
DYNAMIC SHARED MEMORY ARCHITECTURE, SYSTEMS, AND
OPTIMIZATIONS FOR HIGH PERFORMANCE AND SECURE

VIRTUALIZED CLOUD

A Thesis
Presented to

The Academic Faculty

by

Qi Zhang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
May 2017

Copyright c© 2017 by Qi Zhang



DYNAMIC SHARED MEMORY ARCHITECTURE, SYSTEMS, AND
OPTIMIZATIONS FOR HIGH PERFORMANCE AND SECURE

VIRTUALIZED CLOUD

Approved by:

Professor Ling Liu, Committee Chair
School of Computer Science
Georgia Institute of Technology

Professor Mustaque Ahamad
School of Computer Science
Georgia Institute of Technology

Professor Ling Liu, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Calton Pu
School of Computer Science
Georgia Institute of Technology

Doctor Jay Lofstead
Scalable System Software Group
Sandia National Laboratories

Date Approved: 27 February 2017



To Mom and Dad

iii



ACKNOWLEDGEMENTS

I gratefully acknowledge the invaluable support I have received from my advisor, Professor

Ling Liu, over the course of my doctoral study. Her endless enthusiasm for research and

unsurpassed energy have inspired me to work on several interesting and practical research

problems. In addition to academic advising, she has shared her life lessons with me and

always been available whenever I needed help. I have been extremely fortunate to have her

“in my corner” as my doctoral advisor, and I hope to pass the lessons I learned from her

on to my students in the future.

I would also like to express my thanks to my doctoral dissertation committee members:

Professors Calton Pu, Mustaque Ahamad, Douglas Blough, and Jay Lofstead. Their insight-

ful comments and suggestions on my research have not only greatly contributed to my thesis

but also helped broaden my horizons for my future research. I have also been fortunate to

spend one summer at IBM Almaden and three summers at IBM Research T.J. Watson as

a summer research intern and experience real-world research and engineering challenges. I

express sincere thanks to my IBM mentors and collaborators including Donna Dillenberger,

Gong Su, Arun Iyengar, Ashish Kundu, Aameek Singh, and Pramod Mandagere.

I would like to thank every member of the DiSL Research Group, Databases Laboratory,

and Systems Laboratory at Georgia Tech for their collaboration and companionship. It was

a great pleasure to work in such a dynamic research environment. I convey special thanks to

Kisung Lee, Wenqi Cao, Semih Sahin, Emre Yigitoglu, Lei Yu, and Yang Zhou for countless

research discussions and friendship. I have also been exceptionally fortunate to meet many

wonderful friends in Atlanta.

Finally, and most importantly, I would like to thank my wife Jingxuan Liu. Her support

and encouragement were undeniably the bedrock upon which the past five years of my life

have been built. Her tolerance of my occasional vulgar moods is a testament in itself of her

unyielding devotion and love. I thank my parents, Zhongyuan Zhang and Guilan Gong, for

iv



their faith in me and allowing me to be as ambitious as I wanted. It was under their watchful

eye that I gained so much drive and an ability to tackle challenges head on. Also, I thank

Jingxuan’s parents, Xiaoping Liu and Qixia Wu. They also provided me with unending

encouragement and support.

v



Contents

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Memory Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Memory Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Memory Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Dissertation Scope and Contributions . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II WORKLOAD ADAPTIVE SHARED MEMORY MANAGEMENT FOR
HIGH PERFORMANCE NETWORK I/O IN VIRTUALIZED CLOUD 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 MemPipe System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Shared Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 The Lifecycle of Packets in MemPipe . . . . . . . . . . . . . . . . . 17

2.3.3 Packet Analyzer and Co-resident VM Discovery . . . . . . . . . . . 18

2.3.4 Elastic Shared Memory Management . . . . . . . . . . . . . . . . . 19

2.3.5 Locks in MemPipe . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.6 Socket Buffer Redirection . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.7 Anticipation Window in MemPipe . . . . . . . . . . . . . . . . . . 23

2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 MemPipe in Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 MemPipe in Guest . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



2.5.1 Performance of Anticipation Time Window . . . . . . . . . . . . . . 29

2.5.2 Dynamic Shared Memory Management . . . . . . . . . . . . . . . . 31

2.5.3 Performance of Socket Buffer Redirection . . . . . . . . . . . . . . . 34

2.5.4 Performance of Micro-benchmarks . . . . . . . . . . . . . . . . . . . 35

2.5.5 Performance of Network Applications . . . . . . . . . . . . . . . . . 39

2.5.6 Comparison with Other Shared Memory Systems . . . . . . . . . . 41

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

III IBALLOON: EFFICIENT VM MEMORY BALANCING AS A SER-
VICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 iBalloon Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Per-VM Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 VM Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Memory Balancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.4 Balloon Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 iBalloon Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Performance Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.3 Mixed Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IV MEMFLEX: A SHARED MEMORY SWAPPER FOR HIGH PERFOR-
MANCE VIRTUAL MACHINE EXECUTION . . . . . . . . . . . . . . 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 MemFlex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Host Memory based VM Swapping . . . . . . . . . . . . . . . . . . 78

vii



4.4.2 Hybrid Swap-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Proactive Swap-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Overall Performance of MemFlex . . . . . . . . . . . . . . . . . . . 89

4.5.2 Hybrid Swap-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.3 Proactive Swap-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.4 Effect of Swap Area Allocation . . . . . . . . . . . . . . . . . . . . 94

4.5.5 Comparison to Other Swap Systems . . . . . . . . . . . . . . . . . 96

4.5.6 Larger Scale Experiments . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

V MEMLEGO - IMPROVING MEMORY EFFICIENCY FOR HIGH PER-
FORMANCE VIRTUAL MACHINE EXECUTION . . . . . . . . . . . 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Establishing Shared Memory Channel . . . . . . . . . . . . . . . . . 104

5.3.2 Organizing Shared Memory . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3 On Demand Memory Allocation . . . . . . . . . . . . . . . . . . . . 106

5.3.4 Memory Swapping Optimization . . . . . . . . . . . . . . . . . . . . 108

5.3.5 Inter VM Communication Optimization . . . . . . . . . . . . . . . 110

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 MemLego with MemExpand . . . . . . . . . . . . . . . . . . . . . . 112

5.4.2 MemLego with MemSwap . . . . . . . . . . . . . . . . . . . . . . . 115

5.4.3 MemLego with Different Configs . . . . . . . . . . . . . . . . . . . . 117

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

VI STACKVAULT: PREVENTING SENSITIVE STACK DATA LEAK-
AGE FROM UNTRUSTED THIRD PARTY FUNCTIONS . . . . . . 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Threat Model and Motivating Example . . . . . . . . . . . . . . . . . . . . 123

6.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

viii



6.3.2 API Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3.4 Handling Complex Call Graphs . . . . . . . . . . . . . . . . . . . . 136

6.3.5 Other Design Choices . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.1 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4.2 Performance Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4.3 Memory Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

VII CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 150

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

ix



List of Tables

1 Top 3 most frequent invoked kernel functions . . . . . . . . . . . . . . . . . 24

2 Comparison of shared memory utilization, TCP sender . . . . . . . . . . . . 32

3 Related systems comparison. Table shows the performance measured by
TCP&UDP streaming workloads(msg size=16KB) generated by Netperf. N/A
in the tables means the approach does not support such workload or there is
no such number in the paper. ”Trans.” means ”Transparent to apps”; ”Shm
alloc” means ”Shared memory allocation” . . . . . . . . . . . . . . . . . . . 38

4 Execution time of representative workloads in Dacapo and Dacapo-plus (ms) 60

5 Time (nano seconds) spent on Page read and PTE update when swapping in
2GB data. ”T” means ”Total time.” . . . . . . . . . . . . . . . . . . . . . . 91

6 Number of VM page faults from each application . . . . . . . . . . . . . . . 94

7 Open source software packages used in the evaluation(# represents the num-
ber of functions in each application) . . . . . . . . . . . . . . . . . . . . . . 139

8 Stack size percentile per application(byte) . . . . . . . . . . . . . . . . . . . 140

9 Functions from each application protected by StackVault . . . . . . . . . . . 140

10 Function overhead on Minizip(CPU cycle) . . . . . . . . . . . . . . . . . . . 143

11 Function overhead on Curl (CPU cycle) . . . . . . . . . . . . . . . . . . . . 143

12 Function overhead on OpenSSH (CPU cycle) . . . . . . . . . . . . . . . . . 144

13 Function overhead on Netperf (CPU cycle) . . . . . . . . . . . . . . . . . . 144

14 Size of the in-memory protection table . . . . . . . . . . . . . . . . . . . . . 147

x



List of Figures

1 Co-located VM communication via static shared mem. . . . . . . . . . . . . 12

2 Comparison of Inter-VM communication using shared memory v.s. using the
conventional network stack(referred to as Native Inter-VM communication). 13

3 Packets delivery path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 MemPipe system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Static shared memory allocation in co-located inter VM communication, mea-
sured by TCP STREAM workload from Netperf, msg size = 8KB . . . . . . 19

6 Dynamic shared memory management . . . . . . . . . . . . . . . . . . . . . 20

7 MemPipe implementation architecture . . . . . . . . . . . . . . . . . . . . . 25

8 Impact of parameters (N ,t) on MemPipe . . . . . . . . . . . . . . . . . . . . 30

9 Performance overhead of dynamic shared mem allocation . . . . . . . . . . 31

10 Impact of dynamic shared mem allocation on mixed workloads . . . . . . . 31

11 Dynamic shared memory management in MemPipe, measured by Netperf
TCP STREAM workload, msg size = 8KB . . . . . . . . . . . . . . . . . . 32

12 Performance comparison of MemPipe with three different configurations . . 34

13 Performance of MemPipe using Netperf UDP and TCP streaming and trans-
actional workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

14 Performance measured by NetPipe-mpich . . . . . . . . . . . . . . . . . . . 37

15 OSU MPI benchmark test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

16 Httperf performance, file size = 110KB . . . . . . . . . . . . . . . . . . . . . 39

17 Effectiveness of MemPipe on applications . . . . . . . . . . . . . . . . . . . 40

18 iBalloon system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

19 Overhead of iBalloon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

20 Mixed workload experiments setup . . . . . . . . . . . . . . . . . . . . . . . 59

21 Normalized performance of benchmarks . . . . . . . . . . . . . . . . . . . . 59

22 Swapped memory in VMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

23 Allocated memory vs. used memory in VMs working with iBalloon . . . . . 62

24 Delays in Dynamic VM memory balancing . . . . . . . . . . . . . . . . . . . 73

25 Internal delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

26 External delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



27 Performance of Redis memory intensive workloads . . . . . . . . . . . . . . 75

28 MemFlex system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

29 Hybrid (disk and shared memory) swap-out. . . . . . . . . . . . . . . . . . . 81

30 Proactive swap-in v.s. Baseline swap-in. . . . . . . . . . . . . . . . . . . . . 84

31 Throughput of Redis server measured by YCSB workloads . . . . . . . . . . 86

32 Latency of Redis server measured by YCSB workloads . . . . . . . . . . . . 87

33 Normalized runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

34 Hybrid swap-out (Read) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

35 Hybrid swap-out (Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

36 Total time spent on swapping in . . . . . . . . . . . . . . . . . . . . . . . . 94

37 Effect of the system parameter SWAPFILE CLUSTER on MemFlex . . . . 95

38 System comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

39 Redis workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

40 MemLego Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

41 Effectiveness of MemLego on Memcached . . . . . . . . . . . . . . . . . . . 113

42 Effectiveness of MemLego v.s. Balloon driver . . . . . . . . . . . . . . . . . 115

43 Throughput of Redis server measured by YCSB workloads . . . . . . . . . . 116

44 Performance of Memcached under different MemLego configurations . . . . 118

45 Stack layout of two functions when they are invoked in a sequential or a
nested manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

46 StackVault workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

47 Interaction between the system calls and the kernel module of StackVault . 131

48 StackVault architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

49 Details of the symbol table . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

50 The protection table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

51 Insert stack protection APIs in indirect nested call scenario. . . . . . . . . . 137

52 Compilation performance comparison. . . . . . . . . . . . . . . . . . . . . . 141

53 Application performance comparison . . . . . . . . . . . . . . . . . . . . . . 143

54 Netperf performance comparison under frequent invocation of StackVault
APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

55 Protection overhead for large stack . . . . . . . . . . . . . . . . . . . . . . . 146

xii



SUMMARY

Dynamic memory consolidation is an important enabler for high performance vir-

tual machine (VM) execution in virtualized Cloud. Efficient just-in-time memory balancing

requires three core capabilities: (i) Detecting memory pressure across VMs hosted on a

physical machine; (ii) Allocation of memory to respective VMs; (iii) Enabling fast recovery

upon making newly allocated memory available at the high pressure VMs. Although the

Balloon driver technology facilitates the second task, it remains difficult to accurately pre-

dict the VM memory demands at affordable overhead, especially under unpredictable and

changing workloads. Furthermore, no prior study analyzed the effect of slow response of

VM execution to the newly available memory due to paging based application recovery.

In this dissertation research, I have made four original contributions to dynamic shared

memory management in terms of architecture, systems and optimizations for improving

VM execution performance and security. First, we designed and developed MemPipe, a

shared memory inter-VM communication channel for fast inter-VM network I/O. MemPipe

increases the shared memory utilization by adaptively adjusting the shared memory size

according to workloads demands. It also reduces the inter-VM network communication

overhead by directly copying the packets from the sender VM’s user space to the shared

memory area. Second, we developed iBalloon, a light-weight and transparent prediction

based facility to enable automated or semi-automated ballooning with more customizable,

accurate, and efficient memory balancing policies among VMs. Third, we developed Mem-

Flex, a novel shared memory swapping facility that can effectively utilizes host idle memory

by a hybrid memory swap-out model and a fast swap-in optimization. Fourth, we introduced

SecureStack, which is a kernel backed tool to prevent the sensitive data on the function stack

from being illegally accessed by the untrusted functions. SecureStack introduces three pro-

cedures to protect, restore, and clear the stack in a reliable and low cost manner. It is highly

transparent to the users and does not bring any new vulnerability to the existing system.

xiii



The above research developments are packaged into MemLego, a new memory management

framework for memory-centric computing in the big data era.
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Chapter I

INTRODUCTION

With the increasing demands for fast big data processing, memory is becoming one of

the most critical resources to improve the performance of the various applications in the

Cloud. Large size memory machines and platforms are not uncommon nowadays, and many

applications can benefit from using large memory to avoid expensive disk I/O operations.

For example, Amazon is providing a single node with 244GB memory and Oracle has built

a machine with 32TB memory. At the same time, in memory databases such as Redis and

memory centric big data platforms such as Spark have been widely deployed in the Cloud.

However, how to efficiently and securely use such large memory is still an open issue.

Maximizing the memory utilization while maintaining QoS for individual applications and

guaranteeing the in-memory data security is still challenging to the existing Cloud providers.

On one hand, recent traces from production data centers have revealed big gaps between

resource allocation and utilization. Taking memory for example, total allocation account for

more than 90% of a cluster’s memory capacity whereas the overall usage is less than 50%.

Idle memory is detrimental to the Cloud in terms of both cost and energy. Despite the fact

that power consumption of idle CPU can be decreased by DVFS, idle memory occupies upto

40% energy consumption of a whole machine [12]. Current VM and application consolidation

algorithms usually lead to poor performance because of the resource contention, especially

on memory subsystem. Large amount of Performance variation for key data center services,

such as web search, content analyzer, cloud storage, message communication, has been

observed due to contention at all levels of memory hierarchy. Other than performance,

security is another big concern for both Cloud providers and consumers. While large amount

of untrusted APIs are used in the software development, in-memory sensitive data leakage

is becoming huge threat. For example, the Heartbleed [33] is a known security bug in the

OpenSSL cryptograph library. The compromised library can read more data than it should
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be allowed.

To tackle these challenges, this dissertation research is focused on the development of

architectures and optimization techniques for a high performance and secure virtualization

environment, especially in the era of Cloud computing.

1.1 Technical Challenges

We describe the technical challenges to build a high performance and secure virtualized

Cloud from the perspective of memory resource management in more details as follows.

1.1.1 Memory Utilization

Dynamic memory consolidation is an important and attractive functionality to improve

the memory utilization while preserve high performance applications in a virtualization

platform. Ballooning is a dynamic memory balancing mechanism for non-intrusive sharing

of memory between host and its guest VMs through a balloon driver with inflation and

deflation operations. However, it is hard to make decisions on when to start ballooning and

how much memory ballooning is sufficient. The state of art proposals typically resort to

estimating the working set size of each VM at run time. Based on its estimated memory

demands, additional memory will be dynamically added to or removed from the VM [42, 73,

75, 124]. However, accurate estimation of VM working set size is difficult under changing

workloads [39]. Therefore, dynamic memory balancer may not discover in time that the

VM is under memory pressure, or may not balloon adding memory fast enough. Also, by

virtualization design, when a virtualized host boots, it treats each of its hosted VMs as a

process and allocates it a fixed amount of memory. Each guest VM is managed by a guest

OS, independently (and unaware of the presence) of the host OS. Thus, even when the host

has sufficient free memory, the guest VMs under memory pressure are unaware. Therefore,

any delay in dynamic memory balancing can cause the VM not be able to utilize the host

idle memory in a timely fashion. Therefore, we argue that, in a virtualized environment,

the memory resource can be used more effectively to further improve various aspects of VM

performance, such as inter VM communication and VM memory swap.
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1.1.2 Memory Balancing

Lots of existing researches are focused on exploring how to dynamically balance the mem-

ory allocation to meet a VM’s changing demand. Drawing from the lessons and experiences

of previous work, we believe that there are two common issues need to be addressed: (1)

monitoring the VM resource demand at a low cost to decide when and where to move

memory among the VMs; (2) moving memory among the VMs with minimal impact on

the performance of the VMs. Existing researches [119] [100] [133] have proposed many

methods to predict the VM memory utilization. However, an accurate prediction of VM

memory working set size is still a difficult problem, especially under changing conditions

[39]. Because of the fact that hypervisor lacks the knowledge of VM memory access pat-

tern, virtualization environment makes this prediction even harder. The second issue has

been partially addressed by the introduction of memory balloon driver [120], which allows

memory to be moved among the co-located VMs and the host machine. However, balloon

driver cannot work by itself. In other words, system administrators have to be involved

to periodically check the memory utilization of each VM and make the decision of how to

balance the memory around. There are actually some efforts to make it work automatically

[2], but the system is still in its initial stage and there lacks extensive experiments to evalu-

ate its performance. Although some researchers propose ideas to rebalance memory among

VMs by using balloon driver [113] [133], they also require guest kernel modification and the

overhead incurred by memory access interception in these approaches can be very high.

1.1.3 Memory Security

Using the third-party libraries is a common approach to facilitate the software development.

However, third-party libraries are also becoming one of the most insecure components of

an application [28], since it can be utilized to hack the sensitive data on the application’s

stack. Existing research efforts on protecting stack data leakage have centered on two most

well-known vulnerabilities: the uninitialized read problem and the stack overflow attack.

However, we argue that using an untrusted function (e.g. third party functions) can be a

new vulnerability of stack data leakage. Since a function has access to the stack of the whole
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process it belongs to, it can look beyond its own stack frames. Sensitive data can be leaked

when an untrusted function is invoked while stack frames of the functions holding sensitive

data are already present in the process stack. Specifically, since RSP and RBP are two

general registers on the x86 64 platform that can be modified from user level, an attacker

can simply obtain the stack boundaries from the RSP and RBP registers and scan the stack

memory accordingly. In this case, the attacker can readily bypass the existing state of art

approaches to gain access to the sensitive data on the stack, in addition to reading from

the uninitialized variables and compromising return addresses to launch the stack overflow

attack. Programmers can suffer from such sensitive stack data leakage attacks when they

are using untrusted functions in third-party libraries. Since these libraries are not fully

developed by the users, and are under the risk of being compromised. When a user invokes

a compromised library call within a function or after a function, which contains sensitive

data on its stack, the sensitive data can be disclosed.

1.2 Dissertation Scope and Contributions

In this dissertation, we propose solutions to enable more efficient and secure memory re-

source utilization. We achieve our goal from the following aspects:

First, we present MemPipe, a dynamic shared memory pipe framework for efficient data

transfer between co-located VMs. MemPipe is novel in the following aspects: first, Mem-

Pipe provides high performance and elastic memory management. Instead of statically and

equally allocating a shared memory pipe to each pair of co-located communicating VMs,

MemPipe slices the shared memory into small chunks and allocates the chunks proportion-

ally to each pair of VMs based on their runtime demands. We show that this dynamic

proportional memory allocation mechanism can significantly enhance the utility of shared

memory channels while improving the co-located inter-VM network communication per-

formance. Second, MemPipe introduces two optimization techniques - time-window based

streaming partitions and socket buffer redirection to enhance the performance of inter-VM

communication for streaming networking workloads and eliminates the network packet data

copy from sender VM’s user space to its VM kernel.
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Second, we design MemFlex, a flexible shared memory swapper with three original con-

tributions: (1) By redirecting the VM memory swapping to the host-guest shared memory

swap partition, MemFlex avoids the high overhead of disk I/O for guest swapping as well

as guest-host context switching, and enables the guest VM to respond fast to the newly

ballooned memory and to quickly recover from severe performance degradation under peak

memory demands. (2) To handle the situation of limited shared memory swap area due

to insufficient available memory at the host, MemFlex provides a hybrid memory swapping

model, which treats shared memory swap partition as the small primary swap area and the

disk swap partition(s) as the secondary swap area. This model enables fast shared memory

based VM swapping whenever it is possible and a smooth transition to the conventional

guest OS swapping on demand. (3) To address the problem of slow recovery of memory

intensive workloads even after sufficient additional memory has been successfully allocated

via ballooning, we provide a fast swap-in optimization to proactively swap-in the pages

resident in the shared memory swap area, reducing the high cost of frequent paging based

swap-in.

Third, we develop iBalloon, which is a low cost VM memory balancer with high accuracy

and transparency. No modification is required for VMs or the hypervisor to deploy iBalloon,

which makes it more acceptable in real cloud environment. The goal of iBalloon is to to keep

a balanced memory utilization among VMs running on the same host while avoiding any

VM from being deprived of free memory, with low cost and high accuracy and transparency.

iBalloon consists of a Per-VM Monitor and a Balancer. Both the Per-VM Monitor and the

Balancer are user level daemons. The Per-VM Monitor, which runs in the user space of

each VM, is responsible for collecting information about the memory utilization of this VM.

The Balancer, which consists of three parts: VM Classifier, Memory Balancer, and Balloon

Executor, executes in the user space of the host. By using the Exponentially Weighted

Moving Average (EWMA) model, the Balancer reads the information collected by the Per-

VM Monitor, predicts each VM’s future memory utilization, and makes decisions about

how to rebalance the memory among the VMs. The Balancer then contacts the balloon

driver to actually move memory among the VMs. Communications between the Per-VM
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Monitor and the Balancer are via an in memory bitmap and shared files, which are located

on host and exported to the VMs by the Network File System (NFS).

Fourth, we introduce StackVault-a kernel-backed system-level facility to eliminate sensi-

tive stack data leakage. This work is motivated by real applications scenarios that software

development team at many companies face when writing large-scale applications with sen-

sitive data [20]. Examples of such data include protected health information(PHI) and

financial records. Concretely, StackVault enforces three types of stack protection opera-

tions to protect the sensitive stack data by preventing an untrusted function from illegally

accessing the stack of another function in the same process. Through placement and en-

forcement of such operations, StackVault moves the sensitive stack data into an OS kernel

buffer prior to the execution of an untrusted function, so that there is no way for such

data to be touched by any untrusted function. Such protection also ensures that all data

required for execution of the untrusted function is kept on the stack. The stack data is

restored immediately after the untrusted function returns, and the stack is cleared for every

sensitive function upon its return, in order to eliminate any leakage of stack data after its

completion. We assume that the OS kernel is the trusted computing base, and any buffer

in the kernel cannot be accessed by the attacker in the user level.

1.3 Dissertation Organization

This dissertation consists of several chapters and each chapter addresses one or more of the

problems described above. In each chapter, we introduce the background of the problem

being addressed, describe related work, and present our solution techniques followed by

experimental evaluation. This dissertation is organized as follows.

In Chapter 2, we present the design and implementation of MemPipe, a dynamic shared

memory management system for high performance network I/O among virtual machines

(VMs) located on the same host. MemPipe employs an inter-VM shared memory pipe

to enable high throughput data delivery for both TCP and UDP workloads among co-

located VMs, manages its shared memory pipes through a demand driven and proportional

memory allocation mechanism, and employs a number of optimization techniques such as
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time-window based streaming partitions and socket buffer redirection to further improve the

performance of co-located inter-VM communication.

In Chapter 3, propose iBalloon, a lighted-weighted, high accurate and transparent VM

memory balancing service. iBalloon consists of two major components: the Per-VM Monitor

and a global Balancer. iBalloon predicts the VM memory utilization based on Exponention-

ally Weighted Moving Average (EWMA) model and dynamically adjust the VM memory

accordingly.

In Chapter 4, we introduce the design of MemFlex, a highly efficient shared memory

swapper. MemFlex can effectively utilize host idle memory by redirecting the VM swapping

traffic to the host-guest shared memory swap area. The hybrid memory swapping model

in MemFlex promotes to use the fast shared memory swap partition as the primary swap

area whenever possible, and smoothly transits to the conventional disk-based VM swapping

scheme on demand. Also, MemFlex proactive swap-in optimization offers just-in-time per-

formance recovery by replacing costly page faults with an efficient swap-in implementation.

In Chapter 5, we describe the design and implementation of MemLego, a shared memory

based memory optimization framework for managing and improving memory efficiency in

virtualized environment. MemLego offers on-demand VM memory allocation and deallo-

cation in the presence of changing workloads. maintains a shared memory region across

multiple VMs, and enables those VMs under memory pressure to obtain additional memory

on demand.

In Chapter 6, we develop StackVault, which is a highly reliable and transparent tool

to protect the sensitive data on the function stack. StackVault developed a novel and

unforgeable function identity to prevent an untrusted function to steal data from a protected

stack. It also has a three-phase framework in order to secure sensitive data on the stack: (1)

capturing application-specific sensitive functions and untrusted functions through easy-to-

use configurations, (2) transparent placement of stack protection operations through system-

supplied secure procedures to protect, restore, and clear the stack, and (3) automated

enforcement of stack protection through spatial and temporal access monitoring and control

over both sensitive stack data and untrusted functions.
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In Chapter 7, we summarize the main contributions of this dissertation and discuss our

future research directions.
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Chapter II

WORKLOAD ADAPTIVE SHARED MEMORY MANAGEMENT FOR

HIGH PERFORMANCE NETWORK I/O IN VIRTUALIZED CLOUD

This chapter presents the design and implementation of MemPipe, a dynamic shared mem-

ory management system for high performance network I/O among virtual machines (VMs)

located on the same host. MemPipe delivers efficient inter-VM communication with three

unique features. First, MemPipe employs an inter-VM shared memory pipe to enable high

throughput data delivery for both TCP and UDP workloads among co-located VMs. Sec-

ond, instead of static allocation of shared memories, MemPipe manages its shared memory

pipes through a demand driven and proportional memory allocation mechanism, which

can dynamically enlarge or shrink the shared memory pipes based on the demand of the

workloads in each VM. Third but not the least, MemPipe employs a number of optimiza-

tions, such as time-window based streaming partitions and socket buffer redirection, to

further optimize its performance. Extensive experiments show that MemPipe improves the

throughput of conventional (native) inter VM communication by up to 45 times, reduces

the latency by up to 62%, and achieves up to 91% shared memory utilization.

2.1 Introduction

Network I/O is known to be the dominating workloads in virtualized clouds. Achieving high

performance inter-VM communications is a key challenge for many Cloud services, systems

and applications. On one hand, virtualization by design introduces host-neutral abstraction.

This enables applications transparently communicate across VM boundary using standard

TCP/IP sockets and increases the flexibility of VM management. On the other hand, these

gains have been thwarted by the network I/O performance in virtualized clouds: for the data

residing on the same host, the network communication overhead between co-located VMs

can be as high as the communication cost between VMs located on different hosts [121, 131].

This is because all network packets transmitted from sender VM to receiver VM have to
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travel through the boundaries of VMs via hypervisor.

Research efforts in systems virtualization area have been engaged in reducing the cost

of data copies across the VM boundaries using shared memory based solutions [131, 108].

Instead of going through traditional network stack, communicating through shared memory

shortens the communication path, avoids the barrier cost of hypervisor, and improves the

data transmission efficiency. Although existing proposals [121, 77, 81, 44, 106, 132, 95]

differ from one another in terms of concrete design and implementation decisions, most of

these efforts suffer from some of the following problems: poor scalability in terms of shared

memory management for different types of workloads and dynamic VM deployment[97, 89],

and multiple copies of network packet between VM kernel buffer and the shared memory.

Recent research on network I/O virtualization has centered on improving the inter-

VM network I/O performance by software defined network (SDN) and network function

virtualization (NFV). Representative technology includes the single root I/O virtualization

(SR-IOV) [18] for making PCI devices interoperable, and Intel Data Plane Development

Kit (DPDK) [10, 5] for fast packet processing using multicore systems. SR-IOV capable

devices allow multiple VMs to independently share a single I/O device and can move data

from/to the device by bypassing the virtual machine monitor(VMM). Although SR-IOV

improves the communication between VM and its physical device, it cannot remove the

overhead of co-located inter-VM communication. This is because with SR-IOV, packets

still need to travel through the network stack of the sender VM, to be sent from the VM

to the SR-IOV device, and then sent to the receiver VM. This long path can still lead to

unnecessarily high cost for co-located inter-VM communication, especially for larger sizes

messages. Alternatively, Intel DPDK is a set of libraries and drivers, which utilizes huge

pages in guest VMs and multicore processing to provide applications direct access to the

packets on NIC. DPDK is restricted and on its own cannot yet support flexible and fast

network functions [5]. NetVM [78] develops a shared memory based approach for KVM

using DPDK to show that the virtualized edge servers can provide fast packet delivery

to VMs without passing through the hypervisor. However, NetVM is limited to run on a

DPDK enabled multicore platform and no open source is made available to date. Another
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VM communication optimization approach is Virtio [110], which is an abstraction layer

over devices, including NIC, in a paravirtualized hypervisor. For a specific device, Virtio

implements a front-end driver in the guest VM and a back-end driver in the host. A

common set of interfaces are also defined to enable the front-end driver and back-end driver

to communicate with each other. It is designed for efficient communication between the

VMs and the host hardware, but not for inter VM communication. Packets transferred

between co-located VMs still have to go through the host.

In this chapter, we present MemPipe, a dynamic shared memory pipe framework for

efficient data transfer between co-located VMs. MemPipe is novel in the following aspects:

First, MemPipe provides high performance and elastic memory management. Instead of

statically and equally allocating a shared memory pipe to each pair of co-located communi-

cating VMs, MemPipe slices the shared memory into small chunks and allocates the chunks

proportionally to each pair of VMs based on their runtime demands. We show that this

dynamic proportional memory allocation mechanism can significantly enhance the utility of

shared memory channels while improving the co-located inter-VM network communication

performance. Second, MemPipe introduces two optimization techniques - time-window based

streaming partitions and socket buffer redirection to enhance the performance of inter-VM

communication for streaming networking workloads and eliminates the network packet data

copy from sender VM’s user space to its VM kernel. We implement MemPipe on KVM,

have detailed challenges we have solved and tradeoffs we have made, and have released

MemPipe as an open source system.

The rest of this chapter is organized as follows: Section 2.2 introduces the shared memory

approach and discusses the inherent problems in existing shared memory implementations.

We describe the design choices of MemPipe in Section 2.3 and the implementation details of

MemPipe in Section 2.4. We evaluate the performance of MemPipe in Section 2.5, discuss

open issues in Section 2.6, review the related work in Section 2.7, and conclude the chapter

in Section 2.8.
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Figure 1: Co-located VM communication via static shared mem.

