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SUMMARY 

 The overarching goal of this research is to improve urban- and regional-scale air 

quality modeling for health risk assessment using a combination of ground-station and 

satellite-based measurements.  The integration of near-surface air pollution 

concentrations, emissions-based air quality model simulations, and satellite observations 

of column-integrated quantities will improve the accuracy of exposure metrics and 

promote the appropriate use of satellite data over extended areas for long time periods, 

especially where ground-based air quality measurement networks are limited or lacking.  

In the broader sense, this information will help public health scientists, policy makers, 

and monitoring agencies to research and implement better control strategies and 

regulations. 

 The first phase of this study (Friberg et al., 2016) demonstrated and assessed a 

systematic and practical approach to fusing surface-network measurements with chemical 

transport model (CTM) simulations to produce daily concentrations for five air pollutants 

of primary origin (NO2, NOx, CO, SO2, and EC), and seven secondary pollutants (O3, 

PM10 mass, PM2.5 mass, SO4, NH4, NO3, and OC) for use in cross-sectional 

epidemiological studies.  A second study (Friberg et al., 2017) assessed the ability of the 

data fusion method to produce daily concentrations across five metropolitan areas from 

2002 to 2008.  In addition to the variety of pollutant types, the five cities represent a 

range of meteorological conditions, background aerosol conditions, population densities, 

and sampling-station distributions.  Among the pollutant types, the primary pollutants 

tend to be more heterogeneously distributed over the urban regions than the secondary 



 xvi 

ones.  The resulting daily spatial field estimates of air pollutant concentrations and 

associated correlations were not only consistent with observations, emissions, and 

meteorology, but substantially improved CTM-derived results in areas without 

observations, for most pollutants and all cities. The data fusion improved daily metrics 

across all pollutants with the greatest improvements occurring for O3 and PM2.5. 

 The final study (Friberg et al., 2017, to be submitted) demonstrated and assessed 

an optimization technique, expanding upon the surface-station-model fusion technique, to 

estimate ambient PM2.5 mass and associated chemically speciated concentrations for 

potential use in longitudinal epidemiological studies.  The newest method constrains 

surface PM2.5 and chemical-component CTM results, using both ground-station data to 

anchor speciated, near-surface aerosol concentrations, and total column aerosol optical 

depth (AOD).  When the mid-visible AOD is high, the retrieved AOD from the Multi-

angle Imaging SpectroRadiometer (MISR) Research Aerosol retrieval algorithm along 

with qualitative, column-effective aerosol type observations helped constrain the CTM 

over extended regions.  The retrieved AOD had a horizontal resolution of 275m.  The 

method was applied over a case study area in the San Joaquin Valley of California during 

NASA’s DISCOVER-AQ field campaign in this region, on days when there was good 

satellite coverage and considerable suborbital data for validation of the approach.  The 

accuracy of estimated concentrations and evaluation of the latest MISR aerosol retrieval 

algorithm ability to typify urban AOD, aerosol mixtures, and aerosol airmasses were 

examined by comparing the results with speciated ground observations and standard 

model fitting statistics.  The results indicate that on days with high AOD and adequate 
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observing conditions, satellite retrievals improve simulated spatial distributions of PM2.5 

and chemical component concentrations. 
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CHAPTER 1. INTRODUCTION 

 Approximately 4.2 million deaths and 103.1 million years of shortened life 

expectancy were attributed to long-term exposure to ambient fine particle air pollution 

(PM2.5; particle size less than 2.5 µm in the aerodynamic diameter) in 2015, making 

PM2.5 the fifth-ranking mortality risk factor and sixth rank for lost years of healthy life in 

2015.1 As the top environmental risk factor from the Global Burden of Diseases Study, 

long-term poor air quality exposure epidemiological and toxicological studies play an 

important role in informing public policy for mitigation purposes and related health 

benefits.1 Such health studies have shown that poor air quality poses a hazard to public 

health by increasing in cardiopulmonary morbidity and mortality,2-19 contributing to the 

incidence and development of diabetes mellitus, adverse birth outcomes,20-23 and posing a 

certain risk to public health even at levels below national standards).23-27 In addition to 

knowledge gaps, the understanding of underlying mechanisms/pathways whereby gases 

and fine particulate matter cause adverse effects to public health (i.e., inducing 

intracellular oxidative stress, genotoxicity, and inflammatory responses;28 there is also a 

critical need to assess the PM2.5 chemically speciated health effects and the synergistic 

effects of air pollutants on multiple risk factors. 

 Large population epidemiologic studies of acute and chronic health effects related 

to ambient air pollution rely on accurate estimates of the spatial and temporal variation in 

a number of monitored air pollutants.  Spatial coverage of air quality surface monitoring 
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networks is sparse, and some pollutants of interest are not measured daily, even in well-

instrumented areas. 

 This sparseness in ground-level air quality monitoring data has led to efforts to 

improve spatiotemporal exposure estimates for epidemiological studies by incorporating 

more spatially robust datasets such as chemical transport models and satellite data.  

Emissions-based air quality modeling does not have the spatial and temporal 

discontinuities of the observations, but has well-known inaccuracies due to such 

limitations as insufficient characterization of meteorological and emission inputs as well 

as inexact representation of physical and chemical processes. 

 Improvements in surface air pollution spatial and temporal estimates, obtained by 

combining publicly available air monitoring data and chemical transport model (CTM) 

outputs, have the potential to provide added accuracy in assessing human health exposure 

risks and to aid regulatory efforts.  High-resolution spatiotemporal air pollution datasets 

are in great demand by public health researchers due to the need to identify both specific 

drivers of adverse health effect associations, including multi-pollutant mixtures, and 

potential effect-modification factors.  Accurate spatiotemporal characterization of 

ground-level ambient air pollution can help when comparing inter-city health risk 

estimates as well as intra-city effect-modification factors such as socio-economic status.13, 

29-31 Factors limiting studies of ambient air pollution and health effects relationships 

include the temporal and spatial completeness and accuracy of air quality estimates, and 

the availability of simulated concentrations for multiple pollutants. In general, narrower-
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swath, polar-orbiting satellites will especially help more with long-term (i.e., chronic) 

exposure, whereas the CTMs will help with both short- and long-term exposure. 

 To investigate air pollution health effects on humans, population-based 

epidemiologic time-series studies often use exposure metrics developed from a single 

central monitoring site or from regulatory monitoring networks.32-34  Although these data 

provide useful indicators for air pollution impacts at specific locations, the data are 

typically limited temporally, spatially, and chemically.35  Given the sparse spatial 

coverage of air quality monitoring networks, urban-to-rural gradients are poorly 

characterized.  In addition, the spatial network of monitors for each pollutant is different.  

The impact that measurement error has on health risk assessment depends on the amount 

and type of error, which in turn depend on the number and location of monitors.36-37 

1.1 Chemical Transport Models 

 CTM simulations based on meteorological and emission data inputs and physical 

and chemical transport process modeling provide more complete spatial and temporal 

coverage than surface-network observations.  However, such modeling is 

computationally intensive, often contains biases, and tends to minimize day-to-day 

variability.38 

 The U.S. Environmental Protection Agency (EPA) has joined with other agencies 

to provide hourly air pollutant concentration fields for the purpose of public health 

analysis over the contiguous U.S. and specific regions, at high-spatial resolutions ranging 

between 2 and 12 km, using the Community Multi-Scale Air Quality (CMAQ) model.39-41  
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The accuracy of these publicly available simulated fields, which varies by pollutant, in 

turn is affected by the accuracy of meteorological and emission inputs, and physical and 

chemical model specifications.42 

1.2 Satellite Aerosol Data 

 The heterogeneity of aerosols places rigorous requirements on measurement 

systems to effectively characterize aerosols on regional and global scales.43  Under 

favorable retrieval conditions, aerosol retrieval algorithms applied to satellite data can 

differentiate among dominant tropospheric aerosol types, at least crudely.44  CTMs 

simulate aerosol type, aerosol optical depth (AOD) gradients, and near-surface aerosol 

concentration information, in part to help develop fine PM emission reduction strategies 

and better protect human health.45-46  There is significant but as yet limited experience at 

applying space-based observations to constraining air quality, although such observations 

show great promise at reducing the uncertainties in regions-scale and long-term modeling 

efforts.45, 47-48 

 Advancements in the interpretation of satellite retrievals, such as aerosol types, 

can lead to further developments in near-surface air quality conditions diagnostics. 

Aerosol airmass types can be identified under some circumstances as: biomass burning, 

continental, dust, maritime, urban, and smoke-dust hybrid.49  More generally, satellite-

based particle-type classification amounts to optical constraints on particle size, shape, 

and light-absorption properties.50  Improvements in characterizing near-surface air quality 

in turn can further our understanding of uncertainties related to ambient air pollution 
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exposure-response studies.  Moderate Resolution Imaging Spectroradiometer (MODIS) 

performs global AOD retrievals.  The standard Dark Target (DT) algorithm performs 

well over Case 1 waters and vegetated surfaces, but poorly over bright surfaces, and does 

not retrieve additional aerosol optical property information needed to identify aerosol air 

mass types.51 

 Although most satellite instruments provide only a single view, either toward 

nadir or the horizon, the NASA Earth Observing System’s Multi-angle Imaging 

Spectroradiometer (MISR) employs nine push-broom cameras at nine different view 

angles directed toward Earth’s surface.  Each of MISR’s cameras images in blue, green, 

red, and near-infrared spectral bands. Unlike MODIS, MISR is much less dependent on 

any assumed relationship of surface reflectance between bands because of its additional 

viewing angles.  This is an especially important consideration over brighter land surfaces, 

such as most urban areas.  MISR’s unique configuration lends itself to studying Earth’s 

aerosols, clouds, and surface.  In particular, the instrument offers qualitative constraints 

on particle size, shape, and light-absorption under favorable retrieval conditions that 

make it possible to map out aerosol air masses, even over populated areas.47 

This thesis focuses on the use of measurements to remove biases and generally improve 

the accuracy of air quality modeling by applying surface in situ and satellite 

measurements.  Chapter 2 elaborates on the key objectives pursued for this thesis.  

Chapter 3 contains published work presenting a new method for fusing surface-based in 

situ measurements with an air quality model, and Chapter 4 contains published work 

applying this technique to multi-year air quality over five cities.  In Chapter 5, the 
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approach is expanded to add spatially extensive MISR data are to the model constraints.  

The final chapter provides a summary of work to date, and prospects for future 

application of the methods developed here. 
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CHAPTER 2. OBJECTIVES 

 The overarching objective of this dissertation is to improve air quality modeling 

for health risk assessment, by developing techniques for applying surface-station data and 

satellite retrieval results to constraining near-surface conditions represented in chemical 

transport models (CTMs).  By integrating near-surface air pollution concentrations, 

emissions-based air quality model simulations, and satellite observations of column-

integrated quantities, we aim to improve the accuracy of exposure metrics on urban-to-

regional scales.  As part of this effort, we develop techniques that promote the use of 

satellite data to improve modeling in areas with limited ground-based air quality 

measurement networks.  In the broader sense, this information is intended to help public 

health scientists, policy makers, and monitoring agencies to research and implement 

better control strategies and regulations.  Figure 2.1 presents a flow chart of the four 

phases that compose the thesis research. 
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Figure 2.1 – Flow chart of thesis phases and associated chapters. 

2.1 Phase 1: Data Fusion Method 

 Question.  How can blending surface-station observations and CTMs improve the 

accuracy of multiple air pollution estimates away from monitor sites?  Objective.  

Develop concentration estimates and evaluate error estimates over space and time for use 

in health studies by fusing observations and CTM simulations. Increase the temporal and 

spatial coverage of concentration metrics while still reflecting the observed 

concentrations.  Case study was performed for Georgia.  Rationale.  Although 

observations provide low error at and in proximity to monitors, the dataset contains 

temporal sampling gaps and offers minimal spatial coverage.  The regional air quality 

chemical transport model, Community Multiscale Air Quality (CMAQ), provides wider 

spatial coverage and relationships to emissions, but is largely unconstrained by 

observations. 

Multi-City Fusion Characterization 

Data Fusion Method 
Development and Evaluation 

Ground Observations 
(12 Species) 

CTM Results 
(CMAQ) 

Estimate PM2.5 and Speciated Surface Concentrations 

Using Satellite Observations of Aerosol Optical Depth 
and Aerosol Airmass Types to Constrain Model Results  

 

 

 

Ground Observations 
(PM2.5 and speciated) 

CTM Results 
(CMAQ) 

Satellite Data 
(MISR+MAIAC) 

  
Phase 1  
(Chapter 3) 

  
Phase 2 
(Chapter 4) 

  
Phases 3 & 4 
(Chapter 5) 
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2.2 Phase 2: Multi-city Fusion Characterization 

 Question. Can multi-city fused air quality characterization help explain between-

city spatial heterogeneity?  Objective.  Evaluate applicability of the observation and 

CMAQ data fusion methodology to other locations. Characterize inter-city air quality 

heterogeneity and uncertainties for five cities using the data-fusion method.  Rationale.  

Understand representativeness and variability among five fused multi-city concentrations. 

Elucidate the degree to which air quality exposure metric trends are generalizable among 

various locations that have different meteorology and emissions. 

2.3 Phase 3: Aerosol Air Mass Type Mapping 

 Question.  Can advancements in the interpretation of aerosol types from satellite 

retrievals improve the accuracy  of near-surface-condition diagnostics by providing broad 

regional context?  Objective.  Following the work of Patadia et al. (2013) over Mexico 

City, characterize aerosol airmass types  over populated regions of Southern California 

using satellite data, taking advantage of suborbital data acquired during the DISCOVER-

AQ field campaign in 2013 to validate the results.  Advance the application of aerosol 

types in  satellite retrievals, which will lead to improved, regional-scale observational 

constraints on near-surface air quality.  Rationale.  Unlike most other passive remote 

sensing techniques currently available, MISR multi-angle and multi-spectral data can 

distinguish between surface and atmospheric signals and can map aerosol  air mass types 

under favorable retrieval conditions. POLDER is another passive satellite imager that can 

help constrain aerosol type to some extent, but at much lower spatial resolution, making it 
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less useful for most air-quality studies.  Having the satellite 2-D data can provide some 

spatial constraints to the model, especially useful in areas lacking ground monitors. 

2.4 Phase 4: Relating Aerosol Mass Type Maps & AOD to Surface PM2.5 

 Question.  To what degree can regional-scale satellite and CTM data be combined 

to improve surface PM2.5 estimates  progressively downwind of sources?  Objective.  

Develop, apply, and evaluate a method for incorporating aerosol air mass maps and total 

 column aerosol optical depth into a regional-scale CTM, to obtain surface PM2.5 

constraints for potential use in regional-scale and long-term pollution-exposure health 

studies.  Rationale.  In addition to AOD that is commonly applied in such work, MISR 

retrievals contain information about aerosol optical properties, such as particle size and 

sphericity that help identify aerosol airmass types.  CMAQ  provides uniform spatial and 

temporal coverage, offers additional physical constraints independent of these 

observations, and identifies relationships between species concentrations and emissions.  

Incorporating satellite aerosol information in the development of PM2.5 concentration 

metrics leads to a  decrease in metric uncertainties and errors. 
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CHAPTER 3. METHOD FOR FUSING OBSERVATIONAL DATA 

AND CHEMICAL TRANSPORT MODEL SIMULATIONS TO 

ESTIMATE SPATIOTEMPORALLY-RESOLVED AMBIENT AIR 

POLLUTION 

(Friberg, M.D., Zhai, X., Holmes, H.A., Chang, H.H., Strickland, M.J., Sarnat, S.E., 

Tolbert, P.E., Russell, A.G. and Mulholland, J.A. Environmental Science & 

Technology, 50(7): 3695-3705. 20,6) 

Abstract 

 Investigations of ambient air pollution health effects rely on complete and 

accurate spatiotemporal air pollutant estimates.  Three methods are developed for fusing 

ambient monitor measurements and 12-km resolution chemical transport model (CMAQ) 

simulations to estimate daily air pollutant concentrations across Georgia.  Temporal 

variance is determined by observations in one method, with the annual mean CMAQ field 

providing spatial structure.  A second method involves scaling daily CMAQ simulated 

fields using mean observations to reduce bias.  Finally, a weighted average of these 

results based on prediction of temporal variance provides optimized daily estimates for 

each 12-km x 12-km grid.  These methods were applied to daily metrics of 12 pollutants 

(CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of 

Georgia for a seven-year period (2002-2008).  Cross-validation demonstrates a wide 

range in optimized model performance across pollutants, with SO2 predicted most poorly 
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due to limitations in coal combustion plume monitoring and modeling.  For the other 

pollutants studied, 54-88% of the spatiotemporal variance (Pearson R2 from cross-

validation) was captured, with ozone and PM2.5 predicted best.  The optimized fusion 

approach developed provides daily spatial field estimates of air pollutant concentrations 

and uncertainties that are consistent with observations, emissions, and meteorology. 

3.1 Introduction 

 High-resolution spatiotemporally-resolved air pollution datasets are needed by 

public health researchers for identification of specific drivers of adverse air pollution 

health effects, including multi-pollutant mixtures, and potential effect modifiers (e.g., 

synergistic effects of multiple risk factors).  For example, accurate spatiotemporal 

characterization of ground-level ambient air pollution, when used in citywide health 

effect estimation, can facilitate inter-city comparison of health effect estimates.  In 

addition, such data can be used for within-city effect estimation, and assessment of effect 

modification by spatial factors such as neighborhood socioeconomic status.52-56 Major 

factors currently limiting such studies include lack of temporal and spatial completeness, 

and accuracy of air quality estimates.  These limitations are addressed in this work. 

 To investigate air pollution health effects on humans, population-based 

epidemiologic time-series studies often use exposure measures derived from regulatory 

monitoring networks.32-34  These data are limited temporally, spatially, and chemically.35  

Many pollutants of interest are measured infrequently, at very few locations, or not at all.  

With the typically sparse spatial coverage of air quality monitoring networks, spatial 
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variability, such as the urban-to-rural gradient, is poorly characterized.  In addition, the 

spatial distribution of monitors for each pollutant is different.  The impact of 

measurement error on health risk assessment is dependent on the amount and type of 

error, which depend in part on the number and location of monitors.37, 57  Averaging of 

ambient monitor data can improve how well the exposure metric represents an area or a 

population.58  However, such averaging requires estimating the spatial distribution of 

pollutants.  Ambient monitor data can also be limited temporally.  Such is the case for 

fine particulate matter (PM2.5) and its components, which are often measured once every 

three or six days.  Observation-based spatial and temporal interpolation approaches, such 

as spatial kriging and temporal linear interpolation, typically introduce excessive 

autocorrelation in the estimates.11 

 Chemical transport model (CTM) simulations provide more complete spatial and 

temporal coverage based on meteorological and emission data inputs and physical and 

chemical transport process modeling.  However, such modeling is computationally 

intensive, has biases, and tends to under-estimate day-to-day variability.38, 40  The U.S. 

Environmental Protection Agency (EPA) and Centers for Disease Control (CDC) have 

collaborated in the Public Health Air Surveillance Evaluation (PHASE) project to 

provide hourly air pollutant concentration fields for the eastern U.S. at a spatial resolution 

of 12-km for the period 2002-2008 using the Community Multi-Scale Air Quality 

(CMAQ) model for the purpose of public health analysis.38, 40, 59  The accuracy of these 

publicly available simulated fields, which varies by pollutant, is affected by the accuracy 

of meteorological and emission inputs, and physical and chemical model specifications.42  
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Error in these fields can be characterized by comparison with observational data.  Various 

statistical approaches have been applied to correct known biases in CMAQ estimates.58, 60 

 Statistical regression approaches combine ground-based measurements and model 

simulations to take advantage of the high degree of spatial and temporal completeness of 

the simulations.59, 61-67  One example is the blending of satellite aerosol optical depth 

data, ground-based monitor data, and land use data 45, 58, 68  Geostatistical methods such 

as land use regression (LUR) have several limitations, including limited ability to 

separate impacts between pollutants, and potential introduction of spatially-varying 

confounders in epidemiologic studies.69-72  A large number of measurements, often 

obtained from specific monitoring-intensive campaigns, are required in LUR applications 

to minimize predictor sensitivity and maximize model performance.73-75  LUR 

applications are generally quite spatially refined and focused on estimating spatial 

variability in long-term air pollution exposures. 

 The limitations of spatially sparse and temporally incomplete ambient monitor 

data can be overcome by blending these data with estimates from a physically and 

chemically coherent model driven by emissions and meteorological inputs.  Although the 

physical and chemical constraints imposed in a deterministic model are limited by the 

accuracy with which these processes can be specified, application across multiple 

pollutants over space and time is not as limited as empirical approaches that can lead to 

large errors if extrapolated beyond a calibrated domain.  Chen et al. (2014) used an 

inverse distance error weighting method to adjust 36-km resolution CMAQ biases within 

100-km of monitors for several pollutants and compared results with other regional 
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estimates.76  In this paper, we evaluate two alternative methods of fusing observational 

data and CMAQ simulations to provide daily concentration fields for a variety of 

pollutants, including primary pollutants, and then combine the results to optimize the 

prediction of temporal variation over space.  In addition, we quantify uncertainty in our 

estimates using a rigorous cross-validation analysis.  Error can lead to underestimating 

variability in the exposure estimates and can result in substantial bias in health outcome 

analysis.  Results from this work are being used in Georgia-wide studies of ambient air 

pollution and preterm births and emergency department visits.77 

3.2 Methods 

3.2.1 Ambient Monitor Measurements 

 Data for 12 pollutants of interest from several ground-based monitoring networks 

from 2002 to 2008 were obtained for the state of Georgia and for two sites near the 

Georgia border in Florida and Tennessee.  The pollutants are five gases (CO, NO2, NOx, 

O3, and SO2), two particulate matter (PM) mass measurements (PM10, PM2.5), and five 

PM2.5 components: sulfate (SO!!!), nitrate (NO!!), ammonium (NH!!), elemental carbon 

(EC), and organic carbon (OC). Data were obtained from the following networks: U.S. 

EPA’s Air Quality System (AQS), which include the State and Local Air Monitoring 

System and Speciation Trends Network for PM2.5 component measurements; the 

Southeastern Aerosol Research and Characterization (SEARCH) network;78 the 

Interagency Monitoring of Protected Visual Environments (IMPROVE) network;79 and 

the Assessment of Spatial Aerosol Composition in Atlanta (ASACA) network.80  For PM 
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measurements, Tapered Element Oscillating Microbalance (TEOM) mass data were 

calibrated to Federal Reference Method (FRM) data, and EC and OC measurements by 

the thermal optical transmittance (TOT) method were converted to be equivalent to 

thermal optical reflectance (TOR) measures.81-82  Collocated measurements at several 

sites over various time periods demonstrate a high degree of precision across instruments 

and analytical procedures, and data from these networks have been used to assess spatial 

variability in previous work.37, 57 

 Figure 3.1 shows the location of monitors.  The monitoring networks provided 

best spatial coverage for O3 and PM2.5, and very limited spatial coverage for CO, NO2, 

and NOx with data available only in the metropolitan Atlanta area. 
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Figure 3.1 – Georgia study area and locations of ambient air quality monitors with 
observations during 2002-2008. SEARCH monitors at Jefferson St. in Atlanta and 
at Yorkville west of Atlanta are labeled H, indicating a comprehensive set of 
pollutant measurements are available at these sites. 
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 On days with 16 or more hourly observations, missing hourly measurements of 

gases and PM mass were estimated by linear interpolation; on days with less than 16 

hourly observations, data were treated as missing. Daily metrics, based on the National 

Ambient Air Quality Standards, were calculated for each pollutant based on those 

identified as primary exposure variables in the health analyses; these are one-hour 

maxima for CO, NO2, NOx, and SO2, eight-hour daily maximum for O3, and 24-hour 

averages for PM10 and PM2.5 masses and PM2.5 species.  Table 3.1 provides the number 

of monitors, sampling frequency, summary statistics of all monitors used in this study, 

and the distribution of measurements at a central Atlanta monitoring site by pollutant. 

Table 3.1 – Summary statistics of observed daily metrics (OBS) during the 2002-
2008 time period for Georgia monitors used in this study. 

 

3.2.2 CMAQ Simulations 

Pollutant No. of 
Monitors 

Sampling Frequency OBS Comp. a,c Meanb,c IQRb,c

1-hr max NO2, ppb 7 7 daily 16,045 90% 22.9 27
1-hr max NOx, ppb 7 7 daily 16,031 90% 60 63.5
1-hr max CO, ppm 5 5 daily 9,582 75% 0.8 0.8
1-hr max SO2, ppb 14 14 daily 24,018 67% 11 11.5
8-hr max O3, ppb 27 2 daily Jan-Dec; 25 daily Mar-Oct 42,734 89% 47.6 22
PM10, µg/m3 20 2 daily; 1 1-in-3; 17 1-in-6 11,155 84% 23.4 14.8
PM2.5, µg/m3 42 15 daily; 20 1-in-3; 7 1-in-6 43,200 74% 14.8 9.4
PM2.5-SO4, µg/m3 14 2 daily; 3 1-in-3; 9 1-in-6 9,306 81% 4.14 3.18
PM2.5-NO3, µg/m3 14 2 daily; 3 1-in-3; 9 1-in-6 9,290 81% 0.7 0.56
PM2.5-NH4, µg/m3 12 2 daily; 1 1-in-3; 9 1-in-6 7,716 79% 1.4 1.04
PM2.5-EC, µg/m3 14 2 daily; 3 1-in-3; 9 1-in-6 9,043 79% 0.89 0.7
PM2.5-OC, µg/m3 14 2 daily; 3 1-in-3; 9 1-in-6 9,017 78% 3.16 2.21
a Completeness indicates the fraction of available versus expected daily metrics for all monitors and days 
in the study.
b Mean and interquartile range (IQR) for the Atlanta central monitor at Jefferson St.
c Inclusive of days for which hourly linear interpolation was conducted to fill in missing hourly 
measurements (if <8 hrs were missing).



 

 

19 

 Hourly simulated concentrations for the pollutants of interest obtained from the 

PHASE project were developed using the CMAQ model at 12-km resolution for the 

2002-2008 time period over the eastern U.S.  CMAQ is a deterministic chemical 

transport model that provides spatially and temporally resolved simulated outputs.  Daily 

metrics of interest for the 12 pollutants were calculated from the PHASE dataset.  The 

U.S. EPA conducted a comprehensive model evaluation of CMAQ version 4.5 using 

several different key synoptic weather patterns.  In that evaluation, ozone simulation 

results were consistent with previous evaluations, where the model captured daily trends 

but had difficulty capturing the upper and lower limits of the observations.  CMAQ had a 

tendency to over-predict fine particulate matter mass during the winter and fall.  EPA’s 

evaluation of CMAQ model version 4.5 also showed particulate sulfate simulations 

improved when compared to results of the previous version due to changes in dry 

deposition velocity and cloud treatment.  Particulate nitrate and ammonium were highly 

over-predicted by the CMAQ model version 4.5 during the fall.  The evaluation also 

found unresolved secondary organic aerosol pathways in the model contributed to under-

prediction of carbonaceous aerosols during the late spring and summer months. 

3.2.3 Data Fusion 

 Ambient monitor observations provide very limited spatial information and 

information on temporal variation that decreases with increasing distance from monitors. 

CMAQ simulations, on the other hand, provide information that is independent of 

observations.  Our approach to fusing observations and CMAQ simulations involves 

three steps (Figure 3.2).  First, we develop fused concentration fields using daily 
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interpolated normalized observations to estimate temporal variation and the annual mean 

CMAQ field to estimate spatial variation (FC1).  Strengths of this method are that 

observations drive temporal variation and CMAQ simulations provide mean spatial 

variation, which are what these data do best.  Weaknesses of this method are that 

temporal variation is predicted poorly far from observations and daily spatial variation is 

not captured well by a spatially sparse monitoring network.  Second, we develop fused 

concentration fields using adjusted daily CMAQ simulations, correcting for annual and 

seasonal biases (FC2).  This method is less subject to the weaknesses of the first method 

in that prediction of temporal variation is largely independent of monitor location and 

daily spatial variation is predicted based on daily meteorology and emissions.  However, 

inaccuracies in the CMAQ simulations limit the effectiveness of this method.  Third, we 

combine these to produce optimized fused concentration fields (FCopt) by computing a 

weighted average with the weight depending on the spatial autocorrelation of 

observations (which governs how well FC1 predicts temporal variance) and the 

correlation between observations and CMAQ simulations (which governs how well FC2 

predicts temporal variance).  By optimizing based on the prediction of temporal variation 

over space, these data fused estimates may be particularly useful in large time-series 

epidemiologic studies.  Due to the different spatial scales of observations (point 

measurements) and CMAQ simulations (12-km resolution) and the limited number of 

observations available each day, prediction of daily spatial variance was not included in 

the optimization; corrections for annual bias and annual spatial variance in the CMAQ 
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simulations are included earlier in the data fusion approach. A detailed description of 

each step follows. 

 

Figure 3.2 – Data fusion flow diagram including depiction of 24-hr PM2.5 (µg/m3) 
fields for 7/23/08 at 12-km resolution. 

3.2.3.1 Interpolated Observation Method (FC1) 

 To obtain pollutant estimates over space (s) and time (t) with temporal variation 

driven by monitor data, we first normalize daily observations (OBSm) at each monitor (m) 

to annual mean levels (!"#!).  Next, normalized data are spatially interpolated by the 

krig method described below.  Lastly, the interpolated field is denormalized using the 

CMAQ annual field adjusted to the annual mean observations (!"), also described below. 
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Equation 3.1 describes this procedure for estimating daily concentration fields with 

temporal variation driven by observations and spatial structure governed by the adjusted 

annual mean CMAQ field. 

 !"!(!, !) =
!"#!(!)
!"#! !"#$

×!"(!) (3.1) 

 Daily spatial interpolation of the normalized observations was performed by 

ordinary kriging.  Kriging is a geostatistical interpolation method based on the spatial 

autocorrelation of the data points to estimate trends. There are various types of kriging 

methods, each of which assumes a combination of known or unknown, constant or 

varying spatial mean function.  In ordinary kriging, the observed data are assumed to 

have an unknown, but constant mean function (a zeroth-order polynomial trend that 

characterizes the observed data as having a constant spatial dependence), yielding a 

continuous surface of estimated points within a defined domain.83 Similar to inverse 

distance weighting, ordinary kriging calculates the distance between the unknown point 

to be estimated and the observed data point.  Ordinary kriging uses the value of the 

covariogram, a measure of deviation between pairs of observed data points as a function 

of distance, to calculate the weight of each of the surrounding measurements by 

minimizing standard error. MATLAB and mGstat, a geostatistical toolbox for MATLAB, 

were used to fit exponential semivariograms to the data by minimizing the error of the 

fitted variogram function.  Creating a continuous surface of estimated points using 

ordinary kriging can lead to invalid spatial features. Such artifacts are a consequence of 
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the statistical smoothing technique used that does not account for the chemical and 

physical nature of the data.  Normalization prior to kriging provides a smoother surface 

necessary with limited monitor coverage of the spatial domain.  A more detailed spatial 

structure is obtained in denormalization using the mean CMAQ field. 

 Regression of annual mean measurements (!"#!) and CMAQ simulations at 

monitor locations (!"#$!) provides parameters for an annual mean pollutant field model 

that captures the spatial pattern of emissions and annual effects of meteorological 

variables, correcting for CMAQ annual biases (eq. 3.2). 

