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SUMMARY

With the emergence of data science, graph computing is becoming a crucial tool for
processing big connected data. However, when mapped to modern computing systems,
graph computing typically suffers from poor performance because of inefficiencies in mem-
ory subsystems. At the same time, emerging technologies, such as Hybrid Memory Cube
(HMC), enable processing-in-memory (PIM) functionality, a promising technique of near-
data processing (NDP), by integrating compute units in the 3D-stacked logic layer. The
PIM units allows operation offloading at an instruction level, which has considerable po-
tential to overcome the performance bottleneck of graph computing. Nevertheless, studies
have not fully explored this functionality for graph workloads or identified its applications
and shortcomings. The main objective of this dissertation is to enable NDP techniques for
efficient graph computing. Specifically, it investigates the PIM offloading at instruction
level. To achieve this goal, it presents a graph benchmark suite for understanding graph
computing behaviors, and then proposes architectural techniques for PIM offloading on
various host platforms.

This dissertation first presents GraphBIG, a comprehensive graph benchmark suite. To
cover major graph computation types and data sources, GraphBIG selects representative
data representations, workloads, and datasets from 21 real-world use cases of multiple ap-
plication domains. This dissertation characterized the benchmarks on real machines and
observed extremely irregular memory patterns and significant diverse behaviors across var-
ious computation types. GraphBIG helps users understand the behavior of modern graph
computing on hardware architectures and enables future architecture and system research
for graph computing.

To achieve better performance of graph computing, this dissertation proposes Graph-
PIM, a full-stack NDP solution for graph computing. This dissertation performs an analysis

on modern graph workloads to assess the applicability of PIM offloading and presents hard-
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ware and software mechanisms to efficiently make use of the PIM functionality. Following
the real-world HMC 2.0 specification, GraphPIM provides performance benefits for graph
applications without any user code modification and ISA changes. In addition, Graph-
PIM proposes an extension to PIM operations that can further bring performance benefits
for more graph applications. The evaluation results show that GraphPIM achieves up to a
2.4x speedup with a 37% reduction in energy consumption.

To effectively utilize NDP systems with GPU-based host architectures that can fully
utilize hundreds of gigabytes of bandwidth, this dissertation explores managing the ther-
mal constraints of 3D-stacked memory cubes. Based on the real experiment with an HMC
prototype, this study observes that the operating temperature of HMC is much higher than
conventional DRAM, which can even cause thermal shutdown with a passive cooling so-
lution. In addition, it also shows that even with a commodity-server cooling solution,
HMC can fail to maintain the temperature of the memory dies within the normal operating
range when in-memory processing is highly utilized, thereby resulting in higher energy
consumption and performance overhead. To this end, this dissertation proposes CoolPIM,
a thermal-aware source throttling mechanism that controls the intensity of PIM offloading
on runtime. The proposed technique keeps the memory dies of HMC within the normal
operating temperature using software-based techniques. The evaluation results show that
CoolPIM achieves up to 1.4x and 1.37x speedups compared to non-offloading and naive

offloading scenarios.
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CHAPTER 1
INTRODUCTION

1.1 The Problem: Inefficient Graph Computing on Conventional Architectures

With the emergence of data and network science, graph computing has been increasingly
popular as a tool for processing large-scale network data. Nowadays, graph computing is
applied to a variety of domains, such as social networks [1, 2, 3], e-commerce recommen-
dations [4, 5], and bio-informatics [6, 7]. It is expected to become more prevalent in the
future as many large-scale, real-world problems can be effectively modeled as graphs. As
a result, to enable efficient graph computing, researchers have devoted a significant amount
of research efforts from high-level graph analytics [1, 8] to low-level system implementa-
tions [9, 10, 11, 12, 13]. Industry has proposed multiple of graph computing platforms,
such as Pregel [9] from Google, System G [13] from IBM, Trinity [14] from Microsoft,
and Cassovary [15] from Twitter. Academia also has proposed a variety of graph comput-
ing systems in various hardware environments. Examples include GraphChi [10] and X-
stream [16] for single machines, GraphLab [17] and GraphX [18] for distributed systems,
GraphReduce [19] and Cusha [12] for GPU platforms. In addition, numerous optimization
techniques have been proposed for specific graph applications [20, 21, 22, 23].

Despite all these efforts of graph platform design and graph application optimization,
graph computing does not perform well on modern computing systems because of the in-
herent nature of the irregular connectivity between vertices, which leads to irregular mem-
ory accesses to graph data and makes the memory subsystem inefficiently utilized on both
CPU- and GPU-based hardware platforms. For CPU-based platforms, it introduces high
cache miss ratio and eventually results in extremely low instruction per cycle (IPC); while

for GPU-based platforms, it brings memory divergence, which triggers instruction replay



and memory bandwidth underutilization, and thus reduces system throughput.

To improve the execution efficiency of graph computing, it is critical to understand the
graph computing behaviors from architectural perspectives and incorporate architectural
innovations for overcoming the inefficient utilization of memory subsystems. However,
most of existing benchmarks target other evaluation purposes, which are less applicable for
benchmarking graph computing specifically. Because of lacking sufficient benchmarking
support, graph computing research requires a set of new and representative graph bench-
marks and its comprehensive characterization. In addition, most existing memory subsys-
tem techniques focus on the cache-level optimization and target only conventional appli-
cations; hence, they cannot be directly applied on graph computing systems. The graph
computing problem requires solutions that utilize emerging architectural techniques and

understand real-world graph computing characteristics at the same time.

1.2 The Contributions: Enabling Near-Data Processing for Efficient Graph Com-

puting

Among the emerging technologies for memory subsystems, this dissertation investigates
near-data processing (NDP) techniques, in particular, the processing-in-memory (PIM)
techniques, and focuses on the question that how to enable PIM offloading for improving
graph computing efficiency. To solve this question, this dissertation first proposes a com-
prehensive graph benchmark suite for understanding graph computing behavior and then
proposes a novel technique that enables PIM offloading for graph computing on CPU plat-
forms. After that, this dissertation analyzes the thermal problem of 3D-stacked memory and
proposes a thermal-aware PIM offloading mechanism for graph computing on data-parallel
architectures. The highlights of the contributions are as follows.

Benchmarking and characterizing graph computing: Graph computing has a wide
scope with various computation types. However, most of existing benchmarks target other

evaluation purposes, which are much broader than graph computing. For example, in



CloudSuite and BigDataBench, graph is only a small portion of their applications, and
Graph 500 was proposed only for system performance ranking purposes. To understand
graph computing properly, the graph benchmarks should cover the broad scope of graph
computing and incorporate realistic frameworks, not just simplified static graph structures
with no complex properties attached to vertices and edges.

To understand the behaviors of graph computing, this dissertation propose a suite of
CPU/GPU graph benchmarks, GraphBIG, and analyze it on contemporary hardware. Graph-
BIG is inspired by the System G framework from IBM, which is a set of industrial graph
computing toolkits used by many commercial clients [13]. Instead of directly using a spe-
cific industrial framework, GraphBIG abstracts one based on our experience with System
G and a large number of interactions with the commercial clients. The workloads are all
from representative use cases and cover all major computation types. Moreover, the frame-
work and data representation design are both following generic techniques widely used
by multiple graph systems. By ensuring the representativeness of data representations and
graph workloads, GraphBIG is able to address the shortcomings of previous benchmarking
efforts and achieve a generic benchmarking solution. The characterization of GraphBIG in-
dicates high L2/1.3 cache miss rates on CPUs as well as high branch/memory divergence on
GPUs, and also observes diverse architectural behavior across various graph computation
types and a high degree of data sensitivity.

Enabling instruction-level offloading in graph computing frameworks: The con-
cept of NDP was initially proposed decades ago, most notably as PIM, with a variety of
architecture designs and test chips [24, 25, 26, 27, 28]. However, because of fabrication
issues, the widespread commercial adoption of PIM remained elusive. Recent advances
in 3D stacking technology reinitiated PIM-based NDP research by integrating the logic
and memory dies in the same package. Several researchers have proposed various PIM
architectures and programming models [29, 30, 31], and memory vendors have also started

to incorporate compute units into the memory architecture as does Hybrid Memory Cube



(HMC), proposed by Micron [32, 33]. By offloading operations on irregular data, PIM
has considerable potentials of memory bandwidth saving, cache pollution reduction, and
atomic instruction overhead avoidance. However, to enable PIM for graph computing, we
have to address two key challenges, what to offload and how to offload. That is how to
enable PIM offloading in host architectures and how to integrate the offloading feature into
the software graph frameworks.

This dissertation follows the HMC 2.0 specification, which is a real-world PIM tech-
nique that will be available in the near future, and proposes a full-stack solution that enables
PIM for modern graph frameworks, GraphPIM, which addresses both of the two challenges
above. First, based on the key observation that the atomic access to the graph property is the
main culprit for the inefficient execution of graph workloads on modern systems, Graph-
PIM offloads the atomic operations on the graph property to the PIM side to avoid the
overhead of performing the atomic operations in the host processor as well as the ineffi-
cient utilization of the memory subsystem caused by irregular data accesses. Instead of
adding new host instructions for each PIM operation, GraphPIM leverages existing host
instructions to enable PIM by mapping host atomic instructions directly into PIM atom-
ics using uncacheable memory support in modern architectures. Thus, with only minor
architectural extensions that support PIM instruction offloading, GraphPIM significantly
improves graph processing performance (up to 2.4x) without any changes in ISA and user
applications.

Enabling thermal-aware offloading for graph computing on data-parallel archi-
tectures: 3D-stacking technology enables high memory bandwidth and PIM functionality;
however it also raise severe thermal challenges because of its high power density and lim-
ited thermal transfer capability within the stack. Although conventional DRAMs usually
stay at a low temperature with only ambient cooling, a 3D-stack can easily exceed 85C
at high utilization even with an active cooling solution. Therefore, for data-parallel ar-

chitectures that can consume hundreds of gigabytes of memory bandwidth, such as GPUs



and Xeon Phi, to fully utilize the 3D-stacked memory and its PIM functionality for graph
computing, the PIM offloading should stay aware of the thermal limitations.

To explore managing the thermal constraints of die stacking and in-memory processing,
this dissertation perform a thermal analysis on a real HMC 1.1 prototype and then model
PIM functionality as in HMC 2.0 according to the real prototype results. The evaluation
shows that even a commodity-server cooling could fail to maintain the memory temperature
below the normal operating temperature range; so, the PIM needs to shut down for cooling
down its temperature before serving memory requests again or decrease the DRAM refresh
interval and frequency. Therefore, this dissertation proposes CoolPIM, a thermal-aware
source throttling technique that dynamically controls the intensity of PIM offloading. Our
proposed technique maintains the temperature of memory dies within the normal operating
temperature with a commodity-server cooling solution, which leads to higher performance
compared to naive offloading. CoolPIM improves performance up to 1.4x and 1.37x com-

pared to non-offloading and naive PIM offloading without thermal consideration.

1.3 Thesis Statement

Near-data processing techniques can enable efficient graph computing by designing effec-
tive software and hardware mechanisms for architecting instruction-level processing-in-

memory offloading.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 summarizes background and
related work. Chapter 3 presents a comprehensive graph benchmark suite and its architec-
tural characterization. Chapter 4 proposes a technique that enables PIM offloading in graph
computing frameworks. Chapter 5 presents a thermal analysis of 3D-stacked memory and
proposes a dynamic source throttling technique of thermal-aware PIM offloading for graph

computing on data-parallel architectures. Chapter 6 concludes this dissertation.



CHAPTER 2
BACKGROUND AND RELATED WORK

2.1 Graph Computing Platforms

As a crucial tool for processing network data, graph computing is becoming increasingly
important. Several graph computing platforms have been proposed in both industrial and

academic proposals.

2.1.1 Industrial Graph Platforms

A wide variety of graph platforms have been proposed by industry. In 2010, Google
proposed the Pregel [9], which is a scalable graph framework for distributed environment.
It follows Bulk Synchronous Parallel (BSP) and vertex-centric programming model. As
an open-source counterpart of Pregel, Apach Giraph [34] was also proposed shortly after
Pregel. In Pregel, the graph computation consists a series of supersteps. Each contains a
computation phase and a communication phase. Active vertices perform user-defined com-
pute function in the computation phase, while in the communication phase, messages are
broadcasted through outgoing edges. GraphLab [17] is another popular graph computing
framework designed for distributed environment. It is following a Gather-Apply-Scatter
(GAS) model, which shares significant similarly as Pregel. In particular, GAS model pulls
information from incoming edges in the Gather phase. The Apply phase then perform local
computation and updates vertex states. The neighbors are further updated in the Scatter
phase. GAS model can be achieved in both synchronous and asynchronous way. IBM
also proposes System G, which is a comprehensive set of graph computing tools for big
data [13]. System G provides a full set of toolkits, including graph visualization, graph an-

alytics, graph middleware, and graph database. Other industrial graph frameworks include



Trinity [14] from Microsoft, Cassovary [15] from Twitter, and PGX.D [35] from Oracle.

2.1.2  Academic Graph Platforms

Multiple academic research efforts also have been proposed, focusing on various optimiza-
tion targets on different hardware platforms. GraphChi [10] proposes a data management
and computation scheduling method to enable large-scale graph processing on one single
machine. It utilizes the Parallel Sliding Window (PSW) technique to optimize disk 1O
performance. With properly managed graph partitioning and sorted edgelist within parti-
tions, GraphChi converts random accesses into a few sequential disk accesses. By utilizing
the similar concept, X-stream [16] and Cusha [12] propose techniques for improving data
access locality of graph computing on various platforms. Both X-stream and Cusha are
following GAS programming model. Cusha follows vertex-centric GAS model, while X-
stream uses edge-centric GAS model. However, Cusha is limited by the GPU memory
capacity, lacking the capability of processing large-scale graphs. To solve this limitation,
GraphReduce [19] proposes a hybrid method that combines vertex-centric and edge-centric
GAS model. By incorporating efficient graph partitioning and data movement, GraphRe-

duce achieves a scalable GPU framework that exceeds internal memory capacity limitation.

2.2 Graph Computing Benchmarks

Previous benchmarking efforts of graph computing are summarized in Table 2.1. Multi-
ple existing generic benchmark suites contain graph computing workloads. As one of the
most widely used benchmark suites, SPEC 2006 [44] includes two graph related work-
loads. Besides, multiple newly proposed benchmark suites also contain graph workloads.
For example, CloudSuite [36] is a benchmark suite for cloud services. It includes one
graph analytics workload, which implements the TunkRank algorithm for user ranking of
twitter graphs. BigDataBench [38] is an open-source big data benchmark suite for scale-

out workloads. It contains five graph workloads built on top of Hadoop/Spark framework.



Table 2.1: Comparison between GraphBIG and prior graph benchmarks. (Computation
and data types are summarized in Table 3.1 and Table 3.2)

Benchmark | Graph Framework Data Computation Data
Workloads Represen- Type Support
tation
SPEC int | mcf, astar NA Arrays CompStruct  Data type 4
CloudSuite [36] | TunkRank GraphLab [17] Vertex- CompStruct  Data type 1
centric
Graph 500 [37] | Reference NA CSR CompStruct  Synthetic data
code
BigDataBench [38] | 4 workloads Hadoop Tables CompStruct  Data type 1
SSCA [39] | 4 kernels NA CSR CompStruct  Synthetic data
PBBS [40] | 5 workloads NA CSR CompStruct  Synthetic data
Parboil [41] | GPU-BFS NA CSR CompStruct  Synthetic data
Rodinia [42] | 3 GPU NA CSR CompStruct  Synthetic data
kernels
Lonestar [43] | 3 GPU NA CSR CompStruct  Synthetic data
kernels
GraphBIG | 12 CPU IBM System Vertex- CompStruct/  All types &
workloads, G [13] centric CompProp synthetic data
8 GPU /CSR /CompDyn
workloads

Meanwhile, BigDataBench also provides multiple social graph data and a synthetic graph
generator, which is inherited from SNAP package [45]. Similarly, five graph workloads are
incorporated in the Problem Based Benchmark Suite (PBBS) [40]. It is designed to be an
open source repository to compare different parallel programming methodologies in terms
of performance and code quality. Several GPU benchmark suites also contain graph com-
puting workloads. For example, Parboil [41] and Rodinia [42] are targeting general GPU
benchmarking. Both of them incorporate GPU graph workloads. Parboil includes BFS,
while Rodinia contains BFS, PathFinder, and B+ Tree. Lonestar [43] is a GPU bench-
mark suites targeting irregular applications. It also includes three graph workloads, BFS,
Minimum Spanning Tree, and Shortest Path.

As summarized above, most of the existing benchmark suites, including both CPU and

GPU benchmark suites, target at generic evaluation purposes, which are much broader than



graph computing. Their focuses are either evaluating contemporary hardware platforms
or evaluating generic computation types, such as big data and cloud computing. Because
of their broad coverage, they cannot provide specialized evaluation support when comes
to graph computing specifically. To overcome the limitations of generic benchmarking
efforts for evaluating graph computing, graph-specific benchmarks are also proposed. As
one of the most widely adopt graph benchmarking efforts, Graph 500 [37] was announced
in ISC2010. The target is to establish a set of large-scale benchmarks for graph computing
evaluation. Graph 500 is using BFS as the main benchmark and number of traversed edges
per second (TEPS) as the key metric. Although reference code is provided, participants are
encouraged to design customized software and hardware implementation to achieve highly
optimized throughput. Besides, Scalable Synthetic Compact Application (SSCA) [39] is
another example of graph benchmark. It provides a comprehensive graph benchmark with
four kernels, including graph generation, classification, subgraph extraction, and graph
clustering.

Graph computing has a broad scope, covering multiple computation types. As shown in
Table 2.1, most of existing benchmarks are highly biased to graph traversal related work-
loads (CompStruct). The other two graph computation types, computation on dynamic
graphs and on rich properties, are less studied. However, as we illustrated in the previous
section, both of them are important graph computation types and cannot be overlooked
when analyzing the full-scope graph computing. Moreover, without incorporating realistic
frameworks, most prior graph benchmarks assume simplified static graph structures with
no complex properties attached to vertices and edges. However, this is not the case for most
real-world graph processing systems. The underlying framework plays a crucial role in the
graph system performance. Moreover, in real-world systems, graphs are dynamic and both
vertices and edges are associated with rich properties.

Multiple system-level benchmarking efforts are also ongoing for evaluating and com-

paring existing graph systems. Examples include LDBC benchmark, GraphBench, G.



Yong’s characterization work [46], and A. L. Varbanescu’s study [47]. We excluded them
in the summary of Table 2.1 because of their limited usability for architectural research. In
these benchmarking efforts, very few ready-to-use open-source benchmarks are provided.

Detailed analysis on the architectural behaviors is also lacking.

2.3 Near-data Processing (NDP)

Because of the increasing gap between computation speed and data movement speed,
also known as the “memory wall”, the near-data processing (NDP) concept was inten-
sively studied, such as intelligent controllers near memory, I/O, and disk. Among them,
processing-in-memory (PIM) is the most notable one with numerous research proposals
in the 1990’s. Examples include computational ram [48], DIVA [25], memory-based pro-
cessor array (MPA) [49], and active pages [27]. Test chips as well as systems were also
proposed [24]. By placing the computation where data resides, PIM can minimize the data
transfer time. However, fabrication issues limit PIM from being adopted widely in indus-
try. On the contrary, memory vendors focus more on the innovations in memory interface
techniques.

PIM is regaining research interest because of the recent advances in 3D-staking tech-
nology. With the demonstration of multiple industrial products [32, 50, 51] and academic
projects [30, 31], 3D-stacking technique is already in place. In this new context of die-
stacking, NDP concept, especially PIM, is revisited in recent years with a variety of re-

search proposals.

2.3.1 3D-stacking Technology

The 3D-stacking technology enables integration of dies with different fabrication tech-
niques. Memory and logic dies can be integrated within the same package in a cost-
effective manner. Multiple industrial proposals of 3D-stacking have been presented. Ex-

amples include Micron’s Hybrid Memory Cube (HMC) [32], High Bandwidth Memory
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(HBM) [50] from AMD and Hynix, and IBM’s Active Memory Cube (AMC) [51]. HMC
consists of a single package containing multiple memory dies and one logic die [32],
stacked together via TSVs. Multiple HMC packages can be connected together in a daisy-
chained manner. Instead of stacking memory on top of a logic die, HBM is following
an interposer-based integration, also known as 2.5D stacking. In the interposer stacking,
the bandwidth limit between logic and memory is significantly smaller than 3D-stacking
because of the limitation of interposer wire count. However, HBM decouples the size of
logic die from memory stacks, allowing a much large memory capacity integrated into the
package. AMC is a PIM architecture for exascale computing proposed by IBM. By per-
sonalizing the logic layer in HMC structure, AMC incorporates 32 lane units within the

memory stack. Each lane unit is a general-purpose core with streaming vector structure.

