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1 INTRODUCTION 
NASA Project 06-AS-06-0037, titled “Approaches to TFM in the Presence of Uncertainty” was 
performed between 01 October 2006 and 30 September 2008 under the direction of Principal 
Investigator Dr. John-Paul Clarke.  

Activities described in this report were performed according to the proposed task plan and 
schedule in the original proposal, which are summarized below. 

1.1 TASK PLAN 
The objective of this study was to support NASA milestone AS.1.4.05, which includes the 
development of probabilistic and stochastic methods for TFM to address uncertainties in weather 
predictions. To this end, the following tasks were scheduled to be performed as part of this 
research: 

Task 1-The state of the art in optimization algorithms for TFM in the presence of 
uncertainty will be reviewed and documented. In addition to a literature search, experts in 
TFM operations will be interviewed.  Recommendations for promising algorithms to 
pursue will be made, and a report of the review and the promising algorithms will be 
prepared.  

Task 2-Applicable knowledge gained from the review of the state of the art in Task 1 will 
be applied to the development of methods to optimize TFM in the presence of weather 
uncertainty. Specifically, the following three steps will be performed.  

Step 1 - Appropriate airspace volumes (similar to today’s sectors) will be defined, and 
the capacity that can be handled in each airspace volume for a range of traffic and 
weather patterns will be determined as it varies over time. This will include: 

• Characterization of weather patterns in the airspace volumes over time and 
space 

• Definition of various traffic volumes within the airspace volumes 
• Characterization of traffic patterns distributed over time and space for 

different levels of traffic volumes. 
• Development of a tactical ATC agent that will reroute traffic based on the 

current weather and traffic levels in an airspace volume 
• Determination of the traffic volume that can be handled for each pair of traffic 

and weather patterns.  This will be done by a Monte Carlo simulation based 
on the capacity distributions over time for the particular traffic volume and 
weather scenarios. 

Step 2 – Given the capacity distributions of airspace volumes over time, the amount 
of traffic that can safely and efficiently be sent into each airspace volume will be 
determined. Three alternative approaches will be investigated in this step. These 
include a stochastic programming model, a confidence-level based method, and a 
procedure based on a portfolio optimization application. Furthermore, a chance 
constraint programming model will be studied for the more general problem with 
multiple volumes of airspace. 
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Step 3 –A method will be developed to reroute all possible traffic around the weather 
patterns. The proposed approach is a dynamic routing model with a Markov decision 
process formulation. Given probabilistic airspace capacities, the objective will be to 
route traffic in such a way that the total distance traveled or another relevant cost term 
is minimized 

Task 3 – Implement algorithms in a NASA simulation tool, such as FACET, CTAS, or 
ACES, to determine how capacity is affected by weather.   

Task 4 – Implement the TFM algorithms developed under this proposed research in a 
NASA simulation tool, such as FACET, CTAS, or ACES, and test them under various 
uncertainty scenarios.  This implementation into a NASA simulation tool will be tested 
using various uncertainty scenarios based on those developed from the work in Step 1 in 
Task 2 above.   

Task 5 – Prepare a report that documents:   

• TFM algorithms developed for handling air traffic under uncertainty of weather. 

• Implementation and testing of the TFM algorithms in a NASA simulation tool. 

In the remainder of this report, in Section 2, we provide an overview of the completion status of 
all tasks per the task plan described above. In Section 3, we present an extensive summary of the 
results of the project. 
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2 TASK COMPLETION STATUS SUMMARY 
The completion status of the developed tasks is given below.  All activities required by NASA 
were completed as planned to provide the results of the research along with the outcomes 
specified in the corresponding NASA Research Announcement (NRA).  

 

Task Completion 
Status 

Task 1 – Review and document the state of the art in optimization algorithms 
for TFM in the presence of uncertainty.   

 

COMPLETE 

Task 2 – Develop the proposed method to optimize TFM in the presence of 
weather uncertainty. 

Step 1 – Develop probability distribution of maximum capacity of 
generic sector 

Step 2 – Determine how much traffic to send toward a sector 

Step 3 – Develop method for NAS-wide traffic flow management  

 

 

COMPLETE 

COMPLETE 

COMPLETE  

Task 3 – Implement rerouting algorithms in a NASA simulation tool.   This task was 
removed based 
on consultations 
with NASA 

Task 4 – Implement the TFM algorithm developed in a NASA simulation 
tool, and test under various uncertainty scenarios.   

This task was 
removed based 
on consultations 
with NASA 

Task 5 – Prepare report that documents:   

 TFM algorithms developed 

 TFM algorithms implemented and tested in NASA simulation 

 

COMPLETE 

This subtask 
was removed 
based on 
consultations 
with NASA 

 

2.1 METRICS 
Our goal was to develop and provide NASA with probabilistic and stochastic methods for TFM 
to address uncertainties in weather predictions, and to meet the outcomes, as defined in the NRA.  
Measurable metrics that show achieving significant achievements toward meeting the goal of the 
proposed research were also developed and are listed below, along with the their status of 
completion. 

