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SUMMARY

Extreme emitter density (EED) RF environments, defined as 10k-100k emitters

within a footprint of less than 1 km2, are becoming increasingly common with the pro-

liferation of personal devices containing myriad communication standards (e.g. WLAN,

Bluetooth, 4G, etc). Attendees at concerts, sporting events, and other such large-scale

events desire to be connected at all times, creating tremendous spectrum management chal-

lenges, especially in unlicensed frequencies such as 2.4 GHz, 5 GHz, or 900 MHz Industrial,

Scientific, and Medical (ISM) bands. In licensed bands, there are often critical communi-

cation systems such as two-way radios for emergency personnel which must be free from

interference. Identification and localization of a non-conforming or interfering Emitter of

Interest (EoI) is important for these critical systems.

In this dissertation, research is conducted to improve localization for these EED RF en-

vironments by exploiting side information available at the Medium Access Control (MAC)

layer. The primary contributions of this research are: (1) A testbed in Bobby Dodd foot-

ball stadium consisting of three spatially distributed, time-synchronized RF Sensor Nodes

(RFSN) collecting and archiving complex baseband samples for algorithm development and

validation. (2) A modeling framework and analytical results on the benefits of exploit-

ing the structure of the MAC layer for associating physical layer measurements, such as

Time Difference of Arrivals (TDoA), to emitters. (3) A three stage localization algorithm

exploiting time between packets and a constrained geometry to shrink the error ellipse of

the emitter position estimate. The results are expected to improve localization accuracy

in wireless environments when multiple sensors observe multiple emitters using a known

communications protocol within a constrained geometry.

xiv



CHAPTER I

INTRODUCTION

Extreme emitter density (EED) RF environments, defined as 10k-100k emitters within a

footprint of less than 1 km2, are becoming increasingly common with the proliferation of

personal devices containing myriad communication standards (e.g. WLAN, Bluetooth, 4G,

etc). Attendees at concerts, sporting events, and other such large-scale events desire to be

connected at all times, creating tremendous spectrum management challenges, especially

in unlicensed frequencies such as 2.4 GHz, 5 GHz, or 900 MHz Industrial, Scientific, and

Medical (ISM) bands. In licensed bands, there are often critical communication systems

such as two-way radios for emergency personnel which must be free from interference.

Identification and localization of a non-conforming or interfering Emitter of Interest (EOI)

is important for these critical systems.

To study this problem in depth, a joint experimental and analytical research approach

was undertaken. A testbed initially consisting of three spatially distributed RF sensor

nodes (RFSN) to capture raw RF spectrum samples from realistic EED environments has

been designed and deployed in Bobby Dodd football stadium at the Georgia Institute of

Technology. Over 30 Terabytes (TB) of raw IQ spectrum samples have been collected and

archived during live football games. Chapter 2 describes this testbed in detail, as well as a

more controlled laboratory version. One associated theoretical problem of interest is that

with multiple emitters there is ambiguity in assigning a given sequence of physical layer

measurements, such as Time-of-Arrival (ToA), from the sensors to one of the emitters.

A novel idea is proposed for this data association problem by exploiting side information

provided by the Medium Access Control (MAC) layer to improve the probability of correct

association, even if the packets can not be decoded. Chapter 3 describes the approach and

provides theoretical results suggesting the approach can scale well for the large number of

emitters present in an EED environment. A novel three-strategy localization approach is

1



proposed in Chapter 4 that can lower the uncertainty of the position estimate. The approach

uses packet timing information from the MAC layer, as well as geometry constraints. These

chapters show the benefit of using MAC layer side information for EED RF environments.

Finally, overall conclusions and future research directions are discussed in Chapter 5.

Chapter 2 discusses implementation details, including software and hardware, for the

two EED testbeds which have been deployed. The chapter is divided into two parts. Section

2.1 investigates the ability of the sensors to process signals using Software Defined Radio

(SDR). This study was undertaken to assess the abilities and limitations of various hardware

before deployment into the stadium and the laboratory. It provides a comparison of sensor

hardware capabilities against Size, Weight, Area, and Power (SWAP) requirements. Once

the hardware was selected, Section 2.2 discusses two testbeds that were created. The first is

a laboratory testbed, referred to as Laboratory LOC-EED, which provides a controlled ex-

perimentation environment. The second, Stadium LOC-EED, describes the stadium testbed

deployment.

Software defined radios, that digitize RF spectrum and perform traditional receiver

tasks in software, are becoming increasingly viable as an enabling technology for mobile

networks and sensor networks. The concurrent rise in commercially available small form-

factor, low-power, x86-based processors creates the possibility of incorporating General

Purpose Processor (GPP) software radios into existing sensor networks. The eStadium

VIP project is considering the addition of such nodes to sense digitized RF spectrum data

in Bobby Dodd football stadium. The flexibility inherent in GPP software radio provides

rapid algorithm testing; however, the hardware is often large, heavy, and power intensive.

Due to the limited resources and practical considerations in the stadium, the trade-offs

between SWAP requirements and SDR capabilities must be studied prior to deployment.

A performance analysis across four PC form factors, including one suitable for embedded

use, running realistic SDR applications is presented in Section 2.1. Case studies include FM

radio with the BPSK modulated Radio Broadcast Data Service (RBDS), FM analog video,

and distributed processing of digital video with QPSK modulation. Such studies provide

valuable insight into SDR testbeds.
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As the RF spectrum becomes increasingly congested, localization algorithms which are

tolerant of high levels of interference become necessary. A unique opportunity exists to

study these issues during any event in a large venue, such as a football game in a large

stadium. Section 2.2 reports on the development of a RF sensor localization field deploy-

ment, LOC-EED, in the football stadium at Georgia Tech as well as a simplified laboratory

testbed for controlled experimentation. During football games, cellphones, stadium person-

nel radios, media organization radios and wireless controlled devices, game official wireless

headsets, etc. create an EED background that is a challenge to any algorithm attempting

to identify and localize a single emitter. The laboratory testbed and field deployment to

study this problem consists of RFSNs using wideband RF digitizers and general purpose

processors to sense the RF environment. SDR is used as an enabling technology for the

development of unique cross-layer localization techniques which are typically not realizable

on specialized hardware, such as WLAN Access Points (AP). Additionally, a preliminary

analysis of spectrum captures in the 2.4 GHz band during a live football game is provided.

The analysis and a simulation of a simple cross-layer localization technique confirm both

the need for, and ability to exploit, cross-layer information for localization.

Localization is especially challenging in EED environments, in part, due to ambiguity in

associating physical layer measurements, such as the time of arrival, to the proper emitter.

Typical approaches in the radar and network security literature use physical layer character-

istics of the transmitters as features to aid in this data association problem. However, there

is significant structure at OSI Layer 2 to be exploited for known communications protocols.

Examples include the MAC protocol and packet-level correlations. This idea is explored

in Chapter 3, in the context of IEEE 802.11g, by using knowledge of the packet exchange

sequence (PES), virtual carrier sense, and CSMA/CA to lower the Probability of Associa-

tion Error (PAE) compared to an SNR-based Layer 1 strategy. Analytical expressions are

derived for the PAE on both a per packet and per packet exchange sequence basis. It is

shown that while Layer 1 outperforms the Layer 2 strategy for a single packet at low SNR,

on a per packet exchange sequence basis the Layer 2 approach is superior. While the results

are specific to WLANs, the approach may be applied more broadly to any communications
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protocol with a MAC layer.

Chapter 4 proposes a fast and precise three-stage localization algorithm which exploits

the fact that many potential interferers in these EED environments follow known commu-

nications protocols and the Emitter of Interest (EoI) is typically contained within a small

region. Stage I uses only sensors able to decode packets to estimate position. A Confidence

Region (CR) is then computed. In Stage II, sensors unable to decode packets bound their

Time Delay Estimates (TDE) using this CR. A new CR for Stage II is then computed.

Stage III exploits packet timing information from the MAC layer to estimate a distance

from an anchor node with a known location, such as an Access Point (AP), to the EoI. The

final CR is the intersection of the CRs from all three stages. The principle contributions of

this chapter are the three-stage algorithm derivation with simulated results, a novel Packet

Time-Difference-of-Arrival (PTDoA) technique using the MAC layer information, and an-

alytical results on TDE variance as a function of window size and Signal-to-Noise Ratio

(SNR).

As a whole, this dissertation suggests that localization can greatly benefit from a cross-

layer approach. A data association and localization algorithm have been proposed which

exploit the side information provided by the MAC layer. However, the MAC layer, as well

as higher-level OSI layers such as the transport and application layer, have a rich amount

of side information which has yet to be exploited. The primary contribution, therefore, is

to show two examples of how the MAC layer can be exploited to improve localization, as

well as provide over 30 terabytes (TB) of RF spectrum field data in EED environments for

future characterization and analysis.

4



CHAPTER II

TESTBED DEVELOPMENT AND DEPLOYMENT

2.1 Comparison of High Performance Software Radios

Software-Defined Radios (SDR), which digitize RF spectrum and perform traditional re-

ceiver tasks in software, are becoming increasingly viable as an enabling technology for

mobile networks and sensor networks. The concurrent rise in commercially available small

form-factor, low-power, x86-based processors creates the possibility of incorporating Gen-

eral Purpose Processor (GPP) software radios into existing sensor networks. The eStadium

VIP project is considering the addition of such nodes to sense digitized RF spectrum data

in Bobby Dodd football stadium. The flexibility inherent in GPP software radio provides

rapid algorithm testing; however, the hardware is often large, heavy, and power intensive.

Due to the limited resources and practical considerations in the stadium, the trade-offs

between size, weight, area, and power (SWAP) requirements and SDR capabilities must be

studied prior to deployment. A performance analysis across four PC form factors, including

one suitable for embedded use, running realistic SDR applications is presented. Case stud-

ies include FM radio with the BPSK modulated Radio Broadcast Data Service (RBDS),

FM analog video, and distributed processing of digital video with QPSK modulation. Such

studies provide valuable insight into SDR testbeds. The eStadium VIP project [33, 91, 4, 90]

is a Living Lab for the research, development and deployment of technology for the next

generation of wireless communication systems for large-scale events. These events, such as

large concerts and football games, involve 10K to 100K spectators who are located in a

structure with a limited footprint, typically less than 1 km2. The vast majority of these

spectators now carry smartphones that support many communication protocols - 3G/4G

cellular, WiFi, Bluetooth, etc. - that operate in both licensed and unlicensed bands. The

venue in which they operate often has a number of wireless systems - DAS-based cellu-

lar systems, WiFi infrastructure, RF-ID systems, ZigBee-based sensor networks, etc. - to
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support connectivity with/between spectators and for event operations. These events are

thus extreme in both the types and volume of data that can be generated and in the types

of communication infrastructure that must coexist and, if possible, collaborate with each

other. The eStadium team has been developing an extensive testbed for wireless systems

within Bobby Dodd Stadium, the football stadium at Georgia Tech. This testbed includes,

but is not limited to:

• Web applications that enable on-demand access for spectators to multimedia con-

tent, including video-clips of all plays, visualization of game events, and current

game/player stats [33, 91, 4, 90].

• Social networking applications that enable alumni of similar backgrounds to find and

chat with each other in the stadium.

• A sensor network to monitor structural vibrations of the stadium, audio of the crowd,

and algorithms to estimate the distance to transmitters [90, 5, 73, 82].

Bobby Dodd stadium includes a DAS-based cellular system and 4G multi-cast and

broadcast capabilities are expected to be available in the next year or two. There is limited,

for-pay WiFi access in some parts of the stadium’s seating and concourse areas. The current

sensor network operates a ZigBee-like protocol in the 2.4GHz ISM band and includes a TV

white-space backhaul link. The team controls some of this wireless infrastructure and

collaborates with organizations, such as AT&T, that control the licensed parts of it. We

thus have a unique opportunity to identify opportunities to maximize the capacity available

for communications of all types by determining: what content to multicast or broadcast

instead of unicast; the level of interference due to WiFi APs or other RF infrastructure

outside the stadium [82]; and when and how to shift capacity demands from one type of

network to another.

Additional RF sensors are needed to perform these tasks. Due to the flexibility required,

GPP software radios [55] are a natural extension of our existing sensor network. However,

consideration must be given to field deployment. We work closely with GT Athletics to
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deploy these systems in the stadium. The SWAP constraints on such a deployment are very

strict and include appearance as well as economic considerations.

• Size, Weight and Area are critical system factors as large antennas or sensor enclosures

will be distracting to fans. The expense and risk of mounting and securing systems

in remote locations in the stadium increase dramatically with the size and weight of

the system.

• Power is extremely limited throughout the stadium and installing additional power

infrastructure is very expensive. The current eStadium sensor network, which is

mounted throughout the steel framing that supports the stands, is therefore battery-

powered and wireless. Power is an important consideration for deployment of addi-

tional RF sensor nodes.

Commodity GPP hardware of differing size, weight, and power were compared using

both narrow and wide-band applications as a feasibility study prior to stadium deployment.

The applications demonstrated range in sample rate from 1-25 MSPS and include FM radio

with the BPSK modulated Radio Broadcast Data Service (RBDS), FM analog video, and

distributed processing of digital video with QPSK modulation. The principle contributions

of these experiments are:

1. Demonstrating the viability of a GPP SDR approach for SWAP-constrained sensor

networks.

2. Comparing commercially available hardware platforms under realistic SDR applica-

tions.

3. Providing recommendations for similar testbeds.

A brief review of SDR architectures in the literature is given in Section 2.1.1. Details of

the hardware tested are given in Section 2.1.2, while the software configuration is described

in Section 2.1.3. The objective was to categorize these GPP platforms with respect to their

SWAP profile and sensing capability. To that end, Section 2.1.4 discusses test procedures
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and metrics used in evaluation. Results are presented in Section 2.1.5. These case studies

help inform the hardware and software architecture of the eStadium testbed. Recommen-

dations for a commodity hardware platform and other implementation considerations are

described in Section 2.1.6.

2.1.1 Background

Current SDR architectures can be classified into six approaches: general purpose processors,

co processor, processor centric, configurable units, programmable blocks, and distributed

[25]. Only GPP and processor centric approaches will be reviewed, but in general there

is an attempt to balance flexibility and code portability while maximizing computational

capacity. All approaches except for GPP use specialized hardware to perform DSP tasks.

GPP SDR platforms consist of a commodity computer with a DSP software suite and

an RF digitizer. Such systems are the most flexible and the DSP code most generic since

specialized hardware is minimized. For the same reason, they also tend to consume the most

power. SORA [78] is one platform which uses a custom RF digitizer board called a SORA

RCB. The supporting DSP software exploits multiple cores and vector instructions [78].

SORA was demonstrated by implementing a real-time WiFi and LTE stack on a 2.67 GHz

Intel Core Duo 2 and a 2.67 GHz Core i7-920, respectively. GNURadio is a popular open

source SDR platform with many standard receiver blocks available [34]. It uses C/C++

blocks for the implementation of core DSP algorithms and Python to connect the blocks and

provide the control plane. These implementations often use the Vector-Optimized Library

of Kernels (VOLK)1 as a standard interface to vector processor instructions such as Intel’s

AVX. GNURadio supports many RF digitizers, but is often paired with an Ettus USRP

[81].

Other approaches, including processor centric, consist of specialized hardware to perform

computations rather than a general purpose processor. Compared to the GPP approach,

these systems are more power efficient but the code is less portable. Additionally, the

learning curve for developers is typically steeper. Examples of this architecture include

1http://www.libvolk.org
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Table 1: System SWAP Comparison
Sys Manufacturer Model Form Factor Dim. (cm) Wt. (lbs) TDP (W)

A Intel DC3217BY UCFF 11.6x11.2x3.9 2 17
B Intel S1200KPR Mini-ITX 22x17.7x28.6 8.25 77
C Dell Optiplex 990 Custom 29x9.3x31.2 12.5 95
D SuperMicro X7DWE ATX 63x48x9 15.75 160
E Intel DC53427HYE UCFF 11.6x11.2x3.9 2 17

the SODA platform [51] and corresponding commercial prototype, Ardbeg. Ardbeg has

algorithm specific hardware, while SODA does not [87]. Such an approach can be very

power efficient; Ardbeg uses less than a tenth of a watt to process DVB-T at 5Mbps [87].

FPGA-based hardware includes the Wireless Open Access Research Platform (WARP) [85],

the Nutaq Perseus 6010-based system [9], and Rutgers’ WiNC2R [54]. Such hardware

specialization is power efficient but may preclude rapid prototyping of new algorithms.

2.1.2 Hardware Configuration

Five commodity hardware platforms with different SWAP attributes were selected for eval-

uation. Table 1 provides the power requirements, size, and model information for each

platform. Identification is either based on the motherboard or system if sold as a single

unit. The form factor includes the chassis. System processors, RAM, and the most ad-

vanced vector instruction set supported for each platform are given in Table 2. The CPU

frequencies given are nominal and do not include such features as Intel Turbo Boost, which

can increase the frequency for a period of time if certain physical system constraints are

met. Systems B, C, and D will be benchmarked and compared. Systems A and E, which are

practical for implementation in the stadium, are used to demonstrate some proof-of-concept

sensor network applications. Figure 1 illustrates the size of Systems A and B in comparison

to a USB flash drive.

System A is an Intel Next Unit of Computing (NUC) platform with an Ivy-Bridge pro-

cessor consisting of dual 1.8 GHz cores. This platform was equipped with 16GB RAM,

which is the maximum amount supported on the motherboard. The Ivy-Bridge class pro-

cessors support the Advanced Vector Extensions (AVX) single instruction multiple data

(SIMD) instruction set, which increases the efficiency of signal processing operations. AVX
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Figure 1: System A and B Size Comparison

consists of 256 bit instructions which can operate on floating point data. The processor

is designated as Ultra-Low Voltage (ULV) by Intel and is intended to be used in mobile

computing applications. System A is the smallest form factor tested with a total volume of

507 cm3.

System B consists of the Intel S1200KPR Mini-ITX motherboard with a server class

CPU in contrast to the mobile ULV processor of System A. This system also supports AVX

instructions. In contrast to System A, it has a Max TDP approximately 3.5 times higher

at 77W and is a quad-core. This system was equipped with 16 GB of RAM, the maximum

supported. This processing platform has a volume of 11137 cm3.

A typical desktop computer was included for comparison as System C. The platform is

a Dell Optiplex 990 with a quad core i7 desktop processor. System C also supports AVX

instructions, but is only equipped with 8GB of RAM. The volume for this platform is 8415

cm3.

An older server-class platform on a conventional ATX motherboard was included as

System D. Unlike all other systems which have a single physical CPU, this system has two

quad-core Xeon CPUs. Since these processors are from 2007, the most advanced vector

instruction set supported is SSSE3. The total volume of this platform is 27216 cm3.

System E is the next generation of System A, with a Core i5 vs. i3 processor. A

crucial hardware advantage of System E over A is the ability to increase the processor clock

frequency from 1.8 to 2.8 GHz as needed. During evaluation, it was confirmed with the
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Table 2: System Processor Comparison
Sys Processor CPUs Cores Clk (GHz) Mem (GB) SIMD Date

A Intel Core i3-3217U 1 2 1.8 16 AVX Q2 2012
B Intel Xeon E3-1275v2 1 4 3.5 16 AVX Q2 2012
C Intel Core i7-2600 1 4 3.4 8 AVX Q1 2011
D Intel Xeon E5472 2 4 3 8 SSSE3 Q4 2007
E Intel Core i5-3427U 1 2 1.8 16 AVX Q2 2012

Linux utility turbostat that both processors were clocked at 2.6 GHz. Without the clock

increase, the digital video test would not be possible with only two nodes. Like System A,

the volume is 507 cm3.

An RF digitizer was used to convert signals to complex baseband. A maximum of 25

MHz of analog bandwidth with center frequencies up to 6 GHz can be captured. These

signals are then sampled and transported to the host system via gigabit ethernet. Receiver

tuning, sample rates, and gains are controllable via the host.

2.1.3 Software Configuration

Systems A, B, D, and E were configured with Red Hat Enterprise Linux (RHEL) 6.3, while

System C used RHEL 5.5. An internally developed software radio suite (SRS) was used as an

SDR platform. The SRS consists of DSP blocks written in C/C++, or Fortran. These blocks

can be connected to each other either by a custom language or Python. Conceptually, these

connections are very similar to UNIX-style pipes between processes. Each block typically

runs as a separate process on the operating system, enabling a performance evaluation

of each individual DSP function in the processing chain. Some computationally intensive

blocks may be threaded, but each block is always a single process. The most common blocks

are:

• RFDRX: Receives a packet over a gigabit NIC from the RF Digitizer. Each packet

contains a header as well as complex data samples

• PSPLIT: Splits packet into header information, which contains fields such as sample

time, and the payload samples.

• FMDM: Performs frequency demodulation on samples of a signal by differentiating
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the phase to obtain instantaneous frequency

• * FILT: Filters, decimates, and mixes multiple input signals

• FFT: Performs the Fast Fourier Transform (FFT) operation on input signals, using

the Intel Math Kernel Library (IMKL) implementation

All processing blocks are compiled with Intel C/C++ and Fortran compilers version 12.1.0.

The SRS uses Intel Performance Primitives (IPP) and IMKL extensively for core signal

processing functions. For example, all FFT operations are performed with the IMKL FFT

function. IMKL and IPP dynamically launch optimized library versions depending on the

target hardware and use SIMD instructions.

2.1.4 Methodology

Performance metrics are captured by running the Linux program nmon [58] in the back-

ground and recording the data to a file. Nmon collects PC statistics such as memory, CPU,

and network usage. CPU statistics are collected by reading /proc/pid/stat, where pid is a

given process id. This path contains the time the given process was scheduled for user and

kernel space execution in units of 1
100 of a second. Denote the jth sample of the user space

and kernel space time of process as Uij and Kij , respectively. Let ∆t represent the elapsed

time between consecutive readings. The fraction of total physical cores per process, Tij is

calculated as in Equation 1.

Tij =
Ui(j+1) − Uij +Ki(j+1) −Kij

100∆t
(1)

N samples are averaged to yield the average physical core fraction, Ti as given in Equation

2.

Ti =
1

N − 1

N−1∑
j=1

Tij (2)

With a multi-core architecture, Ti can exceed one since multiple processes can be scheduled

concurrently. To calculate total clock cycles used, Ti is multiplied by the number of physical

cores, P , and the nominal clock frequency F (Hz). Systems A, B, C, and E have hardware

threading; System D does not. Only physical cores are counted since a single physical core
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with two hardware threads can not run those threads concurrently. Ci, the average number

of clock cycles used for process i, is given in Equation 3. This metric does implicitly assume

that a scheduled process can always be parallelized, which is likely not true in practice. For

example, a processor with two physical cores executing a serial process may be scheduled

for equal amounts of user space time as a single core. This argument notwithstanding, this

calculation provides a simple first-order metric.

Ci = Ti ∗ F ∗ P (3)

All tests are presumed to be CPU-limited, with the exception of the process reading from

the NIC. Since each DSP block corresponds to a particular process, it is clear which DSP

operations use the majority of CPU time. Processes which do not consume significant CPU

or are not critical in the signal processing algorithm are not shown for clarity. The testing

procedure is as follows:

1. Start SRS for the specific test: analog video, FM radio with RBDS, or digital video.

2. Start the analysis software. Sample CPU utilization at 1/2 Hz for 200 seconds.

3. Note any anomalies such as data discontinuities or warnings.

4. Wait until the performance analyzer (nmon) has all required samples and close pro-

grams.

The next section discusses each test in detail. Video signals were selected to show real-time

wideband signal processing. The analog video test compares systems B, C, and D. A digital

video test distributes receiver tasks over multiple nodes and shows four out of every eight

seconds of video to the user. The FM Radio with RBDS test demonstrates the possibility

of running useful SDR applications on a single node.