2.3.2 PIM Architectures

Unlike the old PIM proposals in 1990s [24, 25, 26, 27, 28], which require DRAM die
modifications, 3D-stacking structure provides a practical design for realizing PIM concept
in a cost-effective way. It therefore enables a variety of research proposals for architecting
and evaluating PIM.

Prior PIM research focuses more on fully-programmable PIMs. For example, Ahn et
al. [30] proposed an in-memory programmable accelerator, named as Tesseract, for large-
scale graph processing. Tesseract utilizes the 3D-stacking design of HMC and integrates
in-order core to each HMC vault. With an efficient message passing mechanism and spe-
cialized hardware prefetcher, Tesseract can improve performance and energy efficiency
significantly. Gao et al. proposed a PIM architecture for data analytics applications [29].
Hsieh et al. [52] also proposed a GPU-based PIM architecture that enables programmer-
transparent PIM GPU systems.

In addition to fully-programmable PIM, PIM taxonomy also includes fixed-function

PIMs, among which HMC is one of the examples of industrial proposals. Loh et al. [53]
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compared and analyzed different taxonomies of PIM architectures. In Loh’s work, PIM tax-
onomy is classified into three categories, non-compute, fixed-function, and programmable.
Non-compute type is using logic in a transparent way. It includes build-in self test, in-
stack prefetch, in-stack caching, and so on. Programmable category assumes a fully-
programmable unit integrated in the logic die. The programmable unit can a general-
purpose processor, such as Tesseract, or domain specific unit, such as GPU and DSP. On the
other hand, fixed-function PIM provides a set of pre-defined functionality in the memory
stack. The supported function can be simple operations, such as regular x86 instruction, or
compound operations, such as scatter and gather operation. To our knowledge, the most rel-
evant academic proposal of fixed-function PIM is PEI [31]. PEI incorporates a set of PIM
operations in both host processor and memory. Software utilizes PIM operations by using
special PIM instructions. The PIM operations will either be processed in the host processor
or be offloaded to memory, according the locality monitoring result. Moreover, PEI does
not bypass cache for PIM data. To ensures data coherence, PEI sends extra writebacks for
the offloaded operations. Nai et al. [54] also proposed a case study of instruction-level PIM
offloading for graph traversal applications. As a preliminary study, it provides application
analysis without detailed performance evaluations. Various PIM architectures are also stud-
ied in the context of different application domains. For example, Zhu et al. [55] focused on
data intensive applications and proposed an in-memory accelerator architecture. Similarly,

Xu et al. [56] proposed a scalable PIM architecture for deep learning applications.

2.4 HMC Architecture

HMC integrates multiple DRAM dies and one logic die within a single package using die-
stacking technology. As illustrated in Figure 2.1, the HMC is organized into multiple vaults
that are functionally and operationally independent. The memory partitions within a vault
are connected via through-silicon vias (TSVs), each of which may have multiple memory

banks. Each vault incorporates a vault controller (similar to the memory controller) in the
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logic layer that manages the memory partitions stacked on top of it. There is also a crossbar
switch that connects all vault controllers and external I/O links. Each I/O link consists of 16
input serial lanes and 16 output serial lanes. The 1/O links follow a packet-based protocol,
in which the packets consist of 128-bit flow units named as FLIT [57]. Each response
packet contains a tail field, which includes a 7-bit error status (ERRSTAT[6:0]). When
exceeding the operational temperature limit, HMC sends back an error warning by setting
the error bits to 0000001. Although HMC 2.0 only uses one thermal error, more thermal
warning states can easily be defined by utilizing the unused error codes. Because of the high
memory density and high-speed external links, HMC provides a dramatic improvement in
memory bandwidth. In addition, HMC also opens up the possibility of supporting a variety

of PIM functionality within the memory cube.

Vault <

[_1 DRAM Layers

B Logic Layer
Figure 2.1: Hybrid memory cube architecture

HMC integrates multiple DRAM dies and one logic die within a single package using
die-stacking technology, and thus introduces the possibility of supporting a variety of PIM
functionality within the memory cube. PIM operations in HMC basically perform three
steps: reading data from DRAM, performing computation on the data in the logic die, and
then writing back the result to the same DRAM location. According to HMC 2.0, the PIM
units perform read-modify-write (RMW) operations atomically within an HMC package.

The corresponding DRAM bank is locked during the RMW operation, so any other memory
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requests to the same bank cannot be serviced. In addition, all PIM operations include only
one memory operand; the operations are performed on an immediate value and a memory

operand.

Table 2.2: Atomic operations in HMC 2.0

Type \ Data Size Operation Return
Arithmetic | 8/16 byte  single/dual signed add w/ or w/o
Bitwise | 8/16 byte  swap, bit write w/ or w/o

Boolean | 16 byte AND/NAND/OR/NOR/XOR  w/o
Comparison | 8/16 byte = CAS-if equal/zero/greater/less, w/
compare if equal w/

Table 2.2 lists several types of PIM operations supported by HMC 2.0: arithmetic, bit-
wise, boolean, and comparison. Although some operations also support eight bytes, the
default data size of PIM operations is 16 bytes. Depending on the definition of specific
commands, a response may or may not be returned. If the response is returned, it will in-
clude an atomic flag that indicates whether the atomic operation was successful. Depending

on the commands, the original memory data may also be returned along with the response.

2.5 Thermal Challenges

Thermal analysis of 3D-stacked memory: The 3D-stacking technique enables a massive
bandwidth between different dies. However, it also exposes more severe thermal chal-
lenges. Milojevic et al. [58] propose a power-efficient many-core server-on-chip system
with 3D-stacked Wide I/O DRAMs [59], and conduct a thermal characterization on it. Their
results show that even with embedded cores, when executing CPU-centric benchmarks, the
temperature reaches 175-200 °C with less than 20W power consumption, which already
exceeds the reliable memory operating temperature. However, with real cloud workloads,
because of the memory-intensive feature, the power density is much below, and thus the
temperatures remains at a lower range, resulting a feasible 3D-stacked system with a low-

cost passive heat sink. Eckert et al. [60] explore the thermal feasibility of die-stacked PIM.
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and demonstrate the thermal constraints with various processor organizations and cooling
solutions. By following the recent Wide I/O DRAM technology [59], this work analyzes a
PIM system similar to high-bandwidth memory (HBM) [50]. It demonstrates that even with
a low-end passive heat sink, the logic die can sustain up to 8.5W while keeping the DRAM
temperature below 85 °C. It also shows that the power budget of the logic die depends on
not only the cooling solutions, but also the organization of PIM processors. Loh [61] pro-
poses a 3D-stacked memory on top of a high-performance quad-core processor with 92W
power consumption. This work demonstrates that an eight-die stacked memory plus a logic
die can be kept below 95 °C with an active heat sink. Similarly, Kim et al. [62] presents
a programmable and scalable digital neuromorphic architecture for efficient neural com-
puting. The proposed architecture follows a HMC-like design with 3D-stacked logic and
DRAM layers. By integrating low-power processing elements (PEs) in each HMC vault, it
keeps the temperature of logic die within 349K, and the temperature of DRAM dies within
344K.

Temperature impact on DRAM: Temperature affects the refresh interval and latency
of DRAM cells. Guan et al. [63] analyze the temperature impact on 3D-stacked DRAMs,
and propose a temperature-aware refresh mechanism for 3D-stacked DRAMSs. Their mech-
anism adjusts the refresh rates of DRAM banks based on their actual thermal conditions
at runtime. Specifically, the mechanism split the operating temperature into five ranges:
45-65°C, 65-85°C, 85-95°C, and 95-105°C. The refresh is doubled when reaching each
higher temperature range. In addition, the modern DDR4 DRAMs also incorporate a sim-
ilar concept for higher temperature range. In the DDR4 specification [64], the refresh
rate at 85-95°C is doubled than at a lower temperature. Liu et al. [65] also presents a
dynamic DRAM refresh mechanism, which can identify and skip unnecessary refreshes
using knowledge of cell retention times. By grouping DRAM rows into retention time
bins and applying a different refresh rate to each bin, it refreshes only the leaky cells

frequently, while refreshes most rows at a smaller frequency. Lee et al. [66] exploit the
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temperature impact on DRAM latency by profiling real DRAM DIMMs. Their results
demonstrate that it is possible to reduce four of the most critical timing parameters by a
minimum/maximum of 17.3%/54.8% at 55 °C without sacrificing correctness. This work
then proposes an adaptive-latency DRAM, a mechanism that adaptively reduces the timing
parameters for DRAM modules based on the current operating condition. The proposed
mechanism can improve the performance of memory-intensive workloads by an average of

14% without introducing any errors.
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CHAPTER 3
GRAPHBIG: UNDERSTANDING GRAPH COMPUTING

3.1 Introduction

Graph computing is comprised of multiple research areas, from low level architecture de-
sign to high level data mining and visualization algorithms. Enormous research efforts
across multiple communities have been invested in this discipline [1]. However, researchers
focus more on analyzing and mining graph data, while paying relatively less attention to
the performance of graph computing [21, 3]. Although high performance implementations
of specific graph applications and systems exist in prior literature, a comprehensive study
on the full spectrum of graph computing is still missing [20, 22]. Unlike prior work focus-
ing on graph traversals and assuming simplified data structures, graph computing today has
a much broader scope. In today’s graph applications, not only has the structure of graphs
analyzed grown in size, but the data associated with vertices and edges has become richer
and more dynamic, enabling new hybrid content and graph analysis [8]. Besides, the com-
puting platforms are becoming heterogeneous. More than just parallel graph computing on
CPUs, there is a growing field of graph computing on Graphic Processing Units (GPUs).
The challenges in graph computing come from multiple key issues like frameworks,
data representations, computation types, and data sources [8]. First, most of the industrial
solutions deployed by clients today are in the form of an integrated framework [67, 68, 13].
In this context, elementary graph operations, such as find-vertex and add-edge are part of
a rich interface supported by graph datastructures and they account for a large portion of
the total execution time, significantly impacting the performance. Second, the interaction
of data representations with memory subsystems greatly impacts performance. Third, al-

though graph traversals are considered to be representative graph applications, in practice,
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graph computing has a much broader scope. Typical graph applications can be grouped into
three computation types: (1) computation on graph structure, (2) computation on rich prop-
erties, and (3) computation on dynamic graphs. Finally, as a data-centric computing tool,
graph computing is sensitive to the structure of input data. Several graph processing frame-
works have been proposed lately by both academia and industry [67, 17, 34, 13, 16, 12].
Despite the variety of these frameworks, benchmarking efforts have focused mainly on
simplified static memory representations and graph traversals, leaving a large area of graph
computing unexplored [37, 69]. Little is known, for example, about the behavior of full-
spectrum graph computing with dynamic data representations. Likewise, graph traversal
is only one computation type. What is the behavior of other algorithms that build graphs
or modify complex properties on vertices and edges? How is the behavior of graph com-
puting influenced by the structure of the input data? To answer these questions, we have
to analyze graph workloads across a broader spectrum of computation types and build our
benchmarks with extended data representations.

To understand the full-spectrum of graph computing, we propose a benchmark suite,
GraphBIG', and analyze it on contemporary hardware. GraphBIG is inspired by IBM’s
System G framework, which is a comprehensive set of industrial graph computing toolkits
used by many commercial clients [13]. Based on our experience with a large set of real
world user problems, we selected representative graph data representations, interfaces, and
graph workloads to design our GraphBIG benchmark suite. GraphBIG utilizes a dynamic,
vertex-centric data representation, which is widely utilized in real-world graph systems,
and selects workloads and datasets inspired by use cases from a comprehensive selection of
application domains. By ensuring the representativeness of data representations and graph
workloads, GraphBIG is able to address the shortcomings of previous benchmarking efforts
and achieve a generic benchmarking solution. The characterization of performance on

GraphBIG workloads can help researchers understand not only the architectural behaviors

1GraphBIG is open-sourced under BSD license. The source codes, datasets, and documents are released
in our github repository (http://github.com/graphbig/graphBIG).
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of specific graph workloads, but also the trend and correlations of full-spectrum graph
computing.

In this chapter, we first discuss and summarize the key factors of graph computing, and
then illustrates the methodology and workloads of our proposed GraphBIG. In Section 3.4,
we characterize the workloads from multiple perspectives on CPU/GPU hardware. Finally,

in Section 3.5, we summarize our work.

3.2 Graph Computing: Key Factors

Although graph traversals, such as Breadth-first Search and Shortest-path, are usually con-
sidered as representative graph applications, real-world graph computing also performs var-
ious other comprehensive computations. In real-world practices, graph computing contains
a broad scope of use cases, from cognitive analytics to data exploration. The wide range
of use cases introduces not only unique, but also diverse features of graph computing. The
uniqueness and diversity are reflected in multiple key factors, including frameworks, data
representations, computation types, and data sources. To understand graph computing in a
holistic way, we first analyze these key factors of graph computing in this section.
Framework: Unlike standalone prototypes of graph algorithms, graph computing sys-
tems largely rely on specific frameworks to achieve various functionalities. By hiding the
details of managing both graph data and requests, the graph frameworks provide users
primitives for elementary graph operations. The examples of graph computing frameworks
include GraphLab [17], Pregel [9], Apache Giraph [34], and IBM System G [13]. They all
share significant similarity in their graph models and user primitives. First, unlike simpli-
fied algorithm prototypes, graph systems represent graph data as a property graph, which
associates user-defined properties with each vertex and edge. The properties can include
meta-data (e.g., user profiles), program states (e.g., vertex status in BES or graph color-
ing), and even complex probability tables (e.g., Bayesian inference). Second, instead of

directly operating on graph data, the user defined applications achieve their algorithms via
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framework-defined primitives, which usually include find/delete/add vertices/edges, tra-

verse neighbours, and update properties.
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Figure 3.1: Execution time of framework

To estimate the framework’s impact on the graph system performance, we performed
profiling experiments on a series of typical graph workloads with IBM System G frame-
work. As shown in Figure 3.1, a significant portion of time is contributed by the frame-
work for most workloads, especially for graph traversal based ones. On average, the in-
framework time is as high as 76%. It clearly shows that the heavy reliance on the framework
indeed results in a large portion of in-framework execution time. It can bring significant
impacts on the architecture behaviors of the upper layer graph workloads. Therefore, to
understand graph computing, it is not enough to study only simple standalone prototypes.
Workload analysis should be performed with representative frameworks, in which multiple
other factors, such as flexibility and complexity, are considered, leading to design choices
different from academic prototypes.

Data representation: Within the graph frameworks, various data representations can
be incorporated for organizing in-memory graph data. The differences between in-memory
data representations can significantly affect the architectural behaviors, especially memory
subsystem related features, and eventually impact the overall performance.

One of the most popular data representation structure is Compressed Sparse Row (CSR).
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Figure 3.2: Illustration of data representations. (a) graph G, (b) its CSR representation, and
(c) its vertex-centric representation.

As illustrated in Figure 3.2(a)(b), CSR organizes vertices, edges, and properties of graph
G in separate compact arrays. (Variants of CSR also exist. For example, Coordinate
List (COO) format replaces the vertex array in CSR with an array of source vertices
of each edge.) The compact format of CSR saves memory size and simplifies graph
build/copy/transfer complexity. Because of its simplicity, CSR is widely used in the lit-
erature. However, its drawback is also obvious. CSR is only suitable for static data with
no structural updates. This is the case for most graph algorithm prototypes. Neverthe-
less, real-world graph systems usually are highly dynamic in both topologies and prop-
erties. Thus, more flexible data representations are incorporated in graph systems. For
example, IBM System G, as well as multiple other frameworks, is using a vertex-centric
structure, in which a vertex is the basic unit of a graph. As shown in Figure 3.2(c), the
vertex property and the outgoing edges stay within the same vertex structure. Meanwhile,
all vertices form up an adjacency list with indices. Although the compact format of CSR
may bring better locality and lead to better cache performance, graph computing systems
usually utilize vertex-centric structures because of the flexibility requirement of real-world

use cases [17, 13].
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Table 3.1: Graph computation type summary

Graph Computation Type Feature Example
Computation on graph structure  Irregular access pattern, BEFS traversal
(CompStruct) heavy read accesses

Computation on graphs with rich Heavy numeric operations Belief propagation
properties (CompProp) on properties

Computation on dynamic graphs Dynamic graph, dynamic  Streaming graph
(CompDyn) memory footprint

Table 3.2: Graph data source summary

No. Graph Data Source Example Feature
1 Social(/economic/political) network  Twitter graph Large connected components,
small shortest path lengths
2 Information(/knowledge) network Knowledge graph Large vertex degrees,
large small hop neighbourhoods
3 Nature(/bio/cognitive) network Gene network Complex properties,
structured topology
4 Man-made technology network Road network Regular topology,

small vertex degrees

Computation types: Numerous graph applications exist in previous literature and real-
world practices. Despite the variance of implementation details, generally, graph comput-
ing applications can be classified into a few computation types [70]. As shown in Table 3.1,
we summarize the applications into three categories according to their different computa-
tion targets: graph structure, graph properties, and dynamic graphs. They have different
features in terms of read/write/numeric intensity. (1) Computation on the graph structure
incorporates a large number of memory accesses and limited numeric operations. Their
irregular memory access pattern leads to extremely poor spatial locality. (2) On the con-
trary, computation on graphs with rich properties introduces lots of numeric computations
on properties, which leads to hybrid workload behaviors. (3) For computation on dynamic
graphs, it also shows an irregular pattern as the first computation type. However, the up-
dates of graph structure lead to high write intensity and dynamic memory footprint.

Graph data sources: As a data-centric computing tool, graph computing heavily relies
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on data inputs. As shown in Table 3.2, we summarize graph data into four sources [70].
The social network represents the interactions between individuals/organizations. The key
features of social networks include high degree variances, small shortest path lengths, and
large connected components [2]. On the contrary, an information network is a structure,
in which the dominant interaction is the dissemination of information along edges. It usu-
ally shows large vertex degrees, and large two-hop neighbourhoods. The nature network
is a graph of biological/cognitive objects. Examples include gene network [71], deep be-
lief network (DBN) [72] and biological network [73].They typically incorporate structured
topologies and rich properties addressing different targets. Man-made technology networks
are formed by specific man-made technologies. A typical example is a road network, which

usually maintains small vertex degrees and a regular topology.

3.3 GraphBIG: Benchmarking Graph Computing

3.3.1 Methodology

To understand the graph computing, we propose GraphBIG, a benchmark suite inspired
by IBM System G, which is a comprehensive set of graph computing tools, cloud, and
solutions for Big Data [13]. GraphBIG includes representative benchmarks from both CPU
and GPU sides to achieve a holistic view of general graph computing.

Framework: To represent real-world scenarios, GraphBIG utilizes the framework de-
sign and data representation inspired by IBM System G, which is a comprehensive graph
computing toolsets used by several real-world scenarios. Like many other industrial so-
lutions, the major concerns of SystemG design include not only performance, but also
flexibility, complexity, and usability. System G framework enables us to utilize its rich use
case and dataset support and summarize workloads from one of the representative industrial
graph solutions. By ensuring the representativeness of workloads and data representations,
GraphBIG help users understand the full-spectrum graph computing. Like several other

graph systems, GraphBIG follows the vertex-centric data representation, in which a ver-
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tex is the basic unit of a graph. The vertex property and the outgoing edges stay within
the same vertex structure. All vertices’ structures form an adjacency list and the outgoing
edges inside the vertex structure also form an adjacency list of edges. The graph computing
workloads are implemented via framework primitives, such as find/add/delete vertex/edge
and property update.By linking the same core code with various CUDA kernels, the GPU
benchmarks are also utilizing the same framework. In addition, because of the nature of
GPU computing, the graph data in GPU memory is organized as CSR/COO structure. In
the graph populating step, the dynamic vertex-centric graph data in CPU main memory is
converted and transferred to GPU side. Moreover, by replacing System G’s commercial
components with rewritten source codes, we are able to open source GraphBIG for public
usage under BSD license.

Workload Selection: GraphBIG follows the workflow shown in Figure 3.3. By ana-
lyzing real-world use cases from IBM System G customers, we summarize computation
types and graph data types. Meanwhile, we select workloads and datasets according to
their popularity (use frequency). To ensure the coverage, we then reselect the workloads
and datasets to cover all computation and data types. After that, we finalize the workloads
and datasets to form our GraphBIG benchmark suite. In this way, the representativeness

and coverage are addressed at the same time.
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Figure 3.3: GraphBIG workload selection flow

To understand real-world graph computing, we analyzed 21 key use cases of graph com-

puting from multiple application domains. The use cases are all from real-world practices
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Figure 3.4: Real-world use case analysis

of IBM System G customers [13, 70]. As shown in Figure 3.4, the use cases come from
six different categories, from cognitive computing to data exploration. Their percentage in
each category is shown in Figure 3.4(B), varying from 24% to 10%. Each use case involves
multiple graph computing algorithms. As explained previously, we then select representa-
tive workloads from the use cases according to the number of used times. Figure 3.4(A)
shows the number of use cases of each chosen workload with the breakdown by categories.
The most popular workload, BFS, is used by 10 different use cases, while the least popu-
lar one, TC, is also used by 4 use cases. From Figure 3.4(A), we can see that the chosen
workloads are all widely used in multiple real-world use cases. After the summarize step,

a reselection is performed in merge step to cover all computation types.