The following metrics were developed for the aforementioned tasks: 
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 Set of characterizations scenarios of the types of weather in a particular airspace volume 
over time and space (part of Step 1 in Task 2 above) – COMPLETE  

 Proof-of-concept demonstration of a tactical ATC agent developed that will reroute 
traffic based on the current weather and traffic levels in a particular airspace volume (part 
of Step 1 in Task 2 above). – COMPLETE 

 Proof-of-concept demonstration of method for determining the maximum capacity that 
can be handled in a generic sector for pairs of traffic and weather scenarios (part of Step 
1 in Task 2 above). – COMPLETE 

2.2 PAPERS AND PRESENTATIONS 
The following papers were prepared or are in progress on the research conducted for the project. 
In addition, several presentations on the work performed were also made at academic 
conferences. These presentations are also listed below. Furthermore, oral presentations of results 
achieved were made by Dr. John-Paul Clarke at the Technical Interchange Meetings held by 
NASA in March 2007 and March 2008. 

Papers: 

Vela, A., S. Solak, J-P. Clarke, W. Singhose, E. Barnes, E. Johnson, 2009. Near Real-Time Fuel-
Optimal En Route Conflict Resolution. to appear in IEEE Transactions on Intelligent 
Transportation Systems 

Clarke, J-P., S. Solak, Y. Chang, L. Ren, A. Vela, 2009. Air Traffic Flow Management in the 
Presence of Uncertainty. Proceedings of Eighth USA/Europe Air Traffic Management 
Research and Development Seminar 

Ren, L., D. Chang, S. Solak, J-P. Clarke, E. Barnes, E. Johnson. 2007. Simulating Convective 
Weather for Air Traffic Management Modeling. Proceedings of 2007 Winter Simulation 
Conference  

Clarke, J-P., S. Solak, L. Ren, A. Vela. 2009. Determining the Stochastic Capacity of an 
Airspace. in preparation for journal submission in August 2009 

Chang, Y., S. Solak, J-P. Clarke, E. Johnson. 2009. Sector-level Air Traffic Flow Management 
using Stochastic Programming. in preparation for journal submission in August 2009 

Presentations: 

Solak, S. 2008. Air Traffic Flow Management in the Presence of Uncertainty. INFORMS Annual 
Meeting, October 14-17, Washington, DC 

Chang, Y. 2008. A Solution Methodology for the Stochastic Single-sector Traffic Flow 
Management Problem. INFORMS Annual Meeting, October 14-17, Washington, DC 

Chang, D. 2007. Simulating convective weather for air traffic management modeling. Winter 
Simulation Conference, December 9-12, Washington, D.C. 

Chang, Y. 2007. A Stochastic Programming Approach for Single Sector Air Traffic Flow 
Management. INFORMS Annual Meeting, November 4-7, Seattle, WA. 

Vela, A. 2007. Tactical Air Traffic Management. INFORMS Annual Meeting, November 4-7, 
Seattle, WA. 
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3 SUMMARY OF RESULTS 
En route convective weather is a stochastic phenomenon which, when severe, prevents aircraft 
from operating in parts of the National Airspace System (NAS). As a result, aircraft that are 
already airborne must be either held in the air in holding patterns or re-routed around adverse 
weather events, and aircraft waiting to depart must either be held on the ground or re-routed once 
they are in the air. Because weather conditions evolve over time, re-routing and holding 
decisions are based on predictions of the location, timing, and severity of adverse weather 
events. 

Due to the significant uncertainty inherent in weather predictions, current traffic flow 
management (TFM) methods often result in lower utilization levels of airspace capacity. For 
example, airspace capacity is lost when aircraft are re-routed to longer paths, which may later 
become blocked, while shorter paths through the weather system, that materialize after the re-
routing decisions are made, go unused. Similarly, airspace capacity is also lost when aircraft are 
held on the ground for longer than actually necessary while they could have traveled through the 
adverse weather on paths that did become available. In truth, some of this lost capacity will be 
recovered as the accuracy of weather predictions improve.  However, it is not likely, given the 
history of weather prediction accuracy, that weather prediction uncertainty will be eliminated or 
reduced to the point where deterministic TFM will result in full utilization of available capacity.  
Thus, there is a distinct need for TFM algorithms that can account for weather uncertainties.   

Stochastic approaches to TFM mostly exist in the context of the Ground Holding Problem 
(GHP). However, GHP only accounts for airport arrival/departure capacities, ignoring en route 
capacity constraints. In addition, most GHP models have focused on the static single-airport 
GHP. There are only a few studies that address dynamic stochastic versions of the TFM problem. 
Reference [1] proposes a multistage stochastic integer programming formulation with recourse 
options for GHP. Reference [2] proposes a stochastic dynamic approach with en route capacities 
where they model the problem of routing an individual flight across weather impacted regions as 
a Markov decision process. Reference [3] extends this model to multiple aircraft. In another such 
study, [4] suggests a multistage stochastic programming formulation based on a set of capacity 
scenarios for a single airport.  

These proposed stochastic approaches have several limitations, most important of which is the 
lack of a mapping between weather forecasts and capacity. While most models assume some 
given capacity measure without studying the impact of weather conditions, [2] tries to account 
for the dynamics of weather directly in their problem formulation. However, this leads to the 
oversimplification of weather dynamics, as well as additional computational complexity in the 
algorithm. Some other limitations in the existing studies include the intractability of the proposed 
formulations when realistically large scenario sets are considered, and the assumption that only a 
fixed set of alternative routes are available for rerouting purposes, which may again lead to lower 
utilization of airspace capacity.  

In this study, we fill these significant gaps in air traffic flow management by developing a 
comprehensive and robust dynamic optimization procedure that accounts for the uncertainty in 
weather conditions and its impact on airspace capacity, while at the same time maintaining 
practical applicability and computational tractability. To this end, we first develop algorithms 
that translate available weather forecast information to stochastic airspace capacity, and then 

 7



Final Report                   NASA Project 06-AS-06-0037 

provide specific guidance for routing aircraft based on this calculated capacity. With this 
guidance, increased traffic levels can be handled under different weather scenarios compared to 
today’s way of traffic management which does not deal with probabilistic information on 
weather.   