 !"(!) =   !!"#$×!"#$(!)! (3.2) 

Here, the overbar indicates temporal averaging (annual), β is a parameter derived for all 

years, and !!"#$ is a regression parameter derived for each year (Table A.1).  Spatial 

misalignment of measurements (point) and CMAQ simulations (12-km x 12-km) and a 

changing network of monitors over time are factors that contribute to model instability 

and led to the use of more constrained models (e.g. non-varying β) and zero intercepts.  

Linear models with slopes and intercepts varying each year provided similar results, 

although negative intercepts and greater variability across years were found. For pollutant 

gases and EC, linear models (β = 1) with zero intercepts were used; non-unity exponents 

were found to improve the mean spatial prediction of other PM pollutants (Figure 3.3).  

The annual mean regression models capture the spatial variance of CO, NO2 and NOx 

well, with a minimum goodness-of-fit R2 of 0.80, 0.87, and 0.84, respectively.  The 
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urban-to-rural concentration differences for these three primary pollutants are large.  For 

SO2 and PM10, the simulated annual spatial models performed least well, with R2 values 

of 0.2 and 0.1. 

 

Figure 3.3 – Annual data used to estimate annual mean pollutant field parameters, 
2002-2008. For each pollutant, an overall fitted trend for the seven-year time period 
is shown (solid curve); a 1:1 dashed line is shown for reference. Values of β  and 
average values of α  (eq. 3.2) are shown; for values of αyear, see Table A.1. 

3.2.3.2 Scaled CMAQ Method (FC2) 

 An alternative data fusion approach is to use the daily CMAQ fields and scale 

them to observations using the adjusted annual mean CMAQ fields corrected for seasonal 

bias (eq. 3.3). 

 !"!(!, !) = !"#$(!, !)× !"(!)
!"#$(!)

×!!"#!$%(!) (3.3) 
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Here, !!"#!$% is the seasonal correction function.  Analysis of the differential pattern 

between the observations and CMAQ simulations across species showed the seasonal 

component could be described and minimized using a sinusoidal cycle.  The seasonal 

bias, which follows a sinusoidal variation, was modelled as a smooth trigonometric 

function (eq. 3.4) with two fitted parameters: amplitude (A) and day of peak correction 

(tmax) (Table A.2). 

 !!"#!$%(!) = !! ×!"# !!
!"#.!" !!!!"#  (3.4) 

Use of this correction factor removed seasonal trends in the residual errors of the FC2; 

this is shown graphically in supplemental material (Figure A.1). 

3.2.3.3 Optimized Fused Fields (FCopt) 

 Finally, to obtain the best predictions over space and time, FC1 and FC2 were 

averaged using a weighting function based on prediction of temporal variance.  For the 

interpolated observation data fusion method, we use an exponential correlogram (eq. 3.5) 

with fitted parameters to model spatial autocorrelation isotropically.  Correlogram plots 

for all pollutants are shown in the supporting material (Figure A.2). 

 !!"#(!) = !!"##!!!/! (3.5) 

Here, Robs is the temporal Pearson correlation between observations from monitors a 

distance d apart, Rcoll is the intercept which results from instrument error (i.e., error as 

estimated by collocated instruments), and r is the range at which the correlation between 
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monitors has decreased to an e-folding of Rcoll (Table A.3). We then estimate the 

prediction of temporal variance by the interpolated observation data fusion method by 3. 

6. 

 !!(!, !) ≈ !!"##!!!(!,!)/! (3.6) 

 Here, R1 is the estimated temporal correlation of FC1 and ambient pollution and x 

is the distance to the nearest observation.  R1 varies over time and space because the x 

varies with grid cell location as well as with day since monitor observations may be 

missing on some days.  The estimated prediction of temporal variance by the scaled 

CMAQ method, on the other hand, does not depend on distance to the observations since 

daily observations are not used.  The average of the temporal correlations of CMAQ and 

OBS across all monitors (Rcmaq) is used to estimate R2, which represents the estimated 

temporal correlation of FC2 and ambient pollution (eq. 3.7). 

 
!!"#$ =

1
! !"## !"#!(!),!"#$!(!) ≈

!

!!!
!! (3.7) 

Here, N is the total number of monitors.  The Rcmaq values derived in this study are 

provided in supporting material (Table A.3 and Figure A.3).  We note that R1 and R2 are 

conservative estimates of temporal variance in that FC1 uses information from multiple 

measurements and FC2 incorporates annual and seasonal adjustments to CMAQ. 
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 A weighting factor, W, defined by eq. 3.8 was used to estimate the degree to 

which the observation-based estimate (FC1) predicts temporal variation relative to the 

CMAQ-based estimate (FC2). 

 !(!, !) =  !!(!, !)× 1− !!
!!(!, !)× 1− !! + !!× 1− !!(!, !)

 (3.8) 

The weighting factor has a value of 1 when R1 is 1, a value of 0.5 when R1 = R2, and a 

value of 0 when R1 = 0.  The factor varies over time and space because the distance to 

nearest observation varies over time (due to missing data and variation in measurement 

frequency) and space.  The optimized fused field (FCopt) is the weighted average of FC1 

and FC2, given by eq. 3.9. 

 !"!"!(!, !) =  !(!, !)×!"!(!, !) + 1 −! !, ! × !"!(!, !) (3.9) 

Figure A.4 of the supporting material shows average W spatial fields for the study period.  

The optimized field resembles the FC1 field near observations (where the weighting is 

large) and the FC2 field far from observations (where the weighting is small).  The 

temporal correlation of FCopt and OBS, Ropt, is estimated by a similar weighting (eq. 

3.10). 

 if !1 >  !2,!!"#(!, !) = !(!, !)×!1(!, !) + 1 −!(!, !) ×!2;
!"#!,!!"# = !2  (3.10) 
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Cross-validation shows this weighted average of R1 and R2 is a reasonable and 

conservative approximation of the temporal correlation of FCopt with withheld OBS 

(Figure A.5), as will be discussed later.  The lower threshold of R2 avoids a minimum in 

Ropt as a function of distance to nearest observation, a minimum not supported in the 

cross-validation results. 

3.2.4 Model Performance Characterization and Evaluation Statistics 

 Model performance was characterized and model evaluated for CMAQ 

predictions and our three fused concentration field outputs (FC1, FC2, FCopt) using the 

following statistics. 

 
!"#$"%& !"#$ !"#$ = 1

!
!"#$%$#! − !"#!

!"#!

!

!=1
 !100% (3.11) 

 

!"#$"%& !"#$ = 1
!

!"#$%$#! − !"#! !

!"#!

!

!=1
 !100% (3.12) 

 !"# = !"## !"#,!"#$%$# ! (3.13) 

 !"#$%"& !"#$%&'( ! = !"## !"#!(!),!"#$%$#!(!)  (3.14) 

 !"#$% !"#!"#$ ! = !"## !"#! ,!"#$%$#!  (3.15) 

 !"#$ !"#$%#& ! = !"## !"#,!"#$%$#  (3.16) 
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Here, the subscript m denotes the monitor, the subscript t denotes the day, and the overbar 

indicates the annual average.  The mean bias (eq. 3.11) and root mean square error 

(RMSE) (eq. 3.12) statistics were normalized to the mean of the withheld observations at 

each monitor, and then averaged across monitors, to facilitate comparison across 

pollutants.  To assess model prediction of variation over space and time, various Pearson 

correlation coefficients were calculated. RSQ represents a correlation over both space 

(monitor locations) and time (eq. 3.13).  To evaluate model performance in predicting 

spatial and temporal variation separately, correlations of subsets of measured and 

modeled data were evaluated.  Temporal R values at each monitor (eq. 3.14) were 

described by a mean and standard deviation across monitors. Spatial R values on each 

day with four or more monitors (eq. 3.15) were described by a mean and standard 

deviation across days.  The spatial R of annual mean concentrations (eq. 3.16) was also 

calculated. 

3.3 Results 

 Three sets of results are presented. First, CMAQ simulations are evaluated for the 

pollutant metrics and temporal and spatial domains of this study.  Second, a comparison 

of monitor data and data fusion modeling outputs (FC1, FC2, FCopt) that use the monitor 

data is presented to describe model performance characteristics.  Third, results of a 

comprehensive cross-validation analysis are presented to evaluate data fusion model 

predictive capabilities both near to and far from observations. 

3.3.1 CMAQ Simulation Performance 
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 The CMAQ model evaluation conducted by the U.S. EPA was extended to the 

pollutants, metrics, and spatial and temporal domains of this study.  Mean bias and 

Pearson correlation coefficients representing temporal variation, spatial variation of mean 

concentrations, and daily spatial variation provide a comparison of the 12-km CMAQ 

simulations and monitor data over the 2002-2008 study period (Figure 3.4); other 

evaluation metrics are shown in supporting material Table A.4. 

 

Figure 3.4 – Comparison of observations and CMAQ simulations at monitor 
locations for Georgia from 2002 to 2008. In the left panel (a), percent mean bias is 
shown. In the right panel (b), Pearson correlation coefficients (R) are shown for 
temporal variation, average spatial variation, and daily spatial variation when four 
or more observations are available. Average values and error bars representing two 
standard deviations are shown for temporal R values across monitors and for daily 
spatial R values across days. The numbers of monitors are indicated in parentheses. 

 CMAQ performance varied widely across the 12 pollutants studied. As expected, 

there was a large positive bias in the 24-hr nitrate simulations;42 other mean biases were 

less than 30 percent.  With the exception of PM10, CMAQ simulated the spatial variation 

of mean concentrations better than daily spatial and temporal variations. CMAQ least 
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accurately simulated the spatial and temporal variations in 1-hr maximum SO2 and 24-hr 

average PM10, demonstrating known limitations in the CMAQ model to predict ground-

level impacts of SO2 plumes and biogenic PM10 source contributions.84-85  Our spatial R2 

between annual mean PM2.5 CMAQ simulations and measurements of 0.63 (R value 

shown in Figure 3.4b) is lower than the R2 of 0.88 from a regionalized statistical 

approach developed for one year of annually averaged PM2.5 data over the contiguous 

U.S. using an extensive database of geographic covariates.86  This result is not surprising 

given the smaller geographic scale and absence of geographic covariates in our approach, 

which is more readily generalizable to other pollutants. 

3.3.2 Data Fusion Model Performance Characterization 

 Before presenting model cross-validation results (shown subsequently in Figure 

3.8), results are shown to characterize model performance.  Outputs from the three data 

fusion models (FC1, FC2, and FCopt) are compared with the monitor data in terms of the 

RMSE and the spatiotemporal, temporal, and spatial mean correlations in Figure 3.5; 

CMAQ simulation results are shown for comparison. 
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Figure 3.5 – Comparison between observations and simulations (CMAQ and three 
data fusion methods) for Georgia from 2002 to 2008 in terms of RMSE (panel a), 
spatiotemporal R2 values (panel b), average temporal R2 values (panel c), and 
spatial R2 values of mean concentrations (panel d). 

 RMSE values are lower and correlations higher for the FC1 and FCopt methods, as 

expected, since these methods use the daily observations.  Non-zero RMSE and 

correlation values less than one in these results demonstrate the impact of using the 

annual mean model, !", to provide spatial structure.  The FC2 method performs similarly 

to CMAQ, as expected, since the FC2 method is a rescaling of the CMAQ simulations. 

Biggest improvements in spatiotemporal R2 (Figure 3.5b) were with respect to PM10, 

PM2.5 and NH4; for these, the improvements were largely due to seasonal corrections 

(Table A.4).  The prediction of spatial variation in the annual mean fields is limited by 
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the ability of CMAQ to predict this variation; these limitations are greatest in the cases of 

1-hr maximum SO2 and 24-hr average PM10 (Figure 3.5d). 

 Average spatial FCopt distributions of each of the 12 pollutant concentrations over 

the entire domain and time period are shown in Figure 3.6.  Primary pollutants (NO2, 

NOx, SO2, CO and EC) are spatially more heterogeneous than pollutants of secondary or 

mixed origin (PM10, PM2.5, SO4, NO3, NH4 and OC), with greater urban-to-rural 

gradients.  The impacts of major urban centers are evident in these 12-km resolved fields 

as indicated by the location of concentration peaks.  On-road emission impacts are 

evident for the major interstates in the NO2, NOx, CO and EC fields, while impacts of 

coal combustion point sources are evident in the SO2 field. 
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Figure 3.6 – Temporally averaged optimized concentration fields (FCopt) normalized 
by their respective maximum, 2002-2008. 

 Estimated temporal correlation (Ropt) fields based on eq. 3.9 are shown in Figure 

3.7.  Two fields are shown for each of the pollutants that are not monitored with the same 

frequency across all sites; these pollutants are O3 (all monitors were operational between 

March and November and only a few monitors were in December, January and February) 

and PM species (daily and 1-in-3 or 1-in-6 day monitors).  The Ropt value is highest near 

a monitor and decreases as the distance to the nearest monitor increases.  For pollutants 

with observations only in metro-Atlanta, the estimated temporal correlation for regions 

far from metro-Atlanta is that of the CMAQ simulations. 
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Figure 3.7 – Temporally averaged correlation fields (Ropt), 2002-2008. 
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robust cross-validation results that allow for the exploration of difference in errors based 

on proximity to monitors.  Across monitors and days, the number of withheld data 

correspond to the number of observations for each pollutant (Table 3.1), ranging from 

7,720 for PM2.5-NH4 to 43,200 for PM2.5. 

 The normalized mean bias and RMSE, and Pearson R2 are shown for the three sets 

of data fusion predictions in Figure 3.8 for all monitors combined and for each of the 

SEARCH monitors (Jefferson St. in urban Atlanta and Yorkville in a rural area 60-km 

west of Atlanta).  Analysis of the Jefferson St and Yorkville results separately allows for 

assessment of the effects of spatial clustering of monitors.  All pollutants studied here 

were measured daily at these two sites, and other measurements of each pollutant were 

available nearer the Jefferson St. site than the Yorkville site. 

 The cross-validation results across all monitors indicate that average mean bias is 

less than 30 percent across pollutants, that 8-hr maximum ozone is predicted best (lowest 

RMSE and highest R2), and that 1-hr maximum SO2 is predicted worst (highest RMSE 

and lowest R2).  The optimized results from combining FC1 and FC2 tended to perform 

best in terms of lower RMSE and higher R2, as expected.  The temporal variation in 

pollutant concentrations were predicted better at Jefferson St. than at the Yorkville site, 

demonstrating the effect of having nearby measurements of a pollutant. 
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Figure 3.8 – Comparison of spatiotemporal Pearson R2, RMSE, and mean fractional 
error values between observations and all simulated at (a) all withheld monitor 
locations, (b) withheld Jefferson St. monitor location, and (c) withheld Yorkville 
monitor location for 2002-2008. 

3.4 Discussion 

 Our optimized data fusion approach combines two methods that have different 

strengths and limitations.  The FC1 fields have a structure similar to the annual mean 

CMAQ field and a temporal variation driven by that of the observations.  These estimates 

agree very well with observations.  The degree to which error is not zero and the 

correlations are not one at monitor locations is due to two factors. First, the annual mean 

model does not perfectly match observations.  The CMAQ simulations represent 12-km x 

12-km averages whereas the observations are point estimates.  Hence, the annual mean 

field is smooth without capturing sub-grid impacts of sources.  Second, the observations 

are assumed to have some error, based on the intercept of the correlogram, which 
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includes collocated instrument measurement data.  Therefore, the weighting factor used 

for calculating FCopt is not one.  Error associated with the FC1 estimates increases with 

increasing distance from observations.  The FC2 fields, on the other hand, have a spatial 

structure and a temporal variation similar to the daily CMAQ simulations.  Error 

associated with these estimates is largely independent of distance from observations. The 

optimized prediction (FCopt) is an average of the FC1 and FC2 predictions based on their 

estimated prediction of temporal variation (Eqs. 3.5 and 3.6, respectively). 

 The temporal correlation of optimized predictions and observations estimated by 

eq. 3.10 (Ropt) varies over time and space depending on the observations used in the 

estimates (average values are depicted in Figure 3.7).  These Ropt estimates conservatively 

approximate those assessed by the cross-validation evaluation of our optimized data 

fusion method (supporting material Figure A.5). 

 The cross-validation results (Figure 3.8) suggest that optimized data fusion results 

overall have lower percent mean bias and percent RMSE, and higher Pearson R2 values 

than the FC1 and FC2 results.  The results also suggest that the clustering of monitors can 

lead to an inflated estimate of model performance, as can be seen by comparing results at 

Jefferson St. (Figure 3.8b) and Yorkville (Figure 3.8c) for CO, NO2, and NOx.  With 

Jefferson St. data withheld, the Pearson R2 values of the FC1 estimates are higher than 

those of the FC2 estimates due to nearby observations being available.  With data from 

Yorkville withheld, however, the Pearson R2 values of the FC1 estimates are very low 

due to the lack of nearby observations.  For the primary pollutants CO, NO2, and NOx, 
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therefore, the FC2 estimates are better than the FC1 estimates for most of the study area 

and weighted more in calculating the FCopt estimates. 

 The major limitations in our data fusion approach are the spatial coverage of 

ambient measurements and the errors associated with CMAQ simulations.  For example, 

CO and NOx ambient monitors are located only in the metro-Atlanta region in Georgia.  

The cross-validation results indicate that the day-to-day variation of levels of pollutants 

of secondary origin (e.g., O3, NO3 and SO4) can be better predicted than that of primary 

pollutants (e.g., NOx, CO, SO2 and EC) due to the spatial homogeneity of the secondary 

pollutants and high spatial autocorrelation.  Limitations in CMAQ simulation of biogenic 

sources are consistent with the substantial improvements in spatiotemporal R2 when 

PM10, PM2.5, and NH4 CMAQ simulations are seasonally corrected (Table A.4).  

Variation in daily one-hour maximum SO2 concentrations is predicted very poorly due to 

the inability of the monitor network and CMAQ simulations to capture the day-to-day 

impacts of coal combustion plumes at ground level.  An implication for population-based 

acute health effect studies is that measurement error associated with spatial misalignment 

of SO2 exposure is very high even when ambient monitor data and deterministic chemical 

transport model simulations are fused. 

 Another limitation in our data fusion approach is an over-prediction of spatial 

autocorrelation.  In supporting material Figure A.6, spatial autocorrelation in 

observations, CMAQ simulations, and our data fusion results are compared.  Results 

suggest the data fusion results have more spatial autocorrelation than observations or 

CMAQ simulations.  This over-prediction of spatial autocorrelation is largely due to the 
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use of kriging in generating the FC1 field estimates, and is more pronounced for the more 

spatially homogeneous pollutants such as PM10, SO4, and NH4. 

 We use our cross-validation results to assess bivariate correlations as well, 

comparing the FCopt bivariate correlations with those of observations and those of 

CMAQ simulations at the urban and rural SEARCH locations (Figure A.7).  Overall, the 

CMAQ simulations tend to have higher bivariate correlations than observations, 

particularly in the cases in which one source category emits both pollutants.  Data fusion 

tends to reduce the over-prediction of correlation between many pollutants inherent in 

CMAQ predictions. 

 The data fusion method presented here for blending monitor data and CMAQ 

simulations to develop daily spatial concentration fields of multiple pollutants is being 

used in ongoing epidemiologic investigations of acute health effects of ambient air 

pollution in Georgia and in four metropolitan areas.35  Moreover, estimates of how well 

temporal variation is predicted, as a function of spatial location, allow for a measure of 

uncertainty to be used in the health analyses.  The strengths of this data fusion approach 

are twofold: (1) ambient air exposure estimates are consistent with observations, 

emissions, and meteorology; (2) estimates are optimized based on simulation of temporal 

and spatial variation. Limitations of the approach include the number and location of 

ambient monitors, and the spatial resolution and accuracy of CTM simulations. 

 In this paper, we have described a new method to produce spatiotemporal air 

quality fields that fuse CMAQ model simulations with ambient monitoring data, 
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correcting model biases and optimizing prediction of temporal variation over space.  We 

demonstrate that the method performs well estimating daily concentration fields of 

several pollutant gases and PM species, with the exception being SO2, which is poorly 

characterized due to the limited ability of monitors and models to capture ground-level 

plume impacts.  The approach is generalizable across pollutants with monitoring 

networks of limited and varied spatial coverage and sampling frequencies.  Overall, the 

method is well suited for studies of the acute health effects of air pollution, providing 

spatiotemporal exposure estimates and uncertainties. 
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CHAPTER 4. DAILY AMBIENT AIR POLLUTION METRICS 

FOR FIVE CITIES: EVALUATION OF DATA-FUSION-BASED 

ESTIMATES AND UNCERTAINTIES 

(Friberg, M.D., Kahn, R.A., Holmes, H.A., Chang, H.H., Sarnat, S.E., Tolbert, P.E., 

Russell, A.G. and Mulholland, J.A. Atmospheric Environment, 158: 36-50, 2017) 

Abstract 

 Spatiotemporal characterization of ambient air pollutant concentrations is 

increasingly relying on the combination of observations and air quality models to provide 

well-constrained, spatially and temporally complete pollutant concentration fields.  Air 

quality models, in particular, are attractive, as they characterize the emissions, 

meteorological, and physiochemical process linkages explicitly while providing 

continuous spatial structure.  However, such modeling is computationally intensive and 

has biases.  The limitations of spatially sparse and temporally incomplete observations 

can be overcome by blending the data with estimates from a physically and chemically 

coherent model, driven by emissions and meteorological inputs.  We recently developed a 

data fusion method that blends ambient ground observations and chemical-transport-

modeled (CTM) data to estimate daily, spatially resolved pollutant concentrations and 

associated correlations.  In this study, we assess the ability of the data fusion method to 

produce daily metrics (i.e., 1-hr max, 8-hr max, and 24-hr average) of ambient air 

pollution that capture spatiotemporal air pollution trends for 12 pollutants (CO, NO2, 
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NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) across five metropolitan areas 

(Atlanta, Birmingham, Dallas, Pittsburgh, and St. Louis), from 2002 to 2008. 

 Three sets of comparisons are performed: (1) the CTM concentrations are 

evaluated for each pollutant and metropolitan domain, (2) the data fusion concentrations 

are compared with the monitor data, (3) a comprehensive cross-validation analysis 

against observed data evaluates the quality of the data fusion model simulations across 

multiple metropolitan domains. The resulting daily spatial field estimates of air pollutant 

concentrations and uncertainties are not only consistent with observations, emissions, and 

meteorology, but substantially improve CTM-derived results for nearly all pollutants and 

all cities, with the exception of NO2 for Birmingham. The greatest improvements occur 

for O3 and PM2.5.  Squared spatiotemporal correlation coefficients range between 

simulations and observations determined using cross-validation across all cities for air 

pollutants of secondary and mixed origins are R2 = 0.88-0.93 (O3), 0.67-0.83 (PM2.5), 

0.81-0.89 (SO4), 0.43-0.80 (NH4), 0.52-0.72 (NO3), 0.32-0.51 (OC), and 0.14-0.71 

(PM10). 

 Results for relatively homogeneous pollutants of secondary origin, tend to be 

better than those for more spatially heterogeneous (larger spatial gradients) pollutants of 

primary origin (NOx, CO, SO2 and EC).  Generally, background concentrations and 

spatial concentration gradients reflect interurban airshed complexity and the effects of 

regional transport, whereas daily spatial pattern variability shows intra-urban consistency 

in the fused data.  With sufficiently high CTM spatial resolution, traffic-related pollutants 

exhibit gradual concentration gradients that peak toward the urban centers.  Ambient 
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pollutant concentration uncertainty estimates for the fused data are both more accurate 

and smaller than those for either the observations or the model simulations alone. 

4.1 Introduction 

 Although associations between ambient air pollution and acute cardiorespiratory 

outcomes have been observed in numerous studies,5-6, 9-11, 87-88 questions remain about the 

degree to which these findings can be generalized over multiple locations and whether 

the observed health effects are due to individual pollutants or to pollutants acting in 

combination.  Accurately estimating air quality concentrations has direct implications for 

assessing the specific drivers of adverse, multi-pollutant health effects, as well as the 

synergistic effects of multiple risk factors.  To estimate air quality concentrations and 

compare results across several metropolitan areas for use in epidemiological studies, a 

systematic and practical approach is needed for obtaining a quantitative understanding of 

the spatial and temporal correlation and variation of multiple ambient air pollutants. 

 Urban-level time-series epidemiological studies often span large geographic 

regions36, 8936, 8136, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 

8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8936, 8935, 8834, 8733, 8632, 8531, 8431, 8430, 8329, 8228, 

8127, 8026, 7925, 7824, 7723, 7622, 7521, 7420, 7319, 7317, 7315, 7112, 7010, 6810, 6810, 6810, 68.9, 69 Assessing the 

health effects of ambient air pollution in these studies is frequently done using limited 

numbers of centrally sited monitors as surrogates for population exposure.  Such 

networks might not adequately capture the spatiotemporal variability of pollutant 

concentrations and, therefore, might not accurately represent the outdoor air quality to 
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which the study subjects were exposed.89  This may be especially true for pollutants of 

primary origin that vary considerably on short space and time scales. 

 Reliance on air pollution metrics developed from sparse monitoring data have 

limitations for application in health studies.89-93  In general, the uncertainty of an air 

pollution metric depends on several factors, including instrument error, the 

spatiotemporal variability of the pollutant, and the method(s) used to develop such 

metrics. Error due to inadequately characterized spatial variability, which is often much 

larger than instrument error, can lead to substantial bias and reduced precision in health 

estimates.94-95  Improving the characterization of pollutant concentration spatial 

variability can reduce the impact of the metric’s uncertainty on epidemiologic results.90, 

95-97  In addition, for studies examining within-city heterogeneity of air pollution effects, 

such as effect modification by neighborhood socioeconomic status, spatially-resolved 

pollutant fields may reduce the potential for differential measurement error across 

neighborhoods compared to reliance on data from centrally-located monitors.13, 29-30, 90, 96, 

98-100 

 High-resolution, spatiotemporally-resolved air pollution datasets can offer public 

health researchers representative concentration and uncertainty estimates that increase the 

accuracy of ambient pollution estimates used in retrospective epidemiological studies.  

By quantifying the heterogeneity of air pollutant concentrations and their uncertainties in 

multiple cities, the underlying common attributes and effects can be identified and 

characterized.  We previously developed a data fusion approach that combines sparse 

observations with chemical transport model (CTM) results.101  In this paper, we apply the 
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data fusion approach to a multicity time-series study to overcome some of the 

consequences of sparse air quality ground-based observations, measurement error (i.e., 

spatial misalignment), and other factors that affect exposure metric uncertainty and error. 

We obtain 12 km resolution, spatiotemporally-resolved air pollution datasets (i.e., 

concentration fields and their associated uncertainty) for several primary and secondary 

pollutants over five metropolitan areas, evaluate the results, and discuss the degree to 

which these findings are generalizable among locations. 

4.2 Data 

4.2.1 Study Design 

 Study areas encompass five metropolitan areas: Atlanta, GA; Birmingham, AL; 

Dallas, TX; Pittsburgh, PA; and St. Louis, MO-IL (Fig. 4.1).  These non-coastal 

metropolitan areas were chosen because rich air quality datasets are available for each, 

and each offers distinct air quality characteristics that, taken together, represent many of 

the conditions found in larger U.S. metropolitan areas.  Table 4.1 shows the population 

and land-area data, obtained from the 2010 US Census, for the high population density 

core study regions, which include counties with population densities greater than 50 km-2.  

Core study areas include from 76% to 97% of the total population of each associated 

metropolitan statistical area (MSA) for each city, and from 36% to 87% of the total MSA 

land area (Table 4.1).  Atlanta and Dallas have the largest study areas, and the Dallas 

study area has the highest population.  Birmingham is smallest in population, and 

Birmingham and Pittsburgh have the smallest areas.  
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Figure 4.1 – Five city m
etropolitan statistical areas, counties, and m

onitor locations. 
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Table 4.1 – Population and size data for the five-cities study areas. 

 

 Average temperatures are similar across the cities, whereas seasonal mean 

precipitation and afternoon relative humidity show greater variation (Fig. 4.2).102 Atlanta 

and Birmingham receive more precipitation than Dallas, Pittsburgh, and St. Louis. From 

2002 through 2008, the average wind speed for Dallas was 9.5 m/s, compared to 8.7 m/s 

for St. Louis, 8.1 m/s for Atlanta, 7.3 m/s for Pittsburgh, and 6.1 m/s for Birmingham. 

Atlanta and Birmingham show similar mean temperature and relative humidity trends, 

but dissimilar mean wind speed and precipitation trends. Dallas has the highest 

temperatures and highest wind speeds, whereas Pittsburgh has the lowest temperatures 

and second-lowest wind speeds. St. Louis has the greatest summer-winter difference in 

temperature. 

Cities Counties No. 2010 Population Area (km2) 
Atlanta, GA 28 5.6 M 26,873 
Birmingham, AL 7 1.2 M 15,577 
Dallas, TX 12 6.7 M 36,325 
Pittsburgh, PA 7 2.45 M 14,607 
St. Louis, MO-IL 15 + city 2.9 M 23,504 
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Figure 4.2 – Monthly mean climatology data for five cities for the 2002 to 2008 
period from the NNDC CDO system database. 

4.2.2 Air Pollution Observations 

 The current study focuses on 12 pollutants: five gases (CO, NO2, NOx, O3, and 

SO2), two particulate matter (PM) mass measurements (PM10, PM2.5), and five PM2.5 

components: sulfate (SO4), nitrate (NO3), ammonium (NH4), elemental carbon (EC), and 

organic carbon (OC).  Ambient air concentrations for these 12 pollutants of interest were 

acquired for the 2002 to 2008 period from several ground-based monitoring networks 

within or near the MSA of each city.  Data were obtained from the following networks: 

the State and Local Air Monitoring Stations (SLAMS) network; the Chemical Speciation 

Network (CSN);103 the Southeastern Aerosol Research and Characterization (SEARCH) 

network;104 the Interagency Monitoring of Protected Visual Environments (IMPROVE) 

network;103 and the Assessment of Spatial Aerosol Composition in Atlanta (ASACA) 
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network.105  For PM measurements, hourly Federal Equivalent Methods (FEMs) data 

were calibrated to Federal Reference Method (FRM) data,106 and EC and OC 

measurements by the thermal optical transmittance (TOT) method were converted to be 

equivalent to thermal optical reflectance (TOR) measures.107-108 

 Data were treated as missing on days with fewer than 16 hourly observations for 

hourly sampled species. Otherwise the missing hourly measurements of gases and PM 

mass were estimated by linear interpolation within days with at least 16 hourly 

observations.  Daily metrics, based on the National Ambient Air Quality Standards for 

criteria pollutants, were calculated for each pollutant of interest for the health analyses; 

these are one-hour maxima for CO, NO2, NOx, and SO2, the eight-hour daily maximum 

for O3, and 24-h averages for PM10 and PM2.5 masses and PM2.5 species.  Details 

regarding the central site selected for each pollutant and imputations done to fill in for 

missing data can be found elsewhere.100, 109-111  Table 4.2 provides the city-specific time 

range, number of observations based on daily data across all monitors, number of 

monitors, summary statistics and the distribution of measurements of all observations 

based on daily data across all monitors used in this study by city and pollutant.  Monitor 

locations are also shown in Fig. 4.1. 
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Table 4.2 – Descriptive statistics for ground-based observations, categorized by 
metropolitan area and species for 2002-2008. 