3.3.2 Benchmark Description

As explained in Figure 3.3 and Figure 3.4, we analyze real-world use cases and then se-
lect workloads by considering the key factors together. The workloads in our proposed
GraphBIG are summarized in Table 3.3. For explanation purpose, we group the workloads

into four categories according to their high level usages. The details are further explained
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Table 3.3: GraphBIG workload summary

Category | Workload g;lr)lzputatlon CPU GPU Use Case Example
Graph traversal | BFS CompStruct Vv Vv Recommendation for
Commerce
DFS CompStruct vV Visualization for Ex-
ploration
Graph update | Graph construction CompDyn vV Graph Analysis for

(GCons) Image Processing
Graph update CompDyn vV Fraud Detection for
(GUp) Bank
Topology morph- CompDyn vV Anomaly Detection at
ing (TMorph) Multiple Scales

Graph analytics | Shortest path  CompStruct v Vv Smart Navigation
(SPath)
K-core decomposi- CompStruct V Vv Large Cloud Monitor-
tion (kCore) ing
Connected compo- CompStruct vV Vv Social Media Moni-
nent (CComp) toring
Graph coloring CompStruct Vv Graph matching for
(GColor) genomic medicine
Triangle count CompProp vV Vv Data Curation for En-
(TO) terprise
Gibbs  inference CompProp vV Detecting Cyber At-
(GD tacks

Social analysis | Degree centrality CompStruct vV Vv Social Media Moni-

(DCentr) toring
Betweenness cen- CompStruct — +/ vV Social Network Anal-
trality (BCentr) ysis in Enterprise

below.

Graph traversal: Graph traversal is the most fundamental operation of graph com-
puting. Two workloads — Breadth-first Search (BFS) and Depth-first Search (DFS) are
selected. Both are widely-used graph traversal operations.

Graph construction/update: Graph update workloads are performing computations
on dynamic graphs. Three workloads are included as following. (1) Graph construction
(GCons) constructs a directed graph with a given number of vertices and edges. (2) Graph

update (GUp) deletes a given list of vertices and related edges from a existing graph. (3)
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Topology morphing (TMorph) generates an undirected moral graph from a directed-acyclic
graph (DAG). It involves graph construction, graph traversal, and graph update operations.

Graph analytics: There are three groups of graph analytics, including topological
analysis, graph search/match, and graph path/flow. Since basic graph traversal workloads
already cover graph search behaviors, here we focus on topological analysis and graph
path/flow. As shown in Table 3.3, five chosen workloads cover the two major graph an-
alytic types and two computation types. The shortest path is a tool for graph path/flow
analytics, while the others are all topological analysis. In their implementations, the short-
est path is following Dijkstra’s algorithm. The k-core decomposition is using Matula &
Beck’s algorithm [74]. The connected component is implemented with BFS traversals on
the CPU side and with Soman’s algorithm [75] on the GPU side. The triangle count is based
on Schank’s algorithm [76] and the graph coloring is following Luby-Jones’ proposal [77].
Besides, the Gibbs inference is performing Gibbs sampling for approximate inference in
bayesian networks.

Social analysis: Due to its importance, social analysis is listed as a separate category in
our work, although generally social analysis can be considered as a special case of generic
graph analytics. We select graph centrality to represent social analysis workloads. Since
closeness centrality shares significant similarity with shortest path, we include the between-

ness centrality with Brandes’ algorithm [78] and degree centrality [79].

3.3.3 Graph data support

To address both representativeness and coverage of graph data sets, we consider two types
of graph data, real-world data and synthetic data. Both are equally important, as explained
in Section 3.2. The real-world data sets can illustrate real graph data features, while the syn-
thetic data can help in analyzing workloads because of its flexible data size and relatively
short execution time. Meanwhile, since the focus of our work is the architectural impact of

graph computing, the dataset selection should not bring obstacles for architectural charac-
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terizations on various hardware platforms. Large datasets are infeasible for small-memory
platforms because of their huge memory footprint sizes. Therefore, we only include one
large graph data in our dataset selection.As shown in Table 3.4, we collect four real-world
data sets and a synthetic data set to cover the requirements of both sides. The details of
the chosen data sets are explained below. All data sets are publicly available in our github

wiki.

Table 3.4: Graph data set summary

Data Set Type Vertex# Edge#
Twitter Graph Type 1 120M 1.9B
IBM Knowledge Repo Type 2 154K 1.72M
IBM Watson Gene Graph Type 3 M 12.2M
CA Road Network Type 4 1.9M 2.8M
LDBC Graph Synthetic  Any Any

(1) Real-world data: Four real-world graph data sets are provided, including twitter
graph, IBM knowledge Repo, IBM Watson Gene Graph, and CA road network. The ver-
tex/edge numbers of each data set are shown in Table 3.4. The twitter graph is a pre-
processed data set of twitter transactions. In this graph, twitter users are the vertices and
twit/retwit communications form the edges. In IBM Knowledge Repo, two types of ver-
tices, users and documents, form up a bipartite graph. An edge represents a particular
document is accessed by a user. It is from a document recommendation system used by
IBM internally. As an example of bio networks, the IBM Watson Gene graph is a data set
used for bioinformatic research. It is representing the relationships between gene, chemi-
cal, and drug. The CA road network is a network of roads in California [45]. Intersections
and endpoints are represented by nodes and the roads connecting these intersections or road
endpoints are represented by undirected edges.

(2) Synthetic data: The LDBC graph is a synthetic data set generated by LDBC data
generator and represents social network features [80]. The generated LDBC data set can

have arbitrary data set sizes while keeping the same features as a facebook-like social net-
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work. The LDBC graph enables the possibility to perform detailed characterizations of

graph workloads and compare the impact of data set size.

3.4 GraphBIG Characterization and Evaluation

3.4.1 Characterization Methodology

Hardware configurations: We perform our experiments on an Intel Xeon machine with

Nvidia Tesla K40 GPU. The hardware and OS details are shown in Table 3.5. To avoid the

uncertainty introduced by OS thread scheduling, we schedule and pin threads to different

hardware cores.

Table 3.5: Test machine configurations

Processor | Type Xeon E5-2670
Frequency 2.6 GHz
Core # 2 sockets x 8 cores x 2 threads
Cache 32KBL1,256 KB L2, 20 MB L3
MemoryBW  51.2 GB/s (DDR3)
GPU | Type Nvidia Tesla K40
CUDA Core 2880
Memory 12 GB
MemoryBW 288 GB/s (GDDRYS)
Frequency Core-745 MHz Memory-3 GHz
Host System | Memory 192 GB
Disk 2 TB HDD
oS Red Hat Enterprise Linux 6

Table 3.6: Graph data in the experiments

Experiment Data Set

Vertex # Edge #

Twitter Graph (sampled) 11M 85M
IBM Knowledge Repo 154K 1.72M
IBM Watson Gene Graph 2M 12.2M
CA Road Network 1.9M 2.8M
LDBC Graph M 28.82M

Datasets: In the characterization experiments, we first use synthetic graph data to en-

able in-depth analysis for multiple architectural features of both CPU and GPU sides. As
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shown in Table 3.6, the LDBC graph with 1 million vertices is selected. Four real-world
data sets are then included for data sensitivity studies. The Twitter graph is sampled in
our experiments because of the extremely large size of the original graph. In our experi-
ments, although the test platform incorporates a large memory capacity on CPU side, the
GPU side has only 12GB memory, which limits the dataset size. Thus, huge size datasets
are infeasible in the experiments. Moreover, we intentionally select datasets from diverse
sources to cover different graph types. With the combination of different graph sizes and
types, the evaluation can illustrate the data impact comprehensively. In addition, because
of the special computation requirement of Gibbs Inference workload, the bayesian network
MUNIN [81] is used. It includes 1041 vertices, 1397 edges, and 80592 parameters.

Profiling method: In our experiments, the hardware performance counters are used
for measuring detailed hardware statistics. In total, around 30 hardware counters of the
CPU side and 25 hardware metrics of the GPU side are collected. For the profiling of CPU
benchmarks, we designed our own profiling tool embedded within the benchmarks. It is
utilizing the perf_event interface of Linux kernel for accessing hardware counters and the
libpfm library for encoding hardware counters from event names. For GPU benchmarks,
the nvprof tool from Nvidia CUDA SDK is used.

Metrics for CPUs: In the experiments, we are following a hierarchical profiling strat-
egy. Multiple metrics are utilized to analyze the architectural behaviors.

For the CPU benchmarks, Execution cycle breakdown is first analyzed to figure out the
bottleneck of workloads. The breakdown categories include frontend stall, backend stall,
retiring, and bad speculation. In modern processors, frontend includes instruction fetching,
decoding, and allocation. After allocated, backend is responsible for instruction renaming,
scheduling, execution, and commit. It also involves memory subsystems. Cache MPKI is
then analyzed to understand memory subsystem behaviors. We estimated the MPKI values
of L1D, L2, and LLC. In addition, we also measured multiple other metrics, including

IPC, branch miss rate, ICache miss rate, and DTLB penalty. These metrics cover major
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architectural factors of modern processors.

Metrics for GPUs: For the GPU side experiments, we first analyzed the divergence of
given benchmarks. Two metrics are measured, one is branch divergence rate (BDR) and
another is memory divergence rate (MDR). We use the following equations to express the

degree of branch and memory divergence.

inactive threads per warp

branch divergence rate (BDR) = -
warp size

replayed instructions

memory divergence rate (MDR) = — - -
issued instructions

BDR is the average ratio of inactive threads per warp, which is typical caused by divergent
branches. MDR is the fraction of issued instructions that are replayed. In modern GPUs, a
load or store instruction would be replayed if there is a bank conflict or the warp accesses
more than one 128-byte block in memory. The replay may happen multiple times until all
the requested data have been read or written. Thus, we estimate the memory divergence
by measuring the number of replayed instructions. Both BDR and MDR range from O to 1

with higher value representing higher divergence.

3.4.2 CPU Characterization Results

Workload Characterization

In this section, we characterize GraphBIG CPU workloads with a top-down characteriza-
tion strategy. The results are explained as following.

Execution time breakdown: The execution time breakdown is shown in Figure 3.5 and
grouped by computation types. The Frontend and Backend represent the frontend bound
and backend bound stall cycles respectively. The BadSpeculation is the cycles spent on
wrong speculations, while the Retiring is the cycles of successfully retired instructions. It
is a common intuition that irregular data accesses are the major source of inefficiencies

of graph computing. The breakdown of execution time also supports such intuition. It
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Figure 3.5: Execution time breakdown of GraphBIG CPU workloads

is shown that the backend indeed takes dominant time for most workloads. In extreme
cases, such as kCore and GUp, the backend stall percentage can be even higher than 90%.
However, different from the simple intuition, the outliers also exist. For example, the
workloads of computation on rich properties (CompProp) category shows only around 50%
cycles on backend stalls. The variances between computation types further demonstrates
the necessity of covering different computation types.

Core analysis: Although execution stall can be triggered by multiple components in the
core architecture, instruction fetch and branch prediction are usually the key inefficiency
sources. Generally, a large number of ICache misses or branch miss predictions can signif-
icantly affect architectural performance, because modern processors usually don’t incorpo-
rate efficient techniques to hide ICache/branch related penalties. In previous literatures, it
was reported that many big data workloads, including graph applications, suffer from high
ICache miss rate [36]. However, in our experiments, we observe different outcomes.As
shown in Figure 3.6, the ICache MPKI of each workload all show below 0.7 values, though
small variances still exist. The different ICache performance values are resulted from the

design differences of the underlying frameworks. Open-source big data frameworks typi-
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Figure 3.6: DTLB penalty, ICache MPKI, and branch miss rate of GraphBIG CPU work-
loads

cally incorporate many other existing libraries and tools. Meanwhile, the included libraries
may further utilize other libraries. Thus, it eventually results in deep software stacks, which
lead to complex code structures and high ICache MPKI. However, in GraphBIG, very few
external libraries are included and a flat software hierarchy is incorporated. Because of its
low code structure complexity, GraphBIG shows a much lower ICache MPKI.

The branch prediction also shows low miss prediction rate in most workloads except
for TC, which reaches as high as 10.7%. The workloads from other computation types
show a miss prediction rate below 5%. The difference comes from the special intersection
operations in TC workload. It is also in accordance with the above breakdown result, in
which TC consumes a significant amount of cycles in BadSpeculation.

The DTLB miss penalty is shown in Figure 3.6. The cycles wasted on DTLB misses
is more than 15% of totaly execution cycles for most workloads. On average, it still takes
12.4%. The high penalty is caused by two sources. One is the large memory footprint

of graph computing applications, which cover a large number of memory pages. Another
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is the irregular access pattern, which incorporates extremely low page locality. Diversity
among workloads also exists. The DTLB miss penalty reaches as high as 21.1% for Con-
nected Component and as low as 3.9% for TC and 1% for Gibbs. This is because for
computation on properties, the memory accesses are centralized within the vertices. Thus,

low DTLB-miss penalty time is observed.
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Figure 3.7: Cache MPKI of GraphBIG CPU workloads

Cache performance: As shown in previous sections, cache plays a crucial role in graph
computing performance. In Figure 3.7, the MPKI of different levels of caches are shown.
On average, a high L3 MPKI is shown, reaching as high as 48.77. Degree Centrality and
Connected Component show even higher MPKI, which are 145.9 and 101.3 respectively.
For computations on the graph structure (CompStruct), a generally high MPKI is observed.
On the contrary, CompProp shows an extremely small MPKI value compared with other
workloads. This is in accordance with its computation features, in which memory accesses
happen mostly inside properties with a regular pattern. The workloads of computation
on dynamic graphs (CompDyn) introduce diverse results, ranging from 6.3 to 27.5 in L3
MPKI. This is because of the diverse operations of each workload. GCons adds new ver-

tices/edges and sets their properties one by one, while GUp mostly deletes them in a random
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manner. In GCons, significantly better locality is observed because each new vertex/edge
will be immediately reused after insertion. The TMorph involves graph traversal, inser-
tion, and deletion operations. Meanwhile, unlike other workloads, TMorph includes no
small size local queues/stacks, leading to a high MPKI in L1D cache. However, its graph

traversal pattern results in relatively good locality in L2 and L3.
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Figure 3.8: Average behaviors of GraphBIG CPU workloads by computation types

Computation type behaviors: The average behaviors of each computation type are
shown in Figure 3.8. Although variances exist within each computation type, the aver-
age results demonstrate their diverse features. The CompStruct shows significantly higher
MPKI and DTLB miss penalty values because of its irregular access pattern when travers-
ing through graph structure. Low and medium MPKI and DTLB values are shown in
CompProp and CompDyn respectively. Similarly, the CompProp suffers from a high branch
miss rate while other two types do not. In the IPC results, CompStruct achieves the lowest
IPC value due to the penalty from cache misses. On the contrary, CompProp shows the
highest IPC value. The IPC value of CompDyn stays between them. Such feature is in
accordance with their access patterns and computation types.

Data sensitivity: To study the impact of input data sets, we performed experiments on
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four real-world data sets from different types of sources and the LDBC synthetic data (We

excluded the workloads that cannot take all input datasets).
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Figure 3.9: Cache hit rate, DTLB penalty, and IPC of GraphBIG CPU workloads with
different data sets

Despite the extremely low L2/L.3 hit rates, Figure 3.9 shows relatively higher L1D hit
rates for almost all workloads and data sets. This is because graph computing applica-
tions all incorporate multiple small size structures, such as task queues and temporal local
variables. The frequently accessed meta data introduces a large amount of L1D cache hits
except for DCentr, in which there is a only limited amount of meta data accesses. From the
results in Figure 3.9, we can also see that twitter data shows highest DTLB miss penalty in
most workloads. Such behavior eventually turns into lowest IPC values in most workloads

except SPath, in which higher L1D cache hit rate of the twitter graph helps performance
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significantly. Triangle Count (TC) achieves highest IPC with the knowledge data set, be-
cause of its high L2/L.3 hit rate and low TLB penalty. The high L3 hit rate of the watson
data also results in a high IPC value. However, the twitter graph’s high L3 hit rate is
offsetted by its extremely high DTLB miss cycles, leading to the lowest IPC value. The
diversity is caused by the different topological and property features of the real-world data
sets. It is clearly shown that significant impacts are introduced by the graph data on overall

performance and other architectural features.

Observations

In the characterization experiments, by measuring several architectural factors, we ob-
served multiple graph computing features. The key observations are summarized as fol-

lowing.

e Backend is the major bottleneck for most graph computing workloads, especially for
CompStruct category. However, such behavior is much less significant in CompProp

category.

e The ICache miss rate of GraphBIG is as low as conventional applications, unlike
many other big data applications, which are known to have high ICache miss rate.

This is because of the flat code hierarchy of the underlying framework.

e Graph computing is usually considered to be cache-unfriendly. L2 and L3 caches
indeed show extremely low hit rates in GraphBIG. However, L1D cache shows sig-
nificantly higher hit rates. This is because of the locality of non-graph data, such as

temporal local variables and task queues.

e Although typically DTLB is not an issue for conventional applications, it is a signif-
icant source of inefficiencies for graph computing. In GraphBIG, a high DTLB miss

penalty is observed because of the large memory footprint and low page locality.
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e Graph workloads from different computation types show significant diversity in mul-
tiple architectural features. The study on graph computing should consider not only

graph traversals, but also the other computation types.

e Input graph data has significant impact on memory subsystems and the overall per-

formance. The impact is from both the data volume and the graph topology.

The major inefficiency of graph workloads comes from memory subsystem. Their ex-
tremely low cache hit rate introduces challenges as well as opportunities for future graph
architecture/system research. Moreover, the low ICache miss rate of GraphBIG demon-

strates the importance of proper software stack design.

3.4.3 GPU Characterization Results

We characterize the GPU workloads of GraphBIG in this section. The experiments are

performed via nvprof on real machines. The results are summarized below.
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Figure 3.10: Branch and memory divergence of GraphBIG GPU workloads

Irregularity analysis: To estimate the irregularity of graph computing on GPU, we

measured the degree of both branch and memory divergence. As explained in Section 3.4.1,
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the metrics we used in the experiments are branch divergence rate (BDR) and memory
divergence rate (MDR). With a higher BDR value, more threads in the same warp take
different execution paths, leading to a lower warp utilization. Similarly, a higher MDR
value indicates that more memory requests contain bank conflicts or are accessing more
than 128-byte blocks. In this case, instruction replays are triggered to fulfill all memory
requests.

Figure 3.10 shows a scatter plot of the workloads where the x-axis represents MDR and
the y-axis represents BDR. Each dot in the figure corresponds to a GraphBIG workload.
From Figure 3.10, we can observe that most workloads cannot be simply classified as
branch-bound or memory-bound. A generally high divergence degree from both sides are
shown. In addition, the workloads show a quite scatter distribution across the whole space.
For example, kCore stays at the lower-left corner, showing relatively lower divergence in
both branch and memory. On the contrary, DCentr is showing extremely high divergence
in both sides. Meanwhile, branch divergence is the key issue of GColor and BCentr, while
for CComp and TC, the issue is only from memory side.

The high branch divergence for graph computing comes from the thread-centric design,
in which each thread processes one vertex. However, the working set size of each vertex
is corresponding its degree, which can vary greatly. The unbalanced per-thread workload
introduces divergent branches, especially for the loop condition checks, leading to branch
divergence behaviors.In Figure 3.10, a relatively higher BDR is observed in GColor and
BCentr because of the heavier per-edge computation. On the contrary, CComp and TC
show small BDR values because they are both following an edge-centric model, in which
each thread processes one edge.

In typical graph workloads, because of the sparse distributed edges, accesses to both
the neighbor list and vertex property are spreading across the whole graph. Hence, the
traversal of each edge involves cache misses and divergent memory accesses. Depending

on the reliance of graph properties and warp utilization, the degree of memory divergence

39



may vary. As shown in Figure 3.10, the MDR value can be as low as 0.25 in kCore and as

high as 0.87 in DCentr.
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Figure 3.11: Memory throughput and IPC of GraphBIG GPU workloads

Memory throughput and IPC: The GPU device memory throughput results are shown
in Figure 3.11. Although the Tesla K40 GPU supports up to 288 GB/s memory bandwidth,
in our experiments, the highest read throughput is only 89.9 GB/s in CComp. The in-
efficient bandwidth utilization is cause by divergence in both branch and memory. The
memory throughput results shown in Figure 3.11 are determined by multiple factors, in-
cluding data access intensity, memory divergence, and branch divergence. For example,
CComp incorporates intensive data accesses and low branch divergence. It shows the high-
est throughput value. DCentr has extremely intensive data accesses. Hence, even though
DCentr has high branch and memory divergence, its throughput is still as high as 75.2 GB/s.
A special happens at TC, which shows only 2.0 GB/s read throughput. This is because TC
is mostly performing intersection operations between neighbor vertices with quite low data
intensity. Since data accesses typically are the bottleneck, the memory throughput out-
comes also reflect application performance in most workloads except for DCentr and TC.