Our approach to stochastic TFM has two main components: (1) conversion of weather forecasts 
into capacity information, i.e. traffic flow targets, for a volume of airspace such as a sector; and 
(2) usage of stochastic capacity information to dynamically route aircraft destined to that 
airspace. The first component includes a weather scenario generation algorithm, along with a 
traffic generator and a fuel-optimal conflict resolution algorithm. The second component is based 
on a dynamic implementation of a stochastic programming model, which is solved efficiently to 
allow for application in real-time.  

In the remainder of this summary, we describe each component of the proposed TFM 
methodology in detail. In Section 3.1, we present the algorithms that we have developed to 
convert probabilistic weather forecast data into stochastic capacity information. More 
specifically, we describe the weather scenario generation tool, the conflict resolution algorithm, 
and the simulations performed using these tools. In Section 3.2, we present the stochastic routing 
algorithm and its implementation. Finally, the conclusions are outlined in Section 3.3. 

3.1 DETERMINING THE STOCHASTIC CAPACITY OF A VOLUME OF AIRSPACE 
If the effects of weather on airspace capacity are to be mitigated through effective TFM, we must 
first characterize the relationship between different weather patterns and capacity, where we 
define capacity as the maximum number of aircraft that can enter a volume of airspace and 
transit without having to be diverted to another volume of airspace or to an airport during a fixed 
time interval. This, however, is a complicated problem due to the large number of aircraft 
involved, the number of decision makers, and more importantly the uncertainty of weather 
information. 

Despite these complications, there have been some efforts to model the relationship between 
weather and airspace capacity. Reference [5] performs a clustering analysis on historical weather 
data and identifies seven categories of weather patterns. They then select a representative day for 
each category, and study the impact of weather conditions on that day. To judge the capacities of 
the weather-impacted sectors, the authors use a route-based approach, in which a deterministic 
sector capacity is defined to be proportional to the fraction of routes that were unavailable. This 
estimate is then adjusted for uncertainty by adding a randomized bias term to serve as the mean 
capacity level at a future time. The capacity is assumed to be normally distributed, and the 
standard deviation is modeled as a function of the look-ahead time and the weather pattern. 
Reference [6] suggests an alternate approach. In their study, the authors first define the sector 
capacity as a function of the traffic flow pattern, and then attempt to capture the impact of 
weather on sector capacity by calculating route blockage probabilities through probabilistic 
weather forecasts. In the sector-specific study by [7], separate models are developed for ten 
highly congested Air Traffic Control (ATC) sectors. Several past weather events are identified as 
being particularly problematic and used as the scenarios in the study. Route blockage probability 
calculations are performed using the algorithm developed by [8], based on observed weather 
parameters and traffic patterns within these sectors. A probability density function for sector 
route blockage was then derived using conditional probabilities described by [9].  
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One shortcoming of these weather-capacity models is that they either simplify the complexities 
that need to be considered or they focus on specific ATC sectors. The reality is that weather 
patterns vary significantly throughout the NAS.  Thus, any model of the relationship between 
weather and capacity must be able to capture all these differences if it is to be broadly applicable. 
Further, none of the proposed approaches make use of the probabilistic convective weather 
forecasts that are available. We attempt to remedy these shortcomings by developing a generic 
model that can be configured to reflect any of the observed relationships between convective 
weather and capacity for a given volume of airspace.  

The weather-capacity model is developed in three steps.  In the first step, an algorithm is devised 
to generate scenarios representing the evolution of convective weather in spatial and temporal 
dimensions, based on probabilistic weather forecasts. In the second step, we develop a fuel-
optimal conflict resolution algorithm, designed to solve for conflict-free trajectories within an 
airspace. In the third and final step, Monte Carlo simulations of the traffic flow are conducted 
over the range of possible weather and traffic scenarios using the conflict-resolution algorithm 
developed. For a given traffic arrival distribution and arrival rate, each simulation run either 
yields a conflict-free flow within the airspace over a predefined time interval or results in an 
infeasible case, where conflict-free flow is not possible for that scenario. By performing multiple 
runs at increasing levels of arrival rate and analyzing the ratio of the cases with feasible versus 
infeasible flow, we derive the probability distribution of capacity for the airspace over that time 
interval. These three steps of the weather-capacity model are further explained below. 

3.1.1 Weather Scenario Generation using Probabilistic Weather Forecasts 
In this section, we develop an easy-to-implement weather model that we use within the context 
of the simulation analysis described above, to study the evolution of a given weather event over 
multiple time intervals in an airspace. More specifically, the model is used to generate scenarios 
of weather movements. The only inputs to the model are the probabilistic weather forecasts, such 
as the 1-6 hour National Convective Weather Forecast (NCWF-6) [10, 11]. The probabilistic 
forecasts of convection are based on blending radar-based extrapolation forecasts and Rapid 
Update Cycle (RUC)-based Convective Probability Forecasts (RCPF) of convection [12]. The 
forecast probabilities indicate the likelihood that aviation disrupting convection (e.g., radar echo 
exceeding 35 dBZ) will be present at a given location at the given forecast time [10]. The 
forecast probabilities are provided for certain time intervals (e.g. 15 or 30 minutes) 6 hours into 
the future and are updated every 15 minutes. The nominal spatial resolution is the same as the 
latest RUC, i.e. 13 km. 