2.2 Background

How does shared memory work? Shared memory mechanism is first introduced to pass

data between programs that are running on the same operating system to avoid redundant

copy. Inspired by this idea, shared memory approach has been developed to accelerate the

performance of co-located inter VM communication [121, 77, 81, 44, 106, 132, 95]. The

general idea is to transmit data from a sender VM to a co-located receiver VM by using the

shared memory channel and bypass the hypervisor. Concretely, instead of delivering network

packets via the host operating system or hypervisor, the sender VM will intercept and

analyze the packets, and then redirect them to a pre-allocated memory region that is shared

with the receiver VM. After putting the packets into the shared memory, a notification is

sent to the receiver VM for the packet to be picked up. Using shared memory based

inter-VM communication, the sender VM’s packets can be made visible immediately to the

receiver without going through the hypervisor.

Problems of existing implementations. Although shared memory mechanism holds the

potential of high communication efficiency for co-located VMs, existing implementations

of shared memory based approach fail to deliver its full potential due to a number of

limitations.
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First, most of existing shared memory based approaches use the static and equal allo-

cation method for shared memory management. By allocating the same amount of shared

memory for each pair of communicating VMs regardless the workloads’ demands, it can

lead to inefficient utilization of shared memory resource. Furthermore, static shared mem-

ory management cannot adapt to the changing demand for shared memory and leads to

poor availability for skewed workloads. Figure 1 depicts a scenario when two co-located

VMs are communicating via equally and statically divided shared memory: Left portion of

the shared memory is for VM1 as the sender and VM2 as the receiver, while right portion is

for VM2 as the sender and VM1 as the receiver. Given that VM1 is sending much more data

packets to VM2 whereas VM2 is sending only short acknowledgement messages to VM1, the

static shared memory management may result in several problems: (1) a long waiting queue

in VM1 to deliver the packets; and (2) inefficient utilization of shared memory resource.

When the sending rate of the packets on VM1 is too fast, the shared memory pipe may

become too full to take more packets, causing packets drop, even though the overall shared

memory is under utilized due to the low shared memory utilization in VM2. However,

simply allocating different amount of shared memory to different VMs prior to runtime is

still problematic and not scalable, since the workloads in each VM may vary from time to

time. We conjecture that workload adaptive shared memory allocation and management

are mandatory for providing highly available and highly scalable inter-VM communication

channels.

(a) TCP streaming workload (b) UDP streaming workload

Figure 2: Comparison of Inter-VM communication using shared memory v.s. using the
conventional network stack(referred to as Native Inter-VM communication).

Another critical issue that has not been investigated is whether the shared memory
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Figure 3: Packets delivery path

based approach has consistent performance under different types of workloads. For ex-

ample, network I/O workloads in virtualized Clouds can be broadly categorized into four

types: TCP streaming or TCP transaction workloads and UDP streaming or UDP trans-

action workloads. Some of the existing implementations of shared memory mechanism

demonstrate better performance than conventional (native) inter-VM communication only

for UDP workloads. Figure 2 compares the performance of inter VM communication us-

ing the conventional (native) inter-VM communication approach (see the blue line with

solid squares) with using a shared memory approach (see the red line with empty circles).

Both TCP and UDP streaming workloads generated by Netperf [14] are used in this set

of experiments. We vary the message sizes from 64B to 16KB in the X-axis and measure

the inter VM communication throughput of TCP and UDP workloads, shown in Y-axis

of Figure 2(a) and (b) respectively. We make two observations. First, Figure 2(b) shows

that for UDP STREAM workloads, the shared memory based approach offers up to 6 times

higher performance than native co-located inter VM communication. The performance gain

increases as the message size increases. Second, we observe the opposite results: the per-

formance of TCP STREAM workloads by shared memory approach is consistently worse

than that of native (conventional) inter-VM communication, irrespective of the message

sizes. The main cause for this performance discrepancy under TCP workloads is due to the

lack of certain TCP packet level optimizations in the existing shared memory systems (see

more detailed discussion in Section 5.3). Note that Xenloop [121] is chosen as the shared

memory approach for this set of experiments among several other shared memory systems,
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such as MMNet [106], XWAY [81], IVC [77], because it is widely considered as one of the

most representative shared memory systems in terms of best practice [108]: (i) XenLoop is

transparent to the user level program, the guest OS kernel and the virtual machine monitor,

(ii) XenLoop supports both TCP and UDP workloads unlike XWAY, which supports only

TCP workloads, and (iii) XenLoop is opensourced, whereas many other similar systems are

not.

Although all existing shared memory approaches dedicate to utilizing the shared memory

mechanism to remove the cost of data copy between VM and hypervisor, few has explored

the opportunities to further remove the cost of data copying between guest VM kernel

and shared memory. Concretely, even with zero copy between VM and hypervisor, for a

sender VM to send a packet to a co-located receiver VM via shared memory, the packet still

needs to be copied 4 times: (1) from sender VM’s user space to its kernel socket buffer, (2)

from sender VM’s kernel buffer to its shared memory, (3) from shared memory to receiver

VM’s kernel socket buffer, and (4) from receiver’s kernel buffer to the application buffer. In

MemPipe, we further reduce the cost of data copying by allowing the sender VM kernel to

directly copy the packets from the user level buffer to the shared memory.

2.3 MemPipe System Design

To better illustrate the system design of MemPipe, we provide Figure 3 to compare the

existing network I/O processing in conventional virtualization platform (i.e., native inter-

VM) with MemPipe in terms of packet delivery path between sender VM and receiver

VM.

In native inter-VM communication, packets are sent from a sender VM through guest

OS kernel and hypervisor to the physical NIC. Three copies are performed at the sender

VM: user space to kernel space in the sender VM, sender VM kernel to hypervisor (host

OS), and then onto the NIC via hypervisor (host OS kernel). Upon arrival at the NIC,

a virtual switch performs L2 switching to determine the receiver VM for each packet and

notifies the appropriate virtual NIC. At the receiver VM, another two copies are performed:

the memory page containing the packet is either copied or granted to the kernel space
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of its Guest OS, and then the data is copied from guest OS kernel to the user space of

the guest OS, from which the application of interest can access the data. Such long data

packet transmission path involves significant overhead, leading to the poor latency and low

throughput.

The inter-VM communication path in MemPipe is shown in Figure 3(b). By using

MemPipe, data packets can be sent from the sender VM to the receiver VM directly with

zero-copy at the hypervisor level, enabling applications at the sender or receiver VM to write

or read the data packets with much shorter network I/O latency. Mempipe also provides the

socket buffer redirection capability for applications to opt-in and opt-out by choice, which

further reduces the data copy between co-located VMs.
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Figure 4: MemPipe system overview

2.3.1 Shared Memory Allocation

Shared memory pipes can be allocated globally by the host OS (hypervisor) or from each

VM. In MemPipe, the shared memory for co-located inter VM communication is globally

pre-allocated by the host OS (hypervisor). We choose this global shared memory allocation

mechanism instead of allocating shared memory within each VM for a number of reasons.

First, the presence of MemPipe will not increase the memory pressure within a single

VM. Second, allocating shared memory in the host (hypervisor) increases the reliability of
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MemPipe in the presence of guest domain failure. For example, if the shared memory is

allocated within a sender VM, upon a sudden crash of the sender VM, if the co-located

receiver VM tries to access the shared memory region of the sender VM, which no longer

exists, it will lead to kernel panic.

In addition, MemPipe promotes dynamic shared memory allocation. Instead of equally

dividing the shared memory among co-located VMs, MemPipe divides the whole piece of

shared memory into small chunks of fixed size. Initially, each memory pipe in a VM is

assigned with one chunk. Based on the workload demand, more chunks can be assigned to

or revoked from memory pipes dynamically. This proportional management of global shared

memory using small chunks allows the growing and shrinking of shared memory pipes on

demand for high performance and high availability.

2.3.2 The Lifecycle of Packets in MemPipe

Figure 4 illustrates the delivery path of a network packet from a sender VM to a receiver

VM by MemPipe. The solid lines represents the data flow while the dotted line shows the

control flow. The MemPipe system consists of three core functional components: packet

analyzer, event manager and dynamic shared memory manager.

Packet analyzer intercepts the outgoing packets of each sender VM and checks whether

a packet is heading to a co-located VM. If not, the packet will be sent through the default

kernel path, otherwise MemPipe delivery path will be used to deliver the packet. Events

manager delivers interrupt notifications between the sender VM and the receiver VM. When

a packet is intercepted and identified by the MemPipe packet analyzer as to be sent to a

co-located VM, MemPipe notifies the VM kernel to allocate the socket buffer for this packet

from shared memory instead of the default kernel buffer, and the data packet will be directly

copied from the user level application buffer to the shared memory. The events manager

notifies the receiver VM that the data is ready to be fetched from the shared memory. After

successfully moving the data from shared memory to the receiver VM’s kernel buffer, the

correspondent shared memory slot is released and the receiver VM delivers the packet to

its applications via the default kernel path.
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2.3.3 Packet Analyzer and Co-resident VM Discovery

The packet analyzer is located in each guest VM to intercept and analyze the packets sent

out by the VM. The packet analyzer can be implemented at different layers of the software

stack, such as application layer, socket layer, or below the IP layer. The higher layer

the packets are intercepted and analyzed, the shorter the communication path is and the

better performance we can achieve. However, several serious problems may occur if the

packets are intercepted at a higher layer: First, packets interception can be implemented by

modifying socket APIs such as send() or sendto(), but applications need to be rewritten to

incorporate these APIs, which results in poor user-level transparency [108]. Also, if packets

are intercepted at socket level, the kernel network stack will be skipped, which may not

be acceptable when data integrity needs to be guaranteed. For example, TCP protocol is

implemented in the transportation layer to guarantee the correctness of packets transmission

under unpredictable network environment. If packets are intercepted at the user level and

redirected to the shared memory, then the TCP layer will be skipped, missing the detection

and notice of the situations when packets got lost or corrupted during the transmission. In

order to preserve all functionalities at the network stack, we implement MemPipe’s packet

analyzer below the IP level in the guest VM kernel.

Co-located VM discovery is responsible for determining whether a packet is delivered

using MemPipe transmission path or the native inter-VM delivery path. There are two

design choices for implementing co-located VM detection mechanism: centralized and de-

centralized. The centralized method periodically collects the status from VMs co-located

on the same host and thus introduces delayed updates, which may lead to some level of

inconsistency. Alternatively, the decentralized mechanism is event-driven. When a VM

is deployed or migrates in or out of a host machine, the VM notifies the co-located VMs

and the co-location information is updated synchronously upon the occurrence of the cor-

responding events. The decentralized mechanism does not require the involvement of the

host and provides fresher and more consistent VM co-location information. We implement

the decentralized mechanism in MemPipe.
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(a) Sender VM (b) Receiver VM

Figure 5: Static shared memory allocation in co-located inter VM communication, measured
by TCP STREAM workload from Netperf, msg size = 8KB

2.3.4 Elastic Shared Memory Management

Static shared memory allocation divides the whole shared memory into equal sized partitions

prior to runtime, and each partition is used for one way inter-VM communication from

sender VM to receiver VM. Its advantage is easy implementation and low runtime overhead.

However, its disadvantages are also obvious. First, static shared memory allocation has

limited scalability. The maximum number of co-located communicating VMs is limited by

the total amount of pre-allocated shared memory partitions. Second, it results in poor

utilization of shared memory resources, especially when the network I/O workloads change

dynamically between sender and receiver VMs, or when network communications between

co-located VMs are not symmetric. For example, Figure 5(a) and Figure 5(b) show the

shared memory utilization at sender VM1 and receiver VM2 respectively by executing the

TCP streaming workloads generated by Netperf with message size of 8KB. By static shared

memory allocation, we divide a piece of shared memory into two equal size partitions, and

statically assign them to VM1 and VM2 respectively. Under this configuration, we observe

that the shared memory utilization of VM1 is only around 10% while that of VM2 is as low

as 0.4%, significantly lower than that of VM1. This is because compared with the ACK

data sent by VM2 to VM1, the bulk data sent from VM1 to VM2 is much larger.

To address these problems inherent in static shared memory allocation mechanism, in

MemPipe, we design a dynamic and proportional shared memory allocation mechanism

to enable different size of shared memory to be assigned to different VMs based on the

workload requirement of the applications running in these VMs.
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Figure 6: Dynamic shared memory management

Proportional Shared Memory Allocation. In MemPipe, the globally shared mem-

ory is organized in chunks of a system-defined size. As illustrated in Figure 6, chunks are

organized in a contiguous memory address space and are allocated to or revoked from each

VM in proportion to the run-time network I/O workloads between co-resident sender VM

and receiver VM.

When a sender VM1 tries to communicate with a co-located receiver VM2, two shared

memory pipes are established, one for VM1, denoted by VM1→VM2 and the other for VM2,

denoted by VM2→VM1, as shown in Figure 6. Each VM puts its sending packets into its

own shared memory pipe, while fetching the receiving data from the shared memory pipe

of the correspondent VM. Memory chunks belonging to each single shared memory pipe

are organized in a circular linked list, which enables the VM to treat physically separated

chunks in a contiguous manner. Three categories of meta data are maintained for the

shared memory pipe: free shm, shm dscriptor, and chunk descriptor. Free shm is a global

meta data, which locates in the very front of the host allocated shared memory. It maintains

all the free chunks in a linked list. Each shm descriptor records the meta data for a single

shared memory pipe − a circular linked list of busy chunks used for a sender VM to transmit

data packets to a co-located receiver VM. The MemPipe kernel module in each VM checks

shm descriptor to get the reference of where to put the newly coming packets in the shared

memory. Shm descriptor also maintains the real time utilization of the shared memory pipe

for dynamic allocation/deallocation. Chunk descriptor is the per chunk meta data, and

stores the references pointing to the start and the end of available data in each chunk and
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maintains the pointers to the next chunk in the same shared memory pipe.

Enlarging and Shrinking Memory Pipes. Shared memory pipes are created and

maintained at each of the communicating VMs independently. Before putting a packet

into the shared memory pipe, MemPipe refers to shm descriptor to check whether there is

sufficient free space in the current shared memory pipe to accommodate the new packet.

If not, a free chunk will be added to this pipe, and at the same time, the sending VM will

notify the receiving VM to fetch the packets from the pipe. The revocation mechanism

is also essential to maintain the high utilization of shared memory resources and provide

elastic scalability for different types of networking workloads. A separate thread is created

in MemPipe to periodically monitor the usage of each shared memory pipe, and marks

the chunks without any valid data as inactive. Although the current implementation of

MemPipe allocates or removes inactive chunk from a shared memory pipe one at a time,

more complex policies can be applied. For example, each shared memory pipe is initialized

with a single memory chunk. Whenever it is not enough, we can add another 2k chunks,

and k refers to the number of times that the size of the shared memory pipe is detected as

not enough. When the monitoring thread removes an inactive chunk from a shared memory

pipe, the value k of this specific shared memory pipe is re-set to zero. This guarantees that

the value of k will not keep increasing and it reflects the allocation demand of this shared

memory pipe.

2.3.5 Locks in MemPipe

Active chunks in a given memory pipe are chained together using a circular linked list.

To provide convenient access to free chunks for growing and shrinking the memory pipes,

all free chunks are chained through another circular link, called free chunk list, which is

accessed by the MemPipe monitoring thread in each VM.

By designing the unidirectional shared memory pipes, we reduce the number of locks

required to manage shared memory resources since each memory pipe has only one writer

(sender VM) and one reader (receiver VM) at any given time. This single producer-consumer

pattern allows us to employ lockless design for writing and reading packets to and from the
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memory pipes. In addition, before the sender writes a data packet to its shared memory

pipe, it always checks if the pipe has sufficient space to host the data packet. If not, it

triggers the growing of the memory pipe by acquiring free chunks from the free chunk list.

Thus, when the memory pipe is being expanded, there is no data packet being written to the

pipe, and no lock is necessary in this case. Therefore, we only need two types of locks: the

free list lock and the shrink lock. Since all free chunks in the circular linked list are shared

by multiple co-located VMs for memory pipe growing or shrinking, free list lock is required

to guarantee the correctness of concurrent updates on the free chunk list from multiple

VMs. We also need the shrink lock to lock the local shared memory pipe when it needs

to return some free chunks to the global free chunk list. The MemPipe monitoring thread

needs to hold the shrink lock before removing an inactive chunk from the correspondent

shared memory pipe, which guarantees that no data will be written into the pipe when the

pipe is shrinking. Similarly, MemPipe needs to hold the shrink lock before writing packets

data into a shared memory pipe.

2.3.6 Socket Buffer Redirection

Using shared memory pipes, we can reduce the transmission path of a network packet

to four copies. In this section we introduce the technique of socket buffer redirection as

an optimization to further reduce the number of copies by redirecting the creation of the

socket buffer to the shared memory instead of inside the sender VM’s OS kernel. This allows

the sender VM’s packets to be directly copied from the user space to the shared memory,

skipping the VM kernel buffer.

The socket buffer, represented by skb, is the core of the network subsystem in Linux

Kernel. For each network packet, both its payload and metadata are wrapped into one or

multiple skbs. As the packet going through the network stack in Linux kernel, its header

information will also be added to the skb. The packet will be finally sent to the wire with

every necessary information placed in the skb.

When the socket buffer redirection is turned on in the MemPipe configuration, MemPipe

will employ this optimization to further reduce the cost of data copy. Concretely, MemPipe
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allocates the kernel buffer pointed by skb from shared memory instead of from the sender

VM’s kernel. Thus, by calling copy from user(), this packet can be directly copied from

user level buffer to the shared memory, instead of first being copied from the application

buffer to the sender VM’s kernel buffer and then being moved to the shared memory pipe.

Note that in MemPipe, the socket buffer redirection (SBR) is enabled only in the sender

VM’s, but not allowed in the receiver VM for the sake of performance. The reason is that,

if SBR is also allowed in the receiver VM, the shared memory buffer, which contains the

valid packets, cannot be released until the data is successfully delivered to the user level

applications.

Some previous work [44] proposed the idea of mapping the sender’s whole memory

address space to the receiver. Although this can reduce the cost of data copies, it may

introduce unwanted risk in multi-tenant cloud where co-located communicating VMs may

not be able to fully trust each other. In contrast, using our socket buffer redirection, we

only allow the packet to be directly copied from the user level buffer to the shared memory

of the sender VM, bypassing the copying to the sender VM’s kernel buffer. Thus it does not

introduce additional security risk. Also the socket buffer redirection is offered as an opt-

in configuration because the implementation of socket buffer redirection requires guest VM

kernel modification, though instead of directly modifying the kernel functions, we implement

the corresponding functions in the MemPipe module (≈100 LOC) and then hook it into the

guest VM kernel when MemPipe module is inserted. Thus, the only kernel modification is

adding a few hook functions.

2.3.7 Anticipation Window in MemPipe

In MemPipe, we also introduce the anticipaton window based notification grouping tech-

nique to address the performance degradation shown in Figure 2(a).

Concretely, to gain an in-depth understanding of why the performance of the shared

memory approach is worse than that in native inter-VM scenario for TCP streaming work-

loads, we analyze the types and the amount of events occurred in the VM kernel while TCP

streaming workloads are running between co-located VMs. Table 1 shows the top three most
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Table 1: Top 3 most frequent invoked kernel functions

samples image function

4684(%7.16) vmlinux do softirq
229(%0.35) vmlinux csum partial copy generic
222(%0.34) vmlinux tcp ack

frequent kernel functions that are invoked during the TCP STREAM workloads. We find

that do softirq, csum partial copy generic and tcp ack are the top three most frequent ker-

nel functions that are invoked during the TCP STREAM workloads, which occupies 7.16%,

0.35% and 0.34% of the total gathered events.

The above results indicate that the frequent software interrupts incurred in shared mem-

ory based inter-VM communications under TCP STREAM workloads are one of the main

causes that severely degrade the performance of network I/O between co-located VMs.

Concretely, the function do softirq is executed in a very high frequency compared with

others. In Linux network subsystem, do softirq is an interrupt handler responsible for ex-

tracting packets from the socket buffer and delivering them to the applications. The CPU

stack switching cost brought by executing a software interrupt handler is non-negligible,

especially in the case where the frequency of software interrupt is high. Thus, reducing

the frequency of software interrupts clearly offers an opportunity to further improve the

performance of shared memory based inter VM communication system, especially for TCP

streaming workloads.

This observation is aligned with the adaptive-tx/rx technologies which are adopted

by the NIC drivers to constantly monitor the workload and adaptively tune the hardware

interrupt coalescing scheme. It helps to reduce the OS overhead encountered when servicing

one interrupt per received-frame or per transmitted frame. However, in MemPipe, inter

VM network frames are transmitted via shared memory and never go through the hardware

or virtual NICs, thus the adpative-tx/rx technologies cannot help to better manage the

overheads of software interrupts in MemPipe. This motivates us to introduce anticipatory

time window (ATW) based notification grouping to substitute the per packet notification

issuing. We set the anticipation time window t to allow the sender to divide its notifications
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into multiple ATW based partitions of equal size N , such that each partition batches N

notifications and each streaming partition is formed when N packets have arrived or when

the ATW interval t expires. This ensures that the ATW based notification incurs only

bounded delay by t even when there are less than N new packets in the shared memory. By

tuning the parameter N and the ATW interval t, we can effectively reduce the number of

notifications between sender VM and receiver VM, and significantly cut down the amount

of software interrupts to be handled in both sending and receiving VMs.

2.4 Implementation Details

We implement MemPipe as kernel modules to achieve high transparency. MemPipe’s func-

tionalities are split between a kernel module running in the guest kernel and a kernel module

in the host kernel. Our implementation is built on KVM[84] 3.6, QEMU[21] 1.2.0, and Linux

kernel 4.1. Figure 7 gives a sketch of the MemPipe architecture that spans the host and

guest VMs with an emulated PCI device to share memory between them.
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Figure 7: MemPipe implementation architecture

2.4.1 MemPipe in Host

MemPipe kernel module in the host is responsible for allocating the shared memory region

from the host kernel memory and initializing the allocated shared memory region so that
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guest VMs are able build their own memory pipes. Concretely, the allocation of shared

memory calls shm open() to create a shared memory object. Then, the initiator opens a

listening socket, which waits for the connections from VMs. Whenever a VMs tries to map

the shared memory object to its own address space, the VM needs to communicate with the

initiator in the host through this socket to get the descriptor of the shared memory object

created by the host initiator. The initialization consists of two steps. First, it assigns the

size of shared memory chunk based on the user configuration. A memory chunk is the

basic unit that is added to or removed from a memory pipe by dynamic shared memory

management. Second, the Shared Memory Initiator in the host sets up the global metadata

free shm that locates at the very beginning of the shared memory. free shm is a data

structure that contains the length and the starting address of the free memory chunk list.

Whenever a VM wants to allocate more free memory chunks to its memory pipes, or remove

some inactive memory chunks from its memory pipes, the VM needs to refer to this global

metadata to access the free memory chunk list.

2.4.2 MemPipe in Guest

The MemPipe kernel module in a guest VM manages the shared memory pipes for its

communication with other co-located VMs.

Peer VM Organizer. The Peer VM Organizer enables each VM to distinguish its co-

located VMs from remote VMs (VMs running on a different host machine). We implement

Peer VM Organizer by using a hashmap, with the mac address of a VM as the hash key

and the value is a corresponding data structure used for establishing the memory pipe.

Whenever the MemPipe in a guest VM starts to run, the Peer VM Organizer sends out

a broadcast message that contains its own mac address and the mac address of the host

machine it is running on top of. The other VMs receiving this message compare the host

mac address in the message with the mac address of the host machine they are running

on. If these two host addresses are the same, then it indicates that this message is from

a co-located VM. The Peer VM Organizer in the receiving VM will add a record in its

hashmap, and send a reply message back to the original VM, establishing the fact that they
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are co-located VMs.

Packet Analyzer. Packet Analyzer is implemented on top of Netperf to help VMs

determine whether a network packet is heading to their co-located VMs or remote VMs.

Netperf residing in the Linux kernel allows specific kernel modules to register callback

functions with the kernel’s network stack. MemPipe’s Packet Analyzer registers a call back

function in the VM kernel, which is responsible for intercepting each outgoing packet and

retrieving the packet’s destination mac address. After that, Packet Analyzer refers to the

Peer VM Organizer to check whether the destination is a co-located VM. If yes, the Packet

Analyzer transfers the control to the Memory Pipe Manager to establish a shared memory

pipe and sends the packet out. Otherwise, the Packet Analyzer puts the packet in the native

Linux network stack.

Memory Pipe Manager. Memory Pipe Manager consists of four parts: Pipe Initiator,

Pipe Reader/Writer, Pipe Analyzer, and Pipe Inflator/Deflator. As illustrated in Figure

6, each shared memory pipe is exclusively used between a specific pair of co-located VMs,

and it is a unidirectional pipe. Whenever a packet is identified to be sent to a co-located

VM, the Pipe Analyzer will be invoked to check whether a corresponding memory pipe

exists or whether the current memory pipe is sufficient for the packet. If no memory pipe

is initialized, it notifies the Pipe Initiator to obtain a single free memory chunk by referring

to the global metadata free shm, and initialize it as the memory pipe for communication. If

the current memory pipe is insufficient, additional shared memory chunk(s) will be acquired

by invoking the Pipe Inflator. Once the shared memory pipe is established for hosting the

data packet, the corresponding packets will be put into and fetched from the shared memory

pipe by Pipe Reader/Writer. In addition, the Pipe Analyzer needs to periodically monitor

the utilization of each memory pipe. If the memory pipe is under utilized, then the Pipe

Deflator is invoked to dynamically shrink the pipe.

Events Handler. After putting a packet into a shared memory pipe, the sending

VM notifies the receiving VM through the Events Handler to fetch the packet. In our

implementation, the host machine is responsible for creating and dispatching eventfd objects

whenever a new VM starts to run. Each VM maintains one eventfd object for listening to
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the arrival events, and multiple other eventfd objects for sending notifications to other

co-located VMs.

Emulated PCI Device. Since KVM does not allow sharing memory between the

host and the guest VM, we create an emulated PCI device in each VM to overcome this

limitation. The PCI device takes the memory, which is allocated and initialized by the

Shared Memory Initiator in the host, as its own I/O region. Then it maps its I/O region

into the VM’s kernel address, and transfers the base virtual address to the Memory Pipe

Manager. Thus, the Memory Pipe Manager is able to access the shared memory from this

virtual address. Although the based virtual addresses may not be the same in different VMs,

they are pointing to the same physical address − the beginning of the memory allocated by

the Shared Memory Initiator.

2.5 Evaluation

We evaluate the performance of MemPipe with three objectives: (1) Demonstrate Mem-

Pipe’s ability to provide fast Inter-VM communications for both TCP and UDP workloads

by running four unmodified micro-benchmarks; (2) Show that MemPipe’s dynamic memory

management delivers efficient shared memory utilization by proportional allocations with

low performance overhead; and (3) Demonstrate MemPipe’s effectiveness using typical net-

work I/O applications.

Our experimental testbed consists of three physical servers: the largest one has 8 Intel

Xeon 2.67GHz cores, 96GB memory and four BCM5709 Gigabit network cards machine.

The other two physical machines, each has 3.0GHz Intel CPU of 4 cores, 4GB memory, two

250 GB disk and a Gigabit network interface card, all running KVM 3.6, with virtio[110]

enabled, QEMU 1.2.0, and Linux kernel 4.1. We compare the performance of MemPipe

with the following two conventional scenarios: (1) Inter Machine where native machine-

to-machine network communication through physical network cards is measured; and (2)

Inter VM where guest-to-guest network communication via standard virtualized network

cards is measured.

The four micro-bechmarks used in our evaluation are: (1) Netperf [14], a software
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application to provide network bandwidth testing between two machines on a network.

(2) OSU MPI benchmarks [16] for evaluating the performance of MPI communication,

including latency and bandwidth. (3) Netpipe-mpich [15], a simple series of ping-pong

tests over a range of message sizes to provide a complete measure of the performance of

a network. (4) Httperf [9], a facility for generating various HTTP workloads and for

measuring server performance.

We also use the following five network intensive user-level applications in our evalu-

ation:

(1) SCP (Secure Copy), which supports file transfers between hosts on a network;

(2) Wget [31], a free utility for non-interactive download of files from the Web. It supports

http, https, and ftp protocols, as well as retrieval through http proxies; (3)Vsftp [30],which

stands for ”Very Secure FTP Daemon”, is a FTP server for Unix-like systems. (4) Sftp

[23], a secure file transfer program.

(5) Hadoop MapReduce [60] applications.

2.5.1 Performance of Anticipation Time Window

In this section we study the setting of three system parameters in MemPipe: the parameters

N and t in anticipation time window based notification mechanism, which groups up to N

packets within time window t, as well as the shared memory chunk size.

The first set of experiments evaluates the effect of various settings of the parameters N

and t on the performance of MemPipe using Netperf [14] streaming workloads. Figure 8(a)

measures the throughput of MemPipe by varying the ATW interval from 0.1 ms to 1000

ms with fixed N = 5. We observe that the throughput drops as the interval (t) increases

and an obvious throughput performance drop is observed from 1913Mbps to 1558Mbps and

55.4Mbps, when the value of t increases from 10ms to 100ms and 1000ms respectively. In

addition, we observe that the setting of t = 1ms represents the best case, while the setting

of t = 1000ms is the worst. This is because long delay may occur when the number of

packets arrives within the time window t is less than N , thus all messages need to wait for

t time unit before their notifications can be sent out.
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(a) Throughput (N=5) (b) Throughput (t=1ms)

Figure 8: Impact of parameters (N ,t) on MemPipe

We conduct the next set of experiments by setting t = 1ms and varying the ATW

stream partition size N from 5 to 50,000. Figure 8(b) shows that the combination of

(N = 50, t = 1ms) produces the highest throughput of 2939Mbps, while all other settings

result in lower throughput, especially when the message size grows bigger than 256 bytes.

This is because as the message size increases, larger N will cause more packets to wait for

t time unit before their notifications can be sent out. Thus, smaller value of t will lead to

higher throughput. In the remaining sets of experiments, we choose (N = 50, t = 1) as the

default setting unless otherwise stated.

The next set of experiments is to evaluate the effect of chunk size on the performance of

MemPipe. We measure the throughput of TCP STREAM workloads with 16KB message

size, while varying the chunk size from 2KB to 256KB, and observe an obvious throughput

improvement from 2738Mbps to 3066Mbps, when the chunk size increases from 2KB to 8KB.

However, the performance stays stable around 3000Mbps when the chunk size is larger than

8KB. Therefore, in order to guarantee a fine grained shared memory allocation, 8KB is

chosen to be the chunk size of MemPipe in all subsequent experiments.

Figure 9 shows the throughput measured by TCP STREAM workloads from Netperf to

show that MemPipe has low throughput when the shared memory chunk size is 2KB com-

pared to that of 8KB. The total shared memory is 32MB with each VM having 16MB shared

memory using static memory allocation. We find that dynamic memory management with

chunk size of 8KB has very similar throughput compared to that of static memory manage-

ment. But dynamic shared memory management with chunk size of 2KB has consistently

lower throughput for all message sizes. This is because when the data packets need more
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Figure 9: Performance overhead of dynamic shared mem allocation

Figure 10: Impact of dynamic shared mem allocation on mixed workloads

space than the allocated shared memory pipe size, sending VM has to enlarge its shared

memory pipe more frequently when using smaller chunk size.

2.5.2 Dynamic Shared Memory Management

We first compares static and dynamic shared memory allocation to show that the MemPipe

dynamic memory management incurs minimal and negligible overhead compared to the

static shared memory mechanism, demonstrating the advantage of using dynamic shared

memory allocation scheme for high performance network I/O.