 

Pollutant (units) City Obs. No. Monitor No. Mean Q1 Q2 Q3 IQR SD Missing 
 Atlanta, GA 9582 5 0.8 0.3 0.6 1.1 0.8 0.6 25% 

CO Birmingham, AL 11760 5 1.4 0.3 0.8 1.6 1.3 2.1 8% 
1-hr max. Dallas, TX 7087 4 0.6 0.3 0.5 0.8 0.6 0.5 19% 

(ppm) 
 
 
 

Pittsburgh, PA 14258 6 0.6 0.3 0.5 0.8 0.6 0.5 7% 

 St. Louis, IL-MO 6827 5 0.9 0.5 0.7 1.1 0.6 0.7 38% 

 Atlanta, GA 16045 7 22.9 8 20 35 27 16.6 10% 
NO2 Birmingham, AL 3917 2 17.9 3.3 9 31.3 28 17.8 23% 

1-hr max. Dallas, TX 23693 13 21.7 12 20 30 18 12.5 17% 
(ppb) Pittsburgh, PA 20208 9 25.6 17 25 33 16 12 12% 

 St. Louis, IL-MO 14331 10 28.4 20 28 36 16 12.5 35% 

 Atlanta, GA 16032 7 0.06 0.01 0.03 0.07 0.06 0.08 10% 
NOx Birmingham, AL 3914 2 0.04 0.00 0.01 0.05 0.04 0.05 23% 

1-hr max. Dallas, TX 23969 13 0.04 0.01 0.03 0.05 0.04 0.04 16% 
(ppm) Pittsburgh, PA 20201 8 0.06 0.02 0.04 0.08 0.05 0.05 1% 

 St. Louis, IL-MO 7777 7 0.05 0.02 0.04 0.06 0.04 0.05 49% 

 Atlanta, GA 24018 16 11.00 2.00 5.00 13.50 11.50 15.10 41% 
SO2 Birmingham, AL 6804 3 12.20 3.50 7.60 15.80 12.30 14.50 11% 

1-hr max. Dallas, TX 8916 6 5.30 1.00 2.00 5.00 4.00 10.70 32% 
(ppb) Pittsburgh, PA 28372 14 22.50 10.00 17.00 28.00 18.00 18.90 21% 

 St. Louis, IL-MO 21182 16 16.10 4.00 9.00 17.00 13.00 26.50 40% 

 Atlanta, GA 42734 27 0.05 0.04 0.05 0.06 0.02 0.02 38% 
O3 Birmingham, AL 24169 14 0.05 0.03 0.05 0.06 0.02 0.02 32% 

8-hr max. Dallas, TX 36274 20 0.04 0.03 0.04 0.05 0.02 0.02 17% 
(ppb) Pittsburgh, PA 17404 11 0.05 0.03 0.05 0.06 0.02 0.02 38% 

 St. Louis, IL-MO 17696 18 0.05 0.03 0.05 0.06 0.03 0.02 55% 

 Atlanta, GA 11155 20 23.40 15.00 22.00 29.80 14.80 11.50 78% 
PM10 Birmingham, AL 13375 13 33.00 18.00 27.00 41.00 23.00 22.70 60% 

24-hr avg. Dallas, TX 1369 10 24.40 16.00 22.00 30.00 14.00 11.30 94% 
(µg/m3) Pittsburgh, PA 26591 18 24.10 12.80 19.40 30.40 17.50 16.70 42% 

 St. Louis, IL-MO 694 5 25.70 17.00 24.00 31.00 14.00 11.70 94% 

 Atlanta, GA 43200 45 14.80 9.30 13.40 18.70 9.40 7.70 62% 
PM2.5 Birmingham, AL 20376 16 15.40 9.50 13.50 19.30 9.80 8.30 50% 

24-hr avg. Dallas, TX 23533 22 10.80 6.90 9.70 13.60 6.70 5.50 51% 
(µg/m3) Pittsburgh, PA 13744 15 15.30 8.60 12.80 19.00 10.50 10.00 64% 

 St. Louis, IL-MO 16515 17 14.70 9.20 13.10 18.50 9.30 8.10 56% 

 Atlanta, GA 9306 14 4.10 2.10 3.30 5.30 3.20 2.90 74% 
PM2.5-SO4 Birmingham, AL 5186 5 4.20 2.30 3.40 5.10 2.80 2.90 59% 
24-hr avg. Dallas, TX 2216 5 3.20 1.60 2.70 4.20 2.60 2.10 80% 

(µg/m3) Pittsburgh, PA 1810 4 5.20 2.50 3.90 6.30 3.80 4.10 82% 
 St. Louis, IL-MO 2525 6 3.80 1.80 3.00 4.60 2.80 3.20 81% 
 Atlanta, GA 9290 14 0.70 0.30 0.50 0.80 0.60 0.70 74% 

PM2.5-NO3 Birmingham, AL 5277 5 0.60 0.20 0.40 0.80 0.60 0.70 59% 
24-hr avg. Dallas, TX 2216 5 0.70 0.20 0.40 0.80 0.60 1.10 80% 

(µg/m3) Pittsburgh, PA 1732 4 1.40 0.50 0.90 1.80 1.30 1.30 83% 
 St. Louis, IL-MO 2078 6 2.30 0.60 1.30 3.20 2.60 2.30 84% 
 Atlanta, GA 7716 14 1.40 0.80 1.20 1.80 1.00 0.90 78% 

PM2.5-NH4 Birmingham, AL 5424 5 1.30 0.70 1.10 1.70 1.00 0.90 58% 
24-hr avg. Dallas, TX 2215 5 1.20 0.60 1.00 1.60 1.00 0.90 80% 

(µg/m3) Pittsburgh, PA 1732 4 2.00 1.10 1.70 2.50 1.50 1.40 83% 

 St. Louis, IL-MO 2060 6 1.80 0.90 1.50 2.50 1.50 1.30 84% 

 Atlanta, GA 9043 14 0.90 0.40 0.70 1.10 0.70 0.80 75% 
PM2.5-EC Birmingham, AL 5874 5 1.10 0.40 0.70 1.30 0.90 1.10 54% 
24-hr avg. Dallas, TX 2252 5 0.60 0.30 0.50 0.80 0.50 0.40 79% 

(µg/m3) Pittsburgh, PA 1501 4 0.90 0.40 0.60 0.90 0.50 1.20 85% 

 St. Louis, IL-MO 2740 6 0.90 0.40 0.70 1.20 0.70 0.70 79% 

 Atlanta, GA 9017 14 3.20 1.80 2.80 4.00 2.20 2.00 75% 
PM2.5-OC Birmingham, AL 5615 5 4.00 2.40 3.30 4.80 2.40 2.50 56% 
24-hr avg. Dallas, TX 2254 5 3.10 2.10 2.80 3.80 1.80 1.50 79% 

(µg/m3) Pittsburgh, PA 1674 4 3.90 2.50 3.50 4.80 2.40 2.30 84% 

 St. Louis, IL-MO 2392 6 3.70 2.30 3.40 4.60 2.20 1.80 82% 

The number of observations and summary statistics are based on daily data across all monitors acquired for the 2002 to 2008 period with the 
exception of St. Louis (2002-2007) and Dallas (2003-2008). Q1, Q2, and Q3 are the lower, median, and upper quartile of the observed values. 
The interquartile range (IQR) is the difference between the upper and lower quartiles. Missing refers to the percent of absent daily metrics over 
the study period. The larger PM mass and species fractions of missing data are a result of PM measurement sampling frequency of 3 or 6 days. 
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4.3 Methods 

4.3.1 Chemical Transport Model Simulations 

 The U.S. Environmental Protection Agency (EPA) and Centers for Disease 

Control (CDC) collaborated in the Public Health Air Surveillance Evaluation (PHASE) 

project using the Community Multi-Scale Air Quality (CMAQ) model, to provide hourly 

air pollutant concentration fields over the eastern U.S., at a spatial resolution of 12 km 

and for the period that includes 2002-2008, for the purpose of public health analysis.112-

113  CMAQ is a deterministic chemical transport model that provides spatially- and 

temporally-resolved simulated outputs. The U.S. EPA conducted a comprehensive model 

evaluation of CMAQ version 4.5 for several different key synoptic weather patterns.114-

115 In that study, ozone simulation results were consistent with previous evaluations, 

where the model captured daily trends but had difficulty capturing the upper and lower 

limits of the observations.  CMAQ had a tendency to over-estimate fine particulate matter 

mass during the autumn and winter.  EPA’s evaluation of CMAQ model version 4.5 also 

showed that particulate sulfate simulations were improved, compared to results of the 

previous version, due to changes in dry deposition velocity and cloud treatment. 

Particulate nitrate and ammonium were highly over-estimated by the CMAQ model 

version 4.5 during the fall.  The evaluation also found that unresolved secondary organic 

aerosol pathways in the model contributed to under-estimation of carbonaceous aerosols 

during the late spring and summer months. 

4.3.2 Data fusion exposure metrics  
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 The applied data fusion approach blends ambient ground observations and 

modeled data from a CTM to estimate daily spatially-refined pollutant metrics and 

associated correlations.  This hybrid method provides daily spatial field estimates of air 

pollutant concentrations and uncertainties that are consistent with observations, 

emissions, and meteorology; it is summarized briefly below, and is described in detail by 

Friberg et al.24 

 The optimized spatiotemporal concentration dataset (Copt) is built using weighted 

fields of daily interpolated surface observation ratios and daily adjusted CMAQ result 

ratios that are rescaled to estimated annual mean fields (eq. 4.1): 
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(4.1) 

Here, αyear is a regression parameter that adjusts the amplitude to account for interannual 

differences, CCMAQ represents CMAQ simulated concentrations, the overbar indicates 

annual temporal averaging, β is a regression parameter that accounts for interspecies 

nonlinearity differences, s indicates spatial location, t represents time, W is a weighting 

factor, COBS represents observed concentrations, sm indicates monitor locations, and 

!!"#!$% is a species-specific, seasonal correction function having amplitude, phase, and 
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sinusoidal form.  Scaling the daily ratio fields by the spatially regressed annual mean 

observations reduces model biases.  The estimated annual mean fields are developed 

from CMAQ-derived annual mean spatial fields adjusted to observed annual means using 

power regression models.  These regression parameters are city-, pollutant-, and year-

specific, because the spatial pattern of emissions, annual effects of meteorological 

variables, and CMAQ biases differ among the five cities (supplemental material). The 

exponent β is assumed to be constant across years, whereas αyear changes annually. 

 The daily-resolved observation-based ratio fields capture the robust temporal 

variance characterized by ground monitors.  These concentration fields are calculated by 

spatially interpolating the normalized daily observed concentrations using kriging. The 

daily adjusted CMAQ result ratios capture the spatial variance while reducing bias. The 

optimization is based on a spatiotemporal weighting factor (W) that maximizes the degree 

to which the observation-based estimate captures temporal variation relative to the 

CMAQ-based estimate, as a function of distance from an observation (eq. 4.2).  Due to 

missing data, the weighting factors vary over time as well as space. The temporal Pearson 

correlation fields of the daily observation-based fields, R1, are derived using an 

exponential correlogram modeled to fit the isotropic spatial autocorrelation of the 

observations (eq. 4.3).  The fitted parameters include the intercept which results from 

instrument error estimated by collocated instruments (Rcoll), the distance between a grid 

centroid to the nearest observation on a given day (x), and the range (r) at which the 

correlation between monitors has decreased to an e-folding of Rcoll. The term R1 varies 

over space and time because the observation frequency varies among monitors. The 
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average of the temporal correlations of the CMAQ simulations and observations across 

all monitors (!!!) is used to estimate R2, which represents the estimated temporal 

correlation of the daily adjusted CMAQ results ratio fields and ambient pollution (eq. 

4.4).  The spatiotemporal weighting factor is also applied to the observation- and CMAQ-

based temporal correlation fields to quantify the uncertainties of the optimized 

spatiotemporal concentration dataset (Ropt; eq. 4.5). 

 
!!,! =  

!!!,! 1− !!
!!!,! 1− !! + !! 1− !!!,!

 (4.2) 

 !!!,! ≈ !!"##!!!!,!/! (4.3) 

 !! ≈
1
!!!

!"## !!"#!!(!),!!"#$!!(!)
!!

 (4.4) 

 !!"#!,! =
!!,!!!!,! + 1−!!,! !!  !! >  !!

!! !! =<  !!
 (4.5) 

4.3.3 Taylor Diagram 

 For this study Taylor diagrams are used to visually summarize how well model 

results match observations and to evaluate performance changes among models.116-117 

Patterns between the modeled datasets relative to the observations can be quantified and 

graphically summarized in terms of four statistical measures of model performance that 

are defined in the supplemental material: spatiotemporal Pearson correlation (R) 

calculated using all spatial and temporal model values coincident with observations 
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(Supplemental eq. S3), centered pattern of the root-mean-square difference (eq. S7), 

standard deviation (eq. S6), and mean bias (eq. S8). Combined, these statistics provide 

key information about the differences in amplitude of their variance, degree of accuracy, 

correlation, and biases between the simulated and observed datasets into a single plot. 

 Measures of model performance are located in the first quadrant of the Taylor 

diagram when the simulated datasets are positively correlated with the observations (e.g., 

Fig. 4.3 and Supplemental Figs. B.2-B.5).  The abscissa of the Taylor diagram represents a 

perfect correlation between the simulated data and the observations.  The correlation 

between the modeled and observed datasets is given by the azimuthal position of the 

modeled dataset.  The radial distance from the origin is proportional to the normalized 

standard deviation (NSD) of the modeled dataset.  Normalization of the pollutant-city 

datasets by the corresponding standard deviation of the observations allows all the cities 

to be shown on the same plot.  The distance between the modeled and observed data 

overall is proportional to the normalized centered (i.e., unbiased) root-mean square 

difference (NCRMSE), represented by a combination of R and NSD values as green 

concentric circles about the reference point.  The reference point, plotted as a unit 

distance along the abscissa, represents ideal model-to-observation performance statistics 

(R=1, NSD=1, and NCRMSE=0).  The data points nearest the reference point, the green 

bull’s eye in Fig. 4.3, have the smallest NCRMSE values and thus provide the closest fit 

to the observed data.  By adding the mean bias (MB) to the diagrams (encoded as color 

within the markers), the performance measures provide information about both 
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systematic and unsystematic errors.  The MB color scale assignment changes per 

pollutant. 
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Figure 4.3– Spatiotem
poral correlation coefficient (R
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4.4 Results 

 This study includes different numbers of monitors for each of the 12 pollutants 

across the 5 regional domains.  Three sets of comparisons are performed. First, the model 

concentrations CCMAQ are evaluated for each pollutant and metropolitan domain.  Second, 

Copt is compared with the monitor data, to characterize data fusion model performance.  

Third, results of a comprehensive cross-validation analysis are presented, to evaluate data 

fusion model simulative capabilities across multiple metropolitan domains.  Although 

observations have inherent measurement errors, the model performance criteria are 

quantified in terms of how well the model results fit observed data. 

4.4.1 CMAQ Simulation Performance 

 The CMAQ model evaluation conducted by the U.S. EPA was extended to 

include the multi-year spatial and temporal domains of the pollutant metrics for 12 

pollutants: CO, NO2, NOx, O3, SO2, PM10, PM2.5, and fine particulate components NH4, 

NO3, SO4, OC, and EC (Fig. 4.3, Supplemental Table B.4).  The Taylor diagram panels 

(Fig. 4.3) graphically summarize the correlation, normalized centered root-mean-square 

difference, normalized standard deviation, and mean bias (eqs. B.1-B.7) for the CCMAQ 

and Copt results for each city, stratified by pollutant.  This figure shows the spatiotemporal 

Pearson correlation, which assesses the model simulation of variation over space and time, 

coincident with observations.  The simulations are distinguished by marker edge color, with 

CCMAQ statistics outlined in red and Copt statistics outlined in black.  Each model-related 

result is further categorized into the five distinct city domains indicated by five different 
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marker shapes and orientations:  Atlanta (diamond), Birmingham (square), Dallas 

(circle), Pittsburgh (star), and St. Louis (triangle). 

 The CCMAQ statistical performance patterns across all cities vary widely across the 

12 pollutants studied (Fig. 4.3).  The CCMAQ simulation statistics for ozone and sulfate 

show the strongest clustering pattern and best performance across all cities.  Their 

spatiotemporal correlations to observations for all cities are greater than 0.81 and 0.71, 

and their RMSEs are lower than 0.011 ppb and 2.31 µg/m3, respectively. 

 The squared temporal correlations (Table B.4) are also highest for ozone and 

sulfate.  Other pollutants show lower correlations and larger spread of values across 

cities.  With the exception of Dallas, the CCMAQ simulation statistics for PM2.5 also show a 

strong clustering pattern across all cities and relatively high spatiotemporal correlations 

to observations, with values above 0.55 (Dallas R=0.39).  CCMAQ statistical performance 

is poorest across all cities for SO2 and PM10.  Their spatiotemporal correlations with 

observations for all cities have the lowest values, ranging between 0.1 to 0.41 and 0.29 to 

0.57, whereas their RMSEs range between 11.76 and 29.88 ppb and 11.98-23.96 µg/m3, 

respectively.  CCMAQ simulation RMSE and SD statistics were consistently high across all 

cities for NO2, SO2, PM10, and PM2.5 (Table B.4).  CCMAQ simulated the spatial, temporal, 

and spatiotemporal variations least accurately in 1-hr maximum SO2 and 24-hr average 

PM10, demonstrating known limitations in the CMAQ model to simulate ground-level 

impacts of SO2 plumes and biogenic PM10 source contributions.118-119 

4.4.2 Data Fusion Simulation Performance 
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 As expected, Copt improves the MB and NCRMSE compared to the CCMAQ results 

across most cities and pollutants over the seven-year period (Fig. 4.3).  The MB and 

NCRMSE underperformance of the Copt dataset for NO2 at Birmingham and NO3 at 

Pittsburgh are a result of averaging over space (Fig. B.2).  The Copt improvements for 

NO3 in Pittsburgh, where the NSD is poorer but R (Fig. 4.3) and R2 (Table B.4) are closer 

to unity, is an example of the chosen tradeoffs between improving correlation and 

improving the standard deviation.  Among the cities, the highest centered NCRMSE and 

NSD variability of CCMAQ results is seen for NO3.  Spatiotemporally and temporally, Figs. 

4.3 and B.2 show the Copt dataset significantly improves the CCMAQ results for nearly all 

pollutants and all cities (with the exception of NO2 for Birmingham), with the greatest 

correlation improvements occurring for O3 and PM2.5 and the least for SO2.  Spatially, the 

variance in R2 values (Table B.4) derives from the dependence of Copt on CCMAQ. For 

example, NO2, NOx, and SO2 at Birmingham, and PM10 at St. Louis exhibit relatively 

high spatial R2 values as compared to the other cities because they have the smallest 

number of monitoring sites for these particular pollutants, causing the optimization to 

rely heavily on CCMAQ results rather than observations.  Blanchard et al., (2014) found 

several Birmingham monitors for PM10, PM2.5, and NOx to be affected by emissions from 

local sources.43  The combination of CMAQ underestimating nitrogen oxides at the 

affected Birmingham monitor and the lack of monitors (only 2 monitors in Birmingham) 

leads to underperformance in the fusion dataset, with an increase in MB and RMSE.  The 

Copt statistics indicate a decrease in Copt model performance relative to the CCMAQ 

statistics for NOx in Birmingham, where the NCRMSE increased and the correlation 
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decreased.  Another pollutant that showed minimal Copt-related performance 

improvements is PM10 for Birmingham, again due to sparse monitoring.  The elevated 

PM10 concentrations in this study agree with the levels reported by Blanchard et al., 

(2014).  Overall, the spatial R2 values are fairly consistent across both modeled datasets, 

with SO2 and PM10 being the lowest.  Spatiotemporal correlation coefficient values for 

primary gases show wider variance (i.e., greater azimuthal coverage) across cities, 

whereas PM2.5, speciated PM2.5, and O3 show the least amount of variance and highest 

values (Fig. 4.3). 

 Density scatter plots of modeled results (CCMAQ, Copt) versus coincident 

observations for 2002-2008 per city and pollutant are shown in Fig. B.1.  The regression 

correlation coefficients for Copt are higher than the CCMAQ results across all pollutants and 

cities (with the exception of NO2 in Birmingham), indicating better fits at observation 

locations. 

 Average spatial Copt distributions of each of the 12 pollutant concentrations and 

five cities during a seven year span are shown in Fig. 4.4.  Primary pollutants (CO, NO2, 

NOx, SO2, and EC) are spatially more heterogeneous than pollutants of secondary or 

mixed origin (O3, PM10, PM2.5, SO4, NO3, NH4 and OC), with greater urban-to-rural 

gradients, as might be expected.  Coarse and nitrate particulates are examples of spatially 

homogenous pollutants showing minimal spatial variation across all cities.  Spatially 

heterogeneous pollutants are characterized as those pollutants whose intraurban temporal 

correlations exhibit less uniformity over space (Fig. 4.5).  The impact of major urban 

centers is evident in these 12-km resolved fields, as indicated by the locations of 
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concentration peaks.  The Ropt temporal correlation fields based on eq. B.4 are shown in 

Fig. 4.5.  The Ropt values are highest near monitors and decrease as the distance to the 

nearest monitor increases.  For pollutants with observations only in metro-areas, the 

estimated temporal correlation for non-metro areas is that of the CCMAQ in these plots. 

 

Figure 4.4 – Mean optimized concentration fields (Copt) of (a) primary and (b) 
secondary or mixed origin pollutants, 2002-2008. 
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Figure 4.4 – (continued) 
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Figure 4.5 – Mean correlation coefficient fields (Ropt) of (a) primary and (b) 
secondary or mixed origin pollutants, 2002-2008. 
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Figure 4.5 – (continued) 
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 The interurban comparison of Copt (Fig. 4.4) shows Atlanta and Dallas have the 

highest ozone levels and most notable urban area ozone titration effects by primary 

pollutants (e.g., NOx) of the five cities.  Atlanta followed by Pittsburgh and St. Louis 

have high NO2/NOx, and high PM2.5 carbon levels, indicative of high motor vehicle 

pollution.  On the other hand, Dallas has low levels of primary pollutants relative to the 

other cities in this study, likely due to its higher wind speeds.  The wide range in wind 

speeds in Dallas, Atlanta and St. Louis results in different mixes of primary and 

secondary air pollutants from motor vehicles.  Dallas is higher in ozone, derived in large 

part from motor vehicle emissions, and lower in primary motor vehicle emissions,120-121 

whereas St. Louis is higher in primary motor vehicle emissions (e.g. copper from brake 

linings).122-125  Atlanta is high in both primary and secondary motor vehicle emission 

impacts.36, 96, 106, 126-127  Pittsburgh is affected by coal-fired power plants, as evidenced by 

high SO2 levels, and high sulfate and selenium (often used as a coal emission tracer) 

levels.128-129  The high SO2 and PM2.5-SO4 values for Pittsburgh are distributed around the 

region, reflecting the distribution of coal-fired power-plant sources.  Birmingham is 

impacted by industrial sources, with high levels of a number of metals; its low wind 

speeds results in the slow primary PM2.5 dispersion, contributing to high CO levels as 

well.104, 130  Thus, the five cities included in this analysis have different ambient pollution 

mixtures that represent a broad range of large, non-coastal U.S. urban areas.  Figs. 4.3 

and B.2 show the statistical performance patterns across the five cities are particularly 

good for O3, PM2.5, NH4, and SO4, indicating CMAQ’s ability to capture temporal trends.  

In general, the Copt statistics show improvements in correlation and NCRMSE across all 
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cities when compared to the CCMAQ statistics, with the exception of the NOx.  The 12 km 

resolution CMAQ simulations used in this application are too coarse to capture the fine 

spatial gradients of NOx and other primary pollutants emitted from mobile sources near 

roadways.  Conversely, the 12 km resolution is adequate to capture the spatial uniformity 

of secondary aerosol. For O3 and PM2.5, the clustering of Copt-related points around the 

reference point shows clear improvements across all cities, as compared to the CCMAQ 

points. 

 The Copt statistical performance patterns in Fig. B.2 are particularly high for O3 

and PM2.5, and noticeable for SO4, NH4, NO3, OC, and PM10 across all cities.  Their range 

of spatiotemporal squared-correlations to observations across all cities are R2 = 0.90-0.97 

(O3), 0.38-0.84 (PM10), 0.86-0.90 (PM2.5), 0.77-0.97 (NO3), 0.87-0.98 (SO4), 0.75-0.98 

(NH4), and 0.60-0.95 (OC), respectively.  The Copt for SO2 has the poorest performance 

across all cities, with spatiotemporal R2 ranging between 0.13 and 0.59, RMSE values 

ranging between 9.68 and 25.74 ppb, and SD values ranging between 6.62 and 22.59 ppb.  

Although the Copt results for SO2 show some improvements in correlations, the seemingly 

unchanged NCRMSE values cause a de-clustering effect in the Taylor plots.  Dallas has 

the lowest background SO2 concentrations, whereas Pittsburgh has the highest 

background SO2 concentrations, which in turn lead to the highest sulfate concentrations.  

The localized SO2 peaks coincide with stationary sources and exhibit steep spatial 

concentration gradients (Fig. 4.4). 

 The Taylor diagrams shown in Fig. B.2 depict the model results by monitor and 

temporal Pearson correlation for each city and pollutant.  Normalization of the pollutant-
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city datasets by the corresponding SD of the observations allows data for all the cities to 

be included in each panel.  Comparison between the CCMAQ and Copt statistics indicates 

performance improvement and less heterogeneity across cities in the latter dataset, across 

all four statistics for the secondary pollutants.  The primary pollutants, on the other hand, 

show more variability at the interurban level and across cities.  Performance 

improvement trade-offs of the optimized dataset are more apparent in these panels, which 

graphically summarize the temporal correlation, NCRMSE, NSD, and MB (eqs. S1, S4, 

S6-S8) for the CCMAQ and Copt results for each city, classified by pollutant.  For example, 

in Fig. B.2 the NOx panel for St. Louis indicates that for one particular monitor, 

improvements in correlation come at the expense of worsening the NSD, RMSE, and MB 

values.  

4.4.3 Data Fusion Cross-validation Performance 

 To evaluate the potential advantages of the data fusion model, the cross-validation 

spatiotemporal, temporal, and spatial correlations are compared for Copt and CCMAQ.  The 

data fusion model performance is evaluated using a comprehensive tenfold 10% 

withholding cross-validation analysis per city and pollutant.  That is, ten percent of the 

observations are randomly held back across all monitors and days per pollutant, city, and 

trial.  The data fusion method is then applied to simulate the withheld data per pollutant, 

city, and trial.  The results from the trials for each pollutant and city are then combined to 

provide robust cross-validation results that allow for the exploration of differences in 

errors based on proximity to monitors.  Across monitors and days, the number of 
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withheld data points corresponds to the number of observations for each pollutant and 

city (Table 4.1), ranging from 695 for PM10 in St. Louis to 43,200 for PM2.5 in Atlanta. 

 Fig. 4.6 summarizes the 10-fold cross-validation spatiotemporal correlation 

results for Copt and coincident CCMAQ for the twelve pollutant concentrations on days 

without model-observation pairs, or at locations without pollutant monitors.  The cross-

validation Copt spatiotemporal variance (Pearson R2) values across all cities are 0.88-0.93 

(O3), 0.14-0.71 (PM10), 0.67-0.83 (PM2.5), 0.52-0.72 (NO3), 0.81-0.89 (SO4), 0.43-0.80 

(NH4), and 0.32-0.51 (OC), respectively. Cross-validation Copt metrics for SO2 and CO 

are poorest across all cities with spatiotemporal R2 from 0.0 to 0.19 and 0.0 to 0.53, 

respectively.  Cross-validation demonstrates a wide range in optimized model 

performance across pollutants, with SO2 simulated most poorly due to limitations in coal 

combustion plume monitoring and modeling.  This performance analysis indicates that 

higher resolution CMAQ simulations are needed to resolve the spatial gradients of 

primary pollutant, especially those related to roadway emissions.  The emission-source-

related trends are discussed further in the following section. For the other cross-validated 

pollutants studied, 0.54-0.88 of the spatiotemporal R2 was captured, with ozone and 

PM2.5 simulated best. 
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Figure 4.6 – C
ross-validation spatiotem

poral correlation coefficient (R
)T

aylor diagram
s show

 norm
alized statistics for five 

cities, indicated by sym
bols, per pollutant. C

C
M

A
Q  sym

bols are outlined in red, w
hereas C

opt  in black. T
he sym

bol color 
indicates the m

ean absolute gauge error.  
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 Data fusion captures temporal variance overall better than CMAQ (Fig. B.3).  

Despite decreasing the number of available observations, data fusion increases the 

temporal correlations, as compared to unadjusted CMAQ values, due to the method’s 

integration of observations.  The Copt SO2 spatial correlations are the lowest of all the 

pollutants across all cities with the exception of Birmingham.  The SO2 spatial R2 values 

are below 0.20 (eq. B.5, Table B.5).  Similar to NOx and NO2, Birmingham’s low SO2 

spatial correlation arises from having the fewest monitors (Table 4.2 and Fig. 4.4-4.5). 

 Based on Figs. B.4 and B.5, seasonally, the Copt results are biased high for NO3 

across all locations in fall and biased low in the summer. Copt results are biased low for 

EC and OC at the rural sites from May through August, although the EC biases are 

minimal. These are a result of the CMAQ systematic biases.114-115  For Pittsburgh, 

seasonal Copt trends for particulate mass and component concentration corroborate the 

results by Tang et al., (2004).  Particulate nitrate dominated the PM2.5 total mass 

concentrations in winter, whereas sulfate dominated in summer.  Large regional PM2.5 

contributions to the Atlanta area are most notable during the summer months, supporting 

results from previous studies.36  Several of the particulate sulfate concentration peaks 

coincide with the SO2 peaks from power plants.  Consistent with model results from 

Takahama et al. (2004), the conversion of SO2 to sulfate is significantly faster in the 

summer across all cities (Fig. B.6 in supplemental material). 

4.5 Discussion 
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 Data fusion leads to improved spatiotemporal fields versus using unadjusted 

datasets, providing substantial improvements over CMAQ alone for nearly all pollutants 

and all cities, with the exception of NO2 for Birmingham, which is affected by a paucity 

of measurement stations.  The greatest spatiotemporal cross-validation correlation 

improvements occur for O3 and PM2.5, and the least for SO2 (Table 4.3), probably 

because O3 is a secondary and spatially more homogeneous pollutant with a high percent 

of available daily metrics, whereas SO2 sources tend to be spatially dispersed and not 

very well characterized.  In agreement with previous studies, the measurement error 

associated with spatial misalignment of SO2 exposure is very high, even when ambient 

monitor data and deterministic chemical transport model simulations are fused. Some 

factors that limit the data fusion results are: (1) the spatial coverage of ambient 

measurements and the biases associated with CMAQ simulations (e.g., NOx and NO2 in 

Birmingham), (2) inflated estimates of model cross-validation performance linked to the 

clustering of monitors, such as PM2.5 mass in Atlanta (Fig. 4.1), (3) over-estimation of 

spatial autocorrelation due to the use of kriging in the daily interpolated observation ratio 

field estimates, which tends to affect the more spatially homogeneous pollutants (e.g., 

PM10, SO4, and NH4), and (4) situations where CMAQ has systematic biases and 

measurements that could correct the results are lacking (e.g., NO3 and carbonaceous 

aerosols).  Nevertheless, the fused spatiotemporal dataset substantially outperforms 

CMAQ results as an exposure metric (Table 4.3).  Key themes identified with this 

multicity data fusion application that are related to physical aspects of the five urban 
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environments include: (1) airshed complexity, (2) spatial and spatiotemporal patterns, (3) 

emission-source-related trends, and (4) constrained uncertainty fields. 

