
ARCHITECTURAL APPROACHES TO A SCIENCE
NETWORK SOFTWARE-DEFINED EXCHANGE

A Thesis
Presented to

The Academic Faculty

by

Joaquin Chung Miranda

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2017

Copyright c© 2017 by Joaquin Chung Miranda

ARCHITECTURAL APPROACHES TO A SCIENCE
NETWORK SOFTWARE-DEFINED EXCHANGE

Approved by:

Professor Henry L. Owen
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Russell Clark
School of Computer Science
Georgia Institute of Technology

Professor Raheem A. Beyah
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Mustaque Ahamad
School of Computer Science
Georgia Institute of Technology

Professor George Riley
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: November 7, 2017

To my parents Fernando and Elsa, and my brothers Javier and Isaac,

for their unconditional and endless love and support.

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisors, Dr. Henry Owen and Dr. Russell

Clark, for their invaluable guidance and support along my PhD journey. Since the

beginning, Professor Henry Owen understood my needs as a Fulbright scholar, and he

provided the essential guidance to successfully navigate the requirements of my PhD

program. Likewise, Dr. Russell Clark exposed me to research projects and academic

conferences that positively influenced my PhD thesis, and helped me expand my

professional network.

Special thanks to the National Secretariat of Science, Technology and Innovation

of Panama (SENACYT for its name in Spanish) and the Fulbright Program, for pro-

viding the funding for my doctoral studies. I would also like to thank all the professors

and administrative staffs of the School of Electrical and Computer Engineering at the

Georgia Institute of Technology.

I would like to give a special recognition to Dr. Raj Kettimuthu from Argonne

National Laboratory, as well as my thesis committee members Dr. Raheem Beyah,

Dr. George Riley, and Dr. Mustaque Ahamad for their insightful comments and

suggestions. I would also like to thank my labmates and colleagues from the Net-

work Security and Architecture lab, GT-RNOC, and the AtlanticWave/SDX project

(funded by the National Science Foundation), who contributed valuable ideas, com-

ments, and experience in carrying out this work.

iv

Contents

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xiii

I INTRODUCTION . 1

1.1 Problem Definition . 1

1.2 Architectural Approaches to a Science Network Software-Defined Ex-
change . 4

1.3 Contributions . 5

1.4 Literature Survey . 6

1.4.1 Advance Reservation Systems 6

1.4.2 Software-defined Networking (SDN) 8

1.4.3 Software-defined Exchange Points (SDX) 12

1.5 Organization of the Thesis . 23

II ARCHITECTURE OVERVIEW . 25

2.1 Site, WAN, and SDX Controllers . 25

2.2 Orchestrator . 26

2.3 Interfaces and Services . 27

2.3.1 Domain to Orchestrator (D-O) Interface 28

2.3.2 User/Application to Orchestrator (U-O) Interface 28

2.4 Authentication and Authorization 29

2.5 Consensus and Negotiation Protocol 29

III ORCHESTRATING INTERNATIONAL ADVANCE RESERVA-
TIONS WITH SOFTWARE-DEFINED EXCHANGES 31

3.1 Motivation . 31

v

3.1.1 Bandwidth Request Splitting in Advance Reservation Systems 31

3.1.2 Software-defined Networking (SDN) 33

3.1.3 Software-defined Exchange (SDX) 34

3.2 Design . 35

3.2.1 General Workflow . 35

3.2.2 Negotiation Protocol . 37

3.2.3 SDX Rules . 40

3.2.4 Interconnecting the Last Mile 42

3.3 Implementation . 42

3.3.1 Orchestrator Implementation 43

3.3.2 Negotiation Protocol Implementation 43

3.3.3 SDX Implementation . 44

3.4 Evaluation . 46

3.4.1 Orchestrator Microbenchmark 46

3.4.2 Multi-path, Multi-domain Advance Reservations 47

3.4.3 Negotiation Protocol Success Rate 49

3.4.4 SDX Experimental Setup . 50

3.4.5 Throughput Baseline . 51

3.4.6 Rule Provisioning Strategies 55

3.4.7 Oversubscription . 57

3.5 Conclusions . 58

IV NOVEL NETWORK SERVICES FOR SUPPORTING BIG DATA
SCIENCE RESEARCH . 60

4.1 Introduction . 60

4.2 Infrastructure Assessment of a Regional Science Network 62

4.2.1 What kind of science research do you support, or are you plan-
ning to support in the future? 62

4.2.2 What applications those scientists use? 62

4.2.3 Where are they connecting (inside and outside your network)? 63

vi

4.2.4 Infrastructure Questions . 63

4.3 AtlanticWave/SDX Architecture . 64

4.3.1 SDX User Interface . 65

4.3.2 Authentication and Authorization 67

4.4 Use Cases . 68

4.4.1 Simplifying Current Science Network Services 68

4.4.2 Future Generation Science Network Services 68

4.5 AtlanticWave/SDX Prototype . 69

4.6 Conclusions . 71

V AUDITING AND ACCESS CONTROL FOR SOFTWARE-DEFINED
EXCHANGES . 72

5.1 Introduction . 72

5.2 Federated Auditing for Software-Defined Exchanges (FAS) 74

5.2.1 Background . 74

5.2.2 System Architecture . 76

5.2.3 FAS Proof-of-Concept Evaluation 82

5.2.4 Discussion . 84

5.3 Advance Reservation Access Control Using SDN and Tokens 85

5.3.1 Tokens Background . 85

5.3.2 System Architecture . 86

5.3.3 Implementation . 89

5.3.4 Evaluation . 92

5.3.5 Discussion . 96

5.4 Conclusions . 97

VI CONCLUSIONS . 98

6.1 Discussion . 99

6.1.1 Orchestrating International Advance Reservations with Software-
defined Exchanges . 99

vii

6.1.2 Novel Network Services for Supporting Big Data Science Re-
search . 104

6.1.3 Auditing and Access Control for Software-Defined Exchanges 105

6.2 Contributions . 108

6.3 Future Research . 109

6.3.1 Large Scale Deployment of Science Network SDXs 110

6.3.2 Network Function Virtualization (NFV) and Programmable
Dataplanes . 111

6.3.3 Other Applications for SDXs 111

6.4 Conclusions . 112

VITA . 128

viii

List of Tables

1 SDX Uses Cases . 15

1 SDX Uses Cases . 16

1 SDX Uses Cases . 17

1 SDX Uses Cases . 18

2 SDX Architecture Comparison . 19

3 Layer-3 SDX Scalability comparison 20

4 Negotiation Protocol Messages . 38

5 Experimental setup, equipment specifications 52

6 Splitting Strategies . 54

7 SDX user request samples in JSON format 67

ix

List of Figures

1 SDX-enabled multi-domain, multipath advance reservations scenario,
with two SDXs connected through two different WANs, providing two
independent paths between a telescope and a supercomputer. 4

2 SDX Taxonomy . 14

3 Reference architecture for end-to-end service orchestration in multi-
domain science networks. Several independent administrative domains
are connected by inter-domain links, and expose science network ser-
vices to a centralized orchestrator through the domain to orchestrator
(D-O) interface. The orchestrator then composes end-to-end science
network services and exposes them to domain-expert scientists and
data transfer applications through the user to orchestrator (U-O) in-
terface. 26

4 Intercontinental R&E links originated from the United States. 33

5 General workflow for requesting multi-domain, multipath advance reser-
vations. 36

6 Negotiation protocol for multi-path, multi-domain advance reservation
with M visible domains and N −M blind domains. 39

7 Block diagram of bandwidth splitting service components for SDX rule
provisioning. 41

8 System latency microbenchmark for an orchestrator requesting resources
from eight participant domains using REST and gRPC, and variating
the RTT between participants and the orchestrator. 47

9 Simulation topology and results: (a) topology for multi-path, multi-
domain advance reservation evaluation simulation; and (b) success rate
for multi-path, multi-domain advance reservation evaluation compared
to the state-of-the-art methods. 49

10 Negotiation protocol success rate for three bandwidth splitting strate-
gies and up to four participant domains. 50

11 Experimental setup topology. 51

12 Throughput measurements while performing data transfers using iperf3,
GridFTP memory-to-memory (m2m) and GridFTP disk-to-disk (d2d)
over a 1 Gbps link with 90 ms RTT: (a) shows the baseline for a single
L2 tunnel of 1 Gbps, and (b) shows the baseline for two L2 tunnels of
500 Mbps each. 53

x

13 Effect of number of parallel TCP streams and bandwidth splitting
strategies on throughput for a GridFTP memory-to-memory data trans-
fer over a 1 Gbps link with 90 ms RTT. 55

14 Effect of provisioning and bandwidth splitting strategies on throughput
while sending a 20 GB file using GridFTP disk-to-disk over a 1 Gbps
link with 90 ms RTT: (a), (b), (c), and (d) shows the results for one,
two, four, and eight TCP streams per tunnel, respectively. We observe
that two streams per tunnel is the recommended setting to achieve the
optimal performance. The baseline for each scenario is represented as
a horizontal dashed line. 56

15 Improvement factor in GridFTP’s average throughput for oversubscrip-
tion of the physical, while maintaining multi-path, multi-domain reser-
vations within limits. For instance, requesting two 600 Mbps L2 tun-
nels for an aggregate of 1.2 Gbps gives us 20% oversubscription on a
1 Gbps link. 58

16 Map of the interconnection between the LSST in Chile and the NCSA
supercomputer in the United States. 61

17 Question 3: Where are they connecting (inside and outside your net-
work)? We asked participants to mark all options that applied. 63

18 Infrastructure questions: (a) How many data transfer nodes do you
host in your network? And (b) do you host a Science DMZ? 64

19 Infrastructure questions: (a) Do you use advance reservation system
or dedicated circuit? And (b) how often do you provision or modify
dedicated circuits? . 65

20 High-level architecture for AtlanticWave/SDX, with local controllers
at three domains, and an SDX controller exposing services to users
(e.g., domain-expert scientists, network operators, and data workflow
management systems). 66

21 AtlanticWave/SDX Web portal for requesting science network services:
(a) network operator view, and (b) domain-expert scientist view. . . . 70

22 FAS Architecture showing a participant domain, auditing system with
control plane and data plane auditors, and FAS agents communicating
through the FAS protocol. Trusted entities are depicted in green . . . 77

23 Flow of data in the FAS framework architecture from the control and
data plane elements to the SDX. The chain of trust of the FAS archi-
tecture follows this flow of data . 80

24 FAS workflow for a user configuration request and subsequent audit
verifications using FAS . 83

xi

25 FAS testbed implemented on the GENI platform 83

26 Block diagram of advance reservation access control using SDN and
tokens. Only positive outcomes are shown 87

27 ESNet infrastructure testbed configuration for experiments 90

28 Latency of the system for opaque, self-contained, and enforcement
point token validation (EPV). 93

29 Throughput measurements while sending a 20 GB file using iperf3 with
CUBIC TCP: (a) scenario 1 shows two flows sharing the 4 Gbps reser-
vation, while (b) scenario 2 implements our access control solution
using SDN and tokens, where the authorized flow has exclusive access
to the 4 Gbps reservation and the unauthorized flow uses the remaining
1 Gbps available on the 5 Gbps link 95

30 RTT measurements while sending a 20 GB file using iperf3 with CUBIC
TCP. Both (a) scenario 1 and (b) scenario 2 present RTT measurements
that range between 89 and 100 ms . 95

xii

SUMMARY

To interconnect research facilities across wide geographic areas, network op-

erators deploy science networks, also referred to as Research and Education (R&E)

networks. These networks allow experimenters to establish dedicated circuits be-

tween research facilities for transferring large amounts of data, by using advanced

reservation systems. Intercontinental dedicated circuits typically require coordina-

tion between multiple administrative domains, which need to reach an agreement on

a suitable advance reservation. To enhance provisioning capabilities of multi-domain

advance reservations, we propose an architecture for end-to-end service orchestration

in multi-domain science networks that leverages software-defined networking (SDN)

and software-defined exchanges (SDX) for providing multi-path, multi-domain ad-

vance reservations. Our simulations show our orchestration architecture increases the

reservation success rate. We evaluate our solution using GridFTP, one of the most

popular tools for data transfers in the scientific community. Additionally, we pro-

pose an interface that domain scientists can use to request science network services

from our orchestration framework. Furthermore, we propose a federated auditing

framework (FAS) that allows an SDX to verify whether the configurations requested

by a user are correctly enforced by participating SDN domains, whether the con-

figurations requested are correctly removed after their expiration time, and whether

configurations exist that are performing non-requested actions. We also propose an

architecture for advance reservation access control using SDN and tokens.

xiii

Chapter I

INTRODUCTION

1.1 Problem Definition

Modern scientific instruments (e.g., particle accelerators, large telescopes, and genome

sequencers) generate large datasets that are analyzed at supercomputing centers, typ-

ically hundreds of kilometers away from the original research facility. To interconnect

research facilities with supercomputing centers across long distances, network oper-

ators deploy science networks or Research and Education (R&E) networks. These

networks allow experimenters to establish dedicated circuits between research facil-

ities by using advance reservation systems [18]. These systems are deployed on top

of science networks and manage network resources in a coarse grained fashion (i.e.,

source and destination endpoints, required bandwidth, and duration of the reser-

vation). Examples of advance reservation systems are the advanced layer 2 service

(AL2S) of Internet2 [58] and the on-demand secure circuits and advance reservation

system (OSCARS) of the Energy Science Network (ESNet) [77].

In the case of intercontinental dedicated circuits, network operators may take from

days to several weeks for planning and provisioning a circuit over multiple science

networks, because these tasks are typically done manually [56]. The use of advance

reservation systems for requesting international or intercontinental dedicated circuits,

combined with novel approaches to networking, such as software-defined networking

(SDN) will significantly reduce provisioning times of science network services [23, 56].

However, as these reservations are defined by endpoints, duration, and bandwidth,

the scheduling of resources is not flexible; that is, a reservation request will fail if

the exact amount of bandwidth between two endpoints is not available within the

1

specified time frame [6]. This problem is dramatically amplified for intercontinental

dedicated circuits, because the reservation spans multiple administrative domains,

and participant domains have to reach an agreement on a suitable advance reser-

vation that fulfills the requirements of the original request. Furthermore, despite a

majority of domains having available resources for the reservation, if only one domain

is not able to provide the requested resources, a multi-domain advance reservation

will fail. Moreover, the success rate of finding an agreement decreases as the number

of participants with limited bandwidth resources increases. This problem is analogous

to trying to reserve a multi-legged flight with airlines that are not part of the same

consortium and do not share flight schedules.

Another challenge is that advance reservations terminate at the WAN border

router of each domain, and participant domains are interconnected at single junc-

tion points [98, 109]. As a result, multi-domain advance reservations are generally

provisioned over single paths, adding more complexity to the problem of finding an

agreement on the advance reservation. Furthermore, a data transfer has to compete

with campus LAN traffic to reach the advanced reservation at the WAN border router

of the research facility.

A secondary effect of non flexible scheduling of resources and high failure rates on

reservations is the impact in user’s productivity. Every time a reservation fails, the

systems forces a user (a scientist) into a cycle of trial and error until a suitable time

frame is found. Furthermore, the interface for requesting these types of reservations is

very complex for domain-expert scientists who are not network operators. Arguably,

many of these interfaces were developed by network operators, for network operators.

Furthermore, manual provisioning of these connections, which could take from sev-

eral days to several weeks [56], is sometimes limited by configuration overhead, poor

scalability, and poor testing interfaces [98].

2

The federated nature of R&E exchange points is based on trust between par-

ticipant domains. However, an old adage says “trust, but verify”, so a responsible

network operator wants to verify if his or her request have been enforced by domains

participating on a multi-domain advance reservation. Moreover, some participants of

the multi-domain advance reservation do not want to reveal internal topology infor-

mation while still proving that they correctly deployed the requested reservation.

Recently, software-defined exchanges (SDX) have emerged as a new kind of cyber-

infrastructure that allows independent administrative domains to share computing,

storage, and networking resources by leveraging SDN [20, 49]. By using an SDX

controller, network operators can program the fabric of an SDX in an agile way. We

posit that by inserting an SDX in the junction point between participant domains in

an intercontinental advance reservation, we will increase the success rate of finding

a multi-domain advance reservation. The initial benefit of adding SDXs to the ad-

vance reservation process is that we overcome the limitation of single-path advance

reservation (i.e., SDXs enable multi-domain, multi-path advance reservations). For

instance, we may have two SDXs connected through two different advance reservation

providers (e.g., WAN1 and WAN2) as shown in Figure 1, providing two independent

paths between a telescope and a supercomputer. As a result, an experimenter may

request half of the required bandwidth in each domain instead of requesting all the

bandwidth in a single domain and not taking advantage of the secondary path. An-

other benefit of the SDX approach is that we provide alternatives to multi-domain,

end-to-end advance reservation such as making reservations only at critical points or

combining advance reservation and DiffServ QoS. Moreover, an SDX infrastructure

will enable novel scheduling strategies that take advantage of the new infrastructure,

as well as novel science network services (e.g., multipath bandwidth splitting across

WANs, path migration, and multipoint-to-multipoint advance reservations). Addi-

tionally, an SDX will enable a federated auditing framework that allows verification of

3

Figure 1: SDX-enabled multi-domain, multipath advance reservations scenario, with
two SDXs connected through two different WANs, providing two independent paths
between a telescope and a supercomputer.

the following conditions: (1) whether configurations requested by users are correctly

enforced by participant SDN domains, (2) whether these configurations are correctly

removed after their expiration time, and (3) whether configurations exist that are

performing non requested actions. Furthermore, these verifications are conducted

without revealing internal information about the participating domains.

1.2 Architectural Approaches to a Science Network Software-
Defined Exchange

Thesis Statement: Given that current advance reservation systems present several

challenges for deploying multi-domain intercontinental circuits, this work posits that

by introducing SDXs in the reservation and provisioning process of intercontinental

circuits, we are able to create multi-path, multi-domain advance reservations, which

enhances the performance of science data transfers over traditional methods reported

in the literature, while increasing the success rate of reservations, providing more

intuitive interfaces to end users, and enabling auditing capabilities to network oper-

ators. To take advantage of an SDX-enabled advance reservation system for science

networks, we develop an orchestration framework for advance reservation systems and

SDXs that can provide access control to circuit reservations, flexible reservation re-

quests, and automated provisioning over multiple domains, by leveraging SDN, SDX,

4

and APIs.

1.3 Contributions

The contributions of this dissertation are the following:

1. An architecture for intercontinental multi-domain, multi-path ad-

vance reservations in science networks that leverages SDN and SDX. The

architecture is composed of an orchestrator that request services from partici-

pant domains and SDXs. We evaluated our proposed architecture using single-

path vs. multi-path advance reservations over multiple domains, and the data

transfer tools that the scientific community currently uses. Our architecture

allows us to evaluate the impact of incorporating SDXs in science networks

through:

(a) A negotiation protocol for multi-domain, multi-path advance reser-

vations, that allows an orchestrator to compose end-to-end services that

take advantage of alternative paths provided by the enriched connectivity

of SDXs. Our simulations using this negotiation protocol indicate that

the reservation success increases in multi-path systems by splitting the

bandwidth reservation over independent participant domains.

(b) Architectural approaches at the SDX level that enable novel science

network services, while enhancing the performance of science data transfers

over traditional approaches. We evaluated SDX-rule provisioning options

and bandwidth splitting strategies that allow data transfer protocols to

take advantage of multipath bandwidth splitting.

2. We propose an interface that users and other systems can use to request

science network services from our orchestration framework.

5

3. We propose a federated auditing framework for configuration verification

in an SDX, a communication protocol that allows an SDX to query participant

domains without exposing internal information, and include an initial proof-

of-concept deployment of our federated auditing framework. In this context,

we also propose a system that uses SDN and tokens to strongly bind an

end-to-end flow to the user or application that requested an advance reservation.

1.4 Literature Survey

1.4.1 Advance Reservation Systems

Experimenters request and manage connections over a high-speed wide area network

(WAN) using advance reservation systems [18]. Advance reservation connections are

defined by the endpoints they connect, the requested bandwidth, the start time,

and the end time. Generally, an advance reservation ends at the border router that

connects a site to the WAN, and it is identified by a VLAN ID within the WAN.

If a site does not have a high-speed dedicated network (e.g., Science DMZ [28]),

scientific flows have to compete with campus LAN traffic before reaching the advance

reservation in the border router. Currently, the operator can extend an advance

reservation to the end host by manually extending VLANs on each site. This manual

provisioning of VLANs on site, however, can take several days. For instance, the

coordination of the provisioning process without automation may take between five

and 45 days [56]. Additionally, as reservations are defined by the start time, the end

time, and bandwidth, the scheduling of resources is not flexible; that is, a reservation

request will fail if the exact amount of bandwidth is not available within the specified

time frame [6, 98].

Ibarra et al. [56] described the deployment of SDN and OpenFlow on the AmLight

international research and education network, which promotes collaboration research

6

between the United States and Latin America, with the goals of improving opera-

tions efficiency and providing network programmability, which were provided by the

FlowSpace Firewall (FSF) [43] and the Open Exchange Software Suite (OESS) SDN

controller [44]. With the new SDN AmLight, the provisioning time for a Layer 2 cir-

cuit that involves up to three domains decreased from five days and ten emails to less

than two minutes and zero emails. Although SDN Amlight also automates provision-

ing of multidomain network reservations, its definition of a domain is a nationwide

network (e.g., Internet2 and ESNet in the United Stated and RNP in Brazil). In con-

trast, our focus includes smaller domains such as national laboratories and university

campuses and end-to-end reservations, as we are more concerned with automating

provisioning for the last mile between the border router and the endpoint.

Tepsuporn et al. [98] tested the use of end-to-end Layer 2 paths for large dataset

transfers over an existing deployment called DYNES (Dynamic Network System)

[109]. The DYNES system uses OESS and OSCARS in multiple domains to establish

dedicated Layer 2 circuits. While OESS is an intra-domain SDN controller that con-

trols switches using OpenFlow [75], OSCARS supports inter-domain services. The

authors identified limitations with configuration overhead, scalability, path provision-

ing, and testing. For instance, a failed path setup attempt in OSCARS forces a user

to wait 15 minutes before issuing a new request [98].

To overcome the rigidity of advance reservation systems when a reservation request

fails, Balman et al. [6] developed a novel approach for path-finding in time-dependent

networks by taking advantage of user-provided parameters of the total volume (in

bytes) and time constraints. Their algorithm finds alternate allocation possibilities,

including the earliest time for completion, or the shortest transfer duration, with a

quadratic complexity that depends on the number of nodes and existing reservations.

They implemented their algorithm and tested it in the OSCARS reservation system

as a flexible reservation service, the results of their test confirmed their theoretical

7

predictions about transfer performance.

1.4.2 Software-defined Networking (SDN)

Under the software-defined networking (SDN) paradigm [80, 64, 55], the control and

data planes of network devices are decoupled. This separation enables global network

programmability, rapid innovation, and independent evolution of control and data

planes. The SDN architecture is divided into three layers: the infrastructure layer,

which represents the data plane; the control layer, which represents the control plane;

and the application layer, which represents network applications (e.g., switching, rout-

ing, or load balancing). The data plane is composed of many forwarding devices or

SDN-enabled switches. The control plane is a logically centralized entity, generally

known as an SDN controller that could be composed of a single server or several

distributed SDN controllers. The SDN controller communicates with SDN switches

through the southbound interface and with network applications through the north-

bound interface. A west-east interface that enables communication between several

SDN controllers within the same administrative domain may be added. Furthermore,

if these controllers belong to independent administrative domains, a multidomain

SDN [98] that can be used to automate the provisioning of advance reservations is

also possible [56].

