) and
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Vsc(·), respectively, such that Vs(0) = 0 and Vsc(0) = 0. Furthermore, assume there exists a

scalar σ > 0 such that r(u, y) + σrc(uc, yc) ≤ 0. Then the following statements hold:

i) The negative feedback interconnection of G and Gc is Lyapunov stable in probability.

ii) If Gc is stochastically exponentially dissipative with respect to supply rate rc(uc, yc)

and rank[Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback interconnection of G and Gc is

globally asymptotically stable in probability.

iii) If G and Gc are stochastically exponentially dissipative with respect to supply rates

r(u, y) and rc(uc, yc), respectively, and Vs(·) and Vsc(·) are such that there exist constants

α, αc, β, and βc > 0 such that

α‖x‖2 ≤ Vs(x) ≤ β‖x‖2, x ∈ Rn, (7.82)

αc‖xc‖2 ≤ Vsc(xc) ≤ βc‖xc‖2, xc ∈ Rnc , (7.83)

then the negative feedback interconnection of G and Gc is globally exponentially mean square

stable in probability.

Proof: i) Consider the Lyapunov function candidate V (x, xc) = Vs(x) +σVsc(xc). Now,

the corresponding infinitesimal generator for the closed-loop system is given by

LV (x, xc) = LVs(x) + σLVsc(xc) ≤ r(u, y) + σrc(uc, yc) ≤ 0, (x, xc) ∈ Rn × Rnc ,

which, by Theorem 3.1, implies that the negative feedback interconnection of G and Gc is

Lyapunov stable in probability.

ii) If Gc is stochastically exponentially dissipative it follows that for some scalar εc > 0,

LV (x, xc) = LVs(x) + σLVsc(xc)

≤ −σεcVsc(xc) + r(u, y) + σrc(uc, yc)

≤ −σεcVsc(xc), (x, xc) ∈ Rn × Rnc .
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Since Vsc(xc) is positive definite, Lyapunov stability in probability of the closed-loop system

follows from Theorem 3.1. Moreover, since Vsc(xc) = 0 only if xc = 0, it follows from [75, Cor.

4.2] that limt→∞ xc(t)
a.s.
= 0. Now, since rank[Gc(uc, 0)] = m, uc ∈ Rl, it follows that,

limt→∞ uc(t) = limt→∞ y(t)
a.s.
= 0, and hence, by (7.81), limt→∞ u(t)

a.s.
= 0. Now, since G is

zero-state observable it follows that limt→∞ x(t)
a.s.
= 0, and hence, (x(t), xc(t))

a.s.→ (0, 0) as t→

∞. Now, global asymptotic stability in probability of the negative feedback interconnection

of G and Gc follows from the fact that Vs(·) and Vsc(·) are, by assumption, radially unbounded.

iii) Finally, if G and Gc are stochastically exponentially dissipative it follows that

LV (x, xc) = LVs(x) + σLVsc(xc)

≤ −εVs(x)− σεcVsc(xc) + r(u, y) + σrc(uc, yc)

≤ −εα‖x‖2 − σεcαc‖xc‖2

≤ −min{εα, σεcαc}‖(x, xc)‖2, (x, xc) ∈ Rn × Rnc ,

and hence, it follows from Theorem 3.1 that the negative feedback interconnection of G and

Gc is globally exponentially mean square stable in probability.

The next result presents Lyapunov, asymptotic, and exponential mean square stability

in probability of stochastic dissipative feedback systems with quadratic supply rates.

Theorem 7.8. Let Q ∈ Sl, S ∈ Rl×m, R ∈ Sm, Qc ∈ Sm, Sc ∈ Rm×l, and Rc ∈ Sl.