2.1.4.1 Analog Video

This program processes standard definition analog video in either NTSC or PAL formats

which has been frequency modulated and displays the video. Figure 2 provides a high-level

overview of the processing steps involved. Processing blocks not directly relevant to video,
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Figure 2: Analog Video Processing Block Diagram

or of low computational complexity, have been omitted for clarity. RFDRX and PSPLIT

receives packet data and formats it appropriately. Wideband FM demodulation is performed

by the FMDM block over 25 MHz, which requires arctangent and derivative operations. The

VID FILT block filters out the 6 MHZ wide video signal. Next, the VSYNC block frame

synchronizes the video. LC FILT filters the Luma and Chroma subcarriers, and PHADJ

performs phase adjustment for color video extraction. With some code optimizations and

optional signal processing operations turned off, it was eventually possible to run this test

on System E. The effect of hardware threading on SDR performance was also analyzed.

2.1.4.2 FM Radio With RBDS

In this test, System A was used to receive a broadcast FM signal. This signal includes mono

FM radio as well as the Radio Broadcast Data Service (RBDS). RBDS is a differentially

encoded Binary Phase Shift Key (BPSK) modulated bit stream which contains digital

information such as current time, station ID, or the name of the current song and artist.

A block diagram of the receiver is shown in Figure 3. Audio and RBDS processing are

performed but do not use significant CPU resources due to low sample rates and therefore

are not shown.

Figure 3: FM Receiver

2.1.4.3 Digital Video

Two System E platforms are required to process digital video, connected by gigabit ethernet.

This test constructed a receiver for a video embedded in an MPEG2 transport stream using
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Figure 4: Distributed Digital Video Processing Block Diagram

Quadrature Phase Shift Key (QPSK). The resulting color video is displayed to the user.

Due to the processing requirements, a block decimation of two was used for an effective

duty cycle of 50%. While this does not provide the user an adequate viewing experience, it

does show that processing of a high data rate test signal is possible. The system could also

be used for processing snapshots if full rate video is not required.

The processor groups the input samples into blocks of 100 megasamples and processes

every other block. Figure 4 provides a block diagram of key functions in the software

receiver. The main node receives spectrum samples from the RF digitizer, SB FILT low-

pass filters the signal with a 16 MHz cutoff , and BTRACK interpolates to produce one

sample at the center of each symbol. Next, OSYNC performs symbol synchronization. The

output of OSYNC is sent to the offload processing node via TCP/IP with a rate of 550 Mbps.

The offload node receives the samples and performs channel equalization (EQPSK ), symbol

decoding, (DECQPSK ), and performs the Viterbi algorithm (VITERBI ). The output of

this block is then sent back to the main node with a rate of 69 Mbps, where variable length

frame synchronization occurs (BSYNC ). Finally, the MPEG transport stream is processed.

A key design decision is identifying DSP blocks to be offloaded. Early in the chain

the data typically has a high sample rate making offloading difficult due to bandwidth

requirements. However, these blocks are also usually the ones which are most processor

intensive. It is also possible to identify a group of DSP blocks which are good candidates

for offloading due to their close interaction and independence from the rest of the processing.

This is primarily a limitation of the SRS architecture due to tight coupling between the

control and data planes. Other SDR software such as GNURadio may not suffer from

this limitation, although wideband offloading will remain a challenge due to inter-system

bandwidth constraints.
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2.1.5 Results

2.1.5.1 Analog Video

Figure 5: Analog Video Benchmark

The analog video test was run on Systems B, C, and D and Ci was calculated and

plotted in Figure 5. Only these blocks described in the block diagram will be shown in

the performance benchmark results. As can be seen, the RFDRX and PSPLIT blocks

use significant resources compared to DSP operations. These blocks are responsible for

high-throughput IO. Importing the samples over UDP requires significant overhead.

Once the samples are gathered, the DSP operations are remarkably efficient. The cost

of gathering the samples for System B is 39 percent more than System C; however, both

systems use the Intel 82579LM gigabit ethernet controller. This difference may be due

to operating system differences as System C used RHEL 5.5 instead of RHEL 6.3. An

Figure 6: Hardware Threading Performance on System C

evaluation was also performed on System C to determine the impact of hardware threading

on SDR software performance. Figure 6 illustrates an average decrease of 18% by disabling

hardware threading. RFDRX exhibited little improvement, which is to be expected since
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it is primarily IO bound. On multi-core systems, hardware threading may add unnecessary

overhead since the SDR system relies on functional parallelism. Hardware threading may

yield better performance gains for a large number of simple processes rather than a small

number of computationally intensive ones.

2.1.5.2 FM Receiver

Figure 7: FM Radio Receiver

FM Radio receiver performance running on System A is shown in Figure 7, split by

user and kernel processing time. About 80 percent of clock cycles for RFDRX is spent in

kernel space, presumably retrieving samples from the RF Digitizer. The FFT is used to

display spectrum to the user; this could be removed in a production application. This result

shows a 10cmx10cm general purpose processor can perform meaningful SDR tasks, using

approximately a single physical core to do so.

2.1.5.3 Digital Video

The digital video test ran for 20 minutes without any data discontinuities (other than

introduced by the duty cycle) and the video was captured to disk. Figure 8a plots the

physical core fraction for the main processing node, while Figure 8b shows this metric for

the offload node. The most expensive receiver operations on the main node are interpolation

to the center of the QPSK symbol and the variable frame length bit synchronizer. For the

offload node, symbol decoding was almost twice as expensive as the Viterbi decoder or the

channel equalizer. The main node used 1.46 physical cores while the offload node used

0.88. These benchmarks suggest that for GPP SDR tasks, a simple metric to evaluate
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(a) Main Node (b) Offload Node

Figure 8: Main and Offload Node Video Processing

performance is the physical core-Hertz product. Due to the functional parallelism inherent

in SDR applications, any single process which exceeds 100 percent of a core creates a

bottleneck and must be optimized further. Multi-threading can be beneficial in this case,

but not all processes can effectively use parallelism. Another consideration is the width and

availability of SIMD operations on the GPP. All five platforms tested used Intel x86 family

processors, four of which implement SIMD using AVX instructions.

Load balancing the cores is a secondary consideration. Hardware threading, such as Intel

Hyperthreading, is beneficial when there are large number of non-compute-bound processes,

but may actually impede performance in special cases of the reverse. SDR platforms will

typically be of the later type since a few compute-bound processes such as interpolation or

channel equalization at high sample rates dominate overall system performance.

2.1.6 Conclusions

Five different commodity PCs in four form factors were evaluated for GPP SDR applica-

tions. To demonstrate high data rate processing, software receivers were designed and tested

for analog video, FM Radio with RBDS, and digital video signals. These tests demonstrate

that GPP SDR is a real possibility in SWAP-constrained environments which require re-

configurability. The latest mobile x86 processors have adequate vector instructions, clock

frequency, and number of physical cores to be used as a GPP hardware platform for ex-

perimentation in sensor networks. The eStadium team is currently building and testing an

RF sensor network based on a GPP SDR architecture. Specifically, the next generation of
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Intel’s NUC hardware with the i5-4250U has been selected due to its relatively low power

consumption (15W Max TDP). Next steps include the physical packaging of the system

with an Ettus USRP and deployment in Bobby Dodd stadium. The network will be com-

prised of six nodes to collect and process spectrum data. Due to the flexibility of GPP

SDRs, rapid prototyping and experimentation will be possible.

2.2 Extreme Emitter Density Testbed

To facilitate the prototyping and development of novel OSI cross-layer localization algo-

rithms in an EED environment, the Intelligent Digital Communications (IDC) Vertically

Integrated Projects (VIP) team has created and deployed a software radio sensor network

testbed, LOC-EED, in Bobby Dodd Stadium. In parallel we have also developed and de-

ployed a simplified laboratory version for controlled experimentation. The VIP program

[23] is an engineering education program consisting of multidisciplinary teams of under-

graduates, graduate students, and faculty advisors who collaborate on long term projects

beneficial to current research. The undergraduate students help deploy and maintain the

testbed while learning the associated theory and gain exposure to the latest research topics.

Graduate students and advisors develop new theory and algorithms which can be validated

in field experiments.

IDC is particularly interested in spectrum utilization, security, and localization in EED

environments using software radio as the enabling technology. Therefore, the team has cre-

ated LOC-EED which consists of RFSNs using wideband RF digitizers and general purpose

processors to sense the RF environment. Each sensor is capable of recording and time-

tagging RF spectrum samples at 25 complex MSPS. Captured spectrum data is stored on

a central server for analysis and experimentation of localization algorithms.

The principle contributions of this section are:

• Architecture and practical deployment of an EED laboratory testbed and field de-

ployment

• EED RF spectrum during a football game
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• Simulation of a cross-layer localization technique

A brief description of previous testbeds is provided in Section 2.2.1. Design and deployment

decisions, including both hardware and software, are detailed in Section 2.2.2. A preliminary

data analysis of a WiFi channel during a football game is provided in Section 2.2.3. This

analysis motivates the simulation of a simple cross-layer localization technique. Conclusions

are discussed in Section 2.2.4.

2.2.1 Background

Other localization testbeds have been developed, but we are not aware of any specifically fo-

cusing on EED RF environments with a laboratory and field deployment. In [3], the authors

consider only a single emitter whereas our laboratory testbed supports three. Additionally,

LOC-EED laboratory uses cables to connect the software radios so the true time delay can

be known. He et al. developed a testbed to experiment with indoor multipath localization

using ToA for a single emitter [37]. Given the emitter and node geometry in the stadium,

multipath conditions aren’t as significant of a concern. However, additional data should be

collected to verify this assumption. An RSSI approach for Wireless LAN is presented in [57],

but dedicated hardware is used to process the signals making raw RF samples unavailable.

Additionally, RSSI is not robust to RF environments due to the difficulties in modeling RF

propagation [5]. Bhatti et. al. performed TDoA using software radios on two emitters. A

WLAN TDoA system was presented in [72] but it is not clear the system has the flexibility

of an SDR testbed or that Layer-2 information can be correlated with Layer-1 information.

2.2.2 Design and Deployment

LOC-EED consists of a laboratory testbed and field deployment; The former allows arbi-

trary geometries and interference situations to be simulated in a controlled manner, while

the stadium version provides realistic field data. We utilize an iterative algorithm devel-

opment approach. Algorithms are first simulated in software such as MATLAB. Next, the

algorithm is implemented in the laboratory testbed with known inputs and then, if suc-

cessful, deployed to the stadium nodes. Both the testbed and field deployment consist of
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near identical node hardware. The primary differences are replacing free-space loss, sensor

geometry, and wireless channels with attenuators, cabling, and splitters/combiners. The

hardware and software design of the nodes are first presented and then the overall testbed

architecture is discussed.

2.2.2.1 Hardware Design

Each RF sensor node consists of a direct-conversion RF digitizer, general purpose x86-based

processor (GPP), Ethernet power relay, GPS Disciplined Oscillator, and a 2.4/5 GHz panel

antenna. While there are many choices for implementing software radios, a GPP archi-

tecture was chosen because it has the key advantage of rapid algorithm prototyping [25].

The principle disadvantage of such an architecture is the limitation in processing power and

bandwidth. However, it has been shown that small form factor GPPs are capable of pro-

cessing up to 25 MHz of analog bandwidth for a variety of realistic tasks [31]. Additionally,

since each GPP runs a standard Linux distribution, remote monitoring and maintenance

tasks are simpler than on specialized DSP hardware. The specific parts used to build each

RFSN is provided in Table 3.

The target deployment area for LOC-EED is in the stadium, typically in an outdoor

location which is not readily accessible. For example, the first sensor was deployed on top

of a 15 foot tall concession stand requiring an extension ladder for service. This creates

the additional requirements of weatherproofing, small form factor, and remote monitoring

for health and status. All components of each RFSN are placed inside an NEMA-rated

enclosure with watertight connectors, as shown in Figure 9. For remote monitoring, a

temperature sensor was placed inside the enclosure. The Ethernet power relay provides a

method to cycle power should the node have any issues.

A narrowband antenna was selected due to the direct-conversion architecture of the RF

digitizer. We discovered during testing that broadband antennas, while much more flexible,

can not be used without a suitable RF front-end. When attempting to use broadband

antennas to capture 2.4/5 Ghz spectrum, the SINR was insufficient for signal processing

due to the lack of front-end analog filters in the receiver to reduce strong out-of-band
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Figure 9: RFSN Components. The GPSDO is inside the RF digitizer enclosure

Table 3: RFSN Components
Manufacturer Model Description

Nat’l Instruments 782980-01 RF Digitizer

Nat’l Instruments 783454-01 GPS Oscillator

Intel BOXD54250WYK Haswell i5 NUC PC

Samsung MZ-MTE1T0BW 1TB Solid State Disk

Crucial BLS2K8G3N169ES4 16GB DDR3 RAM

Nat’l Control Devices R110PL ETHERNET Ethernet Relay

L-COM HG2458-20P 2.4/5GHz Antenna

signals. This hardware limitation reduces the range of frequencies which can be studied in

the testbed. However, given the abundance of interesting signals in the band selected, this

should not be a significant limitation. An alternative is to purchase RF digitizers which

have a superheterodyne receive architecture and suitable RF front-end filtering, but this is

outside of the current project budget.

2.2.2.2 Software Design

Each RFSN is installed with Ubuntu 14.04 LTS and GNUradio (GR)2. The disk is parti-

tioned into an EXT4 and XFS partition, for applications and recording storage, respectively.

2http://www.gnuradio.org

22

http://www.gnuradio.org


Ubuntu 14.04 LTS was selected for its excellent consumer hardware and community sup-

port. GR is an open source platform for signal processing which has many common filters,

demodulators, and other useful algorithms. It is particularly suited for wideband real-time

processing by exploiting SIMD processor instructions and efficient DSP algorithms.

Support for data analysis is still under development in GR. We are currently developing

gr-analysis, a module for GR which contains the following additional tools to record and

analyze data. In the future we plan to make the module available to other researchers as

well as the GR community.

• specrec: Recording utility capable of 30 MSPS on RFSNs

• metadata to csv : Convert metadata structure to CSV

• gr mkheader : Add metadata to existing raw data records

• gr fileman: Convert file formats, select recording subsection

The data recording utility, specrec, was developed out of a desire to investigate WiFi local-

ization techniques. Due to RFSN size and power constraints, a RAID0 configuration for

data storage is impractical. The file recording program example in GR, uhd rx cfile, drops

samples due to Linux kernel buffering causing write bursts. When the bursts write to disk

the maximum write speed is insufficient to maintain the required average. For RFSN hard-

ware, uhd rx cfile begins to drop samples between 15-20 MSPS, while specrec can write 30

MSPS with no data loss. uhd rx cfile was passed the -m option to record inline metadata,

whereas specrec uses a separate file to store the metadata (detached headers). uhd rx cfile

also drops samples at 30 MSPS without writing any metadata.

specrec implements a producer-consumer multi-threaded architecture with a circular

buffer. The writes from each thread are a multiple of the system page size. All pages

associated with the subsection of the circular buffer to be written to disk are flushed using

the sync file range kernel system call. The end result is a constant write speed at the

expense of some additional CPU utilization. This recording program is Linux-only, but can

increase write speeds by roughly a factor of two.

23



Health and status monitoring is provided the widely available CACTI software. In

addition to the monitoring of the CPU temperatures, hard disk space, and other sensors

of interest, the ambient temperature is monitored with a thermocouple and displayed on a

webpage. Additionally, software can power cycle the node via the ethernet relay.

2.2.2.3 Laboratory LOC-EED

Figure 10 depicts the laboratory LOC-EED setup. Each box represents an RFSN, which

consists of the hardware described in Section 2.2.2.1 except for the panel antenna and

GPSDO. The GPSDO is replaced with a Jackson Labs’ LC-XO providing 10 MHz and

1PPS outputs for receiver synchronization. The Splitter/Combiner (S and C) used is a

Minicircuits ZX10-4-27+. With this setup, different TDoAs can be simulated. The TDoA

between sensor j and k from emitter i is given by

τ
(i)
jk =

Lij − Lik
v

=
1

v

(
‖qj − pi‖2 − ‖qk − pi‖2

)
(4)

v is the propagation velocity of the wave which is cable-specific and pi, qj , and qk are

the position vectors of emitter i, sensor j, and sensor k, respectively. Lij and Lik are the

cable lengths from emitter i to sensors j and k. The matrix A ∈ RMxN can control the

sensor geometry, where M is the number of emitters and N is the number of unique TDoAs.

Physically, these delays will be created by using cables of appropriate lengths.

A =


τ

(1)
12 τ

(1)
13

τ
(2)
12 τ

(2)
13

τ
(3)
12 τ

(3)
13

 (5)

A major advantage of using software radio nodes as opposed to specialized hardware

in the testbed is the ability to change physical operating parameters such as the center

frequency, modulation type, bandwidth, etc. Consider the case of localizing 20 MHz OFDM

WiFi with IEEE 802.15.4 interference. One might ask how some physical layer parameters

affect WiFi localization accuracy. This is easily simulated using the gr-ieee802-11 [13] and

the gr-ieee802-15-4 [12] GNURadio modules. Other sources of localization error such as

receiver synchronization are also easy to replicate. Thus the laboratory version of LOC-EED
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Figure 10: Laboratory LOC-EED. T1-T3 represent RFSNs which are cabled to splitters,
labeled S. The cable lengths from emitter i to sensor k are Lik. The combiner, C, sums
the signals from all transmitters into R1-R3, which are also RFSNs. 10 MHz and 1 PPS
references are distributed to all nodes for time synchronization.

Figure 11: Stadium LOC-EED. RFSN1 is currently deployed. Google Earth.

provides a controlled environment for experimentation of algorithms with known inputs

before they are applied to realistic field data.

2.2.2.4 Stadium LOC-EED

The sensor network within Bobby Dodd is shown in Figure 11. Currently, only RFSN1 is

deployed. RFSNs 2 and 3 will be deployed in time for the upcoming football season. A

particular challenge in the stadium is identifying mounting locations as the nodes require

both gigabit ethernet for tasking and data backhaul as well as 120 VAC outlet power. Addi-

tionally, the antennas must be located relatively close to the nodes and have an acceptable

field of view. These practical constraints impose sub-optimal sensor geometries.
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RFSN1 was deployed on top of a concession stand, where power and a gigabit campus

network connection was available. Figure 12a shows RFSN1 as the enclosure on the left

connected to the router on the right. The antenna was mounted on a concrete support

angled out over the field, as seen in Figure 12b using 50’ of LMR-400. The antenna has

since been enclosed by an RF-transparent billboard. No studies have been undertaken

to assess the performance difference but it is assumed minimal as the AT&T Distributed

Antenna System (DAS) operates under the same conditions.

(a) Deployment on top of a concession stand.
RFSN1 is on the left, while the enclosure on the
right houses an AP for connectivity to campus net-
work .

(b) RFSN1 2.4/5GHz antenna mounted in the sta-
dium

Figure 12: RFSN1 Deployment

2.2.3 Analysis and Simulation

Figure 13 is the spectrogram of channel 6 WiFi (2437 MHz) on gameday. The received

spectrum is dense and highly non-stationary. The wideband signals present are indeed

WiFi but the narrowband signals have not been identified. This data capture can be

categorized as multiple known emitters with multiple unknown narrowband emitters. How

can a particular WiFi signal be isolated to perform a localization technique such as TDoA?

This preliminary data motivates a simulation.

Consider a simplified simulated test case where two WLAN emitters, E1, E2 and two

sensors, S1, S2 are present. S1 receives a sampled complex baseband spectrum of a WLAN
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Figure 13: Ch. 6 WiFi (2437 MHz) during a football game. The white circle is an OFDM-
modulated WLAN packet. The red square represents an unknown narrowband interferer.
A variable frequency sinusoid can also be seen from [6,15] ms and [-10,-5] MHz.

signal in additive white Gaussian noise. Assume the real and imaginary noise are statisti-

cally independent.

r1[n] =

2∑
i=1

si[n] + e1[n], n = 0, . . . , N − 1 (6)

where e1[n] ∼ CN (0, σ2
1IN ) and si[n] are the sampled WLAN signals at baseband. For

this simulation, the signal is OFDM with an MCS of 0 (BPSK with coding rate = 1/2)

and 20 MHz channel spacing. Each signal will contain a unique transmitter MAC address

and it will further be assumed the signals share the channel without interfering with one

another. S2 receives the same signal with a delay m due to sensor geometry. For simplicity,

an assumption has been made that m = 10, implying an integer delay.

r2[n] =

2∑
i=1

si[n+m] + e2[n] (7)

Here, e2[n] ∼ CN (0, σ2
2IN ). Assume the noise powers are such that σ2

1 < σ2
2 and S1 can

correctly demodulate the signal while S2 has insufficient SNR. For the test scenario the

SNRs were 13 dB and 3 dB, at S1 and S2, respectively.

The autocorrelation method given in [13] was used to identify the start of WLAN pack-

ets. Each time the autocorrelation method exceeded the threshold, the sample number, nac

at which the peak occurred was recorded. If the packet was successfully demodulated, the

transmitter MAC address is used to label the particular emitter as Ei. nac is associated

with this label in the form of a tuple (nac, Ei) The fusion of Layer-1 and Layer-2 information
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Figure 14: |r1[n]| with Emitter E1 identified. When the cross-correlation exceeded a thresh-
old, the sample number nac was recorded. The WLAN packet was subsequently decoded
and the emitter labeled based on MAC address. This information was associated as a tuple
(nac, Ei). The left side of the red box is placed at nac and labeled accordingly.

allows the ith known emitter to be labeled in the time domain plot. Figure 14 provides an

example. This method does not require all MAC addresses of the emitters to be known and

they are guaranteed to be unique provided no MAC address spoofing is present.

Although S2 is unable to demodulate the signal, it is possible to uniquely identify E1

in the received signal, r2[n]. Consider the second E1 transmission in Figure 14. Use the

samples associated with this packet to create a matched filter, p[n]. p[n] is then used to

cross-correlate with r2[n], as in Equation 8 with i=2. Figure 15a plots |y2[m]|, while Figure

15b graphs y1 and y2 around the maximum in Figure 15a. The difference between the two

peaks is m = 10 samples, which is what was expected. This algorithm shows a particular

receiver with insufficient SNR to demodulate an emitter can still uniquely identify it with

help from another sensor’s cross-layer information to generate the matched filter.

yi[n] =
M∑
m=0

ri[n+m]p∗[m], i = 1, 2 (8)

This simple example illustrates the power of cross-layer techniques to isolate a particular

emitter. The MAC addresses of a WLAN signal are contained in the payload which is

scrambled and has forward error correction. Because of this encoding it is necessary to

perform the full demodulation to identify a particular emitter since the MAC address bits

can’t be linearly mapped to a sample position. Therefore, identification of a particular
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transmitter by MAC address requires Layer-2 information. One can not simply cross-

correlate certain samples at the physical layer to uniquely identify the transmission.

Additional Layer-2 techniques are possible. For example, a challenge in using the MUSIC

algorithm for TDoA estimation is determining the number of emitters. Using Layer-2

information such as the number of unique MAC addresses, or number of clients connected to

an AP can inform this Layer-1 algorithm. Stationary WLAN emitters may be identified by

locating APs. This information could directly inform the TDoA solution since it is unlikely

there is a Doppler shift. These possibilities should be investigated to create localization

algorithms robust to interference.
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(a) Cross-Correlation of the received signal r2 and the
template p. Since every WLAN packet contains the
same short and long preamble, every packet has some
degree of correlation which can clearly be seen on the
graph. However, the maximum is still located at the
correct packet and emitter.
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(b) Close-up of y1 and y2 at the sample correspond-
ing to the maximum cross-correlation of y1. The
difference between these peaks is 10 samples, which
is the simulated delay.