An industry standard for the SDN southbound interface is the OpenFlow protocol

[75, 81] that is also the most widely deployed. It works by installing match-action

policies in the flow table of OpenFlow-enabled switches. SDN switches that support

the OpenFlow protocol are implemented in both hardware and software. An example

of a software SDN switch or a virtual switch is Open vSwitch (OVS) [85], a widely used

switch in datacenters for network virtualization [63] that was designed for optimal

operation in hypervisors [85]. Although the network industry, however, has not yet

agreed on a standard for the northbound interface, its efforts are aligned with the

8

development of intent-based networking interfaces [14, 66]. Intent-based networking

uses a prescriptive rather than descriptive approach to network configuration; that is,

network operators and applications describe a goal, and the SDN controller decides

how to implement it.

When SDN was proposed in 2008 by McKewon et al. [75], the authors assumed

a network composed of only switches and routers. This first assumption omitted

middleboxes and other common functions in computer networks. In a 2012 paper

about SDN shortcomings, Casado et al. [17] reflected on how these shortcomings

could be improved by using some ideas from multiprotocol label switching (MPLS).

The authors argued that an ideal network design should be simple, vendor neutral,

and future proof and thus proposed a network design composed of an edge and a core

fabric, each controlled by independent SDN controllers. In this approach, the edge

is responsible for complex network services and the core fabric handles basic packet

transport. One of the benefits is that edge and core control planes continue to evolve

separately.

SDN and Scientific Applications

Researchers have already proposed the use of SDN for enhancing scientific applica-

tion resource management and performance over a WAN connection. For instance,

the Lark project [108] proposed a flexible and fine-grained mechanism to manage

network resources in high-throughput computing (HTC) systems [7]. Using Linux

containers [70], virtual Ethernet devices, and SDN [108], Lark enables network re-

source management with per-job granularity for HTC systems such as HTCondor. In

this architecture, each job is assigned to a separate network namespace [69], and each

HTCondor node has a virtual switch (e.g., Open vSwitch or Linux bridge) that in-

terconnects network namespaces to physical interfaces. The work considers only jobs

running on the same node and allows users to actively change the network layer when

9

they submit batch jobs. To demonstrate these capabilities, the authors developed a

bandwidth management system and a job aware OpenFlow controller and measured

the performance overhead for both implementations. Because of the creation and the

configuration of network namespaces, the authors reported a job startup overhead of

one second. However, as a typical HTC job duration is measured in hours, this delay

is negligible. Furthermore, the authors recognized that their SDN controller adds an

additional level of complexity to the system, reducing overall stability.

Researchers also use SDN to enhance scientific application resource management

and performance of a WAN connection by developing applications with network-

ing capabilities via end-to-end SDN (DANCES project) [52]. DANCES investigates

and develops the ability to add network bandwidth scheduling via SDN programma-

bility to selected cyber-infrastructure services and applications in extreme science.

DANCES [52] seeks to enhance the performance of cyberinfrastructure applications

(e.g., GridFTP [2] data transfers, SLASH2 [86] distributed file system data transfers,

and SCP) by adding network bandwidth scheduling via SDN. The project developed

a bandwidth management component called centralized OpenFlow and network gov-

erning authority (CONGA), whose main function is to receive bandwidth requests

from a resource manager or scheduling system and determine if the request can be

fulfilled. To determine if a request is accepted or rejected, CONGA utilizes two crite-

ria: (1) if resources are still available on the network, and (2) if the user is authorized

to request this amount of bandwidth.

Network Access Control and SDN

Network access control (NAC), standardized as IEEE 802.1X [57], is a common com-

puter security approach that authenticates endpoints and grants them access to a

computer network. NAC, whose main focus is policy enforcement, was one of the first

10

applications developed for SDN [16, 78, 74, 106]. Casado et al. [16] proposed a se-

cure architecture for the networked enterprise (SANE) that defines a single protection

layer that governs all routing and access control decisions in the network. Similarly,

Nayak et al. [78] proposed Resonance, a system for securing enterprise networks us-

ing dynamic access control policies and network devices as enforcement points. Also

using SDN principles, FlowNAC [74] and FlowIdentity [106] adapt the IEEE 802.1X

protocol. While FlowNAC performs authorization by a set of pre-defined flow rules

per network service, FlowIndentity enforces a policy through a stateful role-based

firewall updated dynamically in the SDN controller.

To access network resources, NAC requires the authentication of users/devices

and further authorization following the AAA (authentication, authorization, and ac-

counting) framework [29]. A user obtains authentication by many means such as

passwords, certificates, and tokens, and authorization by three methods: an agent

sequence, in which a user/device contacts a AAA server; a pull sequence, in which

a user/device contacts a resource that then contacts the AAA server; and a push

sequence, in which a user/device contacts a AAA server, receives a ticket, and then

presents the ticket to a resource that also validates the token [102].

Gommans et al. [46] proposed a token-based access control mechanism for multi-

domain lightpath (i.e., a fiber optics path) reservations in research and education

networks. The authors identified and demonstrated three ways of enforcing access

control policies: using a token-based switch at the IP packet layer; including a token

in a specific field of RSVP-TE signaling protocol for GMPLS-based network at the

control plane; and implementing an authentication, authorization, and accounting

server, a token enforcement point, and a lightpath resource allocation system at

service layer signaling. However, while this work extended to multiple domains, it

did not use SDN because it had not been widely adopted.

11

1.4.3 Software-defined Exchange Points (SDX)

A novel internetworking paradigm, software-defined exchange (SDX), allows multi-

ple independent administrative domains to share computing, storage, and networking

resources. Therefore, an SDX can be regarded as a next-generation advance reserva-

tion system. This effort is promoted mainly by users and operators of research and

education networks. Currently, networking researchers use SDX to incorporate SDN

technologies into the networking infrastructure of Internet exchange points (IXPs) [49]

and academic exchange points [73, 72]. Taking into account the exchanged networking

resources, we can classify SDX solutions as follows: (1) layer 3 SDXs, which exchange

BGP updates in Internet exchange points [49, 96]; (2) layer 2 SDXs [73, 72], which

exchange multi-domain Ethernet circuits in research and education networks; and (3)

SDN SDXs [15, 67], which interconnect SDN islands. In the following sub-sections we

provide more details about these three types of SDXs. For a more extensive review

of SDX architectures refer to [20], from which we also discuss the ideas pertaining to

the exchange of computing and storage resources.

Layer 3 SDX

A layer 3 SDX provides SDN capabilities to the switching fabric of an IXP. The main

characteristics of this kind of SDX is its handling of exchanges of BGP routes between

IXP participants, the layer 3 SDX requires a BGP process. The minimum additional

requirements are an SDN-enabled fabric, an SDN controller that installs flows be-

tween the participants, and a BGP process that listens to the BGP announcements

of participants. To enrich policies that can be defined by BGP, a policy manager is

recommended. Some examples of layer 3 SDXs are Cardigan [96], a distributed router

based on RouteFlow and a mesh of OpenFlow switches represented as a single logical

switch, and SDX [49], an SDN framework for improving the network management

capabilities of BGP participants in an IXP.

12

Layer 2 SDX

According to definitions provided at the 23rd GENI Engineering Conference (GEC23),

a layer 2 SDX is mainly used in RENs to interconnect research facilities by using layer

2 technologies such as Ethernet VLANs over optical circuits. Arguably, a layer 2 SDX

is a redefinition of an advance reservation system. Following this assumption, we could

classify SDN-enabled advance reservation systems (e.g., AL2S and OSCARS) as layer

2 SDXs.

SDN SDX

The design objective of the SDN SDX is to interconnect SDN islands managed by in-

dependent administrative domains. Again, this definition shares many characteristics

of the advance reservation systems we presented in Section 1.4.1. However, while an

SDN SDX provides a broader view of the deployment of SDN flow rules within multi-

ple SDN domains, the SDX for scientific applications, the focus of this study, provides

a narrower scope of the deployment of SDN flow rules within collaborating scientific

facilities. Two ways of building an SDN SDX are utilizing either a centralized or peer-

to-peer architecture. A centralized SDN SDX architecture could be implemented in

one of three ways: (1) implementing a single logically centralized controller; (2) using

an intermediate slice manager such as FlowVisor[93] or FlowSpace Firewall[43] that

allows an external controller (i.e., the SDX controller) to manage a portion of each

participant’s network; or (3) creating a hierarchy of controllers with a local controller

at each exchange being managed by a separate higher-level controller. The second

way of building an SDN SDX, the peer-to-peer architecture, uses a west-east protocol

between controllers in the SDX [67].

SDX Taxonomy

We initiated our investigation by conducting an extensive review of SDX architec-

tures [20]. Taking into account the exchange of computing, storage, and networking

13

resources the spectrum of definitions for an SDX ranges from networking exchanges

to cloud-service exchanges. We defined a taxonomy for SDX [21, 20], based on the

resources exchanged as shown in Figure 2. It is important to note that most of the

work in inter-cloud precedes the definition of the term SDX. An observation of our

study is that infrastructures that do not classify themselves as SDX can be organized

under our taxonomy.

Figure 2: SDX Taxonomy

SDX Use Cases

Our SDX taxonomy classifies SDX architecture infrastructures, which influences the

type of application or use case for an SDX. For instance, on an Internet exchange point

(IXP), we would like to define richer policies than those allowed by BGP. To augment

the capabilities of BGP policies in an IXP, Gupta et al. [49] proposed four SDX

applications: application-specific peering, inbound traffic engineering, wide-area load

balancing, and redirection through middle boxes. In the context of federated testbeds,

the FELIX project[15] defines six applications classified into two main groups: the

14

data domain and the infrastructure domain. Under the data domain, the authors de-

fined three applications: data-on-demand, data preprocessing, and high-quality media

transmission over long-distance networks. The applications for the infrastructure do-

main are data mobility for inter-cloud use, follow-the-sun (or -moon) principles, and

disaster recovery by IaaS migration. Table 1 summarizes SDX applications that we

found in the literature.

Table 1: SDX Uses Cases

Use Case Description Current Solution

Application-

specific

peering[49]

Two neighboring AS exchange

traffic only for certain applica-

tions. SDX could instead install

custom rules for groups of flows

corresponding to specific parts of

flow space.

ISP could configure packet

classifiers, Virtual Routing

and Forwarding (VRF) and

policy based routing

Inbound traffic

engineering[49]

By installing forwarding rules in

SDN-enabled switches at an ex-

change point, an AS can directly

control inbound traffic according

to source IP addresses or port

numbers.

Destination based routing.

Need to use AS prepend-

ing, communities and selec-

tive advertisement

Wide-area

server load

balancing[49]

A participant could announce

anycast prefixes and the SDX

controller would rewrite the des-

tination IP address to match the

chosen hosting location based on

any fields in the packet header.

DNS global load balancing,

IPv6 anycast

15

Table 1: SDX Uses Cases

Use Case Description Current Solution

Redirection

through

middleboxes[49]

An SDN-enabled exchange point

can redirect targeted subsets of

traffic through one or more mid-

dleboxes.

Manipulate the routing pro-

tocols to “steer” traffic

through a fixed set of mid-

dleboxes.

Data-on-

demand[15]

An SDX controller could au-

tomatically establish links be-

tween different end points (e.g.

data storage and applications or

users), guaranteeing the reliabil-

ity of the end-to-end communica-

tion (e.g. minimum delay and jit-

ter).

Content Centric Networks

/ Information Centric Net-

works

Data preprocess-

ing for minimiz-

ing network la-

tency effect for

live data[15]

In these situations, a dedicated

platform would be placed near

the receiver station and perform

a suitable preprocessing of the

data, reducing the size of the data

to be transferred.

WAN compression / WAN

acceleration

High-quality

media trans-

mission over

long-distance

networks[15]

A higher quality of the media

playback, imposes higher band-

width and lower delay constraints

on the network. This will re-

quire inter-domain QoS policies

to achieve satisfactory QoE.

Compression and buffering

techniques at the client and

server ends

16

Table 1: SDX Uses Cases

Use Case Description Current Solution

DDoS

Mitigation[34]

Add DDoS detection and mitiga-

tion capabilities in the IXP

BGP FlowSpec

Prefix hijacking

prevention[5]

Deploy RPKI in an Software De-

fined IXP

RPKI

Inter-Cloud use

case[15]

Data mobility service by SDN

technologies. A SDX controller

would be able to transfer user

data (such as credentials, appli-

cations and services) to a cloud

system closer to his/her visiting

place.

Mobility Management

Follow the

sun (or moon)

principles[15]

An SDX controller could shift the

load of one federated cloud to an-

other one depending on the avail-

ability of resources and time of

the day.

Cloud orchestration /

scheduling

Disaster recov-

ery by IaaS

migrating[15]

An SDX controller could coordi-

nate the configuration of the hy-

pervisor resources with the net-

work bandwidth constraints to al-

low a fast and efficient migration

of the IaaS instance from one site

to the other.

Replication to contingency

sites

17

Table 1: SDX Uses Cases

Use Case Description Current Solution

Source-

Address Based

Multi-Path

Routing[67]

Supports multipath inter-domain

routing to the same destination

based on different source IP ad-

dresses.

Traffic Engineering in pri-

vate WAN

Inter-Domain

Path Computa-

tion (IDPC)[67]

The purpose of IDPC is to achieve

end-to-end QoS routing. After

WE-Bridge modules in all the do-

mains exchange local virtual net-

work views including the band-

width information, each domain

can construct a relative global

network view.

None

SDX Architectures Comparison

We conducted a comparison of the SDX architectures according to metrics such as

scalability, resiliency, and peering boundaries (see Table 2).

Scalability - In the literature only SDX [49], Cardigan [96] and SDN-IP [68]

present a performance evaluation of their solutions while FELIX [15], WEBridge [67],

and SP-SDN[61]) do not provide any quantitative evaluation of their work. The main

scalability metric for SDX, Cardigan, and SDN-IP is the number of RIB entries or

flow rules, since they are examples of Layer-3 SDXs. Table 3 shows the performance

evaluation results presented in each paper. For SDX, we considered the maximum

values of 1,000 prefix groups with 300 participants in the IXP [49]. For SDN-IP, we

18

Table 2: SDX Architecture Comparison
Layer-3
SDX

Layer-2
SDX

Centralized
SDN SDX

Peer-to-
Peer SDN
SDX

Goal To allow
BGP peering
between SDN
and non-SDN
networks,
enabling
richer policy
descriptions

To inter-
connect
independent
networks
using L2
technologies
(VLAN) and
OpenFlow

To intercon-
nect SDN
islands and
to extend
SDNs across
multiple do-
mains using
a centralized,
hierarchical
controller

To intercon-
nect SDN
islands and
to extend
SDNs across
multiple do-
mains using
a West-East
interface,
protocol

Architecture
components

SDX con-
troller, SDX
fabric, Route
Server, BGP
Speaker,
Policy Server

SDX con-
troller, SDN
fabric, Policy
Server

SDX con-
troller, SDN
switches or
slices, inter-
domain link,
Policy Server

SDX con-
troller, West-
East Inter-
face/Protocol,
West-East
Link

SDX Type Centralized Centralized Centralized Peer-to-Peer
Topology
Design

Centralized
Single Fabric
(Edge and
Core), Single
centralized
controller

Centralized
Single Fabric,
Centralized
controller

Inter-domain
L2 links
between
switches/slices,
Centralized
controller

Inter-domain
L2 links
between
switches/slices,
Peer-to-Peer
control plane

Peering
Protocol

BGP Static VLAN,
Q-in-Q

OpenFlow,
NSI

WE-Bridge
+ Modified
LLDP

Isolation Virtual
switch per
participant

VLAN Slices Virtual net-
work view

19

considered the most recent value shown in ONOS SDN-IP Wiki1 as opposed to the

value presented in the paper [68].

Table 3: Layer-3 SDX Scalability comparison
Name Max. Flow Rules Compilation or Convergence Time
SDX 30000 700 sec.

Cardigan 1135 1 sec.
SDN-IP 15000 RIB entries 100 RIB updates/sec

Resilience - Resilience is the ability to maintain acceptable levels of service

in the face of faults in the network infrastructure. In this regard, since the SDX

controller becomes a single point of failure in the centralized approach, the peer-

to-peer SDX architecture is inherently more resilient. However, resilience measures

can be built into the centralized SDX architecture by the addition of distributed-

computing techniques. For instance, SDN-IP is an application that runs on top of

ONOS[8], an SDN-distributed network operating system.

Peering Technologies - To enable inter-domain networking, the boundaries be-

tween domains need to be set. BGP is used for Layer-3 routing while VLAN mapping

and Q-in-Q tunneling are preferred in Layer-2 deployments. More recent architec-

tures such as peer-to-peer SDN SDX require modifications to the LLDP protocol that

delineate the boundaries between two SDN domains [67] in an automated fashion.

Deployment Considerations - The deployment of an SDX requires several

considerations with regard to downtime, network topology changes, and disruption of

services. Although Cardigan was deployed in a small IXP in New Zealand, the study

does not discuss deployment issues or experiences [96]. By contrast, the remainder

of the proposed solutions have been tested in emulation environments (i.e., Mininet)

or in research and education networks. To deploy a large-scale Layer-3 SDX in an

IXP, network operators might take advantage of hybrid SDN approaches in which

SDN and conventional switches coexist in the same infrastructure. For instance, it is

1https://wiki.onosproject.org/display/ONOS/SDN-IP+Architecture

20

preferable that an IXP maintain its high-speed core fabric while adding SDX switches

in the edge, which allow richer BGP policies.

Regarding centralized SDN SDX architectures, a sliced approach will increase the

cost of deployment. For instance, if a certain SDN domain does not participate in

an exchange using a slice manager, the deployment of the slice manager should be

carefully planned so that it does not interrupt service in a production network. Since

the resources allocated to the SDX are isolated and restricted, the sliced approach

provides the most security. In the case of the subcontroller architecture, one should

consider the communication protocol between controllers in the hierarchy (i.e., the

customer controller, the ISP controller, and the ISP sub-controller) and have a rule

conflict resolution mechanism for security.

Finally, control messaging should be deployed over secure protocols. In the case

of a centralized SDX controller over slices, the use of TLS should be mandatory, and

mutual authentication between the controller and slices is recommended. Likewise,

peer-to-peer approaches should include security mechanisms in their protocols such

as encryption of the payload and authentication of peer SDX controllers.

Security Considerations for SDXs

The NSF report on the workshop on software-defined infrastructure (SDI) and software-

defined exchanges [88] identified network slicing as a promising way of securing SDI

and SDX. A network slice is a logical instantiation of a physical network that provides

the isolation of user traffic. The authors emphasize that to achieve secure slicing, SDX

slices should incorporate admission control, secure slice provisioning, unforgeable slice

identifiers across domains, and verification and auditing mechanisms. Although net-

work slicing provides security guarantees for an SDX, the SDN paradigm introduces a

new attack vector on a network infrastructure. For instance, if we assume a compro-

mised SDN controller that allows an attacker to gain control over the whole network

21

or compromised switches that install malicious flow rules on the data plane [65], such

problems could be extrapolated to an SDX as a malicious SDX controller or a partic-

ipant domain. In the following paragraphs, we present studies that have tackled the

problem of malicious SDN controllers and switches on a single domain.

One architecture that has addressed the problem of compromised switches is Flow-

Mon. This architecture detects compromised switches through real-time analysis of

network traffic statistics collected by OpenFlow in an SDN controller. Their main

objective is to detect packet droppers (i.e., switches that purposely drop packets)

and packet swappers (i.e., switches that forward packets to port that they were not

intended for). To achieve their goal, the authors extended an SDN controller with

two extra functional blocks: a malicious switch detection and prevention (MSDP)

block and a policy block. While the MSDP continually and transparently analyzes

the communication between the controller and switches, the policy block contains a

set of rules enforced whenever a malicious switch is detected. The authors then pro-

posed algorithms for detecting packet droppers by using information collected from

port statistics from switches, and packet swappers by investigating the reports of

unknown flows and comparing their expected output interfaces to their actually ob-

served ones. Their results indicated that both algorithms had the ability to detect

malicious switches in a mixed environment.

In another study that mitigate problems with malicious controllers, Schiff and

Schmid [89] analyzed distributed control planes that are resilient to malicious con-

trollers, represented by a malicious network administrator, a compromised controller

software, or unintentional misconfigurations. The authors argued that a control plane

that is resilient to malicious controllers requires a basic notion of memory and aware-

ness of history. Their solution introduced a model in which a majority of benign

controllers is responsible for accurately updating data plane switches despite the

presence of malicious controllers by using a light-weight inband mechanism analogous

22

to consensus protocols. Their model assumes that data plane switches are trusted

and each switch maintains a summary of the controller state and history. After veri-

fying that a majority of controllers agree on the change, the switches implement the

requested update.

Betge-Brezetz et al. [10] proposed a solution for alleviating a possible lack of

trust between an SDN controller and its applications. Their proposal was similar, in

essence, to that in [89] because it relied on several redundant controllers that may

also be running separate executing environments. However, instead of a consensus

protocol, the authors introduced an intermediary layer, a trusted-oriented controller

proxy (ToCP), between the control plane and the data plane. ToPC was responsible

for collecting and analyzing configuration requests from all redundant controllers and

evaluating if they were consistent and trustworthy before determining whether to

deploy them in the data plane or not. Their solution, implemented in Java, used

the OpenVirtex [1] network hypervisor. Their results showed that ToPC introduced

performance costs because of the degradation of service and the addition of computing

resources.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces our reference archi-

tecture for orchestrating intercontinental multi-domain, multi-path advance reserva-

tions in science networks leveraging SDN and SDX, and Chapter 3 shows the design,

implementation, and evaluation of a system for multi-domain, multi-path interconti-

nental advance reservations based on our architecture. Chapter 4 present the design

of a proposed interface that allows domain-expert scientists to request novel network

services for supporting big data science research. Chapter 5 presents FAS, a feder-

ated auditing system for SDXs that allows network operators to verify whether their

configurations have been correctly deployed on an SDX without revealing internal

23

topology detail of participant SDXs. In chapter 5 we also present an architecture for

advance reservation access control using SDN and tokens. Finally, Chapter 6 presents

the conclusions of this thesis, and defines future research necessary to further evaluate

the new architecture, protocols, and interfaces impact on actual science data network

infrastructures.

24

Chapter II

ARCHITECTURE OVERVIEW

To support multi-path, multi-domain advance reservations for intercontinental ded-

icated circuits, we require an architecture that takes advantage of the agile pro-

grammability of SDN and the enriched connectivity provided by SDX to compose

functional multi-path, multi-domain advance reservations while improving the suc-

cess rate of user’s requests and the performance of science data transfers. Our initial

investigation reveals that no existing architecture is capable of providing multi-path,

multi-domain advance reservations. Hence, we propose a new architecture [24], which

is composed of the following components (see Figure 3):

1. Site controllers residing at sites research facilities that generate or process data.

2. WAN and SDX controllers that interconnect participating sites.

3. Orchestrators that consume services from site, WAN, and SDX controllers, while

exposing end-to-end services to end users.

4. Users (e.g., domain-expert scientists) or applications (e.g., data workflow man-

agement systems) that consume end-to-end services composed by an orchestra-

tor.