The first set of experimental results is given in Table 1. We run TCP streaming work-

loads from Netperf with message size varying from 64 bytes to 16KB and measure allocated

memory size, used memory size, shared memory utilization and throughput (Mbps). Two

VMs are used for this set of experiments with one as sender VM and the other as receiver

VM. For dynamic shared memory scenario, MemPipe allocates the shared memory to each

VM proportionally based on the workload demand. In static shared memory allocation
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Table 2: Comparison of shared memory utilization, TCP sender
msg size
(Byte)

Static Dynamic

Allocated(KB) Used(KB) Util
Throughput

(Mbps)
Allocated(KB) Used(KB) Util

Throughput
(Mbps)

64 1024 74 7% 762 82 75 91% 753
128 1024 75 7% 1227 88 75 86% 1211
256 1024 75 7% 1769 97 76 79% 1760
512 1024 81 8% 2283 107 81 76% 2258
1024 1024 92 9% 2652 125 90 72% 2584
2048 1024 99 10% 2986 130 99 77% 2950
4096 1024 100 10% 3215 124 99 80% 3146
8192 1024 100 10% 3381 127 99 78% 3322
16384 1024 100 10% 3438 127 100 78% 3402

(a) Sender VM (b) Receiver VM

Figure 11: Dynamic shared memory management in MemPipe, measured by Netperf
TCP STREAM workload, msg size = 8KB

scenario, we disabled the dynamic shared memory management in MemPipe and statically

allocate 1MB of shared memory to each of the two VMs.

Table 2 shows that the sender VM is able to achieve 72%-91% shared memory utilization

by using MemPipe dynamic shared memory allocation, whereas the static allocation has

only 7% -10% shared memory utilization, even though the dynamic shared memory man-

agement achieves similar throughput as the static shared memory allocation. The results in

Table 2 shows that the dynamic allocation in MemPipe incurs very little overhead, because

the performance degradation in dynamic case stays within 2.5% compared to the static

case where shared memory may be under-provisioned in one VM and over-provisioned in

another.

For static shared memory allocation, when the demand of network I/O workloads on

one VM exceeds the size of a statically allocated memory region, it may cause packet

drops and transaction failures, even though the shared memory region on the other VM

is under-utilized. In contrast, with dynamic shared memory management, as long as free
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memory chunks exist, the VM demanding more shared memory space can grow dynami-

cally by adding free chunks to its shared memory pipe. In the next set of experiments, we

demonstrate the benefit of dynamic shared memory management for co-resident inter-VM

communication by comparing static and dynamic memory management by the inter-VM

bandwidth throughput as shown in Figure 10. We setup 8VMs (VM1-VM8) on a ma-

chine with 96GB memory, and organize them into 4 sender-receiver VM pairs (VM1&VM2,

VM3&VM4, VM5&VM6, VM7&VM8). All 4 pairs of VMs are communicating simulta-

neously. The first two pairs of VMs are running the UDP STREAM workloads with 64B

message size and the other two pairs of VMs are running simultaneously the UDP STREAM

workloads with 8192B (8KB) message size.

Figure 10 shows the achieved communication bandwidth between each pair of VMs.

Although the performance between static and dynamic case are similar for workloads of

64-byte message size running on the first two pairs of VMs, MemPipe can significantly

improve the throughput of the workloads with larger message size of 8192-byte running

on the other two pairs of VMs. The dynamic shared memory allocation can achieve 3

times higher bandwidth throughput on average compared to the static shared memory

management. This is because, with the same amount of shared memory, dynamic shared

memory management is highly flexible and more adaptive. It enables MemPipe to allocate

shared memory based on changing demands of workloads at runtime, i.e., allocating less

memory to the workloads with small message size of 64-byte, which enables larger shared

memory to be allocated to the workloads with larger message size of 8192-byte. Clearly,

proportional and workload adaptive shared memory allocation can better meet the demands

of different workloads compared to the static shared shared memory management.

The third set of experiments shown in Figure 11 compares the amount of shared mem-

ory that is utilized by the workloads with the amount of memory allocated in MemPipe.

Figure 11(a) measures the size of the shared memory used when varying the number of

packets sent during the workload execution at the sender VM. By observing the amount

of utilized shared memory compared to the amount of allocated shared memory, we show
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that MemPipe can dynamically adjust the allocated shared memory size to meet the chang-

ing network I/O workloads at the sender VM. Figure 11(b) illustrates the shared memory

allocation and utilization on the receiver VM. Based on the discussion in Section 5.1 and

Figure 9, we choose 8KB as the chunk size for this set of experiments. Therefore, Fig-

ure 11(b) shows that MemPipe allocates 8KB shared memory for the VM, even though the

used shared memory size is about 4KB.

2.5.3 Performance of Socket Buffer Redirection

To evaluate the effectiveness of socket buffer redirection, we compare the performance im-

provement of MemPipe over the native inter-VM communication via the traditional net-

work stack with the following three different configurations: (1) Shm: VMs communicate

via dynamic managed shared memory; (2) Shm + ATW: VMs communicate via dynamic

managed shared memory, with anticipation time window enabled; and (3) Shm + ATW

+ SBR: VMs communicate via dynamic managed shared memory, with anticipation time

window and socket buffer redirection enabled. The workloads are generated by Netperf

with varying message sizes and Figure 12 shows the comparison results.
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Figure 12: Performance comparison of MemPipe with three different configurations

We make two interesting observations from Figure 12. First, MemPipe shared memory

management powered by anticipation time window (ATW) and socket buffer redirection

(SBR) is the best configuration, which significantly outperforms the conventional approach
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(native) and other two configurations. On average, ATW improves the performance by

3.5 times compared with using shared memory alone. By combining with SBR, MemPipe

further improves the performance by 14%. Second, the workloads with message size larger

than 1KB can benefit more from the socket buffer redirection (SBR). For example, compared

with the Shm +ATW configuration, Shm +ATW+SBR adds 5% throughput improvement

for the workload with 64B message size but improves the performance of workload with

4KB message size by 17%. This is because the workloads with small message sizes are CPU

bound, while the workloads with large message sizes are network I/O bound. With socket

buffer redirection, we reduce the overhead of data transfer by avoiding the copy between

the Linux kernel buffer and the shared memory. In addition, socket buffer redirection copies

both the payload and the TCP/IP headers of the packets into the shared memory. Although

the size of the header is similar regardless of the message size used by the workload, the

relative cost brought by copying the TCP/IP headers will be smaller for workloads with

larger message sizes.

2.5.4 Performance of Micro-benchmarks

This section evaluates the performance of MemPipe by comparing it with the two conven-

tional scenarios (Inter-Machine and Native Inter-.VM) using four different micro-benchmarks.

Netperf. Figure 13 compares MemPipe with two conventional network I/O approaches:

inter-machine communication and native co-resident inter-VM communication. We measure

the UDP and the TCP throughput in Y-axis by varying the message size from 64B to 16KB

in X-axis. Streaming workloads generated by Netperf are used in Figure 13(a) and Figure

13(b), while transactional workloads generated by Netperf are used in Figure 13(c) and

Figure 13(d). Each point in all four sub-figures represents the average throughput of a

workload with a specific message size over multiple runs. For instance, when the message

size is 16KB, the throughput of TCP streaming workload for inter-machine communication

and native inter-VM communication is 936Mbps and 140Mbps respectively, while that of

MemPipe is 2855Mbps.
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(a) UDP streaming (b) TCP streaming

(c) UDP Transactional (d) TCP Transactional

Figure 13: Performance of MemPipe using Netperf UDP and TCP streaming and transac-
tional workloads.

Figure 13(a) shows that, for UDP workloads, the throughput increases as the mes-

sage size increases for all 4 scenarios. When the message size is larger than 256B, the

throughput in inter-machine and in native inter-VM scenarios become relatively stable,

which indicates that the network communication channel is saturated. In contrast, Mem-

Pipe consistently outperform native inter-VM scenario in all message sizes, and outperforms

the Inter-Machine scenario when the message size is larger than 512B. Such performance

gap increases as the message size increases from 0.5KB to 16KB with up to 32 times higher

throughput compared with that in native inter-VM case. This is because for small message

sizes, the performance is dominated by the per-message system call overhead. Although

using shared memory, system call overhead in virtualized platform remains non-negligible

compared with the Inter-Machine scenario. However, as the message size increases, the

performance becomes dominated by the data transmission. The advantages of using shared

memory will over-weight the overhead caused by per-message system call. Similarly, for
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(a) Throughput vs. msg size (b) Latency vs. msg size

Figure 14: Performance measured by NetPipe-mpich

TCP streaming workloads, as shown in Figure13(b), MemPipe reliably outperforms the

other two scenarios for all message sizes.

Figure 13(c) and Figure 13(d) show the transaction throughput for both UDP and TCP

transactional workloads respectively. For transactional workloads, MemPipe does not need

to turn on ATW. We make two observations. First, the throughput of MemPipe is better

than that in inter machine scenario and native inter VM scenario for both UDP and TCP

transactional workloads. This is because MemPipe allows packets to be sent directly to

the receiver VM through the shared memory, while in other two scenarios, packets have to

go through the host OS kernel, incurring additional latency. Second, large messages take

longer transmission time. Thus, the number of completed transactions decreases as the

message size grows for all three scenarios.

NetPipe-mpich. Figure 14(a) and Figure 14(b) show the throughput and latency

measured by NetPipe-mpich in two communicating VMs. We observe similar trend between

Figure 14(a) and Figure 13(b), because NetPipe-mpich is also based on TCP protocol. The

throughput achieved by MemPipe is up to 12 times higher than the native inter VM case

and 1 time higher than the inter-machine case. For latency, MemPipe is as low as 73%

of the inter machine case, and 11% of the native inter VM case. These observations are

consistent with the results from our previous experiments using Netperf.

OSU MPI benchmarks.[16] We also evaluate the performance of MemPipe using the

OSU MPI benchmarks. The objective of this bandwidth test is to determine the maximum

sustained rate that can be achieved at the network level. The unidirectional bandwidth test,
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Table 3: Related systems comparison. Table shows the performance measured by
TCP&UDP streaming workloads(msg size=16KB) generated by Netperf. N/A in the ta-
bles means the approach does not support such workload or there is no such number in
the paper. ”Trans.” means ”Transparent to apps”; ”Shm alloc” means ”Shared memory
allocation”

Approach Plat. Setup
Perf.

improv
Trans Shm alloc ref

XenLoop Xen
host:3.0GHzX4 CPU, 4GB RAM

VM:1 core, 512MB RAM
0.8X&6.1X yes static [121]

XWAY Xen
host:3.2GHz CPU,1GB RAM

VM:1 core, 256MB RAM
6.4X & N/A yes static [81]

Fido Xen
host:quad-core 2.1GHz CPUX2, 16GB RAM

VM:2 cores
1.6X & 2.7X yes static [44]

XenSocket Xen host:dual 2.8GHz, 4GB RAM 71.0X & N/A no static [132]

MemPipe KVM
host:3.0GHzX4 CPU, 4GB RAM

VM:1 core, 512MB RAM
20.4X & 46.0X yes dynamic .

shown in Figure15(a), is carried out by having the sender sending out a fixed number of

messages to the receiver and then waiting for a reply from the receiver. The receiver sends

the reply only after receiving all these messages. MemPipe significantly outperforms both

native inter-VM and inter-machine cases for all message sizes. Figure15(b) shows the bi-

directional bandwidth test, which is similar to the bandwidth test, except that both nodes

involved send out a fixed number of messages and wait for the reply. This test measures

the maximum sustainable aggregate bandwidth by two VMs. As expected, MemPipe offers

significantly better performance for co-located inter VM communication than that of the

native inter VM scenario and slightly better than the inter machine scenario in terms of

bandwidth, especially when the message size grows larger.

Httperf. We also evaluate MemPipe using Httperf. Figure16 shows that both through-

put and reply rate are proportional to the request rate when the number of requests per

second is low (< 2000/sec) in all the 3 scenarios. In all experiments, the request rate ranges

from 500req/sec to 10000req/sec with the size of file requested at 110KB. The reason for

choosing 110KB as the file size is that Httperf workloads in this case are network bounded

using our experimental setup. With the increase of request rate, the performance for all

three scenarios reaches the peak and starts to drop at different peak request rates. The

performance of MemPipe is the best, which reaches its performance peak at the highest re-

quest rate of 8500req/sec. The native inter VM scenario has the worst performance, which

begins to drop when the request rate is only 1500req/sec.
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(a) Unidirectional (b) Bi-directional

Figure 15: OSU MPI benchmark test

(a) Reply rate vs. req rate (b) Throughput vs. req rate

Figure 16: Httperf performance, file size = 110KB

2.5.5 Performance of Network Applications

This section evaluates the performance of MemPipe by comparing it with native inter-

VM scenario using a set of real-world network intensive applications. We first measure the

performance of MemPipe for four widely used applications in Linux systems: scp, wget [31],

Vsftp[30] and Sftp[23]. In this set of experiments, a file of 100MB is transferred 5 times

from a sender VM to its co-located receiver VM, and the average throughput achieved by

each application is recorded. The results are plotted in Figure17(a). Without MemPipe,

the throughput measured by file transferring between two co-located VMs is about 11MB/s-

14MB/s, while with MemPipe, the performance achieves 22MB/s-35MB/s.

Next, we evaluate the effectiveness of MemPipe in terms of improving the performance

of MapReduce jobs[60] and MPI applications[11] running in virtualized cloud. The

shuffle phase is a worst bottleneck in MapReduce jobs, where each mapper needs to ship

the intermediate key/value pairs with the same key to the corresponding reducers. For
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(a) Apps’ throughput (b) MapReduce shuffle

(c) MPI Allreduce (d) MPI Allgather

(e) MPI Alltoall

Figure 17: Effectiveness of MemPipe on applications
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mappers and reducers co-located on a single host, MemPipe can significantly improving

its shuffle phase performance and thus reduces the total runtime of a MapReduce job. In

this set of experiments, we setup a virtualized cluster with 8 VMs on the largest physical

machine. Each VM is equipped with 2GB memory and one virtual CPU. We ran six

different MapReduce jobs with different size of input data (1GB, 3GB, and 5GB) in this

virtual cluster. The number of map tasks is (input data size)/(block size) and the number

of reduce tasks is configured as 8. Figure 17(b) shows that MemPipe improves the shuffle

time of WordCount, Terasort, Sort, SelfJoin, and InvertedIndex by up to 59%. This is

because all of the MapReudce jobs have large amount of intermediate data to be shuffled

among the co-located VMs. For example, 5GB intermediate data needs to be shuffled for

the Terasort job with 5GB input. Therefore, these jobs can significantly benefit by using

MemPipe to increase their data shuffle efficiency. We also evaluate the performance of MPI

benchmarks under the 8-VM setup, Figure 17(c), 17(d), and 17(e) show that MemPipe

improves the latency of MPI reduce, gather, and send operations by up to 1.8, 3.0, and 3.2

times respectively compared to native inter-VM communication.

2.5.6 Comparison with Other Shared Memory Systems

Table 3 compares the performance of MemPipe with other existing representative shared

memory systems. Given that XenLoop is open sourced, we measure XenLoop using our

experimental setup. For XWAY, Fido, and XenSocket, the experiment setups and perfor-

mance numbers are extracted from their papers. Given that the experimental environments

and system configurations vary from one system to another, we use the normalized numbers

in Perf. improv column to make comparison more straightforward. The two numbers rep-

resent the normalized improvement of shared memory approach over the native inter-VM

for TCP STREAM and UDP STREAM workloads respectively. Table 3 shows that Mem-

Pipe dynamic shared memory scheme significantly outperforms XenLoop, XWay, Fido for

both TCP and UDP workloads. Although XenSocket performs best for TCP STRREAM

workloads, it requires application modification and it does not support UDP STREAM

workloads.
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For those systems, such as NetVM [78], ZIVM [99] and VMPI [64], they are implemented

on KVM platform but they did not use Netperf workloads in their evaluation. Also all these

three systems are not open sourced. Therefore we exclude them from the comparison table.

However, compared to MemPipe, there are two disadvantages of these systems: First, none

of them considered using dynamic shared memory management in their system design.

Second, NetVM only runs on DPDK enabled platforms.

2.6 Discussion

Platform heterogeneity. The first open source release of MemPipe is implemented on

KVM and written mostly as kernel modules (except socket buffer redirction). However, the

design of MemPipe is generic and platform neutral. For example, Xen provides functionali-

ties such as grant table and event channel which can be utilized to allocate shared memory

and provide events delivery among VMs. One of our ongoing work is to port MemPipe onto

Xen platform by utilizing these functionalities.

Extending Intel DPDK with MemPipe. Intel DPDK is a software framework that

allows applications to directly poll the NIC data, thus high throughput and low latency

VM network packet processing can be achieved. Also, Intel DPDK eliminates the overhead

of interrupt driven packet processing in traditional OS. This is implemented by first pre-

allocate a large memory region using the huge pages in Linux. The applications are then able

to DMA data directly from the NIC to the memory region. However, in current DPDK, the

shared memory region is current statically allocated, and its size is also arbitrarily decided.

Therefore, the dynamic shared memory allocation mechanism in MemPipe can be applied

to the memory region allocation in DPDK, so as to improve the utilization of the huge

pages while still allowing network application performance to benefit from Intel DPDK.

Race Condition. Since the co-located VMs are automatically detected in MemPipe, VM

migration may result in race condition. For example, if VM1 migrates to another physical

machine right after it has been detected as a co-located VM of VM2, packets sent from VM2

to VM1 could still be put into the previous established shared memory channel between

the two VMs. In this case, VM1 will not be able to fetch these packets from the shared
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memory because it has already migrated to another physical machine. We refer to this

condition as the race condition. There are two ways to resolve this race condition. First,

this problem could be relieved by periodically updating the co-locating VM list maintained

by each VM. However, this approach suffers from the problem that the race condition may

still occur if a VM migrates in between of two consecutive updates. In MemPipe, the

following coordination mechanism is used to prevent such race condition. Before migrating,

the VM needs to first freeze all its shared memory channels and consume all the remaining

data in the shared memory. Then, the VM unfreezes and tears down all its current shared

memory channels. Finally, the VM sends out a broadcast message to all its co-located

VMs, which will update their co-located VM information list accordingly. While the shared

memory channels are frozen, the other co-located VMs need to hold the packets, which are

sent to this VM, and then deliver them through the native inter VM network stack when

the channels are unfrozen or torn down.

Security Consideration. MemPipe adopts several mechanisms to improve the security

of the shared memory pipes that are accessed by multiple VMs. For example, in MemPipe,

we allocate shared memory to individual VMs and promote the principle of ”need-to-know”

by establishing unidirectional shared memory pipes from sender VM to receiver VM. This

reduces the risk of shared memory to the minimum.

Another mechanism we promote is the use of VM trust group, which allows those VMs

that are mutually trusted to belong to the same trust group. The shared memory channels

can be established only between VMs in the same trust group. MemPipe allocates different

shared memory regions from the host machine for different VM trust groups. Therefore,

VMs in one group are confined by the access to the shared memory region for that group

and are unable to access the shared memory used by VMs in other groups. This guarantees

that packets will not be obtained by untrusted VMs. Network traffic across VM groups

need to go through the native Linux network stack.

The third mechanism is to combine VM trust group with data encryption. Specifically,

a key is negotiated between a pair of co-resident communicating VMs before the shared

memory channel is established. All packets are encrypted in the sender VM and decrypted
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in the receiver VM by using the previously negotiated key. The encryption powered VM

trust group is securer than using the VM trust group alone at the cost of encryption and

decryption overhead.

2.7 Related Work

In the context of inter-VM communicaiton, shared memory has been studied at three dif-

ferent layers in the OS software stack and each has different impact on system transparency

and performance overhead. Intercepting network packets at the user libraries layer enables

a shortest communication path between co-located VMs but suffers form lacking of trans-

parency. Representative projects in this layer include IVC [77], VMPI [64], and Nahanni

[95]. Implementing shared memory based inter-VM communication at socket layer improves

user level transparency but lacks of transparency to OS kernel at guest VM and host. Xway

[81] and Socket-outsourcing [65] are examples in this layer. Implementing shared memory

mechanisms below IP layer offers full transparency. Examples include XenSocket [132],

XenLoop [121] and MMNet [106].

Recent research advances in network I/O virtualization have centered on improving the

inter-VM network I/O performance by SDN and network function virtualization (NFV).

Representative technology includes Intel Data Plane Development Kit (DPDK) [10] for fast

packet processing using multicore systems. However, Intel DPDK has its own limitations.

First, while DPDK enables applications to achieve high throughput NIC access, it is not

optimized for inter VM communication. For example, if two co-located VMs are pined

to different NICs, packets transferred between these VMs must go out of the host and

come back via an external switch. These packets will suffer from further performance

degradation because of data copy between the guest kernel buffer and host user-level buffer.

Second, DPDK is not transparent to the applications in the guest VM, which means that

the applications need to be rewritten and recompiled to incorporate the APIs from DPDK.

NetVM [78] is the most recent development by utilizing shared memory mechanism

on top of DPDK. NetVM shows that the virtualized edge servers can provide fast packet

delivery to VMs bypassing the hypervisor and the physical network interface. However,
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NetVM is limited to run on a DPDK enabled multicore platform and no open source is

made available to date. Intel DPDK is a software framework that allows high throughput

and low-latency packet processing. It allows the applications to receive data directly from

NIC without going through the Linux kernel, and eliminates the overhead of interrupt driven

packet processing in traditional OS. The huge pages in DPDK are statically allocated to

each VM and MemPipe’s dynamic shared memory mechanism not only can enhance the

utilization of the huge pages but also can consolidate the edge host server’s shared memory

region for providing high availability and high performance network function virtualization.

2.8 Conclusions

This chapter presents MemPipe, a dynamic shared memory pipe framework for high per-

formance communication and data transfer among co-located VMs in virtualized cloud.

MemPipe employs an inter-VM shared memory pipe to enable high throughput data de-

livery for both TCP and UDP workloads among co-located VMs. Instead of static shared

memory allocation, MemPipe manages its shared memory pipes through a demand driven

and proportional memory allocation mechanism, which can dynamically enlarge or shrink

the shared memory pipes based on the demand of the VMs’ workloads. Furthermore, Mem-

Pipe employs a number of optimization techniques such as time-window based streaming

partitions and socket buffer redirection to further improve the performance of co-located

inter-VM communication. Extensive experiments on typical micro-benchmarks and net-

work intensive applications consistently demonstrate that MemPipe guarantees flexible and

efficient shared memory resource utilization and can significantly improve the performance

of inter VM communication with up to 45 times of throughput increase and up to 62%

latency reduction, compared with native inter VM communication for both TCP and UDP

workloads.
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Chapter III

IBALLOON: EFFICIENT VM MEMORY BALANCING AS A

SERVICE

Dynamic VM memory management via the balloon driver is a common strategy to manage

the memory resources of VMs under changing workloads. However, current approaches rely

on kernel instrumentation to estimate the VM working set size, which usually result in high

run-time overhead. Thus system administrators have to tradeoff between the estimation

accuracy and the system performance. This chapter presents iBalloon, a light-weight, accu-

rate and transparent prediction based mechanism to enable more customizable and efficient

ballooning policies for rebalancing memory resources among VMs. Experiment results from

well known benchmarks such as Dacapo and SPECjvm show that iBalloon is able to quickly

react to the VM memory demands, provide up to 54% performance speedup for memory

intensive applications running in the VMs, while incurring less than 5% CPU overhead on

the host machine as well as the VMs.

3.1 Introduction

Cloud providers often face the challenges of both achieving high resource utilization in their

data centers and at the same time allocating enough resources for individual VMs to guar-

antee their performance. Employing the widely adopted virtualization technology, cloud

providers can multiplex a single set of hardware resources among multiple VMs, therefore

increasing resource utilization by the means of overcommitting. In order to guarantee the

performance of individual VMs, one simple approach is to allocate resources according to

their peak demand. However, this can result in significant resource under utilization be-

cause VMs’ peak demands for resources can be much higher than their average demands.

Therefore, the fundamental challenge in achieving both high resource utilization and per-

formance guarantee at the same time lies in the fact that the resources demands of VMs

can vary significantly over time.
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CPU and memory are the two hardware resources having the most significant impact

on a VM’s performance. Modern Virtual Machine Monitors (VMMs, also known as Hy-

pervisors) typically already support dynamically allocating a pool of CPUs among different

VMs. Therefore, lots of existing researches are focused on exploring how to dynamically

adjust memory allocation to meet a VM’s changing demand, as is the case with this chapter.

Drawing from the lessons and experiences of previous work, we believe that there are two

common issues need to be addressed: (1) monitoring the VM resource demand at a low cost

to decide when and where to move memory among the VMs; (2) moving memory among

the VMs with minimal impact on the performance of the VMs.

To address the first issue, existing researches [119] [100] [133] have proposed many

methods to predict the VM memory utilization. However, an accurate prediction of VM

memory working set size is still a difficult problem, especially under changing conditions

[39]. Because of the fact that hypervisor lacks the knowledge of VM memory access pattern,

virtualization environment makes this prediction even harder. Some researches try to break

the semantic gaps [48] between VMs and the host by instrumenting their kernels, which

brings non-negligible performance overhead [133].

The second issue has been partially achieved by the introduction of memory balloon

driver [120], which allows memory to be moved among the co-located VMs and the host

machine. However, balloon driver cannot work by itself. In other words, system administra-

tors have to be involved to periodically check the memory utilization of each VM and make

the decision of how to balance the memory around. There are actually some efforts to make

it work automatically [2], but the system is still in its initial stage and there lacks extensive

experiments to evaluate its performance. Although some researchers propose ideas to rebal-

ance memory among VMs by using balloon driver [113] [133], they also require guest kernel

modification and the overhead incurred by memory access interception in these approaches

can be very high.

In this chapter, we propose iBalloon, which is a low cost VM memory balancer with

high accuracy and transparency. No modification is required for VMs or the hypervisor

to deploy iBalloon, which makes it more acceptable in real cloud environment. iBalloon
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runs a light-weighted monitoring daemon in each VM, which gathers the information about

memory utilization of that VM. At the same time, a balancer daemon is running in the host

to collects information reported by the monitor, and automatically makes the decision about

how to balance the memory around VMs. The balancer finally talks to the balloon driver

in the host machine to actually move the memory around. We implement the prototype

of iBalloon on a KVM platform and the evaluation results show that with less than 5%

performance overhead. iBalloon is able to improve VM performance by up to 54%.

The rest of this chapter is organized as following: Section 3.2 introduces the design

details of iBalloon. Section 3.3 discuses its implementation on the KVM virtualization

platform. We present our experimental methodology and explain the evaluation results of

iBalloon in section 3.4. The related work is discussed in section 3.5 and the chapter is

concluded in section 3.6.

3.2 iBalloon Design

The goal of iBalloon is to to keep a balanced memory utilization among VMs running on

the same host while avoiding any VM from being deprived of free memory, with low cost

and high accuracy and transparency. As shown in Figure 28, iBalloon consists of a Per-

VM Monitor and a Balancer. Both the Per-VM Monitor and the Balancer are user level

daemons. The Per-VM Monitor, which runs in the user space of each VM, is responsible

for collecting information about the memory utilization of this VM. The Balancer, which

consists of three parts: VM Classifier, Memory Balancer, and Balloon Executor, executes in

the user space of the host. By using the Exponentially Weighted Moving Average (EWMA)

model, the Balancer reads the information collected by the Per-VM Monitor, predicts each

VM’s future memory utilization, and makes decisions about how to rebalance the memory

among the VMs. The Balancer then contacts the balloon driver to actually move memory

among the VMs. Communications between the Per-VM Monitor and the Balancer are via

an in memory bitmap and shared files, which are located on host and exported to the VMs

by the Network File System (NFS). Since disk I/O can become a bottleneck when multiple

VMs simultaneously write to the NFS directory, we put this shared directory in a memory
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based filesystem - tmpfs.

Figure 18: iBalloon system overview

3.2.1 Per-VM Monitor

The Per-VM Monitor is a user level daemon running in each VM. It is responsible for

periodically getting memory utilization statistics from the VM and writing them into a

per-VM log file, which locates in a NFS directory provided by the host and shared by all

the VMs running on this host. In our design, specifically, the monitor reads two metrics

from the Linux virtual filesystem /proc/meminfo: total memory and used memory, and

writes them into the log file. The log file can be maintained in either an appended only or

an overwritten manner. The former method keeps adding the new VM memory utilization

statistics collected by the monitor to the end of the log file. The historical data in the log

file may help the classifier in the host to better predict the VM’s future memory usage, but

the size of the log file will keep increasing with the execution of the VM, which may not

be acceptable because of limited storage capacity. The latter approach always replaces the

previous data in the log file with the newly collected information. In this case, the size of

the log file will be small and constant, but the information provided by the file is limited.

Therefore, in order to tradeoff between these two approaches, we design the per-VM log file

in an overwritten manner, while keeping the aggregated VM historical memory utilization

statistics in the VM Classifer running in the host. To be more specific, the per-VM log

file only records two statistics: the VMs current total memory and used memory. The
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VM Classifer in the host will maintain a historical information indicator for each VM, and

update this indicator periodically based on the current statistics read from the per-VM log

file.

Three issues needs to be addressed in order to make iBalloon more scalable and accurate:

updating interference, monitoring frequency, and transient outliers filtering.

Updating interference. The first issue is disk bandwidth interference incurred by the

Per-VM Monitor to co-located VMs. Since the monitor in each VM periodically writes the

VM memory statistics into its correspondent log file, it is quite possible that multiple VMs

running on the same host are writing to their own log files simultaneously. Considering the

fact that disk I/O requests from all these VMs have to go through the same host machine, it

will lead to severe disk contention with the increasing number of VMs running with iBalloon,

which could in turn degrade the performance of other I/O intensive VMs running on the

host. Therefore, in our design, the NFS directory exported by the host is not created from

disk, but from the memory. Considering the size of each VM log file is only two integers,

the additional amount of memory taken by this design is negligible even if the number of

VMs is very large.

Monitoring frequency. The second issue is the monitoring frequency. As the monitor

in each VM periodically collects the VM’s memory utilization statistics and communicates

them to the VM Classifier in the host, the frequency of the monitor’s execution greatly

affects the scalability of the iBalloon, especially when there are large amount of VMs running

on the same host. Accurate monitoring can be achieved by allowing a high monitoring

frequency, however, it can lead to high computation and communication overheads. On

the contary, the data collected by a low frequency monitoring may not be accurate enough.

Therefore, we employ an adaptive frequency control mechanism to build iBalloon scalable

and accurate. Concretely, as described by algorithm 1, every monitor starts with a monitor

interval τ . It checks whether the consecutive two monitored values vary within a pre-defined

range λ. If yes, which means the memory utilization of this VM is in a relatively stable

state, thus is it not necessary to update the current value in the log file. At the same time,

the monitor increases the value of current monitor interval by τ . Otherwise, the monitor
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updates the log file with the latest value and divides the value of interval by half. Note

that there is an upper bound as well as a lower bound for the value of interval, in order to

prevent Per-VM Monitor from being starved or executing too frequently. We empirically

set n as 10 in our evaluation.

Algorithm 1 Per-VM Monitor
1: procedure VM MEM MONITOR
2: while true do
3: interval← τ
4: intervalmax ← nτ
5: intervalmin ← τ
6: γold ← old vm mem util /*value from log file*/
7: γnew ← get vm current mem util
8: if (|γnew − γold| ≥ λ) then
9: delay(β)

10: γdelay ← get vm current mem util
11: if (|γdelay − γold| ≥ λ) then
12: update log file
13: interval←MAX(intervalmin, interval/2)
14: end if
15: interval←MIN(intervalmax, interval + τ)
16: end if
17: sleep interval
18: end while
19: end procedure

Transient outliers filtering. iBalloon should adjust a VM’s memory when the VM

is indeed short of memory, which is to guarantee the correctness and stability of the VM

memory management. However, short term memory burst and transient outliers are often

observed in a cloud environment. Therefore, in order to prevent a VM memory from going

up and down dramatically, a delay is introduced in the iBalloon to filter these transient

outliers. Concretely, as shown in algorithm 1, when the monitor detects that the difference

between the old value and the latest value is obvious enough to issue an update to the log

file, it delays for a β interval, and then checks the value for a second time. If the value is

still satisfy the requirement of log file update, the monitor updates the log file. Otherwise,

γnew will be treated as a transient outlier.

