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SUMMARY 

 

A double-strand break (DSB) is one of the most deleterious DNA lesions and its repair is 

crucial for genome stability. Even if a single DSB is not repaired precisely, this could 

cause mutations, chromosomal rearrangements, cell death, and apoptosis. The safest 

mechanism to repair a DSB is homologous recombination (HR). HR requires an identical 

or nearly identical DNA template, such as a sister chromatid or a homologous 

chromosome to retrieve the missing genetic information and accomplish error-free repair. 

In special cases, HR can occur between RNA molecules, such as RNA molecules in RNA 

viruses. However, very little is known about RNA-DNA HR. Previously, it was 

demonstrated that synthetic RNA-containing molecules can serve as templates for 

repairing defective or broken homologous chromosomal DNA in yeast, human and 

bacterial cells, but it remained unclear whether cellular RNA transcripts can recombine 

with genomic DNA. Here, we investigated whether yeast cells can use transcript RNA as 

a template to repair a chromosomal DSB either directly or indirectly, if the RNA is 

converted first into a DNA copy, cDNA. We developed a system to detect HR between 

chromosomal DNA and transcript RNA in budding yeast, Saccharomyces cerevisiae. We 

focused on repair of a chromosomal DSB occurring either in a homologous but remote 

locus (trans) or in the same transcript-generating locus (cis) in yeast. We proved that 

transcript RNA can repair a DSB indirectly, via cDNA. Moreover, we found that cDNA 

repair is much more frequent in the trans than in the cis system. Interestingly, in the 

absence of Ribonuclease H1 and H2 (RNases H1 and H2), we could detect DSB repair 

even in conditions that strongly inhibit cDNA formation, suggesting direct DSB repair by 



 xvi 

transcript RNA. In contrast to DSB repair by cDNA, the direct DSB repair by transcript 

RNA is more efficient in the cis than in the trans system, despite the higher abundance of 

the transcript in the trans system. These results suggest that the vicinity of the transcript 

RNA to the break site in the cis system may facilitate DSB repair. DSB repair by 

transcript RNA in cis is promoted by the HR protein Rad52 but not Rad51, in agreement 

with the demonstration that the yeast and human Rad52 proteins efficiently catalyze 

annealing of RNA to a DSB-like DNA end in vitro. We also showed that yeast cells 

expressing hypomorphic mutants of RNase H2, which correspond to the human RNase 

H2 mutants that are associated with the neuroimmunological disease, Aicardi Goutieres 

(AGS) syndrome, have increased frequency of DSB repair by cDNA, significantly higher 

than in wild-type RNase H2 cells. In addition, we showed that in contrast to DSB repair 

by single strand DNA (ssDNA) oligonucleotides (oligos), RNA templated DSB repair is 

not dependent on factors that are major players in DNA end resection. This result could 

be explained by a mechanism in which transcript RNA repairs a DSB in conditions of 

limited end resection via an inverse strand exchange reaction. Our study provides proof 

and initial characterization of a new mechanism of DNA repair and HR mediated by 

RNA in yeast, and unravels novel aspects in the complex relationship between RNA and 

DNA in genome stability.



 1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Double-strand break and its repair  

Double-strand breaks (DSBs) are among the most dangerous DNA lesions, which can be 

generated by endogenous or exogenous sources, and can lead to mutations and genome 

rearrangement if not properly repaired [1]. Their repair is crucial for cell survival and 

genome stability [2]. There are two predominant mechanisms for DSB repair: non-

homologous end-joining (NHEJ) and homologous recombination (HR) [3, 4]. NHEJ does 

not depend on a homologous template and it is predominant in the G0/G1 phase of the cell 

cycle in yeast [5].  Once a DSB is formed, Ku proteins (Ku70/80) bind to the broken ends 

[6] and lead to ligation of the broken ends by Dnl4-Lif1 (Figure 1.1A) [7]. This process 

is mostly error prone because of the possibility of introducing small deletions and 

insertions at the site of the DSB [1]. 

 

HR is the repair mechanism in which homologous or homeologous DNA molecules 

interact with each other and exchange genetic information. HR is a major repair pathway 

in the S and G2 phases of the cell cycle allowing for most accurate repair templated by 

sister chromatids in mitotic cells [8]. Because HR uses a template with identical or nearly 

identical sequence for repair of DSBs, HR is considered a less error prone mechanism 

than NHEJ [9]. After a DSB is formed, the broken DNA ends are resected in a 5’ to 3’ 

direction, resulting in 3’ overhang single-stranded DNA (ssDNA) ends that are used for 

homology search to find an homologous intact sequence [10]. Four nucleases, MRX 
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complex (Mre11-Rad50-Xrs2), Exo1, Dna2, and Sae2 and one helicase, Sgs1, are mainly 

involved in the end resection process [11]. Resection inhibits NHEJ and triggers the HR 

mechanism for DSB repair [12]. Replication Protein A (RPA) binds to the resected 

ssDNA and prevents the formation of secondary structures. Following RPA binding, 

Rad51 binds to ssDNA and displaces RPA with the help of Rad52 to form the Rad51 

filament for homology search and DNA strand invasion for repair (Figure 1.1B) [13].  
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Figure 1.1 Major mechanisms for DSB repair. A) NHEJ mechanism. Ku70/Ku80 are 

in red. Dnl4 is in light green. B) HR mechanism. RPA is in yellow. MRX is in light blue. 

Rad51 is in light orange. Rad52 is in dark red. Repaired DNA is in blue and homologous 

DNA is in black. (Modified from [14])   

 

1.2 Evidence in support of indirect RNA-mediated DNA DSB repair 

RNA is an abundant molecule in the cell and could be another source of homologous 

template for DNA DSB repair via HR in addition to a sister chromatid or a homologous 

chromosome. Reverse transcriptase (RT) enzymes utilize RNA as a template to create 

complementary DNA (cDNA) and can transfer genetic information back to DNA in 

retroviruses, retrotransposons and telomeres [15, 16]. Derr et al. and Curcio et al. showed 

that the retrotransposon of yeast (Ty) can reverse transcribe not only Ty RNA but also 

other cellular RNA to produce cDNA by RT enzyme [17-19]. Such cDNA can be 

integrated into DNA, recombine with homologous DNA [17-19] or be captured at the site 

of a DSB via NHEJ [20, 21]. In mammalian cells, the Long Interspersed Element-I 

(LINE-1) can incorporate endogenous mRNA sequences at the site of a DSB in addition 

to LINE-1 mRNA [22, 23]. 

 

Moore et al. studied retrotransposon activity by expressing Homothallic-switching 

endonuclease (HO) to induce a DSB at the Mating Type (MAT) locus in budding yeast 

deficient for both HML and HMR donor sequences that repair MAT in normal condition  

[20]. They showed that short Ty sequences could be captured at the site of the HO DSB 

and this event was not dependent on the recombination protein Rad52 [20]. In addition, 
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Teng et al. developed a system, in which a his3 gene with an artificial intron (AI) was 

fused with a Ty1 element on a plasmid. Following induction of the DSB by HO, they 

found that the Ty1/HIS3 cDNA was integrated at the site of the HO DSB [21] (Figure 

1.2A). 

 

LINE-1 is a retrotransposon in mammalian cells and has endonuclease cleavage activity. 

This endonuclease activity of LINE-1 generates a 3’-OH end that can be used as a primer 

for RT to make cDNA and integrate LINE-1 cDNA into the genome [24]. Moorish et al. 

showed that LINE-1 with its RT activity can integrate its cDNA at sites of DNA lesions 

even in the absence of the NHEJ mechanism in Chinese hamster ovary cells [23, 24]. 

LINE-1 elements transpose other retroelements or cellular RNA as well as themselves 

[22]. Moreover, LINE-1 can use free DNA ends as primers for insertion of cDNA and 

DSB repair (Figure 1.2B).  

 

Figure 1.2 Model for DSB repair by cDNA insertion. A) RNA-mediated, non-

templated DSB repair B) RNA-templated DSB repair by cDNA insertion (by Havva 

Keskin in [25]) 
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Ty elements generate cDNA molecules by RT in yeast. This cDNA can recombine with 

homologous Ty elements by HR [26, 27] and induction of a DSB within the Ty DNA 

sequence can increase recombination between Ty cDNA and genomic Ty DNA [28]. Ty 

not only has the capability of reverse transcribing its own RNA but can also RT other 

cellular RNAs in the yeast cells. The study by Derr et al. showed the ability of Ty 

elements to generate cDNA using a HIS3 reporter gene interrupted by an artificial intron 

(AI) in its antisense orientation [17]. The his3-AI cassette was placed on a vector under 

the control of a galactose inducible promoter (pGAL1). Upon expression of this cassette 

in galactose medium, the his3 antisense mRNA generated His+ colonies. Half of the His+ 

colonies were due to integration of cDNA into genomic DNA and other half was due to 

the HR event between the cDNA and the plasmid [17]. These findings support the 

possibility that cDNA could be a template for DNA DSB repair when carrying homology 

to the broken DNA ends.  

 

1.3 Signs of RNA-DNA recombination 

RNA can guide genetic and epigenetic modifications in DNA. RNA can guide site-

specific DNA cleavage in adaptive bacterial immunity [29]. Small RNAs have a role in 

DSB repair by guiding molecules directing chromatin modifications or recruiting proteins 

to sites of DNA damage [30, 31]. Transcriptional gene silencing can be induced by 

microRNAs [32]. In vitro work showed that the bacterial DNA recombination protein 

RecA promotes pairing between duplex DNA and single-strand RNA resulting in 

formation of a three strand structure called an R-loop [33, 34]. Artificial RNA molecules 

can direct genome modifications and rearrangements when injected into the protozoa, 
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Oxytricha trifallax [35]. An RNA-templated insertion was postulated from analysis of 

DNA sequences repaired via NHEJ after DSB induction by zinc-finger nucleases in 

Drosophila cells [36].  

 

Furthermore, discovery of a viral genome representing an RNA-DNA chimera inferred a 

recombination between RNA and DNA viruses [37]. In addition, recent work showed that 

Rad51 promotes the formation of RNA-DNA hybrids in yeast S. cerevisiae [38]. 

Nevertheless, these findings do not provide direct proof that RNA can directly exchange 

genetic information with DNA. 

 

1.4 Genomic DNA modification by RNA-oligonucletides 

Work by Storici et al. showed that synthetic RNA containing DNA oligonucleotides 

(oligos) or RNA only oligos can repair a DSB in chromosomal DNA of yeast S. 

cerevisiae [39]. RNA only or RNA-containing oligos were transformed into yeast cells to 

repair a broken leu2 locus to detect RNA-templated DNA repair. DSB repair by RNA 

oligos was not affected by deletion of the SPT3 gene, which is essential for Ty1 and Ty2 

transcription and transposition activity [39]. Genetic modification of DNA guided by 

short RNA oligos was also found in Escherichia coli and human embryonic kidney cells 

(HEK-293) [40, 41]. However, a big question remained as to whether not only synthetic 

RNA or RNA-containing molecules, but also endogenous cellular RNA molecules could 

engage in RNA-DNA HR.  
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1.5 RNA-DNA hybrids 

RNA-DNA hybrids can form during replication and transcription [42]. DNA primase 

generates RNA primers during lagging strand synthesis, resulting in a RNA-DNA hybrid 

[43]. During transcription, a short RNA-DNA hybrid forms at the transcription bubble 

[43]. However, formation of long RNA-DNA hybrids during transcription generates 

structures known as R-loops. An R-loop consists of an RNA-DNA hybrid duplex and a 

displaced ssDNA loop. R-loops can be a source of genome instability including 

mutations, recombination, chromosome rearrangement and chromosome loss [42]. R-

loops are more sensitive to lesions, transcription-associated mutagenesis and 

transcription-associated recombination [44]. Moreover, R-loops and RNA-DNA hybrids 

have been implicated in human diseases. The main concern is that R-loops are associated 

with chromosomal breakage [45]. It has been shown that XPF and XPG, nucleotide 

excision repair endonucleases, process R-loops into DSBs. In addition, accumulation of 

R-loops and RNA-DNA hybrids were linked to Aicardi-Goutieres syndrome (AGS), 

Fragile X syndrome, and Friedreich’s ataxia [45]. Considering the negative effects that 

RNA-DNA hybrids can have on genome stability, cells possess numerous mechanisms to 

prevent formation of RNA-DNA hybrids.  These include RNA-DNA helicases, like Sen1 

in yeast and Senataxin in humans [46, 47], the Pif1 helicase [48, 49], topoisomerases [50, 

51], the THO/TREX complex, which keeps RNA away from DNA during transcription 

[42], and Ribonuclease (RNase) H enzymes [52]. Two RNase H enzymes, RNase H1 and 

RNase H2, directly cut the RNA strand of RNA-DNA hybrids and prevent their 

accumulation [52]. 
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1.6 The function of Ribonuclease (RNase) H enzymes  

RNase H enzymes catalyze the cleavage of an RNA strand in RNA-DNA hybrids [53, 

54] and play roles in DNA replication, transcription, recombination, and repair [55]. 

There are two main types of RNase H. RNase H1/I has only one subunit. In eukaryotes, 

RNase H2/II has three different subunits, the catalytic subunit (Rnh201 in yeast, and 

RNase H2A in humans) and two additional subunits (Rnh202 and Rnh203 in yeast, and 

RNase H2B and RNase H2C in humans), which are necessary for catalysis. RNase H1/I 

and RNase H2/II have different cleavage specificity. RNase H1/I requires a stretch of at 

least 4 ribonucleotides (rNMPs) in a DNA duplex in order to cleave RNA efficiently 

(Figure 1.3) [52].  RNase H2/II cleaves at long RNA-DNA hybrids as well as at single 

rNMPs embedded in a DNA duplex (Figure 1.3) [56].  

 

Figure 1.3 Cleavage specificity of RNase H1 and RNase H2. Ribonucleotides are in 

red as ‘R’. DNA is in blue. Arrows represent sites of cleavage by RNase H1 or RNase H2 

(Modified from [52])  
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RNase H1 has been implicated in mitochondrial DNA (mtDNA) replication during 

mouse development [57]. Null mutations in RNase H1 or RNase H2 genes are embryonic 

lethal in mice [57, 58]. Mutations in any of the human RNase H2 subunits are associated 

with AGS, which is a severe neurological and inflammatory disorder the mainly affects 

the brain, the immune system, and the skin in humans [52, 59, 60]. AGS can be also 

caused by mutations in TREX1 (3’ to 5’ exonuclease) [61], SAMHD1 (dNTP 

triphosphatase) [62], ADAR1 (RNA-editing enzyme) [63], or IFIH1 (Interferon Induced 

with helicase C domain 1) [63]. The molecular mechanisms that cause AGS are still 

unclear; however, the seven genes that are mutated in AGS patients are directly or 

indirectly related to nucleic acid modification/degradation. The possible accumulation of 

RNA-DNA hybrids in defective RNase H2 cells could be a trigger for the disease [64]. 

AGS patients with a defect in RNase H2 could have an increased level of cDNA in the 

form of RNA-DNA hybrids, which could play a role in activating the immune system.  

 

 

1.7 Research Goals 

With the scope of better understanding the relationship between RNA and DNA in the 

context of genome stability and a particular focus on exploring the possibility that RNA 

may have a positive role in DNA repair, we set up the following research goals. 

 

1.7.1 To detect transcript-RNA-templated DSB repair in yeast cells 

Previous study showed that synthetic RNA or RNA-containing oligos can be used as a 

template for repairing mutated or broken homologous chromosomal DNA in yeast, 
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human and bacterial cells. Here, we hypothesized that endogenous RNA molecules, RNA 

transcripts, can serve as a template for DNA DSB repair in yeast cells. We aimed to 

develop two experimental yeast systems to examine whether an RNA transcript from a 

yeast marker gene could repair a DSB induced i) in the same DNA locus that generates 

the repairing transcript RNA (in cis) or ii) in a homologous sequence but located in a 

different locus from the one generating the repairing transcript RNA (in trans) in yeast S. 

cerevisiae.  

 

1.7.2 To explore the effect of RNase H mutations on cDNA- and direct RNA-

templated DSB repair 

In the course of this study, we found that the frequency of DNA repair by cDNA and 

transcript RNA was highly increased in the absence of the catalytic subunit of RNase H2 

and without RNase H1. We, therefore, first planned to test whether null alleles of the 

other two RNase H2 subunits would also impair the frequency of DSB repair by RNA, 

and whether binding of RNase H2 to the DNA clamp PCNA (proliferative cell nuclear 

antigen) was required for RNA-templated DSB repair. Moreover, we planned to examine 

the effect of mutations in the RNase H2 gene that are associated with the AGS syndrome 

on the frequency of direct and indirect RNA-templated DSB repair in yeast.  

 

1.7.3 To characterize the mechanism of transcript-RNA-templated DNA DSB repair  

Our results uncovered that transcript RNA can be used as a template to repair a DNA 

DSB in yeast cells. Here, we aimed to characterize the mechanism of transcript-driven 

DNA repair. Our major goal was to identify factors regulating transcript RNA-templated 
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DNA DSB repair. Because we know very little about the mechanism of DSB repair by 

transcript RNA, we first explored the involvement of factors functioning in HR and DNA 

end processing. 
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2.1 Abstract 

Homologous recombination is a molecular process that has multiple important roles in 

DNA metabolism, both for DNA repair and genetic variation in all forms of life [13]. 

Generally, homologous recombination involves the exchange of genetic information 

between two identical or nearly identical DNA molecules [13]; however, homologous 

recombination can also occur between RNA molecules, as shown for RNA viruses [65]. 

Previous research showed that synthetic RNA oligonucleotides can act as templates for 

DNA double-strand break (DSB) repair in yeast and human cells [39, 66], and artificial 

long RNA templates injected in ciliate cells can guide genomic rearrangements [67]. 

Here we report that endogenous transcript RNA mediates homologous recombination 

with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to 

detect the events of homologous recombination initiated by transcript RNA following the 

repair of a chromosomal DSB occurring either in a homologous but remote locus, or in 

the same transcript-generating locus in reverse-transcription-defective yeast strains. We 

found that RNA–DNA recombination is blocked by ribonucleases H1 and H2. In the 

presence of H-type ribonucleases, DSB repair proceeds through a complementary DNA 

intermediate, whereas in their absence, it proceeds directly through RNA. The proximity 

of the transcript to its chromosomal DNA partner in the same locus facilitates Rad52-

driven homologous recombination during DSB repair. We demonstrate that yeast and 

human Rad52 proteins efficiently catalyze annealing of RNA to a DSB-like DNA end in 

vitro. 

 

Our results reveal a novel mechanism of homologous recombination and DNA repair in 

which transcript RNA is used as a template for DSB repair. Thus, considering the 

abundance of RNA transcripts in cells, RNA may have a marked impact on genomic 

stability and plasticity. 
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2.2 Materials and Methods 

2.2.1 Experimental design to explore transcript-RNA-templated chromosomal DSB repair 

in yeast. 

In the experimental design to explore transcript-RNA-templated chromosomal DSB 

repair it is critical to discriminate repair of the DSB by transcript RNA from repair by the 

DNA region that generates the transcript. Also, translation of the repairing transcript 

mRNA should not produce the functional His3 protein. Moreover, it is essential that DSB 

repair would not restore the HIS3 marker sequence by simple end ligation via non-

homologous end-joining (NHEJ). To satisfy these requirements, the DNA region that 

generates the transcript was constructed to contain a his3 allele on chromosome III 

consisting of a yeast HIS3 gene interrupted by an artificial intron in the antisense 

orientation (mhis3-AI cassette), which was previously used to study reverse transcription 

in yeast [68, 69]. The antisense his3 RNA is not translated into the functional His3 

protein. Moreover, after intron splicing, the transcript RNA sequence has no intron, while 

the DNA region that generates the transcript retains the intron; thus they are 

distinguishable. We developed two experimental yeast cell systems, trans and cis (Figure 

2.1a, b and Figure A.1) in strains YS-289, 290 and YS-291, 292, respectively (Table 

A.1). In both systems, transcription of the antisense his3 RNA and expression of the 

homothallic switching endonuclease are regulated by the galactose-inducible promoter 

(pGAL1). In addition, these yeast cell systems are auxotrophic for histidine (His-) and 

thus do not grow on media without histidine. Upon induction of the homothallic 

switching endonuclease DSB, the broken his3 allele of the trans and cis cell systems can, 

in principle, only be repaired to a functional HIS3 allele by recombination with a 

homologous template. Alternative mechanism of HIS3 repair by ligation of the broken 

ends via NHEJ is inefficient in this system (<0.1 out of 107 viable cells) (data not shown), 

as the HIS3 gene is disrupted by a long sequence with the homothallic switching 

endonuclease site (trans system) or an intron and the homothallic switching endonuclease 
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site (cis system) (Figure A.1b, c). To impair DSB repair by cDNA deriving from the his3 

antisense, we deleted the SPT3 or the DBR1 gene. SPT3 encodes for a subunit of the 

SAGA and SAGA-like transcriptional regulatory complexes and its null allele reduces Ty 

reverse transcriptase function over 100-fold [66, 70, 71]. DBR1 encodes for the RNA 

debranching enzyme Dbr1 and its null allele in yeast cells impairs cDNA formation and 

diminishes Ty transposition up to a factor of tenfold [72, 73]. As further proof that we 

can detect DSB repair by transcript RNA independently of cDNA, we performed the 

trans and cis assays with and without RNase H functions in the presence of foscarnet 

(phosphonoformic acid, PFA), an inhibitor of the HIV reverse transcriptase, which blocks 

Ty reverse transcription in yeast [74] (and data not shown). 

 

2.2.2 Yeast strains. 

The yeast strains used in this work are listed in Table A.1 and derive from the FRO-767 

strain [66], which contains the site for the site-specific homothallic switching 

endonuclease in the middle of the LEU2 gene on chromosome III. A gene cassette carried 

on plasmid pSM50 (refs [68, 69]) containing the his3 gene disrupted by an artificial 

intron and regulated in the antisense orientation by the galactose inducible promoter 

pGAL1 and containing the URA3 marker gene (pGAL1-mhis3-AI-URA3) was integrated 

into the leu2 locus of strain FRO-767 after DSB induction at the homothallic switching 

endonuclease site by the gene collage technique with no PCR amplification . The URA3 

gene was then replaced with the ADE3 gene generating strain FRO-1073 [75]. To build 

the strains of the trans system, an homothallic switching endonuclease site was integrated 

into the endogenous HIS3 locus on chromosome XV of FRO-1073 exactly in the same 

position in which the artificial intron was inserted in the pGAL1-mhis3-AI cassette using 

the delitto perfetto method, as described previously [75, 76], to generate FRO-1075, 

1080.The correct sequence and insertion position of the homothallic switching 

endonuclease site was confirmed by sequence analysis. For constructing strains of the cis 
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system, first the his3 gene disrupted by the homothallic switching endonuclease site of 

FRO-1075 and 1080 was replaced with a TRP1 gene to generate YS-164, 165, and then 

an homothallic switching endonuclease cutting site was integrated into the artificial 

intron in the his3 cassette on chromosome III to generate strain YS-172, 174. To be 

cautious to avoid any possibility of transcription from Ty into the pGAL1-mhis3-AI 

cassette in both the trans and cis systems, the Ty2 element located upstream of the leu2 

locus on chromosome III, YCLWTy2-1, was deleted following the delitto perfetto 

method to generate YS-289, 290 (trans system) and YS-291, 292 (cis system). These new 

strain constructs were verified by PCR and sequence analysis to confirm correct 

constructions. However, no difference in the frequency of His+ cells was observed 

between the strains with the YCLWTy2-1 and those without it for the strains of both the 

trans and cis systems (data not shown). Deletion mutants for the trans YS-289, 290, and 

the cis 291, 292 strains contain either the kanMX4, hygMX4, natMX4 and/or the 

Kluyveromyces lactis URA3 (KlURA3) marker gene in place of the open reading frame or 

the promoter of the gene(s) of choice. All gene disruptions were confirmed by colony 

PCR. Strains HK-396, 400 and HK-391, 394 were constructed using the delitto perfetto 

method by deleting the first 23 base pairs on the 59 end of the artificial intron via 

insertion of the CORE cassette, and then by popping out the CORE cassette with a pair of 

oligonucleotides. These constructs were confirmed by sequence analysis. Strain HK-404, 

407 was obtained by deleting the SPT3 gene with kanMX4 from HK-391, 394. The FRO-

1092, 1093 strain is rad52Δ and has only one his3 allele, the endogenous allele on 

chromosome XV that has been inactivated by the homothallic switching endonuclease 

site. 

 

2.2.3 Standard genetic, molecular biology techniques and plasmids. 

Yeast genetic methods and molecular biology analyses were done as described [66, 75, 

76]. The BDG606 vector [77] and the BDG283 control vector (a gift from D. Garfinkel), 



 17 

used to verify a direct role of transcript RNA in DSB repair (Table A.4), are centromeric 

plasmids with the URA3 marker. BDG606 contains the pGAL1-mhis3-AI cassette fused to 

Ty (pGTy1-H3his3-AI/Cen-URA3) and BDG283contains only pGAL1. The plasmids used 

for the complementation assay with RNase H2 are YEp195SpGAL, which is a high-copy 

expression plasmid containing the URA3 selectable marker [78], YEp195SpGAL 

containing the wild-type RNH201 gene (YEp195SpGAL-RNH201) inserted by gap 

repair, and YEp195SpGAL-rnh201-D39A constructed by in vitro mutagenesis (Quick 

Change Mutagenesis Kit, Stratagene, La Jolla, CA) of YEp195 SpGAL-RNH201 and 

confirmed by sequence analysis. To confirm occurrence of the homothallic switching 

endonuclease DSB following incubation in the 2% galactose medium, the percentage of 

G2 arrested cells was determined right before adding galactose and after 8-h incubation 

in galactose as previously described [40] (Figure A.2c). All primers used for strain and 

plasmid constructions, PCR verifications and sequence analyses are available upon 

request. Samples for sequencing were submitted to Eurofins MWG Operon. The 

Southern blot experiment was done as follows. Cells from colonies growing on rich 

medium containing yeast extract, peptone and 2% (w/v) dextrose (YPD) or His- media 

were grown on YPD overnight (O/N). Genomic DNA was extracted as described [79] 

and digested with either BamHI or NarI restriction enzyme. After digestion, column 

purification was applied by using QIA quick PCR Purification Kit (Qiagen). DNA was 

run in a 0.8% agarose gel. Following electrophoresis and Southern blotting chromosomal 

regions containing the HIS3 gene were detected using a [a-32P] ATP (PerkinElmer)-

labelled (Prime-ItRmTRandom Primer Labelling Kit, Agilent Technologies) 250-base-

pair HIS3-specific probe. Membrane was exposed to a phosphor screen for 3 days. 

Images were taken with Typhoon Trio1 (GE Healthcare) and obtained with Image Quant 

(GE Healthcare). 
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2.2.4 Trans and cis assays using patches or liquid cultures. 

Yeast cells of the chosen strains were patched on YPD and grown at 30 °C for 1 day. The 

cells were then replicaplated on medium containing yeast extract, peptone and 2%(w/v) 

galactose (YPGal) or YPGal containing phosphonoformic acid (PFA, 2.5 mg ml-1) to turn 

on transcription of the his3 antisense on chromosome III and expression of the 

homothallic switching endonuclease. As a control, cells were also replica-plated from the 

YPD medium on synthetic complete medium plates lacking histidine (SC-His-) and 

grown for 3 days at 30 °C. We never detected a single His+ colony from any of the trans 

and cis strains used in this study following replica-plating from the YPD medium on SC-

His- (not shown). After 2 days’ incubation on YPGal medium, these cells were replica-

plated onto SC-His- and grown for 3 days at 30 °C to form visible colonies. At this stage, 

plates were photographed and photo files stored. For experiments using the BDG606 and 

BDG283 plasmids, cells were replica-plated from SC-Ura- onto SC-Ura-Gal medium, and 

were then replica-plated onto SC-Ura-His-. As a control, cells were also replica-plated 

from the SC-Ura- medium onto SC-Ura-His- and grown for 3 days at 30 °C. For the 

experiments in liquid culture, flasks with 50 ml of liquid medium containing yeast 

extract, peptone and 2.7% (v/v) lactic acid (YPLac) were inoculated with yeast cells of 

the chosen strains and incubated in a 30 °C shaker for 24 h. The density of the cultures 

was determined by counting cells using a hemocytometer and counting under a 

microscope. Generally, 107 or, in rare cases, 108 cells (we note that survival is very low 

on galactose medium) were then plated on YPGal medium, or YPGal medium containing 

PFA (2.5mg ml-1) for experiments using PFA to obtain from 1 to, ~500 His+ colonies per 

plate after the replica-plating on His- medium, and grown for 2 days at 30 °C. Two 

aliquots of 104 cells were plated, each on one YPGal medium plate, or YPGal medium 

containing PFA (2.5 mgml-1) for experiments using PFA plate, to measure the cell 

survival after galactose treatment. After 2 days’ incubation on YPGal medium, cells were 

replica-plated on His- plates and grown for 3 days at 30 °C. The frequency of DSB repair 
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was calculated by dividing the number of His+ colonies on SC-His- medium by the 

number of colonies on YPGal medium. The survival was calculated by dividing the 

number of colonies on YPGal medium by the number of cells plated on the same 

medium. For experiments using the BDG606 and BDG283 plasmids, cells were treated as 

described above except that they were plated from YPLac on SC-Ura-Gal medium in 

different dilutions, and were then replica-plated on SC-Ura-His-. The frequency of His+ 

colonies was calculated by dividing the number of His+ colonies on SC-Ura-His- medium 

by the number of colonies on SC-Ura-Gal medium. The survival was calculated by 

dividing the number of colonies on SC-Ura-Gal medium by the number of cells plated on 

the same medium. 

 

2.2.5 Oligonucleotide transformation 

Transformation by oligonucleotides (1nmol) was performed as described [66]. Induction 

of the homothallic switching endonuclease DSB was done by incubating cells in 2% 

galactose medium for 3 h. 