Consider the closed-loop system consisting of the nonlinear stochastic dynamical systems

G given by (7.33) and (7.34) and Gc given by (7.80) and (7.81), and assume G and Gc are

zero-state observable. Furthermore, assume G is stochastically dissipative with respect to

the quadratic supply rate r(u, y) = yTQy+ 2yTSu+uTRu and has a two-times continuously

differentiable, positive definite, and radially unbounded storage function Vs(·), and Gc is

stochastically dissipative with respect to the quadratic supply rate rc(uc, yc) = yTc Qcyc +

2yTc Scuc + uTc Rcuc and has a two-times continuously differentiable, positive definite, and
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radially unbounded storage function Vsc(·). Finally, assume there exists σ > 0 such that

Q̂
4
=

[
Q+ σRc −S + σST

c

−ST + σSc R + σQc

]
≤ 0. (7.84)

Then the following statements hold:

i) The negative feedback interconnection of G and Gc is Lyapunov stable in probability.

ii) If Gc is stochastically exponentially dissipative with respect to supply rate rc(uc, yc)

and rank[Gc(uc, 0)] = m, uc ∈ Rl, then the negative feedback interconnection of G and Gc is

globally asymptotically stable in probability.

iii) If G and Gc are stochastically exponentially dissipative with respect to supply rates

r(u, y) and rc(uc, yc) and there exist constants α, β, αc, and βc > 0 such that (7.82) and

(7.83) hold, then the negative feedback interconnection of G and Gc is globally exponentially

mean square stable in probability.

iv) If Q̂ < 0, then the negative feedback interconnection of G and Gc is globally asymp-

totically stable in probability.

Proof: Statements i)–iii) are a direct consequence of Theorem 7.7 by noting that

r(u, y) + σrc(uc, yc) =

[
y
yc

]T
Q̂

[
y
yc

]
,

and hence, r(u, y) + σrc(uc, yc) ≤ 0.

To show iv) consider the Lyapunov function candidate V (x, xc) = Vs(x) + σVsc(xc).

Noting that uc = y and yc = −u it follows that the corresponding infinitesimal generator for

the closed-loop system is given by

LV (x, xc) = LVs(x) + σLVsc(xc)

≤ r(u, y) + σrc(uc, yc)

= yTQy + 2yTSu+ uTRu+ σ(yTc Qcyc + 2yTc Scuc + uTc Rcuc)

=

[
y
yc

]T
Q̂

[
y
yc

]

209



≤ 0, (x, xc) ∈ Rn × Rnc ,

which, by Theorem 3.1, implies that the negative feedback interconnection of G and Gc is

Lyapunov stable in probability. Next, it follows from [75, Cor. 4.1] that LV (x, xc)
a.s.→ 0

as t → ∞, and note that LV (x, xc) = 0 if and only if (y, yc) = (0, 0). Now, since G

and Gc are zero-state observable it follows that (x(t), xc(t))
a.s.→ (0, 0) as t → ∞. Finally,

global asymptotic stability in probability follows from the fact that Vs(·) and Vsc(·) are, by

assumption, radially unbounded, and hence, V (x, xc)→∞ as ‖(x, xc)‖ → ∞.

The following corollary is a direct consequence of Theorem 7.8. For this result note that

if a nonlinear stochastic dynamical system G is stochastic dissipative (respectively, stochastic

exponentially dissipative) with respect to a supply rate r(u, y) = uTy − εuTu− ε̂yTy, where

ε, ε̂ ≥ 0, then with κ(y) = ky, where k ∈ R is such that k(1− εk) < ε̂, r(u, y) = [k(1− εk)−

ε̂]yTy < 0, y 6= 0. Hence, if G is zero-state observable it follows from Theorem 7.5 that all

storage functions (respectively, exponential storage functions) of G are positive definite. For

the next result, we assume that all storage functions of G and Gc are two-times continuously

differentiable.

Corollary 7.4. Consider the closed-loop system consisting of the nonlinear stochastic

dynamical systems G given by (7.33) and (7.34) and Gc given by (7.80) and (7.81), and

assume G and Gc are zero-state observable. Then the following statements hold:

i) If G is stochastically passive, Gc is stochastically exponentially passive, and rank[Gc(uc,

0)] = m, uc ∈ Rl, then the negative feedback interconnection of G and Gc is asymptotically

stable in probability.

ii) If G and Gc are stochastically exponentially passive with storage functions Vs(·) and

Vsc(·), respectively, such that (7.82) and (7.83) hold, then the negative feedback intercon-

nection of G and Gc is exponentially mean square stable in probability.

