
MULTI-AGENT ROUTING IN SHARED GUIDEPATH NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Stephen Greyson Daugherty

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

December 2017

Copyright c© Stephen Greyson Daugherty 2017

MULTI-AGENT ROUTING IN SHARED GUIDEPATH NETWORKS

Approved by:

Dr. Spyros Reveliotis, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Greg Mohler, Supervisor
Georgia Tech Research Institute
Georgia Institute of Technology

Dr. Alan Erera
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Alejandro Toriello
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Shabbir Ahmed
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Magnus Egerstedt
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: August 23, 2017

Only those who will risk going too far can possibly find out how far one can go.

T. S. Eliot

To my parents, my wife, and my parachute rigger.

ACKNOWLEDGEMENTS

I would like to thank the Georgia Tech Research Institute (GTRI) for its support of the

research contained in this thesis as an Internal Research and Development (IRAD) project.

I would like to thank Greg Mohler in particular, whose support and advocacy played an

enormous role in making this research possible.

I would further like to thank my academic advisor, Spyros Reveliotis, for his advice, his

insights, his patience, and his constructive criticism. I consider myself extremely fortunate

to have worked with him.

Last but not least, I would like to thank the superlative academic instructors whom I

have had the privilege to learn from within Georgia Tech’s H. Milton Stewart School of

Industrial and Systems Engineering, including (but not limited to): David Goldberg, Eva

Lee, Craig Tovey, Alan Erera, Nicoleta Serban, and Spyros Reveliotis.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Tables . v

List of Figures . vi

Chapter 1: Introduction and Background . 1

1.1 Problem Description and Motivation . 1

1.2 Literature Review . 3

1.2.1 AGV-Related Literature and Practice 3

1.2.2 Literature on Multi-Robot Path Planning (MPP) 6

1.3 Goals and Outline of the Proposed Research Program 10

Chapter 2: Problem Formulation . 13

2.1 Overview of the Main Modeling Representations and Assumptions 13

2.2 Mathematical Formulation . 15

2.2.1 Notation . 15

2.2.2 Decision Variables . 16

2.2.3 MIP . 17

Chapter 3: A Lagrangian-Duality Approach for the Considered MIP 21

iii

3.1 Formulation of the Lagrangian Relaxation and the Dual Problem 21

3.2 A Dual-Ascent Approach to the Optimization of the Relaxed Dual Problem 30

3.2.1 Definition of a Streamlined Dual-Ascent Algorithm 30

3.2.2 Customization of the Algorithm of Section 3.2.1 to the Dual Problem
of Section 3.1 . 41

3.3 Optimizing the Lagrangian Dual Problem Using a Single LP 48

Chapter 4: A Heuristic Approach to the Considered Traffic Scheduling Problem 52

4.1 Formal Representation of the Solution Space 52

4.2 Obtaining an Initial Feasible Solution . 56

4.3 Local Search for Improved Solutions . 58

4.4 A Complete and Canonical Description of the Presented Scheduling Algorithm 59

4.5 Complexity Analysis for the Algorithm of Figure 4.3 61

4.6 Enhancing the Algorithm Performance . 62

4.6.1 Controlled Excursions into the Infeasible Solution Space 62

4.6.2 Multi-Agent Simultaneous Search 63

4.6.3 Lagrange-Multiplier Heuristic . 71

Chapter 5: Experimental Results . 73

Chapter 6: Conclusion . 83

Appendix A: Alternative MIP Formulation . 87

References . 100

iv

LIST OF TABLES

5.1 An optimal set of agent routes computed for the problem instance of Fig-
ure 1.1 – adapted from [10]. 73

5.2 The agent routes computed for the second case study by the variation of the
proposed algorithm that allows for excursions to the infeasible region – cf.
Section 4.6.1 . 76

5.3 An optimal set of routes for the second case study computed through the
MIP formulation of Section 2.2 . 76

5.4 An optimal set of routes for the first ten agents of the challenge problem,
computed using a 10-agent spatio-temporal graph, as described in Section
4.6.2 . 80

v

LIST OF FIGURES

1.1 This figure represents a problem where agents 1, 2, and 3 must travel from
the lower-left corner to the upper-right, after reversing their order. A depot
location is circled in the lower-right corner, where agents may be pooled
and re-dispatched, but doing so would not be a strong solution to this
problem. The arrows are an abstraction that is useful for contexts where
agents cannot necessarily reverse their direction of travel; this and other
abstracting representations are discussed in more detail in the next chapter. . 9

2.1 Depiction of deadlocked AGVs at an intersection. Any multi-agent schedul-
ing algorithm must prevent such situations from occurring. 14

3.1 An iterative algorithm for the solution of the optimization problem of Equa-
tions (3.25) and (3.26), based on the results of Theorem 3.2.2. 35

4.1 A “forward-search” algorithm for constructing DAG D(a, e, t, T). 54

4.2 Example of a spatio-temporal DAG for agent a, given t = 0 and T = 13,
D(a, sa, 0, 13). This graph describes all possible routes taking agent a from
its current location, sa, to its destination location, da, within the time horizon
T , while observing the corresponding single-agent constraints. 55

4.3 A basic version of the heuristic algorithm for the traffic coordination problem
that is considered in this work. 60

4.4 Details of the “forward-search” node generation process. A similar, “backward-
search” procedure is also performed from time T to time τ̂ 66

5.1 The problem instance employed in the second case study. 74

5.2 The problem instance employed in the second case study, with arrows
representing the requirements that various pairs of agents swap places, and
with “D” representing the depot. 75

vi

5.3 The guidepath graph used for the grid-based numerical experiment – repro-
duced from [10]. 77

5.4 Plotting the optimality gap for the grid-based numerical experiment – repro-
duced from [10]. 78

5.5 Plotting the computational times for the grid-based numerical experiment –
reproduced from [10]. 79

5.6 Comparison of the solutions obtained using 2-agent spatio-temporal graphs
to the results from single-agent spatio-temporal graphs. In most cases, there
is no improvement. 81

5.7 Completion time required when 2-agent spatio-temporal graphs are built
and used after single-agent local search terminates. The reason for the spike
observed for 42 agents is because, in that particular problem instance, the
optimized makespan obtained using single-agent local search was greater
than in the 45-agent case. This resulted in a longer time horizon for the
2-agent spatio-temporal graphs in the 42-agent problem. 82

vii

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Problem Description and Motivation

The research program presented in this document addresses the problem of routing a number

of traveling agents along the edges of a connected graph, which is referred to as a “guidepath

network.” Every agent has a designated destination to which it is being routed. The objective

of this research is to find ways to minimize the time required to route all agents in the

system from their “current” positions to their respective destinations, simultaneously. Since

the considered guidepath network is shared by the entire set of agents, the routes these

agents follow will be subject to certain congestion, or “coupling”, constraints that prevent

any agent’s route from causing conflict with any other agent’s route. Thus, this research is

aimed at providing efficient, conflict-free, multi-agent routes between arbitrary origins and

destinations within a highly restricted transportation environment.

One “real-world” application that motivates this research is that of flexibly automated,

unit-load, zone-controlled material handling (MH) systems implemented in various pro-

duction and distribution settings [24]. In this case, the vehicles (represented as “agents” in

the problem formulation below) are restricted to a well-defined network (i.e., a “guidepath

network”) whose structure may follow directly from the physical layout of the MH system,

as in the case of crane or gantry systems used in ports or in heavy-industrial manufacturing

plants, or of the monorail systems used in modern semiconductor fabs. Alternatively, the

network may be virtual, as in the case of automated guided vehicles (AGVs); in this case,

vehicles are restricted to certain sections of a production or distribution layout to avoid

collisions with workers and other machines.

The guidepath network traversed by a set of AGVs (or other MH systems) can be divided

1

into “zones” designed to prevent collisions by allowing only one vehicle to reside in a

zone at any given moment. These zones induce a natural discretization of the vehicle trips

wherein a route for any given vehicle can be described by a sequence of adjacent zones that

define the agent’s discrete location at each time step.

Another problem instance that motivates this work (and that maps neatly into the

discretization just described) is that of coordinating the movement of quantum bits (known

as “qubits”) inside the central processing unit of a quantum computer [39]. Much like

AGVs, qubits must travel between storage locations and “gate” locations, where they can

interact with one another or be subjected to phase-change operations. And much like AGVs,

qubits move along a specific guidepath network. The exact physical implementation may

vary (from ion-trap to quantum-dot configurations), but the underlying routing problem is

essentially independent of the type of quantum computer.

The above contexts share certain operational characteristics–namely, restrictions against

agent co-residency at zones on the guidepath network that do not serve either as source or

destination locations, along with a “no-swap” rule that prevents agents from switching zones

between one time step and the next. This last restriction ensures, among other things, that

the model will not expect two AGVs traveling in opposite directions down a narrow aisle to

switch places instantaneously.

There are also some differences between the AGV context and the quantum-computing

one. For instance, it is often assumed that AGVs do not reverse direction within an aisle, but

this behavior is acceptable for qubits, and it may, indeed, be necessary or helpful in order

to solve the problem addressed in this work. Another consideration is that AGV systems

are often assumed to have no destination locations that can also be used as transit locations

by other vehicles. In the quantum-computing context, however, this may be very common.

This possibility offers a scheduler extra freedom when routing agents to their respective

destinations, but it also implies a number of difficult constraints; given that some zones of

the guidepath network that are used for transit can also serve as destinations for various

2

agents, it is imperative that no set of agents residing in their destination locations form a cut

of the guidepath network that separates an agent still in transit from its own destination.

The bottom line for both applications is that agents, whether they be qubits or AGVs,

must travel efficiently between various origin and destination locations while avoiding certain

detrimental or forbidden behaviors. In particular, multiple agents cannot occupy the same

zone at the same time during transit, and two agents cannot swap from neighboring zones

in the guidepath network. The system must also prevent the formation of “deadlocks”–i.e.,

states where multiple agents block each other’s advancement within the guidepath network–

that might arise due to the previous two restrictions. The model (and the algorithms)

developed for this research are designed with sufficient generality to cover both types

of problem instances and are even adaptable to other contexts (e.g., flexible job-shop

scheduling) that have seemingly different system behaviors or constraints than the ones

discussed here.

1.2 Literature Review

1.2.1 AGV-Related Literature and Practice

Various researchers have addressed the deployment of automated, zone-controlled, guidepath-

based material handling systems (MHSs), starting with [36], which provided a theoretical

framework for the operations research/industrial engineering (OR/IE) community to model

these MHSs. However, the analysis contained in [36] focused primarily on the design of

efficient physical layouts of the guidepath network rather than on the simultaneous routing

of the vehicles contained within the guidepath network. Other sources (e.g., the works

discussed in [20, 44, 56]) define the dynamics of AGV environments in greater detail and

extend the relevant abstractions beyond the AGV context. However, all of these sources

acknowledge the need for new models and control algorithms aimed at reducing congestion

delays and avoiding deadlocks while maintaining computational tractability.

Existing industrial practice largely sidesteps the difficulty of making these hard control

3

decisions by using restrictive configurations–e.g., “tandem” layouts that decompose the

system traffic into a series of interconnected loops with buffers at the interfaces [5]. But

such restrictions come at a price–namely, (i) needlessly lengthy trips between locations that

are close to each other, (ii) a rate of movement that is determined by the slowest vehicles on

any given loop, and (iii) the need for “double-handling” for transfers between locations on

different loops.

These inefficiencies motivate the study of concurrent, multi-agent routing policies in

zone-controlled guidepath networks. As part of this effort, a number of researchers have

studied in depth the problem of eliminating deadlocks from the considered traffic systems,

along with a similar problem known as “livelocks”, wherein a set of moving agents prevents

one or more other agents from reaching their destinations. These two types of problems

are united by one imperative: The system state (which can sufficiently be described by the

location and direction of all agents on the guidepath network at a given moment in time, as

well as their remaining visitation requirements) must always be “safe”; i.e., there must exist

a deadlock- and livelock-free schedule that can return all agents to a “depot” or “charging

station” (i.e., a single location on the guidepath with the capacity to retain all agents in the

system and to dispatch them in arbitrary order) after they have successfully visited their

destinations.

Reveliotis ([47]) describes a computationally efficient method for enforcing liveness

within AGV systems. Reveliotis and Roszkowska ([46]) further determined that maximally

permissive deadlock avoidance (i.e., deadlock avoidance that guarantees that a system state

will be classified as safe if and only if at least one multi-agent schedule exists to route all

agents back to a charging station) is an NP-hard problem. However, sub-optimal solution

methods for ensuring safety within various resource allocation systems do exist. These

include the application of Banker’s algorithm (formulated initially in [13] and applied to

flexible manufacturing systems in [31, 15]), and of methods that rely on finite-state automata

[38, 57, 49] and Petri nets [14, 34, 42]. These methods and their applications to job shops

4

and other resource allocation systems are surveyed in [33, 66, 48, 45]. In particular, the

methods of deadlock avoidance for broader resource allocation systems have been adapted

to the problem of deadlock avoidance in guidepath-based AGV systems in [47, 61, 17, 46].

Roszkowska and Reveliotis ([50]) extended these results to closed AGV systems, and [23]

applied them specifically to rail networks.

Deadlock-avoidance algorithms can be used to guarantee that any prescribed schedule

cannot cause deadlocks. They do not, however, address the problem of optimizing the

performance of multi-agent schedules with respect to some time-based objective. One

perspective that can be used to approach this problem, and is adopted in the rest of this

thesis, is that of job-shop scheduling. When the multi-agent routing problem is mapped

into the job-shop scheduling paradigm, machines are replaced by “zones” of the guidepath

network, the “jobs” performed are transportation jobs between different locations, and the

“makespan”, a term commonly used to describe the length of time required for all jobs in the

system to be completed, represents the length of time required for every agent in the system

to reach its next destination. The makespan will be used as the objective function for the

research described in the following chapters.1

The literature on job-shop scheduling offers some distinct methods to approach this

problem. These include “branch-and-bound” algorithms, which would find optimal solutions

but will not necessarily run in polynomial time [41, 6, 37]. They also include disjunctive

programming [43, 37] and various efficient heuristics such as the “shifting-bottleneck”

heuristic [43, 40, 1]; but these algorithms cannot easily accommodate the extraordinary

flexibility that exists in most guidepath networks.

There is also some prior research that does attack traffic coordination problems similar

to those considered in this work more explicitly. Notably, [30] employs column generation

1Though other objective functions can be considered (e.g., minimization of average routing time across all
agents), this research focuses on minimizing the time required to complete all immediate transportation jobs,
for two reasons: (i) minimizing the time to complete all outstanding transportation jobs (which is referred to in
this thesis as the “makespan”) ensures that no single job will be unduly postponed in order to facilitate the
completion of other transportation tasks; and (ii) in the broader literature of combinatorial scheduling theory,
minimization of the makespan is a surrogate objective for maximizing the system throughput.

5

techniques to address a traffic scheduling problem similar to the problem addressed in this

work, and [12] extends the work of [30] by using column generation as part of a branch-and-

cut scheme. However, these techniques suffer from questionable scalability, and the more

recent of these papers ([12]) applies its methodology to a maximum of four vehicles.

1.2.2 Literature on Multi-Robot Path Planning (MPP)

Further literature relating to the problem that is addressed in this thesis exists among the

artificial intelligence (AI) and robotics communities concerning “multi-robot path planning”

(MPP). A precursor to this class of problems exists in the form of a 4× 4 square grid that

constrains the movement of 15 non-overlapping, labeled pieces that must reach a particular

location from an arbitrary starting configuration. In this problem, a “move” is feasible if and

only if it moves a single piece into the empty space of the puzzle. Wilson ([58]) considered

this problem, as well as the broader class of problems defined by a 2-connected graph, G,

with n vertices and n− 1 pieces (which the author refers to as “pebbles”).

In [58], the author proves that, whenever G is not bipartite, there always exists a finite

sequence of moves capable of transforming an arbitrary initial solution to any target state,

and that when G is bipartite, then the possible configurations of the graph can be grouped

into two equivalence classes.

Kornhauser et al. ([29]) extended the results of [58] not only by considering the more

general case where the number of pebbles, p, is less than or equal to n − 1, but also by

exploring the conditions determining reachability between various configurations on 1-

connected and 2-connected graphs, and providing an O(n3) algorithm for determining this

reachability and finding a feasible “move” sequence whenever one exists.

In subsequent years, the AI and robotics communities explored the aforementioned

problem, as well as certain variations upon it, under the aegis of “multi-robot path planning”

(MPP). These variations include versions of the problem with up to n pebbles, where

pebbles (or robots) are assumed to have the ability to move synchronously, in rotating loops,

6

whenever it is necessary or useful to do so [64], a property that has enabled researchers

to design new algorithms for testing problem feasibility [65]. On the other hand, [63]

establishes that the problem of finding an “optimal” sequence of moves (where optimality

is defined based on various objectives, such as minimizing total time for all pebbles, or

minimizing maximum completion time) is NP-hard, even when these synchronized loop

rotations are permitted.

Efforts to optimize multi-robot path plans can be classified broadly into “coupled” and

“decoupled” approaches. Decoupled methods are marked by their decomposition of the

problem into a series of single-robot subproblems [51]. The corresponding optimization

routines typically consider each robot in sequence, using the “current” path plans of other

robots to place constraints on the path plan for the robot under consideration. While these

algorithms can be effective at mitigating complexity, they often struggle to provide feasible

solutions in cases of even moderate congestion [53, 51, 54]. These algorithms resort to

methods such as perturbation or iteration in an effort to mitigate these difficulties, but there

is no well-defined logic to guide this additional exploration.

Coupled approaches consider MPPs more holistically by modeling the traffic dynamics

as a finite-state automaton (FSA), where the system state is defined based on the location of

the traveling agents, and where the constraints of the considered problem are used to define

the transitions allowable between various system states. The resulting optimization problems

can then be expressed as mixed-integer programs (MIPs) [64], as dynamic programming

(DP) problems [54], or as satisfiability (SAT) problems [55]. Though these methods have

the virtue of returning optimal results consistently, they are not scalable, as the size of the

FSA state space grows explosively with the number of robots.

This research considers a class of problems that is, both, distinct and, in some sense,

more general than what is currently described in the MPP literature. For example, perfectly

synchronous movement is not assumed to be possible, as it is in [64] and [65]. In addition,

the research in this thesis is developed with consideration for the possibility that robots (or,

7

more generally, “agents”) may have constraints placed upon their movement based not only

on their current location, but on their direction of travel (which is easily generalizable to

other characteristics of the agent state).