Figure 15: Layer-1/Layer-2 Correlation

2.2.4 Conclusions

Two localization testbeds for EED RF environments were described in detail: A labora-

tory version and a system deployed in the football stadium. Additionally, the software

architecture was discussed, including the custom gr-analysis module for data analysis. A

spectrogram from a live football game was shown, illustrating the spectrum density of 2.4

GHz as well as the presence of narrowband interferers with wideband WLAN signals. Fi-

nally, a simulation showing the possibilities of cross-layer techniques was presented. Future
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work should investigate exploiting Layer-2 information to create robust localization algo-

rithms in EED RF environments.
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CHAPTER III

MAC ASSISTED DATA ASSOCIATION

With multiple emitters, there is ambiguity in assigning a given sequence of physical layer

measurements (e.g. time of arrivals) from the sensors to one of the emitters. A similar

problem exists in radar when multiple targets are present. In the radar literature, the

problem is known as data association. Typical techniques relying on target kinematics and

position are of minimal use as the kinematic cost matrix elements are virtually identical in

high target density environments [53]. To solve this problem, more recent research proposes

feature-assisted tracking for radar, using such measurements as radar cross section (RCS)

to aid in data association [28].

Of course, in radar there are no such concepts as the OSI model as there are for RF emit-

ters operating under a specific communication protocol. This work studies the performance

improvement of using OSI Layer 2 (L2) information as features in the data association

problem compared to Layer 1 (L1) alone. Using such information blurs the line between a

traditional radar, signal processing, and networking problem. The presentation that follows

should be one familiar to signal processing engineers, although we try to add clarity for

radar engineers where necessary.

The core idea is to exploit the structure of the MAC layer, as well as packet level

correlations at Layer 2 and above, to associate physical layer measurements with emitters.

For WLANs, these are the CSMA/CA protocol and packet exchange sequences, respectively.

We assume packet decodability at each sensor is random and may be quite low. To our

knowledge, using Layer 2 information as features in the data association problem is novel.

The main contributions of this chapter are:

1. Problem formulation and introduction of a Markov model to couple physical layer

measurements with higher level side information.

2. Analysis of an RTS/CTS PES using the IEEE 802.11g standard for both single and
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multiple clients. The PAE over the entire PES is lower for strategies employing the

MAC layer.

3. For multiple AP clients, the Layer 2 strategy may be viable in EED RF environments..

The PAE over an entire PES does not vanish for a large number of clients.

Although the RTS/CTS PES for IEEE 802.11g is used for analysis, the approach is ap-

plicable to other PESs and, more broadly, communication standards employing a MAC

layer.

Section 3.1 provides a brief summary of background material and relevant literature.

The system model and assumptions are given in Section 3.2. Section 3.3 formulates the

problem. The performance analysis is performed in two sections. Section 3.4 considers

a single AP client, while Section 3.5 analyzes multiple clients as well as the asymptotic

behavior in the number of clients. Section 3.6 provides a hypothesis test for model validity.

Finally, conclusions are drawn in Section 3.7.

3.1 Background

There are two primarily threads of literature from two separate communities which are useful

for emitter-measurement association. Using the entire protocol stack blurs the line between

a traditional radar, signal processing, and networking problem. Therefore it is necessary

to understand the existing work from both contexts for a complete survey. The DSP and

networking problem of RF fingerprinting is discussed in Section 3.1.1. Radar engineers

typically discuss associating measurements to targets as the data association problem in

the context of multitarget, multisensor target tracking. Research in this area is discussed

in Section 3.1.2. The problem formulations and applications are slightly different, but both

are especially relevant and provide needed insight into the proposed research problem.

3.1.1 RF Fingerprinting

RF fingerprinting is the idea of using either channel or emitter specific characteristics for

identification. Radiometric identification refers to the latter, using physical imperfections

and process variations of emitter electronics for identification [17]. Another term, specific
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emitter identification (SEI), appears to be used primarily in the defense community and

may predate the radiometric identification literature [48]. A high level overview of SEI

systems to identify emitters of interest is given by Talbot et al [77]. Typically the focus

with RF fingerprinting is for network security. The argument is that layer 2 information

which uniquely identifies devices (e.g. MAC address for WLANs) is susceptible to spoofing

and may not be trustworthy. The goal of RF fingerprinting is therefore to uniquely identify

devices solely based on layer 1 information for user validation and security.

Channel-based RF fingerprinting techniques leverage the fact that the RF channel be-

tween two emitters is likely different. One simple measurement which can be used is the

received signal strength indicator (RSSI). Faria and Cheriton consider a vector of RSSI

measurements, termed signalprints, from multiple APs to uniquely identify transmissions

[29]. A matching algorithm is described based on acceptable RSSI bounds and evaluated in

an office environment using IEEE 802.11b/g APs. Sheng et al. [74] extends RSSI measure-

ment identification using Gaussian Mixture Models to more recent IEEE 802.11 standards

employing antenna diversity. Emitters are identified statistically using a likelihood ratio

test. If the emitters are in a rich multipath environment, the full channel response may be

used. Patwari and Kasera [61] considered a minimum proximity function clustering method

using the L2 dissimilarity measure based on channel impulse response features. Le et al.

use channel tap power in the context of cognitive radio to distinguish between a primary

user and a malicious secondary user. Notability, a cross-layer algorithm is proposed which

combines the physical layer measurements with higher level authentication [49].

Radiometric Identification literature includes both machine learning and model-based

algorithms. Either way, physical layer features are chosen to discriminate between emitters.

Both techniques can also use transient or steady-state transmitter behavior. Only steady

state is considered here; for more information on RF transient behavior for characterization

see [80, 65].

Many authors have applied machine learning algorithms to signal features in order to

identify emitters. Brik et al. [17] developed the PARADIS system using K-Nearest Neigh-

bors (KNN) and Support Vector Machines (SVM) to classify WLAN cards. PARADIS
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uses physical layer features including RF center frequency and I/Q offset, among others.

Frequency offset and SYNC correlation were the most effective features. The learning al-

gorithms were evaluated on 138 identical NICs and achieved an accuracy greater than 99

percent. However, such techniques from a security perspective are vulnerable to replay

attacks, especially by software radios, as shown by Danev et al. [24]. In Candore et al.

[18] transmitter features including frequency, magnitude, and I/Q offset were used to train

a classifier. A histogram from training data was calculated and the features were com-

bined using a voting-based algorithm. Similarly, Tomko et al. [79] also uses estimates of

the feature probability distributions (including frequency offset) for IEEE 802.11b devices.

A Gaussian distribution was fit to the smoothed estimates. If the fit coefficients change

sufficiently over time it is assumed the MAC address has been spoofed.

Another approach is to explicitly assume a mathematical model for the imperfections in

the emitter electronics. In Dolatshahi et al. [27] non-linear input and output characteristics

of RF power amplifiers are modeled and subsequently used for radiometric identification.

The likelihood (LRT) and generalized likelihood (GLRT) ratio tests are used to distinguish

between two emitters. This work was extended to include the digital-to-analog (DAC) im-

perfections and additional experimental data [62]. The robustness of the technique to ne-

farious symbol modifications is shown analytically and experimentally in Polak and Goeckel

[63]. A technique applicable to 802.11b using the envelope profile of a preamble is presented

by Yuan and Hu [88]. Vo-huu et al. consider the scrambling seed, sampling and carrier fre-

quency offset, and frame transient as features to distinguish IEEE 802.11g devices, but use

statistical methods tailored to each feature (e.g. KL Divergence) [84]. Fundamental limits

of RF fingerprint authentication from an information theoretic perspective are discussed by

Gungor and Koksal [35].

3.1.2 Data Association

Data association has been well studied in the radar community as a part of the target

tracking problem. A summary of the problem and prior work in the context of radar is

discussed in this section. For the following section emitters can be considered targets.
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Additional background information on radar fundamentals may be found in [66, 53]. A

good reference for multitarget multisensor tracking is Bar-Shalom and Li [7].

At each coherent processing interval (CPI) a list of detections is created. Detections

typically consist of a measurement, measurement error estimate, timestamp, and possibly

other metadata. If the system consists of multiple sensors, the first step is measurement-

to-measurement association. This step associates measurements from each sensor to create

a composite measurement (e.g. a vector of time of arrival measurements). Next, the com-

posite measurement must be assigned an existing track, or a new one created. This is the

measurement-to-track data association problem. The goal is to associate detections with

tracks [66]. Each track consists of a state vector and corresponding covariance matrix D

representing the state error. The measurement error is usually assumed to be Gaussian.

Typically, a cost matrix C is first populated with the negative log likelihood of assigning

detection i to track j. The rows of C represent existing tracks, as well as a new track φ.

Similarly, a specific column represents the ith measurement with the last column labeled φ

signifying a track which will not be updated for the current CPI.

A gating step, consisting of coarse and fine filters, is used to eliminate extremely unlikely

associations. Coarse gates can either be spherical or rectangular and ensure measurement-

track pairs are bounded within some desired radius or rectangle. Next, a fine filter is applied

by computing the log likelihood for measurement i and track j as given in Equation 9 [53].

A Kalman Filter is used on the tracks for smoothing and prediction.

Λji = −1

2
ln (det (2πSji))−

1

2
z̃TjiSjiz̃ji (9)

In Equation 9, z̃ji = zi − h(xj) is the innovation vector from the Kalman Filter, zi is the

measurement state, xj is the predicted track state, and h() is a function which transforms

a track state into the measurement space. The covariance matrix of the innovations is Sji.

The second term is essentially the Mahalanobis distance. Tracks with larger innovation

variances are penalized by the first term.

The cost matrix is populated by using the negative log likelihood −Λji. Such a ma-

trix is referred to as the kinematic assignment matrix. A data association algorithm is
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then used to find the most likely associations. In [68], the authors provide a summary of

current techniques including Nearest Neighbor (NN), joint probabilistic data association

(JPDA), multiple hypothesis tracking (MHT), and multidimensional assignment (MDA).

In the assignment formulation of the problem, discrete optimization is used to associate

measurements with targets [26]. The technique was further extended to correlated mea-

surements such as TDoA in [67].

Other algorithms for data association have been proposed. Bhatti et. al. developed a

phase closure method [10] to associate the physical measurements with a particular emitter.

However, there are ambiguities as to the position of the emitter using this approach. Another

method relies on separating the measurements with some a priori information about the

expected measurement range [8].

In dense target environments, the kinematic cost matrix elements may be nearly identical

due to the target density [53]. For such a scenario a feature-based term can be added to

the likelihood function in Equation 9 to aid in association. For example, the signal-to-noise

(SNR) ratio is considered as a feature for radar [28]. Other tracking examples from radar

include using amplitude [50] and local target motion [39] as features.

3.2 System Model

Suppose S1, S2, . . . , SM are M spatially distributed, time synchronized RF sensor nodes

that can communicate with one another. N stationary emitters E1, E2, . . . , EN transmit a

signal using a known standard but are non-collaborative with the sensors. Non-collaborative

implies the sensors and AP/clients do not share information, but does not necessarily mean

the AP/clients are actively attempting to disrupt measurements. Future work could explore

other relationships. Each sensor has the capability to measure time of arrival (ToA) and,

given sufficient SNR, decode packets. The decodability of each packet at each sensor is

assumed to be probabilistic.

The objective is to localize the emitters. In radar, this translates to the tracking of the

(x, y) cartesian coordinates of all emitters. Without proper data association, only a single
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Figure 16: System Diagram. The AP communicates with C clients using IEEE 802.11g.
The AP and clients do not collaborate with sensors S1, . . . , SM . The sensors use Layer 1
and, when possible, Layer 2 information to localize emitters E1, E2, . . . , EN .

measurement can be used with confidence. Under the assumption of no measurement-to-

measurement errors and no missed detections, a position estimate using a single measure-

ment from the ith detection can be made. However, multiple measurements can not be

used to decrease localization error without data association because the measurements may

be from different emitters. In this case, the extra measurements from other sensors would

likely increase the localization error. It is highly probable that multiple measurements will

be collected from each emitter.

Specifically, an IEEE 802.11g network in Infrastructure BSS mode using the Distributed

Coordination Function (DCF) is considered. The MAC mechanism is therefore CSMA/CA

and the PHY is chosen as OFDM. Error-free transmissions between the access point (AP)

and each client are assumed. Furthermore, no emitter enters the exponential backoff pro-

cedure and each client has the same amount of data to send.

The consequences of these assumptions are that a PES, also referred to as a frame

exchange sequence in the standard [41], always succeeds and all clients are equally likely to

capture the channel. For this work, a single AP is associated with C clients, thus N = C+1.

Each sensor passively observes the WLAN channel spectrum and is not associated with the

AP. Figure 16 provides an illustration of the setup.

The Nd measurements collected by each sensor are complex baseband samples with

timestamps. For the mth sensor’s samples, the ith packet arrival time estimate is denoted
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as t̂m[i] and calculated by a time delay estimation algorithm such as maximizing the cross-

correlation.

t̂i ,

[
t̂1[i] t̂2[i] . . . t̂M [i]

]T
, i = 0, 1, . . . , Nd − 1 (10)

If the WLAN packet is decodable by the sensor, then the packet Pi is associated with

the corresponding ToA. If the packet detection threshold is crossed but the packet is unde-

codable, then a dummy packet is inserted for that particular ToA measurement. By taking

the time difference between a reference sensor ToA, arbitrarily S1, and all other sensors,

the measurement TDoA vector is formed. These correspond to measurements in radar

terminology.

∆̂ti ,

[
t̂21[i] t̂31[i] . . . t̂M1[i]

]T
, t̂m1 , t̂m[i]− t̂1[i] (11)

A single detection is defined as the two-tuple:
(
∆̂ti, Pi

)
.

The emitters only send a single RTS/CTS PES for the present analysis. As the primary

purpose of this work is to explore the benefits of L2 information compared with L1, not all

possible PESs are considered. Further analysis will be required for practical implementation.

It is assumed that there is no measurement-to-measurement association error. This is

reasonable given a constrained geometry such that the maximum difference between ToA

measurements is much smaller than the DCF interframe spacing (DIFS). In our application,

the maximum TDoA possible in the stadium is 750ns, while the minimum DIFS is 28 µs.

Thus measurement-to-measurement ambiguity should be of little concern.

Furthermore, it is assumed there are no missed detections. For practical application in

the stadium, this will need to be relaxed. The primary objective of this paper is to explore

the benefits of the MAC Layer in the data association problem compared to the physical

layer. We avoid this additional complication for now and reserve it for future work.

Let Na be the number of packets per PES. For example, in RTS/CTS Na = 4 provided

no packet fragmentation occurs. Given a detection sequence of length Nd,

(∆̂t0, P0), (∆̂t1, P1), . . . , (∆̂tNd−1, PNd−1) (12)

the goal is to associate emitters E1, E2, . . . , EN to each detection. Under these assumptions,

Na = Nd as there are no missed detections and only a single PES is considered. The
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kinematic-only cost matrix C has nearly identical elements, implying the cost function has

virtually no discriminatory ability. Therefore, the data association problem depends only

on features.

The approach is to make use of a Homogeneous Markov Chain model to couple a par-

ticular En with a packet. That is, each Markov model state is a two-tuple, or three-tuple

for C > 1, consisting of a L2 packet type and emitter for a given PES. The time index

i in the Markov model is the detection index. Transition probabilities and states depend

on the PES and the CSMA/CA algorithm. Defining the model in this way allows packet

level correlations only available at L2 to be exploited in the data association problem. The

following sections formulate the problem and analyze the RTS/CTS PES.

3.3 Problem Formulation

Regardless of the packet sequence under consideration, the general problem is formulated

and notation defined before discussing the specifics of the RTS/CTS sequence in Sections

3.4 and 3.5. Table 4 provides a summary of the notation used throughout this paper,

in order of appearance. Upper-case bold symbols denote matrices, while lower-case bold

symbols are vectors. Bars over symbols indicate averages, while hats denote estimates.

Script upper-case letters are sets. E{} is the expected value of a random variable, and P{}

is the probability.

Consider a single PES with associated detection set. The task is to assign an En, n ∈

{1, 2, . . . , N} to every detection within the set. Let Yi be a random variable representing

the true emitter index at detection i

ΩY = {E1, E2, . . . , EN}, Yi(ω) = n if ω = En (13)

and Ŷi be the emitter index estimate for the ith detection. To assess performance, consider

a simple 0/1 loss in associating an emitter to the ith detection. This is the per packet PAE.

εi = 1 if Ŷi 6= Yi, 0 if Ŷi = Yi (14)

The number of errors in a PES, Qx, is therefore Qx =
∑Na

i=1 εi. Define the per packet

exchange sequence PAE as P{Qx > 0}. This is the error in making any association mistake
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Table 4: Data Association Notation

Symbol Description

Sm mth sensor

M No. of sensors

N No. of emitters

En nth emitter

C No. of AP clients

Nd No. of detections

tm[i] ith ToA at Sm
Pi ith Packet

∆̂ti TDoA estimate for ith packet

Na # of packets per PES

Yi Emitter index R.V. at packet i

ΩY Emitter index sample space

εi Association error indicator for Pi
Qx No. of association errors per PES

E{εi} Per packet PAE

P{Qx > 0} Per sequence PAE

Xi State R.V. at time i

ΩX State sample space

B Set of possible MAC packet types

ωX(j) A particular state j

∅ Dummy emitter in state label

pj(i) Probability of ωX(j) at detection i

p(i) Unconditional state probability vector at time i

P Transition probability matrix

Di Decodability of Pi
p Global sensor probability of decoding a packet

γn SNR per symbol for emitter En.

∆γ Difference in SNRs per symbol

ξ Ratio of ∆γ to γ

K No. of decodable packets in a PES

p0 Local sensor probability of decoding a packet

q Probability AP initiates RTS/CTS

B R.V. representing MAC packet type

π0 Bernoulli R.V. representing an RTS collision

LRTS Length of an RTS packet

LCTS Length of a CTS packet
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over an entire sequence. In order to calculate this error, the probability of a particular

emitter index n for detection i, P{Yi = n} is required. This quantity can be calculated

using the Markov model.

For one client (C = 1), it is sufficient to define Xi as a R.V. representing the Markov

state at detection i with the sample space given by

ΩX = {(a1, a2)|a1 ∈ B, a2 ∈ ΩY } (15)

where B is a set consisting of all possible MAC packet types in a given PES (e.g. RTS,

ACK, etc). Particular states are enumerated and denoted as ωX(j) where ωX(j) ∈ ΩX ,

j = 1, 2, . . . , |ΩX |.

For C > 1, a three-tuple state label is required as the state transitions depend on

whether the AP or another En, n = 1, 2, . . . C transmitted the first packet. In this case,

ΩX = {(a1, a2, a3)|a1 ∈ B, a2 ∈ ΩY , a3 ∈ ΩC},ΩC = {∅, E1, E2, . . . , EC} (16)

where ∅ is a dummy emitter indicating the third element is not necessary to define a

particular state. Denote pj(i) as the unconditional probability of a given state ωX(j) at

detection i, i = 0, 1, . . . , Nd − 1. That is, pj(i) = P{Xi = ωX(j)}. The unconditional

state probability vector is defined as p(i) ,

[
p1(i) p2(i) . . . p|ΩX |(i)

]T
. By Chapman-

Kolmogorov,

p(i) =
(
P i
)T
p(0) (17)

where P is the |ΩX |x|ΩX | one-step state transition probability matrix and p(0) is the initial

state probability vector [60]. The j, kth element of P is

P [j, k] = P{Xi+1 = ωX(k)|Xi = ωX(j)} (18)

To find the probability of a particular emitter index n,

P{Yi = n} =
∑

ωX∈Θ(n)

P{Xi = ωX} = 1
T
Θ(n)

(
P i
)T
p(0) (19)

where 1Θ(n) is the |ΩX |x1 indicator vector. That is, 1Θ(n)[j] = 1 if ωX(j) ∈ Θ(n) and Θ(n)

is the set of all states containing the nth emitter. For C = 1 and C > 1, respectively,

Θ(n) = {ωx = (a1, a2) ∈ ΩX |a2 = En},Θ(n) = {ωx = (a1, a2, a3) ∈ ΩX |a2 = En} (20)
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Table 5: MAC Frame ID, AP sends RTS
Packet Type Client Known

RTS X
CTS ×

DATA X
ACK ×

3.4 Single Client Analysis

Consider the Request-to-Send/Clear-to-Send (RTS/CTS) PES without fragmentation; hence

Na = 4 packets. It is assumed that both the AP and client use RTS/CTS. In reality it is

much more likely that the client uses RTS and the AP does not. Since the AP is associ-

ated with the clients, it can presumably hear all clients and therefore RTS/CTS is of little

benefit. This assumption can be relaxed in future work.

The state diagram for C = 1 client is shown in Figure 17, where AP = EN for notational

convenience. Thus Yi = N corresponds to the AP being assigned to the ith detection. While

the models are simple and do not allow for failed transmissions, they provide a starting

point for exploring how packet level correlations can assist in the data association problem.

Relaxing the assumptions to allow for failed transmissions and multiple sequences requires

modeling of the binary exponential backoff procedure, which is reserved for future work.

This may be complicated and lead to a state space explosion as there are many possibilities

[11].

The possible MAC packets for RTS/CTS are B = {RTS,CTS,DATA,ACK}. Not

all MAC packets contain the MAC addresses of the two emitters which are communicat-

ing. Suppose a client and the AP are communicating, with AP sending the RTS. Table 5

describes which emitter identities are known in each packet.

From the illustration in Figure 17, P and p(0) can be defined. Suppose the state random

variable sequence is X1, X2, X3, X4 for the PES.

3.4.1 PHY-Only (L1)

Without knowledge of the CSMA/CA MAC protocol or PES, a decision should be made

separately at each packet. The L1 feature considered is the SNR. The rational for this
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Figure 17: RTS/CTS packet exchange sequence state diagram for one client. Extra thick
and shaded circles are states with corresponding MAC packets containing both emitter IDs
(c.f. Table 5). State order is: (RTS,E1), (RTS,AP ),(CTS,E1), . . .

selection is that it is commonly provided by commercial APs and channel models are well-

studied in the communications literature. Other physical layer features could be used as

discussed in Section 3.1.1, which likely yield better performance. This analysis is restricted

to showing the benefits of L2 and hence not all physical layer features are considered.

If the packet is undecodable, then the strategy is a simple hypothesis test to associate

the detection to an emitter. It will be assumed the average SNRs are known for the emitters.

For decodable packets, the MAC addresses are used for association. It is reasonable to

allow the L1 strategy to use the MAC addresses since the bits are known at the physical

layer. The contrast with the L2 strategy is that knowing the ith association does not

imply anything about the (i+ 1)th association. In other words, packet level correlations are

ignored. Additionally, using the MAC addresses at L1 provides a more insightful reference

strategy to compare against L2. It more fully captures the advantages gained by exploiting

packet level correlations and the CSMA/CA MAC protocol. It also normalizes for the fact

that the emitter identification is sometimes contained in the packet itself.

The task is to calculate the per packet PAE for the ith packet, PL1{Yi 6= Ŷi} = EL1{εi},

where the subscript L1 is a reminder that the calculation is restricted to using only L1

information. This will then be extended, assuming independent errors, to calculate the
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PAE over the entire PES. First, condition on the decodability of packet Pi as the strategy

pursued depends on this quantity. Suppose Di ∼ bernoulli(p) is the R.V. representing

the decodability of packet Pi in the exchange sequence. Assume the Di are i.i.d over all

packets. Here p represents the global probability of decoding Pi among all M sensors. For

now, consider M = 1.

PL1{Yi 6= Ŷi} = P{Yi 6= Ŷi|Di = 0}P{Di = 0}+ P{Yi 6= Ŷi|Di = 1}P{Di = 1} (21)

If Di = 1, then Pi is decodable and P{Yi 6= Ŷi|Di = 1} = 0 as the MAC addresses are used

and hence there is no possibility of making an error in association. Even if the packet type

is a CTS or an ACK, both emitters are still known as the other one can be inferred. For

C > 1, this will not be the case.