3.2.2 VM Classifier

VM Classifier is one of the iBalloon components that running in the host user space. It

is responsible to divide the VMs running on the host into three categories based on the

their predicted memory utilization. The Exponentially Weighted Moving Average (EWMA)

model is used in the VM Classifier for the prediction. Concretely, for a specific VM, the
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VM Classifier uses OFMi to denote the VM’s observed free memory, which is provided by

the per-VM log file, in terms of percentage at time point i. At the same time, the VM

Classifier maintains another variable PFMi as the VM’s historical information indicator.

PFMi represents the EWMA of the VM memory free memory from time point 0 to i. Then,

according to EWMA, the predicted free memory in terms of percentage at time point i is

based on the value of OFMi and PFMi−1. The predicted free memory for each VM is

calculated as following:

PFM1 = OFM1

PFMi = αOFMi + (1−α)PFMi−1, i > 1

in which the value of α decides whether the prediction depends more on the current observed

value OFMi or the historical information PFMi−1. We set the value of α as 0.125 in our

evaluation.

After calculating the predicted free memory for each VM, the VM Classifier further

divides the VMs into groups based on the prediction results. Three VM groups are defined

as following:

VM =



Critical if PFMi ∈ [0%, r1)

Warn if PFMi ∈ [r1, r2)

Normal if PFMi ∈ [r2, 100%]

(1)

in which, r1 and r2 are two values between 0% and 100% and r1 ≤ r2. We empirically set

r1 = 15% and r2 = 30% in our evaluation. The VM groups created by the VM Classifer

will be fed as the input to the Memory Balancer, which then, makes decisions about how to

move memory around VMs accordingly. Another parameter passed from the VM Classifier

to the Memory Balancer is a VM memory array vm mem old[], which indicates the current

memory utilization of each VM.

One thing needs to be mentioned is when to trigger the VM classification. In our design,

the VM Classifier maintains a bitmap, which is shared among the VM Classifer and the

Monitor. Each bit in the bitmap is correspondent to a specific VM. Whenever the Monitor

updates the log file, it checks whether the state of the VM (i.e. Normal, Warn, Critical)

52



is changed. If true, the Monitor will set its corresponding bit in the bitmap. On the VM

Classifier side, it initializes the bitmap as all zero, and periodically checks the bitmap. The

VM classification is triggered whenever the bitmap is non-zero, and the VM Classifier clears

the bitmap to all zero again after the classification.

3.2.3 Memory Balancer

Based on the input provided by the VM Classifier, the Memory Balancer needs to decide

how to move memory around VMs so that the memory utilization of each VM can be

balanced. Algorithm 2 described how the Memory Balancer work. It firstly checks whether

there exist any Critical VMs. On one hand, if Critical VMs exist, which indicates that

these VMs urgently need more memory, then the Memory Balancer calculates δ, which

represents the total amount of memory needed to bring these Critical VMs to a Cushion

level, in which VM’s free memory utilization reaches 20%. Then, the Memory Balancer

follows a step by step manner to decide which VMs should sacrifice their memory and how

much. The first step is the calculate δ1, which is the total amount of memory that can

be taken from Normal VMs before making any of their free memory utilization drop to the

Warn state. If δ1 is already enough to satisfy all the Critical VMs, memory only needs

to be proportionally moved from Normal VMs to Critical VMs. Otherwise, both Normal

and Warn VMs need to scarifies their memory to help the Critical VMs, and the Memory

Balancer enters step two. After taking δ1 from Normal VMs, all the Normal VMs will

become Warn VMs. In step two, therefore, the Memory Balancer calculates δ2, which is the

total amount of memory that can be taken from all the current Warn VMs before making

any of them in Critical state. In this case, the Memory Balancer should guarantee that it

will not turn any non-Critical VM into Critical VM after moving the memory. Therefore,

if the total available memory from non-Critical VMs is not able to satisfy the demand of

all Critical VMs, the Memory Balancer will issue a ”short of physical memory” warning to

the system administrator. On the other hand, if there exist both Normal and Warn VMs,

but no Critical VMs, the Memory Balancer will move memory from Normal VMs to Warn

VMs to balance the memory utilization between them. Otherwise, the Memory Balancer
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will stay idle if there exists only Normal or Warn VMs.

Algorithm 2 Memory Balancer
1: VMs[]← vm mem old[]
2: vm mem new[]← NULL
3: vm mem delta[]← NULL
4: ∆i,∆j ,∆k, η ← 0
5: δ ← 0 /*total memory needed by Critical VMs*/
6: δ1 ← 0 /*maximum available memory from Normal VMs before any of them dropping into Warn state*/
7: δ2 ← 0 /*besides δ1, maximum available memory from non − Critical VMs before any of them drop below

Cushion state*/
8: procedure MEM BALANCE
9: if there exists any Critical VM in VMs[] then

10: for each Critical VM VMi do
11: ∆i ← mem needed by VMi

12: δ ← δ + ∆i

13: end for
14: for each Normal VM VMj do
15: ∆j ← mem available in VMj

16: δ1 ← δ1 + ∆j
17: end for
18: if δ1 ≥ δ then
19: vm mem new = update(VMs[])
20: return
21: else
22: set NormalV Ms to WarnVMs
23: η = δ − δ1
24: end if
25: for each Warn VM VMk do
26: ∆k ← mem available in VMk

27: δ2 ← δ2 + ∆k

28: end for
29: if δ2 ≥ η then
30: vm mem new = update(VMs[])
31: return
32: else
33: issue warning
34: end if
35: else if there exists both Normal and Warn VMs in VMs[] then
36: average mem utilization
37: end if
38: vm mem delta[] = differ(vm mem new[], vm mem old[])
39: end procedure

After all the calculations above, the Memory Balancer comes up with a new VM array

vm mem new[], which indicates the memory of each VM after the balancing. By compar-

ing the vm mem new[] with vm mem old[], the Memory Balancer creates another array

vm mem delta[], which represents the memory movement that should be carried out by the

Balloon Executor.

3.2.4 Balloon Executor

As a user level process running in the host, the Balloon Executor receives the vm mem delta[]

array from the Memory Balancer and invokes the balloon driver in the host to actually move

memory around VMs. A positive number in vm mem delta[] means the memory should be
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added to the correspondent VM, while a negative number means this VM needs to sacrifice

its memory. Since the balloon driver itself does not support moving memory directly from

one VM to another, the Balloon Executor should first take the memory from one VM to

the host by inflating the balloon, and then move the memory from the host to the other

VM by deflating.

In Balloon Executor, a straightforward method to invoke the balloon driver in the host

kernel is using the system() function to issue a shell command such as ”virsh qemu-monitor-

command vm id –hmp –cmd ’balloon target mem size”. However, the overhead of system() is

high since it needs to fork a child thread in order to execute the shell command. Taking this

into consideration, we created our own system call vm balloon(u64 vm id, u64 target mem)

in the host to invoke the balloon driver with lower overhead.

3.3 iBalloon Implementation

We have implemented an iBalloon prototype in KVM virtualization platform. The two

main components of iBalloon, the Per-VM Monitor and the Balancer, are implemented in

C as user space daemons. They communicate with each other through a memory based

filesystem tmpfs.

In order to correctly reflect the memory pressure of each VM, the collector should

distinguish the memory is actually used by the system from the cached/buffered memory.

The Linux operating system usually uses the free memory as cache and buffers to reduce

data access latency for applications and improve the disk I/O performance. Therefore,

memory used as buffers and caches should not be counted as memory that is actually used.

In other words, the large amount of memory used as buffers and caches does not mean that

the system memory is under a high pressure.

Besides, the Linux operating system will start swapping pages out when there is still

free memory available. From our observation, for example, there are usually 120MB free

memory when a VM with 1GB memory starts swapping. The reason is that Linux kernel

has set a watermark for each memory zone to guarantee that the free memory of each

zone will not fall below the watermark. This OS-reserved free memory is used to deal with
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emergency memory allocation that can not fail. Therefore, the Per-VM Monitor should

consider such memory as used memory in order to accurately reflect the memory pressure

in the VM.

3.4 Evaluation

In this section, we present the evaluation of iBalloon prototype with several widely accepted

benchmarks. We begin by introducing our experimental setup. Then, we measure the

performance overhead of iBalloon, demonstrate how mixed workloads can be benefited from

iBalloon, and show the accuracy of iBalloon in terms of its VM memory prediction.

3.4.1 Experiments Setup

We conducted all experiments on an Intel Xeon based server provisioned from a SoftLayer

cloud [24] with two 6-core Intel Xeon-Westmere X5675 processors, 20GB DDR3 physical

memory, 1.5 TB iSCSI hard disk, and 1Gbit Ethernet interface. The host machine runs

Ubuntu 14.04 with kernel version 4.1, and uses KVM 1.2.0 with QEMU 2.0.0 as the vir-

tualization platform. The guest VMs also run Ubuntu 14.04 with kernel version 4.1. We

evaluate iBalloon using the following benchmarks and applications:

• Dacapo. [4] It is a benchmark suit consists of a set of open source, real world Java

applications with non-trivial memory loads. For example, some of the applications are

h2, which executes a JDBCbench-like in-memory benchmark for executing a number

of transactions against a model of banking application; eclipse, which executes some

of the (non-gui) jdt performance tests for Eclipse IDE, and xalan, which transforms

XML documents into HTML, etc.

• SPECJVM2008. [25] It focuses on the performance of the Java runtime environment

(JRE) executing a single application The results reflect the performance of hardware

processor and memory subsystem. It has low dependence on file I/O and includes no

network I/O across machines. SPECJVM2008 includes real life applications such as

javac compiler as well as area-focused benchmarks, such as xml, crypto

• Himeno. [8] It is developed to evaluate performance of incompressible fluid analysis
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code. This benchmark takes measurements to proceed major loops in solving the

Poisson’s equation using Jacobi iteration method. The performance of Himeno is

especially affected by the performance of memory subsystem.

• QuickSort. This is a quick sort program we developed ourselves in C. We feed it

with large data sets to make them memory intensive.

3.4.2 Performance Overhead

This set of experiments evaluate the performance overhead iBalloon incurs on VMs. In order

to separate the performance overhead of iBalloon and that brought by the balloon driver,

we disable the Balloon Executor in the Balancer, thus iBalloon in this set of experiments

will run as usually but not actually move memory around. As we mentioned earlier, the

Per-VM Monitor needs to periodically collect the memory utilization statistics from the

VM’s /proc virtual file system and update its log file which locates in a memory based file

system. Therefore, the performance overhead of the Per-VM Monitor could be incurred

from two aspects: data collecting and log file updating. Intuitively, the higher frequently

the Per-VM Monitor runs, the more CPU overhead it will incur. Although an adaptive

frequency control mechanism is employed in the Per-VM Monitor, we use a fixed frequency

in this set of experiments by setting a constant value σ1 as the monitor’s execution interval.

Note the actual performance overhead should be no larger that what we have measured.

Since according to algorithm 1, the Per-VM Monitor’s execution interval will not be short

than τ .

Similarly, the Balancer running in the host could also introduce performance overhead.

Because every time it runs, the Balancer has to first fetch the data from multiple VM

log files, then classify the VM based on a prediction based algorithm, and finally invoke

the balloon device to move memory around. The performance overhead of the Balancer

is related with two factors: the number of VMs running on the host, and how frequently

the Balancer runs. Although the execution of Balancer depends on whether the updated

information from Per-VM Monitors indicates that the state the of VM has been changed,

we still set a fixed execution interval σ2 for the Balancer in this set of experiments, to see
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the upper bound of the performance overhead.
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Figure 19: Overhead of iBalloon

Figure 19(a) shows the VM’s utilized CPU when the Per-VM Monitor is running with

different frequencies. As we mentioned earlier, we vary the monitor’s execution interval

between different runs, but the interval is fixed for each single test. It shows that the VM’s

busy CPU stays as low as 1% when the Per-VM Monitor executes as frequent as every 1

second. The percentage of busy CPU begins to increase slight to 2% and 5% when the

execution interval decreases to 100ms and 10ms. When the interval is shorter than 10ms,

the percentage of busy CPU climbs up quickly, for example, 52% CPU is busy when the

Per-VM Monitor execution interval decreases to 10us. From this set of experiments, we

can tell that the performance overhead of Per-VM Monitor is negligible when it executes

no less than every 1 second.

Figure 19(b) displays the overhead brought by the Balancer in terms of host CPU

utilization. We vary the number of VMs from 4 to 20 and the execution interval of the

Balancer from 10ms to 1s. The overhead of Balancer only slightly grows with the increase

of its execution frequency and number of VMs. For example, when the execution interval is

10ms, the overhead increases from 2% to 4% when the number of VMs varies from 4 to 20.

The overhead stays the same (1%), when the execution interval increases to 1 second. As we

mentioned, since the overhead displayed in table 19(b) are supposed to be higher than that

in the real case, these results indicate that the overhead of the Balancer is also negligible.

Based on the experimental results above, we set τ as 5 seconds in section refmixworkloads.
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3.4.3 Mixed Workloads

In this subsection, we demonstrate the effectiveness of iBalloon in an environment with

mixed workloads by deploying it in a host with 4VMs running simultaneously. As illus-

trated in Figure 20, VM1 runs Dacapo, VM2 runs Dacapo-plus, VM3 runscrypto.rsa and

Himeno, VM4 runs QuickSort. Dacapo includes both CPU intensive and memory inten-

sive workloads, and they are executed sequentially in our experiments. The workloads in

Dacapo-plus are the same as those in Dacapo, but are executed in a different order to create

a mix of CPU and memory demand. crypto.rsa is a CPU intensive workload, while both

Himeno and QuickSort are memory intensive. We evaluated and compare the performance

of 3 cases: (1) Baseline, in which the VM memory is allocated statically; (2) Ramdisk Swap,

in which a ramdisk is mounted to each VM as its swap area; (3) iBalloon, in which iBalloon

is used to dynamically balance the VM memory. The VM swap area is hard disk is case

the iBalloon case.

Dacapo(mixed	
  workloads)	
   Idle	
  

Dacapo-­‐plus(mixed	
  workloads)	
  
Idle	
  

SPECjvm.crypto(CPU	
  intensive)	
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Figure 20: Mixed workload experiments setup
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Figure 21: Normalized performance of benchmarks

Figure 53 compares the total execution time of Dacapo, Dacapo-plus, Himeno, and
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Table 4: Execution time of representative workloads in Dacapo and Dacapo-plus (ms)
Baseline Ramdisk swap iBalloon

VM1

eclipse 214,224 169,774 72,922
h2 44,408 30,135 20,781
jython 17,292 14,577 10,892
fop 3,307 3,131 3,399

VM2

eclipse 168,505 124,871 93,785
h2 36,390 26,919 13,990
jython 12,842 12,140 11,898
fop 3,168 3,132 3,341

Quicksort. It shows that first, with iBalloon, the total execution time of Dacapo and

Dacapo-plus benchmarks are reduced by 52% and 50% respectively. while that of Himeno

and Quicksort have been reduced by 40% and 54%, which demonstrates the effectiveness

of iBalloon in terms of improving the performance of applications running inside VMs.

Second, although using ramdisk as VM swap area can improve the application performance

to some extent, it is still not as effective as using iBalloon. Taking the Dacapo benchmark

for an example, its execution time in the Ramdisk swap cases is about 20% shorter than

that in the Baseline, but still about 60% longer when compared with the iBalloon case.

This is because even using ramdisk as the swap area is more efficient than using hard disk,

each swap-in/swap-out operation from VM still needs to go through the block I/O layer of

both the VM and the host, which will lead to much higher performance overhead compared

with directly increasing the VM’s memory capacity. Third, the different from Dacapo and

Dacapo-plus, the performance of Himeno and Quicksort in the Ramdisk swap case is better

than that in the iBalloon case. The reason is that the memory requirement of Himeno and

Quicksort has exceeded the total amount of physical memory on the host, VM3 and VM4

have to swap their memory out even with iBalloon. Therefore swapping to the ramdisk will

help more than using iBalloon and swapping to the hard disk.

Table 4 zooms into the execution of Dacapo and Dacapo-plus, and shows the execu-

tion time of some representative workloads. We find that first, eclipse and h2 have the

most obvious performance improvement among all the workloads in Dacapo or Dacapo-

plus. For example, in VM1, the execution time of eclipse has been reduced from 214224ms

to 72922ms, while that of h2 has dropped from 44408ms to 24814ms, and similar trend
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Figure 22: Swapped memory in VMs

can also be observed from VM2. The reason is that eclipse and h2 are the most memory

intensive workloads in the suit, which result in about 580MB and 650MB memory swapping

without iBalloon. At the same time, the execution time of some other less memory intensive

workloads is slightly reduced. For instance, the execution time of jython reduces by 39%

from 17292ms to 10892ms. An interesting observation is that the execution time of jython

has been slightly increased in VM2 when iBalloon is used. This is because before eclipse

starts to execute in VM2, memory has been moved to other VMs by the iBalloon to satisfy

their needs. So it takes time for iBalloon to move memory back to VM2 when eclipse needs

it.

Besides memory intensive benchmarks, a CPU intensive benchmark is also running

simultaneously in VM3. Figure 53 shows the normalized throughput of crypto.rsa, which is

the CPU intensive benchmark running in VM3 while Dacapo is running in VM1 and Dacapo’

is running in VM2. It shows that the variation among the execution time of crypto.rsa in

all cases is within 4%. This demonstrates that iBalloon is able to improve the performance
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Figure 23: Allocated memory vs. used memory in VMs working with iBalloon

of memory intensive applications, while having a very low impact on that of CPU intensive

ones.

Figure 22 further illustrates the amount of swapped memory in the 4 VMs at different

time point during the experiment. In each sub-figure, the mount of swapped memory in

cases with and without iBalloon are compared. It shows that the iBalloon significantly

reduces the amount of memory pages that need to be swapped out. Take VM2 for example,

the memory swapping demand lasts about 285 seconds with peak value above 1500MB in

baseline. While in the iBalloon case, VM2’s memory swapping stops at about 175 seconds,

and the maximum required swapping space is between 500-600MB. For VM3 and VM4,

their memory intensive workloads did not start until 400th second. iBalloon moves other

VMs’ free memory to VM3 first to satisfy its memory intensive benchmark Himeno. After

Himeno finishes at around 700th second, iBalloon then moves the free memory to VM4 to

help the execution of QuickSort.

Figure 23 compares the allocated memory with the amount of memory that is actually
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used in each VM when working with iBalloon. We find that iBalloon is able to appropriately

adjust the memory size of each VM based on its workload demands, which prevents the

VMs from waisting their memory resources. An interesting observation is that the allocated

memory jumps up before the used memory in VM3 at 287th second. This is because right

after Dacapo and Dacapo-plus finish execution, most of the memory has been moved from

VM3 and VM4 to VM1 and VM2. At this point of time, iBalloon takes place to rebalance

the memory among the 4 VMs before Himeno and QuickSort starts to run in VM3 and

VM4.

3.5 Related Work

VM working set size estimation. Dynamic VM memory allocation and VM memory

deduplication are the two major mechanisms that are proposed to increase the memory

utilization in virtualized environment. Accurate VM memory working set size estimation

is essential to the performance of dynamic memory management mechanisms.

Pin et al. [134] proposed using page miss ratio as a guidance of VM memory alloca-

tion. However, the tracking of page miss ratio is implemented through using a specific

hardware, which is not easy to accomplish, or modifying the OS-kernel, which can results

in unacceptable performance overhead.

Zhao et al. [133] proposed using LRU histogram to estimate the VM memory working

set size. In their method, memory accesses from each VMs are intercepted by the hypervisor

to build and update the LRU histograms. They introduced the concept of hot pages and

cold pages to alleviate the performance cost incurred by memory access interception. But

according to the evaluation result in their paper, there is still considerable performance

overhead. Besides the performance overhead, accurate VM working set size prediction

is difficult under chaining conditions [80] [94] [75]. Therefore, we design iBalloon which

estimates the VM working set size via light-weighted daemons, and more importantly, makes

efforts to guarantee the VM performance even if the estimation is not accurate by using

shared memory swapping.

Balloon Driver vs. Memory Hotplug. In order to handle the dynamic VM memory
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demands and increase the memory utilization in virtualized environment, balloon driver[120]

was proposed in 2002 and has been widely adopted in mainstream virtualization platforms

such as KVM[84], Xen[41], VMware[109], and etc. Similarly, memory hotplug[92][113] is an-

other technique aiming at reducing wasted memory by enabling memory to be dynamically

added to and removed from VMs. Some researchers [129] explored using shared memory to

increase the physical memory utilization while maintaining good VM performance. Also,

there are several other works focusing on comparing balloon driver with memory hotplug

from in terms of their performance and functionality.

Liu, et al.[92] conducted a comparative study between balloon driver and memory hot-

plug. They mentioned that the implementation of balloon driver is far more straightforward

than memory hotplug. Since balloon driver is able to directly use the native MMU of the

guest. However, balloon driver cannot enlarge the memory size of a VM beyond its cap,

which is a preset parameter associated with each VM. Memory hogplug can go beyond the

cap. Another finding from their work is memory hotplug should have a better scalability

than balloon driver. Since balloon driver relies on the buddy system of guest MMU, which

results in memory fragmentation problems. But memory hogplug can avoid this problem

by adding or removing memory by a whole section.

Schopp, et al. [113] concisely explained how balloon driver and memory hotplug work

and compared their advantages and disadvantages respectively. For example, memory hot-

plug allows adding memory that was not present at boot time to scale Linux up in response

to changing resources, and their is no cap for memory hotplug to add memory. But memory

hotplug has limitations on not being able to remove memory containing certain kinds of

allocations. Balloon driver is able to directly use the native memory management in VM,

but it could fragments the pseudophysical memory map of the guest VM.

3.6 Conclusions

We have proposed iBalloon, a lighted-weighted, high accurate and transparent VM memory

balancing service. iBalloon consists of two major components: the Per-VM Monitor and
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a global Balancer. iBalloon predicts the VM memory utilization based on Exponention-

ally Weighted Moving Average (EWMA) model and dynamically adjust the VM memory

accordingly. We evaluate the performance of iBalloon by using various widely accepted

benchmarks and applications in a complex environment where multiple VMs running si-

multaneously. The results show that, with only up to 5% performance overhead, iBalloon

is able to accurately adjust VM memory based on its real-time requirement, and greatly

improve performance of applications running in the VMs by up to 54%. There are a number

of extension for iBalloon we are considering in the future. For example, the performance

of balloon driver can to be further improved. Based on our investigation, current balloon

driver moves memory in a page by page manner, which may not be optimal. Batching

operation could be applied to achieve better performance.
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Chapter IV

MEMFLEX: A SHARED MEMORY SWAPPER FOR HIGH

PERFORMANCE VIRTUAL MACHINE EXECUTION

Dynamic memory consolidation is an important enabler for high performance virtual ma-

chine (VM) execution. Ballooning is a popular solution for dynamic memory balancing.

However, existing solutions perform poorly in the presence of guest swapping. For example,

when the host has sufficient free memory, guest VMs under memory pressure may not be

able to use it in a timely fashion. Even after the guest VM has been recharged with sufficient

memory via ballooning, the applications running on the VM are unable to utilize the free

memory in guest VM to quickly recover from the severe performance degradation. In this

chapter, we present MemFlex, a shared memory swapper for improving guest swapping per-

formance in virtualized environments. MemFlex is novel in three aspects: (1) MemFlex can

effectively utilize host idle memory by redirecting the VM swapping traffic to the host-guest

shared memory swap area. (2) MemFlex provides a hybrid memory swapping model, which

treats a fast but small shared memory swap partition as the primary swap area whenever it

is possible, and smoothly transits to the conventional disk-based VM swapping on demand.

(3) Upon ballooned with sufficient VM memory, MemFlex provides a fast swap-in optimiza-

tion, which enables the VM to proactively swap in the pages from the shared memory using

an efficient batch implementation. Instead of relying on costly page faults, this optimization

offers just-in-time performance recovery by enabling the memory intensive applications to

quickly regain their runtime momentum. We evaluate MemFlex using a set of well-known

applications and benchmarks, such as Redis, Dacapo and SPECjvm. The results show that

MemFlex offers up to two orders of magnitude performance improvements over existing

memory swapping methods.
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4.1 Introduction

Virtualization is a core enabling technology for Cloud computing. By multiplexing a phys-

ical machine into virtual machines (VMs), virtualization turns the monolithic physical ma-

chine infrastructure into software-managed abstractions, providing both strong economic

incentives and elegant failure isolation for applications executing on host machines. Al-

though virtualization has shown great success in dynamic sharing of hardware resources,

such as processor cores, I/O devices, dynamic VM memory consolidation remains a chal-

lenging problem for a number of reasons.

First, existing dynamic memory balancing solutions do not address the problem of guest

swapping. Memory intensive applications are characterized by unpredictable peak memory

demands. Such peak demand can lead to drastic performance degradation, resulting in

VM or application crashes due to out of memory errors. Dynamic memory consolida-

tion is an important and attractive functionality to deal with peak memory demands of

memory-intensive applications in a virtualization platform. Ballooning is a dynamic mem-

ory balancing mechanism for non-intrusive sharing of memory between host and its guest

VMs through a balloon driver with inflation and deflation operations. However, it is hard to

make decisions on when to start ballooning and how much memory ballooning is sufficient.

The state of art proposals typically resort to estimating the working set size of each VM at

run time. Based on its estimated memory demands, additional memory will be dynamically

added to or removed from the VM [42, 73, 75, 124]. However, accurate estimation of VM

working set size is difficult under changing workloads [39]. Therefore, dynamic memory

balancer may not discover in time that the VM is under memory pressure, or may not

balloon additional memory fast enough. As a result, the VM under memory pressure may

see more guest memory swapping events and more drastic performance degradation.

Second, by virtualization design, when a virtualized host boots, it treats each of its

hosted VMs as a process and allocates it a fixed amount of memory. Each guest VM is

managed by a guest OS, independently (and unaware of the presence) of the host OS. Thus,

even when the host has sufficient free memory, the guest VMs under memory pressure are

unaware. Thus, any delay in dynamic memory balancing can cause the VM not be able to
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utilize the host idle memory in a timely fashion. As a result, VMs under memory pressure

will experience increased guest swapping, which can lead to VM and applications to crash

due to high latency induced timeout.

Finally, we observe through experiments that the applications running on the VM are

often unable to utilize the free memory that have been inflated to the VM fast enough due

to poor performance of VM swapping-in operations.

In this chapter, we argue that (i) efficient guest VM swapping can significantly alleviate

the above problems and (ii) fast VM swapping is a critical component to ensure the just-

in-time effectiveness of dynamic memory balancing. We design and implement MemFlex,

a host-coordinated shared memory swapper for improving VM swapping performance in

virtualized environments. MemFlex can effectively utilize host idle memory by leveraging a

shared memory swap area between each VM and its host. There are a number of challenges

for redirecting guest VM swapping to the host-guest shared memory area. First, the shared

memory should be organized in a way that allowing multiple VMs to shared dynamically and

access concurrently. By default, the OS of every VM tracks where the pages are swapped

out. In such as shared environment, MemFlex needs to correctly and effectively track the

swapped out pages from multiple VMs. Second, since there could be no more space in the

shared memory to accommodate the swapped out pages from the VMs, MemFlex needs to

enable VMs to interact with both shared memory and the traditional swap devices, such

as disk partitions or files, at the same time. Third, in order to achieve good utilization of

the shared memory, a VM needs to proactively release its currently used shared memory as

soon as it gains enough free memory from the host.

With these challenges in mind, we design MemFlex, a flexible shared memory swapper

with three original contributions: (1) By redirecting the VM memory swapping to the host-

guest shared memory swap partition, MemFlex avoids the high overhead of disk I/O for guest

swapping as well as guest-host context switching, and enables the guest VM to respond fast

to the newly ballooned memory and to quickly recover from severe performance degradation

under peak memory demands. (2) To handle the situation of limited shared memory swap

area due to insufficient available memory at the host, MemFlex provides a hybrid memory
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swapping model, which treats shared memory swap partition as the small primary swap

area and the disk swap partition(s) as the secondary swap area. This model enables fast

shared memory based VM swapping whenever it is possible and a smooth transition to the

conventional guest OS swapping on demand. (3) To address the problem of slow recovery of

memory intensive workloads even after sufficient additional memory has been successfully

allocated via ballooning, we provide a fast swap-in optimization to proactively swap-in the

pages resident in the shared memory swap area, reducing the high cost of frequent paging

based swap-in.

We implement the first prototype of MemFlex on KVM platform and evaluate the per-

formance of MemFlex using a set of well-known applications and benchmarks, such as Redis,

Dacapo and SPECjvm. We show that MemFlex significantly improves the VM execution

throughput by up to 3x and reduces the application runtime by up to 70%, when the host

has sufficient free memory but some of its VMs are under high memory pressure. More im-

portantly, even with a small amount of shared memory swap area. MemFlex with proactive

swap-in achieves two orders of magnitude performance improvement on VM memory swap-

in after memory recharging via ballooning, and enables both VM and application execution

to quickly regain their runtime momentum.

The rest of this chapter is organized as follows: We review the related work in Section

4.2 and motivate our work with experimental observations in Section 4.3. We describe the

design and implementation of MemFlex in Section 4.4, report our experimental evaluation

results in Section 4.5 and conclude the chapter in Section 4.6.

4.2 Related Work

The state of art research on improving VM execution efficiency for memory intensive ap-

plications is centered on dynamic memory balancing. Most of existing efforts have been

dedicated to developing different host-guest coordination mechanisms along three threads.

Host coordinated ballooning and host swap. The first thread is to introduce host

coordinated ballooning and host swap. The balloon driver, proposed in 2002 [120], has been

widely adopted in mainstream virtualization platforms, such as VMware [109], KVM[84],
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Xen[41]. Most of them embed a driver module into the guest OS to reclaim or recharge

VM memory [39]. A fair amount of research has been devoted to periodic estimation of VM

working set size because an accurate estimation is essential for dynamic memory balancing

using the balloon driver. For example, VMware introduced statistical sampling to estimate

the active memory of VMs [120, 29]. Alternatively, [133] builds and updates the page-level

LRU histograms by having the hypervisor intercepting memory accesses from each VM and

uses the LRU-based miss ratio to estimate VM memory working set sizes. [134] proposed

to implement the page-level miss ratio estimation using specific hardware to lower the cost

of tracking the VM memory access. However, [80, 94, 75] show that accurate VM working

set size prediction is difficult under changing conditions.

Host swap is a guest OS transparent mechanism [29] to deal with the shortage of host

free memory by having host or hypervisor swapping out some inactive memory pages to

host-specific disk swap partition, without informing the respective guest OS. However, such

uncooperative host swapping can cause some serious problems between host OS and guest

OS, such as double paging [39]. VSwapper [39] tracks the correspondences between disk

blocks and guest memory pages to avoid unnecessary disk I/O caused by uncooperative

memory swapping between host and guest VMs. It is a disk-based VM swapping facility to

reduce the unnecessary guest and host swapping, but VSwapper does not improve the VM

page-level swap performance.

In contrast, MemFlex is a shared memory swapper with hybrid swap-out and proactive

swap-in optimizations. It is designed for fast guest swapping and for accelerating applica-

tion performance recovery immediately after ballooning. Also MemFlex is complimentary

to VSwapper and can leverage VSwapper and page deduplication mechanisms, such as Sin-

gleton [117] and Difference Engine [73], to reduce the amount of unnecessary or inconsistent

paging.

Coordinated memory management. The second thread is centered on redesigning

operating system (OS) to enable more efficient host-guest coordination. The transcendent

memory (tmem) on Linux by Oracle and the active memory sharing on AIX by IBM Pow-

erVM are the two representative efforts. For example, transcendent memory [96] allows the
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VM to directly access a free memory pool in the host. Frontswap [6] is a Linux kernel patch

that using the tmem as a VM swap space, and it is currently working on Xen. In Frontswap,

a hypercall has to be invoked for each swapped out page, and the swap-in operations depend

on the page faults, which are quite costly. MemFlex is running on KVM, and it avoids the

hypercall and page fault for the page swap-out and swap-in respectively. [85] shows that

this pool of memory can be used by Guest OS to invoke the host OS services and by the host

OS to obtain the memory usage information of the guest VM. [112] allows the applications

that implement their own memory resource management, such as database engines and Java

virtual machines (JVMs), to reclaim and free memory using application-level ballooning.