In order to illustrate the difficulty of addressing the considered class of problems using

methods in the existing literature, we can consider the example portrayed in Figure 1.1,

where three agents must start in the lower-left corner and finish in the upper-right, after

reversing their order. Tractable, “decoupled” approaches are described in [28] and [21],

where agents are routed iteratively with time-window constraints to find solutions that are

efficient and often deadlock-free. In these papers, the authors route each agent based on

a shortest-path problem with time windows (SPPTW), where the time windows prevent

conflicts with the agents routed earlier. Though this method is clever and elegant, Figure

1.1 illustrates its shortcomings. If one were to attempt to route these three agents using

the SPPTW approach for each agent, then one would find that Agent 3 must be the first

to move. After that, no conflict-free path will exist for either Agent 1 or Agent 2 to reach

its destination. Hence, approaching this problem as a series of SPPTWs would return no

solution.

The ability of such a small problem to defeat such algorithms hints at a very difficult set

of implied constraints. Namely, as mentioned in Section 1.1, it is important that no subset of

the agents that have come to rest at their respective destinations forms a cut blocking any

agent still in transit from its own destination. One of the key contributions of the research

described in this thesis is the ability to overcome such complications.

Moreover, though the “coupled” methods described earlier in this section would be

capable of finding an optimal solution to this problem, as we show in Chapter 5, these ap-

proaches would not be scalable to problem instances with larger guidepath graphs and larger

numbers of agents. The presented research seeks to provide an optimization methodology

that is scalable to larger problems, yet robust to “difficult” problems such as the one shown

in Figure 1.1.

8

1	 2	 3	

1	 2	 3	

Start	

Finish	

Figure 1.1: This figure represents a problem where agents 1, 2, and 3 must travel from the
lower-left corner to the upper-right, after reversing their order. A depot location is circled in
the lower-right corner, where agents may be pooled and re-dispatched, but doing so would
not be a strong solution to this problem. The arrows are an abstraction that is useful for
contexts where agents cannot necessarily reverse their direction of travel; this and other
abstracting representations are discussed in more detail in the next chapter.

9

1.3 Goals and Outline of the Proposed Research Program

Motivated by the above observations, the presented research program addresses the problem

of finding conflict-free, deadlock-free, and livelock-free multi-agent routing schedules for

the aforementioned applications, with minimized makespans. The research presented in this

thesis is designed for incorporation into an online, model predictive control (MPC) approach

to the problem of scheduling and completing various transportation tasks. In particular, the

presented research assumes a “rolling-horizon” decomposition scheme where every agent’s

current location and next destination are known, and this thesis details methods for finding

lower bounds, upper bounds, and efficient feasible solutions to the subproblems that seek to

route the traveling agents to their next destinations.

Hence, the primary goal of this research is to design and demonstrate an algorithm that

minimizes the makespan for an arbitrary set of agents traveling from their original locations

to some specified destination edges on an arbitrary guidepath network. The algorithm will

be sufficiently general to address both AGV and qubit routing problems, including problems

such as the one represented in Figure 1.1. However, for the sake of specificity, test results

will be based on simulated instances of the qubit routing problem (which, in general, tends

to be more difficult than AGV routing on account of the fact that all destination edges can

also be used as transit locations for agents that are not destined for that edge).

The contributions of this thesis can be summarized as follows:

• The thesis abstracts the considered multi-agent routing problem through a set of

modeling assumptions and formulates it analytically as an MIP [60].

• A Lagrangian relaxation (LR) approach is developed to obtain lower bounds for

optimal makespans of instances of the considered problem, as well as a set of Lagrange

multipliers that may be useful for heuristic optimization algorithms.

• Two different methods for optimizing the Lagrangian dual function are provided:

10

– An iterative dual-ascent method that has been carefully adapted for problems of

the given type [8, 9].

– A method to solve the considered dual problem more robustly (finding both a

lower bound on the optimal makespan and a set of Lagrange multipliers for the

“difficult” constraints) by reducing it to a single linear program (LP).

• The thesis also presents a heuristic, “local-search” type of algorithm for the considered

problem. In this context, first we detail an efficient algorithm for constructing an

initial solution for any problem instance, which further establishes the completeness

of our methods. Given an initial feasible solution (i.e., a schedule for all agents

that routes each agent from its origin to its destination without any conflicts among

different agents) our method then uses dynamic programming (DP) in a novel way

to eliminate conflicts between agents as the makespan is iteratively reduced [10, 11].

This technique can be considered as a “decoupled” method, in the terminology of

Section 1.2.2, with the following important characteristics:

– Given any initial feasible solution, this method iteratively reduces the makespan

until its termination, ensuring that some feasible solution (and usually an optimal

or near-optimal solution) is returned.

– The algorithm reroutes agents in a maximally flexible way, considering all

possible paths between a given origin and a given destination that fit within the

given time horizon.

– The algorithm is sufficiently versatile to accommodate diverse operational con-

straints, such as those that might prohibit agents from reversing their direction

of travel.

– The algorithm is scalable with respect to the size of the guidepath graph and the

number of agents.

11

• Finally, the thesis presents experimental results that demonstrate and assess the

efficiency of the heuristic approach for the considered traffic problem, as well as

results on the algorithms for the aforementioned dual problem.

The rest of this document is organized as follows: Chapter 2 provides the MIP that

formally describes the considered class of problems. Chapter 3 details the Lagrangian

approach and solution algorithms for the corresponding dual problem. Chapter 4 presents the

heuristic algorithm for computing optimized agent routes. Chapter 5 provides experimental

results from the implementation of the methodologies given in Chapters 3 and 4. Lastly,

Chapter 6 summarizes the results and contributions of this thesis, and recommends a few

directions for future research.

12

CHAPTER 2

PROBLEM FORMULATION

2.1 Overview of the Main Modeling Representations and Assumptions

In this section we describe abstractions of the guidepath network, and of the agents and

their routes on this graph. We then proceed to define the routing problem that the following

research addresses, and to formulate it as a mixed integer program (MIP). As stated in

Chapter 1, the presented abstractions are sufficiently general to be applicable to a range of

different contexts, including the problems of routing multiple AGVs simultaneously and of

routing qubits inside a quantum computer.

To begin, the guidepath network can be represented as a graph G = (V,E ∪{h}), where

V represents a set of vertices connected by a set of edges E, and h represents a “storage” or

“home” location where agents can be held (effectively removed from the system) when not

in use.

For the present research, each traveling agent a ∈ A is assumed to traverse an edge of

the guidepath network in uniform lengths of time. These lengths of time define a natural

“time unit” for the model and make it possible to discretize the motion dynamics of the agents

within the considered system. A “route” between two locations, then, is a sequence of edge

indices describing where an agent will be located at any given time, and a “schedule” is a

collection of routes describing where all agents will be located between some start time and

the end of a given time horizon. For any given edge e, transitions must be selected from

the set {e• ∪ e}, where e• ∈ E represents the set of edges that an agent can transition onto

directly from e. e• is identical for all agents and is assumed to be a static property of G,

∀e ∈ E.

Some variability between problem instances must also be considered. In particular,

13

Figure 2.1: Depiction of deadlocked AGVs at an intersection. Any multi-agent scheduling
algorithm must prevent such situations from occurring.

whether or not an agent is permitted to reverse direction on an edge varies from one case to

another; notably, the abstraction of qubits inside a quantum computer allows this behavior,

whereas many AGV problems do not. However, both types of instances can be described

using a directed graph. That is, if each edge connecting vertices vi and vj is replaced by

two directed edges–(vi, vj) and (vj, vi)–then we have a representational framework that is

sufficiently general for both cases. For any given edge (vi, vj), the edge (vj, vi) will be

referred to as the “reverse” or “complementary” edge and will be designated as ē.

The reason that the above abstraction is sufficient to model cases where an agent is

or is not allowed to reverse direction, is the flexibility with which e• can be defined; if

reversibility is permitted, then one need only enforce that e• = ē•, ∀e ∈ E. This remark

also exemplifies the flexibility of the presented modeling framework.

Finally, in order to prevent agents from switching places while on neighboring edges,

and to avoid the unrealistic requirement that agents move with perfect synchronicity from

one location to another–a restriction that is necessary in order to prevent collisions between

14

agents–an agent a is not permitted to transition from some edge e at time t− 1 to an edge

e′ ∈ e• at time t unless edge e′ is unoccupied by other agents at both time t and at time

t− 1. In the case that agents cannot reverse their motion within their current edges, this set

of constraints can lead to deadlocks such as the one shown in Figure 2.1; therefore, in that

case, it is necessary that any effort to define feasible schedules must ensure that they are

also deadlock-free [47].

2.2 Mathematical Formulation

A “trip” for an agent a can be conceptualized as a sequence of edges Σa = 〈e ∈ E〉 that

an agent must visit in the given order before returning to the home edge h and effectively

being removed from the system until the next trip. As mentioned in Chapter 1, however,

the research (and therefore the MIP formulation) presented here restricts its attention to the

problem of routing each agent a from its given starting point, sa, to its next destination, da.

In a larger context, this is equivalent to considering the question of routing every agent to its

next destination in Σa as efficiently as possible. This problem can be formulated as an MIP

[60] as follows:

2.2.1 Notation

• V = {v1, v2, ..., vm}: Guidepath-graph vertices

• E = {e1, e2, ..., en}, with el = (vi, vj) ∀l ∈ {1, ..., n}: Guidepath-graph edges (or

“zones”)1

• T (n×n): A binary matrix expressing the agent transitional dynamics on the guidepath

graph; Ti,j = 1 iff a direct transition from ei to ej is allowed. We also set Ti,i = 1 ∀i

s.t. ei ∈ E
1To avoid straightforward but notationally awkward conditions, in the subsequent discussion it is assumed

that no traveling agent is currently located at, or is destined to, the “home” edge h.

15

• ē = (vj, vi): Complementary edge of edge e = (vi, vj)

• •el = {eq ∈ E : Tq,l = 1 ∧ q 6= l}: The set of input edges for el, ∀el ∈ E

• e•l = {eq ∈ E : Tl,q = 1 ∧ q 6= l}: The set of output edges for el, ∀el ∈ E

• A = {a1, a2, ..., aK}: The set of traveling agents

• da: Destination edge for agent a ∈ A

• sa: Starting edge for agent a ∈ A; this edge also specifies initial orientation for the

agent motion

• T : An upper bound on the required transport time, across all agents (and therefore an

upper bound on the optimal value of the objective function)

• t ∈ T = {0, 1, ..., T}: Time index

2.2.2 Decision Variables

• ∀a ∈ A, ∀e ∈ E, ∀t ∈ T , xa,e,t ∈ {0, 1} indicates whether or not a given traffic

schedule places agent a on the directed edge e at timestep t; these variables constitute

the primary decision variables of the considered traffic coordination problem. For

notational convenience, x will represent the vector that collects all the variables xa,e,t

in the following sections.

• w: An auxiliary variable that represents the makespan (i.e., the total time to completion,

as described in Chapter 1) of a given traffic schedule.

16

2.2.3 MIP

Given the notation in Sections 2.2.1 and 2.2.2, the following MIP defines the problem at

hand:

minw (2.1)

s.t.

∀a ∈ A, ∀t ∈ T ,
∑
e∈E

xa,e,t = 1 (2.2)

∀a ∈ A, ∀e ∈ E xa,e,0 = I{e=sa} (2.3)

∀a ∈ A, xa,da,T = 1 (2.4)

∀a ∈ A, ∀t ∈ T \ {T}, xa,da,t+1 ≥ xa,da,t (2.5)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {T}, xa,e,t ≤ xa,e,t+1 +
∑
e′∈e•

xa,e′,t+1 (2.6)

∀e = (vi, vj) ∈ E s.t. i < j, ∀t ∈ T \ {0, T},
∑
a∈A

(xa,e,t + xa,ē,t) ≤ 1 (2.7)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0}, xa,e,t +
∑

a′∈A:a′ 6=a

(xa′,e,t−1 + xa′,ē,t−1) ≤ 1 (2.8)

∀a ∈ A, w ≥
T∑
t=0

(1− xa,da,t) = T + 1−
T∑
t=0

xa,da,t (2.9)

17

∀a ∈ A, ∀e ∈ E, ∀t ∈ T , xa,e,t ∈ {0, 1} (2.10)

Equation (2.2) ensures that each agent will occupy exactly one location on the guidepath

at any given time. Equation (2.3) dictates that each agent be located at a prescribed starting

point, sa, at time t = 0. Equation (2.4) enforces the constraint that every agent must reach

its destination, da, by the upper temporal bound, T , and Equation (2.5) requires each agent

to remain at its destination edge upon reaching it. Equation (2.6) ensures that, for each time

t, an agent located at edge e must either remain at edge e or transition to an edge in e•.

Together, Equations (2.2)–(2.6) form what will be referred to as the “single-agent

constraints”. Each of these constraint sets contains a distinct subset of constraints for each

agent, and these subsets are disjoint. As will be shown in the following chapters, these

constraints can be used to form subproblems that can easily be optimized in polynomial

time for various objective functions. Moreover, the constraints describe separate problems

for each agent, since each constraint only contains variables pertaining to a single agent.

This property will prove useful in Chapters 3 and 4.

Moving on to the rest of the MIP, Equation (2.7) ensures that no two agents occupy the

same location at the same time. Equation (2.8) requires that an agent located on edge e at

time t− 1 cannot move onto edge e′ at time t unless that edge is unoccupied by any other

agent at time t − 1. This prevents agents from swapping places or allowing one agent to

move onto an edge at the same instant that another is moving off of it in a manner that is

either physically infeasible or unsafe. Equation (2.9) helps to define the auxiliary variable

w that represents the makespan of the problem. Since (a) w is minimized, (b) it is not

constrained beyond Equation (2.9), and (c) w is greater than or equal to the right-hand side

of Equation (2.9), the optimal w will be tight for at least one of the constraints in Equation

(2.9).2

2 We further notice, for completeness, that in order to capture potential “rendezvous” effects among the
traveling agents in the MIP formulation of Equations (2.1)–(2.10), we shall need to (i) define the “rendezvous”
agent sets A(e) = {a ∈ A : da = e}, ∀e ∈ E, and then (ii) replace Constraints (2.7) and (2.8) in the original

18

Equations (2.7)–(2.9), when taken together, will be referred to as “multi-agent con-

straints”, “coupling constraints”, or “congestion constraints”. These descriptors refer to

the fact that each of these constraints allows the route chosen for one agent to constrain

the solution set available to other agents; hence, these constraints serve as a mathematical

formalization of traffic congestion within the guidepath network. These constraints also

“couple” the single-agent routing problems to one another, and make the resulting MIP much

more difficult to solve. The above partitioning of the constraints of our MIP formulation into

the groups of Equations (2.2)–(2.6) and (2.7)–(2.9) will prove helpful in Chapters 3 and 4.

The above MIP formulation is not unique, in the sense that it is not the only way to for-

mulate the considered problem. The MIP presented here is based on a natural representation

of the traffic state (i.e., the location of each agent at each time step) and is designed to make

efficient use of the “resource allocation system” (RAS) perspective. A different formulation,

that is based on a reconceptualization of the single-agent constraints as part of a “min-cost

multi-commodity flow” problem, and where the coupling constraints provide additional

“side constraints” to the resulting problem, is presented in Appendix A.

Regardless of the particular formulation, it is possible, in general, that the problem

described by Equations (2.1)–(2.10) is infeasible. Discerning between feasible and infeasible

problem instances is a hard problem in its own right. Infeasibility may be the result either

of a combination of the underlying guidepath graph structure and the positioning of the

various sources sa and destinations da, or of a selection of T that does not allow sufficient

formulation with the following three constraints:

∀e = (vi, vj) ∈ E s.t. i < j, ∀t ∈ T \{0, T}, ∀a ∈ A(e),
∑

a′∈A\A(e)

(xa′,e,t + xa′,ē,t) + xa,e,t + xa,ē,t ≤ 1

(2.11)

∀a ∈ A, ∀e ∈ E \ {da}, ∀t ∈ T \ {0}, xa,e,t +
∑

a′∈A:a′ 6=a

(xa′,e,t−1 + xa′,ē,t−1) ≤ 1 (2.12)

∀a ∈ A s.t. sa 6= da, ∀t ∈ T \ {0}, xa,da,t +
∑

a′∈A\A(da)

(xa′,e,t−1 + xa′,ē,t−1) ≤ 1 (2.13)

19

time for the agents to reach their respective destinations.3 The first of these problems can be

approached as a hard “reachability” problem using a formal modeling framework provided

by qualitative discrete-event systems (DES) theory, such as Petri nets or finite-state automata

[7]. In the broader MPC context, wherein an online scheduler must solve repeated instances

of this finite-horizon problem, it might be necessary for the underlying planning system to

constrain proactively the selection of the intermediate target states, as well as the entire set

of states generated by the traveling agents, in order to ensure the feasibility of the formulated

problem instances.

In the rest of this document, as part of the effort to address the problem of finding

efficient, multi-agent schedules on a shared guidepath network that was formulated in this

chapter, Chapter 3 will define the Lagrangian relaxation of the MIP defined above, and

then it will proceed to discuss two methods for optimizing the corresponding dual problem,

yielding, thus, (i) a tight lower bound on the optimal makespan of the MIP described by

Equations (2.1)–(2.10), and (ii) a set of Lagrange multipliers that can be used to assign a

“cost” for having agent a in location e at time t, ∀a, ∀e, ∀t, based on the coupling constraints.

Chapter 4 will then define a heuristic scheduling algorithm for the problem of MIP (2.1)–

(2.10). This algorithm begins by finding an initial feasible solution with some makespan

T . The routes for each agent in this schedule are then iteratively revised, using a novel

application of dynamic programming (DP), to obtain improved schedules with reduced

makespans. These iterations amount to a “local-neighborhood” search for conflict-free

solutions within an improved makespan; the end result is a feasible, optimized solution.

3It should be noted that instances of the qubit routing problem are guaranteed to have feasible solutions for
any feasible initial conditions, given sufficient time. This follows from the universal ability of agents to reverse
direction in any location; it implies that an initial feasible solution can be found by sending all agents to the
home location and then dispatching them in a certain order to their respective destinations. This is shown and
discussed in depth in Chapter 4.

20

CHAPTER 3

A LAGRANGIAN-DUALITY APPROACH FOR THE CONSIDERED MIP

The operations research literature includes substantial precedent for applying Lagrange

relaxation (LR) methods to integer programs in general [22, 19] and, more specifically,

to resource-constrained scheduling problems [18]. In [52, 27], the authors have adapted

Lagrangian approaches to the flexible job-shop scheduling problem; these applications

include heuristic methods for generating feasible solutions based on the results of (aug-

mented) Lagrangian relaxations, as well as methods for obtaining lower bounds for the

optimal objective value of the considered problem. Next, we introduce an LR for the MIP

formulation of Section 2.2, which is similar, in spirit, to the LR employed in [52] for the

flexible job-shop scheduling problem.