Table 4.3 – Range of spatiotemporal Pearson correlations coefficients (R2) across all 
cities for simulation-based observations categorized by species, covering 2002-2008. 

 

4.5.1 Airshed Complexity 

 Unquestionably, differences in airshed complexity and meteorological conditions 

among the cities have a significant impact on the interurban spatial concentration 

gradient.  The effect of high mean wind speed on Dallas is evident in the spatial fields of 

all species. With the exception of ozone, spatial concentration gradients in Dallas tend to 

be lower than the other cities.  Synoptic-scale winds in Dallas are unimpeded by 

topographic obstacles, allowing cleaner air masses to flow more readily than in the other 

cities; this is most apparent in the spatial homogeneity across the PM constituents.  

Another aspect of airshed complexity affects the Pittsburgh results, where the influence 

of long-range transport from the Ohio River Valley is evident in the elevated background 

Pollutant Spatiotemporal R2 Cross-validation Spatiotemporal R2 
CCMAQ Copt CCMAQ Copt 

CO 0.06-0.40 0.27-0.89 0.30-0.38 0.00-0.53 
NO2 0.28-0.66 0.48-0.87 0.26-0.59 0.40-0.72 
NOx 0.17-0.55 0.60-0.79 0.22-0.43 0.29-0.57 
SO2 0.00-0.17 0.13-0.59 0.00-0.11 0.00-0.19 
O3 0.67-0.75 0.90-0.97 0.66-0.74 0.88-0.93 
PM10 0.09-0.33 0.38-0.84 0.03-0.29 0.14-0.71 
PM2.5 0.15-0.42 0.86-0.90 0.12-0.39 0.67-0.83 
PM2.5-SO4 0.50-0.71 0.87-0.98 0.44-0.71 0.81-0.89 
PM2.5-NO3 0.31-0.39 0.77-0.97 0.24-0.47 0.52-0.72 
PM2.5-NH4 0.27-0.44 0.75-0.98 0.19-0.48 0.43-0.80 
PM2.5-EC 0.11-0.42 0.37-0.79 0.14-0.42 0.07-0.55 
PM2.5-OC 0.16-0.32 0.60-0.95 0.08-0.34 0.32-0.51 

 



 

 

75 

concentrations of several particulate species.  Ammonia sources in the North Central 

Plains affect background particulate ammonium concentrations in Pittsburgh and St. 

Louis, elevating the intraurban peaks.  Findings by Tang et al. and Turner et al. 

corroborate the effect of regional transport on elevated and spatially homogenous 

summer PM2.5 mass as well as several other major component (SO4, NH4, and OC) 

concentrations in Pittsburgh.131, 133 

4.5.2 Spatial and Spatiotemporal Patterns 

 Assessment of the spatiotemporal exposure concentrations generated using the 

data fusion method provides largely consistent patterns of emissions that leads to 

consistency in daily spatial patterns of intraurban variability for several gaseous and 

particulate species across the five non-coastal metropolitan areas.  In accordance with 

previous research, this study confirms that the secondary species (O3, PM10 mass, PM2.5 

mass, sulfate, ammonium, and OC) are notably more spatially homogenous within each 

of the five cities than the primary species (Fig. 4.5).36, 93, 133  Furthermore, the current 

study also shows that the spatial heterogeneity of primary species (CO, NO2, NOx, EC) is 

dominated by contributions from mobile sources, based on the high spatial gradients in 

species concentration from the city centers to the surroundings (Fig. 4.4).  Nitrogen oxide 

episodes, and to a lesser extent carbon monoxide episodes, across all cities are of high 

intensity and short spatial scale.  NOx and NO2, two traffic-related pollutants, exhibit 

gradual concentration gradients, with peaks coinciding with the urban centers. The fusion 

method’s ability to capture trends is heavily reliant on the input datasets: observations 

and CMAQ results. It is no surprise that the temporal performance of the CMAQ results, 
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particularly for O3, PM2.5, NH4, and SO4, across the five cities is further improved by the 

additional, observational constraints applied by the fusion method (Table 4.3). 

4.5.3 Emission-source-related Trends 

 Of particular interest is the comparison of traffic-related pollutants across cities.  

Although the Dallas metropolitan area has the largest population and total vehicle miles, 

Dallas does not show the highest traffic-related-pollutant spatial concentration gradients 

as a result of its airshed complexity.  Atlanta, with its lower wind speeds and higher 

population density, produces consistently higher and non-uniformly distributed 

concentration gradients across traffic-related pollutants (e.g., CO, NOx, NO2, EC).  

However, the cities with the highest populations, Dallas and Atlanta, exhibit the highest 

spatial ozone concentration fields.  High O3 concentrations in Dallas persist into the fall 

months.  Atlanta has the highest CO mean concentrations and larger spatial concentration 

gradients.  Due to the spatial scale of the plume, the ability to correctly capture winds, as 

well as other plume and model characteristics, SO2 is simulated most poorly among the 

pollutants studied, across all cities. 

4.5.4 Constrained Uncertainty Fields 

 By capturing the spatial complexity of the more heterogeneous pollutants, the data 

fusion method combines the available observations with physically based simulations, 

thus increasing the accuracy of ambient pollution uncertainty estimates compared to use 

of observations or CMAQ results alone.  The data fusion method constrains the 

uncertainty in the spatial-daily exposure concentration datasets.  Reductions in 
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spatiotemporal uncertainty estimates are most notable for homogenous species with many 

monitors.  The range of correlation field estimates for the more homogenous species 

across all cities are R = 0.81-0.96 (O3), 0.44-0.84 (PM10), 0.54-0.92 (PM2.5), 0.49-0.97 

(NO3), 0.74-0.97 (SO4), 0.55-0.97 (NH4), and 0.50-0.96 (OC), respectively (Fig. 4.5). 

4.6 Conclusion 

 In this study, the ability of the data fusion method to capture spatiotemporal air 

pollution trends for various pollutants across multiple metropolitan areas is assessed.  The 

aim is to develop daily ambient air pollution metrics.  Additionally, the spatiotemporal 

uncertainty of the results and the degree to which the results are generalizable between 

locations is evaluated.  Using a cross-validation technique, the fused estimates and 

uncertainties are compared against observations, and the ability of the fused estimates to 

capture the multicity spatiotemporal air quality landscapes verified. 

 Adequate spatial and temporal characterization of local, regional, and global air 

quality source contributions bolster population-based acute health effect studies, which 

can be affected by exposure misclassification.  Total reliance upon observations can be 

misleading during the development of spatial ambient air concentration metrics, 

especially due to spatial and/or temporal sampling limitations, but combined with 

emissions, meteorology, and chemical transport modeling, a clearer picture of the 

spatiotemporal air quality landscape is gained.  The rationale for this evaluation requires 

that the fused observations and chemical transport modeling results adequately capture 

spatial and temporal variability of the air pollutants across five cities.  Although this 
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method is applied using 12-km CMAQ fields, it can be readily adapted to finer-resolution 

modeling results. 
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CHAPTER 5. CONSTRAINING CHEMICAL TRANSPORT PM2.5 

MODELING USING SURFACE STATION MEASUREMENTS 

AND SATELLITE RETRIEVALS: APPLICATION OVER THE 

SAN JOAQUIN VALLEY 

Abstract 

 Advances in satellite retrievals of aerosol type can improve the accuracy of near-

surface air quality diagnostics, by providing a broad regional context.  In addition to 

aerosol optical depth, qualitative constraints on aerosol size, shape, and single-scattering 

albedo provided by multi-angle instruments, such as the Multi-angle Imaging 

SpectroRadiometer (MISR) on the NASA Earth Observing System’s Terra satellite, can 

provide frequent, spatially extensive, instantaneous constraints on chemical transport 

models (CTM), especially useful in areas away from ground monitors and progressively 

downwind of emission sources.  CTMs (e.g. the Community Multi-scale Air Quality 

Modeling System) complement such data by providing complete spatial and temporal 

coverage, offering additional physical constraints (e.g., conservation of aerosol mass, 

meteorological consistency) independent of observations, and identifying relationships 

between observed species downwind and emission sources.  Incorporating satellite 

aerosol information in the development of PM2.5 concentration metrics can lead to a 

decrease in metric uncertainties and errors. 
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 This work focuses on the potential spatial improvement to surface estimates of 

PM2.5, its major chemical species estimates, and related estimates of uncertainty from 

combining regional-scale satellite and CTM data.  Aerosol airmass types over populated 

regions of Southern California are characterized using satellite data acquired during the 

2013 San Joaquin field deployment of the NASA DISCOVER-AQ project.  Using the 

MISR Research Aerosol Retrieval algorithm (RA), we investigate and evaluate the 

optimal application of incorporating 275 m horizontal-resolution aerosol airmass-type 

maps and total column aerosol optical depth into a 2 km resolution, regional-scale CTM, 

to obtain constrained fields of surface PM2.5.  Contemporaneous suborbital observations 

and additional, high-resolution CTM simulations are used to evaluate the results.  The 

impact of incorporating MISR aerosol data on the ability to characterize air quality 

progressively downwind of large single sources is discussed. The spatiotemporal R2 

values for the model, constrained by (1) both satellite and surface-station measurements 

and (2) only surface-station measurement (values in parentheses) based on 10% 

withholding, are 0.79 (0.80) for PM2.5, 0.88 (0.88) for NO3, 0.78 (0.79) for SO4, 1.00 

(1.00) for NH4, 0.73 (0.75) for OC, and 0.31 (0.32) for EC.  Regional cross-validation 

temporal and spatiotemporal R2 results for the satellite-based PM2.5 improve by 30% and 

13%, respectively, in comparison to CTM simulations.  SO4 cross-validation values 

showed the largest spatial and spatiotemporal R2 improvement with a 43% increase. 

5.1 Introduction 

 To investigate air pollution health effects on humans, population-based 

epidemiologic time-series studies often use exposure measures derived from regulatory 
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monitoring networks.134-136  Even for the continental U.S., many ambient, ground-level 

fine particulate matter (PM2.5) chemical datasets are acquired only once every three or six 

days, and at many sites for less than a decade or two.  In addition, they tend to be 

concentrated in a small number of populated counties, with the main exception of the 

isolated Interagency Monitoring of Projected Visual Environment (IMPROVE) program 

sites in national parks.137  Prior to 2009, instrument types and sensitivities varied 

considerably from station to station and among monitoring networks,138 making 

comparisons and uncertainty assessments difficult. 

 Urban-level epidemiological time-series studies often span large geographic 

regions.36, 89  Especially for long-term exposure analysis, broad regions significantly 

downwind of urban and industrial centers are also of great importance due to the presence 

of distributed populations, and natural and agricultural ecosystems.  Reducing exposure-

metric error caused by inadequately characterized spatial variability, which is often much 

larger than instrument error, can substantially reduce bias and improve precision in 

epidemiologic results.90, 95-96  This is particularly relevant for regional-scale studies, 

where the spatial variability of ambient surface PM2.5 and chemical species 

concentrations, such as urban-to-rural gradients, fundamental to effectively conducting 

environmental epidemiologic studies and air quality assessments, can be lacking. 

 Although chemical transport model (CTM) simulations provide more complete 

spatial and temporal coverage than surface stations, they rely on uncertain inputs about 

pollution source characteristics that can contain significant biases.  The accuracy of the 

simulated fields is also affected by the accuracy of the simulated meteorology, and of the 
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physical and chemical parameters specified in the model.42  Errors in these fields can be 

identified and sometimes quantified by comparison with coincident ground- and aircraft-

based observations.  Under satisfactory retrieval conditions, satellite-derived aerosol 

optical depth (AOD), atmospheric scattering, light absorption, and extinction by 

suspended particles can be leveraged to constrain the columnar CTM simulations in less 

intensely monitored areas.  

 The earliest PM2.5 air quality studies that were based upon spacecraft data simply 

correlated ground-level PM2.5 concentrations and satellite-derived AOD from the MODIS 

instruments, without accounting for particle vertical distribution.139-140  This worked well 

when the aerosol was almost entirely concentrated in the near-surface boundary layer, but 

not when transported aerosol made a significant contribution to the total-column AOD, or 

when the boundary layer was deep or variable on short timescales.  Other early studies 

used surface measurements141 or an aerosol transport model48, 142 to provide some 

constraint on aerosol vertical distribution, but still did not account in detail for either 

spatial or temporal variations of the relationship, and provided no observational 

constraints on aerosol type.  The Van Donkelaar et al. (2010) study used space-based 

CALIPSO lidar backscatter profiles to validate the GEOS-Chem model vertical 

distributions globally, aggregated over a four-year period. 

 The first papers to include some space-based aerosol type information along with 

AOD from satellites for air quality applications used the Multi-angle Imaging 

SpectroRadiometer (MISR) spherical vs. non-spherical distinctions to separate airborne 

dust from spherical particles over the continental U.S., and constrained aerosol vertical 
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distribution and speciated the spherical components with an aerosol transport model.45-46  

Subsequent work applied MISR aerosol size and shape constraints over the Indian 

subcontinent and surrounding areas to map seasonal changes in aerosol type143 and 

combined MISR particle shape and qualitative light absorption information to make a 

first effort at mapping aerosol airmass types over an urban area, Mexico City.47 

 To estimate ambient PM2.5 mass and associated chemically speciated 

concentrations on regional scales, a systematic and practical approach is developed and 

evaluated in this paper.  It uses ground-station PM2.5 measurements, where available, to 

anchor speciated, near-surface CTM aerosol concentrations.  To help constrain the model 

over extended regions, MISR total column AOD is also applied, along with qualitative, 

column-effective aerosol type observations where mid-visible AOD values exceed 0.15.  

Enhanced aerosol-type retrievals from the MISR Research Aerosol retrieval algorithm 

(RA), at 1 km horizontal resolution, are at the heart of this new approach. 

 To demonstrate the method, we apply it over a case study area in the San Joaquin 

Valley of California during the DISCOVER-AQ field campaign in this region, on six 

days when there is good MISR coverage.  The results account for spatiotemporal 

variability in PM2.5 and in the chemical component concentrations.  The accuracy of 

estimated concentrations and evaluation of the latest MISR-RA ability to typify urban 

AOD, aerosol mixtures, and aerosol airmasses, are examined by comparing the results 

with speciated ground observations and standard model fitting statistics.  Section 5.2 

describes the datasets involved, Section 5.3 describes the method and technical approach, 

and Section 5.4 presents results and validation for our test cases.  Conclusions, along with 
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a brief discussion of prospects for wider application of this approach, are given in Section 

5.5. 

5.2 Study Domain and Datasets 

5.2.1 Study Domain 

 The San Joaquin Valley (SJV), which comprises the southern two-thirds (about 

10,000 sq. miles) of California’s Central Valley, has long suffered from severe air 

pollution issues and is among the most studied air sheds in the U.S.144-145  It has complex 

topography, and especially in winter, low PBL heights and high pollutant mixing ratios, 

creating challenges for chemical transport modeling.146  This region is surrounded by the 

Sierra Nevada to the east, the Diablo and Temblor Ranges to the west, the Tehachapi 

Mountains to the south, and the Sacramento Valley to the north (Figure 5.1).147  Although 

primarily a rural area, the eight counties that comprise the SJV are home to more than 4 

million residents.  This arid to semiarid valley is one of the world’s most productive 

agricultural regions.  The SJV air shed frequently experiences high PM2.5 concentrations 

during the winter, due to the combination of the surrounding mountain ranges, relatively 

dry climate, shallow PBL heights, and local source emissions.  The SJV has been in 

violation of the PM2.5 National Ambient Air Quality Standards for PM2.5 annual standard 

since their inception in 1997, and is the largest PM2.5 nonattainment area in the 

continental U.S.148 
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Figure 5.1 – San Joaquin study area shows the ground elevation, EPA AQS and 
CSN monitors, and AERONET sites during the two-month NASA DISCOVER-AQ 
flight campaign 

 The study period, January and February 2013, was selected to coincide with the 

Deriving Information on Surface Conditions from Column and Vertically Resolved 

Observations Relevant to Air Quality (DISCOVER-AQ; http://www.nasa.gov/) 

campaign.  This campaign was a joint collaboration between NASA, NOAA, U.S. EPA, 

and several local organizations, with the goal of characterizing air quality in urban areas 

using satellite, aircraft, vertical profiler and ground-based measurements (http://discover-

aq.larc.nasa.gov).  Targeting the 2013 DISCOVER-AQ period for this study provides 
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additional ground- and aircraft-based measurements for aerosols and fine particulate 

matter, which we apply as model constraints and validation. 

 We analyze data for six days during the DISCOVER-AQ period for which (1) 

MISR observations were made over the study region, (2) coincident ground and air 

observations were acquired, including extensive field-campaign data, and (3) the key 

observational requirements of relatively cloud-free conditions and the presence of 

aerosols from different sources are met.  Of the six days for which we have MISR 

coverage, the mid-visible AOD exceeds 0.15 on three days: January 20, February 03, and 

February 05.  On lower-AOD days, MISR aerosol type information is too uncertain for 

the current application.  Of the three higher-AOD days, January 20 has the least cloud 

cover, followed by February 05, so these will be the main focus of detailed analysis. The 

method developed here can in the future be applied to many other polluted regions of the 

world where AOD exceeding 0.15 is common, such as south and East Asia and North 

Africa. 

 The ground-based, aircraft, and simulation data used in this study are described 

briefly in the rest of this section, along with the MISR research aerosol retrieval (RA) 

product.  

5.2.2 Ground-based PM Mass and Speciated Measurements 

 This study focuses on PM2.5 measurements and its five major components: sulfate 

(SO4), nitrate (NO3), ammonium (NH4), elemental carbon (EC), and organic carbon 

(OC).  Data files of ambient aerosol particulate matter species concentrations for sites 
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within the SJV for January and February 2013 were obtained from two EPA sources: (1) 

daily averaged PM2.5 Federal Reference Method (FRM) mass from the Air Quality 

System (AQS; https://www.epa.gov/aqs), and (2) daily averaged total PM and chemically 

speciated mass (measurements typically made every third or sixth day) from the 

Chemical Speciation Network (CSN).103 

 FRM compliant data from gravimetric filter-based samplers and Federal 

Equivalence Method (FEM) compliant data from continuous mass monitors provide 

spatial variability of PM2.5 mass.149  The PM2.5 FRM mass is determined gravimetrically 

by weighing particles on filters pre- and post-deployment.  They are equilibrated at a 

constant relative humidity (30-40%) and temperature (20-23 degrees C).  Monitor 

locations are shown in Figure 5.1, and Table 5.1 lists monitor summary statistics.  Daily 

PM2.5 concentrations measured by the FRM method are considered PM2.5 ground truth, 

i.e., their uncertainties are small compared to those of the other PM2.5 values used in this 

study. 

Table 5.1 – EPA AQS and CSN monitor summary statistics for 52 days (6 days). 

 

5.2.3 DISCOVER-AQ AERONET DRAGON 

Pollutant No. of 
Monitors 

Sampling Frequency OBS Mean SD

PM2.5, µg/m3  22 (21) 13 daily; 6 1-in-3; 3 1-in-6  779 (95)  21.20 (28.31)  13.33 (13.51)
PM2.5-SO4, µg/m3  7 (6)  6 1-in-3; 1 1-in-6  86 (11)  0.77 (1.13)  0.46 (0.69)
PM2.5-NO3, µg/m3  7 (6)  6 1-in-3; 1 1-in-6  86 (11)  7.27 (9.81)  6.11 (7.38)
PM2.5-NH4, µg/m3  5 (4)  4 1-in-3; 1 1-in-6  54 (7)  2.07 (3.65)  2.25 (3.32)
PM2.5-EC, µg/m3  4 (4)  3 1-in-3; 1 1-in-6  44 (8)  1.28 (1.14)  0.77 (0.34)
PM2.5-OC, µg/m3  4 (4)  3 1-in-3; 1 1-in-6  44 (8)  5.25 (5.73)  3.09 (2.48)
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 The AErosol RObotic NETwork (AERONET)150 has 10 permanent sun 

photometer (SP) stations operating in the study region. During the DISCOVER-AQ 2013 

deployment, these stations were supplemented with an additional 14 temporary stations 

termed the Distributed Regional Aerosol Gridded Observation Network (DRAGON) to 

provide a more regionally dense dataset for satellite validation and in situ comparisons 

(Fig. 1). AERONET/DRAGON SPs measure AOD in eight spectral bands (340, 380, 

440, 500, 670, 870, 1020 and 1640 nm), with an accuracy within ±0.015.151 

 We use version 2 (v2) level 2 AERONET/DRAGON AOD and Angstrom 

Exponent (AE) data for the six study days. The level 2 data were sun-calibrated after field 

deployment, cloud screened,152 and quality controlled. The AOD at 550nm wavelength is 

calculated using a quadratic log-log fit.151  Columnar AODs at 550nm derived from 

AERONET are considered as AOD ground truth in this study. 

5.2.4 Chemical Transport Model Simulations 

 Simulations of the coupled Weather Research and Forecasting model (WRF),153 

version 3.4, and the Community Multiscale Air Quality (CMAQ) model,154 version 5.0.2, 

were obtained from the U.S. Environmental Protection Agency (EPA). These 

atmospheric simulations, at a 2 km × 2 km horizontal grid spacing with 35 vertical layers, 

cover the entire SJV and surrounding major cities during the months of January and 

February of 2013. Concentration fields from the fixed 2 km × 2 km horizontal CMAQ 

grid were downscaled to a horizontal grid of 275m x 275m by linear interpolation and 

used as the reference grid for all subsequent analyses.  Emission data was based on the 
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2011 EPA National Emissions Inventory 155 with 2013 updates to electric generating unit 

emissions, fire, and mobile sources. Biogenic emissions were generated using the 

Biogenic Emissions Inventory System (BEIS) version 3.14 (http://www.cmascenter.org), 

and the emissions were processed using the Sparse Matrix Operator Kernel Emissions 

(SMOKE; https://www.cmascenter.org/smoke/) version 3.5. 156  The carbon bond 2005 

chemical mechanism used was CB05TULC.157-159  The lateral Boundary Conditions 

(BCs) for the 2-km simulation were derived from a coupled WRF-CMAQ simulation 

with 4-km × 4-km horizontal grid spacing, covering the entire state of California and the 

surrounding areas. BCs for the 4-km simulation were derived from a 36-km simulation 

covering the contiguous United States, and BCs for the 36-km simulation were provided 

by a hemispheric GEOS-Chem160 simulation with the chemical species mapped to the 

corresponding CMAQ species.146 

 The U.S. EPA conducted a model evaluation of CMAQ v5.0.2 with respect to the 

scientific updates to v5.1.146  In that study, fine particulate matter simulations were biased 

low compared to observed concentrations over the SJV during the winter months. Winter 

PM2.5 average mean bias (CMAQv5.0.2-Observations) in the SJV exceeded -10 µg/m3. 

PBL height and mixing were considered to be contributing factors to the January PM2.5 

underestimation in the SJV. Although CMAQv5.0.2 is missing several secondary organic 

aerosol species of anthropogenic volatile organic carbon (i.e., AALK1, AALK2, APAH1, 

APAH2 and APAH3) in its aerosol module (AERO6 v5.0.2), the mass contribution of 

these species to PM2.5 during the winter was minimal (less than ±0.5 µg/m3) in the SJV.146  

At the time this study was conducted, CMAQ v5.1 results were not yet available. 
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5.2.4.1 Constrained CMAQ simulation using ground-based observations 

 Ambient ground observations are used to constrain CTM model simulations (i.e., 

CMAQ), to estimate daily, spatially refined pollutant metrics and associated correlations.  

The method provides daily spatial field estimates of air pollutant concentrations and 

uncertainties that are consistent with observations at the ground stations, as well as with 

assumed emissions and modeled meteorology; it is summarized briefly below, and is 

described in detail by Friberg et al. (2016). 

 The constrained spatiotemporal concentration “fused” dataset (CFCMAQ) is built 

using weighted fields of daily interpolated surface observation ratios and daily adjusted 

CMAQ result ratios that are rescaled to the estimated two-month study period mean 

fields (eq. 5.1): 

 
!!"#$%!,! = !!!"#$!

! !!,!
!!"#!!,!
!!"#!! !"#$

+ 1−!!,!
!!"#$!,!
!!"#$!

 (5.1) 

Here, α is a regression parameter that adjusts the amplitude to account for inter-monthly 

differences, CCMAQ represents CMAQ simulated concentrations, the overbar indicates 

two-month temporal averaging, β is assumed to be a constant, species-specific regression 

parameter that accounts for interspecies nonlinearity differences, s indicates spatial 

location, t represents time, W is a weighting factor, COBS represents observed 

concentrations, and sm indicates monitor locations.  Neither inter-monthly nor seasonal 

corrections were applied.  Scaling the daily ratio fields by the spatially regressed two-
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month mean observations reduces model biases.  The estimated mean fields are 

developed from CMAQ-derived mean spatial fields adjusted to observed means using 

power regression models for the two-month time period of the current study.  These 

regression parameters are species-specific, because CMAQ biases differ among the PM 

species. 

 The daily-resolved, observation-based ratio fields capture the robust temporal 

variance characterized by ground monitors.  These concentration fields are calculated by 

spatially interpolating the normalized, daily-observed concentrations using kriging.  As 

shown by Friberg et al. (2017), the daily-adjusted CMAQ result ratios capture the spatial 

variance while reducing bias.  The optimization is based on a spatiotemporal weighting 

factor (W) that maximizes the degree to which the observation-based estimate captures 

temporal variation relative to the CMAQ-based estimate, as a function of distance from 

the observation (eq. 5.2).  Due to missing data, the weighting factors vary over time as 

well as space.  The temporal Pearson correlation fields of the daily observation-based 

fields, R1, are derived using an exponential correlogram modeled to fit the isotropic 

spatial autocorrelation of the observations (eq. 5.3).  The fitted parameters include the 

intercept that results from instrument error, estimated by collocated instruments (Rcoll), 

the distance from a grid centroid to the nearest observation on a given day (x), and the 

range (r) at which the correlation between monitors has decreased to an e-folding value 

of Rcoll.  The term R1 varies over space and time because the observation frequency varies 

among monitors.  The average of the temporal correlations between the CMAQ 

simulations and observations across all monitors (!!!) is used to estimate R2, which 
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represents the estimated temporal correlation of the daily adjusted CMAQ results ratio 

fields and ambient pollution (eq. 5.4).  The spatiotemporal weighting factor is also 

applied to the observation- and CMAQ-based temporal correlation fields to quantify the 

uncertainties of the optimized spatiotemporal concentration dataset (RFCMAQ; eq. 5.5). 

 
!!,! =  

!!!,! 1− !!
!!!,! 1− !! + !! 1− !!!,!

 (5.2) 

 !!!,! ≈ !!"##!!!!,!/! (5.3) 

 !! ≈
1
!!!

!"## !!"#!!(!),!!"#$!!(!)
!!

 (5.4) 

 !!"#$%!,! =
!!,!!!!,! + 1−!!,! !!  !! >  !!

!! !! =<  !!
 (5.5) 

5.2.5 Satellite Observations 

 The primary satellite resource for this study is the Multi-angle Imaging 

SpectroRadiometer (MISR) instrument.  We supplement the MISR aerosol data with 

results from the MODerate resolution Imaging Spectroradiometer (MODIS) instruments.  

They offer more extensive spatial coverage and provide somewhat greater diurnal 

sampling, though with larger AOD uncertainty over land, and with no constraints on 

aerosol type over land.  We describe these two data sources below. 

5.2.5.1 MISR – Research Aerosol Retrieval Algorithm (RA) 
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 MISR was launched along with the first MODIS instrument aboard Terra, the 

flagship satellite of NASA’s Earth Observing System (EOS), in December 1999.161  

Since then, Terra has maintained a sun-synchronous orbit, descending from North-to-

South over the equator at a local time of ~10:30 AM. MISR measures upwelling short-

wave radiance from Earth at nine distinct view angles along the line-of-flight (±70.5°, 

±60.0°, ±45.6°, ±26.1°, and nadir), in each of in four spectral bands (446, 558, 672, and 

866 nm).  The one nadir, four forward, and four aft-viewing push-broom cameras take 

approximately 7 minutes to image a given 380 km wide swath of Earth. Due to swath 

size, it takes MISR about a week to obtain global coverage.  Owing to its multi-spectral, 

multi-angular capabilities, high spatial resolution (up to 275 m), and highly accurate 

radiometric calibration,162-164 MISR is uniquely capable of supporting air-quality 

applications, by providing information about aerosol microphysical properties at regional 

scales. 

 High-resolution (275 meter) results from the MISR Research Aerosol retrieval 

algorithm (RA) are used to constrain aerosol amount and type for the CMAQ model.  

Because of MISR’s ability to sample over a large range of scattering angles (i.e., between 

about 60° and 160° at midlatitudes), the RA provides column-averaged information 

regarding aerosol absorption, particle size, and shape (non-spherical dust vs. spherical 

aerosol) under favorable retrieval conditions.44, 50  Although passive satellite remote 

sensing can only provide information about aerosol type in two dimensions (column-

averaged), a chemical transport model can be used to apportion the amount of aerosol 

near the surface (e.g., Liu et al., 2007a; van Donkelaar et al., 2010; this study). 



 

 

94 

5.2.5.1.1 MISR RA Retrieval Process 

 This subsection provides a brief summary of Limbacher and Kahn (2014; 2017).  

The basic principle of the MISR RA involves comparing the observed MISR top-of-

atmosphere (TOA) reflectances with a pre-built look-up-table (LUT) of simulated TOA 

reflectances (analogous to a scaled, unitless radiance), and selecting only the aerosol 

optical depths and mixtures that meet certain goodness-of-fit criteria.  To match the 

MISR-observed TOA reflectances (!!,!!"#) in four spectral bands (λ) and each of up to 

nine cameras (c), simulated atmospheric and surface contributions to the TOA reflectance 

are calculated for a range of possible conditions and tested against the observations.  The 

modeled portion of reflected light that reaches the instrument without interacting with the 

surface is the path reflectance (!!,!!"#!), and the modeled portion of reflected light that 

interacts with the surface is designated !!,!!"#$.  The RA uses a single minimization 

parameter (M) to self-consistently retrieve aerosol amount and type, as well as surface 

reflectance.  For any given aerosol optical depth (AOD, or !) and aerosol mixture 

combination, the minimization parameter M can be represented as: 

 
! ! =

!!,! ∗ !!,!!"# − (!!,!!"#! + !!,!!"#$)
!

!"#!,!! ∗ !!,!!!!!
 (5.6) 

The channel-specific weights are !!,!, and the assumed uncertainty of the entire 

model/measurement system is !"#!,!. 
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 Because !!,!!"#$ is not known a priori, this term must be determined before M can 

be computed.  This two-step process involves first invoking the principle of angular 

shape similarity to compute a representation of the surface, by assuming that the angular 

shape of the Bi-directional Reflectance Distribution Function (BRDF) is fixed, but 

allowing it to vary spectrally.165-166  Applying this additional constraint, the !!,!!"#$ term of 

equation 5.6 is expanded into !!,!!"#$ = !!!"# ∗ !! ∗ !!,!!", where !!!"# is the bottom-of-

atmosphere (BOA) downward-directed irradiant reflectance, !! is the spectral albedo, 

and !!,!!" is the azimuthally integrated transmittance from BOA to the MISR camera of 

interest.  Because !! is not a function of view angle, we compute the optimal !! 

analytically for each band/AOD/mixture combination by taking the derivative of equation 

5.6 with respect to !! and setting this equal to zero, yielding: 

 

!! =

!!,!
!"#!,!!