In DCentr, despite the high memory throughput, intensive atomic instrcutions significantly
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reduce performance. Meanwhile, unlike other workloads, TC involves lots of parallel arith-

metic compare operations. Hence, TC shows the highest IPC value.
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Figure 3.12: Speedup of GPU over 16-core CPU

Speedup over CPU: Although GPU is usually considered to be suitable for regular
applications, irregular graph computing applications still receive performance benefits by
utilizing GPUs. In Figure 3.12, the speedup of GPU over 16-core CPU is shown. In the
experiments, we utilized the GraphBIG workloads that are shared between GPU and CPU
sides. In our comparison, the major concern is in-core computation time, not end-to-end
time. The data loading/transfer/initialize time are not included. Besides, as explained in
Section 3.3, the dynamic vertex-centric data layout is utilized at CPU side, while GPU side
uses CSR graph format.

From the results in Figure 3.12, we can see that GPU provides significant speedup
in most workloads and datasets. The speedup can reach as high as 121 in CComp and
around 20x in many other cases. In general, the significant speedup achieved by GPU
is because of two major factors, thread-level parallelism (TLP) and data locality. It is
difficult to benefit from instruction-level parallelism in graph applications. However, the

rich TLP resources in GPUs can still provide great performance potentials. Meanwhile,
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the CSR format in GPUs brings better data locality than the dynamic data layout in CPUs.
Specifically, the DCentr shows high speedup number with CA-RoadNet because of the
low branch divergence and static working set size. Likewise, CComp also shows similar
behaviors. On the contrary, BFS and SPath show significant lower speedup values because
of the low efficiency introduced by varying working set size. The speedup of TC is even
lower. This is because of its special computation type. In TC, each thread incorporates

heavy per-vertex computation, which is inefficient for GPU cores.
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Figure 3.13: Branch and memory divergence of GraphBIG GPU workloads with different
datasets

Dataset sensitivity: To estimate the sensitivity of input datasets, we performed diver-
gence analysis on the four real-world datasets and LDBC-1M synthetic graph. In Fig-
ure 3.13, the results of different workloads are shown with different symbols in the same
space, meanwhile different datasets are marked with corresponding initial letters.

From Figure 3.13, we can see that in many workloads, the divergence changes sig-
nificantly for different datasets. As data-centric computing, graph workloads’ behaviors
are data dependent. However, the results of several datasets also tend to cluster in the
same region. For CComp and TC, the branch divergence rate does not change much be-

tween different input graphs. This is expected behavior for them. They both incorporate
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an edge-centric implementation, in which workload is partitioned by edges, ensuring bal-
anced workset size between threads. Because of its low branch divergence feature, kCore
also shows quite low variability in branch divergence. Both BFS and SPath show similarly
low BDR values for CA-RoadNet, Watson-gene, and Knowledge-repo. This is in accor-
dance with the graph features. Both Watson and Knowledge graphs contains small-size
local sub-graphs, while CA-RoadNet includes much smaller vertex degree. Nevertheless,
in Twitter and LDBC graphs, their social network features brings high BDR values. Mean-
while, unlike Twitter has a few vertices with extremely higher degree, the unbalanced de-
gree distribution in LDBC involves more vertices. It leads to even higher warp divergence.
Similar diversity happens in GColor and DCentr, which show much lower BDR values for
CA-RoadNet graph because of its quite low vertex degrees.

Unlike branch divergence, MDR generally shows much higher variability for most
workloads. It demonstrates the data sensitivity of memory divergence. Meanwhile, ex-
ceptions also exist. For example, BFS and SPath both show similar MDR values for CA-
RoadNet, Watson-gene, and Knowledge-repo. As explained above, their special graph
structures lead to a small number of traversed edges in each iteration. Thus, the impact
of input graph is reduced. Moreover, the higher irregularity in edge distribution of LDBC

leads to significantly higher MDR values in most workloads.

Observations

Unlike the conventional applications, the irregularity of graph computing brings unique

behaviors on GPUs. We summarize the key observations as follows.

e Although graph computing is usually considered as less suitable for GPUs, with
proper designs, GPU graph applications can achieve significant speedup over the

corresponding CPU implementations.

e Branch divergence is known to be the top issue for graph computing on GPUs. We
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observe that besides branch divergence, graph computing suffers from even higher

memory divergence, leading to inefficient memory bandwidth utilizations.

Graph workloads cannot fully utilize the GPU’s execution capability. An extremely

low IPC value is observed for most GraphBIG workloads.

The behaviors of graph computing are data dependent. Input graph has comprehen-
sive impacts on both branch and memory divergence. Specifically, memory diver-

gence shows higher data sensitivity.

Interestingly, the GPU graph workloads have significantly higher data sensitivity than
the CPU ones. CPU/GPU sides show different data-application correlations, because

of the architecture differences.

Although traversal based workloads show similar behaviors, significant diverse be-
haviors across all workloads are observed. It is difficult to summarize general fea-
tures that can be applied on all graph workloads. Hence, a representative study should

cover not only graph traversals, but also the other workloads.

Although suffering from high branch and memory divergence, graph computing on

GPUs still show significant performance benefits in most cases. Meanwhile, like CPU

workloads, GPU graph computing also incorporate workload diversity and data dependent

behaviors. In addition, comparing with CPU workloads, GPU graph workloads have much

higher data sensitivity and more complex correlations between input data and application.

To improve the performance of GPU graph computing, new architecture/system techniques

considering both workload diversity and data sensitivity are needed.

3.5 Summary

In this chapter, by analyzing real-world use cases, we discussed and summarized the key

factors of graph computing, including frameworks, data representations, graph computation
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types, and graph data sources. We also demonstrated the impact of framework and data
representation.

To understand the full-spectrum graph computing, we presented GraphBIG, a suite of
CPU/GPU benchmarks. Our proposed benchmark suites addressed all key factors simulta-
neously by utilizing System G framework design and following a comprehensive workload
selection procedure. With the summary of computation types and graph data sources, we
selected representative workloads from key use cases to cover all computation types. In
addition, we provided real-world data sets from different source types and synthetic social
network data for characterization purposes.

By performing experiments on real machines, we characterized GraphBIG workloads
comprehensively. From the experiments, we observed following behaviors. (1) Conven-
tional architectures do not perform well for graph computing. Significant inefficiencies are
observed in CPU memory subsystems and GPU warp/memory bandwidth utilizations. (2)
Significant diverse behaviors are shown in different workloads and different computation
types. Such diversity exists on both CPU and GPU sides, and involves multiple architec-
tural features. (3) Graph computing on both of CPUs and GPUs are highly data sensitive.
Input data has significant and complex impacts on multiple architecture features. As the
first comprehensive architectural study on full-spectrum graph computing, GraphBIG can

be served for architecture and system research of graph computing.
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CHAPTER 4
GRAPHPIM: ENABLING INSTRUCTION-LEVEL PIM OFFLOADING IN
GRAPH FRAMEWORKS

4.1 Introduction

As a near-data processing (NDP) technique for addressing the bottleneck in the memory
subsystem, processing-in-memory (PIM) was proposed a few decades ago with a variety of
proposals [24, 25, 26, 27, 28]. Unfortunately, the initial attempt for PIM was not entirely
successful not only because its design and fabrication are complex but also because the
problem of memory-wall was less urgent. Recently, because of advances in 3D-stacking
technologies and an increasing concern about the memory bottleneck, PIM architectures
have regained the attention of researchers. Several researchers have proposed various PIM
architectures and programming models [29, 30, 31], and memory vendors have also started
to incorporate compute units into the memory architecture as does Hybrid Memory Cube
(HMC), proposed by Micron [32, 33].

In this chapter, we explore incorporating real-world PIM technology into graph com-
puting to improve its execution efficiency by addressing hardware and software challenges.
In particular, our study follows the HMC 2.0 specification that will be available in the near
future. HMC stacks a logic layer and several DRAM layers using vertical interconnects
called through-silicon vias (TSVs). The logic layer provides hardware for compute func-
tionality and accommodates the memory controller for the DRAM layers. Starting from

I Atomic

HMC 2.0, it supports the execution of 18 atomic operations in its logic layer.
operation support is limited to several basic operations, but it introduces the possibility of

offloading computation at an an instruction granularity. To this end, we propose a full-stack

'THMC 2.0 differs from HMC Gen2, which follows the HMC 1.0 specification. HMC 2.0 hardware is not
publicly available yet, but HMC atomic support is a practical, real-world design.
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solution that enables PIM for modern graph frameworks, GraphPIM, which addresses two
key challenges.

What to Offload to PIM: Exploiting PIM in an effective way requires the identification
of the right candidate for offloading, which, however, has not been well discussed in prior
PIM studies. GraphPIM is based on the key observation that the atomic access to the graph
property is the main culprit for the inefficient execution of graph workloads on modern
systems. Thus, by offloading the atomic operations on the graph property to the PIM side,
GraphPIM avoids the overhead of performing the atomic operations in the host processor
as well as the inefficient utilization of the memory subsystem caused by irregular data
accesses.

How to Offload to PIM: Another key challenge of PIM is designing an effective interface
between the host processor and PIM architecture. A recent PIM study proposed having a
new host (native) instruction for every PIM operation to invoke PIM operations [31], but
this may not be acceptable to some, if not most, processor vendors, because of its impact on
various design aspects. Instead, GraphPIM leverages host instructions to enable PIM. The
key idea of GraphPIM is to map host atomic instructions directly into PIM atomics using
uncacheable memory support in modern architectures. With this approach, we demonstrate
performance benefits for a wide range of graph workloads without any changes in ISA or
user applications; requiring only a minor extension to the host processor, GraphPIM is
more non-intrusive to the current software and hardware environment than other solutions,

which we will discuss in Section 4.3.2.

4.2 GraphPIM Motivation

Processing-in-memory (PIM) is a decades-old concept of incorporating computation func-
tionality directly in the memory. The integrated compute units can be fully programmable
cores, such as CPU and GPU, and simple units that executes fixed-function PIM opera-

tions. As one of the first few industrial practices of PIM, Hybrid Memory Cube (HMC),
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starting from HMC 2.0, provides compute capability [57]. In this section, we discuss how

to exploit the PIM functionality for graph workloads.

4.2.1 Modern Graph Computing

Graph computing has been applied to a variety of domains as an important tool for process-
ing large-scale network data. In real-world practices, because of the unique characteristics
of graph data, graph computing shows distinct and diverse behaviors that are different from
other computing types.

Framework-Based Computing: Unlike general applications that are often written
from scratch, graph computing applications are typically implemented on top of underlying
graph frameworks [17, 34, 9, 11], which provide user primitives for elementary graph op-
erations, such as finding vertices and updating graph properties, and hide the complexity of
graph data management from application programmers. In other words, graph frameworks
decouple user application code from low-level data management and OS/hardware-related
code and therefore allows us to integrate optimization techniques into the graph frameworks

without adding an extra burden on programmers.
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Figure 4.1: Instructions per cycle (IPC) of graph workloads on an Intel Xeon ES machine

Inefficient Execution on Modern Systems: To understand the performance behav-
iors of diverse graph applications on modern architectures, we measure the instructions per

cycle (IPC) of typical graph workloads in each category on an 8-core Intel Xeon ES ma-
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chine. As shown in Figure 4.1, most workloads experience extremely poor performance.
For example, many applications in the GT category show IPC less than 0.1, and while the
workloads in DG show a bit higher performance than GT, they are still well below IPC of
1. In general, graph computing applications (especially for the applications in the GT and

DG categories) suffer from significantly poor performance on conventional architectures.

4.2.2 Bottlenecks in Graph Computing

The bottlenecks in graph computing arise from two major sources. First, graph comput-
ing typically entails a large number of irregular memory accesses because of the scattered
graph connectivity. This makes on-chip caches mostly ineffective and thus leads to poor
utilization of compute resources due to the access to the long-latency main memory. Sec-
ond, graph data is typically processed in parallel due to its massive scale. Such parallel
graph data processing heavily performs atomic operations to avoid contention of shared
data. In general, atomic execution involves multiple operations and incurs non-negligible
performance overhead [82]. Below, we provide an analysis to understand the bottlenecks
of graph computing.

Irregular Memory Access: To understand the impact of irregular memory accesses on
graph computing, we break down the execution time in the processor pipeline and measure
misses per kilo instructions (MPKI) of on-chip caches across a variety of graph workloads.
The experiment is performed on an Intel Xeon E5 machine using hardware performance
counters [83].

First, the top graph in Figure 4.2 shows the execution time breakdown following a top-
down methodology described in Intel manual [84, 83]. Frontend and Backend repre-
sent the execution time spent by frontend and backend-caused stalls.? Also, BadSpeculation
shows the cycles due to miss speculation, while Ret iring represents the cycles of suc-

cessfully retired instructions. Note that the pipeline stalls caused by the memory subsystem

2Frontend includes instruction fetch, decode and allocate, and Backend includes instruction schedul-
ing, executing, and retiring.
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Figure 4.2: Architectural behaviors of graph workloads on an Intel Xeon ES machine

are included in Backend.

As shown in the figure, graph computing spends most of its execution time on Backend,
which is higher than 90% in some workloads, indicating that the memory subsystem is the
key bottleneck for graph workloads. Such an observation is further supported by the MPKI
results in the bottom graph, where L3 MPKI can be as high as 145 for the Degree Centrality
(DCentr) workload. Also, the L2 and L3 caches do not provide enough benefit for most
graph workloads as presented in the L2/L.3 MPKI values.

Data Components: Figure 4.3 illustrates a code snippet of breadth-first search (BFS)
using a vertex-frontier based algorithm [85]. The code goes through a loop that iterates
over the traversal steps in a synchronized way. The algorithm in each step processes the
vertices in the frontier which contains the vertices with the same depth. For each vertex,
the algorithm checks the depth of its neighbors to see if it has been visited, and if not the
depth information is updated using a compare and swap (CAS) atomic operation. Then, the
newly visited vertices form the frontier for the next iteration. Here, the data access can be

classified into three different components: meta data, graph structure, and graph property.
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1 F < {source} F: frontier vertex set of current step
2 while Fis not empty F”: frontier vertex set of next step
3 F’ < {0} u.depth: depth value of vertexu
4 |foreach u € Fin parallel neighbor(u): neighbor vertices of u
5 d < u.depth+1 CAS(v.depth, inf, d): atomic compare
6 for each v € neighbor(u) and swap operation
7 ret—CAS(v.depth, inf, d)
8 if ret==success
9 FFe—FUv
10 endif line 4, 5, 8: accessing meta data
11 endfor - -
1> endfor line 6: accessing graph structure
13 barrier() line 7, 8: accessing graph property
14 F<F
15 endwhile

Figure 4.3: Code snippet for breadth-first search (BFS)

(1) Meta Data: Meta data include any local variables (e.g., d) and task queues (e.g.,
F and F’). These are frequently accessed and are also small in size; so, they are cache-
friendly. Thus, the access to meta data mostly hits in the L1/L2 caches.

(2)Graph Structure: To check the status information of neighbors, the graph structure

is accessed for retrieving the neighbor vertices. Since each vertex’s neighbor list is usually
organized in an array-like data structure, the access to the graph structure has good spatial
locality. Thus, the memory requests to this component also do not incur a large number of
main memory accesses.

(3) Graph Property: During the traversal, BFS updates the property of the neighbor

vertices. Due to the irregular nature of graph connectivity, working on the property list
incurs accesses that are spread throughout the entire graph. In addition, only a small portion
of the graph property is captured in the cache because of the large size of graph data. As
a result, the access to the graph property usually leads to a high amount of last-level cache
(LLC) misses.

As explained above, the inefficient utilization of the memory subsystem is caused by
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the access to the graph property rather than to other data components. Also, due to the
uncertain nature of graph connectivity, it is challenging to improve cache performance via
conventional prefetching or data remapping techniques.

In summary, we have two key observations: 1) the irregular access pattern occurs
mostly in the graph property access (not spreading over all data components) and 2) the

computation on the property data is a simple read-modify-write (RMW) atomic operation.

4.2.3 PIM Potential for Atomic Instructions

Any vertex in the graph can be shared between multiple threads. Thus, it is inevitable for
most graph workloads to perform a large number of atomic operations to avoid contention
on updating the shared vertex property. For example, Figure 4.3 shows that all neighbor
vertices’ properties are accessed via CAS atomic operations. The heavy reliance on atomic
operations incurs non-negligible performance overhead in modern general-purpose archi-

tectures [82].
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Figure 4.4: Atomic instruction overhead of graph workloads on an Intel Xeon E5 machine

To measure the overhead of atomic operations for graph workloads, we conducted an
experiment on an Intel Xeon ES machine. We created micro-benchmarks performing one
iteration of each graph workload and then run the benchmarks while including/excluding

the atomic operations on the graph property. As shown in Figure 4.4, compared with using
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regular read and write instructions, the atomic instruction incurs a 29.8% performance
degradation on average (up to 64% for DCentr). Such atomic overhead can potentially
be avoided by utilizing the PIM offloading method, which will be further explained in the

following sections.

4.3 GraphPIM Framework

4.3.1 Overview
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Figure 4.5: Overview of GraphPIM framework

Figure 4.5 shows an overview of our GraphPIM framework. GraphPIM enables instruction-
level PIM offloading for generic graph computing frameworks with negligible changes in
both software and hardware. Because of the separation of the user application layer from
others, the changes are transparent to user applications.

Graph-Data Management: As explained in Section 4.2.2, both irregular memory ac-
cesses and atomic operation overhead of graph computing are caused by the accesses to
the graph property. Therefore, in GraphPIM, we choose the atomic operations on the graph
property as PIM offloading targets. To achieve this, GraphPIM requires the framework

to allocate the graph property in the PIM memory region (PMR), which is a continuous
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block of uncacheable region in the virtual memory space. This is achieved by calling a cus-
tomized pmr_malloc function (similar to jemalloc [86] and tcmalloc [87]). All host atomic
instructions accessing the PMR are offloaded as PIM-Atomic requests.

Hardware Architecture: In GraphPIM, the host processor architecture implements a
PIM Offloading Unit (POU) to determine the data path of the current memory instruction.
Atomic instructions accessing the PMR will bypass the cache hierarchy and be offloaded
to HMC directly. The PIM region is uncacheable, so other non-atomic memory requests to
the PIM region will also bypass the cache hierarchy.

Programming Model: The application programmers can use the same graph APIs and
follow the same programming model provided by the underlying graph frameworks; so,
no application-level code change is required to benefit from GraphPIM from the program-
mer’s perspective. The only change occurs within the framework. GraphPIM requires the
graph framework to use a specialized pmr_malloc function to allocate memory space for
graph property. This modification to the framework is negligible and does not incur extra

overhead for application programmers.

4.3.2 Architectural Extensions

Figure 4.6 shows the architectural extensions to the host processor in GraphPIM. We keep
the architectural changes non-intrusive to current hardware architectures.

PIM Memory Region: In GraphPIM, we define a PIM memory region (PMR) for the
data of offloading targets. The PMR is specified in the virtual memory space by utilizing
existing uncacheable (UC) memory support in x86 architectures [83]. The corresponding
physical pages are marked as uncacheable by setting system registers (such as MTTRS in
x86 [88]) from the operating systems. The underlying graph framework places the data
of the offloading targets into the PMR via a customized pmr_malloc function at the initial
memory allocation phase.

PIM Offloading Unit: In each host core, GraphPIM integrates a PIM Offloading Unit
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Figure 4.6: Architectural extensions for GraphPIM (added parts are shown in dark gray)

(POU), which determines the data path of memory instructions. GraphPIM does not rely
on special PIM instructions in the host processor, so the host processor ISA does not need
to be changed. As shown in Figure 4.6, all atomic instructions, such as instructions with
a “lock” prefix in x86, are regarded as HMC operations if they are accessing the PMR.
Instead of being executed in the host processor, the atomic instructions are offloaded to the
HMC by sending memory requests with atomic operation commands. Note that all other
non-atomic instructions bypass the cache hierarchy just as with the original UC memory
support.