3.1 Formulation of the Lagrangian Relaxation and the Dual Problem

The last part of the previous chapter describes ways that the constraints of the considered

problem can be divided into two distinct sets–the single-agent constraints (represented by

Equations (2.2)–(2.6)) and the coupling constraints (represented by Equations (2.7)–(2.9)).

If the vectors λ, µ, and ν are composed of Lagrange multipliers for constraint sets (2.7),

(2.8), and (2.9), respectively, then it is possible to derive the following Lagrangian function:

21

L(x, w;λ,µ,ν) ≡ w +
∑

{e∈E:vi<vj}

∑
t∈T \{0,T}

λe,t

[∑
a∈A

(xa,e,t + xa,ē,t)− 1

]
+

+
∑
a∈A

∑
e∈E

∑
t∈T \{0}

µa,e,t

[
xa,e,t +

∑
{a′∈A:a′ 6=a}

(xa′,e,t−1 + xa′,ē,t−1)− 1

]
+

+
∑
a∈A

νa

[
T + 1− w −

∑
t∈T

xa,da,t

]
(3.1)

with

λ ≥ 0; µ ≥ 0; ν ≥ 0. (3.2)

In Equation 3.1, the indices of the Lagrange multipliers correspond to the agent, edge,

and/or time indices over which the corresponding constraint sets range. As an example, one

can consider the case of λ, whose components are indexed by e and t in Equation 3.1. These

indices exist because constraint set (2.7) ranges over (a) the set of edge indices e = (vi, vj)

such that {(vi, vj) ∈ E : i < j}, and (b) the set of time indices t such that t ∈ T \ {0, T},

and because there is a distinct Lagrange multiplier, λe,t, for each of these constraints.

The Lagrangian function L(x, w;λ,µ,ν) is an affine-linear function of x and w for any

given λ, µ, and ν, and it is an affine-linear function of λ, µ, and ν for any given x and

w. However, a piecewise-linear, concave function of the Lagrange multipliers λ, µ, and ν

can be derived by optimizing L(x, w;λ,µ,ν) with respect to x and w for fixed values of

the Lagrange multipliers, s.t. contraint sets (2.2)–(2.6) and (2.10) from the original MIP in

Section 2.2. This gives us the following “relaxed” version of that MIP:

22

θ(λ,µ,ν) ≡ min
x,w

{
w +

∑
{e∈E:vi<vj}

∑
t∈T \{0,T}

λe,t

[∑
a∈A

(xa,e,t + xa,ē,t)− 1

]
+

+
∑
a∈A

∑
e∈E

∑
t∈T \{0}

µa,e,t

[
xa,e,t +

∑
{a′∈A:a′ 6=a}

(xa′,e,t−1 + xa′,ē,t−1)− 1

]
+

+
∑
a∈A

νa

[
T + 1− w −

∑
t∈T

xa,da,t

]}
(3.3)

s.t. the primal constraint sets (2.2)–(2.6) and (2.10).

The function θ(λ,µ,ν) is the “dual function” of the MIP described in Chapter 2, that is

induced by the relaxed constraint set. Since the minimization problem that defines θ(λ,µ,ν)

is a relaxation of the original MIP for the considered problem, the function θ(λ,µ,ν) must

form a lower bound on the optimal objective for the original MIP for any set of nonnegative

values for λ, µ, and ν. Therefore, the tightest possible lower bound that θ(λ,µ,ν) can

offer is given by the optimal objective value of the following problem:

max
λ,µ,ν

θ(λ,µ,ν) (3.4)

s.t. Equation (3.2)

This is known as the “dual problem” of the original MIP [4]. Let λ∗, µ∗, and ν∗

represent a set of Lagrange multipliers that optimize the dual problem, and let θ(λ∗,µ∗,ν∗)

represent the optimal objective value of the dual problem. Solving the dual problem has

two benefits. First, as mentioned above, θ(λ∗,µ∗,ν∗) offers a strong lower bound on the

optimal objective value, which can be instrumental in evaluating the quality of any feasible

solution to the original MIP when a problem instance is too large to be solvable to optimality

by the available solvers. Second, λ∗, µ∗, and ν∗ can be used to evaluate a “price” of having

a certain agent in a certain place at a certain time (i.e., a price for having xa,e,t = 1 for some

a, e, and t), and this information can be useful as part of a heuristic solution method for the

23

original MIP.

For reasons that will become clear in Section 3.2.2, we can simplify the Lagrangian

function further. First, it is possible to collect the Lagrange multiplier terms for each xa,e,t

together and to rewrite Equation (3.1) as follows:

L(x, w;λ,µ,ν) =
∑
a∈A

νa(T + 1)−

[(∑
{e∈E:vi<vj}

∑
t∈T \{0,T}

λe,t

)
+

(∑
a∈A

∑
e∈E

∑
t∈T \{0}

µa,e,t

)]
+ w(1−

∑
a∈A

νa) +
∑
a∈A

{ ∑
t∈T \{0,T}

(
∑

{e∈E:vi<vj}

[
λe,t + µa,e,t +

∑
a′∈A:a′ 6=a

(µa′,e,t+1 + µa′,ē,t+1)

]
xa,e,t +

+
∑

{e∈E:vi>vj}

[
λē,t + µa,e,t +

∑
a′∈A:a′ 6=a

(µa′,e,t+1 + µa′,ē,t+1)

]
xa,e,t

)
+

+
∑
e∈E

[∑
a′∈A:a′ 6=a

(µa′,e,1 + µa′,ē,1)

]
xa,e,0 +

∑
e∈E

µa,e,Txa,e,T − νa
∑
t∈T

xa,da,t

}
(3.5)

Let us further define:

∆λ,µ ≡ −

[(∑
{e∈E:vi<vj}

∑
t∈T \{0,T}

λe,t

)
+

(∑
a∈A

∑
e∈E

∑
t∈T \{0}

µa,e,t

)]
; (3.6)

Cλ,µa,e,t ≡

λe,t + µa,e,t +
∑

a′∈A:a′ 6=a(µa′,e,t+1 + µa′,ē,t+1),

∀a ∈ A, ∀t ∈ T \ {0, T}, ∀e ∈ E : vi < vj;

λē,t + µa,e,t +
∑

a′∈A:a′ 6=a(µa′,e,t+1 + µa′,ē,t+1),

∀a ∈ A, ∀t ∈ T \ {0, T}, ∀e ∈ E : vi > vj;

(3.7)

Cλ,µa,e,0 ≡
∑

a′∈A:a′ 6=a

(µa′,e,1 + µa′,ē,1), ∀a ∈ A, ∀e ∈ E; (3.8)

Cλ,µa,e,T ≡ µa,e,T , ∀a ∈ A, ∀e ∈ E. (3.9)

24

This allows for the following compact representation of the Lagrangian function:

L(x, w;λ,µ,ν) =
∑
a∈A

νa(T + 1) + ∆λ,µ + w(1−
∑
a∈A

νa) +

∑
a∈A

{∑
e∈E

∑
t∈T \{0,T}

Cλ,µa,e,txa,e,t +
∑
e∈E

Cλ,µa,e,0xa,e,0 +
∑
e∈E

Cλ,µa,e,Txa,e,T −
∑
t∈T

νaxa,da,t

}
=

=
∑
a∈A

νa(T + 1) + ∆λ,µ + w(1−
∑
a∈A

νa) +
∑
a∈A

[∑
e∈E

∑
t∈T

Cλ,µa,e,txa,e,t − νa
∑
t∈T

xa,da,t

]
(3.10)

It follows, then, that the dual function can be simplified as

θ(λ,µ,ν) = (T + 1)
∑
a∈A

νa + ∆λ,µ +

+ min
x,w

{
w(1−

∑
a∈A

νa) +
∑
a∈A

[∑
e∈E

∑
t∈T

Cλ,µa,e,txa,e,t − νa
∑
t∈T

xa,da,t

]}
(3.11)

s.t. the primal constraint sets (2.2)–(2.6) and (2.10).

Here, ∆λ,µ condenses the sum of all components of the Lagrangian function that do not

depend on changes in x or w. By contrast, Cλ,µa,e,t effectively defines a cost incurred by the

Lagrangian function when xa,e,t = 1 and e 6= da. When e = da, the cost of placing agent a

on edge da is given by Cλ,µa,e,t − νa. These costs will be used in a dynamic program described

in Section 3.2.2 to select, for any given (λ,µ,ν), an x that achieves the minimization

embedded in Equation 3.3.

Minimizing the Lagrangian function with respect to w requires a different approach. In

particular, we can start by noticing that, from the definition of the original MIP described in

25

Chapter 2,

0 ≤ w ≤ T + 1. (3.12)

These bounds are implied by constraint sets (2.9) and (2.10) in the original MIP. Ap-

plying these bounds to the right-hand side of Equation (3.11) tells us that, to minimize the

Lagrangian function with respect to w with λ, µ, and ν given, we should set

w := 0 for
∑
a∈A

νa < 1.0;

w := T + 1 for
∑
a∈A

νa > 1.0. (3.13)

When
∑

a∈A νa = 1.0, on the other hand, w vanishes from the right-hand side of

Equation (3.11), implying (i) that w can take any value between 0 and T + 1 when the dual

function is evaluated, and (ii) that it is possible to simplify the dual function (and the dual

problem) by excluding from direct consideration the value of w (i.e., dropping the w term).

This last remark is useful because the optimal solution of the dual problem is guaranteed to

have
∑

a∈A νa = 1.0.

Proposition 3.1.1. At any optimal solution (λ∗,µ∗,ν∗) of the dual problem that is defined

by Equations (3.4) and (3.2), it must hold that

∑
a∈A

ν∗a = 1.0 (3.14)

Proof: Let (λ∗,µ∗,ν∗) represent an optimal solution of the dual problem defined in

Equations (3.4) and (3.2), and let (x∗, w∗) denote the optimal solution of the minimization

problem used to define the dual function in Equation (3.11).

Note that, since xa,e,t is a binary variable ∀a ∈ A, ∀e ∈ E, ∀t ∈ T , and since

26

|T | = T + 1,

∀a ∈ A, T + 1−
∑
t∈T

x∗a,da,t ≥ 0, (3.15)

with equality holding for an agent a ∈ A only if sa = da, and with

∑
a∈A

[
T + 1−

∑
t∈T

x∗a,da,t
]
> 0 (3.16)

for any non-trivial instance of the original MIP described in Chapter 2. With this in

mind, we can define an |A|-dim vector u∗ such that its components are given by T + 1−∑
t∈T x

∗
a,da,t

, a ∈ A.

Next, let us assume that
∑

a∈A ν
∗
a < 1.0. Equation (3.13) tells us that w∗ must equal 0.

Since 1.0−
∑

a∈A ν
∗
a > 0, we can define a positive constant

δ ∈

(
0,

1.0−
∑

a∈A ν
∗
a∑

a∈A
[
T + 1−

∑
t∈T x

∗
a,da,t

]) (3.17)

and use it to define the vector

(λ̂, µ̂, ν̂) = (λ∗,µ∗,ν∗) + δ · (0,0,u∗) (3.18)

For the above vector of Lagrange multipliers, the dual function can be written as

θ(λ̂, µ̂, ν̂) ≡ (T + 1)
∑
a∈A

ν̂a + ∆λ̂,µ̂ +

+ min
x,w

{
w(1−

∑
a∈A

ν̂a) +
∑
a∈A

[∑
e∈E

∑
t∈T

C λ̂,µ̂a,e,txa,e,t − ν̂a
∑
t∈T

xa,da,t

]}
(3.19)

s.t. the primal constraint sets (2.2)–(2.6) and (2.10).

If (x̂, ŵ) represents an optimal solution to the minimization problem embedded in (3.19),

27

then it follows that ŵ = 0 (based on Equation (3.13) and the fact that Equation (3.17) defines

δ to ensure that
∑

a∈A ν̂a < 1.0). This allows us to relate θ(λ̂, µ̂, ν̂) to θ(λ∗,µ∗,ν∗) as

follows:

θ(λ̂, µ̂, ν̂) = (T + 1)
∑
a∈A

ν̂a + ∆λ̂,µ̂ +
∑
a∈A

[∑
e∈E

∑
t∈T

C λ̂,µ̂a,e,tx̂a,e,t − ν̂a
∑
t∈T

x̂a,da,t

]

= ∆λ∗,µ∗ +
∑
a∈A

[∑
e∈E

∑
t∈T

Cλ
∗,µ∗

a,e,t x̂a,e,t + ν∗a ·
(
T + 1−

∑
t∈T

x̂a,da,t
)]

+

+ δ ·
∑
a∈A

(
T + 1−

∑
t∈T

x∗a,da,t
)
·
(
T + 1−

∑
t∈T

x̂a,da,t
)

≥ ∆λ∗,µ∗ +
∑
a∈A

[∑
e∈E

∑
t∈T

Cλ
∗,µ∗

a,e,t x
∗
a,e,t + ν∗a ·

(
T + 1−

∑
t∈T

x∗a,da,t
)]

+

+ δ ·
∑
a∈A

(
T + 1−

∑
t∈T

x∗a,da,t
)
·
(
T + 1−

∑
t∈T

x̂a,da,t
)

= θ(λ∗,µ∗,ν∗) + δ ·
∑
a∈A

(
T + 1−

∑
t∈T

x∗a,da,t
)
·
(
T + 1−

∑
t∈T

x̂a,da,t
)

> θ(λ∗,µ∗,ν∗) (3.20)

The second equality above is based directly on the definition of (λ̂, µ̂, ν̂) given in

Equation 3.18. The first inequality follows from that based on the definition of x∗. The

next equality follows due to the definition of x∗, the fact that w∗ = 0, and Eq. (3.15). The

strictness of the final inequality follows from the fact that T + 1−
∑

t∈T x
∗
a,da,t

≥ 0 and

T + 1 −
∑

t∈T x̂a,da,t ≥ 0, with both being strictly positive for any agent a ∈ A with

sa 6= da.

Since (λ∗,µ∗,ν∗) was selected as an optimal solution for the dual problem described in

Equation (3.4), the strict inequality in the last part of Equation (3.20) defines a contradiction.

This implies that
∑

a∈A ν
∗
a cannot be less than 1.0. A similar proof by contradiction can be

constructed (using ŵ = T + 1 in place of ŵ = 0) to show that
∑

a∈A ν
∗
a cannot be greater

than 1.0. Together, these proofs validate Proposition 3.1.1. �

28

In the following discussion, it will be useful to define a set X as

X ≡
{
x satisfying the primary constraint sets (2.2)–(2.6) and (2.10)

}
(3.21)

This enables us to use Proposition 3.1.1 to reduce the dual problem of Eq. (3.11) to the

following form:

max
λ,µ,ν

θ(λ,µ,ν) ≡ (T+1)+∆λ,µ+min
x∈X

{∑
a∈A

[∑
e∈E

∑
t∈T

Cλ,µa,e,txa,e,t−νa
∑
t∈T

xa,da,t

]}
(3.22)

s.t.

λ ≥ 0; µ ≥ 0; ν ≥ 0;
∑
a∈A

νa = 1.0 (3.23)

This formulation of the dual problem reveals some additional properties. First, the

minimization problem embedded in the right-hand side of Equation (3.22) is separable with

respect to the agent set, A. That is, it is possible, for any given (λ,µ,ν), to perform the

minimization with respect to each agent in series, without compromising the minimization

with respect to all agents. This separability has very significant consequences in the

developments that follow.

Secondly, the structure of Equations (3.22) and (3.23) makes it possible to simplify

Equation (3.22) once again to

θ(λ,µ,ν) = min
x∈X

{
(λ,µ,ν)T · g(x)

}
+ (T + 1), (3.24)

where g(x) can be calculated for any given x ∈ X based on Equation (3.22), using

Equations (3.6)–(3.9) to define ∆λ,µ and Cλ,µa,e,t. Based on Equation (3.24), it becomes

clear that the dual function, θ, is a polyhedral concave function of the Lagrange multipliers

(λ,µ,ν). This structure implies that θ is non-differentiable in regions where the binding

hyperplanes intersect, meaning that the dual problem defined by Equations (3.22) and (3.23)

29

must be addressed using subgradient optimization methods. Such methods often suffer from

slow and/or non-monotonic convergence towards optimality. However, in Section 3.2 we

define a subgradient-based algorithm for the problem formulated in Equations (3.22) and

(3.23), using the above structure of θ(λ,µ,ν) to guarantee finite, monotonic convergence.

3.2 A Dual-Ascent Approach to the Optimization of the Relaxed Dual Problem

3.2.1 Definition of a Streamlined Dual-Ascent Algorithm

This section describes a subgradient algorithm for the solution of the following problem:

max
π

f(π) ≡ min
i∈I

{
πT · gi

}
(3.25)

s.t. ∑
j∈J̃

πj = 1.0; π ≥ 0, (3.26)

where I is a finite set with |I| = k, dim(π) = m, and |J̃ | = n ≤ m. The optimization

problem described by Equations (3.25) and (3.26) is a generalization of the one described

by Equations (3.22) and (3.23). This generalization is a consequence of eliminating any

dependence on the set X (as defined in Equation (3.21)) for the purposes of the present

section. However, we retain here a concave, polyhedral objective function, subject to

nonnegativity constraints and the restriction to a simplex as described in Equation (3.26).

Some methods already exist that are capable of finding optimal or ε-optimal solutions to

constrained convex optimization problems such as the one described by Equations (3.25)

and (3.26). Notably, cutting-plane methods (as described in [25] and [26]) can be used

to approach such problems, and they are even known to converge, in a finite number of

iterations, to optimal solutions for polyhedral convex or concave problems such as the

one described by Equations (3.25) and (3.26). But these methods often converge in a

non-monotonic manner exhibiting an erratic transient behavior. This last problem can be

30

mitigated with “stabilization” techniques such as the trust region method, the regularized

method [25, 26], or the level method [16]. The level method developed by Lemarechal,

Nemirovskii, and Nesterov (as described in [32]) is known to converge to ε-optimal solutions

in a polynomial number of iterations with respect to
1

ε
. On the other hand, the dual-ascent

method described in this section is distinguished by its ability to guarantee finite, monotonic

convergence to an optimal solution.

In order to help us prove these convergence properties, first we must establish necessary

and sufficient conditions for the optimality of a solution to the problem formulated in

Equations (3.25) and (3.26). These conditions will be helpful as we construct a solution

algorithm.