∗ !!,!!" ∗ !!,!!"# − !!,!!"#!!

!!!"# ∗
!!,!
!"#!,!!

∗ !!,!!"
!

!

 (5.7) 

The second step of this process requires that we modify !!,!!"#$ such that !!,!!"#$ = !!!"# ∗

!! ∗ !! ∗ !!,!!", where !! is a normalized, spectrally invariant but angularly varying, 

modulation of the surface albedo.  This approximation simply implies that although the 

brightness of the surface can change with view angle, its color does not.  Because !! and 

!! cannot be calculated simultaneously, we instead use equation 5.7 to calculate a first 
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guess for !!, and then take the first derivative of equation 5.6 with respect to !!, setting it 

equal to 0, and calculating !! as follows: 

 

!! =

!!,!
!"#!,!!

∗ !!!"! ∗ !! ∗ !!,!!" ∗ !!,!!"# − !!,!!"#!!

!!,!
!"#!,!!

∗ !!!"# ∗ !! ∗ !!,!!"
!

!

 (5.8) 

Substituting !!, !!, and !!,!!"#$ = !!!"# ∗ !! ∗ !! ∗ !!,!!" into (6) yields the minimization 

parameter M for a particular AOD and aerosol mixture over land.  (Note that !! 

represents the angular dependence of the surface BRDF at the specific MISR view-

angles.)  The algorithm then selects the best fitting AOD for each of the 774 aerosol 

mixtures described in Limbacher and Kahn (2014), and saves the AOD, surface albedo, 

and associated goodness-of-fit parameter (M) for each mixture. 

5.2.5.1.2 Applying the MISR RA Retrieval Results to Constraining the Air Quality 

Model 

 For comparison with the CTM, we compute aggregate AOD, Angstrom Exponent 

(ANG), absorption aerosol optical depth (AAOD), and non-spherical aerosol optical 

depth values from the RA results.  As described below, we also compute aggregate AOD 

retrieved for the spherical absorbing aerosol components, and separately for spherical 

non-absorbing aerosol components.  These aggregated parameters are calculated by 

weighting the respective parameters for each passing mixture by 1/M, such that better 

fitting mixtures are weighted more heavily than poorer fitting ones.  The threshold value 
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of M used to determine passing mixtures is set to 1.25 * Mmin + 0.25.167  Because aerosol 

retrievals are affected by a range of conditions such as solar and viewing geometry, 

surface brightness, AOD, and aerosol type, we highlight below some of the key factors 

that help determine aerosol retrieval sensitivity.50 

• Surface brightness – As the surface becomes brighter, the algorithm loses some 

sensitivity to all retrieved aerosol properties (including AOD).  This occurs 

because, other things being equal, the contribution of !!,!!"#! relative to 

!!,!!"#$decreases as surface brightness increases. 

• Number of cameras used – To separate the two terms, the RA uses the property 

that !!,!!"#! generally increases at steeper view angles, whereas !!,!!"#$generally 

decreases at steeper view angles.  This also means that the number of cameras 

used can influence retrieval sensitivity to AOD and aerosol type. 

• Scattering Angle Range – Other things being equal, a greater range of angles 

sampled by the MISR cameras relative to the solar direction offers higher 

confidence in the retrieved particle properties.  As the aerosol scattering phase 

function peaks in the forward direction, retrieval sensitivity also tends to increase 

as the minimum scattering angle sampled decreases. 

• Retrieved Aerosol Optical Depth – Mixture sensitivity diminishes when AOD is 

below about 0.15 or 0.2, although this also depends on other retrieval conditions. 

 Following the work of Patadia et al. (2013), we identify different aerosol 

airmasses by categorizing aerosol according to size (Angstrom Exponent), shape (non-
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spherical AOD fraction), and single-scattering albedo (SSA, or 1.0 – AAOD/AOD).  For 

the purposes of this paper, the 14 aerosol components used by all 774 mixtures167 can be 

organized into three broad aerosol-type “groups”: spherical light-absorbing, spherical 

non-absorbing, and non-spherical (cirrus is ignored).  Especially at low-AOD, the MISR-

derived aerosol-type constraints amount to broad classification (i.e., lower sensitivity) 

into light-absorbing spherical, non-absorbing spherical, and non-spherical particle 

components.50  The general microphysical properties of the three broad aerosol groups 

(AG) can be associated with specific chemical species identified in the chemical transport 

model results, as described in Section 5.3.2 below.  From the point-of-view of retrieval 

sensitivity, these three categories are as follows (Table 5.2): (1) Light-Absorbing Carbon 

(LAC), (2) Inorganic Ions (II) plus Organic Matter (OM) plus Sea-Salt (SS), and (3) dust. 

Over the last several years, substantial research has been published indicating that MISR 

AOD retrievals suffer biases in the presence of clouds.163, 168-169  Consistent with both 

Witek et al. (2013) and Limbacher and Kahn (2015), we present results only for days 

where clouds (as indicated by our cloud mask) cover less than 30% of the scene within 

the SJV excluding the county areas that extend into the Sierra Nevada. 

Table 5.2 – Classification of aerosol groups according to MISR RA microphysical 
property components. 

 

5.2.5.2 MODIS - MAIAC 

Aerosol	Group
Component	Shape
Component	Absorption
Component	Description Smoke Pollution Smoke Pollution Transported Coarse
Component	Effective	Radius	(μm) 0.06 0.12 0.26 0.57 1.28 0.75 2.40
Single-Scattering	Albedo	(558	nm) 0.98 0.900.82 0.91 1.00

Strongly	Absorbing Moderately	Absorbing Non-Absorbing Varying	Absorption	Dust

0.12 0.12

Light-Absorbing	Carbon Inorganic	Ions	+	Organic	 Dust
Spherical Non-Spherical

*See	Limbacher	and	Kahn	(2014)	for	detailed	component	definitions.
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 To supplement the MISR AOD values where MISR coverage is lacking, we adopt 

results from the MODIS Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) advanced algorithm.170  It uses time-series analysis and a combination of pixel- 

and image-based processing to improve the accuracy of cloud detection, aerosol retrievals 

and atmospheric correction for surface retrievals. The following is a brief overview of the 

MAIAC Collection 6 (C6) version 2.0 (v2) June 2017 North America release aerosol 

product.  The current study uses the MAIAC Atmospheric Properties Products 

(MCD19A2), which provide AOD at 0.55 µm.  A more detailed description of the 

MAIAC theoretical background and processing steps can be found in Lyapustin et al. 

(2011a,b; 2012). 

 After extensive characterization of the MODIS-observed surface background, the 

MODIS Level 1B data are gridded to a fixed sinusoidal projection at 1 km horizontal 

resolution in order to observe the same grid cell over time.  Working with a fixed grid not 

only facilitates the use of polar-orbiting observations as if they were “geostationary”, it 

also simplifies comparison of these datasets to fixed-grid model results and other 

measurements.  In addition to the MODIS instrument on the Terra satellite, a second 

MODIS flies aboard NASA’s Aqua satellite, which crosses the equator on the dayside at 

1:30 PM local time.  As a consequence of residual de-trending and MODIS C6 Terra-to-

Aqua cross-calibration,172 MAIAC currently processes MODIS C6 Terra and Aqua 

jointly as a single sensor.  In addition to considerably greater spatial coverage than MISR, 

this joint product offers some diurnal spread in sampling relative to the MISR snapshots. 
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 For the time series analysis, MAIAC utilizes a 4–16 day sliding window 

technique of scenes from multiple MODIS overpasses to retrieve surface BRDF at 

0.466 µm wavelength, and spectral regression coefficients (SRCs; 0.466 µm and 

2.13 µm), allowing MAIAC to retrieve AOD at 1 km spatial resolution.  Unlike 

instruments that collect nearly simultaneous observations using push broom scanning, the 

MAIAC algorithm uses the sliding window technique of consecutive clear (i.e., cloud-

free conditions with relatively low AOD) MODIS cross-track scanned scenes over 

several days to acquire multi-angle sets of observations for each location.  This allows 

MAIAC to retrieve BRDF from an accumulated, multi-angle set of observations. 

Working under the assumption that surface reflectance changes rapidly over space and 

slowly over time (e.g., seasonal changes) helps the MAIAC internal dynamic land-water-

snow classification.  The algorithm produces well-characterized surface reflectance that 

improves cloud masking, and outperforms traditional pixel-level cloud detection 

techniques that rely on spatiotemporal analysis.173 

 Although AOD is originally retrieved in the MODIS Blue band B3 at 0.47µm, 

MAIAC offers a standardized and validated AOD product at 0.55µm.  With the exception 

of smoke and dust aerosol detection, the current algorithm does not retrieve AOD over 

surfaces occurring at altitudes higher than 3.5 km.  Like many satellite-based aerosol 

retrievals, MAIAC retrievals are unreliable for very low AOD conditions, over 

mountainous terrain, and over surfaces with high albedo.  The retrieval conditions that 

affect this study include low AOD and cloud-contaminated scenes. 

5.3 Methods 
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 Air quality ground observations are spatially sparse, and are often temporally 

incomplete. CTM simulations provide information that is independent of these 

observations, and are consistent with meteorology and assumed emissions.  But they can 

contain biases, and can have difficulty capturing the spatial structure of aerosol 

dispersion downwind of sources.  Satellites offer spatially extensive, mainly column-

effective aerosol amount and type, that, if included appropriately, can reduce or eliminate 

fused-model biases over large areas, especially regions far from concentrated surface 

stations.  As there are gaps in the satellite products due to clouds and other retrieval-

related issues, we use the model to help complete variable fields at several stages of the 

process.  We also use the model to estimate the near-surface components of column-

effective satellite values, and use ground-station data to constrain and to evaluate the 

results. 

 Our approach to fusing surface and satellite-based observations with CMAQ 

simulations involves five steps, illustrated in Figure 5.2.  First, total column AOD and 

groupings of model aerosol species that match the spherical light absorbing, spherical 

non-absorbing, and non-spherical satellite aerosol-type AG are reconstructed from the 

simulated datasets.  (Note that the left side of Figure 5.2 tracks the process for deriving 

total PM2.5, whereas the right side presents the flow for speciated PM2.5. Blue and orange 

asterisks in Figure 5.2 indicate where uncertainties are estimated by comparison with 

AERONET and the EPA ground stations, respectively.) In Step 2, spatially complete 

AOD and grouped AOD maps are produced for each of the six study days by combining 

MISR and MAIAC satellite retrievals with scaled values of the modeled AOD and AG 
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AOD products from Step 1, respectively, to fill any remaining gaps.  In Step 3, we 

reconstruct PM2.5 Mass FRM from the simulated concentration dataset.  Step 4 

deconstructs the satellite-based total column AOD and grouped AOD to surface PM2.5 

and grouped PM2.5 mass concentrations using the CTM vertical and speciated vertical 

distributions, respectively.  The fifth and final step involves blending daily averaged 

ambient ground observations and satellite-based total and grouped PM2.5 mass 

concentrations to estimate daily, spatially refined PM2.5 mass and speciated pollutant 

concentrations. 

 Overall, the inputs are the speciated ground-station data, satellite AOD snapshots 

and AOD grouped by aerosol type, and the CMAQ model simulations.  The outputs are 

the fused ground-station, satellite, plus model PM2.5 mass concentration field, and 

speciated versions of this field. A detailed description of the key steps follows. 
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5.3.1 Step 1 – CMAQ- and Surface-derived PM2.5 using reconstruction method 

 A commonly applied PM2.5 mass reconstruction (RM) method, also termed mass 

closure or material balance, is used to compare the sum of major aerosol components to 

gravimetrically measured fine particulate matter. The approach also accounts for 

unmeasured or non-simulated species to avoid double counting. Beginning with Countess 

et al. (1980), the RM method is used to evaluate measurements, characterize 

spatiotemporal chemical gradients, estimate source contributions to PM, and calculate 

visibility impairment due to near-surface aerosol.  Additionally, the reconstructed PM2.5 

mass provides insight into the spatial variations among the speciated data.108, 137, 175-176  

The development of this method, along with the differences between reconstructed and 

gravimetric mass in the CSN and IMPROVE data sets, have been extensively studied in 

the U.S.108 Chow et al. (2015) provides a detailed literature review of the various mass 

reconstruction equations.  

 For the purposes of this study, the RM equation focuses on the following five 

representative chemical components, with the relevant references cited: (1) inorganic 

ions;177-180  (2) organic matter;137, 181  (3) Elemental Carbon (EC), also referred to as light 

absorbing carbon;182  (4) crustal material, which includes mineral and soil particles, 

referred to herein as dust;108, 183  (5) sea salt;137  and (6) other elements ,184 which, in the 

SJV during the study period, made a negligible contribution to PM. The respective 

references provide details as to how multipliers for each species were derived, and 

summarize the evaluation performed for each major PM component. 
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 In addition to the measured aerosol species of interest, WRF-CMAQ model 

outputs for relative humidity, temperature, and speciated aerosol vertical distribution 

were used in the PM2.5 mass reconstruction and as needed in the other analysis steps 

described hereafter. The RM method, excluding negligible “other” elements, was used to 

compare ground observations, CMAQ results, and satellite derived concentrations. Table 

C.1 in supplemental material provides a summary of the aerosol equations used for the 

ground monitor data and CMAQv5.0.2 simulations. The RM equation used is as follows 

(Chow et al., 2015, equation A): 

 !"[!" !!] = [SO!!]+ [NH!!]+ [NO!!]
!"#$%&"'( !"#$

+ 1.8[!"]
!"#$%&'
!"##$%

+ [!"]
!"#!! 

!"#$%"&'(
 !"#$%&

+ 1.8[Cl!]
!"# 
!"#$

+ 2.2[Al]+ 2.49[Si]+ 1.63[Ca]+ 1.94[Ti]  + 2.42[Fe]
!"#$

 

(5.9) 

 For each of the major chemical components involved, Chow et al. 2015 covers in 

detail the factors and assumptions required for the RM calculation, and those contributing 

to the comparison with gravimetric mass measurements. These factors include the 

OM/OC ratio assumptions, carbon sampling and analysis artifacts, ammonium and nitrate 

volatilization, limitations of using chloride to estimate sea salt content, and water 

retention by hygroscopic species on filters.179, 185-187 
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 Following the framework of equation 5.9, the reconstructed PM2.5 mass does not 

account for the positive and negative factors that affect gravimetric and speciated 

measurements.137, 175, 181, 188  To close the mass-balance difference between PM2.5 FRM 

gravimetric mass and ambient mass (simulated and measured), the material balance (eq. 

5.9) was adjusted to account for factors affecting gravimetric measurements (Frank, et al., 

2006, eq. 10). 

 !"!.!!"# !" !!

= !" − [NH!!]!"## + [NO!!]!"## + !"#

+ !"#$%!"#  
(5.10) 

where ammonium and nitrate volatilization are not captured by gravimetric 

measurements and thus, are accounted as negative artifacts. The particle bound water 

(PWB) is the water retained on the filter when particles are sampled and weighed for 

mass concentration. This concentration is dependent on ionic composition and relative 

humidity dependent species equilibrium prior to laboratory weighing. BlankFRM accounts 

for the passively collected mass value on “blank” filters.  The limitations and 

uncertainties of the reconstruction method broken down by major chemical components 

are discussed in detail elsewhere.175, 188  The uncertainty estimated for the CMAQ- and 

satellite-based surface concentrations are discussed in Section 5.4. 

5.3.2 Step 2 – CMAQ-based columnar AOD and AOD subcategorized into species-

related groups derived using the reconstructed extinction coefficient method 
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 Section 5.3.1 summarized the method applied to calculate the five representative 

component surface mass concentrations from the surface observations; these components 

are also used to derive total-column aerosol optical depth from CMAQ (!!"#$). First 

proposed by Malm et al. (1994), the reconstructed extinction coefficient method was 

designed to investigate the spatial and temporal variability of haze and visibility 

impairment in the U.S. as part of IMPROVE. Since then this method has been 

continuously upgraded by several researchers.108, 183, 189-191  The process estimates 

extinction AOD using simulated concentrations of II, OM, SS, LAC, and Dust (Table 

C.1) assuming externally mixed aerosols with respect to the modeled altitudes (z), as 

follows: 

 
! = !!!!",!!!"(!),!!(!)!

!
!"#$%&'( !"#$$%&'() !""#$#!%$&

+ (1− !!)!!",!!!"(!),!!(!)!
!

)
!"#$%&'( !"#$%&'($) !""#$#!%$&

!" (5.11) 

where 

τ = aerosol extinction optical depth (AOD) at 550 nm 

i = chemical component 

ω = single scattering albedo (SSA) 

βde = specific dry extinction efficiency per mass [m2/g] 

frh = hygroscopic growth factors as a function of height 

C = concentration of chemical component i as a function of height [µg/m3]  

 Equation 5.11 is further subdivided for dust by size in accordance with the 

CMAQ Aitken, accumulation, and course particles size categories.191  The empirically 
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based factors and their respective literature sources are summarized in Table 5.3. The 

WRF relative humidity, rh(z), simulations were used to evaluate the height-dependent 

hygroscopic growth factors. The ambient particle extinction per unit length is the sum of 

the ambient scattering and absorption per unit length, which are the two terms in equation 

5.11. When integrated over a horizontal path, the extinction per unit length is sometimes 

called the visibility, typically reported in [Mm-1]. From equation 5.11, the dimensionless 

extinction AOD is obtained by multiplying the ambient particle extinction per unit length 

by the vertical atmospheric path length of each CMAQ layer. These are added vertically 

to obtain columnar AOD, which are compared to ground- and satellite-based AOD values 

in the following subsections to assess uncertainties. 

Table 5.3 – The empirically based factors and their respective literature sources (eq. 
11). 

 

 The three CMAQ-based AOD AG (i.e., LAC, II+OM+SS, and Dust), indicated in 

Table 5.2, are calculated using the five major chemical components derived in the RM 

equation (eq. 5.9).  The CMAQ-based total-column AOD AG aggregate is equivalent to 

the total-column CMAQ-based AOD.  Assessment of the uncertainties in these 

Species Specific	dry	efficiency	factor Hygroscopic	growth	factor
f	(RH)=bscat(wet)/bscat(dry)	

Single	scattering	albedo	(ω)

Inorganic	
Ions

3	
Malm	et	al.	2007;	Chow	et	al.	2015

Malm	et	al.,	2011;	
Song	et	al.,	2008

1

Organic	
Matter

4	
Malm	et	al.	2007;	Chow	et	al.	2015

Zamora	and	Jacobson,	2013 ωOM=.99	
Sun	et	al.,2007;	Bond	et	al.,	2006

Sea	Salt 1.37
Malm	et	al.	2007;Chow	et	al.	2015

Park	et	al.,	2014 ωSS=1

Light	
Absorbing	
Carbon

10
Malm	et	al.	2007;	Chow	et	al.	2015

0
ωLAC=Temp*0.928	(Conant	et	al.,	2003);	

αabs=7.5±1.2	m2/g−1	

(Bond	and	Bergstrom,	2006)	

Dust stratifying	by	size	(Park	et	al.,	2011);
βi	~regressed	value	(Tegen	et	al.,	1996)

0 regressed	value
(Tegen	et	al.,	1996)
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quantities, using a combination of ground-based and satellite total-column measurements, 

is given in Section 5.3.4 below. 

5.3.3 Step 3 – Gap-Filled Satellite-derived AOD and Grouped AOD, using Scaled 

CMAQ-based AOD 

 To obtain a spatially complete AOD map for each case-study day, we combine the 

MISR-retrieved, MAIAC-retrieved, and CMAQ-based reconstructed AOD products, as 

CMAQ can simulate values in all grid boxes, regardless of cloud cover, surface 

brightness, terrain, and aerosol optical thickness. The most relevant factor affecting 

spatially complete satellite-retrieved AOD in this study are missing retrievals due to the 

presence of clouds.  The combined AOD product, referred herein as !!"##$%&, is more 

complete than the MISR or MAIAC products alone. 

 A unique component of this work involves the use of the MISR RA aerosol 

species-specific groups. The MISR-RA as well as the MODIS-based MAIAC satellite-

retrieved products were combined to improve spatial coverage. Before combining 

retrieved AOD products, the MAIAC maps were downscaled and spatially interpolated 

(via bilinear interpolation) to match the downscaled model 275 m × 275 m grid, and the 

275 m × 275 m MISR maps were also re-gridded to match the downscaled model grid.  

On days when multiple Aqua and Terra MAIAC C6v2 1-km AOD retrievals were 

available, the MAIAC-Aqua AOD retrievals were used to fill in missing AOD in the 

MAIAC-Terra AOD maps closest in time to the MISR RA retrieval by linearly regressing 

values from a 15 x 15 grid cell region centered on the missing cell value.  The scatterplots 
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in Figure 5.3 show MISR RA AOD retrievals are higher than those retrieved by MAIAC, 

and much closer to the AERONET values, for the three case study days with highest 

AOD. Figure 5.3 reinforces the need to scale MAIAC-retrieved AOD before gap-filling 

MISR-retrieved AOD fields. Based on Figure 5.3, a study-specific AOD filter with an 

upper bound of 0.4 was used for MAIAC retrievals to reduce potential cloud 

contamination.  Within the SJV, larger gaps caused by cloud contamination in the 

satellite-retrieved AOD were filled with the model-reconstructed AOD using linearly 

regressed values from a 7 x 7 grid cell region, repeated multiple times as needed until the 

SJV study region was filled. 

 Additionally, we produce gap-filled, aerosol-type-grouped AODs from the 

original MISR-based AG AODs using the model-based grouped AODs from Step 1, and 

following the same procedure used for total AOD. 
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Figure 5.3 – D
ensity scatterplots com

paring M
ISR

 and M
A

IA
C

 retrieved A
O

D
 for January 20

th, February 3
rd, and February 

5
th. A

 solid linear regression line and a 1:1 dashed line are show
n for reference. 
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5.3.4 Uncertainty Estimates for Model-Reconstructed and Satellite Total-Column 

Quantities 

 Two sets of intermediate analyses are presented where surface-based in situ as 

well as column-integrated observations are provided as ground truth (i.e., their 

uncertainties are small compared to those of the other values used in this study).  First, 

satellite-retrieved AOD snapshots are evaluated against coincident AERONET 

observations.  Second, a comparison between daylight-averaged AERONET AOD data, 

satellite-retrieved AOD snapshots, and model-reconstructed diurnal AOD is presented to 

determine how well the snapshots represent diurnal values in the study region. 

5.3.4.1 Comparison between Satellite-, CMAQ-reconstructed, and Ground-based Total-

Column AOD Snapshots at Coincident Times 

 Evaluation of MISR RA167 and MAIAC171 AOD has been performed extensively 

before, but not specifically for the study region, where we have considerable ground-truth 

data.  Overall, there were 14 AERONET sites over the SJV (Figure 5.1) during the six 

case study days. The number of coincident satellite- and ground-AOD observations is 

dependent on the swath width of each satellite instrument, the retrieval algorithm used, 

and the polar-orbiting coverage for a given day. Figure 5.4 and Table 5.4 provide 

scatterplots and a statistical summary, respectively, of AERONET AOD collocated in 

time and space with the MISR RA, MAIAC, gap-filled MISR AOD, and CMAQ results. 

Although AERONET reports AOD at 550 nm, AOD values at 558 nm were calculated 

for comparison with the MISR AOD retrievals. Only those Terra MAIAC AOD retrievals 
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that were temporally coincident with MISR RA retrievals were used in this comparison. 

A window of ± fifteen minutes was applied to select AERONET measurements as 

spatiotemporally coincident with the satellite overpass, and corresponding CMAQ 

hourly, reconstructed AOD values were used. 
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Dataset

N
o.	Coincident	
O
bservations

M
ean

SD
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M
B

M
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N
M
B
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M
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1/18/13
M
ISR

-	(1)
-	(0.097)

-	(-)
-	(-)

-	(0.017)
-	(0.153)

-	(-0.017)
-	(0.017)

-	(-0.153)
-	(0.153)

M
AIAC

-	(14)
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FillSAT
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0.015	(0.014)

0.01	(0.021)
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 Overall, the MISR RA AOD compares well with coincident AERONET AOD, 

and tends to outperform MAIAC statistically over the SJV across all our case-study days 

(Table 5.4).  The two best-case days for this analysis are January 20th and February 5th, 

where AERONET AOD values were relatively high (AOD≥0.15) and there were 

multiple coincident MISR retrievals across the region. On these days, MAIAC 

underestimates AOD compared to AERONET, whereas MISR RA slightly overestimates 

AOD. Specifically, for January 20th and February 5th, the MISR RA-to-AERONET 

AODs had an overall R of 0.91 and 0.99, and a NME of 0.08 and 0.12, respectively. For 

MAIAC, the corresponding values are an overall R of 0.66 and 0.93, and a NME of 0.23 

and 0.31, respectively. 

 The comparison of MISR and MAIAC satellite-retrieved AODs with AERONET 

also illustrates how gap-filling MISR with scaled and gap-filled MAIAC retrievals 

produces a more consistent product. For example, the Figure 5.4 subplot for February 5th 

shows that gap-filled MISR offers better agreement than gap-filled MAIAC at the 

AERONET retrieved AOD value of 0.5 (circled in the lower left plot in the figure). On 

this specific day and location there is no coincident MISR retrieval, indicating that the 

gap-filled MISR improvement is due to scaled and gap-filled MAIAC used to gap-fill the 

MISR AOD snapshot.  Further evident from Figure 5.4, the CMAQ reconstructed values 

systematically underestimate AOD relative to AERONET in nearly all cases and exhibit 

greater scatter, hinting at the possible value of applying the measurements as constraints 

on the model simulations. 
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5.3.4.2 Comparison of Satellite-based AOD Snapshots with Daylight-average Ground-

based AOD and with Daylight- and Diurnal-average Model-based AOD 

 Unlike aerosol radiative forcing, which depends on daytime solar heating, 

conditions during the full diurnal cycle are relevant for many air quality applications. 

However, AERONET as well as the satellites acquire AOD data only during daylight 

hours, when the sun is well above the horizon. To test the feasibility of using satellite-

based AOD snapshot retrievals as proxies for AOD averaged over daylight hours, we 

compare the satellite retrievals (MISR, MAIAC, gap-filled MISR) the with daylight-

averaged AERONET-retrieved AOD results (Figure 5.5).  We subsequently compare the 

model daylight- and diurnal-average AODs, as well as the AERONET daylight-average 

AODs, with the respective short-term values from these data sources (Figure 5.6), to 

assess how well snapshot values represent AOD for entire days in the study region.  In 

places where the snapshots are substantially different from the daylight-average or 

diurnal-average AOD values, scaled model results would be required to complete the 

diurnal air quality picture. 
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Figure 5.6 – Scatterplot of daylight-averages to the T
erra overpass tim

e ratios versus A
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 For the initial comparison, all retrieved AERONET values per each of the six 

case-study days were averaged to obtain a daylight average at each of the 14 sites (Figure 

5.5). For the MISR comparison, we have only the same MISR RA AOD retrieval 

snapshots as in Figure 5.4. For the study cases, MAIAC can have multiple Terra and 

Aqua retrievals over the region during one day, occurring at different times, due to the 

wide MODIS swath. As such, MAIAC Terra-retrieved AOD “coincident” with MISR 

overpasses are in some cases gap-filled with other scaled-MAIAC Terra/Aqua retrievals 

acquired during that day (see section 5.3.3 above). The third satellite-retrieved AOD 

product shown in Figure 5.5 is the gap-filled, primarily MISR-derived AOD (FillSAT) 

described in section 5.3.3. Also shown in Figure 5.5 are the CMAQ reconstructed 

daylight-average AODs, described in section 5.3.2. 

 Overall, the MISR and FillSAT values are very nearly identical, and they tend to 

serve as better proxies for the daylight-average AERONET values than CMAQ for the 

study cases shown in Figure 5.5.  Table 5.5 contains a statistical summary of the 

scatterplot data. For the two best days of January 20th and February 5th, the retrieved 

AODs for MISR RA and gap-filled MISR agree better statistically than the other datasets 

in terms of correlation and errors relative to AERONET daylight-average values. 

Although the retrieved AODs for the MISR RA and gap-filled MISR slightly outperform 

MAIAC for the specific case study days, this relationship is likely to change for different 

domains and time periods. As such, the technique for gap-filling MISR AOD might need 

to be dynamic in weighting the MAIAC AOD retrievals when applied to other regions. 

For January 20th and February 5th, the gap-filled MISR-to-daylight-average-AERONET 



 

 

121 

AODs had overall R values of 0.81 and 0.78, and NME of 0.16 and 0.28, respectively. 

This comparison indicates the satellite-retrieved AOD quantities are in sufficient 

agreement with daylight-averaged ground truth to serve as proxies for the daylight-

averaged values during the study period. 
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T
able 5.5 – Sum

m
ary Statistics for A

E
R

O
N

E
T

 C
oincidences w

ith all datasets using daylight average A
O

D
≥0.15 (A

ll A
O

D
). 

 
*M

ISR
, M

A
IA

C
, and SA

T datasets are not daytim
e averages, but Terra overpass backfilled values. 