Cache Policy: PIM-Atomic directly modifies the data within HMC. To maintain the
data coherency between HMC and cache, we follow a cache bypassing policy for offloading
targets. By marking a page as uncacheable, all memory requests, including both offloading
and non-offloading cases, will bypass the cache hierarchy if they are accessing the PMR.
In this way, GraphPIM ensures that there is no data copy in the cache so that the coherence

issue is avoided. Dealing with the cache bypassing policy is better than maintaining a
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full coherence in terms of both performance and design complexity. Offloading targets in
GraphPIM are graph property accesses, which are irregular. Thus, bypassing the caches for
PIM-Atomic brings multiple benefits, such as avoiding unnecessary cache checking time,

preventing cache pollution, as well as reducing memory bandwidth.

Table 4.1: Summary of PIM offloading targets

Workload ‘ Offloading Target PIM-Atomic Type

Breadth-first search | lock cmpxchg CAS if equal
Degree centrality | lock addw Signed add
Shortest path | lock cmpxchg CAS if equal
K-core decomposition | lock subw Signed add
Connected component | lock cmpxchg CAS if equal
Triangle count | lock add Signed add

Offloading Target: GraphPIM regards the host atomic instructions that access the
PMR as offloading targets. Table 4.1 summarizes the offloading targets for each work-
load as well as the corresponding PIM-Atomic operations (the workload applicability will
be further discussed in Section 4.3.3). As shown in the table, the corresponding x86 in-
structions with a “lock™ prefix access the graph property and thus are offloaded to HMC.
In the table, the graph workloads utilize two types of the PIM-Atomic operations, CAS if
equal and Signed add, which can be directly mapped from the host atomic instruc-
tions. Note that there are a few PIM-Atomic operations that do not match the host atomic
instructions, such as CAS if greater and CAS if less. In the host processor, the
functionality of these operations is achieved via a small instruction block that consists of
other existing host atomic instructions. Such an instruction block is usually generated by
the compiler. To fully utilize all PIM-Atomic operations, the host architecture may in-
corporate a mechanism to identify such small instruction-blocks that can translate into the
PIM-Atomic operations. Similar to other host atomic instructions, the identified instruction
block will be regarded as a PIM offloading target if they are accessing the PMR.

Discussion: In GraphPIM, instead of adding special PIM instructions to the host pro-

cessor, we choose to mark the special memory region for three major reasons: 1) Cache
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coherence. When using PIM instructions, because non-offloading instructions may also
access the same data, we have to maintain costly coherence between data copies in the
caches and memory. Such an issue is naturally avoided in our method because of the mem-
ory address-based PIM offloading. 2) Programmer overhead. If new PIM instructions are
introduced, it typically requires the effort from application programmers to modify higher
level software. With our proposed method, however, there is no extra burden for applica-
tion programmers using PIM. Only a simple malloc function replacement is needed in the
graph framework. 3) Cache checking overhead. In our method, all data accesses to PMR
will bypass the cache hierarchy. It brings extra performance benefits as explained before.
GraphPIM is utilizing the atomic operations in HMC 2.0 specification. Nevertheless,
the proposed technique can be applied to other instruction-level PIM offloading environ-
ments. Likewise, GraphPIM can also be beneficial for non-graph workloads that per-
form atomic operations on irregular data. Besides, GraphPIM can be applied on systems
equipped with both HMCs and DRAMs as well. In this case, the graph property data allo-
cated in DRAMs will be processed in the conventional way, while the graph data in HMCs
can still receive the same benefit from PIM-Atomic. In addition, it should be noted that
without PIM-Atomic, it would bring huge performance degradation to bypass cache for
atomic instructions because the cache-line lock will be downgraded to bus locking in this

case.

4.3.3 Applicability of PIM-Atomics

As discussed in Section 4.2.1, modern graph computing covers a wide range of applications
that exhibit different computation characteristics. Although we showed the feasibility of
offloading the accesses to the graph property using BFS as an example, a further question
may arise that whether the same technique can be applied on other graph computing appli-
cations. In this section, we discuss the applicability of PIM-Atomic operations on various

graph workloads.
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The current PIM-Atomic support has two major limitations. First, only simple arith-
metic operations are currently implemented; complex operations (e.g., floating point op-
erations) are not supported in HMC 2.0. Second, only one memory operand is allowed
in the operations. The operations which need to specify multiple memory locations have
to be split into separate requests. Thus, to benefit from GraphPIM, the target applications
should fulfill two key requirements: 1) the target workloads should contain a large num-
ber of irregular memory accesses triggered by atomic operations on the graph property
and 2) the atomic operations on the target memory regions should be simple enough to be
mapped to the existing PIM-atomic operations. Most graph traversal applications, such as
our BES example in Figure 4.3, fulfill the requirements. To further study the applicability
of PIM-Atomic on graph workloads, below we analyze all workloads from the GraphBIG

benchmark suite [89].

Table 4.2: Summary of PIM-atomic applicability with GraphBIG workloads

Category | Workload Applicable?
(Missing operation)

Graph Traversal | Breadth-first search vV

Depth-first search Vv
Degree centrality vV
Betweenness centrality < (Floating point add)
Shortest path V

K-core decomposition  +/
Connected component  +/

Page rank x (Floating point add)
Dynamic Graph | Graph construction x (Complex operation)
Graph update x (Complex operation)
Topology morphing x (Complex operation)
Rich Property | Triangle count vV
Gibbs inference % (Computation intensive)

Inapplicable Graph Workloads: As shown in Table 4.2, most of the traversal-oriented
workloads, noted as graph traversal, can make use of PIM-Atomic operations. The two
exceptions are Betweenness Centrality and Page Rank, which require floating

point operations. On the other hand, the graph workloads in the Dynamic Graph (DG) cate-
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gory frequently perform graph structure/property updates and involve complex code struc-
ture and access patterns. Therefore, they require more complex memory operations, such
as indirect accesses and multiple memory operands. For the workloads in the Rich Property
(RP) category, Triangle Count can use PIM functionality. However, the workloads in
this category perform computation within vertices’ properties, so they are more computa-
tion intensive without having the irregular access pattern as other graph workloads. Thus,
the PIM-Atomic may not provide performance benefits for the workload.

Potential Extension to PIM Atomics: The logic die in HMC enables the possibility
of implementing a wide range of computation logic in the memory package. Although
HMC 2.0 currently defines 18 simple operations, the HMC technology has the full poten-
tial of implementing new operations if needed. As previously discussed, many computing
applications deal with floating point (FP) operations. For example, both Betweenness
Centralityand Page Rank perfom FP add operations when updating the graph prop-
erty. As floating point add/sub operations are relatively simple compared to other complex
operations, FP add/sub operation support can be a reasonable extension to the future PIM-
Atomic to provide PIM benefits for more graph workloads. In Section 4.4, we will further

evaluate the performance benefits of supporting FP add/sub operations.

4.4 GraphPIM Evaluation

4.4.1 Methodology

We evaluate our method by using Structural Simulation Toolkit (SST) [90] with Mac-
Sim [91], a cycle-level architecture simulator. HMC is simulated by VaultSim, a 3D-
stacked memory simulator based on DRAMSim2 [92].Table 4.3 shows the detailed con-
figuration of our evaluation. We model a processor with 16 out-of-order cores and a single
8GB HMC cube that follows the HMC 2.0 specification [57, 93, 33, 94, 32]. For the
workloads, we use the benchmarks from GraphBIG [89], which is a graph benchmark suite

covering a wide scope of graph computing workloads. The LDBC graph is used as the input
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dataset in the architectural simulation. Besides, two other large-scale graphs, bitcoin and

twitter graph, are further included for evaluating our method with real-world applications.

Table 4.3: Simulation configuration

Component ‘ Configuration

Core ‘ 16 out-of-order cores, 2GHz, 4-issue

Cache | 32KB private L1 data/instruction caches
256KB private L2 inclusive cache

16MB shared L3 inclusive cache

64-byte cache line, MESI coherence protocol

HMC | 8GB cube, 32 vaults, 512 DRAM banks [57]
tCL = tRCD = tRP =13.75 ns, tRAS =27.5ns [94]
4 links per package, 120GB/s per link [57]

Benchmark | GraphBIG benchmark suite

Dataset | LDBC graph (1M vertex) [95], ~900 MB footprint
Bitcoin graph, ~10 GB footprint
Twitter graph, ~5 GB footprint

4.4.2 Evaluation Results

In this section, we evaluate our proposed GraphPIM with three system configurations as

explained below. All results are normalized to the baseline unless otherwise stated.

e Baseline: This is a conventional architecture using HMC as the main memory and

does not utilize instruction offloading functionality.

e U-PEI: This configuration enables instruction offloading by following a mechanism
similar to the previously proposed PEI [31] except that we assume perfect locality-
aware offloading and ideal coherence management. In particular, all offloading re-
quests that can hit in the cache are processed within the host processor, and the co-
herence between caches and HMC is assumed to incur no extra overhead. Hence,

this configuration shows the performance upper-bound of PEI method.

e GraphPIM: This is our proposed instruction offloading technique, in which the atomic
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instructions accessing the PIM memory region bypass the cache hierarchy and are of-

floaded to HMC.

Performance Evaluation
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Figure 4.7: Speedups over the baseline system

Figure 4.7 shows the performance evaluation results. Compared with the baseline,
GraphPIM achieves as high as 2.4 x speedup (Page Rank) and more than 2x speedup for
Breadth-first Search (BFS), Connected Component (CComp), and Degree Centrality (DC).
On average, GraphPIM improves performance by 60% over the baseline. However, we also
observe a negligible speedup for kCore Decomposition (kCore) and Triangle Count (TC).
This is because they have a low percentage of offloaded PIM-Atomic operations. Thus,
the performance potential is quite low to begin with. For instance, kCore spends a large
amount of time on checking inactive vertices, not on accessing properties of neighbor ver-
tices. Also, TC performs most computation within graph properties, so it is more compute
intensive than other workloads.

As discussed in Section 4.3.3, with additional support for floating point add operation,
Betweenness Centrality (BC) and Page Rank (PRank) can also benefit from GraphPIM. The
result shows that PRank experiences a significant performance improvement with instruc-

tion offloading, while BC does not. This is because BC has a large number of centrality
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computations on thread-local data structures, which makes the workload more compute-
intensive and the impact of improving atomic performance relatively small.

Atomic Overhead: The major performance gain of GraphPIM is coming from avoid-
ing the host-side atomic instructions, which incurs non-negligible overhead because of the

waiting time for pending writes and extra coherence traffic.

Pseudo Code X86 Assembly PIM-Offloading

for each v € neighbor(u) i i dependence

ret<—CAS(v.depth, inf, d) i lock cmpxchg i PIM-CAS

if ret==success 'jne FLAG ' jne FLAG

FeFuUv i (insert local task queue)! (insert local task queue)

endif | FLAG: | FLAG:
endfor . -

CAS: compare-and- +  lock prefix: atomic PIM-CAS: PIM

swap instruction atomic operation

Figure 4.8: Illustration of atomic instruction overhead

In graph workloads, the long latency of atomic instructions delays not only themselves,
but also following dependent instructions. As shown in Figure 4.8, the CAS operation in
the pseudo code will be compiled as a lock cmpxchg instruction and then offloaded to the
HMC side as a CAS-if equal operation. The following branch instruction and task queue
scheduling code are depending on its return value. The long latency of atomic instructions
will delay the retirement of the depending instructions. The dependent instruction block
would greatly reduce the efficiency of out-of-order execution and therefore causes low
processor ILP.

To estimate the impact of atomic instruction overhead, we perform experiments to mea-
sure the breakdown of atomic and non-atomic instructions in total execution time as shown
in Figure 4.9. Note that atomic instructions includes not only in-core atomic overhead, but
also cache checking time and coherence traffic overhead. As shown, in the baseline system,
most workloads spend a large portion of their execution time in atomic instructions. For

example, BFS, CComp, DC, and PR all show above 50% of atomic instruction overhead.
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Figure 4.9: Breakdown of normalized execution time (Atomic-inCore: atomic instruc-
tion cycles for waiting pending writes; Atomic-Cache: atomic instruction cycles for cache
checking and coherence traffic; Other: cycles of other instructions’ execution and stall)
However, in kCore and TC, their small atomic instruction count limits the atomic overhead.
Besides, in-core overhead, which includes the time for waiting pending writes, is the major
source of overhead. In most workloads, above 30% of in-core overhead is observed. The
result also shows a close to 20% of cache overhead. The cache overhead of atomic in-
structions comes from the cache checking latency for the irregular property data and extra
coherence traffic. With the help of PIM offloading, GraphPIM can avoid the atomic related
execution time. In GraphPIM, all workloads spend similar execution time for non-atomic
part as baseline system, except for BC, in which non-atomic part requires more time. This
is because in BC, non-atomic is reusing shared data from atomic part. Such data locality
cannot be utilized with PIM offloading.

Cache Bypassing: We previously discussed that our offloading targets (i.e., graph prop-
erty accesses) does not have data locality and therefore it is better to bypass the cache
hierarchy. The experiment results also support such a conclusion. From the results in Fig-
ure 4.7, we can see that GraphPIM outperforms U-PEI because it avoids the unnecessary
cache checking time. Moreover, U-PEI is already an idealized configuration, in which the

extra overhead of two key factors is not included: maintaining offloaded data coherence
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Figure 4.10: Cache miss rate of offloading candidates

and computing offloaded instructions that hit in the cache. In a more realistic system, both
factors can bring significant performance overhead. Nevertheless, GraphPIM still shows
a 0.2x more speedup in GMean over U-PEI. All workloads achieve better performance
except BC, in which thread-local data structures are heavily used and bring data locality.
In addition, a cache analysis is also performed. In most workloads, more than 80% of of-
floading candidates is cache miss as shown in figure 4.10, which justifies the feasibility of
GraphPIM’s cache policy. Furthermore, kCore, TC, and BC show relatively lower cache
miss rates. However, the performance of kCore and TC is not harmed because of their
limited number of accesses, whereas data locality in BC affects performance and brings

slightly better speedup for U-PEIL.
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Figure 4.11: Speedup over baseline system with different functional units (FU) per HMC
vault
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Functional Units: An 8GB HMC contains 32 vaults, each of which has 16 memory
banks. Thus, 16 functional units (FU) are enough for each vault for PIM-atomic. However,
if we have fewer number of FUs in each vault, the bottleneck may be shifted to the number
of FUs. To estimate the impact of the number of FUs, we perform a sensitivity analysis.
As shown in Figure 4.11, there is no noticeable performance impact with different number
of FUs. Even with only one FU in each vault, the performance is still roughly the same as
16-FU configuration. The result shows that the performance is not bounded by PIM-atomic
throughput in HMC. This is because of two reasons: 1) HMC has 32 vaults, so the chances
of consecutive HMC-Atomic requests mapped to the same vault are low. 2) The offloading
target (i.e., graph property access) has depending instructions, which also introduce a large
amount of interleaving memory requests. This makes PIM-atomic relatively sparse in the
total memory requests. For current atomic support in HMC 2.0, the FUs consume only
negligible energy even with 16 FUs per vault. However, if floating point units are incorpo-
rated, FU number can bring a substantial impact on energy consumption. We will further
explain it in Section 4.4.2. In our evaluation, we assume 16 regular FUs and one floating

point FU per vault.

Bandwidth Analysis

In HMC, the links between HMC and the host processor follow a packet-based protocol,
where the packets consist of 128-bit flow units named as FLIT [57]. The packet size of
regular memory requests and atomic operations are summarized in table 4.4. A 64-byte
READ/WRITE request consumes 6 FLITs in total, while the atomic operations need only
3 or 4 FLITs. Therefore, besides the reduction in the total number of memory requests,
PIM-atomic brings extra benefits due to its smaller packet size.

Figure 4.12 shows the bandwidth consumption breakdown normalized to the baseline
system. We can see that GraphPIM reduces the bandwidth consumption by nearly 30%

in BFS, CComp, DC, SSSP, and PRank. Because graph workloads are more intensive in

65



Table 4.4: HMC memory transaction bandwidth requirement in FLITs (FLIT size: 128-bit)

Type \ Request Response
64-byte READ | 1 FLITs 5 FLITs
64-byte WRITE | 5 FLITs 1 FLITs
add without return | 2 FLITs 1 FLITs
add with return | 2 FLITs 2 FLITs
boolean/bitwise/CAS | 2 FLITs 2 FLITs
compare if equal | 2 FLITs 1 FLITs
M Request O Response
o 12
T
-
2 0.8
& 0.6
>
504
£ o2
2 0
-
2 |tos|eos|eos|testeses
g PO S|TDODS|EDc|WDc|TD |8 D
s |& E8& E§& g8 g& g§g& &g
2 G) G) G) G) G) G)
BFS CComp DC kCore SSSP TC

U-PEI

Baseline
GraphPIM

BC

U-PEI

Baseline
GraphPIM

PRank

Figure 4.12: Normalized bandwidth consumption with request/response breakdown

read requests, most bandwidth savings are from the response part. Besides, the bandwidth

impact of GraphPIM in kCore and TC is negligible because of their limited number of

offloaded operations. Similarly, the bandwidth benefit of BC is offset by the existence of

data locality. In addition, compared to U-PEI, the cache bypassing policy of GraphPIM

can significantly help reduce bandwidth consumption for most workloads. For example

in BEFS, the bandwidth reduction is further improved from 7% to 29%. However, outliers

also exist. In BC and TC, because of their data locality, GraphPIM shows slightly higher

bandwidth consumption than U-PEI.

Although the reduction in memory bandwidth consumption can bring energy benefits,

it is not the case in the context of performance. Figure 4.13 shows the speedup with differ-
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Figure 4.13: Speedup over baseline system with different HMC link bandwidth

ent HMC link bandwidth over the baseline system with original link bandwidth. As shown,
since Baseline-half-BW and Baseline-double-BW are almost the same as Baseline, we can
conclude that the baseline system is not sensitive to the bandwidth variations. Likewise,
the speedup of GraphPIM remains the same with different HMC link bandwidth configu-
rations. From the results, we can observe that with existing rich bandwidth resources of
HMC, graph workloads are insensitive to bandwidth variations and therefore bandwidth

savings cannot be effectively translated into performance gaining.

Sensitivity on Graph Size

In graph computing, input data have a significant impact on the applications’ behaviors,
especially for the data access pattern. To study the impact of input graph data on perfor-
mance, we perform experiments using the LDBC synthetic graph [95] with four differ-
ent graph sizes, from 1K vertices to 1M vertices. The dataset details are summarized in
Table 4.5. The four graphs share the same social network connectivity feature but with
different memory footprints.

Figure 4.14(A) shows the performance improvement of GraphPIM over U-PEI. As ex-
plained previously, the offloading target in our method is graph property access, which

does not have data locality. Therefore, it is more desirable to bypass the cache hierarchy

67



Table 4.5: Experiment datasets

Name | Vertex# Edge# Footprint
LDBC-1M 1M 28.8M  ~900 MB
LDBC-100k | 100K 2.8M ~100 MB
LDBC-10k | 10K 296K ~10 MB
LDBC-1k 1K 29K ~1 MB

B LDBC-1M [OLDBC-100k MWLDBC-10k ELDBC-1k

o I__Wn_W._ __ _ mn

gmwmewmm

CComp DC kCore  SSSP PRank

Figure 4.14: (A) GraphPIM performance improvement over U-PEI (B) GraphPIM speedup
over baseline
for the offloaded operations. However, such a conclusion may be changed depending on
the input data size. From the results in Figure 4.14(A), we can see that the benefit of cache
bypassing decreases with smaller graph size. In some workloads, U-PEI starts to show
better performance with the LDBC-10k graph. This is because the data size starts to fit
into the L.3 cache capacity. The degradation introduced by cache bypassing becomes much
more obvious for the LDBC-1k graph. In BC, cache bypassing is always worse because of
its data locality and similarly a smaller graph brings more performance degradation.
Although the benefit of cache bypassing varies with the data size, the overall perfor-

mance gain of GraphPIM still remains. As shown in Figure 4.14(B), the speedup of Graph-

68



PIM over the baseline system does not vary as much as previous improvement results. This
is because our method still can reduce significant atomic instruction overhead, which is
less sensitive to the data size. Moreover, in most workloads, LDBC-10k shows a better
speedup than much larger graphs. This is because the atomic instruction density of graph
workloads stays at similar level with different graph sizes, while other components, such

as task scheduling, are reduced with smaller graphs. Thus, sometimes smaller graphs may

show even better speedup.

Energy Analysis
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Figure 4.15: Breakdown of uncore energy consumption normalized to baseline (Caches:
Host cache hierarchy; HMC Link: SerDes and data transfer; HMC FU: Functional units;
HMC LL: HMC logic layer; HMC DRAM: HMC DRAM dies)

GraphPIM can save data transfer energy by reducing memory traffic. However, the PIM
operation in HMC may also incur extra energy consumption. To estimate such potential
trade-off, we perform analysis of uncore energy consumption in this section.