Theorem 3.2.1. Let π represent a feasible solution for the problem described by Equa-

tions (3.25) and (3.26). Also define Ω(π) ≡
{
j ∈ {1, . . . ,m} : πj > 0

}
and Ĩ ≡

arg mini∈I
{
πT · gi

}
. Finally, let Im×m denote the (m×m) diagonal matrix, and define

1J̃ as an m-dimensional binary vector whose unit elements coincide with the components

that are defined by the set J̃ .

Then, π is an optimal solution for the formulation of Equations (3.25) and (3.26) if and

only if (iff) the following linear program (LP) has an optimal value of zero:

min
γ,y,z,δ

m∑
j=1

yj +
∑

j∈Ω(π)

zj (3.27)

s.t.

[Im×m − Im×m 1J̃]

y

z

δ

 =
∑
i∈Ĩ

γi gi (3.28)

∑
i∈Ĩ

γi = 1.0 (3.29)

31

γ ≥ 0; y ≥ 0; z ≥ 0. (3.30)

Proof: Based on Equation (3.25) and the definition of Ĩ, it is easy to see that the right-

hand-side of Equation (3.28) represents the subdifferential ∂f(π) of the objective function

f(π), parameterized by the variables γi. The vectors y, z and the scalar δ make it possible to

decompose any subgradient g ∈ ∂f(π) to (i) a vector that is perpendicular to the hyperplane∑
j∈J̃ πj = 1.0, and (ii) the projection of g onto this hyperplane. More explicitly, vector

y will represent the positive part of this projection, vector −z will represent the negative

part, and vector δ1J̃ will represent the component that is perpendicular to the hyperplane∑
j∈J̃ πj = 1.0.

The theory of subgradient-based optimization methods tells us that π will be an optimal

solution for the formulation of Equations (3.25) and (3.26) iff the subdifferential ∂f(π)

contains a subgradient g with a projection g onto the hyperplane
∑

j∈J̃ πj = 1.0 such that

gj

 = 0, ∀j ∈ Ω(π)

≤ 0, otherwise
(3.31)

Then, given (i) that the variables γi parameterize the subdifferential, (ii) that the com-

ponents of y and z are nonnegative, and (iii) the decomposition of subgradients described

above, π will be an optimal solution for the formulation of Equations (3.25) and (3.26)

iff
∑m

j=1 yj = 0 ∧
∑

j∈Ω(π) zj = 0. Therefore, the condition of Equation (3.31) will be

satisfied iff the LP of Theorem 3.2.1 has an optimal value of zero. �

Next, we formulate the dual of the LP of Theorem 3.2.1. This will provide an alternative

optimality test for the primal formulation of Equations (3.25) and (3.26). Our primary reason

for considering it, however, is because it can be used to find an improving direction when a

given π fails to meet the optimality condition described in Theorem 3.2.1.

In this dual LP formulation, ρ will denote the vector collecting the dual variables

32

that correspond to the constraints of Equation (3.28), and u will denote the dual variable

corresponding to the constraint of Equation (3.29). Then, using standard LP duality theory,

the dual LP formulation can be written as follows:

max
ρ,u

u (3.32)

s.t.

−1.0 ≤ ρj ≤ 1.0, ∀j ∈ Ω(π) (3.33)

0.0 ≤ ρj ≤ 1.0, ∀j ∈ Ωc(π) ≡ {1, . . . ,m} \ Ω(π) (3.34)

∑
j∈J̃

ρj = 0.0 (3.35)

u ≤ ρT · gi, ∀i ∈ Ĩ. (3.36)

The utility of this dual formulation is established by the following theorem:

Theorem 3.2.2. The LP described in Equations (3.32)–(3.36) will have an optimal objective

value of zero iff the vector π is an optimal solution for the primal formulation of Equations

(3.25)–(3.26).

In addition, if the optimal objective value of this LP is positive, then the vector ρ∗ taken

from any optimal solution, defines a feasible direction of ascent for π, with respect to the

primal problem of Equations (3.25) and (3.26).

Proof: The first half of the above theorem follows immediately from Theorem 3.2.1 and

LP strong duality. Therefore, it remains for us only to prove the second part.

Constraints (3.33)–(3.35) of the dual LP formulation guarantee that a π vector that is a

33

feasible solution for the formulation of Equations (3.25) and (3.26), can be moved some

positive distance in direction ρ∗ while retaining feasibility.

To show that ρ∗ is also a direction of ascent for f(π) (i.e., that it will improve the

objective function of the primal problem for some sufficiently small, positive step size), it is

sufficient to show that

∀g ∈ ∂f(π), (ρ∗)T · g > 0. (3.37)

Since the subdifferential ∂f(π) is equivalent to the convex hull of the vectors gi, i ∈ Ĩ ,

we can write

(ρ∗)T · g ≥ min
i∈Ĩ

(ρ∗)T · gi = u∗ > 0. (3.38)

The positivity claimed in Equation (3.38) follows from two facts: (i) for any suboptimal

π, the resulting primal problem (and, by strong duality, the resulting dual problem) will

have a positive optimal objective value, u∗; and (ii) Equation (3.36), together with the

maximization of u∗, ensures that min
i∈Ĩ

(ρ∗)T · gi = u∗. �

Theorem 3.2.2 tells us that, given a vector π that is feasible with respect to the problem

described in Equations (3.25) and (3.26), it is possible to improve the objective function

f(π) while maintaining feasibility with respect to Equation (3.26) by taking a sufficiently

small step in direction ρ∗. Assuming also a mechanism to find such a step size, one can

straightforwardly obtain an optimization procedure for the problem of Equations (3.25) and

(3.26), as detailed in Figure 3.1. Next, we turn to the issue of determining an appropriate

step size, s, at each iteration.

Since f(π) has a concave, polyhedral structure, it is possible to find an optimized value

of s by solving a single-variable optimization problem with a piecewise-linear, concave

function defined by f(π + s · ρ∗), s.t. s > 0. Efficient solution methodologies for problems

of this type are available in a variety of texts on gradient-based optimization methods (e.g.,

[4]). However, we will consider a different mechanism for the specification of s that takes

34

1. Start with some feasible solution of the considered formulation; e.g., set πj equal to
1/n, if j ∈ J̃ , and zero, otherwise.

2. Based on the solution, π, solve the corresponding dual LP formulation of Equations
(3.32)–(3.36).

3. If the optimal value of the dual LP objective function, u∗, is equal to zero, then exit,
returning the current vector π as an optimal solution.

4. If u∗ 6= 0, update the current solution π to π + s · ρ∗, where ρ∗ is obtained from the
optimal solution of the dual LP formulation, and s is an aptly-selected step size, and
return to Step 2.1

Figure 3.1: An iterative algorithm for the solution of the optimization problem of Equations
(3.25) and (3.26), based on the results of Theorem 3.2.2.

advantage of the structure of the optimization problem described by Equations (3.25) and

(3.26) and that will allow us to argue the monotone, finite convergence of the algorithm

presented here.

When considering the selection of the step size, there are two types of events that may

constrain the optimization of this selection when moving in direction ρ∗ from a feasible

solution π. Namely:

Type-I event: Some new vectors gi enter the current set of the minimizers of the right-hand-

side of Eq. (3.25). Note that this does not necessarily mean that f cannot be improved

further by continuing in direction s. It does, however, imply that if f(π + s · ρ∗) does

continue to improve, then it will improve more slowly than before the Type-I event,

on account of its piecewise-linear, concave structure.

Type-II event: One or more of the decision variables πj reach their lower limit of zero (cf.

Equation (3.26)).

If both types of events are used to bound the step size s–i.e., if s is selected to be the

largest step size achievable before one of these events occurs–and if the algorithm returns

to Step 2 (as described in Figure 3.1) as soon as such a step size is obtained, then it can be

35

shown that the resulting algorithm converges monotonically and finitely toward an optimal

solution of the problem formulated in Equations (3.25) and (3.26). Theorem 3.2.3 establishes

this result.

Theorem 3.2.3. Consider a variation of the algorithm in Figure 3.1 aimed at optimizing

an instance of the problem formulated in Equations (3.25) and (3.26), where the step size s

corresponds to the largest step size possible such that no type-I or type-II events occur for

any step size smaller than s. Then, there is an implementation of this algorithm that will

either converge to an optimal solution for the considered problem instance, or determine

that the optimum is unbounded in a finite number of steps. Furthermore, the sequence of the

values for f that are generated by the successive iterations of this algorithm is monotonically

increasing.

Proof: The monotonic increase of the sequence of f -values that are generated by

successive iterations of the given algorithm follows immediately from Theorem 3.2.2 and

the decision to select step sizes based on the type-I and type-II events described above. It

therefore remains for us to prove only that the algorithm terminates, regardless of the result,

in a finite number of steps.

To that end, we can note first that the number of dual LP formulations of Equations

(3.32)–(3.36) is finite since, for any given π, the dual LP is uniquely determined by the

index sets Ω(π) and Ĩ. Since the number of distinct sets that can exist for either Ω(π) or Ĩ

is finite, it follows that the number of dual LPs that can be formulated is finite.

Furthermore, it is possible to show that the optimal objective value of the dual LP

described in Equations (3.32)–(3.36) cannot increase from one iteration to the next. To see

this, consider a “new” solution π̂ = π + s · ρ∗. Regardless of whether π̂ was reached as a

consequence of a type-I event or of a type-II event, the new dual LP defined at π̂ will include

the constraints based on the vectors gi that define the optimal solution of the dual LP at π.

The occurrence of a type-I event implies that the set of gi vectors will be augmented by one

or more new vectors. These vectors arise from the fact that a type-I event occurs when we

36

reach a point where new indices minimize the right-hand-side of Equation (3.25). We can

define the resulting index set as Î and note that, since Î defines a set of dual constraints that

comprises a superset of the binding constraints for the dual LP formulated at π, it follows

that the resulting optimal objective value of the (maximized) dual LP (i.e., the dual LP

formulated from π̂) will be less than or equal to the optimal objective value of the dual LP

formulated from π.

Furthermore, any sequence of type-I events that do not reduce the optimal objective value

of the dual program of Equations (3.32)–(3.36) will result in increasingly constrained LPs

until a reduction of the optimal objective does occur. More formally, let Ĩρ∗ ⊆ Ĩ represent

the set of constraints based on the vectors gi that are binding (i.e., that hold at equality) at

the optimal solution ρ∗, and let Îρ̂∗ ⊆ Î represent a similarly-defined set for the next dual

program of Equations (3.32)–(3.36), following a type-I event. If the optimal objective value

of the new dual program does not improve (i.e., if it is equal to the optimal objective value

of the preceding program), then the constraints Ĩρ∗ will be binding for the optimal solution

of the new program, and will further bind the new constraint(s) introduced by the type-I

event. This gives us that Ĩρ∗ ⊂ Îρ̂∗ . Since each of these constraints is taken from a vector

gi that is a member of a finite set, any progression of type-I events must eventually result in

a reduction of the optimal objective value of the dual program of Equations (3.32)–(3.36).

For type-II events, let ω(π) denote the following superset of Ω(π):

ω(π) = Ω(π) ∪ {i ∈ {1, 2, ...,m}|ρ∗i > 0}, (3.39)

where ρ∗ refers specifically to the optimal solution for the LP described by Equations

(3.32)–(3.36), used to transition between π and π̂. Now, let D(π) represent the set of

feasible ρ vectors for the dual LP formulation based on π and Constraints (3.33)–(3.35),

and let D̃(π) represent a set characterized similarly to D(π), but with Constraints (3.33)

37

and (3.34) replaced by

−1.0 ≤ ρj ≤ 1.0, ∀j ∈ ω(π) (3.40)

and

0.0 ≤ ρj ≤ 1.0, ∀j ∈ ωc(π) ≡ {1, . . . ,m} \ ω(π). (3.41)

Then,

max
ρ∈D̂(π)

min
i∈Ĩ

{
ρT · gi

}
= max

ρ∈D(π)
min
i∈Ĩ

{
ρT · gi

}
. (3.42)

Since type-II events do not alter Ĩ but instead set one or more nonzero vector elements of

π to zero at π̂, we find that Ω(π̂) ⊂ ω(π). Though this inclusion does not quite ensure

that the dual LP at π̂ is further constrained than the dual LP at π, it does guarantee that the

dual LP at π̂ can be formulated as a further-constrained version of an LP that has the same

optimal objective value as the dual LP at π. Hence, like type-I events, type-II events cannot

increase the optimal objective value between successive iterations of the dual LP.

It is possible, however, for successive iterations of the dual LP to return identical optimal

objective values due to degeneracy among the optimal values of ρ. This degeneracy often

manifests itself when motion along certain ρ-coordinates is inconsequential to the value

of the optimal dual objective. One consistent way to find unique solutions from these

degenerate sets is to use a secondary LP to minimize the l1 norm of ρ∗. This method

automatically sets all of the dual variables that do not impact the optimal value of the dual

objective to zero. Hence, if ρ∗ is an ascending direction for a given π that minimizes the

l1 norm among all vectors ρ that optimize the dual LP of Equations (3.32)–(3.36), then

ρ∗i ≥ 0 only if ρ∗ is a strictly better solution for the LP than all ρ with ρ∗i < 0, and a similar

statement can be made about any i such that ρ∗i ≤ 0.

38

Moreover, since (again) type-II events do not affect Ĩ, this method of combating degen-

eracy has two consequences. First, if ρ∗i > 0 for the dual LP at π, then, following a type-II

event, the corresponding component of the new ascending direction will still be nonnegative.

More importantly, if ρ∗i ≤ 0 (where ρ∗i < 0 is possible only if i ∈ Ω(π)), then, following a

type-II event, the corresponding elements of the new ascending direction will also be less

than or equal to zero.

The latter of these consequences, combined with the fact that a type-II event converts

one or more type-(3.33) constraints into type-(3.34) constraints, implies that ω(π̂) ⊂ ω(π),

where the notation here implies a proper subset. Since the cardinality of ω(π) cannot exceed

the number of Lagrange multipliers for any π, this implies that a new reduction of the

optimal value of the dual LP must eventually take place. Since the number of distinct dual

LPs that can be formulated (and hence the number of distinct optimal values for the dual

objective) is also finite, it then follows that the algorithm must terminate after a finite number

of iterations.

With this result for the iterative properties of the algorithm from Figure 3.1 and the

concave polyhedral structure of f in hand, we need only address the character of the

termination. Two outcomes are possible:

1. The dual LP returns an optimal objective value of zero, which allows the algorithm to

return the last π as a finite optimal solution.

2. The algorithm finds that the step size s is not bounded by any further type-I or type-II

events. This implies the unboundedness of the LP formulated in Equations (3.25) and

(3.26) and returns a feasible solution π and an improving direction ρ that together

define a ray along which the objective function of Equation (3.25) can improve without

bound.

�

39

In order to describe the proposed algorithm completely, a few implementational consid-

erations must be addressed. The first point of discussion relates to the selection of the step

size, s. While it is possible to perform a one-dimensional search to optimize the gain for the

objective function of the considered problem (i.e., Equation (3.25)), and while such methods

are addressed in the literature on subgradient optimization, the algorithm discussed in Theo-

rem 3.2.3–where s is selected to coincide with the first type-I or type-II event encountered

while moving in a given direction, or to return with an indication of the unboundedness of

the LP–lends itself more easily to a convergence proof. This method is similar in concept to

the “pivot” operations performed in the LP simplex algorithm described in [59] and can be

implemented in similar fashion. On the other hand, a method that optimizes the step size

s, in contrast with the one described here, can skip over some type-I events as long as the

objective function, (3.25), continues to improve. But then, the arguments used in the proof

of Theorem 3.2.3 to show that the algorithm will converge in a finite number of steps, can

also be extended to an implementation that optimizes step sizes.

The second point of discussion concerns the degeneracy in the optimal solution of the

dual LP of Equations 3.32–3.36. Though this issue is addressed to a certain extent within

the proof of Theorem 3.2.3, here we discuss the importance of addressing this degeneracy

effectively. One problem that can arise when solutions are chosen arbitrarily (and when

ρi can vary without affecting the dual-objective function for some indices i) is that large

numbers of type-II events can occur because certain components of π may be reduced to

zero unnecessarily. At the same time, components of π that already equal zero may be

increased unnecessarily, which provides more opportunities for type-II events to occur in the

future, possibly with very small step sizes. In the worst case, cycling can occur if degenerate

solutions are chosen arbitrarily. However, as remarked in the proof of Theorem 3.2.3, these

problems can be addressed effectively through a “goal programming” ([59]) approach that

minimizes the l1 norm of the returned solution ρ∗ as a secondary objective.

Our last practical concern is the size of the dual LP formulated in Equations (3.32)–

40

(3.36). It is important to note that it scales not only with the dimensionality of π, but also

with the cardinality of Ĩ used in each iteration. In some contexts (e.g., the optimization of

the dual problem detailed in Section 3.1), these sets can grow prohibitively large for a direct

implementation of the algorithm described in this section. However, in the next section we

describe how the dual-ascent algorithm described in Figure 3.1 can be adapted to solve the

dual problem of Equations (3.22) and (3.23) using efficient representations of I and Ĩ.

3.2.2 Customization of the Algorithm of Section 3.2.1 to the Dual Problem of Section 3.1

In this section we further adapt the algorithm that we developed in Section 3.2.1 in order to

solve efficiently the dual problem of Equations (3.22) and (3.23). The primary basis for this

adaptation is the representation of the dual function through Equation (3.24).

We start this adaptation process by reminding the reader that Equation (3.21) defines

X , for the sake of the dual problem, as the set of multi-agent schedules that deliver each

agent from its starting location, sa, to its destination, da, within the allotted time horizon,

and that adhere to all single-agent constraints from the primal MIP of Chapter 2 (i.e., the

constraints that describe the topology of the guidepath network and govern the movements

of individual agents upon it). The set X is useful for defining the dual problem of Equations

(3.22) and (3.23), based on the Lagrangian function described in Equation (3.1), since it

is the set over which x must be minimized in order to evaluate the dual function for given

values of the Lagrange multipliers λ, µ, and ν. Since X is not restricted by the coupling

constraints (2.7)–(2.9), however, X can alternatively be represented by

X = ×a∈AXa, (3.43)

whereXa represents the set of all routes obeying the constraints that defineX for a particular

agent, a. Though the number of distinct routes in any set Xa can be combinatorially large

with respect to the length of the time horizon, it can be represented as a spatio-temporal

graph having no more than |E| · (T − 1) + 2 nodes and no more than |E|2 · (T − 2) + 2 · |E|

41

edges, and in practice, these numbers will tend to be much smaller. These graphs will be

discussed in more detail later in this section. For now, however, we will turn our attention to

the question of performing the minimization necessary to evaluate the dual function.

