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structure results in a electrical current at the output node whose polarity is
controlled by the magnetization of the top nanomagnet. . . . . . . . . . . . 13
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1.11 Example of Spin-switch performing Boolean operations. We encode bit
information as -I and +I which represent bit “0” and “1” states, respectively.
Because the Spin-switch is a current-driven device, the summing of the
electrical currents at the input node results in majority gate functionality.
A majority gate can provide Boolean operations by adding a static input
“weight”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Visual representation of energy landscapes for (a) in-plane and (b) PMA
nanomagnets. Lines denote magnetization orbits at different magnetization
energies. Red lines map energy basin while blue lines map energy pole.
Black lines mark energy barrier between regions. Despite having orthogo-
nal free-axis directions, the only difference between the two energy land-
scapes is the existence of a perpendicular positive anisotropy energy. This
perpendicular anisotropy energy creates a biaxial system and significantly
alters the precessional mechanics of the nanomagnet. Hence, uniaxial and
biaxial nanomagnet systems need to be evaluated separately. . . . . . . . . 22

2.2 Visual representation of the torques acting upon the magnetization of a
single-body ferromagnetic system . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Plots taken from [100]. Plots show numeric integration of sLLG (2.20)
using two different integration schemes. The difference of these results is
due to the fact that certain numerical integration schemes adhere to either
Stratonovich or Itô solutions. Hence, using a numeric integration scheme
such as the Midpoint method yields perfectly acceptable results when eval-
uating (2.20). However, the Euler-Heun method, which converges to the Itô
solution, outputs unstable results assuming the same parameters. . . . . . . 28

2.4 Considering a a 40 ⇥ 40 ⇥ 1nm3 PMA magnet with Ms = 10

6 A
m

, Ku =

10

6 J
m3 and ↵ = 0.01. Left: Z component of magnetization as nanomagnet

is reversed using a -96 µA spin current. Compares numerical results with
solution to LLG equation (4.4) derived in [73]. Right: Evaluates the initial
angle of the nanomagnet while it is at rest fluctuate around the free-axis
due to thermal effects. Compares numerical results with analytic equation
(4.7a) derived in [73]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Sample reversal trajectories for nanomagnet under the influence of thermal
noise. In all cases Ku = 10

2 J
m3 . Background light-colored lines denote

precessional trajectories for the corresponding Ms/Ku values. Green line
denotes sample magnetization trajectory under thermal noise. . . . . . . . 33

xviii



3.2 (Left): Probability that the magnetization will cross the x̂ = 0 plane at least
once within 1 ns. While Eb is solely proportional to Ku, it is shown that
a larger Ms also increases the probability of Case 1 reversal. (Right): Pre-
cessional period associated with nanomagnet with corresponding Ms/Ku

parameters at the orbit whose associated energy = �0.01Eb. . . . . . . . . 34

3.3 (Left): Change in magnetization energy due to thermal field assuming Wiener
process in thermal field, dW = [1, 1, 1]. Change in energy calculated for
each point along precessional orbit whose associated energy = �0.01Eb.
Precessional periods for each Ms value normalized along x axis. Assuming
Ku = 10

2 A
m

a dt = 10

�12s. (Right): Scatter plot of magnetization position
when magnetization energy first exceeds energy barrier for various values
of Ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Probability that the magnetization energy for a nanomagnet will exceed Eb

atleast once within a given time. Three simulation times are considered ac-
cording to title of plots. While Eb is solely proportional to Ku, a larger Ms

also increases the probability of Case 2 reversal. The subplots together also
demonstrate that the effect of this non-monotonic behavior is diminished as
the observed time is increased. . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Delay of uniaxial nanomagnet using numerical and analytic results. As-
suming 40 ⇥ 40 ⇥ 1nm

3 with a Ms = 1

MA
m

and Ku = 1

MJ
m3 . Figure

demonstrates exactness of (4.4) analytic expression. . . . . . . . . . . . . 42

4.2 Assuming 40 ⇥ 40 ⇥ 1nm

3 with a Ms = 1

MA
m

and Ku = 1

MJ
m3 . Figure

demonstrates exactness of (4.4) analytic expression. . . . . . . . . . . . . . 42

4.3 Numerical evaluation of 0Hd and SHd nanomagnet bodies. Assuming 40⇥
20 ⇥ 2nm

3 with a Ms = 1

MA
m

and Ku = 1

MJ
m3 . . . . . . . . . . . . . . . . . 43

4.4 Assuming 40⇥ 40⇥ 1nm

3 in-plane SHd magnetic body with a Ms = 1

MA
m

and Ku = 1

MJ
m3 . Figure demonstrates difference in precessional trajectory

for slow and fast reversal cases.. . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Numerical evaluation of SHd nanomagnet bodies for various demagnetiza-
tion fields. Assuming 60⇥ 45⇥ 2nm

3 magnetic body with a Ms = 1.7MA
m

and Ku = 48

kJ
m3 . Demagnetization Field amplitudes arbitrarily chosen. . . . 45
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4.6 Switching delay distributions for a 100 nm ⇥ 100 nm ⇥ 4 nm, PMA-type
nanomagnet with Ms = 3 ⇥ 10

5 A/m and Ku = 6 ⇥ 10

5 J
m3 under the

influence of an anti-parallel longitudinal spin current with magnitude as
shown in figure labels. PDFs 1, 2, and 3 correspond to equations (4.8a),
(4.8b), and (4.8c) respectively. As you can see, PDFs are only accurate
when the input spin current is much larger than the critical current. The
Fréchet distribution is also fitted to each of the data sets and very accurately
describes all three delay distributions. Each subplot has 10

6 data points.
The normalized root-mean-square (NRMS) values are calculated for each
distribution against the numerical data. The maximum of the numerical
PDF is used as the normalization factor of the RMS value. . . . . . . . . . 48

4.7 Reversal delay of a circuit composed of multiple nanomagnets arrange in
parallel. A 100 nm ⇥ 100 nm ⇥ 4 nm, PMA-type nanomagnet with Ms =
3 ⇥ 10

5 A/m and Ku = 6 ⇥ 10

5 J
m3 and is under the influence of a 1.5mA

anti-parallel spin current. The PDF of a single nanomagnet is estimated by
fitting a Fréchet distribution to numerical data. Multi-nanomagnet results
are calculated numerically. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Reversal delay of a circuit composed of multiple nanomagnets arrange in
series. A 100 nm ⇥ 100 nm ⇥ 4 nm, PMA-type nanomagnet with Ms =
3 ⇥ 10

5 A/m and Ku = 6 ⇥ 10

5 J
m3 and is under the influence of a 1.5mA

anti-parallel spin current. The PDF of a single nanomagnet is estimated by
fitting a Fréchet distribution to numerical data. Multi-nanomagnet results
are calculated numerically. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 The reversal delay of a circuit comprising multiple nanomagnets arranged
in series and parallel versus the number of switches. While arranging de-
vices in parallel slightly increases delay of the circuit, this increase is mini-
mal compared to the average delay of the nanomagnet. Multiple error rates
are considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 PDFs of parallelized AND4 circuit assuming several different types of de-
lay analyses. Baseline PDF simply considers the delay of the AND-gate
assuming worst-case input conditions (OUT nanomagnet being driven by
Is. Input-probability aware distribution analyzes the OUT nanomagnet re-
versal considering the variable input spin current magnitudes considering
different input combination. Inset: Schematic of parallelized ASL AND4
gate. Blue square represent thin-film nanomagnets while purple bars repre-
sent channels. Orange arrows represent spin orientation. Assuming PMA
nanomagnets with material parameters shown in Table 4.1. . . . . . . . . . 55
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5.1 Subplots show precessional trajectories of a 60nm ⇥ 45nm ⇥ 2nm nano-
magnet with a Ku = 10

5 A
m

and Ms = 10

6 A
m

under the influence of various
magnitudes of constant longitudinal external fields. These plots demon-
strate that as the external field is increased, one of the basins becomes more
“weighted” over the other until Hcrit is exceeded in which case only one
energy basin exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Delay of switching a magnet through an external field. Markers denotes
point obtained from numerical simulations. Curves are obtained using an-
alytic expression with S = 2.34 ⇥ 10

9. Material and geometric parameters
are adjusted such that critical field values shown in legend are achieved. . . 60

5.3 Subplots shows sample relaxations of a 60nm⇥45nm⇥2nm nanomagnet
with a Ku = 10

5 A
m

and Ms = 10

6 A
m

under the influence of a longitudi-
nal field with a magnitude of 20% of Hcrit. Thermal noise is included.
The light-colored lines show the precessional trajectories of the nanomag-
net under the influence of this field. These plots demonstrate that while
the external field can bias the nanomagnet to relax towards one pole over
another, it is still possible for the magnetization to fall in either basin. . . . 61

5.4 Shows the probability that the magnetization will relax to the positive en-
ergy basin. Results are shown using both numerical and analytic methods.
Demonstrates analytic expression is valid for relaxations under the influ-
ence of thermal noise. Numerical results obtained using Monte-Carlo sim-
ulation of 1000 runs. Inset plots show probability curve for different Ms

and Ku values. Hence, regardless of the material properties of the nano-
magnet, the probability curves remain rather consistent. . . . . . . . . . . 63

5.5 Subplots shows sample relaxation of a 60nm ⇥ 45nm ⇥ 2nm nanomagnet
with a Ku = 10

5 A
m

and Ms = 10

6 A
m

under the influence of a longitudi-
nal field with a magnitude of 20% of Hcrit and an hard-axis initialization.
Thermal noise is included. The light-colored lines show the precessional
trajectories of the nanomagnet under the influence of this field. These plots
demonstrate that while the magnetization starts in one energy basin, the
thermal noise may knock the magnetization into a high energy region and
allow it to precess and relax in the anti-parallel basin. . . . . . . . . . . . . 65

5.6 Shows the probability that the magnetization will relax to the parallel en-
ergy basin assuming a hard-axis initialization. Numerical results obtained
using Monte-Carlo simulation of 1000 runs. Inset plot shows the difference
in energy between the separatrix and initial ŷ position for a given longitu-
dinal field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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6.1 Test setup for a two-magnet system. Magnet 1 is driven through STT. Mag-
net 2 is driven through dipolar coupling field generated by Magnet 1. The
SFM and DTM models consider only the coupling field generated by Mag-
net 1. The 2WDTM model considers the coupling field felt by both nano-
magnets. Reversal through STT is typically stronger than reversal through
an external field and thus, the precession of Magnet 1 is considered to be
the “input” of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 The magnitudes of the x̂, ŷ, and ẑ components of the dipolar field affecting
the top magnet in the x̂ � ŷ plane (averaged along ẑ). ẑ-centered 60 nm ⇥
45 nm ⇥ 2 nm magnets are assumed with a separation of 2 nm and 20 nm.
The separations between the magnets changes the shape of the dipolar field
strength felt by the top magnet. Since only small, single-domain magnets
are considered in this research, the strength of the dipolar field is considered
to be the average field strength across the entire volume of the affected
magnet. Due to the symmetrical nature of the ŷ and ẑ components around
the center of the nanomagnet (where strength field strength is equal to zero),
DIP xy and DIP xz can be assumed to be zero. . . . . . . . . . . . . . . . . 71

6.3 Switching delay for M2 versus the spin current density into M1. Spin cur-
rent changes the precessional curve of the field imposed on M2. Zero-delay
is defined as the time when M2 last crosses the x̂ = 0 equatorial plane less
the time when M1 last crosses this plane. Ninety-delay is defined as the
time when M2 lasts crosses the x̂ = 0.9 point less the time when M1 lasts
crosses the x̂ = �0.9 point. In the inset plot, the delays are measured
the same way except that the reversal time of M1 is included giving total
system delay. Red, green and blue boxes represent slow/optimal/fast M1
precessions. Jumps in delay are explained in text. . . . . . . . . . . . . . . 73

6.4 The x̂, ŷ, and ẑ components of the two magnets versus time calculated by
the three different coupling models. Row 1 shows M1 (STT-driven) pre-
cession and row 2 shows M2 (field-driven) precession. Each column corre-
sponds to a different spin current density. Inset plots show 3D precessional
path. The figure highlights the differences in M2 precession for different
M1 reversal trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Shows position of m̂2 when m̂1 last crosses the x̂ = 0 (left) or x̂ = �0.9
(right) equatorial plane. Red triangles correspond to slow M1 precessions
contained in red box in Figure 6.3. Green squares and blue crosses corre-
spond to green and blue (optimal and fast M1 precessions) boxed regions
found in Figure 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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6.6 The averaged x̂ field strength for equally sized, ẑ-centered magnets versus
separation between the two magnets. Magnets are equally sized according
to the legend. Ms is assumed to be 8.6 ⇥ 10

5 A
m

. All magnets have a length
to width aspect ratio of 4

3 . Inset plots show average x̂ field strength along
length of M2 for two specific separation cases. The dipolar field shape is
different for every magnet size and thus, the average field strength decreases
at different rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.7 The x̂-component average coupling field strength and the critical field (as-
suming Ku = 0) versus the length to width aspect ratio of the magnets.
Assuming a constant thickness of t = 2nm, the geometry of the nanomag-
net system is described in terms of aspect ratio. According to the SFM
model, the left area where the coupling field is larger than the critical field
suggests perfect coupling. Because Ku only increases the critical field, the
inset plot shows the maximum Ku > 0 for which the system can still be
perfectly coupled (assuming it exists). Ms of 8.6 ⇥ 10

5 A
m

, and a separation
of 3 nm are assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.8 The x̂-component of the magnetization for M1 and M2 versus time when a
glitch happens and the M2 relaxes to the wrong pole. As long as the dipolar
field is below the critical field, M2 may relax to either dipole. 60 nm ⇥ 45
nm ⇥ 2 nm magnets with a 20 nm spacing are assumed. A 2⇥ 10

11 A
m2 spin

current density was used to reverse M1. Inset plots show all magnetization
components for M1 and M2 during glitch. . . . . . . . . . . . . . . . . . . 79

6.9 A color coded map of initial states for M2 based on the three possible
switching outcomes for M2 assuming M1 has completed its reversal but
is still under the influence of spin current density of 1 ⇥ 10

11 A
m2 : Red dia-

monds = unsuccessful switches, blue triangles = glitch, green circle = suc-
cessful switches. As the strength of the coupling is increased by reducing
the separation between the two nanomagnets, the population of the initial
angles resulting in glitched or unsuccessful outcomes goes to zero. A pair
of 60nm ⇥ 45nm ⇥ 2nm permalloy magnets are assumed. Assuming the
longitudinal field equal to DIPXX , Hcrit = 1.24⇥ 10

4 A
m

. DIPXX exceeds
Hcrit when the separation between the two nanomagnets is under 4.5nm as
can be seen in Figure 6.6. From the subplots above, it is evident that perfect
coupling can be achieved at much higher separations. The mutual coupling
between the two nanomagnets alters their energy space in such a way as to
allow stronger coupling with weaker fields. . . . . . . . . . . . . . . . . . 81
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6.10 A color coded map of initial states for M2 based on the three possible
switching outcomes for M2 assuming M1 has completed its reversal but
is still under the influence of spin current density of 1 ⇥ 10

11 A
m2 : Red dia-

monds = unsuccessful switches, blue triangles = glitch, green circle = suc-
cessful switches. In this case, the reverse field of the dipolar coupling is
removed and as such, M2 can no longer disturb the magnetization of M1.
This removes the mutual coupling between the nanomagnets during m̂2 re-
laxation. Same system conditions are assumed as in Figure 6.9. From the
subplots above, it is evident that without the mutual coupling between the
two nanomagnets, perfect coupling is only achieved when the longitudinal
component of the dipolar field of M1 exceeds Hcrit. Hence, the perpendic-
ular components of the dipolar field do not alter the critical requirements
necessary for perfect coupling. . . . . . . . . . . . . . . . . . . . . . . . . 83

6.11 A Monte-Carlo simulation where the reversal of M1 encourages the re-
versal of M2 while including thermal noise. The percent (1000 runs) of
successful, unsuccessful and glitched switchings versus the separation is
measured. A pair of 60 nm ⇥ 45 nm ⇥ 2 nm magnets. M1 is reverse using
a spin current density of 1 ⇥ 10

11 A
m2 . Results are similar to those found in

Figure 6.9. This suggests that the tests performed in Figure 6.9 can estimate
magneto-reversal of the system in the context of thermal noise. . . . . . . . 84

6.12 Maximum magnet length versus width for perfect coupling for three differ-
ent separations (2nm, 4nm, and 8nm) determined using thermal test shown
in Figure 6.11. Permalloy magneto-system with 2 nm thick magnets and
a 2/4/8 nm separation are assumed. Red area denotes dimensions where
default system with both forward and reverse components of the dipolar
field perfect coupling. Blue area represents dimensions system with re-
verse component of dipolar field predicts perfect coupling. As the separa-
tion between the nanomagnets becomes greater, the strength of the dipolar
coupling field is reduced. As the coupling strength is reduced, the mutual
coupling strength is also reduced and the two models converge. For both
models, minimum length is equal to width of nanomagnet to ensure free-
axis in x̂ direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.13 Maximum separation is measured according to a thermal test shown in Fig-
ure 6.11 for various spin current density. It was shown that the coupling
strength of the system was largely due to the mutual coupling between the
two nanomagnets. This mutual coupling allowed M2 to cause slight per-
turbation in m̂1 which in turn would cause variations in the dipolar field
acting on M2. However, a larger spin current into M1 would better pin the
magnetization to the free-axis and weaken the mutual coupling between the
two nanomagnets reducing the coupling strength. . . . . . . . . . . . . . . 88
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7.1 Test setup for a two-magnet system(s). Magnet 1 (M1) is driven through
STT and Magnet 2 (M2) is driven through dipolar coupling field generated
by Magnet 1. Two types of nanomagnet systems (biaxial (a) and uniaxial
(b)) are considered in this chapter. As shown in the figure, the presence of
a large demagnetization field fundamentally alters the precession of mag-
netization. The difference in trajectories alters coupling strength between
nanomagnets even if both systems have equivalent field magnitudes. Sam-
ple magnetizations are shown in the nanomagnet bodies and correspond to
Figure 7.4. Magnetization spheres are normalized against material geome-
try. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Probability of top magnet reversal in ẑ - stacked and centered two-magnet
system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets. As the sepa-
ration between the nanomagnets is increased, the magnitude of the tensor
components of the dipolar field decreases. If the dipolar coupling con-
sisted of only the longitudinal component, a reliable system would have
a maximum separation of 0.38nm. (a) Biaxial, SHd system whose nano-
magnets have a large negative perpendicular anisotropy field oriented along
the out-of-plane (ẑ) axis. (b) Uniaxial 0Hd case where this perpendicu-
lar anisotropy is not present. This comparison shows that given the same
energy-barriers and dipolar-field magnitudes, coupling between uniaxial
nanomagnets is actually stronger than coupling between their biaxial equiv-
alent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Delay of top and bottom nanomagnets in ẑ - stacked and centered two mag-
net system. Assuming two 60nm⇥45nm⇥2nm iron magnets with a sepa-
ration of 5nm. In this case DIPxx = �24.54kA

m which is significantly less
than Hcrit = 44.94kA

m . Assuming SHd. Left axis corresponds to area plot in
background and right axis corresponds to line graphs. Only successful re-
versals considered in the delay average. Hence, the delay average becomes
volatile in the fast reversal case because fewer successful reversal cases can
be averaged together. Figure demonstrates that if the reversal of the bottom
nanomagnet is too small, the dipolar coupling between the magnets in the
system weakens and thus the top nanomagnet reversal becomes very slow. . 94

7.4 Sample reversals for nanomagnet systems for SHd (a,b) and 0Hd (c,d)
cases. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets. In the SHd
case, the bottom nanomagnet is driven by a 0.8mA spin current. In the 0Hd
case, the bottom nanomagnet is driven by a 0.15mA spin current. The dipo-
lar coupling of the nanomagnets is determined by their geometry. Figures
demonstrate the different dynamics of both cases. Subplots show magneti-
zation dynamics on unit sphere. . . . . . . . . . . . . . . . . . . . . . . . 95
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7.5 Probability of each of the nanomagnets reversing in a ẑ - stacked and cen-
tered two-magnet biaxial system. Assuming two 60nm ⇥ 45nm ⇥ 2nm

iron magnets. Bottom nanomagnet is driven by a 1.0mA spin current. The
dipolar coupling between the nanomagnets is altered by manually chang-
ing the magnitudes of the dipolar tensor components. DIPxx = 2 ⇥ 10

4 A
m

while the DIPyy and DIPzz components of the tensor model correspond to
the values marked by the x and y axes of the graph respectively. Colors of
the shaded region correspond to the probability of reversal for the top and
bottom magnets. Area to the right of the purple dash-dot line corresponds
to values adhering to (7.6). Area to left of red dotted line corresponds to
values adhering to (7.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.6 Probability of top nanomagnet reversing in a ẑ - stacked and centered two-
magnet biaxial system. Assuming two 60nm⇥ 45nm⇥ 2nm iron magnets.
Bottom nanomagnet is driven by a 1.0mA spin current. The the dipolar
coupling between the nanomagnets is altered by manually changing the
magnitudes of the dipolar tensor components. DIPyy and DIPzz are set
to be equal. Colors of the shaded region correspond to the probability of
reversal for the top and bottom magnets. Area to the right of the purple
dash-dot line corresponds to values adhering to (7.6). Area to left of red
dotted line corresponds to values adhering to (7.7). Each axis consists of
40 logarithmically spaced data points per decade. . . . . . . . . . . . . . . 100

7.7 A one-dimensional version of the analysis conducted in Figure 7.5 looking
at the reliability of coupling as a function of the DIPyy component mag-
nitude. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets and DIPxx =

2 ⇥ 10

4 A
m . Bottom nanomagnet is driven by a 3.0mA spin current. Yellow

shaded region corresponds to region of perfect coupling predicted by (7.6)
and (7.7). Line colors and marker style corresponds to a particular ↵ value.
Line style and marker face color correspond to top or bottom nanomag-
net reversal reliability. Figure demonstrates ↵ does not alter the coupling
strength of the system, but may alter the critical current required to reverse
the bottom nanomagnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.8 Analyzing the reversal probability of the top nanomagnet for a 60nm ⇥
45nm⇥2nm Fe Nanomagnet system with a separation of 5nm as a function
of ↵ and Is. Is needs to be large enough to reverse the bottom nanomagnet,
but if it is too large, the mutual coupling between the nanomagnets is bro-
ken and the coupling strength is reduced. This follows results obtained in
Section 7.2. ↵ does not alter the coupling strength, but it does increase the
critical current required to reverse the bottom nanomagnet. This increase in
Ic means that if ↵ is large enough, any Is > Ic will break the mutual cou-
pling condition and reduce the coupling strength to the fats reversal case.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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7.9 Probability of each nanomagnet reversing in a ẑ - stacked and centered
two-magnet uniaxial system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron
magnets. Bottom nanomagnet is driven by a 0.15mA spin current. The the
dipolar coupling between the nanomagnets is altered by manually changing
the magnitudes of the dipolar tensor components. DIPxx = 2 ⇥ 10

4 A
m

while the DIPyy and DIPzz components of the tensor model correspond
to the values marked by the x and y axes of the graph respectively. Colors
of the shaded region correspond to the probability of reversal for the top
(a) and bottom (b) magnets. Area to the right of the purple dash-dot line
corresponds to values adhering to (7.8). Area to left of red dotted line
corresponds to values adhering to (7.10). Area to right of pink dashed line
corresponds to (7.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.10 Probability of top nanomagnet reversing in a ẑ - stacked and centered two-
magnet uniaxial system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron mag-
nets. Bottom nanomagnet is driven by a 0.15mA spin current. The dipolar
coupling between the nanomagnets is altered by manually changing the
magnitudes of the dipolar tensor components. DIPyy and DIPzz are set
to be equal. Colors of the shaded region correspond to the probability of
reversal for the top and bottom magnets. Area to the right of the purple
dash-dot line corresponds to values adhering to (7.9). Each point on the
plot is calculated with 1000 transient simulations and each axis consists of
40 logarithmically spaced data points per decade. The perpendicular com-
ponents create a net easy plane anisotropy. If this easy plane anisotropy
is too large, the magnetization will favor a oscillatory state denoted by the
hatched region. However, the spin current can still nudge the oscillating
magnetization towards the correct free axis. . . . . . . . . . . . . . . . . . 106

7.11 Identical test performed as in Figure 7.9 except the polarity of the dipo-
lar tensor is changed so that  = [�1,�1,�1]. Hence, in this case, the
perpendicular components of the dipolar tensor have equivalent polarity. It
is evident that have perpendicular dipolar components of equal magnitude
and polarity negates the mutual coupling effect. . . . . . . . . . . . . . . . 109

7.12 Solid lines: Maximum Ku per Ms value for a in-plane, 60nm ⇥ 45nm ⇥
2nm, two-magnet systems with a separation of 2nm. Free-axis along x̂.
Various separations are considered and SHd is assumed. Dashed colored
lines: maximum Ku parameters for PMA, 45nm ⇥ 45nm ⇥ 2nm, two-
magnet system whose uniaxial anisotropy energy and free-axis oriented
along ẑ. Dashed black line: For uniaxial nanomagnets, uniaxial anisotropy
field must be greater than the demagnetization field creating a minimum
required anisotropy energy. This figure demonstrates that uniaxial nano-
magnet systems have strict material requirements for reliable reversal. . . . 111
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10.2 Calculates the amplification (�) of electrical to spin current assuming a
nanomagnet of multiple sizes. The Gangulay model refers to (10.1) while
the ideal case corresponds to the GSHE expression without the

⇣
1 � sech

⇣
t

�
s

⌘⌘

term. Assumes a ✓SH = 0.3 and �s = 2.5nm which corresponds to a tung-
sten material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.3 Diagram of two-MTJ resistor network equivalent used in this analysis. . . . 144

10.4 Classic device layout using layout rules outlined in [27]. . . . . . . . . . . 148

10.5 Sample reversals for layout-constrained Spin-Switch device. ~mx compo-
nent of magnetizations shown for top and bottom free magnets. . . . . . . 152

10.6 Voltage amplitude sweep for layout constrained Spin-Switch device. . . . . 152

10.7 Enhanced device layout where the free magnets are separated into two
stacks. This modification allows the simpler fabrication of dual fixed mag-
nets whose magnetizations are oriented in the same direction. This design
also makes the free magnets smaller theoretically improving device perfor-
mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.8 Minimum Ku (Left) and Hk (Right) required for a Lm ⇥ Lm ⇥ 1nm mag-
netic body while maintaining reliability metrics PSW = 10

�6 and t =

100ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xxx



10.9 Minimum Ms2 values for nanomagnet system given Ms1. Assuming t1 =

1nm and L1 = L2 = W1 = W2 = Lm. Ku1 is determined by Ms1

according to the reliability constraints. Therefore, there is a minimum Ms2

which will allow a DIP2 large enough to satisfy the dipolar coupling model
given by (10.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.10Minimum t2 values for nanomagnet system given Lm. Assuming t1 =

1nm to maximize the amplification for the GSHE. As the volume of a nano-
magnet increases, the thickness of the top nanomagnet may be reduced will
maintaining equivalent reliability metrics. . . . . . . . . . . . . . . . . . . 159

10.11Performance metrics of reliability constrained device design. Free magnet
parameters listed in Table 10.6 which were optimized while maintaining
reliability metrics PSW = 10

�6 and t = 100ns. (Left) Sample of device
functionality assuming a 1 V supply magnitude. (Right) Voltage sweep of
reliability constrained device design measuring delay and EDP metrics. . . 161

11.1 Figure demonstrates latch-less pipeline design. The waveforms are ob-
tained using SPICE simulations of the Spin-Switch device. Free and fixed
magnets are in blue and magenta, respectively. Arrows represent direction
of current flow, not signal propagation. . . . . . . . . . . . . . . . . . . . . 164

11.2 Logic diagram of a 1 bit full adder system . . . . . . . . . . . . . . . . . . 164

11.3 Diagram of spin collector setup to drive a ferromagnet through the use of
the GSHE. this is similar to the standard setup but includes a copper collec-
tor between the ferromagnet and GSHE material. Ideally the copper plate
will collect the spin current from the GSHE material and diffuse it to the
ferromagnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

11.4 3 distinct spin injection regions exist. In Zone 1, assuming no interface
effects, the copper plate can be ignored and the spin injection that of a
standard ferromagnet on top of a GSHE material. In Zone 2, spin current
accumulates in the copper and diffuse toward the ferromagnet. In Zone 3,
there is no spin contribution towards the ferromagnet. . . . . . . . . . . . . 167

11.5 Circuit model for spin channel diffusion. Taken from [199]. . . . . . . . . . 168

11.6 The steady state circuit cell model of the copper diffusion channel and spin
injection from the GSHE. This circuit gives us the total possible spin injec-
tion of the copper plate model. . . . . . . . . . . . . . . . . . . . . . . . . 169

11.7 Circuit model of the copper diffusion channel and spin injection from the
GSHE. The total circuit is simply a series of the cells shown in Figure 11.6. 169

xxxi



11.8 Labeling of voltages along the spin copper channel. . . . . . . . . . . . . . 171

11.9 Current injected to ferromagnet vs. various copper lengths using Solution 1.
Legend denotes various copper plate thicknesses (Z dimension). Assuming
a 1mA electrical current passing through the GSHE material. . . . . . . . . 173

11.10Alternate labeling of voltages along the spin copper channel. . . . . . . . . 174

11.11Current injected to ferromagnet vs. various copper overhang lengths using
the re-derived current equations (Solution 2). Legend denotes various cop-
per plate thicknesses (Z dimension). Assuming a 1 mA electrical current
passing through the GSHE material. . . . . . . . . . . . . . . . . . . . . . 178

11.12Total Current injected to nanomagnet vs. copper collector thicknesses using
parameters from Table 11.1. Legend denotes various copper plate lengths
in the x̂ dimension. This assumes that a portion of the total current passes
through the copper collector. . . . . . . . . . . . . . . . . . . . . . . . . . 182

11.13Total current injected to nanomagnet vs. copper collector thicknesses using
parameters from Table 11.1. Spin current is normalized against the nominal
case where the copper collector is not present. Legend denotes various
copper plate lengths in the x̂ dimension. This assumes that a portion of the
total current passes through the copper collector. . . . . . . . . . . . . . . . 183

11.14Normalized current injected into the magnetic body vs. copper collector
lengths and thicknesses using parameters from Table 11.1. Legend denotes
various copper plate lengths in the x̂ dimension. This assumes that a portion
of the total current passes through the copper collector. . . . . . . . . . . . 184

12.1 Sample nanomagnet reversals assuming various initial states. Left/Center/Right
subplots correspond to initial position along �x̂, +ŷ, and +ẑ axes respec-
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Summary

The objective of this research is to develop models to better evaluate the performance

and reliability of proposed spin-based Boolean devices. This research will focus on a par-

ticular spin-based logic technology called Spin-Switch Logic. There are two primary re-

versal mechanisms that will be considered for a full evaluation of Spin-Switch technology.

Firstly, nanomagnet reversal through the use of spin-transfer torque (STT) is studied. While

switching through STT has been analytically solved for the uniaxial nanomagnet case, the

biaxial case has yet to be studied on a sufficient scale and is a focus of this research.

Secondly, input-output isolation is achieved through dipolar coupling; hence, the per-

formance and reliability of this type of reversal mechanism is extensively studied. It is

shown that dipolar coupling strength is not only a function of geometric and material pa-

rameters, but also of reversal speed. If the reversal of a neighboring nanomagnet is very

fast, the dipolar field reduces to a constant longitudinal field and can be analytically studied.

However, if the reversal of the neighboring nanomagnet is slow, new models are formulated

to estimate the region of reliable coupling and delay.

Lastly, a focal point of this research is on the reliability of nanomagnet states in the pres-

ence of thermal noise and new models are proposed to estimate the reliability of complex

spin-based systems. Not only does the thermal noise affect the probability of magnetization

state consistency, it also alters nanomagnet precession during reversal, making the delay a

random variable. Hence, models are developed for evaluating the variation in reversal delay

through STT for both uniaxial and biaxial cases.

Ultimately, these analytic models are combined to comprehensively evaluate the per-

formance of Spin-Switch technology and identify possible improvements to this technol-

ogy. While the end result of this research is a thorough analysis of Spin-Switch Logic, the

models developed during this research are applicable to a variety of spin-based logic and

memory technologies.
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CHAPTER 1

INTRODUCTION

The study of the interaction between electric currents and the magnetic order in conduct-

ing magnetic nanostructures has developed into its own sub-field. In the last several years,

novel processing and storage devices using electron spin as the information token have

been proposed to augment or eventually replace their charge-based counterparts. Dubbed

“spintronics,” spin-based devices utilize the spin of electrons and their interactions with

magnetic moments to manipulate and share information [1]. While many spin-based de-

vices have been proposed in the past few decades, the physics governing the dynamics of

spin-based systems are complex and still not well understood [2, 3]. This thesis is dedicated

to the analysis of magnetization dynamics in complex systems through the evaluation of

spin-based technologies. Proposed spin-based devices offer a framework for studying the

interaction between magnetic moments and/or polarized currents. The models and analyses

developed will then be combined and culminate in the complete evaluation of a particular

spin-based technology called “Spin-Switch Logic” [4]. While the vehicle of this research

is the Spin-Switch Logic evaluation, the models developed are applicable to a range of

magnetic systems and research with similar physical foundations.

1.1 Magnetic Effects and Literature Survey

Spin-Switch logic is a natural evolution of the spin-based devices that have been proposed

prior to its inception. To gain a richer understanding of the device operation and the spin-

based effects being discussed in this research, we will first briefly go through the magnetic

effects governing the device operation. We will then discuss how these effects are combined

to form the core Spin-Switch device.

An example of the overall spin-switch design can be seen in Figure 1.1. This is a
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Figure 1.1: Visual representation of the Spin-Switch device. (a) the original lateral repre-
sentation of the device is shown [4]. This layout was considered when the Spin-switch was
originally proposed but has since become defunct because the large spacing between the
magnetic bodies means a very weak dipolar field. (b) The vertical representation is supe-
rior since the spacing between magnetic bodies is reduced by 10⇥. However, the lateral
representation is still used when visually prudent.

complex device which incorporates several magnetic effects to perform boolean operation.

Four major magnetic effects are utilized during the operation of this device:

• Giant/Tunnel magnetoresistance

• Dipolar coupling

• Spin-transfer torque

• Giant spin-hall effect

In this Section with will provide a qualitative description of these magnetic effects

before describing full device operation in Section 1.2. We will also discuss other spin-

based devices which utilize these magnetic effects for correct operation.

1.1.1 Giant Magnetoresistance Effect

The birth of spintronics can be traced back to the experimental demonstration of the giant-

magnetoresistance (GMR) [5]. This effect was discovered independently by Albert Fert’s
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Figure 1.2: Visual representation of giant magnetoresistance effect. The green arrows rep-
resent the electrical current flowing through the magnetic layers (represented by the blue
rectangles). The GMR effect can be conceptually thought of as a system where nanomag-
nets filter electrons with opposing spin polarities.

group form Universte Paris-Sud and Peter Grunberg from Festkprperforschung Julich [6,

7]. This phenomenon simply states that for a systems where two-magnetic layers are sep-

arated by a non-magnetic metal, the resistance is a function of the orientation of magnetic

layers relative to one-another [8]. Resistance is minimized when the nanomagnets are ori-

ented in the same direction and maximized when they are anti-parallel.

This effect can be explained conceptually by assuming that the nanomagnet behaves as a

filter [10, 11] as shown in Figure 1.2. When a charge current with an equal mix of electrons

at the spin-up and down states passes through a nanomagnet, some of the electrons oriented

in the direction of the magnetization will get filtered out. If both nanomagnets are oriented

along the same direction, only the electrons with the opposite spin direction will feel this

filtration. However, if the nanomagnets have opposing magnetizations, a higher resistance

path is created through the partial filtering of both orientations.

Functionally analogous to the GMR effect, the tunnel magnetoresistance (TMR) ef-

fect occurs when a thin insulating tunneling barrier is added in between the magnetic lay-

ers. Despite their similar functionality, the two effects have largely different physical ori-
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Figure 1.3: Core principle behind the MTJ memory unit. Early units used an Oersted field
to write to the free magnet [9]. This Oersted field is generated by sending an electrical
current through the bit-line. The state of the MTJ structure is found by turning on the
CMOS device pulling one en of the MTJ to ground and sending a sense current through the
structure. The magnitude of this current determines if the MTJ structure is in the parallel
or anti-parallel state.

gins[12]. In the TMR effect, the change in resistance is a result of spin-dependent tunneling

through the tunneling barrier [13, 14]. This magnet-insulator-magnet stack is referred to

as a magnetic-tunnel-junction (MTJ) and is an essential component to many of the spin

devices [15, 16, 17]. The exact physical model behind the MTJ is beyond the scope of this

research. Instead, where necessary, the resistance of the MTJ stack is formulated as:

P ⌘ �G

G
⌘ TMR

TMR + 2

(1.1)

where P is the polarization of the charge current and G is the conductance of the MTJ

stack. TMR is the tunneling magnetoresistance parameter and represents the change in

resistance in the MTJ between its parallel and anti-parallel states [18, 17]. This equation

denotes the change in conductance and hence, G+�G and G��G represent the parallel

and anti-parallel conductances respectively.

In engineering literature, MTJ’s have been mainly proposed as memory devices as seen

in Figure 1.3 [19]. Through various methods including the use of pinning layers, it is
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possible to fabricate a nanomagnet with a fixed magnetization [20]. The other magnet can

be reversed through the use of Oersted fields or spin-transfer torque (STT) [21, 22, 23].

Thus, binary information can be encoded in the MTJ structure as parallel and anti-parallel

magnetic states. The state of te MTJ structure is read by sending a sense current through

the unit similar to how SRAM units are read [24, 25]. Many researchers have argued that

the the benefit of these devices is their inherent non-volatility [26]. However, this non-

volatility benefit has not been quantified and it is unclear if it will make up for the larger

energy required to read/write to an MRAM cell compared to a classical DRAM or SRAM

unit [27].

In the Spin-Switch device, the MTJ effect will be used to determine the polarity of

the output electrical current using a special push-pull MTJ structure which is elaborated

further in Section 1.2. The GMR effect is largely dependent on material structures and

parameters and as such, is difficult to analyze theoretically. Generally speaking, when

modeling spin-based devices, the G and TMR parameters are fit to experimental results.

For our analysis of the complete Spin-Switch device in Chapter 10, we also use these

experimentally simplified models to fully capture MTJ dynamics.

1.1.2 Dipolar Coupling

While in the presence of an external field, the magnetization of a magnetic body has a pref-

erence to align parallel to the external field direction. Knowing that a magnetic field emits

a stray field, it is theoretically possible to control the orientation of neighboring magnetic

bodies depending on their relative orientation to the driving magnet and its magnetization

as shown in Figure 1.4. It was theorized that many small nanomagnets could be arranged in

an array and communicate information along a distance by driving a row magnetic bodies

through their respective stray fields [28, 29]. This was the founding principle behind one

of the oldest magnetic logic devices dubbed “Nanomagnetic Logic” (NML) [30].

An example NML circuit is shown in Figure 1.5. The bit information is encoded in the
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Figure 1.4: Visual representation of coupling between nanomagnetic bodies. The center
magnet emits a stray field which overpowers smaller magnets causing their magnetizations
to align to the stray field emitted. Dipolar coupling between magnetic bodies is significantly
more complex than shown above and will discussed at length in Chapters 5–9.

magnetization state and is communicated through the nanomagnet array [33]. As shown

in Figure 1.4, geometry determines if the nanomagnets are coupled in a parallel or anti-

parallel manner meaning that the layout magnetic arrays must be precisely controlled to

preserve the information being communicated. Logic is performed by bringing the nano-

magnet arrays together so that multiple inputs are communicated through their stray fields

to a single “key”-magnet. The stray fields from these inputs are summed and the key-

magnet aligns with the the majority direction and communicates the result along the output

logic array. Hence, the combination of these stray fields forms a majority gate structure.