2.1 Site, WAN, and SDX Controllers

The site, WAN, and SDX components of our architecture follow the same SDN ab-

straction proposed by the ONF (i.e., infrastructure layer, control layer, and applica-

tion layer). In our architecture, the application layer of SDN represents the science

25

Figure 3: Reference architecture for end-to-end service orchestration in multi-domain
science networks. Several independent administrative domains are connected by
inter-domain links, and expose science network services to a centralized orchestrator
through the domain to orchestrator (D-O) interface. The orchestrator then composes
end-to-end science network services and exposes them to domain-expert scientists and
data transfer applications through the user to orchestrator (U-O) interface.

network services exposed by each type of controller (i.e., site, WAN, and SDX con-

troller). In this context, a site, WAN, or SDX controller may be any type of existing

SDN controller, advanced reservation system, or SDX controller. The main require-

ment is that the northbound interface of these controllers should abstract the details

of the network infrastructure and expose relevant science network services. More de-

tails about this type of interface is provided in Section 2.3.1. The infrastructure layer

is composed of the data plane switches of each participant domain.

2.2 Orchestrator

The orchestrator is in charge of consuming services exposed by participant domains

(e.g., Site, WAN, and SDX controllers), and composing end-to-end scientific services.

For instance, in order to connect site A to site B in Figure 3, the orchestrator needs to

know if all domains in between can provide this connectivity. To successfully compose

end-to-end services, an orchestrator requires resource management, scheduling, and

path computation functionalities. Our orchestrator maintains a minimal set of tables

26

or “databases”: a table of participant domains and the services they provide, and a

global topology view. Two approaches exist for managing and scheduling resources.

The orchestrator may maintain a centralized resource manager and scheduler, or

the orchestrator may allow each domain to manage their resources, and query for

their network status whenever is needed. Currently, some [40] advocate for a loosely

coupled infrastructure, leaning which matches the second approach.

An example of end-to-end service composition is the following: a user or appli-

cation wants to connect a telescope in site A to a supercomputer in site B with a

maximum latency of 100 ms. After verifying the domains involved in this end-to-end

service, the orchestrator contacts each domain, querying if a path with the requested

maximum delay is possible. Each queried domain does not have global knowledge

about the end-to-end path, but they can commit to latency of their portion of the

end-to-end path. The orchestrator then has to evaluate if a path that meets the

end-to-end latency requirement can be formed. Otherwise, the orchestrator will try

to find an alternative path, or will try to negotiate a maximum delay higher than 100

ms. In the presence of multiple paths and SDXs interconnecting them, the chances

of composing a successful end-to-end service rises.

2.3 Interfaces and Services

Users in our system are domain-expert scientists whom in most of the cases do not

have expertise in network operations, but still need to request reservations to expedite

their data transfers. Additionally, scientists use data workflow management systems

(e.g., Globus [45]) to automate the process of moving and sharing data across research

facilities. In our reference architecture, both scientists and applications request end-

to-end science network services to the orchestrator by using interfaces that abstract

network infrastructure details in our reference architecture. The following subsections

provide more details about the interfaces that allow communication between site,

27

WAN, or SDX controllers and an orchestrator, and between users or applications and

orchestrators.

2.3.1 Domain to Orchestrator (D-O) Interface

The domain to orchestrator interface, depicted as D-O interface in Figure 3 allows

a science network orchestrator to consume services from a site, WAN, or SDX con-

troller. To understand the services that should be exposed by a site controller, we

studied the Energy Science Network (ESNet) requirement review reports from 2013 to

2015 [26], and synthesized the most common scientific data transfers as follows: bulk

data transfer, real-time data transfer, and management network traffic. Bulk data

transfer is used to move large data sets between research facilities. GridFTP [2], an

enhanced version of FTP for scientific applications, is one of the most used protocols

for performing this kind of data transfer. Real-time data transfers are used for data

streaming applications. For instance, a sensor network installed in an agricultural

field transfers real-time sensor data to a remote server, or a scientist may access a

remote visualization of a simulation running on a supercomputer. Management traf-

fic allows the monitoring of the network by conducting active network performance

tests, or managing scientific workflows, such as scheduling a backup or changing the

orientation of a remote telescope.

2.3.2 User/Application to Orchestrator (U-O) Interface

The user/application to orchestrator interface, depicted as U-O interface in Figure 3

allows a scientist or a scientific application to request services from a science network

orchestrator. To overcome rigid interfaces that only allow users to request a certain

amount of bandwidth during a limited amount of time, we propose to describe a

request based on time and bandwidth constraints. For instance, continuing with the

example presented in Section 2.2, the user requires that her connection has strict

time constraints (i.e., the transfer starts at 6:00AM local time, after the telescope has

28

taken images of the night sky), and the connection requires maximum bandwidth to

finish the job as soon as possible. Details of bandwidth and delay should be left for

network operators. A domain-expert scientist, for example a physicist, only wants to

transfer X amount of gigabytes before certain deadline. The U-O interface includes

flexible parameters that allow the orchestrator to negotiate an optimal solution to

a user request, given the user constraints and the network state. Although, the U-

O interface is an important component of the overall architecture, we will focus on

the D-O interface and the components pertaining the network infrastructure for this

study.

2.4 Authentication and Authorization

Authentication and authorization are important topics in this architecture for multi-

domain science networks. Authentication is required for the orchestrator to authen-

ticate participant entities and users or applications coming from several independent

administrative domains. Then, authorization is required before the orchestrator is-

sues any provisioning request to participant domains. Digital certificates may be used

for mutual authentication between the orchestrator and participant entities, and a

federated identity management system (e.g., Shibboleth [94]) may be used for the

orchestrator to authenticate users and applications. Under this model, users are not

required to have an account at each location, but they are authenticated using their

institutional credentials. We propose to enforce authorization by installing policies on

each entity (i.e., Site, WAN, and SDX controllers) that define what are users allowed

to do, depending on their roles or affiliation (e.g., institution, project, or individual).

2.5 Consensus and Negotiation Protocol

Consensus among participant domains is vital for ensuring consistency of end-to-end

services across multiple domains. For example, if one of the domains involved in

an end-to-end service is not able to provide the requested service, the orchestrator

29

should be able to resolve this issue. Another example is that two users request the

same resources at the same time, leading to a potential race condition. We propose

to incorporate a two-phase commit protocol in the D-O interface to ensure consensus

among participant domains and the orchestrator.

A negotiation protocol is a vital component of our architecture that allows the

orchestrator to compose multi-domain, multi-path advance reservations. In tradi-

tional settings, an orchestrator will only be allowed to make reservations after a path

computation system determines the domains on a single path. In our approach, a

negotiation protocol will allow the orchestrator to explore multiple paths, and dis-

tribute the bandwidth reservation among several advance reservation systems. Then,

negotiate with several SDXs to interconnect these advance reservations and compose

a final end-to-end service.

30

Chapter III

ORCHESTRATING INTERNATIONAL ADVANCE

RESERVATIONS WITH SOFTWARE-DEFINED

EXCHANGES

3.1 Motivation

3.1.1 Bandwidth Request Splitting in Advance Reservation Systems

Traditionally, advance reservations requests are defined by source and destination

endpoints, required bandwidth, start time, and end time. An advance reservation

system performs path computation and scheduling operations to verify if resources

are available to fulfill a request. Current implementations try to find an exact match

for constraints provided in the request, and they fail if a suitable advance reservation is

not found. Researchers have proposed scheduling algorithms for flexible (or malleable)

advance reservation that increase the success rate of a reservation request on single

domain scenarios [6, 101, 105]. However, for intercontinental advance reservations, in

which the circuit spans multiple domains and follows a single path, flexible/malleable

techniques lose their benefits because participant domains have to agree on the rigid

constraints of the original request to compose the end-to-end service.

Let us consider a multi-domain, single-path advance reservation, with N partic-

ipant domains and a success probability p for each individual domain. Then, the

success probability of the entire reservation request (i.e., all domains succeed) is pN .

For instance, according to Xiao et al. [105] a conventional reservation system has a

66% success rate. If we consider an international advance reservation that spans two

independent administrative domains, the success rate decreases to 43.56%.

31

Now, let us consider a multi-domain advance reservation that allows path diver-

sity, and the requested bandwidth can be split over multiple paths. For simplicity,

let us consider two research facilities connected across two possible advance reserva-

tion systems. We are allowed to request advance reservations to both systems, and

we obtain a successful multi-domain, multi-path advance reservation if the sum of

multiple path bandwidth requests is greater than or equal to the original required

bandwidth. For N possible bandwidth offers from each domain, we obtain N2 overall

possible combinations. The success probability of the system is given by the following

expression:

∑N
x=1 x

N2
=

N(N + 1)

2N2
=

1

2
+

1

2N

As N tends to infinity, the probability of success of such a system is approximately

50%. Fortunately, these types of scenarios are possible in the real world. The average

degree of both ESNet’s and Internet2’s routed network topologies is approximately

three (i.e., on average we could find three mutually exclusive paths between a source

and a destination within any of these domains). Furthermore, we also find this path

diversity on intercontinental links originated from the United States, as shown in

Figure 4. The topology maps of ESNet [35] and Internet2 [42] report at least three

links to Asia Pacific, three links to Latin America, and four links to Europe. However,

this improvement is not possible without architectural changes to the system that

supports end-to-end science network services. What architectural approaches will

enable multi-path, multi-domain advance reservations for intercontinental dedicated

circuits, while enhancing the performance of science data transfers? We posit that by

inserting an SDX in the junction point between participant domains enabling advance

reservations to multiple domains in the path between two research facilities, we can

compose functional multi-path, multi-domain advance reservations that enhance the

performance of science data transfers.

32

Figure 4: Intercontinental R&E links originated from the United States.

3.1.2 Software-defined Networking (SDN)

By taking advantage of the agile programmability of SDN, Ibarra et al. [56] have im-

proved the provisioning time of international advance reservations in R&E networks

from several days to a few minutes. Furthermore, in our work [23] we proposed the use

of SDN and tokens to protect access to advance reservations at the research facility

end, while keeping the same improvements achieved in [56]. Although SDN effectively

reduces provisioning times of advance reservations, international or intercontinen-

tal advance reservations will require WAN-optimized protocols for the coordination

and composition of science network services. What architectural approaches will al-

low multiple independent administrative domains to cooperate in the composition of

multi-path, multi-domain advance reservations while maintaining the improvements

attained by SDN in terms of provisioning times? We postulate that an orchestration

layer on top of domain, SDN controllers or advance reservation systems, combined

with a WAN-optimized negotiation protocol will maintain the composition and provi-

sioning of multi-path, multi-domain advance reservations in the order of seconds.

33

3.1.3 Software-defined Exchange (SDX)

SDXs are another architectural innovation that will enable multi-path, multi-domain

advance reservations. Moreover, SDXs will also enable novel science network services

such as multi-path bandwidth splitting across independent WAN providers, scheduled

path migrations that are transparent to data transfer applications, and multipoint-

to-multipoint advance reservations. As SDX is a nascent technology, we need to know

the advantages and disadvantages of using SDX as an interconnection point for multi-

path, multi-domain advance reservations. For instance, it is well known that when

using hashing for load balancing, all traffic corresponding to the same hash will be sent

to the same interface. Nevertheless, we can take advantage of data transfer protocols

(e.g., BBCP [82] and GridFTP [2]) that create multiple parallel TCP streams [54],

and distribute these streams over a multi-path, multi-domain advance reservation.

Furthermore, data transfer protocols have been designed for resilience. Another ex-

ample is the case when networking resources are not available on a continuous time

window in all domains. We propose to use SDXs to transparently migrate advance

reservations from one path to another in the middle of an advance reservation. What

are the architectural approaches at the SDX level that will enable the aforementioned

novel science network services while enhancing the performance of end-to-end data

transfers? We hypothesize that by designing SDX services that take advantage of the

network traffic characteristics of data transfer protocols, we will improve the perfor-

mance of science data transfers, while enabling novel services not offered before by

science and R&E networks.

34

3.2 Design

In this section we present the design challenges for a system that provides multi-

domain, multi-path advance reservation for intercontinental circuits in science net-

works [24]. We focus on the orchestrator and its interfaces that are used to com-

municate with end users and participant domains, the negotiation protocol, and the

SDX services required to compose this kind of circuits. Additional components of

the orchestrator such as path computation, scheduling, and resource management

are outside the scope of this work, but algorithmic approaches to these standard

components are readily available in the literature.

So far we have presented the orchestrator as an entity that oversees the compo-

sition of intercontinental advance reservations. However, many questions emerge in

terms of real-world deployment and management: is the orchestrator centralized or

distributed? Who runs and manages the orchestrator? We propose that a single

entity deploys several instances of the orchestrator for load balancing and resilience.

The orchestrator then, is physically distributed and logically centralized. The or-

chestrator may be run by a consortium of network providers. For more flexibility,

we propose that each scientific community runs its own orchestrator that exposes

services to orchestrators in higher levels, creating a hierarchy of end-to-end service

orchestrators.

3.2.1 General Workflow

This section describes the general workflow for requesting and composing multi-path,

multi-domain intercontinental advance reservations. We assume that multiple paths

exist between two research facilities, and these paths traverse multiple administra-

tive domains that provide connectivity and guaranteed bandwidth by using advanced

reservation systems. We also assume that SDXs serve as interconnection points for

35

these administrative domains, enabling richer connectivity. An orchestrator (see Sec-

tion 2.2) then is in charge of receiving user requests, requesting science network

resources from the participant domains, and composing end-to-end services. We as-

sume that advance reservation systems provide network service offers the same way

airlines allow us to consult flight availability. For example, the newest code base

for OSCARS provides a “what if?” function that will allow scientists to plan their

network reservations on a Web interface [37].

Figure 5: General workflow for requesting multi-domain, multipath advance reserva-
tions.

36

Figure 5 depicts the general worflow for requesting multi-domain, multipath ad-

vance reservations. The workflow starts with a user requesting an international or

intercontinental advance reservation to the orchestrator, which performs path com-

putation to determine the domains and SDXs on the path. From the orchestrator’s

point of view, participant domains are seen as links, while SDXs are seen as inter-

connection points. Then, the orchestrator decomposes the end-to-end request into

individual requests for each domain and SDX on the path, and the orchestrator re-

quests reservation offers to participant domains. Finally, the orchestrator uses these

offers to compose an end-to-end service, commit offers and contact SDXs to make

interconnections if an end-to-end service is possible, and aborts unused offers. Oth-

erwise the orchestrator aborts all offers.

3.2.2 Negotiation Protocol

In this section we take a deeper look into the negotiation protocol that allows the

orchestrator to compose multi-path, multi-domain advance reservations. By allowing

multiple paths, and using SDXs as interconnection points, we increase the chances of

obtaining a successful reservation as demonstrated in Section 3.1.1. The negotiation

protocol is divided in two phases: phase 1 requests offers from participant domains

and composes an end-to-end service, and phase 2 commits the successful offers, aborts

unused offers, and request interconnection at SDXs. It is important to note that not

all participants are willing to provide reservation offers, either because they have

legacy systems, or because they have privacy concerns. We identify those domains

that provide reservation offers as visible domains, and those that do not provide offers

as blind domains. Visible domains are considered as the initial option to compose

the end-to-end service. Blind domains are only considered if visible domains do not

have enough resources. The rationale behind this strategy is that by considering blind

domains for remaining resources, we increase the chances of success because it is easier

37

to allocate smaller amounts of bandwidth. Our negotiation protocol is composed

of seven types of messages: Reservation, ReqOffers, SendOffers, ReservationPrep,

Commit, Abort, and ReservationResp, that we describe in Table 4.

Table 4: Negotiation Protocol Messages
Message Type Description
Reservation Message from the user to the orchestrator request-

ing an intercontinental advance reservation
ReqOffers Message from the orchestrator to visible domains

requesting advance reservation offers
SendOffers Message from visible domains to the orchestrator

replaying with a list of advance reservation offers
ReservationPrep Message from the orchestrator to all participant

domains and SDXs requesting the preparation of
an advance reservation

Commit Message from the orchestrator to all participant
domains and SDXs committing an advance reser-
vation already prepared

Abort Message from the orchestrator to all participant
domains and SDXs aborting an advance reserva-
tion already prepared

ReservationResp Message from all participant domains and SDXs to
the orchestrator replaying if a preparation, com-
mit, or abort request was a success or a failure.
This message is also used by the orchestrator to
report the results of the request to the user

Figure 6 shows the detailed negotiation protocol considering N participant do-

mains, with M visible domains and N −M blind domains. We consider three sce-

narios:

1. No visibility (M = 0): All participant domains are blind domains (i.e., tra-

ditional advance reservation systems).

2. Full visibility (M = N): All participant domains are visible domains (i.e.,

provide bandwidth offers).

3. Partial visibility (M 6= N): blind domains and visible domains participate

in the orchestration process.

38

Figure 6: Negotiation protocol for multi-path, multi-domain advance reservation
with M visible domains and N −M blind domains.

The negotiation starts with a user requesting a Reservation. This reservation is

decomposed by the orchestrator into individual reservation requests. How the or-

chestrator divides the original bandwidth request depends on the number of visible

and blind domains participating in the process. The orchestrator sends ReqOffers

messages to the M visible domains. These domains respond with SendOffers mes-

sages to the orchestrator, which uses these offers to compose an end-to-end service.

Each SendOffers message contains a token ID [23] to identify the reservation request,

because a domain controller may handle several requests from other individual users

or orchestrators at a time. If the orchestrator is able to compose an end-to-end

39

service, the orchestrator transitions to phase 2 of the negotiation protocol by initiat-

ing a two-phase commit process with the participant domains and the SDXs (using

ReservationPrep, Commit, Abort, and ReservationResp messages). Otherwise, the

orchestrator requests the remaining resources to the blind domains and tries to com-

pose a new end-to-end service. If the service composition succeeds, the orchestrator

transitions to phase 2, otherwise the reservation request fails.

3.2.3 SDX Rules

As mentioned in section 3.2.1, SDXs are considered interconnection points in our

design. For simplicity, we consider that SDXs have sufficient bandwidth to allocate

user requests, so advance reservations are not needed inside the SDX itself. Addition-

ally, we assume that SDXs in a given domain are in a single location (i.e., SDXs are

not geographically distributed systems inside a single domain). We also assume that

advance reservation systems provision layer 2 dedicated circuits or L2 tunnels over

VLANs at each interconnection point. As a result, an SDX allows rules that bridge a

VLAN in an inbound port to another VLAN in an outbound port, split traffic among

several outbound ports, and create the corresponding mirror policies for bidirectional

traffic.

Figure 7 illustrate the bandwidth splitting service block diagram. Our architec-

ture takes advantage of the multi-streaming capability of existing science network

data transfer protocols (e.g., BBCP and GridFTP). For instance, the Globus imple-

mentation of GridFTP [3] uses both TCP striping [54] and parallel TCP to achieve

multi-streaming. We propose that an SDN switch and an SDN controller create flow

rules that assign a new VLAN ID to every new TCP flow. Ideally, these switches and

SDN controllers will be provisioned on demand for each new multi-domain, multi-

path advance reservation, and may reside at the edge of the SDX or at the end sites.

The orchestrator provides a pool of VLANs that are mapped to each independent

40

GridFTP
Node

SDN
Switch

SDN
Controller

VLAN N

VLAN 2

VLAN 1

LAN WAN
GridFTP

Node
SDN

Switch

SDN
Controller

LANWAN

…

L2 TunnelsVLAN
Pool

VLAN
Pool

Orchestrator

Coordination/Synchronization

Figure 7: Block diagram of bandwidth splitting service components for SDX rule
provisioning.

path at the SDX.

The SDN switches in Figure 7 have two ports: a WAN port that receives all

the VLAN IDs representing the L2 tunnels, and a LAN port that connects the end

site. The SDN controllers receive a pool of VLANs from the orchestrator, and tags

each new packet from a specific flow that appears on the LAN port with a new

VLAN ID from the pool before sending the packet to the WAN port. For every new

packet that arrives on the WAN port, the SDN controller removes the VLAN tag and

forwards the packet to the LAN port. The SDN controller selects VLAN IDs from

the pool in a round robin fashion. To ensure that all the traffic belonging to a single

flow traverses the same circuit, a synchronization or coordination between the SDN

controllers assigning the VLANs might exist. Otherwise, we might have the forward

traffic of a TCP flow traversing one tunnel, and all the ACKs returning over another

tunnel. The use of multiple parallel and disjoint TCP flows is not new, but how to

accomplish this in SDX-enabled science data networks is novel.

We consider three approaches for provisioning bandwidth splitting rules in an

SDX: (1) synchronized, (2) unsynchronized, and (3) coordinated VLAN provision-

ing. The synchronized approach relies on both SDXs iterating over the VLAN pool

41

synchronously, effectively mapping each TCP stream to an end-to-end path. The un-

synchronized approach does not care about mapping TCP streams to an end-to-end

path, as long as all path converge to the same SDX and the VLAN ID is stripped or

changed to a single VLAN ID before a packet is sent to the end site. The coordinated

approach guarantees that each TCP stream is mapped to an end-to-end path by

proactively installing a return traffic rule on the receiver side, for each new forward-

ing rule that appears on the sender side. A fourth approach is to proactively install

all possible combinations of TCP source and destination ports mapped to the pool

of VLANs. This approach is too expensive in terms flow table entries, and requires

prior knowledge of the TCP port ranges used in both data transfer nodes. Dynamic

configuration of data transfer nodes is outside of the scope of this work. For that

reason, we do not consider the proactive approach in this study.

3.2.4 Interconnecting the Last Mile

An important component of our design is the last mile interconnection between the

WAN border router and the scientific instrument or supercomputer at the research

facility. Ideally, an SDN controller at the research facility will provision this last

mile interconnection, or a science DMZ [28], a dedicated network for scientific data

transfers, may be used to protect the science network traffic. In the absence of any

of those mechanisms, traditional QoS techniques may be used to provide prioritized

access to the network for scientific data transfers.

3.3 Implementation

In this section we present the implementation of an orchestrator for multi-path, multi-

domain advance reservations, and the implementation of an SDX to support these

services.

42

3.3.1 Orchestrator Implementation

We implemented the orchestrator in Python using an agent-based approach. In this

approach, each participant domain hosts an agent that receives offer requests from

an orchestrator, process those requests internally, and send offers back to the or-

chestrator. We selected an agent-based approach as opposed to simply consuming

the APIs provided by each participant domain because that allows us to control the

WAN communication channel between orchestrator and participant domains, while

allowing us to customize interfaces for each domain controller. The orchestrator

communicates with the agents using the general remote procedure call (gRPC) pro-

tocol [48], a high-performance RPC framework optimized for distributed computing

and mobile environments. gRPC uses HTTP/2, a binary protocol that multiplexes

multiple streams over a single TCP connection, for establishing communication chan-

nels between servers and stubs. On the other hand, HTTP/1.1 uses multiple TCP

connections to issue parallel requests. Another advantage of gRPC is that it uses

protocol buffers [47] for defining services and message types, and serializing data.

3.3.2 Negotiation Protocol Implementation

Considering the three scenarios described in section 3.2.2 (i.e., no visibility, full visi-

bility, and partial visibility), we define three variants of the negotiation protocol for

bandwidth splitting:

1. Equally Splitting: This strategy could be applied to any scenario. However,

it is more suitable for the no visibility scenario, because it does not require the

ability to request offers. In this approach the orchestrator divides the original

bandwidth request in equal parts among the participant domains (see Algorithm

1).