The modeling process involves a mapping from forecast probabilities valid at a sequence of 
forecast time intervals to traffic blockage maps at a sequence of work time intervals, where 
blockage means that the area is not available for air traffic. Each simulated blockage map 
sequence is an instantiation of the stochastic process. It is required that as the number of 
simulated sequences becomes large, the number of instances a cell is blocked at a given time 
divided by the total number of instance sequences simulated should approach the forecast 
probability for that cell, at that time interval. Based on this requirement, the simulated ensemble 
of traffic blockage map sequences would be representative of what would occur, as the number 
of simulated sequences becomes large.  
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Figure 1. Mapping from a probability matrix to a cell blockage map: simple random sampling followed by basic smoothing or adaptive 

smoothing. 

Once a sequence of probability matrices on the work grid and at work time intervals is obtained, 
the mapping from these continuous probability matrices to binary blockage maps can be 
performed. This is achieved by passing a band limited 2D random signal (such as a uniformly 
distributed random signal) defined on the work grid through a shaping filter determined by the 
sequence of probability matrices. For each of the probability matrices, a corresponding binary 
cell blockage map is generated as shown in Fig. 1. Conflict resolution and re-routing algorithms 
can then be applied based on the sequence of cell blockage maps corresponding to the sequence 
of probability matrices. However, if simple random sampling is used, such generated blockage 
maps will lack the spatial correlation between cells (i.e. clustering of blocked cells) and the 
temporal evolvement between successive cell blockage maps (i.e. continuous trending, growth, 
and decay of the weather system). Hence, to model the spatial correlation between cells, we 
apply smoothing techniques to the 2D random signal, before it is modulated by the probability 
matrix to generate the blockage map. Then, we use cellular automata techniques to model the 
transition of blockage maps from one time interval to the next. We now provide the details of the 
smoothing and the cellular automata techniques utilized in this process. 

3.1.1.1 Modeling Spatial Correlation  

To model the spatial correlation between cells, Gaussian smoothing is applied to the 2D random 
matrix generated to map the probabilistic weather information to a cell blockage map. The 
strength of the spatial correlation between cells can be presented by the Full Width at Half 
Maximum (FWHM) of the Gaussian kernel. FWHM is related to the standard deviation of the 
Gaussian kernel by the following equation: 

 
 . (1) 2ln8σ=FWHM

 
In the third matrix from left in Fig. 1, it can be seen that the blocked cells are more clustered 
after basic smoothing, which is more likely to be representative of the actual conditions, when a 
weather system is present. On the other hand, using a fixed FWHM Gaussian kernel across the 
whole grid may prevent scattered cell blockage in low probability areas. To enable scattered (or 
popup) cell blockage, we use adaptive smoothing. In this approach, the FWHM of the Gaussian 
kernel used for each individual cell is dynamically adapted to reflect the varying strength of 
spatial correlation between cells. First, a temporal cell blockage map is obtained via direct 
mapping without smoothing.  The percentage qij of blocked neighboring cells (including the cell 
itself) is then calculated for each cell, based on this cell blockage map.  The FWHMij for a cell (i, 
j) is then calculated as a function of qij. The size of the neighborhood used in calculating qij, and 
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the functional relationship between the percentage of blocked neighboring cells and the FWHM 
are determined using historical data. In general, for a cell with a higher percent of blocked 
neighboring cells, a larger FWHM is used to indicate stronger spatial correlation between cells. 
For a cell with a lower percent of blocked neighboring cells, a smaller FWHM is used to indicate 
weaker spatial correlation between cells.  This would allow retaining scattered blockage as can 
be seen in the fourth matrix from left in Fig. 1, which is not possible by using a single FWHM 
across the whole grid. Alternatively, the percentage qij of blocked neighboring cells can be 
calculated based on the cell blockage map at the previous time interval.  

As in the case of the spatial correlation between cells at any given time period, the transition 
between cell blockage maps at consecutive time periods must also be modeled, for which we use 
the cellular automata methods  described below. 

 
Figure 5.  Cellular automata used to adjust cell blockage 
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3.1.1.2 Modeling Temporal Correlation  

The cellular automaton that we develop does not directly determine the states of cells, i.e. cell 
blockage maps, but rather, it is used to modify the cell blockage maps obtained using the 
mapping process presented in the previous section. For each cell, the percentage rij of blocked 
neighboring cells at the previous time interval is calculated first. If the cell blockage map 
obtained using the adaptive smoothing mapping process is [b’ij], then state bij of each cell at the 
current time interval is determined by the process shown in Fig. 2.  

The transition process shown in the figure implies that the cell state from the mapping process 
will be accepted as is, if it is in the same state as the majority of its neighboring cells at the 
previous time interval. The threshold r0 for converting an unblocked cell from the mapping 
process to a blocked cell must be greater than 0.5. The threshold r1 for converting a blocked cell 
from the mapping process to an unblocked cell must be less than 0.5. The summation of the two 
thresholds is required to be 1 to ensure the probability of cell blockage is preserved. The 
transition rules can also be presented in the following equation. 

 

   (2) ])1([ 1
'

0
' rbrbrb ijijijij +−≥=

 
Application of the process described above will result in the transition of cell states from one time 
interval to the next occurring near the boundary of convection. Additional special rules are also 
developed to allow for the popup and growth of scattered blocked cells in low probability areas. 
Size of neighborhoods and transition thresholds are again determined using historical data. 