 

2.2.6 Transposition assay 

Yeast cells of the chosen strains transformed with BDG102 (empty plasmid) or BDG598 

(pGTy-H3mhis3-AI) plasmid [80] (containing a Ty transposon fused to the his3 gene, 

which is in the antisense orientation and disrupted by an artificial intron; both Ty and the 

his3 antisense are regulated by the galactose inducible promoter) were patched on SC-

Ura- and grown overnight at 30 °C. Cells were then replica-plated on synthetic medium 

lacking uracil with 2% (w/v) galactose (SC-Ura-Gal) and grown for 48 or 96 h at 30 °C or 

22 °C, respectively. As control, cells were also replica-plated on SC-His- to determine the 

background of His+ clones. After the incubation in galactose, cells were replica-plated on 

SC-His- and grown for 3 days at 30 °C to form visible colonies. At this stage, plates were 

photographed and photo files stored. For the experiments in liquid culture, strains with 
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BDG102 or BDG598 were grown in 5 ml SC-Ura- liquid medium or in 10 ml of YPLac 

liquid medium in a 30 °C shaker for 24 h. Then, 1x106 cells were transferred from the 

SC-Ura- liquid medium into 5 ml SC-Ura- or 5 ml SC-Ura-Gal liquid medium and 

incubated for 48 or 96 h at 30 °C or 22 °C, respectively. After 24 h, YPLac cultures were 

split in half. One-half was kept growing for additional 48 h at 30 °C, while galactose was 

directly added to the other half to reach 2% and cells were then incubated for 48 h at 30 

°C. From glucose and YPLac cultures grown at 22 °C or 30 °C, 107 or 108 cells were 

plated on SC-His-Ura- medium, respectively, and were grown for 2 days at 30 °C. From 

galactose cultures grown at 22 °C or 30 °C, 105 or 106 cells were plated on SC-His-Ura- 

medium, respectively, and were grown for 2 days at 30 °C. Two aliquots of 5x102 cells 

were plated each on one SC-Ura- medium plate, to measure the cell survival after 

glucose, YPLac or galactose treatment. The rate of formation of His+ cells was calculated 

using the maximum-likelihood method described in ref. [81]. 

 

2.2.7 Quantitative real-time PCR 

RNA was isolated from the chosen yeast strains of the trans and cis systems using a 

protocol adapted from a method described previously [82]. RNA was converted in to 

cDNA using QuantiTect  ReverseTranscription Kit (Qiagen). SYBR Green qPCR Mix 

(BioRad) was used for analyzing RNA expression in 96-well plates (Applied 

Biosystems). The total volume in each well was 20 ml, which consisted of 10 ml of 

SYBR Green qPCR Mix, 4 ml of nuclease-free water, 2 ml of primers and 4 ml of cDNA. 

The cDNA levels were determined using an ABI Prism 7000 RT–PCR machine (Applied 

Biosystems). ACT1.F and ACT1.R, HIS3.F2 and HIS3.R2 primers were used in this 

study (Table A.2a). ACT1 primers were used for normalization. Values for each sample 

were normalized with ACT1, and then a second normalization was performed by 

subtracting normalized values of each time point from the control normalized value per 

each gene [83]. As a negative control, CEN16.F and CEN16.R primers were used to 
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show that there is minimal or no qPCR product derived from a chromosomal region that 

is not transcribed (A. El Hage, personal communication) (data not shown). 

 

2.2.8 Rad52 in vitro annealing assay 

In vitro assays using yeast or human Rad52 were performed as described [84, 85] (and 

references therein), with all DNA and RNA concentrations expressed in moles of 

molecules. All oligonucleotide sequences (no. 211, no. 501, no. 508 and no. 509) are 

shown in Table A.2a. A single nucleotide mismatch was incorporated into the dsDNA 

(relative to ssDNA or RNA) to reduce the spontaneous Rad52-independent annealing. 

Tailed dsDNA (no. 508 and no. 509) (0.4 nM) was incubated in the absence or presence 

of yeast or human RPA (2 nM)in a buffer containing 25 mM Tris acetate, pH7.5, 100 

mg/ml-1 BSA, and 1mM DTT (dithiothreitol) for 5 min at 37 °C. Then yeast or human 

Rad52 (1.35 nM) was added to the mixture containing either yeast or human RPA, 

respectively, and incubation continued for 10 min. Annealing reactions were initiated by 

adding 32P-labelled ssRNA (no. 501) or ssDNA (no. 211) (0.3 nM). Aliquots were 

withdrawn at indicated time points and deproteinized by incubating samples in stop 

solution containing 1.5% SDS, 1.4 mg/ml-1 proteinase K, 7% glycerol and 0.1% 

bromophenol blue for 15 min at 37 °C. Samples were analyzed by electrophoresis in 10% 

(17:1 acrylamide:bisacrylamide) polyacrylamide gels in 1X TBE (90mMTrisborate, pH 

8.0, 2mM EDTA) at 150V for 1 h and were quantified using a Storm 840 

Phosphorimager and Image Quant 5.2 software (GE Healthcare). 

 

2.2.9 Data presentation and statistics 

Graphs were made using GraphPad Prism 5 (Graphpad Software). The results are each 

expressed as a median and 95% confidence interval (in brackets), or alternatively the 

range when number of repeated experiments was, 6. Statistically significant differences 

between the His+ frequencies were calculated using the nonparametric two-tailed Mann–
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Whitney U-test [86]. All P values obtained using the Mann–WhitneyU-test were then 

adjusted by applying the false discovery rate method to correct for multiple hypothesis 

testing [87] (Table A.1). 

 

2.3 Results 

To investigate the capacity of transcript RNA to recombine with genomic DNA, we 

sought to discover whether a chromosomal DSB could be repaired directly by 

endogenous RNA in yeast S. cerevisiae cells. We designed a strategy by which we could 

induce a DSB in the HIS3 marker gene and monitor precise repair of the DSB by a 

homologous transcript messenger RNA by restoration of HIS3 function resulting in 

histidine prototrophic (His+) cells (see Methods). We developed two experimental yeast 

cell systems, trans and cis, in strains YS-289, 290 and YS-291, 292, respectively (Table 

A.1). The trans system is designed to test the ability of a spliced (intron-less) antisense 

his3 transcript from chromosome III to repair a DSB in a different his3 allele on 

chromosome XV, which contains an engineered homothallic switching endonuclease 

cutting site (Figure 2.1a and Figure A.1a, b). The cis system is designed to test the 

capacity of the spliced antisense his3 transcript from chromosome III to repair a 

homothallic-switching-endonuclease-induced DSB located inside the intron of the same 

his3 locus (Figure 2.1b and Figure A.1c).  
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Figure 2.1 Repair of a chromosomal DSB by transcript RNA. a, b, Scheme of the 

trans (a) and cis (b) cell systems used to detect DSB repair by transcript RNA. AI, 

artificial intron; HO, homothallic switching endonuclease; pGAL1, galactose-inducible 

promoter; RT, reverse transcriptase. Yellow triangles, cleavage activity by HO 

homothallic switching endonuclease; red question marks, hypothesis for transcript-RNA-

templated DSB repair mechanism. c–e, Examples of replica-plating results (n 56) from 

galactose medium to histidine dropout medium demonstrating the ability of various yeast 

strains (relevant genotypes shown) of the trans and cis systems to generate histidine 

prototrophic colonies in the absence of SPT3, or DBR1 function, or with 

phosphonoformic acid (PFA) (c), in the presence of the plasmid carrying the pGAL1-

mhis3-AI cassette (BDG606) or the control (BDG283) (d), or when the artificial intron 

has a 23-base-pair deletion (AID23) (e). WT, wild type. 
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In both the trans and cis cell systems, the spliced antisense his3 transcript RNA can serve 

as a homologous template to repair the broken his3 DNA and restore its function. 

However, given the abundance of Ty retrotransposons in yeast cells, the spliced antisense 

his3 RNA could potentially be reverse transcribed by the Ty reverse transcriptase in the 

cytoplasm to cDNA that could then recombine with the homologous broken his3 

sequence or be captured by non-homologous end joining at the homothallic switching 

endonuclease break site to produce His+ cells [17, 70, 88]. To distinguish DSB repair 

mediated by the transcript RNA template from repair mediated by the cDNA template, 

we performed the trans and cis assays in two yeast strains that contained either a wild-

type SPT3 gene or its null allele, which prevents Ty transcription and strongly reduces Ty 

transposition and transpositional recombination [66, 70, 71]. In both assays, cells 

containing wild-type SPT3 produced numerous His+ colonies after DSB induction 

(Figure 2.1c and Table 2.1a). As expected, the frequency of His+ colonies in the trans 

system was significantly higher than that in the cis system because the his3 transcript is 

continuously generated in the presence of galactose. In contrast, production of the full 

his3 transcript is immediately terminated upon DSB formation in the cis system. This 

frequency difference is not specific to the particular genomic loci in which the DSBs are 

induced, as transformation by DNA oligonucleotides (HIS3.F and HIS3.R) designed to 

repair the broken his3 gene produced the same frequency of His+ colonies in the two 

systems (Tables A.2a and A.3), demonstrating that the homothallic switching 

endonuclease DSB stimulates homologous recombination in the trans and cis systems 

equally well. Notably, almost all the His+ colonies are dependent on SPT3 function, 

indicating that the DSB in his3 is repaired exclusively via the cDNA pathway (Figure 

2.1c and Table 2.1a). This finding demonstrates that if an actively transcribed gene is 

broken, it can be repaired using a cDNA template derived from its intact transcript. 

Moreover, these data also support the model in which reverse-transcribed products from 

any sort of RNA can be a significant source of genome modification at DSB sites [89]. 
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For RNA to recombine with DNA, an intermediate step that is probably required is the 

formation of an RNA–DNA heteroduplex. We therefore deleted the genes coding for 

ribonuclease (RNase) H1 (RNH1) and/or the catalytic subunit of RNaseH2 (RNH201), 

which both cleave the RNA strand of RNA–DNA hybrids . Remarkably, while deletion 

of RNH1 slightly increased the frequency of His+ colonies in the trans system, deletion of 

RNH201 increased the frequency of His+ colonies in both the trans and cis systems, and 

combined deletion of RNH1 and RNH201 resulted in an even stronger increase of His+ 

colonies in both systems. Moreover, we detected His+ colonies in rnh1 rnh201 cells in the 

absence of SPT3 (Figure 2.1c and Table 2.1a). Notably, there were more His+ colonies 

in cis-system rnh1 rnh201 spt3 than in trans-system, and the frequency of His+ colonies 

observed in the rnh1 rnh201 spt3 relative to spt3 cells was much higher in cis (>69,000) 

than in trans (>6,400) (Figure 2.1c and Table 2.1a). If DSB repair in rnh1 rnh201 spt3 

cells were due to cDNA, we would expect a higher His+ frequency in the trans than in the 

cis system, as observed in wild-type cells. The fact that the His+ frequency is higher in 

the cis system suggests that DSB repair is not mediated by cDNA but instead by RNA or 

predominantly RNA. To further examine the possibility that residual cDNA rather than 

transcript RNA is responsible for his3 correction in cis-system rnh1 rnh201 spt3 cells, we 

introduced a trans system directly into these cells and into the control cis wild-type cells. 

When wild-type cells of the cis system were transformed with a low-copy-number 

plasmid carrying the pGAL1-mhis3-AI cassette, where AI represents an artificial intron 

(BDG606; see Methods), they displayed a large (a factor of 4,000) increase in the His+ 

frequency following DSB induction in his3 compared to the same cells transformed with 

the control empty vector (BDG283). In contrast, BDG606 in cis-system rnh1 rnh201 spt3 

cells did not significantly increase the His+ frequency (Figure 2.1d and Table A.4). 

These results argue against the role of residual cDNA in template-dependent DSB repair 

in cis-system rnh rnh201 spt3 cells and support a predominant, direct template function 

of the cis-system his3 transcript RNA in these cells. Overall, these data support the 
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conclusion that a transcript RNA can directly repair a DSB in cis-system rnh1 rnh201 

and rnh1 rnh201 spt3 cells. The physical proximity of the his3 transcript to its own his3 

DNA during transcription could facilitate annealing of the broken DNA ends to the 

transcript. This possibility is consistent with the fact that closer donor sequences repair 

DSBs more efficiently [90, 91] and that mature transcript RNAs are exported rapidly to 

the cytoplasm or degraded after completion of transcription [92].  

 

To confirm that inactivation of RNases H1 and H2 allows for direct transcript RNA 

repair of a DSB in homologous DNA, we conducted a complementation test in the cis 

system using a vector expressing either a catalytically inactive mutant of RNH201, 

rnh201 (D39A) [93], or wild-type RNH201. Results showed that when wild-type 

RNH201 was expressed from the plasmid in rnh1 rnh201 spt3 cells, there were no His+ 

colonies following DSB induction (Figure A.2a). Deletion of SPT3 is a well-established 

and robust method to suppress reverse transcription and formation of cDNA in yeast [66, 

70, 94]. However, to prove that the increased frequency of His+ detected in the cis-

relative to the trans-system rnh1 rnh201 spt3 background was not solely linked to SPT3 

deletion, we impaired cDNA formation by deleting the DBR1 gene, which codes for the 

RNA debranching enzyme Dbr1 [72, 73], or by using the reverse transcriptase inhibitor 

foscarnet (phosphonoformic acid) [74]. Results shown in Figure 2.1c and Table A.5a 

support our conclusion that RNA transcripts can directly repair a DSB in chromosomal 

DNA without being first reverse transcribed into cDNA in rnh1 rnh201 cells. 

 

Efficient generation of His+ colonies in cis wild-type, rnh1 rnh201, or rnh1 rnh201 spt3 

cells requires transcription and splicing of the antisense his3 and DSB formation in the 

his3 gene. Deletion of pGAL1 (the galactose-inducible promoter) upstream of his3 on 

chromosome III, deletion of the homothallic switching endonuclease gene, or growing 

cells in glucose medium, in which homothallic switching endonuclease is repressed, 
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drastically decreased His+ frequency (Figure A.2b, c and Table A.5b, c). Similarly, 

yeast wild-type, rnh1 rnh201 and rnh1 rnh201 spt3 cells of the cis system containing a 

23-base-pair truncation of the artificial intron in his3 lacking the 59 splice site (Table A.1 

and Figure A.1c) produced no His+ colonies following DSB induction (Figure 2.1e and 

Table A.5d), yet these cells were efficiently repaired by HIS3.F and HIS3.R synthetic 

oligonucleotides indicating that the DSB occurred in these cells (Table A.3). 

 

Table  2.1 Frequencies of cDNA and transcript RNA-templated DSB repair in trans 

and in cis 

 

 

a trans cis  

Genotype            His+ freq. Survival        His+ freq. Survival  

WT 12,300 (10,000-14,600) 1.1% 2,100 (1,800-2,700) 0.7% 

spt3 <0.1 (0-8) 8%1 <0.1 (0-0) 4.8% 

rnh201 33,000 (30,400-42,200) 0.7% 15,800 (11,800-18,300) 0.6% 

rnh201 spt3 <0.1 (0-5) 8% <0.1 (0-0) 7% 

rnh1 20,610 (17,100-23,900) 0.8% 1,780 (1,200-2,600) 0.5% 

rnh1 spt3 <0.1 (0-5) 9% <0.1 (0-10) 4.5% 

rnh1 rnh201 69,000 (58,600-76,500) 1% 75,000 (57,900-82,100) 0.5% 

rnh1 rnh201 spt3 642 (590-800) 11% 6,920 (5,840-7,900) 6% 

b cis  cis 

Genotype           His+ freq. Survival Genotype           His+ freq. Survival 

WT 1,640 (1,200-1,850) 1% rnh1 rnh201 rad51 74,540 (55,130-87,530) 0.09% 

rad52 <0.1 (0-0) 0.2% rnh1 rnh201 spt3 7,560 (5,720-11,300) 7.5% 

rad51 5,700 (4,170- 8,150) 0.4% 
rnh1 rnh201 spt3 

rad52 
520 (300-1,100) 0.3% 

rnh1 rnh201 74,600 (64,900-84,000) 0.6% 
rnh1 rnh201 spt3 

rad51 
31,560 (12,910-39,220) 0.6% 

rnh1 rnh201 rad52 1,520 (970-2,580) 0.1%     
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a, Frequencies of His+ colonies per 107 viable cells for yeast strains of the trans and cis 

cell system following 48 h of galactose treatment are shown as median and 95% CI (in 

parentheses). Percentage of cell survival after incubation in galactose is also shown. For 

the trans system there were 26 repeats for WT, 12 repeats for spt3, rnh201, rnh201 spt3, 

rnh1, rnh1 spt3; 24 repeats for rnh1 rnh201, rnh1 rnh201 spt3. For the cis system there 

were 26 repeats for WT, 12 repeats for spt3, rnh201, rnh201 spt3, rnh1, rnh1 spt3; 24 

repeats for rnh1 rnh201; 18 repeats for rnh1 rnh201 spt3. The significance of 

comparisons between the strains in the trans and the cis systems, and between different 

strains of the trans or the cis system was calculated using the Mann-Whitney U test 

(Table A.7a). b, Frequencies of His+ colonies per 107 viable cells for different rad52 and 

rad51 mutant strains of the cis system following 48 h of galactose treatment are shown as 

median and 95% CI (in parentheses). For the cis system there were 12 repeats for WT, 

rnh1 rnh201 spt3, rnh1 rnh201 rad52, rnh1 rnh201 spt3 rad52; 6 repeats for rad52, rnh1 

rnh201, rad51, rnh1 rnh201 rad51, rnh1 rnh201 spt3 rad51. Percentage of cell survival 

after incubation in galactose is also shown. The significance of comparisons between the 

strains in the cis systems were calculated using the Mann-Whitney U test (Table A.7b). 

1Cells with the spt3-null allele have higher survival than wild-type SPT3 cells after DSB 

induction because they spend more time in G2 (data not shown; see also Figure A.2c).  

 

Next, to examine whether DSB repair frequencies at the his3 locus in the trans and cis 

systems correlate with the expression level of antisense his3 transcript, we performed 

quantitative real-time PCR (qPCR). The qPCR data showed that with increased time of 

incubation in galactose medium (from 0.25 to 8 h) the trans strains had significantly 

more his3 RNA than the cis strains in all backgrounds, including the rnh1 rnh201 spt3 

strain. Furthermore, the levels of his3 transcript dropped significantly from 0.25 to 8 h in 

galactose in cis but not in trans strains, except for the cis strain in which the homothallic 

switching endonuclease gene was deleted (Figure A.2d). These results are expected in 
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the cis strains because as soon as the homothallic switching endonuclease DSB is made, a 

full his3 transcript cannot be generated. Therefore, these data corroborate the conclusion 

that the higher frequency of His+ colonies obtained in cis- than in trans-system rnh1 

rnh201 spt3 cells (Figure 2.1c and Table 2.1a) is not due to more abundant and/or more 

stable transcript but rather to the proximity of the transcript to the target DNA. 

 

PCR analysis of ten random His+ colonies from each of the trans- and the cis-system 

rnh1 rnh201 spt3 backgrounds, and Southern blot analysis of three samples from each 

background showed that the his3 locus that was originally disrupted by the homothallic 

switching endonuclease site (trans background), or by the intron with the homothallic 

switching endonuclease site (cis background), was indeed corrected to an intact HIS3 

sequence. No integration of the HIS3 gene at the homothallic switching endonuclease site 

or elsewhere in the genome was detected in tested clones (20 of 20), excluding possible 

mechanisms of repair via capture of cDNA by end joining or via transposition (Figure 

2.2a and Figures A.3 and 4a–c). We also excluded the possibility that double deletion of 

RNH1 and RNH201 resulted in increased level of Ty transposition. In fact, results 

presented in Table A.6 show transposition rates a factor of 3–14 lower in null rnh1 

rnh201 than in wild-type cells. This could be due to an increase of non-productive Ty 

RNA–DNA substrates for the Ty integrase, resulting in abortive integrations and/or 

titration of the enzyme. Sequence analysis of 24 random His+ colonies from the cis 

system rnh1 rnh201 spt3 background revealed that all 24 clones had the same precise 

sequence as the spliced antisense his3 transcript and did not present a typical end joining 

pattern with small insertion, deletion or substitution mutations (Figure A.1c and Table 

A.2b). These results, together with our observation of no His+ colony formation in cells 

unable to splice the intron in his3 (Figure 2.1e and Table A.5d), strongly support a 

homologous recombination mechanism of DSB repair by transcript RNA in cis-system 

rnh1 rnh201spt3 cells. 
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Figure 2.2 Transcript-templated DSB repair follows a homologous recombination 

mechanism. a, Southern blot analysis of yeast genomic DNA derived from trans wild-

type His+ (lane 2) or His+ (lane 3), rnh1 rnh201 spt3 His+ (lane 4) or His+ (lanes 5–7) 

cells, digested with BamHI restriction enzyme and hybridized with the HIS3 probe, or 

derived from cis wild-type His+  (lane 8) or His+  (lane 9), rnh1 rnh201 spt3 His+ (lane 

10) or His+ (lanes 11–13) cells, digested with NarI restriction enzyme and hybridized 

with the HIS3 probe (Figure A.4a, c). Lanes 1 and 14, 1-kilobase DNA ladder visible in 

the ethidium-bromide-stained gel (Figure A.4b). Size of digested DNA bands is 

indicated by red arrows. bp, base pairs. b, Experimental scheme of Rad52-promoted 

annealing between RNA and DNA in vitro. Asterisk denotes 32P label. ssDNA (named 

no. 211) or ssRNA (no. 501) oligonucleotides are in black; DNA oligonucleotides no. 

508 and no. 509, forming double-stranded DNA (dsDNA), are in blue and green, 

respectively. Sequences of oligonucleotides no. 201, no. 501, no. 508 and no. 509 are 
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shown in Table A.2a. c, d, The kinetics of annealing promoted by yeast Rad52 (c) and 

human RAD52 (d). Nucleoprotein complexes were assembled between dsDNA (no. 508 

and no. 509) with an ssDNA protruding tail (0.4nM) and either yeast or human Rad52 

(1.35nM) in the presence (dashed lines) or absence (solid lines) of yeast or human RPA 

(2nM). Annealing was initiated by addition of 32P-labelled ssRNA or ssDNA (0.3nM). 

The kinetics of protein-free annealing reactions are indicated by open squares and circles. 

The error bars represent the standard error of the mean, n=4. For the significance of 

comparisons between the last two time points we used the two-tailed Mann–Whitney U-

test. P values are given in Table A.7c. 

 

Previous studies showed the ability of Escherichia coli RecA to promote pairing between 

duplex DNA and single-strand RNA in vitro [33, 34]. Recent work suggests that Rad51 

(the homologous protein to bacterial RecA) can promote formation of RNA–DNA 

hybrids in yeast [38]. Here we show that transcript-RNA-directed chromosomal DNA 

repair is stimulated by the function of Rad52 but not Rad51 recombination protein [95]. 

Rad52 is important for homologous recombination both via single-strand annealing and 

via strand invasion [13, 95]. DSB repair by transcript RNA was reduced over 14-fold in 

cis-system rnh1 rnh201 spt3 rad52 but was increased by a factor of 4 in cis-system rnh1 

rnh201 spt3 rad51 compared to rnh1 rnh201 spt3 cells (Table 2.1b). Notably, our in 

vitro experiments demonstrate that both yeast and human Rad52 efficiently promote 

annealing of RNA to a DSB-like DNA end (Figure 2.2b–d and Figure A.4d–h). 

Importantly, Rad52 catalyses the reaction with RNA at nearly the same rate as the 

reaction with single-stranded DNA (ssDNA) of the same sequence. Moreover, in our 

experiments replication protein A (RPA), a ubiquitous ssDNA binding protein [13], 

caused a moderate inhibition of Rad52-promoted annealing between complementary 

ssDNA molecules, but not between ssRNA and ssDNA molecules. Thus, in the presence 
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of RPA, the annealing between ssRNA and ssDNA proceeded with higher efficiency than 

the reaction between ssDNA molecules (Figure 2.2b–d and Figure A.4d–g). 

 

 

 

Figure 2.3 Models of transcript-RNA-templated DSB repair in cis. An actively 

transcribed DNA region experiencing a DSB uses its own transcript RNA as a bridging 

(a) or an extension (b) template for repair. The small black lines indicate initial annealing 

between the transcript RNA and the DSB end(s), and between the two DSB ends. Orange 

circles, Rad52; green triangles, RNase H1 and H2 (H1/2). 

 

 

In vivo, cDNA and/or RNA-dependent DSB repair may be especially important in the 

absence of functional Rad51 that prevents repair by the uncut sister chromatid via strand 

invasion [96]. Indeed, our results show that deletion of RAD51 increases the frequency of 

repair by cDNA and/or RNA (Table 2.1b). Hence, considering the bias observed for 

DSB repair in cis versus trans systems when Ty reverse transcription was impaired, we 

propose a model that in the absence of H-type RNase function, transcript RNA mediates 

DSB repair preferentially in cis systems via a Rad52-facilitated annealing mechanism. In 

this mechanism, the transcript may provide a template that either bridges broken DNA 
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ends to facilitate precise re-ligation or initiate single-strand annealing via a reverse-

transcriptase dependent extension of the broken DNA ends (Figure 2.3). The reverse 

transcriptase activity could be provided by a replicative DNA polymerase3, minimal Ty 

reverse transcriptase, or both. The current view in the field is that RNA–DNA hybrids 

formed by the annealing of transcript RNA with complementary chromosomal DNA 

either in cis or in trans systems are mainly a cause of DNA breaks, DNA damage and 

genome instability [97]. Here we demonstrate that under genotoxic stress, transcript RNA 

is recombinogenic and can efficiently and precisely template DNA repair in the absence 

of H-type RNase function in yeast. In the central dogma of molecular biology, the 

transfer of genetic information from RNA to DNA is considered to be a special condition, 

which has been restricted to retro-elements [98] and telomeres [99]. Our data show that 

the transfer of genetic information from RNA to DNA occurs with an endogenous 

generic transcript (his3 antisense), and is thus a more general phenomenon than 

previously anticipated. In addition, in vitro RNA–DNA annealing was markedly 

promoted not only by yeast but also human RAD52, suggesting that transcript-RNA-

templated DNA repair could occur in human cells. RNA transcripts could template DNA 

damage repair at highly transcribed loci, in cells that do not divide (lack sister 

chromatids), or have more stable RNA–DNA heteroduplexes, like those defective in 

RNASEH2 in patients with Aicardi–Goutie`res syndrome [100]. Our findings lay the 

groundwork for future exploration of RNA-driven DNA recombination and repair in 

different cell types. 
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3.1 Abstract 

Eukaryotic ribonucleases (RNase) H1 and H2 are endonucleases that cleave RNA in a 

double-stranded RNA-DNA molecule. RNase H2 can also cleave a single ribonucleotide 

embedded in DNA duplex. While the activity of RNase H1 and H2 has been extensively 

characterized in vitro, still much is unclear about the specific targets of these enzymes in 

vivo. We recently demonstrated that yeast cells can repair a double-strand break (DSB) in 

DNA by homologous recombination (HR) using antisense (non-coding) RNA, either 

directly or indirectly after converting RNA into cDNA. In wild-type RNase H1 and/or H2 

cells, repair by cDNA dominates, whereas in the absence of RNase H1 and H2 functions 

cDNA and, in particular, direct transcript-RNA repair mechanisms are markedly 

stimulated. Here we found that null alleles of any of the three RNase H2 subunits 

stimulate DSB repair by cDNA significantly more than a null allele of RNase H1. These 

results show that RNase H2 is the preferred RNase H enzyme to target cDNA in yeast. 

Targeting of cDNA by RNase H2 does not require RNase H2 interaction with the DNA 

clamp proliferating cell nuclear antigen (PCNA). Moreover, yeast RNase H2 orthologous 

mutants of two common RNase H2 defects associated with Aicardi Goutières syndrome 

(AGS) in humans, displayed elevated cDNA-driven repair of a DSB when combined with 

each other or with RNase H1 null mutation. Our findings support the hypothesis that 

defective RNase H2 alleles have higher level of cDNA derived from either coding or 

non-coding RNA in the form of RNA-cDNA hybrids. 
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3.2 Introduction 

Ribonucleases (RNases) H type 1 and 2 are endonucleases that catalyze the cleavage of 

RNA in RNA-DNA hybrid duplexes in prokaryotes, archaea and eukaryotes [52]. While 

RNase H1 has one subunit, eukaryotic RNase H2 has three subunits: a catalytic subunit 

(Rnh201 in yeast, and RNase H2A in humans) and two auxiliary subunits (Rnh202 and 

Rnh203 in yeast, and RNase H2B and RNase H2C in humans). 

 

The substrate specificity of RNases H1 and H2 is different. RNase H1 requires a 

substrate with an RNA stretch containing at least four ribonucleotides in a DNA duplex 

to allow cleavage [52], while RNase H2 cleaves even a single ribonucleotide embedded 

in DNA both in vitro [52] and in vivo [101, 102]. RNase H1 and H2 remove RNA 

primers during lagging strand synthesis [103-105] and cleave the RNA strand of R-loop 

structures originated by strand invasion of duplex DNA by nascent or mature, coding or 

non-coding transcript RNA that form extended RNA-DNA hybrids [50, 52, 106-111]. 

While both RNase H1 and H2 remove R-loops, recent studies discovered that 

mitochondrial R-loops are preferentially targeted by RNase H1 [108]. Differently, R-

loops associated with replication fork collapse are primarily removed by RNase H2, 

which may be brought to the target during the process of DNA replication thanks to the 

presence of a PCNA interacting peptide (PIP) box on the second subunit of RNase H2 

[107].  

 

In addition to R-loops, another source of extended RNA DNA hybrids, derived from 

either coding or non-coding RNA, are RNA-cDNA intermediates of reverse transcription 
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generated by reverse transcriptase (RT) enzymes of retroelements [112, 113]. Yeast cells 

contain numerous transposons (Tys) with long-terminal repeats (LTRs). Yeast Tys 

express an RT enzyme that converts Ty RNA into cDNA in the cytoplasm of yeast cells 

within Ty virus-like particles (VLPs) [112, 114, 115]. Ty cDNA is released into the cell 

nucleus, and it is integrated in the yeast genome by the Ty integrase protein or via HR at 

sites of preexisting LTRs [112]. Little is known about the activity of RNase H1 and H2 

on RNA-DNA hybrids of cDNA generated by RT activity. El Hage et al. recently showed 

that most of the RNA-DNA hybrids with the sequence of the Ty1 transposon found in 

yeast strains with defects in both RNase H1 and H2 were likely derived from cDNA 

rather than chromosomal R-loops [108]. Studies on RT of yeast Tys and insects R2 

retrotransposon showed that i) not only RNA originating from retroelements could be 

reverse transcribed but potentially any RNA [116], such as the non-coding antisense 

RNA deriving from the yeast HIS3 marker gene, and that ii) RNA could mediate 

recombination with DNA and modify genomic DNA once converted into cDNA via RT 

[17-19]. Additional studies in yeast revealed involvement of cDNA in HR [26, 117, 118] 

and it was suggested that different types of RT products including single-strand DNA and 

RNA-DNA hybrids could be engaged in recombination [115, 119]. Moreover, work in 

mammals showed that Long INterspersed Elements (LINEs) can be captured at sites of 

DNA damage, and that retrotransposition of LINEs can carry fragments at their ends that 

are derived from RT of endogenous RNA [22, 23, 120]. In the work by Keskin et al., we 

found that knockout of both RNase H1 (rnh1Δ) and the catalytic subunit of RNase H2 

(rnh201Δ) allows not only detection of direct DSB repair by non-coding antisense 

transcript RNA, but also results in a strong increase of DSB repair by this transcript RNA 
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that is converted into cDNA by Ty RT [121]. These results suggest that, in the absence of 

RNase H1 and/or H2, cDNA and/or RNA-cDNA derived from reverse transcription of 

any coding or noncoding RNA in addition to Ty RNA could be abundant and/or more 

stable than when RNase H function is normal. 