iii) If G is stochastically nonexpansive with gain γ > 0, Gc is stochastically exponentially
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nonexpansive with gain γc > 0, rank[Gc(uc, 0)] = m, uc ∈ Rl, and γγc ≤ 1, then the negative

feedback interconnection of G and Gc is asymptotically stable in probability.

iv) If G and Gc are stochastically exponentially nonexpansive with storage functions Vs(·)

and Vsc(·), respectively, such that (7.82) and (7.83) hold, and with gains γ > 0 and γc > 0,

respectively, such that γγc ≤ 1, then the negative feedback interconnection of G and Gc is

exponentially mean square stable in probability.

Proof: The proof is a direct consequence of Theorem 7.8. Specifically, i) and ii) follow

from Theorem 7.8 with Q = Qc = 0, S = Sc = Im, and R = Rc = 0, whereas iii) and

iv) follow from Theorem 7.8 with Q = −Il, S = 0, R = γ2Im, Qc = −Ilc , Sc = 0, and

Rc = γ2c Imc .

Example 7.3. Consider the controlled damped stochastic Duffing equation given by

dx1(t) = x2(t)dt, x1(0)
a.s.
= x10, t ≥ 0, (7.85)

dx2(t) = [−[2 + x21(t)]x1(t)− cx2(t) + u(t)]dt+ σx2(t)dw(t), x2(0)
a.s.
= x20, (7.86)

y(t) = x2(t), (7.87)

where c ≥ 1
2
σ2. Defining x = [x1, x2]

T, (7.85)–(7.87) can be written in state space form

(7.33) and (7.34) with f(x) = [x2, −(2 + x21)x1− cx2]T, G(x) = [0, 1]T, D(x) = [0, σx2]
T,

h(x) = x2, and J(x) = 0. With Vs(x) = x21 + 1
4
x41 + 1

2
x22, `(x) =

(√
c− 1

2
σ2
)
x2, and

W(x) ≡ 0, it follows from Corollary 7.2 that (7.85)–(7.87) is stochastically passive. Now,

using Corollary 7.4 we can design a second-order stochastic nonlinear dynamic compen-

sator Gc to asymptotically stabilize (7.85) and (7.86) in probability. Specifically, it follows

from i) of Corollary 7.4 that if Gc given by (7.80) and (7.81) is exponentially passive with

rank[Gc(uc, 0)] = 1, then the negative feedback interconnection of G given by (7.85)–(7.87)

and Gc is asymptotically stable in probability.

Here, we construct a second-order nonlinear stochastic dynamic compensator Gc given by

dxc1(t) = [xc2(t)− xc1(t)]dt, xc1(0)
a.s.
= xc10, t ≥ 0, (7.88)
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dxc2(t) = [−x3c1(t)− xc2(t) + uc(t)]dt+ 1
2
xc2(t)dwc(t), xc2(0)

a.s.
= xc20, (7.89)

yc(t) = xc2(t). (7.90)

Defining xc = [xc1, xc2]
T, (7.88)–(7.90) can be written in state space form (7.80) and

(7.81) with fc(xc) = [xc2 − xc1, −x3c1 − xc2]
T, Gc(xc) = [0, 1]T, Dc(xc) = [0, 1

2
xc2]

T,

hc(xc) = xc2, and Jc(xc) ≡ 0. Note that with Vs(xc) = 1
4
x4c1 + 1

2
x2c2, ε ∈ (0, 7

8
], `(xc) =

[
(√

1− ε
4

)
x2c1

(√
7
8
− ε
)
xc2]

T, and W(xc) ≡ 0, it follows from Corollary 7.2 and (7.76)–

(7.77) that Gc is exponentially passive. Hence, Corollary 7.4 guarantees that the negative

feedback interconnection of G and Gc is globally asymptotically stable in probability. Figure

7.1 shows a sample trajectory of the closed-loop system response with initial conditions

[x(0)T, xc(0)T]T
a.s.
= [1, 2, 3, 4]T. 4

Time [s]
0 1 2 3 4 5 6 7 8 9 10
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ta

te
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Figure 7.1: Closed-loop system response of feedback interconnection of the system G and
dynamic compensator Gc.
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Chapter 8

Summary and Recommendations

for Future Research

8.1. Summary

In this dissertation, we presented a unified framework for stability, dissipativity, and op-

timality for stochastic nonlinear dynamical systems and control. First, in Chapter 2, we

developed Lyapunov theorems for semistablility of nonlinear stochastic dynamical systems.