Evaluation of the dual function θ(λ,µ,ν) for given Lagrange multipliers (λ,µ,ν)

requires us to identify an optimal element of the set X that minimizes the right-hand-side of

Equation (3.24). Computation and representation of the subdifferential ∂θ(λ,µ,ν) requires

us to go further and find all elements of X that minimize the right-hand-side of Equation

(3.24) for the given (λ,µ,ν). Fortunately, Equation (3.22) shows us that this optimization

problem can be decomposed into a series of separate minimization problems–one for each

agent a ∈ A. In addition, each one of these optimization problems is amenable to dynamic

programming (DP), as described in [3]. In particular, we can specify the following value

function, Va(e, t), for each DP:

For t = T :

Va(e, t) =

 Cλ,µa,e,T − νa if e = da

∞ otherwise
(3.44)

For t ∈ {0, 1, 2, ..., T − 1}:

Va(e, t) =

Cλ,µa,e,t − νa + Va(e, t+ 1) if e = da

Cλ,µa,e,t + min
e′∈e•∪{e}

{Va(e′, t+ 1)} if e ∈ E \ {da}
(3.45)

The value of ‘∞’ in Equation (3.44) is used to ensure that each DP will return a feasible

solution that brings agent a to its destination within the specified time horizon, T , so long as

such a route exists. In general, a feasible solution will always exist for a connected guidepath

network G, given a sufficiently large T .

If X̃a, a ∈ A, denote the sets of optimal solutions for the DPs described by Equations

(3.44) and (3.45), then, due to the separability of the minimization problem in Equation

(3.22), we can represent the full set of optimal solutions to that problem (i.e., the subset of

X composed of all x that define the dual function for a given set of Lagrange-multiplier

42

values) as

X̃ = ×a∈AX̃a. (3.46)

For each a ∈ A, X̃a can be represented compactly as an acyclic digraph, which we

can refer to as Ga. The nodes of graph Ga represent location-time pairs (e, t) ∈ E × T .

In order to be included in the graph, a node must represent a pairing (e, t) for the agent a

that is included in X̃a. Directed arcs between nodes are drawn such that each path in Ga

corresponds to a route in X̃a. Once the value functions Va(e, t) have been established, the

corresponding graphs Ga can be created by starting with nodes corresponding to (sa, 0) for

each agent a, then applying the following logic: Visit each new node in turn. For each visited

node (e, t), if e 6= da, then create and attach nodes (e′, t+ 1) for every e′ that minimizes the

second branch of the right-hand-side of Equation (3.45). If e = da, however, then (e, t) will

link only to (e, t+ 1) ∀t < T . As long as the DP has a feasible solution with respect to the

constraint sets (2.2)–(2.6) and (2.10), (da, T) will form the single terminal node of Ga.

The distribution of X̃ across A and its representation by means of the digraph Ga also

enables a natural, similarly distributed representation of the subdifferential ∂θ(λ,µ,ν). Any

faithful representation of the subdifferential must admit and distinguish among all convex

combinations of the elements of X̃ . However, given Ga, a ∈ A, we can parameterize the

convex hull of X̃–to be denoted by Conv(X̃))–using a set of unit flows, Fa on Ga, such

that each flow Fa transfers one unit from the source node of Ga to its terminal node. Each

flow Fa can be represented as a vector qa whose cardinality is equivalent to the number of

directed arcs in Ga. Its components represent the fluid flow across Ga, and also adhere to

the relevant flow-balance constraints (i.e., incoming flow equals outgoing flow except for

the source node, which has no input and unit output, and the terminal node, which has unit

input and zero output). These constraints can be represented in vector form as

Fa · qa = β1
a, ∀a ∈ A, (3.47)

43

which, in turn, can be represented more compactly as

F · q = β1. (3.48)

In Equation (3.48), F is a block-diagonal matrix whose diagonal blocks are comprised of

Fa, a ∈ A, and the vectors q and β1 are the concatenations of the vector sets {qa,∀a ∈ A}

and {β1
a,∀a ∈ A}, respectively.

The vector q, as it is defined in Equation (3.48), is equivalent to a parametric represen-

tation of the convex hull of Conv(X̃). The following lemma formalizes the relationship

between this parametrization and the subdifferential of the dual function:

Lemma 3.2.4. The subdifferential ∂θ(λ,µ,ν) of the dual function θ(λ,µ,ν) is given by

∂θ(λ,µ,ν) =

{
g(q) : q ∈ Conv(X̃)

}
, (3.49)

where the set Conv(X̃) is evaluated at (λ,µ,ν), and the function g(·) is taken from

Equation (3.24).

Proof: Since g(x) is a linear function, it can be written in the form

g(x) = A · x+ β2 (3.50)

for an appropriately defined matrix A and vector β2. 2

2One can easily understand how these elements are “appropriately defined” by referring to the discussion
of g(x) following Equation (3.24).

44

Equations (3.24) and (3.50), along with the definition of ∂θ(λ,µ,ν), allow us to write

∂θ(λ,µ,ν) =

{
g̃ ≡

∑
x∈X̃

ξx
(
A · x+ β2

)
: ∀x ∈ X̃, ξx ≥ 0;

∑
x∈X̃

ξx = 1.0

}

=

{
g̃ ≡ A ·

∑
x∈X̃

ξx · x+ β2 : ∀x ∈ X̃, ξx ≥ 0;
∑
x∈X̃

ax = 1.0

}

=

{
g̃ ≡ A · q + β2 : q ∈ Conv(X̃)

}
. (3.51)

�

Lemma 3.2.4 and Equation (3.48) describe an efficient representation of ∂θ(λ,µ,ν),

which allows us to adapt and apply Theorem 3.2.1 as follows:

Corollary 3.2.5. Consider a point π ≡ (λT ,µT ,νT)T that constitutes a feasible solution

for the dual problem of Equations (3.22) and (3.23). Furthermore, set Ω(π) ≡
{
j ∈

{1, . . . ,m} : πj > 0
}

and dim(π) = m. Finally, let Im×m denote the (m ×m) diagonal

matrix, and let 1ν denote an m-dimensional binary vector with its unit elements appearing

at the components that correspond to the positions of the dual variables ν in π.

Then, π is an optimal solution for the considered dual problem iff the following LP has

an optimal value of zero:

min
q,y,z,δ

m∑
j=1

yj +
∑

j∈Ω(π)

zj (3.52)

s.t.

 F 0 0 0

−A Im×m −Im×m 1ν

q

y

z

δ

=

 β1

β2

 (3.53)

q ≥ 0; y ≥ 0; z ≥ 0. (3.54)

If we dualize this LP and let η and ρ represent the dual variables for the first and the

second rows of Equation (3.53), respectively, we arrive at the following customization of

45

Theorem 3.2.2 to the considered dual problem:

Corollary 3.2.6. The following LP is the dual of the LP formulated in Corollary 3.2.5:

max
η,ρ

(β1)T · η + (β2)T · ρ (3.55)

s.t.

F T · η − AT · ρ ≤ 0 (3.56)

−1.0 ≤ ρj ≤ 1.0, ∀j ∈ Ω(π) (3.57)

0.0 ≤ ρj ≤ 1.0, ∀j ∈ Ωc(π) ≡ {1, . . . ,m} \ Ω(π) (3.58)

1Tν · ρ = 0. (3.59)

Hence, given the assumptions of Corollary 3.2.5 and the developments of Section 3.2.1,

the LP formulation of Equations (3.55)–(3.59) will have an optimal value equal to zero

iff the considered point (λ,µ,ν) is an optimal solution for the dual problem of Equations

(3.22) and (3.23).

Furthermore, if the optimal value of this dual LP formulation is positive, then the vector

ρ∗ corresponding to any optimal solution of this LP formulation defines a feasible direction

of ascent for the formulation of Equations (3.22) and (3.23).

Proof: As with Theorem 3.2.2, the first part of this corollary results immediately from

Corollary 3.2.5 and LP strong duality.

To establish the second part of the corollary, we can first note that the feasibility of

movement along ρ∗ from the position (λ,µ,ν) results from the stated assumptions and

46

Constraints (3.57)–(3.59). To show that ρ∗ is a direction of ascent, however, we further need

to show that

∀g ∈ ∂θ(λ,µ,ν), (ρ∗)T · g > 0. (3.60)

To this end, let us consider a subgradient g ∈ ∂θ(λ,µ,ν), and notice that, according to

the previous discussion in this section, there exists a nonnegative vector q such that

g = A · q + β2 (3.61)

and

F · q = β1. (3.62)

Then, for the considered subgradient vector g,

(ρ∗)T · g = (ρ∗)T · (A · q + β2)

= (ρ∗)T · A · q + (ρ∗)T · β2

= qT · AT · ρ∗ + (β2)T · ρ∗. (3.63)

Since we have assumed that the value of the dual LP of Equations (3.55)–(3.59) is strictly

positive, Equation (3.55) yields

(β2)T · ρ∗ > −(β1)T · η∗

(from Eq. (3.62)) = −(F · q)T · η∗

= −qT · F T · η∗. (3.64)

Applying Equations (3.63), (3.64), and (3.56), and bearing in mind the non-negativity of

47

the components of q, we find

(ρ∗)T · g > qT · AT · ρ∗ − qT · F T · η∗

= qT · (AT · ρ∗ − F T · η∗)

≥ 0, (3.65)

from which Equation (3.60) immediately follows. �

Corollary 3.2.6 permits an implementation of the algorithm from Section 3.2.1 to address

the dual problem described in Section 3.1 using distributed, efficient representations of

X , X̃ , Conv(X̃), and the subdifferential ∂θ(λ,µ,ν), as described above. The resulting

algorithm also inherits the implementational features and the convergence properties that

were developed in Section 3.2.1 for the more generic algorithm that was discussed in that

section.

3.3 Optimizing the Lagrangian Dual Problem Using a Single LP

Using Equation (3.24), it is further possible to formulate the dual problem of Equations

(3.22) and (3.23) as a single LP:

max
λ,µ,ν,r

r (3.66)

s.t.

∀x ∈ X, r ≤ g(x) · (λ,µ,ν)T (3.67)

∑
a∈A

νa = 1.0 (3.68)

λ ≥ 0; µ ≥ 0; ν ≥ 0 (3.69)

48

Standard LP duality theory ([35]) tells us that this linear program can be used to formulate

a dual LP whose optimal objective value matches the optimal value of Equation 3.66. That

LP can be represented as

min
γ,z,w

w (3.70)

s.t.

[−I 1ν] ·

 z

w

 =
∑
x∈X

γx · g(x)T (3.71)

∑
x∈X

γx = 1.0 (3.72)

γ ≥ 0; z ≥ 0. (3.73)

In the above formulation, γ is a nonnegative vector that collects the dual variables

corresponding to the constraint set described by Equation (3.67) in the primal problem,

and w is a free variable that corresponds to the dualization of Equation (3.68). Vector z

is comprised of a set of “slack” variables that we used to formulate Equation (3.71) as

an equality constraint. Also in Equation (3.71), I represents an m × m identity matrix,

where m is equal to the total number of Lagrange multipliers λ, µ and ν. Lastly, 1ν is

an m-dimensional binary column vector whose unit elements are placed such that they

correspond to the indices of the Lagrange multipliers ν in the concatenated vector (λ,µ,ν).

Even though the formulations of Equations (3.66)–(3.69) and Equations (3.70)–(3.73)

represent effectively the dual problem of Equations (3.22) and (3.23), these formulations

suffer from a similar problem to the one that arose when we sought to apply the results of

Section 3.2.1 to the dual problem from Section 3.1. Namely, X does not typically lend itself

to explicit enumeration, which restrains the explicit formulation of the constraint set (3.67),

as well as the computation of the sum on the right-hand side of Equation (3.71). However,

49

using similar representations to those discussed in Section 3.2.2, we can derive appropriate

matrices F and A, as well as vectors q, β1, and β2 that allow us to reformulate the LP of

Equations (3.70)–(3.73) as

min
q,y,w

w (3.74)

s.t. F 0 0

−A −Im×m 1ν

q

z

w

 =

 β1

β2

 (3.75)

q ≥ 0; z ≥ 0. (3.76)

Furthermore, the formulation of Equations (3.74)–(3.76) can be dualized to obtain

max
η,ρ

(β1)T · η + (β2)T · ρ (3.77)

s.t.

F T · η − AT · ρ ≤ 0 (3.78)

1Tν · ρ = 1.0 (3.79)

ρj ≥ 0, ∀j. (3.80)

Because Equations (3.77)–(3.79) represent the dual program of Equations (3.74)–(3.76),

which in turn is a reformulation of the LP of Equations (3.70)–(3.73), Equations (3.77)–

(3.79) are an efficient representation of the LP from Equations (3.66)–(3.69). This implies

the following theorem:

Theorem 3.3.1. The LP of Equations (3.77)–(3.79) is an efficient representation of the LP

50

of Equations (3.66)–(3.69). Its optimal objective value is equal to the optimal objective

value of the Lagrangian dual problem of Equations (3.22) and (3.23). Furthermore, any

vector ρ∗ taken from an optimal solution (η∗,ρ∗) of the problem of Equations (3.77)–(3.79)

specifies an optimal set of Lagrange multipliers for Equations (3.22) and (3.23); that is,

ρ∗ = (λ∗,µ∗,ν∗).

The optimal values of the Lagrange multipliers can be useful as a set of heuristic “cost”

values for a scheduling algorithm. In particular, the coefficients described by Equations

(3.7)–(3.9) can be used to collect terms pertaining to xa,e,t, ∀a ∈ A, ∀e ∈ E, ∀t ∈ T ,

which allows us to specify “costs” or “prices” for locating a specific agent in a particular

place at a given time. One possible method for putting this information to use is described

in Section 4.6.3 as a potential enhancement to the algorithm detailed in Section 4.4.

51

CHAPTER 4

A HEURISTIC APPROACH TO THE CONSIDERED TRAFFIC SCHEDULING

PROBLEM

While Chapter 3 detailed methods for applying a Lagrangian relaxation to the considered

MIP from Chapter 2, and while these methods yield, at a minimum, new ways to find lower

bounds for the optimal makespan of instances of the considered problem, it remains for us

to develop a scheduling algorithm aimed at producing fully feasible, optimized solutions for

instances of the considered MIP. With this in mind, we present in this chapter an algorithm,

based on local search and a novel use of DP, that builds and optimizes these schedules.

4.1 Formal Representation of the Solution Space

To proceed with the development of the sought algorithm, we first need to define and

formalize a solution space for the MIP from Chapter 2; this definition will help us to

motivate the presented optimization algorithm and the primary data structures that are

employed by this algorithm.

Hence, let T represent an upper bound for the optimal makespan, w∗. If we assume

that a feasible solution exists for the given instance of the considered problem, then T

and w∗ are positive integers.1 Furthermore, to specify a complete schedule for any finite

T , all we need to do is to specify the edge, eat , held by each agent a ∈ A at each period

t ∈ {0, 1, . . . , T}. In other words, a complete (traffic) schedule can be described as a set S

of |A| finite sequences σa, each consisting of edges e ∈ Ê ≡ E ∪ {h} and having length

1While the existence of a feasible solution is not always the case (and is definitely not the case when a
system contains a deadlock or a subset of its agents that cannot avoid a deadlock), such feasible solutions do
always exist under certain conditions. If, for instance, a depot (or “home” location, h) exists that can retain all
agents and dispatch them in any order, and if agents can reverse direction in any travel location, as we assume
for the quantum-computing context of the problem, then, as Proposition 4.2.2 establishes, a feasible solution is
sure to exist. In contexts where these assumptions do not necessarily apply, it is necessary to ensure that a
feasible solution always exists from a certain system state before making the decision to enter that state.

52

T + 1.

It should be noted, however, that a complete schedule is not necessarily a feasible

schedule. Based on the MIP in Chapter 2, we define a given schedule to be feasible iff it

satisfies the following conditions:

1. ∀a ∈ A, ea0 = sa ∧ eaT = da.

2. ∀a ∈ A, ∀t ∈ {0, 1, . . . , T − 1}, eat+1 ∈ {eat } ∪ NH(eat), where NH(eat) denotes

the set of the neighboring edges of edge eat in graph G.

3. ∀a, a′ ∈ A, ∀t ∈ {1, . . . , T}, eat = e ∧ ea
′
t = e′ =⇒ (e 6= e′)∨ (e = e′ = h)∨ (e =

e′ = eaq = ea
′
q , ∀q ∈ {0, . . . , t}) ∨ (e = da ∧ e′ = da′).

4. ∀a, a′ ∈ A, ∀t ∈ {1, . . . , T}, eat = ea
′
t−1 = e 6= eat−1 =⇒ (e = h) ∨ (da = da′ = e).

The first condition above ensures that an agent starts at its origin, sa, and that it reaches its

destination da within the allotted time horizon, T . Condition 2 states that every agent route

is subject to the connectivity of the underlying guidepath network. Condition 3 prevents

agents from cohabiting in a given location at any time, with the following exceptions: (i)

The location is the “home” edge h; (ii) The location is a shared source; or (iii) The location

is a shared destination. Lastly, Condition 4 enforces that an agent a can move onto an edge e

only if that edge was unoccupied at the previous time step, unless e is a common destination

or is the home edge.

The presented algorithm also requires an efficient representation of the set of routes that

can transport any agent, a ∈ A, from its location at period t ∈ {0, 1, . . . , T −1}, represented

as eat = e ∈ Ê, to its destination, da, within the remaining time interval {t + 1, . . . , T}.

A directed acyclic graph (DAG), D(a, e, t, T), can be designed to serve this purpose. The

nodes of D(a, e, t, T) represent unique time-location pairs, (e′, t′), for certain e′ ∈ Ê and

t′ ∈ {t, . . . , T}. These pairs correspond to the location of agent a at edge e′ at time t′, and

any path in D(a, e, t, T) that passes through node (e′, t′) corresponds to a solution of the

53

1. Start by introducing to the constructed DAG D(a, e, t, T) the “root” node (e, t),
indicating the positioning of agent a at edge e at time t.

2. For each new node introduced in the constructed DAG D(a, e, t, T), append a next
layer of nodes (e′, t+ 1), for all those edges e′ that (i) belong to the set {e} ∪NH(e),
and (ii) there exists a feasible route that can take agent a from edge e′ to its destination
in no more than T − t time periods; link each node (e′, t + 1) to node (e, t) with a
directed edge leading from the latter node to the former; furthermore, in this expansion,
avoid the re-introduction of nodes that have been already introduced in the constructed
DAG D(a, e, t, T).