 11



Final Report                   NASA Project 06-AS-06-0037 

In Fig. 3, we summarize the steps used to generate scenarios that model the spatial and temporal 
evolution of convective weather, based on probabilistic weather forecasts.  

 
 

Figure 6.  Precedure used to generate weather scenarios based on probabilistic weather forecasts. 
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3.1.2 Fuel-Optimal En Route Conflict Resolution Algorithm 
An efficient conflict resolution algorithm is required to determine the maximum number of 
aircraft that can safely transit through a volume of airspace within a predefined time interval for 
each weather scenario that is generated. Although conflict resolution is a well-studied topic in the 
literature [13], none of the existing algorithms are suitable for implementation in a simulation 
environment, mainly due to computational issues. Such an algorithm has to be very fast and 
efficient, as multiple large instances of the problem need to be solved over several replications. 
Despite the suitability of rule-based methods for such fast calculations, an optimization based 
approach is necessary to ensure that simulations result in accurate capacity distributions. 
However, the corresponding optimization problem is complex, and there are no available 
comprehensive models with efficient solution methods for the problem. 

Hence, we develop a novel conflict resolution algorithm which is capable of resolving conflicts 
through fast numerical optimization methods, through simultaneous heading and speed changes. 
In addition, particular focus has been placed on reducing fuel costs involved in conflict resolution. 
This was deemed to be important, given the significant role that fuel plays in the operating cost of 
aircraft and the growing concern regarding the impact of gaseous emissions on the environment. 
In addition to implementations in simulation environments, due to its efficiency, the proposed 
model can also be implemented to resolve conflicts in near real-time. 

As part of the description of the model, we first provide a general problem statement and a 
mathematical formulation, and then present the solution methodology, along with some sample 
results.  

3.1.2.1 Problem Statement  

Consider a set of n aircraft located in a Euclidean plane. Each aircraft i is defined by an initial 
position pi=(xi,yi), a velocity vector v , ,  defining speed and heading, and a desired 

 12



Final Report                   NASA Project 06-AS-06-0037 

final heading . Additionally, all aircraft are designated to be a particular model type with 

 conflict-free, wh
he

trapolated in time, then for aircraft i 

corresponding fuel burn characteristics for the given altitude. The objective of the conflict 
resolution problem is to assign each aircraft a single instantaneous heading and speed change at 
t=0, such that the aircraft will travel ile minimizing a measure of the fuel burn 
costs over all t  trajectories. Note that the algorithm can be implemented iteratively to ensure 
conflict free transit through a volume of airspace, assuming that the aircraft would maneuver 
back to their initial destinations after clearance of conflicts. 

The trajectory of an aircraft i is deemed to be conflict free, if the distance between aircraft i and 
any other aircraft j, dij=dji, is always greater than the minimum distance of dij

min.  The minimum 
separation distance can be visualized by encircling each aircraft with a safety region of radius 
d/2. If we assume that trajectories of aircraft are linearly ex
and j with given trajectories, the necessary minimum separation condition is expressed by the 
following inequality: 

  +∈∀≥+ Rtdyx ijdistdist     min22                            (3) 

where xdist  and ydist  represent the distance between the two aircraft in the corresponding 
coordinate axes, and are defined by: 

    ( )( )  tvxtvxx xjjxiidist ,,+=

           

− +

                         ( ) ( )tvytvyy yjjyiidist ,, +−+=  (4) 

We now describe a methodology for formulating a fuel-optimal conflict resolution model that 
ensures that separation conditions (3) hold at all times. Unlike most models in the literature, the 

ocess ields  mixed integer linear programming , which is solvable in near real time 
cisions. 

 maneuver fix is small in comparison to time to the conflict. 

and j with initial position and velocity states:  

pr  y a  problem
for dynamic routing de

Starting with the initial conditions  , , the solution to the resulting optimization model 
will be the set of new velocity vectors  for each aircraft. Speed and heading commands 
ensuring that separation conditions hold, can then be extracted from . The model does not take 
into account the time to execute heading and speed changes, as it is assumed that deviations are 
small and the time to complete any
However, the safety region about each aircraft can be expanded to handle uncertainty from 
resulting maneuver changes, wind variation, or other unmodeled phenomena. 

3.1.2.2 Model Formulation:  

We first present the mathematical representation of the constraints that need to be enforced to 
ensure a conflict-free solution, and show that they can be expressed as a set of linear inequalities. 
Then we develop very tight approximations for the nonconvex cost functions that represent fuel 
consumption. 

Seperation constraints:  
Consider a pair of aircraft i 

             ( )iii yx ,=p ,   [ ]Tyixii vv 0
,

0
,

0 ,=v  

                                                   ( )jjj yx ,=p , [ ]T000                       (5) yjxjj vv ,, ,=v
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A g  

,
T
 . Applying dvi to each corresponding aircraft defines new trajectories as 

follows

    ,      

, ,

ith safety regions of 
/2, the projected safety region of aircraft i al  safety region 

g. 4. By understand s n along the 
r al wable regions for ,  can elin ately, a set of cr
lines, ,  and , , with slopes , and , , tangent to the safety regions of each aircraft are key 

 
Constraints (8) can be e  the right-hand side by the 
enominator. Keeping mindful of the condition , , 0, separation is then ensured when: 

                     

iven aircraft i  may alter its trajectory to prevent conflict by changing its velocity vector by

, ,
: 

                                                               (6)  
  
The set of linear constraints ensuring that a pair of aircraft maintains separation is derived from 
the relative velocity  and initial position   of aircraft i to aircraft j, i.e. 