Figure 1.5 also shows the problem with NML. The previous output of the circuit has as

much an influence on the key-magnet as the input arrays. This means that the output may

not necessarily reverse with the inputs. There are ways to fix this propagation issue trough

the use of novel, non-symmetric nanomagnet shapes, but such schemes results in enormous

modeling complexity and are not fully reliable [34, 31]. One can also use magnetostrictive
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flips 

Figure 1.5: Sample circuit of Nanomagnetic-Logic majority-gate [31, 32]. Large magnets
are inputs/outputs to the circuit. Red/Blue colors represent nanomagnets carrying bit-wise
“0” and “1” respectively. Left: shows ideal operation of the circuit. Right: demonstrates
fundamental problem with this technology which is the progation issue. If one of the inputs
change in a manor as shown above, to ensure majority gate operation, the output should
change. However, because the output array has an equal influence on the center magnet as
the inputs, the output remains the same.

materials to knock the output magnets in a high-energy state before Boolean operation

making them easier to reverse [35]. However, the timing complexity and fabrication of

such schemes pose a significant challenge [36, 37].

Compared to other reversal effects employed by spin-based logic, the stray-field emitted

by a nanomagnetic body is relatively weak. Reversal through magnetic stray field requires

the magnetic system can small internal anisotropy fields which can result in magnetization

instability [38]. Stray-field interaction is closely linked with magnetization dynamics and

as such, will discussed at length in Chapters 5–9.

1.1.3 Spin-Transfer-Torque

The GMR effect states that the magnetization of a ferromagnet can polarize an electrical

current. Due to the conservation of angular momentum, the reverse is possible as well;

as shown in Figure 1.6, a polarized accumulation of electrons may impart a net-angular

momentum upon the magnetization of a nanomagnet. This effect is known as spin-transfer-

torque (STT) [39].
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Figure 1.6: Illustration of STT. A polarized electron imparts an angular toque on a magnetic
body as it passes through. Assuming a polarized current is large enough, the magnetization
of the magnetic body may be reversed.

The magnitude of the STT effect, �s, is given as [40, 41]:

�s = ��~⌘g(✓)I
2e

m̂ ⇥ (m̂ ⇥ p̂) , (1.2)

where � is the gyromagnetic ratio, ~ is the reduced Planck constant, ⌘ is the spin polariza-

tion, and I is the amplitude of the spin current. for the purposes of this research, the angular

dependence of spin torque strength (g(✓)) will always be equal to 1. m̂ is the magnetization

direction of the nanomagnet while p̂ is the polarization of the spin current.

The mathematical treatment of this torque and its interaction with the magnetic body

will be espoused on in Chapter 2. The microscopic origin of the STT can be explained

as follows. Electrons enter the magnetic body with spins aligned either parallel or anti-

parallel to the magnetization. The energy-bands for the electrons with different spin states

are different which means that the kinetic energies and wave-vectors of the aligned and

not-aligned electrons are different [41, 11, 42, 43, 44]. Therefore the spin-dependent trans-

mission/reflection that depend on potential steps at the interface are different for different

spin polarizations. The STT effect can be derived when solving the Schrödinger equa-

tion for electron waves at the interface of a non-magnetic metal layer and ferromagnetic

layer which demonstrates that the STT is an interface effect and is maximized in thin-film

structures [45, 41].

A spin-polarized current can be generated by passing an electrical current though a
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Figure 1.7: Schematic of repeater operation for a ASL circuit. An electrical current is
driven through the driving nanomagnet (left) and a net spin current is accumulated below
the nanomagnet. This spin current then diffuses through the channel and is then delivered to
the receiving nanomagnet. For the purposes of this research, it is assumed that the channel
is long/resistive enough so that the leakage current can be omitted. The calculation of the
current received by the output magnet through spin diffusion is outline in Appendix B.

metal and the resulting spin accumulation is diffused through the conducting interface [46].

While not a focus of this research, this process is elaborated more in Appendix B. This

polarization of electrical current and diffusion of spin current has resulted in the ability for

one to use electrical current to reverse magnetic bodies [47, 48, 49]. As such, many spin-

base devices can be augmented through the use of STT including proposed MTJ memories

[50].

The advent of information being communicated to magnetic states through polarized

currents has lead to a technology referred to as All-Spin Logic (ASL) [51]. ASL technology

operates by injecting an electrical current through a free magnet and metallic channel.

Doing this polarizes the electrical current yielding a net spin accumulation in the metallic

channel. This spin accumulation diffuses through the metallic channel imposing a net STT

on the output magnet as seen in Figure 1.7 [52, 53]. Because this is a current driven device,

logic is achieved by summing the inputs delivering the STT to the output free-magnet.

Majority Boolean logic gates, such as AND/OR, are implemented by connecting multiple

input nanomagnets to a receiving nanomagnet, where a sum of the input spin currents

determines the functionality of the logic gate [54, 55].

9



Figure 1.8: Visual representation of giant spin-hall effect. Due to interaction with certain
materials, electrons with different spins separate yielding a net spin current perpendicular
to the flow of the electrical current.

1.1.4 Giant Spin-Hall Effect

ASL logic devices use the MTJ effect to create a spin current by passing a charge current

through a ferromagnetic structure, filtering anti-parallel electrons, and thus causing a net

accumulation of electrons with a particular polarization. Information is communicated by

accumulating the polarized electrons at one end of a interconnect and diffusing this spin

current through a metallic interconnect at which point it will hopefully be strong enough to

reverse the output magnetic body. While this allows us to communicate between devices, it

is also very inefficient. The spin diffusion process requires a large amount of energy since

the strength of the spin current exponentially decays as the interconnect length is increased

as discussed in Appendix B.

Thankfully, there is another way to generate a spin current through the use of the spin-

hall effect [56]. In the Hall effect, one can apply an electrical current through a metal

in the presence of a magnetic field and the Lorentz force yields charge accumulation on

the boundaries of the metal [57]. Edwin Hall later discovered that the transverse voltage

developed is different for magnetic and non-magnetic conductors [58]. This is because

the transverse velocity acquired depends on the electrons spin orientation and this effect

became known as the anomalous-hall-effect [59, 60]. Later, it was shown that the spin-
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orbit-coupling in the band structure of a material can produce a similar effect and became

known as the intrinsic spin-hall-effect [61]. A visual representation of the spin hall effect

is shown in Figure 1.8. The interaction of electron spins with the materials band struc-

tures yields a separation of electrons with different spins and their accumulation on the

boundaries of the spin-hall conductor. The Rashba effect is a similar interface-dependent

mechanism [62].

In the last decade, several groups have shown experimental proof of the spin-hall effect

[63, 64, 65]. Notably, an amplified of version of the spin-hall effect, referred to as the

Giant-Spin-Hall-Effect (GSHE), was shown by Luqiao Liu at Cornell University using

Tantalum [66]. The exact cause of this effect isn’t clear but experimental results show that

the GSHE can be modeled as a bulk effect whose magnitude is described by a angle, ✓SH ,

which denotes the magnitude of the spin current over the magnitude of the electrical current

per unit length over thickness [67, 68]. A formulation of this effect has been noted as [69]:

Js

Je

= ✓SH
L

t

✓
1 � sech

✓
t

�s

◆◆
, (1.3)

where Js and Je denote the spin and electrical current-density, respectively. L and t are

the length and thickness of the GSHE material, respectively. This effect allows for a large

amplification of spin current over charge current. Several recent experimental papers have

noted that this amplification is tampered if the GSHE material thickness becomes compa-

rable or smaller to the spin flip length [70, 71]. The last
⇣
1 � sech

⇣
t

�
s

⌘⌘
term is included

to account for this negation of the spin-current generation for very thin films [72].

1.2 Operation of Spin-Switch Device

In the previous section, we reviewed the different magnetic effects required for the op-

eration of the Spin-Switch device and also reviewed the spin-based logic devices which

emerged from the existence of these magnetic effects. Much like how ASL and NML are a
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Figure 1.9: Picture of system as well as the overall effects responsible for device opera-
tion. The operation of the Spin-Switch can be broken up in four stages. First a electrical
current flows through the GSHE material generating a spin current delivered to the bot-
tom nanomagnet. The polarization of this spin current is determined by the direction of
the electrical current. This spin current reverses the bottom nanomagnet through STT. The
reversal of the bottom nanomagnet causes the reversal of the top magnet through dipolar
coupling. Finally, the push-pull dual MTJ stack delivers an output electrical current with
polarity dependent on the top nanomagnet.

product of STT and dipolar coupling physical effects, the Spin-Switch is also a result of the

summation of STT, dipolar coupling, GMR and GSHE. In this way, it can be argued that

the Spin-Switch is simply an evolution of previous devices and more specifically, the Spin-

Switch is the next-generative ASL device which communicates through electrical instead

of spin current.

The operation of the Spin-Switch is shown in Figure 1.9. First, a net electrical current

enters the device through the “IN” contact and flows through the GSHE material. A net

spin current is then generated by the GSHE which imposes a spin-transfer torque on the

bottom ferromagnet. The direction of the electrical current determines the polarization of

the spin current and, by extension, the desired direction of the bottom magnetization. The

bottom nanomagnet interacts which the top nanomagnet through complex dipolar interac-
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Figure 1.10: Equivalent circuit model of output portion of Spin-Switch structure. The free
magnet is shared between the MTJ stacks. This results in one of the supplies having a lower
resistance to output than the other. This dual MTJ structure results in a electrical current at
the output node whose polarity is controlled by the magnetization of the top nanomagnet.

tions. When the magnetization of the bottom nanomagnet is reversed the magnetization of

the top will also change its direction.

The top half of the Spin-Switch architecture is dual push-pull MTJ structure and its

equivalent circuit model is shown in Figure 1.10. There are two fixed magnetization fer-

romagnets with opposing polarities. Each of these fixed magnets forms a MTJ structure

with the top ferromagnet. Since the ferromagnet has only one magnetization direction,

one of these MTJ stacks will have a lower resistance than the other. By connecting two

voltage supplies with opposing polarities to the two MTJ stacks, we ensure the resistance

to the output is smaller for one of the power supplies. This means that the direction of

current flowing out of the output node is determined by the magnetization direction of the

top nanomagnet.

The Spin-Switch can be classified as a current-in/current-out device which communi-

cates information through current direction. Boolean information can be encoded in the

direction of the electrical current where -I and +I represent bit “0” and “1” states, respec-
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Figure 1.11: Example of Spin-switch performing Boolean operations. We encode bit in-
formation as -I and +I which represent bit “0” and “1” states, respectively. Because the
Spin-switch is a current-driven device, the summing of the electrical currents at the input
node results in majority gate functionality. A majority gate can provide Boolean operations
by adding a static input “weight”.

tively. Because this is a current based device, multiple device outputs can be connected

to a single device input. At this node, the currents will be summed and, assuming a odd

number of inputs, the output of the next stage will be determined by the majority current

directions of the inputs. Hence, like many other next-generation device technologies, the

Spin-Switch may behave as a majority gate. By using an input weight, the Spin-Switch can

also perform Boolean operations as shown in Figure 1.11.
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1.3 Overview of the Thesis

This research was birthed as a direct response to the many cursory modeling manuscripts

and proposals regarding spin-based logic devices. The cursory analyses of these works

is largely due to the fact that the physical equations governing magnetic behaviors are

highly complex and require significant computing resources to analyze. The main focus

of this research is on accurate theoretical modeling of physical phenomena governing the

operation of spin-based logic and memory devices that are currently being investigated in

academia and industry. Specifically, the research focuses on:

1. Reliability of magnetization state (Chapter 3)

2. Reversal through STT (Chapter 4)

3. Requirements for reliable dipolar coupling (Chapters 5–9)

4. Overall Spin-Switch analysis (Chapter 10)

5. Possible improvements to spin-based devices (Chapters 11–12)

to obtain accurate bounds on the performance and energy dissipation of Spin-Switch Logic.

Areas 1-3 are required for the accurate analysis of the Spin-Switch device and allow us to

conduct to evaluate the theoretical potential of Spin-Switch devices. While we do effec-

tively prove that Spin-Switch technology delivers significantly worse, performance metrics

to current CMOS technology, we formulate possible augmentations which can be applied

to many types of spin-based technologies bringing their theoretical performance closer to

current standards.

The rest of the thesis is organized as follows: Chapter 2 establishes the physical equa-

tions governing the magnetization state of the free-magnets in the Spin-Switch system. In

Chapter 3 we analyze the stability of magnetization for a biaxial thin film magnetic body.

This is an area of research that is crucial for all magnetic technologies. All modern dig-

ital circuits are founded on an implicit trust with users that the devices will behave in a
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deterministic manner. However, at room temperature, a thin film nanomagnet is under the

influence of a stochastic field referred to as thermal noise. Thermal effect turn the magne-

tization state of the thin-film body into a Brownian motion. Often neglected in literature,

we evaluate the stability of a biaxial nanomagnetic system when in the presence of this

thermal field and how it may be modeled. It is shown that for long observation times, the

analytic models describing the reliability of magnetization in a uniaxial energy landscape

is sufficient for the description of reliability in a biaxial system.

In Chapter 4 we investigate reversal delay through STT. Similar to the reliability anal-

ysis, previous works found the analytic solutions for STT magnetization dynamics within

a uniaxial system [73]. By extension, the delay of reversal for a uniaxial nanomagnet

through STT has also been found [74]. However, these analytic models do not apply to

biaxial systems [2]. In Chapter 4, analytic expressions are developed which can approxi-

mate the reversal delay of a biaxial nanomagnet through STT allowing us to better analyze

complex nanomagnet systems. In addition, this chapter also investigates the variability of

STT reversal delay due to thermal noise. We propose new methods for analyzing the delay

variation of a circuit whose individual components are stochastic variables.

Unlike the previous two areas of interest which have had some analytic analysis in liter-

ature, dipolar coupling between magnetic systems has had limited analysis. This is because

the stray fields emitted by the magnetic bodies are dependent on the magnetization direc-

tion. Because of the infinite possible precessional trajectories and the added stochasticity

added to the system by thermal noise, traditional physical models of dipolar coupling are

difficult. However, in Chapters 5–9, we exhaustively analyze reversal through dipolar fields

culminating in models which outline the correctly define the requirements for coupling in

a two-body system.

The qualitative analysis and analytic models of the individual magnetic effects are then

combined yielding a full comprehensive analysis of Spin-Switch Logic in Chapter 10. This

analysis allows us to outline the material and geometric parameters required for reliable
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operation, potential energy and delay parameters for a Spin-Switch device. We show that

the minimum energy-delay product (EDP) for Spin-Switch technology is approximately

four orders of magnitude greater than modern CMOS standards.

While this result is disappointing for future of Spin-Switch Logic and other spin-based

technologies, using the knowledge gained through our previous analysis we are able to

conceptualize possible improvements to the Spin-Switch device. In Chapter 11, we propose

a latch-less pipelining scheme and discuss the benefits of majority-gate logic. Both these

improvements promise to reduce gate count potentially improving the energy consumption

of larger chips. In addition, we investigate the possibility of a copper-collector which can

increase the amplification offered by the GSHE.

Notably, it has been theorized that more efficient reversals can be achieved if the mag-

netization is initialized to a high-energy state through the use of a piezoelectric material. A

theoretical framework for strain-mediated reversal and its potential benefit to nanomagnet

systems is shown in Chapter 12. We demonstrate that while this type of reversal does of-

fer significant energy savings when compared to standard reversals cases but is limited by

thermal effects present in the system. Hence, though many magnetic devices can benefit

from this technology, it is unlikely this augmentation alone will make spin-based devices

more attractive than their CMOS counterparts in terms of energy and delay.

Even with the theorized improvements to the Spin-Switch device, we show that the

performance gap between this device and conventional CMOS devices remains very large

and hence, the Spin-Switch is unlikely to be a viable replacement for current CMOS logic

technology. With this enhanced understanding, we conclude this thesis with a discussion

of the future of spin-based technologies.
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CHAPTER 2

MAGNETIZATION DYNAMICS

The interaction of electron spins with the crystal lattice is a quantum process. However,

employing full quantum mechanical models to study the properties of fine ferromagnetic

particles is extremely difficult with modern computing systems. As such, we can consider

a semi-classical approximation in a continuous medium to represent the characteristics

of the magnetic body. Such a theory was first introduced by Landau and Lifshitz while

studying the properties of domain walls in larger magnetic systems [75]. However, the

magnetic bodies considered in this thesis are very small and under slow reversals with

minimal domain nucleation. Such magnetic bodies can be reasonably described by a single-

domain model (also described as the Stoner–Wohlfarth model) [76].

2.1 Energy Landscape

The precession of the magnetic moment and its interaction with external fields/torques is

defined by the shape and magnitude of its energy landscape. The energy landscape is the

summation of several distinct energy components. The most significant contribution is by

the exchange energy:

Eexchange = �Jŝ1 · ŝ2, (2.1)

where ŝ1 and ŝ2 are the unit vectors representing the directions of two neighboring spins,

and J is the exchange constant. J can be derived analytically using quantum mechanics and

is positive for a ferromagnetic material; it is negative for an anti-ferromagnetic material [77,

78]. The exchange energy is a result of overlapping orbits of neighboring electrons because

the Coulomb energy is minimized when their orbits are anti-symmetric. This exchange
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energy can be written in a continuum representation as:

Eexchange =

Z

V

A[(rmx)
2
+ (rmy)

2
+ (rmz)

2
]d3r (2.2)

where V is the volume of the magnetic body. A is the exchange stiffness constant and can

be written as A =

JS2n
a

where a is the distance between nearest neighbors and n is the num-

ber of atoms inside a unit cell. The exchange stiffness constant is commonly used to derive

the exchange length which is the typical length scale over which the exchange energy acts.

It is given as lex =

q
2A

µ0M2
s

where µ0 is the free-space permeability constant and Ms is the

saturation magnetization. For most bulk magnetic materials such as Fe/Co/Ni/Permalloy,

the exchange length is on the order of several nanometers.

While the exchange interaction is significant over short distances, it rapidly weakens as

the size of the magnetic body is increased when it must compete with the opposing dipolar

interaction. The dipolar interaction will attempt to align spins according to their relative

position. Without going through the extensive derivation required for analytic evaluation

of this interaction, the dipolar energy can be represented as:

Edipole =

Z

V

1

2

HD(r) · m̂(r)d3r, (2.3)

where HD is the demagnetization field. The treatment of the demagnetization field is dis-

cussed in Section 2.1.2.

The magnetic bodies considered in this research have length and width dimensions on

the order of 10’s of nanometers and are few nanometers thick. Since the magnetic bodies

are sufficiently small, the exchange interaction would most likely dominate at these scales

and we can reasonably assume the magnetic film to be a mono-domain body1. Several

works have successfully used this macrospin spin assumption to describe magnet interac-
1The one exception is in Chapter 9 where we do show the existence of the mutual coupling effect in

multi-domain magnetic systems
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tion [73, 79]. The magnetic moment is represented as the vector ~M = Msm̂ where m̂ is

the direction of magnetization and can be written in both Cartesian and polar coordinates

as:

m̂ = hmx,my,mzi = hcos ✓ sin�, sin ✓ sin�, cos�i (2.4)

where ✓ and � are the azimuthal and polar angles, respectively.

Other energies acting upon the the magnetic moment include the the “magneto-crystalline

anisotropy energy” and describes the magnetization’s preference to align itself along the

material’s crystalline axis. This is an anisotropy energy and is given as:

✏K(m̂) = �Kur̂freem̂
2, (2.5)

where r̂free is the crystalline axis. This axis is also commonly referred to as the “free-axis”.

Here, Ku is the uniaxial anisotropy constant.

In a thin film structure, the dipole interactions between spins result in a nanomagnet’s

desire to align itself along the the longest geometric axis which is referred to as the “shape

anisotropy”. The shape anisotropy can also be referred to as the “demagnetization energy.”

For a mono-domain magnetic body, the shape anisotropy has the form:

✏D(m̂) =

1

2

µ0M
2
s

�
Nxxm

2
x +Nyym

2
y +Nzzm

2
z

�
, (2.6)

where Nxx, Nyy, and Nzz are the demagnetization coefficients. The assignment of these

coefficients is discussed in Section 2.1.2.

Finally, the Zeeman energy which describes the nanomagnet’s desire to align parallel

to an externally applied magnetic field:

✏Zeeman(m̂) = �µ0Ms
~Happ · m̂, (2.7)

where ~Happ is the external field applied on the magnetic body. Knowing all these energy
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contributions, we can say that the magnetization energy density of the mono-domain body

is:

✏(m̂) = ✏K(m̂) + ✏D(m̂) + ✏Zeeman(m̂). (2.8)

The total magnetization energy has three components, the two anisotropies of the magnetic

body and the Zeeman energies imposed by applied magnetic field(s).

2.1.1 Abstraction of Energy Landscape

It is often useful to abstract a magnetic body by noting that, for bulk material thin-film

nanomagnet systems, ✏(x̂) < ✏(ŷ) < ✏(ẑ); the energy landscape of the nanomagnet can

be represented by an easy-axis anisotropy (Kk) and out-of-plane anisotropy (K?). Using

(2.9), the new energy landscape using these two anisotropy values becomes:

✏ (m̂) = �Kkm
2
x +K?m

2
z, (2.9)

where

Kk = Ku +
1

2

µ0M
2
s (Nyy � Nxx) , (2.10a)

K? =

1

2

µ0M
2
s (Nzz � Nyy) . (2.10b)

This normalization sets ✏(ŷ) = 0 without altering the dynamics of the magnetic body

significantly simplifying analysis.

2.1.2 Type of Energy Landscapes

To discuss magnetization dynamics, we can represent the energy space of a magnetic body

as a series of precessional trajectories as shown in Figure 2.1. The precessional trajectories

are the solutions to the LLG equation assuming ↵ = 0 and that the magnetization lies on a

constant energy orbit [80]. The blue trajectories correspond to the high energy region where
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Figure 2.1: Visual representation of energy landscapes for (a) in-plane and (b) PMA nano-
magnets. Lines denote magnetization orbits at different magnetization energies. Red lines
map energy basin while blue lines map energy pole. Black lines mark energy barrier be-
tween regions. Despite having orthogonal free-axis directions, the only difference between
the two energy landscapes is the existence of a perpendicular positive anisotropy energy.
This perpendicular anisotropy energy creates a biaxial system and significantly alters the
precessional mechanics of the nanomagnet. Hence, uniaxial and biaxial nanomagnet sys-
tems need to be evaluated separately.

the magnetization precesses and falls away from a high energy pole. The red trajectories

denote the precessional trajectories in an energy basin where the magnetization will precess

and fall towards an energy minima. The axis of this energy minima is often referred to as

the free-axis of the magnetic body and is defined by the direction of the uniaxial anisotropy

energy. The separatrix (plotted in black) shows the orbit associated with the energy barrier.

Two types of energy landscapes are considered: uniaxial and biaxial, that account for

most nanomagnetic systems currently being researched. In both cases, there is a net nega-

tive anisotropy oriented along the free-axis. This anisotropy is largely due to the uniaxial

anisotropy energy. In a biaxial energy landscape, a net positive shape anisotropy is oriented

perpendicularly to the free-axis. In the uniaxial case, the magnetizations interact more with

both dimensions of the energy landscape as compared to the biaxial case.

These two types of energy landscapes correspond to two types of nanomagnets com-

monly found in experimental studies: in-plane and perpendicular-magnetic-anisotropy (PMA)
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[2, 81]. Using simple coordinate transformation, these types of energy landscapes can be

applied to these two thin-film nanomagnet bodies as demonstrated in experimental studies.

In-plane nanomagnet systems are commonly created using bulk materials with a rect-

angular magnetic body to ensure a negative net anisotropy contribution to the free-axis (x̂)

from both the nanomagnet’s shape and magnetocrystalline energies. Because of the thin-

film body, the positive shape anisotropy significantly contributes to the out-of-plane axis ẑ.

The uniaxial anisotropy energy accounts for the negative net anisotropy energy along the

free-axis (x̂). Because this energy landscape contains a positive and negative anisotropy

perpendicular to each other, the in-plane nanomagnet is analogous to a biaxial energy land-

scape.

In the case of PMA nanomagnets, the magnetic body is composed of layered metals

whose surface interactions create a net-negative anisotropy along the out-of-plane axis (ẑ)

[82, 83, 84]. Furthermore, assuming a square thin-film body the shape anisotropy energy

will also oriented along ẑ [85, 86]. Hence, a PMA nanomagnet will have one net anisotropy

energy along ẑ and assuming correct design, this net-anisotropy will be negative, making ẑ

the free-axis [87]. It can be concluded that a PMA magnet has a uniaxial energy landscape

except that its free-axis is oriented along ẑ instead of x̂. Figure 2.1 clearly demonstrates

the differences between the two type of nanomagnets. Notice that the in-plane and PMA

nanomagnet bodies are both subsets of biaxial and uniaxial systems respectively. Magnets

with uniaxial energy landscapes can also be fabricated using bulk material shaped into

a rectangular prism. By making the nanomagnet width and thickness equal, the shape

anisotropies along the two longest axes have no net effect on the precessional dynamics of

the system.

Representation of Energy Landscapes Through Demagnetization Field

The difference between the uniaxial and biaxial energy landscapes is the inclusion of a

perpendicular anisotropy energy. Hence, for the purposes of analysis, we can create these
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types of energy landscapes through careful assignment of the three demagnetization coef-

ficients: Nxx, Nyy, and Nzz. For instance, a uniaxial energy landscape is created if there

is no net perpendicular contribution from the shape anisotropy. For this case, we define

a zero-demagnetization system (0Hd), whose demagnetization coefficients are assigned as

Nxx = Nyy = Nzz = 0. This means that the energy barrier of the magnetic is equal to the

uniaxial anisotropy energy and greatly simplifies our analysis.

A biaxial nanomagnet system can be assigned in two ways. Firstly, we define the sim-

ple demagnetization field (SHd) where Nxx = Nyy = 0, Nzz = 1 which corresponds to an

infinitely long and wide thin film structure. This case is useful because it maintains the en-

ergy barrier equal to the uniaxial anisotropy energy simplifying comparisons between SHd

and 0Hd systems. Secondly, for realistic thin film geometries, Nxx and Nyy are non-zero

and significantly contribute to the energy barrier of the magnetic. For our benchmark-

ing analyses, we must consider the most realistic cases. Hence, we define the complex-

demagnetization field (CHd), where the demagnetization coefficients are determined by

geometry [88]. In this case, the coefficients satisfy the condition: Nxx + Nyy + Nzz = 1

and each value is inversely proportional to the geometric length of the material body along

that corresponding axis.

For the majority of this thesis, we will assume SHd. However, in Chapter 7 we do an

analysis of dipolar coupling in both biaxial (SHd) and uniaxial (0Hd) systems. CHd models

are used for real-world analyses in Section 7.5 and for benchmarking purposes in Chapter

10.

2.2 Landau-Lifshitz Gilbert Equation

The phenomenological equation describing the physics of each magnet under the effects of

STT and dipolar coupling field is given by the Landau-Lifshitz-Gilbert equation [41, 75,

89, 90]
dm̂

dt
= ��µ0

⇣
m̂ ⇥ ~Heff

⌘
+ ↵

✓
m̂ ⇥ dm̂

dt

◆
+

~Is,?

qNs

, (2.11)
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Figure 2.2: Visual representation of the torques acting upon the magnetization of a single-
body ferromagnetic system .

where � is the gyromagnetic ratio, µ0 is the free space permeability, ↵ is the Gilbert damp-

ing coefficient, q is the element charge, Ms is the magnetic saturation, and Is,? is the spin

current. Ns is given as

Ns =
2MsV

�~ , (2.12)

It can be seen that the LLG is the sum of the three torques that act upon the magnetization of

the mono-domain as shown in Figure 2.2. The precessional torque cause the magnetization

to precess along the constant energy obits discussed in Section 2.1.2. The second term is the

damping torque and represents the nanomagnet’s desire to find the lowest energy state. This

torque is oriented perpendicularly to the precessional orbit and coerces the magnetization

to relax towards lower-energy precessional orbits until the magnetic moment reaches its

free-axis. the magnitude of this damping term is determined by the ↵ coefficient. For

the majority of our analysis, we consider a small ↵ = 0.01 which corresponds to a bulk

iron body [91]. A small ↵ is beneficial for STT reversal and dipolar coupling, but reduces

magnetization reliability when in the presence of thermal noise.

The third term is the STT discussed in Section 1.1.3. The STT imparts an angular

momentum on the magnetic moment proportional to the orthogonal component of the spin-

polarization axis. Unlike an external field, the STT is a separate torque and not added to
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the nanomagnet’s energy landscape. For STT reversal, this STT torque term must be larger

than the damping torque pushing the magnetization across the energy barrier to the parallel

basin. The nuances of STT reversal are described more fully in Chapter 4.

The energies create a gradient system represented by the fields applied to the magnetic

moment and is related to the magnetization energy by:

~Heff =

1

µ0Ms

@✏

@m̂
. (2.13)

Therefore ~Heff can be written as

~Heff =

~HK +

~HD. (2.14)

where ~HK is the uniaxial anisotropy field and is derived from the Stoner-Wohlfarth model

as [76]

~HK =

✓
2Ku

µ0Ms

mz

◆
ẑ. (2.15)

and the demagnetization field ( ~HD) is given as:

~HD = �Ms hNxxmx, Nyymy, Nzzmzi , (2.16)

where the demagnetization coefficients are assigned values as described in Section 2.1.2.

2.3 Thermal Noise

The thermal field describes the susceptibility of the magnetic moment to random thermal

fluctuations. As we are considering small, nanometer-scale magnetic bodies, the thermal

fluctuations significantly impact magnetization dynamics. The thermal field is Gaussian

with a zero mean. That is,
D
~HT,i (t)

E
= 0. (2.17)
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The correlation between the elements of ~HT defined over time interval ⌧ as

D
~HT,i (t) ~HT,j (t+ ⌧)

E
=

2↵kbT

µ2
0�MSV

�ij� (⌧) . (2.18)

According to the theory developed by [92], the thermal field can be defined as an isotropic

vector process field Wiener process Wk [93]. Knowing this, the thermal field ~HT can be

modeled as 3-dimensional Wiener process [94]:

~HT =

s
2↵kBT

µ2
0�MSV

✓
@WX

@t
x̂+

@WY

@t
ŷ +

@WZ

@t
ẑ

◆
, (2.19)

The Wiener process is simply a stochastic process whose value at every time increment

is a normal variable with a mean of 0 and standard deviation of 1. The integration of the

Wiener process is a Brownian motion. Because we’re assuming that the thermal noise

is uncorrelated at each time interval, the Brownian motion model valid [3]. In addition,

this model of thermal noise has been used to accurately describe thermal dynamics of

experimental magnetic systems [73, 95]

The treatment of the thermal field with respect to the LLG equation requires a nuanced

understanding of stochastic calculus [96]. Differential equations which include a stochastic

element can be interpreted using one of two types of calculus: Itô and Stratonovich [97,

98]. Appendix C clarifies the difference between these two form of calculus; the primary

difference being the evaluation of the differential equation with respect to the time interval.

Given that the LLG equation and thermal noise both describe a physical process (traver-

sal of the magnetic moment) a Stratonovich interpretation of the LLG would be most ap-

propriate. Fortunately the stochastic version of the LLG equation can be derived by simply

adding the thermal field to the effective field of the nanomagnet resulting in the stochastic

Landau-Lifshitz Gilbert (sLLG) equation

dm̂

dt
= ��µ0

⇣
m̂ ⇥ (

~Heff +
~HT )

⌘
+ ↵

✓
m̂ ⇥ dm̂

dt

◆
+

~Is,?

qNs

. (2.20)
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methods start out with a faster order (steeper slope) for larger step sizes. This is due to the fact that the
deterministic part of the equation, and hence the error in its approximation, dominates the stochastic
part. Therefore, the slope for big step sizes is more like the deterministic second order of convergence
for the Heun and implicit midpoint schemes. We see this e�ect for smaller step sizes as the size b of the
stochastic part is decreased in Figure 2b.
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Figure 2: Average path-wise error of the numerical approximations corresponding to equation (38) with two di�erent
choices of a and b.

4.5. Numerical tests using the s-LLGS equation
Now, we are going to test the properties of these methods on the s-LLGS equation, defined by (25a) and
(25b). It is important to note that the norm of the magnetization vector m is preserved if the equation
is interpreted in the Stratonovich sense. This follows from the fact that in the Stratonovich calculus,

d(�mt�2) = 2mt · dmt = 0,

whereas in the Ito calculus, Ito’s Lemma gives

d(�mt�2) = 2mt · dmt +
3X

i,j=1

�2�m�2

�mi�mj
(mt) (dmi,t · dmj,t) ,

which is, in general, not zero. Explicit schemes like Euler-Heun or Heun, while solving the Stratonovich
equation, do not preserve the norm. Indeed, one has to take a very small step size �t so that the norm
of the magnetization does not blow up. On the other hand, the implicit midpoint method preserves the
norm. The contrasting behavior of the magnetization norm obtained using di�erent stochastic calculi
is highlighted in Figures 3a and 3b. Indeed the midpoint method that converges to the Stratonovich
solution preserves the norm while the Ito solution does not.
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Figure 3: Time evolution of magnetization with (a) implicit midpoint converging to the Stratonovich solution and (b)
Heun-Euler converging to the Ito solution. Conditions are zero spin current (only noise) and energy barrier U = 10K

B

T .
The magnetization norm is preserved with the former, but blows up with the latter.

9

Midpoint (Stratonovich) Heun-Euler (Ito)

Figure 2.3: Plots taken from [100]. Plots show numeric integration of sLLG (2.20) using
two different integration schemes. The difference of these results is due to the fact that cer-
tain numerical integration schemes adhere to either Stratonovich or Itô solutions. Hence,
using a numeric integration scheme such as the Midpoint method yields perfectly accept-
able results when evaluating (2.20). However, the Euler-Heun method, which converges to
the Itô solution, outputs unstable results assuming the same parameters.

It can be mathematically proven that this interpretation of the sLLG adheres to the Stratonovich

interpretation and is the form most commonly used in literature [3, 99].

This is important to emphasize because the translation of numerical integration schemes

which are correct for deterministic differential equations may yield incorrect results when

applied to the stochastic case [101]. Figure 2.3 shows what happens when a stochastic

differential equation is paired with a numerical integration scheme that does not converge to

the same stochastic interpretation. In our research, the Heun method was used to simulate

the sLLG [102]. Other works have used Runge-Kutta (RK4) and Midpoint methods for

evaluation [103, 104, 105, 106]. While RK4 and Midpoint methods do offer stronger

convergence than the Heun method, they also require more computing power. We felt that

the trade-off of time-step to calculations per interval favored the usage of the Heun method.

While not used in this research, the Itô interpretation of the sLLG can be solved for

through the inclusion of the deterministic drift term. This is useful when there is no choice

of numerical technique such as in the case of modeling magnetization dynamics using

SPICE simulations. Typical SPICE solvers employ a Euler’s method due to its simplicity

and hence, the Itô interpretation of the sLLG is necessary when modeling magnetization
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dynamics in such an environment.

2.4 Simulation Methods and Environment

While I began my research using custom numerical solvers developed in Matlab, it be-

came evident that serial scripting languages are were insufficient for the purposes of my

research. Fortunately, the serial CPU processing bottleneck was noticed in the previous

decade and massive the GPU unit evolved into a highly parallel many-core processor with

significant computational bandwidth. GPU computational cores are simpler than modern

CPU cores omitting advanced architecture components such as branch predictors and pre-

dictive caches. However, the simpler designs allow for more cores running in parallel

thanks to their smaller footprints. Modern high-end GPU architectures contain roughly

3500 CUDA cores which means a significant simulation speedup assuming the program-

mer can make use of all these cores in parallel. In addition, these simpler cores are designed

for numerical processing and contain added floating-point processing units. These evolved

GPUs are designed for highly-parallelized data-processing.

CUDA (Compute Unified Device Architecture) is the programming language used to

program the GPU device and behavior of the individual cores. CUDA programming is

similar to classic embedded device programming where each chip in the embedded device

must be programmed separately and operations are performed when these chips communi-

cate with one-another. In CUDA, there is a central kernel function which is distributed to

all the cores. The behavior of the kernel function changes based on the Core identification

number which allows one to program many cores performing different functions.

CUDA/GPU programming is well suited for our purposes. We limit each CUDA core

to solve one instance of the sLLG equation. This means that we can more rapidly perform a

Monte-Carlo simulation analyzing the reversal probability for a magnetic body in the pres-

ence of thermal noise. We can also solve for the reversal delay of many different magnetic

systems when omitting stochastic effects. Or we can perform Monte-Carlo analyses on
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many different system at once. The programming and use of many-core GPU architectures

fulfilled enormous computational demands of our research.

Custom numerical solvers are written in CUDA implementing the Heun method to solve

the sLLG [94, 107]. Most GPUs have a limited amount of memory available and hence,

a great deal of effort was dedicated to making this solver as memory efficient as possible.

The accuracy of the simulator was verified by comparing results of the simulations against

known analytic solutions for the LLG [73]. The results of this comparison are shown

in Figure 2.4. [73] solves the LLG equation for a uniaxial (PMA) magnetic body under

the influence of STT. The comparison of the analytic equation and numerical integrator

shows strong agreement verifying the correct operator of the deterministic portion of our

solver. Using similar logic, we compare the analytic and numerical results for the initial

angle distribution of a PMA magnet at its steady state. The agreement between the solver

and analytic models confirms the correct operation of the stochastic portion of our solver.

Using the methods in Figure 2.4, we find that strongly converges to the correct using a 10

fs time-step.
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Figure 2.4: Considering a a 40⇥ 40⇥ 1nm3 PMA magnet with Ms = 10

6 A
m

, Ku = 10

6 J
m3

and ↵ = 0.01. Left: Z component of magnetization as nanomagnet is reversed using a
-96 µA spin current. Compares numerical results with solution to LLG equation (4.4)
derived in [73]. Right: Evaluates the initial angle of the nanomagnet while it is at rest
fluctuate around the free-axis due to thermal effects. Compares numerical results with
analytic equation (4.7a) derived in [73].
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CHAPTER 3

THERMAL STABILITY OF MAGNETIC BODIES

Before we can analyze the reversal characteristics of magnetic bodies, we need to under-

stand the reliability of the magnetization state [108]. The interaction of the magnetic order

parameter with the underlying thermal fluctuations of the magnetic body has been analyzed

extensively in prior literature [109, 110, 111, 112]. Most prominently, W. Brown, in his

seminal works in 1963 to 1979, developed the “Brownian motion” model of thermal noise.

Using the Fokker-Planck analysis, Brown showed that the probability of the thermal rever-

sal in fine ferromagnetic bodies (i) is a single exponential function with respect to time and

(ii) it varies monotonically with the energy barrier of the nanomagnet [113, 92]. Brown’s

analysis is specifically applicable in cases when the magnetization energy is “independent

of the radial angle” [113] implying the absence of demagnetization field caused by the

shape anisotropy of the magnetic body. The lack of the demagnetization field decouples

the dimensions of the Landau-Lifshitz-Gilbert (LLG) equation and allows analytic solu-

tions of the thermally-induced magnetization reversal probability [73]. However, thin-film

biaxial nanomagnets contain both a negative uniaxial anisotropy along its free-axis, and a

positive shape anisotropy oriented perpendicular to the free-axis. As such, the magnetiza-

tion energy depends on both the azimuthal and polar angles of the magnetization vector,

which does not allow for the dimensional decoupling of the LLG equation.