 

The presence of RNA-DNA hybrids has been proposed as a cause of the congenital 

immune-mediated neurodevelopmental syndrome of Aicardi Goutières (AGS) in patients 

with defects in RNase H2 [122, 123]. Majority of AGS patients have a defect in any of 

the three subunits of RNase H2 [64, 122, 124, 125]. Notably, defects in RNase H1 have 

not been found in AGS, suggesting that these substrates could be preferentially targeted 

by RNase H2 [107]. Here, using our system of DSB repair by RNA and cDNA in yeast, 

we investigated how null alleles of each of the three RNase H2 subunits, as well as two 

RNase H2 mutants that are orthologous of known AGS defects of RNase H2 in humans 

(RNase H2A G37S and RNase H2C R69W) impact the frequency of DSB repair. 

 

3.3 Materials and methods  

3.3.1 Yeast Strains 

Strains used in this study are derivatives of FRO-767 [66] and are shown in Suppl. Table 

1. The delitto perfetto method [75, 126, 127] was used to generate the rnh201-G42S, 

rnh203-K46W and rnh202-PIP mutations by using RNH201.G42S, RNH203.K46W, and 

202PIP.F and 202PIP.R oligonucleotides, respectively (Table B.2). All mutations were 

confirmed by sequence analysis of PCR products obtained from amplification of a DNA 

region surrounding the mutation sites. 
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3.3.2 Patch and Fluctuation Assays 

Experiments were done as previously described [121]. Briefly, in the patch assay, yeast 

cells were patched and grown on YPD (rich medium) for 1 day at 30°C. Then, cells were 

replica-plated on galactose containing medium (YPGal) for 2 days at 30 °C. After 

incubation on YPGal, cells were replica-plated on histidine minus medium (SC-His-) and 

grown for 3 days at 30 °C. After colonies were grown on SC-His-, plates were 

photographed. In the fluctuation assay, cells were inoculated in 50 ml liquid lactose 

containing medium (YPLac) and incubated for 24 h at 30 °C in a shaker. Next day, cells 

were counted and 107 or 108 cells were plated on YPGal medium. For the cell survival, 

104 cells were plated on YPGal medium. After 2 days incubation at 30 °C, cells were 

replica-plated on SC-His- and grown for 3 days 30 °C. We also replica-plated the cells 

plated on YPD to SCHis- as a negative control (no DSB) (Table B.3). The DSB repair 

frequency and the survival were calculated as previously described [121]. 

 

3.3.3 Data Presentation and Statistics 

GraphPad Prism 5 (GraphPad Software, La Jolla, CA) was used to make graphs and 

conduct statistical analysis of the data. The results are each expressed as median and 95% 

confidence limits in Tables, and as mean and 95% confidence limits in graphs. The 

nonparametric two-tailed Mann-Whitney U-test [86] was used to calculate statistical 

significant differences between the His+ frequencies, and P-values are shown in Table 

B.4. 
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3.4 Results 

3.4.1 The Experimental System 

Following our finding that null mutants of RNH1 and/or RNH201 promote repair of DNA 

DSBs via HR by RNA and cDNA, and that such repair mechanism is abolished when the 

RNH201-null mutation is complemented by expression of wild-type RNH201 from a 

vector [121], we set up to test how different mutants of RNase H2 affect the frequency of 

DSB repair by RNA and cDNA. To allow detection of DSB repair directly by transcript 

RNA or indirectly by cDNA we utilized an experimental system we recently developed 

in yeast Saccharomyces cerevisiae [121]. In this system, the HIS3 marker gene is 

interrupted by an artificial intron in the antisense orientation and contains the homothallic 

switching (HO) endonuclease cutting site in the middle of the intron sequence. The 

expression of the HO nuclease and the transcription of the his3 antisense are regulated by 

the galactose inducible promoter (pGAL1). Yeast strains are auxotrophic for histidine 

(His-), therefore they do not grow on media without histidine (His-). After induction of 

the HO DSB, the broken his3 allele can be repaired to functional HIS3 producing His+ 

cells only by recombination with a homologous sequence [121]. The spliced his3 

antisense RNA, which is a non-coding RNA, can serve as template for DSB repair of 

broken his3 DNA either directly, or indirectly after being converted into RNA-cDNA 

hybrids and/or double-stranded (ds) cDNA by Ty RT within the VLPs [121] (Figure 

3.1). 
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3.4.2 Null Alleles of RNase H2 Stimulate DSB Repair by cDNA, and the rnh203-null 

Mutant is the Most Effective 

We first examined the capacity of the spliced his3 antisense to repair the HO DSB in its 

DNA gene by RNA either directly or indirectly using null mutants of the three RNase H2 

subunits. We utilized strains YS-291, 292 containing wild-type RNase H function, 

rnh201-null cells [121], and constructed rnh202-null and rnh203-null cells (Table B.1). 

The DSB repair assay was performed by culturing yeast cells in patches on solid medium 

(patch assay), or in liquid medium (fluctuation assay) (see Materials and Methods). 

Results shown in Figure 3.2A and 3.2B and Table 3.1 demonstrate that deletion of 

RNH202 or RNH203, similarly to deletion of RNH201, strongly increases the frequency 

of DSB repair at the his3 locus. However, we note that rnh203-null displays a 

reproducible higher frequency of His+ colonies than rnh201-null and rnh202-null both in 

the patch and in the fluctuation assays (Figure 2.2A, B). 
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Figure 3.1 Scheme of the system to assay DSB repair by cDNA in yeast. A sketch of 

the locus on chromosome III is shown containing one copy of the his3 gene disrupted by 

an artificial intron (AI, yellow), which contains the site for the homothallic switching 

(HO) endonuclease (pink). In this configuration the disrupted his3 gene is non-functional 

and yeast cells are unable to grow on medium lacking histidine (His-cells). In the 

presence of galactose, the his3 antisense is transcribed (red wavy line) and the HO 

endonuclease is also expressed (pink triangle). Upon splicing, the intron (AI, shown as 

black short line) is removed as a lariat from the antisense RNA. The newly formed HO 

protein makes a DSB in his3 DNA. Following transcription and splicing in the nucleus, 

the his3 antisense RNA can be converted into cDNA in the form of RNA-cDNA (red and 
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blue parallel lines) or ds cDNA (blue parallel lines) by Ty RT within the Ty VLPs in the 

cytoplasm of yeast cells. When the content of VLPs is released into the nucleus, RNA-

cDNA and ds cDNA molecules can serve as templates to repair the DSB in his3 and 

reconstitute a function HIS3 gene, which produces histidine prototrophic (His+) cells. 

 

 

          

Figure 3.2 Strong stimulation of DSB repair by cDNA in null mutants of each RNase 

H2 subunit. (A) Replica-plating results of the patch assay for the indicated yeast 

genotypes. Two repeats are shown for each genotype. Shown are yeast colonies on His- 

medium, demonstrating the ability of the indicated yeast strains to form histidine 

prototrophic (His+) colonies. (B) Results of fluctuation assay with the indicated yeast 

genotypes. Data are represented in a histogram graph as frequency of His+ colonies per 

107 viable cells. Mean and 95% CI are shown; n = 6-12. Bar colors from dark to light 
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green match the degree of activity (from highest to lowest, respectively) of WT and 

RNase H1 and/or H2 mutants to suppress DSB repair by cDNA. These data are also 

presented in Table 3.1. (C) Replica-plating results of the patch assay for the indicated 

yeast genotypes containing wild-type or null SPT3 gene. Yeast colonies on His- medium 

are shown, demonstrating the ability of the indicated yeast strains to form histidine 

prototrophic (His+) colonies. 

 

Table 3.1 Frequencies of cDNA templated DSB repair in mutants of RNase H2 

subunits. 

Genotype His+ freq. Survival 

WT 2,160 (1,485-2,780) 1% 

rnh11' 2,077 (1,390-3,090) 1% 

rnh2011' 25,325 (22,570-29,855) 1.2% 

rnh2021' 30,050 (17,210-44,040) 0.9% 

rnh2031' 50,000 (46,330-51,660) 0.7% 

rnh202-pip 2,044 (1,340-2,670) 0.75% 

rnh11' rnh202-pip 1,390 (1,240-1,620) 0.9% 

 

Frequencies of His+ colonies per 107 viable cells for the indicated yeast strains following 

48 h of galactose treatment are shown as median and 95% CI (in parentheses). Percentage 

of cell survival after incubation in galactose is also shown. There were 12 repeats for WT 

and rnh202-pip, 6 repeats for rnh1, rnh201, rnh202, rnh203, and rnh1 rnh202-pip. The 

significance of comparisons between different strains of the system was calculated using 

the Mann-Whitney U-test (Table B.4A). 
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DSB repair in rnh201Δ, rnh202Δ, and rnh203Δ cells was mainly driven by ds cDNA or 

RNA-cDNA, rather than directly by RNA, because the frequency of His+ colonies 

dropped dramatically when the SPT3 gene was deleted in these cells (Figure 3.2C). Spt3, 

which is a component of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex of 

transcription activation in yeast, is required for normal activation of Ty transcription 

[128]. In spt3-null cells, Ty RT expression is severely compromised [71, 121]; thus 

conversion of RNA to cDNA is impeded. Only in the double rnh1Δ rnh201Δ mutant the 

number of His+ colonies remain high in the absence of SPT3, due to direct DSB repair by 

transcript RNA and not by cDNA [121] (Figure 3.2C). Overall, these data show that 

RNase H2 suppresses DSB repair by cDNA, suggesting that the reverse transcribed 

products of his3 antisense RNA contain abundant RNA-cDNA hybrids.  

We then tested whether the suppressive function of RNase H2 on his3 cDNA was 

dependent on the interaction of RNase H2 with PCNA. We mutated the PCNA 

interacting peptide box that is present in Rnh202 [52, 107, 129] to make rnh202-FF346, 

347AA (rnh202-pip). The PIP-box is a highly conserved region in eukaryotic 

RNASEH2B proteins [129]. The two Phe residues (FF) in the PIP-box are also well 

conserved, and mutation of these two Phe residues to Ala in human RNASEH2B greatly 

decreases the amount of PCNA interacting with RNase H2 [129], but does not affect 

RNase H2 activity [52]. Results presented in Figure 3.2A, B and Table 3.1 clearly show 

that cells expressing RNase H2 with defective PIP-box have no increased frequency of 

DSB repair by cDNA compared to cells with wild-type RNase H2. 
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3.4.3 RNase H2 has Stronger Activity on cDNA than RNase H1 

When comparing the frequency of His+ in RNase H2 defective cells with that obtained in 

RNase H1 defective cells, we found that null alleles of RNase H2 stimulated DSB repair 

by cDNA much more than a null RNase H1 mutant (Figures 3.2B and 3.3, Tables 3.1 

and 3.2). The highest stimulation of DSB repair in his3 by cDNA was seen when both 

RNase H1 and H2 were non-functional ([121], Figure 3.3 and Table 3.2). However, as 

in null RNase H1 and H2 cells both indirect and direct DSB repair by RNA occur [121], 

we do not have an accurate measure of cDNA repair without the contribution of direct 

RNA-templated DSB repair in these cells. 

 

3.4.4 Yeast Orthologous of Human RNase H2A-G37S and RNase H2C-R69W Defects 

Associated with AGS Stimulate DSB Repair by cDNA 

Defects in any of the three subunits of RNase H2 are associated with AGS in humans 

[100]. The specific reason why RNase H2 defects cause AGS is still uncertain. Here we 

examined the effect of two AGS mutations in our DSB repair assay in yeast. We 

constructed yeast strains containing the rnh201-G42S or the rnh203-K46W mutation, 

which correspond to RNase H2A-G37S and RNase H2C-R69W defects found in AGS 

patients, respectively [52]. These AGS mutations were made either in wild-type or rnh1-

null cells, and we also made cells containing both of these mutations (Table B.1). While 

the rnh201-G42S or the rnh203-K46W mutation did not significantly alter DSB repair by 

cDNA, each of these mutations significantly increased the frequency of His+ cells of 

rnh1-null cells (Figure 3.3 and Table 3.2). On the contrary, the rnh202-pip mutation did 

not increase the His+ frequency of rnh1-null cells (Figure 3.2B and Table 3.1). 
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Moreover, the double rnh201-G42S rnh203-K46W mutant significantly increased His+ 

frequency compared to wildtype, nh201-G42S or rnh203-K46W cells, indicating that 

these AGS mutations do increase DSB repair by cDNA (Figure 3.3 and Table 3.2). 

              

 
 

Fig. 3.3 Yeast AGS orthologous mutants of RNase H2 stimulate DSB repair by 

cDNA. Results of fluctuation assay with the indicated yeast genotypes. Data are 

represented in a histogram graph as frequency of His+ colonies per 107 viable cells. Mean 

and 95% CI are shown; n= 12-18. Bar colors from dark to light green match the degree of 
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activity (from highest to lowest, respectively) of WT and RNase H1 and/or H2 mutants to 

suppress DSB repair by cDNA. These data are also presented in Table 3.2. 

 

 

Table 3.2 Frequencies of cDNA-templated DSB repair in AGS mutants. 
 

Genotype His+ freq. Survival 

WT 2,470 (1,920-2,840) 1.4% 

rnh1ti 2,710 (2,170-3,510) 1% 

rnh201ti 16,790 (15,230-19,040) 2.2% 

rnh1ti rnh201ti 84,770 (71,950-113,650) 1.2% 

rnh201-G42S 2,430 (2,210-3,080) 0.9% 

rnh1ti rnh201-G42S 5,820 (4,570-12,810) 0.9% 

rnh203-K46W 2,560 (2,165-3,240) 1.5% 

rnh1ti rnh203-K46W 2,950 (2,650-3,870) 0.9% 

rnh201-G42S rnh203-K46W 3,660 (3,190-4,470) 1.3% 

 

 

 

Frequencies of His+ colonies per 107 viable cells for the indicated yeast strains following 

48 h of galactose treatment are shown as median and 95% CI (in parentheses). Percentage 

of cell survival after incubation in galactose is also shown. There were 18 repeats for 

WT, rnh1, rnh201, rnh201-G42S, rnh1 rnh201-G42S, rnh203-K46W, rnh1 rnh203-

K46W, and rnh201-G42S rnh203-K46W; 12 repeats for rnh1 rnh201. The significance 

of comparisons between different strains of the repair assay was calculated using the 

Mann-Whitney U-test (Table 3.4B). 

 

3.5 Discussion  

In this study, we show that not only deletion of the catalytic subunit of RNase H2 

(rnh201Δ) [121], but also deletion of RNH202 or RNH203 markedly increases the 

frequency of DSB repair by cDNA in yeast cells. These data are consistent with the fact 
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that deletion of any RNase H2 subunit eliminates RNase H2 activity in yeast extracts and 

that all three subunits are required for RNase H2 cleavage activity [130]. Moreover, we 

noted that rnh203Δ cells have significantly higher frequency of His+ colonies than 

rnh201Δ or rnh202Δ cells in our DSB repair assays by cDNA. It is possible that in the 

absence of Rnh203, cDNA binding by Rnh202, which among the three RNase H2 

subunits is the only one capable to bind an RNA-DNA hybrid substrate in vitro [93], 

prevents in part binding and cleavage of cDNA by RNase H1. Therefore, absence of 

Rnh203 not only abolishes RNase H2 activity in vivo but also may in part interfere with 

RNase H1 function on cDNA. 

 

Compared to rnh1Δ mutant, null alleles of any RNase H2 subunit displayed stronger 

stimulation of cDNA-driven repair. In addition, the fact that PCNA interaction is 

dispensable for the role of RNase H2 in impeding DSB repair by cDNA supports a 

function of RNase H2 outside of DNA replication and repair, such as cleavage of RNA-

cDNA products of reverse transcription. It is likely that RNA-cDNA molecules are 

abundantly formed as intermediates during the reverse transcription of coding or non-

coding RNA into dscDNA. In fact, our work and the recent study by El Hage et al. 

suggested the presence of copious RNA-cDNA hybrids in RNase H1 and H2 defective 

cells [108, 121]. Defects in RNase H1 and H2 do not increase DSB repair frequency via 

HR by DNA molecules. The frequency of DSB repair by DNA oligos in rnh1Δ rnh201Δ 

cell is the same as that obtained in wild-type cells [121]. Thus, we believe that the 

stimulatory effect on the frequency of DSB repair by cDNA in RNase H1 and H2 
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defective cells, and in particular in RNase H2 defective cells, is due to specific lack of 

cleavage activity of the enzyme/s on RNA-cDNA hybrid molecules (Figure 3.4). 

           

 
 

Figure 3.4 Model for cDNA templated DSB repair in RNase H1 and H2 wild-type 

and mutants of this study. Two alternative ways for DSB repair by cDNA are shown. 

The cDNA can be present as ds cDNA or RNA-cDNA. DNA strands are shown in blue 

and RNA strands in red. RNase H2 and H1 are shown as dark green scissors. RNase H2 

is shown as bigger scissors because it has stronger activity on cDNA than RNase H1 in 

our assays. Box colors from dark to light green match the degree of activity (from highest 

to lowest, respectively) of WT and RNase H1 and/or H2 mutants to suppress DSB repair 

by cDNA. The white-striped dark green box points out that the indicated mutants lost 

some activity on cDNA, although this activity was not significantly different from WT 
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activity in our assays. In WT RNase H2 and H1 cells, as well as in rnh202-pip mutant 

cells the DSB is repaired by ds cDNA because the RNA strand of the RNA-cDNA hybrid 

is degraded (dotted red line). The various RNase H2 and/or H1 mutants significantly 

increase the DSB repair frequency by cDNA to different extent because they have 

impaired cleavage of RNA-cDNA molecules, which are then more abundant and/or more 

stable templates for DSB repair by HR. The more efficient DSB repair in RNase H2 

and/or H1 mutants is indicated by the large black arrow. 

 

Because mutations in human RNase H2 constitute the most frequent genetic defects in 

AGS patients, we investigated the impact of two common AGS mutations on DSB repair 

by cDNA, by making the orthologous changes in the DNA of yeast RNase H2. While the 

single rnh201-G42S or rnh203-K46W mutation did not significantly increase DSB repair 

by cDNA in our DSB repair assay, each of these mutations in combination with rnh1-null 

allele did increase cDNA-driven DSB repair. The stronger stimulation of DSB repair by 

cDNA observed in rnh1 rnh201-G42S compared to rnh1 rnh203-K46W cells (P = 

0.0046, Table 3.4B) is likely due to the much lower activity of Rnh201-G42S compared 

to Rnh203-K46W on RNA-DNA substrates. The AGS mutants RNase H2A-G37S and 

RNase H2C-R69W have reduced catalytic activity in vitro, with RNase H2A-G37S being 

the least active [129]. The corresponding yeast mutant of human RNase H2A-G37S 

(Rnh201-G42S) also has very little activity in vitro, while yeast Rnh203-K46W retains 

about 70% specific activity relative to the wild-type protein [107, 131]. It would be 

interesting to examine additional AGS mutants and/or other RNase H2 defects with 

differential cleavage activities on long RNA-DNA hybrid substrates for their in vivo 
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capacity to stimulate DSB repair by cDNA. This experiment will help to verify whether 

the frequency of DSB repair by RNA-cDNA observed in yeast cells expressing different 

variants of RNase H2 inversely correlates with the activity of these proteins on RNA-

DNA hybrids. 

When the rnh201-G42S and rnh203-K46W mutations were combined together in the 

same cells, DSB repair by cDNA was significantly increased over the frequency obtained 

in wild-type cells, suggesting that each mutation does slightly reduce RNase H2 function, 

and only an additive effect of these alleles becomes evident in our assay. Our results 

indicate that these AGS mutations may likely increase abundance/stability of RNA-

cDNA forms (Figure 3.4). 

 

While defects in RNase H2 constitute the majority of AGS associated mutations, other 

factors have been involved in the disease, including defects in the DNA exonuclease 

TREX1, the Sam domain and HD domain containing protein (SAMHD1), adenosine 

deaminase acting on RNA (ADAR1) and the cytosolic double-stranded RNA receptor 

gene (IFIH1) [132, 133]. Notably, all these factors either directly or indirectly play a role 

in retroelement metabolism. ADAR1 edits of ds RNA of Alu sequences and could have a 

role in their degradation. IFIH1 is important for sensing dsRNA [134]. SAMHD1, which 

is an deoxynucleoside triphosphate triphosphohydrolase has a role in inhibiting reverse 

transcription of the human immunodeficiency virus type 1 (HIV-1) [135], and TREX1 

degrades single-stranded DNA derived from retroelements [61]. Therefore, defects in 

these genes may lead to accumulation of nucleic acids derived from reverse transcription 

that could activate the immune response in AGS patients [122, 123]. In line with this 
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hypothesis, fresh results by Lim et al. revealed that fibroblasts derived from AGS patients 

with defects in TREX1, RNASEH2A, RNASEH2B, and SAMHD1 have an excessive 

amount of RNA-DNA hybrids [136]. RNA-DNA hybrids can frequently occur in cells. 

They can form on chromosomal DNA at telomeres [137], as a consequence of 

transcription in R-loops [110, 138], with primer synthesis in DNA replication [104], 

following binding of microRNAs to target DNA in transcriptional gene silencing [32], or 

during RNA-driven break repair [66, 121]. Moreover, as highlighted in this work, RNA-

DNA hybrids can also form extrachromosomally as intermediate structures in the process 

of reverse transcription and generation of cDNA [15]. The marked impact of RNase H2 

on cDNA-driven repair observed in our study reveals a major role of RNase H2 in 

targeting cDNA in the form of RNA-cDNA hybrids in yeast. Our results support a model 

in which RNA-cDNA molecules generated by reverse transcription of RNA derived from 

retroelements and potentially from any coding or non-coding RNA could be abnormally 

abundant in AGS patients and activate an immune response. 

 

3.6 Acknowledgements 

We thank Y. Zhao for construction of strain ZYH-21, 23, C. Meers and S. Balachander 

for critical reading of the manuscript, and all members of the Storici laboratory for 

assistance and feedback on this research. We acknowledge funding from the National 

Science Foundation grant number MCB-1021763 (to F.S.) and the Georgia Research 

Alliance grant number R9028 (to F.S.) for supporting this research. H.K. was supported 

by a fellowship from the Ministry of Science of Turkey. 

 
 



 55 

CHAPTER 4 

TRANSCRIPT RNA SUPPORTS PRECISE REPAIR OF ITS OWN 

DNA GENE 
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4.1 Abstract  

 

The transfer of genetic information from RNA to DNA is considered an extraordinary 

process in molecular biology. Despite the fact that cells transcribe abundant amount of 

RNA with a wide range of functions, it has been difficult to uncover whether RNA can 

serve as a template for DNA repair and recombination. An increasing number of 

experimental evidences suggest a direct role of RNA in DNA modification. Recently, 

we demonstrated that endogenous transcript RNA can serve as a template to repair a 

DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via 

formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven 

mechanism in budding yeast. These results point out that the transfer of genetic 

information from RNA to DNA is more general than previously thought. We found that 

transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a 

homologous but ectopic locus (in trans). Here, we summarize current knowledge about 

the process of RNA-driven DNA repair and recombination, and provide further data in 

support of our model of DSB repair by transcript RNA in cis. We show that a DSB is 

precisely repaired predominately by transcript RNA and not by residual cDNA in 

conditions in which formation of cDNA by reverse transcription is inhibited.  

Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise 

DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA 

sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in 

RNA-DNA recombination. Ultimately, we discuss several questions that should be 

addressed to better understand mechanisms and implications of RNA-templated DNA 

repair and recombination. 
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4.2 Materials and methods 

4.2.1 Yeast strains and plasmids 

The background strain used to develop all strains used in this study is the haploid FRO-

767 strain (leu2::HOcs, matαΔ::hisG, hoΔ, hmlΔ::ADE1, hmrΔ::ADE1, ade1, leu2–3,112, 

lys5, trp1::hisG, ura3–52, ade3::GAL::HO) [121]. BDG283 and BDG998 vectors (gifts 

from D. Garfinkel) were transformed into YS-291, 292 (WT) and YS-486, 487 (spt3 rnh1 

rnh201) strains. BDG283 contains only pGAL1 and BDG998 contains the pGAL1-mhis3-

AI cassette, and both plasmids are centromeric with the URA3 marker [17]. YCp50pK 

and phis3.210 vectors are also centromeric with the URA3 marker. YCp50pK was 

constructed by cloning a SalI/EcoRI fragment with the kanMX4 gene from pFA6a-

kanMX4 plasmid52 into the EcoRI/SalI sites of YCp50.53. To construct the phis3.210 

vector, a 210-bp fragment of HIS3 was amplified by PCR from genomic DNA using 

forward primer 50-ACAGTGCTAAGT-AAGCTTATCTTCCCAGAAAAAGAGGC- 

30 (HindIII site underlined) and reverse primer 50-ATTGAGTTCCTA-AAGCTT-

TACCACCGCTCTGGAAAGTG-30 (HindIII site underlined). The PCR product was 

digested with HindIII enzyme and was ligated into the YCp50pK vector, which was also 

digested with HindIII within the kanMX4 gene. The resulting plasmid was sequenced to 

confirm the correct 210-bp HIS3 insert. Both YCp50pK and phis3.210 were transformed 

into YS-291, 292 (WT), YS-444, 445 (rad52), YS-424, 426 (rnh1 rnh201), YS-490, 491 

(rad52 rnh1 rnh201), YS-440, 441 (spt3), and YS-486, 487 (spt3 rnh1 rnh201) strains. 

Genetic methods and standard media were described previously [127].  
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4.2.2 Fluctuation assay of DSB repair 

All strains carrying a plasmid with the URA3 marker gene were maintained on Ura- 

medium. Fluctuation assays of DSB repair at the his3 locus were done as previously 

described [121]. Briefly, yeast cells were grown in 50-ml lactose containing medium 

(YPLac), and incubated for 24 hours at 30 °C. Next day, cells were counted and 107 or 

108 cells were plated on galactose medium (YPGal) or SC-Ura-Gal medium. 104 cells 

were also plated on YPGal or SC-Ura-Gal medium to calculate survival. After 2 d 

incubation, cells were replica plated on His- or Ura-His- medium, and after 3 d His+ or 

Ura+His+ colonies were counted. Repair frequency and survival were calculated as 

previously described [121]. Without galactose induction, no or rare His+ clones are 

obtained, as discussed in reference [121]. 
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Table 4.1 Statistical analysis (P-values) of the data. 

 

Mann-Whitney U-test was applied to determine whether a statistical significant 

difference exists between pairs of gene correction frequencies obtained in DSB repair 

assays. A, Comparison of frequencies presented in Table 4.1. Two groups in a pair were 

considered to be significantly different when adjusted P-values were less than 0.05. B, 



 60 

Comparison of frequencies presented in Table 4.2. Two groups in a pair were considered 

to be significantly different when adjusted P-values were less than 0.05. 

 

4.2.3 Data presentation and statistics 

Statistical analysis was calculated by using GraphPad Prism 5 (GraphPad Software, La 

Jolla, CA). Median and 95% confidence limits were expressed for each data sample. 

Statistical significance differences were calculated by using the nonparametric 2-tailed 

Mann-Whitney U-test, and all P-values of frequency comparisons are shown in Table 

4.3. 
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4.3 Results and discussion 

4.3.1 Transfer of genetic information from RNA to DNA: Theory and supporting 

evidence 

Can RNA transfer genetic information to DNA beyond the special cases of retroviruses, 

retrotransposons and telomere synthesis? [15, 16] Can RNA recombine with DNA either 

directly or indirectly if converted into cDNA? Studies on reverse transcription mediated 

by retrotransposons of yeast (Tys), or of insects (R2), have shown that not only RNA 

originating from retroelements could be reverse transcribed but potentially any RNA 

[116], such as the RNA deriving from the yeast HIS3 marker gene, and that RNA could 
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mediate recombination with DNA and modify genomic DNA once converted into cDNA 

via reverse transcription [17-19]. It was found that not only Ty cDNA, but also HIS3 

cDNA could recombine with homologous or homeologous (partially homologous) DNA 

[19], integrate into genomic DNA if fused to transposon sequences, or be captured at sites 

of chromosomal DSBs via non-homologous end joining (NHEJ) [20, 21]. Additional 

studies in yeast revealed involvement of cDNA in homologous recombination (HR) [26, 

117, 118], and it was suggested that different types of reverse transcription products 

including ssDNA and RNA-DNA hybrids could be engaged in recombination [119]. 

Further work in mammalian cells showed that Long INterspersed Elements (LINEs) can 

be captured at sites of DNA damage, and that retrotransposition of LINEs can carry 

fragments at their ends that are derived from reverse transcription of endogenous mRNA 

[22, 23, 120]. There has been a series of hypotheses and speculations that RNA can work 

as a template in DNA recombination and repair [139]. Recombination mediated by 

reverse transcripts of cellular RNAs with homologous DNA has been suggested to 

explain the paucity of introns in yeast genomic DNA, while end-joining-driven insertions 

of cDNA products could explain the abundance of pseudogenes in multicellular 

eukaryotes [140, 141]. Indeed mRNA-mediated intron losses were shown to occur in 

yeast mitochondrial DNA [142] (and references therein). Murakami et al. suggested a 

mechanism of RNA-directed DNA repair in mitochondria facilitated by the reverse 

transcriptase activity of DNA polymerase gamma [143], whereas possible mechanisms of 

DSB repair in nuclear DNA by RNA have been proposed by Trott and Porter [144]. The 

discovery of a widespread type of viral genome representing a chimera between an RNA 
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and a DNA virus has inferred the occurrence of RNA-DNA recombination between two 

quite different virus groups [37, 145]. 

 

From work in plants, Xu et al. proposed a direct or indirect RNA-templated DSB repair 

mechanism via gene conversion to explain the observed high frequency of gene 

homozygosity in rice [146]. Furthermore, a recent study reported that DSBs in neurons of 

young adult mice can be part of normal brain functions such as learning, as long as the 

DSBs are controlled and repaired in short time [147]. Could RNA serve as template for 

DNA repair of these physiological DSBs in neurons? It has been proposed that flow of 

information from RNA to DNA could lead to DNA recoding events in the nervous 

system and could be the basis for permanent storage of long term memories [148, 149]. 