3. Terminate when all nodes of DAG D(a, e, t, T) have been processed according to the
logic of Step 2.

Figure 4.1: A “forward-search” algorithm for constructing DAG D(a, e, t, T).

original MIP from Chapter 2 with xa,e′,t′ = 1. Placement of a directed edge between two

nodes requires accessibility of the “sink” node, (e′′, t′ + 1), from the “source” node, (e′, t′),

in one time step, and implies that one or more feasible routes exist that contain the move

from (e′, t′) to (e′′, t′ + 1).

Construction of DAG D(a, e, t, T) can be accomplished using a “forward-search” al-

gorithm, as depicted in Figure 4.1. The second condition in the second step of Figure 4.1

(i.e., that inclusion of (e′, t′) in D(a, e, t, T) requires that a route must exist that transports

agent a from edge e′ to edge da within T − t time steps) can be assessed offline (i.e., before

the algorithm execution) using the Floyd-Warshall algorithm [2] to compute all pairwise

distances between pairs of locations on the guidepath graph, and to store those numbers in a

lookup table.

The number of nodes in DAG D(a, e, t, T) is bounded from above by |Ê| · T , and

in practice this number will tend to be much smaller since achievement of this bound is

based on a guidepath graph, G, that is complete. Figure 4.2 shows what a typical DAG

D(a, sa, 0, T) might look like.

54

Figure 4.2: Example of a spatio-temporal DAG for agent a, given t = 0 and T = 13,
D(a, sa, 0, 13). This graph describes all possible routes taking agent a from its current
location, sa, to its destination location, da, within the time horizon T , while observing the
corresponding single-agent constraints.

55

4.2 Obtaining an Initial Feasible Solution

The third and fourth conditions used to define feasible schedules in the previous section can

be used to define “routing conflict” among different agents. These conditions, combined

with the arbitrary topology of the guidepath graph G, can make the question of feasibility of

some traffic coordination problems of the considered class very difficult to answer [46].

The methodology that is presented in this chapter requires the construction of an initial

feasible schedule for the traveling agents. Importantly, some contexts, such as the quantum-

computing context, do permit efficient algorithms for finding feasible solutions for all

instances of the problem. In the quantum-computing case, this universal feasibility arises

because of (i) the existence of a “home” edge h that has sufficient capacity to retain all

agents a ∈ A and has the ability to receive and dispatch those agents in arbitrary order, and

(ii) the reversibility of the agent motion on any edge e ∈ E of the guidepath network. These

two features enable the specification of a two-stage algorithm that first routes all agents to

the home edge h and then routes all agents to their respective destinations, da. The precise

details of this algorithm are described by the following lemma and proposition.

Lemma 4.2.1. For instances of the traffic coordination problem defined in Chapter 2 that

guarantee (i) the existence of a “home” edge h that has sufficient capacity to retain all

agents a ∈ A and has the ability to receive and dispatch those agents in arbitrary order, and

(ii) the reversibility of the agent motion on any edge of the underlying guidepath network,

it is always possible to reach from the initial traffic state s0 that is defined by the edge set

{sa : a ∈ A}, to the traffic state sh where every agent is located at the “home” edge h.

Proof: If sa = h, ∀a ∈ A, then the lemma follows trivially. Otherwise, we can select any

agent, a1, from the set of agents a with sa 6= h, that is located closest to the “home” edge h,

where proximity is measured as the smallest number of edges that must be traversed in order

to reach h from sa1 . Clearly, this selection of agent a1 implies that all edges on any shortest

path leading from its current location sa1 to the “home” edge h are free. Hence, agent a1

56

can reach edge h while keeping all other agents in their initial positions. Lemma 4.2.1 then

follows by induction from the above argument for the remaining set of agents a with sa 6= h.

�

Proposition 4.2.2. For instances of the traffic coordination problem defined in Chapter 2

that guarantee (i) the existence of a “home” edge h that has sufficient capacity to retain all

agents a ∈ A and has the ability to receive and dispatch those agents in arbitrary order, and

(ii) the reversibility of the agent motion on any edge of the underlying guidepath network, a

routing schedule always exists that transports all agents a ∈ A from their initial locations

sa to their respective destinations da, and that abides by the Conditions 1–4 of Section 4.1.

Proof: Lemma 4.2.1 established that it is possible to reach from the initial state s0 to

the state sh where all agents are collected on the “home” edge h. An argument similar to

that used in the proof of Lemma 4.2.1 can be used to establish that, from state sh, all agents

a ∈ A can be routed to their destinations da one at a time, starting with the agents for which

the destination edge da is furthest from the “home” edge h. �

Proposition 4.2.2 establishes the feasibility of traffic coordination problems in the

quantum-computing context, as well as in other contexts that share similar assumptions.

While the methods described in Lemma 4.2.1 and in Proposition 4.2.2 establish the existence

of feasible solutions under the given assumptions, the described solutions will tend to

produce feasible solutions with unnecessarily long makespans. Under the given conditions,

it is possible to generate more efficient feasible solutions by using the remaining travel

distance required to route an agent to the home edge, or to its destination, as a mechanism

to prioritize the movement of each agent and then produce a schedule that moves each

agent simultaneously along its shortest path, as long as this movement does not result in a

conflict with a higher-priority agent. This scheme can be implemented for both phases of the

proposed algorithm–that of transporting the agents to the home edge, and also the second

phase that transports the agents from the home edge to their respective destinations. Building

an efficient initial feasible solution in this way serves two purposes: (i) upper-bounding the

57

makespan of the sought schedule, and (ii) moderating the size of the spatio-temporal DAGs

used in the implementation of the optimization algorithm described later in the text.

From a broader standpoint, Proposition 4.2.2 makes it very easy for us to guarantee the

overall traffic liveness in the corresponding contexts. As noted above, however, Proposition

4.2.2 is restricted by certain conditions. Though many other settings will have a home edge,

they may not satisfy the “reversibility” requirement. When this is the case, the question of

ensuring liveness is much more difficult but can be addressed using adaptations of Dijkstra’s

Banker’s algorithm [13], similar to those discussed in [47].

Lastly, it should be noted that one of the merits of the iterative makespan-reduction

procedure described in the following section is that it is independent from the method

used to generate initial feasible solutions. Though the technique described in this section

for generating initial solutions is subject to the two assumptions described in Proposition

4.2.2 (assumptions that hold true for our test cases), the algorithm described below can be

implemented even when these assumptions do not hold, as long as some initial feasible

solution is readily obtainable.

4.3 Local Search for Improved Solutions

The considered algorithm uses an initial feasible solution2 as a “seed” for generating further

solutions with an improved makespan. Let S = {σa : a ∈ A} represent a feasible schedule

with makespan w. There must exist a set of agents Ȧ ⊆ A that define the makespan (i.e.,

that reach their destinations exactly at period w). Schedule S can potentially be improved

by prescribing a new route, σ̂â, for an agent â ∈ Ȧ that transports agent â to its destination

dâ at a time earlier than w while avoiding any conflict with the routes σa specified by S

for any other agent, a ∈ A \ {â}. When such an operation is performed and the original

schedule S is replaced by Ŝ ≡ {σa : a ∈ A \ {â}} ∪ {σ̂â}, then the latter is said to be an

“improving” schedule w.r.t. S . More importantly, accomplishing such an operation for every

2possibly, but not necessarily, provided by the techniques that were described in the previous section

58

agent a ∈ Ȧ effectively defines an improving schedule with a new, reduced makespan.

In order to specify the improving step fully, it remains for us to detail a mechanism for

finding a conflict-free route, σ̂â, for the agent â. This can be accomplished by formulating a

“shortest-path” problem and solving it using DP methods [2] on the DAG D(â, sâ, 0, w − 1)

that was defined in Section 4.1. To see how this DP approach will work, let us first remind

the reader that DAG D(â, sâ, 0, w − 1) represents all routes that transport agent â from its

initial location sâ to its destination dâ in w− 1 or fewer time steps. We also recall that nodes

in the spatio-temporal DAG D(â, sâ, 0, w − 1) represent pairings (e, t) that determine the

location e of agent â at time t. If, for each of these nodes (e, t), we count the number of

conflicts that are incurred w.r.t. the other routes σa, a ∈ A \ {â} in the current schedule

when agent â is placed at location e at time t, then the numbers of these conflicts can be

used to define a notion of “cost” for the corresponding placements, and a route σ̂â is feasible

w.r.t. Conditions 1–4 in Section 4.1 iff it is represented by a path leading from the “root”

node (sâ, 0) of DAG D(â, sâ, 0, w − 1) to its “terminal” node (dâ, w − 1) with a total cost

of zero. Using this fact, the method described here selects a new route σ̂â from the zero-cost

paths identified as solutions to the aforementioned “shortest-path” problem formulated on

D(â, sâ, 0, w − 1).3

4.4 A Complete and Canonical Description of the Presented Scheduling Algorithm

A complete canonical description of the algorithm described in this chapter can be summa-

rized as follows: First, the algorithm constructs an initial feasible schedule, S , as detailed in

Section 4.2. Next, the algorithm switches to a makespan-reduction mode, where it iteratively

seeks to generate improving schedules, as described in Section 4.3; at the i-th iteration, the

algorithm will seek to improve the schedule S(i−1) obtained during the previous iteration
3A streamlined version of this algorithm can consider a “reachability” problem rather than a “shortest-path”

problem. Reachability can be determined by considering only the subgraph of D(â, sâ, 0, w − 1) defined by
the (e, t) pairings that incur zero cost. This version of the problem lends itself to enumerative techniques
[7] that may save time when compared with “shortest-path” methods. However, the description here uses
“shortest-path” computations because, as we will see in Section 4.6.1, this method provides some additional
information that enables an important algorithmic enhancement.

59

1. Use the procedure outlined in Section 4.2 in order to construct an initial feasible
schedule S(0) for the considered problem instance.

2. S := S(0).

3. Q := Ȧ.

4. While (Q 6= ∅) do

(a) Pick an element a ∈ Q.

(b) Test whether agent a can be used for generating an improving schedule Ŝ.

(c) If the above test is positive, do

i. S := Ŝ.
ii. Goto Step 3.

(d) else Q := Q \ {a}.

5. Return S .

Figure 4.3: A basic version of the heuristic algorithm for the traffic coordination problem
that is considered in this work.

(where S(0) = S), having found an agent a(i) ∈ Ȧ(i−1) that is useful for constructing this

improving schedule. Once an improving schedule, Ŝ, is obtained, then the incumbent

schedule, S(i), is set to equal Ŝ , and the algorithm progresses to the next iteration, i+ 1. The

algorithm will terminate at the first iteration, k, for which it is unable to find an improving

solution for any agent a ∈ Ȧ(k−1). The algorithm will then return, as its output, the most

recent feasible schedule, S(k−1), with a makespan of w(k−1).

Pseudocode for the algorithm described above is given in Figure 4.3. The completeness

and soundness of this algorithm follow from the results presented in the prior sections of

this chapter. Furthermore, since each iteration of Steps 3–4 requires that an agent will reach

its destination at least one time period earlier than before, the returned solution must have

a makespan that is no worse than that of the initial schedule, S(0), and the algorithm must

terminate in a finite number of iterations. Next we take a closer look at the complexity of

the algorithm described in Figure 4.3.

60

4.5 Complexity Analysis for the Algorithm of Figure 4.3

Construction of, both, the initial feasible schedule, S(0), and the spatio-temporal DAGs

that are employed in the improving phase, benefits from the existence of a lookup table

of pairwise shortest distances for all locations in Ê. This table can be obtained through a

single execution of the Floyd-Warshall algorithm, which has a computational complexity of

O(|Ê|3) [2].

Next, focusing on the iterative component of the algorithm described in Figure 4.3, we

establish the following result:

Proposition 4.5.1. Let w∗ denote the optimal makespan for the considered problem in-

stance, and ŵ denote the makespan of the initial feasible schedule S(0). The worst-case

computational complexity of the iterative part of the algorithm described in Figure 4.3 is

O((ŵ2 − w∗2)|A|2|Ê|2).

Proof: First consider the test that is performed in Step (4b) of the algorithm in Figure 4.3.

As remarked in Section 4.3, this test can be organized efficiently as a “reachability” test that

seeks the existence of a zero-cost path in DAG D(â, sâ, 0, w
∗+ i), leading from node (sâ, 0)

to node (dâ, w
∗+i) for some â ∈ A and i ∈ {0, . . . , ŵ−1−w∗}. DAGD(â, sâ, 0, w

∗+i) will

have O(|Ê|(w∗ + i)) nodes and each node will have O(|Ê|) emanating edges. Determining

the availability of any of these edges in the underlying reachability problem requires the

evaluation of conflict between the corresponding step and the incumbent routes of the

remaining agents, a task that carries a cost of O(|A|). Therefore, the total cost for a single

execution of the considered test is O(|A||Ê|2(w∗ + i)). According to the “while”-loop of

Step (4), at any given i, this test will be performed O(|A|) times. Finally, the result of

Proposition 4.5.1 is obtained by further noticing that
∑ŵ−1−w∗

i=0 (w∗ + i) = O(ŵ2 −w∗2). �

Proposition 4.5.1 implies a pseudo-polynomial worst-case computational complexity

for the algorithm described in Figure 4.3, and quantifies the benefit of finding an efficient

initial schedule. Chapter 5 includes execution-time data that show how this complexity is

61

exhibited empirically and demonstrate that the algorithm can solve large problem instances

very quickly while using modest computational resources. Furthermore, the next section

shows that the performance of the presented algorithm can be further enhanced through a

pertinent use of the information that is contained in the “shortest-path” implementations

described in Section 4.3.

4.6 Enhancing the Algorithm Performance

The algorithm detailed in Figure 4.3 describes a complete heuristic solution for the multi-

agent routing problem described in Chapter 2, but in this section we consider possible

enhancements and variations of this algorithm.

4.6.1 Controlled Excursions into the Infeasible Solution Space

As a first step, it can be noted that, as with any algorithm that depends on local search

methods, the solution can settle on a “local optimum” while better schedules still exist.

In addition, the concept of the “local optimum” is affected by (i) our representation of

the solution space, and (ii) the “neighborhood” that the algorithm is designed to consider.

With this in mind, we will devote the remainder of this subsection to the discussion of

a method that allows the algorithm to make controlled excursions outside the region of

feasible solutions with the intent of escaping some of these local optima.

This method works by executing the algorithm of Figure 4.3 as prescribed in Section

4.4 until an iteration k is reached where no improving schedule is identified (i.e., until no

zero-conflict route exists for any agent that defines the makespan of the most recent feasible

solution S(k−1) that transports the agent to its destination in a reduced span of time). At

this point, the revised algorithm switches to a different mode that (i) picks an improved

but infeasible schedule, and then (ii) seeks to eliminate conflicts appearing in this schedule

iteratively until none exist, if possible. In particular, we execute the following steps when no

improving schedule is identified:

62

Among the paths of the DAGs D(a, sa, 0, (w − 1)(k−1)), a ∈ Ȧ(k−1), constructed in

iteration k, we identify one that incurs minimal cost w.r.t. the number of inter-agent conflicts

for the fixed routes of schedule S(k−1). If a1 represents the corresponding agent and σa11

represents the corresponding path, then let us use S(k−1)
1 to represent the routing schedule

that results when the route of agent a1 is replaced in schedule S(k−1) by route σa11 . Then

we can attempt to find a new feasible routing schedule by incrementally eliminating the

conflicts that exist in S(k−1)
1 .

This incremental improvement begins by finding an agent a2 ∈ A \ {a1} that has

a minimal-cost path in the DAG D(a2, sa2 , 0, w
(k−1)) whose total cost is lower than the

number of conflicts between agent a2 and all other agents in the schedule S(k−1)
1 . If σa22

represents the corresponding minimal-cost path, then replacing the original route of agent

a2 in schedule S(k−1)
1 with σa22 yields a new schedule, S(k−1)

2 , that must include a smaller

number of inter-agent routing conflicts than S(k−1)
1 . Repeating this procedure, then, will

result in either a schedule S(k−1)
n with zero conflicts, or a schedule where further reduction

of the number of conflicts is not possible. When a conflict-free schedule is found, then

S(k−1)
n can take the place of schedule S(k) in the main iteration of the revised algorithm, and

the algorithm can progress to its next iteration, k + 1, in accordance with Figure 4.3. When

a conflict-free solution is not found, then the algorithm will terminate and return the most

recent conflict-free solution encountered–i.e., S(k−1).

Using this procedure, it is possible to create a much more powerful implementation of

the proposed algorithm without substantially increasing its computational complexity. Some

results of the application of this enhancement are described in Chapter 5.

4.6.2 Multi-Agent Simultaneous Search

Another potential enhancement of the methodology described above involves increasing

the size of the neighborhood searched. One way to accomplish this is by using DAGs

whose nodes are characterized by multi-agent states. For the 2-agent case, this idea can be

63

implemented as follows:

First, an implementation of the algorithm described in Figure 4.3 can be run, and this

implementation can be enhanced using the digressions from the feasible region described in

Section 4.6.1. Once it happens that the algorithm is unable to find an improving solution,

even after allowing for a controlled excursion outside the set of feasible schedules, pairs of

agents (a1, a2) can be chosen, and a new spatio-temporal DAG D2(a1, a2, sa1 , sa2 , 0, τ − 1)

can be built for each pair (a1, a2). Here, τ represents the makespan of the most recent

feasible schedule, and the nodes (e, t) from the original DAG structure D(a, sa, 0, τ − 1) are

replaced by nodes (e1, e2, t), such that the positions of agents a1 and a2 are jointly described

at time t.

This method requires some intricate computation, since (i) the construction of multi-

agent spatio-temporal DAGs requires that we identify and eliminate internal conflicts

between agents a1 and a2, and (ii) we cannot use something as simple as a lookup table

generated by the Floyd-Warshall algorithm to determine whether a considered node (e1, e2, t)

generated using a “forward-search” algorithm will maintain the feasibility of transporting

both a1 and a2 to their destinations da1 and da1 within T − t time steps. On the other hand,

the approach to be developed can be applied to various (limited) numbers of agents, to define

ever-more-powerful (but computationally intensive) variations of the considered algorithm.

Building Multi-Agent Spatio-Temporal Graphs

One method for building a 2-agent spatio-temporal DAG D2(a1, a2, sa1 , sa2 , 0, T) for a

given time horizon, T , can be outlined broadly as follows: (i) Generate spatio-temporal

DAGsD(a1, sa1 , 0, T) andD(a2, sa2 , 0, T), as shown in Figures 4.1 and 4.2, for the selected

agents. (ii) Merge the two graphs, eliminating states and moves that cause conflict between

the two agents.