While building upon prior works, including those of Brown, in this chapter, we specifi-

cally analyze the magnetization reversal probability of thin-film nanomagnets that are char-

acterized with a biaxial magnetic anisotropy. The analysis is conducted for a variety of

material parameters of the magnetic body such as the magnetic saturation and the uniaxial

energy density. For the first time, we show that for a given energy barrier, the magnetiza-

tion reversal probability varies non-monotonically with the magnitude of the perpendicular
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shape anisotropy. Specifically, we consider two cases of the instability in magnetization re-

sulting from the thermal noise that eventually lead to magnetization reversal within a given

time period. These two cases of thermal reversals are defined as follows.

• Case-I: reversal occurs when the magnetization vector crosses the x̂ = 0 plane

• Case-II: reversal occurs when the magnetization energy exceeds the energy barrier

of the nanomagnet

In Case-I, an increase in the demagnetization field increases the frequency of precessional

energy orbits, which makes it more likely for the magnetization to cross x̂ = 0 plane once

the magnetization energy exceeds a particular energy threshold. However, we find that

the reversal probability in Case-II also varies non-monotonically with the demagnetization

energy. This is because a larger perpendicular anisotropy shapes the energy orbit, mini-

mizing its ẑ components, and allows the thermal field to induce a greater torque on the

magnetization. Finally we test the limits of this non-monotonic behavior and show that

while this behavior is especially present in small timescale (sub-100 ns) measurements, it

is diminished at very large timescales.

Note that in this chapter, to ensure simplicity of analysis, we consider a SHd demagne-

tization field. The physical equations governing the dynamics of a nanomagnet under the

influence of thermal noise have been outlined in Chapter 2.

3.1 Nanomagnet Model

In this chapter, we consider a single domain thin-film nanomagnet of size 60 nm ⇥ 45 nm

⇥ 2 nm whose magnetization evolves under the influence of thermal noise. We assume a

SHd demagnetization field such that the energy barrier for biaxial magnetic anisotropy is

given as Eb = �Ku. The free-axis is along x̂ and the material parameters of the magnetic

body are varied to reveal the dynamics of thermal reversal.
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Figure 3.1: Sample reversal trajectories for nanomagnet under the influence of thermal
noise. In all cases Ku = 10

2 J
m3 . Background light-colored lines denote precessional

trajectories for the corresponding Ms/Ku values. Green line denotes sample magnetization
trajectory under thermal noise.

3.2 Comparison of Case 1 and Case 2 Reversals

The magnetization reversal due to thermal noise in the thin-film nanomagnet is analyzed

for two cases and the results are shown in Figs. 3.2 and 3.4. In Case-I, thermally-induced

magnetization reversal occurs when the magnetization crosses the x̂ = 0 plane within a

specific time period for which the probability of reversal is being examined. As evident in

Figure 3.2, for a fixed energy barrier, an increase in Ms leads to a non-monotonic trend in

the magnetization reversal probability. It is known that a larger Ms increases the thermal
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Figure 3.2: (Left): Probability that the magnetization will cross the x̂ = 0 plane at least
once within 1 ns. While Eb is solely proportional to Ku, it is shown that a larger Ms also
increases the probability of Case 1 reversal. (Right): Precessional period associated with
nanomagnet with corresponding Ms/Ku parameters at the orbit whose associated energy
= �0.01Eb.

stability of the nanomagnet because the magnitude of the thermal field is decreased; hence,

an increase in Ms results in an overall decrease in reversal probability [92]. However,

once Ms exceeds a certain threshold, there is an increase in the reversal probability of the

magnetization. This increases is partly explained by observing the sample magnetization

reversals as plotted in Figure 3.1. In the case of lower Ms, the magnetization trajectory may

cross the x̂ = 0 plane due to the random walk of the thermal noise. However, in the large-

Ms cases, the thermal noise simply forces the magnetization beyond the energy barrier,

where the magnetization will precess across the x̂ = 0. As shown in the inset of Figure 3.2,

for large values of Ms, the precessional time period decreases and becomes comparable or

even smaller than the observation time. Thereby, it is more likely for the magnetization at

a high-energy trajectory to cross the x̂ = 0 plane during the observation time which leads

to a higher probability of reversal. In Case-II, the thermal reversal probability is defined

such that the magnetization will cross the energy barrier at least once within a given time

period. In this case, the probability of magnetization reversal for various Ms/Ku parameters

is plotted in Figure 3.4. Case-I reversals are a subset of Case-II reversals. Similar to Case-

I dynamics, the non-monotonic behavior of reversal probability on Ms for a fixed Ku is
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also present in the magnetization dynamics of Case-II. This shows that a perpendicular

anisotropy not only alters the precessional period, but also brings the separatrix closer to

the free-axis and both these aspects contribute to the positive reversal probability trend

affecting large-Ms nanomagnets.

3.3 Thermal Field Torque Dependence on Perpendicular Anisotropy

In Case-II dynamics, the non-monotonic behavior of magnetization reversal results primar-

ily from the altered thermal-field torque for a precessional orbit at a specific energy E(m̂).

To illustrate this point, we can assume that the three-dimensional Wiener process in (2.19)

is instead a constant vector dW = [1, 1, 1]. We then apply the LLG equation (assuming no

damping) along each point in the precessional orbit associated with a particular energy to

measure the change in magnetization energy due to the thermal field.
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Figure 3.3: (Left): Change in magnetization energy due to thermal field assuming Wiener
process in thermal field, dW = [1, 1, 1]. Change in energy calculated for each point along
precessional orbit whose associated energy = �0.01Eb. Precessional periods for each Ms

value normalized along x axis. Assuming Ku = 10

2 A
m

a dt = 10

�12s. (Right): Scatter
plot of magnetization position when magnetization energy first exceeds energy barrier for
various values of Ms.

As shown in Figure 3.3, the thermal-field torque is enhanced when the nanomagnet has

a larger perpendicular anisotropy. This is because the perpendicular anisotropy shapes the

precessional orbits affecting the ẑ-components of their trajectories as shown in Figure 3.1.
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Spatial distance between the magnetization and free-axis, alters the thermal-field torque

imposed on the magnetization. This enhanced torque can cause a greater change in the

magnetization energy, thereby increasing the probability for E(m̂) to exceed the energy

barrier, Eb. We also capture the position of the magnetization vector when it first exceeds

the energy barrier to further corroborate the results. As shown in the inset plot of Figure 3.3,

the point at which the magnetization first crosses the energy barrier is spread evenly along

the separatrix for smaller perpendicular magnetic anisotropy (low-Ms). However, when the

perpendicular anisotropy is increased, the crossover point of the magnetization becomes

clustered closer to the free-axis.

3.3.1 Effect of Time on Non-monotonic Behavior

The non-monotonicity of magnetization reversal probability on Ms for a fixed Ku is present

only when the dynamics at short time-scales (sub-100 ns) are considered. As shown in

Figure 3.4, the probability curve tends toward the classical energy-barrier dependent model

as the observation time is increased. This suggests that Brown’s model is still valid when

considering the long-term stability of nanomagnets as in the case of spintronic memory

devices. Yet, in many proposals of spintronic logic devices, data retention on short time-

scales is relevant. Hence, the non-monotonic behavior of magnetization reversal must be

considered to accurately analyze the noise sensitivity and reliability of these logic devices

[108].

3.4 Analytic Equation for Nanomagnet Retention Time

Note that we are concerned with the long-time behavior of the magnetic body in the mag-

netic body and as such, Section 3.3.1 demonstrates that a biaxial and uniaxial nanomagnets

can be reduced to one another in such systems. The thermal relaxation time is the timescale

for which magnetization behavior escapes the initial energy basin and crosses the energy

barrier. The thermal relaxation time ⌧ assuming a large energy barrier is described as[114,
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115]:

⌧ = f�1
0 e

E

b

k

b

T , (3.1)

Where f0 and will be discussed momentarily. According to the Arrhenius-Neel theory, the

probability of thermal reversal as a function of time becomes:

PSW = 1 � exp[tf0e
� E

b

k

b

T

]. (3.2)

The attempt frequency is difficult to decipher analytically for biaxial nanomagnet sys-

tems. Several works have attempted to at apply an analytic treatment to magnetic bodies

with various axial landscapes. Most notably Coffey et al. derived several formulations for

the thermal reversal probability of uniaxial, biaxial and cubic anisotropic bodies when un-

der the influence of an applied field [116]. However, a single expression is not sufficient for

describing all magnetic bodies. Separate expressions are needed for describing the very-

low damping (VLD) and intermediate-high damping (IHD) bodies. Other methods such as

matrix continued-fraction analyses are possible, but are computationally-expensive defeat-

ing the goal of a rapid characterization of spin-based systems using analytic results [96,
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117]. However, the uniaxial case can be derived exactly [92, 118]:

f0 =
�↵

1 + ↵2

s
H3

KMsV

2⇡kBT
, (3.3)

where HK here represents the effective anisotropy field along the free-axis. This distinction

is important if considering that complex demagnetization energies contribute energy to the

free-axis anisotropy of rectangular magnetic bodies. However in the SHd and 0Hd cases,

Hk solely consists of the uniaxial anisotropy field.
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CHAPTER 4

MAGNETIZATION REVERSAL THROUGH SPIN-TRANSFER TORQUE

Before the introduction of STT, most spin-based devices were some variant of magnetic

quantum cellular automata (MQCA) which communicated information through stray-field

interactions[28]. However, the introduction of STT has resulted in a myriad of proposed

devices utilizing spin currents for data processing and communication. In Spin-Switch

Logic, the reversal of the bottom nanomagnet is dependent on the spin current delivered

by the GSHE material and as such understanding this reversal mechanism is critical for

the analysis of this device. In this chapter, we analyze the STT reversal mechanism for

deterministic uniaxial and biaxial magnetic bodies. Using these models, we formulate

methods to model STT delay variation of uniaxial magnetic bodies under the influence of

thermal noise [111].

4.1 Critical Current Expression

As shown in Figure 2.2, the a polarized current imparts a STT towards a particular direc-

tional state. The STT is a non-conservative force making it significantly different than the

torque applied by an external field. To this end, the STT fights against the magnetic body’s

damping torque. Assuming the STT is large enough, it can overpower the nanomagnet’s

natural damping torque and reverse the magnetization. Hence, it is first important to know

what magnitude STT is required to successfully reverse the magnetization of a magnetic

body.

To understand the critical current magnitude requirements, we musty briefly review the

critical current models available in literature. It was first noted that the minimum longitudi-

nal spin current required to overpower the damping and drive the magnetization away from
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the free-axis can be given as [74]:

IC1 =
4q

~ ↵V

✓
Kk +

K?

2

◆
. (4.1)

However, [74] also notes that in certain magnetic systems, the spin current may be

sufficient to drive the magnetization away from the low energy state, but insufficient to fully

reverse the magnetization. This can be observed from the existence of in-plane magnetic

oscillators [119]. This is because as the perpendicular anisotropy is increased, the damping

torque at the energy barrier increases faster than the damping torque at the free-axis. It is

found that the damping torque at the energy barrier can be larger than at the low-energy

position along the free-axis [110]. Assuming a constant D =

K?
Kk

, it was found that for

systems where D > 5.09, the critical current required to drive the magnetization across the

energy barrier is equal to:

IC0 =
4q

~ ↵V Kk

✓
2

⇡

p
D (D + 1)

◆
. (4.2)

The magnitude of these two critical current expressions is shown in the inset of Fig-

ure 12.4. Conceptually, IC1 and IC0 can be thought of as the critical current when the mag-

netization is close to the free-axis and on top of the energy-barrier, respectively. Hence,

assuming that the magnetization is initially at rest along the free-axis, the critical current

magnitude required for full reversal can be given as:

IC = max (IC1, IC0) . (4.3)

The complete model is necessary when evaluating magnetic bodies with large perpendic-

ular anisotropies. Many spin-based models commonly ignore this and yield less-accurate

results.

It is important to note that both these critical current expressions are derived by av-

eraging the damping and spin-transfer torques along the precessional orbit of the energy
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landscape. Hence, these expressions are only valid for cases where the magnetization in-

teracts with both-dimensions of the energy landscape. For nanomagnet systems with short

precessional periods, like the ones considered in this research, this orbit averaging assump-

tion is accurate. However, if the precessional period is on the order of the nanomagnets

reversal time, the analytic expressions may not be valid.

4.2 Uniaxial Delay Model

Having defined the minimum current required for reversal, it is now important to find the

reversal delay for nanomagnets under the influence of above-critical spin currents. We will

begin with the delay expressions of a uniaxial system since such systems have been proven

analytically. The physics of PMA-SHd nanomagnet reversal has been exhaustively studied

in [109, 120]. The energy landscape of such a magnetic body is greatly simplified because

the magnetization energy is dependent on a single dimension of magnetization. This allows

analytic solutions of the LLG equation. The implicit analytic equation for the dynamics of

the nanomagnet is given as [73]

(i � 1)

⌧

⌧D

= ln

 
tan

�
�

⌧

2

�

tan

�
�0

2

�
!

� 1

i+ 1

ln

 
i�1
i+1 +

tan2(�
⌧

)
4

i�1
i+1 +

tan2(�0)
4

!
,

where ⌧ is the time it takes for the polar angle of the magnetization to transition from

� = �0 to � = �⌧ . ⌧D is the time scale of the magnetization dynamics and is given as

⌧D =

✓
1 + ↵2

↵�µ0 (Hk � Ms)

◆
. (4.4)

In (4.4), i = I/IC1 is the ratio of the spin current entering the nanomagnet and the critical

spin current of the nanomagnet. IUNI
c is mathematically given as [85]

IUNI
C =

2eMsV ↵

~ µ0 (Hk � Ms) , (4.5)
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where e is the elementary charge. This critical current expression is equivalent to (4.1)

without the perpendicular energy component. (4.4) is verified against numerical results in

Figures 4.1 & 4.2. (4.4) reduces to the expression derived in the seminal work of J.Z.
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analytic expression.
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Figure 4.2: Assuming 40 ⇥ 40 ⇥ 1nm

3 with a Ms = 1

MA
m

and Ku = 1

MJ
m3 . Figure

demonstrates exactness of (4.4) analytic expression.

Sun [74] under the condition that the input spin current of the nanomagnet vastly exceeds

its critical current.
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4.3 Biaxial Delay Model

Currently, there does not exist an analytic delay expression for biaxial systems. In the

uniaxial case, the magnetization energy is only a function of one dimension. This allows

the two dimensions of the LLG equation to be decoupled. Each dimension can then be

directly solved independently [73]. However, in biaxial systems, the magnetization energy

is dependent on both dimensions which prevents this dimension decoupling.

Biaxial nanomagnets are required for the optimal operation of the Spin-Switch device

and therefore, a biaxial delay expression is required. While an exact analytic expression
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Figure 4.3: Numerical evaluation of 0Hd and SHd nanomagnet bodies. Assuming 40 ⇥
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can’t be derived through a physical basis, we can formulate a rough approximation of

biaxial delay through analysis of the differences in precessional dynamics in uniaxial and

biaxial cases. We can compare the delays of 0Hd and SHd nanomagnet systems in Figure

4.3.

As evident from Figure 4.3, for very large current magnitudes, the biaxial delay values

converge to the uniaxial case. As current increases, the change in magnetization becomes
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more rapid reducing the number of precessions during reversal, reducing the interaction

with the perpendicular field. This can be seen clearly in Figure 4.4.
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3 in-plane SHd magnetic body with a Ms = 1

MA
m

and Ku = 1

MJ
m3 . Figure demonstrates difference in precessional trajectory for slow and fast

reversal cases..

However, during slow reversals when the interaction with the perpendicular energy is

significant, the delays are significantly different. This is due to the fact that the perpendicu-

lar anisotropy lowers the damping and increases the average torque on the magnetization as

it precesses through the energy basin. Knowing that uniaxial and biaxial delays converge as

Is ! 1 and diverge as Is approaches its critical current value, we can make the following

approximation for the biaxial delay:

⌧ bi
= (

IC

Is � IC

)

X · ⌧uni (4.6)

where IC is the critical current of the biaxial magnetic body given by (4.3), Is is the spin

current magnitude and ⌧uni is the delay of an equivalent 0Hd uniaxial body given by (4.4).

The fitting parameter, X , depends on the shape of the energy landscape ( K
p

K
u

). Assuming

that the correct fitting parameter is chosen, this model is accurate to within ±10% as shown
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in Figure 4.5.
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Demagnetization Field amplitudes arbitrarily chosen.

Notice that there is a trend to the fitting parameter values. However, further evaluation

requires extensive analysis and will be the subject of a future work. Nonetheless, (4.6) is

reasonably accurate for most biaxial magnetic bodies and is therefore sufficient for bench-

marking of spin-based devices.

4.4 Uniaxial Delay Distribution Models

Due to the complex nature of the equation governing the behavior of the nanomagnet body,

complete analytic descriptions for the delay distributions of a nanomagnet are unavail-

able. Previous work has suggested that the effect of thermal noise may be approximated by

knowing the initial angle of the nanomagnet and neglecting the thermal noise during rever-

sal [87]. While these models do provide significant insight into the nature of nanomagnet
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reversal, numerical simulations presented in this chapter show that these analytic distribu-

tions are only accurate for rapid reversal times (< 200 ps). Therefore, for the case when the

nanomagnet is under the influence of spin currents comparable in magnitude to the critical

spin current for reversal, new types of distribution functions to describe the magnetization

dynamics must be sought. Here, we demonstrate the applicability of the Fréchet distribu-

tion that contains double exponentials to more accurately capture the evolution of magne-

tization over a very broad range of time scales. The Fréchet distribution is also compatible

with the results obtained in [121, 122] by analytically solving the Landau-Lifshitz-Gilbert

(LLG) equation with specific boundary conditions. In this section, we investigate the delay

variation in uniaxial systems due to thermal noise and how it may be modeled.

For Sections 4.4–4.6, a PMA magnetic body with material parameters shown in Table

4.1 is considered.

Table 4.1: Simulation parameters of the nanomagnet

Parameter Value Units
Length, LM 100 nm
Width, WM 100 nm
Thickness, tM 4 nm
Saturation magnetization, Ms 3 ⇥ 10

5 [82] A
m

Uniaxial anisotropy energy density, Ku 6 ⇥ 10

5 [82] J
m3

Damping coefficent, ↵ 0.01 unitless
Temperature, T 300 Kelvin
Critical spin current, Ic 1.32 mA
Input spin current, Iop 1.50 mA

4.4.1 Analytic PDF for Rapid Reversals

Assuming a large energy barrier between the two stable states of the nanomagnet, the prob-

ability distribution of the initial angle of the magnetization of the nanomagnet is given as

[109]

P (�) = e�⇠�2
, (4.7a)
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⇠ =

µ0MsV Hk

2kBT
. (4.7b)

During fast reversals, it is expected that the thermal noise has little effect on the nanomag-

net during its transition. Instead, the thermal noise only sets the initial angle, which affects

the reversal delay according to (4.4). Using this assumption, three different probability dis-

tribution models for nanomagnet switching were derived in [87]. The analytic cumulative

distribution functions (CDFs) are given below for completeness:

P = exp

(
�4⇠

✓
i � 1

2i

◆2(i+1)

exp

� (i � 1)

2⌧

⌧D

�)
(4.8a)

P = exp
⇢

�4⇠exp

� (i � 1)

2⌧

⌧D

��
(4.8b)

P = exp
⇢

�⇡2⇠

4

exp

� (i � 1)

2⌧

⌧D

��
(4.8c)

(4.8a) corresponds to the derivation of the CDF through (4.4) assuming a large energy

barrier. The PDFs of the delay can be found by taking the derivative of the CDFs. Note

that the CDFs are denoted by “P ” while PDFs are denoted by “p”. Assuming i >> 1,

(4.8a) can be further simplified to (4.8b). Finally, (4.8c) assumes both the initial and final

magnetization angles are small.

Figure 4.6 compares the PDFs of (4.8a-4.8c) to numerical results. In [87], it is shown

that an i > 2 is sufficient to accurately describe the delay variation of the nanomagnet.

However, we note that these PDFs only become accurate at much larger values of i. This

effectively means that the analytic PDFs are accurate only when the reversal time of the

nanomagnet is < 100 ps. Under such conditions, the electrical current required would

vastly exceed the maximum threshold for electro-migration of both the nanomagnet and

the non-magnetic metallic channel; therefore, there will be reliability concerns that will

47



reduce the mean-time-to-failure of the ASL device. Other PDFs are needed to capture the

magnetization dynamics accurately for reversal times on the order of several hundreds of

picoseconds or nanoseconds.
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Figure 4.6: Switching delay distributions for a 100 nm ⇥ 100 nm ⇥ 4 nm, PMA-type
nanomagnet with Ms = 3 ⇥ 10

5 A/m and Ku = 6 ⇥ 10

5 J
m3 under the influence of an

anti-parallel longitudinal spin current with magnitude as shown in figure labels. PDFs 1,
2, and 3 correspond to equations (4.8a), (4.8b), and (4.8c) respectively. As you can see,
PDFs are only accurate when the input spin current is much larger than the critical current.
The Fréchet distribution is also fitted to each of the data sets and very accurately describes
all three delay distributions. Each subplot has 106 data points. The normalized root-mean-
square (NRMS) values are calculated for each distribution against the numerical data. The
maximum of the numerical PDF is used as the normalization factor of the RMS value.

4.4.2 Analytic PDF for Near-Threshold Reversals

The analytic solution of the LLG becomes formidable for conditions where the input spin

current is comparable to the critical spin current of the nanomagnet. To obtain a PDF that

best represents the nature of the delay variation of the nanomagnet, we consider the follow-

ing situation. It is shown in the previous sub-section that as the spin current is increased, the

PDF of the delay tends toward a double exponential function. In addition, it is known that

if the spin current drops below the critical current, nanomagnet reversal occurs only when

the magnetization angle of the nanomagnet becomes large enough such that the sub-critical

current can overcome the reduced energy barrier of the nanomagnet [92]. This process of

nanomagnet reversal, primarily through thermal activation, is known to be a single expo-

nential function. Therefore, we seek a PDF solution to describe the nanomagnet reversal

that can be seamlessly adjusted from a single- to a double-exponential function depend-
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ing on the value of i. The Fréchet distribution that meets the above criteria. The Fréchet

distribution is mathematically given as

p =

↵

s

⇣⌧
s

⌘�1�↵

e(�
⌧

s

)

�↵

, (4.9)

where s is the scale parameter, ↵ is the shape parameter, and ⌧ is the delay of the nano-

magnet. ↵ and s are treated as fitting parameters [123, 124]. To prove the suitability of

the Fréchet distribution, Figure 4.6 shows the best fits of the Fréchet distribution to the

delay curves of a nanomagnet driven by various spin currents [125]. The figure clearly

shows improved accuracy of the Fréchet distribution to capture the numerical simulation

data and the applicability of the Fréchet distribution to nanomagnet delay under various

reversal regions. Figure 4.6 demonstrates that the ↵ parameter increases greatly if i >> 1.

Since a smaller ↵ suggests a larger left lean, this suggests that reversal distributions for

nanomagnets under large spin currents have less left lean.

For the remainder of this chapter, the delay of a nanomagnet under the influence of a

specific critical field will be represented by a Fréchet distribution that has been fitted to

numerical data.

4.4.3 Relationship to Error-Rate

Because the delay has been shown to be a random variable, the probability that the nano-

magnet delay will exceed some time t will always be nonzero. When designing circuits,

this probability can be referred to as the nanomagnets error rate (er). Using the Fréchet dis-

tribution (4.9) it is possible to derive t as a function of er. Mathematically, this relationship

is given as

t =
s

↵

p
� ln [1 � er]

, (4.10)

where ↵ and s are defined previously in (4.9).
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4.5 Combination of Reversal Delay Distributions

There is a two-fold complexity associated with spintronic circuit design due to the stochas-

tic nanomagnet behavior as discussed in our prior work [54]. First, the circuit delay ex-

hibits large variability that can increase the effective-delay of the circuit depending on the

desired error tolerance. Second, for interconnected logic networks, the delay distributions

of individual nanomagnets combine non-linearly increasing the circuit delay complexity

significantly [73, 126].

In any complex circuit, devices can be arranged in two ways. They can be operated in

parallel, where their outputs arrive at the same time. Alternatively, devices can be cascaded

in series, where the output of one is fed into the input of of another.

4.5.1 Devices in Parallel

For the case of a circuit with multiple devices in parallel, the output delay (denoted by

random variable Y ) of the circuit is the maximum of the output delay of the devices given

as

Y = max {X1, X2, X3, ...Xn} . (4.11)

where Xi is a random variable representing the delay of a single nanomagnet. Hence, the

CDF of the parallel device circuit becomes

P (Y  x) = P (X1  x, ..., Xn  x) =

nY

i=1

P (Xi  x) = (P (x))n , (4.12)

where P corresponds to the CDF of the particular device. Knowing this, the PDF of a

circuit with multiple devices in parallel can be found using (4.12) and (4.9) and is plotted

in Figure 4.7. Assuming a Fréchet distribution, the PDF of multiple nanomagnets in parallel

is given analytically as

p = n
↵

s

⇣x
s

⌘�1�↵

en
(

�x

s

)

�↵

, (4.13)
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where n is the number of devices in parallel.
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Figure 4.7: Reversal delay of a circuit composed of multiple nanomagnets arrange in par-
allel. A 100 nm ⇥ 100 nm ⇥ 4 nm, PMA-type nanomagnet with Ms = 3 ⇥ 10

5 A/m and
Ku = 6 ⇥ 10

5 J
m3 and is under the influence of a 1.5mA anti-parallel spin current. The

PDF of a single nanomagnet is estimated by fitting a Fréchet distribution to numerical data.
Multi-nanomagnet results are calculated numerically.

4.5.2 Devices in Series

For the case of devices connected in series, the output delay (Y) of the circuit is the addition

of the device delays connected in series and is given as

Y = X1 +X2. (4.14)

The PDF of Y is given as

pY (y) =

Z y

0

pX2 (y � x) pX1 (x) dx (4.15)

Figure 4.8 shows the PDFs of multiple nanomagnet devices arranged in series. This

situation corresponds to a repeater-chain circuit. As the number of devices increases, the

distribution of the delay gets more symmetrical and normal, following the central limit
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Figure 4.8: Reversal delay of a circuit composed of multiple nanomagnets arrange in series.
A 100 nm ⇥ 100 nm ⇥ 4 nm, PMA-type nanomagnet with Ms = 3 ⇥ 10

5 A/m and Ku

= 6 ⇥ 10

5 J
m3 and is under the influence of a 1.5mA anti-parallel spin current. The PDF

of a single nanomagnet is estimated by fitting a Fréchet distribution to numerical data.
Multi-nanomagnet results are calculated numerically.

theorem [127].

4.5.3 Comparison of Device Arrangements

Often when developing spin-based circuits, it is possible to achieve similar functionalities

using many devices driven in parallel, or many devices cascaded off each other. A prime

example of this is the many variations of VLSI adder designs. Since devices arranged in

parallel increase the nanomagnet variation, it can be argued that highly parallel circuits

may have longer delays than serialized circuits given a particular er. However, Figure 4.9

demonstrates that this is not the case. While the number of devices in parallel does increase

the circuit delay, this increase is still dwarfed by the increase in average delay caused by

arranging the nanomagnet in series.
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Figure 4.9: The reversal delay of a circuit comprising multiple nanomagnets arranged in
series and parallel versus the number of switches. While arranging devices in parallel
slightly increases delay of the circuit, this increase is minimal compared to the average
delay of the nanomagnet. Multiple error rates are considered.

4.6 All-spin Logic Analysis

The previous sections introduced the key concepts required to analyze the delay variation

of a complex logic circuit. It would be useful to analyze the effectiveness of thermal vari-

ation to a device technology which solely depends on STT. As discussed in Section 1.1.3,

all-spin logic (ASL) achieves Boolean logic functionality by summing the inputs deliv-

ering the STT to the output free-magnet as can be seen in the inset of Figure 4.10. For

this section, a four-input ASL-AND circuit is designed and analyzed. We use the PDF of

the nanomagnet delay to analyze the performance of an ASL-AND gate. Due to the sum-

ming nature of ASL, the magnitude of the spin current delivered to the output nanomagnet

will vary depending on the input values and will alter the delay distributions of the out-

put nanomagnets. An example of a four-input AND (AND4) gate is shown in the inset of

Figure 4.10. As mentioned earlier, the summing nature of the inputs in ASL logic natu-

rally creates a majority logic. To create an AND gate from this majority logic, the input

of the logic nanomagnet must be weighted such that the input to the nanomagnet is only
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positive when all the inputs are positive. In the case of the ASL-AND circuit shown, a

fixed magnet generating a constant �3 ⇥ Is is added such that the output nanomagnet will

only receive a +ẑ-orientated spin current if all the nanomagnet are oriented along +ẑ. The

polarity of this bias can be changed to switch between AND and OR logic. It is assumed

that the input nanomagnets have been reversed at time ⌧ = 0 and the voltage supplies at

these nanomagnets are turned on at this time [128].

4.6.1 Effect of Input Pattern on Nanomagnet Delay

An important aspect of current-based computation is the fact that the input current to the

OUT nanomagnet will not be constant. In fact, depending on the logical combination of

the input devices, the current being fed into the OUT nanomagnet will vary as shown in

Table 4.2. Assuming the inputs of the nanomagnet are equi-probable, the likelihood that

the OUT nanomagnet is reversed by a spin current of a particular magnitude is given by

Table 4.3. The probabilities of each of these magnitudes follows an ordering, which can be

described by Pascal’s Triangle.

4.6.2 ASL-AND Delay-PDF

At worst, the nanomagnet will be driven by a current magnitude = Is. This corresponds

to the case where all the inputs, except one, are oriented along the +ẑ direction, and only

one of the input nanomagnets is oriented along the �ẑ direction. This worst-case scenario

is shown in Figure 4.10. However, depending on the input pattern, the driving spin current

to OUT is likely larger than Is. For larger spin current magnitudes, the nanomagnet is

expected to reverse over much shorter timescales. By calculating the PDFs of nanomagnet

reversal at each of the different spin current magnitudes (by fitting the Fréchet distribution

to numerical results), the PDFs can be combined to find the input-aware PDF of the circuit

delay as shown in Figure 4.10.

This new input-aware PDF has several peaks corresponding to each of the possible spin
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current magnitudes during the operation of the circuit. As the number of inputs increases,

the number of peaks will also increase, but the area under each of the peaks will decrease

since the area of the entire PDF must remain equal to unity. Assuming a very small error-

rate, one is mainly concerned with the right-most peak that is associated with nanomagnet

reversal under the minimum operating current. This suggests that for a given delay, the

circuit reliability is improved as the number of inputs increases. In other words, as the

circuit becomes more complex, it tends to operate more reliably given a certain delay [111].

Figure 4.10: PDFs of parallelized AND4 circuit assuming several different types of delay
analyses. Baseline PDF simply considers the delay of the AND-gate assuming worst-case
input conditions (OUT nanomagnet being driven by Is. Input-probability aware distribution
analyzes the OUT nanomagnet reversal considering the variable input spin current magni-
tudes considering different input combination. Inset: Schematic of parallelized ASL AND4
gate. Blue square represent thin-film nanomagnets while purple bars represent channels.
Orange arrows represent spin orientation. Assuming PMA nanomagnets with material pa-
rameters shown in Table 4.1.
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Table 4.2: Demonstrates the variation of the input spin current to the OUT nanomagnet
depending on the input logical combination. Spin current magnitude is normalized against
minimum reversal current shown in Table 4.1.

Inputs Outputs
A B C D Total Input Current OUT
0 0 0 0 -7 0
0 0 0 1 -5 0
0 0 1 0 -5 0
0 0 1 1 -3 0
0 1 0 0 -5 0
0 1 0 1 -3 0
0 1 1 0 -3 0
0 1 1 1 -1 0
1 0 0 0 -5 0
1 0 0 1 -3 0
1 0 1 0 -3 0
1 0 1 1 -1 0
1 1 0 0 -3 0
1 1 0 1 -1 0
1 1 1 0 -1 0
1 1 1 1 +1 1

Table 4.3: Assuming all logical input combinations are equally possible, table demonstrates
the probability that a nanomagnet is reversed with a particular spin current magnitude. Spin
current magnitude is normalized against minimum reversal current.

Current Magnitude Probability
+1 1

16
-1 4

16
-3 6

16
-5 4

16
-7 1

16
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CHAPTER 5

DAMPED MAGNETIZATION REVERSAL THROUGH A SUB-CRITICAL FIELD

The most crucial component of the Spin-Switch is the communication between the input

and output magnetic bodies performed through dipolar interaction. A large portion of this

research is dedicated to the characterization of dipolar interaction between magnetic bodies.

As a starting point, this chapter is dedicated to the investigation of reversal mechanics of

a single, biaxial magnetic body under the influence of a constant longitudinal field. This

analysis will reveal some critical characteristics of field-induced reversal and is crucial for

the comprehension of the complex time-variant dipolar case present in the following three

chapters.

5.1 Above-Critical Damping Reversal

First we consider a constant longitudinal field oriented along the free-axis anti-parallel to

the magnetization state. Assuming the external field is large enough, the magnetization will

be forced away from its initial state toward the parallel position. This section investigates

the magnitude requirements for such a reversal as well as the delay of a damped reversal.

5.1.1 Critical Field Expression

To find the critical field requirement for a damped reversal, it is sufficient the analyze only

one dimension (✓) of energy landscape of the magnetic body. Setting � =

⇡
2 , the total

energy density of nanomagnet under the influence of an external magnetic field can be

written as

E(✓) = Kk � µ0Ms
~HX · m̂, (5.1)
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Setting @E
@✓

= 0 ensures that ✓ is a pole of the magnetic body. It is also known that the

critical field value occurs when @2E
@✓2

= 0 marking the point at which the pole at ✓ goes from

a stable to unstable as shown in Figure 5.1. Solving for HX , the critical field becomes

Hcrit =
2Kk

µ0Ms

. (5.2)

In order to switch a magnet resting along its easy-axis (✓ = 0,� =

⇡
2 ) with an external field

also aligned along x̂, the required critical field will be

Hcrit =
2Kk

µ0Ms

. (5.3)

5.1.2 Analytic Expression for Delay

The analytic delay expression for the switching delay of a nanomagnet considering only

uniaxial anisotropy and being driven through an external field can be written as [129, 130]:

⌧ ⇡
ln

p
2

✓0

↵� (HEXT � Hcrit)
. (5.4)

This equation follows the asymptotic relationship observed in several experiments [131,

132, 133]. However, because an in-plane nanomagnet with a demagnetization field oriented

perpendicular to the free-axis is being assumed, a delay expression which includes a fitting

term is necessary and given as [134]

⌧ ⇡ S

(HEXT � Hcrit)
, (5.5)

where S is a fitting parameter. This expression is verified with our numerical simulations

as shown in Figure 5.2.
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Figure 5.1: Subplots show precessional trajectories of a 60nm⇥45nm⇥2nm nanomagnet
with a Ku = 10

5 A
m

and Ms = 10

6 A
m

under the influence of various magnitudes of constant
longitudinal external fields. These plots demonstrate that as the external field is increased,
one of the basins becomes more “weighted” over the other until Hcrit is exceeded in which
case only one energy basin exists.

5.2 Sub-critical Longitudinal Field Relaxation

When the magnetic body is under the influence of an above-critical longitudinal field, the

magnetization will reliably reverse given enough time. However, if the magnitude of the

external field does not exceed this critical value, the situation is more complex. To escape

this critical-excitation limitation, engineers have proposed new types of spintronic devices

where the magnetization is initially forced into a high-energy state through the use of mag-
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Figure 5.2: Delay of switching a magnet through an external field. Markers denotes point
obtained from numerical simulations. Curves are obtained using analytic expression with
S = 2.34 ⇥ 10

9. Material and geometric parameters are adjusted such that critical field
values shown in legend are achieved.

netostriction [135, 136]. After the nanomagnet is initialized to this state, it is then released

under the influence of a sub-critical excitation and relaxes to what several engineers have

argued is the correct, reversed state [27].

However, nanomagnet relaxation under the influence of sub-critical field is far from

deterministic [137]. Even a magnet at rest along one of its poles has a non-zero probability

of reversal due to thermal noise [109]. It follows then, that a nanomagnet reversing from

a high energy state to a low energy state would have a non-zero probability of relaxing to

any of the energy basins.

A sub-critical longitudinal field effectively “weights” one energy basin over the other.

But while a sub-critical excitation can make it more probable that the nanomagnet will relax

to one energy basin over the other, unless this excitation exceeds a critical value, there is

still some non-zero probability that the nanomagnet will relax to either energy basin [138,

139, 140]. This section investigates the probability that a nanomagnet will correctly relax to

a position parallel to a sub-critical critical excitation. These results can be used in analyzing
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the reliability of various proposed spintronic devices such as Nanomagnetic Logic (NML)

and Spin-Wave-Buses [141, 142]. Nanomagnet relaxations from the out-of-plane axis and

hard axis are considered and analyzed.

5.2.1 Out-of-plane Initialization

Firstly, reversal from the out-of-plane (ẑ) axis is considered. Such a relaxation can be

applied to certain proposed strain-induced logic devices [143]. In this situation, the nano-

magnet is initialized into the high-energy region (⌦H+/�). While the nanomagnet is in

⌦H+/� it will precess around and fall away from the ẑ axis. Eventually, the nanomagnet

dissipates enough energy and falls into one of the energy basins. Figure 5.3 demonstrates

sample relaxation trajectories under the influence of a sub-critical external field.
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Figure 5.3: Subplots shows sample relaxations of a 60nm ⇥ 45nm ⇥ 2nm nanomagnet
with a Ku = 10

5 A
m

and Ms = 10

6 A
m

under the influence of a longitudinal field with a
magnitude of 20% of Hcrit. Thermal noise is included. The light-colored lines show the
precessional trajectories of the nanomagnet under the influence of this field. These plots
demonstrate that while the external field can bias the nanomagnet to relax towards one pole
over another, it is still possible for the magnetization to fall in either basin.
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Analytic Expression for Relaxation Probability

Figure 5.1 shows the precessional trajectories of the nanomagnet assuming no damping

component (↵ = 0). A non-zero damping simply forces the nanomagnet drop between

trajectories and towards a pole. The damping component is proportional to effective field

of the nanomagnet. In Figure 5.1, consider the precessional trajectory (ti) just above the

separatrix. As the nanomagnet precesses about ti it feels the damping torque pushing it

towards the energy basins. Under a sub-critical field, ti becomes asymmetric with respect

to x̂. Therefore, the damping force along ti also becomes asymmetric with respect to x̂;

hence, the damping while the magnetization is above ⌦L+ is different than when it is above

⌦L�. Thus, assuming a longitudinal field, the probability the nanomagnet will settle into

⌦L+ is different than the probability it will settle in ⌦L�.

This observation is made by Serpico et al. in [138]. Assuming a random initial mag-

netization in ⌦H+, the probability that a nanomagnet will relax to a parallel energy basin

is proportional to the comparison of energy dissipated in each energy basin at the separa-

tion energy. The energy change of a nanomagnet over one precessional cycle can be found

using Melnikov functions (Mk (g)). The probability can then be estimated to be:

PL+ =

ML+ (gd)

ML+ (gd) +ML� (gd)
, (5.6)

where gd denotes the separation energy. More information on the derivation of this equation

can be found in [138]. It should be noted that under most common physical parameters,

this probability curve changes very little as shown in the inset plots of Figure 5.4.