Considering the abundance of RNA in cells, the flow of genetic information from RNA 

to DNA could strongly affect genome stability, either by increasing or decreasing it, 

depending on the circumstances. Different experimental insights suggest that mechanisms 

of RNA-driven DNA modification might be more common than is currently recognized. 

Evidence of RNA-derived insertions came from analysis of sequences at DSB sites in 

fruit fly and mammalian cells. An exon–exon junction sequence was found from the 

analysis of DNA sequences repaired via NHEJ after DSB induction by zinc-finger 

nucleases in Drosophila cells [36], suggesting a direct or indirect RNA-templated 

insertion mechanism. Work in human cells revealed presence of murine sequences 

derived from murine RNA that was co-transfected into the human cells together with the 

DNA of the I-SceI DSB-inducing vector [89]. More recently, exonic RNA insertions 

were detected in knock-in mouse experiments at sites of DNA DSBs generated using the 
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CRISPR/Cas9 system [150]. Overall, these studies showed that insertions of RNA 

derived sequences can result in an error-prone form of DNA repair, which may play a 

role in genetic disorders and evolution. 

 

4.3.2 Is there experimental proof for RNA-DNA recombination and RNA-mediated 

DNA repair that is homology driven? 

Can RNA directly mediate genetic DNA modifications in a homology-driven manner? 

Can RNA repair a DSB in homologous DNA sequences? Experiments in budding yeast 

showed that not only short ribonucleotide tracts carried within synthetic DNA 

oligonucleotides (oligos) but also RNA-only oligos can precisely repair a DSB in 

homologous DNA, serving as direct templates for DNA synthesis at the chromosomal 

level, and transferring genetic information also in conditions in which Ty reverse 

transcription is repressed [40, 66, 151]. The capacity of short RNA patches to directly 

modify DNA was also found in the bacterium Escherichia coli [39, 41], and RNA oligos 

could precisely repair a DSB in the green fluorescent protein gene in human embryonic 

kidney (HEK-293) cells [39]. As a model to explain the occurrence of transgenerational 

inheritance of genomic DNA rearrangements in ciliated protozoa, Angeleska et al. 

proposed a mechanism in which RNA molecules, single- or double-stranded (ss or ds), 

act as template catalyst to guide specific recombination events [152]. The model for 

RNA-templated DNA rearrangements was then tested using long synthetic RNA 

sequences injected into the ciliate Oxytricha trifallax and the RNA templates were found 

to mediate correct and precise DNA rearrangements [35, 153]. In addition, mutations 

carried on the artificial RNA templates were transferred to the homologous endogenous 
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DNA sequences suggesting a process of RNA-guided DNA repair in O. trifallax [35]. 

Models of RNA-DNA HR are supported by biochemical studies, showing the ability of 

the E. coli recombinase RecA to promote pairing between duplex DNA and ssRNA in 

vitro [33, 34, 154, 155]. 

Moreover, recent work suggests that the eukaryotic RecA homolog, Rad51, can also 

promote formation of RNA-DNA hybrids in yeast [38]. Beyond the demonstration that 

synthetic RNA molecules introduced into cells can mediate HR with DNA, our recent 

work showed that endogenous transcript RNA can be a template for DSB repair and HR 

in yeast [121]. We provided experimental evidence that the transfer of genetic 

information from RNA to DNA occurs with an endogenous generic transcript, and is thus 

a broader phenomenon than previously anticipated. 

 

4.3.3 Transcript RNA mediates DSB repair in a homology-driven manner 

We developed a system to explore the prospects of an endogenous RNA transcript ability 

to serve as a template for the repair of DSBs, casting a new light on the roles of RNA in 

the DNA damage response [121]. Our strategy is based on the induction of a DSB located 

inside a nonfunctional his3 marker gene, and successive DSB repair via an endogenous 

spliced transcript RNA resulting in histidine prototrophic (His+) cells. We engineered cis 

and trans systems granting the possibility to evaluate the effects of localization and 

continuous productions of the transcript RNA. The cis system transcribes an antisense 

his3 sequence with an artificial intron inserted in the antisense orientation that upon 

galactose induction results in a spliced antisense his3 transcript that can facilitate repair 

of a DSB located inside the artificial intron resulting in a functional HIS3 locus. The 
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artificial intron (105 bp) contains the site for the HO endonuclease (124 bp); in total, a 

229-bp insert disrupts the HIS3 gene. Likewise, the trans system is based on dual his3 

loci, in which, one locus is the endogenous HIS3 gene on chromosome XV but disrupted 

by the cutting site of the HO endonuclease, and the other locus is located on chromosome 

III and serves to produce an antisense his3 transcript with an artificial intron inserted in 

the antisense orientation that upon galactose induction produces a his3 antisense 

transcript that can aid in the repair of the DSB generated at the HO site of the endogenous 

HIS3 (Figure 4.1). Considering the abundance of retrotransposons in the yeast genome 

[156], we sought to eliminate the reverse transcription activities associated with 

retroelements to explore the ability of RNA to serve directly as a template for repair 

rather than through the cDNA intermediates of retrotransposition. To this end, we created 

an spt3-null mutant, which prevents normal Ty transcription and reduces Ty transposition 

[71]. As a result, in spt3-null mutant yeast, no His+ colonies are observed suggesting that 

cDNA-mediated repair is the major pathway of repair in transposition proficient cells 

[121]. This indicates that any actively transcribed gene can be repaired using a reverse 

transcribed cDNA template. Because an RNA-DNA heteroduplex is a probable 

prerequisite for RNA to recombine directly with DNA, we sought to facilitate stable 

formation of RNA-DNA hybrids by deletion of RNase H1 (RNH1) and the catalytic 

subunit of RNase H2 (RNH201) genes, which both code for nonsequence-specific 

endonucleases that cleave RNA backbone of RNA-DNA hybrids [52]. Deletion of both 

RNH1 and RNH201 results in a 5-fold increase of His+ colonies in trans and a 35-fold 

increase in cis. Surprisingly, the spt3 rnh1 rnh201 genotype results in more than 69,000 

His+ colonies than in spt3 single mutant, and even more intriguingly, the cis system of the 
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spt3 rnh1 rnh201 cells yields 10-fold more His+ colonies than the trans system, which 

continuously produces transcript for repair [121]. Furthermore, deletion of the RAD52 

gene, which codes for an important homologous recombination protein facilitating the 

annealing of complementary ssDNA, results in a strong reduction of His+ colonies in spt3 

rnh1 rnh201 cells [121]. A complementary in vitro study suggests that yeast and human 

Rad52 can promote the annealing of RNA to DNA, and in the presence of RPA, even 

more efficiently than DNA to DNA [121]. Thus, we propose a model that upon the 

occurrence of a DSB in a transcribed DNA, Rad52 promotes the annealing of RNA to 

DNA, and, in the absence of RNases H, RNA serves as a template bridging the broken 

DNA ends to promote precise re-ligation, or allowing extension of the broken end via 

reverse transcription [121]. Given the prerequisite that our assay requires a spliced 

mRNA to display a phenotype, we could be missing repair by unspliced mRNA, thus 

RNA-templated DNA modifications may have a substantial impacts on genomic stability. 
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Figure 4.1 Scheme of the trans and cis systems. HO, homothallic switching 

endonuclease (yellow); AI, artificial intron (purple); right turn arrow, pGAL1; yellow 

lightning bolt, cleavage activity by HO; RT, reverse transcriptase. 

 

 

4.3.4 DNA self-repair by transcript RNA 

Our results of DSB repair in the cis and trans systems showed that the frequency of His+ 

colonies in cis spt3 rnh1 rnh201 cells was >69,000-fold higher than in cis spt3 cells, and 

>10 –fold higher than in trans spt3 rnh1 rnh201 cells [121]. Is this high frequency of 

His+ colonies in cis spt3 rnh1 rnh201 cells due to the RNA functioning as homologous 

template to mediate a precise re-ligation of the broken DSB ends? Alternatively, is this 

repair templated by cDNA due to residual Ty activity? We showed that the DSB repair at 

the his3 locus in cis spt3 rnh1 rnh201 cells was predominately mediated by transcript 

RNA rather than cDNA [121]. Here, we corroborate our finding that transcript RNA can 

directly serve as a template for repair of a DSB occurring in the same DNA that 

generated the transcript in spt3 rnh1 rnh201 cells of the cis system. 

 

We examined the effect of an extra copy of the his3 allele, disrupted by the artificial 

intron in the antisense orientation (mhis3-AI) carried on a yeast centromeric plasmid 

(BDG998) (Figure 4.2A), on the frequency of His+ colonies following DSB induction in 

wild-type and spt3 rnh1 rnh201 backgrounds of the cis system. We transformed wild-

type and spt3 rnh1 rnh201 cells with low copy number plasmid BDG998 or with the 

control empty plasmid (BDG283), which carry the URA3 marker gene (Figure 4.2A), 
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and selected for colonies able to grow on medium lacking uracil (Ura+ colonies). We then 

performed the fluctuation assay as described in Materials and Methods and in [121]. In 

wild-type cells, the His+ frequency was strongly increased in the presence of the BDG998 

plasmid (Table 4.1 and Figure 4.3) compared to BDG283-containing cells. This was 

expected because not only the his3 antisense transcribed from the chromosomal his3 

copy, but also the one transcribed from the his3 copy carried on the BDG998 plasmid can 

be converted into cDNA by Ty reverse transcriptase and provide additional copies for 

DSB repair. Moreover, differently from the chromosomal copy, the plasmid copy of his3 

can continue to be transcribed in galactose medium because it does not contain the site 

for the HO endonuclease within the artificial intron, thus, it can generate lots of cDNA 

molecules. In contrast, there is no significant difference in the frequency of His+ colonies 

between spt3 rnh1 rnh201 cells containing BDG283 and BDG998 (Table 4.1 and Figure 

4.3). If cDNA would be the major template for his3 repair in spt3 rnh1 rnh201 cells we 

would expect higher frequency of His+ colonies also when these cells contain BDG998 

than in cells containing BDG283. These data suggest that even if there is residual cDNA 

in cis spt3 rnh1 rnh201 cells, cDNA does not play a major role in DSB repair of the his3 

locus. Rather, it is the transcript RNA from the chromosomal locus that mediates, in cis, 

most of DSB repair to restore the function of its broken his3 gene on the chromosome.  

 

4.3.5 Defects in RNase H activity stimulate homology-driven DSB repair by cDNA 

and RNA, but not by plasmid DNA 

Our findings show that absence of RNase H1 and/or H2 activity in wild-type or null-spt3 

cells results in increased frequency of His+ colonies after DSB induction not only in the 
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cis but also in the trans system compared to wild-type RNase H cells [121]. These results 

indicate that absence of RNase H function activates DSB repair by transcript RNA, and 

also stimulates DSB repair by cDNA. Following reverse transcription of RNA into 

cDNA, cDNA can be present as RNA-DNA hybrid, ssDNA, and/or dsDNA. Previously, 

we showed that DSB repair by ssDNA oligos was not increased in rnh1 rnh201 cells  

compared to RNase H wild-type cells [121]. Moreover, our recent work indicates that 

defective RNase H2 alleles have higher level of cDNA in the form of RNA-cDNA 

hybrids [157]. Here, we examined whether the RNase H defect is specific to stimulate 

DSB repair of the broken his3 locus via HR only by RNA and/or cDNA, or it can also 

stimulate DSB repair by gene conversion using as template for HR a truncated his3 copy 

carried on a dsDNA plasmid. We transformed wild-type, rad52, rnh1 rnh201, rnh1 

rnh201 rad52, spt3 and spt3 rnh1 rnh201 strains of the cis system with a plasmid 

carrying an internal 210-bp segment of the HIS3 gene sequence (phis3.210) or with the 

control empty plasmid (YCp50pK) (Figure 4.2B). To determine the frequency of His+ 

colonies following DSB induction at the his3 chromosomal locus for all these strains, we 

conducted the fluctuation assay of DSB repair. Depending on the genotype of the strains, 

cells containing the control vector YCp50pK can repair the DSB in the chromosomal his3 

allele by using as template for HR the RNA, RNA-DNA hybrid and/or cDNA derived 

from the chromosomal his3 locus, while cells containing phis3.210, in addition to the 

RNA, RNA-DNA hybrid and/or cDNA derived from the chromosomal his3 locus, can 

also repair the DSB in his3 by using as template the DNA of the truncated his3 allele 

carried on phis3.210 cDNA, and/or potentially the RNA, RNA-DNA hybrid and/or 

cDNA derived from the transcription of this his3 plasmid allele (Table 4.2 and Figure 
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4.4). In wild-type cells, there is a factor of 50 increase in the His+ frequency in the 

presence of phis3.210 compared to YCp50pK (Table 4.2). As expected, upon deletion of 

the RAD52 gene, which is required for any mechanism of DNA-DNA HR in yeast [158], 

no His+ colonies are detected with either plasmid. In rnh1 rnh201 cells carrying 

YCp50pK, the His+ frequency is more than a factor of 20 higher than in wild-type cells, 

due to elevated repair by cDNA and RNA, in agreement with our previous findings [121, 

156]. The rnh1 rnh201 mutations in cells carrying phis3.210 result in less than 2-fold 

increase of the His+ frequency compared to wildtype cells carrying the same plasmid 

(Table 4.2). Such increase can be explained by the fact that in this background the DSB 

can be repaired not only by the truncated his3 on the plasmid, but also by RNA and 

cDNA derived from the chromosomal his3 copy, as well as by cDNA derived from the 

his3 allele on phis3.210. There could also be some repair in trans by the RNA derived 

from the his3 allele on phis3.210, although we expect this to be minimal compared to 

repair by cDNA. However, clearly, defects in RNase H1 and H2 do not stimulate DSB 

repair by the DNA of the his3 copy on the plasmid. In fact, in spt3 mutant cells, in which 

there is no or very little cDNA, there is no difference in the frequency of His+ colonies 

between spt3 and spt3 rnh1 rnh201 cells carrying phis3.210 (Tables 4.2 and 4.3). While 

there could be some repair in trans by the RNA derived from the his3 allele on phis3.210 

in spt3 rnh1 rnh201 cells, we expect this to be minimal as shown in Keskin et al. 2014 

[121]. Differently, there is a remarkable difference (more than a factor of 60,000) in the 

frequency of His+ colonies between spt3 and spt3 rnh1 rnh201 cells carrying YCp50pK 

due to repair by RNA. Deletion of RAD52 in rnh1 rnh201 cells prevents repair by the 

his3 copy on the plasmid and by cDNA, while, as previously shown [121], it reduces, but 
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not abolishes RNA repair either in the presence of phis3.210 or YCp50pK (Table 4.2). 

Overall, these results demonstrate that absence of RNase H activity does not stimulate 

DSB repair via DNA-DNA HR, while it strongly activates RNA-DNA HR, and HR 

between DNA and cDNA, in which the cDNA is most likely an RNA-DNA hybrid. 

                         

 

Figure 4.2 Scheme of the plasmids introduced in the cis system. A) BDG283 and 

BDG998. GAL1 promoter, pGAL1 (red); his3 promoter and open-reading frame, pHIS3 

and his3 (blue); AI, artificial intron (purple). The arrows indicate the orientation of the AI 

and that of the his3 gene. Other parts of the plasmids are also shown. B) YCp50pK and 

phis3.210. The kanMX4 gene with the pTEF promoter are in pink; 210-bp fragment of 

HIS3 sequence, his3.210 (blue) is inserted in the kanMX4 gene. The orientation of the 

his3 fragment is indicated by an arrow. Other parts of the plasmids are also shown. 
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Table 4.2 Transcript RNA-templated repair is the major mechanism for precise 

DSB repair in spt3 rnh1 rnh201 cells in cis system. 

 

Frequencies of His+ colonies per 107 viable cells for yeast strains of the cis system of the 

indicated genotypes and containing either the control empty vector BDG283 or vector 

BDG998, following 48 h of galactose treatment are shown as median and 95% CI (in 

parentheses). Percentage of cell survival after incubation on galactose is also shown. 

There were 9–12 repeats for each strain. The significance of comparisons between 

different strains of the system was calculated using the Mann-Whitney U-test and it is 

shown in Table 4.3A. Figure 4.3 serves as graphical guide for all results presented in this 

table.  

 

 

4.3.6 What’s next? 

Our recent findings raise a multitude of unanswered questions. We have shown that a 

transcript RNA can facilitate the repair of a DSB via a direct or indirect cDNA 

intermediate pathway. What are the players involved in this newly discovered mechanism 

of DNA repair? What factors mediate the increasing amount of repair in cis versus trans 

in spt3 rnh1 rnh201 cells? Based on the localization of the transcript, nearby its DNA 

gene, the cis system is more prone to the generation of an RNA-DNA hybrid at the his3 
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locus. If so, can reverse transcriptase enter the nucleus and facilitate reverse transcription 

at the site of a DSB? Can other polymerases use RNA as a template in DSB repair in 

vivo? What is the real efficiency of transcript-templated DNA repair? Our assay is 

limited by the detection of a phenotype, His+ cells, which originate only if the RNA 

template repairs the DSB after splicing of the artificial intron. If transcript RNA mediates 

DSB repair before splicing, there is no phenotype detected in our assay. Therefore, it is 

quite possible that we are underestimating the frequency of DSB repair by template 

transcript RNA. Does DSB repair by template transcript RNA occur in mammalian cells 

and in other cell types? We showed that transcript RNA-templated DNA repair occurs in 

dividing yeast cells. Can RNA template DSB repair in non-dividing cells? For example, 

highly transcribed genes in non-dividing cells, in which no sister chromatid is available, 

could be vulnerable; thus, these genes could be liable to RNA-templated DNA repair.  
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Figure 4.3 Templates for DSB repair in his3 locus to generate a functional HIS3 

gene in a trans-cis system. This figure reflects the results of Table 4.1. Only repair 

mechanisms resulting in functional restoration of HIS3 are shown. Repair may also 

proceed by canonical NHEJ or HR with sister chromatid but does not result in functional 

HIS3. Regions of homology to the DSB site in his3 are shown as dashed lines. The spt3-

null mutation results in inhibition of reverse transcription by Ty retroelements. Relevant 

genotypes are shown in the top left corner of each panel. Donor molecules that can serve 

as template for DSB repair are shown as solid blue lines for cDNA and dsDNA, red and 

blue lines for RNA-DNA hybrid, and red lines for transcript-RNA. A) Repair of a DSB in 

cis system in the presence of BDG283. B) Repair of a DSB in cis system in the presence 

of BDG998. DSB repair in trans templated by the spliced RNA from the transcription of 

his3 on BDG998 is also possible in cells containing rnh1 rnh201 mutations, although this 

is inefficient. 

 

Our results of RNA repairing a DSB indirectly, via cDNA, shed light on the possibility of 

any RNA molecule being a target for reverse transcription by endogenous 

retrotransposon activity. If so, what factors mediate this reverse transcription? How 

abundant is the cDNA generation of endogenous RNA molecules? The Saccharomyces 

cerevisiae genome contains 5 classes of retroelements known as Tys, with Ty1 being the 

most abundant and well-studied. Is one class more prone to the generation of cDNA by 

endogenous RNA molecules? What can these factors tell us about other endogenous 

retroelements and retroviral infections? Retrotransposons are ubiquitous and plentiful in 

plant genomes, in some cases accounting for over 50% for the nuclear genome [159]. 
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Mammalian genomes are no strangers to retroelements with »3 million transposable 

elements in the human genome and 90% of those being retrotransposons [160]. Given the 

copious amounts of retroelements found throughout various genomes and the relative 

abundant amounts of RNA in contrast to DNA, could RNA-templated DNA repair be 

playing a significant role in genome stability and modification? 

 

Our work has provided fundamental preliminary data and resulted in the development of 

unique tools to study DNA repair via HR directly by RNA in the yeast model system. 

While inactivation of RNase H function allowed us to discover the capacity of cells to 

use transcript RNA in DSB repair, it is possible that RNA-DNA HR occurs also in RNase 

H wild-type cells. Mechanisms and functions of RNA-DNA HR are mostly unknown. 

Further studies are needed to illuminate the implications RNA-DNA HR may have on 

genome integrity. 
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Table 4.3 Effect of RNase H1 and H2-null mutations on DSB repair frequency by 

homologous cDNA, RNA-DNA hybrid, RNA and/or plasmid dsDNA. 

 

Frequencies of His+ colonies per 107 viable cells for yeast strains of the cis system of the 

indicated genotypes and containing the indicated plasmid, following 48 h of galactose 

treatment are shown as median and 95% CI (in parentheses). Percentage of cell survival 

after incubation on galactose is also shown. There were 6–12 repeats for each strain. The 

significance of comparisons between different strains of the system was calculated using 

the Mann-Whitney U-test and it is shown in Table 4.3B. Figure 4.4 serves as graphical 

guide for all results presented in this table. 
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Figure 4.4 Templates for DSB repair in his3 locus to generate a functional HIS3 

gene in cis system. This figure reflects the results of Table 4.2. Only repair mechanisms 
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resulting in functional restoration of HIS3 are shown. DSB repair in his3 may also 

proceed by canonical NHEJ or HR with sister chromatid but does not result in functional 

HIS3. Regions of homology to the DSB site in his3 are shown as dashed lines. The spt3-

null mutation results in inhibition of reverse transcription by Ty retroelements. Relevant 

genotypes are shown in the top left corner of each panel. Donor molecules that can serve 

as template for DSB repair are shown as solid blue lines, for cDNA and dsDNA, red and 

blue lines for RNA-DNA hybrid, and red lines for transcript-RNA. A) Repair of a DSB in 

cis system in the presence of YCp50pK. B) Repair of a DSB in cis system in the presence 

of phis3.210, which contains 210 bp of HIS3 (blue rectangle). DSB repair in trans 

templated by the RNA from the transcription of his3 on phis3.210 is also possible in cells 

containing rnh1 rnh201 mutations. Due to inefficient DSB repair by RNA in trans, we 

did not show the dashed lines for this template in the panels. 

 

4.4 Acknowledgments 

We thank D. Garfinkel for plasmids BDG283 and BDG998. This study was supported by 

US National Science Foundation award MCB-1021763, Georgia Research Alliance 

award number R9028, and National Institute of Health award GM115927 (to F.S.). H.K. 

was partly supported by a fellowship from the Ministry of Science of Turkey. 

 
 
 
 
 
 
 
 

 



 79 

CHAPTER 5 

 

 

RAD52-INVERSE STRAND EXCHANGE DRIVES RNA-

TEMPLATED DNA DOUBLE-STRAND BREAK REPAIR 

 

 

 

 

The study in Chapter 5 consists of the work in revision  

 

Olga M. Mazina1‡, Havva Keskin2‡, Kritika Hanamshet1, Francesca Storici2*, Alexander 

V. Mazin1*§. 

 
1Department of Biochemistry and Molecular Biology, Drexel University College of 

Medicine, Philadelphia, PA 19102, USA. 

 
2School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, 

USA 

 
‡ Equal contribution 

 

 

 

 

 

 

 

 

 

 

 



 80 

5.1 Summary  

Recent data show that RNA can serve as a template for DNA double-strand break repair 

in yeast cells. Rad52, a member of the homologous recombination pathway, appeared to 

be an important player in this process. However, the exact mechanism of how Rad52 

contributes to RNA-dependent DSB repair remained unknown. Here, we report a novel 

activity of yeast and human Rad52: inverse strand exchange, in which Rad52 forms a 

complex with dsDNA and promotes strand exchange with homologous ssRNA or 

ssDNA. We show that in eukaryotes, inverse strand exchange between homologous 

dsDNA and RNA is a unique activity of Rad52; neither Rad51 recombinase, nor the yeast 

Rad52 paralog Rad59 has this activity. In accord with our in vitro results, our 

experiments in budding yeast provide evidence that Rad52-inverse strand exchange plays 

an important role in RNA-templated DSB repair in vivo.  
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5.2 Introduction  

Homologous recombination (HR) is a high fidelity process that uses homologous DNA 

sequences as a template to repair damaged DNA [161-163]. In eukaryotes, HR is carried 

out by the Rad52 epistasis group of proteins [163]. In this group, Rad51 plays a key role 

by promoting a search for homologous dsDNA-template and forming DNA joint 

molecules that provide both the template and the primer for DNA polymerase during 

repair of DNA double-strand breaks (DSB) [164]. However, we recently demonstrated 

that transcript RNA can serve as template for DSB repair via HR in yeast cells either 

indirectly, if converted into cDNA, or directly [121]. Direct RNA-templated DSB repair 

is efficient in the absence of ribonuclease (RNase H) function, and in cis, that is when the 

RNA is used as template to repair a break occurring in its own DNA gene [121]. 

Currently, little is known about the enzymatic machinery that executes RNA-templated 

DSB repair.  Our results from budding yeast implicated Rad52, but not Rad51, in this 

RNA-directed DSB repair mechanism [121]. The role of Rad52 in RNA-dependent DSB 

repair is also consistent with data from human cells, which show an RNA-dependent 

localization of Rad52 at sites of DSBs [165]. However, the exact mechanism of how 

Rad52 contributes to RNA-dependent DSB repair remains to be elucidated.  

It is known that recombinases of the Rad51/RecA family form a nucleoprotein filament 

on ssDNA and promote DNA strand exchange with homologous dsDNA. However, in 

addition to this canonical or “forward” reaction, E. coli RecA was shown to form a 

nucleoprotein filament on dsDNA. The filament can promote strand exchange with either 

homologous ssDNA or ssRNA [33, 34]. This unconventional pairing process was called 

the “inverse” DNA strand exchange reaction [33].  
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Previously, it was shown that Rad52, an important member of the HR pathway [166], 

promotes annealing either of two complementary ssDNA molecules [167-169] or of 

ssDNA with complementary ssRNA [121]. Here, we tested whether Rad52 also carries 

“inverse strand exchange” activity between homologous dsDNA and ssRNA, which 

could also account for the role of Rad52 in RNA-dependent DNA repair identified in our 

genetic experiments. Our current results demonstrate that both human and yeast Rad52 

efficiently promotes inverse strand exchange between dsDNA and homologous ssRNA or 

ssDNA. We show that in eukaryotes, inverse RNA strand exchange is a unique activity of 

Rad52; neither Rad51 recombinase, nor the yeast Rad52 paralog Rad59 carries this 

activity. Our experiments in yeast Saccharomyces cerevisiae cells support the biological 

significance of inverse RNA strand exchange. Taken together, our biochemical and 

genetic data indicate that inverse RNA strand exchange promoted by Rad52 may play a 

central role in RNA-dependent DSB repair.    

 

5.3 Experimental Procedures 

5.3.1 Proteins, DNA and RNA.  

Human Rad52, hRad521-209 NTD, hRad51, and RPA proteins were purified as described 

[170-173]. The deoxyribonucleotides (Table C.1) were purchased from IDT Inc. and 

further purified by electrophoresis in polyacrylamide gels containing 50% urea as 

described[174]. Oligoribonucleotides of an HPLC-purified grade were purchased from 

IDT Inc. Duplex or tailed dsDNA substrates were prepared by annealing of equimolar 

(molecules) amounts of indicated complementary oligonucleotides, as described [174].  

When indicated, oligonucleotides were 5’-end labeled with 32P using T4 polynucleotide 
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kinase (New England Biolabs). All DNA and RNA concentrations are expressed in moles 

of molecules. 

 

5.3.2 Inverse DNA and RNA strand exchange promoted by hRad52.  

Nucleoprotein complexes were assembled by incubating hRad52 (900 nM) with 32P-

labeled dsDNA (no. 1/ no. 2; 68.6 nM) or 3’-tailed DNA (no. 1/ no. 117, or indicated 

otherwise; 68.6 nM) in buffer A containing 25 mM Tris-Acetate, pH 7.5, 100 µg/ml 

BSA, 2 mM magnesium acetate, and 2 mM DTT for 15 min at 37 °C. The reactions were 

initiated by addition of ssDNA (no. 2; 205.8 nM) or ssRNA (no. 2R; 205.8 nM). 

Variations to these conditions are indicated in figure legend 1a and 1b). Aliquots (10 µl) 

were withdrawn at indicated time points and DNA or RNA samples were deproteinized 

by incubation in 1% SDS, 1.6 mg/ml proteinase K, 6% glycerol and 0.01% bromophenol 

blue for 15 min at 37 °C. Samples were analyzed by electrophoresis in 10% 

polyacrylamide gels (acrylamide:bis-acrylamide, 17:1) in 1x TBE buffer (89 mM Tris, 89 

mM boric acid and 1 mM EDTA, pH 8.3); the gels were processed as described  [174] 

and the reaction yield was determined using a Storm 840 Phosphor Imager (GE 

Healthcare).  

 

When human or yeast RPA (1 µM) were used, they were pre-incubated with ssDNA (no. 

2; 411.6 nM) or ssRNA (no. 2R; 411.6 nM) in buffer A (40 µl of reaction mixture) for 15 

min at 37 °C.  Separate reaction mixture (40 µl) containing hRad52 (1.8 µM) and labeled 

3’-tailed DNA (137.2 nM) in buffer A was incubated for 15 min at 37 °C. Inverse strand 

exchange reaction (80 µl) were initiated by addition of mixtures containing RPA and 
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ssDNA or RNA to the hRad52 nucleoprotein complexes. The final concentration of RPA 

was 500 nM, which corresponding to a stoichiometry of 1 RPA trimer per 30 nt of 

ssRNA or ssDNA, including ssDNA tail of 3’-tailed DNA. 

 

5.3.3 Inverse DNA and RNA strand exchange promoted by hRad521-209 NTD.   

The conditions were the same as for hRad52, except of a 10-fold molar excess of ssRNA 

(no. 2R; 63-mer, 686 nM) or ssDNA (no. 2; 63-mer, 686 nM) were used and the 

concentration of hRad521-209 was 1 µM. 

 

5.3.4 Inverse DNA and RNA strand exchange promoted by yRad52.  

The conditions for yRad52 inverse DNA and RNA strand-exchange were the same as for 

hRad52, except of a 10-fold molar excess of ssRNA (no. 2R; 63-mer, 686 nM) was used. 

The concentration of yeast RPA in the reaction with ssRNA was 1.5 µM to maintain the 

stoichiometry of 1 yeast RPA trimer per 30 nt of ssRNA. 

 

5.3.5 Inverse DNA and RNA strand exchange promoted by yRad59.  

To assemble nucleoprotein complexes yRad59 (3.5 µM) was incubated with 32P-labeled 

3’-tailed DNA (no. 1/ no. 117; 68.6 nM) in buffer A for 15 min at 37 °C. The reactions 

were initiated by addition of ssDNA (no. 2; 63-mer, 686 nM) or ssRNA (no. 2R; 63-mer 

686 nM) and carried out for 1 h. The reaction products were deproteinized and analyzed, 

as described for inverse DNA or RNA strand exchange promoted by hRad52.   