Per the assumption, P{Di = 0} = 1−p. To evaluate P{Yi 6= Ŷi|Di = 0}, the probability

of error needs to be computed for the SNR hypothesis test. To do so, a channel model and

SNR distribution must be assumed. Consider a Ricean flat fading channel model with addi-

tive white Gaussian noise (AWGN). The Nakagami distribution can be used to approximate

the Rice distribution and has a form which is often easier to work with analytically [76].

The instantaneous SNR per symbol γ has a distribution given by

pγ(γ; γ) =
mmγm−1

γmΓ(m)
e
−mγ

γ , γ ≥ 0,m =
(1 +K0)2

1 + 2K0
(22)

where K0 is the Rice factor which controls the ratio of line-of-sight (LoS) to scatterer power

[75], γ is the average SNR, and Γ(·) is the Gamma function. Assume emitters E1 and E2

have average per-symbol SNRs γ1 and γ2, respectively. Without loss of generality, suppose

γ2 > γ1.

H0 : γ ∼ pγ(γ; γ1),H1 : γ ∼ pγ(γ; γ2) (23)

The hypothesis are equally likely by Figure 17. The resulting test is given in Equation 24.

γ
H1

≷
H0

η, η ,
γ1γ2 ln

(
γ2
γ1

)
γ2 − γ1

(24)

Next, calculate the per packet conditional PAE.

P{Yi 6= Ŷi|Di = 0} =
mm

2Γ(m)

1

γ2
m

∫ η

0
γm−1e

−mγ
γ2 dγ +

mm

2Γ(m)

1

γ1
m

∫ ∞
η

γm−1e
−mγ
γ1 dγ (25)
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Rewrite the average SNRs as γ2 = γ1 + ∆γ,∆γ ≥ 0. Then define ξ , ∆γ
γ1

. The per packet

conditional PAE will only depend on this ”aspect” ratio. Noting Γ(a, x) =
∫∞
x ta−1e−tdt is

the upper incomplete gamma function and defining Pe(ξ) , P{Yi 6= Ŷi|Di = 0}, the final

result is given in Equation 26.

Pe(ξ) =
1

2
−

Γ
(
m, m ln(ξ+1)

ξ

)
2Γ(m)

+
Γ
(
m, m(ξ+1) ln(ξ+1)

ξ

)
2Γ(m)

(26)

Equation 26 gives the per packet conditional PAE as a function of ξ. Notice limξ→∞ Pe(ξ) =

0 since the second sum term’s numerator becomes Γ (m, 0) = Γ (m) and the third vanishes.

There is a helpful physical interpretation of Equation 26. Consider SNR as some measure

of distance. However, we are careful to not to assume any explicit mapping as the accuracy

of such RSSI-based techniques are often poor in practice and highly environment dependent

[5, 38]. For a fixed separation between emitters corresponding to a fixed ∆γ, ξ is large for

small γ1. This implies as the sensor moves further away from the pair of emitters, the

PAE decreases. If the distance between the sensor and first emitter is fixed, then consider

γ1 constant, implying ξ is large for large ∆γ. The interpretation is that larger separation

between emitters lowers the PAE. A visualization is a triangle with E1, E2 and S1 as vertices

and γ1 and ∆γ as edges. Substituting Equation 26 into Equation 21 gives the unconditional

per packet PAE.

EL1{εi} = PL1{Yi 6= Ŷi} = (1− p)Pe(ξ) (27)

Next, the per sequence PAE is derived for the Layer One strategy. Recall that Qx ∼

binomial (4,E{εi}) if the ”successes” (incorrect assignments) are independent since εi is a

Bernoulli R.V. This is a justifiable assumption because knowledge of previous assignment

correctness should not influence the current emitter guess unless L2 provides that side

information. Also, although the other detections may have corresponding packets which are

decodable, this should not influence the per packet PAE. Allowing these packet correlations

implies knowledge of the PES and CSMA/CA, which subtlety violates the assumption

of using only L1 information. Equation 28 gives the per sequence PAE using only L1
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information.

PL1{Qx > 0} = 1− PL1{Qx = 0} = 1−
(

4

0

)
E{εi}0(1− E{εi})4 = 1− (pPe(ξ))4 (28)

3.4.2 MAC-Only (L2)

The key realization for exploiting L2 information is that observing any of the Xi makes the

other three known due to the structure of the PES. Therefore, decoding a single packet is

sufficient to correctly assign all packets to emitters. This is unique to the single client case

because CTS and ACK MAC packets only contain a single emitter ID. For C > 1, exactly

which packet was decoded is of importance.

Recall Di represents the decodability of the ith packet. Assuming the Di are i.i.d.,

then K ∼ binomial(Na, p) represents the number of decodable packets in a PES. Using

the Markov model of the MAC, first compute the complementary probability. Note the

subscript L2 indicates the use of only L2 information.

PL2{Qx = 0} = P{Qx = 0|K ≥ 1}P{K ≥ 1}+ P{Qx = 0|K = 0}P{K = 0}

= 1− (1− p)4 + (1− p)4P{Qx = 0|K = 0} (29)

This follows because decoding at least one packet leaves no assignment ambiguity.

Although the packet is not decodable, the structure of the PES suggests that sequences

E1, AP,E1, AP or AP,E1, AP,E1 should be guessed with equal probability. The guess is

correct with probability 0.5 since by Equation 19 P{Yi = n} = 1
2 for all i and n.

PL2{Qx > 0} =
1

2
(1− p)4 (30)

The final result is given by Equation 30. Compare this strategy with the L1 approach, where

in the absence of L2 knowledge, emitters are guessed independently for each measurement.

For comparison to the L1 strategy, it will be helpful to have a per packet probability of

association error. As shown above, there are correlations between detections which influence

the probability of error. As such, consider an average per packet PAE, PL2{Yi 6= Ŷi}.

PL2{Y0 6= Ŷ0} = PL2{Y0 6= Ŷ0|D0 = 0}P{D0 = 0}+ PL2{Y0 6= Ŷ0|D0 = 1}P{D0 = 1}

(31)
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The second sum term is zero as the packet is decodable. Note P{Y0 = n} = 1
2∀i, n.

PL2{Y0 6= Ŷ0|D0 = 0} =
1

2
PL2{Ŷ0 6= 1|D0 = 0, Y0 = 1}+

1

2
PL2{Ŷ0 6= 2|D0 = 0, Y0 = 2} (32)

Guess the emitters with equal probability and the wrong assignment is made with proba-

bility 1
2 .

PL2{Y0 6= Ŷ0} =
1− p

2
(33)

By similar arguments, PL2{Y1 6= Ŷ1} = (1− p)PL2{Y1 6= Ŷ1|D1 = 0}. Since L2 information

is available, information from the previous detection can be used for the current association.

Specifically, if P0 was decodable, then no mistake is made.

PL2{Y1 6= Ŷ1|D1 = 0}
1− p = PL2{Y1 6= Ŷ1|D1 = 0, D0 = 0} (34)

If P0 was not decodable, then the PES and CSMA/CA suggests an association. Condition

on the previous guess Ŷ0, then guess the other emitter.

PL2{Ŷ1 = 2|Ŷ0 = 1, D0 = 0} = 1,PL2{Ŷ1 = 1|Ŷ0 = 2, D0 = 0} = 1 (35)

The conditional probability becomes

PL2{Y1 6= Ŷ1|D1 = 0, D0 = 0} = PL2{Y1 = 1|D1 = 0, D0 = 0, Ŷ0 = 1}P{Ŷ0 = 1|D0 = 0}

+ PL2{Y1 = 2|D1 = 0, D0 = 0, Ŷ0 = 2}P{Ŷ0 = 2|D0 = 0} (36)

Note by previous work P{Ŷ0 = 1|D0 = 0} = P{Ŷ0 = 2|D0 = 0} = 1
2 and by Equation 19

this conditional probability evaluates to 1
2 . Therefore, the per packet PAE is

PL2{Y1 6= Ŷ1} =
(1− p)2

2
(37)

By similar arguments, P{Y2 6= Ŷ2} = 1
2 (1− p)3 and P{Y3 6= Ŷ3} = 1

2 (1− p)4. The average

per packet PAE for the L2 strategy is given in Equation 38.

PL2{Yi 6= Ŷi} =
1

8

4∑
i=1

(1− p)i (38)

3.4.3 MAC-Assisted (L1/L2)

This strategy combines the physical and MAC layers to lower the PAE.

min
Ŷ

4∑
i=1

E{εi} = min
Ŷ
P{Yi 6= Ŷi}, Ŷ ,

[
Ŷ0 . . . Ŷ3

]T
(39)
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Since E{εi} ≥ 0, it is sufficient to minimize the equation term-by-term.

minP{Y0 6= Ŷ0} = 0 if ∪4
i=1 Di ≥ 1,min

(
1

2
,Pe(ξ)

)
o.w.

P{Y0 6= Ŷ0} = P{Y0 6= Ŷ0| ∪4
i=1 Di ≥ 1}P{∪4

i=1Di ≥ 1}

+ P{Y0 6= Ŷ0| ∪4
i=1 Di = 0}P{∪4

i=1Di = 0} = (1− p)4 Pe(ξ) (40)

For subsequent guesses, use the L1 decision from the first association if packets are unde-

codable.

minP{Yi 6= Ŷ1} =


0 ∪4i=1Di ≥ 1

Z = P{Y1 6= Ŷ1|Y0 = Ŷ0}P{Y0 = Y0}

+P{Y1 6= Ŷ1|Y0 6= Ŷ0}P{Y0 6= Y0} o.w.

(41)

Note that P{Y1 6= Ŷ1|Y0 = Ŷ0} = P{Y1 6= Ŷ1|Y0 6= Ŷ0} = 0. Knowing if the first association

is correct (or incorrect) is all the information which is required to make an error free

association for the sequence. The final result is given by Equation 42.

PL1/L2{Qx > 0} = Pe (ξ) (1− p)4 (42)

Assuming the per symbol SNR random variables γ are i.i.d. on a per packet basis, then

this result carries over for using any one of four L1 decisions. Other MAC layer assisted

strategies can be imagined, such as using all four L1 SNR measurements.

3.4.4 Probability of Error as a Function of SNR

One reasonable question to investigate is how the L1 strategy compares to L2 as a function

of average SNR received at the sensor from E1 packets. At a sufficiently high SNR, one

expects the both association errors to vanish, whereas in the low SNR region the physical

layer approach may be superior. What is not clear, however, is the performance for the

moderate SNR region when packets are occasionally decodable. Consider the independent

variable as γ1(dB) = 10 log10 (γ1) and compare the two strategies in terms of average per

packet PAE and per sequence PAE.

For the following comparisons, the two emitters are assumed to use a Modulation and

Coding Scheme (MCS) of 2, representing QPSK modulation with a rate R = 1
2 . For QPSK,
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the energy per symbol is equal for all data symbols due to phase modulation [64]. The

difference in energy of the preamble and signal fields, which may have a different MCS than

the data, is ignored.

To map γ1(dB) to an average probability of decoding a packet p̄, simulation is employed

due to the complexities of analysis. Other simulation options are available [59, 47, 44].

The simulation itself was performed with the GNURadio software radio toolkit using the

gr-ieee80211 module [14]. The flat fader channel model with a Rice Factor of K0 = 5 and

AWGN were added to the IEEE 802.11g PHY. For each SNR, the probability of receiving

a packet was averaged over 20 trials of 100 packets each. A generalized logistic function

p̄
(
γ1(dB)

)
=

1

1 + exp
(
−α

(
γ1(dB) − β

)) (43)

with parameters α and β was fit to the simulated average probability of decoding a packet

over a range of SNRs using the nlinfit non-linear regression MATLAB function. The root

mean square error (RMSE) for the fit is 6.23× 10−3. The fit parameters for QPSK 1/2 are

α = 1.32 and β = 8.27. Mappings can easily be found for other modulations and values of

K0.

The L1 and L2 strategies are compared in terms of the per packet PAE. Substituting

Equation 43 into Equations 27 and 38 for p gives these functions in terms of γ1(dB) and ξ.

The per packet PAE is plotted in Figure 18a for various ξ(dB) = 10 log10 ξ. The L1 strategy

is superior on a per detection basis until γ1(dB) is between 6.5 and 8 dB, with the exact

intersection dependent upon ξ(dB). A larger ξ produces a lower per packet PAE. Recall the

L1 strategy does allow for choosing associations based on MAC addresses for the present

detection if the packet is decodable. For the sufficiently high SNR region where packets

are sometimes decodable, it is clear exploiting the structure of L2 is advantageous over

and above simply decoding the MAC addresses of the emitters and using them for data

association.

The advantage of the L2 strategy becomes more significant when looking at the per
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Figure 18: The average per packet and per packet exchange sequence probability of as-
sociation error is shown in 18a and 18b, respectively for a single client and sensor. The
independent variable is average SNR per symbol (dB) received at the sensor from emitter
E1. The various ξ(dB) curves represent the ratio of the SNR difference (in dB) received at
the sensor between emitters to the SNR from E1. The packet decode probability mapping
to SNR assumes QPSK 1

2 in a Ricean channel with K0 = 5.

sequence PAE. Substituting Equation 43 into Equation 28 and using the relevant fit pa-

rameters yields the L1 PAE as a function of γ1(dB) and ξ(dB).

PL1{Qx > 0} = 1−

 Pe
(
10ξ(dB)/10

)
1 + exp

(
−α

(
γ1(dB) − β

))
4

(44)

Similarly, substitute Equation 43 into Equation 30 for p.

PL2{Qx > 0} = 1−

 1

1 + exp
(
α
(
γ1(dB) − β

))
4

(45)

Figure 18b plots Equations 44 and 45 as a function of γ1(dB) with ξ(dB) fixed at various

values. As expected, at high SNR the packets are decodable and there are no errors in

association. At low SNR, the performance of the L1 strategy improves as ξ(dB) increases.

The most interesting SNR region is when γ1(dB) ∈ [5, 11] dB. At γ1(dB) = 5 dB, the

average decode probability is p = 0.0134. At γ1(dB) = 11 dB, the packets are almost

always decodable with p = 0.9733. If some packets are occasionally decodable, using L2

information can significantly outperform L1.

It is also interesting to compare Figure 18b to the per packet PAE shown in Figure 18a.

Although the L1 strategy outperforms L2 on a per packet basis for sufficiently small γ1(dB),
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Figure 19: 19a shows the per packet exchange sequence probability of association error
for one client with fixed ξ. L1/L2 and L2 represent the MAC-Only and MAC-Assisted
strategies, respectively. The various ξ(dB) curves represent the ratio of the SNR difference
(in dB) received at the sensor between emitters to the SNR from E1. 19b plots the per
packet exchange sequence probability of association error for one client and multiple sensors
using Layer 2 information.

on a per sequence basis the L2 strategy is superior for all γ1(dB) for the ξ(dB) considered

here. These figures suggest L2 side information is most helpful in the data association

problem when associations must be made over entire packet exchange sequences.

The combined L1/L2 strategy per sequence PAE using a physical layer decision for a

single measurement is plotted in Figure 19a. Comparison with Figure 18b demonstrates

the benefits of using cross-layer information. The PAE can likely be lowered by using all

available SNR measurements to make the physical layer decision. That analysis is reserved

for future work.

3.4.5 Multiple Sensors

Recall p is the global probability that Pi is decodable. Given M sensors, each with local

decode probability p0, only a single sensor need decode Pi as it is assumed the sensors can

share the decoded bits from the packet. Assume the decodability of the Pi are independent.

p = 1− (1− p0)M (46)
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If this decode probability is substituted in Equation 30, then the relation between the

number of sensors and the per sequence PAE can be quantified.

PL2{Qx > 0} =
1

2
(1− p0)4M (47)

Figure 19b plots the relation for multiple sensors as a function of p0. With a realistic number

of sensors, M = 16, it is possible to achieve a per sequence PAE of less than 0.01 with a

single sensor decode probability of 0.06. Inspecting Equation 47 we observe that although

1 − p0 may be close to one, it quickly vanishes. This is because the number of sensors is

multiplied by a factor of four due to the fact that only a single packet must be decoded for

correct association over the entire PES. Also, for M >> 1, a thresholding effect is evident

with respect to p0. For smaller M , the performance improvement is more gradual. Another

observation is that increasing the number of sensors leads to diminishing returns in terms

of the performance metric. This implies that it is sufficient to have around 10 to 20 sensor

nodes deployed in our application.

For deployments, it may be useful to calculate the number of sensors required for a

specified PAE. That is, P{Qx > 0} ≤ δ. Equation 47 can be rearranged to give the

required number of sensors for the specified error bound, where d·e is the ceiling function.

M ≥
⌈

ln (2δ)

4 ln (1− p0)

⌉
(48)

The interpretation is that if M is chosen according to Equation 48, then the probability an

error is made in associating emitters to measurements for single PES is less than δ.

3.5 Multi Client Analysis

This section analyzes the advantages of using L2 information as a function of the number

of clients. Intuitively, L2 should be superior as CSMA/CA and the PES provide side

information. The L1 comparison is omitted and the focus is on how L2 scales with the

number of clients.

For the single client case, additional CTS, Data, and ACK states must be introduced,

otherwise the state transition probabilities depend on whether the AP or another En, n =

1, . . . , C sends the RTS. The total number of states is 7C+1. Furthermore, q , P{Y0 = N}
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Figure 20: RTS/CTS packet exchange sequence state diagram for two clients. State tran-
sitions are not shown from the ACK state for diagram clarity. All ACK states return to
(RTS,En), n = 1, . . . , N −1 with probability 1−q

2 and (RTS,EN ) with probability q. Extra
thick and shaded circles signify states with corresponding MAC packets containing both
emitter IDs (c.f. Table 5). ∅ is a dummy emitter indicating the third element is not
required to fully define the state.

and P{Y0 6= N} = 1−q
C . That is, the AP initiates the sequence with probability q. If the

AP does not initiate, then all other emitters have an equal probability of initiating the

sequence. This state diagram is shown in Figure 20 for C = 2. Extension for C > 2 is

straightforward.

Additionally, for C > 1 it is possible to decode packets in the sequence but still need

to guess the client (c.f. C = 1). This is true if the Pi decodable contains only CTS or

ACK MAC packets because these packets only contain the address of the RTS transmitter.

However, if the client sends the RTS, then decoding any packet is sufficient to identify the

client as shown in Table 5.

P =



0NxN F 0Nx2C 0Nx2C

02CxN 02Cx2C G 02Cx2C

02CxN 02Cx2C 02Cx2C G

H 0Nx2C 0Nx2C 0Nx2C


F =

 0CxC IC

1
C1TC 0TC

G =

 0CxC IC

IC 0CxC



H =

[
1−q
C 12CxC q12C

]
p(0) =

[
1−q
c 1TC q 0T6C

]T
(49)

From Figure 20, define the matrices in Equation 49. 0NxN is an NxN matrix of zeros, IN

is the NxN identity matrix, 1C or 1NxC is a Cx1 vector or NxC matrix of 1’s, respectively.
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0N is the Nx1 column vector of zeros.

The initial state probabilities are given as p(0). Next, calculate PL2{Qx > 0}, which

depends critically on the packet type, number of decodable packets, and data direction.

PL2{Qx > 0} =

4∑
k=0

PL2{Qx > 0|K = k}P{K = k} (50)

From Table 5, if K ≥ 3 then P{Qx > 0|K ≥ 3} = 0 an RTS or DATA packet is received.

If K = 2, then there are a total of
(

4
2

)
= 6 different MAC packet types. Of these, only

CTS or ACK packets makes the client unknown, provided the AP sends the RTS. Recall

Di ∼ bernoulli(p) represents the decodability of the ith measurement. Let CA , D0 =

0 ∩ D1 = 1 ∩ D2 = 0 ∩ D3 = 1 be an event indicating the two decodable packets were

CTS/ACK and 1CA an indicator R.V. for the event. Note that P{CA|K = 2} = 1
6 .

P{Qx > 0|K = 2} =
5

6
P{Qx > 0|K = 2,1CA = 0}+

1

6
P{Qx > 0|K = 2,1CA = 1} (51)

However, P{Qx > 0|K = 2,1CA = 0} = 0 because the packet type will either be RTS or

DATA. Further condition on the probability of the AP sending data to a client, P{Y0 =

N} = q.

P{Qx > 0|K = 2,1CA = 1} = qP{Qx > 0|K = 2,1CA = 1, Y0 = N}

+(1− q)P{Qx > 0|K = 2,1CA = 1, Y0 6= N} (52)

If Y0 6= N , then P{Qx > 0|K = 2,1CA = 1, Y0 6= N} = 0 because the CTS and ACK contain

the client MAC address. Therefore, the other emitter is the AP due to the assumption of

infrastructure BSS mode. If Y0 = N , then the strategy is to uniformly guess a client and it

is correct with probability 1
C .

P{Qx > 0|K = 2} =
q(C − 1)

6C
(53)

For K = 1, the problem again is decoding either a CTS or ACK as correct association

is always possible otherwise. Let random variable B represents the decodable MAC packet

type.

P{Qx > 0|K = 1} =
1

4
P{Qx > 0|K = 1, B = CTS}+

1

4
P{Qx > 0|K = 1, B = ACK} (54)
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The last two probabilities are identical as can be seen from the Markov state diagram so it

is sufficient to consider B = CTS. Again, condition on Y0 = N .

P{Qx > 0|K = 1, B = CTS} = qP{Qx > 0|K = 1, B = CTS, Y0 = N}

+ (1− q)P{Qx > 0|K = 1, B = CTS, Y0 6= N} (55)

As in the K = 2 case, if Y0 = N uniformly associate a client. The association is correct

with probability 1
C ; otherwise correct association is always possible.

P{Qx > 0|K = 1} =
q(C − 1)

2C
(56)

If no packets are decodable, then choose the RTS emitter and the particular client. The

strategy is to choose the clients with equal probability and the order which maximizes the

probability.

Suppose q > 0.5, then consider the complementary probability

P{Qx = 0|K = 0} = P{∩3
i=0Ŷi = Yi} = P{∩3

i=1Ŷi = Yi|Ŷ0 = Y0}P{Ŷ0 = Y0}

= qP{∩3
i=1Ŷi = Yi|Y0 = N} (57)

The last line follows because the association for Y0 is correct. This implies Y0 = N because

of the assumption of q > 0.5, implying Ŷ0 = N . Then, guess the client and are correct with

probability 1
C . Thus for q > 0.5, P{Qx > 0|K = 0} = 1− q

C .

Suppose q < 0.5, then consider the complementary probability

P{Qx = 0|K = 0} = P{∩3
i=1Ŷi = Yi|Ŷ0 = Y0}P{Ŷ0 = Y0} =

1− q
C

(58)

The strategy is to guess Ŷ0 = 1, 2, . . . , C with equal probability. If correct, then the client is

known and the other emitter must be the AP. The implication is that there is no ambiguity

in the association for the conditional probability term.

For q < 0.5, P{Qx > 0|K = 0} = 1− 1−q
C . The condition on q can be incorporated as

P{Qx > 0|K = 0} = 1− max{q, 1− q}
C

(59)

Combining equations 50, 53, 56 together with Equation 59 yields the final result. Equation

60 gives the L2 per sequence PAE as a function of the decode probability, number of clients,
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Figure 21: The per packet exchange sequence probability of association error using Layer
2 information. 21a plots this for various numbers of sensors, M . Each sensor has a local
packet decode probability of p0 = 0.2 and q = 0.75, where q is the probability the RTS
packet is sent by the AP. 21b plots this probability as the number of clients, C, tends to ∞
for various q.

and probability the AP transmits the RTS.