Thermal Noise Treatment

One thing to note is that the expression shown previously has been derived using the as-

sumption that the initial magnetization is a random variable and there is no thermal noise.

However consider the following: ignoring the effect of thermal noise, it can be argued
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Figure 5.4: Shows the probability that the magnetization will relax to the positive energy
basin. Results are shown using both numerical and analytic methods. Demonstrates an-
alytic expression is valid for relaxations under the influence of thermal noise. Numerical
results obtained using Monte-Carlo simulation of 1000 runs. Inset plots show probability
curve for different Ms and Ku values. Hence, regardless of the material properties of the
nanomagnet, the probability curves remain rather consistent.

that there is a set of relaxation paths which begin in the high energy region, and end in

a particular energy basin. Because of thermal noise, regardless of the initial angle of the

system, while the magnetization precesses around ⌦H+, it will also jump between the paths

and may land in either energy basin. The thermal noise effectively randomizes the trajec-

tory the magnetization follows. These numerical tests have shown that the randomization,

caused by the thermal noise, is equivalent to the initial angle approximation assumed in

[138]; the expression obtained is a reasonable approximation for determining what pole the

nanomagnet will relax towards as shown in Figure 5.4.
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5.2.2 Hard-Axis Initialization

Another method strain-based devices use is initializing the nanomagnet along the hard-axis

[135]. Unlike in the previous relaxation case, in the case of a hard-axis initialization, the

nanomagnet will be initialized inside ⌦L+. Hence, assuming no thermal noise, the nano-

magnet will certainly relax to the +x̂ pole. However with thermal noise, even though the

magnetization might begin in ⌦L+, the noise may knock the magnetization into ⌦H� where

it can precess around ẑ and into ⌦L�. The two possible relaxation cases for a hard-axis ini-

tialization are shown in Figure 5.5. Where the magnetization relaxes depends greatly on

whether or not the thermal noise is able to knock the magnetization across the barrier be-

tween the high and low energy regions (separatrix).

Relaxation Probability

Because nanomagnet is initialized in ⌦L+, the nanomagnet much more reliably settles to

the +x̂ using smaller longitudinal excitations. The relaxation probability can be observed

using a Monte-Carlo numerical analysis as shown in Figure 5.6. Comparing Figure 5.3 and

Figure 5.5, it is clear that initializing the nanomagnet along the hard axis is much more

reliable.

Unfortunately, no analytic model is currently available to determine the reliability of the

hard-axis initialization relaxation. However, there are a few insights which can be obtained

from the results. As mentioned above, the reliability of the y-initialization is dependent on

the ability for the thermal noise to knock the magnetization across the separatrix and into

the high-energy regions.

The nanomagnet can be evaluated in terms of energy. The separatrix exists at a certain

energy and assuming a longitudinal field, the hard-axis also has an associated energy. The

energy difference between the separatrix and hard-axis energies is evaluated in the inset

plot of Figure 5.6. This energy gap is dependent on the magnitude of the external field and

as it grows the thermal noise becomes less likely to add an energy greater than this gap to
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Figure 5.5: Subplots shows sample relaxation of a 60nm⇥45nm⇥2nm nanomagnet with a
Ku = 10

5 A
m

and Ms = 10

6 A
m

under the influence of a longitudinal field with a magnitude of
20% of Hcrit and an hard-axis initialization. Thermal noise is included. The light-colored
lines show the precessional trajectories of the nanomagnet under the influence of this field.
These plots demonstrate that while the magnetization starts in one energy basin, the thermal
noise may knock the magnetization into a high energy region and allow it to precess and
relax in the anti-parallel basin.

the nanomagnet.

Figure 5.5 also demonstrates that if able, the thermal noise will typically coax the nano-

magnet into ⌦H� within the nanomagnet’s first half precession in ⌦L+. This is because

given time, the damping factor will increase the energy gap between the nanomagnet and

separatrix and hence, it is most probable that the thermal noise will knock the magnetiza-

tion into ⌦L+ very quickly, or not at all.
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Figure 5.6: Shows the probability that the magnetization will relax to the parallel energy
basin assuming a hard-axis initialization. Numerical results obtained using Monte-Carlo
simulation of 1000 runs. Inset plot shows the difference in energy between the separatrix
and initial ŷ position for a given longitudinal field.
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CHAPTER 6

DIPOLAR COUPLING I: QUALITATIVE ANALYSIS OF TWO-MAGNET

SYSTEM

We now begin the bulk of the research in this thesis which is the characterization of nano-

magnet reversal dipolar field interactions with neighboring magnetic bodies. The dipolar

field-based switching of nanomagnets benefits from low energy dissipation when compared

with STT-based nanomagnet switching [144]. In addition, transferring bit-information be-

tween nanomagnets through dipolar interaction is an effective way to provide input-output

isolation in certain proposed logic devices [4]. Furthermore, this method of input-output

isolation is an improvement over other methods such as straintronics which require precise

clocking and may not be feasible in the presence of thermal noise [135, 38, 137]. Two

magnet systems have also been used to create other spintronic devices such as oscillators

[145].

Simple models for magnet reversal through an external magnetic field have been ex-

tensively studied in literature [44, 80, 146, 147, 148, 149, 150, 151]. External fields are

commonly categorized into two categories: (a) a longitudinal field pulse which we studied

in Chapter 5 and (b) a perpendicular external field where the external field is oriented per-

pendicularly to the free-axis of the nanomagnet [130]. These two applications of external

field yield very different magnetization reversal behaviors [152].

As shown in Chapter 5, reversal through the application of a longitudinal field is very

slow [129]. Since the dynamics in this switching are mainly governed by the damping pa-

rameter, this type of reversal is referred to as damping switching [3]. On the other hand,

applying a perpendicular field imposes a very large field torque on the resting position of

the nanomagnet. This large torque encourages a large and rapid shift in the magnetization

of the nanomagnet [153, 154]. This shift in magnetization depends mostly on the preces-
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sional component of the Landau-Lifshitz-Gilbert (LLG) equation; hence, magnet reversal

in this manner is referred to as precessional switching [134, 155, 156]. Depending on the

orientation of the external field with respect to the free-axis of the nanomagnet, the criti-

cal field strength and switching delay can vary greatly. In addition, because precessional

switching happens on such a fast time-scale, it needs to be precisely clocked [157].

The dipolar field generated by a nanomagnet can be considered to be a mixture of

both longitudinal and perpendicular field components. As the orientation of a nanomagnet

changes, its dipolar field may also change in both magnitude and direction. There are a few

examples in literature of nanomagnet dynamics under the influence time-variant external

fields [158, 159, 160]. Most of these works have focused on time-harmonic excitations

which allow for the use of chaos theory and Poincare-Index-theorem to analyze phase por-

traits of the magnetization dynamics [161, 162]. However, a time- and strength-variant

excitation like the dipolar field considered here has never been substantially analyzed. This

chapter is the first of three where we dissect the properties of reversal through dipolar inter-

action. In this chapter we simply conduct exhaustive numerical tests to provide qualitative

insights into the nature of the coupled nanomagnets.

6.1 Simulation Parameters

To accurately model and capture the dipolar-coupling-induced magnet switching, the test

bench shown in Figure 6.1 is considered. While this test-bench considers only two inter-

acting magnets, it is nonetheless sufficient to capture most physical details of the dipolar-

coupling.

6.1.1 Test Bench

Consider a system of two nanomagnets, which are stacked along the ẑ direction as seen

in Figure 6.1. Assume Magnet 1 (M1) is being driven by a another effect such as spin-

transfer-torque (STT), which changes the orientation of M1. Magnet 2 (M2) needs to be
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Figure 6.1: Test setup for a two-magnet system. Magnet 1 is driven through STT. Magnet 2
is driven through dipolar coupling field generated by Magnet 1. The SFM and DTM models
consider only the coupling field generated by Magnet 1. The 2WDTM model considers the
coupling field felt by both nanomagnets. Reversal through STT is typically stronger than
reversal through an external field and thus, the precession of Magnet 1 is considered to be
the “input” of the system.

reversed through the dipolar field of M1. Assuming the magnetization of M1 is at rest,

M2 would mainly feel a constant longitudinal external field and switch through a damping

reversal.

Next consider M1 and M2 oriented anti-parallel, and the spin-current into M1 causes a

reversal in M1. It is known that the dipolar field is oriented along the same direction as the

magnetization of M1 and, hence, during the reversal of M1, the dipolar field will behave as

a time-variant external field on M2, which at a given instant can impose a mixture of longi-

tudinal and perpendicular fields onto M2. Please note that a complex demagnetization field

model (CHd) is used in this chapter. Because this is a qualitative description, the complex-

ity introduced by the CHd model is minimal. In Chapters 7 and 8, other demagnetization

field models are used, revealing the nuances of the dipolar interaction.

6.1.2 Dipolar Field Calculation

The magnetic field generated by a rectangular nanomagnet is given by (6.1-6.3) [163]. In

Figure 6.2, it is seen that the strength of the magnetic field along the x̂� ŷ plane above M1
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is non-uniform (as also noted in the governing equations). This implies that the offset in

the x̂ and ŷ directions can be just as important as the ẑ displacement of the nanomagnets.

Interestingly, the shape of the curve of the coupling field strength changes as the distance

between the two nanomagnets is increased. When the separation between the magnets is

small, the coupling field is the strongest above the two poles of M1, but the location of

the maximum coupling field moves to the center as the separation between the magnets

increases.

In this chapter, two identically sized magnets which are centered along ẑ are assumed.

Because single-domain magnets are assumed, the strength of each component of the mag-

netic field is averaged over the entirety of the volume of M2. This method is very similar to

numerically solving for the magnetization tensor presented in [164, 165]. Hy and Hz field

components are reduced to zero assuming an x̂ easy axis simplifying the analysis.

Equations (6.1-6.3) are derived under the assumption that the magnetization vector of

a thin-film nanomagnet is aligned along x̂. When the orientation of the driving magnet

reverses, it exhibits a coupling field in the same direction as its precession. The coupling

field felt by M2 precesses according to M1. At any given instant during the reversal of M1,

the dipolar field can have both perpendicular and parallel field components. In order to

account for the complexity of switching a nanomagnet by a coupling field, a tensor model

is used to represent the strength of the dipolar field [166, 167]. Mathematically, external
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Figure 6.2: The magnitudes of the x̂, ŷ, and ẑ components of the dipolar field affecting
the top magnet in the x̂ � ŷ plane (averaged along ẑ). ẑ-centered 60 nm ⇥ 45 nm ⇥ 2 nm
magnets are assumed with a separation of 2 nm and 20 nm. The separations between the
magnets changes the shape of the dipolar field strength felt by the top magnet. Since only
small, single-domain magnets are considered in this research, the strength of the dipolar
field is considered to be the average field strength across the entire volume of the affected
magnet. Due to the symmetrical nature of the ŷ and ẑ components around the center of
the nanomagnet (where strength field strength is equal to zero), DIP xy and DIP xz can be
assumed to be zero.

field imposed on M2 at any given magnetic moment is equal to

DIP =

2

66664

DIP xx DIP yx DIP zx

DIP xy DIP yy DIP zy

DIP xz DIP yz DIP zz

3

77775
, (6.4)

where H⌅� denotes the strength of the ⌅ component of the dipolar field assuming m̂1

oriented along �. The external field on M2 becomes

~HEXT2 = DIPm̂1. (6.5)

Note that there are two dipolar fields involved in this two-magnet system: (a) the forward

dipolar field generated by M1 encouraging the reversal of M2, and (b) the reverse field

generated by M2 having a less pronounced, but still very significant effect on M1.
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6.2 Delay Analysis

First, the delay of the top nanomagnet being reversed through the dipolar field is studied. In

this section, a set of 60 nm ⇥ 45 nm ⇥ 2 nm permalloy-type (Ku = 0,Ms = 8.6 ⇥ 10

5 A
m

)

nanomagnets with a 2 nm separation are considered. As shown in the following sections,

this geometry ensures that the nanomagnets are perfectly coupled. As such the system will

always come to rest in an anti-parallel configuration.

Consider the case where M1 and M2 are oriented in the +x̂ and �x̂ direction, respec-

tively. Assuming a large enough spin current is applied to M1, M1 will reverse to �x̂

and impose a time-variant external field on M2 during this reversal. Since we have chosen

parameters which we know yield a reliably coupled system, one can assume that M2 will

eventually come to rest at +x̂. Two types of measurements for the delay of M2 are defined.

The zero-delay of M2 is the time from when m̂1 crosses the x̂ = 0 equatorial plane to the

time m̂2 last crosses the x̂ = 0 equatorial plane. Similarly, the ninety-delay of M2 is the

time from when m̂1 crosses the x̂ = �0.9 equatorial plane to the time m̂2 last crosses the

x̂ = 0.9 equatorial plane. This second delay measurement is useful because the relaxation

time of a nanomagnet from a certain threshold to its resting position can often be far greater

than the time it takes for the nanomagnet to cross that threshold from the beginning of its

precession [3]. In addition to these delays, the zero- and ninety-delay of the entire system

are calculated as the time from when the spin current begins the reversal of M1 to the time

M2 last crosses the x̂ = 0.0 or x̂ = 0.9 equatorial plane, respectively.

To begin with, we simulate the system in the absence of thermal noise to provide an

intuitive insight into the complex coupled dynamics of the system. In order to accurately

measure the delay of M2, the reversal of M2 must be analyzed in the context of a variety of

time-variant dipolar fields generated by the precession of M1. To generate this variety of

magnetization trajectories, the spin current into M1 is altered. This does not change any of

the strength components of the dipolar field imposes on M2 but it does alter the timing and
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Figure 6.3: Switching delay for M2 versus the spin current density into M1. Spin current
changes the precessional curve of the field imposed on M2. Zero-delay is defined as the
time when M2 last crosses the x̂ = 0 equatorial plane less the time when M1 last crosses
this plane. Ninety-delay is defined as the time when M2 lasts crosses the x̂ = 0.9 point
less the time when M1 lasts crosses the x̂ = �0.9 point. In the inset plot, the delays are
measured the same way except that the reversal time of M1 is included giving total system
delay. Red, green and blue boxes represent slow/optimal/fast M1 precessions. Jumps in
delay are explained in text.

the direction of this field. The delay of M2 and the delay of the magnet system compared

against the spin current into M1 is shown Figure 6.3.

We note the key features in Figure 6.3. First, there are jumps in the measured delay of

the system. As noted earlier, the dipolar field contains both longitudinal and perpendicular

field components resulting from the precession of M1. During the reversal of M1, M2 is

affected largely by a perpendicular dipolar field and feels a strong torque greatly altering

m̂2. During this time, M2 is knocked into a high-energy state. Once the reversal of the

magnetization of M2 concludes, M2 experiences a damping relaxation toward the anti-

parallel dipole. This relaxation time from a high-energy state to a dipole is effectively
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the delay of M2. This relaxation time is heavily dependent on both the energy state and

position of M2 at the instant when M1 relaxes [139]. However, the state of M2 at this instant

is largely a quasi-random variable as shown in Figure 6.5. The distribution of energy states

M2 is left in is reflected in its delay and thus, causes some delay “randomness” in Figure

6.3.

This is not the first time quasi-random behavior has been noted in nanomagnet systems

excluding thermal noise [138, 139, 140]. Hence, these delay jumps are also present in other

literature which considers magnet reversal through a mixture of precessional and damping

effects [109]. In addition, due to the way the delay is measured, M2 may have a negative

delay if magnetization of M2 crosses the x̂ = 0 plane before M1 crosses that threshold.

This is also explained by the variation in the magnetization states of M2 following the

reversal of M1.
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Figure 6.4: The x̂, ŷ, and ẑ components of the two magnets versus time calculated by
the three different coupling models. Row 1 shows M1 (STT-driven) precession and row 2
shows M2 (field-driven) precession. Each column corresponds to a different spin current
density. Inset plots show 3D precessional path. The figure highlights the differences in M2
precession for different M1 reversal trajectories.

Interestingly, there appear to be three reversal regions in the delay graph marked by

three boxes in the inset plot of Figure 6.3. The red box marks a region where the precession

of M1 is gradual. An example of this precession is shown in the left two subplots of Figure
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6.4. It is clear that the large number of oscillations M1 experiences during reversal also

affects M2 in a similar manner creating a complex magnetization trajectory. The green

box denotes an optimized M1 precession which is shown in the middle two subplots of

Figure 6.4. This precession oscillates only a few times before relaxing to a certain dipole.

Even with the small number of oscillations, the dipolar field of M1 is still able to generate

sufficient torque on the magnetization of M2, exciting m̂2 away from its initial dipole and

towards the opposite pole. Finally the blue box denotes a very fast precession of M1 where

the perpendicular components of the dipolar field are brief. As can be expected, because the

field is perpendicular to the magnetization of M2 for such little time, m̂2 is barely affected

during the magnetization reversal of M1 as shown in the right two subplots of Figure 6.4.

Instead, M2 mainly feels a longitudinal dipolar field once M2 comes to rest along the easy

axis. Because of this, in the fast M1 precession region, the reversal of M2 mimics the

relaxation of a nanomagnet under a constant longitudinal field. In fact, as the spin current

into M1 is increased, the delay of M2 will further increase until it becomes equivalent to

the reversal delay of a nanomagnet under a longitudinal field with field strength equal to

DIPxx.

Figure 6.3 demonstrates that there is an optimal M1 precession that minimizes the delay

of the two-magnet system. From this figure, it is evident that having a very rapid precession

of M1 barely affects the magnetization of M2; hence, the reversal of M2 becomes equiva-

lent to the reversal of a nanomagnet under a constant longitudinal field. Alternatively, the

impact of M1 precession on M2 can be explained through an analysis of the position of m̂2

when m̂1 crosses a certain threshold. These values are recorded for each of the precessions

in the three regions as shown in Figure 6.5. Starting with the blue (fast M1 precession) re-

gion, it becomes evident why the reversal of M2 is slow. During a fast M1 precession, m̂2

barely deviates from its resting position and hence would have a very long reversal time.

It is seen in Figure 6.5, that the delay for both the slow (red) and optimal (green) pre-

cessions is effectively random centered around zero. Due to the nature of the precession of
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Figure 6.5: Shows position of m̂2 when m̂1 last crosses the x̂ = 0 (left) or x̂ = �0.9 (right)
equatorial plane. Red triangles correspond to slow M1 precessions contained in red box in
Figure 6.3. Green squares and blue crosses correspond to green and blue (optimal and fast
M1 precessions) boxed regions found in Figure 6.3.

M1 in these regions, m̂2 can result in either side of the x̂ = 0 equatorial plane when m̂1

crosses x̂ = 0. The negative delay is simply a mathematical artifact of the delay definition.

6.3 Coupling Strength as a Function of Geometry

To find the operating conditions which guarantee error-free coupling, an analysis of dipolar

field strength is useful. As shown in Figure 6.6, the coupling field strength of the dipolar

field changes as the distance between the two nanomagnets is increased. Hence, one can

change the dipolar field strength without changing the critical field of M1 or M2 by altering

the separation between the nanomagnets.

It is useful to consider the case of a longitudinal field being exerted on a nanomagnet.

We know that the critical field amplitude required for magnet reversal through a longitudi-

nal field can be written as [129, 149]

Hcrit =
2Ku

µ0Ms

+Ms (Ny � Nx) . (6.6)
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Figure 6.6: The averaged x̂ field strength for equally sized, ẑ-centered magnets versus
separation between the two magnets. Magnets are equally sized according to the legend.
Ms is assumed to be 8.6 ⇥ 10

5 A
m

. All magnets have a length to width aspect ratio of 4
3 .

Inset plots show average x̂ field strength along length of M2 for two specific separation
cases. The dipolar field shape is different for every magnet size and thus, the average field
strength decreases at different rates.

The critical field is smallest when Ku = 0 such as in the case of a permalloy [168,

106]. According to (6.6) and (6.1-6.3), the critical field and field strength components are

linearly proportional to Ms. Whether or not HEXT is greater than Hcrit depends only on the

geometry of the magnets. If L2 = W2, the critical field of the magnet is zero since Ny and

Nx cancel each other out. As the aspect ratio L
W

of the magnet increases, the critical field

becomes larger and the longitudinal component of the dipolar field is reduced as shown in

Figure 6.7. This critical field does not account for the mutual coupling between the two

nanomagnets, which greatly lowers the requirements for a perfectly coupled nanomagnet

system. However, this concept of a perfectly coupled nanomagnet system being primarily

a function of geometry is necessary for understanding the tests being performed in later
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sections.
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Figure 6.7: The x̂-component average coupling field strength and the critical field (assum-
ing Ku = 0) versus the length to width aspect ratio of the magnets. Assuming a constant
thickness of t = 2nm, the geometry of the nanomagnet system is described in terms of as-
pect ratio. According to the SFM model, the left area where the coupling field is larger than
the critical field suggests perfect coupling. Because Ku only increases the critical field, the
inset plot shows the maximum Ku > 0 for which the system can still be perfectly coupled
(assuming it exists). Ms of 8.6 ⇥ 10

5 A
m

, and a separation of 3 nm are assumed.

6.4 Concept of Switching Glitch

Even if the magnetization crosses the x̂ = 0 threshold, it may still cross this threshold again

and settle back on the original incorrect position as can be seen in Figure 6.8. As long as

the critical field is below a certain threshold, there exist two stable poles where the magnet

can settle [3, 138]. We can classify three types of magneto-switching. A successful switch

occurs when the orientation of the magnetization vector is reversed from its original state as

intended. An unsuccessful switch occurs when the magnetization vector stays at rest in its
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original state. A glitch occurs when the magnetization vector crosses the x̂ = 0 equatorial

plane, but precesses back to its original state. One can consider the glitch case a subset of

incorrect switching events.
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Figure 6.8: The x̂-component of the magnetization for M1 and M2 versus time when a
glitch happens and the M2 relaxes to the wrong pole. As long as the dipolar field is below
the critical field, M2 may relax to either dipole. 60 nm ⇥ 45 nm ⇥ 2 nm magnets with a 20
nm spacing are assumed. A 2 ⇥ 10

11 A
m2 spin current density was used to reverse M1. Inset

plots show all magnetization components for M1 and M2 during glitch.

Glitches do not occur when a nanomagnet reverses through the use of a longitudinal

field because only one dipole exists if the field strength exceeds the critical value. However,

in precessional switching, glitches are very possible which is why fields are often precisely

clocked [169, 170]. The complex switching being investigated here is thus susceptible to

glitches because of its perpendicular field component. As long as the DIPxx component of

the dipolar field is below the critical field defined by (6.6), there exist two dipoles, either

of which M2 may relax to. This is an especially important concept since several spin-

based devices have been proposed which apply an excitation to set the magnet into a high
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energy state and (in principle) allow the magnet to relax down to the correct dipole [141].

While there exists the possibility of the magnetization of M2 settling back to the initial,

“incorrect”, dipole, the system cannot be said to be perfectly coupled. Several simulations

are required to make certain that even if a nanomagnet is knocked into a high-energy state, it

will relax down to the anti-parallel position. The critical field of a magneto-system would

be a value (or a set of values) such that M2 has no possibility of settling back into an

incorrect position.

6.5 Numerical Estimation of Critical Field

Finding this critical field analytically is difficult since the tensor defining the dipolar field

has multiple values and is dependent on the precession of M1. Depending on the speed and

trajectory of the M1 reversal, M2 can be in any number of positions when M1 comes to a

rest at its stable state. In order to accurately model this condition and to find the region of

operation for the magneto-system, the following test was performed. For Figures 6.9-6.11,

a pair of 60 nm ⇥ 45 nm ⇥ 2 nm permalloy magnets are assumed. M1 was set to the

x̂ = �1 steady-state position while the initial position of m̂2 was varied over all possible

values. If mx2 came to a rest on the x̂ = 1, it was counted as a switch success. Otherwise

mx2 would come to rest on x̂ = �1 and be counted as a glitch or unsuccessful switch

based on if its processional trajectory crossed x̂ = 0. This models all possibilities of the

two-magnet coupled systems at the moment when M1 reverses to its stable-state.

If, for a certain set of parameters, the system is shown to not be perfectly coupled, the

separation between the nanomagnets is reduced, increasing the coupling strength of the

system, and the test is performed again.

6.5.1 Initial Angle Sweep Test

Figure 6.9 shows the results for all the initial angles tested. At large separations, the sys-

tem is unable to provide fully correct operation. The separation between the nanomagnets
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Figure 6.9: A color coded map of initial states for M2 based on the three possible switching
outcomes for M2 assuming M1 has completed its reversal but is still under the influence of
spin current density of 1 ⇥ 10

11 A
m2 : Red diamonds = unsuccessful switches, blue triangles

= glitch, green circle = successful switches. As the strength of the coupling is increased by
reducing the separation between the two nanomagnets, the population of the initial angles
resulting in glitched or unsuccessful outcomes goes to zero. A pair of 60nm⇥45nm⇥2nm
permalloy magnets are assumed. Assuming the longitudinal field equal to DIPXX , Hcrit =

1.24 ⇥ 10

4 A
m

. DIPXX exceeds Hcrit when the separation between the two nanomagnets
is under 4.5nm as can be seen in Figure 6.6. From the subplots above, it is evident that
perfect coupling can be achieved at much higher separations. The mutual coupling between
the two nanomagnets alters their energy space in such a way as to allow stronger coupling
with weaker fields.

is reduced until all M2 positions result in correct final resting positions. The system is then

tested again in an attempt to establish a region of operation for error-free coupling. Assum-

ing a very large separation of 40 nm at the x̂ = �1 pole, there is a region where the vector

will simply fall back down to the initial dipole and not switch at all. If M2 is initially in a

high energy state, it has a chance of relaxing to either dipole.

As the coupling field is strengthened by reducing the separation between the nanomag-

nets, the unsuccessful switch region becomes smaller and the number of glitches is reduced.

Eventually, a separation of 16 nm is achieved which guarantees correct coupling operation.
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It is useful to compare this separation value to other critical field values derived in

literature. One can hypothesize that the critical field of the nanomagnet is mainly dependent

on longitudinal component of the dipolar field. As discussed earlier the critical field of a

magnet under a longitudinal field can be found according to (6.6). In the case of a 60 nm

⇥ 45 nm ⇥ 2 nm permalloy-type nanomagnet, Hcrit = 1.24 ⇥ 10

4 A
m

. DIPXX exceeds

Hcrit when the separation between the two nanomagnets is under 4.5 nm as can be seen

in Figure 6.6. However, in Figure 6.9, perfect coupling is guaranteed much before this

limit. The strength of the coupling between the nanomagnets depends on more than the

longitudinal component of the dipolar field.

6.5.2 Perpendicular Field Effects vs. Mutual Coupling

Other than the longitudinal field component of the dipolar field, there are two more effects

which may hypothetically contribute to this increase in coupling strength. Firstly, it has

been noted that the perpendicular field component during the reversal of M1 knocks the

magnetization into a high energy state at which point M2 relaxes back down to a dipole. It is

possible that this perpendicular field knocks m̂2 into a favorable state altering its precession

and critical field value.

Another effect to consider is mutual coupling. M1 imposes a dipolar field onto M2

which cause its magnetization to precess. However, as the magnetization of M2 changes, it

imposes a time-variant reverse field onto M1. This reverse field causes perturbations in the

precession of M1 which, of course, cause the dipolar field generated by M1 and imposed

on M2 to be altered.

In order to test which of the above-mentioned effects causes an increase in coupling

strength, another initial angle sweep test is performed. As shown in Figure 6.10, in the

absence of the reverse field, perfect coupling occurs only when the separation of the nano-

magnet is 4 nm. This means that without the mutual coupling between the nanomagnets,

the critical field of the system is equivalent to the critical field of a nanomagnet under a lon-
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gitudinal field. Hence, the mutual coupling between the nanomagnets greatly strengthens

nanomagnet coupling.

Figure 6.10: A color coded map of initial states for M2 based on the three possible switch-
ing outcomes for M2 assuming M1 has completed its reversal but is still under the influence
of spin current density of 1 ⇥ 10

11 A
m2 : Red diamonds = unsuccessful switches, blue trian-

gles = glitch, green circle = successful switches. In this case, the reverse field of the dipolar
coupling is removed and as such, M2 can no longer disturb the magnetization of M1. This
removes the mutual coupling between the nanomagnets during m̂2 relaxation. Same system
conditions are assumed as in Figure 6.9. From the subplots above, it is evident that without
the mutual coupling between the two nanomagnets, perfect coupling is only achieved when
the longitudinal component of the dipolar field of M1 exceeds Hcrit. Hence, the perpen-
dicular components of the dipolar field do not alter the critical requirements necessary for
perfect coupling.
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6.6 Dipolar Coupling with Thermal Noise

Until this point, thermal noise was omitted from our simulations. However, any analysis

of magnetization dynamics is incomplete without the inclusion of thermal noise; hence, in

this section, a series of simulations are performed in the presence of thermal noise.
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Figure 6.11: A Monte-Carlo simulation where the reversal of M1 encourages the reversal
of M2 while including thermal noise. The percent (1000 runs) of successful, unsuccessful
and glitched switchings versus the separation is measured. A pair of 60 nm ⇥ 45 nm ⇥ 2
nm magnets. M1 is reverse using a spin current density of 1⇥10

11 A
m2 . Results are similar to

those found in Figure 6.9. This suggests that the tests performed in Figure 6.9 can estimate
magneto-reversal of the system in the context of thermal noise.

6.6.1 Critical Field Measurement with Thermal Noise

In Figure 6.11, the number of successful, unsuccessful, and glitched M2 switches are mea-

sured once a complete system reversal comes to rest. The thermal simulation was per-

formed using the same geometric and physical parameters assumed in Figure 6.9. This is

slightly different than the simulation preformed in Figure 6.9. In this case, the reversal of

M1 randomizes the orientation of M2 magnetization. Instead of the uniform random dis-

tribution assumed in the previous section, m̂2 will have a distribution of probable positions
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based on the precession of m̂1 as seen in Figure 6.5.

Interestingly, the thermal test performed in Figure 6.11 predicts perfect coupling is

achieved when the separation is less than 17.5 nm. This is slightly more than the maximum

separation of 16.5 nm predicted in Figure 6.9. This discrepancy is easily explained when

considering the energy space of a nanomagnet under a external longitudinal field as shown

in Figure 5.1. As a longitudinal field is applied to a nanomagnet, one dipole becomes

“weighted” and the dipole which is anti-parallel to the external field becomes smaller. In

Figure 5.1, the black orbit is often referred to as a “separatrix”, denoting the energy that

separates the high and low energy regions [3]. Assuming the nanomagnet is initially at rest

in the smaller dipole, the thermal noise may add enough energy to the nanomagnet which

would allow its magnetization to cross this separatrix and precess to the other dipole. As the

longitudinal field grows stronger, the energy between the dipole and separatrix is reduced.

The lesser this difference, the larger the probability that the thermal noise may knock the

magnetization out of this small dipole and towards the larger dipole [109, 112, 171].

Perfect coupling is defined as occurring when during the simulation time interval, the

magnetization will relax to the correct, larger dipole. An unsuccessful switch occurs when

the magnetization cannot escape its initial low energy “well”. When there is no thermal

noise, this can only occur when the coupling grows strong enough that the smaller dipole

ceases to exist and the magnetization must relax towards the only dipole left in the sys-

tem. However, in the presence of thermal noise, even if this smaller dipole exists, it may

be so small such that the thermal noise has a high probability of knocking the magnetiza-

tion across the separatrix where it will precess and most likely settle towards the correct

position. A similar argument can be made for the case of a switching glitch.

Analytically, the critical field is defined as the field which changes the energy space

of the magnet such that there is only one dipole. However, one can argue that there is an

“effective” critical field where, even though there are two existing dipoles, one may be so

small that, for a nanomagnet under the influence of thermal noise, the probability that a

85



nanomagnet will stay at rest in the smaller dipole for a given time interval is nearly 0.

However, also consider that this probability only approaches unity but is never equal to

it. In this and the next section, large Monte-Carlo simulations are used to estimate whether

or not a system is perfectly coupled.

6.7 Regions of Operation

In the previous sections, a pair of weakly coupled magnets separated by a large gap were

considered. This was mainly to determine the primary influences on the coupling strength

between the nanomagnets. Now it is possible to apply the conclusions gained from the

previous sections to more realistic magneto-systems.

6.7.1 Length and Width Operating Regions

As shown in Section IV, the coupling strength between the two nanomagnets is largely a

function of geometry. Hence, it is possible, given a certain separation, to determine which

nanomagnet geometries exhibit error-free coupling. In Figure 6.12, the geometries which

secure perfect-coupling are mapped. The red and blue regions together map the coupled

region assuming the full dipolar coupling model where the both the forward and reverse

dipolar fields are considered.

The red region alone considers the case where the reverse dipolar field does not exist.

Comparing this partial model to the full model is useful when trying to map the geometric

regions which ensure perfect coupling primarily because of the mutual coupling between

the nanomagnets. Interestingly, as the separation between the nanomagnets grows, the

coupling regions of both models begin to converge. This is likely due to the weakening of

the DIPyy and DIPzz tensor components resulting in weaker feedback at larger magnet

sizes but more work is required in understanding the mutual coupling of the nanomagnet

system.
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Figure 6.12: Maximum magnet length versus width for perfect coupling for three differ-
ent separations (2nm, 4nm, and 8nm) determined using thermal test shown in Figure 6.11.
Permalloy magneto-system with 2 nm thick magnets and a 2/4/8 nm separation are as-
sumed. Red area denotes dimensions where default system with both forward and reverse
components of the dipolar field perfect coupling. Blue area represents dimensions sys-
tem with reverse component of dipolar field predicts perfect coupling. As the separation
between the nanomagnets becomes greater, the strength of the dipolar coupling field is re-
duced. As the coupling strength is reduced, the mutual coupling strength is also reduced
and the two models converge. For both models, minimum length is equal to width of nano-
magnet to ensure free-axis in x̂ direction.
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6.7.2 Maximum Separation as a Function of Current

It has been proven that the mutual coupling plays a crucial role in the coupling strength

between the two nanomagnets. However, the mutual coupling is dependent on the ability

of M2, through its reverse dipolar field, to influence slight variations in the magnetization of

M1 which would in turn create slight variations in the forward field affecting M2. However,

most of the simulations done thus far have assumed lower current densities for the reversal

of M1. If the current density of M1 is raised, this would more effectively pin m̂1 against

the free-axis and make inducing variations by the reverse field more difficult. This effect

can be seen in Figure 6.13. As the current density into M1 is increased, the maximum

separation between the nanomagnets which predicts perfect coupling is lowered.
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Figure 6.13: Maximum separation is measured according to a thermal test shown in Figure
6.11 for various spin current density. It was shown that the coupling strength of the system
was largely due to the mutual coupling between the two nanomagnets. This mutual cou-
pling allowed M2 to cause slight perturbation in m̂1 which in turn would cause variations
in the dipolar field acting on M2. However, a larger spin current into M1 would better
pin the magnetization to the free-axis and weaken the mutual coupling between the two
nanomagnets reducing the coupling strength.
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CHAPTER 7

DIPOLAR COUPLING II: ANALYTIC EXPRESSIONS FOR IDENTICAL

MONO-DOMAIN BIAXIAL AND UNIAXIAL TWO-MAGNET SYSTEMS

Chapter 6 showed that the longitudinal field approximation is pessimistic. It is possible

to achieve perfect coupling while failing to meet the limits imposed by the longitudinal

field approximation [172, 173]. We refer to this increase in coupling strength due to com-

plex interaction between magnetic bodies as the mutual-coupling effect (MCE). Our goal

is to now develop analytic expressions which correctly categorize this increase in coupling

strength through the MCE. In this chapter, we expand our understanding of this effect in

two-magnet systems and construct new models for the critical conditions required for reli-

able coupling. The proposed analytic models are valid when the nanomagnet(s) undergoes

slow, nanosecond reversals. This is not a problem considering most nanomagnet devices

operate close to their critical currents. Two categories of nanomagnets are considered: uni-

axial and biaxial [120, 109]. Both types of nanomagnets have a negative anisotropy energy

along the free-axis creating an energy barrier between the two stable magnetization states

[119]. However, biaxial nanomagnets also contain a positive anisotropy energy oriented

perpendicular to the free-axis significantly altering the precessional dynamics of the nano-

magnet system [156]. As a result, slightly different reliability models are needed for each

of these cases [174].

7.0.1 Model Definition

Here too, we consider systems with identical nanomagnet bodies. Two examples of such a

system are shown in Figure 7.1. Initially, the nanomagnets are oriented in an anti-parallel

fashion. We can then reverse the bottom nanomagnet (M1) through STT. During the re-

versal, M1 generates a time-variant dipolar field which will encourage the top nanomagnet
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Figure 7.1: Test setup for a two-magnet system(s). Magnet 1 (M1) is driven through STT
and Magnet 2 (M2) is driven through dipolar coupling field generated by Magnet 1. Two
types of nanomagnet systems (biaxial (a) and uniaxial (b)) are considered in this chapter.
As shown in the figure, the presence of a large demagnetization field fundamentally alters
the precession of magnetization. The difference in trajectories alters coupling strength be-
tween nanomagnets even if both systems have equivalent field magnitudes. Sample magne-
tizations are shown in the nanomagnet bodies and correspond to Figure 7.4. Magnetization
spheres are normalized against material geometry.

(M2) to also reverse. Note that the dipolar tensor was defined in Section 6.1.2.

The precessional dynamics of the nanomagnet is strongly influenced by the energy

landscape [3]. It is prudent to categorize the magnetic coupling analysis according to the

different types of energy landscapes[116]. Two types of energy landscapes are considered

in this chapter: uniaxial and biaxial, which account for most nanomagnetic systems cur-

rently being researched. The uniaxial systems are analyzed using the 0Hd approximation

while the biaxial case is analyzed using the SHd approximation. These approximations are

defined in Section 2.1.2.

7.1 Impact of Separation on Coupling Reliability for SHd and 0Hd Cases

Nanomagnet systems may have equivalent dipolar field magnitudes and energy barriers,

but significantly different precessional dynamics if a perpendicular anisotropy is present.

Previous works have shown that a perpendicular anisotropy can significantly alter the dy-
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namics and reliability of magnetic bodies [108]. In this section, it is shown that these

altered precessional dynamics also alter the reliability of reversal in two-magnet systems.

Figure 7.2 measures the coupling reliability of the two-magnet system at different sep-

arations for both the SHd and 0Hd cases.

For the SHd case, the system stays perfectly coupled for a separation of up to 7.5nm.

This is greater than the maximum separation of 0.38nm predicted by the longitudinal field

model. For larger separations, the reliability of reversal is reduced; unsuccessful and

glitched reversals begin to be more prominent. Although the nanomagnets are not per-

fectly coupled, the mutual interactions lower their energy barrier increasing the likelihood

of unstable system behavior.

Figure 7.2 also demonstrates the difference in coupling strength between the uniaxial

and biaxial cases. Despite both these cases have the equal dipolar tensors and energy

barriers, the uniaxial case can tolerate a significantly larger separation and, by extension,

a weaker dipolar field magnitude. As shown in Figure 6.1, this is because the reversal

dynamics are fundamentally different in the two cases. In the uniaxial case, the magnets

precess close to the x̂� ŷ plane suggesting that only the DIPxx and DIPyy are acting upon

m̂2. On the other hand, in the uniaxial case, m̂2 precesses throughout the unit sphere more

fully utilizing both dimensions of the dipolar field. Hence, two models for reliable dipolar

coupling will be developed corresponding to each energy landscape.