 

5.3.6 Inverse DNA and RNA strand promoted by hRad51.  
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To form nucleoprotein filament hRad51 (2.15 µM) was incubated with labeled 3’-tailed 

DNA (no. 1/ no. 117; 68. 6 nM) in buffer containing 25 mM Tris-acetate, pH 7.5, 100 

µg/ml BSA, 3 mM magnesium acetate, 2 mM ATP, and 2 mM DTT for 15 min at 37 °C. 

Afterward, the concentration of magnesium acetate was increased to 10 mM. Inverse 

DNA strand exchange reactions were initiated by addition of 7-fold molar excess of a 63-

mer ssDNA (no. 2; 480.2 nM) or ssRNA (no. 2R, 63-mer; 480.2 nM). The products were 

deproteinized and analyzed as described for inverse strand exchange promoted by 

hRad52.  

 

5.3.7 P1 nuclease assay.  

hRad52 protein (900 nM) was incubated with 13.4 ng of 32P-labeled 63-mer ssDNA (no. 

2; 68.6 nM) or with 26.8 ng of a 63-mer dsDNA (no. 1/ no. 2; 68.6 nM) in 9 µl of buffer 

A for 15 min at 37 °C, followed by the addition of 0.4 units of P1 nuclease (USBiological 

Life Science) in 1 µl. Reactions were carried out for 10 min at 37 °C, then quenched by 

addition of SDS to 1%, proteinase K to 1.6 mg/ml, glycerol to 6% and bromophenol blue 

to 0.01% followed by 15 min incubation at 37 °C. The DNA products were analyzed by 

electrophoresis in 10% polyacrylamide gels (acrylamide:bis-acrylamide, 17:1) in 1x TBE 

buffer (89 mM Tris, 89 mM boric acid and 1 mM EDTA, pH 8.3).  

 

5.3.8 Yeast strains, plasmids and genetics methods.  

All the strains used in this study are FRO-767 [121] derivatives and are shown in Table 

S2. Plasmids YEP-NAT, YEP-NAT-ScRAD52-327 and YEP-NAT-hRAD52-209 are 

episomal vectors containing the URA3 and the nourseothricin (NAT) resistance marker 
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genes, and the GAL1 promoter, and are described in [96]. YEP-NAT-ScRAD52 was 

constructed like YEP-NAT-ScRAD52-327 but using a PCR product with the full length 

of the yeast RAD52 gene. The sequence of the YEP-NAT-ScRAD52 vector was verified 

by sequencing. YEP-NAT is the control empty vector, YEP-NAT-ScRAD52-327 

contains the first 327 codons of yeast RAD52 gene, lacking the C-terminal region for 

Rad51 binding, expressed under the GAL1 promoter. YEP-NAT-hRAD52-209 contains 

the first 209 residues from the cDNA of human Rad52 isoform # (NM_002879) 

expressed under the GAL1 promoter. YEP-NAT-ScRAD52 contains full length yeast 

RAD52 gene expressed under the GAL1 promoter. Plasmid transformation was done as 

described [96]. YEp-NAT, YEP-NAT-ScRAD52, YEP-NAT-ScRAD52-327 and YEP-

NAT-hRAD52-209 were transformed in strains CM-95, 96 (WT), CM-100, 101 (rnh1Δ 

rnh201Δ) and CM-107, 108 (rnh1Δ rnh201Δ spt3Δ) which were generated by 

introducing the yeast 2-micron plasmid following the procedure described in[175], to 

stabilize the YEp vectors used. Yeast genetic methods and molecular biology analyses 

were done as described [66, 75, 121]. All primers used for strain and plasmid 

constructions, PCR verifications and sequence analyses are available upon request. 

Samples for sequencing were submitted to Eurofins MWG Operon.  

 

5.3.9 Assay to calculate the frequency of DSB repair by RNA.  

To determine the frequency of His+ colonies in the strains of the cis system following 

induction of DSB, we conducted a fluctuation experiment as previously described [121]. 

Briefly, yeast cells were inoculated in 50 ml lactic acid containing media (YPLac) and 

incubated in a shaker for 24h at 30 C. Cells were then counted and 107, or in some cases, 
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108 cells were plated on galactose containing medium (YPGal) to turn on transcription of 

the his3 antisense on chromosome III and expression of the homothallic switching 

endonuclease. In addition, 104 cells were plated on YPGal medium to determine cell 

survival on galactose. Cells were incubated for 48 hours at 30 C and then replica-plated 

on synthetic complete medium lacking histidine (SC-His-) and grown for 3 days at 30 C. 

The frequency of His+ colonies following DSB induction was calculated by dividing the 

number of His+ colonies obtained on SC-His- medium by the number of colonies 

obtained on YPGal medium. The survival was calculated by dividing the number of 

colonies obtained on YPGal medium by the number of cells plated on the same medium. 

For experiments using plasmids YEP-NAT, YEP-NAT-ScRAD52, YEP-NAT-

ScRAD52-327 and YEP-NAT-hRAD52-209, 107 or 108 cells were plated on medium 

lacking uracil and containing galactose (Ura-Gal) and 103 or 104 cells were plated on Ura- 

Gal medium to determine the cell survival. After 48 hours of incubation at 30 C, cells 

were replica-plated on SC-His- medium. 

For experiments without induction of the DSB, cells were grown on 50 ml YPLac 

overnight at 30 C shaker. Next day, cells were counted and 108 cells were plated on 

glucose containing medium (YPD) and incubated for 24 hours at 30 C. After incubation, 

cells were replica-plated on SC-His- medium. In addition, 103 cells were also plated on 

YPD for cell survival. Results obtained in glucose are shown in Table C.4. 

 

5.3.10 Assay of DSB repair by oligonucleotide transformation.  

Transformation by oligonucleotide HIS3.F (80mer, 5’-

ACCAATGCACTCAACGATTAGCGACCAGCCGGAATGCTTGGCCAGAGCATGT
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ATCATATGGTCCAGAAACCCTATACCTG) (1nmol) was performed as described 

[66]. Induction of the homothallic switching endonuclease DSB was done by incubating 

cells in 2% galactose medium for 3 h. 

 

5.3.11 Data presentation and statistics.  

For conducting statistical analysis, GraphPad Prisim 5 software was used. In vitro 

experiments were repeated at least three times; standard deviations (SD) are presented on 

the graphs. Results of genetic experiments in yeast cells are expressed as median and 

95% confidence interval is shown in parenthesis, or alternatively the range when number 

of repeated experiments was less than 6. The nonparametric two-tailed Mann-Whitney-U 

test [86] was used to calculate differences between His+ frequencies and P values that are 

presented in Table C.5.  

 

 

5.4 Results 

5.4.1 Rad52 promotes inverse DNA strand exchange 

First, we tested whether human Rad52 (hRad52) can promote inverse DNA strand 

exchange between homologous dsDNA and ssDNA. hRad52 nucleoprotein complex was 

formed with 3’-tailed dsDNA (no. 1, 63-mer/ no. 117, 94-mer) (Table C.1), in which 

oligo no.1 was 32P-labeled, and then inverse DNA strand exchange was initiated by 

addition of homologous ssDNA (no.2, 63-mer) (Figure 5.1A). We found that hRad52 

promotes inverse strand exchange with remarkably high efficiency; the initial rate of 

inverse reaction was approximately 10-fold higher than that of forward DNA strand 
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exchange promoted by hRad52 with the same DNA substrates (Figure 5.1B,C). The 

inverse reaction required both DNA sequence homology (Figure C.1A) and hRad52 

protein (Figure 5.1C). Forward and inverse DNA strand exchange reactions promoted by 

hRad52 show different requirements for Mg2+ concentrations. The inverse reaction occurs 

across a much broader (1-20 mM) range of Mg2+ concentrations (Figure C.1B) than the 

forward reaction (0.1-1 mM) [176, 177] (Mazina, Bugreev and Mazin, unpublished 

observations). hRad52 was significantly more efficient in promoting inverse DNA strand 

exchange than hRad51 under conditions that were optimal for both proteins (Figure 

5.1D). The initial rate for hRad52-promoted reaction is about 6-fold higher than that for 

hRad51. In contrast to RecA that requires a large (10-fold) excess of ssDNA for inverse 

DNA strand exchange [33], the hRad52 reaction was efficient at an equimolar 

ssDNA:tailed dsDNA ratio and reached the maximal rate at a 3-fold excess of ssDNA 

(Figure C.1C). Inverse DNA strand exchange does not involve melting of dsDNA, as no 

ssDNA intermediate sensitive to P1 nuclease was detected (Figure C.1D). Furthermore, 

we found that yeast Rad52 (yRad52) also promotes inverse DNA strand exchange, 

indicating an evolutionary conservation of this activity (Figure 5.1E). Taken together, 

our current results demonstrate that human and yeast Rad52 possess inverse DNA strand 

exchange activity. This activity appears to be distinct and stronger than the forward DNA 

strand exchange activity of these Rad52 orthologs. 
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Figure 5.1 Rad52 promotes inverse DNA strand exchange with high efficiency. A, 

Top: the scheme of inverse strand exchange. Asterisk represents 32P-label. 

Oligonucleotide sequences are shown in Table S1. hRad52 (900 nM) was incubated with 

the 3’-tailed DNA (no. 1/ no. 117; 68.6 nM) followed by addition of ssDNA (no. 2; 68.6 
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nM). Bottom: analysis of the reaction products by electrophoresis in a polyacrylamide 

gel. B, Top: the scheme of the forward DNA strand exchange. hRad52 (900 nM) was 

incubated with ssDNA (no. 2; 68.6 nM) for 15 min at 37 °C, then the reaction was 

initiated by adding the 3’-tailed DNA (no. 1/ no. 117; 68.6 nM). Bottom: analysis of the 

reaction products by electrophoresis in a polyacrylamide gel. C, Data from A and B were 

plotted as a graph. In “no protein” control hRad52 was substituted by storage buffer. D, 

hRad52 promotes inverse DNA strand exchange more efficiently than hRad51. The 

reaction conditions were as in panel A, except that a three-fold excess of ssDNA (205.8 

nM) and seven-fold excess of ssDNA (480.2 nM) were used in reactions with Rad52 and 

Rad51, respectively. E, Yeast Rad52 promotes inverse DNA strand exchange. The DNA 

substrates and conditions for forward and inverse reactions were the same as for hRad52 

in panels B and D, respectively. In “no protein” reaction, yRad52 was substituted with 

storage buffer. The experiments were repeated at least three times, error bars indicate 

standard deviation (SD). (by A. V. Mazin)  

 

5.4.2 Inverse RNA strand exchange is a unique activity of Rad52 in eukaryotes 

Our recent data indicate that in yeast cells RNA can serve as a template for DSB repair 

via HR and that Rad52 plays a significant role in this process. In a rad52-null mutant the 

frequency of DSB repair by RNA was reduced by a factor of ten [121]. These data 

prompted us to test whether human and yeast Rad52 can carry out inverse strand 

exchange between tailed dsDNA that mimics processed DNA ends and homologous 

ssRNA. We found that hRad52 promotes inverse strand exchange between 3’-tailed 

dsDNA (no. 1, 63-mer/ no. 117, 94-mer) and ssRNA (no. 2R, 63-mer) (Figure 5.2A). 
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Under standard conditions (a 3-fold molar excess of ssRNA or ssDNA), the inverse 

reaction with ssRNA showed a 4-5-fold lower initial rate than with ssDNA, but the 

extents of the reactions were similar (53% and 69% for ssRNA and ssDNA, respectively) 

(Figure 5.2B). A 10-fold molar excess of ssRNA further stimulated inverse strand 

exchange (Figure C.2A). The reaction required homologous RNA (Figure C.2B). We 

found that inverse RNA strand exchange activity is evolutionarily conserved, as yeast 

Rad52 can also promote exchange between dsDNA and ssRNA, albeit with lower 

efficiency (Figure 5.2C).  

 

In Rad52, the N-terminal domain (NTD), spanning approximately half of the protein, is 

responsible for its ssDNA annealing, DNA strand exchange and protein multimerization. 

The Rad52 C-terminal domain carries the nuclear localization site and regions involved 

in interaction with Rad51 and RPA [166, 178-180]. We found that the hRad521-209 NTD 

is sufficient to promote inverse RNA strand exchange efficiently (Figure 5.3A, B).   

We then examined the ability of hRad51 recombinase to promote inverse strand exchange 

between tailed dsDNA and ssRNA. We found no significant activity under tested 

conditions either in the presence of a 7-fold or even 100-fold excess of ssRNA (Figure 

C.3A). Under the same conditions, hRad51 was active in promoting inverse strand 

exchange with ssDNA (a 7-fold excess) (Figure C.3A). Similarly, yeast Rad51 (yRad51) 

promotes inverse strand exchange with ssDNA, but is incapable of using ssRNA in this 

reaction (Figure C.3B-D). We also tested inverse strand exchange activity of yeast 

Rad59 (yRad59), which shares homology with the Rad52 NTD [181]. We found that 

yRad59 promotes inverse strand exchange with ssDNA, but not with ssRNA (Figure 
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5.3C,D), even though it promotes both ssDNA-ssDNA and ssDNA-RNA annealing 

(Figure 5.3E). Thus, we find that Rad52 is unique among eukaryotic HR proteins in 

promoting inverse strand exchange between dsDNA and ssRNA.  

 

  

Figure 5.2 Rad52 promotes inverse strand exchange between 3’-tailed dsDNA and 

homologous ssRNA. A, The reaction with hRad52 was conducted as in Fig 1D, except 

that ssDNA was replaced with ssRNA (no. 2R, 205.8 nM). The reaction products were 

analyzed by electrophoresis in a polyacrylamide gel. B, Data from panel A are plotted as 

a graph. The DNA inverse exchange graph from Fig. 1D is shown for comparison. C, 
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Yeast Rad52 promotes inverse strand exchange with ssDNA or ssRNA. The reaction 

conditions were as in panel A, except that a 10-fold excess of ssRNA (no. 2R, 686 nM) 

was used. The experiments were repeated at least three times, error bars indicate SD. (by 

A. V. Mazin) 

 

  

Figure 5.3 Different specificity in inverse strand exchange promoted by hRad521-209 

NTD and yRad59. A, The reactions were carried out in the presence of hRad521-209 (1 
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µM), 3’-tailed DNA (no. 117/ no. 1; 68.6 nM) and ssRNA (no. 2R, 686 nM) or ssDNA 

(no. 2, 686 nM ) for 1 h at 37 °C; the products were analyzed by electrophoresis in 

polyacrylamide gels. B, Graphical representation of the data from pane a. C, Rad59 

promotes inverse strand exchange with ssDNA, but not with RNA. To form 

nucleoprotein complexes, Rad59 (3.5 µM) was incubated with 32P-labeled 3’-tailed DNA 

(68.6 nM) for 15 min at 37 °C. The reactions were initiated by addition of free ssDNA 

(no. 2, 63-mer, 686 nM) or ssRNA (no. 2R, 63-mer 686 nM) and carried out for 1 h; the 

products were analyzed by electrophoresis in a polyacrylamide gel.  D, The data from B 

are shown as a graph. E, Rad59 promotes annealing between ssDNA and ssRNA. Top: 

Experimental scheme. Asterisk represents 32P-label.  Rad59 (125 nM) was incubated with 

a 48-mer 32P-labelled ssDNA (no. 65, 5 nM) for 10 min at 30°C. To initiate annealing 

reactions complementary 48-mer ssDNA (no. 64, 5 nM) or ssRNA (no. 64R, 5 nM) were 

added. In controls, protein storage buffer was added instead of Rad59. The products of 

annealing reactions were analyzed by electrophoresis in polyacrylamide gels. The 

experiments were repeated at least three times, error bars indicate SD. (by A. V. Mazin) 

 

5.4.3 RPA stimulates inverse RNA strand exchange promoted by Rad52 

In vivo, RPA, a ubiquitous ssDNA binding protein [182], plays an essential role in DSB 

repair and physically interacts with Rad52 [183]. Therefore, we tested the effect of RPA 

on inverse DNA strand exchange promoted by hRad52 between tailed dsDNA and 

homologous ssDNA or ssRNA (Figure 5.4A). We found that RPA inhibited the initial 

rate of inverse strand exchange with ssDNA by approximately two-fold (Figure 5.4B). In 

contrast, under the same conditions RPA stimulated the rate of inverse strand exchange 
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with ssRNA also by approximately two-fold (Figure 5.4C). The stimulation appeared to 

be species-specific; hRad52 was stimulated only by human RPA, whereas yeast RPA 

inhibited the reaction promoted by hRad52 (Figure 5.4D), but stimulated the yRad52-

promoted reaction (Figure 5.4E). These data indicate that physical interaction of RPA 

with Rad52 is important for stimulation of inverse strand exchange between dsDNA and 

ssRNA, rather than by destabilization of DNA duplex. This conclusion was further 

strengthened by the observation that inverse RNA strand exchange promoted by the 

hRad521-209 NTD, which lacks the RPA binding region, was not stimulated by human 

RPA (Figure 5.4F). It is possible that RPA stimulates inverse RNA strand exchange by 

inducing a favorable conformation in Rad52. A partial inhibition of inverse DNA strand 

exchange by RPA could be due to formation of stable RPA-ssDNA complexes that 

hinder ssDNA binding to Rad52-dsDNA complexes. In addition, yRPA may inhibit 

inverse RNA strand exchange promoted by hRad52 by competing for binding to tailed 

dsDNA.  
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Figure 5.4 RPA stimulates Rad52-promoted inverse RNA strand exchange in a 

species-specific manner. A, Experimental scheme. Asterisk represents 32P-label. B, 

Human RPA inhibits inverse DNA strand exchange, but C, stimulates inverse RNA 

strand exchange promoted by hRad52. D, Yeast RPA does not stimulate inverse RNA 

strand exchange promoted by hRad52. E, Yeast RPA stimulates inverse RNA strand 
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exchange promoted by yRad52. F, Human RPA does not stimulate inverse RNA strand 

exchange promoted by hRad5210-209 NTD. The reactions were initiated by adding ssDNA 

(no. 2; 205.8 nM) or ssRNA (no. 2R; 205.8 nM) that were pre-incubated with RPA (500 

nM) to the hRad52-tailed dsDNA complexes. In “no Rad52” or “no protein” controls, 

hRad52 and RPA were substituted with their storage buffer. The experiments were 

repeated at least three times, error bars indicate SD. (by A. V. Mazin) 

 

5.4.4 Rad52 promotes inverse RNA strand exchange with blunt-ended dsDNA  

Canonical DSB repair mechanisms by HR require extensive processing of DNA ends by 

exonucleases. Here, we wanted to test the effect of dsDNA end resection on the hRad52-

promoted inverse strand exchange with ssRNA or ssDNA. We found that hRad52 is 

capable of promoting the inverse reaction between blunt-end duplex DNA (no. 1, 63-mer/ 

no. 2, 63-mer) and homologous ssRNA (no. 2R, 63-mer) (Figure 5.5A,B). The rate and 

the extent of the reaction were significantly reduced compared with the reaction utilizing 

a 31-nt tailed dsDNA (Figure 5.5B). However, addition of hRPA greatly stimulated 

reaction with blunt-ended DNA nearly to the level observed for tailed dsDNA (Figure 

5.5C). Also, hRad52 promoted inverse strand exchange between blunt-end dsDNA and 

ssDNA (no. 2, 63-mer) (Figure 5.5D). However, no stimulation by RPA was observed 

for this reaction (unpublished observation). Utilization of blunt-ended dsDNA by Rad52 

in inverse strand exchange may have important biological implications obviating the need 

for dsDNA end resection during DSB repair in vivo.  
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Figure 5.5 Rad52 promotes inverse RNA or DNA strand exchange with blunt-ended 

dsDNA. A, Experimental scheme. Asterisk represents 32P-label. B, The kinetics of 
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inverse DNA strand exchange promoted by hRad52 (900nM) between labeled 63 bp 

dsDNA substrates (68. 6 nM) containing either no ssDNA tails (no. 1/no. 2) or 3’-ssDNA 

tails of different length: 10-nt tail (no. 1/ no. 518), 20-nt tail (no. 1/ no. 519), and 31-nt 

tail DNA (no. 1/ no. 117). The reactions were initiated by adding ssRNA (no. 2R, 205.8 

nM). C, RPA (432.2 nM) stimulates inverse strand exchange promoted by hRad52 

between blunt-ended dsDNA (no. 1/ no. 2; 68. 6 nM) and ssRNA (no. 2R; 205.8 nM). D, 

The kinetics of inverse DNA strand exchange promoted by hRad52 (900nM) between 

dsDNA (68.6 nM) containing either no 3’-ssDNA tails (no. 1/no. 2), or 10-nt tail (no. 1/ 

no. 518), 20-nt tail (no. 1/ no. 519), and 31-nt tail DNA (no. 1/ no. 117) and ssDNA 

(no.2, 205.8 nM). The experiments were repeated at least three times, error bars indicate 

SD. (by A. V. Mazin) 

 

5.4.5 Overexpression of Rad52 or Rad52 NTD stimulates RNA-dependent DSB 

repair in yeast cells 

Next, using the specific features of Rad52-promoted inverse RNA strand exchange 

identified in this study, we wanted to test the relevance of this reaction to RNA-directed 

DSB repair in vivo. The system, which we developed in yeast to study DSB repair by 

RNA in cis, consists of a defective his3 gene expressed from the galactose inducible 

promoter, pGAL1, in its antisense orientation, and disrupted by an artificial intron (AI). 

This Al can only be spliced from the antisense transcript of his3 (Figure C.4). The AI 

contains the site for the homothallic switching HO endonuclease. The expression of HO, 

also from a pGAL1 promoter, generates a DSB in his3 within the AI. Following induction 

of the his3 antisense RNA and the DSB by galactose, only repair of the DSB by the 
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spliced his3 antisense RNA can restore the functional sequence of the HIS3 gene and 

produce histidine prototrophic (His+) cells.  

 

To corroborate the importance of Rad52 function in RNA-dependent DSB repair, we 

overexpressed yRad52, or either the yeast or human Rad52 NTD, in strains carrying our 

cis system. As a reminder, Rad52 NTD retains catalytic activities of Rad52 including 

inverse DNA/RNA strand exchange (Figure 5.3A,B), but lacks the Rad51 and RPA 

binding domains [96, 178, 180]. We showed previously that in the absence of RNase H 

activity DSB repair proceeds using RNA template directly, whereas in its presence it 

proceeds through a cDNA intermediate [121]. Therefore, we tested the effect of Rad52 or 

Rad52 NTD overexpression in wild-type yeast cells, in a strain defective in RNase H 

activity, or in a strain that is both RNase H defective and also carries a null-mutation in 

the SPT3 gene that activates reverse transcription in yeast and is thus required for cDNA 

formation (Table C.2) [121]. In all these strains, we observed a significant increase in the 

frequency of DSB repair by cDNA and RNA upon overexpression yRad52, or either the 

yeast or human Rad52 NTD (Table 5.1A). Strains with deleted endogenous RAD52 gene 

showed the largest response; e.g., a 68-fold increase was observed when hRad521-209 

NTD was expressed in rnh1 rnh201 rad52 cells (Table 5.1A). Importantly, the fact that 

overexpression of the hRad521-209 NTD stimulated DSB repair by RNA in all studied 

yeast strains including rnh1 rnh201 and rnh1 rnh201 spt3 cells suggests that hRad52 

could catalyze DSB repair by RNA in human cells.  
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5.4.6 Rad59 is not required for RNA-dependent DSB repair  

Previously, we found that deletion of the yRAD51 recombinase gene did not reduce the 

frequency of DSB repair by transcript RNA [121]. Instead, the frequency of DSB repair 

by RNA in rnh1 rnh201 spt3 rad51 cells was significantly elevated compared to that in 

rnh1 rnh201 spt3 cells. We proposed that suppression of DSB repair through 

recombination with sister chromatids, resulted in channeling the broken DNA substrate 

into the RNA-dependent pathway [121]. Here, we examined whether the yRad59 protein, 

which shares homology with Rad52 NTD and has partial functional overlap with Rad52 

[184, 185], is required for DSB repair by RNA in cis. Remarkably, we found that the 

frequency of DNA repair by RNA is increased by a factor of 4 and 5.7 in rnh1 rnh201 

and rnh1 rnh201 spt3 cells when the RAD59 gene is deleted, respectively (Table 5.1B). 

This finding parallels the results in rad51-null cells [121], suggesting that RNA-

templated DSB repair does not require yRad59 or yRad51. On the contrary, in a control 

experiment using a ssDNA oligonucleotide as a template for DSB repair in his3 in the 

rad59-null strains, we found that the repair frequency by ssDNA was significantly 

reduced by a factor of three in rnh1 rnh201 spt3 rad59 cells, and a factor of nine in rnh1 

rnh201 rad59 cells compared to rnh1 rnh201 spt3 and rnh1 rnh201 cells, respectively 

(Table C.3), as previously shown in rad59-null mutant cells [96]. These results suggest 

that yRad59 has an important role in DNA-templated, but not in RNA-templated, DSB 

repair. It is relevant to note that while both Rad52 [121] and yRad59 (Figure 5.3E) can 

promote RNA-DNA annealing, only Rad52 has the inverse RNA strand exchange activity 

(Figure 5.2). No such activity was observed for Rad51 or Rad59 (Figure C.3; Figure 

5.3D). Thus, our findings in yeast and our biochemical data support inverse RNA strand 
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exchange activity of both yeast and human Rad52 as a unique activity in eukaryotes 

which can contribute to the mechanism of DSB repair directed by RNA. 

 

5.4.7 RNA-dependent DSB repair is independent of SAE2 and EXO1  

While DNA end resection is an essential step in DSB repair via a single-strand annealing 

(SSA) mechanism [13], we show that inverse strand exchange occurs between ssDNA or 

ssRNA and homologous duplex DNA that is either non- or minimally resected (Figure 

5.5). To determine whether the process of resection of broken DNA ends is essential for 

DSB repair by transcript RNA via HR in yeast cells, we tested the effect of null 

mutations in SAE2 and EXO1 genes, which code for two major factors important for 

efficient DNA end resection [186-188], in our cis system. In the absence of SAE2 or 

EXO1, the frequency of DSB repair by RNA (in the rnh1 rnh201 spt3 background) was 

either increased or not changed, respectively (Table 5.1B), suggesting that efficient 

resection is not required or is even an obstacle for DSB repair by RNA in cis. In a control 

experiment testing DSB repair and using a ssDNA oligonucleotide in an SSA assay [96] 

in the same strains of the cis system, we found that in the sae2-null mutant the frequency 

of His+ colonies was significantly reduced, and in exo1-null mutant the frequency was 

also significantly reduced, although to a lesser extent than in sae2-null cells (Table C.3). 

These results support an RNA-dependent mechanism of DSB repair mediated by Rad52 

that catalyzes a reaction in which RNA invades a broken dsDNA that is minimally or not 

resected (Figure 5.6). 
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Table 5.1 Effect of RAD52 overexpression and lack of RAD59, SAE2, or EXO1 on the 

frequency of RNA-templated DSB repair in cis in yeast cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequencies of His+ colonies per 107 viable cells for yeast strains of the cis system 

following 48 h of galactose treatment are shown as median and 95% CI (in parentheses). 

Percentage of cell survival after incubation in galactose is also shown. A, Effect of 

A                         cis   

Genotype                 His+ freq. Survival 

WT + YEP 600 (500-700) 1.7% 

WT + ScRAD52 1,075 (900-1,500) 0.3% 

WT + ScRAD52-327 2,600 (2,100-3,200) 0.11% 

WT + hRAD52-209 2,100 (1,700-2,500) 0.2% 

rnh1 rnh201 + YEP 28,000 (24,000-30,000) 1.2% 

rnh1 rnh201 + ScRAD52 57,000 (55,000-60,000) 0.15% 

rnh1 rnh201 + ScRAD52-327 86,200 (78,900-95,600) 0.11% 

rnh1 rnh201 + hRAD52-209 107,000 (100,000-128,000) 0.16% 

rnh1 rnh201 spt3 + YEP 1,600 (1,400-2,000) 2.2% 
rnh1 rnh201 spt3 + ScRAD52 2,000 (1,600-2,400) 0.8% 

rnh1 rnh201 spt3 + ScRAD52-327 10,700 (8,700-14,000) 0.16% 
rnh1 rnh201 spt3 + hRAD52-209 7,800 (6,000-9,700) 0.6% 
rad52 + YEP <10 (0-0) 0.03% 

rad52 + ScRAD52 500 (400-700) 0.2% 

rad52 + ScRAD52-327 391 (246-1,740) 0.05% 

rad52 + hRAD52-209 185 (120-590) 0.04% 

rnh1 rnh201 rad52 + YEP 700 (670-1,050) 0.016% 
rnh1 rnh201 rad52 + ScRAD52 29,000 (25,000-30,000) 0.13% 

rnh1 rnh201 rad52 + ScRAD52-327 9,530 (6,900-13,900) 0.05% 
rnh1 rnh201 rad52 + hRAD52-209 48,000 (45,000-54,000) 0.03% 

B                         cis   

Genotype                 His+ freq. Survival 

WT 1,400 (1,300-1,900) 1.7% 

rad59 2,300 (1,600-2,700) 0.3% 

sae2 13,000 (10,000-18,000) 1% 

exo1 500 (400-1,000) 2.8% 

rnh1 rnh201 70,000 (60,000-119,000) 0.8% 

rnh1 rnh201 rad59 285,000 (245,000-344,000) 0.1% 

rnh1 rnh201 sae2 549,000 (411,000-652,000) 1% 

rnh1 rnh201 exo1 32,000 (28,000-36,000) 2% 

rnh1 rnh201 spt3 11,300 (9,500-13,700) 13% 
rnh1 rnh201 spt3 rad59 65,000 (45,000-80,000) 0.5% 

rnh1 rnh201 spt3 sae2 43,000 (39,000-50,000) 16% 
rnh1 rnh201 spt3 exo1 15,000 (14,000-17,000) 13% 
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RAD52 overexpression on DSB repair by cDNA and transcript RNA. There were 12-18 

repeats for all the strains. The significance of comparisons between different strains of 

the cis system was calculated using the Mann-Whitney-U test (Table C.5A). B, Effect of 

RAD59, SAE2 or EXO1 null mutations on DSB repair by cDNA and transcript RNA. 

Percentage of cell survival after incubation in galactose is also shown. There were 6-18 

repeats for each strain. The significance of comparisons between different strains of the 

cis system was calculated using the Mann-Whitney-U test (Table C.5B). 

 

Figure 5.6 Proposed mechanism of RNA-dependent DSB repair via Rad52 inverse 

RNA strand exchange. Rad52 forms a complex with DSB ends either blunt-ended or 

minimally processed by exonucleases/helicases, and then promotes inverse RNA strand 
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exchange with homologous RNA transcript. The RNA transcript provides a template for 

guiding end joining or for a short gap filling synthesis (bridging template mechanism). 