2. Partial Offers: This approach is mainly applicable to the partial visibility

scenario. Here the orchestrator contacts the visible domains for bandwidth

43

offers. If the orchestrator is able to compose an end-to-end service with these

offers only, the orchestrator proceeds with Phase 2 of our negotiation protocol

(i.e., provisioning). Otherwise, the orchestrator tries to request the remaining

bandwidth from blind domains (see Algorithm 2).

3. Full Offers: This approach is only applicable to the full visibility scenario. In

this approach the orchestrator contacts all participant domains for bandwidth

offers. If the orchestrator is able to compose an end-to-end service with these

offers, the orchestrator proceeds with Phase 2, otherwise the reservation request

fails (see Algorithm 3).

Algorithm 1 Equally Splitting

BD ← Set of blind domain
V D ← Set of visible domains
D ← BD

⋃
V D

N ← Total number of participant domains
M ← Number of visible domains
EqSplitReq ← BwReq/N
for domain ∈ D do

if EqSplitReq > AvailableBw then
GoToPhase2()

else
ReservationFail()

end if
end for

3.3.3 SDX Implementation

Our SDX implementation is based on AtlanticWave/SDX [33], an SDX controller

written in Python that uses the Ryu SDN Framework [84] as an OpenFlow [75]

speaker, and has a REST API and Web application for management. Currently, At-

lanticWave/SDX supports advance reservation of L2 tunnels using the Web interface

or the REST API. We added the bandwidth query functionality through a REST

API in AtlanticWave/SDX to support our negotiation protocol. We verified that OS-

CARS, supports a similar functionality through their Web interface, but it does not

44

Algorithm 2 Partial Offers

BD ← Set of blind domain
V D ← Set of visible domains
D ← BD

⋃
V D

N ← Total number of participant domains
M ← Number of visible domains
for domain ∈ V D do
offers← ReqOffers()

end for
if

∑
offers ≥ BwReq then

GoToPhase2()
else
EqSplitReq ← BwReq−

∑
offers

N−M

for domain ∈ BD do
if EqSplitReq > AvailableBw then
GoToPhase2()

else
ReservationFail()

end if
end for

end if

Algorithm 3 Full Offers

BD ← Set of blind domain
V D ← Set of visible domains
D ← BD

⋃
V D

N ← Total number of participant domains
M ← Number of visible domains
for domain ∈ D do
offers← ReqOffers()

end for
if

∑
offers ≥ BwReq then

GoToPhase2()
else
ReservationFail()

end if

45

have a REST API for bandwidth queries.

The AtlanticWave/SDX controller provisions L2 tunnels using VLAN IDs, in the

same way OSCARS and AL2S provision their circuits. We take advantage of this

property to create our bandwidth splitting service using an Open vSwitch (OVS) [85]

switch in OpenFlow mode and a Ryu SDN controller to aggregate two or more L2

tunnels into a single network service as described in section 3.2.3.

We implemented the three rule provisioning strategies (i.e., synchronized, unsyn-

chronized, and coordinated) as Ryu apps. All approaches iterate over a pool of VLANs

assigned to each L2 tunnel in a round robin fashion. The synchronized approach re-

lies on traffic isolation to maintain synchronization between both iterators. In other

words, a pair of OVS-Ryu on each end controls all the traffic of a single multi-domain,

multi-path advance reservation. Both controllers start at the beginning of the list and

advance synchronously with every new flow. For the unsynchronized approach, we

intentionally forced one of the SDN controller to start iterating its VLAN pool list

from a greater index. For the coordinated approach, we used a single Ryu controller

on the Orchestrator controlling both OVS switches at the edge of the SDXs. We chose

this approach for simplicity, but the same goal could be achieved with two separate

controllers controlling each other through a REST API or another communication

channel.

3.4 Evaluation

In this section we evaluate the success rate of the three variations of our negotiation

protocol, and the performance of several provisioning strategies for a multi-path,

multi-domain advance reservation service.

3.4.1 Orchestrator Microbenchmark

Figure 8 compares the system latency of our orchestrator for requesting resources

from eight participant domains, while variating the RTT between the orchestrator and

46

10 100 200 300
Orch. to Participant RTT (ms)

0.0

0.5

1.0

1.5

2.0

Sy
s.

La
te

nc
y

(s
)

REST
gRPC

Figure 8: System latency microbenchmark for an orchestrator requesting resources
from eight participant domains using REST and gRPC, and variating the RTT be-
tween participants and the orchestrator.

participants. We compare REST and gRPC for the communication channel between

the orchestrator and participant domains. We used the GENI (Global Environment

for Network Innovations) platform [9] to conduct our experiment. Our results shows

that even in the worst case scenario (i.e., using REST when the RTT is 300 ms),

the system latency remains below two seconds. We show that gRPC provides better

WAN performance as the system latency remains under one second all the values of

RTT tested.

3.4.2 Multi-path, Multi-domain Advance Reservations

To evaluate our multi-path, multi-domain advance reservation we consider the topol-

ogy depicted in figure 9(a). This topology is composed of four end sites (ANL, CERN,

Gatech, and ORNL), connected to three regional networks (GEANT, Starlight, and

SoX) where an SDX might reside. These three regional networks are further connected

47

to two R&E networks: ESNet and Internet2. To simulate our proposed concepts in

this real network, we created a registry of advance reservations for both ESNet and

Internet2. Each record on the registry represents a time window, and contains the

available bandwidth (randomly generated) for every possible point-to-point connec-

tion. For our simulation we generate a random request composed of a time window,

a required bandwidth, a source, and a destination. We send this request to both

domains individually, and evaluate whether the domains have enough available re-

sources. For our multi-path, multi-domain advance reservation service we evaluate

whether the sum of the available bandwidth in both domains satisfies the request.

We assume a maximum bandwidth of 1 Gbps on both R&E networks. For sim-

plicity, we represent the registry of advance reservations as a time series, and for

each point in the time series we assign an available bandwidth value from a uni-

form distribution. The limitation of this approach is that the uniform distribution

provides a lower bound for the success rate of a single domain advance reservation

system (e.g., OSCARS [77], AL2S [58], and DANCES [52]). As already discussed in

section 3.1.1, the reservation success rate can be improved with flexible reservation

techniques [6, 101, 105], but these benefits are lost once we try to deploy single-path,

multi-domain advance reservations. For this reason, we consider the parameters used

in this simulation a fair representation of the single-path, multi-domain advance reser-

vation.

Figure 9(b) shows that our multi-path, multi-domain approach has an 85% suc-

cess rate when two independent paths are available, compared to approximately 50%

success rate for the state-of-the-art (single path) approach. This 50% success rate

of the state-of-the-art is a result of assuming a uniform distribution for the advance

reservation registry. The multi-path, multi-domain approach evaluated in this simu-

lation considers a full visibility scenario (section 3.2.2) with full offers (section 3.3.2)

from our negotiation protocol.

48

ANL ORNL Gatech CERN

Starlight SoX

ESNet

Internet2

GEANT

(a)

ESNet Internet2 MP-MD0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

(b)

Figure 9: Simulation topology and results: (a) topology for multi-path, multi-domain
advance reservation evaluation simulation; and (b) success rate for multi-path, multi-
domain advance reservation evaluation compared to the state-of-the-art methods.

3.4.3 Negotiation Protocol Success Rate

To evaluate the success rate of the three variants of our negotiation protocol (i.e.,

equally splitting, partial offers, and full offers), we simulated a scenario in which an

orchestrator can request advance reservations from up to four participant domains

to compose a multi-path, multi-domain advance reservation. We chose four domains,

because this is a reasonable number of multiple intercontinental paths between two

sites as mentioned in section 3.1. For each participant domain, we generated a band-

width schedule of 1000 entries that provide the available bandwidth at a given point

in time. A user generates 100 random bandwidth requests within the time window

defined by the aforementioned 1000 entries. We ran the simulation 32 times and took

the averages for each scenario.

Figure 10 shows the results of our simulations. The horizontal line represents the

success rate for a single domain, which is 49.56% under our assumptions. Any of our

strategies outperform the baseline. In the worst case scenario (i.e., equally splitting

under no visibility), the success rate of our orchestrator is approximately 58%. Under

49

2 3 4
Number of Domains

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Eq. Split
Part. Offers
Full Offers

Figure 10: Negotiation protocol success rate for three bandwidth splitting strategies
and up to four participant domains.

the best conditions (four visible domains), our orchestrator (with full offers) achieves

approximately 99% success rate, or 2X improvement.

3.4.4 SDX Experimental Setup

Figure 11 shows the topology of our experimental setup, and table 5 shows the spec-

ifications of the equipment we used to build the testbed. Our testbed is composed

of four virtual switch instances or bridges (bridge1, bridge2, bridge3, and bridge4)

hosted by a Corsa DP2100 OpenFlow dataplane. Each bridge is connected to an

instance of the AtlanticWave/SDX controller [33] (SDX1, SDX2, SDX3, and SDX4)

running on a Docker container inside a Dell PowerEdge R220 server. This server also

hosts our orchestration system: four instances of our orchestration agents (agent1,

agent2, agent3, and agent4), and one orchestrator. Each orchestrator agent runs on a

Docker container, and each one is paired with an SDX instance, while the orchestrator

runs on another Docker container and communicates with the agents using gRPC.

50

We used two customized Supermicro server as the GridFTP endpoints. Each server

runs a docker container with either a GridFTP server or a GridFTP client (globus-

url-copy), an Open vSwitch (OVS) [85] virtual switch, and a Ryu SDN controller [84].

We added a delay of 45 ms on each server’s network interface for a 90 ms RTT to

emulate an intercontinental link. We tuned the TCP configuration of both endpoint

servers for 1 Gbps link speed, 90 ms RTT, and parallel streams as recommended by

ESNet’s Linux Tuning guideline [36].

Corsa DP2100

bridge1

bridge2

bridge3
bridge4OVS1 OVS2

GridFTP
Client

GridFTP
Server

Ryu1 Ryu2
SDX1 SDX4

SDX3

SDX2

agent1

agent3

agent2

agent4

Orchestrator gRPC
REST
OpenFlow
Eth. link

Figure 11: Experimental setup topology.

3.4.5 Throughput Baseline

Data Transfer Methods

We measured the throughput baseline of a data transfer over a single-path, multi-

domain advance reservation versus a data transfer over a multi-path, multi-domain ad-

vance reservation on our testbed using two data transfer methods: GridFTP memory-

to-memory (m2m), and GridFTP disk-to-disk (d2d) data transfers. We used iperf3,

51

Table 5: Experimental setup, equipment specifications
Equipment Specifications
Corsa DP2100 OpenFlow 1.5, multiple flow ta-

bles, multi-context virtualization,
48 Gb packet buffer, 10 Gbps line-
rate

Dell PowerEdge
R220

Ubuntu Server 16.04, 16 GB
RAM, four Intel(R) Xeon(R)
CPU E3-1220 v3 @ 3.10GHz pro-
cessors, four port Gigabit Ether-
net card

Customized Su-
permicro

Ubuntu Server 16.04, 8 GB
RAM, four Intel(R) Xeon(R)
CPU X3430 @ 2.40GHz, two Gi-
gabit Ethernet interfaces

a well-known bandwidth measuring tool as a reference. Figure 12 shows the results

of performing the aforementioned data transfer over a 1 Gbps link with 90 ms RTT.

For iperf3 and GridFTP memory-to-memory, we sustained the data transfer for five

minutes, or the equivalent of transferring a 37.5 GB of data at line-rate over a 1 Gbps

link, while for GridFTP disk-to-disk we actually transferred a 20 GB file, which is a

reasonable size for a scientific dataset [26].

Figure 12(a) shows that iperf3 only reaches 514 Mbps of throughput for a single

L2 tunnel of 1 Gbps of bandwidth, while GridFTP only reaches 488.56 Mbps and

426.72 Mbps of throughput for memory-to-memory and disk-to-disk, respectively.

The reason for this low performance is that our endpoints are optimized for parallel

TCP streams. As we see for two and four parallel TCP streams, iperf3 utilized 93.6%

of the link (936 Mbps of throughput on average), and GridFTP memory-to-memory

used 88.92% (or 889.24 Mbps on average). However, GridFTP disk-to-disk is only

able to use approximately 67% (670.36 Mbps on average) of the link with parallel

streams.

Figure 12(b) shows the throughput baseline after splitting the bandwidth reser-

vation among two 500 Mbps L2 tunnels. For one and two TCP streams per tunnel,

52

1 2 4
TCP Streams

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

iperf3
GridFTP m2m
GridFTP d2d

(a)

1 2 4
TCP Streams per tunnel

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

iperf3
GridFTP m2m
GridFTP d2d

(b)

Figure 12: Throughput measurements while performing data transfers using iperf3,
GridFTP memory-to-memory (m2m) and GridFTP disk-to-disk (d2d) over a 1 Gbps
link with 90 ms RTT: (a) shows the baseline for a single L2 tunnel of 1 Gbps, and
(b) shows the baseline for two L2 tunnels of 500 Mbps each.

iperf3 achieves 936 Mbps of throughput. However, it is only able to achieve 883 Mbps

with four parallel TCP streams per tunnel. GridFTP memory-to-memory shows more

consistent results, with 889.12 Mbps with one and two TCP streams, and 873.04 Mbps

with four streams. On the contrary, GridFTP disk-to-disk obtains a slight improve-

ment after using four TCP streams, achieving 733.44 Mbps of throughput, compared

to the 632 Mbps and 660.8 Mbps obtained with one and two parallel streams respec-

tively.

Number of TCP Streams

ESNet recommends the use of two or four parallel TCP streams for GridFTP data

transfers. We verified that this recommendation holds true for our bandwidth splitting

service by measuring throughput for a GridFTP memory-to-memory data transfer.

We considered five bandwidth splitting approaches described in table 6. The main

goal of the orchestrator in this scenario is to split a bandwidth reservation among two

L2 tunnels, obtaining an aggregate bandwidth of 1 Gbps. For instance, one strategy

is to split the bandwidth into two 500 Mbps tunnels. Another strategy is to split the

53

request into one tunnel of 100 Mbps and another tunnel of 900 Mbps.

Table 6: Splitting Strategies
Code Description
SS1 Tunnel 1: 100 Mbps, Tun-

nel 2: 900 Mbps
SS2 Tunnel 1: 200 Mbps, Tun-

nel 2: 800 Mbps
SS3 Tunnel 1: 300 Mbps, Tun-

nel 2: 700 Mbps
SS4 Tunnel 1: 400 Mbps, Tun-

nel 2: 600 Mbps
SS5 Tunnel 1: 500 Mbps, Tun-

nel 2: 500 Mbps

Figure 13 shows that for two and four parallel TCP streams, the throughput of

a data transfer stays very close to the no-splitting baseline of 889.24 Mbps. For one

stream per tunnel, the throughput increases as the bandwidth splitting strategy is

more balanced. This behavior can be explained from our observation in figure 12(a).

The TCP stream using a tunnel with a larger bandwidth reservation cannot fill the

pipe, because the endpoints are optimized for parallel streams. Meanwhile, the stream

using the smaller reservation is limited, resulting in a poor overall performance. In the

case of eight streams per tunnel, the throughput results are not optimal, as many TCP

streams are competing for the same resources. These results are important because

the orchestrator has to return meaningful recommendations to the end user for their

data transfers to run optimally. For instance, given that two streams per tunnel

provides optimal performance, our orchestrator should recommend the end user to

four parallel TCP on her application, because the reservation was split among two

tunnels. In the case of splitting the bandwidth among three tunnels, the orchestrator’s

recommendation should be six parallel streams.

54

SS1 SS2 SS3 SS4 SS50

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Streams per Tunnels

1 spt
2 spt
4 spt
8 spt

Figure 13: Effect of number of parallel TCP streams and bandwidth splitting strate-
gies on throughput for a GridFTP memory-to-memory data transfer over a 1 Gbps
link with 90 ms RTT.

3.4.6 Rule Provisioning Strategies

In this section we study the effects of several provisioning and bandwidth splitting

strategies on the throughput of a GridFTP memory-to-memory data transfer over a

1 Gbps link with 90 ms RTT. We consider three provisioning strategies (as described

in section 3.3.3): synchronized VLANs, unsynchronized VLANs, and coordinated

VLAN. We also consider the same bandwidth splitting strategies described in table

6. Figure 14 shows the throughput measurement results for this experiment.

Figures 14(a), 14(b), 14(c) and 14(d) shows the results for one, two, four, and

eight TCP streams per tunnel, respectively. Regardless of the provisioning or band-

width splitting strategy, the two streams per tunnels approach provides the optimal

performance, with throughput results close to the single path baseline (889.24 Mbps).

In the worst case scenario, the maximum performance loss 3.47%. In the best case

55

SS1 SS2 SS3 SS4 SS50

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Sync
Unsync
Coord

(a)

SS1 SS2 SS3 SS4 SS50

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Sync
Unsync
Coord

(b)

SS1 SS2 SS3 SS4 SS50

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Sync
Unsync
Coord

(c)

SS1 SS2 SS3 SS4 SS50

200

400

600

800

1000

Th
ro

ug
hp

ut
 (M

bp
s)

Sync
Unsync
Coord

(d)

Figure 14: Effect of provisioning and bandwidth splitting strategies on throughput
while sending a 20 GB file using GridFTP disk-to-disk over a 1 Gbps link with
90 ms RTT: (a), (b), (c), and (d) shows the results for one, two, four, and eight
TCP streams per tunnel, respectively. We observe that two streams per tunnel is
the recommended setting to achieve the optimal performance. The baseline for each
scenario is represented as a horizontal dashed line.

scenario, we measured 280 kbps above the baseline. This might look insignificant,

but in the context of a large data transfer that might last 24 hours, this means an

extra 3 MB file can be transferred. Likewise, the four streams per tunnel approach

provides close to optimal throughput results, regardless of the provisioning strategy.

On the contrary, one and eight streams per tunnel strategies provide non-optimal re-

sults for the reasons already explained in section 3.4.5, and should not be considered

56

for production environments.

It is a well-known fact that OpenFlow rule provisioning add an extra delay to the

transmission of the first packet of a flow. Nevertheless, we do not observe a significant

overhead on throughput, because OpenFlow’s delay is in the order of milliseconds,

and the total transmission time for this experiment is five minutes. Furthermore,

real-world data transfers might last hours, making OpenFlow’s provisioning delays

even more negligible. Although a significant difference between the three provisioning

methods does not exist for the optimal configuration, we recommend the use of the

coordinated VLANs approach. As mentioned in section 3.3.3, the coordinated VLANs

provisioning strategy guarantees that all traffic of a single TCP flow traverses a single

L2 tunnel. This is beneficial for troubleshooting and auditing purposes. On the

other hand, the synchronized VLANs and unsynchronized VLANs are completely

reactive, and do not introduce as much delay, because each OVS reacts the packets

arriving to their interfaces. However, in the unsynchronized approach, or in the event

synchronization is lost in the synchronized approach, the forward and return traffic of

a single TCP flow might traverse two separate L2 tunnels. This situation complicates

troubleshooting and auditing for multi-path, multi-domain advance reservations.

3.4.7 Oversubscription

In this experiment we measured the improvement factor for a GridFTP memory-

to-memory data transfer, and a 20 GB GridFTP disk-to-disk data transfer over a

1 Gbps link with 90 ms RTT. From our baseline measurements, GridFTP disk-to-

disk achieves at most 733.44 Mbps of throughput using four parallel TCP streams.

Considering this observation, we hypothesize that by oversubscribing the aggregate

reservation, we will obtain a higher throughput. For instance, we oversubscribed a

1 Gbps link by requesting two L2 tunnels of 600Mbps for an aggregate of 1.2 Gbps.

Figure 15 shows the improvement factor for several percentages of oversubscription.

57

We observe that with 40% to 50% oversubscription, we obtain 1.12X improvement for

GridFTP disk-to-disk, but anything below or above it produces lower improvement

factors. Furthermore, there is no significant improvement for GridFTP memory-to-

memory. For these reasons we do not recommend that the orchestrator oversubscribes

physical links in the last mile, although additional resources are available in the WAN

providers.

0 20 40 60
Oversubscription (%)

1.00

1.05

1.10
Im

pr
ov

em
en

t F
ac

to
r GridFTP m2m

GridFTP d2d

Figure 15: Improvement factor in GridFTP’s average throughput for oversubscrip-
tion of the physical, while maintaining multi-path, multi-domain reservations within
limits. For instance, requesting two 600 Mbps L2 tunnels for an aggregate of 1.2 Gbps
gives us 20% oversubscription on a 1 Gbps link.

3.5 Conclusions

In this chapter we presented an architecture for end-to-end service orchestration in

multi-domain science networks that leverages SDXs for providing multi-path, multi-

domain advance reservations. We implemented an orchestrator for multi-path, multi-

domain advance reservations and an SDX to support these services. Our imple-

mentation uses an agent-based approach in which site agents communicate with a

centralized orchestrator that serves as a single point of contact for end users. We

developed a negotiation protocol that improves the success rate of intercontinental

multi-domain reservation from approximately 50% when using single-path circuits

58

to up to 99% when four paths are available under the conditions presented in sec-

tion 3.4.3. We evaluated our solution using GridFTP, which has multiple TCP flow

splitting capability and is one of the most popular tools for data transfers in the

scientific community. In our experiments, we tested our system under several con-

ditions of bandwidth splitting ratios, SDN rule provisioning strategies, and number

of GridFTP streams, and generated recommendations for the optimal performance

of reservations. To confirm our simulation results and recommendations, we need to

deploy our architecture in an actual science data network (e.g., ESNet 100GB SDN

testbed, AtlanticWave/SDX or GENI) so as to collect real system results to confirm

our results presented here.

59

Chapter IV

NOVEL NETWORK SERVICES FOR SUPPORTING BIG

DATA SCIENCE RESEARCH

4.1 Introduction

Modern scientific instruments (e.g., particle accelerators, large telescopes, and genome

sequencers) generate enormous amounts of data. These large datasets are analyzed

at supercomputing centers, typically hundreds of kilometers away from the original

research facility. For instance, a large telescope located in the Andes mountains in

Chile, taking multiple gigabyte images to be transferred to the United States so that

processing can be completed in time to distribute transient alert notifications will use

a dedicated network connection between the two facilities. Figure 16 shows a map

of the interconnection between the Large Synoptic Survey Telescope (LSST) in Chile

and a supercomputer in the United States.

Network operators may take from days to several weeks to plan and provision a

circuit over an R&E network, because these tasks are typically done manually [56]. To

interconnect research facilities such as LSST with supercomputing centers across long

distances, network operators deploy scientific networks or Research and Education

(R&E) networks. However, the interface for requesting these types of reservations is

very complex for domain-expert scientists who are not network operators. Arguably,

many of these interfaces were developed by network operators, for network operators.

Additionally, as reservations are defined by duration and bandwidth, the scheduling

of resources is not flexible; that is, a reservation request will fail if the exact amount of

bandwidth is not available within the specified time frame, which forces the scientist

into a cycle of trial and error until a suitable time frame is found. Furthermore,

60

Figure 16: Map of the interconnection between the LSST in Chile and the NCSA
supercomputer in the United States.

manual provisioning of these connections, which could take from several days to

several weeks [56], is sometimes limited by configuration overhead, poor scalability,

and poor testing interfaces [98].