7.2 Effect of Reversal Speed on Coupling

Previous results have demonstrated that during a slow, nanosecond reversal of the bottom

nanomagnet, the delay of the top nanomagnet is on the order of ps when compared to

the delay of the bottom nanomagnet, assuming a strong enough tensor [173]. However,

it is also known that an instantaneous reversal of the bottom nanomagnet would mean

that the dipolar tensor would reduce to a simple longitudinal field. In this instantaneous

case, reliable coupling is guaranteed if the longitudinal component of dipolar field exceeds
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Figure 7.2: Probability of top magnet reversal in ẑ - stacked and centered two-magnet
system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets. As the separation between
the nanomagnets is increased, the magnitude of the tensor components of the dipolar field
decreases. If the dipolar coupling consisted of only the longitudinal component, a reliable
system would have a maximum separation of 0.38nm. (a) Biaxial, SHd system whose
nanomagnets have a large negative perpendicular anisotropy field oriented along the out-
of-plane (ẑ) axis. (b) Uniaxial 0Hd case where this perpendicular anisotropy is not present.
This comparison shows that given the same energy-barriers and dipolar-field magnitudes,
coupling between uniaxial nanomagnets is actually stronger than coupling between their
biaxial equivalent.
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critical field value [152]:

DIPxx > Hcrit. (7.1)

Conceptually, this critical field magnitude is the Zeeman energy magnitude required to

turn the anti-parallel minima into a saddle-point and/or pole and is given as [149]:

Hcrit = Hk + (Nyy � Nxx)Ms. (7.2)

In both the SHd and 0Hd cases, we assume there is no positive perpendicular anisotropy

along the easy or hard axes; there is no demagnetization contribution to the critical field

value. Assuming a SHd or 0Hd demagnetization field means that the critical field magni-

tude is equal to the anisotropy field. In the case of the 60nm ⇥ 45nm ⇥ 2nm SHd iron

(Ms = 1.7MA
m |Ku = 48

kA
m3 ) magnets considered in this chapter, Hcrit = Hk = 45

kA
m .

Figure 7.3 measure the delay and coupling reliability of an iron two-magnet system for

various current inputs. The reduction of coupling strength is demonstrated in the back-

ground of Figure 7.3. By increasing the spin current into the bottom nanomagnet, M1’s

reversal delay is decreased and the dipolar coupling between the nanomagnets is weakened

because the perpendicular components of the dipolar field have less time to apply a torque

upon the magnetization of the top nanomagnet.

However, the spin current required for fast, picosecond reversals is very large and the

current density required to produce spin currents of such magnitude would most likely

cause other problems in a real-world systems [175, 176]. There is also substantial ex-

perimental evidence of large spin currents lowering the reliability of nanomagnet reversal

because of the back-hopping effect [79, 177]. In addition, large spin currents encourage do-

main nucleation which would likely break the mutual coupling effect [172, 178]. For these

reasons, spin-based devices are generally designed for delays in the nanosecond region

where dipolar coupling is stronger than realized by the simple longitudinal case.

93



Figure 7.3: Delay of top and bottom nanomagnets in ẑ - stacked and centered two magnet
system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets with a separation of 5nm. In
this case DIPxx = �24.54kA

m which is significantly less than Hcrit = 44.94kA
m . Assuming

SHd. Left axis corresponds to area plot in background and right axis corresponds to line
graphs. Only successful reversals considered in the delay average. Hence, the delay average
becomes volatile in the fast reversal case because fewer successful reversal cases can be
averaged together. Figure demonstrates that if the reversal of the bottom nanomagnet is too
small, the dipolar coupling between the magnets in the system weakens and thus the top
nanomagnet reversal becomes very slow.

7.3 Coupling in Biaxial Nanomagnet Systems

Firstly, in this section, a SHd, biaxial nanomagnet-system is considered. The coupling

strength between the nanomagnets depends on the three diagonal components of the dipo-

lar tensor. Usually these three parameters are material and geometry dependent. To bet-

ter understand the role of the individual field magnitudes when reversing a nanomagnet

through dipolar coupling, we will assign dipolar tensor values independent of other system
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Figure 7.4: Sample reversals for nanomagnet systems for SHd (a,b) and 0Hd (c,d) cases.
Assuming two 60nm⇥45nm⇥2nm iron magnets. In the SHd case, the bottom nanomagnet
is driven by a 0.8mA spin current. In the 0Hd case, the bottom nanomagnet is driven
by a 0.15mA spin current. The dipolar coupling of the nanomagnets is determined by
their geometry. Figures demonstrate the different dynamics of both cases. Subplots show
magnetization dynamics on unit sphere.

parameters. Note that because the dipolar field magnitude is being artificially assigned,

the separation between nanomagnets does not impact the system. The models and conclu-

sions proposed in this section are valid for biaxial systems whose demagnetization fields

significantly larger than the dipolar field components. Figure 7.5 measures the reliability

of a two-magnet iron system with a sub-critical longitudinal tensor component and varied

perpendicular tensor components.
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Figure 7.5: Probability of each of the nanomagnets reversing in a ẑ - stacked and centered
two-magnet biaxial system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets. Bottom
nanomagnet is driven by a 1.0mA spin current. The dipolar coupling between the nano-
magnets is altered by manually changing the magnitudes of the dipolar tensor components.
DIPxx = 2 ⇥ 10

4 A
m while the DIPyy and DIPzz components of the tensor model corre-

spond to the values marked by the x and y axes of the graph respectively. Colors of the
shaded region correspond to the probability of reversal for the top and bottom magnets.
Area to the right of the purple dash-dot line corresponds to values adhering to (7.6). Area
to left of red dotted line corresponds to values adhering to (7.7).
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7.3.1 Model for Reliable Coupling in Biaxial Systems

Figure 7.4 shows the trajectory of a coupled SHd system. It is shown that the large de-

magnetization field limits the precession of M1 to being contained mainly in the x̂-ŷ plane.

The trajectory of the reversal implies only the x̂ and ŷ portions of the dipolar field are

relevant during biaxial reversal. This is further reinforced by Figure 7.5 where the out-of-

plane portion of the dipolar tensor (DIPzz) does not contribute to the region of reliable M2

reversal.

In addition, Figure 7.4 demonstrates that, in a coupled two-magnet system, the mag-

netizations of the top and bottom nanomagnets precess approximately in an anti-parallel

fashion. More specifically, referring to the magnetizations for each of the nanomagnets in

the system, the mx and my components precess with equal magnitude and opposing po-

larity (due to the negative DIPxx and DIPyy tensor components) and the mz components

remain approximately equal. Knowing this, we can make the following approximation:

m̂2 = [�1,�1, 1] · m̂1 ⌘ m̂1. (7.3)

This is significant when considering the two-magnet SHd system. The LLG equation

states that the magnetization of each nanomagnet is a two-dimensional variable. Each of

the magnetization vectors are also linked to each other because the external field imposed

on M2 is controlled by m̂1 through the dipolar field and vice-versa. Consequently, the

two-magnet system is governed by a four-dimensional system of differential equations.

However, during slow nanomagnet reversals, we can make the approximation shown in

(7.3); hence, the external field can be rewritten as:

~HDIP1 = DIPm̂1 ⇡ DIPm̂2. (7.4)

Returning to our formulation of the dipolar Zeeman energy, the following approxima-
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tion can be made using (7.4):

✏DIP1(m̂1) = �µ0Ms(DIPm̂2)m̂1

= �µ0Ms(DIPm̂1)m̂1

= �µ0MsDIPm̂2
1.

(7.5)

The double m̂ dependence suggests that the dipolar field, which is technically a Zeeman

energy, can be approximated as an anisotropy energy where each of the tensor components

is an anisotropy energy added to the magnetic body. More importantly, (7.5) demonstrates

that the energy landscapes of the two magnetic bodies can be separated.

However, the polarization of the anisotropy energy is not as clear cut. A negative

anisotropy energy encourages the magnetization toward a particular axis while a positive

anisotropy energy encourages the magnetization to fall away from an axis. By contrast, re-

gardless of polarity, Zeeman energies always apply a torque towards the axis of the external

field, the perpendicular components can be considered to be negative anisotropy energies.

Therefore, the perpendicular tensor components are each negative anisotropy energies.

The polarization of the longitudinal anisotropy energy is somewhat more complex. It is

known that the steady state configuration of the two-magnet system is when the magnetiza-

tions are anti-parallel to one another. This is because the dipolar field reduces the magneti-

zation energy at the free-axis. When the nanomagnets are resting along their steady-states,

the longitudinal component of the anisotropy field is effectively a negative anisotropy en-

ergy. During reversal, the longitudinal component of the dipolar field reverses, making

the free-axis magnetization position less stable. Here, the longitudinal component of the

dipolar field behaves as a positive anisotropy energy.

Knowing this, an analytic expression for reliable coupling can be formulated. The criti-

cal field value (Hk) is the derivative of the energy barrier with respect to the magnetization.

This can also be approximated by the magnitude of effective field along the free-axis less
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the effective field at the hard-axis. Adding the dipolar anisotropies to effective field, we

can formulate the following model to define the region of reliable M2 reversal:

DIPxx +DIPyy > Hcrit. (7.6)

The boundary of this inequality is shown in the purple dash dash-dotted line shown in

Figure 7.5 and 7.6. This model perfectly matches the numerical results.

7.3.2 Field Requirements for Unstable System Behavior

Figure 7.5 also reveals that if DIPyy becomes too large, the probability that the top nano-

magnet will end up left of the x̂ = 0 (thus signaling a successful reversal) at the end of the

transient simulation is close to 50%. This is because a very large DIPyy component will

create a stable, low-energy state, along ŷ.

We previously mentioned that the longitudinal component of the dipolar field behaves

as a negative anisotropy energy while the nanomagnet system is resting in a stable mag-

netization state along the free-axis. The free-axis is defined as the lowest-energy axis in

the magnetization landscape. The meta-stable state can only occur when the energy while

the anti-parallel magnetizations oriented along ŷ is lower than the energy when the mag-

netizations are anti-parallel along x̂. Therefore the meta-stable state occurs when the per-

pendicular anisotropy field exceeds the longitudinal steady-state, anisotropy and zeeman

fields:

DIPyy > DIPxx +Hcrit. (7.7)

The boundary of this region is shown in a red dotted line in Figure 7.5 and 7.6 and matches

the numerical results.

It is important to note that this meta-stable state only exists because the driving current

of the bottom nanomagnet is low to maximize the coupling strength in the system. It is
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Figure 7.6: Probability of top nanomagnet reversing in a ẑ - stacked and centered two-
magnet biaxial system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets. Bottom nano-
magnet is driven by a 1.0mA spin current. The the dipolar coupling between the nano-
magnets is altered by manually changing the magnitudes of the dipolar tensor components.
DIPyy and DIPzz are set to be equal. Colors of the shaded region correspond to the prob-
ability of reversal for the top and bottom magnets. Area to the right of the purple dash-dot
line corresponds to values adhering to (7.6). Area to left of red dotted line corresponds to
values adhering to (7.7). Each axis consists of 40 logarithmically spaced data points per
decade.

possible to eliminate this meta-stable state by increasing the spin current into the bottom

nanomagnet, forcing its magnetization to be parallel with the free-axis. Doing so would

weaken the coupling strength between the nanomagnets. Not only would it break the mu-

tual coupling effect, but high-bias reversals are also likely to produce other undesirable

physical effects in real-world systems as discussed in Section 7.2.

7.3.3 Effect of Damping on Coupling Strength

While the damping coefficient in a bulk iron nanomagnet is known to be low, in many other

materials the damping torque can be quite larger [91]. Because ↵ significantly impacts the

dynamics of the nanomagnet system, the relation of ↵ to the coupling strength must also
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Figure 7.7: A one-dimensional version of the analysis conducted in Figure 7.5 looking at
the reliability of coupling as a function of the DIPyy component magnitude. Assuming two
60nm⇥45nm⇥2nm iron magnets and DIPxx = 2⇥10

4 A
m . Bottom nanomagnet is driven

by a 3.0mA spin current. Yellow shaded region corresponds to region of perfect coupling
predicted by (7.6) and (7.7). Line colors and marker style corresponds to a particular ↵
value. Line style and marker face color correspond to top or bottom nanomagnet reversal
reliability. Figure demonstrates ↵ does not alter the coupling strength of the system, but
may alter the critical current required to reverse the bottom nanomagnet.

101



be addressed.

Knowing that the DIPzz component does not affect the coupling reliability of biax-

ial systems, Figure 7.7 performs a one-dimensional version of the tensor shape analysis

conducted in Figure 7.5 for different ↵ values. First notice that in this figure we have in-

creased the driving current to 3 mA compared to the 1 mA current used in Figure 5. This

is to ensure the driving current is larger than the critical current of the nanomagnet with

the largest alpha value. Figure 7.7 demonstrates that for small values of ↵, the coupling

strength remains largely unchanged and matches the analytic expressions well.

However, for larger values of ↵, the reversal of the top magnet is largely eliminated. The

coupling strength of the system is not reduced, but rather the probability that the bottom

nanomagnet will reverse goes to zero as the DIPyy value nears the region required for

reliable coupling. This suggests that the critical current required to reverse the bottom

nanomagnet is altered if the requirements for mutual coupling are met.

It can also be concluded that ↵ does not alter the coupling strength between nanomag-

nets. It does however, alter the critical requirement for reversing one of the nanomagnet

bodies. This can be more directly observed in Figure 7.8. This figure demonstrates the

maximum current before the mutual coupling effect breaks remains the same regardless

of ↵. However, as ↵ is increased, the minimum current required to reverse the system is

also increased. For very large values of alpha, the minimum current exceeds the current

cap for the mutual coupling effect. This is because the reversal time of a nanomagnet is

proportional to Is � Ic. Hence, for very-large ↵ systems, a spin current even slightly larger

than Ic may cause very rapid reversals which harms the mutual coupling effect as noted in

Section 7.2.

7.4 Coupling in Uniaxial Nanomagnets

As mentioned in Section IV, the energy landscape greatly alters magnetization trajectories

during reversal. Having derived analytic predictive models for reliable coupling in biaxial
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Figure 7.8: Analyzing the reversal probability of the top nanomagnet for a 60nm⇥45nm⇥
2nm Fe Nanomagnet system with a separation of 5nm as a function of ↵ and Is. Is needs
to be large enough to reverse the bottom nanomagnet, but if it is too large, the mutual
coupling between the nanomagnets is broken and the coupling strength is reduced. This
follows results obtained in Section 7.2. ↵ does not alter the coupling strength, but it does
increase the critical current required to reverse the bottom nanomagnet. This increase in Ic

means that if ↵ is large enough, any Is > Ic will break the mutual coupling condition and
reduce the coupling strength to the fats reversal case.

nanomagnet systems, we can do the same for uniaxial systems. For the uniaxial case,

slightly modified models are needed to encapsulate the increase in coupling strength seen

in Figure 7.2.

7.4.1 Model for Reliable Coupling in Uniaxial Systems

An analysis of sample reversal precessions (shown in Figure 7.4) demonstrates a key dif-

ference between the SHd and 0Hd cases. In the 0Hd case, during the reversal of the bottom

nanomagnet, the magnetization deviates further away from the x̂-ŷ plane. This pushes the
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magnetization of the top nanomagnet further away from the x̂-ŷ plane because of the larger

ẑ field component generated by the bottom nanomagnet. Unlike the SHd case, the ẑ com-

ponent of the dipolar tensor will have a significant contribution to the coupling strength of

the overall system.

This can be more clearly seen in Figure 7.9. Similar to the test performed in Figure 7.5,

the longitudinal component of the dipolar tensor is held constant while the perpendicular

components are varied. The only difference is that in Figure 7.9, the demagnetization field

is eliminated.

Figure 7.9 demonstrates that when DIPzz is very small, the probability of coupling

while altering the magnitude of DIPyy follows the trend demonstrated in the biaxial case.

There is a minimum value which ensures perfect coupling. The same can be seen when

DIPyy is small and the magnitude of DIPzz is varied. This is because when these two

perpendicular components are mismatched, the reversal trajectory will favor either the x̂-ŷ

or x̂-ẑ plane during reversal. As a result, the system will reduce to the biaxial coupling case.

We can assume at minimum, the model proposed for the biaxial case, (7.6), is applicable to

each of the perpendicular components individually and so, perfect coupling is guaranteed

if:
(
DIPxx +DIPyy > Hcrit,

DIPxx +DIPzz > Hcrit.

(7.8a)

(7.8b)

where “{” denotes the union of the system of inequalities. The boundaries of this model

are shown in the purple dash-dot line in Figure 7.9 and strongly match the numerical results

when the magnitudes of DIPyy and DIPzz are significantly different. This is further proof

that the dipolar field can be approximated as an internal anisotropy field since the addition

of the dipolar anisotropies creates biaxial behavior from uniaxial magnetic bodies.

However, it is evident that this model alone is incomplete. The case where DIPyy ⇡

DIPzz is of particular interest because two-magnet, stacked uniaxial systems typically have

square-shaped geometries and hence, should have equal perpendicular components in their
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Figure 7.9: Probability of each nanomagnet reversing in a ẑ - stacked and centered two-
magnet uniaxial system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets. Bottom
nanomagnet is driven by a 0.15mA spin current. The the dipolar coupling between the
nanomagnets is altered by manually changing the magnitudes of the dipolar tensor compo-
nents. DIPxx = 2 ⇥ 10

4 A
m while the DIPyy and DIPzz components of the tensor model

correspond to the values marked by the x and y axes of the graph respectively. Colors of
the shaded region correspond to the probability of reversal for the top (a) and bottom (b)
magnets. Area to the right of the purple dash-dot line corresponds to values adhering to
(7.8). Area to left of red dotted line corresponds to values adhering to (7.10). Area to right
of pink dashed line corresponds to (7.9).
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dipolar tensor [73, 85]. When the perpendicular components are approximately equal, the

boundaries suggested by (7.8) are clearly pessimistic. This is because when DIPyy and

DIPzz are both large and within the same order of magnitude, both tensor components

significantly contribute to the reversal of M2 doubling the impact of the perpendicular field

components.
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Figure 7.10: Probability of top nanomagnet reversing in a ẑ - stacked and centered two-
magnet uniaxial system. Assuming two 60nm ⇥ 45nm ⇥ 2nm iron magnets. Bottom
nanomagnet is driven by a 0.15mA spin current. The dipolar coupling between the nano-
magnets is altered by manually changing the magnitudes of the dipolar tensor components.
DIPyy and DIPzz are set to be equal. Colors of the shaded region correspond to the prob-
ability of reversal for the top and bottom magnets. Area to the right of the purple dash-dot
line corresponds to values adhering to (7.9). Each point on the plot is calculated with 1000
transient simulations and each axis consists of 40 logarithmically spaced data points per
decade. The perpendicular components create a net easy plane anisotropy. If this easy
plane anisotropy is too large, the magnetization will favor a oscillatory state denoted by
the hatched region. However, the spin current can still nudge the oscillating magnetization
towards the correct free axis.
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Figure 7.9 shows that the lower limit for reliable coupling can be approximated by:

DIPxx +DIPyy +DIPzz > Hcrit. (7.9)

The boundary of this model is shown in the pink dashed line in Figures 7.9 and 7.10.

While (7.9) slightly overestimates the critical parameters required for perfect coupling, it

is a fairly accurate approximation. Interestingly this approximation only holds true if the

two precessional components are very similar in magnitude. If DIPyy and DIPzz differ

by a factor of 2 or greater, the coupling can no longer be considered reliable outside of the

region denoted by (7.8).

7.4.2 Field Requirements for Unstable System Behavior

If the perpendicular components of the dipolar field are too large, the system may find

a steady state away from the free-axis. This alternate steady-state is again shown in the

camouflage pattern regions in Figure 7.9. For systems with mismatched perpendicular

components, it is possible to expand the models from the in-plane case to determine the

areas where the system will find alternate steady states:

(
DIPyy > DIPxx +Hcrit.

DIPzz > DIPxx +Hcrit.

(7.10a)

(7.10b)

The boundaries of (7.10) are shown as red dotted lines in Figure 7.9. Interestingly, if

there is a large mismatch between the perpendicular components of the DIP tensor, the

field requirements for a meta-stable steady-state are equivalent to the biaxial case and agree

well with the numerical results. This is because if one perpendicular field component is

significantly larger than the other, the nanomagnet precessions will favor one magnetization

dimension over the other. This follows previous experimental works which noted biaxial

behavior in coupled uniaxial systems [179].
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It is clear from the figure that this model is accurate while the inequalities in (7.10)

are mutually exclusive. However, the case where DIPyy = DIPzz is special. If the two

perpendicular components of the dipolar tensor are equal and the inequalities in (7.10) are

both true, it means that the system will have a low-energy oscillatory state around the x̂ axis.

With the application of spin current, the bottom nanomagnet will trend towards the free

axis. The top nanomagnet is driven towards the anti-parallel free-axis. Figure 7.10 shows

that if the perpendicular components of the tensor are exactly equal, the reversal is perfectly

reliable. This is due to the fact that the simulation measures a successful reversal as anytime

the top nanomagnet ends the transient simulation on the correct side of the energy barrier.

As seen in the inset of Figure 7.10, the equal, large perpendicular components of the field

create an oscillatory state which the spin current nudges towards the free-axis. Even though

the simulation can be technically categorized as a successful reversal, the magnetization is

still in a oscillatory state which will fall back to the x̂ = 0 plane when the spin current is

turned off.

7.4.3 Effects of Perpendicular Component Polarity

Recall that  parameter in (7.3) indicates the polarity of the diagonal tensor components

and is solely dependent on the geometric arrangement of the two magnetic bodies. Up until

this point, a  = [�1,�1, 1] has been used that would correspond to two nanomagnets

with a free-axis along x̂ and physically stacked along the ẑ axis. However there are other

possibilities for the polarity of the dipolar components. If the free-axis of the magnetic

bodies are along ẑ-axis, perpendicular components of the dipolar field would have equal

polarity.

An evaluation for a 0Hd system with equal-polarity perpendicular DIP components is

shown in Figure 7.11. Comparing Figures 7.9 and 7.11, we see significantly different cou-

pling reliabilities when the perpendicular tensor components are roughly equal. When the

polarity of the perpendicular components are different, as in Figure 7.9, the coupling is en-
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Figure 7.11: Identical test performed as in Figure 7.9 except the polarity of the dipolar ten-
sor is changed so that  = [�1,�1,�1]. Hence, in this case, the perpendicular components
of the dipolar tensor have equivalent polarity. It is evident that have perpendicular dipolar
components of equal magnitude and polarity negates the mutual coupling effect.

hanced with equal perpendicular components. In contrast, the coupling is nearly eliminated

when the polarity of equal perpendicular components are the same.
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This is because the mutual coupling effect relies on complex interaction between mag-

netic bodies. If both perpendicular components have an equal polarity and magnitude, it is

effectively the same as having an equal anisotropy energy along both perpendicular axes.

In such a case, the energy gradient becomes normalized so that the perpendicular compo-

nents combine. They get added to the free-axis energy and are effectively negated. This

is not a problem for biaxial systems since the demagnetization field negates one of the

perpendicular components.

We can summarize the ’s effect on the MCE in uniaxial systems as follows: the po-

larity of the longitudinal component of the dipolar tensor determines if the system has

a parallel (+) or anti-parallel (-) stable state configuration. Assuming the perpendicular

components differ by a factor > 2, you can use the larger perpendicular to determine if a

two-magnet system is reliably coupled according to (7.10). If the perpendicular compo-

nents are of equal magnitude, the MCE is enhanced if the the perpendicular components

have opposing polarities and negated if they have equal polarities.

7.5 Material Parameter Requirements for Reliable Coupling

The analytic models presented allow for the determination of the material parameters re-

quired for reliably coupled systems. Referring back to Figure 2.1, in-plane and PMA nano-

magnet bodies are both subsets of biaxial and uniaxial systems, respectively. Magnets with

uniaxial energy landscapes can also be fabricated using bulk material shaped into a rectan-

gular prism as shown Figure 6.1. By making the nanomagnet width and thickness equal,

the shape anisotropies along the two longest axes have no net effect on the precessional dy-

namics of the system. Similarly, a biaxial system can be created from two-uniaxial magnets

if the perpendicular components of the dipolar tensor are severely unbalanced as mentioned

Section 7.4. This is why the coupling analysis was performed using the abstracted biaxial

and uniaxial landscapes. Now having completed those analyses, the models derived can be

applied to more realistic in-plane and PMA nanomagnets assuming a CHd fields.
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Figure 7.12: Solid lines: Maximum Ku per Ms value for a in-plane, 60nm⇥ 45nm⇥ 2nm,
two-magnet systems with a separation of 2nm. Free-axis along x̂. Various separations are
considered and SHd is assumed. Dashed colored lines: maximum Ku parameters for PMA,
45nm⇥ 45nm⇥ 2nm, two-magnet system whose uniaxial anisotropy energy and free-axis
oriented along ẑ. Dashed black line: For uniaxial nanomagnets, uniaxial anisotropy field
must be greater than the demagnetization field creating a minimum required anisotropy
energy. This figure demonstrates that uniaxial nanomagnet systems have strict material
requirements for reliable reversal.

7.5.1 Parameter Requirements for In-plane Nanomagnet Systems

The in-plane case corresponds to a SHd energy space. Typically, the free-axis for in-plane

nanomagnets is oriented along the physically longest geometric dimension and is assumed

to be along x̂ for a 60nm ⇥ 45nm ⇥ 2nm thin-film nanomagnet. Figure 7.12 shows the

maximum Ku given an Ms, which still allows for reliable coupling. Ku values which

exceed this maximum make the energy barrier too large for the dipolar field to consistently

overcome. While iron nanomagnets fall just below this limit, materials with larger energy
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barriers, such as cobalt, exceed this limit and will not be reliably coupled at any separation.

Other materials with small crystalline anisotropies such as Nickel and Terfenol-D would

be useful for creating coupled in-plane magnetic systems as well.

7.5.2 Parameter Requirements for PMA nanomagnet Systems

PMA nanomagnet systems have both their uniaxial-anisotropy and demagnetization fields

oriented along ẑ [82]. This matches the uniaxial case considered here. Assuming a pair

of 45nm ⇥ 45nm ⇥ 2nm PMA nanomagnets making the perpendicular components of the

dipolar tensor in this system equal. Note that since the PMA magnets are stacked and have a

free-axis along the ẑ axis, they will have perpendicular components with the same polarity.

As noted in Section 7.4.3, the mutual coupling effect is effectively negated if the perpen-

dicular dipolar components have equal polarity and magnitudes. The reliability of coupling

then reduces to the simple longitudinal model. You can arrange the PMA bodies side-by-

side along x̂ instead of stacking them vertically. In this case,  = [1,�1,�1], meaning that

the perpendicular components are opposing polarities with respect to the free-axis. In this

case, the distance between the centers of the magnetic bodies would be significantly larger,

significantly reducing the dipolar field magnitude. The ẑ-stacked system is optimal even

though the strength of the dipolar field is reduced to the longitudinal field model.

The dashed lines in Figure 7.12 shows the maximum Ku for a PMA nanomagnet sys-

tem. Unlike the in-plane case, there is also a minimum Ku because HK must be greater

than HD in order to create two stable minimas. There is a very small range of material

values which allow for a coupled PMA nanomagnet system.
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CHAPTER 8

DIPOLAR COUPLING III: ANALYTIC EXPRESSIONS FOR NON-IDENTICAL

BIAXIAL TWO-MAGNET SYSTEMS

8.1 Introduction

In the previous chapter, analytic models of reliable magnetization reversal driven by dipolar

coupling in an identical two-magnet system were developed [174, 180]. Since the magneti-

zation of identical nanomagnets precess in-step, it becomes possible to decouple the mag-

netic bodies. In this case, dipolar fields behave as magnetic anisotropy altering the energy

space of the nanomagnets. In this chapter, we extend our prior analysis to consider dipolar

coupling in non-identical two-magnet systems. This is a more general case applicable to a

broad range of coupled nanomagnetic devices and circuits. We formulate new models that

accurately predict conditions under which deterministic stable coupling between the mag-

nets is established. New reversal dynamics that emerge due to the increased complexity

and lack of symmetry in the setup are carefully analyzed in this chapter. We consider two

categories of reversals, namely deterministic- and pseudo-reversals. The latter reversals

are stochastic in nature and require complex Fokker-Plank analysis. While we discuss the

pseudo-reversal regime, analytic models for this region are outside the scope of this thesis.

In the non-identical two-magnet system, there exists a robust or deterministic stable-

reversal regime in which the two non-identical magnets remain in their parallel or anti-

parallel configurations along their free-axes regardless of stochastic effects [180]. There

also exists a deterministic meta-stable regime in which the nanomagnets reverse toward the

perpendicular axes within the plane, a 90-degree rotation). We identified a new oscillatory

state in which the nanomagnet being driven oscillates in-plane around its out-of-plane (ẑ)

axis. We also note that large perpendicular dipolar field components may cause some

instability in systems in the presence of thermal noise.
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Figure 8.1: Illustration of two-magnet system considered in this study. Bottom magnet
(M1) is driven through spin-transfer torque, while the top magnet (M2) is driven through the
dipolar coupling field generated by the bottom magnet M1. Note that the magnetic bodies
are shaded in different colors to represent their different material parameters. HK denotes
the uniaxial field along the free-axis of the magnets, while HD is the demagnetization field
oriented perpendicular to the plane of the magnets.

8.2 General Formalism

The non-identical two-magnet system under study is illustrated in Figure 8.1. Both mag-

nets are assumed to be mono-domain bodies, labeled as M1 and M2, with biaxial magnetic

anisotropy. The magnet denoted as M1 is subject to a spin current imparting a finite spin

torque to it. As M1 reverses, it interacts with the magnet denoted as M2 through a time-

dependent dipolar field encouraging M2 to reverse its orientation. Because we are analyz-

ing non-identical magnets in this chapter, we have two sets of material parameters, Ms1|Ms2

and Ku1|Ku2 where the subscript indicate which nanomagnet the parameters corresponds

to. We’re keeping the geometry of the magnetic bodies equivalent (60nm ⇥ 45nm ⇥ 2nm)
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because we are artificially assigning values to the dipolar tensor components. The exact

geometry is largely irrelevant when determining coupling strength. The magnetic moments

of M1 and M2 are specified as ~M1 = Ms1m̂1 and ~M2 = Ms2m̂2, where m̂1 and m̂2 are the

corresponding unit vectors. The magnetization energies of the mono-domains are

✏1(m̂1) = ✏K1(m̂1) + ✏D1(m̂1) + ✏DIP1(m̂2, m̂1), (8.1a)

✏2(m̂2) = ✏K2(m̂2) + ✏D2(m̂2) + ✏DIP2(m̂1, m̂2), (8.1b)

Unlike before, we are assuming non-equivalent dipolar tensors denoted by DIP1 and

DIP2 corresponding to the stray field emitted by M1 and M2 respectively. In this chap-

ter, we are only assuming a biaxial, SHd mono-domain, the effect of shape anisotropy is

captured through demagnetizing coefficients, Nxx = Nyy = 0, Nzz = 1.

For the majority of this chapter, we assume that spin current is injected only into M1 to

drive the reversal of the coupled system. In Section 8.8.1, spin current injection into M2 is

also considered. This setup allows us to study magnetization dynamics that emerge due to

the interaction of opposing non-conservative forces in dipolarly coupled magnets. Values

of Ms and Ku, uniaxial energy density, of both nanomagnets are varied for the results

reported in this chapter.

8.3 Regions of Reversal

The key differences in a coupled system with non-identical magnets compared to identical

magnets are:

• Unequal energy barriers (✏K1 6= ✏K2)

• Unequal dipolar fields (DIP1 6= DIP2)

To understand the coupling strength of the two-magnet system, we consider different ma-

terial parameters of the two nanomagnets, while also varying the magnitudes of the tensor
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Figure 8.2: Probability of magnetization reversal obtained under TOTTHERM setup. The
bottom magnet is M1 (under spin torque), while the top magnet is M2 as illustrated in Fig-
ure 8.1. Rectangular outlines bound regions that display distinct magnetization dynamics
for which analytic models are developed. The area bounded by the red rectangle corre-
sponds to the deterministic stable reversal region. The area within the green rectangle is
the M1 oscillatory region. The blue rectangle outlines the pseudo reversal region, while the
purple rectangle outlines the meta-stable reversal region. The circled letters correspond to
sample reversals shown in Figure 8.3.
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(a) Sample stable reversal (b) Sample M1 oscillatory state
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(c) Sample unstable reversal (d) Sample meta-stable reversal

Figure 8.3: Sample trajectories of each reversal region corresponding to the markers seen in
Figure 8.2. Assuming TOTTHERM conditions. Non-identical magnetic bodies considered
with material parameters Ms1 = 1.7MA

m
|Ms2 = 1.4MA

m
and Ku1 = 48

kJ
m3 |Ku2 = 80

kJ
m3

and longitudinal tensor components Dxx1 = �60

kA
m

and Dxx2 = �20

kA
m

. We vary the
perpendicular components displaying the trajectory characteristics of each of the reversal
regimes. 117



components in the simulation setup. In the previous chapter, the analysis of dipolar cou-

pling in a two-magnet system was focused solely on identical nanomagnets. This simpli-

fication allowed us to more easily interpret the results due to the inherent symmetry in the

setup. However, in the case of non-identical nanomagnets, the number of system variables

is doubled, increasing the system complexity. To address this, we construct the two-magnet

system to possess a common geometric axis. The mono-domains are centered with respect

to each other and the off-diagonal dipolar tensor components will be averaged out and set

equal to zero. The only relevant parameters of the system are the material parameters of

the magnetic bodies and the three diagonal tensor components of the dipolar field. To con-

strain the complexity of the system further, a system of biaxial mono-domains is analyzed.

A large positive perpendicular anisotropy restricts the magnetization to precess largely in-

plane minimizing the effect of dipolar field along the perpendicular orientation. Given the

nature of the precession, it is reasonable to ignore one of the perpendicular tensor compo-

nents in a biaxial system. This reduces the rank of the dipolar tensor such that only the

longitudinal and one of the perpendicular field components suffice to describe the effects

of the dipolar field.

To analyze the field requirement for robust coupling, Monte-Carlo tests on the sLLG of

the coupled system are performed by varying uniaxial energy density, Ku, and saturation

magnetization, Ms. Effects of magnet geometry and Gilbert damping are considered in

Sec. 8.7 as these parameters affect coupling only under thermal activation or slow dynam-

ics.

The longitudinal field magnitude required for reversing a M2 is given as

Hcrit2
X

= Hk2 + (Nyy � Nxx)Ms2. (8.2)

If the longitudinal component of the dipolar field of M1, DIPxx1, is greater than the critical

field magnitude of M2, Hcrit, M2 will be reliably coupled to M1 regardless of the preces-
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sion of M1. If the longitudinal component of the dipolar field of M2, DIPxx2, is larger

than Hcrit1
X

then the dynamics of the system become unstable. In this case, the coupling

of the system depends critically on the relative magnitudes of DIPxx1 and Hcrit2
X

during

the reversal of M1. For certain cases, it is likely that the system will be oscillatory, par-

ticularly if the strength of the STT is weak. However, a large perpendicular component

of the dipolar tensor can enhance the coupling between M1 and M2. To study the regime

of robust coupling, specific values of Ku, Ms, DIPxx are chosen for M1 and M2 and the

reliability of reversal of M2 is measured for a range of perpendicular tensor components

DIPyy1 and DIPyy2.

Thermal noise is included in two ways: (i) TOTTHERM models thermal noise to be

present during the entirety of the transient simulation and (ii) INITTHERM considers ther-

mal noise to act only during the first nanosecond of simulation to achieve a random ther-

mal distribution of initial magnetization states of M1 and M2. In both cases, spin current

is injected into M1 to achieve STT-driven reversal. In both tests, spin current is injected

only after the first nanosecond randomization phase. The purpose of these two tests is to

highlight the deterministic and stochastic effects impacting the two-magnet system. In the

TOTTHERM test, reversal is achieved through both deterministic field switching and noise

drift. However, the INITTHERM case eliminates noise drift by turning off thermal noise

during the system reversal. The TOTTHERM test highlights unstable system configura-

tions that cannot be modeled using only the INITTHERM test.

A sample of the TOTTHERM test is shown in Figure 8.2. Regions denoting the four

major types of reversals are outlined. The top-right of this figure within the purple en-

closed boundary represents the deterministic meta-stable region (DMSR). In this case, the

perpendicular tensor components grow large enough that the lowest energy state of the

system is driven away from the free-axis. The green outlined region in Figure 8.2, is the

M1-oscillatory region. In this case, the dipolar field of M1 acting on M2 is too weak to

reverse M2, but the perpendicular component of the dipolar field of M2 interacts with M1

119



to create oscillations in M1 dynamics. The pseudo reversal region is marked by the blue

outline in Figure 8.2. In this region, the perpendicular components of DIP2 are weak to

ensure reliable coupling of M1 and M2. Instead, the stray field created by M1 is sufficient

to reverse M2 depending on the trajectory of the magnetization vectors. This region is

created by thermal perturbations in M1 magnetization trajectory and can be qualified as a

thermal drift effect. Finally, the red outlined region in Figure 8.2 marks the deterministic

reversal region. In this region, the two magnetic bodies are strongly coupled. Each region

noted in Figure 8.2 is analyzed in detail in Sections 8.4–8.7. The analysis in these sec-

tions follows the coupling tests shown in Figure 8.4. Tests are conducted for three sets of

material parameters establishing the validity of analytic models developed in this chapter.

8.4 Deterministic Coupled Region I

Our analysis is first centered on the semi-balanced tensor components (SBTC) region of

Figure 8.2, which is the stable reversal region. In this region, the four dipolar tensor com-

ponents, DIPxx1, DIPyy1, DIPxx2,andDIPyy2, do not differ from each other by more than

an order of magnitude. For an identical biaxial two-magnet system, the requirement for a

coupled tensor system is specified as,

DIPxx +DIPyy > Hcrit, (8.3)

where Hcrit is given in equation (8.2). Due to the mutual coupling effect (MCE), the

x̂ � ŷ components of the dipolar field have identical contribution to the stability of the

two-magnet system. Equation (8.3) is derived under the assumption that the nanomagnets

mirror each other during reversal, and dipolar fields behave as anisotropy fields. While this

model was derived through the mirrored-domain observation, the magnetic moments do not

necessarily have to maintain anti-parallel orientation during reversal for the MCE to exist.

In fact, it is seen that any type of slow relaxation from an unstable to a stable orientation

displays the MCE [173].
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Figure 8.4: Numerical results analyzing the probability of nanomagnet reversal given a set
of system parameters. Biaxial systems are considered; hence, DIPzz1/DIPzz2 values are
irrelevant and set to 0. Three different systems with distinct Ms and Ku parameters are
considered. Both TOTTHERM and INITTHERM tests are considered. Limits of analytic
models are plotted demonstrating strong agreement with numerical results. Purple and red
dashed lines correspond to boundaries of equations (8.6) and (8.10), respectively. Purple
and red dash-dot lines correspond to boundaries of equations (8.16) and (8.13), respectively.
The white lines correspond to limits of meta-stable region. Dotted and solid white lines
correspond to limits of equations (8.19) and (8.18), respectively.
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In the case of non-identical nanomagnets, we can form two independent requirements

for the reversal of each nanomagnet. Mathematically, these criteria are specified as,

DIPxx1 +DIPyy1 > Hcrit2, (8.4)

DIPxx2 +DIPyy2 > Hcrit1, (8.5)

where Hcrit1 and Hcrit2 are obtained using equation (8.2). It is known that the stray field

from one magnetic body is insufficient to reliably reverse the neighboring magnetic body

on its own. However, MCE comes into play when the nanomagnets have a dynamic in-

teraction with each other through their dipolar fields. Figure 8.4 highlights that simple

lower bounds on the perpendicular components are not sufficient to define the determin-

istic reversal boundaries. In fact, the two perpendicular components have a multiplicative

relationship on coupling such that the conditions in equations (8.4) must be combined lead-

ing to the following relationship for robust coupling:

DIPyy1DIPyy2 > (Hcrit1 � DIPxx2)(Hcrit2 � DIPxx1). (8.6)

The lower limit of this equality is shown by the dashed line in Figure 8.4. There is a

strong agreement of the analytic model, (8.6), and numerical simulation results. This con-

firms that the MCE exists even when the nanomagnet system is not perfectly symmetrical.