The merger of these two graphs can be accomplished using the following steps: (i)

Select an intermediate time step between 0 and T–e.g., floor(T/2). Here, we will refer to

64

this time step as τ̂ . (ii) From time step 0, execute a “forward-search” algorithm, based on

the two graphs being merged, to identify possible joint states (and transitions) that may be

included in the graph (details of this search process are described in Figure 4.4); repeat this

search until all possible joint states that can be reached from the joint state (sa1 , sa2 , 0)4 in τ̂

time steps have been identified. (iii) Perform a similar operation in reverse; i.e., define and

run a “backward-search” algorithm from time T to identify joint states from which the joint

destination (da1 , da2 , T) can be reached in T − τ̂ time steps. (iv) At this point, we have two

sets of joint states corresponding to time τ̂–one set of joint states that are accessible from

(sa1 , sa2 , 0) (which we shall denote as set Ks,τ̂), and one set of joint states from which the

destination state (da1 , da2 , T) can be reached (which we shall denote as set Kd,τ̂). We also

have two graphs identifying the paths by which these states can be reached. We can identify

the set for which both accessibility conditions are met by taking the intersection Ks,τ̂ ∩Kd,τ̂ .

We will refer to this set as Kτ̂ . (v) From Kτ̂ , we can identify Kt (i.e., the set of states at time

t that satisfy both accessibility conditions) for every 0 < t < τ̂ (as well as the feasible joint

moves between members ofKt andKt+1 for 0 < t < τ̂) using a recursive method to identify

the “parents” and “ancestors” of each member of Kτ̂ among Ks,τ̂−1 to establish Kτ̂−1, and

we repeat this procedure all the way back to K1. (vi) A similar recursion can be used to

establish Kt for τ̂ < t < T by identifying the “children” and “descendents” of members

of Kτ̂ . Once this process is complete, the graph composed of (sa1 , sa2 , 0), (da1 , da2 , T), Kt

for every 0 < t < T , and the feasible transitions between the included states (e1, e2, t) is

D2(a1, a2, sa1 , sa2 , 0, T).5

This process effectively describes how to merge two single-agent spatio-temporal graphs

together in order to build a single, “compound” graph that describes all possible 2-agent

schedules that can be achieved for a particular pair of agents within time T , given that no

4We use the notation (e1, e2, t) to represent the “joint state” where agents a1 and a2 are located on edges
e1 and e2 (respectively) at time t.

5Note that if T is too low–i.e., if the optimal makespan for the two agents, w∗, is greater than T–then the
resulting graph will be empty since no state (e1, e2, t) exists that is reachable from state (sa1

, sa2
, 0) in t time

steps and from which state (da1
, da2

, T) is reachable in T − t time steps, for any 0 ≤ t ≤ T . This remark also
holds when the procedure is generalized to accommodate more than two agents.

65

1. Let (e1, e2, t) denote the state of the “current” node being expanded. Let (e1, t)
•

and (e2, t)
• indicate the children of states (e1, t) and (e2, t) in the single-agent

DAGs D(a1, sa1 , 0, T) and D(a2, sa2 , 0, T). Enumerate a set of candidate joint states
M(e1,e2,t) = (e1, t)

•× (e2, t)
•. Set N̂0 := (sa1 , sa2 , 0), and let N̂t+1 indicate the set of

nodes added to the graph by expansions of N̂t. For any element (e′1, e
′
2, t+ 1) ∈ N̂t+1,

let •(e1, e2, t+ 1) indicate the set of nodes in N̂t whose expansions add (e1, e2, t+ 1)
to N̂t+1.

2. While t ≤ τ̂ , do

For each element (e′1, e
′
2, t+ 1) ofM(e1,e2,t) do

(a) Test whether (e′1, t+ 1) conflicts with (e′2, t+ 1).

(b) Test whether (e′1, t+ 1) conflicts with (e′2, t).

(c) Test whether (e′2, t+ 1) conflicts with (e′1, t).

(d) If any conflict test is positive, break.

(e) Else, test whether (e′1, e
′
2, t+ 1) ∈ N̂t+1.

(f) If all conflict tests are negative and (e′1, e
′
2, t + 1) ∈ N̂t+1, •(e′1, e

′
2, t + 1) :=

•(e′1, e
′
2, t+ 1) ∪ (e1, e2, t).

(g) If all conflict tests are negative and (e′1, e
′
2, t+ 1) /∈ N̂t+1, do

i. N̂t+1 := N̂t+1 ∪ (e′1, e
′
2, t+ 1).

ii. •(e′1, e
′
2, t+ 1) := •(e′1, e

′
2, t+ 1) ∪ (e1, e2, t)

3. For each t such that 0 < t ≤ τ̂ , do

(a) Return N̂t.
(b) For each (e1, e2, t) ∈ N̂t, return •(e1, e2, t+ 1).

Figure 4.4: Details of the “forward-search” node generation process. A similar, “backward-
search” procedure is also performed from time T to time τ̂ .

other agents exist in the graph. This procedure can be straightforwardly generalized to any

number of agents.

One method to accomplish an n-agent compound spatio-temporal graph describing

schedules for agents {a1, a2, ...an} is to merge the “simple” (i.e., single-agent) spatio-

temporal graphs for a1 and a2, then merge the resulting compound graph with the simple

graph for a3, and so on until the simple graph for an is merged with the compound graph for

{a1, a2, ...an−1}.

66

Another method to accomplish this is with successive pairings of graphs. That is, one

could merge the simple graphs for a1 and a2, then merge the graphs for a3 and a4, and repeat

until no simple graphs remained. Then one could merge the compound graph for a1 and a2

with the graph for a3 and a4, merge the compound graph for a5 and a6 with the graph for a7

and a8, and so on. Eventually, one would be left with a single graph describing all feasible

n-agent schedules that can be executed within T time steps.

It should be noted that, as long as a feasible schedule exists requiring fewer than T

time steps to route a set of n agents to their respective destinations, the aforementioned

construction of an n-agent graph with a time horizon of T can be used to identify the optimal

makespan of the n-agent routing problem, as well as the set of all optimal schedules. In

particular, the minimum makespan corresponds to the earliest time step τ for which the

state (da1 , da2 , ..., dan , τ) is included in the compound graph. In practice, this minimum

can be ascertained quickly by starting with the terminal node (i.e., the node corresponding

to the state (da1 , da2 , ..., dan , T)) and checking the set of that node’s parents to determine

whether (da1 , da2 , ..., dan , T − 1) exists among them. If so, then the optimal makespan, w∗,

is less than or equal to T − 1. If not, then w∗ = T . This process can be repeated until the

precise value of w∗ is found. Then, if we wish to identify optimal schedules, we need only

“back-track” from the spatio-temporal node corresponding to the state (da1 , da2 , ..., dan , w
∗)

to the “start” node, (sa1 , sa2 , ..., san , 0). Moreover, the subgraph describing all optimal

n-agent schedules can be constructed by starting with the node corresponding to the state

(da1 , da2 , ..., dan , w
∗), by including all of that node’s parent nodes, and by repeating this

process for w∗ steps until the start node is reached.6

6Since, as noted previously, the procedure described here for building multi-agent spatio-temporal graphs
will produce an empty graph if T < w∗, this procedure can also be used to determine whether solutions exist
with makespan less than or equal to T , for any positive T .

67

Complexity of Multi-Agent Spatio-Temporal Graphs

Though the process described above for building and utilizing multi-agent spatio-temporal

graphs may be relatively efficient, it is not necessarily practical to execute for large numbers

of agents. This section endeavors to demonstrate the following: In the worst case, the multi-

agent optimal-solution algorithm from the previous section will identify optimal solutions

in time that scales polynomially with respect to |Ê| and pseudo-polynomially with respect

to T , with the order of the polynomial determined by the number of agents in the system.

Proposition 4.6.1. Given (i) a problem instance with a set of |A| agents and a guidepath

graph with |Ê| edges, and (ii) an upper bound T such that T ≥ w∗, the problem can be

solved with a worst-case time complexity of O(|A|2T |Ê|2|A|). On the other hand, if a time

horizon T is specified such that T < w∗, it is possible, in the worst case, to determine that

no solution exists with makespan less than or equal to T in O(|A|2T |Ê|2|A|) time.

Proof: Development of the 2-agent spatio-temporal graph can be simplified as follows:

For 0 ≤ t < T , up to |Ê|2 nodes corresponding to states (e1, e2, t) are checked for connec-

tivity with up to |Ê|2 nodes corresponding to states (e′1, e
′
2, t + 1) in the succeeding time

step. In the worst case, |Ê|4 directed arcs must be checked for conflict, requiring exactly

three conditions to be tested (per Figure 4.4).

Development of n-agent spatio-temporal graphs (with n > 2) can be simplified in a

similar way. However, the conflict-checking operation is not as simple as the set of included

agents grows. More specifically, for a simple pair of agents, we must avoid the following

conflicts:

1. Test whether (e′1, t+ 1) conflicts with (e′2, t+ 1).

2. Test whether (e′1, t+ 1) conflicts with (e′2, t).

3. Test whether (e′2, t+ 1) conflicts with (e′1, t).

68

However, for n > 2, more than three of these checks are required for an arc to be

included in the spatio-temporal graph. First, it is necessary to verify that no agent at time

t + 1 conflicts with any other agent at time t + 1. Since
n2 − n

2
distinct pairings exist

between agents, this implies that
n2 − n

2
conflict checks are required. Once that process is

complete, it is necessary to verify that the considered joint state (e′1, e
′
2, ..., e

′
n, t+ 1) would

not cause any conflicts with the state (e1, e2, ..., en, t) that it is being connected to. This

process requires n2 − n separate conflict checks to be made (corresponding to all pairings

of one agent location in time t+ 1 with another agent location at time t), yielding a total of
3

2
(n2 − n) conflict checks, implying that the conflict-checking operation scales according

to O(n2) = O(|A|2) time.

Also, for n > 2, we must consider the expansion of the potential state space. For each t

such that 0 < t < T , up to |Ê|n states may be feasible, and up to |Ê|2n transitions may exist

between successive time steps. Therefore, the conflict-checking tests may be invoked, in the

worst case, O(T |Ê|2n) = O(T |Ê|2|A|) times.

From this it follows that a multi-agent spatio-temporal graph with time horizon T can be

constructed for |A| agents in O(|A|2T |Ê|2|A|) time. As mentioned in the previous section,

the optimal makespan can be determined by checking the “parents” of the terminal node

corresponding to the “end” state to see if they include state (da1 , da2 , ..., dan , T − 1), and

then repeating until the minimum possible makespan is established. From there, optimal

schedules can be found by backtracing from (da1 , da2 , ..., dan , w
∗). In the worst case, this

backtracing operation scales according to O(T |Ê|2) and is therefore dominated by the

O(|A|2T |Ê|2|A|) scaling of the graph generation procedure.

If T < w∗, then the same simplified procedure can be executed, except that the terminal

node corresponding to the end state will have no parents. This will immediately imply that

w∗ exceeds the given time horizon, T . �

Given a fixed number of agents, |A|, and a fixed number of edges, |Ê|, Proposition 4.6.1

establishes a pseudo-polynomial worst-case computational complexity for the technique of

69

optimizing the makespan for the MIP of Chapter 2 using multi-agent spatio-temporal graphs.

Since the number of edges, |Ê|, is polynomially related to the number of bits required to

specify the MIP in Chapter 2, Proposition 4.6.1 also demonstrates that, given a fixed T

and a fixed number of agents, |A|, multi-agent spatio-temporal graphs can be built with

polynomial worst-case complexity. The precise procedure described in the earlier parts of

this section is designed to leverage careful pruning and a “bi-directional” search in order to

save both time and memory.

It is clear, however, that the presented technique for constructing multi-agent spatio-

temporal graphs is not scalable for large numbers of agents. It is conjectured, but not proven

here, that the problem defined by the MIP described in Chapter 2 is NP-hard when the

number of agents in the system is not held constant.7

Increasing Search Depth with Multi-Agent Spatio-Temporal Graphs

It is possible to use multi-agent graphs to expand the neighborhood of the “local search”

described in Section 4.3. This can be implemented in different ways. For instance, given

n agents, it is possible to generate
n2 − n

2
different two-agent graphs in place of the n

single-agent graphs used before (or, perhaps, a subset of these graphs for selected agent

paris). It is then possible to implement the algorithm of Figure 4.3, along with the infeasible

search of Section 4.6.1, using these graphs.

Deeper searches (using three-agent graphs or larger) are possible but are often not

practical since, as seen in the previous section, this approach, in the worst case, may be

exponentially complex with respect to the number of agents considered simultaneously.

However, the fact that a method relying on an n-agent simultaneous search would be

guaranteed to return an optimal solution implies that, given sufficient search depth, an

implementation of the algorithm of Figure 4.3 can be “unstuck” from any local optimum.

7This conjecture is partially based on the similarity of the described class of problems to a highly flexible
version of the “job-shop” scheduling problem, which is known to be NP-hard [62]. In addition, as noted in
Section 1.2.1, the embedded “state safety” problem induced by the deadlock-avoidance requirement is known,
in similar RAS contexts, to be NP-hard [46].

70

Some results related to multi-agent searches are included in Chapter 5.

4.6.3 Lagrange-Multiplier Heuristic

Other variants of the algorithm detailed in Figure 4.3 can be derived by embedding different

heuristics. For instance, one can consider a number of heuristics for breaking “ties” in the

“shortest-path” computation that will improve the solution time and/or quality. In particular,

a heuristic that biases an agent to reach its destination at the earliest time step possible,

when multiple conflict-free solutions exist, may allow us to reduce the makespan with fewer

iterations of the schedule S(i).

Alternatively, it is possible to exploit a set of Lagrange multipliers (computed using an

LP as in Section 3.3). In particular, the coefficients Cλ
∗,µ∗

a,e,t corresponding to the optimized

dual problem defined in Section 3.1 can be used to define “costs” of having an agent a

located in position e at time t, and the Lagrange multiplier ν∗a can be considered as a “reward”

for having an agent a located at its destination edge, da.

Since the corresponding costs must be defined over a time horizon for which a feasible

solution is already known, and since the size of the LP defined in Section 3.3 is significantly

affected by the length of the time horizon over which it is defined, it makes sense for us

to consider a procedure along the following lines: First, we run the algorithm described in

Figure 4.3, enhanced using the digressions from the feasible region described in Section

4.5. Once that algorithm is unable to find an improving (feasible) solution, we can obtain

the optimal Lagrange multipliers for the corresponding dual problem using the LP method

described in Section 3.3, and compute the “costs” and “rewards” for placing agent a in

location e at time t. This information can then be used in a straightforward way to break

“ties” that occur when eliminating conflicts using the “shortest-path” conflict-elimination

approach described in Section 4.3.

More specificaly, since Cλ
∗,µ∗

a,e,t effectively defines a cost, based on the Lagrange multi-

pliers, that is incurred when xa,e,t = 1 and e 6= da, and since ν∗a suggests a “reward” for

71

having an agent a located at its destination edge, da, we infer that when e = da, the value of

placing agent a on edge da can be given by Cλ
∗,µ∗

a,e,t − ν∗a . Given that the algorithm described

in Figure 4.3 structurally ensures that each agent resides in its destination location, da, at the

end of the considered time horizon, we can then define the following:

Ca,e,t :=

 Cλ
∗,µ∗

a,e,t − ν∗a , if t = T

Cλ
∗,µ∗

a,e,t − I{e=da}ν∗a + Ca,ê,t+1, otherwise,
(4.1)

where ê ∈ e•∪e when e 6= da, ê = da when e = da, and ê corresponds to the edge chosen to

succeed e, according to a DP implementation that first minimizes the number of conflicts and

then uses the minimization of Ca,e,t ∀a ∈ A,∀e ∈ Ê,∀t ∈ T \ T as a secondary objective.

This approach will be more computationally intensive (and more memory-intensive)

than the basic approach detailed in Chapter 4, but it should be noted that once the “costs” and

“rewards” have been computed for a time horizon of τ , there is no need ever to recompute

them for the same instance of the considered problem; rather, the costs and rewards defined

by the Lagrange multipliers can be retained as triplets (a, e, t) and efficiently re-used for all

subsequent iterations of the algorithm, including those that digress into the infeasible region.

Some results related to the implementation of a Lagrange-multiplier heuristic are included

in Chapter 5.

72

CHAPTER 5

EXPERIMENTAL RESULTS

A problem instance that was used to motivate our research is shown in Figure 1.1. In Chapter

1, we discussed how this simple, 3-agent problem instance, which requires the agents to

transit across the graph and reverse their order along the way, lies beyond the abilities of

some of the most efficient scalable multi-agent routing algorithms, since agents can block

one another when they reach their destinations.

A simple implementation of the algorithm described in Figure 4.3 on a MacBook

Pro, however, returned an optimal schedule with a makespan of 16 time steps in just 25

milliseconds. That solution is detailed in Table 5.1.

Table 5.1 describes the solution found by our scheduling algorithm by providing the edge

sequences used by each agent, ai, i = 1, 2, 3, over the time horizon {0, . . . 16}. Tracing the

solution closely, one can observe the “intelligence” required to solve this problem instance,

as some agents are “sidetracked” and the guidepath graph is used to reorder the agents as

necessary.

As interesting as this example is, and as promising as the algorithmic result is, it only

represents one small instance of the considered problem. We next sought to evaluate the

considered algorithm by applying it to an especially difficult “challenge problem”. Figure

5.1 represents the guidepath network designed for this purpose.1

1The representation used for the guidepath graphs in Figures 5.1, 5.2, and 5.3 differs slightly from the

Table 5.1: An optimal set of agent routes computed for the problem instance of Figure 1.1 –
adapted from [10].

t a1 a2 a3 t a1 a2 a3 t a1 a2 a3
0 28 30 32 6 25 35 37 12 12 17 21
1 28 30 34 7 23 33 37 13 14 10 19
2 28 32 25 8 21 25 35 14 16 12 17
3 30 34 36 9 19 23 33 15 16 14 10
4 32 25 38 10 17 21 25 16 16 14 12
5 34 36 38 11 10 19 23

73

h 34 33 32 31 30 29

282021232425

26

27

19

1

2

3

4

5

6

7

8

9

10

37

38

22

35

36

17

18

15

16

14

13

12

11

s1 s2 s3 s4s5s6

s7 s8 s9 s10s11s12

Figure 5.1: The problem instance employed in the second case study.

This problem instance involves twelve agents, ai, i = 1, . . . , 12. The starting lo-

cation of the ith agent is marked in Figure 5.1 as si. The agents form a series of dis-

junct pairs that are required to swap positions with one another; those pairs are given

by {a1, a10}, {a2, a11}, {a3, a12}, {a4, a7}, {a5, a8} and {a6, a9} and are graphically repre-

sented in Figure 5.2. In addition to the high density of agents on the graph (12 agents on

39 locations in the guidepath graph), the swaps are selected to maximize congestion by

ensuring that every shortest path between each agent’s origin and destination intersects with

the shortest paths for every other agent. In addition, the “home” location, labeled as “h” in

Figure 5.1 and as “D” in Figure 5.2, lies at the end of a long path that effectively places it

very far away from any agent’s origin or destination. This means that the home location

cannot be used to reorganize agents without incurring a very high cost with respect to the

makespan of the resulting schedule.