In addition, a converse theorem for stochastic semistability was developed using continu-

ous Lyapunov functions. Then, in Chapter 3, an optimal control problem for stochastic

stabilization is stated and sufficient conditions are derived to characterize a stochastic op-

timal nonlinear feedback controller that guarantees asymptotic stability in probability of

the closed-loop system. Specifically, we utilized a steady-state stochastic Hamilton-Jacobi-

Bellman framework to characterize optimal nonlinear feedback controllers with a notion of

optimality that is directly related to a given Lyapunov function guaranteeing stability in

probability of the closed-loop system. This result was then used to develop inverse optimal

feedback controllers for affine nonlinear stochastic systems and linear stochastic systems with

polynomial and multilinear performance criteria.

In Chapter 4, an optimal control problem for partial-state stochastic stabilization is stated

and sufficient conditions are derived to characterize an optimal nonlinear feedback controller

that guarantees asymptotic stability in probability of part of the closed-loop system state.
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Specifically, we utilized a steady-state stochastic Hamilton-Jacobi-Bellman framework to

characterize optimal nonlinear feedback controllers with a notion of optimality that is di-

rectly related to a given Lyapunov function that is positive definite and decrescent with

respect to part of the system state. This result was then used to address optimal linear and

nonlinear regulation for linear and nonlinear time-varying stochastic systems with quadratic

and nonlinear-nonquadratic performance measures. In addition, we developed inverse op-

timal feedback controllers for affine nonlinear systems and linear time-varying stochastic

systems with polynomial and multilinear performance criteria.

In Chapter 5, an optimal control problem for finite-time, partial-state stochastic stabiliza-

tion is stated and sufficient conditions are derived to characterize an optimal nonlinear feed-

back controller that guarantees finite-time stability in probability of part of the closed-loop

system state. Specifically, we utilized a steady-state stochastic Hamilton-Jacobi-Bellman

framework to characterize optimal nonlinear feedback controllers with a notion of optimality

that is directly related to a given Lyapunov function that is positive definite and decres-

cent with respect to part of the system state, and satisfies a differential inequality involving

fractional powers. This result was then used to develop optimal finite-time stabilizing con-

trollers for nonlinear time-varying stochastic systems. In addition, we developed inverse

optimal feedback controllers for affine nonlinear and time-varying stochastic systems.

In Chapter 6, an optimal control strategy for a two-player stochastic differential game

problem is stated and sufficient conditions are derived to characterize the stochastic op-

timal nonlinear feedback control and stopper policies that guarantee asymptotic stability

in probability of the closed-loop system. Specifically, we utilized a steady-state stochas-

tic Hamilton-Jacobi-Isaacs framework to characterize optimal nonlinear feedback strategies

with a notion of optimality that is directly related to a given Lyapunov function guaranteeing

stability in probability of the closed-loop system. This result was then used to develop in-

verse optimal feedback control and stopper policies for affine nonlinear stochastic differential

games and linear stochastic games with polynomial and multilinear performance criteria.
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Finally, in Chapter 7, we extended the notion of dissipativity theory for deterministic

dynamical systems to controlled Markov diffusion processes and showed the utility of the

general concept of dissipation for stochastic systems. Specifically, we provided extended

Kalman–Yakubovich–Popov conditions in terms of the drift and diffusion dynamics for char-

acterizing stochastic dissipativity via two-times continuously differentiable storage functions.

In addition, using the concepts of stochastic dissipativity for stochastic dynamical systems

with appropriate storage functions and supply rates, general stability criteria in probability

for feedback interconnections of stochastic dynamical systems were given.