     

              
, ,r r

 

Conflicts between aircraft i and aircraft j occur when the ray originating from aircraft i extending 
along ,  passes through aircraft j. To ensure separation, an implementation based on the 
definition of a safety region around each aircraft is possible. For aircraft w

 ,

, ,
,

i j i j

r r
i j i j

+ +

+ +

= −

= −

v v v

p p p

%

%

radius d ong , must remain outside the
o f ray extenf aircraft j, as illustrated in Fi ing the method o  io
elative velocity, the lo be d eated. Ultim ossing 

to defining the linear constraints through the following relation: 

 

                           (7)

              

 

 

, ,
,

, ,

i j y n
i j

i j x

v
m

v
≤

%

%
      or     , ,

,
, ,

i j y p
i j

i j x

v
m

v
≥

%

%
                        (8) 

Figure 4. Definition of the safety regions for aircraft. 

xpressed as linear inequalities by multiplying
d
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, , , , , , ,, 0n
i j y i j x i j i j xv v m v≤ ≥% % %   or         , , , , , , 0i j y i i j xv v≥ ≥% % %   or       , , 0i j xv ≤%      , ,p

j x i jm v

The separation constraints (9) can easily be expressed as linear inequalities of the decisions 
v tions of the speed and heading changes, dvi. The 

ide a framework in which fuel costs are considered in conflict resolution and 
aircraft routing, we define a fuel-burn cost function ,  as: 

                                      ,                                                              10  

where gs and gh are nonlinear scalar functions of the airspeeds s, and the headings θ of the 
aircraft. The function gs measures the fuel burn percentage of an aircraft, while gh ccounts for 

distance traveled due to a deviation from the desired route. Considering 
el consumption percentage with respect to the optimal path at a desired 

, we

some initial heading , and which can perform heading changes of  to ensure separation, 
consistent with typical air traffic management procedures. We assume that the range of possible 
final heading values i  the set 
, … , , … , , … , . These regions need not be uniform in size. A grid 

structure over the feasible space is then formed including the origin, and the set ,

Figure 5. Heading angle deviations increase the resulting distance traveled 

ariables v , ,  and v , ,  which are func

(9) 

                                                               

constraints are then applied to all pairs of aircraft. As the constraints are reciprocal, only one set 
of constraints is required for each pair.  To model the avoidance required to route an aircraft 
around a no-fly region, such as convective weather, we use the same process to form a set of 
linear constraints. 

Cost functions:  

In order to prov

 

   

 
 a

the scaled increase in 
both parts, G  is the fu0
airspeed when there are no obstacles.  

The measures s and θ, and thus the cost functions  and   are nonlinear nonconvex 
functions of the decision variables dvi. However, we develop tight convex linear approximations 
for these functions, and show that the underlying optimization problem can be modeled as a 
linear integer programming problem. 

To model the fuel costs due to the change in airspeed, i.e.  consider an aircraft with 

 

s broken into m adjacent regions according to
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cos , n ,     1,2,… , . The function  is then evaluated 
over the grid points.  The airspeed, ̂ , is calculated by forming a convex combination of the 
function values of the grid points associated with the sector encompassing , and is given by 

si

the following set of constraints: 

 
where SOS2 is the specially ordered set of type 2. The SOS2 approximation yields a very tight 
approximation over the domain. Computational tests show that even with only four regions, 
spread over ±45 degrees around the initial heading, the percent error between the approximation 
and the actual airspeed is always less than 2%. 
The fuel cost associated with a heading angle deviation and a return to the desired flight path is 
approximated using a two step process, as shown in Fig. 5. In the first step, the aircraft makes a 
heading angle change to resolve conflict, and then in the second stage the heading is corrected 

 in terms of the heading change  for Li,1 and 

nte
 

interest. Thus, a linear approximation is possible by fitting a set of 2q planes between angles 
, … , , … ,  to (11). Each plane w, approximating the function (11) within some interval 

n b  determined by first calculating the points
as f

,
0

î x q q
q

v X
m

λ+

=

=∑  

,
0

ˆ
m

i y q q
q

v Y λ+

=

=∑  

0

ˆ
m

i q
q

s Z qλ
=

=∑  

0
1

m

q
q

λ
=

=∑  

S2SOqλ ∈  

back towards the destination. Let Di = di,1+di,2 designate the straight-line distance between the 
destination and the current position of the airplane i. If maintaining separation requires a heading 
angle change, then the travel distance is Li,1 +Li,2 , and the scaled increase  Dp,i    in the travel 
distance is Dp,i  = ( Li,1 +Li,2)/ Di . Substituting
applying the law of cosines to solve for Li,2 for /2, /2 ,  Dp,i    can be represented  as: 

 
Assuming that any heading angle change allows for the aircraft to fly near the optimal fuel burn 
speed, the additional distance traveled according to relation (11) can be represe d by a fuel 
consumption measure. Note that equation (11) is a convex function of  in the interval of

                   

,  ca e  , ,    and , ,     
ollows: 

2
,1 ,1 2

,1

,

2
( ) ( )

( )

i i
i i i

i i
p i i

i

d d
D d D

cos d cos d
D d

D
θ θ

θ

⎛ ⎞
+ + −⎜ ⎟

⎝ ⎠=     (11)   
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, ( )w i max wx v cos θ=  

                                               , ( )w i max wy v sin   θ=  

1 , 1( )w i max wx v cos θ+ +=      (12) 

                                                  
 

 

Then, a linear function relating the scaled increase in distan
can be obtained by: 

 

 
here        is the approximate percent increase in distance traveled and x = ,  and y = , . 