Short DNA synthesis on RNA templates can be carried out by DNA polymerases, which 

have limited reverse transcriptase activity or by reverse transcriptases [121]. The single-

stranded tails are removed by flap nucleases, the gaps are filled in, and any remaining 

nicks are sealed by DNA ligases restoring the original DNA sequence in an error-free 

manner. (by A. V. Mazin) 

 

5.5 Discussion 

Our current in vitro and in vivo findings on the mechanism of RNA-templated DNA 

double-strand break repair bring a new perspective to the complex relationship between 

RNA and DNA in the context of genome stability (summarized in [189]). Recent work 

revealed an important function of Rad52 in RNA-dependent DSB repair [121]. Here, we 

describe a novel activity of Rad52, inverse strand exchange that may be responsible for 

this function. Our in vitro results demonstrate that (i) both yeast and human Rad52 

promote inverse strand exchange much more efficiently than the forward reaction, in 

contrast to Rad51 that is more efficient in forward reaction; (ii) Rad52 promotes inverse 

strand exchange much more efficiently than Rad51 or yRad59; (iii) Rad52 is unique 

among eukaryotic proteins, as it can utilize both ssDNA and ssRNA in inverse strand 

exchange; (iv) the hRad521-209 NTD retains the inverse strand exchange activity; (v) the 

reaction with ssRNA is stimulated by RPA; and (vi) Rad52 can use non resected duplex 

DNA as a substrate in inverse strand exchange.  
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Our in vivo data in yeast cells corroborate these findings. While both RNA-DNA 

annealing and inverse RNA strand exchange activities of Rad52 can contribute to RNA-

directed DSB repair, our genetic data support a mechanism of RNA-directed DSB repair 

driven by Rad52-mediated inverse strand exchange. An important watershed between 

RNA-DNA annealing and inverse RNA strand exchange mechanism lies on the structure 

of the DNA substrate. While annealing requires that both DNA and RNA being in a 

single-stranded form, in inverse strand exchange Rad52 may utilize unresected duplex 

DNA. In accord with the prerequisite of Rad52-promoted inverse strand exchange, RNA-

templated DSB repair in yeast cells does not require the function of key resection factors 

like Sae2 and Exo1. Differently, the frequency of DSB repair by an ssDNA oligo, which 

follows an SSA mechanism [96], was significantly reduced. These results suggest that 

RNA-templated DSB repair does not depend on prompt and efficient end resection of 

broken dsDNA ends, which is consistent with the role of inverse RNA strand exchange in 

this process. In addition, yRad59 that has RNA-DNA annealing, but not inverse RNA 

strand exchange activity, is required for DSB repair by an ssDNA oligo, but cannot 

substitute for Rad52 in RNA-directed DSB repair in yeast cells.  

 

Interestingly, Chakraborty et al. recently showed that non-homologous end joining 

proteins preferentially associate with transcribed sequences following DSB induction and 

facilitate an error free mechanism of DSB repair in transcribed DNA in mammalian cells 

[190], supporting an RNA-guided DSB repair mechanism occurring prior to extensive 

end resection at the DSB ends. Here, we propose that Rad52 inverse RNA strand 

exchange can contribute to RNA-directed DSB repair in conditions of limited end 



 108 

resection by generating a heteroduplex between RNA and homologous DNA at the site of 

DSBs, in which RNA serves as a bridging template guiding DSB repair without or with a 

short gap filling synthesis (Figure 5.6). This mechanism may be especially efficient for 

DSB repair with reduced end resection, which is encountered in cells that are in the G1 

stage of the cell cycle [191].    

 

It was demonstrated that while Rad52 inactivation alone does not show any significant 

deficiency in DSB repair in mammalian cells [192], it causes synthetic lethality in 

combination with mutations in several other HR proteins, including BRCA1 and BRCA2 

[193], defects of which are associated with various types of cancer [194]. These data 

indicate an essential back-up function of Rad52, which may complement the BRCA-

dependent HR mechanism in mammals. We suggest that the novel Rad52 inverse strand 

exchange activities described in the current study may contribute to this back-up 

function. Thus, our findings may also help to identify new therapeutic targets for cancer. 
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CHAPTER 6 

 

CONCLUSION 

 

Most genomic DNA is transcribed into RNA [195, 196]. Considering the high genomic 

coverage by coding and non-coding transcript RNA, it is easy to speculate that transcript 

RNA could be a template for DNA repair, and in particular for DSB repair. Previous 

findings showed that synthetic RNA-containing oligos can transfer genetic information 

from RNA sequences to chromosomal or plasmid DNA in yeast, human and bacteria cells 

[39, 40, 66, 151]. The experiments in yeast cells showed that synthetic RNA only or 

RNA-containing DNA oligos transformed into yeast cells could precisely repair a broken 

leu2 marker gene to generate Leu+ transformants [66]. Deletion of the SPT3 gene, which 

is important to promote formation of cDNA in yeast cells, did not affect repair frequency 

by RNA oligos, strongly suggesting a direct repair of broken DNA ends by template 

RNA sequences. A question remained whether RNA transcripts generated in the yeast 

cells could also serve as a template for DSB repair. To address this question, we 

developed two experimental systems in yeast S. cerevisiae. We examined whether an 

RNA transcript could directly repair a DSB induced i) in the same DNA locus generating 

the repairing transcript (in cis), or ii) in a homologous but different locus from the one 

generating the repairing transcript (in trans) (Figure 6.1A and B).  
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Figure 6.1 Model for RNA-mediated DSB repair (by Havva Keskin in [25]) A) RNA-

templated DSB repair in cis. B) RNA-templated DSB repair in trans. DNA is in blue. 

RNA is in red. RNA polymerase is in yellow pink circle. 

 

6.1 DNA repair by RNA is occurs in the absence of RNases H and SPT3 

Initial results revealed that transcript RNA could repair the DSB only indirectly, if 

converted first into DNA copy, cDNA, by the RT function of the yeast retrotransposon 

Ty. Only when the genes coding for RNases H, which cleaves the RNA strand of RNA-

DNA hybrid duplexes, were deleted, DSB repair was detected, even under conditions of 

minimal Ty RT function. We found that in the absence of RNH1, RNH201 and SPT3, 

DSB repair by transcript RNA was much more frequent in the cis system than in the trans 

system, even though the trans system generated more HIS3 RNA than the cis system. 

These data suggest that DSB repair might be due to the proximity of the transcript to the 

target broken DNA. The work in Ruff et al. supports our hypothesis. In this study, it is 

shown that DNA donor molecules carried in the vicinity of a DSB site in a target DNA 

gene via fusion with an aptamer sequence specific to the nuclease that generates the DSB 

mediate gene editing more efficiently than donors that are not fused to the aptamer both 
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in yeast and human cells [90]. In addition, we showed that in cells lacking both RNase H 

and SPT3, DSB repair was stimulated only by the RNA template and not by the cDNA or 

a homologous DNA sequence carried on a plasmid, showing that lack of RNase H 

function promotes RNA-DNA HR but not DNA-DNA HR (Table 4.3 and Figure 4.4).  

 

6.2 RNA-mediated DSB repair in the absence of a bona fide RT function 

To further confirm that His+ cells obtained in the rnh1 rnh201 spt3 cells of the cis system 

are due to direct RNA repair vs repair by residual cDNA that could be present in the yeast 

cells, it would be relevant to examine DSB repair by RNA in cells that are devoid of Tys. 

We have initiated work with a yeast strain that lacks Ty transposons from S. paradoxus, 

and thus has no RT function [197]. We built the cis system on a centromeric plasmid 

(Figure 6.2), and transformed it into S. cerevisiae cells with Tys or Ty-less S. paradoxus 

cells. The cis system is under control of the pGAL1 promoter, and the DSB is generated 

by expression of the I-SceI endonuclease, which is also regulated by the pGAL1 

promoter. In preliminary results, we observe His+ cells in wild-type or single RNase H1 

or RNase H2 null mutants only in the presence of functional SPT3, confirming DSB 

repair by cDNA in these backgrounds. We can only detect His+ in the absence of SPT3 

when both RNase H1 and H2 are non functional (Figure 6.3). In contrast, in S. 

paradoxus, we cannot detect any His+ cells in wild-type, single RNase H1 or RNase H2 

null mutants, likely because there is no cDNA formation in these cells. We can, however, 

detect His+ colonies in the absence of both RNase H1 and H2. These results support a 

mechanism of direct RNA-templated DSB repair in the absence of RNase H function 

(Figure 6.3). In addition, these data indicate that direct RNA-templated DSB repair can 
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be observed in a yeast species different from S. cerevisiae. More tests are underway to 

corroborate these results.   

 

Figure 6.2 Experimental model for RNA-mediated DSB repair in Ty-less strain. 

pGAL (galactose inducible promoter) is in red. I-SceI is in yellow. Leu2 is in light pink. 

HIS3 is in blue. Artificial intron (AI) is in orange. Transcript RNA is in red. 

 

 

His- His+ 

pGAL	

RNA	
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Figure 6.3 Repair frequency for RNA-mediated DSB repair in S. cerevisiae and S. 

paradoxus Ty-less strain. Blue bars represent cDNA-mediated DNA repair. Purple bar 

represents cDNA and RNA-mediated DNA repair. Red bar represents direct RNA-

templated DNA repair. Strains genotypes are in X axis and repair frequency is on Y axis. 

 

6.3 Absence of RNase H stimulates cDNA-templated DSB repair 

Interestingly, we showed that the loss of RNase H stimulates RNA-templated DSB repair 

as well as cDNA-templated repair (Figure 6.4). These results suggest that cDNA and/or 

RNA-cDNA hybrid molecules derived from reverse transcription are more abundant 

and/or more stable when there is no RNase H function. Mutations in any of the RNase H2 

subunit are associated with AGS disease [136]. The possible accumulation of RNA-DNA 

hybrids in defective RNase H2 cells could be a trigger for the disease [64]. AGS patients 

with defects in RNase H2 could have an increased level of cDNA in the form of RNA-

DNA hybrids, which could play a role in activating the immune system. We showed that 

in our yeast cis system, deletion of any RNase H2 subunit increases DSB repair 

frequency by cDNA. Moreover, yeast AGS orthologous mutations combined with RNH1 

deletion resulted in increased repair of a DNA DSB. These findings suggest that RNA-

DNA hybrids and cDNA in AGS patients could be abundant. In support our hypothesis, 

Lim et al. detected RNA-DNA hybrids in AGS patients having mutations in TREX1 

(AGS1), RNase H2 (AGS2, 3, 4) and SAMDH1 (AGS5) [136].  
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Figure 6.4 Model for cDNA-mediated DSB repair (by Havva Keskin in [25]. DNA is 

in blue. RNA is in red. cDNA is in light blue. 

 

6.4 Molecular mechanism of RNA-mediated DSB repair 

6.4.1 RNA-mediated DSB repair is dependent on RAD52 but not RAD51 or RAD59 

Following the results showing the evidence of RNA-templated DNA DSB repair, its 

molecular mechanism needed to be determined. We found that RNA-transcript mediated 

DSB repair is dependent on Rad52, but not Rad51 (Figure 2.1b). These data suggest that 

transcript RNA stimulates the DSB repair via Rad52 mediated annealing (Figure 2.3). 

Furthermore, we studied the effect of overexpression of full-length yeast Rad52 (yRad52) 

and yeast and human Rad52 N terminal Domain (NTD), which have the activity of 

annealing but do not have Rad51 and RPA binding domains, in yeast cells carrying the 

cis system. Upon overexpression of yRad52, yeast or human Rad52 NTD, we observed 

increased DSB repair frequency in wild-type, rnh1 rnh201, and rnh1 rnh201 spt3 strains 

as well as in null-rad52 mutant strains in the presence or absence of RNases H function. 
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These data underline the importance of Rad52 in RNA-templated DNA repair. Moreover, 

increasing DSB repair frequency by overexpression of human Rad52 NTD in rad52 rnh1 

rnh201 cells suggests that human Rad52 could catalyze RNA-templated DNA repair not 

only in yeast but possibly also in human cells. In addition, we tested the effect of yeast 

Rad59, which has homology and overlapping function with Rad52 [184, 185], in RNA-

templated DNA repair. Interestingly, deletion of the RAD59 gene increased the frequency 

of RNA-templated DSB repair (Table 5.1). This result was similar to the deletion of 

RAD51 suggesting that Rad59 and Rad51 are not required for RNA-templated DSB 

repair. In the in vitro collaborative work with Dr. A. Mazin using human and yeast Rad52 

purified proteins, we showed that Rad52 catalyzes annealing between RNA and DNA 

strands. This data also support our in vivo findings, suggesting that transcript RNA-

templated DNA repair could occur in human cells. We also studied the null mutants of 

SAE2 and EXO1, which are important genes for efficient DNA-end resection, whether or 

not end resection is required in RNA-templated DSB repair.  Deletion of SAE2 or EXO1 

increased or did not change the DSB repair frequency by RNA, respectively. On the 

contrary, these deletions reduced the frequency of DSB repair by DNA oligos 

significantly (Table A.3). These data suggest that RNA-templated DSB repair does not 

require efficient DNA end resection. 

 

6.4.2 End-resection is not required for RNA-templated DSB repair 

If DNA end resection is not required for RNA-tamplated DSB repair, in order to repair 

the DSB, RNA should then invade a broken duplex DNA rather than simply annealing to 

a single-stranded resected DNA end. Inverse strand exchange reaction happens when a 
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recombinase protein like the Rad51 homolog RecA protein forms a nucleoprotein 

filament on dsDNA to catalyze the exchange reaction with either ssDNA or ssRNA, as 

shown in experiments in vitro [33, 34]. In more recent work in collaboration with Dr. 

Mazin, we found that human and yeast Rad52, but not Rad51 or Rad59, efficiently 

promote inverse strand exchange between dsDNA and ssDNA, and also between dsDNA 

and ssRNA. These data suggest that inverse strand exchange could be a better mechanism 

for RNA-templated DNA DSB repair (Figure 5.6). 

 

The work of this study demonstrates a new and unique way to repair DNA DSBs using 

endogenous RNA transcript as template for HR that possibly requires limited end resection 

(Figure 6.5).  
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Figure 6.5 Current model for RNA, cDNA and RNA-cDNA-mediated DSB repair. 

DNA is in blue. RNA is in red. RNA-cDNA hybrid is in blue and red and ds cDNA is in 

blue. RNA polymerase is in yellow. Rad52 is in dark red.  

 

6.5 Research directions 

Details of the direct DSB repair mechanism still need to be determined. For example, it 

would be interesting to unravel which DNA polymerases and helicase function/s can use 

the transcript RNA as template or substrate during DSB repair. In our transcript RNA-

templated DSB repair assay, we did not detect DSB repair when we deleted the 5’-splice 

site of the artificial intron in the his3 marker, which is crucial for splicing (Table A.5d), 

demonstrating that splicing is essential in our system to detect DSB repair by transcript 

RNA. We could study the effect of hypomorphic mutations in factors important for RNA 

metabolism, like RNA splicing factors or RNA export factors on RNA-templated DNA 

repair.  

 

To better understand the involvement of Rad52 in RNA-tamplated DSB repair, we could 

study the effect of specific mutants of the Rad52 recombinase protein. For example, we 

could generate mutations that are known to affect binding of Rad52 to ssDNA, like 

human R55A and yeast R70A mutant of Rad52 [198], and determine how these mutants 

expressed in our cis system affect the frequency of RNA-templated DSB repair in yeast 

cells that are RAD52 wild-type or rad52-null. This experiment could tell us whether 

ssDNA-binding domain of Rad52 is also important to bind ssRNA. Parallel in vitro 
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studies using same mutant forms of yeast and/or human Rad52 could help us to better 

understand the activity of Rad52 in RNA-templated DSB repair.  

 

Work of our lab by Katz et al. [199] showed that a nick, a single-strand break in DNA, 

stimulates gene correction by ssDNA oligos in yeast and human cells. It would be 

interesting to determine whether a nick activates HR between DNA and RNA, and to 

examine also whether RNA-DNA HR could occur without a specific DSB or nick 

induction in DNA.  

 

NHEJ and HR are the major mechanisms to repair DNA DSBs. NHEJ is not restricted in 

any phase of the cell cycle but this process is often error prone [2]. In contrast, HR is 

mostly an error free mechanism using a sister chromatid for repair in mitotic cells but it 

can only happen in S/G2 phase of the cell cycle when sister chromatids are available [2]. 

Because of this restriction, the G0 or G1 phase of the cell cycle has apparently no 

mechanism for accurate repair of DSBs, and templates alternative to sister chromatids 

would be essential to maintain genome stability. Given the importance of having a 

template for DSB repair in the G0 or G1 phase of the cell cycle, and considering the 

abundance of RNA transcripts in cells, it would be exciting to detect indirect or direct 

repair of DNA DSBs by endogenous RNA transcripts in cells that cannot replicate such 

as non-dividing cells, or terminally differentiated cells. Moreover, our yeast systems to 

study DSB repair by RNA could be translated to other organisms/or cell types, such as 

human cells, to determine whether RNA-templated DSB repair is conserved in 

mammalian systems. To implement such translational studies, we could use the modular 
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CRISPR/Cas9 system [200] to create efficient DSBs in human DNA at desired genetic 

loci, and determine whether we could detect RNA and/or cDNA-templated DNA DSB 

repair in these cells. 
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                                                        APPENDIX A 

 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 2 

Table A.1 Yeast strains used in this study 

Strain Relevant genotype Source 

FRO-767 ho hml::ADE1 mata::hisG hmr::ADE1 ade1 leu2::HOcs lys5 trp1::hisG ura3-52 ade3::GAL::HO 
3 

FRO-1072 
ho hml::ADE1 mata::hisG hmr::ADE1 ade1 leu2::pGAL1-mhis3AI-URA3 lys5 trp1::hisG ura3-52 
ade3::GAL::HO  

this study 

FRO-1073 
ho hml::ADE1 mata::hisG hmr::ADE1 ade1 leu2::pGAL1mhis3AI-ADE3 lys5 trp1::hisG ura3-52 
ade3::GAL::HO  

this study 

FRO-1074 FRO-1073 his3::CORE-UH this study 

FRO-1075,1080 (trans) FRO-1073 his3::HOcs   this study 

FRO-1092, 1093 
ho hml::ADE1 mata::hisG hmr::ADE1 ade1 leu2::pGAL1-ADE3 lys5 trp1::hisG ura3-52 ade3::GAL::HO 

his3::HOcs rad52::kanMX4 
this study 

YS-164, 165 FRO-1075, 1080 (HIS3::HOcs)::TRP1 this study 

YS-166, 167 YS-164, 165 pGAL1-mhis3AI::CORE this study 

YS-172, 174 (cis) YS-166, 167 pGAL1-mhis3AI::HO this study 

YS-275, 276 FRO-1075, 1080, YCLWTy2-1::CORE this study 

YS-278, 281 YS-172, 174 YCLWTy2-1::CORE this study 

YS-289, 290 (trans) WT YS-275, 276 YCLWTy2-1 this study 

YS-291, 292 (cis) WT YS-278, 281 YCLWTy2-1 this study 

YS-414, 415 (trans) YS-289, 290 rnh1::kanMX4 this study 

YS-416, 417 (cis) YS-291, 292 rnh1::kanMX4 this study 

YS-410, 411 (trans) YS-289, 290  rnh201::hygMX4 this study 

YS-412, 413 (cis) YS-291, 292 rnh201::hygMX4 this study 

YS-428, 429 (trans) YS-289, 290 spt3::kanMX4 this study 

YS-440, 441 (cis) YS-291, 292 spt3::kanMX4 this study 

YS-444, 445 (cis) YS-291, 292 rad52::kanMX4 this study 

YS-446, 447 (cis) YS-291, 292 rad51::kanMX4 this study 

HK-76, 77 (trans) YS-289, 290 dbr1::kanMX4 this study 

HK-72, 73 (cis) YS-291, 292 dbr1::kanMX4 this study 

YS-520, 521 (trans) YS-414, 415 spt3::hygMX4 this study 

YS-522, 524 (cis) YS-416, 417 spt3::hygMX4 this study 

YS-452, 453 (trans) YS-410, 411 spt3::hygMX4 this study 

YS-464, 465 (cis) YS-412, 413 spt3::hygMX4 this study 

YS-422, 423 (trans) YS-289, 290 rnh1::NAT rnh201::hygMX4 this study 

YS-424, 426 (cis) YS-291, 292 rnh1::NAT rnh201:: hygMX4 this study 

YS-476, 477 (trans) YS-289, 290 rnh1::NAT rnh201::hygMX4 spt3::kanMX4 this study 

YS-486, 487 (cis) YS-291, 292 rnh1::NAT rnh201::hygMX4 spt3::kanMX4 this study 

YS-490, 491 (cis) YS-424, 426 rad52::kanMX4 this study 

YS-492, 493 (cis) YS-424, 426 rad51::kanMX4 this study 

HK-78, 79 (trans) YS-422, 423 dbr1::kanMX4 this study 

HK-74, 75 (cis) YS-424, 426 dbr1:: kanMX4 this study 

HK-213, 215 (trans) YS-422, 423 dbr1::KlURA3 this study 

HK-217, 219 (cis) YS-424, 426 dbr1::KlURA3 this study 

HK-136, 137 (trans) YS-422, 423 spt3::KlURA3 this study 

HK-138, 139 (cis) YS-424, 426 spt3::KlURA3 this study 

HK-194, 197 (cis) HK-138, 139 rad52::kanMX4 this study 

HK-180, 184 (cis) HK-138, 139 rad51::kanMX4 this study 

HK-112, 113 (trans) HK-78, 79 spt3::KlURA3  this study 

HK-110, 111 (cis) HK-74, 75 spt3::KlURA3  this study 

YS-526, 527 (cis) YS-291  pGAL1::KlURA3 this study 

YS-528, 529 (cis) YS-424, 426  pGAL1::KlURA3 this study 

YS-530, 531 (cis) YS-486, 487 pGAL1::KlURA3 this study 

YS-532, 533 (cis) YS-291, 292  ade3::GAL::ho::KlURA3 this study 

YS-534, 535 (cis) YS-424, 426 ade3::GAL::ho::KlURA3 this study 

YS-536, 537 (cis) YS-486, 487 ade3::GAL::ho::KlURA3 this study 

HK-9, 10 (cis) YS-291, 292 + Yep195spGAL this study 

HK-11, 12 (cis) YS-291, 292 + Yep195spGAL-RNH201-WT this study 

HK-13, 14 (cis) YS-291, 292 + Yep195spGAL-rnh201-D39A this study 

HK-15, 16 (cis) YS-440, 441 + Yep195spGAL this study 

HK-17, 18 (cis) YS-440, 441 + Yep195spGAL-RNH201-WT this study 

HK-19, 20 (cis) YS-440, 441 + Yep195spGAL-rnh201-D39A this study 

HK-21, 22 (cis) YS-424, 426 + Yep195spGAL this study 

HK-23, 24 (cis) YS-424, 426 + Yep195spGAL-RNH201-WT this study 

HK-25, 26 (cis) YS-424, 426 + Yep195spGAL-rnh20- D39A this study 

HK-27, 28 (cis) YS-486, 487 + Yep195spGAL this study 

HK-29, 30 (cis) YS-486, 487 + Yep195spGAL-RNH201-WT this study 

HK-31, 32 (cis) YS-486, 487 + Yep195spGAL-rnh201-D39A this study 

YS-301 MATα  his31 leu20 lys20 ura30 trp5(CC1001-2; G1017→A) 
43 

YS-305 YS-301 rnh201::kanMX4 
43 

KK-72 YS-305 rnh1::hygMX4 this study 

TY-32, 52 YS-301 + BDG102 (empty vector) this study 

TY-17, 53 YS-301 + BDG598 (pGTy-H3mHIS3AI) this study 

TY-36, 66 KK-72 + BDG102 (empty vector) this study 

TY-22, 67  KK-72 + BDG598 (pGTy-H3mHIS3AI) this study 

HK-386, 388 (cis) YS-291, 292 mhis3AI::CORE this study 

HK-382, 384 (cis) YS-424, 426 mhis3AI::CORE this study 

HK-396, 400 (cis) HK-386, 388 AI23 this study 
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HK-391, 394 (cis) HK-382, 384 AI23 this study 

HK-404, 407 (cis) HK-391, 394 spt3::kanMX4  this study 

S. cerevisiae strains used in this study. Strains specifically used for the trans or cis assay 

are indicated. 

 

 

Table A.2 Oligonucleotides used in this study and sequence patterns of the HIS3 

region repaired by transcript RNA or via non-homologous end-joining 

a 

 

 b 

 

Name Size   Sequence Experiment 

HIS3.F 80 
5’ACCAATGCACTCAACGATTAGCGACCAGCCGGAATGCTTG 
GCCAGAGCATGTATCATATGGTCCAGAAACCCTATACCTG 

Transformation 

 
HIS3.R 
 

 
80 
 

5’CAGGTATAGGGTTTCTGGACCATATGATACATGCTCTGGC 
CAAGCATTCCGGCTGGTCGCTAATCGTTGAGTGCATTGGT 

Transformation 

His3.F2 20 5’ CCTGTTCTGCTACTGCTTCT qRT-PCR 

His3.R2 20 5’ CGATCTCTTTAAAGGGTGGT qRT-PCR 

ACT1.F 20 5’ TTGGATTCCGGTGATGGTGT qRT-PCR 

ACT1.R 20 5’ CGGCCAAATCGATTCTCAAA qRT-PCR 

CEN16.F 20 5’ TGAGCAAACAATTTGAACAG qRT-PCR 

CEN16.R 18 5’ CCGATTTCGCTTTAGAAC qRT-PCR 

His3.2 20 5’ GAGAGCAATCCCGCAGTCTT Colony PCR 

His3.5 20 5’ ATGACAGAGCAGAAAGCCCT Colony PCR 

HO.F 20 5’ AACCACTCTACAAAACCAAA Colony PCR 

INTRON.F 20 5’ GTATGTTAATATGGACTAAA Colony PCR 

S3.1 20 5’ TTAAAGAGGCCCTAGGGGCC Southern blot 

S3.2 20 5’ CTACATAAGAACACCTTTGG Southern blot 

S3.3 20 5’ TTTGCGCCTTTGGATGAGGC Southern blot 

S3.4 20 5’ TTGGGCGAGGTGGCTTCTCT Southern blot 

211 48 
5’ GAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATA 
TTTGAAT 

Rad52 Annealing 

501 48 
5’ CUUCGUAAAUAGUCCCAAUAACAGAGUACUCGCCUAUG 
UAUAAACUUA 

Rad52 Annealing 

508 53 
5’ ATTCAA ATATGTATCCGCTAATGAGACAATAACCCTGATAA 
ATGCTTCACTAG 

Rad52 Annealing 

509 32 5’  TTATTGTCTCATTAGCGGATACATATTTGAAT Rad52 Annealing 

Pattern Tract of HIS3 or his3 sequence next to the HO site insertion 

HIS3  5’ -CATATGATACATGCTCTGGCCAAGCATTCCGGCTGGTCGCT-  

his3::HO 5’ -CATATGATACATGCTCTGGC--HO--CAAGCATTCCGGCTGGTCGCT- 

A 5’ -CATATGATACATGCTCTGGCGGTACATTCCGGCTGGTCGCT- 

B 5’ -CATATGATACATGCTCTGGCGGTCCATTCCGGCTGGTCGCT- 

C 5’ -CATATGATACATGCTCTGGCGGTGCATTCCGGCTGGTCGCT- 
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 a, Name, size and sequence of the oligonucleotides used in this study are described. The 

specific experiments in which the oligonucleotides were used are indicated. b, Sequence 

patterns of the HIS3 region repaired by transcript RNA or via non-homologous end-

joining. All 24 His+ cis-system rnh1 rnh201 spt3 clones that were sequenced perfectly 

matched the wild-type HIS3 sequence. In contrast, when we examined the sequence of 

the rare His+ clones that we could obtain (~10 out of 107 viable cells) from a strain that 

had the homothallic switching endonuclease site in his3 on chromosome (Chr) XV (the 

construct is identical to that described in Extended Data Fig. 1b) and was rad52-null 

(FRO-1092, 1093), 29 out of 29 His+ samples had replaced 4 nucleotides (CAAG) of his3 

next to the homothallic switching endonuclease site with a new sequence. Differences 

from the wild-type HIS3 gene are in bold. A–C, patterns of the HIS3 region from 

spontaneous His+ revertants. Among the 29 sequenced HIS3 regions, 25 displayed pattern 

A, 3 displayed pattern B and 1 displayed pattern C. The four bases inconsistent with the 

wild-type HIS3 affected two codons, causing a silent mutation (GCCRGCG: AlaRAla) 

and a missense mutation (AAGRGTA, GTC or GTG:LysRVal). 
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Table A.3 His+ frequency in the trans and cis systems following transformation by 

HIS3.F and HIS3.R oligonucleotides 

 

 

Frequency of His+ transformant colonies per 107 viable cells for wild-type (WT), rnh1 

rnh201, and rnh1 rnh201 spt3 mutant strains after transformation with HIS3.F and 

HIS3.R oligonucleotides in both trans and cis systems is shown as median and 95% 

confidence interval (in brackets). There were four or eight repeats for each of the strains 

transformed with these oligonucleotides. The significance of comparisons between the 

strains in the trans and the cis systems, and between different strains of the trans or cis 

system, that is between-group and within-group analysis, were calculated using the 

Mann–Whitney U-test (Supplementary Table 1d). The strains used in this experiment 

were YS-289, YS-290, YS-291, YS-292, YS-422, YS-423, YS-424, YS-426, YS-476, 

YS-477, YS-486, YS-487 and HK-404, HK-407. ND, not determined. 

*We note that when the trans- and cis-system rnh1 rnh201 or rnh1 rnh201 spt3 strains 

were transformed using exogenous HIS3.F and HIS3.R synthetic oligonucleotides 

following DSB induction, the frequencies of His1 colonies were similar to each other in 

the trans- and cis-system rnh1 rnh201 or rnh1 rnh201 spt3 cells. In contrast, when no 

oligonucleotides were added, the few His+ colonies were 20- to 28-fold more numerous 

 trans  cis  

Genotype No Oligo HIS3.F + HIS3.R  No Oligo HIS3.F + HIS3.R  

WT 2.3 (0-8) 1.6x106 (1.4x106 -1.9x106) 
<0.
1 

(0-0) 1.5x106 (946,000-2.3x106) 

rnh1 rnh201 8 (0-56) 1x106 (1.1x105 -1.9x106) 165 (63-275) 
845,50
0 

(669,000-1x106) 

rnh1 rnh201 spt3 1.7 (1-2) 215,480 (196,000-235,000) 49 (25-78) 
225,30
0 

(156,000-
326,700) 

rnh1 rnh201 spt3 

AI23 
ND  ND  

<0.
1 

(0-0) 
798,37
0 

(610,100-1x106) 
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in cis- than in trans-system rnh1 rnh201 or rnh1 rnh201 spt3 cells, respectively, probably 

originating from DSB repair by the his3 antisense transcript. 