To alleviate the shortcomings of current advanced reservation systems, we require

an architecture for R&E networks that allows agile programmability of end-to-end

network services over multiple domains, protects access to reservations from end-to-

end, and provides flexible reservation capabilities. In this chapter we mapped our

reference architecture (see Chapter 2) to AtlanticWave/SDX [21], an SDX controller

currently being developed by Georgia Tech and Florida International University, as

part of a multi-year project to create a distributed SDX over Sao Paulo in Brazil, and

Miami and Atlanta in the United States. The main goal of the AtlanticWave project

is to interconnect the aforementioned LSST telescope in Chile with supercomputers

in the US. We investigate how our U-O interface will allow domain-expert scientists

61

and data workflow management systems to reserve network resources from a multi-

domain SDX. This work was presented at Gateways 2017 (12th Gateway Computing

Environments Conference) organized by the Science Gateways Community Institute

(SGCI) [22].

4.2 Infrastructure Assessment of a Regional Science Net-
work

In this section we present an assessment of Southern Crossroads (SoX) [95], an orga-

nization that provides high-speed, global connectivity, and other commodity services

to the Southeastern U.S. Research and Education community. We surveyed nine

network operators of participating institutions at SoX to understand their cyberin-

frastructure at a high level, and also to understand their interactions with domain

scientists. The following subsections show the responses to our questions and our

analysis of these responses.

4.2.1 What kind of science research do you support, or are you planning
to support in the future?

With this question, our goal was to understand which are the main research areas

supported by SoX participants. Bioinformatics, genomics, and systems/networking

research were mentioned at least twice. After that, we found a wide variety of topics

such as neuro imaging, particle research from the Compact Muon Solenoid (CMS) at

CERN, medical research, cloud and distributed systems, and engineering modeling.

4.2.2 What applications those scientists use?

The vast majority of respondents (seven out of nine) are unaware of what applications

their scientists use. Two of them mentioned Globus as one of the applications used

by scientists. These two respondents mentioned more applications such as FTP, SCP,

GridFTP, Matlab, Galaxy Genomic pipelines, custom applications, Aspera Connect,

among others. Furthermore, one of the respondents mentioned that many of these

62

scientists have their own IT staff. Nevertheless, we were able to confirm that many of

the applications used by scientists are for data movement (e.g., FTP, SCP, GridFTP,

Aspera Connect, and Globus).

4.2.3 Where are they connecting (inside and outside your network)?

Figure 17 show the answers of the participants to the question: where are they con-

necting (inside and outside your network)?, in reference to domain scientists. Inter-

estingly, most of the responses indicate that scientists connect with external academic

collaborators, then internal collaborators, and other SoX participants. Very few con-

nect with external corporate collaborators.

Figure 17: Question 3: Where are they connecting (inside and outside your network)?
We asked participants to mark all options that applied.

4.2.4 Infrastructure Questions

To better understand the cyberinfrastructure of SoX participants, we asked the fol-

lowing questions:

1. How many data transfer nodes do you host in your network?

2. Do you host a Science DMZ?

63

(a) (b)

Figure 18: Infrastructure questions: (a) How many data transfer nodes do you host
in your network? And (b) do you host a Science DMZ?

3. Do you use advance reservation system or dedicated circuit?

4. How often do you provision or modify dedicated circuits?

Eight out of nine respondents host a data transfer node (DTN) in their network

(see Figure 18(a)), and six out of nine host a Science DMZ (see Figure 18(b)). Most

of the respondents use advance reservation systems, with the advanced layer 2 service

(AL2S) from Internet2 being the most popular (see Figure 19(a)). In general, network

operators only modify dedicated circuits by request (see Figure 19(b)). These results

show us that even at a regional level, bid data science research is becoming more

relevant. Moreover, as the size of data sets increases and more external academic

partnerships are established, there will be an increase demand of science network

services.

4.3 AtlanticWave/SDX Architecture

As big data science research becomes more global, the need for science network ser-

vices increases. In this section we present the high-level architecture of AtlanticWave/SDX,

and the science gateway interfaces that allow domain-expert scientists to request net-

work resources. The proposed AtlanticWave/SDX architecture is composed of the

following components (see Figure 20):

64

(a) (b)

Figure 19: Infrastructure questions: (a) Do you use advance reservation system or
dedicated circuit? And (b) how often do you provision or modify dedicated circuits?

1. Local controllers and local switches that reside at SDX domains (equivalent to

the site controllers described in section 2.1).

2. An SDX controller that interconnects participating sites (equivalent to the or-

chestrator described in section 2.2).

3. Users (e.g., domain-expert scientists or network operators) and applications

(e.g., data workflow management systems) that consume end-to-end services

composed by an SDX controller.

4.3.1 SDX User Interface

Some users of AtlanticWave/SDX are domain-expert scientists whom in most of the

cases do not have expertise in network operations, but still have to request reser-

vations to expedite their data transfers. Additionally, scientists use data workflow

management systems (e.g., Globus [45]) to automate the process of moving and shar-

ing data across research facilities.

In the proposed AtlanticWave/SDX architecture, both scientists and applications

request end-to-end science network services from the SDX controller by using the

Network Service Science Gateway (mapped to our U-O interface, section 2.3.2) that

65

Figure 20: High-level architecture for AtlanticWave/SDX, with local controllers at
three domains, and an SDX controller exposing services to users (e.g., domain-expert
scientists, network operators, and data workflow management systems).

interfaces with and abstracts network infrastructure details. The SDX user interface

allows a scientist or a data workflow management system to request services from

AtlanticWave/SDX. To overcome rigid interfaces that only allow users to request a

certain amount of bandwidth during a limited amount of time, we propose to describe

a request based on data set size and a deadline for finishing the transfer. Details of

the network parameters should be left for the SDX controller to decide. A domain-

expert scientist, for example an astrophysicist, only wants to transfer X amount of

gigabytes before a certain deadline. The SDX user interface may include negotiation

capabilities that allow the SDX controller to provide an optimal solution to a user

request, given the user constraints and the network state. Table 7 illustrates both a

reservation request for a network operator of the AtlanticWave/SDX, and a request for

a domain-expert scientists request in JSON format, and how the SDX user interface

abstracts the complexities of the network for the experimenters.

66

Table 7: SDX user request samples in JSON format
Network Operator Request Domain-expert Scientist Request

{"l2tunnel":{

"starttime":"2017-10-23T23:20:50",

"endtime":"2017-10-25T23:20:50",

"srcswitch":"atl-switch",

"dstswitch":"mia-switch",

"srcport":5,

"dstport":7,

"srcvlan":1492,

"dstvlan":1789,

"bandwidth":1000}}

{"dtntunnel":{

"quantity":"7TB",

"deadline":"2017-10-25T23:20:50",

"srcdtn":"gt-dtn",

"dstdtn":"fiu-dtn"}}

4.3.2 Authentication and Authorization

Authentication and authorization are important topics in the AtlanticWave/SDX

architecture. The SDX controller authenticates participant entities and users or ap-

plications coming from several independent administrative domains. Then, the SDX

controller requires authorization before it issues any provisioning requests to partic-

ipant domains. Digital certificates may be used for mutual authentication between

the SDX controller and local controllers, and a federated identity management system

(e.g., Shibboleth [94]) may be used for the SDX controller to authenticate users and

applications. Another approach may be to integrate AtlanticWave/SDX with exist-

ing systems such as Globus. Under these models, users are not required to have an

account at each location, but they are authenticated using their institutional creden-

tials. We propose to enforce authorization by installing policies on each entity (i.e.,

participant R&E networks) that define what users are allowed to do, depending on

their roles or affiliation (e.g., institution, project, or individual).

67

4.4 Use Cases

4.4.1 Simplifying Current Science Network Services

Astronomers use instruments that generate sets of data on the scale of gigabytes,

and they need to transfer these sets of data in a few seconds to be processed in a

remote facility. To guarantee a high-throughput network connection between facil-

ities, an experimenter may reserve network resources through AtlanticWave/SDX.

After verifying the domains involved in this end-to-end network service, the SDX

controller (see Fig. 20) contacts each local controller (using an equivalent of our D-O

Interface, section 2.3.1), querying whether a path with the constraints specified by

the experimenter is possible. Each queried domain does not have global knowledge

about the end-to-end path, but they can commit to guarantees of their portion of the

end-to-end path. The SDX controller then evaluates whether a path that meets the

end-to-end requirements can be formed. Otherwise, the SDX controller will try to

find an alternative path, or will try to negotiate a path with alternative constraints.

4.4.2 Future Generation Science Network Services

The proposed AtlanticWave/SDX architecture will allow science networks to provide

more flexible services. For instance, let us consider an experimenter who wants to

move telescope data every morning at 6:00 AM. Instead of reserving a dedicated

connection for the experiment (that could last years), the scientific network may

expose a bandwidth calendaring service in which the experimenter selects at what

hours of the day she will need the reservation. We could take this use case one

step further by correlating weather data with previous data transfer patterns, and

suggest to the experimenter the optimal time frames for upcoming data transfers.

For example, on a cloudy day, AtlanticWave/SDX will avoid provisioning a network

reservation, as the telescope’s view was obscured by clouds.

Another example is to use machine learning (ML) on data transfer patterns and

68

historical reservation data to create a predictive reservation service. In this case,

the SDX will suggest a predefined reservation to an experimenter based on previous

reservation and real usage patterns. The experimenter will be able to confirm or

decline the reservation. A more aggressive approach is to provision the reservation

with a lower priority, and wait for traffic to be sensed on the network. If no traffic is

sent before a preset threshold, the reservation is eliminated.

In another scenario, a dataset is hosted in several locations. An experimenter

only needs to know the name of the needed dataset. The SDX user interface of

AtlanticWave/SDX will locate the closest repository and request a dedicated network

connection between the repository facility and the experimenter’s facility. Moreover, if

the closest facility to the experimenter is congested, AtlanticWave/SDX may negotiate

a more distant facility with better network conditions to provide the data set. We

could take this example one step further and expose an energy efficiency score, and the

SDX controller may be able to compose end-to-end green paths as a novel scientific

network service.

4.5 AtlanticWave/SDX Prototype

In this section we present the prototype of the AtlanticWave/SDX controller [33], and

how this matches with our reference architecture (Chapter 2.) AtlanticWave/SDX is

written in Python, using the Ryu SDN Framework [84] as an OpenFlow [75] speaker,

and has a REST API and web application for management. The controller is di-

vided into three components, that will run at the initial three locations of the pro-

totype (i.e., Atlanta, Miami, and Sao Paulo). The main three components of the

AtlanticWave/SDX controller are the following:

• Participant Interface(s): The participant interfaces are where network op-

erators and scientists install rules that dictate how network flows behave. This

69

(a) (b)

Figure 21: AtlanticWave/SDX Web portal for requesting science network services:
(a) network operator view, and (b) domain-expert scientist view.

interface corresponds to the network science service gateway described in Sec-

tion 4.3, and the U-O Interface described in Section 2.3.2. For the initial pro-

totype, AtlanticWave/SDX provides a Web portal that allows users to create

and install rules (see Figure 21).

• SDX Controller: The SDX controller is responsible for authentication and

authorization of participants and local controllers, taking rules from the par-

ticipant interfaces and breaking them down into per-location rules for the local

controllers, handling federation challenges from many participants installing

rules on a shared network, and providing an interface for the participants. This

is the equivalent of the orchestrator in our reference architecture (see Section

2.2)

• Local Controllers: Each location in the AtlanticWave/SDX will have a local

controller that controls the local switch(es). The local controller has one main

job: take the abstract rules from the SDX controller, and translate them to a

switch friendly protocol (e.g., OpenFlow). The local controller also bootstraps

the configuration of the switch to establish connectivity between the local con-

troller and the SDX controller. This is an instantiation of our Site controllers

70

in Section 2.1.

We implemented Shibboleth from Internet2 for handling authentication at the

front end of the AtlanticWave/SDX controller. It is important to note that Shib-

boleth is not used outside of North America. As a result, other identity and access

management (IAM) systems need to be tested. For example, eduGAIN [41], devel-

oped by GEANT, is the standard cross-domain IAM system used outside of North

America.

4.6 Conclusions

In this chapter we presented an interface that allow domain scientists and data work-

flow management systems to reserve resources of a scientific network. We assessed the

cyberinfrastructure of SoX by surveying nine network operators of participant insti-

tutions. From our survey, we observed that even at a regional level, big data science

research is becoming more relevant, and scientist will require more science network

services as they collaborate with more external partners. We mapped the components

of our reference architecture to AtlanticWave/SDX, an existing SDX controller. The

AtlanticWave/SDX controller exposes network services that domain scientists and

data workflow management systems can easily consume through the user/application

interface. We provided use cases that illustrate how domain-expert scientists can use

the interfaces of AtlanticWave/SDX for easily requesting end-to-end network services.

Furthermore, we proposed future generation science network services such as band-

width calendaring, predictive reservation services, and green path reservation. We

also described the initial prototype of the AtlanticWave/SDX controller, with special

emphasis on the user/application interface, and the authentication mechanism of the

AtlanticWave/SDX Web portal. A logical next step for this work would be to conduct

science data network user studies to determine if the interface we implemented is in

fact easier to use and more intuitive than the previous interfaces.

71

Chapter V

AUDITING AND ACCESS CONTROL FOR

SOFTWARE-DEFINED EXCHANGES

5.1 Introduction

Recently, users and operators of Research and Education (R&E) networks have been

looking for ways to allow multiple independent administrative domains to share com-

puting, storage, and networking resources in an agile and programmatic way. By tak-

ing advantage of virtualization of computing and storage resources, software-defined

networking (SDN), and software defined radio (SDR), researchers are building a new

kind of cyberinfrastructure referred to as software-defined infrastructure (SDI) [88].

A central point of the SDI is a software-defined exchange (SDX), a meet-me point

or marketplace where independent administrative domains can exchange computing,

storage, and networking resources. The SDX also provides enhanced visibility over

individual data streams along with control over those streams. Moreover, they can

be customized to support specific workflows of domain science research.

Taking into account the resources exchanged (e.g., computing, storage, and net-

working), the spectrum of categories for an SDX ranges from networking exchanges to

cloud-service exchanges [20]. A specialized instance of a network SDX is a software-

defined Internet exchange point [49]. This type of SDX allows participants of an

Internet exchange point (IXP) to configure networking policies in the fabric of the

IXP by using SDN technologies. Similarly, R&E exchange points are introducing

SDN in their infrastructure to allow network operators to provision network policies

over multiple independent administrative domains [56, 21]. The goal in this case is to

automate the provisioning of existing networking services in research and education

72

networks such as advanced reservation of Layer-2 circuits and to enable new services

such as the interconnection of SDN islands.

The federated nature of R&E exchange points is based on trust between par-

ticipant domains. However, an old adage says “trust, but verify”, so a responsible

network operator wants to verify if his or her policies have been enforced by the SDN

domains participating on an SDX. Moreover, some participants of the SDX do not

want to reveal internal topology information while still proving that they correctly

deployed the requested policies. For these reasons, we propose FAS (Federated Au-

diting for SDX) [19], a federated auditing framework that allows an SDX to verify the

following conditions: (1) whether configurations requested are correctly enforced by

participant SDN domains, (2) whether configurations requested are correctly removed

after their expiration time, and (3) whether configurations exist that are performing

non requested actions. Furthermore, these verifications are conducted without reveal-

ing internal information about the participating SDN domains, and regardless of the

multi-domain architecture used.

Another challenge of these cyberinfrastructures is that advance network reserva-

tion systems identify each connection by coarse-grained attributes such as endpoints

(e.g., an IP address or an interface of a WAN border router), requested bandwidth,

the start time, and the end time [98]. However, a major problem with using such

coarse-grained attributes to identify a network reservation is that an unauthorized

user or application behind the point of ingress could consume the reservation, af-

fecting the performance of legitimate users or applications. We present here a novel

network architecture that provides advance reservation access control by leveraging

SDN and token-based authorization.

The contributions of this chapter are as follows:

• A federated auditing framework for configuration verification in an SDX and

a communication protocol that allows an SDX to query participant domains

73

without exposing internal information.

• A system that uses SDN and tokens to strongly bind an end-to-end flow to the

user or application that requested the reservation.

5.2 Federated Auditing for Software-Defined Exchanges (FAS)

5.2.1 Background

Federated Auditing Systems

A federation is a group of independent networked systems that share and exchange

data under standardized agreements. The best example of a federated system is the

Internet, and one of its most challenging problems is to diagnose routing problems. To

make this task easier, Teixeira and Rexford [97] proposed Omni, a distributed system

that uses passive measurements of BGP changes inside an autonomous system (AS),

and allows ASs involved in a route change to collaborate in identifying problems.

Similarly, Shanmugasundaram et al. proposed ForNet [92], a distributed network

logging mechanism that aids digital forensics over wide area networks. Both Omni

and Fornet have local servers that collect network information within the domain or

AS. These servers then cooperate to identify a routing problem or a cyberattack for

Omni and Fornet respectively.

Security Considerations for SDXs

SDN provides programmability and agility in network operations by centralizing the

control plane. Moreover, this centralized control allows SDNs to dynamically alter

network topology, routing, and even security policies on the fly. However, this central-

ization also introduces new attack vectors. For instance, anyone gaining access to the

controller software essentially gains the keys to the kingdom, and thus, gains control

over the entire network [65]. Likewise, forged or spoofed traffic flows can potentially

be used to fool switches and controllers into installing erroneous or malicious flow

rules [65]. Other concerns involve attacks against the control plane communication

74

itself and assurance of trust between controller and management applications. Of

course in the context of multi-domain SDNs, the problem of finding SDN misconfigu-

rations is similar to troubleshooting a routing problem in the Internet or conducting

a forensic investigation over multiple domains.

To illustrate an attack scenario, let us consider a centralized SDX, in which an

SDX controller orchestrates various SDN controllers in separate domains. The SDX

controller must trust participating SDN controllers to deploy requested configura-

tions on their respective domains. In this scenario, a compromised participant SDN

controller or a malicious or uncooperative network operator might ignore the config-

uration request from the SDX controller or install malicious or incorrect flow rules

in their corresponding data plane that puts network traffic from other participating

domains at risk. For instance, a malicious participant SDN controller might duplicate

and divert flows to eavesdrop on communications, alter data, or introduce man-in-

the-middle attacks against unsuspecting domains. We assume that the switches in

the data plane are trusted and have not been compromised by an attacker.

The NSF report from the workshop on software-defined infrastructure (SDI) and

software-defined exchanges (SDX) [88] identified network slicing as a promising way

of securing SDI and SDX. A network slice is a logical instantiation of a physical

network that provides the isolation of user traffic. The authors emphasize that to

achieve secure slicing, SDX slices should incorporate admission control, secure slice

provisioning, unforgeable slice identifiers across domains, and verification and audit-

ing mechanisms. This also assumes that SDN controllers are capable of isolating and

microsegmenting network applications and possess the ability to build dynamic access

control lists (ACLs) [90]. Despite the isolation provided by SDX slices, a compromised

participant SDN controller could still install malicious rules in its data plane. Thus

there is a need for auditing that allows the SDX controller to verify the correctness

of configurations deployed by each participant domain.

75

5.2.2 System Architecture

A federated auditing system for an SDX should allow the verification of the following

conditions: (1) whether configurations requested to the SDX are correctly enforced by

participant SDN domains, (2) whether configurations requested are correctly removed

after their expiration time, and (3) whether configurations exist that are performing

non requested actions. Additionally, these verifications should be conducted without

revealing internal information about the participant SDN domains to the SDX. Fi-

nally, the auditing system must be separated from the domain-SDN controller (equiv-

alent of the Site controller described in Section 2.1), to avoid a compromised controller

corrupting the records of the auditing system.

Considering the requirements listed in the previous paragraph, we designed the

architecture of FAS (Federated Auditing for SDX) to be agnostic of the overall multi-

domain architecture (see Fig. 22). FAS is composed of the following components:

1. Control plane auditor: An independent auditing system in each participant

SDN domain that records the communication between the SDN controller and

SDN switches.

2. Data plane auditor: An auditing system in each participant that records selected

traffic in the data plane.

3. Domain FAS agent: a module in each domain that coordinates auditing elements

(i.e., control plane and data plane auditors).

4. SDX FAS agent: a centralized auditing orchestrator at the SDX.

5. FAS protocol: a communication protocol that allows the SDX to query FAS

agents for configuration verifications, while keeping a participant’s information

undisclosed.

76

Figure 22: FAS Architecture showing a participant domain, auditing system with
control plane and data plane auditors, and FAS agents communicating through the
FAS protocol. Trusted entities are depicted in green

The control plane auditor module keeps records of the communication between the

SDN controller and SDN switches within a domain. Similarly, the data plane auditor

keeps a record of the data plane actions. Both control and data plane auditors may be

implemented with current technologies such as port mirroring and a Wireshark sniffer,

sFlow [91] or the Bro network security monitor [100] (implementation options will be

discussed in more detail in Section 5.3.5). The SDX FAS agent allows an SDX to query

participant domains and verify if configuration requests have been correctly enforced

after provisioning or correctly removed after expiration. The domain FAS agent allows

a participant domain to reply to these queries without revealing internal information

such as topology, address space or traffic patterns. A domain FAS agent takes the

information collected by control and data plane auditors and constructs a reply that

provides the necessary information to the SDX while maintaining internal network

77

details confidentiality. Additionally, a domain FAS agent collects data plane active

flow data and compares this with control plane audit data to detect non requested

actions. Finally, the FAS protocol allows agents to establish auditing relationships

and exchange query and response messages.

Management of Federated Auditing System

We propose that the federated auditing system be managed by an SDX operator in

collaboration with participant domain network operators. The SDX operator receives

notifications from the SDX FAS agent. After receiving a notification from the SDX

FAS agent, the SDX operator contacts the network operator of the originating domain

to start a remediation process. The SDX FAS agent will test rules right after a

configuration and right after a removal for the most conservative auditing approach.

A more aggressive auditing approach will require active polling with a frequency

determined by the duration of the reservation and the accuracy required.

Trust within the FAS Architecture

Trust between FAS agents at the SDX and across participant domains is required

for the FAS architecture to work properly. Furthermore, trust between the auditing

entities and the participant domain is required. Fig. 22 depicts in green the trusted

entities of the FAS architecture, which are an extension of the SDX into participant

domains. The domain FAS agent subsystem should be deployed and managed by

SDX operators or a designated trusted point of contact from the participant domain.

Separation of roles should also be enforced. Specifically, the operator of the FAS

system should not be the same person that operates the SDN controller, as we want

to avoid collusion between these two roles, and mitigate the possibility that they

might be used to cover the tracks of malicious activity.

The FAS architecture creates a new chain of trust that follows the flow of data

depicted in Fig. 23, that starts in a control or data plane auditor and ends at the SDX

78

FAS agent. However, a domain administrator still wants to verify that the domain

FAS agent is not collecting any additional information from the domain controller

and/or switches. The SDX operator can provide read-only permission to the domain

administrator for the purpose of verifying what information is collected by a domain

FAS agent. Moreover, both parties can coordinate the installation of rules that limit

the type and amount of information that a domain FAS agent can collect. Finally,

the domain FAS agent is designed to work with the minimal necessary information for

responding to an SDX query. This design will be discussed more in detail in section

5.2.2.

FAS Protocol Design

The FAS architecture framework collects evidence of per-domain SDX configurations

and aggregates an end-to-end configuration records for verification. Fig. 23 illustrates

the flow of audit data from a single control or data plane element to the SDX FAS

agent. The FAS protocol enables the collection of configuration evidence for further

aggregation at the SDX.