However, most of the proposals in this thread rely on some serious changes to guest OS or

applications, making it harder for wide deployment of the solutions.

Dynamic memory consolidation. The third thread is centered on complimentary

techniques to improve dynamic memory consolidation, ranging from memory hotplug, col-

laborative memory management to remote memory swapping. Memory Hotplug [92, 113]

was proposed to address the problem of insufficient memory or memory failing at both

guest VMs and host. It refers to the ability to plug and unplug physical memory from

a machine [92] without reboot to avoid downtime. [92, 113] conduct comparative stud-

ies between balloon driver and memory hotplug, commenting that the implementation of

balloon driver is more straightforward than memory hotplug. Collaborative memory man-

agement [114] proposed a novel information sharing mechanism between host and guests

to reduce the host paging rate. In addition, several efforts have engaged in combining

swapping to the local disk with swapping to the remote memory via network I/Os: [63]

organizes the memory resource from all nodes of a cluster into one or more memory pools

that can be accessed via high speed interconnect. It deals with memory overload by swap-

ping the VM memory pages to network memory, and introduces an optimization to bypass

the TCP/IP protocol by removing IP routing to improve the performance of swapping to

the cluster-wide remote memory. Overdriver [123] distinguishes guest swapping caused by

short term overloads from those due to long term overloads by detecting the reason of guest

swapping. It uses the remote memory when guest swapping caused by short term overloads
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and migrates VMs if the swapping is instigated due to long-term overload. [128] proposed

a synthetic peer to peer swapping mechanism by organizing the host free memory from a

set of machines into a distributed virtual pool of swap memory. Although each of these

existing proposals has shown some performance improvement for a selection of workloads,

the remote memory swapping solutions have some limitations: (i) Network I/Os in Cloud

data centers are known to be expensive and highly unpredictable. (ii) Swapping to remote

memory needs to pay additional cost for routing. (iii) Network bandwidth and network I/O

delays are beyond the control of local host.

In comparison, MemFlex promotes to use a small amount of host-coordinated shared

memory as the fast swap partition and resort to conventional secondary storage based

swap partition when there is insufficient free memory on the host. It is orthogonal but

complimentary to using network memory for guest swapping. To the best of our knowledge,

MemFlex is the first shared memory swapper with host coordinated two level memory

swapping and fast proactive swap-in optimization.

4.3 Motivation and Overview

Can guests swap when host memory is underutilized? Guest swapping refers to

memory paging in guest VM when its memory demand exceeds its allocated memory. In

virtualized environment, guest swap can happen even when there is enough free memory on

the host. To demonstrate this, we conduct a set of experiments on an Intel Xeon server with

24GB memory available. We create VM1 with 4GB DRAM and 4GB disk swap area. We

first run a Redis server on VM1, which is loaded with 3GB data in memory. We measure

the throughput performance of the Redis [22] server by running a YCSB workload [53] on

a client machine, which consists of 50% uniform update and 50% uniform read operations

on the data in the Redis server. In many big data applications, the 50% mix of read

and write workload is considered more representative compared to the read most or the

write most workloads. The reason that we choose uniform read and uniform write is to

reflect the workloads of unpredictable read and write operations rather than pre-defined

read and write workloads. After the workload is running for 10 seconds, we launch another
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memory intensive application memAlloc at the 11th second on the same VM1 to allocate

3GB memory. The VM memory utilization is monitored at an interval of 5 seconds and the

balloon driver will be triggered if necessary to give more memory to VM1.

Figure 24 shows that the throughput of Redis server is increasing during the first 10

seconds and there is no guest swap. However, as soon as the memAlloc starts on VM1,

the Redis server starts experiencing drastic throughput degradation due to increased guest

swapping.

Figure 24: Delays in Dynamic VM memory balancing

Is guest swapping negligible when dynamic memory balancing is active?

Existing dynamic memory balancing solutions such as ballooning may suffer from three

types of delays: (i) the timing delay for triggering ballooning, (ii) the balloon driver delay

for moving sufficient memory from host to guest VMs, and (iii) the VM swap-in paging

delay. We first use the same set of experiments in Figure 24 to illustrate these three types

of delays. In addition to the delay in detecting the need for ballooning, we observe that after

successful allocation of an additional 3GB memory to VM1, with a total of 7GB memory

on VM1, the Redis server still cannot immediately recover to the peak throughput it had

before memAlloc started. It takes quite some time (more than 60 seconds in this case) for

the Redis server to slowly recover. We argue that the guest swapping performance is critical

to the effectiveness of dynamic memory balancing and should be addressed as an integral

part of a dynamic memory balancing solution.

Does guest swap due to high CPU utilization?
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Figure 25: Internal delay

Figure 26: External delay

We observe that when CPU utilization on the host and its VMs is high, the balloon driver

will suffer from longer delay in inflating/deflating memory, which can further increase VM

swapping. We first show that the performance of the balloon driver can be affected in the

following scenarios: (1) when the VM with high memory pressure also experiences a high

CPU utilization, and (2) when the other VMs on the same host are running CPU intensive

workloads. We call the delays in (1) and (2) the internal delay and the external delay

respectively. We set up VM1 on a KVM host and create workloads on VM1 with CPU

utilization varying from 0% to 100%. We measure how long it takes the balloon driver to

move a specific amount of free memory from the host to VM1 (4GB to 20GB). Figure 25

displays the elapsed time, which includes the CPU time consumed by the balloon driver

and the waiting time for the balloon driver to be scheduled by the CPU scheduler. Clearly,

the elapsed time of the balloon driver increases as the CPU utilization on the VM is getting

higher.

We next measure the impact of external delay. We set up different number of CPU
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Figure 27: Performance of Redis memory intensive workloads

intensive VMs on the same host such that the overall CPU utilization of the host can

be varied. Figure 26 displays the elapsed time of the balloon driver under varying CPU

utilization rates while it moves 4GB to 20GB of free memory from the host to the VM.

When the host CPU utilization is 80%, it will take the balloon driver up to 12.3 seconds

to move 20GB memory, compared to three seconds to move 4GB memory and about eight

seconds to move 20GB when the host CPU utilization is 40%.

In the presence of both internal delay and external delay, the high CPU utilization in

both VM and the host will introduce even longer waiting time and thus longer total elapse

time for the balloon driver. This long latency of the balloon driver (memory balancer) will

further intensify the guest memory swapping in the VM, because the VM cannot release its

memory pressure in time.

How can MemFlex shared memory swapper help? MemFlex development is mo-

tivated by the observations that VM memory swapping happens (i) when the host memory

is underutilized, or (ii) when there are delays in dynamic memory balancing, or (iii) when

the dynamic VM memory balancing mechanisms, such as ballooning, are unable able to

satisfy the memory demand of the VMs quickly enough, especially under high host and VM

CPU utilization. Before presenting the complete design of MemFlex in the next section, we

use an example to illustrate how much performance improvements one can expect from the

MemFlex shared memory swapper.

The experimental set up is the same as we mentioned in Figure 24. We compare the
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Redis server performance for the following five cases: (i) MemFlex, (ii) HDD swap without

ballooning, in which the VM memory is swapped to the disk, (iii) HDD swap with ballooning

at 5 seconds interval, (iv) disk swap with ballooning at 10 seconds interval, and (v) no swap,

in which the VM is initialized with sufficient extra memory such that no swap will occur

under the same experiments. VM memory utilization is monitored at a specific interval and

the balloon driver is triggered when necessary.

In the HDD swap cases, 3GB memory is moved from the host to VM1 when its memory

is under pressure, while in the MemFlex case, 2GB memory is moved from the host to VM1

while the other 1GB is reserved as its swap area. Figure 27 shows the results. We observe

that even though VM1 has 7GB memory after the balloon driver finished moving of 3GB

memory, which is enough to run both the Redis server and the memAlloc, the throughput

of Redis recovers very slowly in the two cases of HDD swap with ballooning over the period

of the next 60 seconds. This is because when VM1 needs to swap in the memory pages

residing in the HDD swap partition on demand, it incurs costly page faults. In the case of

HDD swap without ballooning, Redis server crashed due to high memory pressure induced

timeout. In contrast, MemFlex can quickly respond to the additional memory added to

VM1 and provides just in-time performance recovery for the application.

We use the interval setting of 5 seconds and 10 seconds in Figure 4 for triggering the

Ballooning driver. In practice, the interval of ballooning is typically determined by the

system administrator based on tradeoff between the VM execution performance and the

overhead of estimation and balancing of VM memory. For example, the VMware ESX Server

balances the VM memory every 30 seconds [120]. The larger the ballooning (balancing)

interval is, the slower for the dynamic memory balancer to respond by ballooning more

memory to a VM with high memory pressure, the heavier the memory swap traffic will be

and the sharper performance degradation that this VM may experience. We choose a small

interval setting of 5 seconds in Figure 4 to show that MemFlex can respond effectively even

under a much shorter balancing interval. We have developed intelligent ballooning facility,

called iBalloon [130], a light weight dynamic ballooning monitoring service to help system

administrators to determine this interval parameter, with the goal of just-in-time memory
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balancing.

4.4 MemFlex

The goal of MemFlex is to design and implement a shared memory based high performance

guest VM swapping framework. Figure 28 gives a sketch of the MemFlex system architec-

ture. Instead of swapping to the disk, MemFlex intercepts and redirects the swap-out guest

memory pages to the guest shared memory swap space within the host memory region.

This minimizes the high overhead of disk I/Os and alleviates the problem of uncooperative

swapping. The shared memory swap partition is organized into multiple shared memory

pools, one per VM, and each corresponds to a host-guest shared memory area. This design

presents a clean separation and facilitates the protection of the shared memory swap area of

a VM from unauthorized access by the other VMs on the same host. In addition, MemFlex

shared memory swapper supports the following two features:

• Hybrid swap-out. When the amount of shared memory is not able to hold all the

memory pages swapped out from a VM, MemFlex uses the shared memory swap area

as the fast primary swap partition and automatically resort to secondary storage swap

partition for least recent swap pages. This feature improves the overall guest swapping

performance even when there is insufficient shared memory resource.

• Proactive swap-in. Once a VM is recharged with sufficient free memory via the

balloon driver, it needs to swap-in the pages from the shared memory swap area back

to its main memory. MemFlex improves swap-in performance from two aspects: (i)

the overhead of swap-in is reduced from disk I/O to page table operations for pages

resident in the shared memory swap area, and (ii) instead of demand paging from the

guest VM, MemFlex enables VM to proactively swap in the pages from the shared

memory by minimizing the costly page faults. This optimization effectively addresses

the problem of slow recovery of application performance upon the addition of sufficient

memory to the VM under pressure.
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4.4.1 Host Memory based VM Swapping

There are two alternative ways to implement the host-coordinated memory swapping: (i)

swapping to host ramdisk and (ii) swapping to host-guest shared memory. The ramdisk

based approach is simple and requires no guest kernel modification, but have higher VM

swap overhead, whereas the shared memory based approach delivers better performance

with a small change to the guest kernel.

Ramdisk based Swapping. Ramdisk based swapping improves efficiency of tradi-

tional VM swapping by swapping to host memory instead of the VM disk image. This is

achieved by building a ramdisk from the host memory and mounting this ramdisk as the

swapping area of the guest VM. Each ramdisk can be mounted to a different VM at different

times based on the swapping demands of the guest VMs. There are several advantages with

swapping to ramdisk, compared to swapping to the VM disk image. First, it makes the

VM memory swapping operation much faster, since the swapping daemon no longer needs

to access the physical disk. Thus, the performance of memory intensive applications in the

guest VMs can be improved. Second, since the VM memory swapping traffic is redirected

to the host memory, it minimizes the disk I/O bandwidth consumption and alleviates the

disk I/O performance interference incurred by memory intensive applications. The third

advantage is that setting up the ramdisk-based swapping is transparent to the applications,

the guest VMs and the host OS. No modification is required.

However, ramdisk-based swapping has some inherent performance limitations. Although

the ramdisk is residing in the host memory, it is still used by the guest VM as a block device.

From the perspective of guest VMs, writing to the ramdisk is exactly the same as writing

to its disk though faster. As a result, certain overheads that are applicable to disk I/O will

also apply to ramdisk I/O. Concretely, a disk I/O request from the application running on a

guest VM will first go through the guest OS kernel before the request and the I/O data are

copied from the guest kernel to the host OS kernel; this represents a data transfer between

the host user space and the host kernel space. Hence, when a guest VM swaps its memory

pages into a mounted ramdisk, there are two major sources of overhead: the frequent context

switch and the data copying between the host user space and host kernel space. We use
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Figure 28: MemFlex system overview

Perf tool [19] to evaluate the performance overhead of ramdisk-based swapping by letting

a VM swap 512MB memory into a ramdisk provided by its KVM host. It shows that

(i) 7.86% CPU cycles are spent on copy user generic string(), which is a kernel function

that copies user generated data into kernel space; and (ii) 7.50% CPU cycles are spent on

context switching between the guest VM and the host. Although ramdisk based swapping

may outperform the traditional disk-based swapping (baseline), these overheads limit the

efficiency of ramdisk based swapping when compared to the shared memory based swapping

(see detail in Section 4.5).

Shared Memory based Swapping. MemFlex is a shared memory based swapping

approach. Instead of mounting a host resident ramdisk to the guest VM, in MemFlex, a

memory region provided by the host is mapped into the guest VM address space and used

as the host-guest shared swapping area for the guest VM. Figure 28 illustrates the workflow

of shared memory based swapping implemented on the KVM platform. As a part of the

system initialization, A shared memory region with a pre-configured size is initialized. The

shared memory area is divided into multiple adaptive pools, and each pool is corresponding

to a specific VM. A pool manager is working in the host, which has two functionalities:

(i) maintaining the mapping between the page offset in the VM swap area and the address
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in the corresponding shared memory pool, and (ii) dynamically adjusting the size of each

VM pool. The pages in the shared memory are categorized into three types: active pages

refer to ones being used by the VMs as their swapping destination, inactive pages are those

allocated to some pool but has not being used yet, and idle pages indicate those shared

memory pages that do not belong to any pool, as shown in Figure 28. The kswapd is a

default kernel daemon, which is responsible for memory page swap-in and swap-out. The

swap redirector intercepts and redirects the swap in/out pages from/to the VM shared

memory area. The proactive swap-in handles both on-demand swap-in and batch swap-in.

Compared with swapping to a block device, such as hard disk or ramdisk, the shared

memory swapping mechanism in MemFlex has a number of advantages. First, by intercept-

ing all the memory swapping traffic in the guest VMs and redirecting them to the shared

memory regions between the host and its guest VMs, both VM and host file system can be

skipped in VM memory swap and no block I/O needs to be carried out. Since the shared

memory has mapped into the guest VM’s own address space, additional memory address

translation can also be avoided. Also, MemFlex performs within a single address space and

avoids costly guest-host context switching.

Second, considering that the baseline VM memory swapping will generate block device

I/O traffic, which can make a memory intensive VM also become a disk I/O intensive VM.

Therefore, when memory intensive VMs are running together with disk I/O intensive VMs,

severe disk I/O interference will degrade the performance of memory intensive and disk I/O

intensive VMs. By eliminating or minimizing the disk I/O traffic caused by VM swapping,

MemFlex also helps alleviate the performance interference between memory intensive VMs

and disk intensive VMs.

Third, with MemFlex, the cost of double paging can be largely reduced. Even though

double paging may still happen in the presence of host swap in MemFlex, its cost will be

reduced from two block device I/O operations (one by reading the page from the host swap

area to the VM memory, and the other by writing the page from the VM memory to the

VM swap area) to only one block device I/O operation, which is the cost of a regular VM

swap-in.
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Figure 29: Hybrid (disk and shared memory) swap-out.

4.4.2 Hybrid Swap-out

Hybrid Swap-out is designed to handle the situation when the size of shared memory is not

large enough to hold all the swapped pages from a VM. To enable the shared memory as the

fast primary swap partition and smooth transition to the disk swap area as the secondary

choice, MemFlex employs a hybrid guest swap model by using both shared memory and

the disk. VM swapped out pages that cannot be kept in the shared memory will be written

to the VM disk swap area.

There are a number of strategies to design the hybrid swap-out model. For instance, if we

maintain the timestamp or access frequency of memory pages, we can use such information

to prioritize the swap-out pages that should be kept in the shared memory. Clearly, this

selective swap-out to disk mechanism is optimized for keeping frequently accessed pages

in shared memory at the cost of maintaining the timestamp or access frequency of swap-

out memory pages. To simplify the implementation and minimize the overhead of hybrid

swap-out, in the first prototype of MemFlex, we implement the following two light weighted

mechanisms for hybrid swap-out:

Most recent pages to disk. This approach is straightforward but naive. In this

approach, memory pages swapped out of the VM will be written into the shared memory

first. When the shared memory is full, the newly swap-out pages from the VM will be
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written to the VM disk swap area. The advantage of this approach is its simplicity in both

design and implementation. However, the disadvantage is also obvious: most of the pages

stored in the shared memory are older than the pages in the disk swap area. According to

the principle of locality, programs tend to reuse data near those they have used recently.

Therefore, the possibility of accessing the recent swapped out data is larger than that of

fetching an ’older’ swapped out page, and using the disk swap area to store the most recent

swapped out pages may seriously impact the performance of a large number of applications.

Also the benefit of using shared memory as the swap area will diminish as the number of

pages stored on disk area is increasing.

Least recent pages to disk. This approach puts older pages to the disk swap area

when the shared memory swap area is full, enabling the most recent VM swapped out

pages to be kept in the shared memory. One way to organize the shared memory swap

area is to use a ring buffer as shown in Figure 29. We maintain a shm start pointer and

a shm end pointer pointing to the swapped pages with the smallest and largest offset in

the buffer respectively. If a page fault comes with an offset between these two pointers,

all the accesses can be served from the shared memory. Otherwise, the conventional disk

based swap path will be invoked. In this design, a separate working thread is standing

by and ready to be triggered to flush the pages from the shared memory to the disk swap

area. In order to parallel the disk I/O and page swap operations, the working thread

starts flushing the page when the shared memory is partially full, say m% full. We will

evaluate how the setting of this threshold m may impact on the guest swapping and VM

execution performance in Section 4.5. In the first prototype of MemFlex, we set the least

recent pages to disk method as the default configuration for our hybrid swap-out model.

According to [128], for the benchmark workloads such as Eclipse and SPECjbb, more than

50% of the swap-out pages stay in the swap storage on average for less than 20% of the

total execution time of the workloads before being swapped in, and more than 75% of the

swap-out pages stay in the swap storage for less than 28% of the total execution time. These

statistics about resident time of swap-out pages are consistent with the general principle of

locality and indicate that keeping the most recently swapped out pages in shared memory
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is more effective for hybrid swap-out than the most recent pages to disk method.

4.4.3 Proactive Swap-in

After a VM gets sufficient additional memory from the balloon driver, the VM needs to

proactively swap in all the pages that are previously swapped out to the shared memory.

This mechanism has two advantages. First, it reduces the number of page faults occurred

in the near future. The memory paging itself is quite expensive. According to [102], it

takes about an extra 1000 to 2000 CPU cycles to handle even a minor page fault, namely

the required page already exists in the page cache. Otherwise, it will take even longer

CPU waiting time to bring the page back into the VM memory from the secondary swap

storage. The second advantage of our proactive swap-in optimization is the improved effi-

ciency of shared memory utilization, because as soon as the proactive swap-in is completed,

the corresponding shared memory swap area will be released for use by other concurrent

applications.

Traditional OS provides two mechanisms to swap in pages from the disk swap area:

page faults and swapoff. It is known that relying on the page faults to swap in the pages

from the swap disk is expensive, and sometimes results in unacceptable delay in application

performance recovery. Therefore, MemFlex implements the proactive swap-in by extending

the swapoff mechanism. Concretely, swapoff is an OS syscall that enables to swap-in pages

from the disk swap area in a batched manner. Compared with the page fault mechanism,

swapoff allows larger amount of pages be swapped in during a shorter period of time. Once

all the pages are swapped in, these pages can be accessed without any page faults. How-

ever, directly applying swapoff will not provide the speed-up required for fast application

performance recovery for a number of reasons.

The swapoff syscall first checks whether there is enough free memory in the VM to hold

all the currently swapped out pages, and does nothing if there is insufficient free memory.

Otherwise, swapoff brings all the pages from the swap area to the main memory of the VM.

However, this process is extremely time consuming, because the sysycall swapoff traverses

the swap area and swaps in each page one by one. Figure 30 illustrates the process: each
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Figure 30: Proactive swap-in v.s. Baseline swap-in.

time when a page is swapped in by the syscall swapoff, it needs to locate the corresponding

page table entry (PTE) and update it. If a swapped out page is a shared page, then multiple

PTEs need to be located and updated. Furthermore, in order to locate each PTE, swapoff

has to scan the whole page table from the very beginning, compare each PTE with that of

the page to be swapped in, until a match is found. The process of finding a corresponding

PTE is annotated in Figure 30. In order to swap in the page P, which only has a single PTE

(P pte), the OS has to start from the page global directory (PGD), and traverse through

all the PUD, PMD, and compare with all the PTEs until the P pte is found.

The current design of swapoff is adopted in the traditional OS for two reasons: (1) The

purpose of the swapoff syscall is to remove a specified swap device, which is assumed not

to be invoked very frequently, thus a long delay can be tolerated. (2) The operation of

swapping-in a page generally consists of two parts: reading the page from the swap area

and updating the corresponding PTEs. The conventional swap area is a slow secondary

storage, such as magnetic disk. Compared with the time spent on disk I/O wait, the cost

of traversing the system wide page table for each page is relatively small. However, these

reasons are no longer true in MemFlex. Reading a memory page from shared memory is

much faster than reading a memory page from disk. Thus, compared with swapping in from

the shared memory, the cost of page table scanning becomes a significantly portion of the

entire cost of swapping-in a page from the shared memory swap area. Also this page table
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traversal cost increases as the size of the page table becomes larger.

Our idea for designing an efficient implementation of proactive swap-in mechanism is to

maintain some meta data in the swap area, which can assist MemFlex to quickly locate the

corresponding PTEs in the page table. Concretely, when a page is swapped out, MemFlex

will keep the address of the PTEs related to this page together with the swapped-out page.

Recall Figure 30, the address of the corresponding PTE is kept as the metadata in front

of the swapped out page in the shared memory. For each page of 4K bytes, its meta data

only takes up 4 bytes. Thus, the cost of keeping this metadata in the swap area is around

only 1/1000 of the total size of the swapped out pages. For those shared pages which have

multiple PTEs, we allocate a specific area in the shared memory as PTE store. In this case,

the first byte of the meta data specifies the number of PTEs related to this page, while

the lasts three bytes is an index pointing the first related PTE in the PTE store. When a

page is swapped in, MemFlex is able to quickly locate the PTE(s) that needs to be updated

by referring to this metadata without the need to scan the page table. The time spent on

accessing the PTE of a page to be swapped in from the shared memory is only one time

memory access, and it will not increase as the size of the system wide page table grows.

4.5 Evaluation

We evaluate MemFlex using well-known applications and benchmarks. We show that Mem-

Flex improves the performance of memory intensive VMs and works well with multiple VMs

running a variety of different workloads, even when the amount of shared memory for guest

swapping is small and some of the swapped out pages have to be routed to disk swap

partitions. We present our experimental evaluation results to answer the following set of

questions:

• By using the same amount of memory, how much application performance improve-

ment can MemFlex bring compared with directly allocating the shared memory to

the VMs beforehand? (Section 4.5.1)

• How do the applications perform when the shared memory swap space reserved by

MemFlex is not big enough to hold all the swap traffic from the VMs? (Section 4.5.2)
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• When the VM has successfully reclaimed sufficient free memory, how fast can MemFlex

help the VM to swap-in its pages resident in the host coordinated shared memory back

to the VM memory? (Section 4.5.3)

• How will the performance of MemFlex be affected by the settings of the system pa-

rameters, such as the value of SWAPFILE CLUSTER? (Section 4.5.4)

• How does MemFlex compare with other existing systems in terms of guest swapping

performance? (Section 4.5.5)

• Can MemFlex scale in large scale virtualization platforms? (Section 4.5.6)

(a) Insert (b) Update

(c) Read (d) Scan

Figure 31: Throughput of Redis server measured by YCSB workloads

Experiments Setup. Most of our experiments are conducted on an Intel Xeon based

server provisioned from a SoftLayer cloud [24] with two 6-core Intel Xeon-Westmere X5675

processors, 24GB DDR3 physical memory available for the guest VMs, 1.5 TB SCSI hard

disk, and 1Gbit Ethernet interface. The host machine runs Ubuntu 14.04 with kernel
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(a) Insert (b) Update

(c) Read (d) Scan

Figure 32: Latency of Redis server measured by YCSB workloads

version 4.1.0, and uses KVM 1.2.0 with QEMU 2.0.0 as the virtualization platform. The

guest VMs also run Ubuntu 14.04 with kernel version 4.1.0. 4 VMs are simultaneously

running on the host. We use a memory intensive application memAlloc to allocate and

scan a large amount of memory in the VM in order to simulate high VM memory pressure of

varying intensity. The memory utilizations of VMs are monitored at an interval of 5 seconds

to trigger the balloon driver when necessary. We also evaluate MemFlex in a larger scale

virtualization setup, in which 8VMs are deployed on a physical machine with 64GB available

memory for guest VMs. We compare the following cases in most of the experiments.

• HDD case: Each VM is assigned with up to 6GB memory.

• MemFlex case: Each VM is assigned with up to 5.5GB memory, while the remaining

2GB memory is reserved for the host as the available shared memory area.

• Ramdisk case: Similar to the MemFlex case, except that instead of using shared

memory, the available 2GB memory is organized as a ramdisk, which is mounted to
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Figure 33: Normalized run-
time

Figure 34: Hybrid swap-out
(Read)

Figure 35: Hybrid swap-out
(Write)

the VMs.

The following benchmarks and applications are used throughout the experiments:

Redis [22]. An open source, in-memory key-value store, which supports a wide spectrum of

data structures such as strings, hashes, lists, bitmaps, and is often used as database, cache,

and message broker.

Dacapo [4, 43]. A benchmark suite consisting of a set of open source, real world Java

applications with non-trivial memory loads. Example applications are h2, a JDBCbench-like

in-memory benchmark for executing a number of transactions against banking application;

eclipse, which executes some of the (non-gui) jdt performance tests for the Eclipse IDE, and

xalan, which transforms XML documents into HTML.

SPECJVM2008 [25]. A set of real applications such as the javac compiler as well as

area-focused benchmarks, such as xml, crypto with the focus on the performance of the

JRE executing a single application.

Himeno [8]. It is developed to evaluate the performance of incompressible fluid analysis

code. This benchmark takes measurements for solving the Poisson equations using the Ja-

cobi iteration method. The performance of Himeno is especially affected by the performance

of memory subsystems.

Sysbench [27]. A benchmark suite that allows users to evaluate the system performance by

manually creating workloads for a specific subsystem. For example, users can benchmark

their CPU by generating CPU intensive workloads from Sysbench. We use this benchmark

to generate disk I/O intensive workloads and evaluate how they interfere with the VM
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memory swapping operations.

QuickSort. This application is written in C by ourselves. We feed it with large data sets

to make it memory intensive.

4.5.1 Overall Performance of MemFlex

In this section, we use Redis and a number of benchmark applications (e.g., Himeno, Decapo,

Quicksort) to evaluate the effectiveness of MemFlex.

Redis. We evaluate how MemFlex can improve the performance of the Redis. A Redis

server is running on VM1, which is pre-loaded with 5GB data in memory, while the other

3 VMs are idle. Different workloads generated by YCSB [53] are executed in a remote

machine, which is connected to VM1 as a client. We let the client run for about 10 second,

and then start memAlloc in the VM where the Redis server is running. The memAlloc

will allocate and initialize 7GB memory to increase the total memory demand of VM1

to 12GB. In the HDD case, the balloon driver will move 2GB memory from each of the

remaining three idle VMs (VM2, VM3 and VM4) to VM1, while in the MemFlex case and

the Ramdisk case, the balloon driver will move a total of 4.5GB to VM1 with 2GB memory

from VM2 and 2.5GB from VM3, while the reserved shared memory is used by VM1 as

its swap area. We measure the throughput as well as the latency of the Redis server, and

compare the Redis server performance among the three cases. The workloads used in this

set of experiments include Insert, Read, Update, and Scan, and are generated by YCSB

with a uniform request distribution.

Figure 43 displays the results of how the Redis server performs in terms of throughput.

We make several interesting observations. First, the Redis throughput drops significantly at

around the 10th second in all the cases, no matter which workload is running. This is due to

the execution of memAlloc. Since there is not enough free memory in VM1 when memAlloc

starts. However, VM1 cannot get free memory from the balloon driver immediately, which

causes VM1 to swap out some of its memory pages, causing serious degradation of the

Redis performance. We also observe that the performance in MemFlex also drops at the

10th second, this is because memAlloc also consumes CPU cycles to allocate the large
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amount of memory when it starts to run, which results in severe CPU competition within

VM1.

Second, in both the HDD case and the Ramdisk case, the performance of all workloads

can recover from the performance drop, but very slowly. The slow performance recovery

indicates that after VM1 gets enough free memory from the balloon driver, the swap-in

process becomes the dominating bottleneck. When VM1 needs to access some page that

has previously been swapped out, a page fault will be triggered and the page needs to be

read back from the swap device to the memory of VM1 through disk I/O. Both page fault

and disk I/O are very expensive operations. In comparison, for the MemFlex case, the

Redis performance recovers significantly faster. For the Read workload in Figure 43(c), its

throughput drops from 17813 OP/sec to 7049 OP/sec at the 10th second, but it only takes

about 5 seconds for the throughput to be fully recovered in MemFlex whereas it will take

more than 80 seconds for the Ramdisk case and much longer for the HDD case to fully

recover to the throughput performance prior to the launch of memAlloc.

It is worth to note that although the swap device Ramdisk is also using the host memory

for swap, its performance, though slightly higher than that of the HDD case, is substantially

lower than MemFlex. This experimentally proves our analysis in Section 4.2: when the swap

area is mounted to the VM as a block device, the overhead of block I/O processing and the

context switch between the VM and the host is dominating the efficiency of VM swapping.

Thus simply changing the VM swap device from disk to ramdisk in host memory will not

guarantee sufficient VM performance improvement. This observation further validates the

superiority and originality of the MemFlex shared memory swapper.

Figure 32 displays the latency measured by the Insert, Read, Update and Scan work-

loads. Similar to the observations from Figure 43, the execution of memAlloc at around 10th

second introduces significant performance degradation to the Redis server, which causes the

sudden latency increase at that time. As the balloon driver inflating more memory at 5

seconds interval, the performance of Redis server in both HDD case and Ramdisk case can

recover, but much slower than that of the MemFlex case. Although we can see some tiny
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Table 5: Time (nano seconds) spent on Page read and PTE update when swapping in 2GB
data. ”T” means ”Total time.”

Overall Per page
T(sec) T(ns) Page read(ns) PTE update(ns) Others(ns)

HDD 212 473145 17358 (24%) 354561 (75%) 1226 (1%)
MemFlex w/o opt 151 337611 3305(1%) 333172 (98%) 1131(1%)
MemFlex w/ opt 4 4081 3288(18%) 284 (7%) 509(13%)

bump of the latency of Redis server in the MemFlex case, due to the execution of memAl-

loc, it recovers very quickly, in just a few seconds, thanks to the MemFlex shared memory

swapper.