Figure 4.15 shows the uncore energy breakdown of GraphPIM normalized to the base-
line. We use CACTI 6.5 [96] to model energy consumption of on-chip caches. The energy

consumption of HMC SerDes links, HMC DRAM layers, and functional units in the logic
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layer are computed based on the energy models from prior work [32, 97, 98]. HMC uses
four high-speed Serializer/Deserializer (SerDes) links to provide high external bandwidth.
However, this comes with extra energy consumption (near 43% of HMC’s power [98, 32]).

As shown in the results, GraphPIM reduces the uncore energy consumption by 37% on
average. The energy savings mainly come from caches, HMC links, and HMC logic layer.
They are because of the reduction of cache accesses in the host side, and the reduction of
memory bandwidth consumption, which saves the energy of data transfers via HMC SerDes
links. Besides, GraphPIM improves performance significantly. The shorter execution time
also helps reduce the uncore energy.

From the results, we can also observe that the energy consumption of HMC comes
mostly from the links and logic layer. HMC FUs consume negligible energy in most work-
loads except for BC and PRank, in which relatively higher FU energy is shown because of
floating point computation, even though GraphPIM follows a low-power design of floating
point units and enables only one floating point unit per vault. As explained in previous sec-
tion, the performance of graph workloads is not sensitive to FU number variations. Thus,
it is more desirable to incorporate only one floating point FU per vault.

In general, GraphPIM achieves a substantial uncore energy reduction over the baseline.
Even in the worst case, GraphPIM does not exceed the uncore energy consumption of
the baseline. Note that beside uncore energy, we also evaluate the overall system energy
and observe the same trend as the performance speedup result because of GraphPIM’s

significant reduction in execution time.

Real-world Applications

In real-world graph computing, large-scale graphs need to be processed with a complex
combination of algorithms. To estimate the benefit of our proposed GraphPIM in real-
world scenarios, we perform experiments with the following two real-world applications.

(1) Financial Fraud Detection (FD): This application is a graph-based financial fraud
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detection system, which detects first-party bank fraud and money laundering behaviors. It
incorporates graph traversal-based computations to uncover fraud rings in data relation-
ships [99]. In our experiment, input data is the Bitcoin transaction graph [100], in which
each vertex represents a Bitcoin account and each edge represents a Bitcoin transaction.
The Bitcoin graph contains 71.7M vertices and 181.8M edges with around 10 GB memory
footprint.

(2) Recommender System (RS): This application provides product/service recommen-

dations for e-commerce customers. It follows an item-to-item collaborative filtering method [101],
which is also applied in the Amazon recommender system [4]. The experiment uses a
Twitter graph as input data [102]. It represents the friendship/followership between Twitter
users. The graph contains 11M vertices and 85M edges, leading to around a 5GB memory

footprint.

Table 4.6: Experiment configuration

Item | Description

Platform | Intel Xeon E5-2620, 2.3 GHz
2 sockets x 6 cores x 2 threads, 124GB memory
32KB/256KB private L1/L2, 15MB shared L3

Application | Financial fraud detection (FD)
Recommender system (RS)

Dataset | Bitcoin graph, ~10 GB memory footprint
Twitter graph, ~5 GB memory footprint

Because the application size exceeds the capability of architectural simulations, we per-
form real machine experiments by collecting hardware performance counters. The archi-
tectural results are then generated via an analytical model. The test platform configurations
as well as application information are shown in Table 4.6.

In our analytical model, the execution cycles per instruction (CPI) is split into two
components, atomic and other non-atomic instructions. Although both components may

share overlapping cycles because of the out-of-order execution, the overlap is expected to
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Table 4.7: Real-world application experiment results

Type | Event FD RS
Performance | IPC 0.1 0.12
Counter | LLC MPKI 21.3 20.6
LLC hit rate 28%  13.4%
Uncore time 65.8% 52.7%
Backend stall 83.8% 88.8%
%PIM-atomic 1.3% 2.9%
Analytical | Total host overhead  17% 32%
Model | Total cache checking 7% 17%

be relatively small compared to the long latency of atomic instructions. Meanwhile, in the
baseline system, atomic instructions always pay the penalty of cache checking time, even
though their miss rate is high. Such cache checking overhead as well as in-core atomic

overhead is avoided in GraphPIM. The analyical model is summarized as follows.

CP[Baseline = CPIother(l — overlap%)
+ Ratomic X (TAO + Latcache + MiSSatomic X Latmem) “4.1)

CPlIGrapheiv = CPIoner(1 — overlap%) + Raomic X Latpiv 4.2)

C Pl yher : CPI of other (non-atomic) instructions

overlap% : percentage of overlapped cycles

Ratomic : rate of atomic instructions

Tao : atomic instruction overhead

Latcache / Latmem/ Latpny : average cache/memory/PIM latency

Mi8Sa0mic : miss rate of atomic instructions

Before applying the analytical model on the large-scale graph applications, we validate

the correctness and accuracy of our model by comparing with previous simulation results.
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Figure 4.16: Comparison between the architectural simulation and analytical model results
in speedup over baseline

As shown in Figure 4.16, our analytical model achieves a similar speedup estimation as

architectural simulations. The error rate is within one-digit in most workloads, and 7.72%

on average.
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Figure 4.17: Performance and energy results of two real-world applications based on an
analytical model (FD: Financial fraud detection; RS: Recommender system)

Figure 4.17 shows both performance and energy results. The energy consumption is
modeled in the same way as the previous section. As shown in the results, GraphPIM sig-
nificantly improves performance and energy consumption for both applications. The rec-

ommender system (RS) achieves as high as 1.9x performance speedup over the baseline.
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Financial fraud detection (FD) also shows a 1.5x speedup. FD shows a bit lower perfor-
mance benefit because it contains multiple non-graph computing components, which offset
the overall benefit of GraphPIM. The energy comparison is also shown in Figure 4.17.
GraphPIM achieves a 32% and 48% energy reduction in FD and RS respectively. The
energy reduction comes from multiple factors, including cache hierarchy, data link, HMC
logic, and DRAM. From the experiments of real-world applications, we can see that Graph-
PIM can still achieve satisfactory improvement in both performance and energy for com-

plex real-world applications with large-scale graph data.

4.5 Discussion: Benefits of PIM Offloading

4.5.1 Bandwidth Saving

As summarized in Section 4.4, HMC follows a packet-based communication protocol.
Table 4.4 summarizes the packet sizes for regular memory request and HMC-atomic in-
structions. PIM offloading in HMC saves bandwidth because of three main reasons: 1)
unnecessary cache line data is not fetched from memory. Because the offloading targets
are cache-unfriendly data, fetching the whole cache lines wastes bandwidth resources. 2)
instead of issuing one load and one store instruction to the memory, we issue one HMC-
atomic instruction, which consumes less bandwidth; and 3) it can further save bandwidth
because we would avoid future coherence messages regarding to that cache line data.

To estimate the bandwidth savings of HMC-atomic instruction offloading, we present
an analytical model for the off-chip bandwidth. Assuming 64-byte cache lines, let N,
be the number of possible offloading candidates in an application. Also, let Ny, be the
number of regular memory requests. Assume « and (3 are the average LLC hit ratio (1 —
LLCyr) of offloading candidates and regular memory requests, respectively. Because each

regular read/write request consumes 6 FLITs, which are 96 bytes, bandwidth usage without
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offloading (BW,,,,) for the application in bytes is:

BWyo = (2N.(1 — @) + Nyeg(1 — 3)) x 96 4.3)

In this equation, each offloading candidate contains one read and one write instruction.
Therefore, we multiply N, by two. When we perform a single HMC-atomic instruction,
typically three or four FLITs are required. Therefore, assuming an equal packet size of four
FLITs (4 x 16 bytes) for all offloading candidates, the bandwidth usage with offloading

(BW fioading) in bytes is:

BWiinioading = (Ne x 64) + (Nreo(1 — 3) x 96) (4.4)

Therefore, bandwidth savings in bytes with offloading is as shown in Equation 4.5.

BWsaving = BWo — BWOfﬂoading = 64Nc(2 - 30&) (4.5)

From Equation 4.5, we can see that the cache hit ratio of offloading candidates determines
if bandwidth savings occurs. Here, the turning point for bandwidth savings happens at
66% of the cache hit ratio. Although the exact cache hit ratio for different candidates is
dependent on their bandwidth requirement, system cache hierarchy, and offloading target
locality, the simple analytical model shows that offloading candidate locality is a key factor
in the amount of bandwidth savings, and similarly for candidate offloading decision.

More available bandwidth to the memory has a positive impact on the application per-
formance for two main reasons: 1) each memory request has shorter latency because of the
reduced queuing delay; and 2) the application can issue more memory requests in a cycle.
From the memory system perspective, both reasons are translated into shorter latency of
memory accesses. However, from the application perspective, if the application has the

capacity to issue more memory requests, but currently is limited by the low memory band-
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width of hardware, providing more memory bandwidth leads to a performance improve-
ment. This is because this type of application exploits memory-level parallelism (MLP),
and we group such applications as bandwidth-sensitive applications. However, for other
applications, such as compute-intensive applications, enabling more bandwidth usually has
only a small impact on the performance, and we group them as bandwidth-insensitive ap-
plications.

Offloading using HMC-atomic instructions provides more available bandwidth to ap-
plications, which has the same effect as increasing the system peak bandwidth. Obviously,
bandwidth-sensitive applications gain a major performance benefit by exploiting the free
bandwidth enabled by bandwidth savings, but this is not true for bandwidth-insensitive ap-
plications. Therefore, although by offloading irregular data, PIM saves memory bandwidth,
the overall performance benefits still depend on the application behaviors. In particular,
CPU applications tend to be bandwidth-insensitive applications because of the relatively
lower memory bandwidth requirement, whereas GPU application tend to be bandwidth-

sensitive ones because of its high parallelism and bandwidth consumption.

4.5.2 Cache-Related Benefits

By offloading the operations on the irregular data, PIM offloading also increases the cache
efficiency. As explained in Section 4.3.2, the PIM offloading here follows a cache-bypass
policy, in which the target PIM data is uncacheable. Therefore, performing PIM offload-
ing brings two sides of benefits. First, because the target data is irregular and thus is less
likely in the cache, enabling PIM offloading saves the unnecessary cache-checking latency.
Such benefit is also demonstrated in prior evaluation results of Figure 4.9. Second, in the
baseline system, the irregular offloading data consumes a significant part of cache capac-
ity, even though they usually miss the cache. By removing the target data out of cache,
PIM offloading avoids the potential cache pollution. In other words, it increases the effec-

tive cache size, and potentially can improve the cache performance of other data accesses
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because of extra cache capacity. Although the cache-related benefits depend on the cache-
policy of PIM offloading, in GraphPIM, the evaluation results demonstrate a non-negligible

performance impact from cache side.

4.5.3 Avoiding The Overhead of Host Atomic Instructions

In ARM and x86 architectures, generic atomic instructions incur a substantial overhead
because of their consistency and ILP restrictions [103, 104]. Also, the overhead of atomic
instructions in AMD and NVIDIA GPU architectures exists [105, 106]. In order to under-
stand the overhead of host atomic instructions, we conducted a real-machine experiment
on an Intel Xeon ES machine in Section 4.2.2. As shown in Figure 4.4, compared with
generic atomic instructions, using regular read and write brings 30% performance speedup
on average. Such an overhead can be avoided by utilizing PIM functionality and offloading
the atomic instructions. Note that the overhead of atomic instructions on CPUs is typically
quite significant, leading to even hundreds of penalty cycles in the worst cases; however,
the atomic overhead of GPU platforms is much smaller because of the more relaxed con-

sistency requirements.

4.54 Why and When PIM Works

Why PIM works: As explained in previous sections, PIM can bring performance improve-
ment because of the benefits from three major aspects: bandwidth, cache, and atomic. How-
ever, the performance impact of each aspect depends on both the target application and the
hardware platform. Bandwidth saving enables performance speedup only for bandwidth-
sensitive applications. The cache benefit improves the access latency and effective cache
size. It can be achieved only when the cache-bypassing policy is used for PIM offloading.
By offloading the atomic instructions, PIM can avoid the substantial atomic overhead on
the host architecture. Moreover, the atomic benefit is much more significant on CPU-based

platforms than GPU-based platforms because of the difference in consistency models.
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When PIM works: In general, the offloading target should be the operations on ir-
regular, cache-unfriendly data because PIM gets bandwidth and cache benefits only for
low cache hit ratio data. However, one exception is the atomic instructions. Because the
overhead of atomic instructions on CPU can be so high that it even offsets the performance
degradation from offloading cach-hit data. For example, Figure 4.14 shows that even the ap-
plication has relatively higher cache hit ratio when using small datasets; it still can achieve
performance improvement with PIM offloading because of the atomic benefit. Therefore,
for CPU-based platforms, the atomic instruction should be the first offloading target. In
this case, the major PIM benefits are coming from avoiding atomic overhead. However, on
GPU-based platforms, because of the limited atomic overhead and high bandwidth utiliza-
tion, bandwidth saving is the major factor instead of atomic avoidance. Thus, on GPUs,
the irregular data should be the offloading targets, and PIM get major performance benefits

from memory bandwidth reduction.

4.5.5 Benefit Evaluation of GPU Graph Workloads

As shown in Section 4.4, in CPU graph benchmarks, the benefits of PIM offloading mostly
come from avoiding atomic instruction overhead. The prior section also discussed and ex-
plained the major benefit sources of PIM offloading for CPU- and GPU-based platforms.
To further demonstrate the PIM offloading in high memory bandwidth utilization environ-
ments, we evaluate the PIM offloading with GPU platforms in this section. As shown
in Figure 4.18, we perform evaluation experiments on HMC 2.0 eligible GPU workloads
from GraphBIG benchmark suite. The experiments follow the same configuration as in
Section 5.4 and assume no thermal impact (please refer to Chapter 5 for thermal-awareness
evaluations). We select the offloading targets by following the same methodology as the
CPU workloads, that is, selecting the atomic operations on graph property. In the exper-
iments, we compare the baseline non-offloading system with the simple PIM offloading

system, and show the performance speedup and bandwidth savings.
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Figure 4.18: Speedup and bandwidth saving of PIM offloading for GPU graph benchmarks

From the results, we can observe that on GPU platforms, the performance gain of PIM
offloading is relatively smaller than CPU workloads, achieving only up to 1.61x speedup.
This is because GPUs have limited atomic overhead, and thus get benefits mainly from
bandwidth savings. We can also observe that the performance gain has a strong correla-
tion with the bandwidth savings; a higher bandwidth saving brings a higher performance
gain. The exceptions exist in bfs-dtc and sssp-dtc, which have relatively low bandwidth
saving percentages, but still reach 1.29x and 1.22x speedup, respectively. This is because
although their total bandwidth savings are relatively small, most of their bandwidth savings
happen within a few bandwidth-busy phases and help with the bandwidth congestions for
the peak time. In general, the evaluation results further demonstrate our previous discus-
sion that PIM offloading on GPU-based platforms gets performance benefits mostly from

bandwidth savings because of the bandwidth-sensitive feature.

4.6 Summary

In this chapter, we present GraphPIM, a full-stack solution that enables PIM instruction
offloading for graph computing. GraphPIM is built on the key observation that the atomic

access to the graph property is the main culprit for the inefficient execution of graph work-
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loads on modern systems. Thus, by offloading the atomic operations on the graph property
to the PIM side, GraphPIM avoids the overhead of executing atomic instructions in the host
processor as well as the inefficient utilization of the memory subsystem caused by irregular
data accesses. Our evaluation results show that GraphPIM achieves up to a 2.4 x speedup
and a reduction of 37% in energy consumption for a wide range of graph benchmarks and
real-world applications. GraphPIM makes use of the atomic operations specified in the
HMC 2.0 specification and does not require any changes in ISA or user applications; it
needs only a minor extension to the host processor and the underlying graph framework.
We conclude that the technique presented in GraphPIM is a promising solution to address

the bottlenecks in graph computing in a more practical way.
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CHAPTER §
COOLPIM: THERMAL-AWARE PIM OFFLOADING FOR GRAPH
COMPUTING ON DATA-PARALLEL ARCHITECTURES

5.1 Introduction

Recent advances in 3D-stacking technology and the increasing need for energy efficient
computing make both industry and academia to revisit near-data processing (NDP) ar-
chitectures. Memory vendors such as Micron and Samsung have started productizing or
publicly discussing PIM [33, 107], and recent studies from academia have also shown
promising performance and energy improvements again [98, 30, 104] as demonstrated in
the PIM research conducted decades ago [24, 108, 26, 27, 28]. With the irregular mem-
ory access behaviors of graph computing, PIM is expected to play an important role in
providing extraordinary performance and energy efficiency for graph computing.

One of the key challenges to enabling 3D stacking-based PIM is to manage thermal
constraints for its memory dies. For DRAM, the normal operating temperature range is un-
der 85°C.! Although JEDEC specifies the extended temperature range of 85 °C-95 °C with
doubled DRAM refresh rate [109], operating DRAM in the extended temperature range
incurs higher energy consumption and performance overhead than in the normal tempera-
ture range [65]. For conventional systems with dual-inline memory modules (DIMMs), the
memory temperature rarely exceeds 85 °C. As such, DIMMs are simply used with a pas-
sive heat sink (or even without any cooling solutions) without much concern about thermal
constraints or performance implications.

For the best performance of PIM, however, thermal constraints need to be more care-

fully taken care of because of two main reasons. First, conventional memory subsystems

I'This is the case-surface temperature of DRAM.
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only offer tens of gigabytes of memory bandwidth, but PIM implemented via 3D-stacking
techniques often offers hundreds of gigabytes of memory bandwidth and raises a thermal
issue when it is highly utilized as we will discuss in Section 5.2. Second, the memory dies
are placed between a heat sink and a logic die in typical PIM designs, so the heat transfer
capability is not as effective as in DIMMs and thus greatly increases the temperature of the
memory dies. In addition, the logic layer dissipates a non-negligible amount of heat when
PIM instructions are executed, which exacerbates the thermal issue to a great degree.

In this chapter, we explore managing the thermal constraints of die stacking and in-
memory processing, in order to effectively utilize PIM for graph computing on data-parallel
architectures that can consume hundreds of gigabytes of memory bandwidth such as GPUs [110,
111] and Xeon Phi [112]. To understand the thermal challenges, we perform an analysis on
a real HMC 1.1 prototype while varying bandwidth utilization and cooling solutions. Our
analysis shows that the HMC cannot even operate at the peak bandwidth with a passive heat
sink, which indicates that HMC systems need a strong cooling solution even without using
in-memory processing. When modeling PIM functionality as in HMC 2.0, our evaluation
shows that even a commodity-server cooling could fail to maintain the memory tempera-
ture below the normal operating temperature range; so, the PIM needs to shut down for
cooling down its temperature before serving memory requests again or increase/decrease
the DRAM refresh rate/frequency.

Based on our observations, we propose CoolPIM, which provides both software-based
and hardware-based techniques that dynamically control the intensity of PIM offloading
while considering thermal conditions. The proposed technique maintains the temperature
of memory dies within the normal operating temperature with a commodity-server cooling
solution, which leads to higher performance compared to naive offloading. We evaluate
CoolPIM with a GPU system with a wide range of graph workloads, and our results show
that CoolPIM improves performance up to 1.4x and 1.37x compared to non-offloading and

naive PIM offloading without thermal considerations.
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5.2 HMC Thermal Challenges

The 3D stacking of DRAM and logic dies in HMC offers high memory bandwidth and
enables PIM functionality. However, HMC exhibits non-trivial power consumption for the
logic layer, especially when PIM functionality is intensively utilized. Such high power
density of the logic layer increases the temperature of the stacked DRAM dies and raises
the thermal challenges for the entire HMC module.

In this section, to understand the thermal challenges in HMC, we first evaluate a real
HMC prototype platform while measuring the surface temperature of HMC across various
bandwidth consumption and cooling methods. Then, we further evaluate an HMC 2.0
system with the energy information released in prior literature. After that, we analyze the

thermal impact of PIM offloading and discuss performance trade-offs.

5.2.1 HMC Prototype Evaluation

Experiment Platform: To analyze the HMC thermal issues, we evaluate a real system that
features an HMC prototype from Micron. The experiment platform (Pico SC-6 Mini [113])
has a PCle backplane (EX-700 [114]) that can accommodate the compute modules (AC-
510 [115]). Each compute module contains a Kintex Xilinx FPGA and an HMC. The HMC
is a 4 GB cube and follows the HMC 1.1 specification [116]. It has two half-width (x8)
links, each of which provides up to 30 GB/s of memory bandwidth. In the original system,
an active heat sink is attached on top of the compute module for the cooling of both FPGA
and HMC. To evaluate the thermal impact of HMC, we apply a thermal camera and measure
the surface temperature of the HMC chip. The thermal resistance of a typical transistor chip
is insignificant compared with an external heat sink (i.e. plate-fin heat sink) [117], and the
in-package junction temperature should be around 5 to 10 degree higher than its surface
temperature, given a 20 Watt power to dissipate.