The FAS protocol is composed of three types of messages: query, response, and

notification. The query message allows an SDX FAS agent to query configurations to

participant domain FAS agents; the payload contains a token representation of the

rule that the SDX wants to verify. The response message allows a domain FAS agent

to reply to SDX queries; the response is typically YES (flow rule exists), NO (flow rule

does not exist), and NOAUTH (not authorized to query this). Finally, the notification

message allows a domain FAS agent to send notification to an SDX FAS agent without

a previous query from the SDX; the payload typically contains a flow rule in violation

within the configured policy. This rule is abstracted to a domain level, in order to

avoid disclosing internal topological information, but representative enough to allow a

domain administrator to start an investigation after receiving a notification from the

79

Figure 23: Flow of data in the FAS framework architecture from the control and
data plane elements to the SDX. The chain of trust of the FAS architecture follows
this flow of data

SDX operator. The correct balance between domain-level abstraction and explicitness

of the notification is out of the scope of this work.

FAS Agent Design

FAS agents are designed to collect configuration evidence and coordinate evidence

sharing over multiple domains. A domain FAS agent collects information from net-

work elements in the control and data planes, creates flow registries from the network

information collected, and replies to audit queries. Likewise, an SDX FAS agent

queries domain agents for building an end-to-end flow configuration verification.

To maintain confidentiality of internal configurations, an SDX FAS agent is only

allowed to ask if a configuration exists, and the response to this query is either yes,

no, or not authorized as shown in Section 5.2.2. The answer is then compared to

80

the lifetime of the SDX request (i.e., start time and end time). If the SDX FAS

agent gets a positive answer within the lifetime of the request, the rule was properly

configured. Similarly, if the answer is negative outside the lifetime of the request, the

configuration was properly eliminated (See Algorithm 4).

Algorithm 4 Verify if configuration exists

FR← Set of domain flow rules
fr ← Flow rule to verify
if Authorized then

if fr.start time < NOW < fr.end time then
if fr ∈ FR then

return RuleConfigured
else

return NOFOUND
end if

else
if fr ∈ FR then

return NOFOUND
else

return RuleEliminated
end if

end if
else

return NOAUTHZ
end if

Once user traffic is detected following behavior that is different from the flow rules

requested, the data plane auditor sends a notification to the domain FAS agent. Then,

the domain FAS agent compares this information with the control plane configuration

audit. If a flow detected on the data plane does not have a counterpart configuration

in the control plane, the domain FAS agent has detected an unauthorized flow rule,

and sends a notification to the SDX FAS agent (See Algorithm 5).

FAS Workflow

Fig. 24 shows the workflow for a user configuration request and subsequent audit

verifications using the FAS framework. The detailed workflow is as follows:

81

Algorithm 5 Unrecognized flow notification

FR← Set of domain flow rules
f ← New flow detected
if f ∈ FR then
ActiveF lows + +

else
SendAlert()

end if

1. A user requests a configuration from the SDX controller.

2. The SDX controller sends requests configurations to each participant SDN con-

troller via the SDX configuration channel.

3. Each participant SDN controller provisions its corresponding configuration in

its respective domain.

4. The SDX controller requests an audit through the SDX FAS agent. The SDX

FAS agent contacts each domain FAS agent through the FAS protocol.

5. Each domain FAS agent processes the request by analyzing its internal auditing

system, and responds to the SDX FAS agent through the FAS protocol.

6. When the configuration request expires, steps 2-5 on the workflow will be re-

peated.

5.2.3 FAS Proof-of-Concept Evaluation

To evaluate the FAS architecture, we built a proof-of-concept (PoC) testbed in the

GENI platform [9]. Our testbed, depicted in Fig. 25, is composed of two OpenFlow-

enabled Open vSwitch (OVS) [85] virtual switches connecting two hosts, a Ryu SDN

controller [84], a domain FAS agent that includes a data plane auditor, and an SDX

controller.

For our implementation, we used the NSI (network service interface) [83] protocol

as the model of an SDX configuration protocol. NSI allows users to request network

82

Figure 24: FAS workflow for a user configuration request and subsequent audit
verifications using FAS

Figure 25: FAS testbed implemented on the GENI platform

services from one or more network service provider. In its most basic form, NSI allows

experimenters to establish Layer-2 circuits over multiple domains. In our PoC, an

SDX receives an end-to-end multi-domain configuration request from a user, breaks

83

down this request into several configurations for the domains involved and sends

configuration requests to each domain. Each domain is in charge of implementing the

requested configuration internally, by configuring each OVS in its domain.

The end-to-end configuration audit follows the reverse process of an SDX config-

uration. In our implementation approach, we enabled a RESTful API that allows

the domain FAS agent to query the flow table of each OVS in the domain, and cre-

ates flow registries. These flow registries are then used to respond to SDX queries

by composing domain level policies. Finally, the SDX FAS agent takes each domain

response and composes an end-to-end response that verifies a configuration requested

by a user.

5.2.4 Discussion

The implementation of our PoC sheds some light on the complexity of integrating a

multi-domain auditing system as FAS. At each stage of the audit data flow, we had to

make decisions that tightly coupled our implementation of the auditing system with

the actual implementation of the networking infrastructure. For instance, the REST

API that allows a domain FAS agent to query the flow tables of domain switches

takes advantage of the ovs-ofctl dump-flows command of OVS. A better approach

is for the control plane auditor to track flow entries querying the switch directly,

out-of-band, not leveraging the same OVS commands. Similarly, the domain FAS

agent has to use the same logic used by the domain SDN controller to configure the

data plane switches, in order to compose the domain-level configuration from the

individual flows.

The FAS architecture proposes auditing of the control plane of each participant

domain. Security best practices recommend using OpenFlow transport over TLS,

which makes traffic capture challenging. Developers of off-the-shelf solution such as

Bro have not willing to implement an OpenFlow analyzer [99]. This will force the

84

network operators to implement their own solution for auditing an OpenFlow-based

control plane. One possible solution is to use the code base of an SDN controller and

re-purpose it as an auditing tool. Also, SDN troubleshooting tools like OFRewind

[104] and OpenFlow Sniffer [11] could be reengineered as control plane auditors.

Regarding data plane auditing, capturing network traffic will generate enormous

amounts of data. A combination of port mirroring and network capture is not practi-

cal; it is too limited for large domains, expensive in terms of storage, while covering a

few ports. A solution similar to NetAssay [32] will alleviate these problems by allow-

ing domain FAS agents to write network filtering rules for traffic redirection. With

this approach, the data plane auditor will only capture traffic of interest to the SDX

FAS agent.

The control and data plane auditors can collect data following two methods: ac-

tive monitoring and passive monitoring. By using active monitoring, the auditor polls

networking devices for audit data, as in our PoC. On the other hand, passive moni-

toring collects data by passively capturing network traffic (e.g., a tap and a network

analyzer in the control plane). It is important to note that the current FAS archi-

tecture is not able to detect side channels, as it relies on the trust between the SDX

operator and domain administrator to set up the auditing system. Detecting side

channels within a domain is outside of the scope of this work.

5.3 Advance Reservation Access Control Using SDN and
Tokens

5.3.1 Tokens Background

A token authorization scheme can be implemented via either self-contained tokens

or opaque tokens. In the first approach, the token contains all the information to

be verified by an enforcement point. Typically, this approach requires a public key

infrastructure (PKI) for signing and verifying tokens. In the second approach, a

secure token service (STS) validates tokens. The token validation service may be

85

located either at a central point with the token issuer service, or at the enforcement

point closer to the client. This approach may not need a PKI because all token

information is stored in a centralized STS. However, if the meaning of the token has

to be transferred to the enforcement point, a mechanism for secure token distribution

requires that a PKI should be in place.

5.3.2 System Architecture

Our architecture for advance reservation access control comprises an orchestrator

that handles user requests and manages networking resources, a WAN controller that

represents an advance reservation system connecting sites involved in a specific data

transfer, and a site SDN controller that manages the installation of flow rules on site

switches. The orchestrator assigns a token to each successful reservation requested

by a user, effectively creating a strong binding between the user who requested the

reservation and the flows provisioned by SDN on each site and the WAN controller.

Then, an authorized user can present this token to a site controller and gain access to

the network reservation. After a reservation expires, all configurations are removed

from the network, and the token cannot be reused. The full workflow is automated,

and no involvement from a network operator is required. Our approach does not

require any changes to current advance reservation systems. Figure 26 illustrates our

architecture and the workflow for requesting an end-to-end circuit for a data transfer,

which we describe in detail below.

The detailed workflow for requesting, provisioning, and consuming a protected

advance reservation is as follows:

1. A user requests an advance reservation through an orchestrator. The user pro-

vides reservation information: identifiers for the endpoints (e.g., hostname or IP

address) involved in the transfer, the start time, the end time, and bandwidth

requirement.

86

Figure 26: Block diagram of advance reservation access control using SDN and
tokens. Only positive outcomes are shown

2. The orchestrator polls each site’s SDN controller and a WAN controller to verify

whether the bandwidth requested between the two endpoints is available during

the specified time frame, i.e., from start to end.

(a) If resources are available in every domain, each controller provisions a layer-

2 circuit within its domain and reports a VLAN ID to the orchestrator.

(Our approach will also work for layer 3 circuits.)

i. The orchestrator creates a token for the reservation and associates it

with the set of VLANs.

(b) The orchestrator replies to the user with the reservation token.

(c) If any controller does not have enough resources, the orchestrator replies

to the user with a reservation failure message.

87

3. When it is time to start the data transfer, the user contacts the data mover on

the receiver site and configures it as a receiver. The communication message

includes the reservation token.

(a) The data receiver replies with the IP address and port on which it is

listening.

(b) The data receiver request the site’s SDN controller to add a flow rule

matching 3-tuple [ip addr, port, proto]. (The IP address and port of the

sender site are not known at this point.)

(c) The SDN controller validates the token against the orchestrator, which

replies with reservation VLAN if valid.

i. If valid, the controller installs the flow rule with an action send to

VLAN ID of the reservation on the site’s OVS and installs the flow

rule on the border switch to replace the site’s VLAN with the WAN’s

VLAN for outgoing traffic, and vice versa for incoming traffic.

ii. Else, it rejects the request.

4. After the IP address and port are known, the user sends a request including the

token, destination IP address, and destination port to the data sender.

(a) The data sender then sends a request to the site’s SDN controller to add

a flow rule matching the 5-tuple [src ip, dst ip, src port, dst port, proto].

The user can then send a request to the receiver site to modify the 3-tuple

to a 5-tuple flow rule.

(b) The SDN controller validates the token against the orchestrator, which

replies with a reservation VLAN if valid.

i. If valid, the controller installs a flow rule with an action of tagging

packets with a reservation VLAN on the site’s OVS and installs a

88

flow rule on the border router for replacing the VLAN ID of the site

with the VLAN ID of the WAN for outgoing traffic, and vice versa for

incoming traffic.

ii. Else, it rejects the request.

5.3.3 Implementation

We conducted experiments on the ESNet infrastructure testbed. As shown in Figure

27, we used two sites, Washington DC and CERN in Geneva, Switzerland, which

have an average inter-site RTT of 90 ms and up to 10 Gbps best effort for bandwidth

capacity. Each site has two OVS switches [85], one container endpoint, and one Ryu

SDN controller [84]. The orchestrator runs on another container hosted at CERN.

All containers run Ubuntu 14.04.

As shown in Figure 26, our architecture implementation is composed of a WAN

controller, one site controller per site, one data mover node per site, an orchestrator,

and a user interface. Each component was coded in Python and communicates over

TCP sockets sending JSON data. To communicate with the Ryu controller, we used

the REST API that comes with the controller. The data transfers used iperf. The

system handles three types of messages: (1) REQ for advance reservation requests,

(2) RCV for data mover receiver configuration, and (3) SND for data mover sender

configuration. We next provide a brief description of each component.

WAN Controller

The WAN controller emulates an advance reservation system such as OSCARS (ES-

Net) or AL2S (Internet2). Its northbound interface talks to the Orchestrator, while

its southbound interface interacts with WAN switches. Its main functionality is to

manage a pool of VLANs, assign VLANs to circuit reservation requests, and provi-

sion the circuit on the WAN infrastructure (switches). A message request from the

Orchestrator has the following format:

89

Figure 27: ESNet infrastructure testbed configuration for experiments

• Message Type: REQ

• Format: site1, site2, start time, end time, bandwidth

The actions performed by the WAN controller after receiving a request are assign

VLAN to the reservation, allocate bandwidth requested, and configure switches. It

may respond with the reservation VLAN ID or a failure message.

Site Controller

A site controller manages reservation configurations at its site. The site switch in Fig-

ure 26 represents the site’s topology (which could involve one or more switches) and

the border router represents a connection to the WAN. The controller’s northbound

interface talks to the orchestrator and a data mover that requests access to a reserva-

tion, while its southbound interface interacts with site switches through OpenFlow.

90

The controller’s main functions are to manage a pool of VLANs, assign VLANs to

circuit reservation requests from the orchestrator, provision the circuit on the site in-

frastructure (switches), validate tokens against the orchestrator, and install flow rules

binding reservation VLAN to flow 5-tuple. A message request from the orchestrator

has the following format:

• Message Type: REQ

• Format: site1, site2, start time, end time, bandwidth

A message request from a data mover is handled by the Ryu controller’s REST API.

We extended that API to accept authorization tokens when adding new flow rules.

Data Mover

The data mover’s main function is to transfer data from one site to another. It can

work in either sender or receiver mode. It accepts commands from a user interface

and sends add flow requests to a site controller with a reservation token. In our

experiments, we use iperf to perform data transfers. To emulate GridFTP behavior

[2], the data mover receiver generates a random TCP port number before starting

the iperf server and returns the socket on which it is listening. Likewise, the sender

uses this socket to establish a connection by using iperf. A user interface can send

two types of messages to a data mover:

• RCV: generates a random port number and starts an iperf server on that port;

returns the socket [IP:port] to the user interface.

• SND: opens a connection to the socket provided by the client.

Every request acquires a reservation token. After every request, the data mover has

to present the site controller with the request’s token plus a flow to be added.

91

Orchestrator

The orchestrator is in charge of coordinating the reservation of an end-to-end circuit

between two (or more) sites and validating the tokens presented by data movers to site

controllers (refer to messages 3c and 4b in Figure 26). Its northbound interface talks

to the user that requests access to a reservation; its southbound interface interacts

with SDN controllers on the WAN and on each site. A user request has the following

format:

• Message Type: REQ

• Format: site1, site2, start time, end time, bandwidth

If the orchestrator finds a path between the two sites, it will return a reservation token

to the user; otherwise, a failure message will be sent. A token validation request from

a data mover has the following format:

• Message Type: TKN

• Format: Universally Unique Identifier (UUID) v4, a 128-bit-long identifier stan-

dard defined in RFC 4122

The orchestrator will reply with a valid or invalid token message depending on the

existence of a token in its token store.

5.3.4 Evaluation

We evaluated the system on the ESNet 100G SDN testbed by measuring its latency

in answering a request with three token validation schemes (i.e., opaque token at or-

chestrator, self-contained token, and opaque token with enforcement point validation

(EPV)). Figure 28 shows that advanced reservation requests (REQ messages) take

around 350 ms. The main factor for this latency is the 2PC protocol that adds a

second round of messages to the request. To verify this, we measured that a circuit

92

Figure 28: Latency of the system for opaque, self-contained, and enforcement point
token validation (EPV).

reservation request takes around 182 ms on average for a system without 2PC, which

translates into a 52% overhead. It is important to note that our proof-of-concept im-

plementation does not consider path computation and resource scheduling functions,

because these functions are outside the scope of our study.

For messages that require token validation (i.e., RCV and SND messages), the

self-contained and enforcement point validation approaches have a lower latency than

the opaque token with centralized validation when messages are sent over the WAN.

Figure 28 shows that the opaque token approach takes around 375 ms, while the

self-contained and enforcement point validation approaches take around 200 ms in

this scenario. Nevertheless, for requests that stay in close proximity, all three token

validation schemes have a latency of 20 ms. It is important to note that token

validation happens per request (i.e., a 5-tuple connection that can be used to transfer

all the files in a single data transfer), although in our proof-of-concept implementation

93

we need to install four flows per switch, per request—where two flows represent the

incoming and outgoing traffic for the data transfer and the other two are for ARP

requests—for a total of 4N flow rule installation request for a site with N OpenFlow

switches. After installing all corresponding flows on each switch, we were able to

verify that only the specific iperf3 connection was able to communicate between the

two endpoints.

Throughput and Latency Measurements

The traffic model we used is based on the Biological and Environmental Research

(BER) network requirements review of 2015 [27] that states scientists will require to

transfer 20 GB of data in less than 5 minutes (i.e., 533.33 Mbps of throughput per

file). To measure throughput and latency performance, we evaluated the behavior of

two flows between our two sites with and without token access control. In each of the

two scenarios listed below, we measured the throughput and RTT using iperf3 with

the results shown in Figures 29 and 30, respectively:

Scenario 1: A reservation of 4 Gbps is manually extended to the endpoint using

VLANs. This creates an interface in the endpoint that is available to all users. As a

result, unauthorized users in the same endpoint still have access to the reservation.

Scenario 2: The reservation is programmatically extended to the endpoint, and

access is controlled by using our system. In this scenario only the authorized user

(i.e., the user who made the reservation) can access the 4 Gbps reservation, while

unauthorized users consume the remaining 1 Gbps available on the 5 Gbps inter-site

link.

For scenario 1, we used iperf3 to transfer a 20 GB file from the endpoint at

CERN to an iperf3 server running at Washington. The authorized flow, depicted in

blue in Figure 29(a) consumed around 1 Gbps of the available bandwidth, while the

unauthorized flow, depicted in orange in Figure 29(a) consumed around 3 Gbps.

94

(a) (b)

Figure 29: Throughput measurements while sending a 20 GB file using iperf3 with
CUBIC TCP: (a) scenario 1 shows two flows sharing the 4 Gbps reservation, while (b)
scenario 2 implements our access control solution using SDN and tokens, where the
authorized flow has exclusive access to the 4 Gbps reservation and the unauthorized
flow uses the remaining 1 Gbps available on the 5 Gbps link

(a) (b)

Figure 30: RTT measurements while sending a 20 GB file using iperf3 with CUBIC
TCP. Both (a) scenario 1 and (b) scenario 2 present RTT measurements that range
between 89 and 100 ms

For scenario 2, we generated the same type of data transfer. However, this time

the authorized flow was protected by our SDN with token access control mechanism.

Our system installs specific flow rules after receiving a valid token, allowing the autho-

rized flow to use the 4 Gbps reservation. With this configuration, the authorized data

transfer, depicted in blue in Figure 29(b) reported around 3.9Gbps, while the unau-

thorized data transfer depicted in orange in Figure 29(b) reported around 0.9 Gbps.

Considering the flow installation latency of our system, which in the worst case sce-

nario (i.e., RCV/SND message over the WAN) is 200 ms configuration, our system

95

only introduced a 0.40 % latency overhead to the data transfer.

Figure 30 shows the RTT measurements obtained from iperf3 during the data

transfers. For both scenario 1 (Figure 30(a)) and scenario 2 (Figure 30(b)), the

minimum RTT is around 89 ms and the maximum RTT is 100 ms, with an average

of 91 ms for all the experiments conducted. These results show that our solution has

no impact on path latency, because tokens are not validated by the data plane, but

by the control plane and only before the data transfer starts.

5.3.5 Discussion

Our findings demonstrated that our architecture reduces the provisioning time of an

end-to-end circuit from several days (manual process) to a few minutes (automated

process). Additionally, we demonstrated that, by using tokens, a specific flow can be

strongly associated with the owner of the reservation. For a real deployment, however,

many of our design decisions for this proof-of-concept should be optimized.

As we can observe in Figure 28, self-contained token and enforcement point vali-

dation approaches reply 150 ms faster to a client request than does an opaque token

approach, because validation happens on the enforcement point. We note, however,

that in this work we used a preshared password between the orchestrator and site

controller, whereas a full PKI should be used in a real deployment. Moreover, in this

work we assumed that a secure mechanism for token distribution was in place, and

we were not concerned with token spoofing attacks.

We chose to extend the RESTful API of the Ryu controller to validate each add

flow request with an authorization token. However, this approach generates too many

messages between a site controller and the orchestrator, because each add flow request

needs to be validated. An API that validates a single request but installs all required

flows at once would be more efficient.

96

5.4 Conclusions

In this chapter we proposed FAS, a federated auditing framework that allows an

SDX to verify whether the configurations requested by a user are correctly enforced

by participating SDN domains, whether the configurations requested are correctly

removed after their expiration time, and whether configurations exist that are per-

forming non requested actions. Additionally, FAS allows end-to-end configuration

verification without revealing internal information of the participant SDN domains

that they are not willing to share. FAS establishes a new chain of trust by extending

auditing capabilities of the SDX into participant SDN domains, and establishes trust

agreements between SDX operators and domain administrators.

We presented an initial proof-of-concept architecture of FAS, implemented on

the GENI platform, and discussed the administrative and technical challenges of

implementing FAS. For instance, the use OpenFlow over TLS transport represents a

major challenge for collecting control plane data. Similarly, bulk data plane traffic

collection will require enormous amounts of storage.

We also proposed a system that provides end-to-end advance reservation access

control. By using multi-domain SDN orchestration and token-based authorization,

our system strongly binds an end-to-end flow to the user or application that requested

the reservation. We have deployed this system in the ESNet 100G SDN testbed, and

demonstrated that our solution effectively protects authorized flows from competing

traffic in the network. Furthermore, the provisioning time of an end-to-end reser-

vation can be reduced from several days (manually) to minutes (automated) on a

small scale network. Moreover, the provisioning latency of our system introduces

a negligible overhead (approx. 0.40%) on a large data transfer transmission time.

These results opens new possibilities for future advance reservation systems in which

advance reservations can be more flexible and short-lived (i.e., lasting hours instead

of years), allowing finer scheduling of network resources.

97

Chapter VI

CONCLUSIONS

The thesis statement of this dissertation is the following: “Given that current ad-

vance reservation systems present several challenges for deploying multi-domain in-

tercontinental circuits, this work posits that by introducing SDXs in the reservation

and provisioning process of intercontinental circuits, we are able to create multi-path,

multi-domain advance reservations, which enhances the performance of science data

transfers over traditional methods reported in the literature, while increasing the suc-

cess rate of reservations, providing more intuitive interfaces to end users, and enabling

auditing capabilities to network operators.”

Our initial investigation reveals that no existing architecture is capable of provid-

ing multi-path, multi-domain advance reservations. Hence, we propose a new archi-

tecture for multi-domain advance reservations that uses SDXs as an interconnection

point for enabling multiple paths between any two locations. Our architecture is

composed of site, WAN, and SDX controllers that reside in each participant domain,

an orchestrator that composes multi-path, multi-domain advance reservations, and

the interfaces that allow users to request science network services to the orchestrator

and those that allow the orchestrator to request individual services to participant

domains.

To prove the thesis statement, we evaluated our architecture by simulation and

by running experiments on a physical testbed. Our simulation results show that a

full deployment of our architecture with four path available achieves a reservation

success rate of 99%, compared to a 50% success rate of traditional (single-domain,

single-path) advance reservation systems. The conditions under which this result was

98

obtained were presented in section 3.4.3. In our simulations, we assume that a tradi-

tional advance reservation succeeds if the available bandwidth for a timeslot is greater

than the requested bandwidth. By running experiments in GENI, we demonstrated

that the system latency of our orchestrator remains below one second when we use

gRPC as the communication channel between one orchestrator and eight participant

domains with 300 ms RTT between them. In our physical testbed, we demonstrated

that common in use scientific data transfer tools such as GridFTP can take advantage

of our multi-path, multi-domain advance reservation by measuring network through-

put performance under several bandwidth splitting scenarios. We also proposed an

interface that allows domain expert scientists to request science network services from

our orchestrator and left a user study for future work. Finally, we proposed frame-

works for auditing and access control is SDXs. We implemented a proof-of-concept

of our auditing framework in the GENI platform. Similarly, we evaluated our access

control system in the ESNet 100G SDN testbed, and demonstrated that our solution

effectively protects authorized flows from competing traffic in the network. For future

work, the orchestration and auditing framework still needs to be tested on large scale

real deployments.