We can further confirm the validity of multiplicative behavior of perpendicular dipolar field

components on the coupling requirement by examining their maximum values for robust

coupling during the two-magnet reversal. In the case of identical nanomagnets, the two-

magnet system was found to relax to a meta-stable orientation when the Zeeman energy due

to the perpendicular dipolar field undercut the free-axis energy. The analytic expression of

the meta-stable state in an identical two-magnet system is given as

DIPyy > Hcrit +DIPxx. (8.7)
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By applying the above condition to each magnetic domain in the case of non-identical

magnets, we obtain

DIPyy1 > Hcrit2 +DIPxx1, (8.8)

DIPyy2 > Hcrit1 +DIPxx2. (8.9)

Knowing that the effect of dipolar fields on robustness of coupling is multiplicative in

nature, we obtain the following inequality that must be satisfied for deterministic stable-

reversal region in Figure 8.2:

DIPyy1DIPyy2 < (Hcrit1 +DIPxx2)(Hcrit2 +DIPxx1). (8.10)

The upper bound of equation (8.10) is plotted in Figure 8.4 and shows very strong agree-

ment with the numerical results. However, if the perpendicular components of the dipolar

field of the two magnets are significantly unbalanced, the minimum DIPyy1/2 requirements

diverge from equation (8.10) and must be analyzed separately.

8.5 Deterministic Coupled Region II

In the case of unbalanced perpendicular components of the dipolar field, non-ideal reversal

dynamics emerge as highlighted in Figure 8.2. We refer to this region as the unbalanced

tensor region (UTR). In this work, we consider two specific UTR regions that are distin-

guished based on the values of DIPyy1 and DIPyy2.

8.5.1 Oscillatory M1 State

The first UTR occurs when DIPyy2 ! 1 when both equations (8.6) and (8.10) are satis-

fied. Once the ratio DIP
yy2

DIP
yy1

exceeds a certain value, the system becomes unstable, and the

reversal probability approaches 50%. A transient sample of this type of reversal is shown

in Figure 8.38.2b. This is an oscillatory state where M1 oscillates close to the x̂ � ŷ plane,
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and M2 stays near the free-axis. This state is a result of the competition between the STT

acting on M1 and the dipolar field of M2 driving M1 in opposite directions. When DIPyy1

decreases beyond a certain point, the strength of the dipolar field of M1 is insufficient to

reverse M2, and m̂2 remains in its initial energy basin. The condition that the perpendicular

component of the dipolar field of M1 satisfies in this region is given as

DIPyy1 < Hcrit2 � DIPxx1. (8.11)

At the same time, the dipolar field of M2 acting on M1 could be strong enough to reverse

the state of M1 if

DIPyy2 > Hcrit1 +DIPxx2. (8.12)

For low spin currents in M1, an oscillatory behavior of the magnetization of M1 emerges

when equations (8.11) and (8.12) are simultaneously satisfied.

It is clear from Figure 8.4 that the boundary of the oscillatory region depends on the

tensor components of both magnetic bodies. Considering that the effects of dipolar fields

of the two magnets are multiplicative in nature, the following relationship is obtained for

the oscillatory state of M1

DIPyy2

DIPyy1
<

Hcrit1 +DIPxx2

Hcrit2 � DIPxx1
. (8.13)

The above expression also gives an upper limit on the dipolar fields of M1 and M2 for

stable reversal regime, which is bounded by the red dash-dot line in Figure 8.4.

8.5.2 Noise-induced M2 instability

Next, we analyze the case when DIPyy1 ! 1. From the tests reported in Figure 8.4, we

see that if the DIPyy1 becomes too large and significantly exceeds the values required for

stable magnetization reversal, the probability of M2 reversal decreases for TOTTHERM
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case but not for INITTHERM case. These results clarify that thermal effects are important

to consider during the entirety of magnetization dynamics. A sample transient simulation

to elucidate this is shown in Figure 8.38.2c.

The cause of this instability is due to the stochastic perturbations in m̂1 after reversal.

During M1 reversal, M2 will also reverse similar to reversals in the deterministic stable

region. However, once the reversal is complete, M1 continues to exhibit Brownian motion

around the free-axis and imposes a stochastic dipolar field on M2. If the perpendicular

component of the dipolar field of M1 (DIPyy1) is significantly larger than DIPxx1 +Hk2,

M1 has the potential to knock the magnetization of M2 into a high-energy region and away

from its free-axis. Clearly, the boundaries of this region depend on several factors including

the maximum value of ~my1 component during the evolution time of the system. However,

precise modeling of the dipolar field requirement for coupling M1-M2 under stochastic

thermal effects is outside the scope of this work as it entails Fokker-Planck analysis. As a

useful metric, we determine the boundaries for deterministic reversal. This boundary can

be determined using principles similar to those applied during the analysis of the oscillatory

two-magnet system in Sec. 8.4. Under thermal effects, the condition that must be satisfied

to ensure the reversal of M2 due to M1 is expressed as

DIPyy1 > Hcrit2 +DIPxx1. (8.14)

It can be reasoned that if M2 was able to reverse M1, then the spin current has the potential

to reverse the system again. However, in the case of unstable system, M2 is unable to fully

reverse M1 even when the magnets are in the weak parallel orientation. Therefore, the

following bound must also be satisfied in this regime:

DIPxx2 +DIPyy2 < Hcrit1. (8.15)
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Combining equations (8.14) and (8.15), we obtain

DIPyy2

DIPyy1
>

Hcrit1 � DIPxx2

Hcrit2 +DIPxx1
. (8.16)

The boundary of the above inequality is shown by the purple, dash-dot line in Figure 8.4.

While this boundary represents a conservative estimate of the reliable reversal region, it

successfully separates out deterministic reversals from thermally induced reversals. Like

the oscillatory region, the limits of this region can be expanded by increasing the spin-

current. However, doing so will likely hamper the mutual coupling effects in the two-

magnet system.

8.5.3 Complete Stable reversal Model

Equations (8.6), (8.10), (8.13), and (8.16) provide the conditions imposed on the dipolar

field components of the magnets M1 and M2 to ensure deterministic reversal of the non-

identical two-magnet system. Deterministic coupling region is distinguished from other

dynamical regions of operation since in the deterministic case the reversal of one magnet

guarantees the reversal of the other even under thermal noise. Strong agreement of analytic

models against numerical data can be seen in Figure 8.4.

8.6 Deterministic Meta-stable States

The camouflaged upper-right region in Figure 8.2 represents magnetic systems with meta-

stable resting states. In the camouflaged regions, the perpendicular tensor components

of the dipolar field overwhelm the natural free-axis anisotropies of the magnetic bodies

resulting in their magnetizations to rest along the ŷ-axis.

For balanced tensor components, we derive the limit of this meta-stable region as in

equation (8.10). However, when the dipolar field components of the magnetic bodies are

severely unbalanced, an asymptotic boundary distinguishing this region is obtained. Con-

sider the case where DIPyy1 ! 1. In this case, the condition that the dipolar field com-
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ponents must meet to obtain deterministic meta-stable state in the magnetization dynamics

is specified as

DIPyy1 ! 1, DIPyy2 > Hcrit1. (8.17)

This boundary is indicated by the solid white line in Figure 8.4. Excellent agreement with

numerical results can be seen. Notice that in the asymptotic case the longitudinal tensor

components are not considered. This is because the energy of the total system is always

minimized if the magnetizations of M1 and M2 are oriented along the perpendicular axis

(ŷ). This is significantly different than the balanced dipolar field case where the energy of

the system is minimized through both longitudinal and perpendicular components of the

dipolar field.

While equation (8.17) shows strong numerical agreement, the condition

DIPyy2 ! 1, DIPyy1 > Hcrit2. (8.18)

overestimates the DIPyy1 magnitude required for reliable reversal. To understand this, we

must refer to the precessional dynamics of a magnet under the influence of perpendicu-

lar fields. When a transverse field is introduced to a biaxial energy space, an intermediate

energy region is introduced whose trajectories encircle the axis parallel to the applied trans-

verse field. Similar to a basin or pole, if the magnetization falls within this region, it will

oscillate around the ±ŷ axis.

Assuming the magnetization is initially at rest along the free-axis, the transverse field

acting upon the magnetic body can be large enough to encourage the magnetization to

escape the initial energy basin. For this to happen, the magnitude of the transverse field

must be greater than 0.77Hcrit [3]. Hence, we propose a new limit such that m̂2 is able to

relax toward the meta-stable position after escaping its initial energy basin. This condition

is expressed as

DIPyy2 ! 1, DIPyy1 > 0.77Hcrit2. (8.19)
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Figure 8.5: Probability of M2 magnetization reversal obtained under TOTTHERM setup
for various Ku1 and DIPyy1 values. Material parameters of M1 and M2 are Ms1 = Ms2 =

1.7MA
m

and Ku1 = 48

kJ
m3

. DIP1 = [10, Y, 0] · I kA
m

and DIP2 = [10, 1000, 0] · I kA
m

.
Dotted line maps the boundary predicted by equation (8.19). Dashed line corresponds to
the boundary noted by (8.20). Note that the dashed line simply includes a fitting parameter
to account for stochastic magnet reversal under thermal noise. As the energy barrier of M2
increases, the thermal field is less likely to reverse its magnetization and hence, the reversal
characteristics are given by equation (8.19).

This boundary is shown by the dotted white line in Figure 8.4 and is a accurate estimation

of the boundary of the meta-stable region. Note that the difference in equations (8.17) and

(8.19) is due to the fact that m̂1 is being driven by an above-critical STT, while m̂2 is guided

by precessional dynamics.

To further demonstrate that equation (8.19) accurately predicts the limits of the meta-

stable system, we perform TOTTHERM simulations while varying Ku1 and DIPyy1. Sim-

ulation results are shown in Figure 8.5. As the energy barrier increases, the boundary of

the region defined by equation (8.19) matches numerical results. It can also be seen that

an asymptotic limit appears as Ku2 is decreased. This is due to thermal noise knocking the

magnetization out of its initial basin for systems with low energy barriers. To account for
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this thermal effect, equation (8.19) can be modified to

DIPyy2 ! 1, DIPyy1 > 0.77Hcrit2 � ⇠
kBT

µ0Ms2V2
, (8.20)

where ⇠ is a fitting parameter dependent on the observation time of the system.
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Figure 8.6: Probability of reversal of M2 magnetization obtained under TOTTHERM setup
by varying the observation time and DIPyy1 values. Material parameters of M1 and M2
are Ms1 = Ms2 = 1.7MA

m
and Ku1 = 48

kJ
m3

. DIP1 = [20, Y, 0] · I kA
m

and DIP2 =

[30, 0, 0] · I kA
m

. This figure highlights the drift effect due to thermal noise that governs the
pseudo reversal region.

8.7 Pseudo-reversal Region

The pseudo-reversal region is denoted by the blue rectangle in Figure 8.2. In the pseudo-

reversal regime, the dipolar field components are large enough such that the precession of

M1 results in the probabilistic reversal of M2 into its anti-parallel state. This is similar to

the probabilistic relaxation of a nanomagnet to the energy basin under the influence of a

constant longitudinal field [139, 140]. In such a case, one direction along the free-axis has
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Figure 8.7: Numerical results analyzing the minimum spin current to be injected into M1
to ensure reversal. The critical current is numerically calculated by setting the system to an
anti-parallel state and the initial angle of m̂1 to h✓,�i = h0.01�, 90�i. Biaxial systems are
considered; hence, DIPzz1/DIPzz2 values are irrelevant and set to 0. Results of analytic
models are plotted demonstrating a change in critical current required for system reversal.
In this case, there is no spin current injection into M2.

a smaller magnetization energy weighting the probability that the magnetization falls in the

parallel energy basin larger greater than 50%.

We note that the pseudo-reversal region exists only when the nanomagnets are under

the effects of thermal noise. Figure 8.4 demonstrates this by comparing the results of

TOTTHERM and INITTHERM cases. To further emphasize this point, we perform the

TOTTHERM test while setting the perpendicular components of DIP2 to zero. Results

are reported in Figure 8.6. The probability of reversal of M2 magnetization is analyzed as

a function of DIPyy1 and observation time. As the observation time increases, the range

of DIPyy1 values that ensure the reliable reversal of M2 magnetization also increases.

Hence, the reliability of pseudo reversal is a stochastic function of observation time and its

analysis is outside the scope of this research. However, the existence of this region indicates

that there is a range of DIP1 tensor values that alone encourage reversal of neighboring

magnetic bodies and when the system is in the presence of thermal noise, the dipolar field

of M1 is sufficient to reverse M2 assuming a long enough observation time.
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8.8 Minimum current required for system reversal

Thus far, the M1 nanomagnet is subject to STT, while the M2 nanomagnet is coupled

to M1 through dipolar fields. This setup is specifically important for a variety of spin-

based devices [4]. We analyze the critical spin current required for deterministic reversal

of the two-magnet system with spin current injection into M1 referred to as the driving

nanomagnet. Results are reported in Figure 8.7. Several observations can be made from this

figure. First, the critical current mirrors the reversal regions of the INITTHERM test shown

in Figure 8.4. This further validates the fact that the region identified as the pseudo-reversal

region is a thermally induced effect and not a deterministic one. The critical current analysis

also clearly shows the meta-stable and oscillatory regions, which require a significantly

large spin current to break free from the perpendicular low energy states.

We note that that there are two critical spin currents defined for a biaxial magnetic body

in STT-induced magnetization reversal. I1
c refers to the critical current required to shift

the magnetization away from the free-axis, while I0
c indicates the critical current required

to force the magnetization over the energy barrier [74, 110]. For an individual magnetic

body, the critical current for full reversal is simply Ic = max(I1
c , I

0
c ). However, in the case

of the complex reversal discussed in this chapter, the magnetizations of M1 and M2 enter

an intermediate energy region during reversal and cross their energy barriers using preces-

sional mechanics. Therefore, the STT is only relevant when forcing the magnetizations

away from the free-axis stable state.

However, there does not appear to be a clear boundary between the deterministic rever-

sal region and the regions were one or both nanomagnets do not reverse. Instead, the critical

current increases gradually as the perpendicular tensor components are increased. This is

likely because the critical current magnitude is highly sensitive to the type of precession

the system undergoes which, in turn, depends on the tensor values. Despite this sensitivity,

we can approximate the maximum critical current magnitude in the deterministic reversal
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region. In this region, we see that the critical current increases because the STT is reversing

both magnetic bodies instead of just M1. Hence, is it reasonable to conclude that the crit-

ical current of the system is simply the sum of the critical currents of each magnetic body.

That is,

Ictot = I1
c1 + I1

c2, (8.21)

where Ictot is the current required to deterministically reverse a coupled system, and I0
c1/I0

c2

are the free-axis critical currents of each magnetic body in isolation.

8.8.1 Effects of spin current injection into M2

In this section, we analyze the interaction of bias currents injected into both M1 and M2,

while forming a coupled system. We refer to the spin current injected into M2 as the bias

current (Is2). We also assume that Is2 has the same negative polarity as Is1. In this case, Is1

encourages system reversal by attempting to reverse M1 while Is2 discourages the system

reversal by forcing M2 to remain in its original energy basin. In this case, there exist two

non-conservative torques interacting with each other through dipolar fields.

To analyze the relationship between the spin currents acting on M1 and M2, we consider

the system with a particular set of material and dipolar tensor parameters. Driving and bias

current magnitudes are swept while measuring the reversal probability of M1 and M2.

Results are reported in Figure 8.8. Notice that there appear to be two limits that determine

the system behavior. If the driving current into M1 (Is1) is close to, but larger than Ictot,

then a sufficiently large Is2 can stop the reversal of both nanomagnets. A linear relationship

emerges between these two current in the weak driving case. In this case, the driving current

dominates the system dynamics, deciding whether or not the two-magnet system reverses.

As the current into M1 increases, a different scaling trend emerges referred to as the

large-current magnitude region. While M1 may reverse in this regime, M2 reversal is not

guaranteed, indicating that the dipolar coupling between the magnets is either broken or

that the system enters into unstable dynamics. Another linear trend appears in the bound-
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Figure 8.8: Probability of magnetization reversal of M1 and M2 using INITTHERM setup.
Spin currents injected into M1 is denotes as Is1 and the spin current injected into M2 is
denoted as Is2. Material parameters of M1 and M2 are Ms1 = 1.7MA

m
,Ms2 = 1.4MA

m

and Ku1 = 48

kJ
m3

, Ku2 = 80

kJ
m3

. DIP1 = [60, 70, 0] · I kA
m

and DIP2 = [20, 50, 0] · I kA
m

.
Figure demonstrates the relationship between non-conservative spin-torque forces when
interacting through dipolar fields.
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ary of reliable M2 reversal suggesting that an increase in the driving current overwhelms

the effects of the biasing current. Unlike the near-critical case, the slope of the linear

separation in the large-current magnitude region is less than unity. This suggests that the

biasing current becomes dominant when establishing the system reliability. Interestingly,

the boundary of the reliable reversal region has a positive slope when Is1 < 6 mA and neg-

ative slope when Is1 > 6 mA. This is due to the MCE which exists only for slow reversals.

Once the driving current exceeds a certain threshold, the reversal of M1 becomes too rapid

and breaks the MCE.
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CHAPTER 9

DIPOLAR COUPLING IV: COUPLING IN MULTI-DOMAIN MAGNETIC

BODIES

Chapters 6-8 have exhaustively analyzed the coupling between two mono-domain magnetic

bodies. However, we must also ask if this effect exists in larger multi-domain magnetic sys-

tems. While it is expected that very small magnets can be treated as single-domain objects,

it is not quite clear how small is small enough. Second, it is not clear whether using a

single-domain analysis underestimates or overestimates the coupling. In this chapter, we

quantify the coupling between nanomagnets while considering their multi-domain behav-

ior.

To analyze the coupling strength between a pair of nanomagnets, we can again refer

to the the complex nanomagnet system shown in Figure 6.1 is considered. For this case,

let’s analyze a system consisting of two thin-film, same-sized, permalloy-type (anisotropy

energy density (Ku) = 0), saturation magnetization (Ms = 8e5A
m

), exchange stiffness (A

= 13

pJ
m

) nanomagnets stacked along the z-axis with a free-axis along the x-axis. The bot-

tom nanomagnet is switched via a spin-transfer-torque current which, in turn, flips the top

nanomagnet through dipolar coupling. For only this chapter, this setup was modeled using

multi-domain numerical simulations in OOMMF, assuming 2⇥ 2⇥ 2nm3 unit sizes [106].

Assuming the bottom magnetization is completely along the free-axis, the strength

of the magnetic field imposed on the top magnet by the bottom magnet is spatially non-

uniform across domains according to (6.1-6.3). This is shown in Figure 6.2. Up until this

point, because we have been assuming a single domain model, this field is averaged over

the entirety of the top magnet [173]. In a multi-domain model, this non-uniformity sug-

gests that certain domains feel different coupling field magnitudes and directions than their

neighboring domains. Here, edge domains feel different exchange and demagnetization
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(a) Is = 1.6mA (b) Is = 9.6mA

Figure 9.1: Left: Successful switching of 80 ⇥ 40 ⇥ 2nm3 bottom (Main plot) and top
(subplot) magnets using multi-domain model. Note average magnetization magnitude isnt
constant. Right: Unsuccessful reversal due to increased current in bottom nanomagnet
resulting in rapid reversals with increased domain nucleation.

energies compared to their center counterparts; the magnet switches in a non-uniform fash-

ion [6]. Edge domains typically switch first and the change in magnetization spreads to

the center domains. Because of this, the average magnetization across the entirety of the

magnet is not constant as shown in Figure 9.1.

While this insight appears to suggest multi-domain magnets are easier to switch through

dipolar fields, the following results show that this is not the case for large nanomagnets due

to two important multi-domain effects which become especially present for larger nano-

magnets. First, in this complex magneto-system scheme, coupling is achieved through

dampening and precessional field effects. While the dipolar-field components parallel to

the easy-axis serve to align the magnets in anti-parallel orientations, the perpendicular field

components induce a large torque on the top magnet making it easier to switch during re-

versal and also establish a feedback loop between the magnets strengthening the coupling.

However, assuming a fast reversal in the multi-domain case, the bottom magnet has no net

perpendicular field components because the different domains of the bottom nanomagnet

align themselves in opposite directions. They precess with different phase such that the net

energy is minimized as shown in Figure 9.2, yielding a net-zero Y/Z dipolar field compo-
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Figure 9.2: Switching of the bottom magnet through spin-transfer-torque at a high cur-
rent density. Subplots show magnetization across domains at marked times during magnet
reversal.
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Figure 9.3: Main plot shows average x component of magnetization of each magnet. The
magnets settle away from the easy axis because of the low current density. Subplots show
magnetization across domains at settled positions (t = 4.0ns).

nent. This breaks the feedback loop and consequently weakens the magnetic coupling. It

is important to consider the non-uniformity of the dipolar field shown in Figure 9.3. This

again complicates reversal through coupling field by shifting the critical field values needed

to switch each domain.

Most importantly, it is critical to determine when this nanomagnet system is perfectly

coupled. Since both the critical field and the coupling field strengths are linearly propor-

tional to the saturation magnetization, the overall coupling between the nanomagnets be-

comes a function of the nanomagnet geometrical parameters. Assuming a constant width,

longer nanomagnets would have a larger critical field and weaker coupling field. There ex-

ists a length above which the system will not be perfectly coupled. To accurately quantify

the impact of multiple domains on dipolar coupling, numerical simulations are performed

to find the maximum length given a fixed width for the magneto-system assuming both
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Figure 9.4: Red region denotes magnet geometries where both multi- and single-domain
models predict perfect coupling assuming 2 nm thick magnets with a 2nm separation. Blue
region is where only single-domain model predicts perfect coupling.

single- and multi-domain magnets. For every magnet width and length, 30 simulations

were performed with different current densities into the bottom magnet. This variation is

essential to see if the magnets are truly coupled or if only for a particular set of values. The

precessional components of the coupling knock the magnets into a high energy state which

then relax into the expected orientations. It is shown in Figure 9.4 that for smaller magnets,

the single-domain approximation is reasonable for modeling a coupled nanomagnet system.

However, assuming thin-film nanomagnets, if the area of the nanomagnets is larger than

1µm2, the single-domain assumption overestimates the overall coupling strength between

the nanomagnets and is inaccurate for modeling real devices. Note that the 60⇥45⇥2nm3

magnetic bodies commonly used in this research fall well within the range where single

domain models can accurately represent multi-domain magnetic bodies [172].
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CHAPTER 10

COMPLETE DEVICE EVALUATION

From the onset of this work, we noted that the goal of this research was to find analytic

expressions for the fast evaluation of spin-based devices. We noted that there are four

prominent effects contributing to the operation of the Spin-Switch device: GSHE, STT,

dipolar coupling, and the MTJ effect. The GSHE and MTJ effects are heavily dependent

on fabrication and material parameters. They are only describable via the simple analytic

models covered previously. Chapter 4 formulated new models for reversal through STT.

Chapters 5-9 exhaustively analyzed coupling between magnetic bodies through dipolar in-

teraction.

Using these models we can accurately map out the set of values for which the Spin-

Switch device will operate as intended given a set of constraints. We design two Spin-

Switch devices based on layout constraints and reliability constraints. These two con-

straints yield very different device designs and performance metrics yielding significant

insight to the feasibility of Spin-Switch device technology.

10.1 Model Derivation and Definition

Recall from Figure 1.9 that the operation of the Spin-Switch device is dependent on four

main effects:

GSHE Electrical current goes into the device input and is converted to a spin current.

STT Reversal The spin current generated by the GSHE effect reverses the input magnet.

Dipolar Coupling Communicates information between input/output stages.

MTJ Effects The output current polarity determined by dual-MTJ subsystem.
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We can combine the analytic models developed in this thesis to form a complete evaluation

of the Spin-Switch device. In this section we review and define the models describing

these four effects before conducting a complete Spin-Switch device evaluation in Sections

10.2–10.41.

10.1.1 Model: Giant Spin-Hall Effect

GSHE material

Ferromagnet

Z

X
Y

Figure 10.1: Diagram of standard setup to drive a nanomagnet through the use of the GSHE.
Electrical current is oriented along x̂ and is represented by green-dashed arrows. Spin
current represented by pink arrows which flows along the ẑ. This means that the spin
current is polarized along the ŷ.

While this effect has been observed at length experimentally, it unfortunately does not

have a strong theoretical foundation. Every variation in a bulk material’s crystalline struc-

ture and geometry can greatly impact the magnitude of the GSHE. For this reason, analytic

expressions with strong physical foundation are difficult. Beyond bulk materials, interface

effects between the GSHE layer and bottom free-magnet greatly impact spin current gen-

erated by the electrical current flowing through the GSHE material. Regardless, certain

experimental works have suggested that the conversion of electrical to spin current through

the GSHE can be approximated by [70, 71]:

Js

Je

= ✓SH
L

t

✓
1 � sech

✓
t

�s

◆◆
= �. (10.1)

We often refer to the amplification of electrical to spin current densities as the parameter

�. Note that the polarization of the spin current must be perpendicular to the flow of
1For the complete device evaluation, we omit stochastic effects thereby simplifying analysis. The inclu-

sion of thermal noise would obfuscate the effects limiting device operation.
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spin and electrical current. According to Figure 11.3, this means that the length (L) used

in (10.1) is the width of the free magnet. t is the thickness of the giant spin hall effect

material. Making the GSHE material too thick means you’ll eliminate the amplification

factor. However, making the GSHE material too thin is also problematic for two reasons.

First, it would make the resistence into the input port of the device larger which will reduce

the magnitude of the electrical current outputted by two-MTJ output stack in this system

and will be discussed later in this section. Second, it is important to emphasize that the last

“
⇣
1 � sech

⇣
t

�
s

⌘⌘
” term is a recent addition to our understanding of the GSHE [70]. Up

until recently, it was believed that the expression is simply J
s

J
e

= ✓SH
L
t
. This has led to

a generation of spin devices to be modeled using this unrealistically optimistic optimistic

expression as can be seen in Figure 10.2.
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Figure 10.2: Calculates the amplification (�) of electrical to spin current assuming a nano-
magnet of multiple sizes. The Gangulay model refers to (10.1) while the ideal case corre-
sponds to the GSHE expression without the

⇣
1 � sech

⇣
t

�
s

⌘⌘
term. Assumes a ✓SH = 0.3

and �s = 2.5nm which corresponds to a tungsten material.

Without the sech term, as the thickness approaches 0, the amplification would go to

infinity. This is clearly incorrect and thus the sech term is necessary for describing the
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GSHE at thin films. Several materials have been shown spin hall conductivities as seen

in Table 10.1. To my knowledge, tungsten has the largest spin-hall angle of any known

bulk material. Therefore we note that for a tungsten material, the � is optimized when the

thickness of the tungsten film tW ⇡ 4nm.

Table 10.1: Selection of experimental literature which measure the spin-hall angle for var-
ious metals. Further review can be found in [56]. Tungsten is found to have the largest
GSHE amplification factor.

Material ✓SH (%) Ref.
Au 11 [181]
Pd 1.2 [182, 183]
Pt 6.8 [184, 185]
Ta 12 [66]
W 30 [68]

10.1.2 Model: Dipolar Coupling

The most crucial component of this device are the dipolar interactions between the free

magnets which control the input and output stages of the device. Having established that

PMA (uniaxial) magnetic bodies are unsuitable for dipolar interaction, only bulk in-plane

magnetic bodies are considered for the Spin-Switch design. Additionally, Chapter 7 proves

only the DIPxx and DIPyy tensor components are relevant when considering biaxial mag-

netic bodies with a free-axis along x̂ and positive perpendicular anisotropy along ẑ.

As the input and output stages of the Spin-Switch device have distinct requirements, the

magnetic bodies for both stages will need to be different. As such the expressions derived

in Chapter 8 are particularly useful. For reliable reversal in biaxial systems with balanced

tensor components, the following models:

DIPyy1DIPyy2 > (Hcrit1 � DIPxx2)(Hcrit2 � DIPxx1), (10.2)

DIPyy1DIPyy2 < (Hcrit1 +DIPxx2)(Hcrit2 +DIPxx1), (10.3)

must be satisfied. To avoid unstable system behaviors such as oscillatory and thermally-
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reactive states, the following two conditions must be satisfied:

DIPyy2

DIPyy1
<

Hcrit1 +DIPxx2

Hcrit2 � DIPxx1
, (10.4)

DIPyy2

DIPyy1
>

Hcrit1 � DIPxx2

Hcrit2 +DIPxx1
. (10.5)

For the evaluation of the Spin-Switch device, tensor component values are determined by

nanomagnet geometry according to (6.1-6.3). This system of equations allows us to deter-

mine if two magnetic bodies are reliably coupled.

10.1.3 Model: Two-MTJ Output Stack System

The two-MTJ output stack can be modeled as a resistor network shown Figure 10.3:

Figure 10.3: Diagram of two-MTJ resistor network equivalent used in this analysis.

where G1 and G2 are the resistance of the two-MTJ stacks, V is the supply amplitude

and rin is the output resistance. Notice that both MTJ stacks share a free-magnet body

but have opposing fixed layers. This means that one MTJ stack will always be in the

low-resistance, parallel configuration while the other stack will be in high-resistance anti-

parallel configuration. The change in resistance is typically modeled as:

�G

G
=

TMR

TMR + 2

, (10.6)
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where TMR is the tunnel magnetoresistance factor and is typically treated as a fitting pa-

rameter to experimental results. G is the average resistance of the stack while �G is the

change in resistance. Using this dual-MTJ structure, the polarity of the free-magnet will

control the polarity of the output electrical current. For the purposes of device charac-

terization analysis, we assume the MTJ stack connected to the positive supply is in the

low-resistance parallel state. The conductances of the stacks can be written as:

G1 =
G

2

+

�G

2

, (10.7)

G2 =
G

2

� �G

2

. (10.8)

and therefore, the resistance of the two stacks would be R1 = G�1
1 and R2 = G�1

2 . Accord-

ing to Figure 10.3, there are three key currents to be aware of. Itot is simply the amount of

current leaving the low-resistance supply. Ileak and Iout are the electrical currents flowing

into the high-resistance supply and output respectively. After some circuit analysis, Iout

can be calculated as:

Iout =
R2 � R1

R1R2 +R1rin +R2rin

V. (10.9)

Knowing the output current also allows us to know the total current traveling through the

nanomagnet:

Itot =
V � Ioutrin

R1
. (10.10)

Iout is the total electrical current flowing through the output free magnet. Given that this

current is passing through an MTJ system, it will also be significantly polarized. Therefore

the spin current following through the top nanomagnet can be modeled as:

Is2 = PItot. (10.11)

where P is the polarization of the current exiting the MTJ stack. This polarization factor
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can be any value between 0 and 1 but is typically assumed P = 0.5 for modeling purposes.

Note that the output resistance in the circuit model (rin) is considered to be the input

of the next magnet stage. If this resistance becomes too large, the leakage current becomes

larger while the the output current shrinks which is problematic for device operation; rin

should be as small as possible. However, the input of the device is controlled by the resis-

tance of the GSHE material which needs to be thin to maximize the the amplification of the

electrical current to spin current.

If the input resistance is large, one way to avoid leakage current is through making the

MTJ stack resistance larger. However, this would greatly increase the power consumption

of the total device and is generally not beneficial to the performance metrics of the device.

However, it may help increase the range of supply magnitudes for which the device is

operable.

10.1.4 Model: Spin-transfer Torque

We note that we primarily use biaxial mono-domain magnetic bodies where we do not have

exact expressions for reversal delay through STT. We did manage to obtain an analytic

model (4.6):

⌧ bi
= (

IC

Is � IC

)

X · ⌧uni, (10.12)

where X is a fitting parameter. However, as demonstrated in Figure 4.5, we can approxi-

mate X ⇡ 0.75 for materials with a very large perpendicular anisotropy. This delay model

promises lower energy costs for STT reversal as the Ms, Ku and volume of the bottom

nanomagnet is minimized. This is in contrast to the dipolar coupling which requires a min-

imum Ms and geometry for reliable coupling. In addition, the Ms and volume of the top

nanomagnet should be maximized to prevent the output/leakage current from impairing de-

vice operation. However, again the dipolar coupling models assert that if the dipolar field

emitted by the top nanomagnet is too strong, the system will trend towards an oscillatory

state. While we use (10.12) to guide our design process, the performance metrics of a par-
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ticular Spin-Switch design are calculated using transient numerical simulations to ensure

the correctness of our performance metrics.

10.1.5 Demagnetization Field Model

In other chapters, either SHd or 0Hd demagnetization field models were utilized to more

easily analyze biaxial and uniaxial systems respectively. However, the shape anisotropy of a

magnetic body may significantly alter the magnetic body’s energy barrier and precessional

dynamics. For the Spin-Switch device designs in this chapter, we will use the complex

demagnetization fields which will more accurately represent a real-world nanomagnetic

system.

10.2 Layout-Constrained Device Characterization

From the previous chapters, it is clear that the Spin-Switch device is an amalgam of inter-

acting magnetic effects with contradictory ideal material parameters. It is most prudent to

begin this evaluation of the layout-constrained device by first determining the size of the

bulk materials involved in devices operation. Realistic floorplanning rules were followed

according [27]. While this work offers a number of layout rules and regulations the ones

relevant to our purposes are as follows:

• Length and width of bulk material bodies must be a multiple of the feature size (F ).

• Supply contacts consume a F ⇥ F area and must be four feature lengths away from

other contacts.

• Material parameters limited to those of common bulk materials listed in Table 10.2.

10.2.1 Layout of Iterative Device Design

In our case, we assumed a feature size F = 15nm. The thickness of bulk materials has no

specific design rule associated with it but we attempted to keep the thickness in multiples
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Table 10.2: Material parameters of common bulk material used spintronic research and
modeling [106, 91].

Material Ms

�
MA
m

�
Ku

�
kJ
m3

�

Co 1.4 520
Fe 1.7 48
Ni 0.49 -5.7

Permalloy 0.86 0

of 0.5 nm which should be achievable with modern fabrication technology. Using the rules

described, we obtained the following device layout shown in Figure 10.4. To understand

Z
X

Y
X

Z

Top View

X

Y

Side View
Z

Y

Front View

OUT

IN

+V

-V

Figure 10.4: Classic device layout using layout rules outlined in [27].

this layout it is simpler to begin from the top layer down (opposite to the flow of informa-

tion). First we begin by placing the supply contacts. The spacing between these contacts is

determined by the next layer, the fixed magnet. Because these magnets are in-plane fixed

magnets, an L/W aspect ratio of 2 was chosen to increase the contribution to the energy

barrier by the shape anisotropy and help preserve their magnetization states. Next the tun-
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neling barrier is made slightly larger than the fixed magnets to ensure full contact between

the top free- and fixed-nanomagnets.

The top free magnet is laid next and we decide to make this magnet a 60nm⇥ 45nm⇥

2nm magnet because we found that making the aspect ratio any larger would increase the

current to a level which would make dipolar coupling impossible. The geometries and

material parameters for the system will be further discussed in the next section. The metal

layer and GSHE material are extended to account for the space requirements between the

contacts.

The bottom nanomagnet and top free magnet have the same lengths and widths. This is

because it can be shown that the averaged dipolar tensor is maximized for systems whose

interacting areas are equal. The nanomagnet bosies are also centered with respect to one

another along the ẑ-axis. This ensure that the non-diagonal components of the dipolar

tensor average to zero maintaining ensuring a free-axis along x̂.

10.2.2 Material Parameters

Tungsten, having the largest known spin hall angle, was the natural choice for the GSHE

material layer. This gives a ✓SH = 0.3 and �s = 2.5nm. The GSHE material also

determines the input resistance of the device. Figure 10.2 shows that the amplification

of the GSHE material is optimized at 4nm thickness. The bulk resistivity of tungsten is

5.60 ⇥ 10

�8
⌦ · m [186]. Using these values we get a resistance a resistance RW = 42⌦.

In most digital circuits, the output of one gate must be connected to the input of multiple

others. This is referred to as “fan-out” where a value of 1 would indicate a repeater circuit,

and > 1 would suggest a logic circuit. We must multiply rin by the fan-out value of 4

normally used to characterizes devices to obtain: rin = 168⌦.

Next the parameter values for the MTJ stacks need to be assigned. We need to minimize

the proportion of current being leaked between supplies. This leakage is solely achieved

by increasing TMR. A large amount of experimental research has been dedicated to the
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Table 10.3: Free magnet material parameters for layout-constrained device design.

M1 (Bottom) M2 (Top)
Ms(

MA
m

) 1.7 0.86
Ku(

kJ
m3 ) 48 0

Geometry (nm3
) 60 ⇥ 45 ⇥ 1 60 ⇥ 45 ⇥ 2

analysis of MTJ structures. Currently, MTJ’s with MgO tunneling barriers appear to offer

the largest TMR values [20, 187, 83, 188]. A TMR = 8 falls within range of such devices.

The resistivity of the MTJ stacks needs to be as low as possible to minimize the power

consumption of the device. After a review of various experimental research, the lowest

resistance MTJ values seen are 2⌦µm2 [189, 190, 191].

Most important are the material parameters composing the two-magnet system. Note

that the bottom nanomagnet should emit a strong dipolar field making the reversal of the

top nanomagnet reliable. The strength of the dipolar field is proportional to the Ms of the

magnetic material. Of the common bulk magnetic materials normally considered, iron (Fe)

has the largest Ms with material parameters: Ms = 1.7MA
m

and Ku = 48

kJ
m3 . However, a

large Ms increases the critical current required for STT reversal. We mitigate this issue by

making the bottom magnet as thin as possible reducing its volume.

The top nanomagnet should have a fairly large Ms, but should also have a small energy

barrier such that the dipolar field emitted from the bottom nanomagnet is strong enough

to reverse the top. A permalloy has theoretically no uniaxial anisotropy energy making

the energy barrier determined solely by the shape anisotropy of the magnetic body. In this

evaluation we are using the complex (CHd) demagnetization field. Therefore, we assume

a permalloy material for the top nanomagnet with material parameters Ms = 0.86MA
m

and Ku = 0

kJ
m3 . Because we lowered the energy barrier of the top nanomagnet, M2 is

susceptible to the bias current flowing through the top magnet. To counteract this bias

current, we increase the thickness of the top magnet to 2 nm.

Therefore, for the layout constrained device design, we use the device parameters listed

in Tables 10.3–10.5.
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Table 10.4: MTJ material parameters for layout-constrained device design. Values corre-
spond to MgO based MTJ device.

TMR 8
RMTJ 1.475k⌦

Areanm2
30 ⇥ 15

Table 10.5: GSHE material parameters for iterative design device. Values correspond to
Tungsten material which has been shown to have the largest amplification factor of any
known GSHE material to date [56].