 
 

Date
Dataset

N
o.	Coincident	
O
bservations

M
ean

SD
Spatial	R

RM
SE

N
RM

SE
M
B

M
AE

N
M
B

N
M
E

1/18/13
M
ISR

-	(1)
-	(0.097)

-	(-)
-	(-)

-	(0.016)
-	(0.141)

-	(-0.016)
-	(0.016)

-	(-0.141)
-	(0.141)

M
AIAC

-	(14)
-	(0.08)

-	(0.022)
-	(0.076)

-	(0.036)
-	(0.336)

-	(-0.025)
-	(0.028)

-	(-0.24)
-	(0.261)

FillSAT
-	(1)

-	(0.097)
-	(-)

-	(-)
-	(0.018)

-	(0.156)
-	(-0.018)

-	(0.018)
-	(-0.156)

-	(0.156)
CM

AQ
-	(14)

-	(0.078)
-	(0.033)

-	(0.206)
-	(0.043)

-	(0.403)
-	(-0.028)

-	(0.037)
-	(-0.265)

-	(0.348)
1/20/13

M
ISR

6	(12)
0.202	(0.163)

0.039	(0.053)
0.326	(0.847)

0.036	(0.031)
0.188	(0.203)

0.007	(0.013)
0.027	(0.022)

0.038	(0.084)
0.137	(0.148)

M
AIAC

7	(14)
0.171	(0.137)

0.049	(0.052)
-0.785	(0.4)

0.07	(0.056)
0.363	(0.366)

-0.022	(-0.016)
0.059	(0.046)

-0.114	(-0.107)
0.305	(0.304)

FillSAT
7	(14)

0.208	(0.167)
0.039	(0.054)

0.114	(0.81)
0.044	(0.034)

0.225	(0.222)
0.014	(0.014)

0.034	(0.025)
0.074	(0.088)

0.176	(0.16)
CM

AQ
7	(14)

0.151	(0.108)
0.038	(0.059)

-0.127	(0.776)
0.062	(0.057)

0.323	(0.375)
-0.043	(-0.045)

0.048	(0.047)
-0.221	(-0.293)

0.247	(0.309)
2/3/13

M
ISR

1	(1)
0.242	(0.242)

-	(-)
-	(-)

0.034	(0.034)
0.123	(0.123)

-0.034	(-0.034)
0.034	(0.034)

-0.123	(-0.123)
0.123	(0.123)

M
AIAC

2	(6)
0.2	(0.167)

0.055	(0.044)
-	(0.85)

0.005	(0.035)
0.026	(0.247)

0.004	(0.026)
0.004	(0.026)

0.02	(0.181)
0.02	(0.184)

FillSAT
1	(1)

0.242	(0.242)
-	(-)

-	(-)
0.039	(0.039)

0.139	(0.139)
-0.039	(-0.039)

0.039	(0.039)
-0.139	(-0.139)

0.139	(0.139)
CM

AQ
10	(14)

0.197	(0.152)
0.108	(0.117)

0.954	(0.965)
0.175	(0.154)

0.501	(0.545)
-0.152	(-0.13)

0.152	(0.13)
-0.435	(-0.462)

0.435	(0.462)
2/5/13

M
ISR

9	(9)
0.374	(0.374)

0.12	(0.12)
0.832	(0.832)

0.113	(0.113)
0.401	(0.401)

0.093	(0.093)
0.098	(0.098)

0.332	(0.332)
0.348	(0.348)

M
AIAC

10	(10)
0.211	(0.211)

0.095	(0.095)
0.617	(0.617)

0.115	(0.115)
0.402	(0.402)

-0.076	(-0.076)
0.095	(0.095)

-0.265	(-0.265)
0.33	(0.33)

FillSAT
13	(13)

0.35	(0.35)
0.124	(0.124)

0.777	(0.777)
0.095	(0.095)

0.323	(0.323)
0.057	(0.057)

0.082	(0.082)
0.195	(0.195)

0.278	(0.278)
CM

AQ
13	(14)

0.172	(0.172)
0.047	(0.045)

0.603	(0.544)
0.146	(0.142)

0.5	(0.505)
-0.121	(-0.109)

0.121	(0.116)
-0.414	(-0.388)

0.414	(0.415)
2/12/13

M
ISR

-	(8)
-	(0.107)

-	(0.017)
-	(0.391)

-	(0.016)
-	(0.156)

-	(0.003)
-	(0.014)

-	(0.025)
-	(0.135)

M
AIAC

-	(10)
-	(0.08)

-	(0.027)
-	(0.752)

-	(0.03)
-	(0.289)

-	(-0.024)
-	(0.027)

-	(-0.234)
-	(0.263)

FillSAT
-	(10)

-	(0.105)
-	(0.021)

-	(0.286)
-	(0.02)

-	(0.184)
-	(-0.002)

-	(0.017)
-	(-0.021)

-	(0.154)
CM

AQ
-	(11)

-	(0.07)
-	(0.018)

-	(0.668)
-	(0.037)

-	(0.352)
-	(-0.034)

-	(0.034)
-	(-0.329)

-	(0.329)
2/14/13

M
ISR

2	(9)
0.13	(0.108)

0.014	(0.021)
-	(0.941)

0.026	(0.017)
0.17	(0.137)

-0.025	(-0.013)
0.025	(0.013)

-0.161	(-0.11)
0.161	(0.11)

M
AIAC

2	(11)
0.143	(0.096)

0.038	(0.046)
-	(0.759)

0.029	(0.039)
0.186	(0.326)

-0.015	(-0.025)
0.025	(0.036)

-0.095	(-0.21)
0.161	(0.294)

FillSAT
2	(9)

0.13	(0.108)
0.014	(0.021)

-	(0.942)
0.029	(0.019)

0.185	(0.152)
-0.028	(-0.016)

0.028	(0.016)
-0.177	(-0.128)

0.177	(0.128)
CM

AQ
2	(11)

0.13	(0.134)
0.005	(0.036)

-	(0.058)
0.028	(0.043)

0.178	(0.354)
-0.028	(0.013)

0.028	(0.038)
-0.176	(0.11)

0.176	(0.316)
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 A procedure for fusing CMAQ model simulations with surface-based 

measurements is described briefly in Section 5.2.4.1 above, and in detail in Friberg et al. 

(2016).  This procedure was applied to COBS and CCMAQ (Figure 5.2) to produce CFCMAQ, 

also referred to as FCMAQ.  The additional step allows us to assess how the spatially 

extensive satellite data affects the results compared to the model constrained only by 

local surface observations. 

 To estimate how well the AOD snapshots might characterize the diurnal-average 

AOD, diurnal-to-hourly ratios for CMAQ and FCMAQ are plotted against AERONET 

retrieved AODs acquired within 15 minutes of the satellite overpasses for each case 

(Figure 5.6 and Table 5.6). AERONET ratios are plotted as well.  The diurnal model and 

daylight AERONET AOD values are divided by AODs at Terra overpass time within the 

hour and within 15 minutes for the model and AERONET ratios, respectively. On 

January 18th and 20th, FCMAQ and daytime CMAQ ratios exhibit the high variability at 

locations where AERONET ratios were near unity, suggesting that CMAQ diurnal-to-

hour ratio are at times spatially biased.  But generally, based on model performance, 

snapshots acquired at Terra overpass time tend to fall within 10% - 20% of the diurnal-

average value, except in some cases when the AOD at overpass time <~0.15 or 0.2.  At 

these smaller AODs, a small absolute change in AOD will produce larger percent 

changes. 
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Table 5.6 – Summary of daytime or diurnal to Terra overpass hour ratios at 
AERONET locations for AOD≥0.15 (All AOD). 

 

 One possible reason for the scatter in Figure 5.6 is the model representation of 

transported aerosol.  Transported aerosol above the boundary layer is not always well 

represented by the CMAQ model in this region. For example, the model results indicate 

minimal vertical distribution of dust aerosol, concentrating all the dust within the 

planetary boundary layer on the study days, whereas transported dust above the boundary 

layer is likely to be the major non-spherical aerosol species in this region and season 

Date Dataset Ratio
1/18/13 AERONET		(daytime-to-hr) -	(1.038)

CMAQ		(daytime-to-hr) -	(1.264)
CMAQ		(diurnal-to-hr) -	(1.152)
FCMAQ	(diurnal-to-hr) -	(1.376)

1/20/13 AERONET		(daytime-to-hr) 0.928	(0.928)
CMAQ		(daytime-to-hr) 0.985	(1.159)
CMAQ		(diurnal-to-hr) 1.068	(1.158)
FCMAQ	(diurnal-to-hr) 1.052	(1.264)

2/3/13 AERONET		(daytime-to-hr) 0.89	(0.864)
CMAQ		(daytime-to-hr) 1.037	(1.041)
CMAQ		(diurnal-to-hr) 1.034	(1.05)
FCMAQ	(diurnal-to-hr) 1.141	(1.153)

2/5/13 AERONET		(daytime-to-hr) 0.945	(0.988)
CMAQ		(daytime-to-hr) 1.011	(1.015)
CMAQ		(diurnal-to-hr) 1.149	(1.143)
FCMAQ	(diurnal-to-hr) 1.082	(1.087)

2/12/13 AERONET		(daytime-to-hr) 0.783	(0.95)
CMAQ		(daytime-to-hr) 0.978	(1.065)
CMAQ		(diurnal-to-hr) 1.123	(1.08)
FCMAQ	(diurnal-to-hr) 1.049	(1.161)

2/14/13 AERONET		(daytime-to-hr) 1.053	(1.064)
CMAQ		(daytime-to-hr) 0.968	(0.91)
CMAQ		(diurnal-to-hr) 1.069	(0.992)
FCMAQ	(diurnal-to-hr) 1.04	(1.011)
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(e.g., Liu et al., 2007b). Any biases in dust AOD retrievals are compounded by 

inaccuracies in the model-based vertical distributions that are applied during the total-

column-to-surface decomposition step. The impact of errors in the adopted vertical 

distribution of aerosols on these results, beyond the scope of the current paper, needs to 

be investigated further. Model aerosol vertical distribution can be further constrained by 

taking advantage of upwind aerosol elevation retrievals from space-based stereo imaging 

(MISR), in places where the aerosol sources produce visible plumes, and downwind 

aerosol layer heights from space-based lidar (e.g., CALIPSO).192 

5.3.5 Steps 4 – Deconstructed Total-column Satellite-measured AOD to Surface PM2.5 

Mass and Speciated Concentrations 

 Using CMAQ-based aerosol vertical profiles, near-surface concentrations 

(!"#$%&' !!"##$%&!"!.!!"# and !!"##$%&!"#$%&'#() are obtained from the total column satellite AOD 

(!!"##$%&) and aerosol group AOD (!!"#!"#$!" ) by the following three intermediate steps.  As 

in previous work, the key step amounts to using model-derived ratios of total-column to 

near-surface aerosol distributions to obtain near-surface values constrained by total-

column measurements (e.g., Liu et al., 2004; Van Donkelaar et al., 2010). 

 In equation 5.12, the total column dry particle concentrations for the three aerosol 

groups (!"#$%&'( !!"##$%&!" ) are calculated from the AODs, !!"##$%& and !!"#!"#$!" , by 

reversing the reconstructed extinction process in Step 2 (eq. 11).  The same hygroscopic 

growth and specific dry scattering or absorbing efficiency factors are used here for 

consistency.  The total column satellite-based AG concentrations (!"#$%&'( !!"##$%&!" ) 
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are further stratified into the five total column representative PM chemical components 

(!"#$%&'( !!"##$%&!"#$%&'#(), defined in Step 1 according to equation 5.9, using the CMAQ-

based species-to-aerosol group partition (eq. 5.13).  With !"#$%&'( !!"##$%&!"#$%&'#( defined, 

satellite-based total column PM2.5 (!"#$%&'( !!"##$%&!"!.!!"#) is obtained using equation 

5.10.  The satellite-derived total column concentrations are then apportioned to surface-

level concentrations by relying on the vertical distribution of the CMAQ simulations of 

each species (eq. 5.14). These relationships were defined in terms of daily AOD and 

species concentrations. 

 !"#$%&'( !!"##$%&!" = !!"##$%&!"

!!",!!!",!!"
 (5.12) 

 
!"#$%&'( !!"##$%&!"#$%&'#( = !"#$%&'( !!"##$%&!" !"#$%&'( !!"#$!"#$%&'#!

!"#$%&'( !!"#$!"  (5.13) 

 
!"#$%&' !!"##$%&!"#$%&'#( = !"#$%&'( !!"##$%&!"#$%&'#( !"#$%&' !!"#$!"#$%&'#(

!"#$%&'( !!"#$!"#$%&!"#  (5.14) 

5.3.6 Step 5 – Optimized PM2.5 FRM and speciated concentrations by fusing satellite-

constrained values with ground-station data 

 The optimized concentration dataset (COpt) closely parallels the constrained 

CMAQ simulation using ground-based observations described in Section 5.2.4.1 (eq. 

5.1).  The COpt dataset is derived by constraining the results with the surface-station data 
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near their locations, and weighting the satellite-constrained concentration values 

progressively more heavily away from available ground stations. 

 Using equation 5.15, the six daily CCMAQ fields in the two-month span are 

replaced with the satellite-derived daily CFillSAT fields. With only 11.5% of the CCMAQ 

fields changing, the average temporal correlations between the simulations and 

observations across all monitors are not recalculated (R2; eq. 5.4), nor are the weighting 

factors (W; eq. 5.2).  Thus, for this study, COpt diverges from CFCMAQ for 6 days out of the 

entire 2-month time period. 

 
!!"#!,! = !!!"#$!

! !!,!
!!"#!!,!
!!"#!! !"#$

+ 1−!!,!
!!"##$%&!,!
!!"#$!

 (5.15) 

Using the techniques described in the next section, we assess the performance of the 

optimized surface concentrations in the results section. 

5.3.7 Evaluation of Optimized Datasets by Cross-Validation 

 Three cross-validation techniques are used to evaluate how well the optimized 

datasets represent diurnal values to elucidate biases that arise from different sampling 

frequencies and spatial distribution of monitors across the pollutants. First, a tenfold 10% 

withholding (10-WH) technique is applied to all species. Then a Leave-One-Out (LOO) 

cross-validation method is used for all the species with the exception of PM2.5. Finally, a 

Regional Holdout (RH) is used only for PM2.5. 
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5.3.7.1 10-fold 10% Holdout Cross-Validation 

 The dataset performance was evaluated using a tenfold 10% withholding cross-

validation analysis.  For each of 10 independently run trials, a random 10% of the 

observations were held back per day and each method (i.e., fused and optimized) was 

applied to simulate the withheld data.  The results from the 10 trials were then combined 

to provide cross-validation results that allow for the exploration of difference in errors 

based on proximity to monitors.  Across monitors and days, the holdout number 

corresponds to the number of observations for each pollutant (Table 5.1), ranging from 

44 for PM2.5-OC to 779 for PM2.5. 

5.3.7.2 Leave-one-out Cross-Validation 

 As an alternative to the 10-WH method, the LOO withholding is applied to the 

five particulate matter components to overcome the sampling and spatial scarcity. By 

withholding one location at a time, this location-based cross-validation technique can 

provide information on how well the CMAQ simulations and satellite-derived 

concentrations of the fused and optimized datasets, respectively, represent diurnal values 

at locations further than 50 km from other monitors (see speciated monitor locations in 

Figure 5.1). With some sites containing more than one monitor, collocated monitors were 

considered one location and, thus, all monitors at a location were withheld for LOO.  This 

cross-validation technique does not provide much insight when the nearest monitor is in 

close proximity, as is the case with the PM2.5 mass monitors. 

5.3.7.3 Regional Holdout Cross-Validation 
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 A regional withholding technique is used to evaluate fused and optimized PM2.5 

datasets affected by monitor clustering. For each of the cross-validation regions in Figure 

5.1, all but one of the monitors in a region is withheld and is repeated independently for 

each daily monitor and region. This approach approximates the evaluation of LOO when 

the distance between monitor locations is large (i.e., >50 km). 

5.4 Results 

 Two sets of analyses are presented where surface-based in situ observations are 

provided as ground truth (i.e., their uncertainties are small compared to those of the other 

values used in this study).  First, modeled and deconstructed satellite-derived results for 

PM2.5 and PM2.5 grouped by species are evaluated against EPA AQS and CSN ground 

observations.  The main objectives of this section are (1) to evaluate the results of Steps 

2-5 as much as possible, (for Step 1, see Friberg et al. 2017), (2) to assess where, and to 

what degree, the satellite data help constrain the model PM2.5 over an extended region, 

and (3) where mid-visible AOD values exceed 0.15, to also evaluate the satellite-

constrained, speciated PM2.5. For the second set of analyses, cross-validation is used to 

evaluate satellite-based model capabilities. 

5.4.1 Comparison of Satellite-derived and Model-based Daily PM2.5 and Speciated 

Component Surface Concentrations to Average Daily Ground Truth 

 We compare now the model-based (CCMAQ, CFCMAQ) and the intermediate satellite-

derived (CFillSAT) daily averaged PM2.5 and speciated component concentrations (Figure 

5.2) with EPA AQS and CSN observations. Table 5.7 provides a statistical summary of 
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the comparison between the ground truth and the modeled, fused, and satellite-

constrained results, stratified by pollutant, day, and dataset. Figure 5.7 presents 

concentration maps with embedded ground truth PM2.5 values and their respective RGB 

images for the three days with relatively high AOD in the study set (January 20th, 

February 3rd, and February 5th). 
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Table 5.7 – Statistical summary of comparison between AQS or CSN daily 
concentrations coincidences and each modeled or satellite derived dataset stratified 
by pollutant and day. 

 

PM2.5_FRM

Date Dataset No.	Coincident	
Observations

Mean SD Spatial	R RMSE NRMSE MB MAE NMB NME

1/18/13 CMAQ 8 36.33 10.84 0.19 12.27 0.34 0.23 9.01 0.01 0.25
FCMAQ 8 38.35 9.65 0.11 12.30 0.34 2.25 8.60 0.06 0.24
FillSAT 8 29.33 5.25 0.89 8.56 0.24 -6.77 7.18 -0.19 0.20
Opt 8 38.96 5.91 0.85 6.03 0.17 2.87 5.27 0.08 0.15

1/20/13 CMAQ 12 25.09 15.07 0.82 13.42 0.39 -9.36 10.76 -0.27 0.31
FCMAQ 12 27.18 15.41 0.80 12.50 0.36 -7.27 10.59 -0.21 0.31
FillSAT 12 23.19 14.23 0.86 14.28 0.41 -11.27 12.21 -0.33 0.35
Opt 12 32.40 14.49 0.95 6.02 0.17 -2.06 4.57 -0.06 0.13

2/3/13 CMAQ 8 21.97 2.35 0.30 4.40 0.21 1.34 4.04 0.06 0.20
FCMAQ 8 23.63 3.50 0.74 4.16 0.20 2.99 3.83 0.15 0.19
FillSAT 8 23.09 9.32 0.72 6.85 0.33 2.46 5.26 0.12 0.26
Opt 8 22.71 5.55 0.74 4.08 0.20 2.08 3.19 0.10 0.15

2/5/13 CMAQ 8 22.20 13.56 0.94 6.55 0.24 -4.74 4.76 -0.18 0.18
FCMAQ 8 24.49 13.90 0.92 5.62 0.21 -2.44 4.35 -0.09 0.16
FillSAT 8 38.55 27.23 0.59 23.75 0.88 11.62 16.70 0.43 0.62
Opt 8 26.50 8.16 0.73 8.80 0.33 -0.43 6.10 -0.02 0.23

2/12/13 CMAQ 20 14.86 4.42 0.58 4.70 0.28 -1.89 3.73 -0.11 0.22
FCMAQ 20 16.04 4.19 0.53 4.51 0.27 -0.71 3.46 -0.04 0.21
FillSAT 20 11.82 3.72 0.19 7.45 0.44 -4.93 6.41 -0.29 0.38
Opt 20 16.42 5.76 0.84 3.10 0.19 -0.33 2.38 -0.02 0.14

2/14/13 CMAQ 7 24.25 9.94 0.92 4.92 0.22 2.19 4.76 0.10 0.22
FCMAQ 7 26.29 10.16 0.90 6.27 0.28 4.23 5.76 0.19 0.26
FillSAT 7 11.50 5.34 0.88 12.58 0.57 -10.56 11.96 -0.48 0.54
Opt 7 17.42 11.59 0.98 5.10 0.23 -4.64 4.64 -0.21 0.21

NH4

Date Dataset No.	Coincident	
Observations

Mean SD Spatial	R RMSE NRMSE MB MAE NMB NME

2/3/13 CMAQ 1 2.80 - - 1.03 0.58 1.03 1.03 0.58 0.58
FCMAQ 1 3.60 - - 1.83 1.03 1.83 1.83 1.03 1.03
FillSAT 1 2.58 - - 0.81 0.46 0.81 0.81 0.46 0.46
Opt 1 4.84 - - 3.07 1.74 3.07 3.07 1.74 1.74

2/12/13 CMAQ 3 1.96 0.29 0.93 0.36 0.21 0.29 0.29 0.18 0.18
FCMAQ 3 2.48 0.40 0.99 0.82 0.49 0.81 0.81 0.49 0.49
FillSAT 3 1.48 0.50 -0.79 0.79 0.47 -0.19 0.66 -0.11 0.40
Opt 3 3.61 2.15 1.00 2.37 1.42 1.94 1.94 1.16 1.16
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Table 5.7 – (continued) 

 

  

NO3

Date Dataset No.	Coincident	
Observations

Mean SD Spatial	R RMSE NRMSE MB MAE NMB NME

2/3/13 CMAQ 1 8.05 - - 1.88 0.30 1.88 1.88 0.30 0.30
FCMAQ 1 8.63 - - 2.46 0.40 2.46 2.46 0.40 0.40
FillSAT 1 7.41 - - 1.24 0.20 1.24 1.24 0.20 0.20
Opt 1 7.96 - - 1.79 0.29 1.79 1.79 0.29 0.29

2/12/13 CMAQ 7 4.58 2.62 0.97 0.76 0.18 0.39 0.63 0.09 0.15
FCMAQ 7 5.05 2.57 0.94 1.27 0.30 0.87 0.94 0.21 0.22
FillSAT 7 3.32 2.11 0.69 2.11 0.50 -0.86 1.57 -0.21 0.37
Opt 7 5.30 3.61 1.00 1.31 0.31 1.11 1.11 0.27 0.27

SO4

Date Dataset No.	Coincident	
Observations

Mean SD Spatial	R RMSE NRMSE MB MAE NMB NME

2/3/13 CMAQ 1 1.55 - - 0.41 0.36 0.41 0.41 0.36 0.36
FCMAQ 1 1.39 - - 0.25 0.22 0.25 0.25 0.22 0.22
FillSAT 1 1.43 - - 0.29 0.26 0.29 0.29 0.26 0.26
Opt 1 1.36 - - 0.22 0.19 0.22 0.22 0.19 0.19

2/12/13 CMAQ 7 0.62 0.18 0.97 0.08 0.11 -0.05 0.05 -0.07 0.07
FCMAQ 7 0.63 0.10 0.96 0.12 0.18 -0.04 0.09 -0.05 0.13
FillSAT 7 0.56 0.25 -0.31 0.37 0.55 -0.11 0.29 -0.16 0.43
Opt 7 0.72 0.24 0.75 0.16 0.24 0.05 0.10 0.08 0.15

EC

Date Dataset No.	Coincident	
Observations

Mean SD Spatial	R RMSE NRMSE MB MAE NMB NME

2/3/13 CMAQ 1 0.00 - - 1.10 1.00 -1.10 1.10 -1.00 1.00
FCMAQ 1 0.00 - - 1.10 1.00 -1.10 1.10 -1.00 1.00
FillSAT 1 0.13 - - 0.97 0.88 -0.97 0.97 -0.88 0.88
Opt 1 1.91 - - 0.81 0.74 0.81 0.81 0.74 0.74

2/12/13 CMAQ 4 0.00 0.00 0.70 0.89 1.01 -0.88 0.88 -1.00 1.00
FCMAQ 4 0.00 0.00 0.69 0.89 1.01 -0.88 0.88 -1.00 1.00
FillSAT 4 0.00 0.00 0.64 0.88 1.00 -0.88 0.88 -1.00 1.00
Opt 4 1.53 0.30 0.73 0.67 0.77 0.65 0.65 0.74 0.74

OC

Date Dataset No.	Coincident	
Observations

Mean SD Spatial	R RMSE NRMSE MB MAE NMB NME

2/3/13 CMAQ 1 6.00 - - 0.30 0.05 0.30 0.30 0.05 0.05
FCMAQ 1 5.25 - - 0.45 0.08 -0.45 0.45 -0.08 0.08
FillSAT 1 5.52 - - 0.18 0.03 -0.18 0.18 -0.03 0.03
Opt 1 4.77 - - 0.93 0.16 -0.93 0.93 -0.16 0.16

2/12/13 CMAQ 4 4.58 0.97 0.77 0.99 0.26 0.80 0.82 0.21 0.22
FCMAQ 4 4.30 0.63 0.76 0.78 0.21 0.52 0.65 0.14 0.17
FillSAT 4 3.84 0.91 -0.68 1.54 0.41 0.06 1.46 0.02 0.39
Opt 4 3.34 0.59 0.96 0.61 0.16 -0.44 0.51 -0.12 0.13
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 Focusing on the area within the SJV, the higher concentration gradients in 

FillSAT are due to the application of satellite snapshots. Even so, the satellite-constrained 

concentration snapshots tend to provide more realistic spatial distributions of PM2.5 

compared to the unconstrained model values. Specifically, the CFillSAT maps show greater 

dynamic ranges of values, with localized hotspots over known urban areas, such as 

Bakersfield (35.4˚ N lat., 119.0˚ W long.) on January 20th and February 5th, and Fresno 

(36.7˚ N lat., 119.8˚ W long.) on February 3rd. The satellite-constrained results also tend 

agree better with available surface measurements in other high-AOD areas, but cloud 

contamination and the lack of satellite diurnal sampling affect the CFillSAT values in low-

AOD regions. This suggests that the technique will yield increasingly good results when 

applied in more heavily polluted populated areas around the globe.  Figure 5.8 presents 

scatterplots comparing the daily averaged models and the satellite-derived snapshots of 

near-surface PM2.5 to ground monitor values.  They indicate than diurnal variability is 

significant in some places and times, but not in others. For days with high AOD (Jan. 

20th, Feb. 3rd, and Feb. 5th), Figure 5.8 shows that, with the exception of a few outliers, 

the satellite-derived PM2.5 is in agreement with observations within the performance 

range of the model results, and the variability is minimal compared to low AOD days. 
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 Overall, the mean concentrations and normalized mean absolute errors for each 

pollutant are comparable across the dataset per day, with the exception of EC. Of the 

three days with relatively high AOD levels, January 20th had the least amount of cloud 

contamination, whereas February 5th had the most. The satellite-derived fused dataset, 

CFillSAT, outperformed the other datasets for PM2.5 on January 20th and February 3rd, with 

R values of 0.87 and 0.70, and NME of 0.25 and 0.38, respectively. Figures 5.9 and 5.10 

provide speciated NO3, NH4, and SO4 maps for January 20th and February 3rd; 

respectively; ground-truth data available only for February 3rd, are included in Figure 

5.10. 
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Figure 5.9 –N
H

4 , SO
4 , and N
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Figure 5.10 – N
H

4 , SO
4 , and N

O
3  calculated concentration m

aps and m
onitor observations (filled circles) for February 3

rd. 
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 For the evaluation of the satellite-constrained surface concentrations, sparse 

ground observations of speciated PM have a large impact, especially on the high-AOD 

days.  This is compounded by ground-station sampling infrequency, as evident in the 

correlation ranges (Table 5.7). Figure 5.9 demonstrates the ability of satellite aerosol 

retrievals to characterize the spatial distributions of speciated aerosol airmass types more 

realistically and consistently than the models across all three species. Although the model 

and satellite results show agreement around the location of known emission sources, the 

satellite-derived aerosol concentrations at the surface show more realistic horizontal 

mixing patterns, and the spatial distribution better reflects the likely influence of 

topographic features. For example, the difference between the model and satellite-

constrained concentration gradients within the SJV are visible on February 3rd. For this 

day (Figure 5.10), there is some disagreement between the satellite-derived and modeled 

concentration gradients, surface mixing, and plume dispersion. The scatterplots in Figure 

5.11 show that, at least for the very limited speciated monitor measurements available, 

the satellite-constrained concentrations provide better agreement than the model and 

fused-model values. 
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 Comparing the results of the current analysis with previous studies that attempt to 

apply satellite data to surface air quality assessment is a challenge for the following 

reasons: (1) limited, non-overlapping case study domains; (2) disparity in spatial 

resolution at which the analyses are performed, which can bias pixel-to-point 

comparisons; (3) limited number of ground-truth observations; (4) prevalence of statistics 

that were averaged over entire seasons or years; (5) lack of actual surface-concentration 

statistics reported for the satellite-derived values (i.e., many studies report correlations 

just between satellite-derived, total-column AOD and surface-based PM2.5) and (6) where 

AOD is the satellite-reported quantity used, algorithm version differences between 

AERONET, MISR, and MAIAC.  

 With regard to performance comparisons, the statistical-regression-technique 

study by Liu et al. (2007b; herein referred to as Liu2007b) is the most similar to the 

current analysis. Liu2007b compares 54 satellite-derived and ground observations for 

PM2.5 mass and speciated particles for the western US. The statistical regression 

technique used 3-hour averaged CTM (GEOS-Chem) results coincident with Terra 

overpass for 2005 at 2° by 2.5° spatial resolution. The Liu2007b regression results with 

removed outliers were as follows: PM2.5 R2=0.21, NO3 R2= .23, SO4 R2= 0.11, and OC 

R2= .11. In our study, the R2 values for PM2.5 are at least 0.41 for all days, and 0.61 for 

the three days with highest AOD. The R2 values for the speciated PM on February 12th, 

the only day for which we have more than one surface measurement, are 0.41 for NO3, 

0.25 for SO4, 0.61 for OC, 0.69 for NH4, and 0.67 for EC. 
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5.4.2 Comparison of CMAQ, Fused, and Optimized Datasets to Observed 

Concentrations 

 Outputs from CMAQ simulations and the two measurement-constrained models 

(CFCMAQ, COpt) are included in the 10-WH cross-validation comparison, with the monitor 

data for reference.  The RMSE, MB, and the spatiotemporal, temporal, and spatial mean 

correlations for the five datasets are presented in Table 5.8.  The spatiotemporal R2 COpt 

10-WH values are 0.79 for PM2.5, 0.88 for NO3, 0.78 for SO4, 1.0 for NH4, 0.73 for OC, and 

0.31 for EC.  The similarities among the PM2.5 speciated components 10-WH cross-

validation statistics are affected by low numbers of observations available, sampling 

frequency, and coincident satellite-retrieval data, particularly for NH4 and EC.  As a 

result, the cross-validated EC results show a 40% increase in spatial R2 and 10% decrease 

in spatiotemporal R2, whereas the cross-validation spatiotemporal R2 values for NH4 are 

biased high.  The SO4 spatial and spatiotemporal R2 cross-validation results for both 

CFCMAQ and COpt have the largest improvement over the unconstrained model, with a 43% 

increase as compared to the CMAQ simulation performance.  The PM2.5 temporal and 

spatiotemporal R2 cross-validation results are 30% and 13% higher than the CMAQ 

simulations.  The COpt results from the 10-WH cross-validation would normally provide 

robust cross-validation results that allow for the exploration of differences in errors based 

on proximity to monitors.  Overall, the statistical improvement between the raw CMAQ 

simulations and cross-validated datasets suggest the empirically based mass 

reconstruction factors, specific dry efficiencies, and SSA values were adequate for the 

SJV domain, as the resulting improvements demonstrate. 
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Table 5.8 – Comparison of temporal R2, spatial R2, spatiotemporal R2, mean bias, 
and root means square error values between observations and all simulation, 
including 10-fold 10% holdout cross-validation (10-WH CV), at all monitor 
locations and for 52 days. 

 
Pearson Squared Correlation (R2); Modeled results (M); Observations (O); Covariance (cov); Standard 
Deviation (SD); monitor location(mi); day observed (t); Number of monitors (N) 

Temporal R = !
!

!"# !!!,!,!!!,!  
!"!!!,!!"!!!,!

!
!!! ;  Spatial R = !"# !

! !!! !,
!
! !!! !

!" !
! !!! !

!" !
! !!! !

;  Spatiotemporal 

R= !"# !!,!,!!,!  
!"!!,!!"!!,!