PL2{Qx > 0} =
p2 (1− p)2 q(C − 1)

C
+

2p (1− p)3 q(C − 1)

C
+

(1− p)4 (C −max{q, 1− q})
C

(60)

The asymptotic behavior of this equation is interesting. Equation 61 gives the limit as

the number of clients tends to infinity. Critically, it is not zero and only depends on the

packet decode probability and data flow direction.

lim
C→∞

PL2{Qx > 0} = q
(
p2 (1− p)2 + 2p (1− p)3

)
+ (1− p)4 (61)

Figure 21a plots Equation 60. Figure 21b plots Equation 61 as a function of p for various

values of q. It can be seen that client to AP transactions have lower PAE than AP to client.

3.6 Model Validity

The state diagrams of Figs. 17 and 20 are quite restrictive since no failed transmissions

are allowed. However, the model can be applied appropriately if packet collisions can be

detected. The following analysis demonstrates measuring the interframe spacing can detect

a packet collision correctly with high probability.

In the multi client case, note that collisions only happen on an RTS. From Equation 10,

t̂i = ∆̂ti + 1M−1t̂1[i] (62)
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Let αi , t̂1[i]. Then, the mth element of t̂i can be approximated.

t̂m[i] = t̂m1[i] + αi ≈ αi,m = 2, . . . ,M (63)

For a constrained geometry such as a stadium (100mx200m), the maximum possible TDoA

is 750nS, which is much shorter than the shortest possible interframe spacing of 9µS.

Suppose the measurements are ∆αi , αi − αi−1. Let F ∼ bernoulli (π0) be an R.V.

indicating an RTS collision, with π1 = 1 − π0. Assume conditional Gaussian distributions

dependent on π0. For any of the N emitters,

H0 :pF (∆αi|F = 1) ∼ N
(
µ0(Ns), σ

2
0

)
,H1 : pF (∆αi|F = 0) ∼ N

(
µ1, σ

2
1

)
µ0 (Ns) = LRTS + SIFS + LCTS +DIFS +NsTslot, µ1 = LRTS + SIFS (64)

LRTS and LCTS are the lengths of the RTS and CTS packets, respectively. SIFS and DIFS

are the short and DCF interframe spacing times, respectively. Tslot is the length of a slot in

the IEEE 802.11g standard [41], which is either 9µS or 20µS. Ns ∼ unid(0, CWmin) is the

slot number, which is a discrete uniform R.V. from 0 to CW , where CW is the contention

window size. To simplify the problem, suppose

N∗s = min
Ns
‖∆αi − µ0(Ns)‖22 (65)

Then, pF (∆αi|F = 1) becomes Gaussian with mean µ0 , µ0(N∗s ). The approximation is

that errors are only made to adjacent slots. Without this assumption, the distribution

under H0 is a Gaussian mixture, which does not have a closed form solution for a simple

hypothesis test.

∆α2
i

(
σ2

1 − σ2
0

)
− 2∆αi

(
µ0σ

2
1 − µ1σ

2
0

) H1

≷
H0

2σ2
0σ

2
1 ln

(
σ1π0

σ0π1

)
− σ2

1µ
2
0 + σ2

0µ
2
1 (66)

Assuming σ2
0 = σ2

1 and noting µ0 > µ1, this simplifies to

∆αi
H1

≷
H0

γ, γ ,
σ2

0 ln (π0/π1)

µ1 − µ0
+
µ1 + µ0

2
(67)

The probability of error is calculated as follows, where Φ (·) is the Gaussian CDF.

PE = π1

∫ ∞
γ

pF (∆αi|F = 0) d∆αi + π0

∫ γ

−∞
pF (∆αi|F = 1) d∆αi

= π1Φ

(
µ1 − γ
σ0

)
+ π0Φ

(
γ − µ0

σ0

)
(68)
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Figure 22: Approximate probability of error for detecting an RTS collision using interframe
spacing. The curves represent various π0, the probability of an RTS collision. The signal
is assumed to be 20 MHz channel-spaced OFDM with QPSK R = 1

2 modulation and short
timeslot Tslot = 9µS.

Figure 22 plots PE as a function of σ0 for a 20 MHz channel-spaced OFDM IEEE

802.11g signal with QPSK R = 1
2 and short interframe spacing. As the probability of an

RTS collision increases, PE decreases. Note that the standard specifies error bounds on SIFS

as SIFS ±10% = (pg. 827,[41]). To a first order approximation, this implies σ0 ≈ 2µS. From

the figure, PE is virtually zero under these worst-case assumptions. Using a hypothesis test

on the interframe spacing can accurately detect if an RTS collision has occurred. The result

is that the data association strategies discussed can be applied with greater accuracy.

3.7 Conclusions

This chapter explored using Layer 2 knowledge such as MAC protocol and packet level

correlations as features in the data association problem for extreme emitter density RF

environments. A Markov model was introduced as an analysis technique to couple physical

layer measurements with side information available at higher levels of the protocol stack.

Analysis for an RTS/CTS packet exchange sequence under ideal channel conditions

demonstrated that a reasonably small number of sensors with low local packet decode

probability can correctly associate emitters to measurements with high probability. For

more than two clients, the direction of data transfer affects the probability of association

error. That is, clients uploading to an access point lowers the probability of association
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error compared to downloading. Most importantly, exploiting Layer 2 knowledge can yield

a lower per packet exchange sequence PAE compared to the Layer 1 strategy, although the

per packet PAE may be higher.

Future work should compare other PHY information known at the sensors such as

frequency offset of the detections to the Layer 1 strategy as well as Layer 2. Additionally,

other packet exchange sequences and standards could be analyzed. The channel model

should be relaxed to incorporate the possibility that a packet transmission fails and the

emitter enters the exponential backoff procedure. However, the current analysis is sufficient

to show exploiting Layer 2 structure can yield significant performance advantages in the

data association problem.
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CHAPTER IV

MAC ASSISTED LOCALIZATION

Localization in EED environments is of critical importance for spectrum management and

security. One example of such an environment is Bobby Dodd football stadium on game-

day. Fans’ smartphones, Bluetooth headsets, wearables, etc. may interfere with critical

communication systems such as mobile ticket scanners or coach-to-coach headsets. Fast

and precise localization of a rogue client or other non-conforming Emitter of Interest (EoI)

is needed to secure the spectrum for these critical systems. Localization can be performed

using sensors to capture RF spectrum. An example scenario is illustrated in Figure 23 for

two emitters and M sensors mounted on the perimeter of the stadium.

In such a situation, the emitters are typically constrained to be within a fixed ellipse, and

their transmissions follow a known communications protocol. Both of these assumptions can

be exploited to decrease the localization estimate’s uncertainty. In EED environments, this

is especially important due to the high density of devices. Returning to the football stadium

example, this implies inconveniencing fewer fans when finding the interfering emitter.

In this chapter, a three-stage algorithm is presented for lowering the uncertainty of

emitter position. The stages are coupled by the confidence regions (CR) generated from

their position estimates. The first stage uses only sensors which can decode the packet sent

from the emitter to solve for an initial position estimate. Since these sensors can decode

the packet, they have localized the signal in time. A confidence region for the position

estimate is then computed. In the second stage, sensors which can’t decode the packet

then use the Time-of-Arrival (ToA) estimates from Stage I and the geometry to bound

their ToAs. This is done by restricting the range of the cross-correlation lags based on

geometry and the initial Stage I estimate. Finally, Stage III exploits the protocol-specified

time between packets to estimate the distance from a node with known position, such as an

Access Point (AP), to the EoI. For each stage, a confidence region is computed based on a
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Figure 23: System Diagram. Emitter E1 transmits a signal to E2. Sensors Sm,m =
1, 2, . . . ,M have known position vectors qm and attempt to localize Emitter E1 with un-
known position vector p1 using TDoA. E2 has a known position. Distances from E1 to
Sm are denoted as dm(p1). Sensors able to decode the packet (Sm ∈ Γdec) are labeled
in bold green, non-decoding (Sm ∈ Γndec) in italicized red, and non-participating sensors
(Sm ∈ Γnp) in underlined gray text.

specified confidence level. The region from the previous stage is used by the next stage to

bound the emitter location. In choosing the intersection of the error sets, we have chosen

a specific sensor fusion approach. There are other possible approaches, such as Covariance

Intersection (CI), and our choice may not be optimal, but should be fast. 1 The analysis

of other fusion methods is reserved for future work.

The primary contributions of this chapter are:

1. A three-stage localization algorithm for emitters operating under a known communi-

cations standard within a constrained geometry. The technique in shown in simulation

to significantly reduce the error area in the localization estimate by exploiting knowl-

edge of the MAC layer, as well as windowing the timing estimate based on geometry

for low Signal-to-Noise Ratio (SNR) sensors.

2. A novel technique, Packet Time-Difference-of-Arrival (PTDoA), to estimate the dis-

tance between an emitter of interest and an emitter with a known position using the

Time-Difference-of-Arrival (TDoA) between packets. The theoretical variance of the

1In fact, if the cross-covariance is known between the ellipses, then the optimal ellipse is a subset of the
intersection [21, 45].
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estimate is derived as a function of packet timing jitter, SNR, and the length of the

Packet Exchange Sequence (PES).

3. Analytical results on the probability of choosing the correct integer lag as a function

of SNR and window size for an ideal impulse signal auto-correlation function. The

results are compared with the typical uniform distribution assumption. The derived

distribution variance is less than the uniform distribution variance for moderate SNRs.

Background material is discussed in Section 4.1. Section 4.2 describes the system model

and assumptions. The three-stage algorithm is explained by stage in Sections 4.3, 4.4, and

4.5. Simulations are discussed in Section 4.6. The paper concludes with Section 4.7.

4.1 Background

4.1.1 Time Delay Estimation

Localization using TDoA requires a TDE technique for discrete time data. Typically, there

are two steps. First, the coarse estimate locates the delay to within an integer sample. Next,

a fine estimate performs interpolation or optimization to locate the sub-sample delay. The

coarse estimate can include maximization of the cross-correlation function, minimizing the

average square difference function (ASDF), or minimizing the average magnitude difference

function (AMDF). Jacovitti compares these techniques under the assumption that the signal

is random [43]. ASDF and ADMF are found to have lower variance at high SNRs than the

cross-correlation approach.

Multiple algorithms also exist for the fine TDE. One popular approach is to perform

a parabolic interpolation around the maximum magnitude cross-correlation sample. How-

ever, this is known to be a biased estimator, where the bias is a function of the sub-sample

displacement [56, 15]. Other approaches include spline-based interpolation [83] and sync in-

terpolation by zero-padding the Discrete Fourier Transform [52]. Finally, the TDE problem

can also be formulated as one of estimating coefficients of a FIR filter [19].

For complex cross-correlation functions, some modifications are necessary. The Maxi-

mum Likelihood Estimate is a maximization of the real part of the cross-correlation func-

tion [66]. At the true time delay, the cross-correlation magnitude is maximized, and the
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cross-correlation phase has a zero crossing. Therefore, one can linearly interpolate the

phase to estimate the y-intercept and achieve sub-sample accuracy [89]. In simulation, this

technique is significantly less biased than parabolic interpolation on the magnitude of the

cross-correlation. The parabolic interpolation technique can also be adapted for real data to

significantly reduce the bias [42]. Finally, Agrez provides another three-sample interpolation

technique [2].

Many theoretical TDE variance bounds exist, but some only apply in certain SNR

intervals. At sufficiently high SNR, the Cramer-Rao Lower Bound (CRLB) provides the

asymptotic performance for an unbiased estimator. At sufficiently low SNR, the estimator

variance can be approximated by the variance of a uniform random variable [66]. This is

because large errors can occur in picking the cross-correlation peak due to the large noise

variance [40]. Composite bounds have been derived which cover a range of SNRs including

Ziv-Zakai [92] and Weiss [86].

4.1.2 Round-Trip Time-of-Flight

The third stage of the proposed algorithm uses MAC protocol knowledge; specifically, the in-

terframe spacing, to improve emitter localization. This idea is ostensibly similar to some ex-

isting round-trip-time localization schemes; however, there are significant differences which

will now be discussed.

In RTOF, a client estimates its distance to an AP by measuring the number of clock

cycles between sending a data frame, for example, and receiving an acknowledgement frame.

The Time-of-Flight (ToF) is then calculated as a function of the RTT. Schauer et al. [70]

provide a summary of the problem, and proposes a new technique based on the NULL-ACK

PES. Gunther and Hoene [36] conducted two experiments using three different IEEE 802.11

b/g chipsets and measured the Round Trip Time (RTT) for an ICMP ping. The packet

timestamps were provided by the WLAN card drivers to microsecond resolution, limiting

the accuracy of the distance estimation. Ciurana et al. performed a similar experiment,

again for an ICMP ping, but using external hardware to capture timing signals directly

from the WLAN IC [22].
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Bahillo et al. [6] also used a test harness to capture timing signals directly from the

WLAN IC, but using the RTS/CTS PES. The authors note these signals are synchronous

with the clock. This implies the time delay estimation resolution is limited by the clock

frequency of the WLAN IC. Measurements were taken in three different environments, and

the RTT was estimated as the mean of a Gaussian distribution.

The CAESAR system [32] uses the DATA/ACK PES for the RTT calculation. ToAs

are calculated from the hardware driver. Histograms of the MAC idle time are shown

demonstrating a bimodal distribution. This is hypothesized to be a result of the frame

detection algorithm and automatic gain control (AGC) adjustments. Additionally, WLAN

IC manufacturers have different interframe spacing bias compared to the IEEE 802.11g

standard, with variances on the order of nanoseconds [16]. These factors can be accounted

for as the MAC layer provides information on the WLAN chipset from the MAC address.

In all of these works, the client measures the RTT. This requires cooperative localization,

wheres the proposed system works with non-collaborative clients. Additionally, the client

is likely to have a consumer-grade oscillator with a frequency accuracy on the order of ±25

parts per million (ppm). This may significantly degrade the accuracy of the ToF when

converted from clock cycles to seconds. In contrast, a sensor node, such as a software

defined radio (SDR), with a GPS-Disciplined Oscillator can easily have nanosecond-level

timestamps of complex baseband samples with frequency accuracies on the order of ±0.5

parts per billion (ppb). Because the clock is used for the timestamp, no interpolation

is possible in RTOF. However, in our algorithm the sensors receive complex baseband

samples. This enables the use of a range of TDE techniques, including cross-correlation

and sub-sample interpolation.

4.2 System Model

Consider M spatially distributed, time synchronized sensors S = {Sm}Mm=1 with known

2-D2 position vectors qm =

[
xm ym

]T
which can communicate reliably with one another.

It is assumed the sensor clocks are perfectly synchronized. A stationary emitter E1 with

2The 3-D case is a straightforward extension.
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unknown position vector p1 =

[
x y

]T
transmits a signal s(t) using a known standard to

another emitter, E2, with known position p2. This communication is observed by the RF

sensor network. The emitter position, p1, is to be estimated using received signals at each

sensor and is assumed to lie within the convex hull of {qm}Mm=1. The setup is depicted in

Figure 23. One practical example of such a geometry is a football stadium with sensors

mounted on its perimeter.

In the testbed which has been developed in Bobby Dodd football stadium as part of this

research, the sensors have GPS-Disciplined Oscillators (GPSDO) for clock synchronization

[30]. These GPSDOs provide a 10 MHz clock, as well as a 1 Pulse Per Second (1 PPS)

signal to the sensors. However, each sensor’s 1 PPS signal is typically only within ±50 ns of

UTC time. For our testbed to more closely resemble the proposed system model, additional

hardware can be procured with tighter time tolerances for additional cost.

Although E1 transmits a signal using a known standard, it is non-collaborative with

the sensors. Non-collaborative as defined here implies that the emitter does not share in-

formation explicitly with the sensors, but it is not actively attempting to disrupt sensor

measurements. The sensors only passively observe signal samples. Furthering the stadium

example, the emitter may be a particular cell phone transmitting under a WLAN, Blue-

tooth, or a cellular standard. In such a scenario, the sensors observe signals conforming

to a known standard, but can not communicate with the emitter. The non-collaborative

assumption coupled with the desire for a simple RF front-end suggests using TDoA for

position estimation.

Some additional constraints are placed on s(t), the signal transmitted from E1. s(t)

is restricted to be a digital modulation; hence, knowing the data symbols is sufficient to

reconstruct the transmitted signal. It is assumed that the communications protocol has a

medium access control (MAC) layer, and that the data is packetized. Additionally, there

are Packet Exchange Sequences (PES) that are defined by the protocol. These assumptions

are sufficient to increase the accuracy of TDoA estimation, while being sufficiently general

to apply more broadly. WIFI is one example of a conforming protocol, but there are many

others.
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Each packet consists of a preamble, a MAC header, and a payload (data) section. The

preamble is known a-priori to all sensors. The MAC header is unknown, but some infor-

mation may be inferred for undecodable packets due to packet-level correlations, as shown

in Chapter 3. The data symbols are unknown and assumed random with equal probability

for each symbol.

Sensor Sm receives a complex baseband signal3 s(t) attenuated by αm ∈ R and delayed

by tm.

sm(t) , αms(t− tm) (69)

The receiver noise is assumed to be stationary complex additive white Gaussian noise. s(t)

is of duration Tsig seconds and effectively band-limited to β Hz. The observed signal is

ym(t) of duration Tmeas seconds. It is assumed that Tmeas > 2Tsig. We attempt to estimate

{tm}Mm=1 as {t̂m}Mm=1.

ym(t) =


sm(t) + wm(t) 0 ≤ t ≤ Tsig,m = 1, 2 . . . ,M

wm(t) otherwise

(70)

Following ([66], Ch. 7.2.1), and sampling at the Nyquist rate Ts = 1
β yields the discrete-

time formulation where sm[n] , sm(nTs), Nsig = bTsig/Tsc, Nmeas = bTmeas/Tsc, and

Nm ≈ tm/Ts is the delay at Sm in samples.

ym[n] =



wm[n] 0 ≤ n ≤ Nm − 1

sm[n] + wm[n] Nm ≤ n ≤ Nm +Nsig − 1

wm[n] Nm +Nsig ≤ n ≤ Nmeas − 1

(71)

Assume the noise is i.i.d. in time and space. The wm[n] are independent zero mean complex

random variables with variance σ2
w = βσ2

r where wm(t) has power spectral density σ2
r W/Hz.

That is, wm[n] ∼ CN
(
0, σ2

w

)
∀m,n.

The sensors can be divided into three sets such that S = Γdec ∪ Γndec ∪ Γnp.

• Γdec: Sensors which can decode the packet and participate in the localization.

3We are ignoring the phase offset between the sensor LO and the emitter center frequency during down-
conversion, which causes a phase delay [52].
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Figure 24: Three-stage positioning algorithm example result. The dotted black and green
lines are Stage I and II confidence regions, C1 and C2, respectively. The dotted red lines
represent C3L and C3U , the confidence region generated from estimating the distance from
Emitter E1 to Emitter E2, whose position is known. The open dots are position estimates
with the colors representing their respective strategies. The red-filled dot is the true emitter
position. The final intersection of all the confidence regions, CF , is shaded blue, which is a
sliver containing the true position. No timing jitter on the interframe spacing is shown.

• Γndec: Sensors which cannot decode the packet but participate in the localization.

• Γnp: Sensors not participating in the localization.

Decoding sensors are shown in bold green, non-decoding in italicized red, and non-

participating sensors in underlined gray text in Figure 23.

Assume at least three sensors, arbitrarily S1, S2, . . . , SMd
, can decode the packet, where

Md = |Γdec|,Md ≥ 3 is the size of the decodable sensor set. S1 will denote the reference

sensor. This will typically be the sensor with the highest SNR. Then, Sm ∈ Γdec perform

TDE.

The following section describes the three-stage iterative localization algorithm. For

each stage, a different algorithm is used and a corresponding CR is computed for a given

confidence level. Some example error sets are depicted in Figure 24. This multi-stage

approach makes the localization fast. Stage I involves position estimation using only sensors

able to decode the packet. This CR is shown as dotted black lines. In Stage II, all sensors
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participate in the localization. However, sensors which can not decode the packet have a

restricted range in which to choose ToAs based on the initial Stage I CR and the constrained

geometry. In the figure, this corresponds to the green dotted lines. Finally, Stage III uses

knowledge from the MAC layer, specifically the packet exchange sequence and inter-packet

timing, to determine a CR. The corresponding CR is between the dotted red lines. The true

position of E1 is the red-filled circle, and the open circles correspond to position estimates

of the stage with the same color.

4.3 Stage I - Decoding Sensors

For Sm ∈ Γdec, the data symbols can be recovered. Furthermore, because these sensors can

decode the packet, they have localized the packet in time to within some small window. A

ToA estimate is made at each sensor using a TDE technique and the variance is computed.

Then, an initial position estimate is made.

At Sm, the cross-correlation is computed using the decoded symbols to reconstruct s[n].

Rm[l] ,
Nmeas−1∑
n=0

ym[n]s∗[n− l], 0 ≤ l ≤ Nmeas +Nsig − 2 (72)

For this algorithm, the coarse TDE is determined by selecting the integer sample that max-

imizes the real part of the cross-correlation. Then, sub-sample interpolation is performed.

As mentioned in Section 4.1.1, there are many options for sub-sample interpolation.

The estimator variance is computed using the CRLB. We argue this is appropriate

because the sensors have sufficient SNR to decode the packet. The assumption is that this

implies operation in the ”high SNR” region such that the CRLB is an accurate lower bound

on the variance of the estimator. The use of certain sub-sample interpolation schemes,

such as parabolic interpolation, does add some bias, but it is small in the range of SNRs

considered. The CRLB for any unbiased estimator of tm, denoted t̂m, is from [66],

σ2
t̂m
≥ 1

8π2χmβ2
RMS

sec2 (73)

where χm , Em/σ2
w is the energy SNR at Sm and βRMS is the RMS bandwidth of the

signal. The equation assumes the Nyquist sampling rate. Em can be written as a function
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of Esig, the energy in the transmitted signal s[n].

Em ,

Nsig−1∑
n=0

|sm[n]|2 = α2
mEsig (74)

The Sm ∈ Γdec communicate their respective ToA estimate to a central processor.

θToA ,

[
t1 t2 . . . tMd

]T
, θ̂ToA ,

[
t̂1 t̂2 . . . t̂Md

]T
(75)

The TDoA estimates are formed as,

θ̂TDoA ,Htθ̂ToA =

[
∆t̂21 ∆t̂31 . . . ∆t̂Md1

]T
,Ht =

[
−1M−1 IM−1

]
(76)

where ∆t̂m1 , t̂m − t̂1,m = 2, . . . ,Md and Ht is a matrix of dimension (Md − 1)xMd.

Assuming the ToA measurements are uncorrelated, the asymptotic error distribution

can be computed for θ̂TDoA. Suppose JToA , I−1
ToA, where IToA is the Fischer Information

Matrix.

JToA(i) = Diag
(
σ2
t̂1
, σ2

t̂2
, . . . , σ2

t̂Md

)
(77)

Using the Vector Parameter CRLB Transform ([46],pg. 45), the CRLB for the TDoA set

can be derived as

JTDoA =
∂g (θ)

∂θ
JToA

∂g (θ)T

∂θ
(78)

with g (θ) = Htθ̂ToA. Estimator efficiency is maintained for affine transformations ([46],

pg. 37) such as Equation 76. The vector partial derivative is defined as

∂g (θ)

∂θ
,



∂g1(θ)
∂θ1

∂g1(θ)
∂θ2

. . . ∂g1(θ)
∂θM

∂g2(θ)
∂θ1

∂g2(θ)
∂θ2

. . . ∂g2(θ)
∂θM

... . . .
. . .

...