 

Table A.4 His+ frequencies in the presence of plasmid BDG283 or BDG606 in cis 

strains 

 

 

 

 

 

 

 

 

 

 

Frequencies of Ura+His+ colonies per 107 viable cells for yeast strains of the cis cell 

system transformed with plasmid BDG283 or BDG606 following 48 h galactose or 

glucose treatment are shown as median and 95% confidence interval (in brackets). 

Percentage of cell survival after incubation in galactose or glucose is shown. There were 

six repeats for all the strains. The significance of comparisons between strains was 

calculated using the Mann–Whitney U-test (supplementary table 1e). 

 
     Galactose 

  

 cis  

Genotype                 Ura+His+ freq. Survival 

WT + BDG283 36 (27-45) 9% 

WT + BDG606 157,000 (143,020-193,000) 9% 

rnh1 rnh201 spt3 + BDG283 820 (720-900) 25% 

rnh1 rnh201 spt3 + BDG606 815 (680-900) 25% 

 
Glucose 

   

 
                                 
            cis  

Genotype                 Ura+His+ freq. Survival 

WT + BDG283 <0.01 (0-0) 56% 

WT + BDG606 <0.01 (0-0) 50% 

rnh1 rnh201 spt3 + BDG283 0.28 (0.04-0.45) 93% 

rnh1 rnh201 spt3 + BDG606 8 (0-24) 80% 
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Table A.5 His+ frequencies for strains with dbr1-null, grown in the presence of PFA, 

with and without the pGAL1 promoter, grown in glucose, or containing the AIΔ23  

 

 

 

 

 

 

 

a trans cis  

Genotype            His+ freq. Survival        His+ freq. Survival  

dbr1 1,330 (1,030-1,660) 1.6% 23 (0-47) 2% 

rnh201 dbr1 2,130 (1,150-3,620) 2.6% 322 (122-453) 3% 

rnh1 dbr1 2,455 (1,500- 3,250) 1.2% 18 (0-78) 2.5% 

rnh1 rnh201 dbr1 7,420 (7,400-11,300) 1.7% 29,900 (26,900-33,200) 1.2% 

WT + PFA 519 (400-1,300) 1.7% 112 (94-380) 0.9% 

rnh1 rnh201 + PFA 4,120 (3,100-5,340) 0.9% 9,400 (7,290-20,800) 0.7% 

c             trans                          cis   

Genotype               His+ freq.  Survival                His+ freq.   Survival 

WT <0.01 (0-0) 
      
16% 

 <0.01 (0-0) 19% 

spt3 <0.01 (0-0) 96% <0.01 (0-0) 93% 

dbr1 <0.01 (0-0) 33% <0.01 (0-0) 54% 

rad52 ND  ND <0.01 (0-0) 6% 

rad51 ND  ND <0.01 (0-0) 24% 

pGAL1  ND  ND <0.01 (0-0) 67% 

rnh1 rnh201 11 (5-25) 18% 21 (17-31) 11% 

rnh1 rnh201 spt3 4 (2-14) 92% 9 (0.3-16) 76% 

rnh1 rnh201 dbr1 <0.01 (0-0) 28% 1.5 (0-6) 34% 

rnh1 rnh201 rad52 ND  ND <0.01 (0-0) 23% 

rnh1 rnh201 rad51 ND  ND <0.01 (0-7) 17% 

rnh1 rnh201  pGAL1 ND  ND 0.9 (0-2) 45% 

rnh1 rnh201 spt3 rad52 ND  ND 2 (0-5) 26% 

rnh1 rnh201 spt3 rad51 ND  ND 2 (0-4) 50% 
rnh1 rnh201 spt3 

pGAL1 
ND  ND <0.01 (0-0) 85% 

b                         cis   

Genotype                 His+ freq. Survival 

WT 1,050 (600-1,460) 1% 

rnh1 rnh201 62,100 (52,900-68,900) 0.7% 

rnh1 rnh201 spt3 5,100 (3,660-6,660) 11% 

pGAL1  <1 (0-0) 0.4% 

rnh1 rnh201 pGAL1 540 (270-1,300) 0.4% 

rnh1 rnh201 spt3 

pGAL1 
630 (500-920) 0.8% 
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a, Frequencies of His+ colonies per 107 viable cells for yeast strains of the trans and cis 

cell systems following 48 h galactose treatment are shown as median and 95% 

confidence interval (in brackets). Percentage of cell survival after incubation in galactose 

is also shown. Eighteen repeats for dbr1 (in trans), 6 repeats for dbr1 (in cis); 6 repeats 

for rnh201 dbr1, rnh1 dbr1; 24 repeats for rnh1 rnh201 dbr1 and 4 repeats for PFA data. 

The significance of comparisons between strains was calculated using the Mann–Whitney 

U-test (Supplementary Table 1a). b, Frequencies of His+ colonies per 107 viable cells for 

yeast strains of the cis cell system following 48 h galactose treatment are shown as 

median and 95% confidence interval (in brackets). Percentage of cell survival after 

incubation in galactose is also shown. There were 6 repeats for all the strains. The 

significance of comparisons between strains was calculated using the Mann–Whitney U-

test (Supplementary Table 1f). c, Frequencies of His1 colonies per 107 viable cells for the 

indicated yeast strains following 24-h glucose treatment in both the trans and the cis cell 

systems are shown as median and 95% confidence interval (in brackets). Percentage of 

cell survival after growth in glucose is also shown. There were 8 repeats for each of the 

strains. The significance of comparisons between the strains in the trans and cis systems 

was calculated using the Mann–Whitney U-test (Supplementary Table 1g). ND, not 

determined. d, Frequencies of His+ colonies per 107 viable cells for yeast strains of the cis 

d                         cis   

Genotype                 His+ freq.  Survival 

WT 1,000 (840-1,240) 2% 

rnh1 rnh201 43,100 (37,500-47,000) 1.7% 

rnh1 rnh201 spt3 4,180 (3,310-5,550) 21% 

AI23  <0.1 (0-0) 1.7% 

rnh1 rnh201 AI23 <0.1 (0-0) 1.7% 

rnh1 rnh201 spt3 AI23 <0.1 (0-0) 15% 
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cell system following 48 h galactose treatment are shown as median and 95%confidence 

interval (in brackets). Percentage of cell survival after incubation in galactose is also 

shown. There were six repeats for all the strains. The significance of comparisons 

between strains was calculated using the Mann–Whitney U-test (Supplementary Table 

1h). 

 

Table A.6 His+ rates in wild-type and rnh1 rnh201 cells resulting from the 

transposition assay At 22 °C or 30 °C 

22 °C No gal (Ura-)  + gal (Ura-Gal)  

Genotype His+ rate (x10-7) Survival His+ rate (x10-3) Survival 

WT + BDG598 5.28 (0 – 141) 26% 2.68 (2.55 – 3.06) 15% 

rnh1 rnh201 + BDG598 15.3 (16.3 – 42.4) 34% 0.78 (0.54 – 0.92) 27% 

30 °C No gal (Ura-)  + gal (Ura-Gal)  

Genotype His+ rate (x10-7)  His+ rate (x10-3)  

WT + BDG598 2.8* (0 – 7.37) 26% 0.58 (0.46 – 0.72) 15% 

rnh1 rnh201 + BDG598 16.1 (5.31 – 24.2) 34% 0.04 (0.03 – 0.06) 27% 

30 °C No gal (YPLac)  + gal (YPLac + gal)  

Genotype His+ rate (x10-7)  His+ rate (x10-5)  

WT + BDG598 <0.1 (0 – 0) 26% 1.38 (0.52 – 2.38) 15% 

rnh1 rnh201 + BDG598 15.1 (4.90 – 26.4) 34% 0.4 (0.30 – 0.60) 27% 

 

Shown are rates of His+ colonies for wild-type (WT) and rnh1 rnh201 yeast strains 

containing BDG598 following growth with no galactose with plasmid selection (Ura- 

medium) and without plasmid selection (YPLac medium) or galactose with plasmid 

selection (Ura-Gal medium) and without plasmid selection (YPLac+gal medium) for 96 h 
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at 22 °C, or for 48 h at 30 °C. Data are presented as median and 95% confidence interval 

(in brackets). Percentages of cell survival after growth without or with galactose are also 

shown. There were 15 repeats for the strains incubated at 22 °C and 6 repeats for those 

incubated at 30 °C. The significance of comparisons between strains was calculated using 

the Mann–Whitney U-test (Supplementary Table 1i). The strains used in this experiment. 

 

Table A.7 Statistical analysis (P-values and adjusted P-values) of the data a 

I) 

 P values Adj. P values 

Genotype trans cis trans cis 

WT vs. spt3 <0.0001 <0.0001 0.0003 0.0003 

WT vs. rnh1 <0.0001 0.3708 0.0003 0.4194 

WT vs. rnh201 <0.0001 <0.0001 0.0003 0.0003 

WT vs. rnh1 spt3 <0.0001 <0.0001 0.0003 0.0003 

WT vs. rnh1 rnh201 <0.0001 <0.0001 0.0003 0.0003 

WT vs.  rnh1 rnh201 spt3 <0.0001 <0.0001 0.0003 0.0003 

WT vs. dbr1  <0.0001 <0.0001 0.0003 0.0003 

WT vs. rnh1 dbr1 0.0009 0.0002 0.0018 0.0005 

WT vs. rnh201 dbr1 0.0009 0.0003 0.0018 0.0007 

WT vs. rnh1 rnh201 dbr1 0.5570 <0.0001 0.6210 0.0003 

spt3 vs. rnh1 spt3 0.5970 NA 0.6561 NA 

spt3 vs. rnh201 spt3 0.5419 NA 0.6079 NA 

spt3 vs. rnh1 rnh201 spt3 <0.0001 <0.0001 0.0003 0.0003 

spt3 vs. dbr1 <0.0001 0.9590 0.0003 0.9716 

spt3 vs. rnh1 dbr1 0.0004 0.9590 0.0010 0.9716 

spt3 vs. rnh201 dbr1 0.0004 0.0003 0.0010 0.0007 

spt3 vs. rnh1 rnh201 dbr1 <0.0001 <0.0001 0.0003 0.0003 

rnh1 vs. rnh201 0.0002 <0.0001 0.0005 0.0003 

rnh1 vs. spt3 <0.0001 <0.0001 0.0003 0.0003 

rnh1 vs. rnh1 spt3 <0.0001 <0.0001 0.0003 0.0003 

rnh1 vs. rnh1 rnh201 <0.0001 <0.0001 0.0003 0.0003 

rnh1 vs. rnh1 rnh201 spt3 <0.0001 <0.0001 0.0003 0.0003 

rnh1 vs. dbr1 <0.0001 0.0009 0.0003 0.0018 

rnh1 vs. rnh1 dbr1 0.0009 0.0009 0.0018 0.0018 

rnh1 vs. rnh1 rnh201 dbr1 <0.0001 <0.0001 0.0003 0.0003 

rnh201 vs. spt3 <0.0001 <0.0001 0.0003 0.0003 

rnh201 vs. rnh201 spt3 <0.0001 <0.0001 0.0003 0.0003 

rnh201 vs. rnh1 rnh201 0.0002 0.0002 0.0005 0.0005 

rnh201 vs. rnh1 rnh201 spt3 <0.0001 <0.0001 0.0003 0.0003 
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rnh201 vs. dbr1 <0.0001 0.0009 0.0003 0.0018 

rnh201 vs. rnh201 dbr1 0.0009 0.0009 0.0018 0.0018 

rnh201 vs. rnh1 rnh201 dbr1 <0.0001 <0.0001 0.0003 0.0003 

rnh1 rnh201 vs. rnh1 rnh201 spt3  <0.0001 <0.0001 0.0003 0.0003 

rnh1 rnh201 vs. rnh1 rnh201 dbr1 <0.0001 <0.0001 0.0003 0.0003 

dbr1 vs. rnh1 dbr1 0.0150 0.8640 0.0211 0.8987 

dbr1 vs. rnh201 dbr1 0.0492 0.0192 0.0613 0.0265 

dbr1 vs. rnh1 rnh201 dbr1 <0.0001 0.0002 0.0003 0.0005 

WT vs. WT + PFA 0.0044 0.0017 0.0068 0.0033 

WT vs. rnh1 rnh201 + PFA 0.0249 0.0017 0.0339 0.0033 

rnh1 rnh201 vs. rnh1 rnh201 + PFA 0.0043 0.0126 0.0067 0.0179 

WT + PFA vs. rnh1 rnh201 + PFA 0.0286 0.0286 0.0362 0.0362 
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II) 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Mann-Whitney U-test was applied to determine whether a statistical significant 

difference exists between pairs of gene correction frequencies or rates obtained in DSB 

repair or transposition assays or fold-change values obtained in the qRT-PCR 

experiment. All P values obtained using the Mann-Whitney U-test were then adjusted 

by applying the false discovery rate (FDR) method to correct for multiple hypothesis. 

a, Comparison of frequencies presented in Table 1a and Extended Data Table 5a. Two 

groups in a pair were considered to be significantly different when adjusted P values 

were less than 0.05. I) Comparisons were between relative frequencies obtained in the 

trans or cis assay in different backgrounds, and II) between relative frequencies 

obtained in the trans and cis assays for each background. NA, not applicable because 

the frequencies were too low in both samples to allow meaningful comparison. 

 
 

  

 P values Adj. P values 

Genotype trans vs. cis trans vs. cis 

WT  0.0002 0.0005 

spt3  NA NA 

rnh1  <0.0001 0.0003 

rnh201  <0.0001 0.0003 

rnh1 rnh201  0.2921 0.3336 

rnh1 rnh201 spt3  <0.0001 0.0003 

dbr1  <0.0001 0.0003 

rnh1 rnh201 dbr1  <0.0001 0.0003 

WT + PFA  0.0571 0.0704 

rnh1 rnh201 + PFA  0.0286 0.0362 
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b 
 

  

 

 

 

 

 

 

 

 

 

 

 
 

b, Comparison of frequencies presented in Table 1b. Two groups in a pair were considered 

to be significantly different when adjusted P values were less than 0.05. I) Comparisons 

were between relative frequencies obtained in the trans or cis assay in different 

backgrounds, and II) between relative frequencies obtained in the trans and cis assays for 

each background.  

 

 
 
 
 
 
 
 
 
 
 
 

 P values Adj. P values 

Genotype cis cis 

WT vs. rad51 0.0011 0.0022 

WT vs. rnh1 rnh201 0.0011 0.0022 

WT vs. rnh1 rnh201 spt3 <0.0001 0.0003 

WT vs. rnh1 rnh201 rad52 0.5427 0.6079 

WT vs. rnh1 rnh201 rad51 0.0011 0.0022 

WT vs. rnh1 rnh201 spt3 rad52 0.0277 0.0362 

WT vs. rnh1 rnh201 spt3 rad51 0.0022 0.0039 

rad51 vs. rnh1 rnh201 0.0022 0.0039 

rad51 vs. rnh1 rnh201 spt3 0.6733 0.7331 

rad51 vs. rnh1 rnh201 spt3 rad51 0.0043 0.0067 

rnh1 rnh201 vs. rnh1 rnh201 spt3  0.0009 0.0018 

rnh1 rnh201 vs.  rnh1 rnh201 rad52 0.0009 0.0018 

rnh1 rnh201 vs.  rnh1 rnh201 rad51 1.0000 1.0000 

rnh1 rnh201 vs.  rnh1 rnh201 spt3 rad52 0.0009 0.0018 

rnh1 rnh201 vs.  rnh1 rnh201 spt3 rad51 0.0043 0.0067 

rnh1 rnh201 spt3 vs.  rnh1 rnh201 rad52 0.0001 0.0003 

rnh1 rnh201 spt3 vs.  rnh1 rnh201 rad51 0.0009 0.0018 

rnh1 rnh201 spt3 vs.  rnh1 rnh201 spt3 rad52 <0.0001 0.0003 

rnh1 rnh201 spt3 vs.  rnh1 rnh201 spt3 rad51 0.0037 0.0063 

rnh1 rnh201 rad52 vs.  rnh1 rnh201 spt3 rad52 0.0119 0.0170 

rnh1 rnh201 rad51 vs.  rnh1 rnh201 spt3 rad51 0.0043 0.0067 
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c 

 
 

c, Comparison of kinetics using yeast and human Rad52 (data obtained at 10 and 15 min 

were used) presented in Fig. 2c and d. Two groups in a pair were considered to be 

significantly different when adjusted P values were less than 0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yeast P values Adj. P values 

ssDNA vs. ssDNA+Rad52 0.0286 0.0362 
ssDNA vs. ssDNA+Rad52+RPA 0.0286 0.0362 
ssRNA vs. ssRNA+Rad52 0.0286 0.0362 
ssRNA vs. ssRNA+Rad52+RPA 0.0286 0.0362 
ssDNA+Rad52 vs. ssDNA+Rad52+RPA 0.0286 0.0362 

ssRNA+Rad52 vs. ssRNA+Rad52+RPA 0.6857 0.7428 

ssDNA vs. ssRNA 0.0286 0.0362 
ssDNA+Rad52 vs. ssRNA+Rad52 0.0286 0.0362 
ssDNA+Rad52+RPA vs. ssRNA+Rad52+RPA 0.0286 0.0362 

Human P values Adj. P values 

ssDNA vs. ssDNA+RAD52 0.0286 0.0362 
ssDNA vs. ssDNA+RAD52+RPA 0.0286 0.0362 
ssRNA vs. ssRNA+RAD52 0.0286 0.0362 
ssRNA vs. ssRNA+RAD52+RPA 0.0286 0.0362 
ssDNA+RAD52 vs. ssDNA+RAD52+RPA 0.0286 0.0362 

ssRNA+RAD52 vs. ssRNA+RAD52+RPA 0.4857 0.5449 

ssDNA vs. ssRNA 0.0286 0.0362 
ssDNA+RAD52 vs. ssRNA+RAD52 0.0571 0.0704 

ssDNA+RAD52+RPA vs. ssRNA+RAD52+RPA 0.0286 0.0362 
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d 

 I) 

 
 
 
 
 
II) 

 

 

 
 
 
 
 
 

 

d, Comparison of frequencies presented in Extended Data Table 3. Two groups in a pair 

were considered to be significantly different when adjusted P values were less than 0.05. I) 

Comparisons were between relative frequencies obtained in the trans or cis assay in 

different backgrounds, and II) between relative frequencies obtained in the trans and cis 

assays for each background. NA, not applicable because the frequencies were too low in 

both samples to allow meaningful comparison. 

 
  

 P values Adj. P values 

 trans cis trans cis trans cis 

Genotype No oligo HIS3.F+R No oligo HIS3.F+R No oligo HIS3.F+R No oligo HIS3.F+R 

WT vs. rnh1 rnh201 0.1913 0.0283 <0.0001 0.2141 0.2240 0.0362 0.0003 0.2482 

WT vs. rnh1 rnh201 spt3 0.8846 0.0040 <0.0001 0.0040 0.9161 0.0064 0.0003 0.0064 

rnh1 rnh201 vs.  
rnh1 rnh201 spt3 

0.0286 0.0286 0.0286 0.0286 0.0362 0.0362 0.0362 0.0362 

rnh1 rnh201 vs. 

rnh1 rnh201 spt3 AI23 
NA NA NA 0.0040 NA NA NA 0.0064 

 P values Adj. P values 

 trans vs. cis trans vs. cis 

Genotype No Oligo HIS3.F+R No Oligo HIS3.F+R 

 WT NA 0.9591 NA 0.9716 

rnh1 rnh201 0.0286 1.0000 0.0362 1.0000 

rnh1 rnh201 spt3 0.0084 0.1091 0.0370 0.7397 
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e 

 
 

e, Comparison of frequencies presented in Extended Data Table 4. Two groups in a 

pair were considered to be significantly different when adjusted P values were less 

than 0.05. Comparison was between relative frequencies obtained in the cis assay in 

different backgrounds. NA, not applicable because data were not available for 

comparison. 

 
 
f 

 P values Adj. P values 

Genotype cis cis 

WT vs. pGAL1 <0.0001 0.0003 

rnh1 rnh201 vs. rnh1 rnh201 pGAL1 0.0022 0.0039 

rnh1 rnh201 spt3 vs. rnh1 rnh201 spt3 pGAL1 0.0022 0.0039 

 

f, Comparison of frequencies presented in Extended Data Table 5b. Two groups in a pair 

were considered to be significantly different when adjusted P values were less than 0.05. I) 

Comparison was between relative frequencies obtained in the cis assay in different 

backgrounds.  

 

  

 P values Adj. P values 

Genotype 
cis cis 

Galactose      Glucose Galactose      Glucose 

WT + BDG283 vs. WT + BDG606 0.0022 NA 0.0039 NA 

WT + BDG283 vs. rnh1 rnh201 spt3 + BDG283 0.0022 <0.0001 0.0039 0.0003 

WT + BDG606 vs. rnh1 rnh201 spt3 + BDG606 0.0022 <0.0001 0.0039 0.0003 

rnh1 rnh201 spt3 + BDG283 vs. rnh1 rnh201 
spt3 + BDG606 

0.9372 0.6631 0.9620 0.7254 
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g 
I) 

  

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 

 P values Adj. P values 

Genotype trans cis trans cis 

WT vs. spt3 NA NA NA NA 

WT vs. rnh1 rnh201 <0.0001 <0.0001 0.0003 0.0003 

WT vs. rnh1 rnh201 spt3 <0.0001 <0.0001 0.0003 0.0003 

WT vs. dbr1 NA NA NA NA 

WT vs. rad52 NA NA NA NA 

WT vs. rad51 NA NA NA NA 

WT vs. rnh1 rnh201 dbr1  NA <0.0001 NA 0.0003 

spt3 vs. rnh1 rnh201 <0.0001 <0.0001 0.0003 0.0003 

spt3 vs. rnh1 rnh201 spt3 <0.0001 <0.0001 0.0003 0.0003 

spt3 vs. dbr1 NA NA NA NA 

spt3 vs. rnh1 rnh201 dbr1 NA NA NA NA 

dbr1 vs. rnh1 rnh201 <0.0001 <0.0001 0.0003 0.0003 

dbr1 vs. rnh1 rnh201 dbr1 NA NA NA NA 

rnh1 rnh201 vs. rnh1 rnh201 spt3 0.1079 0.0058 0.1283 0.0086 

rnh1 rnh201 vs. rnh1 rnh201 dbr1 <0.0001 0.0058 0.0003 0.0086 

rnh1 rnh201 vs. rad52 NA <0.0001 NA 0.0003 

rnh1 rnh201 vs. rnh1 rnh201  rad52 NA 0.8318 NA 0.8691 

rnh1 rnh201 vs. rnh1 rnh201 spt3  rad52 NA 0.0058 NA 0.0086 

rnh1 rnh201 vs. rad51 NA NA NA NA 

rnh1 rnh201 vs. rnh1 rnh201  rad51 NA 0.0058 NA 0.0086 

rnh1 rnh201 vs. rnh1 rnh201 spt3  rad51 NA 0.0058 NA 0.0086 

rnh1 rnh201 spt3 vs. rnh1 rnh201 spt3  rad52 NA 0.0591 NA 0.0721 

rnh1 rnh201 spt3 vs. rnh1 rnh201 spt3  rad51 NA 0.0591 NA 0.0721 
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II) 

 

 

 

 

 
 
 
 
 
 
 

 

g, Comparison of frequencies presented in Extended Data Table 5c. Two groups in a pair 

were considered to be significantly different when adjusted P values were less than 0.05. I) 

Comparisons were between relative frequencies obtained in the trans or cis assay in 

different backgrounds, and II) between relative frequencies obtained in the trans and cis 

assays for each background. NA, not applicable because the frequencies were too low in 

both samples to allow meaningful comparison, or because data were not available for 

comparison. 

  

 P values Adj. P values 

Genotype trans vs. cis trans vs. cis 

 WT NA NA 

spt3 NA NA 

dbr1  NA NA 

rnh1 rnh201 0.0727 0.0873 

rnh1 rnh201 spt3 0.7986 0.8420 

rnh1 rnh201 dbr1  NA NA 
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h   

 P values Adj. P values 

Genotype cis cis 

WT vs. rnh1 rnh201 0.0050 0.0076 

WT vs. rnh1 rnh201 spt3 0.0050 0.0076 

WT vs. AI∆23 <0.0001 0.0003 

rnh1 rnh201 vs. rnh1 rnh201 spt3 0.0022 0.0039 

rnh1 rnh201 vs. rnh1 rnh201 AI∆23 <0.0001 0.0003 

rnh1 rnh201 spt3 vs. rnh1 rnh201 spt3 AI∆23 <0.0001 0.0003 

AI∆23 vs. rnh1 rnh201 AI∆23 NA NA 

AI∆23 vs. rnh1 rnh201 spt3 AI∆23 NA NA 

rnh1 rnh201 AI∆23 vs. rnh1 rnh201 spt3 AI∆23 NA NA 

 

h, Comparison of frequencies presented in Extended Data Table 5d. Two groups in a pair 

were considered to be significantly different when adjusted P values were less than 0.05. 

Comparisons were between relative frequencies obtained in the cis assays for each 

background shown. NA, not applicable because the frequencies were too low in both 

samples to allow meaningful comparison. 

 
i 

 
 

i, Comparison of rates presented in Extended Data Table 6. Two groups in a pair were 

considered to be significantly different when adjusted P values were less than 0.05. 

Comparisons were between rates of His+ colonies obtained in the WT vs. rnh201 rnh1 

strains containing BDG598.  

 

 
 

  

 P values Adj. P values 

Genotype No galactose Galactose No galactose Galactose 

WT vs. rnh201 rnh1 (22 °C) (Ura-) 0.0021 <0.0001 0.0039 0.0003 

WT vs. rnh201 rnh1 (30 °C) (Ura-) 0.0250 0.0022 0.0339 0.0039 

WT vs. rnh201 rnh1 (30 °C) (YPLac) 0.0050 0.0152 0.0076 0.0212 
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j 
I) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
II) 

  
 

j, Comparison of fold-change values presented in Extended Data Figure 2d. Two groups in 

a pair were considered to be significantly different when adjusted P values were less than 

0.05. I) Comparisons were between fold-change values obtained at time point 0.25 h and 8 

h for the trans or cis backgrounds, II) between fold-change values obtained in the different 

 P values Adj. P values 

 trans        cis trans        cis 

Genotype 0.25 h vs. 8 h 0.25 h vs. 8 h 0.25 h vs. 8 h 0.25 h vs. 8 h 

WT  0.7984 0.0002 0.8420 0.0005 

spt3 0.9717 0.0022 0.9801 0.0039 

rnh1 rnh201 0.0571 0.0286 0.0704 0.0362 

rnh1 rnh201 spt3  0.7209 0.0002 0.7741 0.0005 

rnh1 rnh201 spt3 pGAL1 NA 0.0003 NA 0.0007 

rnh1 rnh201 spt3 ho NA 0.0030 NA 0.0053 

 P values Adj. P values 

 trans             cis trans             cis 

Genotype 0.25 h 8 h 0.25 h 8 h 0.25 h 8 h 0.25 h 8 h 

WT vs. spt3 0.0037 0.2318 0.0037 0.0200 0.0063 0.2674 0.0063 0.0274 

WT vs. rnh1 rnh201 0.0485 0.0040 0.6828 0.5697 0.0608 0.0064 0.7397 0.6321 

WT vs. rnh1 rnh201 spt3 0.7984 0.5737 0.1049 0.0019 0.8420 0.6335 0.1253 0.0037 

WT vs. rnh1 rnh201 spt3 

pGAL1 
NA NA 0.0002 0.0006 NA NA 0.0005 0.0014 

WT vs. rnh1 rnh201 spt3 

ho 
NA NA 0.0650 0.0002 NA NA 0.0785 0.0005 

spt3 vs. rnh1 rnh201 0.8252 0.0180 0.0095 0.0095 0.8661 0.0250 0.0138 0.0138 

spt3 vs. rnh1 rnh201 spt3 0.1388 0.9079 0.0027 0.7546 0.1642 0.9360 0.0048 0.8065 

spt3 vs. rnh1 rnh201 spt3 

pGAL1 
NA NA 0.0007 0.0127 NA NA 0.0016 0.0179 

spt3 vs. rnh1 rnh201 spt3 

ho 
NA NA 0.0007 0.0007 NA NA 0.0016 0.0016 

rnh1 rnh201 vs. rnh1 rnh201 
spt3  

0.3677 0.0283 0.0007 0.0040 0.4179 0.0362 0.0016 0.0064 

rnh1 rnh201 vs. rnh1 rnh201 

spt3 pGAL1 
NA NA 0.0040 0.0040 NA NA 0.0064 0.0064 

rnh1 rnh201 vs. rnh1 rnh201 

spt3 ho 
NA NA 0.1535 0.0040 NA NA 0.1806 0.0064 

rnh1 rnh201 spt3  vs. rnh1 

rnh201 spt3 pGAL1 
NA NA 0.0002 0.0104 NA NA 0.0005 0.0150 

rnh1 rnh201 spt3  vs. rnh1 

rnh201 spt3 ho 
NA NA 0.1949 0.0002 NA NA 0.2271 0.0005 

rnh1 rnh201 spt3 pGAL1 

vs. rnh1 rnh201 spt3 ho 
NA NA 0.0650  0.0002 NA NA 0.0785 0.0005 



 140 

backgrounds of the trans or cis system either at time point 0.25 h or 8 h, and III) between 

fold-change values obtained in the trans and cis systems for each background either at 0.25 

h or 8 h. NA, not applicable because data were not available for comparison. 
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Figure A.1 DNA sequence of the his3 loci in the trans and cis systems. a, Trans 

system on chromosome (Chr) III. HIS3 ATG and STOP codons are boxed. The HIS3 

gene is disrupted by an insert (orange) carrying the artificial intron (AI). The consensus 

sequences of the AI are boxed. b, Trans system on chromosome XV. HIS3 ATG and 

STOP codons are boxed. The HIS3 gene is disrupted by an insert (yellow) containing the 

124-base-pair homothallic switching endonuclease site (marked by lines). c, Cis system 

on chromosome III. HIS3 ATG and STOP codons are shown. The HIS3 gene is disrupted 

by an insert (orange) carrying the AI, which contains the 124 base pairs of the 

homothallic switching endonuclease site (yellow and marked by lines). The consensus 

sequences of the AI are boxed. *23-base-pair deletion of the AI, including the 59 splice 

site, made in some strains. 
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Figure A.2 Efficient transcript-RNA-directed gene modification is inhibited by 

RNH201, requires transcription of the template RNA and formation of a DSB in the 

target gene. a, Complementation of rnh201 defect suppresses transcript-RNA-templated 

DSB repair in cis-system rnh1 rnh201 spt3 cells. Wild-type (WT), spt3, rnh1 rnh201, 

rnh1 rnh201 spt3 strains of the cis system were transformed by a control empty vector 

(YEp195spGAL-EMPTY), a vector expressing catalytically inactive from of RNase H2 

(YEp195spGAL-rnh201-D39A) or a wild-type form of RNase H2 (YEp195spGAL-

RNH201). All the vectors have the galactose-inducible promoter. Shown is an example of 

replica-plating results (n=6) from galactose medium to histidine dropout for the indicated 

strains and plasmids. b, Example of replica-plating results (n=6) from galactose medium 

to histidine dropout for the indicated strains of the cis system, which have functional 

pGAL1 promoter and homothallic switching endonuclease (HO) gene, or have deleted 

pGAL1 promoter (pGAL1Δ), or deleted HO gene (hoΔ). c, Table with percentages of cells 

in the G1, S or G2 stage of the cell cycle out of 200 random cells counted for the 

indicated strains of the cis system after 0 h and 8 h from galactose induction. If a 

homothallic switching endonuclease DSB is made in his3, yeast cells arrest in G2, thus a 

high percentage of G2-arrested cells indicates occurrence of the homothallic switching 

endonuclease DSB. We also note that strains with spt3 mutation have a higher percentage 

of G2 cells than strains with wild-type SPT3 before DSB induction (0 h GAL). d, Results 

of qPCR of his3 RNA. Cells were grown in YPLac liquid medium O/N, and were 

collected and prepared for qPCR at 0, 0.25 or 8 h after adding galactose to the medium. 