; 

  

Species Dataset Temporal	R2 Spatial	R2 Spatiotemporal	R2 Mean	Bias RMSE

cmaq 0.65 0.87 0.67 0.00 0.45
fcmaq 1.00 0.99 0.88 0.00 0.27
opt 1.00 0.96 0.87 -0.02 0.28
fcmaq	10-WH	CV 0.95 0.68 0.80 0.24 0.32
opt	10-WH	CV 0.95 0.69 0.79 0.24 0.33
cmaq 0.70 0.67 0.61 0.29 1.69
fcmaq 1.00 0.99 0.95 0.71 0.81
opt 1.00 0.88 0.93 0.53 0.81
fcmaq	10-WH	CV - 0.98 1.00 1.88 1.02
opt	10-WH	CV - 0.98 1.00 1.86 1.01
cmaq 0.29 0.22 0.36 0.00 0.51
fcmaq 0.99 0.98 0.94 0.05 0.19
opt 0.99 0.96 0.92 0.01 0.19
fcmaq	10-WH	CV 0.98 0.74 0.79 0.11 0.23
opt	10-WH	CV 0.98 0.73 0.78 0.11 0.23
cmaq 0.69 0.77 0.79 0.13 0.67
fcmaq 1.00 0.99 0.99 0.28 0.40
opt 1.00 0.93 0.98 0.21 0.40
fcmaq	10-WH	CV - 0.79 0.88 0.40 0.63
opt	10-WH	CV - 0.79 0.88 0.42 0.65
cmaq 0.62 0.78 0.63 -0.10 0.31
fcmaq 1.00 0.99 0.98 -0.12 0.14
opt 1.00 0.95 0.97 -0.16 0.15
fcmaq	10-WH	CV - 0.98 0.75 -0.14 0.22
opt	10-WH	CV - 0.97 0.73 -0.13 0.23
cmaq 0.62 0.44 0.43 0.25 0.68
fcmaq 1.00 0.99 0.97 0.68 0.67
opt 1.00 0.98 0.97 0.65 0.65
fcmaq	10-WH	CV - 0.94 0.32 0.49 0.62
opt	10-WH	CV - 0.93 0.31 0.50 0.65

PM2.5

NH4

SO4

NO3

OC

EC
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 Unlike 10-WH, LOO cross-validation results allow us to leverage the spatial 

distribution of monitor locations throughout the domain.  Table 5.9 shows the LOO 

temporal R2, MB, and RMSE values averaged across monitor locations.  The NH4 COpt 

LOO results improved the most across the PM2.5 component species and outperformed 

temporal R2 CFCMAQ and CFCMAQ LOO values by 10 and 8%.  NH4 cross-validation 

performance is highest for monitor locations closest to the emission sources (i.e., 

agricultural), in the southern area of domain. This finding is consistent with aerosol type 

uncertainties being lowest when AOD is higher than the threshold of 0.15.  CMAQ has a 

difficult time simulating SO4 and the cross-validation for both CFCMAQ LOO and COpt LOO 

datasets show significant improvements in temporal R2 and RMSE. For NO3, temporal R2 

of CFCMAQ LOO is slightly higher than that of COpt LOO , whereas the opposite is true for MB.  

The OC COpt LOO results are mixed between locations, whereas the EC COpt LOO shows 

improvements across all locations. 
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Table 5.9 – Comparison of averaged temporal R2, mean bias, and root means square 
error values between observations and leave-one-out cross-validation (LOO CV) for 
52 days across all locations. 

 

 To explore the PM2.5 CFillSAT impact of COpt, i.e., combining the surface station 

data with CMAQ simulation plus satellite results, the spatial cross-validation 

performance assessment of PM2.5 COpt was expanded to include Regional Holdout (RH), 

which minimizes the effect of clustered monitors on statistics (Table 5.10).  As expected, 

removing PM2.5 clustered monitors increased the cross-validated datasets reliance of 

Species Dataset Temporal	R2 Mean	Bias RMSE

cmaq 0.52 0.43 0.94
fcmaq 1.00 0.91 1.24
opt 1.00 0.70 1.13
fcmaq	LOO	CV 0.56 0.90 1.44
opt	LOO	CV 0.62 0.71 1.39
cmaq 0.28 0.02 0.57
fcmaq 1.00 0.00 0.12
opt 0.99 -0.09 0.11
fcmaq	LOO	CV 0.75 -0.06 0.41
opt	LOO	CV 0.63 -0.13 0.36
cmaq 0.73 0.16 0.49
fcmaq 1.00 0.26 0.35
opt 1.00 0.12 0.31
fcmaq	LOO	CV 0.89 0.14 0.39
opt	LOO	CV 0.85 0.02 0.38
cmaq 0.68 -0.08 0.36
fcmaq 1.00 -0.11 0.14
opt 1.00 -0.15 0.13
fcmaq	LOO	CV 0.68 -0.12 0.34
opt	LOO	CV 0.70 -0.14 0.30
cmaq 0.52 0.31 0.53
fcmaq 1.00 0.74 0.85
opt 1.00 0.69 0.83
fcmaq	LOO	CV 0.74 0.84 0.87
opt	LOO	CV 0.76 0.80 0.88

NH4

SO4

NO3

OC

EC
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CFCMAQ and COpt on CCMAQ and CFillSAT, thus decreasing temporal R2 values.  PM2.5 COpt RH 

results are similar for the CCMAQ and CFCMAQ RH datasets, with temporal R2 values of 0.71-

0.84 for CFCMAQ RH and 0.72-0.83 for COpt RH.  Improvements in the cross-validation 

results with respect to CMAQ simulations are observed for the northern half of the SJV 

domain, regions 1 and 2 in Figure 5.1.  Proximity to emission sources, meteorology, and 

topography contribute to the performance differences between the northern regions 1 and 

2, and southern regions 3 and 4.  The main PM2.5 mass emission sources (i.e., secondary 

aerosols, residential wood combustion, and motor vehicles) in the SJV are associated 

with urban hotspots, such as Fresno and Bakersfield.193  Winter wind speeds in the SJV 

are typically below 4 m/s.  As compared to the southern portion of the SJV, the wind 

speed is slightly higher and is more consistently southeasterly in the northern part of the 

domain.  During the winter, regional transport occurs when the nocturnal boundary layer 

is decoupled from the air aloft as a result of higher wind speeds aloft than at the surface, 

intensifying pollutant mixing throughout the SJV.194  These vertical and spatial 

wintertime wind patterns imply dust is likely transported aloft. 
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Table 5.10 – Comparison of temporal R2, mean bias, and root means square error 
PM2.5 values between observations and all simulation, including regional holdout 
cross-validation (RH CV) for 52 days. 

 

 In summary, these results suggest the optimization method is a viable way of 

constraining CTM simulations using satellite-retrieved information where ground 

observations are not available.  Based on these results, including the satellite data 

improve short- and long-term spatiotemporal air quality metrics for PM2.5 mass, and 

long-term air quality metrics for PM2.5 speciated components. 

5.5 Conclusions 

PM2.5 Dataset
Temporal	

R2 Mean	Bias RMSE

cmaq 0.68 0.17 0.40
fcmaq 1.00 0.10 0.15
opt 1.00 0.09 0.15
fcmaq	RH	CV 0.71 -0.10 0.46
opt	RH	CV 0.73 -0.12 0.46
cmaq 0.63 -0.04 0.33
fcmaq 0.99 0.05 0.18
opt 0.99 0.03 0.16
fcmaq	RH	CV 0.75 0.05 0.33
opt	RH	CV 0.72 0.03 0.36
cmaq 0.77 -0.11 0.30
fcmaq 1.00 -0.15 0.17
opt 1.00 -0.17 0.17
fcmaq	RH	CV 0.76 0.06 0.31
opt	RH	CV 0.76 0.02 0.32
cmaq 0.82 -0.11 0.34
fcmaq 1.00 -0.19 0.24
opt 1.00 -0.23 0.23
fcmaq	RH	CV 0.84 -0.07 0.41
opt	RH	CV 0.83 -0.11 0.39

Region	3

Region	4

Region	1

Region	2
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 Even in the best-monitored urban areas, ground-based networks have limited 

spatial coverage, especially over extended regions downwind of major pollution sources.  

Building on earlier work that produced a method for fusing surface-based measurements 

with model simulations (Friberg et al., 2016; 2017), the current study adds satellite-

derived AOD and species-related AOD information as additional constraints on the 

model.  The strength of the satellite data is broad spatial coverage that tends to have 

uniform quality, at least for the measured radiances, over space and time.  The main 

limitations are lack of vertical discrimination in most situations, lack of diurnal coverage, 

and only crude aerosol-type sensitivity, especially at low AOD.  The approach presented 

here uses model simulation along with the measurements to address these limitations. 

 Satellite and ground-retrieved aerosol measurements were combined with the 

numerical model simulations to: (1) generate aerosol airmass type maps covering the 

central California test region for the DISCOVER-AQ campaign time period in 2013, (2) 

explore the viability of using satellite data to improve aerosol airmass type mapping over 

extended regions, and (3) contribute regional context to what is known about air pollution 

sources and trends from point sampling stations. 

 Satellites help capturing PM2.5 over large, under-sampled or un-sampled regions, 

and the combined results tend to represent spatial gradients better than the unconstrained 

model. Applied appropriately, satellite data can also improve speciated PM2.5 where 

AOD is sufficiently high (generally mid-visible AOD >~0.15 in the study region). The 

satellite-constrained concentration maps are spatially consistent with topography, 

typifying localized hotspots over known urban areas, and exhibit realistic mixing patterns 
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in the SJV.  Comparison with daylight-averaged AERONET and diurnally averaged 

CMAQ modeling demonstrated that, for AOD >~ 0.15 and with outliers removed, the 

satellite-derived snapshots represent the diurnal values within 10 – 20 % for the study 

cases.  Furthermore, satellite-derived PM2.5 is in agreement with surface observations, to 

within the scatter of unconstrained model results, and variability is reduced on higher 

AOD days.  These results suggest satellite retrievals can improve model performance for 

PM2.5 and speciated components in situations where the AOD is sufficiently high.  The 

satellite aerosol retrievals also represent the spatial distributions of speciated aerosol 

airmass types more realistically and consistently than the unconstrained model and the 

model constrained only by surface-station data, for nitrate, ammonium, and possibly 

sulfate, at least qualitatively. 

 For the current study, model-based aerosol vertical distributions were used to 

address the lack of measured values.  However, model aerosol vertical distribution could 

be constrained on large scales with space-based stereo imaging (e.g., MISR) near 

emission sources, at least where plumes are visible in the imagery, and with space-based 

lidar (e.g., CALIPSO) downwind of sources.  Diurnal sampling, the second major 

limitation in the current satellite application, can be assessed and corrected where needed 

with a model that has been scaled to available satellite snapshots.  Eventually, AOD and 

possibly speciated AOD from geostationary platforms will provide at least daylight if not 

fully diurnal values. 

 Under adequate observing conditions, the technique presented here improves the 

representation of pollutant spatial distributions in air quality models downwind from 
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emission sources.  This physically based method also offers the ability to compare 

satellite-derived PM2.5 and speciated concentrations directly to surface measurements.  

Although the study domain and timeframe did not offer the high AOD levels where this 

method would work best, the SJV offered a substantial quantity of suborbital 

observations for assessing the results, due to the DISCOVER-AQ campaign. 

 Expanding this work by applying the technique to the other areas with key ground 

measurements (i.e., Baltimore DISCOVER-AQ campaign) are possible next steps.  The 

technique takes advantage of the stable (i.e., consistent) long-term satellite observations 

that offer global coverage, and provides speciated constraints based on retrieved 

microphysical properties for AOD retrievals above about 0.15.  Once the aforementioned 

analyses are completed, the method will likely be applied to a selection of globally 

distributed urban regions that are downwind of sources, in locations where particulate 

pollution levels tend to be high. 
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CHAPTER 6. CONCLUSION AND FUTURE DIRECTIONS 

 By constraining CTMs using a combination of ground-station and satellite-based 

measurements, we can improve urban- and regional-scale ambient air quality metrics for 

health risk assessment.  Epidemiologists use these metrics as surrogates for population 

exposure, to investigate the associations between air pollution and health outcomes.  

Thus, addressing exposure misclassification and quantifying their uncertainty can 

improve relative risk analyses of health effects associated with air pollution.  This 

dissertation explores the impact of constraining CTM results using ground-based 

observations and satellite retrievals to improve spatial and temporal air quality metrics. 

 In Chapter 3, a method for blending surface-station observations and CTMs was 

developed, and the accuracy of daily air quality estimates for twelve pollutants away 

from monitor sites was evaluated for the state of Georgia over a period of seven years. 

The strength of this data fusion approach is that the predicted temporal variance is 

optimized over space.  The limitations are the number and location of ambient monitors 

and the accuracy and resolution of the CTM used.  In addition to the robust tenfold 10% 

withholding validation, future cross-validation analyses of the data fusion approach 

should include techniques that investigate the bias associated with spatial clustering of 

monitors and ensure the distance between withheld and non-withheld monitors is varied 

to sample the fusion technique temporal correlations across the various distance regimes. 

 Chapter 4 expanded the application of the data fusion method developed in 

Chapter 3 to five metropolitan. We applied the data fusion method to daily spatial fields 
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for 12 pollutants, quantifying spatial and temporal ambient air concentration metrics and 

uncertainty across five cities.  Using the data fusion results, this chapter characterized 

inter- and intra-city air quality heterogeneity and identifying key physical aspects 

contributing the underlying relationships of the five urban environments. Reported cross-

validation results showed the estimated datasets were consistent with temporal strengths 

of the ground monitor data and the increase in spatial coverage was in agreement with the 

CTM inputs, emissions and meteorology. The evaluation and understanding of the data 

fusion method was enhanced further through the use of statistical tools that compared 

performance changes between the CTM results and fusion results relative to observations. 

 With thorough data fusion method applications and evaluations established in 

Chapters 3 and 4, expansion of the method to include satellite-based measurements was 

investigated.  Chapter 5 assessed improvements in near-surface PM2.5 estimates 

progressively downwind of sources at the regional-scale provided when constraining 

CTM data using aerosol type information from satellite retrievals. 

 Overall, this dissertation makes it possible to (1) identify seasonal and 

meteorological differences in observed associations, (2) explore various explanations for 

the multi-city differences, and (3) identify common underlying relationships among air 

quality characteristics across the cities. Satellite-retrieved aerosol data allowed us to (1) 

produce aerosol airmass type maps for the southern California test region and time 

period, (2) demonstrate the viability of using satellite data for mapping out aerosol air 

mass types in urban regions, (3) constrain a regional aerosol transport model using the 



 

 

153 

satellite-derived maps, and (4) contribute regional context to what is known about air 

pollution sources and trends from point sampling stations. 

 By integrating satellite-, aircraft-, and surface-based AOD measurements with 

models in several ways, we helped further our understanding of effective and practical 

approaches to using satellite-retrieved aerosol data products for air quality and public 

health applications.  Advancing our understanding of how to optimize the microphysical 

aerosol column-integrated constraints derived from satellite observations and their 

relationship with near-surface air pollution concentrations promotes the appropriate use 

of satellite data for the vast areas with limited ground-based air quality measurement 

networks. 

 Satellites offer stable platforms capable of producing global, long-term data 

records.  As such, space-based aerosol air mass mapping will be used on an extended 

basis to help reduce the unconstrained assumptions and biases of regional air-quality 

models, especially downwind of major pollution sources, where surface sampling tends 

to be sparse or non-existent.  In future work, the satellite-fusion method will be applied to 

other areas with key ground measurements and higher-AOD situations, using several 

NASA aerosol data products that offer global coverage. The discrepancy between 

snapshots and daily averaged concentrations is a limitation in the current satellite 

application. This drawback will be further assessed and corrected where needed with a 

scaling technique. In the future geostationary platforms will provide AOD and possibly 

speciated AOD for least daylight if not fully diurnal values. 
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The feasibility of meeting the method requirements will be evaluated for the 

Baltimore DISCOVER-AQ campaign, for which 1km CTM simulations are available. In 

addition to Baltimore, the method will be applied to other urban locations that offer 

robust air quality data, CTM simulations, and high AOD levels. From there, the 

application areas will extend to a selection of globally distributed urban and surrounding 

regions that are affected by major pollution sources.  

The satellite-constrained model approach lends itself to long time-series exposure 

studies.  Thus, the viability of connecting the application locations and period with 

coexistent chronic or long-term health studies will be pursued. The ability of 

geostationary platform AOD and possibly aerosol grouped AOD to provide daylight if 

not fully diurnal values will also be investigated.  By advancing our understanding of 

regional air quality and pollution transport through the use of aerosol mapping, we also 

inherently advance our understanding of changes in Earth’s radiation balance along with 

air quality, thus addressing one of the overarching science goals of current Earth Science. 
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APPENDIX A. SUPPLEMENTAL MATERIAL FOR METHOD FOR 

FUSING OF OBSERVATIONAL DATA AND CHEMICAL 

TRANSPORT MODEL SIMULATIONS TO ESTIMATE 

SPATIOTEMPORALLY-RESOLVED AMBIENT AIR POLLUTION 

Table A.1 – Estimated annual mean model fitted regression parameters for 2002 
through 2008 for 12 km resolution. 

 

Table A.2 – !!"!"#$ fitted parameters for 2002 through 2008 for 12 km resolution. 

 

 Species O3 NO2 NOx CO SO2 PM10 PM2.5 SO4 NO3 NH4 EC OC 
β 1.0 1.0 1.0 1.0 1.0 0.1 0.5 0.7 0.5 0.7 1.0 0.6 
α2002 0.92 0.82 1.4 1.3 1.2 15 4.2 1.9 0.6 1.0 1.4 2.1 
α2003 0.90 0.78 1.3 1.3 1.1 17 4.2 1.8 0.6 1.0 1.4 2 
α2004 0.92 0.79 1.3 1.1 1.1 17 4.3 1.8 0.5 1.0 1.4 2 
α2005 0.91 0.81 1.3 1.2 1.2 17 4.3 1.8 0.5 1.0 1.4 1.9 
α2006 0.95 0.88 1.3 1.3 1.2 18 4.2 1.7 0.5 1.0 1.4 1.7 
α2007 0.93 0.69 1.0 1.0 1.1 20 4.2 1.8 0.5 1.0 1.4 1.6 
α2008 0.92 0.79 1.0 1.1 1.1 17 3.6 1.8 0.4 1.0 1.0 1.5 

 

 Species O3 NO2 NOx CO SO2 PM10 PM2.5 SO4 NO3 NH4 EC OC 
A 0.05 0.1 0.2 0.1 0.3 0.5 0.4 0.2 0.3 0.4 0.2 0.3 
tmax 70 80 10 350 50 190 190 190 30 200 280 190 
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Figure A.1 – Seasonal corrections in CMAQ simulations, 2002-2008. 

Table A.3 – Fitted parameters for 2002 through 2008 for 12 km resolution. 
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 Species O3 NO2 NOx CO SO2 PM10 PM2.5 SO4 NO3 NH4 EC OC 
Rcoll 0.97 0.89 0.98 0.91 0.9 0.69 0.93 0.98 0.90 0.98 0.61 0.98 
r (km) 590 36 56 48 50 560 450 590 560 480 590 330 
Rcmaq 0.81 0.49 0.52 0.47 0.30 0.43 0.54 0.74 0.48 0.54 0.52 0.51 
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Figure A.2 – Correlograms (Robs), 2002-2008. Curves represent fitted exponential 
correlograms. 

 

Figure A.3 – Temporal CMAQ-OBS Pearson Rcmaq, 2002-2008. Error bars 
represent two standard deviations. Number of monitors indicated in parentheses. 

1-hr max NOx (ppb) 
y = 0.98e-0.018d 
R² = 0.85 

1-hr max NO2 (ppb) 
y = 0.89e-0.028d 
R² = 0.80 

24-hr avg PM2.5 (µg/m3) 
y = 0.93e-0.002d 
R² = 0.85 

24-hr avg PM10 (µg/m3) 
y = 0.69e-0.002d 
R² = 0.52 

1-hr max SO2 (ppb) 
y = 0.90e-0.03d 
R² = -0.14 

-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 
1-hr max CO (ppm) 

y = 0.91e-0.021d 
R² = 0.87 

-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 8-hr max O3 (ppb) 
y = 0.97e-0.002d 
R² = 0.86 

-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 

1 

0 100 200 300 400 500 600 

24-hr avg PM2.5-NO3 (µg/m3) 
y = 0.90e-0.002d 
R² = 0.69 

0 100 200 300 400 500 600 

24-hr avg PM2.5-NH4 (µg/m3) 
y =  0.98e-0.002d 
R² = 0.86 

24-hr avg PM2.5-SO4 (µg/m3) 
y = 0.98e-0.002d 
R² = 0.87 

0 100 200 300 400 500 600 

24-hr avg PM2.5-OC (µg/m3) 
y = 0.98e-0.003d 
R² = 0.66 

0 100 200 300 400 500 600 

24-hr avg PM2.5-EC (µg/m3) 
y = 0.61e-0.002d 
R² = 0.10 

Distance (km) 

R
ob

s 

0

0.2

0.4

0.6

0.8

1

 1-
hr 

max 
NO2 (

7)

 1-
hr 

max 
NOx (

7)

 1-
hr 

max 
CO  (5

)

 1-
hr 

max 
SO2 (

14
)

 8-
hr 

max 
O3 (

27
)

 24
-hr

 av
g P

M10
 (2

0)

 24
-hr

 av
g P

M2.5
 (4

2)

 24
-hr

 av
g P

M2.5
-SO4 (

14
)

 24
-hr

 av
g P

M2.5
-N

O3 (
14

)

 24
-hr

 av
g P

M2.5
-N

H4 (
12

)

 24
-hr

 av
g P

M2.5
-EC (1

4)

 24
-hr

 av
g P

M2.5
-O

C (1
4)

R
cm
aq

1-h
r m

ax
 N

O 2 (
7) 

1-h
r m

ax
 N

O x (
7) 

24
-hr

 av
g P

M 2.5
-SO 4 

(14
) 

8-h
r m

ax
 O 3 

(27
)  

1-h
r m

ax
 SO 2 

(14
) 

1-h
r m

ax
 CO  (5

) 

24
-hr

 av
g P

M 2.5
 (4

2) 

24
-hr

 av
g P

M 10
 (2

0) 

24
-hr

 av
g P

M 2.5
-N

O 3 
(14

) 

24
-hr

 av
g P

M 2.5
-N

H 4 
(12

) 

24
-hr

 av
g P

M 2.5
-E

C (1
4) 

24
-hr

 av
g P

M 2.5
-O

C (1
4) 

 



 

 

158 

 

Figure A.4 – Average weighting factor (W) fields, 2002-2008. 
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Figure A.5 –Temporal correlation of optimized data fusion results and withheld 
observations plotted as a function of the distance to the nearest monitor (blue 
points). The black curves represent the estimated temporal correlation using eq. 10. 
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Figure A.6 – Spatial autocorrelation in observations, CMAQ simulations, 
interpolated observation results, adjusted CMAQ results, and optimized data fusion 
results. The temporal Pearson R for daily concentrations at the Jefferson St. 
monitor or grid cell and all other monitors or grid cells is plotted versus distance to 
Jefferson St.  

Distance (km) 

Te
m

po
ra

l P
ea

rs
on

 R
 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 
1-hr max CO (ppm) 1-hr max NO2 (ppb) 1-hr max NOx (ppb) 1-hr max SO2 (ppb) 

0 

0.2 

0.4 

0.6 

0.8 

1 

8-hr max O3 (ppb) 24-hr avg PM10 (µg/m3) 24-hr avg PM2.5 (µg/m3) 24-hr avg PM2.5-SO4 (µg/m3) 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 200 400 600 

24-hr avg PM2.5-NO3 (µg/m3) 

0 200 400 600 

24-hr avg PM2.5-NH4 (µg/m3) 

0 200 400 600 

24-hr avg PM2.5-EC (µg/m3) 

0" 100" 200" 300" 400" 500" 600"

OBS CMAQ FC1 FC2 FCopt 

0 200 400 600 

24-hr avg PM2.5-OC (µg/m3) 

FC1 FC2 FCopt 



 

 

161 

 

Figure A.7 – Bivariate correlations at Jefferson St. (JST) and Yorkville (YRK), 
2002-2008. Temporal Pearson correlation in observations (black points), CMAQ 
simulations (red points), and optimized data fusion results (blue points). 
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Table A.4 – Evaluation metrics, 2002-2008. Metrics are shown for the population of 
monitors and coincident cell for each pollutant (numbers shown in parentheses). 
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!!"#!!"#$%&'(#)!!""#", 
!"# 
 

!!1!
!"#$%$# − !"#

!"#$%$#!!"#
!

!

!
 

CMAQ 0.45 0.57 0.40 0.78 0.18 0.42 0.39 0.35 0.87 0.43 0.48 0.61 
CMAQ w/ 
annual adj. 0.39 0.60 0.40 0.79 0.17 0.36 0.35 0.32 0.90 0.42 0.43 0.46 

FC2 0.38 0.60 0.41 0.79 0.16 0.32 0.30 0.31 0.93 0.39 0.44 0.43 

FCopt 0.24 0.44 0.24 0.40 0.05 0.15 0.11 0.07 0.26 0.10 0.25 0.14 

WH FCopt 0.32 0.51 0.38 0.73 0.10 0.23 0.17 0.21 0.48 0.26 0.37 0.30 

!"#$!!"#$%&'(#)!!"#$,  
MFB 
 

!1!
!"#$%$# − !"#!

!"#$%$#!!"#
!

!

!
 

CMAQ 0.29 0.04 -0.07 0.13 0.11 -0.24 -0.14 -0.15 -0.05 0.15 -0.23 -0.48 
CMAQ w/ 
annual adj. 0.08 0.22 0.09 0.23 0.03 0.01 0.00 0.07 -0.60 0.04 0.03 -0.21 

FC2 0.08 0.22 0.09 0.23 0.02 0.02 0.00 0.07 -0.58 0.05 0.03 -0.21 

FCopt 0.09 0.16 0.07 0.05 0.01 0.02 0.02 0.03 -0.23 -0.01 0.08 -0.09 

WH FCopt 0.09 0.17 0.09 0.15 0.02 0.03 0.02 0.07 -0.25 0.04 0.09 -0.09 

!"#$%&'()*!!"#$!!""#", 
NME 
 

! !"#$%$# − !"#!
!

!"#!
!

100% 

CMAQ 43.6% 58.9% 41.4% 77.5% 16.5% 37.3% 35.2% 32.1% 117% 44.8% 42.8% 47.4% 
CMAQ w/ 
annual adj. 33.8% 59.7% 41.3% 81.3% 15.0% 35.3% 35.0% 31.1% 64.3% 40.3% 43.9% 41.6% 

FC2 33.1% 59.9% 41.8% 81.0% 14.7% 31.4% 28.4% 31.9% 68.9% 36.4% 45.3% 38.7% 

FCopt 19.2% 37.2% 20.2% 42.2% 4.49% 14.3% 10.9% 6.84% 23.4% 9.23% 26.0% 13.9% 

WH FCopt 26.1% 45.1% 36.1% 75.6% 8.57% 21.7% 15.6% 20.8% 40.6% 23.8% 39.3% 28.6% 

!"#$%&'()*!!"#$!!"#$, 
!"# 
 

!"#$%$# − !"#!
!

!"#!
!

100% 

CMAQ 27.2% -29.8% -17.9% -16.7% 8.58% -23.2% -11.6% -16.8% 72.1% 13.8% -17.5% -30.3% 
CMAQ w/ 
annual adj. 1.03% -13.4% -2.24% -4.65% 0.14% -0.14% 0.96% 3.09% -22.7% -1.39% 9.11% -9.51% 

FC2 1.21% -10.7% -1.21% -3.27% -0.57% 4.57% 2.44% 7.98% -11.2% 3.17% 10.8% -11.0% 

FCopt 1.10% -12.7% -2.14% -4.48% 0.03% -0.10% 0.96% 2.94% -21.3% -1.58% 9.80% -10.6% 

WH FCopt 1.15% -12.9% -1.81% -4.27% 0.03% 0.60% 1.03% 4.85% -18.4% -0.03% 10.1% -11.0% 

!"#$!!"#$, MB 
 
1
! !"#$%$# − !"#

!

!
 

CMAQ 6.23 -0.02 -0.14 -1.84 0.004 -5.42 -1.72 -0.70 0.50 0.19 -0.16 -0.96 
CMAQ w/ 
annual adj. 

0.24 -0.01 -0.02 -0.51 6.9E-05 -0.03 0.14 0.13 -0.16 -0.02 0.08 -0.30 

FC2 0.28 -0.01 -0.01 -0.36 -2.7E-04 1.07 0.36 0.33 -0.08 0.04 0.10 -0.35 

FCopt 0.25 -0.01 -0.02 -0.49 1.5E-5 -0.02 0.14 0.12 -0.15 -0.02 0.09 -0.33 

WH FCopt 0.26 -0.01 -0.01 -0.47 1.3E-5 0.14 0.15 0.20 -0.13 0.00 0.09 -0.35 

!""#!!"#$!!"#$%&!!""#", 
RMSE 
 
1
! !"#$%$# − !"# !

!

!
 

CMAQ 13.41 0.07 0.52 15.30 0.01 11.98 7.23 2.01 1.42 0.86 0.61 2.08 
CMAQ w/ 
annual adj. 10.63 0.07 0.50 15.63 0.01 11.50 7.38 1.90 0.69 0.78 0.61 2.06 

FC2 10.41 0.06 0.50 15.41 0.01 10.48 6.06 2.00 0.74 0.70 0.63 1.89 

FCopt 6.23 0.04 0.22 10.29 0.003 4.80 2.42 0.44 0.27 0.19 0.37 0.62 

WH FCopt 8.40 0.05 0.43 15.38 0.006 7.70 3.59 1.42 0.48 0.49 0.56 1.40 

 CMAQ 58.8% 38.7% 40.2% 7.8% 67.1% 22.3% 30.9% 57.4% 30.5% 30.3% 42.4% 31.9% 

!"#$%&$'("&)#*!!! CMAQ w/ 
annual adj. 59.9% 40.5% 41.8% 7.9% 67.2% 22.8% 30.7% 58.8% 27.9% 30.4% 48.2% 33.9% 

!"## !"#,!"#$%$# ! FC2 61.5% 42.0% 41.7% 9.2% 68.7% 42.7% 52.2% 61.7% 30.9% 47.8% 48.1% 37.2% 

 FCopt 86.7% 79.2% 89.1% 56.7% 97.0% 82.7% 90.2% 98.0% 93.3% 95.5% 79.9% 94.0% 

 WH FCopt 68.8% 56.7% 52.9% 13.7% 87.1% 58.6% 75.1% 80.5% 56.8% 71.6% 53.0% 53.9% 
 1 
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APPENDIX B. SUPPLEMENTAL MATERIAL FOR DAILY 

AMBIENT AIR POLLUTION METRICS FOR FIVE CITIES: 

EVALUATION OF DATA-FUSION-BASED ESTIMATES AND 

UNCERTAINTIES 

B.1  Definitions of performance measures used in Taylor diagrams 

 Model pollutant concentration values within grid cells were compared to 

coincident observations using the following evaluation metrics: 

 !"#$ !"#$ (!") = !!"#!,! − !!"#!,! (B.17) 

 
!""# !"#$ !"#$%& !""#" (!"#$) =  !!"#!,! − !!"#!,!

! (B.2) 

  !"#$%&$'("&)#* ! =
!"#(!!"#!,! ,!!"#!,!) 
!"!!"#!,!

!"!!"#!,!
 (B.3) 

 
!"#$%&'( ! = 1

!
!"# !!"#!!,!

,!!"#!!,!
 

!"!!"#!!,!
!"!!"#!!,!

!

!!!
 (B.4) 

 
!"#$%#& ! =

!"# !!"#! ! , !!"#! !
!" !!"#! !

!" !!"#! !