✓SH 0.3
RW 42⌦

tW 4nm

10.2.3 Performance of Layout-Constrained Device Design

We first verify the operation of the layout-constrained design by analyzing sample device

reversals for a multitude of supply amplitudes as shown in Figure 10.5. Figure 10.5 demon-

strates that the device has a limited range of operation. If the voltage is too small, there

is insufficient current to reverse the two-magnet system. However, if the spin current is

large, the dual free-magnet system enters into an oscillatory state. This is different than the

oscillatory states observed in Section 8.5 as those oscillatory states occured with a single

spin current driving the bottom nanomagnet. Sweeping across a range of voltage values,

we can obtain an approximate performance values for the device:

Figure 10.6 shows the results of the voltage sweep. We have chosen to initially omit

stochastic effects from the performance metrics during this stage of our analysis. In such

a complex system, stochastic perturbations would needlessly complicate the analysis. The

delay variation observed in Figure 10.6 is an example of deterministic noise caused by the

precessional effects of magnetization and it has very similar characteristics to the stochas-

tic noise. Note that the variation is on the order of the period of a precessional orbit of

the magnetization near the separation energy. The delay variation increases as the volt-

age approaches the maximum limit for nominal operation. This is due to the nanomagnet

undergoing many oscillations before relaxing to the free-axis.
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Figure 10.5: Sample reversals for layout-constrained Spin-Switch device. ~mx component
of magnetizations shown for top and bottom free magnets.
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Figure 10.6: Voltage amplitude sweep for layout constrained Spin-Switch device.

It is useful to look at the energy-delay-product (EDP) because it gives useful, albeit sim-

plified, metric for the device performance. Looking at the average trends in Figure 10.6,

once the voltage amplitude is sufficiently larger than some critical current, the EDP remains
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roughly constant. This average EDP value is 2.5⇥10

�21
J · s. For the sake of comparison,

the approximate EDP for current CMOS technology can be found in the International Tech-

nology Roadmap for Semiconductors (ITRS) [192]. Assuming a feature size of 15nm, high

performance CMOS has an EDP of approximately 0.21⇥10

�24
J · s. This is approximately

four orders-of-magnitude less than the EDP of our layout-constrained device design.

10.3 Enhanced Layout-Constrained Spin-Switch Layout

One criticism of this device concerns the fabrication of the fixed magnets. Fixed nanomag-

nets are typically composed of multiple magnetic layers resulting in a ferromagnetic body

layered next to a pinning layer. The interaction between the magnetic body and pinning

layer results in a very large net anisotropy energy along the free-axis making the reversal of

such a magnet, be it through STT, thermal effect or otherwise, unlikely. The fixed magnet

is then set to a particular direction by applying a very large magnetic field across the chip.

However, the device in Figure 10.4 has two fixed magnets in the opposite direction. This is

problematic since applying a large field to one small portion of a chip is extremely difficult

from a fabrication standpoint.

To simplify the fabrication of the Spin-Switch device, we can split the ferromagnet

bodies in two, complementary devices. By routing the electrical current in opposing di-

rections for each M1 portion, we can orient the fixed magnetizations in a parallel fashion,

greatly decreasing the complexity of fabrication. This enhanced layout-constrained design

is shown in Figure 10.7. The primary benefit of this design is that the fixed magnetizations

are oriented in the same direction allowing easier device fabrication. We can do this be-

cause of the new free magnet structure. Notice that the GSHE material is bent into a “U”

shape running under each free magnet. Assuming a positive current into the input, the elec-

trical current flows in the positive +x̂ direction under one of the lower free magnets and in

the �x̂ direction under the other lower free magnet. This means that the GSHE material

applies opposing spin torques to the two lower free magnets and hence, the split, lower free
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magnets reverse to anti-parallel directions
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Figure 10.7: Enhanced device layout where the free magnets are separated into two stacks.
This modification allows the simpler fabrication of dual fixed magnets whose magnetiza-
tions are oriented in the same direction. This design also makes the free magnets smaller
theoretically improving device performance.

There is a secondary benefit to this enhanced layout. Making the free magnet bodies

smaller will require less energy for reversal. But there is a problem with simply making the

free-magnet bodies smaller. If there was no cost to do so, one can simply scale the device

down infinitely and argue that the energy costs of this device trend towards zero. But spin-

based technologies and charge-based technologies share the same weakness as the feature

size is scale down, reliability. This is especially true in spin-base devices since reducing the

volume of a magnetic body makes its magnetization state less stable and prone to thermal

effects. Reliability gates the full potential of the device.
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10.4 Reliability-Constrained Spin-Switch Device Design

The limiting factor for the layout-constrained device were the benchmarking rules. These

rules were developed in an effort to compare different logic technologies assuming current

device technology. However, one can argue that as fabrication technology improves and the

devices are scaled down, spin-based technology will become more viable, if not superior

to current CMOS technology. But the limiting factor to this argument is that the magnetic

systems must be reliable above all else. Reliability becomes an issue for smaller devices

because the magnitude of the thermal field is inversely proportional to the volume, Ms and

Ku. Therefore, we can approach the design of the Spin-Switch in an alternate manner. We

will attempt to design the best Spin-Switch device possible while making sure the magne-

tization states are robust and meet a certain reliability criteria. We can simply ask what the

best performance parameters for this device are given theoretically, a set of favorable input

conditions, and ignoring the feasibility of fabrication. The material and geometric param-

eters are largely unbounded. Because physical layout is not a concern for the theoretical

case, let’s return to the classic device design shown in Figure 1.9.

10.4.1 Model Definition: Thermal Reversal Probability

In Chapter 3, we discussed the probability of reversal for biaxial magnetic body and con-

cluded that given a long observation time, the probability of reversal for biaxial and uniaxial

systems are equivalent. Therefore, it is possible to use thermal reversal probability equation

(3.2) repeated here for ease of reference

PSW = 1 � exp[tf0e
� E

b

k

b

T

], (10.13)

where

f0 =
�↵

1 + ↵2

s
H3

KMsV

2⇡kBT
. (10.14)
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We can reformulate (10.13) to become a function of material parameters and desired sta-

bility

f0 =
�ln(1 � PSW )

texp(�K
u

V
k

B

T
)

. (10.15)

Setting PSW and t to the desired values allows us to solve for material parameters Ms, Hk,

and V . We can assume an observation time t = 100ns and PSW = 10

�6. While this set

of reliability metrics are far below what current CMOS technology offers, it is difficult to

increase the reliability metrics further while also designing a device using a reasonable set

of material parameters.

10.4.2 Initial Approximations

We need to consider the number of variables in the two-magnet system and attempt to

reduce the number of variables making the complexity of the analysis more manageable.

We begin by noting that ↵ should be as small as possible. Not only would a large ↵ in-

crease the critical current of the two-magnet system, it also inhibits the coupling between

the nanomagnets as noted in Section 7.3.3. Therefore, a small ↵ = 0.01 is considered.

Next, for each free magnet, L,W, t define the length, width and thickness of the ferro-

magnetic body and Ms/Ku describe the material parameters of the magnetic body. For the

GSHE effect to be maximized, the width of the magnetic body should be as large as pos-

sible. However, the width of an in-plane nanomagnet should not exceed its length because

its shape anisotropy would end up working against it’s uniaxial anisotropy and unstable

behavior may occur. In addition, from (6.1)-(6.3), the tensor components are maximized

when the length of the magnetic body is equal to the width. Hence, it is most beneficial to

assume that L1 = W1 and L2 = W2. Furthermore, in a ẑ-centered two-magnet system, the

magnitudes of the dipolar components are maximized when the areas of the two magnet

system are approximately equal. Therefore we expand our geometric approximation such

that L1 = W1 = L2 = W2 = Lm where Lm is simply an abstraction of the value assigned

to those four geometric parameters. Lastly, we want to bottom nanomagnet to be as spread
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out as possible to ensure it receives the maximum benefit from the GSHE. Therefore, we

can make t1 = 1 nm. Six unknowns in the two-magnet system need to be solved for: Lm,

t2, Ms1, Ku1, Ms2 and Ku2.
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Figure 10.8: Minimum Ku (Left) and Hk (Right) required for a Lm⇥Lm⇥ 1nm magnetic
body while maintaining reliability metrics PSW = 10

�6 and t = 100ns.

10.4.3 Minimum Free-Magnet Size

Our minimum reliability metrics allow us to determine the material parameters necessary

for a robust magnetic body. In Figure 10.8, we find the minimum Ku which establishes

a reliable magnetic body for a given set of Ms and Lm values. The minimum Ku value

is roughly constant regardless of Ms. When calculating the Hk value, we notice that the

magnitude of the uniaxial field varies greatly with both Lm and Ms. Looking at the actual

Hk values, we begin to see a problem. From (6.1), we know that the components of the

dipolar tensor are linearly proportional to Ms such that DIPxyz = Ms◆ where ◆ is some

complex calculation dependent on the geometry of the two magnet system. From our pre-

vious calculations we also know that for the two-magnet systems we are considering ◆ is on

the order of 0.01. Using common Ms values such as the ones found in Table 10.2, DIPxyz

is on the order of 104 A
m

which is less than many of the minimum Hk values calculated in

Figure 10.8.

Assuming Lm, t1, and t2 are known, the Ms and Ku of each magnetic body needs to

be determined. For a given Ms1, the minimum Ku1 can be calculated using (10.13). In
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addition, the geometry and Ms1 determine the magnitude of the tensor components emitted

by M1. If Ms2 is small, Hk2 will be large. The dipolar field emitted by M2 will be too small

to establish coupling between the magnetic bodies according to 10.2. As Ms2 increases,

DIP2 becomes larger and Hk2 shrinks strengthening coupling. Using this principle, Figure

10.9 calculates the minimum Ms2 given Ms1 for a variety of geometric parameters. Notice

that the minimum Ms values for a operational two-magnet system are large given that iron

has a Ms = 1.7MA
m

, the largest saturation magnetization of all known materials. Because
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Figure 10.9: Minimum Ms2 values for nanomagnet system given Ms1. Assuming t1 = 1nm
and L1 = L2 = W1 = W2 = Lm. Ku1 is determined by Ms1 according to the reliability
constraints. Therefore, there is a minimum Ms2 which will allow a DIP2 large enough to
satisfy the dipolar coupling model given by (10.2).

t1 = 1ns has been fixed to ensure the bottom nanomagnet is as spread out as possible, en-

suring maximum amplification from the GSHE effect, there are two geometric unknowns

in the system, Lm and t2. Thermal reliability is inversely proportional to nanomagnet vol-
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ume. A larger M1 volume permits a smaller Hk1 field. This means Ms1 and Ms2 values can

be reduced while still ensuring ideal coupling. Figure 10.10 maps the minimum geometric

requirements for an operational Spin-Switch device.
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Figure 10.10: Minimum t2 values for nanomagnet system given Lm. Assuming t1 = 1nm
to maximize the amplification for the GSHE. As the volume of a nanomagnet increases,
the thickness of the top nanomagnet may be reduced will maintaining equivalent reliability
metrics.

10.4.4 Performance of Reliability-Constrained Device Design

Using extensive numerical calculations, we determine the lowest energy nanomagnet con-

figuration which satisfies the reliability parameters defined as:

Note that the nanomagnets considered here are actually larger than those of the layout-

constrained design. Ensuring reliability of a nanomagnet system is very difficult because

the thermal field has such a large effect on magnetization state. Because the nanomagnet’s
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Table 10.6: Free magnet material parameters for reliability-constrained device design.

M1 (Bottom) M2 (Top)
Ms(

MA
m

) 1.7 1.7
Ku(

kJ
m3 ) 40 40

Geometry (nm3
) 83 ⇥ 83 ⇥ 1 83 ⇥ 83 ⇥ 2

are larger, they can support the MTJs as they were sized in the layout-constrained design.

Hence, GSHE (Table 10.5) and MTJ (Table 10.4), parameters kept were same.

Figure 10.11 measures the device performance over a variety of voltage magnitudes.

In this device design, there are a few oscillatory states at certain voltage supply currents

indicated by the EDP spikes. This is significantly different than the layout-constrained

case where there was an oscillatory state once the voltage magnitude exceeds a certain

threshold. The reliability-constrained case designs the top nanomagnet to be as stable as

the bottom, reducing the likelihood of oscillatory states.

Like the layout-constrained case, we see a constant EDP once the voltage magnitude

is beyond a critical threshold. The average of this value is approximately 5⇥10

�21
J · s.

This EDP value is roughly 25⇥ the EDP of the layout constrained case because the larger

nanomagnets have greater Ms and Ku values. This shows that the EDP of Spin-Switch

device technology is roughly five orders-of-magnitude greater than the EDP of modern

CMOS technology. Significant performance improvements need to be made that improve

the delay and power consumption of spin-based technologies.
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Figure 10.11: Performance metrics of reliability constrained device design. Free magnet
parameters listed in Table 10.6 which were optimized while maintaining reliability metrics
PSW = 10

�6 and t = 100ns. (Left) Sample of device functionality assuming a 1 V supply
magnitude. (Right) Voltage sweep of reliability constrained device design measuring delay
and EDP metrics.
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CHAPTER 11

POSSIBLE IMPROVEMENTS I: GENERAL

Having proven that Spin-Switch devices in their proposed configuration yield poor perfor-

mance metrics, we aim to consider whether spin-based devices have any advantages which

would bring their performance metrics closer to or even exceed current CMOS standards.

As such, Chapters 11 are dedicated to finding possible benefits of spintronic devices which

may not be evident when conducting a simple energy-delay analysis. In addition, Chapters

11–12 propose possible augmentations applicable to a variety of spin-based devices which

theoretically promise to improve the performance of these technologies.

11.1 Latch-less Pipelining in Spin-Based Circuits

In CMOS pipelines, dynamic flip-flops (DFFs) are placed at the either end of pipeline

stages. Spin devices are non-volatile since the magnets maintain their orientation even

when not being driven by a spin current. Instead of the stage input needing to be held for

the entirety of the clock period, the stage input of a spintronic pipeline only needs to be

held long enough to switch the next device. By carefully manipulating the supply voltages

of the logical device at the beginning and end of a pipeline stage, the use of latches may be

avoided when building a pipelined circuit [54].

Figure 11.1 demonstrates an example of latch-less pipelining using the Spin-Switch

devices. This technique uses no extraneous switches. The Spin-Switch logic devices shown

at the end of stage N and beginning of stage N+1 can be used as logic gates that are part of

a more complex circuit. Their supplies must be clocked and never on at the same time. All

other switches may use static supplies, which is important because of the delay variation

issues in spintronic devices. In Figure 11.1, the switch in the Nth stage is on during the

negative portion of the clock and off otherwise. Conversely, the switch in the (N+1)th stage
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is powered during the positive portion of the clock.

To gain a full understanding of the pipeline, it is useful to step through it. In Figure 11.1,

the supplies of Switch 1 (S1) are turned off and the supplies of Switch 2 (S2) are turned on.

The input signal is stopped at S1 and cannot propagate to the next stage while the input for

Stage N+1 is held by S2. When the clock falls, the supplies of S2 are turned off and the

supplies of S1 are turned on. S2 no longer outputs the input for the previous stage. This is

okay as long as there is enough delay to flip the magnets of the next switch. S1 now can

propagate the input to S2 which will then block the input from proceeding into Stage N+1.

The clock now goes high and S1 is turned off again. S2 then outputs the signal it read from

Stage N at the positive edge of the clock.

The input signal only passes to the next stage at the positive edge of the clock and is

blocked otherwise. This fulfills the requirements needed for pipelining. There are a few

caveats needed to be considered. The on-time of the switch does not need to be half the

clock period. It needs to be long enough such that the switch can flip the magnetization of

the next switch. The last switch of the Nth pipeline stage and the first switch of Stage N+1

cannot be on at the same time. This ensures that a signal is blocked until the pipeline is

ready to proceed. The only drawback of this method is that the supplies must be clocked,

which can make system architecture design challenging. Clocking in spintronic devices is

preferred to reduce their power dissipation [2].

11.2 Benefit of Majority Gate Logic Functionality

An interesting aspect of current based logic devices is that they are functionally majority

gates. They can only perform Boolean operations when their inputs are weighted. Adding

a new Boolean operation can reduce the number of devices required in certain circuits. For

instance, a full adder requires five NOT/AND/OR gates, but only three majority gates as

seen in Figure 11.2 [193]. It has been theoretically evaluated that majority gate functional-

ity can reduce the nominal gate count by roughly 20-25% [194, 195].
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Figure 11.1: Figure demonstrates latch-less pipeline design. The waveforms are obtained
using SPICE simulations of the Spin-Switch device. Free and fixed magnets are in blue and
magenta, respectively. Arrows represent direction of current flow, not signal propagation.

Figure 11.2: Logic diagram of a 1 bit full adder system

164



11.3 Copper Collector

Consider Figure 10.1. Due to the nature of the GSHE material, the spin current must be

orthogonal to the electrical current. In a similar fashion, the polarization of the spin current

must be orthogonal to the spin current itself. In Figure 10.1, the polarization of the spin

current is in the ŷ direction. If it is desired the nanomagnet be reversed through a damping

reversal, its easy-axis must also be in the ŷ.

This becomes problematic because the free-axis direction should the the longest direc-

tion for in-plane nanomagnets. As seen in Figure 10.1, it would be preferable to make the x̂

axis, the hard-axis, as long as possible. The width of the nanomagnet should be as long as

possible, not its length. The contribution of the GSHE is given in (1.3) and repeated here:

Is = Ie✓SH
WNM

tGSHE M

✓
1 � sech

✓
tGSHE M

�s

◆◆
, (11.1)

where Is and Ie represent the spin and electrical currents respectively. ✓SH is the spin hall

angle and is specific to the material being assumed. WNM and tGSHE M are the width of

the nanomagnet and thickness of the spin-hall material respectively.

Ferromagnet

Copper

Giant Spin Hall Effect Material

Z

X

Figure 11.3: Diagram of spin collector setup to drive a ferromagnet through the use of the
GSHE. this is similar to the standard setup but includes a copper collector between the
ferromagnet and GSHE material. Ideally the copper plate will collect the spin current from
the GSHE material and diffuse it to the ferromagnet.

11.3.1 Spin Collector Setup

It has been suggested that the addition of copper plate in between the GSHE material and

ferromagnet (as shown in Figure 11.3) can amplify the conversion from electrical to spin

165



current [196]. The addition of the copper plate in Figure 11.3 aims to extend the width of

the ferromagnet from the GSHE material’s perspective, but keep the magnet properties the

same from the ferromagnet perspective. In theory, the GSHE will inject a spin current into

the the copper plate. This spin current will diffuse through the copper material and into

the ferromagnet which functionally behaves as a spin sink. Because the copper plate has a

larger area than the ferromagnet, it collects a larger spin current from the GSHE material

which is delivered to the ferromagnet. Because the ferromagnet size is unaltered, it is easier

to reverse with this larger spin current.

Several things were missing from the analysis provided in [196]. Most notably, the spin

diffusion through the copper collector was completely omitted from this analysis. The spin

current attenuates as it passes through a metal because of electron scattering events with

the crystal structure [197, 198]. This analysis will attempt to measure the efficacy of the

spin collector idea assuming the following:

1. Time Independence - Only the DC case of the circuit will be evaluated

2. No Interface Effects - Interface scattering and edge effects are neglected. Assumes

perfect material matching.

It is important to emphasize that this analysis focuses on the maximum possible benefit of

the copper collector, assuming no interface contribution. We know experimentally that the

interface between the metallic layers critically alters the dynamics of the system. There are

a few benchmarking works which assume the existence of an ideal copper collector in their

calculations.

11.3.2 Circuit Model

There are three distinct spin injection regions which are shown in Figure 11.4.

In Zone 1, assuming no interface effects, the copper plate can be ignored and the spin

injection is simply that of a standard ferromagnet on top of a GSHE material. The spin
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Figure 11.4: 3 distinct spin injection regions exist. In Zone 1, assuming no interface effects,
the copper plate can be ignored and the spin injection that of a standard ferromagnet on top
of a GSHE material. In Zone 2, spin current accumulates in the copper and diffuse toward
the ferromagnet. In Zone 3, there is no spin contribution towards the ferromagnet.

current contribution from this region can be modeled as (11.58). This assumes that the

interface effects have no significant impact on the spin current delivered to the magnetic

body. There is no spin current injection from Zone 3.

Zone 2 is the basis of the spin amplification. This region theoretically collects extra

spin current from the GSHE material and delivers it to the magnetic body. We focus on the

spin current contribution by this region.

Circuit Model of Diffusion Channel

According to [199], the spin channel can be modeled as a complex RC circuit as shown in

Figure 11.5.

The objective of this work is to find the additional spin-injection the copper plate allows

over a long period of time meaning that the capacitors can be ignored. The resulting circuit

per unit length is shown in Figure 11.6.

In the circuit model given in Figure 11.6, the resistances and current sources are defined

using the following reasoning. The spin current generated by the GSHE material is given

by (11.2):

IT�x = Ie✓SH
�x

tGSHE M

, (11.2)
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Figure 11.5: Circuit model for spin channel diffusion. Taken from [199].

the resistances are given in the following manner:

R? =

D⌧S

�A
,R|| =

1

2�A
, (11.3)

where Cq is the quantum capacitance per unit volume, A is the area of the diffusion chan-

nel, and ⌧S is the spin relaxation time in the non-magnetic material. D is the spin diffusion

coefficient of the electrons in the channel. � is the conductivity of the non-magnetic con-

ductor. In our model, we include size effects and thus, as the copper collector is made

thinner, the resistivity is increased. The total channel circuit can be modeled as in Figure

11.7.

Generalized Differential Equation for Channel Cell

We define the current going through the circuit cell according to Figure 11.6. Using KCL

we can derive the differential equation describing the cell’s center node voltage.

I||2 + I?2 = I||1 + I?1 (11.4)
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Figure 11.6: The steady state circuit cell model of the copper diffusion channel and spin
injection from the GSHE. This circuit gives us the total possible spin injection of the copper
plate model.

V (x) � V (x+�x)

R||�x
+

V (x)�x

R?
=

V (x � �x) � V (x)

R||�x
+ IT�x (11.5)

V (x) � V (x+�x)

R||�x
� V (x � �x) � V (x)

R||�x
+

V (x)�x

R?
= IT�x (11.6)
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Figure 11.7: Circuit model of the copper diffusion channel and spin injection from the
GSHE. The total circuit is simply a series of the cells shown in Figure 11.6.
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2V (x) � V (x+�x) � V (x � �x)

R||�x2
+

V (x)

R?
= IT (11.7)

V (x)

R?
� IT =

(V (x+�x) � V (x)) � (V (x) � V (x � �x))

R||�x2
(11.8)

V (x)

R?
� IT =

1

R||

d2V

dx2
(11.9)

11.3.3 Solution 1 to Differential Equation

The generalized differential equation takes the form:

1

R||

d2V

dx2
=

V (x)

R?
� IT (11.10)

or

d2V

dx2
=

R||

R?
V (x) � ITR|| (11.11)

we know that the solution to this differential equation must take the form:

V (x) = (V0 � V1) e�↵x
+ V1. (11.12)

We define the voltages as shown in Figure 11.8

Plugging (11.12) into (11.11) we get:

↵2
(V0 � V1) e�↵x

=

R||

R?

�
(V0 � V1) e�↵x

+ V1
�

� ITR|| (11.13)

There are 2 parts to this exponential equation. First, we solve for the constants in the

equation:

0 =

R||

R?
V1 � ITR|| (11.14)
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Figure 11.8: Labeling of voltages along the spin copper channel.

V1 = ITR? (11.15)

Next, we solve for the exponentials in the equation:

↵2
(V0 � V1) e�↵x

=

R||

R?

�
(V0 � V1) e�↵x

�
(11.16)

↵ =

s
R||

R?
(11.17)

All the constants in (11.12) have been solved for except V0. We can say V0 = 0 since it

is assumed, at the very beginning of the copper channel, very little current is shunted. The

solution for the voltage along the copper channel can be written as:

V (x) = ITR?

 
1 � e

�
r

R||
R?

x

!
(11.18)
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Current injected to Magnet from Copper Channel

Looking at Figure 11.6 it is straightforward to obtain the current through each of the resis-

tors at a certain distance. They would be:

I|| (x) = � 1

R||�x
�V = � 1

R||

dV

dx
= IT

R?

R||

s
R||

R?
e
�
r

R||
R?

x
= IT

s
R?

R||
e
�
r

R||
R?

x
(11.19)

Copper Channel Diffusion Results

This section analyzes the improvement in spin injection from Zone 2. It is important to

realize the relationship between the length of the Zone 2 copper, the overhang length and

the spin current injected into the nanomagnet.

The equation for the spin current injected into the nanomagnet is given by (11.19). Let’s

assume a 60nm ⇥ 45nm ⇥ 2nm ferromagnet. The resistivity, diffusion coefficient, etc. of

the copper channel can be calculated according to [52].The spin current injection into the

nanomagnet for various copper overhangs and thicknesses follows in Figure 11.9.

Figure 11.9 reveals a problem with this model. (11.19) is monotonically decreasing.

The maximum spin injection occurs when the copper channel is 0 nm long. This is evi-

dent from (11.19). None of the variables in the equation are dependent on x according to

(11.2-11.3). (11.19) is monotonically decreasing. An error in either the model or one of

the assumptions exists because this result means no copper channel has more spin current

injection one exactly the length of the nanomagnet body.
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Figure 11.9: Current injected to ferromagnet vs. various copper lengths using Solution
1. Legend denotes various copper plate thicknesses (Z dimension). Assuming a 1mA
electrical current passing through the GSHE material.

11.3.4 Solution 2 to Differential Equation

The boundary conditions used in Section 11.3.3 are the likely cause of error. The most

likely conclusion is that:

V1 6= ITR? (11.20)

At L = 1, the copper and the nanomagnet meet. It is believed that the nanomagnet

behaves as a spin sink and as a ground at the point shunting the current. If the solution to

(11.9) is of the form (11.12), (11.20) must be true. Therefore, (11.12) is not the solution to

the system.

(11.12) assumes dV
dx

= 0. This is not necessarily true. If you attempt to solve the

equation numerically with V (1) =

dV (1)
dx

= 0 a nonsensical equation results in a similar

fashion to the analytic case. Solutions to these differential equations need to be bounded.
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Generalized Solution using Laplace Transform

Using another approach, we can solve the differential equation in the Laplace form using

the coordinates shown in Figure 11.10:

Copper

Z

X

Zone 1

V-∞ V0

Figure 11.10: Alternate labeling of voltages along the spin copper channel.

Assuming the following initial conditions,

V (0) = 0 (11.21)

dV (0)

dx
= a (11.22)

The characteristic equation is of the form:

d2V (x)

dx2
� V (x)

�2
+ C = 0 (11.23)

where:

� =

s
R?

R||
(11.24)

C = ITR|| (11.25)
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The terms in (11.23) can be written in Laplacian form as follows:

L

d2V (x)

dx2

�
= s2V (s) � sV (0) � dV (x)

dx
(11.26)

L

V (x)

�2

�
=

V (s)

�2
(11.27)

L [C] =

C

s
(11.28)

Hence, the Laplacian of (11.23) would be:

�
s2V (s) � a

�
� V (s)

�2
+

C

s
= 0 (11.29)

Grouping the V (s) terms together:

V (s)


s2 � 1

�2

�
= a � C

s
(11.30)

V (s) =
as � C

s
�
s2 � 1

�2

�
=

as � C

s
�
s+ 1

�

� �
s � 1

�

� (11.31)

We can use the method of partial fractions to rewrite that equation as:

as � C

s
�
s+ 1

�

� �
s � 1

�

�
=

u

s
+

v�
s+ 1

�

�
+

w�
s � 1

�

� (11.32)

We find:

u = c�2 (11.33)

v = �(a� � c�2
)

2

(11.34)
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w =

a� � c�2

2

(11.35)

The Laplacian equation becomes:

V (s) =
c�2

s
� (a�+ c�2

)

2

�
s+ 1

�

�
+

(a� � c�2
)

2

�
s � 1

�

� (11.36)

We can take the inverse Laplace transform and find the solution of V (s) as:

V (x) = c�2 � (a�+ c�2
)

2

e�
x

�

+

(a� � c�2
)

2

e
x

� (11.37)

Solution with Boundary Condition

In the solution above, we have assumed two boundary conditions according to (11.21-

11.22). a must be found. The other boundary condition can be that the parallel current

at the negative infinity point is 0. The characteristic equation cannot be evaluated at 1.

Another boundary condition is needed.

Assume a finite magnet geometry where the overhang of the copper is L. In Figure

11.10, the copper overhang would extend from �L to 0. We know that the equation of the

parallel current at any point on x is given as:

I|| (x) = � 1

R||dx
dV (x) = � 1

R||

dV (x)

dx
(11.38)

We can argue that at the �L boundary:

I|| (x = �L) = 0 (11.39)

At this boundary, there is no parallel current component coming from the copper to the

left. If the collector is infinitely long, the spin voltage would converge to a constant value.

Therefore, the derivative of the voltage would converge to 0. Knowing (11.39) and (11.37)
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we can find a:
dV (�L)

dx
=

(a+ c�)

2

e
L

�

+

(a � c�)

2

e
�L

�

= 0 (11.40)

a
h
e

L

�

+ e
�L

�

i
= c�

h
e

�L

� � e
L

�

i
(11.41)

a = c�

h
e

�L

� � e
L

�

i

h
e

L

�

+ e
�L

�

i
= �c�

h
e

L

� � e
�L

�

i

h
e

L

�

+ e
�L

�

i
= �c� tanh

✓
L

�

◆
(11.42)

knowing a, we can further solve (11.37):

V (x) = c�2 � (a�+ c�2
)

2

e�
x

�

+

(a� � c�2
)

2

e
x

� (11.43)

V (x) = c�2 � 1

2

✓
c�2 � c�2

tanh

✓
L

�

◆◆
e�

x

� � 1

2

✓
c�2

+ c�2
tanh

✓
L

�

◆◆
e

x

� (11.44)

V (x) = c�2 � c�2

2

✓
1 � tanh

✓
L

�

◆◆
e�

x

� � c�2

2

✓
1 + tanh

✓
L

�

◆◆
e

x

� (11.45)

V (x) = c�2


1 � 1

2

✓
1 � tanh

✓
L

�

◆◆
e�

x

� � 1

2

✓
1 + tanh

✓
L

�

◆◆
e

x

�

�
(11.46)

(11.46) is the solution to the system that will be used in the analysis.

Re-derivation Copper Channel Diffusion Results

From (11.42) and (11.38) we can write the current contribution of the copper overhang as:

I|| (x) = � 1

R||

dV (x)

dx
=

c�

R||
tanh

✓
L

�

◆
(11.47)
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This equation is plotted in Figure 11.11 for various overhang lengths and copper thick-

nesses.
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Figure 11.11: Current injected to ferromagnet vs. various copper overhang lengths using
the re-derived current equations (Solution 2). Legend denotes various copper plate thick-
nesses (Z dimension). Assuming a 1 mA electrical current passing through the GSHE
material.

The results in Figure 11.11 appear to make more sense than the results shown in the

previous section. For the no overhang case, the current contribution is close to zero.If the

overhang grows too large, the current contribution levels out. Overall, this equation seems

to adhere to the general principles of spin transport.

11.3.5 Comparison of Solutions 1 and 2

We need to consider the differences between the two solutions since both are solutions

to the characteristic equation. Regardless of the direction of the coordinate system, the

characteristic equation remains the same.
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Solution 1 is of the form:

V (x) = ITR?
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the current through the copper channel would then be:
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the current going into the ferromagnet when x = 0 would be:

I||1 (x) = IT

s
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(11.50)

Consider Solution 2:
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where
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s
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C = ITR|| (11.53)
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If the length of the channel is infinitely long, the current going into the ferromagnet be-

comes:

I||2 (x) = IT

s
R?

R||
(11.55)
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The two solutions match if the length of the copper channel is L ! 1. Solution 1 is correct

for an infinitely long copper channel while Solution 2 also considers a copper channel of

finite length. The remainder of the chapter utilizes Solution 2.

11.3.6 Complete Solution to Spin Injection from Collector

We’ve spent the last two sections discussing the overhang components of the copper col-

lector. However, as shown in Figure 11.4, there are three regions contributing to the total

spin current delivered to the magnetic body. In this section, we will derive and analyze the

complete expression for the spin current delivered to the magnetic body.

Full System Analytic Models

We know the current contribution from Zone 3 is:

I||3 = 0 (11.56)

The current contribution from Zone 2 discussed in the previous section is:

I||2 = 2

c�

R||
tanh
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(11.57)

From Section 11.3 we know that the current contribution for Zone 1 is:

Is = Ie✓SH
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tGSHE M
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�s

◆◆
, (11.58)

Given a copper length LCu, the overhang length, relative to the total copper width and

magnet width, is given by:

Loverhang =

LCu � WFM

2

(11.59)
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The total current delivered to the nanomagnet from the copper collector becomes:
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The parameters assumed for Figure 11.12 are given by Table 11.1.

Table 11.1: Parameters used for Figure 11.12. Diffusion coefficients are derived from the
models in [52].

General System
Injected Electrical Current 1 mA

Nanomagnet Dimensions
Length 60 nm
Width 45 nm
Thickness 2nm

GSHE Material (Tungsten)
thickness 4 nm
spin hall angle 0.3
spin flip length 2.5 nm

Spin Collector Plate Dimensions
Width 60 nm

Copper Material Parameters
Specularity 0.2
Reflectivity 0.2

Electrical Current shunting through Copper Plate

So far, we have assumed that the electrical current is limited to the GSHE material. How-

ever, because the copper plate is a conductive material, some of the electrical current may

be shunted through the copper plate decreasing the spin current produced by the GSHE.

Here, we will include that shunting effect and attempt to resolve whether this copper col-

lector benefit is sustained. The resistance of the copper and tungsten heterostructure can

be modeled as two parallel resistances. The current traveling through the GSHE material,
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Figure 11.12: Total Current injected to nanomagnet vs. copper collector thicknesses using
parameters from Table 11.1. Legend denotes various copper plate lengths in the x̂ dimen-
sion. This assumes that a portion of the total current passes through the copper collector.

tungsten, is equal to:

IW = Ielec
⇢CutW

⇢W tCu + ⇢CutW
(11.61)

We are able to calculate the total spin current being delivered to the magnetic body using

the models provided. Note that we assume size effects alter the resistivity of thin copper

films [200]. However, for the tungsten GSHE material, we assume a bulk resistivity which

is sufficient for the purposes of our analysis. As shown in Figure 11.12, this calculation

is completed as a function of copper thickness and length. Very little electrical current

gets shunted through the copper collector if the copper plate is too thin since size effects

cause the resistivity of the thin to be very large. This causes the spin diffusion through the

copper plate to limit; there is no amplification. If the copper collector is very thick, the spin

current diffuses through the copper collector more easily. Little spin current is generated

by the GSHE material because more electrical current is shunted through the copper. There
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Figure 11.13: Total current injected to nanomagnet vs. copper collector thicknesses using
parameters from Table 11.1. Spin current is normalized against the nominal case where
the copper collector is not present. Legend denotes various copper plate lengths in the
x̂ dimension. This assumes that a portion of the total current passes through the copper
collector.

is a range of collector thicknesses for which the spin current is amplified. This is seen

in Figure 11.13 where the spin current is normalized against the no collector case. We

observe a 4⇥ improvement over the nominal no collector case shown in Figure 10.1. Spin

current is amplified when the copper collector is in the nm range, a relatively small value.

A 4⇥ improvement is not especially significant and will likely be damped by the effect of

adding another interface to the system. The electrical current being shunted through the

copper collector is a significant problem. If there is a way to stop this current shunting,

the amplification can be significantly increased as shown in Figure 11.14. Assuming no

shunting, an amplification of 10⇥ is achievable. It is unclear if this amplification would

result in a net positive amplification after negative interface effects are considered. The

full benefit of the copper collector can only be realized by mitigating the electrical current
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Figure 11.14: Normalized current injected into the magnetic body vs. copper collector
lengths and thicknesses using parameters from Table 11.1. Legend denotes various copper
plate lengths in the x̂ dimension. This assumes that a portion of the total current passes
through the copper collector.

being shunted away from the GSHE material. A barrier material which allows spin current

through but blocks electrical current may be one solution. Such barriers have already been

suggested for all-spin-logic [201]. It is unclear if such methods are suitable for GSHE-

generated spin current amplification.

Even a small increase in the ”effective magnet width” can lead to a large increase in

spin current for a small magnet. However, if the magnetic body was larger, the normalized

amplification would be reduced.
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CHAPTER 12

POSSIBLE IMPROVEMENTS II: STRAIN MEDIATED STT REVERSAL

Magnetostrictive thin-film hetero-structures have been found to be useful for a myriad of

microelectronic applications [202, 203, 204, 205]. This technology presents an opportunity

to augment proposed spin-based devices that rely on the manipulation of the magnetic

moment for data storage and/or processing [2, 54, 206, 207].

We consider an improved version of nanomagnet reversal through spin-transfer torque

(STT)[90, 208]. Nominally, the magnetization is initially at rest along the free-axis of the

nanomagnet near its low-energy state. When the longitudinal spin current is applied, it

imparts a torque on the magnetization and slowly fights the damping torque of the initial

energy basin until it crosses the energy barrier and settles towards the opposing direction

[209, 210]. This process is shown in the left subplot of Figure 12.1. The disadvantage

of this type of reversal is that a large amount of energy is used to counteract damping and

drive the magnetization from its initial energy basin across the energy barrier to the opposite

Initialized to −"# Initialized to +%# Initialized to +&'

Figure 12.1: Sample nanomagnet reversals assuming various initial states.
Left/Center/Right subplots correspond to initial position along �x̂, +ŷ, and +ẑ axes
respectively. Background lines show precessional trajectories at particular magnetization
energies. Red and blue trajectories denote precessional orbits in energy poles and basins,
respectively [80]. Magnetization is under influence of above-critical +x̂ longitudinal spin
current.
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Figure 12.2: Schematic of two types of augmented nanomagnet reversal structures [212,
136]. While not directly analyzed, a rough approximation of the theoretical benefits of
strain-mediated reversals can be applied when evaluating the efficacy of spin-based tech-
nologies.

orientation. Yet, a large energy barrier is necessary for nanomagnet stability [108, 211]. If

the magnetization can be initialized outside of its initial energy basin, we can presumably

save a great deal of energy reversing the magnetization. These types of reversals are shown

in the center and right subplots of Figure 12.1.

This initialization can be accomplished through magnetostriction [207]. Recent works

have shown that the energy landscape of a magnetic body can be altered by a voltage-

induced strain in ferromagnet and piezoelectric hetero-structures [213, 214, 215, 216, 217,

218, 219]. By layering a ferromagnet on top of a piezoelectric material, a large anisotropy

can be added to the energy landscape of magnetic body when a voltage is applied to the

piezoelectric material [220, 213]. Figure 12.2 demonstrates two types of augmented rever-

sal structures which can be utilized by several spin-based technologies [2]. Assuming this

strain-induced anisotropy is large enough, the magnetization will be forced in a new low-

energy state defined by the axis of strain. This effectively initializes the magnetization to a

new energy state. Next, the voltage can be turned off and a spin current applied, pushing

the magnetization into the preferred state. A sample of such a strain-mediated reversal is

shown in Figure 12.3.

This chapter provides a theoretical framework for such strain-mediated reversals. We

can represent the change in energy landscape caused by the voltage-controlled strain-
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Figure 12.3: Sample strain-mediated reversal assuming a FeGaB nanomagnet and KTY =

10

5 J
m3 . The nanomagnet is initially at rest along the free-axis. When the voltage is ap-

plied, a strain-induced anisotropy is introduced to the nanomagnet energy landscape. This
anisotropy overpowers the free-axis anisotropy and shifts the low-energy position to ŷ
which the magnetization relaxes. Once this new initial state is achieved, the voltage is
turned off. The induced anisotropy ceases and a spin current is applied to nudge the mag-
netization towards the appropriate final magnetization state.

interaction as a time-dependent temporary anisotropy (KT ). Using this model, we can

assess the requirements for reliable reversal. It is shown that the principle advantage of

strain-mediated reversal is achieved through the smaller pulse-widths (PWs), required for

reliable reversal. The energy is minimized when using a current pulse whose magnitude

is 50 � 100% greater than the critical current value. We assume a finite strain-induced

anisotropy magnitude and demonstrate that there is a critical anisotropy magnitude required

for strain-mediated reversal. As the strain-induced anisotropy magnitude is increased be-

yond this critical value, the PW and equivalently energy requirements trend toward the

ideal case, yielding a 10⇥ reduction.