8.2. Recommendations for Future Research

The semistability theorems presented in Chapter 2 require verifying Lyapunov stability

for concluding stochastic semistability. However, finding the corresponding Lyapunov func-

tion can be a difficult task. To overcome this drawback, we can extend the arc-length-based

tests of [20] to stochastic dynamical systems in order to guarantee semistability by testing a

condition on the system vector field which avoids proving Lyapunov stability. However, since

the sample paths of a stochastic dynamical system may not have an arc-length in the clas-

sical sense—due to lack of differentiability of solutions and unbounded variation of sample

Wiener paths—stochastic integrals involving nondifferentiable curves as the limiting value

of polygonal curves can be used to approximate the arc length of the stochastic system.

Recent technological advances in communications and computation have spurred a broad

interest in control of networks and control over networks. Network systems involve dis-

tributed decision making for coordination of networks of dynamic agents and address a broad

area of applications including cooperative control of unmanned air vehicles, microsatellite

clusters, mobile robotics, battle space management, and congestion control in communica-

tion networks. A key application area of multiagent network coordination within aerospace

systems is cooperative control of unmanned air vehicles for combat, surveillance, and recon-
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naissance; and swarms of air and space vehicle formations for command and control between

heterogeneous air and space vehicles.

In many of the aforementioned applications involving multiagent systems, groups of

agents are required to agree on certain quantities of interest. Distributed control algo-

rithms can be designed to achieve information consensus that guarantee agreement between

agents for a given coordination task. A unique feature of the closed-loop dynamics under

any control algorithm that achieves consensus in a dynamical network is the existence of a

continuum of equilibria representing a state of consensus [53,54]. Under such dynamics, the

limiting consensus state achieved is not determined completely by the dynamics, but depends

on the initial system state as well. From a practical viewpoint, it is not sufficient to only

guarantee that a network converges to a state of consensus since steady state convergence

is not sufficient to guarantee that small perturbations from the limiting state will lead to

only small transient excursions from a state of consensus. It is also necessary to guarantee

that the equilibrium states representing consensus are Lyapunov stable, and consequently,

semistable.

The stochastic semistability framework developed in Chapter 2 can be extended to de-

sign consensus controllers for multiagent systems with nonlinear stochastic dynamics under

distributed nonlinear consensus protocols. In particular, the results in Chapter 2 can be

used as an underpinning for deriving convergence conditions for agreement problems of mul-

tiple agents with nonlinear stochastic dynamics over random networks and under nonlinear

consensus protocols.

In spite of the appealing nature of the classical stochastic Hamilton-Jacobi-Bellman the-

ory, its current state of development entails limitations in addressing the design of static

and dynamic output-feedback compensators. In contrast, the simplified and tutorial expo-

sition of the stochastic optimal control framework presented in Chapter 3 can potentially

be used to develop a fixed-structure stochastic Hamilton-Jacobi-Bellman theory in which
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one can prespecify the structure of the feedback law with respect to, for example, the order

of nonlinearities appearing in the dynamic compensator. The actual gain maps can then

be determined by solving algebraic relations in much the same way full-state feedback con-

trollers can be obtained. In this case, the structure of the nonlinear-nonquadratic Lyapunov

function, nonlinear-nonquadratic cost functional, and nonlinear feedback controller can be

fixed while the performance can be optimized with respect to the controller gains.

To demonstrate how fixed-structure stochastic Hamilton-Jacobi-Bellman synthesis can

be performed assume that A (which can denote a closed-loop system) is Hurwitz, let P be

given by (3.21), and consider the case where D(x) = xσT and L(x), f(x), and V (x) are

given by (3.24). To satisfy (3.11) we require that (3.26) holds. Equation (3.26) is the basic

constraint that must be satisfied by the closed-loop system in order for J(x0) to be given by

(3.12).