∂gN (θ)
∂θ1

∂gN (θ)
∂θ2

. . . ∂gN (θ)
∂θM


(79)

where θm and gn (θ) denotes the mth parameter and nth function, respectively. Using

Equation 78 and noting ∂g(θ)
∂θ = Ht, the CRLB for the TDoA estimate is:

JTDoA = HtJToAH
T
t (80)

With the TDoA estimate and asymptotic covariance, the emitter position p1 can be

estimated. While there are many options to compute position from TDoA measurements,
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Figure 25: Example Stage I simulation. The black circle represents the initial position
estimate p̂. The true emitter position is the red dot. The CRLB is computed and used to
determine a confidence region with confidence coefficient δpos1 = 0.95 centered at p̂.

the approach by Chan and Ho is used [20]. Appendix A describes the calculations and

provides a clarification to their original paper. Since the emitter position estimate is made

only by sensors in the decodable set, M = Md, the asymptotic covariance of Equation 80

is used to construct the error ellipse and the subsequent set C1. An example realization is

shown in Figure 25.

4.4 Stage II: All Participating Sensors

Stage II involves all participating sensors solving for emitter position. For decoding sensors,

the TDE is identical to Stage I. These sensors have high SNR, but the position estimate

is likely to have poor resolution in one direction due to sensor and emitter geometry. The

non-decoding sensors have a favorable geometry, but low SNR, resulting in a non-negligible

probability of choosing the wrong integer lag of the cross-correlation peak. To minimize

these large errors, the ToA is restricted to a range based on geometry and the reference

sensor’s TDE variance.
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4.4.1 Non-Decodable Sensor (Sm ∈ Γndec) Time Delay Estimation

The initial position estimate and associated confidence region allows the non-decodable

sensors to window their cross-correlation estimates. That is, they are restricted to choosing

lags which are a function of the maximum and minimum TDoA within the CR of Stage I.

It is assumed that the Sm ∈ Γndec are operating in the low SNR region since the sensors

are unable to decode the packet.

Suppose t̂1 is used to seed the cross-correlation peak search. We wish to bound the time

delay using the confidence region from Stage I, as well as the variance of the estimator t̂1.

If t0 is the time of transmission, then the true ToA at S1, t1, can be written as

t1 =
‖q1 − p1‖2

v
+ t0 (81)

where v is the signal propagation velocity. Of course, the true Emitter position p1 is

unknown, but a probabilistic bound may be derived. Let tmaxm ≥ tm be the largest possible

ToA at Sm, and tminm ≤ tm be the smallest. Then Equation 82 gives the minimum and

maximum ToAs at Sm. C1 is a set of valid (x, y) coordinates for the emitter based on the

Stage I confidence region.

Set C1 can be constructed a few different ways. If multiple position estimates are made,

a sample covariance matrix can estimated. Then, a confidence region can be computed.

For a single measurement, the Fischer Information Matrix (FIM) for the TDoA estimates

can be computed as given in Equation 73, and then used as the TDoA covariance matrix

in the position FIM4

tminm = min
p1∈C1

dm1(p1)

v
+ t1 tmaxm = max

p1∈C1

dm1(p1)

v
+ t1

dm1(p) , dm(p)− d1(p),m = 2, . . . ,M dk(p) , ‖qk − p‖2, k = 1, . . . ,M (82)

An optimization problem is formed to find the position maximizing and minimizing the

4A minor correction to Eq. 33 of [20]: G0
l should read G0

t , which agrees with the derivation in the
Appendix of [20].
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Figure 26: Diagram of samples received at sensor S2. The window, [NLB
2 − 1, NUB

2 − 1],
shows where to search for N2 with probability δ based on the ToA estimate at S1, N̂1. Units
are in samples.

TDoA, pmax(m) and pmin(m), respectively.

pmin(m) = arg min
p1∈C1

dm1(p1) pmax(m) = arg max
p1∈C1

dm1(p1) (83)

In practice, Sm only has knowledge of the estimate t̂1, not the true value t1. Suppose

the estimate has the distribution given below.

t̂1 ∼ N
(
t1, σ

2
t̂1

)
(84)

Asymptotically, this is the distribution assuming the MLE estimate is used. σ2
t̂1

is given by

Equation 73. This is an asymptotic bound; for finite realizations, the distribution of t̂1 may

be different and therefore the bound may not hold.

Suppose Ne estimates are made, and a confidence interval is constructed based on the

sample mean.

t̄1 ,
1

Ne

Ne∑
i=1

t̂1 ∼ N
(
t1,

σ2
t̂1

Ne

)
(85)

We wish to select a lower bound TLBm and upper bound TUBm such that t̄maxm ≤ TUBm

with probability δt and t̄minm ≥ TLBm with probability δt.

δt = P{t̄maxm ≤ TUBm } δt = P{t̄minm ≥ TLBm } (86)

Sensor Sm selects a cross-correlation lag within this window [TLBm , TUBm ]. Figure 26 il-

lustrates this concept in units of samples for Sensor S2. In units of samples, Nm =

tm/Ts,N
UB
m = TUBm /Ts, and NLB

m = TLBm /Ts. Since t̄minm and t̄maxm rely on t̂1, they are

random variables as well.

t̄minm =
dm1(pmin(m))

v
+ t̄1 t̄maxm =

dm1(pmax(m))

v
+ t̄1 (87)
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The upper and lower ToA bounds at sensor Sm are then given by Equation 88, where Φ(·)

is the standard normal cumulative distribution function.

TLBm = t̄1 +
dm1(pmin(m))

v
− Φ−1(δt)

σt̂1√
Ne

TUBm = t̄1 +
dm1(pmax(m))

v
+ Φ−1(δt)

σt̂1√
Ne

(88)

Then, set a probability δ that both bounds are met. This is the confidence coefficient.

δ = P
{(
t̄maxm ≤ TUBm

)
∩
(
t̄minm ≥ TLBm

)}
= P

{(
1

v
dm1(pmax(m)) + t̄1 ≤ TUBm

)
∩
(

1

v
dm1(pmin(m)) + t̄1 ≥ TLBm

)}
= P

{
TLBm − 1

v
dm1(pmin(m)) ≤ t̄1 ≤ TUBm − 1

v
dm1(pmax(m))

}
= Φ

(√
Ne

(
TUBm − 1

vdm1(pmax(m))− t1
)

σt̂1

)
− Φ

(√
Ne

(
TLBm − 1

vdm1(pmin(m))− t1
)

σt̂1

)

= δt − Φ
(
−Φ−1(δt)

)
= δt − (1− δt) = 2δt − 1 (89)

The last line follows by substitution of Equation 88. The final bounds are given, with

the interpretation that the true value tm is within [TLBm , TUBm ] with probability δ. This is

essentially a confidence interval, but is not necessarily symmetric about t̄1 due to the values

of pmin(m) and pmax(m).

TLBm = t̄1 − Φ−1

(
δ + 1

2

)
σt̂1√
Ne

+
dm1(pmin(m))

v

TUBm = t̄1 + Φ−1

(
δ + 1

2

)
σt̂1√
Ne

+
dm1(pmax(m))

v
(90)

Equation 91 is in units of samples, where U1 , Φ
(
δ+1

2

)−1
σt̂1β

1√
Ne

.

NLB
m = N̄1 − U1 +

β

v
dm1(pmin(m)) NUB

m = N̄1 + U1 +
β

v
dm1(pmax(m)) (91)

If the signal spectrum is approximately rectangular, β2
RMS = β2/12 [66], so U1 can be

simplified. This is a reasonable approximation for many digital modulations such as PSK,

QAM, and OFDM (Sec. 4.9, [76]) with raised cosine pulse shaping. The window size, Nwin
m ,

is then found.

Nwin
m , NUB

m −NLB
m = 2Ũ1 +

β

v
(dm1(pmax(m))− dm1(pmin(m))) Ũ1 =

√
3Φ−1

(
δ+1

2

)
π
√

2χ1Ne

(92)
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Figure 27: The overall search window size is shown in Figure 27b, with the contribution from
the estimator uncertainty, in samples, shown in Figure 27a. δ is the probability the true ToA
is within the window. Figure 27b plots the window size, Nwin

m , as a function of the difference
between maximum and minimum emitter positions, dm1 (pmax(m)) − dm1 (pmin(m)) for
δ = 0.99 and one measurement (Ne = 1). See Figure 23 for a visualization of dm1(p). The
signal bandwidth is β = 16 MHz and a rectangular spectrum is assumed.

Equation 92 suggests there are two components which contribute to the window size.

Ũ1 is the estimator variance from S1. The geometric component depends on the maximum

and minimum emitter positions, which are a function of sensor geometry and the confidence

region from Stage I. The quantity dm1(p) can be visualized from Figure 23. Figures 27a and

27b plot Ũ1 and Nwin
m , respectively, assuming a rectangular spectrum in units of samples

for one measurement.

To make use of these bounds, the cross-correlation is performed as in Equation 72. Then,

Rm[l] is restricted such that l ∈ [NLB
m , NUB

m ] and the lag maximizing the real part of the

discrete cross-correlation is chosen as l0. This is not necessary the true time delay, which

occurs at lag l∗. No sub-sample interpolation is performed. In general, NLB
m and NUB

m will

not be integers. One option which appears to work well in our simulations is rounding the

bounds to the nearest integer.

l0 = arg max
l

R{Rm[l]} such that l ∈ [NLB
m , NUB

m ] (93)
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4.4.2 Non-Decodable Sensor Estimator Variance

The position computation, as well as performance analysis, will require a variance for

the windowed TDE approach of Equation 93. One typical assumption is that the cross-

correlation lag selected follows the uniform distribution [66]. Under this case, the variance

of the estimate is simply that of a discrete uniform random variable.

However, the discrete uniform distribution is the maximum entropy distribution for

bounded discrete support; it is likely to be pessimistic in our model where the signal auto-

correlation function is known. Additionally, this assumption gives equal weight to all TDoA

measurements from non-decodable sensors. But some sensors in the non-decodable set may

have a much higher probability of choosing the correct maximum integer lag than others

due to SNR differences across sensors. If the probability of choosing the correct maximum

integer lag can be written as a function of window size and SNR, then a commensurate

weighting of the TDoA estimates can be used. Intuitively, this should lead to an increase

in localization performance.

For notational simplicity, we drop the subscript ”m” on the received samples ym[n] and

the noise wm[n]. The cross-correlation at a single non-decoding sensor is considered and

the wm[n] are assumed to be i.i.d. so the result can be generalized for all sensors. Also,

N0 , Nm, is the particular time delay of interest. The cross-correlation distribution under

these assumptions is given by Lemma 1.

Lemma 1 (Cross-Correlation Distribution). Suppose s ∈ CNsig is a known signal vector and

y =

[
w1 s+w2 w3

]T
∈ CNmeas with independent noise vectors w1 ∼ CN (0N0 ,C1),

w2 ∼ CN
(
0Nsig ,C2

)
, and w3 ∼ CN

(
0Nmeas−N0−Nsig ,C3

)
. Then the cross-correlation

vector kys = Dy, where D is a Toeplitz convolution matrix constructed from the matched
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filter of s, denoted h, and has the following distribution.

kys ∼



CN
(
0N0

,A1,nC1A
H
1,n

)
0 ≤ l ≤ N0 − 1

CN

A2,os,

[
A1,o A2,o

]C1 0

0 C2


AH

1,o

AH
2,o


 N0 ≤ l ≤ Nsig +N0 − 2

CN
(
A2,ns,A2,nC2A

H
2,n

)
l = l∗ = Nsig +N0 − 1

CN

Ã2,os,

[
Ã2,o A3,o

]C2 0

0 C3


Ã

H

2,o

AH
3,o


 Nsig +N0 ≤ l ≤ 2Nsig +N0 − 2

CN
(
0,A3,nC3,A

H
3,n

)
2Nsig +N0 − 1 ≤ l ≤ Nmeas +Nsig − 2

A1,A2,A3,A1,n,A2,o,A2,n,A3,o, and A3,n are constructed from rows of D and are defined

in Equation 140 of Appendix B.1.

Proof. See Appendix B.1.

To gain some insight into how the SNR and window size affect the probability of choosing

the correct cross-correlation lag, we consider an ideal impulse auto-correlation function

of Equation 94 with simplified noise covariances. For digital modulations with random

symbols, this idealized auto-correlation function is reasonable except for the contribution of

the band-limited pulse shape around l∗. While the uniform distribution leads to a pessimistic

variance at higher SNRs, this assumption is optimistic. In practice, the peak-to-sidelobe

ratio of realistic auto-correlation functions will be lower, resulting in a higher probability

that the neighboring samples around the true maximum l∗ are chosen. Nonetheless, this

assumption leads to some useful analytical results and insight. Lemma 1 can always be

used to numerically calculate the probabilities for a particular autocorrelation function.

Lemma 2 (Ideal Cross-Correlation Distribution). Suppose C1 = σ2IN0 ,C2 = σ2INsig ,
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C3 = σ2I(Nmeas−N0−Nsig), and the signal auto-correlation, k̃ss, is given below.

k̃ss =



h[0] 0 0 . . . 0

h[1] h[0] 0 . . . 0

...
...

...
...

...

h[Nsig − 1] h[Nsig − 2] . . . . . . h[0]

0 h[Nsig − 1] h[Nsig − 2] . . . h[1]

0 0 . . . 0 h[Nsig − 1]


s =


0Nsig−1

Esig
0Nsig−1

 (94)

Under these assumptions, the ideal cross-correlation vector is distributed as follows.

k̃ys ∼



0 ≤ l ≤ N0 − 1

CN
(
0N0

, σ2 Diag
(
|h[0]|2, |h[0]|2 + |h[1]|2, . . . ,∑N0−1

n=0 |h[n]|2
))

N0 ≤ l ≤ Nsig +N0 − 2

CN
(
0Nsig−1, σ

2 Diag
(∑N0

n=0 |h[n]|2, . . . ,∑Nsig−1
n=0 |h[n]|2 = Esig, . . . , Esig

))
l = l∗ = Nsig +N0 − 1

CN
(
Esig, σ2Esig

)
Nsig +N0 ≤ l ≤ 2Nsig +N0 − 2

CN
(
0(Nsig−1), σ

2EsigINsig−1

)
2Nsig +N0 − 1 ≤ l ≤ Nmeas +Nsig − 2

CN
(
0(Nmeas−Nsig−N0), σ

2 Diag
(∑Nsig−1

n=0 |h[n]|2, . . . , |h[Nsig − 1]|2
))

Proof. See Appendix B.2.

The cross-correlation is windowed around N̂1 for a particular sensor Sm. The window

is a subset of the distribution defined in Lemma 2. To make the analysis easier, assume

am and bm are chosen such that the cross-correlation distribution is identical on either side

of N̂1. The requirement is that bm is restricted to 0 ≤ bm ≤ Nsig − 1, and 0 ≤ am ≤ Nm

as there are Nm σ2Esig terms for l ∈ [Nm, Nsig + Nm − 2]. Then Lemma 2 simplifies. The

factor of one half is due to the variance splitting equally between the real and imaginary
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random variables (pg. 307, [66]).

gys[l] = R{k̃ys[l]/σ2} ∼


N
(
0, χ2

)
l 6= l∗

N
(
χ, χ2

)
l = l∗

0 ≤ am ≤ Nm, 0 ≤ bm ≤ Nsig − 1

l ∈ [N̂1 − am, N̂1 + bm] =W P{l∗ ∈ W} = δ (95)

Theorem 1. Suppose l∗ ∈ W, gys[l] is distributed as in Equation 95, N̂1 is an integer,

and the joint amplitude random variables are independent conditioned on gys[l
∗]. Then the

probability p that the true lag l∗ is the maximum within the window, l0 = l∗, is given as a

function of the SNR χm and window bounds am, bm.

p , P{l0 = l∗ = arg max
l
gys | l, l∗ ∈ W} =

∫ ∞
−∞

Φam+bm

(√
2α√
χm

)
fgys[l∗](α)dα

fgys[l∗](α) =

√
2√

πχm
exp{−2(α− χm)2/χ2

m}

Proof. See Appendix C.1.

Theorem 2. Suppose l∗ ∈ W, gys[l] is distributed as in Equation 95, N̂1 is an integer,

and the joint amplitude random variables are independent conditioned on gys[l0]. Then the

probability p̃ that another lag, l0 = l∗ + k, k 6= 0, is the maximum within the window, is

given as a function of the SNR χm and window bounds am, bm.

p̃ , P{l0 = l∗ + k = arg max
k
gys[l

∗ + k] | l∗ ∈ W}, k ∈ [−am,−am + 1, . . . ,−1, 1, . . . , bm]

=

∫ ∞
−∞

Φ

(√
2 (α− χm)√

χm

)
Φ

(√
2α√
χm

)am+bm−1

fgys[l∗+k]dα

fgys[l∗+k](α) =

√
2√

πχm
exp{−2α2/χ2

m}

Proof. See Appendix C.2.

Interestingly, the distribution of lag l = l∗ + k, k 6= 0 given in Equation 95 is identical

to the ”signal absent” sufficient statistic distribution, and the l = l∗ lag is identical to

the ”signal present” sufficient statistic distribution for signal detection in coherent radar

receivers using the Likelihood Ratio Test (pg. 309, [66]).
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Figure 28: Distribution of the real part of the cross-correlation function normalized by the
noise variance σ2 for 3 and 9 dB SNR. As the SNR increases, the overlapping area between
the two distributions decreases. This implies a decrease in the probability that the wrong
cross-correlation lag is selected. The signal auto-correlation is assumed to be an impulse.

Figure 28 plots the distribution of the normalized cross-correlation amplitude g̃ys[l]

for two different SNRs. As expected, as the SNR increases, the distribution means move

farther apart, decreasing the probability that the wrong cross-correlation lag is selected.

The variances are identical.

Next, we numerically evaluate the probabilities that a particular lag l0 is the maximum

as a function of window size and SNR. Let am = bm. The window size is then defined as

Nwin = 2am + 1, Nwin ∈ {1, 2, . . . , 2N0 + 1}. The integrals of Theorem 1 and Theorem

2 are evaluated numerically and plotted as a function of window size and SNR in Figure

29. Numerically, this figure demonstrates that as the linear SNR approaches zero, the

distribution converges to uniform. Figure 30a plots the probabilities of the lags in a three

sample window, with a comparison to the uniform distribution assumption. This plot

illustrates the uniform assumption is pessimistic until the SNR is exceptionally low, around

-15 dB. This is significant for the algorithm because it provides a better bound of the

variance than the uniform assumption for sensors which can not decode the packet but

have moderate SNR.

Finally, the variance of the estimator can be calculated. Assume am 6= bm and consider

the random variable L. Without loss of generality, and to simplify the calculations, assume
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Figure 29: Probability of choosing a particular lag l in a windowed cross-correlation as a
function of SNR and window size. 29a plots the probability that the true cross-correlation
lag, l∗, is the maximum lag l0 in a window of size Nwin, given that l∗ exists in the window.
29b plots the probability that another lag, l0 = l∗+k, k 6= 0, is the maximum in the window.
The signal is assumed to have an impulse auto-correlation function.

l∗ = 0.

L(l) ∼


p l = 0

p̃ l 6= 0

l ∈ [−am, bm],a ≥ 0, b ≥ 0 (96)

L represents the probability that lag l0 is the maximum in the cross-correlation window.

After some calculations, Equation 97 gives the mean, and Equation 98 gives the variance.

The calculations are provided in Appendix D.

E{L} = µL = p̃(b− a) (97)

VAR{L} =
p̃

6
[a(a+ 1)(2a+ 1) + b(b+ 1)(2b+ 1)]− p̃2(b− a)2 (98)

4.4.3 Decodable Sensor (Sm ∈ Γdec) Time Delay Estimation

For sensors which can decode the packet, the procedure is identical to Stage I.

4.4.4 Position Estimation Using All Sensors

The position estimate can now be computed from the algorithm in Appendix A with Md =

M and an appropriate covariance matrix. For decodable sensors, the ToA variance is simply
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Figure 30: Probabilities and variance of maximum lag estimate random variable L versus
the typical uniform assumption. 30a shows the probability that lag l∗ − 1, l∗, and l∗ + 1 is
the maximum in the cross-correlation function for a three sample window. The horizontal
line shows the uniform distribution assumption for comparison. 30b compares the variance
of L with the uniform distribution variance, assuming am = bm. It is assumed the signal
has an impulse auto-correlation function.

the CRLB. For non-decodable sensors, either the uniform variance or the variance of L given

by Equation 98 can be used. In practice, this should be computed using the true signal

auto-correlation function.

JToA[m,m] =


T 2
s

8π2χmβ2
RMS

m ∈ {a|Sa ∈ Γdec}

(TsNwin)2

12 or T 2
s VAR{L} m ∈ {a|Sa ∈ Γndec}

JToA[m, k] = 0,m ∈ {1, 2, . . . ,M}, k = {1, 2, . . . ,M}, k 6= m (99)

As in Stage I, the position error ellipses C2, are computed from the covariance matrix. The

intermediate Stage I and II CR is the intersection of the sets, as shown in Figure 31. In

general, the intersection is not simply C2.

C′2 = C1 ∩ C2 (100)

4.5 Stage III: MAC-Assisted Positioning

Except for using the MAC address to associate TDoA measurements to a particular emitter,

Stages I and II do not leverage the MAC Layer. Additionally, they consider TDoA only
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Figure 31: Example Stage I and II algorithm simulation. The decoding sensors in Stage I
compute confidence region C1, depicted with black dashed lines. This confidence region was
used to refine the position estimate in Stage II with associated confidence region C2, shown
with green dashed lines.

on a per packet basis. In Stage III, the interframe (packet) spacing is used to augment the

position estimate.

To proceed with analysis, a particular standard must be chosen. In the system model of

Figure 23, E2 is now considered the AP and E1 is the client. An IEEE 802.11g network in

Infrastructure BSS mode using the Distributed Coordination Function (DCF) is assumed.

The MAC mechanism is therefore CSMA/CA and the PHY is chosen as OFDM. However,

the technique described is sufficiently broad that it could be applied to other communi-

cations protocols with fixed interframe spacing time and packet exchange sequences. An

RTS/CTS PES is considered for this analysis. Figure 32 illustrates the packet sequence

without packet fragmentation.

4.5.1 Analysis of MAC-Assisted Positioning

Consider taking the ToA difference between two packets at Sm. The distance between E1

and E2 can be estimated using the packet timing, further refining the position estimates

from Strategies One and Two. Notation used in this section is listed in Table 6 by order of

appearance.
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Figure 32: Packet Timing Diagram for an IEEE 802.11g RTS/CTS Packet Exchange Se-
quence. E1 is the emitter of interest, E2 is an AP, and Sm is the mth sensor node. The
interframe spacing timing jitter is not shown for clarity.

Table 6: Notation
Symbol Description

∆t
(ij)
m Packet TDoA between Packet i and Packet j at Sensor Sm (s)

t
(i)
m Time of Arrival for packet i (sec),m ∈ {1, 2, . . . ,M}
t
(i)
0 Time of transmission for packet i

τnm Time of Flight from Emitter En to Sensor Sm (s)

τe:nk True Time of Flight from Emitter En to Ek (s)

τ̂e:nk(i,m) Est. ToF by Sm from En to Ek using Packets i and 1 (s)

TCTS Length of a CTS Packet (s)

TIFS Standard-defined Interframe Spacing Time (s)

TRTS Length of a RTS Packet (s)

TJIFS Interframe Spacing Time Random Variable (s)

bIFS Interframe Spacing bias from TIFS (s)

σ2
IFS Interframe spacing variance (sec2)

v Propagation Velocity in the medium (m/s)

Rnk True Distance beteween Emitters En and Ek
R̂nk(i,m) Distance estimate by Sm between En and Ek using Packets i and 1 (s)

σ2

τ̂
(i)
m

Variance of timing estimate for Packet i received at Sensor Sm (sec2)

σ2
R̂nk(i,m)

Variance distance estimate between emitters En and Ek (sec2)

χ
(i)
m Linear SNR of ith packet for sensor Sm
αm Combined SNR received at sensor Sm for RTS and DATA packets.