6.1 Discussion

6.1.1 Orchestrating International Advance Reservations with Software-
defined Exchanges

Advance Reservation Systems and SDN - Ibarra et al. [56] deployed SDN

and OpenFlow on the AmLight international research and education network, with

the goals of improving operations efficiency and providing network programmabil-

ity. Although SDN Amlight also automates provisioning of multi-domain network

reservations, its definition of a domain is a countrywide network. In contrast, we also

consider smaller domains such as national laboratories and university campuses, as we

are also concerned with automating provisioning for the last mile between the border

99

router and the endpoint. Furthermore, the SDN Amlight approach only provisions

single-path, multi-domain reservations, while our orchestration architecture provides

multi-path, multi-domain capabilities.

Tepsuporn et al. [98] tested the use of end-to-end layer 2 paths for large dataset

transfers over an existing deployment called DYNES (Dynamic Network System)

[109], which uses OESS and OSCARS in multiple domains to establish dedicated

these layer 2 paths. The authors identified limitations with configuration overhead,

scalability, path provisioning, and testing. For instance, a failed path setup attempt

in OSCARS forces a user to wait 15 minutes before issuing a new request [98]. Our

user interface and negotiation protocol eliminates this blocking time by allowing the

orchestrator to negotiate the allocation of science network resources among partici-

pant domains.

Lark [108] enables network resource management with per-job granularity for high-

throughput computing (HTC) systems such as HTCondor, using Linux containers,

virtual Ethernet devices, and SDN. In their architecture, each job is assigned to a

separate network namespace [69], and each HTCondor node has a virtual switch (e.g.,

Open vSwitch (OVS) [85] or Linux bridge) that interconnects network namespaces to

physical interfaces. To demonstrate these capabilities, the developers of Lark created

a bandwidth management system and a job-aware OpenFlow controller, measuring

performance overhead for both implementations. The authors reported one second

overhead per job, to create and configure network namespaces—a negligible delay

since a typical HTC job duration is measured in hours. However, their work considers

only jobs running on a single node, whereas our work focuses on the orchestration of

network resources in multiple sites. Attaching a Lark node to a system running our

architecture will enable job-level granularity in our orchestration framework. Lark

and our proposed system are complementary.

The Developing Applications with Networking Capabilities via End-to-end SDN

100

(DANCES) [52] project seeks to enhance the performance of cyberinfrastructure ap-

plications (e.g., GridFTP [2] data transfers, SLASH2 [86] distributed file system data

transfers, and SCP) by adding network bandwidth scheduling via SDN. The project

developed a bandwidth manager, the Centralized OpenFlow and Network Governing

Authority (CONGA), whose main function is to receive bandwidth requests from a

resource manager or scheduling system and determine if the request can be fulfilled.

CONGA accepts a request if: (1) resources are available on the network and (2) the

user is authorized to request this amount of bandwidth. Although DANCES uses

SDN for provisioning, their work remains as a single-path, single-domain platform.

Multi-domain SDN Architectures - Avallone et al. [4] proposed an architec-

ture for network resource management in multi-domain scenarios using service-level

specifications, while Kempf et al. [61] proposed service provider SDN (SP-SDN), an

approach to rapid and flexible cross-domain service creation that complements SDN

and network function virtualization (NFV). Likewise, the ONF has proposed trans-

port SDN (T-SDN) [59] as a way to simplify transport network operations by allowing

a domain to expose network services (topology, connectivity, path computation, vir-

tual network, and notification service) that will be consumed by external domains.

Similarly, the Metro Ethernet Forum (MEF) has proposed the Third Network [76]

initiative to promote network as a service principles in industry, and the IETF is

working on a draft document for the Abstraction and Control of Transport Net-

works (ACTN) [30] use cases related to Packet and Optical Integration (POI). Our

architecture builds upon concepts proposed by SP-SDN, T-SDN, Third Network, and

ACTN, and adapts them to the special necessities of science networks and SDXs. We

demonstrated an agent-based approach in which our orchestrator communicates with

agents on each participant domain. This approach allows us to control the WAN

communication channel, while participant domains can independently develop their

own science network services.

101

Flexible Reservations - Balman et al. [6] developed a flexible reservation algo-

rithm for path-finding in the OSCARS system by taking advantage of user-provided

parameters such as the total volume (in bytes) and time constraints, instead of band-

width requirements. Similarly, Xiao et al. [105] proposed a two-dimensional relaxed

reservation policy for Grid computing systems that achieves higher resource utiliza-

tion and success rates (approximately 95% under low reservation rates). He et al. [53]

proposed a flexible advance reservation model for cross-domain lightpath reservations

in optical networks that can achieve a maximum reservation success rate of 84%.

Both [6] and [105] are single domain scheduling algorithms (i.e., they complement

our work when deployed inside participant domains). On the other hand, [53] is a

cross-domain approach specific for optical network. Our orchestration architecture is

technology agnostic, and our negotiation protocol provides higher success rates (ap-

proximately 99% when four paths are available) under the simulations assumptions

made in section 3.4.3.

Network Resource Negotiation - RNAP [103] and SNAP [25] are two examples

of negotiation protocols for networking and Grid computing resources, respectively.

Both are based on querying resource provider for the availability of a resource before

making a reservation. Venugopal et al. [101] proposed a negotiation mechanisms

using an alternate offers protocol for advance reservation of compute nodes in a Grid

system. We build upon the concepts of querying for resources and providing offers to

create our negotiation protocol. Furthermore, we show how our negotiation protocol

performs in a science network using SDXs.

TCP Striping - For more than 15 years researchers have been proposing ways of

striping TCP connections across multiple diverse paths for performance enhancement,

or for finding a sum of bandwidth available in a reservation system. For instance, in

2002, Hsieh et al. [54] proposed parallel TCP (pTCP), an end-to-end transport layer

102

protocol that allows connections to leverage the aggregate bandwidth of multiple par-

allel paths regardless of the individual characteristics of each path. According to the

authors, pTCP can be used for bandwidth aggregation of wireless interfaces for mobile

hosts, end-to-end service differentiation, and connection striping on overlay networks.

Recently, Multipath TCP (MPTCP) [12] has emerged as a standard of the IETF and

an implementation in the Linux kernel that allows a single transport connection to

use multiple paths simultaneously. In fact, data transfer protocols (e.g. GridFTP [3])

take advantage of these ideas to implement their own TCP multistreaming capabil-

ities. The use of multiple parallel and disjoint TCP flows is not new, however how

to accomplish this in SDX-enabled science data networks is novel. Our orchestration

framework uses SDXs to provision the underlying network infrastructure that allows

TCP striping protocols achieve their full potential in Layer 2 advance reservation

environments.

Multi-path Advance Reservations - OLiMPS (OpenFlow Linklayer Multi-

Path Switching) [79] is an OpenFlow application that allows load balancing over

multiple switched paths. The authors integrated their OpenFlow application with

the OSCARS system, and tested several load-balancing algorithms on a dedicated

testbed. Likewise, Plante et al. [87] proposed a multipath extension to the OSCARS

client that enables end users to reserve multiple paths, providing session survivability

and increasing parallelism. Although similar to our work, both of these solutions are

for single-domain reservations, each one focuses on a single piece of the overall prob-

lem. While OLiMPS cares about provisioning OpenFlow rules, Plante’s work is more

concerned with the scheduling aspect of the problem. Furthermore, Plante’s work as-

sumes identical bandwidth demands for every parallel virtual circuit (i.e., all advance

reservation requests are equal to the original user request). We provide a bandwidth

splitting service that makes more efficient use of network resources, instead of re-

questing the same bandwidth in all available paths. Furthermore, our multi-domain

103

architecture is easily adaptable to single domain scenarios as those proposed by [79]

and [87].

6.1.2 Novel Network Services for Supporting Big Data Science Research

Researchers have already proposed the use of SDN for enhancing scientific applica-

tion resource management and performance over a WAN connection. For instance,

the Lark project [108] proposed a flexible and fine-grained mechanism to manage

network resources in high-throughput computing (HTC) systems [7]. Similarly, the

DANCES project uses SDN to enhance scientific application resource management

and performance of a WAN connection by developing applications with networking

capabilities via end-to-end SDN [52]. However, these solutions do not provide inter-

faces that allow domain-expert scientists to request scientific data transfer services

abstracting network details. While the Lark project built an SDN controller that

allows scheduling of high-throughput computing (HTC) jobs in a HTCondor system

[39], the DANCES project uses the same abstraction of endpoints, start time, end

time, and requested bandwidth that current science network reservation systems use.

Our architecture proposes to provide abstractions that enable domain-expert scien-

tists to request end-to-end services on scientific networks while hiding the details of

the network. Furthermore, Lark and DANCES focus on single-domain SDN, while

our solution focuses on multi-domain science networks.

Inside the SDN community, members are aligned with the development of intent-

based networking interfaces [14, 66] that use a prescriptive rather than descriptive

approach to network configuration; that is, network operators and applications de-

scribe a goal, and the SDN controller decides how to implement it. Within the

research community, Kiran et al. [62] proposed the iNDIRA (Intelligent Network

Deployment Intent Renderer Application) tool [62], which uses natural language pro-

cessing to capture the network service requirements of the user. iNDIRA has been

104

deployed on the Energy Science Network (ESNet), where it interacts with Globus

data transfer tools. Similarly, the SDX user interface of AtlanticWave/SDX seeks to

implement intents by describing the network services in a high level language, and

enabling negotiation between the SDX and local controllers.

6.1.3 Auditing and Access Control for Software-Defined Exchanges

Multi-domain SDN Auditing - The closest work to our federated auditing for

software-defined exchanges is AudIt, a multi-domain SDN auditing system proposed

by Maldonado-Lopez et al. [71] which identifies whether an origin policy has been

enforced by foreign domains. The AudIt architecture comprises four main elements:

(1) a model of the network topology, policies, and flows; (2) the AudIt protocol

for gathering information about the configuration deployed on an external domain;

(3) a validation engine for detecting policy violations; and (4) an extension to the

OpenFlow protocol to enable external auditing. The AudIt protocol works by sending

related flow tables to an origin domain every time an external switch receives an AudIt

packet. Although this architecture can verify if an external policy has been enforced

in less than one second, and it can prove if an external policy has been violated in

1.5 seconds, the auditing system is tightly integrated to the SDN controller. This

means that an attacker that compromised the SDN controller would also compromise

the auditing system. Moreover, this architecture requires the modification of SDN

switches and the OpenFlow protocol. FAS on the other hand works as a third party

auditor of the SDN infrastructure, and requires no changes to OpenFlow.

Single-domain SDN Auditing - In single-domain SDN, many researchers have

proposed the use of packet histories or network traffic statistics for network diagnosis.

NetSight [51] is an extensible platform that captures packet histories and enables

applications to retrieve histories of interest by using a regex-like language called packet

history filter (PHF). To assemble packet histories, NetSight uses postcards, which are

105

event records created whenever a packet traverses a switch and contains the packet

header, switch ID, output ports and version number of the switch forwarding state.

Similarly, FlowMon [60] detects compromised switches through real-time analysis of

network traffic statistics collected by OpenFlow in an SDN controller. To achieve

its goal, FlowMon extends an SDN controller with two extra functional blocks: a

malicious switch detection and prevention (MSDP) block and a policy block. While

MSDP continually and transparently analyzes communication between the controller

and switches, the policy block contains a set of rules enforced whenever a malicious

switch is detected. Contrary to NetSight and Flowmon, packet trackeback [107] takes

advantage of the global view of SDN controller to analyze the policy at the controller,

rather than monitoring the data plane. Our federated auditing for software-defined

exchanges is based upon ideas from the single-domain SDN monitoring and extends

them to federated auditing for SDX.

Federated Auditing - Federated auditing has also been proposed in areas out-

side SDN and SDX. ForNet [92], a federated forensics system, is composed of two

functional components: a synopsis appliance called SynApp, and a forensic server

that manages a set of SynApps within an administrative domain. The SynApp ap-

pliance is designed to summarize and remember network events in its vicinity. The

architecture of ForNet is hierarchical, with all SynApps within a domain associated

with a centralized forensic server of that domain. Forensic servers can be networked

for inter-domain collaboration that forms the second level of the hierarchy. Likewise,

Omni [97] is a passive measurement tool for diagnosing routing problems in the Inter-

net. The Omni architecture requires an Omni server per AS that constructs a com-

prehensive view of its routing system. ASes involved in a routing change cooperate

for pinpointing the problem. If an AS needs to contact an Omni server in other ASes,

the Omni server sends a query that follows the forwarding path. Although, Fornet

and Omni identify the necessity of cooperation between domains, both architectures

106

overlook the desire of exchanging audit data without revealing internal information

of the participant domains, which most network operators are not willing to share.

SDN-based Access Control - Network access control (NAC), standardized as

IEEE 802.1X [57], is a common computer security approach to authenticate endpoints

and grant access to a computer network. NAC was an early SDN application, with

the main focus being policy enforcement. Casado et al. [16] proposed a Secure Archi-

tecture for the Networked Enterprise (SANE), which defines a single protection layer

that governs all routing and access control decisions in the network. Similarly, Nayak

et al. [78] proposed Resonance, a system for securing enterprise networks by using

dynamic access control policies and network devices as enforcement points. FlowNAC

[74] and FlowIdentity [106] adapt IEEE 802.1X by using SDN principles. FlowNAC

performs authorization by a set of predefined flow rules per network service, whereas

FlowIdentity enforces a policy through a stateful role-based firewall that is updated

dynamically at the SDN controller. These studies were all conducted in a single do-

main, such as a campus or enterprise network. Our system builds upon these ideas

and extend them to multi-domain science networks.

Token-based Access Control - Gommans et al. [46] proposed a token-based

access control mechanism for multidomain lightpath (i.e., a fiber optics path) REN

reservations. They identified and demonstrated three ways to enforce access control

policies by using tokens: at the IP packet layer, by using a token-base switch; at

the control plane, by including a token in a specific field of the resource reserva-

tion protocol - traffic engineering (RSVP-TE) signaling protocol for networks based

on generalized multiprotocol label switching (GMPLS); and at the service layer sig-

naling, by implementing an authentication, authorization, and accounting server, a

token enforcement point, and a lightpath resource allocation system. However, while

this work extended to multiple domains, it did not consider SDN. The originality of

our work lies in its integration of SDN access control and token-based multi-domain

107

authorization.

6.2 Contributions

The contributions in each chapter are summarized as follows:

1. Chapter 3 presented the design, implementation, and evaluation of our archi-

tecture for intercontinental multi-domain, multi-path advance reservations in

science networks and SDXs. The architecture is composed of an orchestrator

that request services from participant domains and SDXs, and a negotiation

protocol that allows the orchestrator to compose end-to-end services taking

advantage of alternative paths provided by the enriched connectivity of SDXs.

We evaluated our proposed architecture in a dedicated testbed using single-path

vs. multi-path advance reservations over multiple domains and the data transfer

tools that the scientific community currently uses. We demonstrated that our

orchestration framework and negotiation protocols increases the reservation suc-

cess rate from approximately 50% using single path to approximately 99% with

four paths available under the constraints specified in section 3.4.3. Chapter 3

also presents architectural approaches at the SDX level that enable novel science

network services, while enhancing the performance of science data transfers over

traditional approaches. We evaluated our solution using GridFTP, one of the

most popular tools for data transfers in the scientific community. In our exper-

iments, we tested our system under several conditions of bandwidth splitting

ratios, SDN rule provisioning strategies at the edge, and number of GridFTP

streams, and generated recommendations for the optimal performance of our

system.

2. Chapter 4 proposed an intuitive interface that users and other systems can use

to request science network services from our orchestration framework. Contrary

108

to current interfaces that were designed by network operators for network oper-

ators, our interface allows a domain-expert scientist to specify the size of their

datasets and a deadline for the data transfer. Then our orchestrator negotiates

a suitable advance reservation across all participant domains. We also proposed

novel science network services enabled by our proposed architecture. These pro-

posals need further work to fully evaluate their impact on existing science data

networks.

3. Chapter 5 presented a federated auditing framework (FAS) that allows an SDX

to verify whether the configurations requested by a user are correctly enforced

by participating SDN domains, whether the configurations requested are cor-

rectly removed after their expiration time, and whether configurations exist that

are performing non requested actions. Additionally, FAS allows end-to-end con-

figuration verification without revealing internal information of the participant

SDN domains that they are not willing to share. FAS establishes a new chain

of trust by extending auditing capabilities of the SDX into participant SDN

domains, and establishes trust agreements between SDX operators and domain

administrators. We presented an initial proof-of-concept architecture of FAS,

implemented on the GENI platform, and discussed the administrative and tech-

nical challenges of implementing FAS. For instance, the use OpenFlow over TLS

transport represents a major challenge for collecting control plane data. Simi-

larly, bulk data plane traffic collection will require enormous amounts of storage.

6.3 Future Research

This thesis has demonstrated that by introducing SDXs in the reservation and provi-

sioning process of multi-domain intercontinental advance reservations, we can improve

109

the success rate of reservations and define novel science network services such as multi-

path bandwidth splitting across independent WAN providers, scheduled path migra-

tions that are transparent to data transfer applications, and multipoint-to-multipoint

advance reservations. However, many questions remain open regarding real deploy-

ment of orchestration systems similar to the one proposed in this thesis, and the

future implications of SDX in next generation network infrastructures. In the follow-

ing subsections we describe some of the research opportunities that science networks

SDXs and SDXs in general will enable in the future.

6.3.1 Large Scale Deployment of Science Network SDXs

In this dissertation we evaluated our orchestration system on a dedicated testbed, and

emulated the parameter of real-world science network. However, there are conditions

that are better tested on real large scale testbeds. For instance, what is the effect of

paths with different delays on the composition of multi-path, multi-domain advance

reservations? Where is the optimal placement of the orchestrator? In the case of

a distributed orchestrator, what is the best approach to maintain consistency and

consensus among replicas? How does the negotiation protocol behaves under a high

load of requests, or when multiple orchestrators compete for the same resources, and

how do site controllers will behave under these conditions?

Some of the results of this dissertation (bandwidth offers and U-O interface) have

influenced the development of the AtlanticWave/SDX controller. However, a detailed

user study is required to determine how effective and intuitive the interface really is.

We are currently involved in the definition of the roadmap of future SDX services for

the AtlanticWave/SDX project. We plan to continue to contribute to the design and

evaluation of these services as they are deployed at large scale.

Similarly, both our federated auditing for SDX (FAS) and our advance reservation

access control frameworks need to be tested in large scale deployments. One should

110

evaluate the robustness of privacy mechanism in the FAS protocol, as well as new

data structures to represent network configurations from the data plane. How the

auditing system could detect side channels in the science data network infrastructure

is another area of investigation. Regarding access control, one could explore the

robustness of token approaches against spoofing.

6.3.2 Network Function Virtualization (NFV) and Programmable Data-
planes

OpenFlow has historically been considered as the main component in the implemen-

tation of SDN, and by default it was the only enabler for SDXs. However, with the

advent network function virtualization (NFV) [38], and programmable dataplanes

such as P4 [13] and the Berkeley extensible software switch (BESS) [50] we envi-

sion new types of services. For instance, we may be able to deploy security network

functions on demand at the SDX, or perform bandwidth splitting at packet level for

applications that do not use multiple TCP streams. A question that remains is how

can we realize these services at line-rate speeds in the order of tens or hundreds of

gigabits per second?

6.3.3 Other Applications for SDXs

SDX has already been proposed as a solution to mitigate distributed denial of service

(DDoS) [34]. However, how can we make several SDXs to cooperate in the task of

mitigating a global scale DDoS attack? SDXs may also be applied in new areas.

For instance, in the context of smart cities and smart communities, we have pro-

posed MetroSDX [31], a neutral network design that increases the resiliency of edge

networks and global and local services, improves isolation of network functions, and

preserves data from edge devices when they are disconnected. One might study de-

ployment strategies for MetroSDX, as every city and every community has their own

peculiarities.

111

6.4 Conclusions

In this thesis, we studied architectural approaches to a science network SDX, and pro-

posed an orchestration system for advance reservation of multi-domain, multi-path

intercontinental links. Our orchestration system not only increases the success rate of

multi-domain intercontinental advance reservation, but also enhances the performance

of science data transfers, provides interfaces for domain scientist users, and enables

auditing and access control capabilities for network operators. First, we provided a

literature survey of advance reservation systems and SDXs. Second, we introduced a

reference architecture of our orchestration system. Third, we designed, implemented,

and evaluated our orchestration system for reservation and provisioning of multi-path,

multi-domain intercontinental advance reservations. Fourth, we proposed an interface

for domain-expert scientists to request multi-domain intercontinental advance reser-

vations on our system, adapting our reference architecture to the AtlanticWave/SDX

project and leave as future work a user study. Fifth, we proposed a federated auditing

system that allows network operators to verify that their network policies have been

correctly installed in an SDX, regardless of what architecture are they using, and an

access control system that uses SDN and tokens to strongly bind network flows to

the user who requested an advance reservation.

112

REFERENCES

[1] Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A.,

Parulkar, G., Salvadori, E., and Snow, B., “Openvirtex: Make your vir-

tual sdns programmable,” in Proceedings of the Third Workshop on Hot Topics

in Software Defined Networking, HotSDN ’14, (New York, NY, USA), pp. 25–30,

ACM, 2014.

[2] Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L.,

and Tuecke, S., “GridFTP: Protocol extensions to FTP for the grid,” Global

Grid ForumGFD-RP, vol. 20, pp. 1–21, 2003.

[3] Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu,

C., Raicu, I., and Foster, I., “The globus striped gridftp framework and

server,” in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,

SC ’05, (Washington, DC, USA), pp. 54–, IEEE Computer Society, 2005.

[4] Avallone, S., D’Antonio, S., Esposito, M., Romano, S. P., and Ven-

tre, G., “Resource allocation in multi-domain networks based on service level

specifications,” Journal of Communications and Networks, vol. 8, pp. 106–115,

March 2006.

[5] Bailey, J., Pemberton, D., Linton, A., Pelsser, C., and Bush, R., “En-

forcing rpki-based routing policy on the data plane at an internet exchange,” in

Proceedings of the third workshop on Hot topics in software defined networking,

pp. 211–212, ACM, 2014.

[6] Balman, M., Chaniotakisy, E., Shoshani, A., and Sim, A., “A flexible

reservation algorithm for advance network provisioning,” in 2010 ACM/IEEE

113

International Conference for High Performance Computing, Networking, Stor-

age and Analysis, pp. 1–11, Nov 2010.

[7] Basney, J., Livny, M., and Tannenbaum, T., “High throughput computing

with condor,” HPCU news, vol. 1, no. 2, p. 1, 1997.

[8] Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M.,

Koide, T., Lantz, B., O’Connor, B., Radoslavov, P., Snow, W., and

Parulkar, G., “Onos: Towards an open, distributed sdn os,” in Proceedings

of the Third Workshop on Hot Topics in Software Defined Networking, HotSDN

’14, (New York, NY, USA), pp. 1–6, ACM, 2014.