Now, for the simplicity of exposition, consider the linear controlled dynamical system

with multiplicative noise given by

dx(t) = [Ax(t) +Bu(t)] dt+ x(t)σTdw(t), x(0)
a.s.
= x0, t ≥ 0, (8.1)

y(t) = Cx(t), (8.2)

and constrain the output feedback control law to be given by u = φ(y), where φ(·) is a finitely

parameterized control law (e.g., linear plus cubic plus quintic). Then the closed-loop system

takes the form

dx(t) = (Ax(t) +Bφ(Cx(t)))dt+ x(t)σTdw(t), x(0)
a.s.
= x0, t ≥ 0, (8.3)

which has the form of (2.2) with f(x) given in (3.24). Minimizing J(x0) given by (3.12)

subject to (3.26) now reduces to a system of algebraic relations in the coefficients of the

different powers of x. Hence, the proposed framework allows for the synthesis of fixed-

structure static and dynamic output-feedback controllers.

Since multiagent network systems can involve information laws governed by nodal dy-

217



namics and rerouting strategies that can be modified to minimize waiting times and op-

timize system throughput, optimality considerations in network systems is of paramount

importance. Hence, another key extension to the optimal Hamilton-Jacobi-Bellman theory

developed in Chapter 3 is the design of semistabilizing optimal controllers involving con-

trolled dynamical systems with a continuum of equilibria. This will allow for the design of

optimal consensus controllers for multiagent networks.

The framework developed in Chapter 3 can also be extended to addressing system ro-

bustness to account for changing system parameters. Specifically, a stochastic multiplicative

uncertainty model can be used to include modeling of a priori uncertainty in the nonlinear

system dynamics. The philosophy of representing uncertain parameters by means of multi-

plicative white noise is motivated by the Maximum Entropy Principle of Jaynes [59,60] and

statistical analysis [73].

An important extension of the results presented in Chapters 4 is the consideration of

optimal partial-state semistabilization. Specifically, optimal partial-state semistabilization

as well as finite-time semistabilization is of paramount importance for developing optimal

finite-time consensus protocols for addressing finite-time agreement in network systems. Al-

ternatively, in large-scale networks it might be desirable that partial-state synchronization

or consensus is sought.

The framework developed in Chapter 5 yields finite interval controllers even though

the original cost criterion is defined on the infinite horizon. Hence, one advantage of this

approach for certain applications is to obtain finite-interval controllers without the computa-

tional complexities of two-point boundary value problems. If the order of the subquadratic

state terms appearing in the cost functional is sufficiently small, then the controllers ac-

tually optimize a minimum-time cost criterion. Optimal finite-time controllers are usually

obtainable using the maximum principle, which generally does not yield feedback controllers.

Extensions of the framework developed in Chapter 5 for exploring connections between opti-
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mal finite-time stabilization and the classical time-optimal control problem are an important

area of research.

The proposed framework can allow us to further explore connections with inverse optimal

control, wherein we parametrize a family of finite-time stabilizing sublinear controllers that

minimize a derived cost functional involving subquadratic terms. Subquadratic performance

criteria have been studied in [50,93,94] and have been shown to permit a unified treatment

of a broad range of design goals. In addition, as shown in [17] there exist finite-time stable

dynamical systems that do not admit smooth Lyapunov functions, and hence, a particu-

larly important extension is the consideration of continuous Lyapunov functions leading to

viscosity solutions [31] or, equivalently, a proximal analysis formalism [30], of the resulting

stochastic Hamilton-Jacobi-Bellman equations arising in Theorems 5.4 and 5.5.

Finally, the stochastic dissipativity framework developed in Chapter 7 can be extended

to explore connections between stochastic dissipativity and stochastic optimal control to

address robust stability and robust stabilization problems involving both stochastic and

deterministic uncertainty as well as both averaged and worst-case performance criteria. Fur-

thermore, the framework can be used to extend notions from system thermodynamics [47]

to develop a stochastic thermodynamic framework for addressing consensus problems for

nonlinear multiagent dynamical systems with fixed and switching topologies. Specifically,

distributed nonlinear static and dynamic controller architectures for multiagent coordina-

tion can be developed that are predicated on system thermodynamic notions resulting in

controller architectures involving the exchange of information between agents over random

networks that guarantee that the closed-loop dynamical network is consistent with basic

stochastic thermodynamic principles. In addition, stochastic dissipativity in the setting of

behavioral system [109,110], where the system storage can be introduced as a latent variable

associated with a supply rate that is a manifest variable, can also be explored.
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