TDATA Length of a DATA Packet (s)

TACK Length of an ACK Packet (s)

σ∗IFS IFS std. dev. where required SNR approaches infinity (s)

δR Confidence coefficient of the radius estimate R̂nk(i,m) (meters)

NR Number of sensors participating in Stage 3 localization

R̄nk Best Linear Unbiased Estimate (BLUE) of Rnk (meters)

RLBnk / RUBnk Lower/upper bounds on Rnk using R̄nk (s)
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∆t(31)
m = t(3)

m − t(1)
m =

(
t
(3)
0 + τm1

)
−
(
t
(1)
0 + τm1

)
=
(
t
(2)
0 + τe:21 + TCTS + TIFS

)
− t(1)

0

=
(
t
(1)
0 + τe:12 + TRTS + TIFS

)
+ τe:21 + TCTS + TIFS − t(1)

0

= 2τe:12 + 2TIFS + TRTS + TCTS (101)

Equation 101 assumes no interframe spacing jitter. That is, the emitters precisely follow

the interframe spacing time, TIFS given in the standard. In practice, the interframe spacing

should be considered a random variable, TJIFS , not necessarily having a mean of TIFS

[32, 16]. We assume independent, identically distributed Gaussian random variables with

mean TIFS + bIFS and variance σ2
IFS on both emitters. The bias bIFS , although it may be

a function of the manufacturer of the WLAN IC [32], can be estimated and removed. More

critical is the variance of the estimates. Bourchas et al. [16] shows that the deviation of the

median from the first estimate is between 10-20 ns. A more comprehensive study for various

WLAN IC manufacturers should be undertaken. The packet lengths TRTS and TCTS , and

propagation velocity v are known exactly. Then R12, the distance between emitters E1 and

E2, can be estimated.

TJIFS ∼ N
(
TIFS + bIFS , σ

2
IFS

)
(102)

With this substitution, R12 is computed. τe:12 is the Time of Flight (ToF) estimate between

E1 and E2.

R12 = vτe:12 =
v

2

(
∆t(31)

m − 2TJIFS − TRTS − TCTS
)

(103)

Of course, the distance, and by extension, the ToF, between stationary emitters, does

not change. However, the sensors must estimate this quantity. The estimate itself is a

random variable which is a function of both the sensor index m and packet number i. We

explicitly show the dependence of the estimates R̂12(i,m) and τ̂e:12(i,m) in our notation

to make this clear. For the present analysis, only the time difference between the RTS

and DATA packets are considered. The DATA packet is third in the sequence, therefore

R̂12(m) , R̂12(3,m) and τ̂e:12(m) , τ̂e:12(3,m). If the AP sends the RTS, then the CTS

and ACK packets could be used with identical results.

The variance of R̂12(m) is then computed. It is assumed that only sensors which have

sufficiently high SNR such that the CRLB applies attempt to estimate ∆t
(31)
m . These are
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Figure 33: Figure 33a is a contour plot of the standard deviation of the distance estimate
between E1 and E2, σR̂12(m) without IFS jitter. The independent variables are the SNRs

of the packets, χ
(1)
m and χ

(3)
m , respectively, received at sensor Sm in dB. Figure 33b plots

this distance standard deviation versus the interframe spacing deviation σIFS for various

combined SNRs αm , χ
(1)
m +χ

(3)
m

χ
(1)
m χ

(3)
m

. The signal bandwidth is β = 20 MHz and propagation

velocity was the speed of light in a vacuum, v = c.

likely to be sensors in the decodable set, but could also include some in the non-decodable

set, depending on the location of the emitters. Assume ∆̂t
(31)
m is statistically independent

from TJIFS . Then asymptotically, ∆̂t
(31)
m ∼ N

(
∆t

(31)
m , σ2

τ̂
(3)
m

+ σ2

τ̂
(1)
m

)
and Equation 104 gives

the distribution of the ToF estimate between the AP and E1.

τ̂e:12(m) ∼ N
(

1

2
∆t(31)

m − µ, 1

4

(
σ2

τ̂
(3)
m

+ σ2

τ̂
(1)
m

)
+ σ2

IFS

)
, µ , TIFS + bIFS +

1

2
TRTS +

1

2
TCTS

(104)

Ultimately, the variance of the distance estimate, R̂12(m) is the statistic of interest.

Under the rectangular signal spectrum assumption, this is given in Equation 105.

VAR
{
R̂12(m)

}
= σ2

R̂12(m)
=
v2

4

(
σ2

τ̂
(3)
m

+ σ2

τ̂
(1)
m

)
+ v2σ2

IFS =
3v2

8π2β2

(
χ

(1)
m + χ

(3)
m

χ
(1)
m χ

(3)
m

)
+ v2σ2

IFS

(105)

If the combined packet SNR at sensor Sm is defined as αm , χ
(1)
m +χ

(3)
m

χ
(1)
m χ

(3)
m

, then Equation

105 can be used to plot the standard deviation of the radius estimate. Figure 33a plots the

standard deviation of R̂12(m) as a function of packet one and packet three SNRs, χ
(1)
m and

χ
(3)
m , respectively without IFS jitter. Figure 33b plots σR̂12(m) as a function of the standard
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deviation of the interframe spacing time σIFS on a log-log plot.

Figure 33b illustrates the piecewise nature of σR̂12(m). For sufficiently small σIFS ,

σR̂12(m) is dominated by the ToA estimator variance. This is the flat region of the func-

tion on the left. Conversely, σIFS dominates for sufficiently small αm, and by extension,

σ
t̂
(3)
m

+σ
t̂
(1)
m

. This is the linear region of the function on the right. For αm ≈ −17 dB, σR̂12(m)

is about half a meter for σIFS around a nanosecond. For equal packet SNRS χ
(1)
m = χ

(3)
m ,

this corresponds to a packet SNR of 20 dB. This analysis demonstrates it is theoretically

possible to significantly increase localization accuracy by using the PES timing to estimate

the distance from the emitter of interest to an AP with a known position.

Next, a DATA/ACK PES with packet fragmentation case is considered. It will be shown

that longer packet exchange sequences result in lowering the distance estimator variance.

Consider the PTDoA between packet i and packet 1, where TDATA and TACK are the length

of a DATA and ACK packet, respectively.

∆t(i1)
m = t(i)m − t(1)

m =
(
t
(i)
0 + τ1m

)
−
(
t
(1)
0 + τ1m

)
, i = 3, 5, . . .

= (i− 1) τe:12 + (i− 1)TJIFS +
1

2
(i− 1)TDATA +

1

2
(i− 1)TACK (106)

Then, rearrange in terms of τe:12(i,m), where i denotes the packet number used for the

PTDoA.

τe:12(i,m) =
∆t

(i1)
m

i− 1
− TJIFS −

1

2
(TDATA − TACK) (107)

The distribution of τ̂e:12(i,m) is then found as Equation 108.

τ̂e:12(i,m) ∼ N

∆t
(i1)
m

i− 1
− µf ,

σ2

τ̂
(i)
m

+ σ2

τ̂
(1)
m

(i− 1)2 + σ2
IFS


µf , TIFS + bIFS +

1

2
(TDATA + TACK) (108)

Finally, the variance of the radius estimate is derived as Equation 109. Critically, as the

number of packets in the sequence increases, the variance approaches v2σ2
IFS . To an approx-

imation, the variance in the timing estimate decreases proportional to the inverse square of

the length of the PES.

VAR{R̂12(i,m)} =
3v2

2π2β2 (i− 1)2

(
χ

(1)
m + χ

(3)
m

χ
(1)
m χ

(3)
m

)
+ v2σ2

IFS , i = 3, 5, . . . (109)
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Figure 34: The effect of interframe spacing jitter on the distance estimate is shown in Figure
34a, and SNR in Figure 34b. 34a is the standard deviation of the distance estimate between
E1 and E2, R̂12(i) as a function of the interframe spacing standard deviation σIFS and the
length of the packet exchange sequence i. The combined signal SNR is αm = −27 dB.
34b plots the required packet SNR in dB as a function of σIFS for various packet exchange
sequence lengths i. The required radius estimator variance is σ2

R̂12
= 0.05 m2. The σ∗IFS

line represents the value of σIFS where the packet SNR approaches infinity. Packets are
assumed to have identical SNR. The signal bandwidth is β = 20 MHz and propagation
velocity was the speed of light in a vacuum, v = c

Figure 34a plots Equation 109 as a function of IFS timing standard deviation and PES

length i for a fixed bandwidth, propagation velocity, and combined SNR αm. For a fixed

αm, the standard deviation of the distance estimate between E1 and E2 can be significantly

lowered if the PTDoA is taken between packets which are the furthest apart in time from

one another. In other words, it is possible to mitigate the effects of higher variance ToA

estimates by taking the PTDoA across a larger time span. However, the variance will never

be lower than the variance of the interframe spacing.

It is insightful to look at the packet SNR required for a fixed radius estimator variance

σ2
R̂12(i,m)

. Suppose packets have equal SNR, that is χ
(i)
m = χ

(1)
m = χm. Then solve Equation

109 as a function of χm.

χm =
6v2

2π2β2 (i− 1)2
(
σ2
R̂12(i,m)

− v2σ2
IFS

) χm = χ(i)
m = χ(1)

m (110)

Notice that when σ2
R̂12(i,m)

= v2σ2
IFS , χm approaches infinity. This is the point where the

interframe spacing variance is sufficiently high such that the radius estimator will not be
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less than the required value, regardless of the SNR received at the sensor. Denote this value

σ∗IFS .

σ∗IFS =
σR̂12(i,m)

v
(111)

Figure 34b plots the required SNR as a function of interframe spacing standard devi-

ation. The radius estimate variance is fixed at 0.05 m2. Taking the PTDoA between the

packets which are the furthest apart significantly lowers the required SNR for the same

estimator variance. For example, taking the PTDoA between packets 7 and 1 lowers the

required SNR by 10 dB over packets 3 and 1 for σIFS = 0.6 ns.

It is important to remember the limitations of increasing the PES length i. The ToA

estimator variance begins to diverge from the CRLB around χm = 15 dB. Therefore, one

must be cautious in assessing the performance gains shown by Figure 34b. Essentially, 15

dB is a minimum required SNR bound and increasing the PES length can not lower this

bound. Fragmentation can significantly lower the SNR required at the sensor provided the

devices have sufficiently low IFS timing jitter and the packet SNR remains above 15dB.

4.5.2 MAC-Assisted Position Estimation

Suppose there are NR sensors which have sufficiently high SNR such that the CRLB applies.

It is likely NR ≥ Ndec, but this is geometry dependent. If PTDoA is performed on the

RTS/CTS, then there are NR independent estimates of R12. The estimates can be combined

using the Best Linear Unbiased Estimator (BLUE).

R̄12 = σR̄12

NR∑
m=1

R̂12(m)

σ2
R̂12(m)

E{R̄12} = R12, σ
2
R̄12

=

(
NR∑
m=1

1

σ2
R̂12(m)

)−1

(112)

In Stage III, the maximum and minimum radius of a circle is computed such that the

true radius R12 is within the bounds with probability δR. This is simply a confidence

interval computation.

RLB12 = R̄12 − Φ−1

(
δR + 1

2

)
σR̄12

RUB12 = R̄12 + Φ−1

(
δR + 1

2

)
σR̄12

(113)
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Figure 35: Example simulation result for Stage III. The minimum and maximum radius
RLB12 and RUB12 , respectively, comprising the Stage III confidence region, are shown as dotted
red lines. The final intersection of the confidence regions from all three stages, CF , is shaded
in blue.

For Positioning, Equation 113 is used to draw circles centered at E2 with radii RLB12 and

RUB12 . Define the set of coordinate with these circles.

C3L = {(x, y) ∈ R2|x2 + y2 ≥ RLB12 }, C3U = {(x, y) ∈ R2|x2 + y2 ≤ RUB12 } (114)

Then, the updated position estimate is within the set C3 with probability based on the

confidence level selected.

CF = (C3U − C3L) ∩ C′2 = (C3U − C3L) ∩ C2 ∩ C1 (115)

This is very intuitive when visualized, as shown in Figure 35. The dotted red lines rep-

resent C3U and C3L, dotted black lines Stage I confidence region C1, and dotted green lines

confidence region C′2. The open dots are position estimates with the colors representing

their respective strategies. The red filled dot is the true emitter position. Finally, C3 is

represented by the intersection of all the lines, which is a small sliver containing the true

position. The cross-correlation has been normalized by the theoretical mean.
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Figure 36: Simulated Cross-Correlation Distribution at 20 dB SNR. The x-axis represents
the cross-correlation lag index relative to the true maximum lag l∗. The lines represent
the sample and theory mean, respectively. Finally, the error bars represent the sample and
theory standard deviation at each respective lag.

4.6 Simulation

4.6.1 Cross-Correlation Distribution

To verify the cross-correlation distribution of Lemma 1 in Section 4.4.2, a 1000 trial simu-

lation was performed using a Binary Phase Shift Key (BPSK) signal with a raised cosine

pulse having excess bandwidth parameter β0 = 0.35. Two samples per symbol were used,

and the pulse was truncated after six symbols. The simulation was performed at 20 dB

SNR, with a 9 sample window. That is, am = bm = 4. Figure 36 plots the result. The

x-axis represents the cross-correlation lag index relative to the true maximum lag l∗. The

lines represent the sample and theory mean, respectively. Finally, the error bars represent

the sample and theory standard deviation at each respective lag.

4.6.2 Three-Stage Algorithm

Due to the nature of the proposed algorithm, convergence and performance analysis is

extremely challenging, therefore simulations were conducted in MATLAB. The M sensors

were equally placed on a circle of radius Rc = 100 meters. The client position was chosen

as p1 =

[
0.75Rc 0.0625Rc

]T
, and the AP position as p2 =

[
0.75Rc 0.4Rc

]T
. All sensors
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Figure 37: An overview of the simulation geometry. Sensors are placed on a circle with a
100m radius and divided into sets based on whether or not they can decode the transmitted
packet. The AP has a known position and the position of the client is to be estimated.

participated in the localization. A decoding sensor was defined to be one with a received

SNR above 21 dB. Figure 37 depicts the geometry. Exponential path loss was used for the

channel model.

A BPSK signal was chosen with a raised cosine pulse having excess bandwidth param-

eter β0 = 0. This value was chosen so that the spectrum is approximately rectangular.

The filter was truncated to 6 symbols. 1024 data symbols were chosen from a PN sequence

generated with a linear feedback shift register (LFSR). This was implemented using MAT-

LAB’s comm.PNSequence function. The signal bandwidth β was set to 20 MHz and the

signal was sampled at Ts = 1
4β . Oversampling was necessary to ensure the group delay from

the Farrow fractional delay filter was constant as a function of frequency. For all stages,

Sinc interpolation was performed by zero-padding the DFT using an upsampling factor of

64 and a window of 64 samples.

In Stage I, three decoding sensors used the maximum lag of the real part of the cross-

correlation function. The confidence coefficient for the CR was selected as δpos1 = 0.95.

The inverse FIM was used as the covariance matrix. The centroid of the CR was centered

at the mean of the position estimates.
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Figure 38: Asymptotic performance simulation for the three-stage localization algorithm.
1000 trials per stage were simulated. The position confidence coefficients were chosen as
δpos = 0.95 for all stages. Confidence regions are depicted with dashed lines. Position
estimates are shown as open circles, where the color indicates the stage at which they were
made.

In Stage II, the non-decoding sensors use the mean estimate for t̂1 from Stage I. Then,

the cross-correlation was windowed. The confidence coefficient for the window was selected

as δ = 0.99. Since an integer lag must be selected, the lower and upper bounds NLB
m and

NUB
m are rounded to the nearest integer. No fractional delay estimate is performed for these

sensors. The ToAs associated with the non-decoding sensors use the uniform distribution

assumption to compute the variance of the position estimate. The decoding sensors use

the TDoA CRLB. The position was estimated and the CRs constructed with confidence

coefficient δpos2 = 0.95. As in Stage I, the centroid of the CR was centered at the mean

of the position estimates. In Stage III, no bias was assumed (bIFS = 0) for the interframe

spacing, since this can easily be estimated and corrected. The maximum integer lag of

was selected using the real part of the cross-correlation. The confidence coefficient for the

radius estimate was chosen as δR = 0.95. Finally, the BLUE was computed from the radius

estimates using the CRLB as the estimator variance.
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Figure 39: Simulation results for the three stage algorithm using a single observation of a
packet, or packet exchange sequence, per stage. Figure 39a plots the sample Cumulative
Distribution Function (CDF) of the error area over 1000 simulations as a function of stage.
Figure 39b plots the equivalent radius. No timing jitter was simulated.

4.6.2.1 Asymptotic Performance

To check the asymptotic analysis, 1000 i.i.d. realizations were performed at each stage.

Figure 38 illustrates the result. The centroid of the confidence regions, which are ellipses

in the first two stages, are very close to the true emitter position as expected. The error

ellipses shown are computed using the inverse FIM with a confidence coefficient of 0.95.

This simulation helps to verify the asymptotic analysis.

4.6.2.2 Single Observation Performance

The goal of the algorithm is to be fast, precise, and significantly reduce the error area. In

this experiment, a single packet, or packet exchange sequence, is generated at each stage.

The algorithm is run 1000 times. For each run, the CR area is computed, as well as if

the true emitter position is within the CR. Figure 39a demonstrates the reduction in the

CR area by plotting the sample CDFs. Figure 39b plots the equivalent CR radius. This is

representative of the performance bounds assuming the IFS jitter is very small compared

to the ToA estimator variance. No IFS timing jitter was simulated for these plots.

Figure 40 simulates various timing jitters and compares to the Stage II CR error area.

This plot demonstrates that Stage III can significantly reduce the area of the CR provided
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Stage II error area is shown for comparison.

Table 7: Probability the Emitter Lies Within the Confidence Region for a Confidence
Coefficient of 0.95 over 1000 Trials. Variance units are seconds squared.

Stage σ2
IFS = 0 σ2

IFS = 10−18 σ2
IFS = 10−17 σ2

IFS = 10−16 Conf. Coeff.

I 0.938 0.934 0.934 0.947 δpos1 = 0.95

II 0.946 0.930 0.922 0.933 δpos2 = 0.95

III 0.937 0.981 0.987 0.991 δR = 0.95

I,II 0.888 0.870 0.863 0.883 ∼ 0.952 = 0.90

I,II,III 0.829 0.854 0.852 0.875 ∼ 0.953 = 0.86

the IFS timing jitter is sufficiently small compared to the ToA estimator variance. If the

timing jitter is too large, then Stage III does not reduce the area of the CR.

Table 7 provides simulation results to estimate the probability that the true emitter

position is within the CR for a confidence coefficient of 0.95. The simulated results agree

well with the analysis to within about three points. Furthermore, it can be seen that the

probability that the true emitter position is within Stage I and II is approximately δ2
pos

for δpos1 = δpos2 = δpos. Similarly, the probability the emitter is within all three CRs is

approximately δ3
pos assuming δpos3 = δpos. This empirical observation is a starting point

for understanding the probability the true emitter position is within the intersection of all

three confidence regions.
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4.7 Conclusion

In this chapter, a fast and precise three-stage localization algorithm was proposed. Stage

I provided an initial confidence region using only sensors able to decode the packet. Non-

decodable sensors in Stage II used this information to window the cross-correlation function

to prevent large errors in the time delay estimation. Decodable sensors estimated the

ToA as in Stage I. Stage III exploited the interframe spacing time specified in the MAC

layer to estimate the distance between the emitter of interest and an AP with known

position. Asymptotic performance analysis was conducted which guided and inspired the

single observation algorithm. Simulation demonstrates the algorithm performs well for a

single observation, with a final confidence region equivalent radius of around 0.4 meters

with high probability. For our stadium application, this implies that the emitter of interest

can be located to within a single seat, instead of two.

Packet Time Difference of Arrival is of greatest benefit when the emitters have highly

stable, low jitter clocks over the packet exchange sequence. Although current WLAN stan-

dards may not have a sufficiently strict requirement, future standards should consider it

to increase client localization accuracy. Besides WLAN, the technique can be useful for

other cellular or custom communications protocols where non-collaborative localization is

required.

For practical applications, more comprehensive research should be performed to better

characterize common WLAN ICs. Specifically, the bias of the IFS with respect to the

standard should be studied by manufacturer. The variance of the IFS as a function of time,

as well as manufacturer, is also of interest. With this knowledge, the model can be adapted

by substitution of bIFS and σ2
IFS . based on manufacturer ID in the MAC layer, to assess

theoretical performance.
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CHAPTER V

CONCLUSION AND FUTURE DIRECTIONS

Three significant efforts were undertaken in this dissertation research. Chapter 2 detailed

two localization testbeds: Laboratory LOC-EED and Stadium LOC-EED. Over 30 TB of

complex baseband data has been collected from the three RF sensor nodes deployed in

Bobby Dodd Stadium to further research on EED environments. These data will enable

algorithm development, algorithm validation, and spectrum characterization, among other

research objectives. Packet level correlations known by the MAC layer were used in Chapter

3 to improve data association in EED environments. Notably, it was shown that for a

large number of emitters, the probability of correctly associating all measurements in a

packet exchange sequence is non-zero using MAC layer side information. Finally, Chapter

4 described a three-strategy localization algorithm exploiting the constrained geometries

typically found in EED environments, as well as the packet timing specified by the MAC

layer. These contributions significantly further research in this area and suggest a cross-layer

approach to localization is necessary in EED environments.

There are many interesting future directions for cross-layer localization in EED en-

vironments. This dissertation only explored two pieces of side information: packet level

correlations and inter-packet timing, provided by the MAC layer. There is likely other side

information which can contribute significantly to improving localization. The difficult part is

identifying that information and showing that it is indeed useful. Future research directions

should consider other MAC layer information to augment the physical layer measurements

required for localization.

In the OSI protocol stack, the MAC layer is only the second of seven distinct layers,

including the Network, Transport, and Application Layer, specified by ISO/IEC 7498-1.

Additional research should be conducted to investigate how the other layers can improve

localization. For example, applications may have unique network traffic characteristics
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which are beneficial for localization. In Chapter 4 it was shown analytically that packet

fragmentation can improve localization accuracy. Therefore, applications which are likely

to fragment packets may be more useful for localization than those which do not. Other

uses of the structure provided by these layers should be envisioned.

There is also a need for additional applied research. The first chapter detailed the

deployment of a sensor network testbed in Bobby Dodd football stadium. At the time

of publication, it is believed this is the first persistent EED testbed to capture complex

baseband samples and archive them for future analysis. Other testbeds should be deployed

in similar environments for spectrum characterization and data analysis. Additional studies

should also be conducted into the implementation of inter-packet timing on commercially

available WLAN IC hardware. A few papers exist, but none are comprehensive enough

to assess the viability of implementing the third stage of the three-strategy localization

algorithm described in Chapter 4.

In closing, this dissertation provides an initial step into both applied and theoretical

research involving wireless environments with multiple sensors and multiple emitters. Two

algorithms were presented which exploited the MAC layer to improve localization, either

using data association or directly shrinking the position estimate error ellipses. A three-

sensor testbed has been collecting data the past few football seasons and will continue

to provide future researchers additional data for analysis and algorithm validation. With

the continued proliferation of emitters such as smartphones, wearables, and cars and a

desire to be connected at all times, a cross-layer approach to localization in dense emitter

environments will remain relevant.
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APPENDIX A

POSITION SOLVER CALCULATIONS

This appendix explains how to estimate emitter position using the method of Chan and Ho

[20]. The intent is to clarify the calculation by explaining assumptions and organizing them

into a step-by-step process. There are two cases:

1. M = 3: Three sensors (Section II-A-1 in [20])

2. M > 3: More than three sensors (Section II-A-2 in [20])

In both cases it is assumed the emitter is close. The M = 3 case is also derived by Schau

[69]. First, the TDoA estimate is transformed to a distance difference.

r̂ = vθ̂TDoA =

[
r21 r31 . . . rM1

]T
∈ RM−1 (116)

A.1 Three Sensors (M = 3)

1. Form G3 and g3 using known sensor positions qm =

[
xm ym

]T
,m = 1, . . . ,M .