Other applications. We also measure the effectiveness of MemFlex for other bench-

mark applications, such as Himeno, Dacapo.eclipse, Dacapo.h2, and Crypto.rsa. The setup

is similar to the Redis experiments. At the beginning, five applications - Himeno, Quick,

Dacapo.eclipse, Dacapo.h2 and Dacapo.rsa are running simultaneously in VM1, which takes

a total of around 5 GB memory. Then, memAlloc starts running at the 10th second, and

it brings the total memory demand of VM1 to 12GB. Figure 33 compares the normalized

execution time of each application under the three cases. For Himeno, Quicksort, Da-

capo.eclipse and Dacapo.h2, MemFlex provides the shortest execution time, while the HDD

case has the longest in execution time. Also the execution time of crypto.rsa remains almost

the same under all three cases, because unlike the other four memory intensive workloads,

crypto.rsa is a CPU intensive application. This also demonstrates that MemFlex is light

weighted and does not impact the performance of CPU intensive applications running in

the VM.

4.5.2 Hybrid Swap-out

In this section, we evaluate the effectiveness of the hybrid swap-out mechanism in MemFlex

by considering the cases when the shared memory space is not enough to hold all the pages

swapped out from the VM.

We evaluate the performance of a Redis server VM in this set of experiments. The setup

is similar to that in Section 4.5.1, the total memory demand is 12GB after memAlloc starts

running at about the 10th second. However, instead of 12GB, only 11GB is finally given to
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VM1 (10GB as main memory and 1GB as the swap area). The other 1GB will be swapped

out to disk. Both the ReadIntensive and WriteIntensive workloads are generated by YCSB,

and executed in a remote client machine.

Figure 34 and Figure 35 display the Redis server performance. We make a number of

observations. First, for both workloads, the client crashes if the most recent pages to disk

mechanism is used. This is because when the client tries to access a recent swapped out page

on disk, the latency exceeds the timeout set by the Redis client. Second, the hybrid swap-

out using the least recent pages to disk strategy performs better than the most recent pages

to disk strategy, while setting the flushing threshold at 75% performing the best followed

by 50%. When the threshold value is set to 25%, which means that MemFlex starts to flush

pages from the shared memory to the disk when the shared memory is only 25% full, then

the client will still crash, just a few seconds later than the case of using the most recent

pages to disk strategy. This is because a smaller threshold value will make MemFlex to

flush the pages from the shared memory to the disk unnecessarily earlier, which also leads

to low utilization of the shared memory swap area.

4.5.3 Proactive Swap-in

In this section, we evaluate the effectiveness of the proactive swap-in mechanism in MemFlex.

The purpose of proactive swap-in is to let the VM quickly swap in those previously swapped

out memory pages resident in the shared memory as soon as the VM gets sufficient free

memory. This has two obvious advantages: it reduces the number of expensive page fault

operations in memory accesses and it quickly frees up the shared memory swap area for

other applications.

We start a Redis server on VM1 with 6GB main memory and 2GB swap area. A client

then loads 6GB data to the Redis server VM to fully fill the memory. Then we start

memAlloc to demand 2GB memory from the VM. This will trigger 2GB of the Redis data

to be swapped out to the VM1 swap area. Finally, we terminate memAlloc so that the 2GB

memory in VM1 will be released and MemFlex will proactively swap in the 2GB swapped

out memory pages from the shared memory swap area back to VM1. Various swap related
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statistics are measured.

Recall Section 4.4.3, the process of swapping-in a page consists of three parts: Page

read, PTE update and others. Table 5 shows how much time is spent on each part in order

to swap-in a page from the swap area under three cases: (1) HDD swap-in, (2) MemFlex

without (w/o) proactive swap-in optimization (MemFlex w/o opt), and (3) MemFlex with

(w/) proactive swap-in optimization (MemFlex w/ opt).

We make three observations from Table 5. First, in the HDD swap-in case, the time

spent on Read and PTE Update occupies 25% and 74% of the total swap-in time. This is

partly because disk I/O is very slow and partly because in order to swap-in a single page,

the OS needs to scan the page table to find the corresponding page table entries that it

needs to update, which is very time consuming, and this cost will increase as the size of the

page table increases. Second, compared to the HDD swap-in case, the average page swap-in

time in the MemFlex w/o opt case is improved by 28.6% from 473145 nano seconds (ns) to

37753 ns. By zooming into the time spent on each part, we find that this improvement is

mostly due to the fast Read speed, because the time spent on PTE Update is now occupying

98% of the total time. This also validates our analysis in Section 4.4.3 that when using the

shared memory for VM swap traffic instead of disk swap, the PTE Update becomes the

major bottleneck for swap-in events. With the help of proactive swap-in, the PTE Update

time is significantly decreased from 333172 ns to 284 ns. Because in this case, the OS swaps

out not only memory pages but also some metadata, which can help the OS to quickly

identify which page table entries need to be updated during the swap-in process. Thus the

cost of scanning the page table is avoided.

Next, we measure the total time spent on swapping-in different amount of memory pages

under different scenarios. Figure 36(a) shows that in both HDD swap-in case and MemFlex

w/o opt case, the total time spent on swap-in will increase dramatically with the increase

of the total amount of memory that needs to be swapped in. For example, in the HDD

swap-in case, it takes 110 seconds to swap in 1GB memory and 875 seconds to swap in 8GB

memory. However, with proactive swap-in, the total time consumed by the same swap-in

events is two orders of magnitude shorter than the HDD swap-in case and the MemFlex
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(a) Swap in from shared memory (b) Hybrid Swap in

Figure 36: Total time spent on swapping in

Table 6: Number of VM page faults from each application
QuickSort Himeno eclipse h2

MemFlex w/o opt 46K 109K 38K 45K

MemFlex w/ opt 6K 8K 14K 31K

w/o opt case. Also as the size of the memory to be swapped-in grows, the time spent on

swap-in also grows though slowly. For instance, in the MemFlex w/ opt case, swapping

in 1GB memory needs 3 seconds, while it takes only 6 seconds to swap in 8GB memory.

Figure 36(b) shows the swap-in performance when the swap area is a mix of shared memory

and disk. Compared with the HDD swap-in, even if all the data is swapped in from the disk

swap area, MemFlex saves 30% swap-in time compared to the HDD swap-in in Figure 36(a).

Also, as the portion of on-disk data decreases, the total swap-in time also decreases.

Finally, we evaluate how proactive swap-in help reduce the number of page faults. We

run four applications (QuickSort, Himeno, Eclipse, h2) sequentially on VM1 which has

insufficient memory, thus the applications start to experiencing guest swapping. Then we

use the balloon driver to give the VM more than enough memory. The page faults of each

application are recorded. Table 6 shows that MemFlex proactive swap-in can reduce the

number of page faults by 33% to 90%.

4.5.4 Effect of Swap Area Allocation

In this section, we evaluate how the settings of the system parameter SWAPFILE CLUSTER

may impact on the effectiveness of MemFlex. The Linux kernel allocates the swap area in

the unit of SWAPFILE CLUSTER pages. Thus, a larger value of SWAPFILE CLUSTER
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(a) Quicksort (b) Himeno

(c) Dacapo.eclipse (d) Dacapo.h2

Figure 37: Effect of the system parameter SWAPFILE CLUSTER on MemFlex

reduces the fragments of the swap area, and leads to more sequential I/O than random

I/O. While a smaller value of SWAPFILE CLUSTER makes the swap area allocation more

flexible.

In this set of experiments, we use four benchmark applications: Quicksort, Himeno,

Dacapo.eclipse and Dacapo.h2. All applications are executed on VM1, and the memory

swap happens during the execution of each application. We vary the value of SWAP-

FILE CLUSTER from 2 to 4096, and measure the execution time of each application by

setting different values of SWAPFILE CLUSTER.

Figure 37 compares the runtime of the applications under three scenarios: HDD, Ramdisk,

and MemFlex. First, no matter in which scenario, the larger the value of SWAPFILE CLUSTER

is, the smaller the execution time of the application is, though the decrease rate is sublin-

ear. For example, in HDD swap scenario, the execution time of Himeno decreases from 299

seconds to 171 seconds and 164 seconds when the value of SWAPFILE CLUSTER increases

from 2 to 32 and 256 respectively. This is because a larger value leads to more sequential
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I/O than random I/O and the performance of sequential I/O is much better than that of

random I/O for disk. Second, for all the applications running with MemFlex, the value of

SWAPFILE CLUSTER has very little impact on their runtime. This is primarily because

MemFlex uses shared memory as the VM swap area, and there is very little difference be-

tween the performance of random access and sequential access. Consider Dacapo.eclipse, its

runtime only slightly decreases when the value of SWAPFILE CLUSTER increases from 2

to 256 and when the value of SWAPFILE CLUSTER further increases from 256 to 4096,

its runtime stays almost the same, as shown Figure 37(c). The reason of the slightly run-

time decrease when SWAPFILE CLUSTER increases from 2 to 256 is due to less frequent

invocation of swap memory allocation in the kernel. Third, no matter what specific value is

used to set SWAPFILE CLUSTER, MemFlex is able to provide the best performance for

all the applications, Ramdisk Swap comes to the second, and HDD swap is the worst.

4.5.5 Comparison to Other Swap Systems

In this section we compare MemFlex to VSwapper [39], a collaborative memory swapper

for virtualized environment. It enhances the baseline swapping performance by avoiding

various types of superfluous/inconsistent swap operations. We conducted the same set of

experiments with the Dacapo.eclipse workload as in [39], and compare its performance with

MemFlex. Figure 38 shows the performance of MemFlex compared with that of Vswapper

and the Baseline, in which the VM swaps to the disk. While the performance of the Baseline

case is the worst, the execution time of Dacapo.eclipse in MemFlex is up to 3x faster than

that in VSwapper. It is worth noting that the experimental evaluation of VSwapper reported

in [39] uses very small VM memory sizes ranging from 512 MB to 256 MB. To be fair with

the best case scenarios reported in [39], we keep the comparison with the same VM memory

sizes.

4.5.6 Larger Scale Experiments

This set of experiments evaluates MemFlex in a larger scale virtualization setup by deploying

8VMs on a physical machine with 64GB free memory. For the case without MemFlex, each

VM is assigned with 8GB memory, and loaded with 6GB Redis data. At the same time, a
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Figure 38: System comparison

Figure 39: Redis workloads

remote client is connecting to each of these 8 VMs and executing a read intensive workload.

Four memAlloc applications are randomly and sequentially executed on four of the eight

VMs and each of them requests for 4GB memory. The settings for the case with MemFlex

are similar with the only difference that in this case, each VM is assigned with 7GB memory

while the remaining 1GB per VM (a total of 8GB) is reserved at the host for MemFlex.

Also, the VM memory utilization are monitored at an interval of 5 seconds and the memory

are moved among VMs via the balloon driver when necessary.

All the client workloads start at the same time and lasted for 100 seconds. Figure 39

compares the total Redis throughput for the 8 VMs with MemFlex and without. We find

that without MemFlex, although some degree of performance recovery can be observed, the

overall trend of throughput is declining until reaching the 46th second. During this period of

time, the occasionally recover is due to the fact that the balloon driver is moving memory to

the specific VM. In the MemFlex case, we can clearly observe that the total throughput has

not been affected much by the four random execution of memAlloc. Even though there are

small performance degradations, which can recover fairly quickly. This set of experiments
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shows that with unpredictable memory demands in a larger scale virtualization platform,

MemFlex is able to offset the delays of the balloon driver by leveraging shared memory

swap.

4.6 Conclusions

We have presented the design of MemFlex, a highly efficient shared memory swapper. This

chapter makes three original contributions. First, MemFlex can effectively utilize host idle

memory by redirecting the VM swapping traffic to the host-guest shared memory swap area.

Second, MemFlex hybrid memory swapping model promotes to use the fast shared memory

swap partition as the primary swap area whenever possible, and smoothly transits to the

conventional disk-based VM swapping scheme on demand. Third but not the least, MemFlex

proactive swap-in optimization offers just-in-time performance recovery by replacing costly

page faults with an efficient swap-in implementation. We evaluate MemFlex using a set of

well-known applications and benchmarks and show that MemFlex offers up to two orders of

magnitude performance improvements over existing memory swapping methods. We have

implemented the first prototype of MemFlex on the KVM platform and we are currently

working on deploying MemFlex on the Xen platform by utilizing the relevant kernel functions

and kernel data structures provided in Xen hypervisor.
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Chapter V

MEMLEGO - IMPROVING MEMORY EFFICIENCY FOR HIGH

PERFORMANCE VIRTUAL MACHINE EXECUTION

Memory is increasingly becoming a bottleneck in virtualized systems. Mechanisms for

utilizing memory efficiently are widely recognized as critical system optimizations for high-

performance virtual machine (VM) execution. Memory overcommitment and memory bal-

looning are the most popular systems level mechanisms for improving memory utilization.

However, these mechanisms often relies on accurate estimation of VM working set size at

runtime, which is difficult under changing workloads. This chapter presents MemLego,

a shared memory based memory optimization framework for managing and improving

memory efficiency in virtualized environment. With MemLego, each VM starts with an

application-specified lower bound of memory. MemLego maintains a shared memory region

across multiple VMs, and enables those VMs under memory pressure to obtain additional

memory on demand. MemLego makes three original contributions: It offers on-demand

VM memory allocation and deallocation in the presence of changing workloads. It relieves

VM execution performance from drastic degradation due to memory swapping. It pro-

vides shared memory pipes for high-performance communication between co-resident VMs.

Extensive experiment results show that MemLego offers up to 4 times throughput enhance-

ment for Memcached and Redis, up to 2 orders of magnitude performance improvements

over conventional memory swapping methods, and improves the throughput of native inter

VM communication by up to 45 times.

5.1 Introduction

Main memory is a critical and shared resource in virtualized computing environment. As

the number of CPU cores doubles approximately every 2 years, the DRAM capacity is

doubling roughly every 3 years [90] and as a result, the memory capacity per core is expected

to drop by about 30% every two years [1]. The trend is worse for memory bandwidth
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per core [101]. At the same time, with the upsurge of big data processing and big data

analytics, main memory is increasingly becoming a bottleneck in virtualized systems. Large

portions of big data software and application code are written today to maximize the use

of memory and minimize access to high latency storage. For example, in memory key-

value stores, such as Redis [22] and Memcached [12], are popular in-memory stores for

big data workloads. Spark [126], Flume [76], Kafka [69] are popular big data computing

platforms for memory-intensive applications. However, memory utilization is not satisfying

and improving memory efficiency is becoming an important optimization goal for many big

data systems and applications. Recent statistics from Google datacenter traces [50] show

that although more than 90% of the memory has been allocated, only less than 50% of

them has been used. One of the main reasons is that the memory allocated to each virtual

machine (VM) has to satisfy its peak demand, thus idle memory exists most of the time.

Advances in computer hardware technologies tackle the memory bottleneck problem

along two dimensions. (1) Various DRAM optimization technologies have been proposed

and developed for improving DRAM parallelism [45, 82], latency and energy [58, 59, 62, 88,

87], and minimizing memory capacity and bandwidth waste [105, 104, 103]. (2) Emerging

memory technologies, such as non-volatile random-access memory (NVRAM) technologies,

and hybrid main memory systems, are proposed and being deployed. Research and devel-

opment (R&D) efforts along both dimensions confirm the importance of achieving efficient

memory utilization under changing workloads. [101] provides a good review of problems

and challenges in memory systems from computer hardware research perspective.

Orthogonal to the advances in memory hardware technologies, research efforts for im-

proving memory efficiency have also been engaged from software design and software opti-

mization perspective by researchers in systems, networking, programming language, com-

piler and database systems. The most relevant research efforts to MemLego are centered

on developing memory resource partitioning and prioritization mechanisms to achieve high

performance for all applications, such as memory balancing research in virtualized systems.

Although virtualization allows multiple virtual machines (VMs) to run simultaneously on a
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single hardware platform by demand-driven CPU time slicing [38, 107, 91], it remains techni-

cally challenging to share main memory among VMs in a timely fashion by demand-driven

memory resource partitioning and prioritization. Memory overcommitment and balloon

driver technology are the state of art software technology for moving memory from one

VM to another. However, the accurate detection of the right timing to turn on the bal-

loon driver is known to be a hard problem, which involves decision on when a VM needs

more memory, how much it needs and from where it can get the free memory. As a result,

most of the systems administrators today pre-configure the balloon driver at a fixed bal-

looning interval (e.g., 30 seconds [120]) with a fixed amount of ballooning memory. Such

static configuration of memory partitioning and prioritization could severely degrade VM

performance under changing workloads. Recently, several dynamic VM memory balancing

approaches [75, 80, 134] have been proposed. Most of them are based on estimation and

prediction of VM memory working set at runtime. However, accurate VM memory esti-

mation is not only difficult [39], especially under changing conditions, but can also incur

high performance overhead [133] due to frequent VM memory access interception. Thus,

the trade-off between balancing frequency and accuracy is rest on the shoulders of systems

administrators in practice.

With these problems in mind, we present the design and implementation of MemLego, a

shared memory based optimization framework for improving memory efficiency and achiev-

ing high performance virtual machine execution. MemLego optimizes VM memory efficiency

from a number of dimensions. First, MemLego reserves and manages a shared memory re-

gion at the host for sharing among all hosted VMs and provides a light-weight mechanism

for on-demand VM memory allocation and de-allocation that are proportional to their

workloads requirements. Second, to effectively utilize host idle memory, MemLego also

promotes a shared memory based optimizations for fast memory swapping by providing a

hybrid swap-out and fast swap-in facility. The third optimization that MemLego advocates

is an inter-VM shared memory pipe for improving inter-VM communication efficiency. We

evaluate MemLego through extensive experiments with different benchmarks on a set of

representative application workloads. Our experiment results show that MemLego offers up
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to 4 times throughput enhancement for Memcached and Redis, up to 2 orders of magnitude

performance improvements over conventional memory swapping methods, and improves the

throughput of native inter VM communication by up to 45 times.

5.2 Related Work

The most relevant existing research efforts are dynamic memory balancing by host-guest

coordination and shared memory based computing and communication optimizations.

Dynamic memory balancing. We categorize this line of research into three threads.

The first thread is centered on redesigning operating system (OS) to enable more efficient

host-guest coordination. The transcendent memory (tmem) on Linux by Oracle and the

active memory sharing on AIX by IBM PowerVM are the two representative efforts. The

transcendent memory [96] allows the VM to directly access a free memory pool in the

host, which can be used by Guest OS to invoke the host OS services and by the host OS

to obtain the memory usage information of the guest VM [85]. For the applications that

implement their own memory resource management, such as database engines and Java

virtual machines (JVMs), [112] proposes to use application-level ballooning mechanisms to

reclaim and free memory. However, most of the proposals in this thread rely on some serious

changes to guest OS or applications, making the solutions harder for wide deployment.

The second thread centers around using host coordinated ballooning for VM memory

overcommitment. The main idea is to embed a driver module into the guest OS to reclaim

or recharge VM memory via the host. The balloon driver, proposed in 2002 [120], has been

widely adopted in mainstream virtualization platforms, such as VMware [109], KVM [84],

Xen [41]. A fair amount of research has been devoted to periodic estimation of VM working

set size because an accurate estimation is essential for dynamic memory balancing using

the balloon driver. For example, VMware introduced statistical sampling to estimate the

active memory of VMs [120, 29]. Alternatively, [133] builds and updates the page-level LRU

histograms by having the hypervisor intercepting memory accesses from each VM and uses

the LRU-based miss ratio to estimate VM memory working set sizes. [134] proposed to

implement the page-level miss ratio estimation using specific hardware to lower the cost of
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tracking the VM memory access. However, several independent research efforts [80, 94, 75]

show that accurate VM working set size prediction is difficult under chaining conditions.

The third thread includes complimentary techniques to improve dynamic memory con-

solidation, ranging from memory hotplug, collaborative memory management to remote

memory swapping. Memory Hotplug [92, 113] was proposed to address the problem of in-

sufficient memory or memory failing at both guest VMs and host. It refers to the ability to

plug and unplug physical memory from a machine [92] without reboot to avoid downtime.

Collaborative memory management [114] proposed a memory access monitoring based in-

formation sharing mechanism between host and guests to reduce the host paging rate and

improves the throughput of memory allocation requests for a guest. Vswapper [39] tracked

correspondences between disk blocks and guest memory pages to avoid unnecessary disk I/O

caused by uncooperative memory swapping between guest and host. However, Vswapper

does not provide any mechanisms to utilize host idle memory. In addition, several efforts

have engaged in combining swapping to the local disk with swapping to the remote memory

via network I/Os [63, 115, 123, 128].

Shared memory based optimization. The other relevant research efforts are shared

memory based performance optimization. The most representative work is distributed

shared memory management (DSM) [40, 66, 79, 83], which can benefit the applications by

providing them a globally shared virtual memory even though they execute on separated

physical nodes. Shared memory has also used in multiprocessor systems for performance

acceleration and programming abstraction. Tornado [68] improved locality and concurrency

of applications by designing an optimized shared memory multiprocessor operating system.

vNUMA [46] is designed to enable legacy applications and operating systems to run on

a cluster by abstraction of a cluster as a virtual shared memory multiprocessor. [125]

proposed a shared memory processor design that can improve the correctness of multi-

thread programs.

To the best of our knowledge, MemLego is the first effort that explores the efficient use of

host idle memory as shared memory resource to provide light weight and on demand memory

103



allocation, fast and hybrid memory swapping, and shared memory pipe for optimizing co-

resident inter-VM communication.

5.3 System Design

In this section, we describe the design of MemLego core system components: ShmManager

and MemExpand. The former is responsible for establishing a shared memory channel

between the host and the VMs to enable flexible and on demand sharing of the free memory

at the host. The latter is responsible for providing dynamic allocation and de-allocation

of shared memory based on the workload demands of respective VMs. Figure 40 shows a

sketch of the MemLego system architecture. We will illustrate the detail in the subsequent

sections.

Figure 40: MemLego Architecture

5.3.1 Establishing Shared Memory Channel

MemLego is implemented as a shared memory optimization layer between the host kernel

and the VMs running on the host. The main job of the ShmManager is to enable multiple

VMs to access the host-guest shared memory region in a coordinated manner. Before

launching VMs on the host, the MemLego Initiator allocates and initializes a segment of

the host free memory as the reserved shared memory region managed by MemLego. It

also creates an emulated virtual PCI device as the bridge between the host and the VMs

such that a virtual PCI device can be mounted to each VM. A PCI device has several base

address registers (BARs), which is used to specify the virtual memory regions that this PCI

device can use. Therefore, the shared memory allocated by the Initiator is assigned to one
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of the BARs of the PCI device as its memory region. Inside a VM, a PCI device driver is

created, which maps the PCI device memory into its kernel space. The device driver will

be invoked once the driver in the VM is executed. For example, pci ioremap bar(pci dev,

2) requests the kernel to map the memory region specified by BAR2 into the VM’s kernel

address space. After the VM kernel maps a memory region into its kernel address space, the

other kernel modules as well as the user-level applications can access the shared memory.

The two interface functions that ShmManager provides to the VMs are unsigned long

shm malloc(size t size) and void shm free(unsigned long offset, unsigned long len). The

former allocates a piece of shared memory from the shared memory region with the capacity

specified by the input parameter size, and returns to the VM the offset in the shared memory

region where the allocated shared memory piece starts. The shm malloc() returns -1 when

there is insufficient free shared memory to satisfy the allocation request. The latter API

function allows the VM to free a pre-allocated piece of shared memory.

5.3.2 Organizing Shared Memory

In order to support flexible shared memory management, the shared memory region in the

host is divided into shared memory chunks of fixed size (e.g., 4KB per chunk) and free

chunks are maintained using linked list. This enables the shared memory to be allocated to

or revoked from the VMs chunk by chunk. In MemLego, we organize the shared memory

chunks into three types of linked lists: active, inactive, and idle. Active chunks refer to the

ones that have allocated to some VM and currently contain valid data. Inactive chunks are

those that have been allocated to some VM but have not been or no longer be actively used

by the applications running on the VM. When a chunk does not belong to any VM, this

chunk is an idle chunk. Chunks may dynamically convert from one type to another based on

their current usage. For each VM, we maintain an active chunks list and an inactive chunks

list. In addition, all the free chunks that have not been allocated to any VM will be put

together using a linked list, named free chunks.

Three types of metadata, free shm, list descriptor, and chunk descriptor, are maintained

to facilitate the coordinated access to the shared memory pool by multiple VMs. free shm
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is a global meta data which locates in the very front of the shared memory region. This

metadata indicates the offset of the first element in the free chunks. Whenever MemLego

wants to allocate a shared memory chunk to a VM, it needs to check this metadata first.

Given that this is a global metadata that is concurrently accessed and updated by multiple

VMs, in order to guarantee the update consistency, a global lock is assigned to free shm, and

every VM needs to successfully acquire this lock before reading and updating the free shm.

The list descriptor contains the information about a single linked list that belongs to some

VM. For example, it may maintain two pointers pointing to the start chunk and the end

chunk that store the valid data, so that when new data arrives, it can be appended next to

the end of the current valid data. Since a chunk may be partially used, each chunk descriptor

records which part of the data in the chunk is valid, while the rest of chunk is free.

5.3.3 On Demand Memory Allocation

The second core component of MemLego is MemExpand, which is built on top of ShmMan-

ager to provide on demand memory allocation from the host shared memory to a VM that is

under memory pressure. The two basic interface functions of MemExpand is shm malloc()

and shm revoke(). When a VM needs more memory resource, it can use the shm malloc()

to allocate some free shared memory chunks from the shared memory pool maintained

by MemLego, for example, by removing the newly allocated chunks from the free list and

adding them to the corresponding active chunk linked list for the respective VM. Similarly,

a separate thread is maintained, which periodically checks the utilization of the linked list in

each VM, and removes the inactive chunks when possible. In order to prevent information

leakage, when removing memory chunks from the linked list in a VM, all data content is

fully erased. This guarantees that each newly allocated shared memory chunk is completely

empty, and a VM will not leak any data to the other VMs.

The implementation of the shm malloc() needs to address two issues: (1) how to allocate

the shared memory to a VM on demand, and (2) how to detect when a VM is under

memory pressure and thus turn on shared memory allocation. To address both issues, we

need to examine how applications running on a VM request memory. Generally speaking,
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applications request memory from the operating system by either declaring an array or use

the library call malloc(). Declaring an array helps the applications to get memory from its

stack space, and the lifetime of this memory region is only within the function in which

the array declaration is called. In other words, the allocated array will be automatically

destroyed when the function finishes. At the same time, the applications can get memory

from its heap space by using malloc(), and the memory region allocated by malloc() can

last until a free() has been explicitly invoked. Although allocating memory from the stack is

easier and faster, allocating from the heap space using malloc() is a more flexible approach

for large memory allocation and it is also widely used by a large number of applications for

their memory allocation for a number of reasons: (1) Since the size of heap space is much

larger than that of the stack space, large block of memory is usually allocated from the

heap space by using malloc(). (2) The duration of the memory allocated from the heap can

be explicitly controlled by the application. (3) The size of the memory regions allocated by

malloc() can be dynamically changed, while the array based allocation from stack is static

and fixed.

In the first prototype implementation of MemLego, the MemExpand intercepts the li-

brary call malloc() in the guest and replaced it with its own function named expand malloc().

This approach is light weight and transparent to both the applications and the VM kernel,

and thus neither applications nor guest OS kernel need to be modified. We achieve the ap-

plication level transparency by leveraging the dynamic linker feature of GCC. Concretely,

GCC provides an option named ”PRE LOAD” which allows users to selectively override

functions in shared libraries. The new memory allocation function expand malloc needs to

be compiled first into a shared library ended with .so and then the applications will be

executed by dynamically linking to this shared memory. After that, all the malloc() in the

application will be automatically replaced by expand malloc().

The implementation of expand malloc() needs to determine when it should resort to

the default malloc() and when it should allocate memory from the shared memory pool.

This is critical since if the current physical memory in the VM is not enough, the shared

memory allocation should be triggered on demand. Concretely, when a expand malloc()
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has been called by the application, it first checks whether the usage of the VM swap area

has been increased. If not, it implies that there is still enough memory in the VM, thus ex-

pand malloc() will invoke the original malloc() from glibc to allocate memory from the guest

OS in a traditional way. Otherwise, an increasing utilization of swap partition is observed,

which indicates that the VM may be short of memory. If we keep allocating memory via

the default malloc(), more severe VM memory swapping could happen, and the VM perfor-

mance may fall through the floor (seriously degraded). Therefore, expand malloc() should

call the shm malloc() to allocate memory from the shared memory region. As shown in

the experiments section, with memExpand, the VM memory can be expanded on demand

without overhead of monitoring working set, while significantly reducing the amount of

memory swapping traffic.

Remarks. In the first prototype implementation, the memory region allocated by the

host is shared among multiple VMs, and each VM can locate only the data in its own

shared memory chunks through metadata such as list descriptor and chunk descriptor. A

malicious attacker may eavesdrop or manipulate the data of other VMs. One approach to

mitigate this risk is to use VM grouping. By allowing users to put VMs that have mutual

trust into a trust group, MemLego can allocate for each VM trust group a different shared

memory region from the host machine. Therefore, VMs in one group cannot access the

shared memory pools used by VMs in other groups. Another complimentary mechanism

is to audit the access to the shared memory chunks to constrain a VM to access only

its own list descriptor and chunk descriptor metadata through metadata encryption. This

eliminates risks of any targeted attack due to eavesdroping or malicious manipulation.

5.3.4 Memory Swapping Optimization

We have shown in Figure 24 that VM memory swap happens even when there is enough free

memory at the host and when a workload starts swapping, performance degrades drastically.

One approach to significantly improve performance in the presence of memory swapping is

to provide a shared memory based swap facility, which reads and writes swap pages to the

shared memory swap partition in the host memory. This motivates us to develop MemSwap
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as an integral part of the MemLego for swap optimization. The main novelty of MemSwap

is two folds. First, it provides a hybrid memory swapping model, which treats a fast but

small shared memory swap partition as the primary swap area whenever it is possible, and

strategically transits to the conventional disk-based VM swapping on demand. Second, it

provides a fast swap-in optimization, which enables the VM to proactively swap in the pages

from the shared memory using an efficient batch implementation.

MemSwap shares similar motivation and assumption as Frontswap [6], a Linux kernel

patch, which uses the transcendent memory (tmem) as a VM swap space. Both are moti-

vated by the common goal of improving swap performance using idle memory. Both require

the presence of sufficient idle memory to be effective. In Frontswap, a hypercall has to be

invoked for each swapped out page, and the swap-in operations depend on the page faults,

which are costly. Given that Frontswap is currently working only on Xen. To compare

with MemSwap,we implement Frontswap on KVM and report our performance comparison

result in Section 5.4.

Hybrid swap-out. MemSwap employs a hybrid VM swap model by using both shared

memory and the disk, to handle the situation when the size of shared memory is not large

enough to hold all the swapped pages from a VM.

When the shared memory pool for swap is reaching a pre-defined capacity, MemSwap

will trigger the hybrid swap process. We propose a least recent pages to disk approach,

which puts older pages to the disk swap area when the shared memory swap partition is

full, enabling the most recent VM swapped out pages to be kept in the shared memory. One

way to organize the shared memory swap partition is to use a ring buffer. We maintain a

shm start pointer and a shm end pointer pointing to the swapped pages with the smallest

and largest offset in the buffer respectively. If a page fault comes with an offset between

these two pointers, all the accesses can be served from the shared memory. Otherwise, the

conventional disk based swap path will be invoked. In this design, a separate working thread

is standing by and ready to be triggered to flush the pages from the shared memory to the

disk swap area. In order to parallel the disk I/O and page swap operations, the working

thread starts flushing the page when the shared memory is partially full, say m% full.
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Proactive swap-in. Traditional OS provides two mechanisms to swap in pages from the

disk swap area: page faults and swapoff. It is known that relying on the page faults to

swap in the pages from the swap disk is expensive, and sometimes results in unacceptable

delay in application performance recovery. Therefore, MemLego implements the proactive

swap-in by extending the swapoff mechanism. Concretely, swapoff is an OS syscall that

enables to swap-in pages from the disk swap area in a batched manner. However, directly

applying swapoff will not provide the speed-up required for fast application performance.