[9] Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott, M., Ray-

chaudhuri, D., Ricci, R., and Seskar, I., “GENI: A federated testbed for

innovative network experiments,” Computer Networks, vol. 61, no. 0, pp. 5 –

23, 2014. Special issue on Future Internet Testbeds Part I.

[10] Betge-Brezetz, S., Kamga, G. B., and Tazi, M., “Trust support for sdn

controllers and virtualized network applications,” in Network Softwarization

(NetSoft), 2015 1st IEEE Conference on, pp. 1–5, April 2015.

[11] Bezerra, J., Ibarra, J., Galiza, H., and Schwarz, M., “Am-

Lights OpenFlow Sniffer dissected: Troubleshooting production networks.”

http://amlight.net/wp-content/uploads/2015/03/WPEIF-2016-OpenFlow-

Sniffer.pdf, 2016.

[12] Bonaventure, O., Handley, M., and Raiciu, C., “An overview of multi-

path TCP,” ; login:, vol. 37, no. 5, p. 17, 2012.

[13] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rex-

ford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G.,

114

and Walker, D., “P4: Programming protocol-independent packet proces-

sors,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95, July 2014.

[14] Cao, W. W., Zhou, T., Jiang, S., Xiao, Y., and Hares, S., “Nemo an ap-

plication’s interface to intent based networks.” http://www.nemo-project.net/.

[15] Carrozzo, G., Monno, R., Belter, B., Krzywania, R., Pentikousis,

K., Broadbent, M., Kudoh, T., Takefusa, A., Vieo-Oton, A., Fer-

nandez, C., and others, “Large-scale sdn experiments in federated environ-

ments,” in Smart Communications in Network Technologies (SaCoNeT), 2014

International Conference on, pp. 1–6, IEEE, 2014.

[16] Casado, M., Garfinkel, T., Akella, A., Freedman, M. J., Boneh,

D., McKeown, N., and Shenker, S., “Sane: A protection architecture for

enterprise networks.,” in Usenix Security, 2006.

[17] Casado, M., Koponen, T., Shenker, S., and Tootoonchian, A., “Fab-

ric: A retrospective on evolving sdn,” in Proceedings of the First Workshop on

Hot Topics in Software Defined Networks, HotSDN ’12, (New York, NY, USA),

pp. 85–90, ACM, 2012.

[18] Charbonneau, N., Vokkarane, V. M., Guok, C., and Monga, I., “Ad-

vance reservation frameworks in hybrid ip-wdm networks,” Communications

Magazine, IEEE, vol. 49, no. 5, pp. 132–139, 2011.

[19] Chung, J., Cox, J., Clark, R., and Owen, H., “FAS: Federated auditing

for software-defined exchanges,” in SoutheastCon 2017, pp. 1–8, March 2017.

[20] Chung, J., Clark, R., and Owen, H., “SDX architectures: A qualitative

analysis,” in IEEE SoutheastCon 2016, pp. 1–8, IEEE, 2016.

115

[21] Chung, J., Cox, J., Ibarra, J., Bezerra, J., Morgan, H., Clark, R.,

and Owen, H., “Atlanticwave-sdx: An international sdx to support science

data applications,” Software Defined Networking (SDN) for Scientific Network-

ing Workshop, SC’15, pp. 1–7, Nov 2015.

[22] Chung, J., Donovan, S., Bezerra, J., Morgan, H., Ibarra, J., Clark,

R., and Owen, H., “Novel network services for supporting big data science

research,” in Gateways 2017, October 2017.

[23] Chung, J., Jung, E.-S., Kettimuthu, R., Rao, N. S., Foster, I. T.,

Clark, R., and Owen, H., “Advance reservation access control using

software-defined networking and tokens,” Future Generation Computer Sys-

tems, 2017.

[24] Chung, J., Kettimuthu, R., Pho, N., Clark, R., and Owen, H.,

“Orchestrating intercontinental advance reservations with software-defined ex-

changes,” 4th International Workshop on Innovating the Network for Data In-

tensive Science (INDIS) 2017, pp. 1–11, Nov 2017.

[25] Czajkowski, K., Foster, I., Kesselman, C., Sander, V., and Tuecke,

S., SNAP: A Protocol for Negotiating Service Level Agreements and Coordinat-

ing Resource Management in Distributed Systems, pp. 153–183. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2002.

[26] Dart, E. and others, “ESNet requirement review re-

ports.” https://www.es.net/science-engagement/science-requirements-

reviews/requirements-review-reports/. Accessed: 2017-01-14.

[27] Dart, E. and others, “Biological and envi-

ronmental research network requirements review.”

116

https://www.es.net/assets/Hester/RequirementsReviews/BER-Net-Req-

Review-2015-Final-Report.pdf, 2015.

[28] Dart, E., Rotman, L., Tierney, B., Hester, M., and Zurawski, J.,

“The Science DMZ: A network design pattern for data-intensive science,” Sci-

entific Programming, vol. 22, no. 2, pp. 173–185, 2014.

[29] de Laat, C., Gross, G., Gommans, L., Vollbrecht, J., and Spence,

D., “Rfc 2903 - generic aaa architecture.” https://tools.ietf.org/html/rfc2903,

2000. Accessed: 2016-05-04.

[30] Dhody, D., Zhang, X., de Dios, O. G., Ceccarelli, D., and Yoon,

B., “Packet optical integration (POI) use cases for abstraction and control of

te networks (ACTN).” https://datatracker.ietf.org/doc/draft-dhody-actn-poi-

use-case/. Accessed: 2017-01-15.

[31] Donovan, S., Chung, J., Sanders, M., and Clark, R., “MetroSDX: A

resilient edge network for the smart community,” in 2017 IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom

Workshops), pp. 575–580, March 2017.

[32] Donovan, S. and Feamster, N., “Intentional network monitoring: Finding

the needle without capturing the haystack,” in Proceedings of the 13th ACM

Workshop on Hot Topics in Networks, p. 5, ACM, 2014.

[33] Donovan, S., Skandalakis, J., and Lamba, A., “Atlanticwave/sdx con-

troller prototype.” https://github.com/atlanticwave-sdx/atlanticwave-proto.

Accessed: 2017-08-11.

[34] Eddy, W., Clark, G., and Dailey, J., “Customer-controlled filtering using

sdn.” https://datatracker.ietf.org/doc/draft-eddy-sdnrg-customer-filters/.

117

[35] ESNet, “Esnet - network maps.” https://www.es.net/engineering-

services/the-network/network-maps/. Accessed: 2017-08-28.

[36] ESNet, “Linux tuning.” https://fasterdata.es.net/host-tuning/linux/. Ac-

cessed: 2017-09-07.

[37] ESNet, “oscars-newtech.” https://github.com/esnet/oscars-newtech. Ac-

cessed: 2017-07-25.

[38] ETSI, “Network functions virtualisation architectural framework,” ETSI GS

NFV, vol. 2, p. v1, 2013.

[39] for-High-Throughput-Computing-at UW-Madison, C., “What is ht-

condor?.” https://research.cs.wisc.edu/htcondor/description.html. Accessed:

2017-01-19.

[40] Fukushima, M., Kuroki, K., and Hayashi, M., “Unified metamodel for

orchestrating different domains in sdi,” in Proceedings of the 2015 1st IEEE

Conference on Network Softwarization (NetSoft), pp. 1–6, April 2015.

[41] GEANT, “eduGAIN.” https://www.geant.org/Services/Trust identity and -

security/eduGAIN.

[42] Global-NOC, “Internet2 international networks.”

https://noc.net.internet2.edu/i2network/live-network-status/maps-

graphs/internet2-international-network.html. Accessed: 2017-08-28.

[43] GlobalNOC, “Flowspace firewall.” http://globalnoc.iu.edu/sdn/fsfw.html.

[44] GlobalNOC, “OESS: Open exchange software suite.”

https://globalnoc.iu.edu/sdn/oess.html.

[45] Globus, “Globus - research data management system.”

https://www.globus.org/. Accessed: 2017-01-20.

118

[46] Gommans, L., Xu, L., Demchenko, Y., Wan, A., Cristea, M., Meijer,

R., and de Laat, C., “Multi-domain lightpath authorization, using tokens,”

Future Generation Computer Systems, vol. 25, no. 2, pp. 153 – 160, 2009.

[47] Google-Developers, “Protocol buffers.” https://developers.google.com/protocol-

buffers/. Accessed: 2017-09-06.

[48] gRPC, “gRPC.” https://grpc.io/. Accessed: 2017-09-06.

[49] Gupta, A., Vanbever, L., Shahbaz, M., Donovan, S. P., Schlinker,

B., Feamster, N., Rexford, J., Shenker, S., Clark, R., and Katz-

Bassett, E., “SDX: A software defined internet exchange,” in Proceedings of

the 2014 ACM conference on SIGCOMM, pp. 551–562, ACM, 2014.

[50] Han, S., Jang, K., Han, D., Panda, A., Edupuganti, S., Reich, J.,

and Ratnasamy, S., “BESS berkeley extensible software switch,” tech. rep.,

University of California at Berkeley, 2015.

[51] Handigol, N., Heller, B., Jeyakumar, V., Mazières, D., and McK-

eown, N., “I know what your packet did last hop: Using packet histories to

troubleshoot networks,” in 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), (Seattle, WA), pp. 71–85, USENIX

Association, Apr. 2014.

[52] Hazlewood, V., Benninger, K., Peterson, G., Charcalla, J.,

Sparks, B., Hanley, J., Adams, A., Learn, B., Budden, R., Simmel,

D., Lappa, J., and Yanovich, J., “Developing applications with networking

capabilities via end-to-end sdn (dances),” XSEDE16, pp. 1–7, July 2016.

[53] He, E., Wang, X., and Leigh, J., “A flexible advance reservation model for

multi-domain wdm optical networks,” in 2006 3rd International Conference on

Broadband Communications, Networks and Systems, pp. 1–10, Oct 2006.

119

[54] Hsieh, H.-Y. and Sivakumar, R., “ptcp: an end-to-end transport layer pro-

tocol for striped connections,” in 10th IEEE International Conference on Net-

work Protocols, 2002. Proceedings., pp. 24–33, Nov 2002.

[55] Hu, F., Hao, Q., and Bao, K., “A survey on software-defined network and

openflow: From concept to implementation,” IEEE Communications Surveys

Tutorials, vol. 16, pp. 2181–2206, Fourthquarter 2014.

[56] Ibarra, J., Bezerra, J., Morgan, H., Fernandez Lopez, L., Stan-

ton, M., Machado, I., Grizendi, E., and Cox, D., “Benefits brought by

the use of openflow/sdn on the amlight intercontinental research and education

network,” in Integrated Network Management (IM), 2015 IFIP/IEEE Interna-

tional Symposium on, pp. 942–947, May 2015.

[57] IEEE, “IEEE standard for local and metropolitan area networks–port-based

network access control,” IEEE Std 802.1X-2010 (Revision of IEEE Std 802.1X-

2004), pp. 1–205, Feb 2010.

[58] Internet2, “Layer 2 services.” http://www.internet2.edu/products-

services/advanced-networking/layer-2-services/. Accessed: 2017-07-25.

[59] Janz, C., Ong, L., Sethuraman, K., and Shukla, V., “Emerging trans-

port sdn architecture and use cases,” IEEE Communications Magazine, vol. 54,

pp. 116–121, October 2016.

[60] Kamisiński, A. and Fung, C., “Flowmon: Detecting malicious switches in

software-defined networks,” in Proceedings of the 2015 Workshop on Automated

Decision Making for Active Cyber Defense, SafeConfig ’15, (New York, NY,

USA), pp. 39–45, ACM, 2015.

[61] Kempf, J., Korling, M., Baucke, S., Touati, S., McClelland, V.,

Mas, I., and Backman, O., “Fostering rapid, cross-domain service innovation

120

in operator networks through service provider sdn,” in Communications (ICC),

2014 IEEE International Conference on, pp. 3064–3069, IEEE, 2014.

[62] Kiran, M., Pouyoul, E., Mercian, A., Tierney, B., Guok, C., and

Monga, I., “Enabling intent to configure scientific networks for high perfor-

mance demands,” Future Generation Computer Systems, pp. –, 2017.

[63] Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A.,

Fulton, B., Ganichev, I., Gross, J., Ingram, P., Jackson, E., Lam-

beth, A., Lenglet, R., Li, S.-H., Padmanabhan, A., Pettit, J., Pfaff,

B., Ramanathan, R., Shenker, S., Shieh, A., Stribling, J., Thakkar,

P., Wendlandt, D., Yip, A., and Zhang, R., “Network virtualization in

multi-tenant datacenters,” in 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), (Seattle, WA), pp. 203–216, USENIX

Association, 2014.

[64] Kreutz, D., Ramos, F. M. V., Verssimo, P. E., Rothenberg, C. E.,

Azodolmolky, S., and Uhlig, S., “Software-defined networking: A compre-

hensive survey,” Proceedings of the IEEE, vol. 103, pp. 14–76, Jan 2015.

[65] Kreutz, D., Ramos, F. M., and Verissimo, P., “Towards secure and

dependable software-defined networks,” Proceedings of the second ACM SIG-

COMM workshop on Hot topics in software defined networking - HotSDN ’13,

p. 55, 2013.

[66] Lenrow, D., “Intent-based networking seeks network effect.”

https://www.sdxcentral.com/articles/contributed/intent-based-networking-

seeks-network-effect-david-lenrow/2015/09/.

121

[67] Lin, P., Bi, J., Wolff, S., Wang, Y., Xu, A., Chen, Z., Hu, H., and

Lin, Y., “A west-east bridge based sdn inter-domain testbed,” Communications

Magazine, IEEE, vol. 53, no. 2, pp. 190–197, 2015.

[68] Lin, P., Hart, J., Krishnaswamy, U., Murakami, T., Kobayashi, M.,

Al-Shabibi, A., Wang, K.-C., and Bi, J., “Seamless interworking of sdn and

ip,” in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,

SIGCOMM ’13, (New York, NY, USA), pp. 475–476, ACM, 2013.

[69] Linux, “ip-netns - process network namespace management.”

http://man7.org/linux/man-pages/man8/ip-netns.8.html. Accessed: 2016-05-

04.

[70] linuxcontainers.org, “Linux containers.” https://linuxcontainers.org/.

[71] Maldonado-Lopez, F. A., Calle, E., and Donoso, Y., “Checking multi-

domain policies in SDN,” International Journal of Computers Communications

& Control, vol. 11, no. 3, pp. 428–440, 2016.

[72] Mambretti, J., Chen, J.-J., and Yeh, F., “Software-defined network ex-

changes (sdxs) and infrastructure (sdi): Emerging innovations in sdn and sdi

interdomain multi-layer services and capabilities,” in Science and Technology

Conference (Modern Networking Technologies)(MoNeTeC), 2014 First Inter-

national, pp. 1–6, IEEE, 2014.

[73] Mambretti, J., Chen, J., and Yeh, F., “Software-defined network ex-

changes (sdxs): Architecture, services, capabilities, and foundation technolo-

gies,” in Teletraffic Congress (ITC), 2014 26th International, pp. 1–6, IEEE,

2014.

122

[74] Matias, J., Garay, J., Mendiola, A., Toledo, N., and Jacob, E.,

“Flownac: Flow-based network access control,” in 2014 Third European Work-

shop on Software Defined Networks, pp. 79–84, Sept 2014.

[75] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Pe-

terson, L., Rexford, J., Shenker, S., and Turner, J., “Openflow: En-

abling innovation in campus networks,” SIGCOMM Comput. Commun. Rev.,

vol. 38, pp. 69–74, Mar. 2008.

[76] MEF and others, “An industry initiative for third generation network and

services.” https://www.mef.net/third-network/third-network-white-paper. Ac-

cessed: 2017-01-15.

[77] Monga, I., Guok, C., Johnston, W. E., and Tierney, B., “Hybrid net-

works: lessons learned and future challenges based on esnet4 experience,” IEEE

Communications Magazine, vol. 49, pp. 114–121, May 2011.

[78] Nayak, A. K., Reimers, A., Feamster, N., and Clark, R., “Resonance:

Dynamic access control for enterprise networks,” in Proceedings of the 1st ACM

Workshop on Research on Enterprise Networking, WREN ’09, (New York, NY,

USA), pp. 11–18, ACM, 2009.

[79] Newman, H. B., Barczyk, A., and Bredel, M., “OLiMPS. openflow

link-layer multipath switching,” tech. rep., California Institute of Technology,

Pasadena, CA (United States), 2014.

[80] Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., and

Turletti, T., “A survey of software-defined networking: Past, present, and

future of programmable networks,” IEEE Communications Surveys Tutorials,

vol. 16, pp. 1617–1634, Third 2014.

123

[81] ONF, “Openflow switch specification version 1.5.1 (protocol ver-

sion 0x06).” https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf, Mar 2015.

Accessed: 2016-05-04.

[82] ONRL, “Transferring data with bbcp.” https://www.olcf.ornl.gov/kb -

articles/transferring-data-with-bbcp/. Accessed: 2017-09-04.

[83] Open-Grid-Forum, “Network service interface.”

https://redmine.ogf.org/projects/nsi-wg. Accessed: 2017-01-14.

[84] OSRG, “Ryu SDN framework.” https://osrg.github.io/ryu/, 2017.

[85] Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Raja-

halme, J., Gross, J., Wang, A., Stringer, J., Shelar, P., Amidon,

K., and Casado, M., “The design and implementation of open vswitch,” in

12th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 15), (Oakland, CA), pp. 117–130, USENIX Association, 2015.

[86] Pittsburgh-Supercomputing-Center, “SLASH2 file system.”

https://github.com/pscedu/slash2.

[87] Plante, J. M., Davis, D. A. P., and Vokkarane, V. M., “Parallel and

survivable multipath circuit provisioning in esnet’s oscars,” Photonic Network

Communications, vol. 30, pp. 363–375, Dec 2015.

[88] Ricci, R. and Feamster, N., eds., Report of the NSF Workshop on Software

Defined Infrastructures and Software Defined Exchanges, (Washington, DC),

Feb. 2016.

124

[89] Schiff, L. and Schmid, S., “Study the past if you would define the future: Im-

plementing secure multi-party sdn updates,” in 2016 IEEE International Con-

ference on Software Science, Technology and Engineering (SWSTE), pp. 111–

116, June 2016.

[90] SDxCentral, “[Market Report] The Future of Network Virtu-

alization and SDN Controllers.” https://www.sdxcentral.com/wp-

content/uploads/2016/09/SDxCentral-Future-of-Network-Virtualization-

and-SDN-Controllers-Reoprt-2016-D.pdf, 2016.

[91] sflow.org, “sFlow - making the network visible.” http://www.sflow.org/,

2017.

[92] Shanmugasundaram, K., Memon, N., Savant, A., and Bronnimann,

H., ForNet: A Distributed Forensics Network, pp. 1–16. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2003.

[93] Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M.,

McKeown, N., and Parulkar, G., “Flowvisor: A network virtualization

layer,” OpenFlow Switch Consortium, Tech. Rep, 2009.

[94] Shibboleth-Consortium, “Shibboleth.” https://shibboleth.net/. Accessed:

2017-01-22.

[95] SoX, “Southern crossroads.” http://www.sox.net/about-us/.

[96] Stringer, J., Pemberton, D., Fu, Q., Lorier, C., Nelson, R., Bailey,

J., Correa, C. N., Esteve Rothenberg, C., and others, “Cardigan:

SDN distributed routing fabric going live at an internet exchange,” in Com-

puters and Communication (ISCC), 2014 IEEE Symposium on, pp. 1–7, IEEE,

2014.

125

[97] Teixeira, R. and Rexford, J., “A measurement framework for pin-pointing

routing changes,” in Proceedings of the ACM SIGCOMM Workshop on Network

Troubleshooting: Research, Theory and Operations Practice Meet Malfunction-

ing Reality, NetT ’04, (New York, NY, USA), pp. 313–318, ACM, 2004.

[98] Tepsuporn, S., Al-Ali, F., Veeraraghavan, M., Ji, X., Cashman, B.,

Ragusa, A. J., Fowler, L., Guok, C., Lehman, T., and Yang, X., “A

multi-domain sdn for dynamic layer-2 path service,” in Proceedings of the Fifth

International Workshop on Network-Aware Data Management, NDM ’15, (New

York, NY, USA), pp. 2:1–2:8, ACM, 2015.

[99] The-Bro-Project, “[Bro-Dev] OpenFlow Analyzer.”

http://mailman.icsi.berkeley.edu/pipermail/bro-dev/2016-

October/012224.html, 2017.

[100] The-Bro-Project, “The bro network security monitor.”

https://www.bro.org/, 2017.

[101] Venugopal, S., Chu, X., and Buyya, R., “A negotiation mechanism for

advance resource reservations using the alternate offers protocol,” in 2008 16th

Interntional Workshop on Quality of Service, pp. 40–49, June 2008.

[102] Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L., Gross, G.,

de Bruijn, B., de Laat, C., Holdrege, M., and Spence, D., “Rfc 2904

- aaa authorization framework.” https://tools.ietf.org/html/rfc2904, 2000. Ac-

cessed: 2016-05-04.

[103] Wang, X. and Schulzrinne, H., “Rnap: A resource negotiation and pricing

protocol,” in in International Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV99), Basking, Citeseer, 1999.

126

[104] Wundsam, A., Levin, D., Seetharaman, S., and Feldmann, A.,

“Ofrewind: Enabling record and replay troubleshooting for networks,” in Pro-

ceedings of the 2011 USENIX Conference on USENIX Annual Technical Confer-

ence, USENIXATC’11, (Berkeley, CA, USA), pp. 29–29, USENIX Association,

2011.

[105] Xiao, P. and Hu, Z., “Two-dimension relaxed reservation policy for indepen-

dent tasks in grid computing,” Journal of Software, vol. 6, no. 8, pp. 1395–1402,

2011.

[106] Yakasai, S. T. and Guy, C. G., “Flowidentity: Software-defined network ac-

cess control,” in Network Function Virtualization and Software Defined Network

(NFV-SDN), 2015 IEEE Conference on, pp. 115–120, Nov 2015.

[107] Zhang, H., Reich, J., and Rexford, J., “Packet traceback for software-

defined networks,” Princeton University, 2015.

[108] Zhang, Z., Bockelman, B., Carder, D. W., and Tannenbaum, T.,

“Lark: Bringing network awareness to high throughput computing,” in Clus-

ter, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM International

Symposium on, pp. 382–391, May 2015.

[109] Zurawski, J., Ball, R., Barczyk, A., Binkley, M., Boote, J., Boyd,

E., Brown, A., Brown, R., Lehman, T., McKee, S., Meekhof, B.,

Mughal, A., Newman, H., Rozsa, S., Sheldon, P., Tackett, A.,

Voicu, R., Wolff, S., and Yang, X., “The dynes instrument: A description

and overview,” Journal of Physics: Conference Series, vol. 396, no. 4, p. 042065,

2012.

127

VITA

Joaquin Chung received both his B.S. in Electrics and Communications Engineer-

ing (2007) and his M.Sc. in Communication Systems Engineering with Emphasis in

Data Networks (2013) from University of Panama, Panama. He received his Ph.D

in Electrical and Computer Engineering in December 2017, under the supervision of

Dr. Henry Owen and Dr. Russell Clark at Georgia Institute of Technology, Atlanta,

USA. He is a Fulbright alumni and an IEEE member. His research interests include

software-defined networking, software-defined exchanges, network function virtualiza-

tion, network security, and the Internet of Things.

128