Observations: By measuring the surface temperature of HMC with a thermal camera,
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Figure 5.1: Thermal evaluation of a real HMC prototype

we evaluate the thermal impact with regard to bandwidth utilization and cooling methods.
Figure 5.1 illustrates the results of our evaluation. We further elaborate our observations as
follows.

1) Surface Temperature: HMC, unlike conventional memories, operates at a higher
temperature. The runtime thermal images of the HMC under three types of heat sinks are
shown in Figure 5.1. We observe that the surface temperature of highly utilized HMC
exceeds 80 °C with a passive heat sink, and the junction temperature reaches to or exceeds
90 °C (with a typical thermal resistance from the package surface to the internal chip). Even
with a high-end active heat sink, the surface temperature still reaches around 50 °C in our
experiments. Since HMC 2.0 has a higher bandwidth than that of HMC 1.1 (60GB/s), it
might experience even worse thermal issues.

2) Overheated Behavior: In our evaluation, with a passive heat sink, HMC cannot oper-
ate at the full bandwidth and shuts down when the surface temperature reaches around 85 °C
(in-package DRAM temperature is close to 95 °C). Higher temperature makes DRAM cells
weaker and charge leaking faster. Although by varying DRAM frequency and refresh in-
terval, DRAM can operate at higher temperatures, our evaluation shows that the HMC
prototype incorporates a more conservative policy, in which HMC stops completely when
the DRAM stack is overheated. Although HMC can be re-enabled after the chip is cool

again, the recovery delay is tens of seconds in our evaluation, which is much longer than
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the processing time of typical GPU kernels.

3) Cooling Methods: Conventional DRAMs typically use only ambient air cooling
without even a passive heat-sink, but HMC chips require much better heat transfer ca-
pability. As shown in Figure 5.1, with a passive heat sink, the surface temperature exceeds
71 °C at an idle state, and HMC shuts down before the full bandwidth is achieved. Even if
we include a low-end active heat sink, HMC temperature still reaches 60 °C at a busy state.
Thus, HMC system prefers a strong cooling mechanism. In addition, because newer gen-
erations of HMC provides substantially higher bandwidth, more efficient cooling methods

are desirable.

5.2.2 Thermal Evaluation of HMC 2.0

In the previous section, we analyze the thermal issues of HMC by evaluating a real HMC
1.1 platform. However, HMC integrates PIM functionality starting from the HMC 2.0
specification [57], which has different off-chip bandwidth and architectural configurations.
In this section, we conduct a thermal evaluation of HMC 2.0 without PIM instructions

based on the energy data reported by Micron and derived from our gate-level synthesis.

Table 5.1: Typical cooling types

Type ‘ Thermal Resistance Cooling Power®
Passive heat sink 4.0°C/W 0

Low-end active heat sink | 2.0°C/W 1x
Commodity-server 0.5°C/W 104x

active heat sink

High-end active heat sink | 0.2°C/W 380x°

®We follow the same plate-fin heat sink model for all configurations.
“The fan has 2x wheel diameter in this configuration.

Evaluation Methodology: To estimate the temperature of each layer, we perform ther-
mal simulation using KitFox [118], a tool for integrated power and thermal simulations,
and 3D-ICE [119], a 3D interlayer cooling emulator. We evaluate multiple cooling types

from passive heat sink to high-end active heat sink as summarized in Table 5.1.
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Figure 5.2: Thermal model validation. (Surface: measured surface temperature of the
real HMC 1.1 chip. Die (estimated): estimated according to the surface temperature. Die
(modeling): modeled die temperature)

We follow the HMC 2.0 architectural configuration of an 8GB cube, which consists of
eight DRAM dies and one logic die. We assume the same energy consumption reported
in the original HMC design, which are 3.7pj/bit for DRAM access and 6.78pj/bit for logic
layer [32] (Please refer to Section 5.4.1 for more details about our evaluation methodology).

Model Validation: Before estimating the temperature of an HMC 2.0 cube, we first
validate our thermal modeling environment by modeling an HMC 1.1 system with the same
cooling and bandwidth configuration and comparing the result with previous real system
measurements. Figure 5.2 shows the validation result. Our thermal modeling tool can
model the temperature of DRAM dies, which is usually higher than the surface temperature
we measured using a thermal camera. Thus, we also estimate the die temperature based on
the surface temperature using a typical thermal resistance model. The results show that our
thermal model achieves only limited error comparing with the real system temperature.

Observations: We summarize the thermal results in Figure 5.3 and Figure 5.4. With
a commodity-server active heat sink, the HMC cube reaches 81 °C at a full off-chip band-
width utilization (320 GB/s). Because of the physical stacking structure of HMC, the lowest
DRAM die and logic layer show the hottest temperature. From the thermal map, we can

see that the hot spot appears at the center of each vault because of the high power density
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Figure 5.3: Heat map with a full bandwidth utilization and a commodity-server active heat
sink (left: 3D heat map of all layers. right: 2D heat map of logic layer)

of the logic component. We also observe the thermal dependence of bandwidth utilization
and cooling types summarized as follows.

1) Bandwidth Impact: The power consumption of the logic layer and DRAM dies is
proportional to the bandwidth utilization. As shown in Figure 5.4, the peak DRAM temper-
ature increases with higher bandwidth utilization. Because of the bottleneck of the off-chip
link bandwidth, without PIM instructions, the maximum data bandwidth of HMC 2.0 is
320 GB/s (aggregated link bandwidth is 480 GB/s). Accordingly, with a commodity-server
active heat sink, the peak DRAM temperature reaches 81 °C at maximum bandwidth, and
33°C at the idle state.

2) Cooling Impact: As demonstrated in our experiments of both the real HMC pro-
totype and the simulation, HMC temperature heavily relies on the cooling method of the
HMC package. To suppress the temperature below 85 °C for a full-loaded PIM, we require
the thermal resistance of the cooling structure less than 0.27 °C/W, which falls within the
realm of high-end heat sinks. However, a strong cooling method is not free. From Ta-

ble 5.1, the fan power, calculated using the fan curve methodology [120], exaggerates from
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Figure 5.4: Peak DRAM temperature with various data bandwidth and cooling methods

low-end heat sinks (1x) to commodity (104x) and high-end (380x) heat sinks. Specifi-
cally, the fan in a high-end plate-fin heat sink [121] of 0.2 °C/W consumes around 13 Watt
(almost half as much as the power of a fully-utilized HMC 2.0 cube) in our extrapolated
model of the fan power. Thus, for the sake of system power usage effectiveness (PUE), we
have a limited thermal headroom for the HMC package given a restricted fan power, and

the reminder of this chapter assumes commodity-servel cooling for the overall system.

5.2.3 Thermal Trade-off of PIM Offloading

As discussed in the previous section, the HMC cube maintains a relatively reasonable op-
erating temperature with a commodity-server cooling. When PIM offloading is used, how-
ever, the HMC would experience a non-trivial temperature increment because of the addi-
tional power consumption of both logic and DRAM layers. In this section, we discuss the
thermal impact of PIM offloading and its impact on performance.

Impact on Power & Temperature: For PIM functionality, the HMC cube incorpo-
rates functional units (FUs) in the logic die, and the FUs consume energy when executing
offloaded PIM instructions. Hence, the additional power consumption in the logic layer

is roughly proportional to the PIM offloading rate. Assuming that a single FU operation
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consumes E joule/bit, the additional power consumption can be simply computed as Equa-

tion 5.1.
Power(FU) = E X FUygjgn X PIMye 5.1

FU,;am 18 the bit width of each functional unit, which is 128bit, and PI M. is the num-
ber of PIM operations per second. To estimate the energy of a functional unit, we design
a customized fixed-point ALU at a RTL level, and synthesize the design using Synopsys
and a 28nm IC library [122]. The Synopsys tool reports a 1.02 pj/bit energy and 0.003
mm? area. Because a typical FU requires other supporting logic (e.g., FIFO and control)
in addition to the ALU, which consumes roughly the similar power, we use 2.04 pj/bit for

a PIM operation.
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Figure 5.5: Thermal impact of PIM offloading

Each PIM instruction in HMC 2.0 requires two DRAM accesses (read and write) inter-
nally. Thus, PIM offloading increases internal DRAM bandwidth utilization, which leads
to additional DRAM power consumption, which also increases the temperature. Figure 5.5
shows the relationship between the PIM offloading rate and HMC temperature. In the eval-
uation, we assume that a full-bandwidth utilization is achieved by the PIM operations and
regular memory requests. In our modeling, maximum possible PIM offloading rate 6.5 PIM

op/ns because of the thermal limitation,which reaches roughly 105 °C with our FU design,
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and our 3D-ICE simulation result shows a clear positive correlation between the offloading
rate and temperature. Therefore, to keep the DRAM temperature below 85 °C, the PIM
offloading rate must be lower than 1.3 operations per ns, as shown in Figure 5.5.

Performance Trade-off: By offloading operations on irregular data, a PIM system
reduces external memory bandwidth consumption, which can be translated into perfor-
mance benefits for bandwidth-intensive workloads. The higher offloading rate provides
more bandwidth savings, and thus more performance benefits. However, as demonstrated
in the prior section, the higher offloading rate also introduces the thermal problem of HMC
cubes, which brings a negative impact on the performance of the memory system.

A conservative operation policy may shut down an overheated HMC completely be-
fore cooling down, thereby leading to an extremely long stall time as we observed in the
HMC prototype evaluation. Moreover, if we use a dynamic DRAM management method
as suggested in prior literature [63, 66], the DRAM dies in an HMC cube can also operate
at a higher temperature by varying the DRAM frequency and refresh interval. However,
high temperatures also can bring non-trivial performance degradation because the HMC
cube will slow down not only PIM instructions, but also other regular memory requests. In
typical DRAMs, starting from 85 °C, the operating temperature is partitioned into phases
of ten degrees. For HMC 2.0 specifically, the phases of operating temperature would be
0°C-85°C (phase-1), 85°C-95°C (phase-2), and 95°C-105°C (phase-3). A higher tem-
perature phase indicates a significant memory performance drop or even a complete shut-
down. As shown in Figure 5.5, HMC reaches phase-2 temperature at 1.3 PIM offloading
rate, and phase-3 temperature at 4 offloading rate. Therefore, to stay at a cool tempera-
ture for maximizing memory performance, the PIM offloading rate has be lower than 1.3.
However, lower offloading rate also limits the performance benefit of PIM offloading from
bandwidth savings. To strike a balance between these two factors, we propose CoolPIM, a

software-based thermal-aware source throttling technique.
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5.3 CoolPIM: Thermal-Aware Source Throttling

In this section, we propose CoolPIM, a simple and practical technique that controls the
intensity of PIM offloading with thermal consideration. We first provide an overview of

CoolPIM and then discuss our software- and hardware-based source throttling methods

respectively.
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Figure 5.6: Illustration of CoolPIM feedback control

5.3.1 Overview

As shown in Figure 5.6, CoolPIM basically performs dynamic source throttling based on
the thermal warning message from HMC. At a high level, our throttling method uses a
closed-loop feedback mechanism that controls PIM intensity. That is, a thermal warn-
ing message leads to the reduction of the number of PIM instructions that are executed
within the HMC cube, thereby decreasing the internal temperature of HMC. We present
both software- and hardware-based mechanisms, which offer different throttling granular-
ities. The software-based mechanism controls the number of PIM-enabled CUDA blocks
launched on the GPU using a specialized thermal interrupt handler and software compo-
nents in the GPU runtime; it does work without additional hardware support. In contrast,
the hardware-based mechanism controls the number of PIM-enabled warps and thus pro-

vides a more fine-grained control, but at the cost of an extra hardware unit in each GPU
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core. We explain the details of our control mechanism, starting from the software-based

one, in the following sections.

5.3.2  Software-based Dynamic Throttling
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Figure 5.7: Overview of software-based dynamic throttling

Figure 5.7 shows the overview of our proposed software-based dynamic throttling tech-
nique (SW-DynT), which controls PIM offloading intensity at a CUDA block granularity.
The GPU runtime implements an offloading controller that maintains a PIM token pool
(PTP). The PTP value represents the number of maximum thread blocks that are allowed
to use PIM functionality. Before launching a thread block, the thread block manager first
needs to request a PIM token from PTP. On a success, the runtime launches the origi-
nal code that contains PIM-atomics, otherwise it launches pre-generated shadow non-PIM
code when no token is available in the token pool. During execution, if the HMC cube gets
overheated it issues a thermal warning message which will then cause SW-DynT to reduce
the PTP size. Note that HMC 2.0 provides thermal feedback in its specification via error
messages; therefore, no hardware modification is required.

PTP Inmitialization: PIM offloading intensity is controlled by updating PIM Token
Pool (PTP), and the initial PTP size is determined before the execution of the target GPU
applications. In fact, determining the initial size is a non-trivial issue. If the size is too large,

more updates are needed to reach the proper PTP size that leads to a “cool” HMC cube.
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This has an implication of a long reaction time toward the normal operating temperature,
which makes HMC operate with sub-optimal performance due to the already overheated
HMC. On the other hand, too small PTP sizes can also degrade performance because the
dynamic control can only down-tune the PTP size as the thermal feedback from HMC only
includes warning messages. Thus, the system with a too-small PTP size is likely to under-
utilize available PIM resources and thermal capability. As a solution to the small PTP size,
one might possibly think of increasing the PTP size step by step until receiving a warning
message. In SW-DynT, however, the slow reaction time would not allow us to achieve the
maximum performance opportunity.

To estimate the initial PTP size, the software-based technique performs a static analysis
at compile time. As discussed in Section 5.2, the HMC temperature (H M Crepy) is a func-
tion of the bandwidth utilization (BW/¢;) and PIM offloading rate (PIMpgg;.), as shown in
Equation 5.2.

HMCremp = F(BWU, PIMRate) (5.2)

As both PIM and non-PIM code consume similar link bandwidth, the PIM offloading rate

essentially dictates the difference in HMC temperatures between PIM and non-PIM code.

PIMRate - P]MPeakRate X P]Mlntensity (5 3)

X (PTP,Size MaxBlk#) X (1 — Ratio DivergentWarp)

As shown in Equation 5.3, we estimate the PIM offloading rate based on PIM peak rate
(PIMpeakRate), intensity of PIM instructions (21 My ensity), percentage of PIM-enabled
CUDA blocks, and the ratio of divergent warps (Rati0 pivergentwarp). Among the parameters,
both P Mpeaxrae and MaxBlk# are hardware dependent features that can be measured by
performing a simple trial run on the target platform or estimated from the hardware spec-
ification. Also, we can compute the PIM instruction intensity in the compilation stage.

Although the ratio of divergent warps typically is around zero in typical GPU programs,
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it can be large in some GPU applications, such as graph analytics. In such cases, we can
estimate its range with the help of the algorithm knowledge. For example, topological-
driven graph algorithms have a high ratio, while warp-centric ones have a low ratio. With
all the parameters estimated and measured, we first estimate the required PIM offloading
rate threshold from the hardware platform as Equation 5.3. Then, we compute the PTP
size with the given PIM offloading rate. Because the feedback control can only down-tune
the pool size, we add a small margin to the computed value in order not to be conservative

(i.e. PT Puitia size = PT Pealculaed + margin); we use a margin of 4 thread blocks for our

evaluation.
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Figure 5.8: Source throttling in SW-DynT

Source Throttling: As illustrated in Figure 5.8, in our mechanism, PTP maintains the
information on the maximum possible number of PIM-enabled blocks. Each new PIM-
enabled CUDA block requests one token from the pool when being launched, and returns
the token to the PTP when completing the execution. The PTP processes the token requests
based on the first-come-first-serve policy, which issues a token to the requester until the
number of on-going PIM-enabled blocks reaches the PTP size. With a successfully fetched
token, the block manager launches the CUDA block using the original PIM code by con-
figuring the corresponding code entry pointer. If the block fails to get a token, the block
manager launches the block using the generated non-PIM code. The dynamic controlling

of PIM and non-PIM CUDA blocks eventually determines the PIM offloading intensity and
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the temperature of the HMC.

As explained in Section 2.4, when the temperature reaches a warning threshold, the
HMC sets the error status bits in the response packets.* When receiving the thermal warn-
ing messages from the HMC side, the host GPU will trigger a thermal interrupt and forward
it to the GPU runtime. The interrupt handler then updates the PTP size to reduce the of-
floading intensity of PIM instructions. The new PTP size will be calculated by comparing
the current number of issued tokens and the PTP size after reduction as shown in Equa-

tion 5.4 where the reduction granularity is controlled by ControlFactor (CF).

PTPs;,e = Min( PT Ps,e — CF, #issuedToken ) (5.4)

A larger CF value allows for a fast cooldown of HMC; however, it also increases the chance
of under-tuning the PTP size. On the other hand, a small control factor leads to a longer
time for reducing the pool size down to the proper number and for cooling down the HMC
cube. We further discuss the trade-off of different CF values later in the discussion and

perform a sensitivity study in the evaluation section.

Void cuda_kernel(arg list) void cuda_kernel np(arg list)
{ {
for (int i=0; i<end; i++) for (int i=0; i<end; i++)
{ {
uint addr = addrArray[i]; uint addr = addrArray[i];
PIM_Add(addr, 1); cuda atomicAdd(addr, 1);
} }
} }
Original PIM Code Shadow Non-PIM Code

Figure 5.9: Code-generation example

Code Generation for Non-PIM Code: SW-DynT launches thread blocks with a PIM-

enabled kernel or a non-PIM one depending on the thermal condition. For example, if

4The current HMC 2.0 specification defines a single thermal error state, but it can trivially define multiple
error states as multiple unused error status bits are available in the error code.
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there is no token left in PTP, the runtime launches a new block with an entry point of
cuda_kernel_np in Figure 5.9. The GPU compiler generates PIM-enabled and non-
PIM code at compile time by mapping CUDA atomic functions to PIM atomics or vise
versa, as shown in Figure 5.9. All PIM atomics, including the ones defined in HMC 2.0
and the extended ones proposed in [104], can be mapped to CUDA atomic functions in a
straightforward way; for example in Figure 5.9, the PTM_Add atomic can be mapped to the
CUDA atomicAdd function. Note that code generation can be trivially performed by the
GPU compiler with minor changes as this is a simple source-to-source translation at the
abstract syntax tree (AST) level (or the mapping can also be done at the IR level, which is

also simple to perform).

5.3.3 Hardware-based Dynamic Throttling

In addition to the software-based technique, we also present a hardware-based dynamic
throttling (HW-DynT) method. By controlling PIM offloading dynamically in the GPU
hardware architecture, HW-DynT enables fast thermal-feedback reaction and achieves fine-
grained PIM intensity control.

Hardware PIM Offloading Control: Similar to SW-DynT, HW-DynT performs of-
floading control based on the thermal feedback from the HMC side. However, when re-
ceiving a thermal warning message, instead of forwarding the thermal interrupt to the GPU
runtime, HW-DynT directly performs source throttling in the GPU hardware. To do so,
each GPU core includes an extra hardware component called PIM Control Unit (PCU).
PCU collects the thermal feedback from the HMC controller and reduces the number of
PIM-enabled warps by control factor (CF) in warps when thermal warning is triggered.
The PIM-disabled warps will then execute the GPU kernel code while translating PIM in-
structions into non-PIM ones. In HW-DynT, because of the hardware support, we can con-
trol the intensity of PIM offloading at the warp granularity, which is more fine-grained than

the thread-block granularity in SW-DynT. In addition, instead of waiting for the execution
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of ongoing thread-blocks to be completed, HW-DynT takes effect immediately because
PIM-enabled warps can be disabled right away. Thus, because of the fast reaction of the
hardware-based mechanism, HW-DynT does not require a precise initial configuration and
thus just set the number of PIM-enabled warps to be maximum at the beginning.

Delayed Control Updates: HW-DynT allows for faster reaction to the thermal feed-
back than SW-DynT. However, although PIM offloading intensity can be changed imme-
diately by updating the PCU in HW-DynT, the actual HMC temperature change requires a
longer response time, which is usually an order of milliseconds. As a result, if HW-DynT
updates the PCU too frequently in the course of the temperature change, we could over-
reduce the offloading intensity. Therefore, in our mechanism, we intentionally delay the
PCU updates so that the number of PIM-enabled warps will be updated only after the HMC
temperature has been settled accordingly. In this way, we address the over-reduction issue
and also avoid the energy and performance overhead due to the frequent PCU updates.

Dynamic PIM Instruction Translation: Because all PIM instructions in HMC 2.0
and the extended instructions proposed in [104] have the corresponding CUDA instruc-
tions, Each PIM instruction can be translated to a regular CUDA instruction dynamically
according to the PIM-enable/disable condition. As shown in Table 5.2, all PIM instruc-
tions have one-to-one mapping CUDA instructions, and thus can be interpreted as regular
non-PIM instructions during the decoding process in frontend.