The resulting relation can be included as a constraint in the optimization model as      = c1x + 
c2y + c3 , where c1 , c2 and c3 are constants obtained through (13). Computational test show that the 
approximation error for this convex planar representation of the nonlin
less than 1% for almost all values of the heading angle change within the nominal operating 
bounds.  

We assume that the total cost is a mixture of costs to minimize the sum of individual fuel 
no raf

t aspect of the developed algorithm is that the optimal conflict resolution maneuvers 
are

 

⎞

1 , 1( )w i max wy v sin θ+ +=  

                                                   1 , ( )w p i wz D 1θ+ +=  

ce traveled due to a heading deviation 

,
ˆ 1

ˆdet 0

w
p i

w

x y D

x x y y D z

⎡ ⎤−
⎜ ⎟⎢ ⎥
⎜ ⎟

⎛

,

1 1 , 1
ˆ

w w p i w

w
w w p i wx x y y D z+ + +

− − −⎢ ⎥ =                                 (13) 
⎜ ⎟⎢ ⎥⎜ ⎟− − −⎢ ⎥⎣ ⎦⎝ ⎠

w

ear objective function is 

costs and minimize the maximum fuel-burn over all the aircraft (to ensure that  single airc t 
is excessively penalized). Thus, the overall objective function is expressed as a weighted sum of 
these two objectives.  

Due to the novel approximation techniques described above, the resulting model can be 
implemented as a mixed integer programming problem. A detailed discussion of this model and 
proofs for the validity of the derived relationships for the algorithm are described in [14]. One 
significan

 identified in only a few seconds, which enables the implementation of this methodology as 
part of the simulations required for capacity distribution calculations.  

3.1.3 Derivation of Stochastic Capacity through Monte Carlo Simulation 
The next step in determining the capacity distribution for a volume of airspace under potential 

convective weather is to simulate traffic flow in this airspace based on the weather scenarios 
generated and a given traffic pattern.  
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Figure 6. Randomly generated flights in Cleveland Center based on distributions calculated from historical data for simulation purposes 

 

 
 

Figure 7.  Increased number of replications result in convergence of simulation results to form an empirical cdf of capacity 

 
The implementation of the simulation for a given volume of airspace can be performed as 

follows. To model the traffic, a statistical distribution of entry-exit pairs is generated using 
historical data of aircraft flying through the airspace. The boundary of the airspace is then broken 
into segments, which are numerically identified. For the distribution, each aircraft is designated 
to enter and exit through a particular boundary segment. Although any distribution can be used to 
model aircraft interarrival times into the airspace, we assume that they follow an exponential 
distribution, with a slight modification such that aircraft entering at the same entrance must have 
a minimum time separation, based on current separation requirements. An example of the 
sampled traffic pattern through Cleveland center is displayed in Fig. 6. In order to account for 
different fuel burn rates, aircraft models, e.g. regional, narrow body, wide body, and business 
class jets, can also be assigned according to a sampled distribution taken from the historical data.  

The simulations are conducted such that for a given expected arrival rate, arriving traffic into 
the volume of airspace based on the assumed distribution, and the convective weather based on 
the sampled scenarios is simulated over a fixed time period. Throughout the simulation, the 
conflict resolution algorithm is utilized to dynamically route aircraft around convective weather 
in a fuel-optimal and conflict-free manner. However, based on the random evolution of traffic 
and weather, some instances are likely to lead to congestion, for which conflict-free trajectories 
are not possible without diverting one or more aircraft to a different volume of airspace or an 
airport. These instances are identified by the conflict resolution algorithm as infeasible.  

We perform multiple replications of the simulation at different expected arrival rate values, 
and record the ratio of feasible solutions provided by the algorithm over the total number of 
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replications for each expected arrival rate value. As the arrival rate is increased, this ratio 
gradually approaches zero, resulting in an empirical cumulative probability distribution for given 
probabilistic weather forecast information. The convergence of the simulation results to a smooth 
empirical distribution is demonstrated in Fig. 7.  

This cumulative distribution can then be converted into a probability density or mass function 
of airspace capacity for a given time interval, which can directly be used in a stochastic TFM 
algorithm. In most cases, a discrete distribution may be preferred for better practical 
interpretation of the information on the stochastic parameter. As an example, we can calculate 
the probabilities of predefined low, medium and high capacity levels according to the derived 
distribution in Fig. 7 as follows: 

 
Derivation and availability of such capacity distribution information has utmost importance 

for air traffic flow management, as it will lead to more robust planning with significantly 
improved utilization of available capacity.  

3.2 STOCHASTIC PROGRAMMING BASED DYNAMIC ROUTING ALGORITHM FOR TFM 
The next step in the developed stochastic TFM procedures is the determination of the number 

of aircraft to send towards a volume of airspace given the capacity distributions. For this 
purpose, we develop a stochastic programming model, which considers flights on the ground and 
in the air, destined to the considered volume of airspace. The model determines the departure 
time with cruise speed and ground delay decisions for these flights as well as any holding and 
diversion decisions that may be necessary after the realization of convective weather. 