Trans, blue bars; cis, red bars. Data are represented as a fold change value with respect to 

mRNA expression at time zero, as median and range of 6–8 repeats. The significance of 
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comparisons between fold changes obtained at 0.25 h versus those obtained at 8 h, fold 

changes of different strains of the trans and cis systems, and between fold changes 

obtained in the trans versus cis system for the same strains at the same time point was 

calculated using the Mann–Whitney U-test and P values are presented in Table A.7 jI, II 

and III, respectively. We note that an apparent higher level of his3 RNA is detected at 8 

h in galactose in both trans- and cis-system rnh1 rnh201 cells relative to the other tested 

genetic backgrounds. Our interpretation of these results is that his3 RNA could be more 

stable in rnh1 rnh201 cells if present in the form of RNA–DNA heteroduplexes, and this 

may explain the increased frequency of His+ colonies observed in both trans and cis in 

the rnh1 rnh201 cells (Figure 2.1c and Table 2.1a). 
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Figure A.3 Verification of his3 repair in trans- and cis-system rnh1 rnh201 spt3 cells 

via a homologous recombination mechanism using colony PCR. a, Scheme of the 

trans system before DSB induction (BDI, groups of lanes 1 and 7) and after DSB repair 

(ADR, groups of lanes 2–6 and 8–12) with the primers used in colony PCR shown as 
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small black arrows and named with roman numerals: I, HIS3.5; II, HIS3.2; III, 

INTRON.F; IV, HO.F. The primer pairs used for colony PCR are named A (I 1 II), B (I 1 

III) and C (I1 IV), and base-pair sizes of the expected PCR products are shown in 

brackets. b, Photos of agarose gels with results of colony PCR reactions. M, 2-log DNA 

ladder marker; the 100-, 300- and 500-base-pair band sizes are indicated by arrows. 

Groups of lanes 1 and 7, two isolates of trans-system rnh1 rnh201 spt3 mutants before 

DSB induction, each tested with primer pairs A, B and C. Groups of lanes 2–6 and 8–12, 

ten isolates of trans-system rnh1 rnh201 spt3 mutants after DSB repair, each tested with 

primer pairs A, B and C. c, Scheme of the cis system before DSB induction (BDI, groups 

of lanes 1and 7) and after DSB repair (ADR, groups of lanes 2–6 and 8–12) with the 

primers used in colony PCR shown as small black arrows and named with roman 

numerals: I, HIS3.5; II, HIS3.2; III, INTRON.F; IV, HO.F. The primer pairs used for 

colony PCR are named A (I 1 II), B (I 1 III) and C (I 1 IV), and base-pair sizes of the 

expected PCR products are shown in brackets. d, Photos of agarose gels with results of 

colony PCR reactions. M, 2-log DNA ladder marker; the 100-, 300- and 500-base-pair 

band sizes are indicated by arrows. Groups of lanes 1 and 7, two isolates of cis system 

rnh1 rnh201 spt3 mutants before DSB induction, each tested with primer pairs A, B and 

C. Groups of lanes 2–6 and 8–12, ten isolates of cis-system rnh1 rnh201 spt3 mutants 

after DSB repair, each tested with primer pairs A, B and C. 
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Figure A.4 RNA-templated DNA repair occurs via homologous recombination and 

requires Rad52. a, Scheme of the trans and cis his3/HIS3 loci in His- (before DSB 

induction) and His+ (after DSB repair) cells. The size of the BamHI (trans) or NarI (cis) 
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restriction digestion products and the position of the HIS3 probe are shown. b, Photo of a 

ruler next to ethidium-bromide-stained agarose gel with marker and genomic DNA 

samples visible before Southern blot analysis. Lanes 1 and 14, 1-kilobase (kb) DNA 

ladder; 500-base-pair, 1-kb, 1.5-kb, 2-kb, 3-kb and 4-kb bands are indicated by arrows. 

Trans wild-type His- (lane 2) or His+ (lane 3), rnh1 rnh201 spt3 His- (lane 4) or His+ 

(lanes 5–7) cells, digested with BamHI restriction enzyme. Cis wild-type His- (lane 8) or 

His+ (lane 9), rnh1 rnh201 spt3 His- (lane 10) or His+ (lanes 11–13) cells, digested with 

NarI restriction enzyme. c, Southern blot analysis (same as in Figure 2.2a, but displaying 

the entire picture of the exposed membrane) of yeast genomic DNA derived from trans 

wild-type His- (lane 2) or His+ (lane 3), rnh1 rnh201 spt3 His- (lane 4) or His+ (lanes 5–7) 

cells, digested with BamHI restriction enzyme and hybridized with the HIS3 probe, or 

derived from cis wild-type His- (lane 8) or His+ (lane 9), rnh1 rnh201 spt3 His- (lane 10) 

or His+ (lanes 11–13) cells, digested with NarI restriction enzyme and hybridized with the 

HIS3 probe. Lanes 1 and 14, 1-kb DNA ladder visible in the ethidium-bromide-stained 

gel (b). Sizes of digested DNA bands are indicated. The annealing reactions were 

promoted by either yeast Rad52 (d, e) or human RAD52 (f, g) (1.35 nM) in the presence 

or absence of RPA (2 nM) (yeast or human RPA was used in the reaction with yeast or 

human Rad52, respectively). In control protein-free reactions, protein dilution buffers 

were added instead of the respective proteins. dsDNA containing a protruding ssDNA tail 

(no. 508 and no. 509) was incubated with RPA (when indicated) and then Rad52 was 

added to the mixture. To initiate the annealing reactions, 0.3nM 32P-labelled ssDNA (no. 

211) or ssRNA (no. 501) were added. The reactions were carried out for the indicated 

periods of time, and the products of annealing reactions were deproteinized and analysed 
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by electrophoresis in 10% polyacrylamide gels in 13 TBE at 150V for 1 h. Visualization 

and quantification was accomplished using a Storm 840 Phosphorimager and 

ImageQuant 5.2 software (GE Healthcare). e, Treatment of RNA and DNA 

oligonucleotides with RNase. 

 

ssDNA (no. 211) or RNA (no. 501) (3 mM) was incubated with 100 µg ml-1 (or 7Uml-1) 

RNase (Qiagen) in buffer containing 50 mM Hepes, pH7.5 for 30 min at 37 °C, then 7% 

glycerol and 0.1% bromophenol blue were added to the samples and incubation 

continued for another 15 min at 37 °C before the samples were analysed by 

electrophoresis in a 10% (17:1 acrylamide:bisacrylamide) polyacrylamide gel at 150V for 

1 h in 13 TBE buffer. The gel was quantified using a Storm 840 Phosphorimager. The 

RNA oligonucleotide, but not the DNA oligonucleotide, is completely degraded by 

RNase. 
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APPENDIX B 

 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

Table B.1 Yeast strains used in this study  

Shown are names, relevant genotype and source for the S. cerevisiae strains used in this 

study. HOcs indicates the HO cutting site. 

 

Table B.2 Oligos used in this study 
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Name, size and sequence of the oligos used in this study for strain construction are 

described. Nucleotides that introduce the desired mutations are bolded. 

 

 

Table B.3 His+ frequencies for strains grown in glucose 

 
 

Frequencies of His+ colonies per 107 viable cells for the indicated yeast strains following 

24 h of glucose treatment are shown as median and 95% CI (in parentheses). Percentage 

of cell survival after growth in glucose is also shown. There were 4 repeats for each of 

the strains. 
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Table B.4 Statistical analysis (P-values) of the data 

 
 

Mann-Whitney U-test was applied to determine whether a statistical significant 

difference exists between pairs of gene correction frequencies obtained from the DSB 

repair assays of this study. A, Comparison of frequencies presented in Fig. (2B) and 

Table 1. Two groups in a pair were considered to be significantly different when P-values 

were less than 0.05. 
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B, Comparison of frequencies presented in Fig. (3) and Table 2. Two groups in a pair 

were considered to be significantly different when P-values were less than 0.05. 
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APPENDIX C 

 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 5 

Table C.1 Related to Figures 5.1-5. Sequences of the oligonucleotides used in this 

study (by A. V. Mazin) 
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Table C.2 Related to Table 1. Yeast strains used in this study 

 

Shown are names, relevant genotype and source for the S. cerevisiae strains used in this 

study. HOcs indicates the HO cutting site. *[Cir+], the yeast 2-micron plasmid was 

introduced in these strains. 

 

Table C.3 Related to Table 1. His+ frequency in the cis system following 

transformation by the HIS3.F oligonucleotide 
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Frequency of His+ transformant colonies per 107 viable cells for the indicated yeast 

genotypes after transformation with HIS3.F oligo in cis system is shown as median 

and 95% CI (in parentheses). There were 4-12 repeats for each of the strains transformed 

with these oligos. The significance of comparisons between the strains in the cis systems 

were calculated using the Mann-Whitney U test (Table C.5C). 

 
 

Table C.4 Related to Table 1. His+ frequencies for rad59, exo1 and sae2 mutant 

strains grown in glucose 

 

 
 

Frequencies of His+ colonies per 107 viable cells for yeast strains of the cis system 

following 24 h of glucose treatment are shown as median and 95% CI (in parentheses). 

There were 4 repeats for all the strains. 

 

 

 

 



 159 

Table C.5 Related to Table 1.Statistical analysis (P-values) of the data 
 

A 
 

Genotype P-value 

WT + YEP  vs.  WT + ScRad52 < 0.0001 

WT + YEP  vs.  WT + ScRad52-327 < 0.0001 

WT + YEP  vs.  WT + hRAD52-209 < 0.0001 

WT + ScRAD52  vs.  WT +  ScRAD52-327 0.0002 

WT + ScRAD52-327  vs.  WT + hRAD52-209 0.0783 

rad52 + ScRad52  vs.  rad52 + ScRad52-327 0.3007 

rad52 + ScRad52-327  vs.  rad52 + hRAD52-209 0.1028 

rnh1 rnh201 + YEP  vs.  rnh1 rnh201 + ScRad52 0.0004 

rnh1 rnh201 + YEP  vs.  rnh1 rnh201 + ScRad52-327 < 0.0001 

rnh1 rnh201 + YEP  vs.  rnh1 rnh201 + hRAD52-209 < 0.0001 

rnh1 rnh201 + ScRad52 vs.  rnh1 rnh201 +  ScRad52-327 0.0009 

rnh1 rnh201 + ScRad52-327 vs.  rnh1 rnh201 + hRAD52-209 0.0020 

rnh1 rnh201 spt3 + YEP  vs.  rnh1 rnh201 spt3 + ScRad52 0.1935 

rnh1 rnh201 spt3 + YEP  vs.  rnh1 rnh201 spt3 + ScRad52-327 < 0.0001 

rnh1 rnh201  spt3 + YEP vs.  rnh1 rnh201 spt3 + hRAD52-209 < 0.0001 

rnh1 rnh201 spt3  + ScRad52 vs. rnh1 rnh201 spt3 + ScRad52-327 0.0009 

rnh1 rnh201 spt3  + ScRad52-327 vs. rnh1 rnh201 spt3 + hRAD52-209 0.0304 

WT + YEP  vs.  rnh1 rnh201 + YEP < 0.0001 

WT + YEP  vs.  rnh1 rnh201 rad52 + YEP 0.1441 

WT + YEP  vs.  rnh1 rnh201 spt3 + YEP < 0.0001 

WT + ScRAD52 vs. rad52 + ScRAD52 0.0032 

WT + ScRAD52 vs. rnh1 rnh201 + ScRAD52 0.0009 

WT + ScRAD52 vs. rnh1 rnh201 rad52 + ScRAD52 0.0009 

WT + ScRAD52  vs. rnh1 rnh201 spt3 + ScRAD52 0.0076 

WT + ScRAD52-327 vs. rad52 + ScRAD52-327 0.0012 

WT + ScRAD52-327 vs. rnh1 rnh201 + ScRAD52-327 < 0.0001 

WT + ScRAD52-327 vs. rnh1 rnh201 rad52 + ScRAD52-327 0.0021 

WT + ScRAD52-327  vs. rnh1 rnh201 spt3 + ScRAD52-327 < 0.0001 

WT + hRAD52-209 vs. rad52 + hRAD52-209 < 0.0001 

WT + hRAD52-209 vs. rnh1 rnh201 + hRAD52-209 < 0.0001 

WT + hRAD52-209 vs. rnh1 rnh201 rad52 + hRAD52-209 < 0.0001 

WT + hRAD52-209  vs. rnh1 rnh201 spt3 + hRAD52-209 < 0.0001 

rad52 + ScRad52  vs. rnh1 rnh201 + ScRad52 0.0050 

rad52 + ScRad52  vs. rnh1 rnh201 rad52 + ScRad52 0.0050 

rad52 + ScRad52  vs. rnh1 rnh201 spt3 + ScRad52 0.0022 

rad52 + ScRad52-327  vs. rnh1 rnh201 + ScRad52-327 < 0.0001 

rad52 + ScRad52-327  vs. rnh1 rnh201 rad52 + ScRad52-327 < 0.0001 

rad52 + ScRad52-327  vs. rnh1 rnh201 spt3 + ScRad52-327 < 0.0001 

rad52 + hRAD52-209  vs. rnh1 rnh201 + hRAD52-209 < 0.0001 

rad52 + hRAD52-209  vs. rnh1 rnh201 rad52 + hRAD52-209 < 0.0001 
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rad52 + hRAD52-209  vs. rnh1 rnh201 spt3 + hRAD52-209 < 0.0001 

rnh1 rnh201 + YEP  vs. rnh1 rnh201 rad52 + YEP < 0.0001 

rnh1 rnh201 + YEP  vs. rnh1 rnh201 spt3 + YEP <0.0001 

rnh1 rnh201 + ScRAD52 vs. rnh1 rnh201 rad52 + ScRAD52   0.0050 

rnh1 rnh201 + ScRAD52 vs. rnh1 rnh201 spt3 + ScRAD52  0.0050 

rnh1 rnh201 + ScRAD52-327 vs. rnh1 rnh201 rad52 + ScRAD52-327                                              < 0.0001 

rnh1 rnh201 + ScRAD52-327 vs. rnh1 rnh201 spt3 + ScRAD52-327 < 0.0001 

rnh1 rnh201 + hRAD52-209 vs. rnh1 rnh201 rad52 + hRAD52-209       < 0.0001 

rnh1 rnh201 + hRAD52-209 vs. rnh1 rnh201 spt3 + hRAD52-209                     < 0.0001 
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B 

Genotype P-values 

WT vs. rad59 0.0489 

WT vs. sae2 0.0004 

WT vs. exo1 0.0007 

WT vs. rnh1 rnh201 < 0.0001 

WT vs. rnh1 rnh201 rad59 0.0004 

WT vs. rnh1 rnh201 sae2 0.0004 

WT vs. rnh1 rnh201 exo1 0.0004 

WT vs. rnh1 rnh201 spt3 < 0.0001 

WT vs. rnh1 rnh201 spt3 rad59 0.0004 

WT vs. rnh1 rnh201 spt3 sae2 0.0004 

WT vs. rnh1 rnh201 spt3 exo1 < 0.0001 

exo1 vs. sae2 0.0050 

exo1 vs. rad59 0.0050 

exo1 vs. rnh1 rnh201 0.0004 

exo1 vs. rnh1 rnh201 exo1 0.0050 

exo1 vs. rnh1 rnh201 sae2 0.0050 

exo1 vs. rnh1 rnh201 rad59 0.0050 

exo1 vs. rnh1 rnh201 spt3 0.0004 

exo1 vs. rnh1 rnh201 spt3 exo1 0.0009 

exo1 vs. rnh1 rnh201 spt3 sae2 0.0050 

exo1 vs. rnh1 rnh201 spt3 rad59 0.0050 

sae2 vs. rad59 0.0022 

sae2 vs. rnh1 rnh201 0.0004 

sae2 vs. rnh1 rnh201 exo1 0.0022 

sae2 vs. rnh1 rnh201 sae2 0.0022 

sae2 vs. rnh1 rnh201 rad59 0.0022 

sae2 vs. rnh1 rnh201 spt3 0.2175 

sae2 vs. rnh1 rnh201 spt3 exo1 0.4260 

sae2 vs. rnh1 rnh201 spt3 sae2 0.0022 

sae2 vs. rnh1 rnh201 spt3 rad59 0.0022 

rad59 vs. rnh1 rnh201 0.0004 

rad59 vs. rnh1 rnh201 exo1 0.0022 

rad59 vs. rnh1 rnh201 sae2 0.0022 

rad59 vs. rnh1 rnh201 rad59 0.0050 

rad59 vs. rnh1 rnh201 spt3 0.0004 

rad59 vs. rnh1 rnh201 spt3 exo1 0.0009 

rad59 vs. rnh1 rnh201 spt3 sae2 0.0022 

rad59 vs. rnh1 rnh201 spt3 rad59 0.0050 

rnh1 rnh201 vs. rnh1 rnh201 exo1 0.0005 

rnh1 rnh201 vs. rnh1 rnh201 sae2 0.0004 

rnh1 rnh201 vs. rnh1 rnh201 rad59 0.0004 
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rnh1 rnh201 vs. rnh1 rnh201 spt3 < 0.0001 

rnh1 rnh201 vs. rnh1 rnh201 spt3 exo1 < 0.0001 

rnh1 rnh201 vs. rnh1 rnh201 spt3 sae2 0.0046 

rnh1 rnh201 vs. rnh1 rnh201 spt3 rad59 0.4432 

rnh1 rnh201 exo1  vs. rnh1 rnh201 sae2 0.0022 

 

 

 

 

 

 

 

 

 

 

 

 

 

rnh1 rnh201 spt3 vs. rnh1 rnh201 spt3 exo1 0.0188 

rnh1 rnh201 spt3  vs. rnh1 rnh201 spt3 sae2 0.0004 

rnh1 rnh201 spt3  vs. rnh1 rnh201 spt3 rad59 0.0004 

rnh1 rnh201 spt3 exo1 vs. rnh1 rnh201 spt3 sae2 0.0009 

rnh1 rnh201 spt3 exo1 vs. rnh1 rnh201 spt3 rad59 0.0009 

rnh1 rnh201 spt3 sae2 vs. rnh1 rnh201 spt3 rad59 0.054 

 

 

 

rnh1 rnh201 exo1 vs. rnh1 rnh201 rad59    0.0022 

rnh1 rnh201 exo1 vs. rnh1 rnh201 spt3 0.0004 

rnh1 rnh201 exo1 vs. rnh1 rnh201 spt3 exo1 0.0009 

rnh1 rnh201 exo1 vs. rnh1 rnh201 spt3 sae2 0.0022 

rnh1 rnh201 exo1 vs. rnh1 rnh201 spt3 rad59 0.0022 

rnh1 rnh201 sae2 vs. rnh1 rnh201 rad59 0.0022 

rnh1 rnh201 sae2 vs. rnh1 rnh201 spt3 0.0004 

rnh1 rnh201 sae2 vs. rnh1 rnh201 spt3 exo1 0.0009 

rnh1 rnh201 sae2 vs. rnh1 rnh201 spt3 sae2 0.0022 

rnh1 rnh201 sae2 vs. rnh1 rnh201 spt3 rad59 0.0022 
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C 

 

Genotype P-values 

WT vs. exo1 0.0002 

WT vs. sae2 0.0044 

WT vs. rad59 0.0044 

WT vs. rnh1 rnh201 0.0003 

WT vs. rnh1 rnh201 exo1 0.0826 

WT vs. rnh1 rnh201 sae2 0.0044 

WT vs. rnh1 rnh201 rad59 0.0002 

WT vs. rnh1 rnh201 spt3 0.0004 

WT vs. rnh1 rnh201 spt3 exo1 0.1770 

WT vs. rnh1 rnh201 spt3 sae2 0.0091 

WT vs. rnh1 rnh201 spt3 rad59 0.1535 

exo1 vs. sae2 0.0040 

exo1 vs. rad59 0.0040 

exo1 vs. rnh1 rnh201 0.0001 

exo1 vs. rnh1 rnh201 exo1 0.0002 

exo1 vs. rnh1 rnh201 sae2 0.4606 

exo1 vs. rnh1 rnh201 rad59 0.0030 

exo1 vs. rnh1 rnh201 spt3 0.0001 

exo1 vs. rnh1 rnh201 spt3 exo1 0.0002 

exo1 vs. rnh1 rnh201 spt3 sae2 1.0000 

exo1 vs. rnh1 rnh201 spt3 rad59 0.0030 

sae2 vs. rad59 0.0294 

sae2 vs. rnh1 rnh201 0.0029 

sae2 vs. rnh1 rnh201 exo1 0.0084 

sae2 vs. rnh1 rnh201 sae2 0.0294 

sae2 vs. rnh1 rnh201 rad59 0.0084 

sae2 vs. rnh1 rnh201 spt3 0.0029 

sae2 vs. rnh1 rnh201 spt3 exo1 0.0084 

sae2 vs. rnh1 rnh201 spt3 sae2 0.0294 

sae2 vs. rnh1 rnh201 spt3 rad59 0.0084 

rad59 vs. rnh1 rnh201 0.0029 

rad59 vs. rnh1 rnh201 exo1 0.0040 

rad59 vs. rnh1 rnh201 sae2 1.0000 

rad59 vs. rnh1 rnh201 rad59 0.1535 

rad59 vs. rnh1 rnh201 spt3 0.0029 

rad59 vs. rnh1 rnh201 spt3 exo1 0.0040 

rad59 vs. rnh1 rnh201 spt3 sae2 0.1143 

rad59 vs. rnh1 rnh201 spt3 rad59 0.0040 

rnh1 rnh201 vs. rnh1 rnh201 exo1 0.0922 

rnh1 rnh201 vs. rnh1 rnh201 sae2 0.0029 

rnh1 rnh201 vs. rnh1 rnh201 rad59 0.0001 
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rnh1 rnh201 exo1 vs. rnh1 rnh201 rad59                           0.0002 

rnh1 rnh201 exo1 vs. rnh1 rnh201 spt3                             0.0922 

rnh1 rnh201 exo1 vs. rnh1 rnh201 spt3 exo1                    0.0104 

rnh1 rnh201 exo1 vs. rnh1 rnh201 spt3 sae2                    0.0040 

rnh1 rnh201 exo1 vs. rnh1 rnh201 spt3 rad59                   0.0104 

rnh1 rnh201 sae2 vs. rnh1 rnh201 rad59                           0.9333 

rnh1 rnh201 sae2 vs. rnh1 rnh201 spt3                             0.0029 

rnh1 rnh201 sae2 vs. rnh1 rnh201 spt3 exo1                    0.0040 

rnh1 rnh201 sae2 vs. rnh1 rnh201 spt3 sae2                    0.3429 

rnh1 rnh201 sae2 vs. rnh1 rnh201 spt3 rad59                   0.0081 

rnh1 rnh201 rad59 vs. rnh1 rnh201 spt3                            0.0001 

rnh1 rnh201 spt3 vs. rnh1 rnh201 spt3 exo1                     0.0001 

rnh1 rnh201 spt3 vs. rnh1 rnh201 spt3 sae2                     0.0029 

rnh1 rnh201 spt3 vs. rnh1 rnh201 spt3 rad59                    0.0002 

rnh1 rnh201 spt3 exo1 vs. rnh1 rnh201 spt3 sae2             0.0081 

rnh1 rnh201 spt3 exo1 vs. rnh1 rnh201 spt3 rad59            0.7209 

rnh1 rnh201 spt3 sae2 vs. rnh1 rnh201 spt3 rad59            0.1091 

 

 

Mann-Whitney-U test was applied to determine whether a statistical significant 

difference exists between pairs of gene correction frequencies obtained from the DSB 

repair assays of this study. Comparison of frequencies presented in Table 5.1a (a). Table 

1b (b), and Table C.3 (c). Two groups in a pair were considered to be significantly 

different when P-values were less than 0.05. 

 

 

 

 

 

 

 

 

 
  
 

rnh1 rnh201 vs. rnh1 rnh201 spt3 0.4739 

rnh1 rnh201 vs. rnh1 rnh201 spt3 exo1 0.0002 

rnh1 rnh201 vs. rnh1 rnh201 spt3 sae2 0.0029 

rnh1 rnh201 vs. rnh1 rnh201 spt3 rad59 0.0004 

rnh1 rnh201 exo1 vs. rnh1 rnh201 sae2 0.0040 
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Figure C.1. Related to Figure 5.1. Requirements of the inverse DNA strand 

exchange promoted by hRad52. A, Inverse DNA strand exchange does not proceed 



 164 

with nonhomologous ssDNA. The reaction conditions were as in Figure 1D, except that 

homologous ssDNA (no. 2; 205.8 nM) was substituted with non-homologous ssDNA (no. 

176; 205.8 nM). B, Effect of magnesium acetate concentrations on Inverse DNA strand 

exchange. The DNA substrates and reaction conditions were the same as in Figure 1D. 

hRad52 (900 nM) was incubated with 3’-tailed DNA (no.1/no 117, 68.6 nM) in the 

presence of indicated magnesium acetate concentrations. Inverse DNA strand exchange 

was initiated by adding ssDNA (no. 2; 205.8 nM) and carried out for 5 min. C, Effect of 

the ssDNA concentrations on the efficiency of inverse DNA strand exchange. The 

reactions were carried out under the standard conditions in the presence of 3-tailed DNA 

(no. 117/ no. 1; 68.6 nM) and four concentrations of homologous ssDNA (no. 2): 68.6 

nM, 137.2 nM, 205.8 nM, and 411.6 nM, which correspond to 1- (equimolar), 2-, 3-, and 

6-fold excess (in molecules) over the 3’-tailed DNA substrate, respectively. D, No 

ssDNA intermediate is produced under conditions of inverse DNA strand exchange 

promoted by hRad52. Top: Experimental scheme. ssDNA (no. 2, 68.6 nM) or dsDNA 

(no. 1/no. 2, 68.6 nM) were incubated at 37 °C for 15 min with hRad52 protein (900 nM), 

and then treated with P1 nuclease (0.4 U per 10 μl of the reaction volume) at 37 °C for 10 

min. In controls, hRad52 (lanes 1 and 3) or P1 nuclease (lanes 1, 3, 5 and 7) were 

omitted. Incubation with P1 nuclease causes degradation of free ssDNA (lane 2), but not 

free dsDNA (lane 4). Pre-incubation of hRad52 with ssDNA causes only partial 

protection of the ssDNA against P1 nuclease degradation (lane 8). The experiments were 

repeated at least three times, error bars indicate SD. (by A. V. Mazin) 
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Figure C.2. Related to Figure 5.2. Effect of the ssRNA concentration (A) and 

homology (B) on hRad52-promoted inverse strand exchange. A, The reactions were 

performed using 1- (equimolar), 2-, 3-, 10-, and 30-fold excess of ssRNA over to the 3’-

tailed dsDNA concentration (68.6 nM). B, Inverse RNA strand exchange does not 

proceed with non-homologous ssRNA. The reaction conditions were as in Fig. 2B, except 
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that homologous ssRNA (no. 2R; 205.8 nM) was substituted with non-homologous 

ssRNA (no. 176R; 205.8 nM). Tailed dsDNA (#117/1) was used as a DNA substrate; the 

asterisk on ssDNA #1 indicates 32P label. The experiments were repeated at least three 

times, error bars indicate SD. (by A. V. Mazin) 
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Figure C.3. Related to Figure 5.3. Human Rad51 and yeast Rad51 do not promote 

inverse strand exchange with ssRNA. A, hRad51 does not promote inverse RNA strand 

exchange even at high, 7- or 100-fold molar excess, ssRNA (no. 2R, 480.2 nM or 6.86 

μM). The kinetics of hRad51-promoted DNA inverse exchange with ssDNA (7-fold 
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excess) from Figure 1D is shown for comparison. B, yRad51 promotes inverse DNA 

strand exchange. The reaction was conducted as described for hRad51, except that a 10-

fold molar excess of ssDNA was used (no. 2, 686 nM). C, yRad51 does not promote 

inverse RNA strand exchange. ssDNA was replaced with ssRNA (no. 2R, 686 nM). The 

reaction products were analyzed by electrophoresis in a polyacrylamide gel. D, Data from 

panels B and C were plotted as a graph. The experiments were repeated at least three 

times, error bars indicate SD. (by A. V. Mazin) 

 

 
Figure C.4. Related to Table 1. Scheme of the cis assay of DSB repair by transcript 

RNA. The inactive his3 marker gene is in purple, the artificial intron (AI) in green and 

the cutting site for the HO homothallic-switching-endonuclease in orange. Because the 

his3 gene is inactive yeast cells cannot grow on medium without histidine, they are His-. 

Upon plating on galactose-containing medium, the pGAL1 promoter activates the 

transcription the his3 antisense RNA (in red) and the expression of the HO endonuclease. 

After formation of the DSB by HO endonuclease the broken his3 gene can be repaired to 
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functional HIS3 gene giving His+ cells only if the antisense his3 RNA serves as template 

after removal of the AI with the HO cutting site sequence by splicing. 
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