 (B.5) 

Here, CSIM indicates the collocated simulated grid cell concentration (either CCMAQ or 

Copt), t indicates the day observed, SD is the standard deviation, N is the number of 
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monitors, the overbar indicates the mean, and mi indicates a specific monitor (m). The 

mean bias (eq. B.1) and root mean square error (RMSE) (eq. B.7) statistics are averaged 

across monitors and/or days depending on the analysis type (i.e., temporal, spatial, or 

spatiotemporal). To assess model simulation of variation over space and time, various 

Pearson correlation coefficients (R) were calculated (eqs. B.3 and B.5). Correlations of 

subsets of measured and modeled data were evaluated to assess model performance in 

simulating spatial and temporal variation separately. Temporal R values at each monitor 

(eq. B.4) were described by a mean across monitors. Spatial R values were described by a 

mean across days (eq. B.5). 

 The linear correlation coefficient, R, is bound by the range -1 ≤ R ≤ 1 and is a 

common measure of the degree to which the simulated concentration relates to the 

observed values (eq. B.3). In general, as the simulated and observed temporal 

concentration datasets approach agreement, R converges towards 1 on the Taylor 

diagram. The second summary statistic used is the normalized standard deviation (NSD) 

of the modeled dataset: 

 
!"# =

!"!!"#!,!
!"!!"#!,!

 (B.6) 

The centered pattern of the root-mean-square difference (CRMSE) is the root-mean-

square difference with the overall bias removed. The CRMSE can be used to detect 

changes in general model performance when comparing results across various models to 

observations.  The normalized CRMSE (NCRMSE) complements the model bias (eq. 
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B.1), making it possible to plot statistics for different domains on the same plot and 

providing a gauge for error, though not providing information about the bias itself. The 

NCRMSE term is calculated as follows: 

 

!"#$%& =  
!!"#!,! − !!"#!,! − !!"#!,! − !!"#!,!

!

!"!!"#!,!
 (B.7) 

According to eq. B.7 and the inherent bias in the CCMAQ results, the NCRMSE between 

the modeled and observed datasets may approach, but never reach a value of 0. With the 

addition of the mean bias (eq. B.1) in the Taylor diagram, increases in bias between 

model performances can be tracked, and general error patterns among models or domains 

can be detected. 
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Table B.1 – Estimated annual mean model-fitted regression parameters by city and 
species, for 12 km resolution. 

 

  

City Parameter O3 NO2 NOx CO SO2 PM10 PM2.5 SO4 NO3 NH4 EC OC 

Atlanta 

β 1.0 1.0 1.0 1.0 1.0 0.1 0.5 0.7 0.5 0.7 1.0 0.6 
α2002 0.92 0.82 1.4 1.3 1.2 15 4.2 1.9 0.6 1.0 1.4 2.1 
α2003 0.90 0.78 1.3 1.3 1.1 17 4.2 1.8 0.6 1.0 1.4 2 
α2004 0.92 0.79 1.3 1.1 1.1 17 4.3 1.8 0.5 1.0 1.4 2 
α2005 0.91 0.81 1.3 1.2 1.2 17 4.3 1.8 0.5 1.0 1.4 1.9 
α2006 0.95 0.88 1.3 1.3 1.2 18 4.2 1.7 0.5 1.0 1.4 1.7 
α2007 0.93 0.69 1.0 1.0 1.1 20 4.2 1.8 0.5 1.0 1.4 1.6 
α2008 0.92 0.79 1.0 1.1 1.1 17 3.6 1.8 0.4 1.0 1.0 1.5 

Birmingham 

β 1.0 1.0 1.0 1.0 1.0 0.1 0.5 0.7 0.7 0.7 1.0 0.6 
α2002 0.90 0.80 1.3 1.2 1.3 20 4.0 1.6 1.2 1.3 2 3.3 
α2003 0.90 0.80 1.3 1.2 1.3 20 4.0 1.6 1.2 1.1 1.5 3.1 
α2004 0.90 0.80 1.3 1.2 1.3 20 4.0 1.6 1 1.1 1.6 3 
α2005 0.90 0.80 1.3 1.2 1.3 20 4.2 1.6 0.9 1.2 1.3 2.7 
α2006 0.92 0.80 1.3 1.2 1.4 20 4.2 1.6 0.8 1.2 1.5 2.7 
α2007 0.92 0.80 1.3 1.2 1.6 20 4.0 1.6 0.8 1.2 1.7 2.5 
α2008 0.92 0.80 1.3 1.2 1.6 20 4.0 1.6 0.8 1.3 1.6 2.7 

Dallas 

β 1.0 1.0 1.0 1.0 1.0 0.1 0.5 0.7 0.5 0.7 1.0 0.6 
α2003 0.96 0.80 1.3 1.0 1.0 18 3.3 1.7 0.6 1.0 0.8 2.5 
α2004 0.96 0.80 1.3 1.0 1.0 18 3.3 1.7 0.6 0.9 0.8 2.4 
α2005 0.96 0.80 1.3 1.0 1.0 18 3.4 1.8 0.5 1.1 0.9 2.4 
α2006 0.96 0.80 1.3 1.0 1.0 18 3.2 1.6 0.5 0.9 0.8 2.2 
α2007 0.95 0.80 1.3 1.0 1.0 16 3.1 1.6 0.5 0.9 0.8 1.7 
α2008 0.95 0.80 1.3 1.0 1.0 16 3.6 2.1 0.6 1.2 0.6 2.0 

Pittsburgh 

β 1.0 1.0 1.0 1.0 1.0 0.1 0.5 0.7 0.7 0.7 1.0 0.6 
α2002 1.00 1.10 2.0 1.2 1.5 18 4.2 1.7 1.7 1.2 1.4 3.6 
α2003 1.00 1.10 2.0 1.2 1.5 18 4.2 1.8 1.8 1.2 1.4 3.4 
α2004 0.96 1.10 2.0 1.2 1.5 18 4.2 1.7 1.7 1.2 1.4 3.3 
α2005 0.96 1.10 2.0 1.2 1.5 18 4.3 1.8 1.8 1.2 1.4 3.4 
α2006 0.96 1.10 1.8 1.2 1.5 18 4.2 1.6 1.6 1.2 1.4 3.3 
α2007 0.96 1.10 1.5 1.2 1.5 18 4.2 1.9 1.9 1.2 1.4 2.9 

St. Louis β 1.0 1.0 1.0 1.0 1.0 0.1 0.5 0.7 0.7 0.7 1.0 0.6 
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Table B.2 – Fitted !!"#!$% parameters for 2002 through 2008 for 12 km resolution 
for Atlanta only (eq. 4.1). 

 

Table B.3 – Fitted parameters for 2002 through 2008 for 42 km resolution (eq. 4.1). 

 

  

 Species O3 NO2 NOx CO SO2 PM10 PM2.5 SO4 NO3 NH4 EC OC 
A 0.05 0.1 0.2 0.1 0.3 0.5 0.4 0.2 0.3 0.4 0.2 0.3 
tmax 70 80 10 350 50 190 190 190 30 200 280 190 
 

City Parameter O3 NO2 NOx CO SO2 PM10 PM2.5 SO4 NO3 NH4 EC OC 

Atlanta 
Rcoll 0.97  0.89 0.98 0.91 0.90 0.69 0.93 0.98 0.90 0.98 0.61 0.98 
x (km) 590 36 56 48 50 560 450 590 560 480 590 330 
R2 0.81 0.49 0.52 0.47 0.30 0.43 0.54 0.74 0.48 0.54 0.52 0.51 

Birmingham 
Rcoll 0.98 0.90 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.90 0.80 0.90 
x (km) 340 50 80 60 40 220 710 910 500 500 120 170 
R2 0.82 0.52 0.55 0.25 0.39 0.53 0.57 0.77 0.30 0.52 0.51 0.52 

Dallas 
Rcoll 0.98 0.90 0.90 0.90 0.90 0.90 0.95 0.98 0.95 0.95 0.80 0.90 
x (km) 770 200 260 140 20 430 1000 1400 530 560 110 630 
R2 0.84 0.55 0.49 0.51 0.20 0.27 0.42 0.73 0.58 0.54 0.53 0.48 

Pittsburgh 
Rcoll 0.98 0.90 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.90 0.80 0.90 
x (km) 710 90 120 60 30 260 630 480 560 210 80 220 
R2 0.85 0.47 0.49 0.41 0.40 0.65 0.68 0.84 0.61 0.55 0.48 0.48 

St. Louis 
Rcoll 0.98 0.90 0.90 0.90 0.90 0.90 0.95 0.98 0.98 0.98 0.80 0.90 
x (km) 480 60 80 40 20 420 590 2000 2500 910 60 80 
R2 0.86 0.45 0.41 0.30 0.26 0.50 0.62 0.82 0.62 0.52 0.51 0.52 
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Table B.4 – Performance statistics for simulation-based observations categorized by 
metropolitan area and species, covering 2002-2008. 

  

Pollutant City 
MB RMSE SD Temporal R2 Spatial R2 Spatiotemporal R2 

CCMAQ Copt CCMAQ Copt CCMAQ Copt CCMAQ Copt CCMAQ Copt CCMAQ Copt 

 Atlanta -0.14 -0.02 0.52 0.22 0.37 0.58 0.28 0.91 0.81 0.84 0.40 0.89 
 Birmingham -0.74 -0.83 1.96 2.02 0.34 0.59 0.11 0.47 0.66 0.53 0.06 0.27 
CO Dallas -0.01 -0.13 0.43 0.30 0.32 0.41 0.26 0.73 0.03 0.35 0.20 0.67 

 Pittsburgh -0.15 -0.12 0.42 0.32 0.24 0.36 0.18 0.63 0.77 0.82 0.27 0.59 

 St. Louis -0.26 -0.29 0.71 0.50 0.35 0.42 0.10 0.80 0.02 0.02 0.08 0.65 

 Atlanta 6.23 0.25 13.41 6.18 17.96 14.30 0.37 0.89 0.89 0.90 0.59 0.87 
 Birmingham -5.38 -10.73 11.79 17.01 12.99 8.06 0.29 0.50 1.00 1.00 0.66 0.53 
NO2 Dallas 1.79 -6.56 11.99 11.17 15.04 11.35 0.31 0.51 0.74 0.71 0.41 0.51 

 Pittsburgh -4.08 -4.78 11.99 10.78 12.42 12.57 0.23 0.58 0.58 0.48 0.33 0.48 

 St. Louis 7.13 -0.92 15.16 5.26 14.80 11.29 0.22 0.87 0.83 0.81 0.28 0.83 

 Atlanta -0.02 -0.01 0.07 0.04 0.04 0.06 0.34 0.92 0.72 0.72 0.39 0.79 
 Birmingham -0.02 -0.02 0.05 0.05 0.02 0.02 0.32 0.60 1.00 1.00 0.55 0.60 
NOX Dallas -0.01 -0.01 0.03 0.03 0.03 0.04 0.25 0.62 0.72 0.70 0.33 0.65 

 Pittsburgh -0.03 -0.02 0.06 0.04 0.02 0.05 0.25 0.76 0.47 0.42 0.26 0.61 

 St. Louis -0.01 0.00 0.04 0.03 0.03 0.04 0.18 0.85 0.56 0.72 0.17 0.66 

 Atlanta -1.84 0.73 15.30 10.71 8.84 16.07 0.13 0.88 0.16 0.01 0.08 0.59 
 Birmingham -3.73 -0.88 13.79 9.68 6.99 11.28 0.17 0.57 0.97 0.96 0.17 0.56 
SO2 Dallas 1.11 0.60 11.76 10.34 4.94 6.62 0.05 0.43 0.00 0.00 0.00 0.13 

 Pittsburgh -8.41 -1.67 19.56 12.56 9.07 14.35 0.17 0.64 0.00 0.02 0.14 0.57 

 St. Louis 2.30 2.00 29.88 25.74 15.79 22.59 0.08 0.75 0.00 0.01 0.01 0.21 

 Atlanta 0.00 0.00 0.01 0.00 0.01 0.02 0.67 0.99 0.68 0.72 0.67 0.97 
 Birmingham 0.01 0.00 0.01 0.01 0.01 0.01 0.67 0.91 0.45 0.46 0.67 0.90 
O3 Dallas 0.00 0.00 0.01 0.00 0.01 0.02 0.70 0.93 0.28 0.18 0.69 0.93 

 Pittsburgh 0.00 0.00 0.01 0.00 0.02 0.02 0.72 0.95 0.65 0.67 0.73 0.94 

 St. Louis 0.00 0.00 0.01 0.00 0.02 0.02 0.74 0.96 0.84 0.87 0.75 0.95 

 Atlanta -5.42 -0.07 11.98 4.85 8.69 10.54 0.21 0.85 0.05 0.11 0.22 0.81 
 Birmingham -12.31 -6.37 23.96 19.12 9.87 11.90 0.30 0.71 0.34 0.23 0.18 0.38 
PM10 Dallas -0.80 -0.43 13.87 4.63 11.93 9.97 0.14 0.92 0.02 0.01 0.09 0.84 

 Pittsburgh -7.15 -0.45 15.44 8.72 8.27 12.74 0.42 0.87 0.06 0.00 0.33 0.74 

 St. Louis -0.99 -2.36 12.69 5.64 10.92 9.45 0.26 0.93 1.00 1.00 0.14 0.82 

 Atlanta -1.72 0.24 7.23 2.65 7.20 7.65 0.30 0.93 0.63 0.29 0.31 0.89 
 Birmingham -1.43 -0.95 7.19 3.06 7.97 7.59 0.33 0.90 0.61 0.64 0.39 0.88 
PM2.5 Dallas 1.84 0.42 7.12 2.21 6.79 5.64 0.19 0.90 0.22 0.38 0.15 0.86 

 Pittsburgh -1.81 -0.47 7.86 3.76 6.67 8.87 0.46 0.92 0.13 0.02 0.42 0.86 

 St. Louis 1.25 -0.17 6.93 2.62 7.02 7.29 0.40 0.95 0.21 0.16 0.36 0.90 

 Atlanta -0.70 0.20 2.01 0.50 2.20 3.13 0.55 0.98 0.82 0.59 0.57 0.98 
 Birmingham -0.38 -0.30 1.94 1.08 2.58 2.64 0.59 0.90 0.85 0.91 0.58 0.87 
PM2.5-SO4 Dallas -0.60 0.00 1.62 0.41 1.50 2.08 0.53 0.97 0.02 0.36 0.50 0.96 

 Pittsburgh -0.60 -0.18 2.31 1.07 3.36 3.70 0.70 0.94 0.00 0.13 0.71 0.94 

 St. Louis 0.04 -0.07 1.92 0.70 2.66 3.02 0.67 0.98 0.09 0.14 0.64 0.95 

 Atlanta 0.50 -0.17 1.42 0.26 1.58 0.57 0.24 0.96 0.65 0.80 0.31 0.97 
 Birmingham 0.06 0.06 0.90 0.36 1.07 0.74 0.30 0.93 0.71 0.93 0.31 0.77 
PM2.5-NO3 Dallas 0.76 -0.09 1.73 0.40 1.99 0.98 0.35 0.95 0.28 0.09 0.39 0.89 

 Pittsburgh 0.17 0.84 1.35 1.25 1.66 1.94 0.38 0.86 0.50 0.35 0.38 0.85 

 St. Louis 0.16 0.03 2.04 0.43 2.42 2.22 0.38 0.98 0.28 0.41 0.39 0.96 

 Atlanta 0.19 -0.03 0.86 0.17 0.86 0.90 0.31 0.98 0.68 0.41 0.30 0.97 
 Birmingham -0.05 0.02 0.78 0.46 0.76 0.88 0.37 0.81 0.51 0.82 0.35 0.75 
PM2.5-NH4 Dallas 0.20 -0.01 0.86 0.18 0.84 0.81 0.30 0.97 0.02 0.35 0.27 0.96 

 Pittsburgh -0.13 -0.24 1.18 0.72 0.95 1.11 0.31 0.83 0.53 0.16 0.31 0.76 

 St. Louis 0.29 -0.03 1.04 0.19 1.10 1.26 0.43 0.98 0.72 0.78 0.44 0.98 

 Atlanta -0.16 0.16 0.61 0.43 0.62 0.86 0.29 0.76 0.82 0.77 0.42 0.79 
 Birmingham -0.42 -0.13 0.98 0.68 0.52 0.82 0.26 0.66 0.82 0.83 0.34 0.62 
PM2.5-EC Dallas 0.20 -0.09 0.45 0.28 0.47 0.36 0.29 0.70 0.87 0.87 0.35 0.58 

 Pittsburgh -0.13 0.03 1.13 0.86 0.46 0.73 0.24 0.76 0.30 0.38 0.11 0.48 

 St. Louis -0.07 -0.09 0.68 0.55 0.44 0.48 0.24 0.72 0.09 0.17 0.12 0.37 

 Atlanta -0.96 -0.39 2.08 0.64 1.98 1.70 0.29 0.97 0.74 0.48 0.32 0.95 
 Birmingham -1.95 0.21 3.12 1.66 1.93 2.29 0.23 0.78 0.32 0.38 0.18 0.60 
PM2.5-OC Dallas -0.96 -0.09 1.82 0.81 1.37 1.54 0.23 0.85 0.01 0.21 0.16 0.74 

 Pittsburgh -2.51 -0.21 3.23 1.05 0.87 1.96 0.23 0.87 0.34 0.31 0.21 0.79 

 St. Louis -2.04 -0.02 2.57 0.71 0.92 1.69 0.25 0.86 0.55 0.53 0.27 0.85 
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Table B.5 – Descriptive statistics for cross-validated simulation-based observations 
categorized by metropolitan area and species. 

  

Pollutant City 
MB RMSE SD Temporal R2 Spatial R2 Spatiotemporal R2 

CCMAQ Copt CCMAQ Copt CCMAQ Copt CCMAQ Copt CCMAQ Copt CCMAQ Copt 

 Atlanta -0.15 0.08 0.53 0.46 0.37 0.58 0.30 0.48 0.78 0.82 0.38 0.53 
 Birmingham -0.99 -0.71 2.40 2.52 0.36 1.01 0.12 0.06 0.44 0.01 0.03 0.00 
CO Dallas -0.10 0.00 0.40 0.35 0.33 0.37 0.24 0.45 0.09 0.03 0.21 0.34 

 Pittsburgh -0.19 0.02 0.49 0.46 0.25 0.45 0.13 0.26 0.74 0.51 0.15 0.26 

 St. Louis -0.26 -0.23 0.64 0.58 0.37 0.45 0.12 0.33 0.07 0.01 0.12 0.28 

 Atlanta 6.18 5.10 13.58 13.60 18.12 22.43 0.37 0.54 0.92 0.85 0.59 0.69 
 Birmingham -8.93 -9.59 16.30 15.14 11.65 8.97 0.21 0.33 1.00 1.00 0.45 0.72 
NO2 Dallas -2.75 -2.13 13.35 9.78 14.36 13.04 0.23 0.56 0.62 0.60 0.29 0.52 

 Pittsburgh -6.70 0.12 14.04 13.39 12.49 17.17 0.20 0.46 0.51 0.49 0.26 0.40 

 St. Louis 5.40 0.89 14.35 9.94 14.47 12.32 0.24 0.47 0.84 0.85 0.28 0.48 

 Atlanta -0.02 0.01 0.07 0.07 0.04 0.10 0.37 0.51 0.73 0.57 0.40 0.57 
 Birmingham -0.03 -0.02 0.06 0.05 0.01 0.02 0.27 0.35 1.00 1.00 0.43 0.57 
NOX Dallas -0.02 0.00 0.04 0.03 0.02 0.05 0.23 0.56 0.68 0.55 0.29 0.51 

 Pittsburgh -0.04 0.00 0.06 0.05 0.02 0.07 0.25 0.59 0.42 0.31 0.22 0.41 

 St. Louis -0.01 0.01 0.05 0.05 0.03 0.04 0.21 0.53 0.86 0.43 0.26 0.29 

 Atlanta -0.76 2.44 16.68 16.26 10.80 14.70 0.17 0.33 0.01 0.00 0.06 0.19 
 Birmingham -4.06 0.95 15.13 16.05 7.03 12.64 0.11 0.16 0.98 1.00 0.09 0.12 
SO2 Dallas 0.84 2.19 11.86 15.32 5.04 10.01 0.07 0.07 0.00 0.00 0.00 0.00 

 Pittsburgh -8.89 -2.19 20.96 18.37 10.56 12.63 0.15 0.29 0.02 0.14 0.11 0.19 

 St. Louis 1.61 0.91 29.91 33.16 16.05 22.77 0.10 0.16 0.01 0.00 0.00 0.01 

 Atlanta 0.00 0.00 0.01 0.01 0.02 0.02 0.67 0.91 0.69 0.54 0.68 0.89 
 Birmingham 0.01 0.00 0.01 0.01 0.01 0.01 0.64 0.89 0.45 0.46 0.66 0.88 
O3 Dallas 0.00 0.00 0.01 0.00 0.01 0.02 0.67 0.94 0.28 0.52 0.67 0.93 

 Pittsburgh 0.00 0.00 0.01 0.01 0.01 0.02 0.71 0.92 0.54 0.46 0.71 0.88 

 St. Louis 0.00 0.00 0.01 0.01 0.02 0.02 0.73 0.93 0.89 0.59 0.74 0.89 

 Atlanta -4.56 0.00 11.10 7.56 8.49 10.83 0.26 0.63 0.22 0.27 0.29 0.60 
 Birmingham -13.57 -4.25 24.49 21.62 10.64 14.80 0.23 0.49 0.46 0.33 0.13 0.14 
PM10 Dallas 0.11 1.48 15.67 6.61 12.51 10.82 0.34 0.85 0.04 0.76 0.03 0.71 

 Pittsburgh -8.38 0.20 16.07 9.14 8.14 14.17 0.37 0.79 0.04 0.21 0.28 0.68 

 St. Louis 1.73 -0.75 13.65 8.88 12.15 10.35 0.27 0.58 1.00 1.00 0.12 0.46 

 Atlanta -1.40 0.49 7.17 3.71 7.03 7.94 0.34 0.85 0.27 0.15 0.31 0.80 
 Birmingham -2.61 0.07 7.69 3.57 7.74 8.61 0.33 0.88 0.55 0.53 0.36 0.83 
PM2.5 Dallas 0.94 1.19 6.96 3.11 6.43 5.69 0.19 0.85 0.31 0.34 0.12 0.76 

 Pittsburgh -2.70 -0.32 8.25 5.80 6.65 8.70 0.41 0.81 0.12 0.22 0.39 0.67 

 St. Louis 1.48 0.14 6.75 3.80 6.85 7.09 0.33 0.82 0.25 0.17 0.35 0.76 

 Atlanta -0.55 0.28 1.91 1.35 2.30 3.00 0.59 0.82 0.68 0.88 0.62 0.81 
 Birmingham -0.45 0.02 1.96 1.27 2.81 2.82 0.66 0.86 0.49 0.49 0.59 0.81 
PM2.5-SO4 Dallas -0.73 0.16 1.84 0.95 1.55 2.18 0.54 0.81 0.09 0.42 0.44 0.83 

 Pittsburgh -0.38 0.15 1.77 1.32 2.90 2.95 0.72 0.85 0.84 0.90 0.71 0.83 

 St. Louis 0.08 0.13 1.73 1.00 2.56 2.96 0.71 0.92 0.54 0.63 0.66 0.89 

 Atlanta 0.61 -0.16 1.48 0.51 1.59 0.65 0.29 0.66 0.91 0.85 0.28 0.61 
 Birmingham -0.01 0.16 0.90 0.62 1.01 0.90 0.25 0.73 0.84 0.72 0.26 0.56 
PM2.5-NO3 Dallas 1.13 -0.16 2.11 0.89 2.42 1.03 0.51 0.79 0.49 0.28 0.47 0.63 

 Pittsburgh 0.05 1.06 1.62 1.83 1.76 2.15 0.36 0.69 0.95 0.34 0.24 0.52 

 St. Louis 0.33 0.07 1.96 1.30 2.54 2.40 0.45 0.78 0.91 0.86 0.46 0.72 

 Atlanta 0.23 0.00 0.88 0.48 0.86 0.87 0.31 0.75 0.74 0.78 0.28 0.72 
 Birmingham -0.08 0.20 0.81 0.86 0.82 1.06 0.34 0.61 0.74 0.37 0.32 0.43 
PM2.5-NH4 Dallas 0.25 0.11 1.01 0.58 0.94 0.90 0.30 0.76 0.36 0.65 0.24 0.68 

 Pittsburgh -0.22 -0.08 1.35 1.07 0.95 1.08 0.26 0.51 0.72 0.71 0.19 0.46 

 St. Louis 0.31 0.04 1.03 0.60 1.12 1.20 0.48 0.80 0.33 1.00 0.48 0.80 

 Atlanta -0.13 0.15 0.66 0.63 0.66 0.85 0.32 0.43 0.76 0.84 0.42 0.55 
 Birmingham -0.49 -0.02 1.03 0.87 0.53 0.90 0.22 0.34 0.79 0.53 0.26 0.37 
PM2.5-EC Dallas 0.05 0.04 0.46 0.40 0.49 0.43 0.30 0.49 0.75 0.71 0.30 0.36 

 Pittsburgh -0.27 0.32 1.13 1.48 0.49 1.20 0.15 0.25 0.64 0.12 0.14 0.07 

 St. Louis -0.06 -0.04 0.64 0.70 0.49 0.56 0.29 0.34 0.10 0.01 0.16 0.11 

 Atlanta -0.84 -0.44 1.98 1.44 1.97 1.64 0.34 0.56 0.35 0.00 0.33 0.50 
 Birmingham -2.07 0.63 3.43 2.82 1.85 3.23 0.16 0.44 0.05 0.02 0.08 0.33 
PM2.5-OC Dallas -1.23 0.40 1.88 1.27 1.36 1.66 0.32 0.71 0.12 0.18 0.26 0.51 

 Pittsburgh -2.73 0.06 3.51 2.27 0.87 2.42 0.26 0.53 0.26 0.22 0.19 0.32 

 St. Louis -2.08 0.12 2.56 1.57 1.01 2.08 0.38 0.57 0.50 0.27 0.34 0.47 
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Figure B
.1 – D

ensity scatter plots of m
odeled results (C

C
M
A
Q , C

opt ) versus coincident observations for 2002-2008 per city and 
pollutant contoured using a color scale to show

 the range of point densities. T
he regression-line fits and correlation coefficients 

are given in the upper left of each plot. T
he solid line indicates the regression line, w

hereas the dashed line is the 1:1 line. 
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Figure B
.1 – (continued) 
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Figure B
.1 – (continued) 
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Figure B
.1 – (continued) 
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Figure B
.2 – T

em
poral correlation coefficient (R

) T
aylor diagram

s show
 norm

alized m
odeling statistics for each m

onitor 
separated by city and pollutant. C

C
M

A
Q  sym

bols are outlined in red, w
hereas C

opt  sym
bols are outlined in black. T

he sym
bol 

color indicates the m
ean bias. 
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Figure B
.2 – (continued) 
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Figure B
.2 – (continued) 

 

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.947
0

0.947
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.884
-0.011

M
B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-1.293
0

1.293
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-1.070
0

1.070
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-1.476
0

1.476
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.352
0

0.352
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.360
0

0.360
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.285
0

0.285
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.842
0

0.842
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.420
0

0.420
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-1.549
-0.167

M
B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-4.105
0

4.105
M

B
Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-2.103
0

2.103
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-3.844
0

3.844
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-2.592
0

2.592
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.471
0

0.471
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.830
0

0.830
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.329
0

0.329
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-1.316
0

1.316
M

B

Normalized Standard Deviation

  0   0.5

  1   1.5

0

0.5 1

1.5 2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5
0.4

0.3
0.2

0.1
0

Correlation Coefficient

N
C

RMSE

-0.886
0

0.886
M

B

A
tlanta            

B
irm

ingham
 

D
allas 

Pittsburgh 
St Louis 

PM2.5-SO4 PM2.5-NH\4 PM2.5-OC PM2.5-EC 



 

 

177 

 

Figure B
.3 – C

ross-validation tem
poral correlation coefficient (R

) T
aylor diagram

s show
 norm

alized m
odeling statistics for 

each m
onitor separated by city and pollutant. C

C
M

A
Q  sym

bols are outlined in red, w
hereas C

opt  sym
bols are outlined in black. 

T
he sym

bol color indicates the m
ean bias. 
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Figure B
.3 – (continued) 
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Figure B
.3 – (continued) 
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Figure B
.4 – Seasonal spatiotem

poral correlation coefficient (R
) T

aylor diagram
s show

 norm
alized m

odeling statistics for each 
season separated by city and pollutant. C

C
M

A
Q  sym

bols are outlined in red, w
hereas C

opt  sym
bols are outlined in black. T

he 
sym

bol color indicates the m
ean bias. 
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Figure B
.4 –  (continued) 
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Figure B
.4 –  (continued) 
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Figure B
.5 – C

ross-validation seasonal spatiotem
poral correlation coefficient (R

) T
aylor diagram

s show
 norm

alized statistics 
for each season separated by city and pollutant. C

C
M

A
Q  sym

bols are outlined in red, w
hereas C

opt  sym
bols are in black. T

he 
sym

bol color indicates the m
ean absolute error. 
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Figure B
.5 –  (continued) 
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Figure B
.5 –  (continued) 
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Figure B
.6 – M

ean seasonal optim
ized concentration fields (C

opt ), 2002-2008. Seasons w
ere calculated by averaging the results 

over three-m
onth periods (D

JF-W
inter, M

A
M

-Spring, JJA
-Sum

m
er, and SO

N
-Fall). 
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Figure B
.6 –  (continued) 
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Figure B
.6 –  (continued) 
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Figure B
.6 –  (continued) 
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APPENDIX C. SUPPLEMENTAL MATERIAL FOR 

CONSTRAINING CHEMICAL TRANSPORT PM2.5 MODELING 

USING SURFACE STATION MEASUREMENTS AND SATELLITE 

RETRIEVALS: APPLICATION OVER THE SAN JOAQUIN 

VALLEY 

Table C.1 – Aerosol groupings and definitions used in the PM2.5 mass reconstruction 
for EPA CSN and CMAQ output species. 

 

  

Aerosol	Groups Aerosols CSN	Monitor	Representation CMAQ	Species	Representation	1

Sulfate 1.375	´	SO4 1.375	´	(ASO4I+ASO4J+ASO4K)
Nitrate 1.29	x	NO3 1.29	´	(ANO3I+ANO3J+ANO3K)
Ammonium NH4 ANH4I+ANH4J+ANH4K

Light	absorbing	
Carbon	(LAC)

Elemental	
Carbon	(EC)

EC AECI+AECJ

Organic	Matter	
(OM)

Organic	
Carbon	(OC) 1.8	x	OC

AALKJ+ABNZ1J+ABNZ2J+ABNZ3J+AISO1J+AISO2J+AISO3J+AOL
GAJ+AOLGBJ+AORGCJ+ASQTJ+ATOL1J+ATOL2J+ATOL3J+ATRP
1J+ATRP2J+AXYL1J+AXYL2J+AXYL3J+(1.4-0.2)*(APOCI+APOCJ)

Sea	Salt	(SS) Sea	Salt 1.8Cl	+	1.4486Na+	1.63Ca+	
1.2(K-0.6Fe)

ANAI+ANAJ+ACLI+ACLJ+ASEACAT+ACAJ+AKJ+AMGJ

Dust Dust 2.49Si+1.94Ti	+2.42Fe AOTHRI+AOTHRJ+ACORS+ASOIL+AFEJ+ASIJ+ATIJ+AMNJ+APN
COMI+	APNCOMJ

1 Model species in the Aitken, accumulation, and coarse size modes are indicated by the letters I, J, and K, respectively.

Inorganic	Ions	(II)
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