Table 5.2: Examples of PIM instruction mapping

Type ‘ PIM instruction  Non-PIM

Arithmetic | signed add atomicAdd
Bitwise | swap, bit write atomicExch
Boolean | AND/OR atomicAND/atomicOR

Comparison | CAS-equal/greater atomicCAS/atomicMax
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Figure 5.10: Delay time in our feedback control

5.3.4 Discussion

Feedback-control Granularity: Our proposed methods follow a closed-loop feedback
control mechanism to keep the HMC temperature within a proper range. Thermal warning
messages will trigger source throttling in the corresponding software or hardware compo-
nents. SW-DynT reduces the number of PIM-enabled CUDA blocks, whereas HW-DynT
reduces the number of PIM-enabled warps. However, source throttling does not lead to
an immediate reduction of PIM offloading intensity. As shown in Figure 5.10, a delay of
Tinrottie Will be introduced (different values for SW-DynT and HW-DynT). Similarly, the
HMC temperature will have an extra delay 7}j¢,mq regarding the variation of PIM offload-
ing intensity. Therefore, the granularity of our feedback control cannot exceed the loop
delay, which is Typrotie + Tinermar- If an application takes N control steps to achieve the
proper HMC temperature, the overall control delay would be N X (Tinrottie + Tinermat)-

Software-based vs. Hardware-based: CoolPIM presents software- and hardware-
based techniques for dynamic source throttling. Although both follow similar feedback
control mechanisms, they have differences in a number of aspects and introduce interesting
trade-offs.

1) Control delay: As explained previously, our mechanism takes a delay of Tip,or1e +
Tihermar for each control step. For the hardware-based method (HW-DynT), the source
throttling delay, T}x.0ie, Would take only tens of cycles. However, the software-based

method (SW-DynT) has a much longer 7,,-.:11c. This is because of the overhead of interrupt
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handling and the delay for waiting the execution of ongoing CUDA blocks. Despite of the
longer T;p,o11e time in SW-DynT, for GPU kernels with short execution time, the thermal
response time 7ipermeq 18 Still the major delay bottleneck. Thus, both HW-DynT and SW-
DynT would have a similar control delay. However, for long-execution kernels, Tip,ott1e
can be comparable or even larger than T};.,.nq. In this case, the per-step control delay of
HW-DynT would be significantly shorter than SW-DynT.

2) Initialization: Because of the longer control delay, SW-DynT relies on a proper ini-
tialization for reducing the number of overall control steps. As previously explained, we
initialize the PTP size by performing static analysis of target applications. The static anal-
ysis in SW-DynT is only a one-time effort, but it still introduces an extra processing step
for software compiling. On the contrary, because of the fast control reaction, HW-DynT re-
quires no special initialization but still can reach the proper PIM offloading intensity within
a short amount of time.

3) Complexity: Our software-based technique utilizes the existing PIM hardware and
requires only non-intrusive modifications of the software runtime. However, to achieve
fine-grained and fast control of PIM offloading, the hardware-based technique requires an
extra hardware component in each GPU SM, which introduces non-trivial modifications
compared to the software-based technique.

Control Factor: As explained in the prior section and Equation 5.4, our method re-
duces the PTP size when a thermal exception occurs. The reduction granularity is con-
trolled by the Control Factor (CF) parameter, which has impacts on two properties. First,
CF determines the reaction speed of the feedback-control loop; that is, a larger CF makes
the HMC cube cool in a shorter period of time. However, CF also affects the accuracy of
the pool size control. The system may over-react when a large CF is applied. In such cases,
because the PTP size can be reduced to a too small number, we could miss the potential
performance benefit from higher offloading intensity. We perform a sensitivity study of the

CF parameter in Section 5.4.
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5.4 CoolPIM Evaluation

5.4.1 Evaluation Methodology

Figure 5.11 shows an overview of our evaluation infrastructure. First, we measure the
temperature of a real HMC 1.0 hardware using a thermal camera. The results are used for
validating our thermal modeling environment. Then, we model an HMC 2.0 system based
on the specification and the power/area numbers derived from the Synopsys tools. Finally,
we estimate the system performance by performing timing simulations together with our

thermal models.

. (Thermal )
verilog Power Camera
—»>| Synopsys —| and =
Aﬁea .(% BW HMC
+ 2 | Control t t t
Thermal || = | RTL
HMC Spec P> erma - = FPGA
Modeling
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~
GPU/HMC Timing
Simulation = Benchmarks

Figure 5.11: Overview of evaluation infrastructure

Power Estimation: To measure power consumption of the functional units (FUs) in
HMC 2.0, we design a fixed-point functional unit in Verilog and synthesize it with Synop-
sys tools using a 28 nm CMOS library [122]. For DRAM and logic dies, since no public
information about the design details is released, we use the energy numbers reported in
prior literature from Micron [32]. Average energy consumptions per bit are 3.7 pJ/bit for
DRAM layers and 6.78 pJ/bit for the logic layer. We then estimate the power consumption
according to the bandwidth utilization (i.e., power = energy/bit x bandwidth).

Area Estimation: HMC 1.0/1.1 die size is reported to be 68 mm? [32]. Assuming the
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die is evenly partitioned into 16 vaults, each vault occupies 4.25 mm?. Since no VLSI-level
information of HMC 2.0 is released, we assume that HMC 2.0 occupies the same per-vault
area as HMC 1.0. Similarly, we also use the same 28 nm CMOS process for the logic
layer and 50 nm process for the DRAM layers. In each vault, we place a vault controller
and a functional unit at the center. In our synthesis, the functional unit occupies an area
of 0.003 mm?. We also use the area of a vault controller synthesized in 28 nm CMOS
from [123].

Thermal Modeling: To model the temperature of the HMC cube, we use KitFox [118],
which is an integrated power, thermal, and reliability modeling framework. In KitFox,
we use 3D-ICE [119] for a detailed thermal analysis of the 3D-stacked architecture. By
following the specification, we model an 8GB HMC 2.0 which consists of a bottom logic
layer and eight DRAM dies stacked on top. We assume that a commodity-server cooling
capability is applied. Also, we use the same process technology, floorplan, and power
consumption as previously explained in this section.

Performance Evaluation: We evaluate the performance of our proposed technique by
performing detailed timing simulation because HMC 2.0 hardware is not publicly avail-
able. We use the Structural Simulation Toolkit (SST) [90] as a simulation framework, and
MacSim [91], a cycle-level architecture simulator, for host-side GPU simulation. We also
use VaultSim, an in-house 3D-stacked memory simulator, to model an HMC architecture.
As explained in Section 5.2, for the thermal impact on HMC performance, we partition the
HMC operating temperature into three phases, 0 °C-85°C, 85 °C-95°C, and 95 °C-105 °C,
and assume a 20% DRAM frequency reduction when switching to a higher temperature
phase. Table 5.3 summarizes the configuration of our evaluations. We model a host GPU
with 16 Streaming Multiprocessors (SMs) and an 8GB HMC cube that follows the HMC
2.0 specification. For workloads, we use the GPU benchmarks from GraphBIG [89], a com-
prehensive graph benchmark suite covering a wide scope of graph computing use cases, and

use LDBC graph [95] (IM vertex) as the input dataset. GraphBIG also implements mul-
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tiple algorithms of GPU breadth-first search (bfs) and single-source shortest path (sssp),

including topology-driven/data-driven and thread-centric/warp-centric [23, 124].

Table 5.3: Performance evaluation configurations

Component ‘ Configuration

Host | GPU, 16 PTX SMs, 32 threads/warp, 1.4GHz
16KB private L1D and 1MB 16-way L2 cache

HMC | 8GB cube, 1 logic die, 8 DRAM dies
32 vaults, 512 DRAM banks [57]
tCL = tRCD = tRp =13.75 ns, tRAS =27.5ns [94]

4 links per package, 120GB/s per link [57]
80GB/s data bandwidth per link

DRAM Temp. phase: 0-85 °C, 85-95 °C, 95-105°C
20% DRAM freq reduction (high temp. phases)

Benchmark | GraphBIG benchmark suite [89]
LDBC graph dataset [95]

5.4.2 Evaluation Results

In this section, we evaluate our proposed CoolPIM technique with four system configura-
tions, which are explained as follows. In our evaluation, all speedup results are compared

with the baseline system unless otherwise stated.

e Non-Offloading (Baseline): This is a conventional architecture using HMC as GPU

memory and does not utilize PIM offloading functionality.

e Naive Offloading: This configuration follows a PIM offloading mechanism similar
to the previously proposed PEI [31]. PIM offloading is enabled for all thread blocks
without any source control. The HMC cube uses a commodity-server active heat

sink.

e CoolPIM: This is our proposed thermal-aware source throttling method, in which
we keep the HMC cube in a cool temperature range by performing source throttling.

Here, we compare both CoolPIM (SW), which is a software-based dynamic throttling
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method (SW-DynT), and CoolPIM (HW), which is a hardware-based dynamic throt-
tling method (HW-DynT). Similarly, a commodity-server active heat sink is applied

on the HMC cube.

e [deal Thermal: This is the scenario in which the HMC cube has an unlimited cooling

capability and remains at a low temperature regardless of PIM offloading intensity.

Performance Evaluation

Figure 5.12 shows the performance results of our proposed technique. Compared with the
non-offloading scenario, both software-based and hardware-based technique achieves over
a 1.3 speedup for dc, bfs-ta, and pagerank. On average, CoolPIM improves perfor-
mance by 21% for software-based method and 25% for hardware-based method over the
baseline. On the contrary, instead of providing performance benefits, naive offloading leads
to performance degradation for bfs—dwc and bfs-twc by 18% and 16% respectively.
Except for sssp—dtc, all benchmarks show only negligible or even negative performance
improvements over the baseline for naive offloading. Both kcore and sssp—-dtc show
the same speedup for native-offloading and CoolPIM scenarios. This is because the PIM
offloading intensity is low for those workloads, which does not trigger the thermal issue
of the HMC cube. In addition, we can see that in the ideal thermal scenario, PIM offload-
ing has a great performance potential, providing a performance improvement up to 61%
and 36% on average. However, such performance benefits can only be achieved with an
unrealistic cooling capability, which is not applicable in a realistic system because of the
non-trivial power and space overhead.

Our performance evaluation demonstrates that although PIM offloading shows a large
performance benefit in the ideal thermal scenario, such performance benefits will be com-
pletely offset because of the memory slowdown triggered by the thermal issue. By control-
ling PIM offloading intensity from the source side, CoolPIM balances the trade-off between

performance and thermal awareness.
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Figure 5.12: Speedup over the baseline system without PIM offloading

Bandwidth-Savings Analysis

Most of the GPU applications are bandwidth sensitive; therefore, the major source of bene-
fits from PIM offloading is from bandwidth savings. Bandwidth savings not only improves
energy efficiency of data movement, but also increases performance. Thus, it is usually an
intuitive assumption that a larger bandwidth savings will lead to better performance. How-
ever, when we consider the thermal issue of PIM offloading, we observe quite different

behaviors.
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Figure 5.13: Bandwidth consumption normalized to the non-offloading baseline system
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Figure 5.13 shows the bandwidth consumption of each workload normalized to the non-
offloading baseline system. Naive offloading reduces bandwidth by 39% for sssp-dwc,
while CoolPIM (HW) only reduces bandwidth by 21% for the same benchmark. However,
as shown in Figure 5.12, naive offloading receives only a negligible performance improve-
ment over the baseline, while CoolPIM achieves a 1.28 x speedup. We can also observe the
same behavior for all other benchmarks except kcore and sssp—-dtc. This is because
these benchmarks have a low PIM offloading intensity; therefore, offloading does not trig-
ger a thermal issue. Figure 5.13 demonstrates that although naive offloading enables high
bandwidth savings, it instead bring performance degradation because of the thermal issues

caused by the offloading.

Thermal Analysis

As explained in Section 5.2, the temperature of an HMC cube depends on the utilization of
its bandwidth and intensity of PIM offloading. Because the graph computing benchmarks
used in our evaluation are bandwidth saturated, the utilization of PIM offloading compo-
nents between the scenarios is the main deciding factor in determining the peak DRAM

temperature for the HMC cube.
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Figure 5.14: Comparison of PIM offloading rate

Figure 5.14 shows the average PIM offloading rate with a naive-offloading method
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and with our proposed CoolPIM mechanisms. Without any source throttling, naive of-
floading reaches close to 4 op/ns (PIM operations per nanosecond) for bfs—-dwc and
bfs-twc, and more than 3 op/ns for other benchmarks, such as bfs-ttc, sssp-dwc,
and sssp-twc. Such a high PIM offloading intensity would lead to a high temperature
of the HMC cube and trigger the thermal issue. However, source throttling of CoolPIM
keeps the PIM offloading rate below 1.3 op/ns for all benchmarks. The results demonstrate

the effectiveness of our proposed method, which successfully keeps the PIM offloading

intensity within a desirable range.
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Figure 5.15: Peak DRAM temperature

Figure 5.15 shows the thermal evaluation results. In the results, with the naive-offloading
method, the peak DRAM temperature exceeds 90 °C for most benchmarks. Some of them,
suchas bfs—dwc and bf s—-twc, even reach 95 °C. However, with our proposed CoolPIM,

all benchmarks maintain below 85 °C, keeping the HMC cube at a cool state.

Software-based vs. Hardware-based

As explained in Section 5.3.4, the software-based dynamic throttling usually introduces
much longer throttling delay than the hardware-based method. However, because of the
long thermal response time, such difference in throttling delay may not be significant in

the overall control delay. To evaluate its impact, we also analyze the PIM rate over time
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Figure 5.16: Illustration of PIM rate variation over time

during our experiments. We sample the target benchmarks at the granularity of one mil-
lisecond and compare the PIM rate variations of software- and hardware-based methods.
In our results, we observe only sub-millisecond difference in the overall control delay.
To better illustrate the observation, Figure 5.16 shows the PIM rate variations over time
for bfs-ta benchmark. We select this benchmark because of its relatively larger delay dif-
ference and longer execution time. As shown in Figure 5.16, naive offloading maintains
extremely high PIM offloading rate with only small variations. However, both software-
and hardware-based CoolPIM methods successfully control the PIM rate and keep it within
a proper range. Although software-based method consumes close-to one more millisecond
than hardware-based one, it still takes only trivial time compared to the millisecond-level

thermal response time and the long total execution time.
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Figure 5.17: Sensitivity to control factor
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Figure 5.18: Peak DRAM temperature of CPU workloads

Parameter Sensitivity

As explained in Section 5.3.4, Control Factor (CF) in SW-DynT affects the reaction speed
of the feedback control and the control accuracy. A long reaction time may keep the HMC
cube at a hot state for longer time, and a over-reduced PTP value may lose the performance
potential of a higher PIM intensity. In this section, we evaluate the sensitivity to the CF
values. Figure 5.17 shows the speedup over the non-offloading system with different CF
values. As shown, changing from CF-1 to CF-3 only shows a negligible performance
degradation. In the worst case, bfs—dtc shows a 10% reduction in performance between
CF-1 and CF-3. On average, the speedup variation is around 5%. The result shows a general
insensitive behavior of the CF settings. This is because the difference between various CF
values is relatively small compare to the large number of SMs and CUDA blocks. In
addition, our proposed method uses a static mechanism to select the proper initial state. It
ensures a small distance between the initial state and the desirable configuration. Thus, the

reaction time would be generally short regardless of the CF variation.

Thermal Analysis of CPU Graph Workloads

As explained in prior sections, because of the high bandwidth utilization and frequent PIM

offloading, graph workloads on GPUs may trigger the thermal issue and suffer from the
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caused memory performance degradation. However, the graph workloads on CPUs usually
do not have the thermal issue because of its low bandwidth utilization and PIM operation
rate. To demonstrate that, we perform a thermal evaluation on CPU graph workloads from
the GraphBIG benchmark suite following the same configuration as in Section 4.4. As
shown in Figure 5.18, the peak DRAM temperatures of all workloads are below 30°C
even with naive offloading because of the low bandwidth utilization of CPU workloads.
Moreover, the temperature differences between non-offloading and naive offloading are all
below 1°C. This is because the extremely low PIM operation rates, which are all lower
than 0.07 operation/ns, bring only negligible thermal impact. Therefore, from the results,
we can observe that because of the low bandwidth utilization and PIM operation rate, graph
workloads on CPU-based platforms do not trigger thermal issues, and thus do not require

a thermal-aware offloading management mechanism.

5.5 Summary

Processing-in-memory (PIM) offers promising performance and energy gains, but its ther-
mal constraints can prevent applications from benefiting its full potential. To understand
the thermal impact of PIM, this dissertation performs an analysis on a prototype of HMC
across various bandwidth utilization and cooling solutions. Our results show that naively
using PIM offloading functionality causes a thermal bottleneck and degrades system per-
formance even compared to the non-offloading case depending on the workloads. Based
on our findings, we propose CoolPIM, a source throttling technique that controls PIM of-
floading intensity to keep the operating temperature in check. CoolPIM presents both hard-
ware and software mechanisms to overcome the thermal bottleneck in HMC. The hard-
ware method provides fast feedback reaction and fine-grained control, while the software
method requires only non-intrusive changes in software runtime and compiler. Compared
to the non-offloading and naive offloading systems, CoolPIM improves performance up to

40% and 37% for a set of graph workloads by effectively managing thermal constraints.
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CHAPTER 6
CONCLUSION

Graph computing has been widely used in a variety of domains. However, because of the
inefficiency in memory subsystems, graph computing does not perform well on conven-
tional architectures, and thus require architectural innovations for improving its execution
efficiency. This dissertation addresses the bottlenecks of graph computing by utilzing the
processing-in-memory (PIM) technique, which can improve memory subsystem efficiency
by offloading operations on the irregular data to the memory side. This dissertation first
analyzed the behavior of graph computing by proposing benchmarking mechanisms for
modern graph computing systems. Based on the characterization observations, it then ex-
ploited enabling PIM offloading for graph computing on multiple hardware platforms. By
merging NDP concept and graph computing together, this dissertation starts from the key
question that how to enable PIM offloading for improving graph computing efficiency on
CPU- and GPU-based architectures. On CPU-based platforms, it identified the key bot-
tlenecks and proposed a full-stack solution for utilizing PIM functionality in graph frame-
works. On GPU-based platforms, this dissertation showed that thermal constraints become
a key obstacle because of the high memory bandwidth and PIM unit utilization, and then
proposed source throttling mechanisms for thermal-aware PIM offloading. The proposed

techniques in this dissertation are further summarized as follows.

e Chapter 3 presented a suite of CPU/GPU graph benchmarks. The proposed bench-
mark suite addressed all key benchmarking factors simultaneously by utilizing Sys-
tem G framework design and following a comprehensive workload selection proce-
dure. From the characterization, it observed: 1) Conventional architectures do not
perform well for graph computing. Significant inefficiencies are observed in CPU

memory subsystems and GPU warp/memory bandwidth utilizations. 2) Significant
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diverse behaviors are shown in different workloads and different computation types.
Such diversity exists on both CPU and GPU sides, and involves multiple architectural
features. 3) Graph computing on both of CPUs and GPUs are highly data sensitive.

Input data has significant and complex impacts on multiple architecture features.

e Chapter 4 proposed GraphPIM, a full-stack solution that enables PIM instruction of-
floading for graph computing. GraphPIM is built on the key observation that the
atomic access to the graph property is the main culprit for the inefficient execution
of graph workloads on modern computing systems. Thus, by offloading the atomic
operations on the graph property to the PIM side, GraphPIM avoids the overhead of
executing atomic instructions in the host processor as well as the inefficient utiliza-
tion of the memory subsystem caused by irregular data accesses. GraphPIM achieves
up to a 2.4 x speedup and a reduction of 37% in energy consumption for a wide range

of graph benchmarks and real-world applications.

e Chapter 5 offers an analysis on a prototype HMC system across a wide range of band-
width utilization and cooling solutions. Because of the thermal constraints, naively
using PIM offloading functionality can cause a thermal issue and degrades system
performance even compared to the non-offloading case depending on the workloads.
Hence, this chapter proposed CoolPIM, a source throttling technique that controls
PIM offloading intensity to keep the operating temperature in check. CoolPIM im-
proves performance up to 40% and 37% for a set of graph workloads compared to
the non-offloading and naive offloading systems by managing thermal constraints

effectively.

The emergence of data science and the increment of data volumes require more ef-
ficient processing of large-scale graphs. This dissertation provides a set of architectural
solutions for improving graph computing efficiency. The proposed solutions are based on

the real-world NDP standard from HMC 2.0 and the comprehensive understanding of real-
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world graph computing systems. The solutions covers both CPU- and GPU-based host
architectures with considerations of software system design as well as hardware thermal
constraints. Requiring only minor non-intrusive modifications of software and hardware,
the proposed solutions can serve as an effective and practical starting point for future graph

computing architecture designs.
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