Since in order to swap in a page X, which has a corresponding entry PTE (X pte) in the

page global directory (PGD), the OS has to start from the PGD, and traverse through all

the PUD, PMD, and compare with all the PTEs until the X pte is found.

Our idea for an efficient implementation of proactive swap-in mechanism is to maintain

some meta data in the swap area, which can assist MemSwap to quickly locate the corre-

sponding PTEs in the page table. Concretely, when a page is swapped out, MemSwap will

keep the address of the corresponding PTE as the metadata in front of the swapped out

page in the shared memory. For each page of 4KB, its meta data only takes up 4 bytes.

The cost of keeping this metadata in the swap area is around only 1/1000 of the total size

of the swapped out pages. For those shared pages which have multiple PTEs, we allocate a

specific area in the shared memory as PTE store. In this case, the first byte of the meta data

specifies the number of PTEs related to this page, while the lasts three bytes is an index

pointing the first related PTE in the PTE store. When a page is swapped in, MemSwap is

able to quickly locate the PTE(s) that needs to be updated by referring to this metadata

without the need to scan the page table. Thus, the time spent on accessing the PTE of a

page to be swapped in from the shared memory is only one time memory access, and it will

not increase as the size of the system wide page table grows.

5.3.5 Inter VM Communication Optimization

MemPipe is a shared memory based inter-VM communication optimization implemented

on top of ShmManager in MemLego. If two VMs on the same hosts (co-located VMs)

want to communicate with each other via network, MemPipe will be invoked and creates
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a piece of shared memory by using the interfaces provided by ShmManager. Network

packets among co-located VMs will be transferred through the shared memory. There are

several advantages of utilizing shared memory via MemPipe over the traditional network

communication: (1) The communication path is shorter by using the shared memory. Since

packets will be intercepted inside the VM and redirected to the shared memory, the network

stack in both VMs can be skipped. (2) Since the shared memory establishes a channel for

inter-VM communication, the hypervisor does not need to be involved to help transfer the

packets, thus the context switch between the VMs and the hypervisor can be avoided. (3)

The network packets do not have to be copied between the VMs and the host.

There are two design choices for implementing co-located VM detection mechanism:

centralized and decentralized. The centralized method periodically collects the status from

VMs co-located on the same host and thus introduces delayed detection and updates. Alter-

natively, the decentralized mechanism is event-driven. When a VM is deployed or migrates

in or out of a host machine, the VM notifies the co-located VMs and the co-location in-

formation is updated synchronously upon the occurrence of the corresponding events. The

decentralized mechanism does not require the involvement of the host and provides more

fresh and consistent VM co-location information. We implement the decentralized mecha-

nism in MemPipe.

MemPipe also introduces techniques, such as socket buffer redirection and anticipated

time window (ATW) to further improve the performance of inter-VM communication. The

former allows the sender VM’s packets to be directly copied from the user space to the shared

memory, skipping the VM kernel buffer. The latter optimizes the per packet notification

by a ATW based notification grouping with bounded delay by tuning time window and

batch size, which can effectively reduce the number of notifications between sender VM and

receiver VM, and significantly cut down the amount of software interrupts to be handled in

both sending and receiving VMs.
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5.4 Evaluation

The experiments are conducted on an Intel Xeon based server provisioned from a SoftLayer

cloud [24] with two 6-core Intel Xeon-Westmere X5675 processors, 24GB DDR3 physical

memory available for the guest VMs, 1.5 TB SCSI hard disk, and 1Gbit Ethernet interface.

The host machine runs Ubuntu 14.04 with kernel version 4.1.0, and uses KVM 1.2.0 with

QEMU 2.0.0 as the virtualization platform. The guest VMs also run Ubuntu 14.04 with

kernel version 4.1.0. 4 VMs are simultaneously running on the host. We measure the perfor-

mance of MemLego by using the following applications and benchmarks: (a) Redis[22], an

open source, in-memory key-value store, which supports a wide spectrum of data structures

such as strings, hashes, lists, bitmaps, and is often used as database, cache, and message

broker; (b) MemCached [12], a distributed hash table based in-memory key-value store for

small chunks of arbitrary data (strings, objects), such as database calls, API calls, or page

rendering; (c) MapReduce [61]; (d) Netperf [14], a benchmark that can be used to measure

the performance of many different types of networking. It provides tests for both unidi-

rectional throughput, and end-to-end latency; (e) OSU MPI benchmarks [17]; and (f) SCP

and Wget, Linux commands to transfer files between two machines through the network.

5.4.1 MemLego with MemExpand

We first measure the effectiveness of MemLego core with only MemExpand turned on but

MemSwap and MemPipe disabled. We show how MemLego can reduce and eliminate the

performance degradation of applications running on the VMs under memory pressure (as

those shown in Figure 1). We use Redis [22] and Memcached [12] as example applications.

We use YCSB [53] to generate the client workloads for Redis, and Memtier [13] to create

the client workloads for Memcached since YCSB does not support Memcached. In this set

of experiments, 4 VMs are running on the host machine, and each is initialized with 4GB

memory and 4GB disk swap area. VM1 is working as the Redis server or Memcached server

for Redis or Memcached measurements respectively, and the other 3 VMs are idle initially.

We measure the performance of the server VM with four types of workloads: write only,

write intensive, read only, and read intensive. The first two workloads inject 6GB data
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(a) Write only (b) Write intensive

(c) Read only (d) Read intensive

Figure 41: Effectiveness of MemLego on Memcached

into the server VM, while the latter two workloads uniformly read the injected data. The

read-write ratio is 100:1 in the read intensive workloads and ,1:100 in the write intensive

workloads.

Figure 41 shows the effectiveness of MemLego for the 4 typical types of workloads on

Memcached. We make two observations. First, for write only and write intensive workloads,

MemLego and native system start with similar performance at the beginning, because

VM1 has sufficient memory and every write operation corresponds to a single memory

access. However, around the 33th second, the performance of the native case starts to

drop drastically. This is because there is insufficient memory in VM1 to continue its write

operations, which leads to increased memory swapping traffics. Many write operations need

disk-IO due to the need for making room for the new data to be written to Memcached

and consequently the increased swap-out/swap-in paging to the disk swap partition. In

comparison, MemLego handles such surge of memory pressure calmly and smoothly. The

performance of both write only and write intensive workload is not affected much by the
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memory pressure experienced in VM1 and the addition of more memory from the shared

memory pool to VM1 by MemExpand. For the write only workload, its throughput stays

the same, around 20MB/sec.

Second, MemLego shows the improved performance of the read only and read intensive

workloads over the native case as well. For the read intensive workload, MemLego improves

its throughput by 75%, from around 12MB/sec to 21MB/sec. In the native case without

MemLego, the 6GB data bulk loaded to Memcached server (VM1) with only 4GB DRAM.

Thus, about 2GB data is put into the 4GB swap disk mounted to the VM1 in native case

while in MemLego, this additional 2GB data is put into the shared memory swap partition

instead. Thus, for read workloads with uniformly reading over the 6GB data, some read

requests may have to fetch data from the disk through swap-in paging, which incurs much

higher overhead due to the slow disk IOs involved. This results in that the performance

of the read operations in the native case is consistently worse than that of MemLego. In

addition, we show again for the read only and read intensive workloads that there is no

visible performance overhead for the server VM to read data from the shared memory swap

area. Similar results are observed from performing the same set of experiments by running

Redis server on VM1. Due to space constraint, we omit them here.

Next, we compare the performance of MemLego to that of the native system with

the balloon driver enabled using both Redis and Memcached. As suggested by [120], the

balloon driver is triggered every 30 seconds to balance the memory from high pressure VMs

to the low pressure VMs. Figure 42 shows similar trends for both Redis and Memcached

workloads: The Native case performs the worst due to high page swapping traffic under

memory pressure. Balloon driver enabled native case improves the performance as soon

as ballooning is triggered (see the middle curve), with the throughput of Redis starting to

recover after 30th seconds and the throughput of Memcached starting to recover around

60th second. In comparison, MemLego is able to keep the performance of both Redis and

Memcached around the peak performance stably, even when VM1 is under memory pressure

and receiving additional memory from the shared memory pool by MemExpand.
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(a) Redis (b) Memcached

Figure 42: Effectiveness of MemLego v.s. Balloon driver

5.4.2 MemLego with MemSwap

We measure MemLego performance with MemSwap enabled from three perspectives: (1)

We explore how MemLego can be affected by the settings of guest OS parameters; (2)

We measure the performance of MemLego with MemSwap by running Redis workloads;

and (3) We compare the performance of MemLego with MemSwap with native system

powered by Frontswap. To better understand the unique contribution of MemSwap to the

VM performance improvements, all the experiments are performed by using MemLego with

MemSwap enabled and MemExpand and MemPipe disabled.

We evaluate the effectiveness of MemLego with MemSwap by comparing its performance

on Redis workloads with the native system. In this set of experiments, 4 VMs are running

on the host, and each VM is initialized with 4GB memory and 4GB disk swap area. A

Redis server is running on VM1, which is pre-loaded with 5GB data in memory, while the

other 3 VMs are idle. Different workloads generated by YCSB [53] are executed by a remote

client on VM1. We let the client run for about 10 second, and then start another memory

intensive applications using memAlloc on the same VM1 where the Redis server is running,

which allocates 7GB memory and causes the total memory demand of VM1 to increase to

12GB. For the case of the native system with Balloon enabled, the balloon driver will move

2GB memory from each of the remaining 3 idle VMs to VM1, while in the MemLego case,

the balloon driver will also move a total of 6GB from the other 3 VMs with 5GB to VM1

and 1GB to the shared memory swap area used by VM1 in the host. Also for the 5GB
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(a) Insert (b) Update

(c) Read (d) Scan

Figure 43: Throughput of Redis server measured by YCSB workloads

to VM1, 2GB memory from VM2 and 2GB from VM3, and 1GB from VM4. We measure

the throughput as well as the latency of the Redis server, and compare the Redis server

performance for the two systems: (a) MemLego with MemSwap enabled but MemExpand

disabled and (b) native system with Balloon driver enabled. The workloads used in this set

of experiments include Insert, Read, Update, and Scan, and are generated by YCSB with a

uniform request distribution.

Figure 43 displays the throughput results. First, the Redis throughput drops signifi-

cantly at around the 10th second for both systems, no matter which workload is running.

But the performance drop is smaller and the performance recovery is faster for MemLego.

This is due to the face that there is insufficient free memory in VM1 when the second mem-

ory intensive application starts. However, for native case, VM1 cannot get free memory

from the balloon driver immediately, which causes memory swaping in VM1, and increased

swapping leads to serious degradation of the Redis performance. In comparison, for Mem-

Lego case, the performance drops sharply at the 10th second but less serious than the native
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system. This is because MemExpand is disabled and MemSwap has only 1 GB in the shared

memory swap area. As soon as MemLego gets sufficient memory from other three VMs,

the Redis performance recovers immediately for all 4 types of workloads. In contrast, for

the native system with Balloon case, the performance of all workloads are slowly recovering

due to the slow page-fault based swap-in and high cost of disk IOs to access the disk swap

partition. Both page fault and disk I/O are very expensive operations. For example, con-

sider the Read workload in Figure 43(c), its throughput drops from 17813 OP/sec to 7049

OP/sec at the 10th second, but it only takes about 5 seconds for the throughput to be fully

recovered in MemLego, whereas it took more than 80 seconds for the Native system with

Balloon case to recover to the previous peak throughput performance.

5.4.3 MemLego with Different Configs

In this section we evaluate MemLego with three settings: MemExpand enabled, Mem-

Expand and MemSwap both enabled, and MemLego with MemExpand, MemSwap and

MemPipe all enabled. We measure how much performance improvement that each of the

three components can contribute to the overall effectiveness of MemLego. Two VMs are

running on the same host. Each VM is initialized with 4GB memory and 4GB disk swap

area. Also 3GB host memory area is reserved and shared between the VMs, which is equally

divided into three regions (1GB for MemExpand, 1GB for MemSwap, 1GB for MemPipe).

One of the VM is running as a Memcached server, while the other VM is running as a client.

The write only and write intensive workload will inject 6GB data to the Memcached server,

while the read only and read intensive will read uniformly over these data.

Figure 44 shows that for all 4 workloads, their performance is gradually increasing as

we add one more component into the MemLego system. For the write only workload, the

Native case has the worst performance. The reason is that the Memcached server (VM1) has

4GB memory in total, with 6GB data being loaded. Thus 2GB data needs to be swapped

out, which seriously degrades the performance of Memcached server. Compared to the

MemLego case with only MemExpand enabled, it can improve the average throughput of

the write only workload from 8MB/s to 14MB/s. Turning on MemSwap further improve the
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performance by 50%, since by adding MemSwap, another 1GB of the shared memory can be

used by the server VM as its swap area. Finally, by integrating MemPipe, the throughput

of the write intensive workload can be improved from 21MB/s to 27MB/s, since MemPipe

accelerate the data transfer between the client VM and the server VM co-located on the

same host.

Figure 44: Performance of Memcached under different MemLego configurations

5.5 Conclusions

We have presented the design and implementation of MemLego, a shared memory based

memory optimization framework for managing and improving memory efficiency in vir-

tualized environment. MemLego makes three original contributions: It offers on-demand

VM memory allocation and deallocation in the presence of changing workloads. It relieves

VM execution performance from drastic degradation due to memory swapping. It provides

shared memory pipes for high-performance communication between co-resident VMs.
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Chapter VI

STACKVAULT: PREVENTING SENSITIVE STACK DATA LEAKAGE

FROM UNTRUSTED THIRD PARTY FUNCTIONS

Recently, data exfiltration attacks via RAM scrapping have led to huge data breaches such

as that of Target and Neiman Marcus (70M records). Such attacks exploit the fact that

sensitive data, often unencrypted, are stored in process memory. This chapter presents

StackVault, a kernel backed system level facility to prevent sensitive data on the stack from

being accessed in an unauthorized manner by an untrusted third party function. Stack-

Vault developed a novel and unforgeable function identity to prevent an untrusted function

to steal data from a protected stack. StackVault has a three-phase framework in order to

secure sensitive data on the stack: (1) capturing application-specific sensitive functions and

untrusted functions through easy-to-use configurations, (2) transparent placement of stack

protection operations through system-supplied secure procedures to protect, restore, and

clear the stack, and (3) automated enforcement of stack protection through spatial and tem-

poral access monitoring and control over both sensitive stack data and untrusted functions.

We have evaluated StackVault using a number of popular real world applications. Our re-

sults show that StackVault is effective and efficient, while incurring negligible performance

overhead for applications in most scenarios.

6.1 Introduction

Using the third-party libraries is a common approach to facilitate the software development.

However, third-party libraries are also becoming one of the most insecure components of an

application [28]. For example, the Heartbleed [33] is a known security bug in the OpenSSL

cryptograph library. The compromised library can read more data than it should be allowed.

According to [3], the usernames and passwords of many US bank customers have been leaked

due to the third-party scripts integrated in the login pages. Recently, a GUN C library has

been identified as vulnerable [35], showing that even some of popular and widely used third
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party library can be untrusted. Therefore, preventing sensitive data leakage in the presence

of such untrusted APIs is becoming an important security challenge.

One of the vulnerabilities that an untrusted third party API can cause is the data

leakage attack to the stack frame, which is an essential component of a function during the

runtime. It contains local variables, function arguments, return addresses and so forth. By

design, each function has its own stack, the range of which is specified by the CPU registers

(e.g., RSP and RBP on the x86 64 platform). A well-behaved function is not expected to

access the data on the stack of another function, except when chasing a pointer. However,

all functions in a single program are running in the same address space, thus stack layout

is quite predictable and easy to guess. Furthermore, currently there is no mechanism to

restrict one function from accessing another function’s stack if they are in the same process.

Thus, illegal stack access can result in sensitive data leakage.

State of the art research efforts. Existing research efforts on protecting stack

data leakage have centered on two most well-known vulnerabilities: the uninitialized read

problem and the stack overflow attack. Examples of the uninitialized read attack have been

reported by numerous companies, such as Microsoft [32], and open source software, such

as Samba [34]. The most recent advance on this problem is represented by SafeInit [98].

It promotes a compiler based optimization to address this problem by explicitly initializing

each variable right after its allocation. Such vulnerability has also been identified by [93]

in Linux kernel. Other mechanisms such as ASLR [116] and StackArmor [49] rely on

randomization to protect the data on the stack in a probabilistic manner. StackGuard [49]

addressed the stack overflow problem by inserting a canary word next to a return address

such that if the canary word is damaged, stack corruption can be detected. StackShield

[26] copies valid return addresses to a safe memory location that cannot have overflow,

and check them before the function returns. Some efforts propose to slightly modify CPU

hardware to protect against stack smashing. For instance, StackGhost [67] uses SPARC

CPU hardware to get OS in the loop to armor the stack. This line of efforts has the

advantage that there is no need to recompile code but it suffers limited adoption since it

needs specific hardware. Orthogonal to the efforts on stack data leakage, recent research
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on trusted computing platform puts forward a commodity solution, represented by SGX

[54], which uses enclaves to protect selected code and data from being leaked. But it does

not consider the case in which the code inside the enclaves is untrusted or compromised.

Little efforts have been made on protecting the sensitive data on the stack from untrusted

functions, such as third party APIs.

Problem statement and solution. In this chapter, we argue that in addition to

the attacks considered above, an attacker may exploit other channels to hack the stack

data. For example, a function has access to the stack of the whole process it belongs to,

and thus it can look beyond its own stack frames. Sensitive data can be leaked when an

untrusted function is invoked while stack frames of the functions holding sensitive data

are already present in the process stack. Specifically, since RSP and RBP are two general

registers on the x86 64 platform that can be modified from user level, an attacker can

simply obtain the stack boundaries from the RSP and RBP registers and scan the stack

memory accordingly. In this case, the attacker can readily bypass the existing state of art

approaches to gain access to the sensitive data on the stack, in addition to reading from

the uninitialized variables and compromising return addresses to launch the stack overflow

attack. Programmers can suffer from such sensitive stack data leakage attacks when they

are using untrusted functions in third-party libraries. Since these libraries are not fully

developed by the users, and are under the risk of being compromised. When a user invokes

a compromised library call within a function or after a function, which contains sensitive

data on its stack, the sensitive data can be disclosed.

In order to solve this problem, we introduce StackVault-a kernel-backed system-level

facility to eliminate sensitive stack data leakage. This work is motivated by real applications

scenarios that software development team at many companies face when writing large-

scale applications with sensitive data [20]. Examples of such data include protected health

information(PHI) and financial records. Concretely, StackVault enforces three types of

stack protection operations to protect the sensitive stack data by preventing an untrusted

function from illegally accessing the stack of another function in the same process. Through

placement and enforcement of such operations, StackVault moves the sensitive stack data
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into an OS kernel buffer prior to the execution of an untrusted function, so that there is no

way for such data to be touched by any untrusted function. Such protection also ensures

that all data required for execution of the untrusted function is kept on the stack. The stack

data is restored immediately after the untrusted function returns, and the stack is cleared

for every sensitive function upon its return, in order to eliminate any leakage of stack data

after its completion. We assume that the OS kernel is the trusted computing base, and any

buffer in the kernel cannot be accessed by the attacker in the user level.

StackVault prevent stack data leakage through a three-phase stack protection framework:

configuration phase, compilation phase and runtime phase. This design is highly transparent

and does not require any source code modification. In the configuration phase, users only

need to specify the names of the functions that contain sensitive data on their stack, and the

names of the functions that are considered untrusted. In the compilation phase, StackVault

injects protection operations into the object code to prevent data leakage attacks. In the

runtime phase, a kernel level module is employed to provide a trusted data protection area

(kernel buffer) with safe access enforcement. We have introduced a novel and efficient notion

of “identity of a function”. Such identity is unforgeable and a malicious function cannot be

disguised to illegally access the sensitive stack data under the protection of StackVault.

The design of StackVault addresses three challenges:

• Correctness. In order to maintain the correctness of the program while protecting the

function stack simultaneously, extra attentions need to be paid to the function return

values and the parameters residing on the stack. Put differently, while preventing illegal

accesses to the function stack, the return value should not be affected and the parameters

should still be accessible.

• Unforgeable function identity. Stack protection APIs provided by StackVault are to be

invoked to protect specific stacks against sensitive data leakage. It is extremely important

to detect and prevent any illegal invocation of such APIs by the attackers to steal data

from a protected stack area. Therefore, StackVault needs to keep track of the functions

that have invoked the stack protection API, and only accepts the API call if it is legitimate.

From inside a system call, it is challenging to securely and accurately detect which user
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level function invokes it, especially when there are multiple user level functions in the same

process.

• Usability. StackVault should be highly transparent to the existing applications, so that

an application can benefit from the StackVault facility without modification of its source

codes. This is critical to reduce the amount of work that developers need to carry out in

order to adopt our tool to their products.

This chapter makes three original contributions. First, we identify and analyze the

sensitive data leakage attacks in the presence of untrusted functions, such as third party

libraries. Second, we design and implement StackVault, an OS kernel backed system-level

facility, which is light weight and employs three phase secure architecture to prevent un-

trusted functions from illegally accessing the sensitive data on the stack of a sensitive

function. StackVault is by design easy to use, and does not bring any new venerability to

the system it protects against data leakage. Third but not the least, we develop an effective

mechanism to securely and accurately identify, from inside a system call, which user level

function invokes this system call. This technique prevents a system call from being abused

by a malicious user level function during the runtime. We evaluate the correctness and

effectiveness of StackVault using real world applications, such as Minizip, Curl, OpenSSH,

and Netperf.

The rest of the chapter is organized as follows: Section 6.2 describes the threat model

and motivating examples. Section 6.3 presents the design and implementation of StackVault.

We experimentally evaluate StackVault in Section 6.4, discuss the related work in Section

6.5, and concludes the chapter in Section 6.6.

6.2 Threat Model and Motivating Example

Stack is a virtually continuous piece of memory that is allocated for each function to store its

local variables, return address, as well as the values of registers that need to be temporarily

saved. Sensitive data on the stack can be leaked in the presence of an untrusted function

because an untrusted function can acceess sensitive information from the stack of other

functions in the same process. Although an untrusted function can do others tricks, such
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as dividing zero to crash the system, in this chapter, we focus on developing a system-level

facility to protect sensitive stack data from being illegally accessed by untrusted functions.

We consider the following threat model. Conceptually, each function has its own isolated

stack memory. A well-behaved function is not supposed to read or write the stack memory

of another function unless it needs to access some specific parameters. Given that stack

memory of different functions within a program are allocated in the same address space, and

there is no mechanism to prevent one function from accessing the stack of another function,

an untrusted function can easily access the data on the stack of the other functions. If

sensitive data, such as username and password, is allocated on the stack, such sensitive data

can be leaked to untrusted functions. Third party APIs is one category of such untrusted

functions, since they are not fully written in house and can be compromised by being

downloaded from a fake website. In addition to third party APIs, an untrusted function

can be any function whose behavior is not fully controlled by a user. For example, when

multiple companies are contributing code to the same project, a function that developed by

one company can be an untrusted function for another company who is using the function.

We below use an example to illustrate the existence of such security threat and how it can

result in sensitive data leakage.

(a) Sequential: f2() is invoked after f1() (b) Nested: f2() is invoked within f1()

Figure 45: Stack layout of two functions when they are invoked in a sequential or a nested
manner.

Figure 45 displays the stack layout of two functions f1() and f2() when they are invoked

in either a sequential or a nested manner. We assume that f1() is a function that has
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sensitive data on its stack, while f2() is an untrusted function. In the nested case, the

untrusted function f2() is invoked within f1(). Since the sensitive data of f1() still resides

on its stack during the execution of f2(), f2() can easily get these data if it is compromised.

In the sequential case, f1() allocates two pieces of sensitive data − password and key − on

its stack, but does not clear them before it returns. Thus, when the untrusted function f2()

starts to run, it will be able to access these sensitive data on the stack of f1().

Listing 6.1 illustrates a piece of code which uses libcurl APIs to upload a file to a specific

URL. After uploading the file, the do others() function will be invoked in main(). The local

variable struct stat file info is allocated on the stack of the uploadfile() function. It is a

system defined data structure and its definition is given in in Listing 6.2. Clearly, struct

stat file info carries critical information of a file, such as the user and group ID of the file,

the file serial number, and the time of last access of this file. Such information is often

considered as sensitive data if the file is a private or sensitive file.

1 int uploadfile(FILE *fd, char *URL)

2 {

3 CURL *curl;

4 CURLcode res;

5 struct stat file_info;

6 double speed_upload , total_time;

7

8 fd = fopen("debugit", "rb");

9 if(!fd) {

10 return 1; /* can’t continue */

11 }

12 /* Initialize file_info */

13 if(fstat(fileno(fd), &file_info) != 0) {

14 return 1; /* can’t continue */

15 }

16 curl = curl_easy_init ();

17 if(curl) {

18 /* upload to this place */

19 curl_easy_setopt(curl , CURLOPT_URL ,

20 URL);

21 ...

22 curl_easy_setopt(curl ,

23 CURLOPT_INFILESIZE_LARGE ,
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24 (curl_off_t)file_info.st_size );

25 ...

26 }

27 else {

28 ...

29 }

30 }

31 return 0;

32 }

33

34 void main(void){

35 FILE *fd;

36 char *URL;

37 ...

38 uploadfile(fd, URL);

39 do_others ();

40 }

Listing 6.1: Using libcurl to upload a file to a specific URL

As shown in Listing 6.1, the variable struct stat file info is initialized at line 13, and

accessed at line 22. The libcurl APIs are invoked at line 13, line 16, line 19, and line 22. The

invocation at line 16 and line 19 are not supposed to access the file info structure. How-

ever, as indicated in Figure 45(b), since the data on the stack of the uploadfile() function

is still accessible during the execution of all these libcurl APIs, if either curl easy init() or

curl easy setopt() has been compromised, they will be able to access the file info structure

without any difficulty. Also, in the main program,the do others() function is executed im-

mediately after the uploadfile() function and thus can illegally access the file info structure

if being compromised. Both cases result in the leakage of sensitive data on the stack of the

uploadfile() function.

At the same time, even though the curl easy setopt() is allowed to access the st size

field of the file info structure, it is not safe to allow the other parts of the file info to be

accessed by curl easy setopt().

Besides libcurl, there are many other open source libraries such as libssh, libpcap,

openssl, which are popularly used in software development. Users of such libraries are
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under the risk of disclosing sensitive data, due to either the lack of test of these libraries or

downloading them from a compromised website.

1 struct stat {

2 dev_t st_dev;/* ID of device

3 containing file */

4 ino_t st_ino;

5 mode_t st_mode;

6 nlink_t st_nlink;

7 uid_t st_uid;/* user ID of owner */

8 gid_t st_gid;/* group ID of owner */

9 dev_t st_rdev;

10 off_t st_size;

11 blksize_t st_blksize;

12 blkcnt_t st_blocks;

13 struct timespec st_atim; /* time of

14 last access */

15 struct timespec st_mtim;

16 struct timespec st_ctim;

17 #define st_atime st_atim.tv_sec

18 #define st_mtime st_mtim.tv_sec

19 #define st_ctime st_ctim.tv_sec

20 };

Listing 6.2: Definition of struct stat

6.3 System Design

We make the following efforts to ensure the correctness and security of StackVault. First,

StackVault introduces three procedures to protect the sensitive data on the stack of a func-

tion, so that it cannot be accessed by am untrusted function. Second, StackVault develops

a novel notion of unforgeable “function identity” so that an untrusted function cannot

masquerade as a normal function to invoke the StackVault procedures. Third, StackVault

guarantees that an untrusted function can still access its parameters on the protected stack

frames.
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6.3.1 System Overview

We design and implement StackVault as a system-level facility for protecting sensitive stack

data from untrusted functions. We refer to those functions that have sensitive data in their

stack as sensitive functions, e.g., f1() in Figure 45. Our attack model has identified two

types of relationships between a sensitive function (e.g., f1()) and an untrusted function

(e.g., f2()), which can cause sensitive stack data leakage.

The sequential case is the simple one where the untrusted function is sequentially fol-

lowing the sensitive function. To prevent the sensitive stack data leakage in this case, we

introduce a function named clear stack(), which clears the stack of a sensitive function such

as f1() after its execution. This clear stack() operation makes sure that functions executing

after f1() will not be able to obtain data on the stack of f1().

The nested relationship is the complex case where the untrusted function is invoked

within the sensitive function. Such nested relationships can be direct or indirect. For

example, recall Figure 45, the sensitive function f1() and the untrusted function f2() have a

direct nested relationship. In StackVault, we introduce two other system calls start protect()

and end protect() to protect state data leakage in this second case. For example, by jointly

using these two StackVault operations, we exercise the stack protection over the f1()’s stack

before f2() is invoked and release the protection on the stack after f2() returns.

The main idea of StackVault is to hide the stack data of a sensitive function in a secure

place, prior to the execution of an untrusted function in its nested call structure. Specifically,

StackVault uses a kernel buffer to hide the stack memory of a sensitive function. We choose

to use the kernel buffer for two reasons. First, the kernel buffer created by StackVault is

considered not accessible by user-level functions, including the untrusted functions. Second,

we also provide additional guards to prevent attempts to misuse and abuse of start protect()

and end protect() by leveraging the three-phase stack protection framework of StackVault :

Configuration, Compilation and Runtime Verification.

In the configuration phase of StackVault, users need to provide two lists: a sensitive

function list and an untrusted function list. Sensitive function list includes names of the

functions that contain sensitive data on their stack. Which data is sensitive highly depends
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on the users. The untrusted function list consists of the names of the functions whose

behaviors cannot be fully trusted by the users, such as library calls or some third party

APIs, which are not entirely developed by the users. StackVault will prevent the untrusted

functions from accessing the stack memory of the sensitive functions. In the first prototype

of StackVault, we ask the user to put this configuration file in the root directory of their

source code. Also we require the users to compile their source code using the provided LLVM

[86]. Note that users do not need to change their source code in order to use StackVault.

In the compilation phase of StackVault, the invocation relationship between an untrusted

function and a sensitive function is discovered. Based on the type of such relationships,

StackVault inserts the right choice of StackVault operators, which will enforce the execution

of the adequate stack protection operations before or after an untrusted function call.

Before we engage in more detailed design of our compilation phase and our runtime

verification phase, we first illustrate these two phases using an example. In this example,

pwdgenerator() is a sensitive function and lib func() is an untrusted function as shown in the

pseudo code in Listing 6.3 (only the lines colored in black). Figure 46 shows the interaction

between configuration phase and compilation phase. The executable files are generated by

the StackVault annotated LLVM intermediate code as output of the compilation phase.

1 void main (){

2 ...

3 /* pwdgenerator is a trusted function */

4 pwdgenerator (){

5 /* sensitive data on stack*/

6 char passwd [256];

7 char key [256];

8 ...

9 // INSERT start_protect (" lib_func ")

10 lib_func (); /* lib_func () is

11 an untrusted function */

12 // INSERT stop_protect ()

13 ...

14 }

15 // INSERT clear_stack (" pwdgenerator ");

16 ...

17 }

129



Listing 6.3: Code snippet annotated by StackVault

Figure 46: StackVault workflow

Listing 6.3 gives a pseudo code snippet showing where and what have been annotated

automatically by StackVault after the compilation phase (see the blue-colored comment

lines). In this example, the C code is used to make it easier to understand the operators

inserted by StackVault, since the StackVault APIs are actually inserted into the intermediate

code generated by LLVM. From Listing 6.3, we observe that to protect the stack of a sensitive

function in the presence of untrusted function lib func(), three StackVault system calls are

inserted to LLVM generated code:

• start protect(char *func name). This is a system call which protects the stack of the

function that invokes it. This system call takes as the input parameter the name of an

untrusted function and is placed prior to the invocation of this untrusted function. It

figures out which areas of the stack should be kept accessible after protection, since they

are the parameters of the untrusted function with name func name.

• stop protect(void). This is a system call which restores the stack of the function that

invokes this system call. It is used in pair with start protect(char *func name).