12.1 Strain-mediated Nanomagnet Model

A single-domain thin-film in-plane nanomagnet under the influence of a longitudinal spin

current is considered. Because this chapter conceptually analyzes an ideal nanomagnet

system during near-critical reversals, the macrospin approximation is used [43, 73]. It is
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assumed that the easy-axis is along the x̂ axis while the hard and out-of-plane axes are

oriented along the ŷ and ẑ directions, respectively.

12.1.1 Representation of Strain-Induced Anisotropy

Ample experimental work has been dedicated to the analysis of magnetostrictive thin-films

and hetero-structures [221, 222, 223, 224]. A number of models can be used to describe

these magnetostrictive effects [84, 225]. Because the goal of this chapter is a theoretical

understanding of the strain-mediated STT reversal process in an idealized system, it is more

prudent to abstract the strain-induced anisotropy so that the conclusions presented are clear.

We model the strain-induced anisotropy as a temporary anisotropy energy, ✏KT , which

is added to the energy landscape for a given period of time. This anisotropy can be gen-

erated in multiple given directions depending on the direction of the strain and/or electric-

field [226, 227]. Two types of strain-induced anisotropies exist: ✏TY = �KTY m
2
y and

✏TZ = �KTZm
2
z. An analysis of these anisotropies will complete our understanding

of strain-mediated reversal. Similar to Ku, KT is the magnitude of the strain-induced

anisotropy energy.

12.1.2 Material Parameters

In this chapter, we consider two magnetostrictive materials: FeGaB (Ms = 1.3MA
m

—

Ku = 1.3 kJ
m3 ) and Terfenol-D (Ms = 0.8MA

m
— Ku = 320

kJ
m3 ) [228, 229, 230, 231, 232].

Each has extensive experimental studies demonstrating strong magnetostrictive properties

[233, 234]. The magnitude of the Gilbert damping is material and shape dependent [235,

236, 237]. Unless otherwise stated, ↵ = 0.10 [238]. Several other ↵ values are con-

sidered to make the analysis applicable to a variety of magnetic materials. We assume a

60nm ⇥ 45nm ⇥ 2nm thin-film nanomagnet. The probability of reliable reversal is eval-

uated numerically and determined by a Monte-Carlo analysis of 104 transient simulations

[100]. Reversal probability is defined as the number of simulations where the magnetiza-
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Figure 12.4: Assuming an ideal initial state along the x̂, ŷ, and ẑ axes, the reliability of
reversal is measured for a nanomagnet under the influence of a longitudinal, infinite PW
spin current. The InitY and InitZ cases correspond to an infinitely large KTY and KTZ ,
respectively. This graph demonstrates that for D > 5.09 materials, such as FeGaB, the
minimum current required for perfect reversal is the same regardless of its initialization
case. It can be analytically determined as Ic = 1.9mA. For materials with D < 5.09, such
as Terfenol-D, it is possible to achieve reliable reversal using current magnitude less than
its full reversal critical current, Ic = 1.6mA, if it is initialized to a high-energy state. For
D > 5.09 materials, the damping at the energy barrier is actually greater than the damping
at the free-axis as shown in the inset plot. Inset: Critical current for a magnetic body with
Kk and K? values shown.

tion ends the simulation with a positive mx component.

12.2 Ideal Current Magnitude Requirement

Consider the idealized case where the strain-induced anisotropy has an infinite magnitude.

When a voltage is applied, the magnetization will become perfectly aligned with the strain-

induced axis. Three initialization cases at the moment the strain is turned off and the spin

current is applied are considered. InitX supposes no strain-induced anisotropy and the
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magnetization begins reversal from its low-energy state along the free-axis. The InitY and

InitZ cases correspond to an infinitely large KTY and KTZ , respectively.

Assuming an infinitely long spin-current pulse-width (PW), we can measure the prob-

ability of successful reversal for a given current magnitude. From Figure 12.4, it is evident

that there is a minimum critical current required for all three initialization cases.

12.2.1 Critical Current for Different Initialization Cases

These critical current expressions are important when considering the minimum current

magnitude required for each initialization case. There are two materials considered in

Figure 12.4, FeGaB and Terfenol-D, with D and IC parameters shown in Table 12.1.

Table 12.1: Critical current values of the FeGaB and Terfenol-D thin-film nanomagnets
considered in this chapter.

D IC1 (mA) IC0 (mA)
FeGaB 53.52 1.5 1.9
Terfenol-D 1.04 1.6 0.99

For a material with a large perpendicular anisotropy such as FeGaB, the damping torque

is maximized at the energy barrier and IC0 > IC1. As shown in Figure 12.4, the current re-

quirement for reliable nanomagnet reversal should be the same regardless of initialization.

For Terfenol-D, IC1 > IC0 and the damping torque monotonically increases from the

energy-barrier to the free-axis. For the InitX case, we can assume the current magnitude

requirement is equal to IC1 according to (4.3). The high-energy initialization cases are

harder to predict. In these cases, the required current magnitude should be equal to the

critical current at the energy barrier. The possibility of the magnetization getting knocked

in the anti-parallel energy basin due to thermal noise must also be considered. In this case,

the critical current value increases the closer the magnetization gets to the free-axis. If the

spin current magnitude is equal to IC0, the STT will not be able to overcome the damping

torque in the energy basin.

Because reversal probability is measured by a finite number of simulations, Figure 12.4

190



clearly demonstrates a reduction in required current magnitude between the Terfenol-D

initialization cases. As we increase the granularity of our probability measurement, the

minimum reliable current magnitude will trend towards the INITX case. Now, we assume

a critical current magnitude given by (4.3) for the Terfenol-D case as well.
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Figure 12.5: The probability of reversal versus the pulse width of a longitudinal spin cur-
rent, assuming an ideal initialization and a current amplitude, given by (4.3). This graph
demonstrates that significantly shorter current pulses can be used, if initializing the magne-
tization to one of the two high-energy states. When initializing the magnetization to these
high energy states, the reversal process skips the time otherwise spent precessing in its ini-
tial energy basin as in the case of standard reversal. Inset: Minimum PW required for InitY
case as a function of error rate.

12.3 Ideal Pulsewidth Requirement

Even though InitY and InitZ cases provide little benefit in terms of the current magni-

tude required for reliable reversal, such initializations are beneficial in shortening the spin-

current pulse-width. By minimizing the PW, the energy required for reversal will also be
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minimized.

12.3.1 Ideal Pulsewidth Analysis

Figure 12.5 shows the reliability of the FeGaB and Terfenol-D nanomagnet systems for

various current PWs when the spin current magnitudes equal to the critical current defined

by (4.3). The InitX case must spend time escaping the nanomagnet’s initial energy basin

fighting its natural damping torque. Therefore, both the InitY and InitZ cases are shown to

require far smaller PWs than the nominal InitX case, unlike Figure 12.4.

Terfenol-D is shown to benefit far more from the high-energy initialization cases than

the FeGaB material. In the FeGaB-InitY case, we observe a ⇠ 10

1.5⇥ PW reduction over

the standard (InitX) reversal. There is a ⇠ 10

3.5⇥ PW reduction for the Terfenol-D case

due to the energy landscape difference between the two types of materials. As the damp-

ing torque of Terfenol-D is minimized at the energy barrier, the InitY case is especially

effective.

12.3.2 PW Requirement for +Z Initialization Case

The InitZ case offers a smaller PW benefit compared to the InitY case as shown in Figure

12.5. Observing a sample InitZ reversal shown in the right subplot of Figure 12.1 provides

an explanation. In this type of reversal, a large amount of time is spent with the magneti-

zation precessing in the high-energy region before crossing the energy barrier and coming

to rest in the appropriate energy basin.

The spin current is only needed as the magnetization nears and crosses the energy-

barrier. We can use a shorter current PW if we delay the application of the current by a set

amount of time. The reliability of such a system is shown in Figure 12.6. Even with the

delayed current pulse, the InitZ case is still inferior to the InitY case since the time spent

relaxing from +ẑ to the energy-barrier is variable due to thermal noise. The InitY case

negates this variability by initializing the magnetization exactly on the energy barrier. A
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Figure 12.6: Assuming ideal initialization, the reliability of reversal is measured for a
nanomagnet under the influence of a longitudinal spin current with magnitude determined
by (4.3) and PW shown in legend. After the strain is turned off, the pulse is delayed
by a certain amount of time. The reliability of reversal is measured for each of these
delays. Solid and dashed lines denote a ↵ value of 0.01 and 0.10, respectively. This figure
demonstrates that the primary difference between the InitY and InitZ conditions is the time
the InitZ has to spend recessing in the high-energy position. The current pulse is only
required when the magnetization nears and crosses the energy barrier. Because of thermal
noise, this initial time is variable.

smaller ↵ is desirable in this case since more time is spent precessing in the high-energy

position leading to less variation in the time it takes for the magnetization to cross the

energy-barrier.

The non-monotonic behavior exhibited in Figure 12.5 is also noteworthy. Previous

analyses have suggested that the relaxation process from the high-energy region can be

conceptualized as a series of trajectories which end in one of two energy basins [138, 139,

140]. In a non-biased system, there is an equal number of these trajectories for each basin-

destination. The thermal noise causes the magnetization to jump between these trajectories

until it crosses the separatrix. In a biased system, the number of trajectories ending in one

basin is greater. The probability of crossing the energy barrier into a particular energy basin
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Figure 12.7: Assuming ideal InitY, the minimum PW required for reliable (error rate
< 10

�4) reversal is measured for FeGaB thin films. This plot demonstrates that the required
PW decays exponentially will the current magnitude. Different values of ↵ are assumed
showing that at any given magnitude, the required pulse-width decays exponentially with
↵. However, if alpha is too small, the required PW actually increases due to the nanomag-
net’s stability being effected. Inset: Calculates energy dissipation per ohm per reversal as a
function of current magnitude. Energy is normalized against the resistance since the nano-
magnet hetero-structure can greatly alter the resistance value and such analysis is outside
the scope of this research. Energy is minimized when operating at 50 � 100% greater than
IC .

then increases [239]. In Figure 12.5, there is a non-monotonic trend if the bias lasts shy of

the time it takes the magnetization to cross the energy barrier. The short current bias forces

the magnetization into a set of trajectories determined by the nanomagnet’s precessional

dynamics and likely ending in one energy basin over another. This non-monotonic trend

is mainly observable in systems with large damping; the rapid relaxations give the thermal

noise less time to knock the magnetization across precessional trajectories.

12.3.3 Minimum Pulse-width Requirement

Using extensive numerical simulations we can estimate the minimum PW required for re-

liable reversal at a given current magnitude. It should be noted that this minimum current

PW is a function of the desired error rate as can be seen in the inset of Fig. 12.5. For this

chapter, we assume an error rate of < 10

�4. If we assume smaller error rates, then the

thermal stability of the nanomagnet will become a significant factor in our analysis.

Fig. 12.7 measures the minimum PW required for a FeGaB nanomagnet with different
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values of ↵. This graph shows that the minimum PW varies linearly with the current mag-

nitude and has a vertical asymptote at IC . The analysis of FeGaB at different ↵ values also

demonstrates the damping parameter is linearly proportional to the minimum PW value.

However, if ↵ is too small, then the nanomagnet becomes unstable requiring a longer spin-

current simply to ensure that the magnetization remains within the desired energy basin

until the end of the simulation.

This minimum PW analysis allows one to estimate the energy requirement for this type

of reversal. This is shown in the inset of Fig. 12.7. We calculate the energy value in terms

of J
⌦ because the actual resistance of the magnetic hetero-structure is unknown. However,

this figure does demonstrate that the energy is minimized when the current magnitude is

50 � 100% greater than IC .

12.4 Non-ideal Current Pulse-width Requirement

Using the insight gained from the analysis of the ideal strain-mediated case, we can now

analyze a more realistic situation with a finite strain-induced anisotropy. The primary dif-

ference between the ideal and realistic cases is that in the latter, because the strain induced

anisotropy is finite, the magnetization will fluctuate around the strain axis. Hence, when

the strain is turned off, the nanomagnet will be initialized near the hard-axis instead of

exactly on it. A sample of this more realistic case is shown in Figure 12.3.

In the previous section, it was shown that the InitY case is superior to all other initial-

ization cases. Therefore, we can perform the same PW analysis as in the previous section

for various finite values of KTY . The inset of Figure 12.8 demonstrates that as the mag-

nitude of the strain anisotropy increases, the probability of reliable reversal reduces to the

ideal case.

It is also possible to determine the minimum PW required for these finite KTY values

using extensive numerical simulations. Figure 12.8 demonstrates that the strain anisotropy

magnitude must exceed a critical value before any benefit is realized for this type of rever-
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Figure 12.8: Left: Assuming a non-ideal reversal with a finite KTY , we measure the mini-
mum PW to reverse a FeGaB thin-film nanomagnet. Note that the nanomagnet is initially
at rest for 1ns, then the strain-induced anisotropy is applied for 1ns. Afterwards the strain
is turned off and a current pulse is delivered to the nanomagnet. Plot demonstrates that the
strain-induced anisotropy must have a minimum magnitude to overpower the nanomagnet’s
natural anisotropy initializing its magnetization away from the free-axis. Right: Measure
reliability for a non-ideal InitY reversal using a current pulse whose magnitude is equal to
IC . As the magnitude of the strain-induced anisotropy increases, the magnetization dynam-
ics reduce to the ideal case.

sal. This is because KTY must be strong enough to overpower the nanomagnet’s internal

uniaxial anisotropy in order to drive the magnetization to the strain axis creating the high-

energy initialized state. For the FeGaB system considered, this critical strain anisotropy

value is 1.676 ⇥ 10

4 J
m3 which corresponds well to Figure 12.8 and the strain values which

provides smaller PW requirements.

Figure 12.8 also reveals the PW improvement for strain mediated reversals as compared

to the nominal reversal case. We see a single order of magnitude reduction in required PW

assuming KTY � Kk (> 10⇥). Given that we can formulate the energy as E = I2Rt, this

reduction in PW would correspond to a similar 10⇥ reduction in reversal energy over the

InitX (no strain-anisotropy) case.
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CHAPTER 13

CONCLUSIONS AND FUTURE OUTLOOK

During the course of this research, several types of magnetization dynamics were mod-

eled and analyzed to quantify the performance of Spin-Switch Logic. In Chapter 3, we

observed that the reversal probability of a biaxial nanomagnet for a fixed energy barrier is

a non-monotonic function of the perpendicular magnetic anisotropy. We show that a large

perpendicular anisotropy increases the frequency of the precessional orbits of the magneti-

zation, which increases the likelihood for the magnetization to cross the x̂ = 0 plane lead-

ing to reversal. On the other hand, a large anisotropy also shapes the precessional orbits

by bringing the separatrix closer to the free-axis. As the thermal-field torque is enhanced

closer to the free axis, the probability that the magnetization energy will exceed the energy

barrier increases. We also show that such non-monotonic behavior is observed at short

time-scales (sub-100 ns), while at longer time-scales the model presented in this chapter

converges to the well-known random-walk model proposed by W. Brown. It is therefore

sufficient to use the uniaxial reliability models for biaxial systems when observed at long

time-scales.

After analyzing the reliability of the magnetization state, we turned our attention to-

wards the mechanics STT reversal. In Chapter 4, we investigate deterministic magneti-

zation reversal through spin-transfer torque for both uniaxial and biaxial magnetic bodies.

While the exact solution to STT reversals in uniaxial landscapes had been found previously,

we expanded this model to include biaxial cases as well. We then investigate the this type

of reversal when the nanomagnet body is under the influence of thermal noise and propose

new models to represent the reversal delay PDF. Knowing the delay of a single nanomag-

net, it is possible to analyze nanomagnet circuits where nanomagnets are evaluated in either

parallel or series configurations. It is shown that a circuit with nanomagnets evaluated in
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parallel has a larger variation but a smaller average delay than a circuit with nanomagnets

in series. Finally, these concepts are applied to the evaluation of a ASL-AND gate. It is

shown that having more inputs to an AND circuit is beneficial since the fraction of the time

the nanomagnet is operating under the minimum input spin current is reduced.

Chapters 6–9 are dedicated to the analysis of complex interaction between nanomag-

netic bodies. We have developed comprehensive analytic models for the critical limits of

reliable reversal in identical and non-identical two-magnet systems. We find that during

slow reversals, the dipolar fields act as anisotropy energies instead of Zeeman energies.

This results in the enhancement of coupling strength between magnetic bodies dubbed the

“mutual coupling effect.” Through extensive numerical tests we have provided a model

of nanomagnet coupling reliability which includes the impact of the perpendicular field

components in slow reversal cases. It is shown that the dynamics for uniaxial and biaxial

systems are fundamentally different and thus require different models to capture their criti-

cal limits for reversal. These models do not contain any fitting parameters while accurately

predicting the material and geometric requirements for a deterministically-coupled, two

magnet system. It is shown that the range of materials which allow for coupling between

PMA nanomagnets is extremely limited and hence, in-plane nanomagnets are a far more

suitable choice when designing a coupled system.

In summary, we have developed models which accurately describe magnetization re-

versals through the use of spin-transfer torque and dipolar coupling. Additionally, we have

quantified the impact of thermal noise on magnetization state reliability and STT reversal

delay. Having developed new models, we are able to accurately assess the performance of

Spin-Switch Logic and propose new augmentations to enhance the performance of this and

other spin-based technologies.
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13.1 Future of Spin-Switch Technology

Current CMOS technology offers a EDP of 0.21⇥10

�24
J · s. From Chapter 10 we es-

tablished that the EDP of Spin-Switch is approximately 2.5⇥10

�21
J · s assuming a layout

constrained design where reliability is not a major concern. Clearly, by this metric alone,

the future of Spin-Switch technology does not look too bright. Chapter 11 posited that a

layer of copper under the ferromagnet can aid in the amplification of the GSHE device.

The amplification of the spin current increase by a factor of four allowing for an EDP

reduction of 16⇥. Furthermore, in Chapter 12 we proposed strain-mediated STT rever-

sal where, through the use of magnetostrictive effects, the magnetization is initialized to

high-energy position before being driven to the appropriate energy basin by a small spin

current. Using this reversal method results in a factor of ten delay improvement for biaxial

nanomagnet systems yielding a 100⇥ improvement in EDP. We can estimate that if these

augmentations are included with the Spin-Switch, then we may be able to achieve a EDP of

approximately 1⇥10

�24
J · s. Although this is still larger than the EDP of a CMOS device

(0.21⇥10

�24
J · s), the improved EDP does allow for some hope regarding the future of this

technology.

In order to weigh fair judgment, one must also accept the possible problems with the

device. In Chapter 4 we showed that the STT reversal delay is a stochastic function and

hence, must be modeled using an exponential PDF. This means that the device and/or cir-

cuit must be clocked for much longer than its nominal delay to ensure reversal reliability.

Second, the Spin-Switch is a current-based technology and is constantly using power. A

potential remedy to this problem is proposed by utilizing a latch-less pipelining scheme

and turning the supplies of the devices on/off when appropriate. While there is nothing

theoretically wrong with this line of reasoning, clocking every gate is impractical. Even

in current CMOS technology, ensuring synchronized clocked latches in between pipeline

stages is a significant challenge.
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similar to how ASL circuits process information.

Finally, there is the central issue of reliability. There is no true analogue to thermal

noise in CMOS technology. Nanomagnet’s have an inherent weakness in that their magne-

tization state will always be a random variable and the randomness becomes greater as the

nanomagnet is scaled down. In Section 10.4, we abandoned all layout constraints focus-

ing solely on designing a Spin-Switch that met an already weak set of reliability standards

and ultimately ended with worse performance characteristics than the layout-constrained

design. Reliability is often omitted from technology analyses because it is mathematically

difficult and computationally expensive to study. Yet, reliability is ultimately the foun-

dation of computing. Every modern chip carries our implicit trust that it will produce a

certain output given a certain set of inputs. It is highly doubtful that any technology will

ever become popular if that trust is broken.
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13.2 Future of Spin-based Devices

It is useful to note that from a macroscopic viewpoint, the Spin-Switch device is simply a

current-in, current-out logic gate. All-spin logic (ASL) can also be abstracted in this man-

ner. From this viewpoint, the Spin-Switch is functionally equivalent to a bipolar junction

diode (BJT) except for the mechanics which translate the input current to an output electri-

cal current. The Spin-Switch is not a spintronic device. It is a current-driven device which

relies on spin phenomena for operation. Because the BJT has limited usefulness in logical

circuits, we can logically conclude that any current-based technology will be unsuitable for

modern Boolean circuit designs and architectures.

The promise of spintronics is that information may one day be communicated and pro-

cessed using solely electron spin avoiding power-loss because no electrical current is the-

oretically required. The future of spintronics is in developing such spin devices. To our

knowledge, there are currently two such devices proposed in literature. First is Nanomag-

netic Logic which was introduced in Chapter 1, and operates through arrays of nanomag-

nets communicating using their stray fields [241]. Interest in this technology has waned due

to bit-signal propagation issues. However, current research into the use of magnetostrictive

hetero-structures means that these propagation issues may be rectified by initializing output

stages in high-energy positions and allowing the input bit arrays to dictate the bit-value the

output array relaxes to.

The second device technology, shown in Figure 13.1 has only recently been published

in literature [240]. In a SPOC device, an oscillating ferromagnet creates a spin in a metal-

lic channel through the use of spin pumping. The spin current then diffuses through the

channel before being injected into the output ferromagnet which will then oscillate with a

phase determined by the spin current. This technology is functionally similar to ASL in

that logic is achieved by combing spin currents from multiple input ferromagnets as shown

in Figure 13.2. The only difference is the way SPOC and ASL generate the spin current in
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the metallic channel. The major weakness of SPOC logic is that the spin current must dif-

fuse through the channel resulting in a negative gain between input and output. Its possible

that this issue can be resolved through the use of spin current amplification techniques or

special oscillators which are insensitive to input spin current magnitudes.

Ultimately, there is still potential in the field of spintronics but it can only be realized

through the careful evaluation of spintronic devices and accurate modeling of magnetic

phenomenon. This thesis was one more step towards finding a true spintronic device which

consumes no electrical power. Good luck to those taking the next steps.
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APPENDIX A

IMPORTANT PARAMETERS AND CONSTANTS

A.1 Magnetization Dynamics

The nanomagnetic body can be represented by a single energy gradient which is the sum

of the the nanomagnet’s internal anisotropy energies and any external Zeeman energies

applied to the magnetic body defined by Table A.1. These energies create a gradient system

represented by the fields applied to the magnetic moment and is related to the magnetization

energy by:

~Heff =

1

µ0Ms

@✏

@m̂
, (A.1)

where the magnetization energy m̂ is the unit magnetization vector and (✏ (m̂)) is the sum

of the individual energy components in Table A.1. Table A.1 lists the energies contained in

each of the magnetic bodies and their corresponding field formulations.

The dipolar energy is a Zeeman energy whose magnitude and direction is determined

by the magnetization of the neighboring magnetic body. For this reason, the field represen-

tation of the dipolar energy is modeled using a tensor representation [166, 167]:

HDIP2 = DIPm̂2 =

2

66664

DIP xx DIP yx DIP zx

DIP xy DIP yy DIP zy

DIP xz DIP yz DIP zz

3

77775
m̂2 (A.2)

whose individual components, DIP⌅�, denote the strength of the ⌅ component of the

dipolar field assuming m̂1 oriented along �. In this way, the dipolar field is a mixture

of time-variant longitudinal and perpendicular components [80]. The strength of the stray

field generated by a thin film nanomagnet to some point in space can be directly calculated

[163]. The tensor values are found by averaging the dipolar field over the target body which
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Table A.2: Relevant constants to calculation of magnetization dynamics.

Symbol Definition Nominal Value

� Gyromagnetic ratio 17.6 ⇥ 10

10 1
sT

µ0 Free-space permeability 4⇡ ⇥ 10

�7

q Free electron charge 1.6 ⇥ 10

�19
C

~ Reduced Plank constant 1.054 ⇥ 10

�34
J ⇤ sec

Table A.3: Relevant material constants to calculation of magnetization dynamics.

Symbol Definition

L,W, t Geometry

V Volume

↵ Gilbert damping coefficient

Ms Saturation Magnetization

Ku Uniaxial Anisotropy

T Temperature
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is similar to previous approaches of calculating stray field over mono-domain bodies [166,

167].

The thermal field ( ~HT ) is included to account for the variations in the nanomagnets’

anisotropy due to thermal effects [92, 113]. This field is modeled as a Gaussian white noise

where Wk represents a standard Wiener process [93, 116].

The traversal of the magnetic moment through the energy gradient is described by the

Landau-Lifshitz-Gilbert equation [41, 75, 89, 90, 44]

dm̂

dt
= ��µ0

⇣
m̂ ⇥ ~Heff

⌘
+ ↵

✓
m̂ ⇥ dm̂

dt

◆
+

�~m̂ ⇥ (m̂ ⇥ ~Is)

2qMsV
. (A.3)

whose physical constants are described in Table A.2 1. ~Is is the spin current into the

bottom nanomagnet [242].

The physical equations are numerically are evaluated using a second-order Heun scheme

which has been previously verified against known micromagnetic solvers and analytical ex-

pressions [100, 199, 106, 87]. The reversal probabilities were evaluated using Monte-Carlo

analysis on a collection of 1000 transient simulations.

1In non-identical multi-magnet systems, a “1” or “2” is included in the subscript of the parameter to
indicate which magnetic body is being referenced.
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APPENDIX B

CHANNEL MODEL IN ASL DEVICE

The amount of electric current, Ielec, pumped into the transmitter that reaches the receiver

is quantified through spin injection and transport efficiency (SITE). Here, we use the math-

ematical models for SITE derived in [52, 53] to obtain the amount of Ielec required to

achieve a specific amount of spin current at the receiver. The models take into account size

effects in ultra-scaled metallic channels. As shown in Figure B.1, for a channel length of

500 nm and in the absence of grain-boundary (R = 0) and sidewall scatterings (p = 1), the

amount of electrical current to obtain 1.5 mA of spin current at the receiver nanomagnet is

5.3 mA and 4.5 mA for copper and aluminum channels, respectively. The required electri-

cal current increases in the presence of realistic size effects. The inset plot of Figure B.1

shows the electrical current density through the nanomagnet as a function of channel length

for different values of channel width. While increasing the width of the channel reduces

the electrical current density through the nanomagnet and improves reliability of the ASL

device, it also increases the overall device footprint and will limit the device scalability.

The delay associated with spin diffusion through the channel is given as

tdiff =

L2
int

2Ds

, (B.1)

where Ds is the diffusion coefficient of electrons in the channel. Using Ds = 126 cm2/V s

and 80 cm2/V s for Cu and Al, respectively, the diffusion delay through a 500-nm long

spin channel is only about 20 ps [52]. This delay is more than an order of magnitude lower

than the nanomagnet switching delay and will not be considered in this work.
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Figure B.1: Required electrical current in the ASL device to achieve 1.5 mA of spin current
at the receiver as a function of the channel length. Different values of size-effect parameters
are considered. The inset plot shows the corresponding electrical current density through
the nanomagnet. The spin polarization of the nanomagnet is assumed to be 0.5. Other
simulation parameters are noted in the figure.
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APPENDIX C

STOCHASTIC INTEGRATION

The addition of stochastic effects in the LLG equation (referred to as the sLLG equation)

necessities a formal review of the interpretation of stochastic processes. We begin this

review with the classical definition of an integral:

Z t

0

f(t)dt = lim

n!1

nX

j=1

f(⌧j)(tj+1 � tj) (C.1)

where ⌧j is on the interval [tj, tj+1]. This is identical to a Riemann-Stieltjes integral which

takes the form: Z t

0

f(t)dg(t) = lim

n!1

nX

j=1

f(⌧j)(g(tj+1) � g(tj)) (C.2)

Consider a Weiner process (W (t)) which is a form of brownian motion. W (t) is not a

smooth process. In fact, dW (t) is delta-autocorrelated with means that for any interval of

time [tj, tj+1], dW (t) fluctuates an infinite number of times. Assuming f(t) has a stochas-

tic component, the choice of ⌧j greatly alters the evaluation of the equation. If a ⌧j = tj is

chosen, we obtain a Itô integral and must follow the rules of Itô calculus [243, 244, 245,

246]. If a ⌧j =
t
j

+t
j+1

2 is chosen, f(t) becomes a Stratonovich integral and we must follow

the rules of Stratonovich stochastic calculus [247, 248, 249].

The difference between these two classes of integrals is that Itô calculus does not follow

the typical rules of integration due to the Itô isometry:

E
"✓Z T

0

XtdWt

◆2
#
= E

Z T

0

X2
t dt

�
(C.3)
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This means that if f(t) = g(t) = W (t), we get the following when evaluating (C.2):

(Itô) :

Z t

0

W (t0)dW (t0) =
1

2

⇥
W (t)2 � W (0)

2 � t
⇤

(C.4)

(Stratonovich) :

Z t

0

W (t0)dW (t0) =
1

2

⇥
W (t)2 � W (0)

2
⇤

(C.5)

To denote these two types of integrals we use the following notation to convey if a stochastic

process should be evaluated in the Itô or Stratonovich sense:

(Itô) :
dx

dt
= A(x, t) + B(x, t)dW (t) (C.6)

(Stratonovich) :
dx

dt
= A(x, t) + B(x, t) � dW (t) (C.7)

From (C.4), it is evident that the difference between the two interpretations of the stochastic

integral is a drift term occurring due to the differences between integration rules. Therefore

it is possible to switch between interpretations of the using the following equality:

dx

dt
= A(x, t) +B(x, t)dW (t) ⌘ A(x, t) � 1

2

B(x, t)@xB(x, t) +B(x, t) � dW (t). (C.8)

The choice of stochastic calculus depends on application and the noise being consid-

ered. The white noise being considered in our research is an approximation to the con-

tinuously fluctuating thermal noise with little memory (no covariance between time-steps).

According to the Wong-Zakai theorem, any noise which satisfies the zero correlation time

limit becomes white noise and therefore, the Stratonovich interpretation of the differential

equation is most appropriate and is preferred in the physics community [250]. However,

Itô interpretations are still preferred in the mathematics community due to its conceptual

simplicity arising form the fact that noise increments are statistically independent. The fi-

nancial industry also prefers Itô models because evaluating the function at the beginning of

the time interval better represents human behavior [251].

For this reason, Itô integrals are a natural starting point when defining a stochastic
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integral before being converted to their Stratonovich to eb solved analytically. Consider the

following stochastic differential equation:

dXt = rXtdt+ ↵XtdWt. (C.9)

Using (C.8), (C.3) can be converted to it’s Stratonovich form:

dXt = rXtdt � 1

2

↵2Xtdt+ ↵Xt � dWt. (C.10)

Because (C.11) is in its Stratonovich form, we can use normal rules of integration and

obtain

Xt = X0exp


r � 1

2

↵2t+ ↵Wt

�
. (C.11)

which is the analytic solution to (C.9).

However, many stochastic differential equations (including the sLLG) are too complex

for analytic solutions making numerical integration schemes necessary. The selection of

stochastic interpretation is crucial when choosing a numerical scheme to evaluate a stochas-

tic differential equation [252, 100]. Most common numerical schemes can be categorized

as resulting to one of these two interpretations of stochastic calculus and therefore, must

be matched to the appropriate stochastic integral. For instance, consider Euler’s method

whose numerical procedure is defined as

yj+1 = yj + hf(tj, yj), (C.12)

where tj+1 = tj + h. In Euler’s method, the function is evaluated at the beginning of

the time interval which means that the Euler method adheres to the Itô interpretation. In

contrast, the midpoint method is defined as

yj+1 = yj + hf(tj +
h

2

),
1

2

(yj + yj+1)), (C.13)
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and adheres to the Stratonovich interpretation because the function is evaluated at the mid-

dle of the time interval.
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H. Huebl, S. Geprägs, M. Opel, R. Gross, et al., “Quantitative study of the spin hall
magnetoresistance in ferromagnetic insulator/normal metal hybrids,” Physical Re-
view B, vol. 87, no. 22, p. 224 401, 2013.

[186] W. M. Haynes, Crc handbook of chemistry and physics. CRC press, 2014.

[187] S Ikeda, J Hayakawa, Y Ashizawa, Y. Lee, K Miura, H Hasegawa, M Tsunoda, F
Matsukura, and H Ohno, “Tunnel magnetoresistance of 604% at 300k by suppres-
sion of ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high
temperature,” Applied Physics Letters, vol. 93, no. 8, p. 082 508, 2008.

[188] L. Tao, D. Liu, S. Liang, X. Han, and H. Guo, “Tunneling magnetoresistance of
FePt/NaCl/FePt (001),” EPL (Europhysics Letters), vol. 105, no. 5, p. 58 003, 2014.

[189] J. R. Childress, B. A. Gurney, and M. Schwickert, Low resistance magnetic tunnel
junction device with bilayer or multilayer tunnel barrier, US Patent 6,347,049, Feb.
2002.

[190] K. Wang, J. Alzate, and P. K. Amiri, “Low-power non-volatile spintronic mem-
ory: Stt-ram and beyond,” Journal of Physics D: Applied Physics, vol. 46, no. 7,
p. 074 003, 2013.

[191] Y. Nagamine, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, S.
Yuasa, and K. Ando, “Ultralow resistance-area product of 0.4⌦ (µm)2 and high
magnetoresistance above 50% in CoFeB/MgO/CoFeB magnetic tunnel junctions,”
Applied physics letters, vol. 89, no. 16, p. 162 507, 2006.

[192] A. B. Kahng, “The itrs design technology and system drivers roadmap: Process and
status,” in Proceedings of the 50th Annual Design Automation Conference, ACM,
2013, p. 34.

229



[193] K. Navi, M. H. Moaiyeri, R. F. Mirzaee, O. Hashemipour, and B. M. Nezhad, “Two
new low-power full adders based on majority-not gates,” Microelectronics Journal,
vol. 40, no. 1, pp. 126–130, 2009.

[194] Z. Huo, Q. Zhang, S. Haruehanroengra, and W. Wang, “Logic optimization for
majority gate-based nanoelectronic circuits,” in Circuits and Systems, 2006. ISCAS
2006. Proceedings. 2006 IEEE International Symposium on, IEEE, 2006, 4–pp.

[195] A Roohi, M Kamrani, S Sayedsalehi, and K Navi, “A combinational logic optimiza-
tion for majority gate-based nanoelectronic circuits based on ga,” in Semiconductor
Device Research Symposium (ISDRS), 2011 International, IEEE, 2011, pp. 1–2.

[196] S. Sayed, V. Q. Diep, K. Y. Camsari, and S. Datta, “Spin funneling for enhanced
spin injection into ferromagnets,” Scientific reports, vol. 6, 2016.

[197] S. Zhang, “Spin hall effect in the presence of spin diffusion,” Physical review let-
ters, vol. 85, no. 2, p. 393, 2000.

[198] S Mizukami, Y Ando, and T Miyazaki, “Effect of spin diffusion on gilbert damping
for a very thin permalloy layer in cu/permalloy/cu/pt films,” Physical Review B, vol.
66, no. 10, p. 104 413, 2002.

[199] P. Bonhomme, S. Manipatruni, R. M. Iraei, S. Rakheja, S.-C. Chang, D. E. Nikonov,
I. A. Young, and A. Naeemi, “Circuit simulation of magnetization dynamics and
spin transport,” IEEE Transactions on Electron Devices, 2014.

[200] G. G. Lopez, The impact of interconnect process variations and size effects for
gigascale integration. Georgia Institute of Technology, 2009.

[201] L. Su, Y. Zhang, J.-O. Klein, Y. Zhang, A. Bournel, A. Fert, and W. Zhao, “Current-
limiting challenges for all-spin logic devices,” Scientific reports, vol. 5, p. 14 905,
2015.

[202] S. Lim, H. Kim, S. Na, and S. Suh, “Application-related properties of giant magne-
tostrictive thin films,” Journal of magnetism and magnetic materials, vol. 239, no.
1, pp. 546–550, 2002.

[203] A. Ludwig and E. Quandt, “Giant magnetostrictive thin films for applications in mi-
croelectromechanical systems,” Journal of Applied Physics, vol. 87, no. 9, pp. 4691–
4695, 2000.

[204] S. H. Lim, S. Han, H. Kim, Y. Choi, J.-W. Choi, and C. Ahn, “Prototype microactu-
ators driven by magnetostrictive thin films,” IEEE transactions on magnetics, vol.
34, no. 4, pp. 2042–2044, 1998.

230



[205] T Maruyama, Y Shiota, T Nozaki, K Ohta, N Toda, M Mizuguchi, A. Tulapurkar, T
Shinjo, M Shiraishi, S Mizukami, et al., “Large voltage-induced magnetic anisotropy
change in a few atomic layers of iron,” Nature nanotechnology, vol. 4, no. 3,
pp. 158–161, 2009.

[206] J. Atulasimhaa and S. Bandyopadhyayb, “Hybrid spintronics/straintronics: A super
energy-efficient computing paradigm based on interacting multiferroic nanomag-
nets,” in Spintronics in Nanoscale Devices, Pan Stanford Publishing, 2013.

[207] N. Kani, J. T. Heron, and A. Naeemi, “Strain-mediated magnetization reversal
through spin-transfer torque,” IEEE Transactions on Magnetics, 2017.

[208] A. Tulapurkar, Y Suzuki, A Fukushima, H Kubota, H Maehara, K Tsunekawa, D.
Djayaprawira, N Watanabe, and S Yuasa, “Spin-torque diode effect in magnetic
tunnel junctions,” Nature, vol. 438, no. 7066, pp. 339–342, 2005.

[209] S Zhang, P. Levy, and A Fert, “Mechanisms of spin-polarized current-driven mag-
netization switching,” Physical review letters, vol. 88, no. 23, p. 236 601, 2002.

[210] D. Berkov and N. Gorn, “Magnetization precession due to a spin-polarized current
in a thin nanoelement: Numerical simulation study,” Physical Review B, vol. 72,
no. 9, p. 094 401, 2005.

[211] C Serpico, R Bonin, G Bertotti, I. Mayergoyz, and M d’Aquino, “Thermal stability
in uniaxial nanomagnets driven by spin-polarized currents,” IEEE Transactions on
Magnetics, vol. 42, no. 10, pp. 2679–2681, 2006.

[212] T. Wu, A. Bur, P. Zhao, K. P. Mohanchandra, K. Wong, K. L. Wang, C. S. Lynch,
and G. P. Carman, “Giant electric-field-induced reversible and permanent mag-
netization reorientation on magnetoelectric Ni/(011)[Pb (Mg1/3Nb2/3) O3](1�x)–
[PbTiO3]x heterostructure,” Applied Physics Letters, vol. 98, no. 1, p. 012 504,
2011.

[213] A. Rushforth, E De Ranieri, J Zemen, J Wunderlich, K. Edmonds, C. King, E Ah-
mad, R. Campion, C. Foxon, B. Gallagher, et al., “Voltage control of magnetocrys-
talline anisotropy in ferromagnetic-semiconductor-piezoelectric hybrid structures,”
Physical Review B, vol. 78, no. 8, p. 085 314, 2008.
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