Compute G−1
3 and det (G3).

G3 =

x21 , x2 − x1 y21 , y2 − y1

x31 , x3 − x1 y31 , y3 − y1

 , g3 =
1

2

r̂[1]2 − ‖q2‖22 + ‖q1‖22
r̂[2]2 − ‖q3‖22 + ‖q1‖22

 (117)

2. Compute x and y.

x = (y21r̂[2]− y31r̂[1]) / det (G3), y = (x31r̂[1]− x21r̂[2]) / det (G3) (118)

3. Compute b = G−1
3 g3 and form a quadratic equation in r̃1. Solve and take the root in

the region of interest.

ar̃2
1 + br̃1 + c = 0, a = x2 + y2 − 1 (119)

b = −2 (x (x1 + b[1]) + y (y1 + b[2])) , c = ‖q1‖22 + b[1]2 + 2 (x1b[1] + yb[2]) (120)
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4. Obtain the position estimate, p̂0.

p̂0 = −G−1
3 (r̃1r̂ + g3) (121)

A.2 More Than Three Sensors (M > 3)

1. Compute Ga and h.

Ga = −



x2 − x1 y2 − y1 r̂[1]

x3 − x1 y3 − y1 r̂[2]

...
...

...

xM − x1 yM − y1 r̂[M − 1]


,h =

1

2



r̂[1]2 − ‖q2‖22 + ‖q1‖22
r̂[2]2 − ‖q3‖22 + ‖q1‖22

...

r̂[M − 1]2 − ‖qM‖22 + ‖q1‖22


(122)

2. Compute za1 using the Fischer Information Matrix for the TDoA estimate, ITDoA =

J−1
TDoA.

za1 =

[
x̂ ŷ r̂1 = ‖q1 − p̂‖2

]T
≈
(
GT
a ITDoAh

)
GT
a ITDoAh (123)

3. Use p̂ =

[
x̂ ŷ

]T
from za1 to compute B. v is the propagation velocity of the signal.

B = Diag (‖q2 − p̂‖2, ‖q3 − p̂‖2, . . . , ‖qM − p̂‖2) (124)

4. Compute Ψ and Ψ−1 using the TDoA Covariance and B.

Ψ = v2BJTDoAB (125)

5. Compute za2 =

[
x̃ ỹ r̃1

]T
za2 =

(
GT
aΨ−1Ga

)−1
GT
aΨ−1h (126)

6. Calculate B′ using estimates from za2.

B′ = Diag (x̃− x1, ỹ − y1, r̃1) (127)

7. Calculate Ψ′ using Ga,Ψ, and B′ as estimates for their respective true matrices.

Ψ′ = 4B′
(
GT
aΨ−1Ga

)−1
B′ (128)
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8. Construct h′ using the estimates from za1 in Equation 123.

h′ =

[
(x̂− x1)2 (ŷ − y1)2 r̂2

1

]T
(129)

9. Calculate z′a.

z′a =

(x− x1)2

(y − x1)2

 =
(
G′Ta Ψ′−1G′a

)−1
G′Ta Ψ′−1h′,G′a =

1 0 1

0 1 1


T

(130)

10. The position estimate, p̂0, is computed by solving for x and y in Equation 130. There

are four possible solutions; the one in the desired region of interest must be selected.

This is a clarification of Equation 24 in Chan and Ho [20].

11. The estimated position covariance matrix of p̂0 can also be calculated.

Kpos = v2
(
B′′G′Ta B

′−1GT
aB
−1ITDoAB

−1GaB
′−1G′aB

′′)−1

B′′ = Diag (p̂0[1]− x1, p̂0[2]− y1) (131)

There are two possible positions for M = 3, whereas the M > 3 case has four. Addi-

tionally, the TDoA covariance matrix JTDoA is only required in the M > 3 case. While

there a quite a number of steps involved in solving for TDoA position, it is a closed-form,

non-iterative solution.
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APPENDIX B

DISTRIBUTION OF THE CROSS-CORRELATION FUNCTION

B.1 General Distribution

Define w =

[
w1 w2 w3

]T
. Denote the nth elements of vector x as x[n]. Define the

signal matched filter as h[n] = s∗[−n]. The cross-correlation function can be written as

R[l] =

Nmeas−1∑
n=0

y[n]h[l − n] =

N0−1∑
n=0

w[n]h[l − n]

+

N0+Nsig−1∑
n=N0

(s[n] + w[n])h[l − n] +

Nmeas−1∑
n=N0+Nsig

w[n]h[l − n] (132)

The three different convolutions can be analyzed separately.

Rys[l] = K1[l] +K2[l] +K3[l] K1[l] ,
N0−1∑
n=0

w[n]h[l − n]

K2[l] ,

N0+Nsig−1∑
n=N0

(s[n] + w[n])h[l − n] K3[l] ,
Nmeas−1∑
n=N0+Nsig

w[n]h[l − n] (133)

Next, write the convolutions as matrix-vector multiplies, where k1 ∈ CNsig+N0−1, w1 ∈ CN0 ,

and A1 is a complex matrix of size (Nsig +N0 − 1)xN0.

k1 =

[
K1[0] K1[1] . . . K1[Nsig +N0 − 2]

]T
= A1w1

=



h[0] 0 0 . . . 0

h[1] h[0] 0 . . . 0

...
...

...
...

...

h[N0 − 1] h[N0 − 2] . . . h[1] h[0]

...
...

...
...

...

h[Nsig − 1] h[Nsig − 2] . . . . . . h[Nsig −N0]

0 h[Nsig − 1] h[Nsig − 2] . . . h[Nsig −N0 + 1]

...
...

...
...

...

0 0 0 . . . h[Nsig − 1]





w[0]

w[1]

...

w[N0 − 1]


(134)

101



By linearity, K2[l] can be separated.

K2[l] =

N0+Nsig−1∑
n=N0

s[n]h[m− n] +

N0+Nsig−1∑
n=N0

w[n]h[l − n] = K2s[l] +K2w[l] (135)

In vector form, k2 = k2s + k2w, where k2s and k2w ∈ C2Nsig−1. A2 is a complex matrix of

size (2Nsig − 1)xNsig, and s,w2 ∈ CNsig .

k2s =

[
K2s[0] K2s[1] . . . K2s[2Nsig − 2]

]T
= A2s

=



h[0] 0 0 . . . 0

h[1] h[0] 0 . . . 0

...
...

...
...

...

h[Nsig − 1] h[Nsig − 2] . . . . . . h[0]

0 h[Nsig − 1] h[Nsig − 2] . . . h[1]

0 0 . . . 0 h[Nsig − 1]





s[0]

s[1]

...

s[Nsig − 1]



k2w =

[
K2w[0] K2w[1] . . . K2w[2Nsig − 2]

]T
= A2w2

w2 =

[
w[N0] w[N0 + 1] . . . w[Nsig +N0 − 1]

]T
(136)

K3 in matrix form is straightforward, save for getting the correct indexing. A3 is a

complex matrix of size (Nmeas − N0 − 1)x(Nmeas − N0 − Nsig), k3 ∈ CNmeas−N0−1 and

102



w3 ∈ CNmeas−N0−Nsig .

k3 =

[
K3[0] K3[1] . . . K3[Nmeas −N0 − 2]

]T
= A3w3

=



h[0] 0 0 . . . 0

h[1] h[0] 0 . . . 0

...
...

...
...

...

h[Nmeas −N0 −Nsig − 1] . . . . . . h[1] h[0]

h[Nmeas −N0 −Nsig] . . . . . . . . . h[1]

...
...

...
...

...

h[Nsig − 1] h[Nsig − 2] . . . . . . . . .

0 h[Nsig − 1] h[Nsig − 2] . . . . . .

0 0 . . . . . . h[Nsig − 1]



w3 (137)

w3 =

[
w[N0 +Nsig] w[N0 +Nsig + 1] . . . w[Nmeas − 1]

]T
(138)

Zero-padding the cross-correlation functions yields the composite result. The vectors over-

lap, so the next step is to write k as a piecewise function.

kys =

 k1

0(Nmeas−N0)

+


0N0

k2s + k2w

0(Nmeas−Nsig−N0)

+

 0(N0+Nsig)

k3

 (139)

Let [A]ba denote selecting rows a to b of matrix A. The newly constructed matrix is denoted
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asAi,o if it overlaps with another lag range, orAi,n if it does not. This is essentially overlap-

add in vector form.

kys =



[A1]N0−1
0 w1 = A1,nw1 0 ≤ l ≤ N0 − 1

[A1]
Nsig+N0−2
N0

w1 + [A2]
Nsig−2
0 (s+w2)

= A1,ow1 +A2,o (s+w2) N0 ≤ l ≤ Nsig +N0 − 2

[A2]
Nsig−1
Nsig−1 (s+w2) = A2,n (s+w2) l = Nsig +N0 − 1

[A2]
2Nsig−2
Nsig

(s+w2) + [A3]
Nsig−2
0 w3

= Ã2,0 (s+w2) +A3,ow3 Nsig +N0 ≤ l ≤ 2Nsig +N0 − 2

[A3]Nmeas−N0−2
Nsig−1 w3 = A3,nw3 2Nsig +N0 − 1 ≤ l ≤ Nmeas +Nsig − 2

(140)

For proper complex random vectors, affine transformations have easily derived distributions

(pg. 508, [46]). Specifically, if y = Ax + b, where A is a complex full-rank matrix, b is a

complex vector, and x ∼ CN (µx,Cx), then y ∼ CN
(
Aµx + b,ACxA

H
)
. The notation

CN (·) symbolizes the proper, but not necessary circular, complex Gaussian random vector.

More information on working with complex Gaussian random vectors is available [46, 1, 71].

Apply the affine transformation for each range of elements in Equation 140.

kys ∼



CN
(
0N0

,A1,nC1A
H
1,n

)
0 ≤ l ≤ N0 − 1

CN

A2,os,

[
A1,o A2,o

]C1 0

0 C2


AH

1,o

AH
2,o


 N0 ≤ l ≤ Nsig +N0 − 2

CN
(
A2,ns,A2,nC2A

H
2,n

)
l = Nsig +N0 − 1

CN

Ã2,os,

[
Ã2,o A3,o

]C2 0

0 C3


Ã

H

2,o

AH
3,o


 Nsig +N0 ≤ l ≤ 2Nsig +N0 − 2

CN
(
0,A3,nC3,A

H
3,n

)
2Nsig +N0 − 1 ≤ l ≤ Nmeas +Nsig − 2

This gives the distribution of the cross-correlation function, where C1,C2, and C3 are the

covariance matrices of their respective noise vectors w1,w2, and w3. The autocorrelation

function of the signal appears in the mean of the distributions as A2,os, A2,ns, and Ã2,os.

The true maximum lag occurs at l∗ = Nsig +N0 − 1.
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B.2 Ideal Cross-Correlation Distribution

The cross-correlation vector k̃ys for an ideal signal auto-correlation vector k̃ss and covariance

matrices C1 = σ2IN0 ,C2 = σ2INsig , and C3 = σ2I(Nmeas−Nsig−N0) is computed in this

section.

k̃ss =



h[0] 0 0 . . . 0

h[1] h[0] 0 . . . 0

...
...

...
...

...

h[Nsig − 1] h[Nsig − 2] . . . . . . h[0]

0 h[Nsig − 1] h[Nsig − 2] . . . h[1]

0 0 . . . 0 h[Nsig − 1]


s =


0Nsig−1

Esig
0Nsig−1



A1,nC1A
H
1,n = σ2 Diag

(
|h[0]|2, |h[0]|2 + |h[1]|2, . . . ,

N0−1∑
n=0

|h[n]|2
)

A2,os = 0Nsig−1

A1,oC1A
H
1,o = σ2 Diag

(
N0∑
n=1

|h[n]|2,
N0+1∑
n=2

|h[n]|2, . . . , |h[Nsig − 1]|2
)

A2,oC2A
H
2,o = σ2 Diag

|h[0]|2, |h[0]|2 + |h[1]|2, . . . ,
Nsig−2∑
n=0

|h[n]|2


A1,oC1A
H
1,o +A2,oC2A

H
2,o = σ2 Diag

 N0∑
n=0

|h[n]|2,
N0+1∑
n=0

|h[n]|2, . . . ,
Nsig−1∑
n=0

|h[n]|2 = Esig, . . . , Esig


A2,ns = Esig,A2,nC2A

H
2,n = σ2Esig, Ã2,0s = 0

Ã2,0C2Ã
H

2,0 = σ2 Diag

Nsig−1∑
n=1

|h[n]|2,
Nsig−1∑
n=2

|h[n]|2, . . . , |h[Nsig − 1]|2


A3,oC3A
H
3,o = σ2 Diag

|h[0]|2, |h[0]|2 + |h[1]|2, . . . ,
Nsig−2∑
n=0

|h[n]|2


Ã2,0C2Ã
H

2,0 +A3,0C3A
H
3,0 = σ2EsigI

A3,nC3A
H
3,n = σ2 Diag

Nsig−1∑
n=0

|h[n]|2,
Nsig−1∑
n=1

|h[n]|2, . . . , |h[Nsig − 1]|2
 (141)
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Substitution into the general formula of Lemma 1 yields k̃ys.

k̃ys ∼



0 ≤ l ≤ N0 − 1

CN
(
0N0 , σ

2 Diag
(
|h[0]|2, |h[0]|2 + |h[1]|2, . . . ,∑N0−1

n=0 |h[n]|2
))

N0 ≤ l ≤ Nsig +N0 − 2

CN
(
0Nsig−1, σ

2 Diag
(∑N0

n=0 |h[n]|2, . . . ,∑Nsig−1
n=0 |h[n]|2 = Esig, . . . , Esig

))
l = Nsig +N0 − 1

CN
(
Esig, σ2Esig

)
Nsig +N0 ≤ l ≤ 2Nsig +N0 − 2

CN
(
0(Nsig−1), σ

2EsigINsig−1

)
2Nsig +N0 − 1 ≤ l ≤ Nmeas +Nsig − 2

CN
(
0(Nmeas−Nsig−N0), σ

2 Diag
(∑Nsig−1

n=0 |h[n]|2, . . . , |h[Nsig − 1]|2
))
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APPENDIX C

WINDOWED INTEGER LAG PROBABILITIES

C.1 Probability l0 = l∗ is the Maximum Lag

To simplify notation, define k , l− N̂1, k∗ , l∗− N̂1, Xk , gys[k], and fXk(xk) as the PDF

of Xk. By the assumption since l∗ ∈ W, ∃k|k = k∗.

P{l∗ = arg max
l
gys[l] | l, l∗ ∈ W} = P{∩bmk=−am,k 6=k∗Xk ≤ X∗k}

The joint PDF can be written using the conditional distribution.

fX(x) = fX−am ,X−am+1,...Xbm
(x−am , x−am+1, . . . , xbm) = fX|Xk∗ (x | xk∗)fXk∗ (xk∗)

Compute the marginal PDF with respect to Xk∗

fX̃(x̃) =

∫ ∞
−∞

fX|Xk∗ (x̃|α)fXk∗ (α)dα

Assume the conditional amplitude distribution random variables are independent. Once

the amplitude value α at lag k∗ is assumed, an independence assumption is reasonable with

independent noise. The intuition is that the amplitude of lag k shouldn’t affect another lag

l, unless there is correlation in the noise.

=

∫ ∞
−∞

bm∏
k=−am,k 6=k∗

fXk(xk|α)fXk∗ (α)dα

Then, compute the CDF.

FX̃(x̃) =

∫ x̃−am

−∞
. . .

∫ x̃bm

−∞

∫ ∞
−∞

bm∏
k=−am,k 6=k∗

fXk(xk|α)fXk∗ (α)dαdx−am . . . dxbm

=

∫ ∞
−∞

 bm∏
k=−am,k 6=k∗

∫ x̃k

−∞
fXk(xk|α)dxk

 fXk∗ (α)dα
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Evaluate the CDFs at the amplitude of lag k∗, x̃ = α1.

=

∫ ∞
−∞

 bm∏
k=−am,k 6=k∗

∫ α

−∞
fXk(xk|α)dxk

 fXk∗ (α)dα

=

∫ ∞
−∞

bm∏
k=−am,k 6=k∗

Φ

(√
2α√
χ

)
fXk∗ (α)dα

=

∫ ∞
−∞

Φam+bm

(√
2α√
χ

)
fXk∗ (α)dα = P{l∗ = arg max

l
gys[l] | l, l∗ ∈ W}

The probability distribution function at the maximum lag k∗ is given below.

fXk∗ (α) =

√
2√
πχ

exp{−2(α− χ)2/χ2}

C.2 Probability l0 = l∗ + k, k 6= 0 is the Maximum Lag

P{l0 = l∗ + k = arg max
k
gys[l

∗ + k] | l∗ ∈ W}, k ∈ [−am,−am + 1, . . . ,−1, 1, . . . , bm]

= P{∩bml=−am,l 6=l0gys[N̂1 + l] ≤ gys[l0] | l∗ ∈ W}

Define some notation for simplicity. n , l − N̂1,n∗ , l∗ − N̂1, n0 , l0 − N̂1,Xn , gys[n],

and fXn(xn) is the PDF of random variable Xn.

= P
{
∩bmn=−am,n6=n0

Xn ≤ Xn0

}
The joint PDF can be written using the conditional distribution.

fX(x) = fX−am ,X−am+1,...Xbm
(x−am , x−am+1, . . . , xbm)

= fX|Xk∗ (x | xk∗)fXk∗ (xk∗)

Compute the marginal PDF with respect to Xn0

fX̃(x̃) =

∫ ∞
−∞

fX|Xk∗ (x̃|α)fXn0 (α)dα
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Assume the conditional amplitude distribution random variables are independent. Once

the amplitude value α at lag n0 is assumed, an independence assumption is reasonable with

independent noise. The intuition is that the amplitude of lag n shouldn’t affect another lag

n0, unless there is correlation in the noise.

FX̃(x̃) =

∫ x̃−am

−∞
. . .

∫ x̃bm

−∞

∫ ∞
−∞

bm∏
n=−am,n 6=n0

fXn(xn|α)fXn0 (α)dαdx−am . . . dxbm

=

∫ ∞
−∞

 bm∏
n=−am,n 6=n0,n6=n∗

∫ x̃n

−∞
fXn(xn|α)dxn

×
∫ x̃n∗

−∞
fXn∗ (xn∗)dxn∗fXn0 (α)dα

Evaluate the CDFs at the amplitude of lag n0, x̃ = α1.

=

∫ ∞
−∞

bm∏
n=−am,n6=n0,n 6=n∗

Φ

(√
2α√
χ

)
Φ

(√
2 (α− χ)√

χ

)
fXn0 (α)dα

=

∫ ∞
−∞

Φam+bm−1

(√
2α√
χ

)
Φ

(√
2 (α− χ)√

χ

)
fXn0 (α)dα

The probability distribution function at the maximum lag n0 is given below.

fXn0 (α) =

√
2√
πχ

exp{−2α2/χ2}
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APPENDIX D

MEAN AND VARIANCE FOR R.V. L

Suppose L is a random variable representing the probability of choosing lag l in a windowed

cross-correlation function. If an ideal impulse auto-correlation function is used, then p and

p̃ are the probabilities of selecting the true maximum lag l∗, or another lag, respectively.

Without loss of generality, let l∗ = 0.

L(l) ∼


p l = 0

p̃ l 6= 0

l ∈ [−a, b],a, b ≥ 0

E{L} = µL =

b∑
l=−a

lpl = p̃

( −1∑
l=−a

l +

b∑
l=1

l

)
= p̃(b− a)

VAR{L} =
b∑

l=−a
l2pl − µ2

L

= p̃

(
a∑
l=1

l2 +
b∑
l=1

l2

)
− µ2

L = p̃

(
a(a+ 1)(2a+ 1)

6
+
b(b+ 1)(2b+ 1)

6

)
=
p̃

6
[a(a+ 1)(2a+ 1) + b(b+ 1)(2b+ 1)]− p̃2(b− a)2
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APPENDIX E

TIME DELAY ESTIMATION SIMULATIONS

Parabolic, Zero-padded DFT (ZPD), and linear phase sub-sample interpolation on the cross-

correlation function Rm[l] were simulated and compared. Symbols were generated using

MATLAB’s comm.PNSequence PN sequence generator and modulated using M-PSK. Then,

raised cosine pulse shaping with excess bandwidth parameter β0 was applied.

The signal was delayed using MATLAB’s fdesign.fracdelay. The Lagrange Method

and a fractional delay filter order of 10 was used. One significant issue in using this filter is

that the group delay is not a constant function of frequency, resulting in significant estimator

bias. To overcome this issue, the CRLB must be modified to account for oversampling as

Equation 73 assumes Nyquist sampling. The resulting equation is given below in units of

samples, assuming kos is the oversampling factor and β̃RMS = TsβRMS . The SNR is still

defined in terms of the signal energy and variance of a single noise sample, χm , Es/σ2
w,

consistent with the previous definition.

σ2
N̂0
≥ 1

8π2χmkosβ̃2
RMS

(samples)2 (142)

Under the rectangular spectrum assumption, the equation simplifies.

σ2
N̂0
≥ 3k2

os

2π2χm
(samples)2 (143)

The Parabolic interpolation formula is given by Equation 144. A window of 64 samples

around the integer sample maximum was selected for ZPD, with an interpolation factor

of 64. Assuming a maximum magnitude integer lag of l∗ samples, Equation 145 provides

the linear phase ToA estimate, in samples. fif is the non-zero IF frequency (Hz) of the

signal, Fs = βkos is the sampling rate, and b̂ is the y-intercept of the phase. This could be

calculated using b̂ = ∠ (Rm[l∗]), but linearly interpolating the phase of the cross-correlation

function around l∗ is more accurate. However, care most be taken to window the phase
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around the true cross-correlation maximum l∗ as the phase is only linear in a small region

around this lag.

N̂pb
m = lc+lf , lc = arg max

l
<{Rm[l]}, lf = <

{
Rm[lc + 1]−Rm[lc − 1]

4Rm[lc]− 2Rm[lc − 1]− 2Rm[lc + 1]

}
(144)

N̂ lp
m = |Rm[l∗]| − Fsb̂

2πfif
(samples) (145)

For these simulations β0 = 0, Nsym = 4096,M = 4, 4 samples/symbol were used, and

the pulse shape was truncated to 6 symbols. It is important to note that Equation 143

only applies for small β, since as β → 1 the spectrum is no longer well approximated by a

rectangle. The linear phase interpolation was performed with phases from lags [l∗−3, l∗+4].

The IF frequency was 0.05Fs. Figure 41a compares the bias of the two estimators, which

is ideally zero. It can be seen that parabolic is more biased than ZPD and linear phase

interpolation. The parabolic interpolation bias is a function of the sub-sample displacement.

Interestingly, the linear phase bias appears to be worse at lower SNRS than ZPD. Figure

41b compares the standard deviation of the estimators with the CRLB given in Equation 73

over 1000 trials for a true time delay of N0 = 10.2 samples. Asymptotically in the number

of observations, the SNR at Sensor m, χm, must be at least 15 dB to apply the CRLB.

Otherwise, it becomes likely the wrong cross-correlation lag will be selected.
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Figure 41: Time Delay Estimation CRLB Vs. Simulation. Figure 41a illustrates the
estimator bias, while Figure 41b compares the estimator standard deviation to the CRLB.
The signal was a BPSK-Modulated Pseudorandom Noise bit sequence with a Root-Raised
Cosine pulse (β = 0). At each SNR, 1000 trials were performed. The true delay was 10.2
samples.
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