• clear stack(char *func name). This is a procedure that needs to be invoked after each

sensitive function to clear its stack memory. The parameter refers to the name of the

function that needs to clear its stack.

Figure 47 describes interaction between the user level system call and the StackVault

kernel module. The code snippet on the left is correspondent to that in Listing 6.3, but
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Figure 47: Interaction between the system calls and the kernel module of StackVault

shown as the LLVM intermediate code. Two StackVault system calls (#316 and #317)

are invoked before and after the lib func(). The StackVault first intercepts the system

call, then it checks whether the system call is invoked legitimately in terms of StackVault

security compliance. After the compliance verification, if the system call is start protect(),

StackVault first figures out the addresses of the stack frames that need to be protected, and

then hide the sensitive data on those stack frames in the kernel buffer. If the system call

is stop protect(), StackVault will locate the appropriate stack frames that are hidden in the

kernel buffer and restore them back to the stack.

Figure 48: StackVault architecture

Figure 48 illustrates the internal mechanisms of StackVault. Based on the user-supplied
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lists in the configuration file and by examining the call graph of the source code generated

by LLVM compilation, StackVault identifies the relationship between each sensitive function

and each untrusted function, and derives the stack protection list and the stack clearance

list. The start protect() and stop protect() will be inserted before and after all the functions

in the former lists, while the clear stack() will be inserted after all the functions in the latter

list.

However, when a sensitive function has an indirect nested invocation relationship to an

untrusted function, the decision on where and how to insert the pair of start protect() and

stop protect() operators becomes more complex. We defer the detailed discussion to Section

6.3.4.

To guarantee the reliability and correctness of the programs protected by StackVault,

two types of verifications are provided by StackVault. Both verification procedures will be

carried out during the runtime verification phase. The first type of verification is to detect

and remove illegitimate invocations of start protect() and stop protect(). The second type

of verification is to ensure the correctness of the invocation and usage of the StackVault

APIs. In StackVault, two analyzers are developed to extract necessary information from the

executable file for this verification. The stack size analyzer is responsible for finding the

stack size of each sensitive function, and the start protect() and clear stack() procedures will

refer to this information to determine the size of the stack it needs to work on. The DWARF

analyzer is by design to figure out the exact location of each parameter of an untrusted

function, and whether these parameters are on the stack of the sensitive function. The

goal of DWARF analyzer is to keep those parameters accessible after the stack is being

protected. Section 6.3.3 will describe them in detail.

6.3.2 API Design

Figure 45(a) shows how the stack memory of f1() and f2() is layed out when f2() is called

after f1(). The RBP and RSP are the registers pointing to the bottom and the top of f2()’s

stack respectively. If the sensitive data on the stack of f1() has not been cleared after f1()

returns, then the untrusted function f2() can illegally access the sensitive data while it is
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running.

Since start protect() and stop protect() rely on the values of two CPU registers − RSP

and RBP − to protect the stack, and the values of both RSP and RPB are maintaining the

bottom and top of the stack while a function is running and they can be easily changed from

the user level. The key challenge is how to prevent an untrusted function from intentionally

modifying the values of RSP and RBP, and then illegally obtaining the data on a protected

stack using stop protect().

A straightforward design of start protect() and stop protect()is to take RBP and RSP as

the parameters of these system calls, and to protect the data between these two addresses.

However, this intuitive design is neither practical nor effective. First, not every programmer

is familiar with the stack layout and it is not reasonable to require programmers to know

which part of the stack they are going to protect. Second, the return address of the callee

function is on the stack and should not be affected, otherwise the program cannot continue

running after the callee returns. Finally, using RSP and RBP as parameters will open doors

to anyone to inappropriately manipulate any part of the stack memory directly by changing

the values of RSP and RBP, which could further threat the execution of the applications.

Therefore, both system calls need to figure out the boundaries of the stack that they are

going to protect by themselves. In StackVault, this is achieved by referring to the kernel

stack, where the values of the user level registers are pushed to before entering a system

call.

6.3.3 Verification

In StackVault, the system calls start protect() and stop protect() should be used in pair only

by the legitimate caller functions. Thus we need mechanisms to prevent illegal system calls

and also to ensure correct execution of system calls.

Function identity verification. Without a proper mechanism, a malicious attacker

can intentionally invoke the stop protect() to restore the stack data that are previously

protected by start protection(), which can result in stack data leakage. This is because

stop protect() relies on the values of the RBP and RSP registers to decide the boundaries
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of the stack to be protected or restored, and these RBP and RSP values unfortunately can

be modified by any user level program.

Although there are mechanisms introduced by the OS to protect memory, for example,

int mprotect(void *addr, size t len, int prot) is a function that can set the protection level

of a memory address space from the calling process to be not accessible, this approach

regrettably does not solve the problem. Since the untrusted function and the sensitive

function are in the same process, if the untrusted function wants to illegally read the memory

data that is previously protected, it can simply invoke mprotect() again to set the memory

as readable.

To solve this problem, our solution is to let a system call identify the address of the

user level instruction that invokes it, and use this address to tell which user level function

has invoked this system call. We introduce two data structures for this purpose: (1) the

protection table and (2) the symbol table. Both of them are maintained by StackVault. The

symbol table is created before the program starts execution and then stays constant, while

the protection table is dynamically updated based on each invocation of the stack protection

system calls. This solution can prevent an untrusted function from illegally access the stack

memory of a sensitive function, even if they are in the same process.

Figure 49: Details of the symbol table

Figure 49 displays the details of the symbol table. This table is created by parsing the

.text section of the executable file of the program, which is represented in the Executable

and Linkable Format (ELF). It contains three columns: function name, start address, and
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length. It lists the range of the instructions for each function in the program. At the same

time, a system call can get the user level instruction pointer from the kernel stack. This

pointer points to the address of the user level instruction right before the invocation of

the system call. Therefore, given an instruction address, StackVault can tell which user

level function is currently running by referring to the symbol table. This is how StackVault

automatically identifies the function invoking the system call. The values in the symbol

table and the instruction address are guaranteed to be secure for a number of reasons.

First, since the .text section is a read-only section of the executable file, it will not be

changed by any untrusted function. This ensures that the contents of the symbol table can

be trusted. Second, the current instruction address is stored in the instruction pointer,

which is a processor register that cannot be modified by the user level program.

With the symbol table, StackVault can reliably figure out which function invokes the

stack protection system call during the runtime. Any stack protection system call that is

invoked within an untrusted function will be considered as an illegal system call.

Figure 50: The protection table

Invocation correctness verification. StackVault checks the correctness of the invo-

cation of stack protection system calls by making sure that start protect() and end protect()

are invoked in pairs by the same function. For example, when f1() calls stop protect(), Stack-

Vault check whether the latest operation is a start protect() from f1() with the same RBP

and RSP values. If not, this stop protect() is illegal. This is because the stop protect() must
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restore the same stack memory that has been most recently protected by the same function.

The purpose of the protection table is to facilitate this checking process. As shown in

Figure 50, this table is maintained in a LIFO manner. When the start protect() is invoked, a

new entry is appended to the end of the table. The entry includes the name of the function

that invokes start protect(), and the value of RSP and RBP. Since each function has its

own stack, the range specified by current RSP and RBP should not be overlapped with any

other ranges existing in the table. Whenever a stop protect() is matched with the latest

start protect(), the latest start protect() entry is removed from the table.

6.3.4 Handling Complex Call Graphs

We have discussed the case of sensitive function having a direct nested call relationship

with an untrusted function with example shown in Listing 6.3. However, when a sensitive

function has an indirect nested call relationship with an untrusted function, things get

more complicated. This is because when an untrusted function is not directly invoked

by a sensitive function, if the start protect() and stop protect() APIs are still inserted by

wrapping around the untrusted function, then it only prevents the untrusted function from

accessing the stack of its direct caller, but the sensitive data on its indirect caller‘s stack

is still under the risk of leakage. Thus, StackVault should ensure that the correct locations

are identified to place the right pair of system calls in the executable code.

Figure 51 illustrate this problem and how it is solved in StackVault. An example of

a nested call graph is given, in which there exists sensitive functions, normal functions,

and an untrusted function. The untrusted function is indirectly invoked by the sensitive

functions. Concretely, the sensitive data is allocated on the stack of sensitive func 1()

and sensitive func 2(). If the start protect() and stop protect() are inserted before and

after untrusted func 1(), it only prevents the untrusted func 1() from accessing the stack of

normal func 3(), but the sensitive stack data can still be accessed by untrusted func 1().

Therefore, in order to correctly protect the sensitive data, the stack protection APIs need

to be inserted in the places described in Figure 51. Specifically, if an untrusted function is

indirectly invoked by a sensitive function, StackVault identifies the function which not only
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being directly invoked by the sensitive function, but also invokes the untrusted function,

such as the normal func 1() and normal func 3() in Figure 51. Then the stack protection

APIs will be inserted before and after these functions. Due to the space limit, we omit the

detailed rules used in StackVault for correct placement of its system calls in the complex

indirect nested call relationship from sensitive functions to untrusted functions.

Figure 51: Insert stack protection APIs in indirect nested call scenario.

6.3.5 Other Design Choices

Resolving parameters. When a sensitive function f1() calls an untrusted function f2(),

f2() can take parameters which locate on the stack of f1(). In this case, although f2() is not

allowed to touch the other areas of f1()’s stack, it should be able to access its parameters.

This requires that the start protect() system call should be able to automatically figure out

which part of f1()’s stack contains the data that will be accessed by f2() as parameters,

and then keep those areas accessible by f2() after stack protection. This is achieved by

analyzing the DWARF info, which can be acquired through the executable file.

Invocation by assembly. Although start protect() and stop protect() are designed as

system calls, attentions need to be paid on the correct way to invoke them. In StackVault, we

invoke start protect() and end protect() in assembly language using the system call number

instead the name. The reason is as following.
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As discussed earlier, whenever a start protect() or stop protect() has been invoked, Stack-

Vault refers to the instruction pointer to figure out what function has issued the invocation,

so that any illegal invocation from an untrusted function can be prevented. However, when

the system calls are invoked by their names, the instruction pointer that StackVault ob-

tains within the system calls will point to the same address, no matter which function has

invoked the system call. This is because the name of the system call is a wrapper function

and the real system call is invoked inside this wrapper. Thus, if the system call is invoked

by its name, the instruction pointer will point to the wrapper function, no matter where

the system call is invoked.

Final Remarks. In order to protect sensitive data on the stack, in the current im-

plementation of StackVault, the copy and restore approach is used, which incurs negligible

performance overhead as shown in our experimental evaluation. Specifically, StackVault

first copies the stack data, which needs to be protected, from the user level memory to the

kernel buffer. Then, it clears the corresponding data in the original stack. The stack data

in the kernel buffer cannot be accessed by any user level untrusted function. To restore a

stack, StackVault puts the data back from the kernel buffer to the user level stack, and then

clears and releases the kernel buffer.

Other than copying the data between the user level stacks and the kernel buffers, an

in-place encryption/decryption approach will reduce the data copy, and only the keys need

to be stored in the kernel buffer. However, frequent encryption and decryption could result

in higher CPU overhead than simply copying the data. We are interested in providing the

encryption as the option in the future.

6.4 Evaluation

In this section, we evaluate the effectiveness of StackVault using four widely used software

packages: Minizip, Curl, OpenSSH, and Netperf.

6.4.1 Experiments Setup

All the experiments are conducted on a Softlayer [24] machine with 8 3.5 GHz Intel Xeon-

Haswell CPUs, 32GB memory, and 4TB disk storage. Ubuntu 14.04-64 is used as the
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Table 7: Open source software packages used in the evaluation(# represents the number
of functions in each application)
Application Executable file Category LoC(k) Stack Size(bytes) #
Minizip minizip File compression tool 7 8∼67128 48
Curl curl Http client 177 16∼4176 102
OpenSSH ssh Remote login tool 130 16∼65664 1127
Netperf Netperf Networking benchmark 58 16∼24640 180

operating system, and the kernel version is 4.1.0. The following four applications are used

in the experiments:

• Minizip. It allows to deflate compressed files and to create gzip (.gz) files.

• Curl. It is used in command lines or scripts to transfer data. It is the internet transfer

backbone for thousands of software applications affecting billions of humans daily.

• OpenSSH. It is the premier connectivity tool for remote login with the SSH protocol. It

encrypts all traffic to eliminate eavesdropping, connection hijacking, and other attacks.

• Netperf. It is a benchmark that can be used to measure the perofmrnace of many different

types of networking.

By default, all these applications are compiled by GCC. Since StackVault is based on

LLVM [86], we modified the related Makefiles in each application to have them compiled

with LLVM.

Table 7 summarizes the characteristics of the applications used in our experiments. Each

application includes multiple functions. The number of functions each application has is

displayed in the last column of the table. We can see that among these four applications,

OpenSSH contains the largest number of functions while Minizip has the least number

of functions. The ”Stack Size” column represents the range of the stack sizes for all the

functions in a given application. Consider Minizip, the smallest stack size of a function is

8 bytes, while the biggest stack size of a function is 67128 bytes.

Table 8 lists the stack size distribution in five categories of percentile. It is obvious

to see that no matter for which application, functions with smaller stack sizes are much

more popular than those with larger stack sizes. For Minizip, although the largest function

stack size is 67,128 bytes, 79% functions have the stack size smaller than 100 bytes and the

stack sizes of 98% of the functions are less than 616 bytes. This shows that most of the
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Table 8: Stack size percentile per application(byte)

20% 40% 60% 80% 100%

Minizip 8 8 24 104 67128
Curl 16 48 80 176 4176

OpenSSH 32 48 64 144 65664
Netperf 32 40 56 152 24640

Table 9: Functions from each application protected by StackVault
Application

Large stack
function

File
Stack size
(bytes)

Small stack
function

File
Stack size
(bytes)

Minizip
zipOpen4 zip.c 67128 fcrypt end fileenc.c 8
derive key pwd2key.c 616 hmac sha key hmac.c 8

filetime minizip.c 424 hmac sha data hmac.c 8

Curl
my get line tool parsecfg.c 4176 slist wc free all slist wc.c 16
operate do tool operate.c 1720 easysrc init tool easysrc.c 16
formparse tool formparse.c 904 easysrc cleanup tool easysrc.c 16

OpenSSH
getrrestbyname getrrestbyname.c 65664 sshbuf init sshbuf.c 16
hostkeys foreach hostfile.c 16776 sshbuf free sshbuf.c 16

sshkey try load public authfile.c 16496 sshbuf len sshbuf.c 16

Netperf
scan cmd line netsh.c 16448 netlib init netlib.c 16
scan omni args nettest omni.c 24640 print omni init nettest omni.c 16
parse direction netsh.c 16440 format number netlib.c 16

functions in many applications have very small stack sizes. Thus, in addition to evaluate the

performance overhead of StackVault against different applications, it would be interesting to

evaluate the performance overhead of StackVault by varying the stack sizes of functions. We

believe that StackVault incurs very low and negligible performance overhead for applications

with many functions of small stack sizes. Since the size of function stack is a major factor

that impact the performance overhead of StackVault, three functions with largest stack sizes

and three functions with smallest stack sizes are chosen as the sensitive functions that get

protected by StackVault from each application. Table 9 shows the name, stack size and the

location of each function selected from the four popular software packages.

6.4.2 Performance Overhead

We first measure the performance overhead of StackVault with respect to the applications

in terms of both compilation and execution time. Here the compilation time refers to the

time spent on compiling the source code and generating the executable code. We also

measure and compare the size of the executable file when the application is compiled with

and without StackVault. The execution time refers to the time spent on running each of

the applications when the applications are compiled with and without StackVault.

Compilation Efficiency. In this set of experiments, we compare the compilation
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time and the executable file size of each application with and without StackVault. With

StackVault, the selected functions shown in Table 9 are protected with the system calls for

stack protection and stack clearance. Figure 52 shows the measurement results in both

compilation time and executable file size.

(a) Compilation time (b) Executable file size

Figure 52: Compilation performance comparison.

We make two interesting observations. First, StackVault introduces very tiny overhead

in terms of the compliation time. The compilation time of Minizip increases by 7.0% while

the compilation time of OpenSSH increases by 0.67%. Such overhead is mainly due to

the fact that with StackVault, the compiler needs to check for each function whether it

has been specified as an untrusted function by the user, and if yes, identify the location

of protection and insert stack protection and stack clearance APIs with respect to each

untrusted function. Among the four applications, OpenSSH has the largest compilation

overhead sine it has the largest number of functions as shown in Table 7. Similarly, Minizip

has the smallest number of functions, and it incurs the smallest increase in the compilation

time when compared to Minizip without StackVault. Second, in this set of experiments,

only 6 functions (3 large and 3 small function stack sizes) are protected with StackVault for

all four applications. Thus, the executable file size does not change much when comparing

the native case with the case where the application is compiled with StackVault.

It is worth to note that even the compilation time and the executable file size will

further increase if more functions in an application are to be protected by StackVault, it

is practical to say that StackVault deals with only those functions that has sensitive data
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on their stacks in the presence of untrusted third party functions, and the number of such

functions are limited in many applications. Furthermore, for each sensitive function being

protected, the main overhead for StackVault is the time spent on making the decision of

where to insert the stack protection APIs in the executable file, taking into consideration

of all the untrusted functions that are nested within this sensitive function. When multiple

sensitive functions are nested one after another, batch based analysis can be conducted to

further reduce the cost and the compilation time.

Execution Efficiency. In this set of experiments, we evaluate the overhead of Stack-

Vault on the application runtime. To show how StackVault may affect the execution effi-

ciency of the applications, we compare the execution performance of each application for

two cases: (1) Native, in which the application is compiled and running without StackVault ;

and (2) StackVault , in which the application is compiled and run with StackVault enabled

to protect the user-identified sensitive functions against the user-identified untrusted func-

tions. We also measure how StackVault impact on the runtime of each function it protects.

For each sensitive function, the overhead of StackVault on the application runtime is primar-

ily the time that StackVault uses to create the appropriate kernel buffer for the program,

to hide the sensitive stack data in the kernel buffer and then to restore the data back to

the stack.

For each application, all the selected functions are involved during the evaluation mea-

surements. Concretely, Minizip is executed by compressing a file with a password, Curl is

tested by retrieving a web page using a specified configuration file, OpenSSH is evaluated

by connecting to a specific host, and Netperf is measured by conducting an omni[14] test,

in which requests and responses are sent between the client and the server.

The execution time of each application in each case is measured and displayed in Figure

53. We observe that for each application, its execution time in the StackVault case is slightly

higher than that in the Native case. For example, the execution time of Minizip and Curl

is increased by 5.5% and 4.8% respectively. It indicates that the system calls for both stack

protection and stack clearance in StackVault incur very small performance overhead on the

application runtime. We also observe that StackVault has not much impact on the execution
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Figure 53: Application performance comparison

Table 10: Function overhead on Minizip(CPU cycle)
Native StackVault Overhead

zipOpen4 180604 231968 28%

derive key 7689k 8299k 8%

filetime 80292 92732 15%

fcrypt end 3520 3612 3%

hmac sha key 1460 3692 153%

hmac sha data 414902 417144 1%

performance of Netperf. This is because the functions chosen to be protected in Netperf are

running at the initialization and connection setup phase, which has much shorter latency

than that of the bandwidth evaluation phase for Netperf.

In the next set of experiments, we measure the overhead that StackVault has on each

function measured by rdtsc, which is an assembly instruction to read the time stamp counter

on x86 processors. Table 10, Table 11, Table 12, and Table 13 show the per function

overhead with respect to all six functions chosen for each of the four applications. We make

two interesting observations: (1) For Netperf, the execution of all six functions is increased

Table 11: Function overhead on Curl (CPU cycle)
Native StackVault Overhead

my get line 20196 39000 93%

operate do 1829605k 1833081k 0.2%

formparse 57744 61724 7%

slist wc free all 4060 8368 106%

easysrc init 10488 14324 37%

easysrc cleanup 6552 20828 218%
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Table 12: Function overhead on OpenSSH (CPU cycle)
Native StackVault Overhead

getrrsetbyname 345425k 357805k 4%

hostkeys foreach 96320 139903 45%

ssh try load public 5469 19719 261%

sshbuf init 4640 18992 309%

sshbuf free 4236 11358 168%

sshbuf len 1472 4926 235%

Table 13: Function overhead on Netperf (CPU cycle)
Native StackVault Overhead

netlib init 138152 157608 14%

print omni init 119256 123516 4%

scan omni args 256688 325484 27%

scan cmd line 329928 412720 25%

parse direction 15448 17820 15%

format number 97564 111531 14%

in a range of 0.4% to 27%. However, for OpenSSH, the execution of all six functions is

increased by a much larger range, from 0.4% to 309%. (2) The longer a function runs in

native case, the less performance impact StackVault will have on its runtime. For example,

the function getrrestbyname() runs for 345425k CPU cycles, and its runtime with StackVault

has increased by only 4%. In contrast, sshbuf init() runs for 4640 CPU cycles, and its

execution time grows by 309% with StackVault. The reason is intuitive. The per-function

overhead mainly comes from two factors: (i) The two stack protections functions provided

by StackVault are system calls, and both of them need to be invoked in order to protect

the stack of a specific function. Each invocation includes a context switch between the

user space and the kernel space. (ii) The start protect() function needs to allocate kernel

memory buffer by kmalloc() to store the stack data, such kernel memory allocation also

introduce overhead. Therefore, the time spent by StackVault on each protected function is

usually similar and largely depends on the amount of sensitive data on the stack, which is

relatively small and independent of the actual execution time of the function. Thus, when

the execution time in the native case is short, the runtime of the function by StackVault

will be longer in comparison. When the execution time in the native case is much longer,

the increase of the runtime for the function protected by StackVault relatively speaking will
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be much smaller.

Figure 54: Netperf performance comparison under frequent invocation of StackVault APIs

Impact of frequent invocation. We next evaluate the impact of StackVault on the

execution performance of an application when a frequently invoked function is under the

protection of StackVault. Figure 54 shows the measurement results for Netperf with and

without StackVault and the function send data() is chosen since it is a frequently invoked

function during the execution of Netperf. We observe that for small message size, StackVault

does introduce more performance overhead compared to native case. However, the overhead

decreases with the growth of the message size. For example, the performance overhead drops

from 31.6% to 3.2% when the message size increases from 32KB to 1024KB. This is because

when sending the same amount of data, the case with larger size messages will result in less

frequent invocation of the send data()function. In addition, we also observe that more than

95% of the overhead is brought by start protect() and stop protect(), while clear stack() only

incurs less 5%. The reason is obvious: the clear stack() is a procedure instead of a system

call, and it simply zeros out a specific range of memory without any additional operation.

Impact of large stack sizes. The final set of experiments is to measure the impact

of stack sizes on the performance overhead of StackVault. An example piece of code from

the libcurl website, showing how to use libcurl to upload files to a server, is used here.

Since there is only a few functions in this code, it is easier to manually adjust the stack size

and the effect will be more obvious. Originally, the stack size of the uploadfile() function

is 244 bytes. We manually increase its stack size up to 4MB by allocating an array with
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Figure 55: Protection overhead for large stack

specific size. Then, the runtime of the application is measured and compared under the

Native scenario and the StackVault scenario. Figure 55 shows the overhead that StackVault

brings when protecting large stacks. When the stack size grows from 1MB to 4MB, the

performance overhead only slightly increases from 4.6% to 8.6%. considering the fact that

most of the functions have a much smaller stack size varying from tens of bytes to hundreds

of bytes, stack size will not become an issue for the performance of StackVault. Combining

Figure 54 and Figure 55, it shows that StackVault incurrs higher overhead by protecting a

highly frequently invoked function than protecting a large stack.

6.4.3 Memory Overhead

The memory overheads of StackVault are mainly from two factors. One is the kernel buffers

used to store the stack data, the size of which is the same as the stack being protected.

The other is the in-memory data structure protection table. The protection table is a data

structure that prevents the stack protection functions from being invoked intentionally by

the attackers to get the stack data that are previously protected by a legitimate user. For a

specific application, the protection table is created and stored in the memory before an ap-

plication starts, and then remains unchanged. We measured the size of the protection table

for each application, and Table 14 shows the results in terms of the size of the executable

file, its corresponding protection table size, and the ratio of protection table size over the

executable file size. We observe that for all applications, the size of the protection table is

very small compared to the corresponding executable file size. Among the four applications,
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Table 14: Size of the in-memory protection table

Application
Executable

file size
Protection
table size

Overhead

Minizip 208KB 6KB 2.9%
Curl 8KB 13KB 162.5%

OpenSSH 1700KB 141KB 8.3%
Lighttpd 840KB 49KB 5.8%

OpenSSH has the largest protection table size, which is 141KB. This is consistent with our

previous observation that OpenSSH has the largest number of functions. This is because

for an application, the size of its protection table is proportional to the number of functions

it has.

6.5 Related Work

Due to the highly predictable layout of the stack memory, stack based attacks have been

existed for a long time, in which the most common one is buffer overflow [47]. For example,

StackGuard [55] proposes two techniques to overcome the buffer overflow vulnerability.

One is putting a canary word right besides each return address on the stack, so that the

modification of the return address can be detected by checking whether the canary word

has been changed. This idea has also been incorporated in the GCC [7] compiler. The other

technique takes the advantage of the debug registers to monitor the stack memory that stores

the return address, and triggers an exception once any return address has been rewritten.

CRED [111] introduces a C range error detector, which allows program access out-of-bounds

addresses that do not result in buffer overflows. Other stack protection approaches such as

ASLR [116] and StackArmor [49] use randomization to make it difficult for the attackers

to guess where the target stack frame is. The shadow stack [118, 57] was invented to

protect return address on the stack from tampering. In this scheme, a shadow stack is

maintained in parallel with the original stack, which is used to ensure the integrity of the

address. Control-Flow Integrity (CFI) based approaches [37, 56, 127, 36] are also designed

to protect the stack-based buffer overflows. Such approaches first construct a Control-Flow

Graph (CFG) using source code analysis, binary analysis, or executing profiling. Then, the

software execution will be dictated to follow the CFG, so that a compromised execution
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path caused by buffer overflow will be prevented. All the above-mentioned techniques are

focusing on eliminating the buffer overflow stack, but the other sensitive data on the stack

also needs to be appropriately protected to prevent data leakage.

Many researchers also focus on eliminating the in-memory sensitive data leakage. For

instance, Shreds [51] protects the sensitive information in private memory by using the

memory domain features in ARM CPU, and [122] explores the trust issues in multithreaded

applications such as MemCached. [74] finds that DRAM can retain its data for several

seconds after it is powered off and removed from the motherboard, and briefly discusses

several solutions to these attacks, such as changing the architecture of the DRAM to make

it lose state more quickly. SWPIE [72, 71] takes the advantages of static analysis to erased

the sensitive data at the earliest time. [52] presents a secure deallocation strategy to reduce

the life cycle of the sensitive information in memory. Vanish [70] aims at creating self-

destruct data that can automatically vanish when it is no longer useful. All these efforts

effectively reduce the lifetime of the sensitive information in memory so it is less possible

to be leaked. However, as discussed in this chapter, sensitive data can also be leaked

before its lifetime finishes if some function in a program is compromised. Data leakages also

happen via uninitialized read. In this case, an attacker can get the stack data via reading

uninitialized stack variables. [98] and [93] are two recent efforts that solve this problem by

explicitly initialized each local variable after it is allocated on the stack.

6.6 Conclusions

Untrusted third party functions are becoming a significant threat for stack data leakage.

In this chapter, we designed and implemented StackVault, which is a highly reliable and

transparent tool to protect the sensitive data on the function stack. Taking the advantage

of the OS kernel, StackVault prevents the sensitive data on the stack from being illegally

accessed by any other untrusted functions in the same process. We evaluated the effective-

ness of StackVault using four widely accepted applications. Results show that StackVault

occurs fairly low overhead on the runtime of the applications in most cases. In the future,

StackVault can be extended to several directions. On one hand, we are considering not only
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protect the data on the stack, but also the data on the heap. On the other hand, we plan to

investigate how to prevent memory data leakage among different virtual machines running

on the same host.
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Chapter VII

CONCLUSIONS AND FUTURE WORK

With the increasing demands for fast big data processing, memory is becoming one of the

critical resources to improve the performance of the applications in the Cloud. Large size

memory machines and platforms are not uncommon nowadays, and many applications can

benefit from using large memory to avoid expensive disk I/O operations. However, how

to efficiently and securely use such large memory is still an open issue. Maximizing the

memory utilization while maintaining QoS for each individual application and guaranteeing

the in-memory data security is still challenging to existing Cloud providers.

7.1 Summary

This dissertation makes four unique contributions. First, MemPipe is introduced as a

dynamic shared memory framework for high performance communication and data transfer

among co-located VMs in virtualized cloud. MemPipe employs an inter-VM shared memory

pipe to enable high throughput data delivery for both TCP and UDP workloads among co-

located VMs. Instead of static shared memory allocation, MemPipe manages its shared

memory pipes through a demand driven and proportional memory allocation mechanism,

which can dynamically enlarge or shrink the shared memory pipes based on the demand of

the workloads from the VMs. Furthermore, MemPipe employs a number of optimizations

such as time-window based streaming partitions and socket buffer redirection to further

improve the performance of co-located inter-VM communication.

Second, we have presented the design of MemFlex, a highly efficient shared memory

swapper. MemFlex makes three original contributions. First, MemFlex can effectively

utilize host idle memory by redirecting the VM swapping traffic to the host-guest shared

memory swap area. Second, the hybrid memory swap-out model in MemFlex promotes to

use the fast shared memory swap partition as the primary swap area whenever possible, and

smoothly transits to the conventional disk-based VM swapping scheme on demand. Third

150



but not the least, MemFlex proactive swap-in optimization offers just-in-time performance

recovery by replacing costly page faults with an efficient swap-in implementation.

In addition, a low cost VM memory balancer, iBalloon, with high accuracy and trans-

parency is proposed. No modification is required for VMs or the hypervisor to deploy

iBalloon, which makes it more acceptable in real Cloud environment. iBalloon runs a light-

weighted monitoring daemon in each VM, which gathers the information about memory

utilization of that VM. At the same time, a balancer daemon is running in the host to

collect information reported by the monitor, and automatically makes the decision about

how to balance the memory around VMs. The balancer finally talks to the Balloon driver

in the host machine to actually move the memory around.

Last but not the least, a kernel-backed system-level facility, StackVault, is designed to

eliminate sensitive stack data leakage. StackVault enforces three types of stack protection

operations to protect the sensitive stack data by preventing an untrusted function from

illegally accessing the stack of another function in the same process. Through placement

and enforcement of such operations, StackVault moves the sensitive stack data into an OS

kernel buffer prior to the execution of an untrusted function, so that there is no way for

such data to be touched by any untrusted function. Such protection also ensures that all

data required for the execution of the untrusted function is kept on the stack. The stack

data is restored immediately after the untrusted function returns, and the stack is cleared

for every sensitive function upon its return, in order to eliminate any leakage of stack data

after its completion.

7.2 Future Work

There are many interesting open research problems for in-memory computing area. First

of all, the Cloud platforms need an operating system (Cloud OS) to automatically manage

the memory resources from different physical machines as a whole. The Cloud OS should

provide an uniformed abstraction of the underlying memory resources to the VMs, which

enable a VM to expand its memory across multiple physical machines. This mechanism

can further increase the memory utilization of the whole Cloud platform. However, it
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faces multiple challenges, For example, different access latencies between local memory and

remote memory need to be considered so as to minimize the VM performance overhead.

Also, as the memory data of a single VM or a single application is now widely spread among

the Cloud, being able to quickly recover from the machine failure is becoming essential.

Another thread of future research will be making the data secure in virtualized environment.

Memory data leakage can happen not only within a VM, but also among multiple VMs when

they are running on the host. Therefore, it is critical to effectively and efficiently track the

memory data, which is generated in the VM and the travels out side of the VM while

accessing the hardware device, and clears the memory as early as possible. This ensures

that memory data in the VM will not be leaked.
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