Costs corresponding to each of these actions are introduced and calculated in the model for 
each flight. In addition, we assume limits on the allowable number of time periods for each flight 
to be ground-delayed or air-held, reflecting practical constraints such as fuel availability and 
crew schedules. Similarly, changes in airspeed are also limited to some extent depending on the 
aircraft specifications. Further, we make some additional assumptions on the problem.  First, we 
model the problem by using discrete time intervals, where a 15-minute interval may be used for 
typical implementation. Similarly, we assume that discrete probability distributions of airspace 
capacity are available, resulting in the definition of a set of capacity scenarios over the planning 
period.  

 The following notation is used in the description of the stochastic programming model and 
the proposed solution procedure: 

M : the set of flights 

S : the set of time periods 

bm : scheduled departure period for flight  

∆  : scheduled flight time of flight m from current position to the sector 

∆   : maximum number of periods that flight m can be ground-delayed 
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∆ e early 

∆   : maximum number of periods that flight m can be scheduled to arrive late 

∆
 

ector is changed from 
∆  to t 

 time t and enters at time u 
dm    : co
Cu     acity of the sector at time u 

    : 1, if flight m departs at time s and arrives at the sector at time t; 0, otherwise 
  

 sector at time t and enters at time u; 0, otherwise 
wing stochastic integer program: 

 

is represented as a sum
 of 

these costs over all scenarios, weighted by the scenario probabilities. The first set of constraints 
ensures that sector capacity is not exceeded in each time period. The second set of constraints in 
the model requires that if a flight is sent towards the sector, it must either be diverted or allowed 

  : maximum number of periods that flight m can be scheduled to arriv

  : maximum number of periods that flight m can be held in the air 
   : ground delay cost for flight m, if it departs at time s 
∆   : speed change cost for flight m, if its arrival time at the s

  : air holding cost for flight m, if it arrives the sector at
st of diverting flight m 

  : cap

    : 1, if flight m arrives at the
    : 1, if flight m arrives at the sector and is diverted at time t; 0, otherwise 

Using this notation, we develop the follo

The objective function of the above model is the minimization of the expected total cost, which 
 of the first stage ground-delay and speed-change costs, and the expected 

air-holding and diversion costs in the second stage. The expectation is defined as the sum

into the sector. The third constraints enforce that a schedule is determined fo  each flight. 
Without loss of generality, we do not model the cancellation of a flight before departure. 
However, that and other similar decisions can easily be incorporated in the model.  

For a large number of aircraft and scenarios, the stochastic model above becomes inapplicable 
for real-time implementation. Hence, it is necessary that an efficient procedure is utilized to 
enable fast calculations for dynamic routing of aircraft. To this end, we develop a rolling horizon 

r
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implementation, which significantly reduces the computational time and provides a near-optimal 
solution. 

The rolling horizon method solves the described stochastic programming problem in a 
seq

t of flights, which may also include flights from the previous iteration, e.g. those that 
we

 
Dependent on the flights selected and their flight times, only a limited number of periods may be 
considered in each iteration of the algorithm, which further speeds up the implementation. In 
addition, different rules can be applied when selecting the set of flights to freeze their schedules 
or to reconsider in the iterations. This set of rules can be determined based on factors such as the 
required accuracy levels in the approximations and the available computational tools.  

The devised solution method is very efficient in solving large instances of the stochastic TFM 

ethod that 
use

uential order, by dividing it into several smaller problems. To ensure consistency in the 
routing decisions, the sector capacity is updated using the previous iteration's solution at each 
iteration. More specifically, in the first iteration a set of flights is selected and solved to 
optimality. Based on these solutions, sector capacity is updated for the second iteration. Then, 
another se

re held on the ground throughout prior periods in which decisions were made, is selected and 
solved to optimality. The procedure is repeated until all flights are considered and their schedules 
are fixed. The update on the capacity constraints can be performed by replacing the second 
constraint of the above model with  

 
where the right hand side is updated according to the flights whose schedules are fixed in 
previous iterations. 

TABLE I.  PERFORMANCE OF THE ROLLING HORIZON METHOD 

 

problem with minimal levels of optimality gap, when compared to standard solution methods, 
i.e. to solving the deterministic equivalent of the problem as a whole. This can be seen in the 
computational results presented in Table 1 for a sample problem with 19 periods and up to 48 
flights, where a maximum of 214 capacity scenarios were considered . 

Overall, the developed procedure is a fast and dynamic stochastic optimization m
s as input the stochastic capacity information calculated for a volume of airspace in 

determining the number of aircraft to send towards that airspace. Its implementation will clearly 
lead to TFM procedures that perform better than the currently used deterministic decisions.  
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3.3
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ilistic weather forecasts, as well as the value of the utilization of a 
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e for human intervention in a 
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logy,  Atlanta, GA, January 2006. 

 CONCLUSIONS 
In this study, we developed a comprehensive air traffic flow management methodology which 

will increase airspace capacity and utilization by providing a mathematically rigorous basis for 
determining optimal or near-optimal solutions to the problem of traffic flow management in
presence of uncertaint

Specifically, we first devised an algorithm to calculate probabilistic predictions of capacity in 
en route sectors based on probabilistic weather forecasts. Then, we developed a stochastic 
programming based procedure to determine how much to reduce the spatial and temporal buffers 
that currently decrease capacity in en route airspace. The overall study demonstrates the value of 
the availability of probab

chastic decision making tool for air traffic flow management.   
Extensions to the study include the generalization of the results by simultaneous 

considerations of multiple volumes of airspace and implementation of a multi-stage decision 
process in determining optimal routings. Further, the capacity estimations can be parameterized 
so that it is possible to map a given probabilistic weather matrix to a capacity distribution. This 
will enable even faster decision making, and will allow more tim

ly automated system. 
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