Using an HP Z230 workstation with an Intel core i7 processor and 8 GB RAM, running

representation used for Figure 1.1 in the sense that traveling agents reside at the nodes rather than at the edges.
The definitions of “neighborhood” are similarly defined as before since the guidepath network in any problem
instance can be defined fully from the connectivity of the locations on the guidepath graph.

74

Figure 5.2: The problem instance employed in the second case study, with arrows represent-
ing the requirements that various pairs of agents swap places, and with “D” representing the
depot.

Fedora, we implemented the algorithm from Figure 4.3 and applied it to the problem

described by Figures 5.1 and 5.2. This canonical version of the algorithm required 739

milliseconds to run and returned a feasible solution with a makespan equal to 72 periods.

However, by applying the version of the algorithm that allows for controlled excursions to

the infeasible region (as described in Section 4.6.1) on the same computer, we obtained a

feasible solution with a makespan of 24 periods after a runtime of 8.6 seconds. This result is

reported in Table 5.2. Lastly, we used CPLEX to solve the MIP formulation of Section 2.2

for this problem instance. The resulting optimal makespan required only 12 periods, but the

required solution time was about 5 days. The optimal schedule returned by CPLEX is given

in Table 5.3.

Next, we designed another line of experimentation (originally reported in [10]) to

measure the performance and the robustness of the algorithm described in Chapter 4. These

experiments were performed using the guidepath network depicted in Figure 5.3. Note that

Figure 5.3 depicts a “dual” version of the employed guidepath graph, where the various

75

Table 5.2: The agent routes computed for the second case study by the variation of the
proposed algorithm that allows for excursions to the infeasible region – cf. Section 4.6.1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
19 2 4 12 10 8 1 3 5 13 11 9
25 2 4 12 10 6 1 26 5 13 18 7
25 19 4 12 8 6 3 27 5 11 17 14
25 19 2 10 8 6 26 27 7 18 16 15
25 19 35 10 8 4 14 27 7 17 16 15
25 19 36 10 6 2 18 27 7 17 16 15
24 19 3 8 4 35 11 27 14 17 16 15
24 25 5 6 2 36 38 27 18 17 16 15
24 25 7 4 19 3 37 27 18 17 16 15
24 25 9 2 19 5 10 27 18 17 6 15
24 25 9 35 19 5 12 27 18 16 8 15
24 25 9 36 2 5 12 26 17 6 8 15
24 19 9 3 27 5 12 14 16 4 8 15
25 2 9 1 26 5 12 18 6 4 10 15
19 27 9 1 3 5 12 17 8 4 37 16
19 26 9 1 3 5 12 10 8 2 38 6
19 14 9 1 3 5 12 10 8 4 11 6
2 7 9 1 3 5 12 10 8 4 18 6

27 7 9 1 3 5 12 10 8 4 14 6
16 7 9 1 3 5 12 10 8 2 26 6
17 7 9 1 3 5 12 10 8 19 27 4
18 7 9 1 3 5 12 10 8 19 2 4
11 14 9 1 3 5 12 10 8 19 2 4
13 18 9 1 3 5 12 10 8 19 2 4
13 11 9 1 3 5 12 10 8 19 2 4

Table 5.3: An optimal set of routes for the second case study computed through the MIP
formulation of Section 2.2

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
19 2 4 12 10 8 1 3 5 13 11 9
19 2 4 12 17 6 1 26 5 13 38 7
19 27 4 10 18 16 3 26 5 11 37 7
2 27 6 10 18 17 36 26 5 9 38 14
4 16 8 37 18 17 35 26 3 7 11 15
6 16 10 38 14 17 2 27 36 5 9 15
8 16 37 11 26 18 4 27 35 3 7 15

10 17 38 9 26 14 6 27 2 36 5 15
37 18 11 7 26 14 8 16 4 35 3 15
38 18 9 5 27 14 10 17 6 2 36 15
11 18 9 3 27 7 10 17 8 19 35 16
13 18 9 1 26 5 12 17 8 19 2 6
13 11 9 1 3 5 12 10 8 19 2 4

76

Figure 5.3: The guidepath graph used for the grid-based numerical experiment – reproduced
from [10].

zones are represented by the nodes of the graph, and the edges that connect these nodes

define the adjacency sets of these zones. This guidepath network, then, is composed of 133

zones, organized as a grid.

The red node at the center of the guidepath graph in Figure 5.3 indicates the location

of the “depot”. We conducted our experiments with two different depot locations: (i) the

middle of the guidepath network (as shown in Figure 5.3), and (ii) one of the corners of

the graph.2 The results that follow in the remainder of this chapter demonstrate that this

selection can make a difference in, both, the performance and the execution time of the

algorithm described in Chapter 4.

The employed problem instances were built by first assigning 3 agents randomly to 3

separate initial locations and 3 destinations. After the execution time and makespan returned

by the algorithm were recorded for the cases of, both, a central depot and a corner depot,

2We chose to use the upper-left corner in our experiments. However, due to the symmetries of the graph in
Figure 5.3, all four corners are topologically equivalent.

77

0	

50	

100	

150	

200	

250	

300	

350	

400	

3	 6	 9	 12	 15	 18	 21	 24	 27	 30	 33	 36	 39	 42	 45	

Av
er
ag
e	
O
p*

m
al
ity

	G
ap

	(%
	o
f	L
B)
	

Number	of	Agents	

Impact	of	Traffic	Density	on	the	Op*mality	Gap	

Corner	Depot	

Center	Depot	

Figure 5.4: Plotting the optimality gap for the grid-based numerical experiment – reproduced
from [10].

3 more agents were assigned to 3 more initial locations and 3 more destinations. In this

way, the density of agents on the graph was progressively increased in increments of 3 until

the graph (whose size never changed) was host to 45 agents, covering more than 1/3 of the

available zones.

Each of these progressions of increasing density was replicated five separate times

with different, re-randomized initial and final locations for each agent, for a total of 150

experiments. All replications were performed on an HP Z230 workstation with an Intel core

i7 processor and 8 GB RAM, running Fedora Linux. The obtained results are summarized

in Figures 5.4 and 5.5.

Figure 5.4 reports the optimality gaps for the obtained schedules, averaged across the five

replications for each considered problem instance. These optimality gaps were calculated

using the single-LP solution of the Lagrangian dual problem of the considered problem

instances that is described in Section 3.3; for each replication, the value of the optimality

gap was computed according to the following formula:

obt. sched. makespan − opt. value of Lagr. dual
opt. value of Lagr. dual

× 100

78

0	

30	

60	

90	

120	

150	

180	

210	

240	

270	

300	

3	 6	 9	 12	 15	 18	 21	 24	 27	 30	 33	 36	 39	 42	 45	

M
ea
n	
Co

m
pu

ta
,o

n	
Ti
m
e	
(s
)	

Number	of	Agents	

Impact	of	Traffic	Density	on	Solu,on	Time	

Corner	Depot	

Center	Depot	

Figure 5.5: Plotting the computational times for the grid-based numerical experiment –
reproduced from [10].

The plots shown in Figure 5.4 suggest that the performance of the considered algorithm is

very close to the optimal result (and, in many cases, provably optimal) when zone occupancy

by the agents is low, but that this performance eventually degrades as the ratio of agents to

the number of locations in the guidepath increases.3 Furthermore, it can be seen that the

degradation is more severe in the cases where the depot is located in a far-flung location

away from the “center” of the guidepath network.

Figure 5.5 details the computation times for the algorithm as a function of the number

of agents placed on the grid. These times correspond to the same five replications used

to create Figure 5.4. Figure 5.5 shows that the algorithm executes very quickly, even for

problems characterized by highly congested guidepath networks. As with Figure 5.4, Figure

5.5 demonstrates the importance of, both, traffic density and centrality of the depot location

to the difficulty of a considered instance of the multi-agent routing problem.

In addition to controlled excursions into the infeasible region, two other techniques

were explored in an effort to improve upon these results: multi-agent simultaneous routing

(Section 4.6.2) and use of Lagrange multipliers as a tie-breaking heuristic within the local
3It should be noted that the worst-case performance is always bounded for problem instances of this type

(i.e., where reversibility holds and where a home edge exists with sufficient capacity to hold all agents in the
system) since an initial feasible solution is always available that efficiently routes all agents from their initial
locations to the home edge and then back out to their respective destinations.

79

Table 5.4: An optimal set of routes for the first ten agents of the challenge problem, computed
using a 10-agent spatio-temporal graph, as described in Section 4.6.2
.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
19 2 4 12 10 8 1 3 5 13
19 35 4 12 10 6 1 36 5 11
2 35 4 12 8 16 3 36 7 11

27 35 6 10 8 15 5 36 9 38
26 2 16 17 8 14 7 36 11 37
3 27 15 17 6 14 9 35 38 10
5 16 15 18 4 26 11 2 37 8
7 17 15 14 4 3 38 27 10 6
9 17 15 26 2 5 37 16 8 6

11 18 14 3 27 5 10 16 8 4
13 18 7 1 26 5 12 17 8 2
13 11 9 1 3 5 12 10 8 19

search (Section 4.6.3). As an exercise, we attempted to find optimal schedules for the

12-agent challenge problem of Figure 5.2 by building a 12-agent spatio-temporal network

on a MacBook Pro. This attempt proved to be too time- and memory-intensive to succeed.

However, experiments with subsets of the agents within the challenge problem demonstrated

that, in practice, the time and memory required to build multi-agent spatio-temporal graphs

were very sensitive to the length of the time horizon, T , due to the fact that small values of

T result in smaller numbers of feasible schedules for any given set of agents.

Using T = 11, we were able to find optimal, multi-agent schedules for up to 10 agents

within a few hours. Table 5.4 details one of these schedules, based on the guidepath graph

from Figure 5.1. In this case, an optimal schedule, with w∗ = 11, was obtained by building

and applying a 10-agent spatio-temporal graph, as described in Section 4.6.2. This was

achieved in 21,939 seconds (i.e., about 6 hours and 5 minutes) when implemented in C++

on a MacBook Pro.

As suggested in Section 4.6.2, we also used 2-agent spatio-temporal graphs to increase

the size of the neighborhood searched by the local-search algorithm. The result was

reasonably scalable in practice, but the observed improvements were either modest or

non-existent. An implementation of the 2-agent search on the 12-agent challenge problem

produced an improved, 22-time-step solution in 208 seconds on an HP Z230 workstation

80

	

0
3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
Ti
m
e	
St
ep

s
Number	 of	 Agents

Corner	 Depot	 Results

2-‐Agent	 Graphs

1-‐Agent	 Graphs

Figure 5.6: Comparison of the solutions obtained using 2-agent spatio-temporal graphs to
the results from single-agent spatio-temporal graphs. In most cases, there is no improvement.

with an Intel core i7 processor and 8 GB RAM, running Fedora.

These results were further tested on the grid-based version of the considered problem

whose guidepath graph is shown in Figure 5.3, assuming a corner depot. In almost all cases,

no improvement was observed, and when improvement was observed, the effect was modest.

These results are compiled in Figure 5.6. The time required for these experiments (again,

using an HP Z230 workstation with an Intel core i7 processor and 8 GB RAM, running

Fedora) is shown in Figure 5.7. Though the time required was not excessive for smaller

problems, instances with large numbers of agents (and longer time horizons) required several

hours to conduct local searches using all of the resulting 2-agent spatio-temporal graphs.

Though the improvements obtained using 2-agent spatio-temporal graphs are minor, one

can be assured that sufficiently “deep” local searches (based on simultaneous consideration

of sufficiently large sets of agents) can, eventually, free the algorithm from any “local

optimum” that it might reach by searching neighborhoods based upon single-agent spatio-

temporal graphs. However, as these “deeper” searches become increasingly complex, they

will often become impractical unless time horizons are very short and/or considerable

computing resources are available. On the flip side, the above results also suggest that the

algorithmic implementation based on single-agent DAGs, using controlled excursions into

81

	

0
3600
7200

10800
14400
18000
21600
25200
28800
32400
36000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
Ti
m
e	
(s
)

Number	 of	 Agents

Solution	 Times	 with	 2-‐Agent	 Graphs

Figure 5.7: Completion time required when 2-agent spatio-temporal graphs are built and
used after single-agent local search terminates. The reason for the spike observed for 42
agents is because, in that particular problem instance, the optimized makespan obtained
using single-agent local search was greater than in the 45-agent case. This resulted in a
longer time horizon for the 2-agent spatio-temporal graphs in the 42-agent problem.

the infeasible solution space, already exploits a substantial part of the information about the

underlying problem that can be obtained from a 2-agent simultaneous search.

In addition to multi-agent spatio-temporal graphs, we experimented with the use of

Lagrange multipliers as part of a “tie-breaking heuristic” within the local-search algorithm

(cf. Section 4.6.3). When experimenting with the grid-like guidepath network of Figure 5.3,

we found that a prohibitive amount of memory was often required for the consideration of

large numbers of agents over lengthy time horizons. However, the technique was successfully

implemented for the 12-agent “challenge” problem whose guidepath is shown in Figure

5.1. In this case, however, the information obtained from the Lagrange multipliers did

not cause the algorithm to improve upon the “local optimum” found using single-agent

spatio-temporal graphs and controlled infeasible search (cf. Section 4.6.1).

82

CHAPTER 6

CONCLUSION

This thesis analyzes and addresses the problem of generating efficient, multi-agent schedules,

subject to congestion constraints on a shared guidepath network. This research question

is motivated by a diverse set of real-world problems, ranging from the flexible routing

of automated guided vehicles (AGVs) within a production or distribution setting, to that

of routing ions (subject to similar congestion constraints) within a quantum computer.

Following a review of the relevant literature, we formulated the considered problem as a

mixed-integer program, similar in spirit to the formulation described in [52] for the flexible

job-shop scheduling problem.

Given this formulation, we approached the problem in two ways. First, we formulated the

Lagrangian relaxation and the corresponding dual problem, which we optimized using two

distinct methods: (i) a customized dual-ascent algorithm guaranteeing precise convergence

in finite time, and (ii) an LP formulation. Both of these approaches were useful for finding

lower bounds for various problem instances, as well as for obtaining Lagrange multipliers

that could be used as part of a heuristic for an algorithm that builds feasible schedules. Both

methods are memory-intensive, but the LP formulation seems to be more robust for larger

problems.

Secondly, we described an algorithm for iteratively reducing the makespan of multi-agent

schedules using a novel, scalable local-search methodology. We described the implemen-

tation of this algorithm within the context of quantum computing, including a method

for finding initial feasible schedules. We further described various “improvements” to

the makespan-reduction algorithm, including (i) a controlled search through the infeasible

region, (ii) multi-agent-based searches, and (iii) implementation of a heuristic based on

Lagrange multipliers.

83

Our experimental results show that solving the Lagrangian dual provides tight lower

bounds for many problems, although these bounds do appear to loosen when an environment

becomes extremely congested. Similarly, the application of the local-search methodology

with controlled excursions to the infeasible region to problems arising within quantum com-

puting resulted in provably optimal or near-optimal solutions for many problem instances,

although the algorithm performance did eventually degrade in cases of extreme congestion.

Two-agent-based local search did not improve on this performance in most cases, im-

plying that the originally incurred search typically does not stop finding improving feasible

solutions until a “local optimum” is encountered that cannot be escaped with simultaneous

rerouting of just two agents. “Deeper” searches (simultaneously rerouting three or more

agents) would eventually escape such “local optima”, but the algorithm becomes increas-

ingly difficult to scale to larger guidepaths and larger numbers of agents as this “depth”

increases.

Similarly, the Lagrangian-relaxation heuristic did not clearly provide a major improve-

ment in the performance of the local-search algorithm when applied to our challenge

problem, and its memory-intensive nature made it difficult to apply consistently to cases

where extreme congestion widened the optimality gap, underscoring both the quality of the

local-search algorithm’s results (when enhanced with a controlled search of the infeasible

solution space), as well as the robustness of that approach.

Hence, although it is possible that multi-agent local searches and the Lagrange-multiplier

heuristic (as implemented in this thesis) may provide a benefit that is sufficient to justify

their implementation when considerable computing resources are available, the single-agent

local-search schedule improvement scheme with controlled infeasible search demonstrates

a much more practical combination of robustness, solution quality, and low computation

time. This scheduler is scalable to large, congested guidepath networks, and it is capable of

finding efficient, deadlock-free solutions for a wide range of problems.

One straightforward extension of the algorithm detailed in Figure 4.3 is an adaptation to

84

problem instances where zone-traversal times are deterministic but non-uniform for various

edge-agent pairs, (e, a) ∈ E × A. In such a case, the “time step” would be defined as

the greatest common divisor (GCD) of the set of zone-traversal times, rather than being

equivalent to the zone-traversal times themselves. This modification would not substantially

increase the computational complexity of the heuristic algorithm since the non-uniform

traversal times could be encoded into the arc connectivity of the spatio-temporal DAGs used

to execute the algorithm; by incorporating deterministic, non-uniform zone-traversal times

into the spatio-temporal DAGs, it is possible, as in the case of uniform zone-traversal times,

to execute the heuristic algorithm in accordance with Figure 4.3, using DP to eliminate

conflicts between agents.

Further research could investigate embedding the described algorithm into “rolling hori-

zon” schemes for problem variations that do not possess all of the features (e.g., depots and

reversibility) assumed to exist in Chapter 4. Furthermore, future research may improve the

algorithm or enhance its utility by adapting it to stochastic environments, to continuous-time

problems, or to other resource-allocation problems, such as flexible job-shop scheduling.

85

Appendices

86

APPENDIX A

ALTERNATIVE MIP FORMULATION

If every agent is conceptualized as a unique commodity that must be transferred from

location sa to da, it is possible to formulate the MIP of Section 2.2.3 in a different way,

such that it can be viewed as a unit-capacity, integral multicommodity flow problem with

“side” constraints. Here, we will use the same notation as that defined in Chapter 2, with the

following additional definition: fa,t(e, e′) ∈ {0, 1} represents a unit “flow” of agent a from

edge e to edge e′ ∈ e• ∪ {e} between time step t and time step t+ 1.

Then, given the spatio-temporal graph Na whose nodes (e, t) are elements of E × T

and are connected by arcs ((e, t), (e′, t + 1)) ∀e ∈ E,∀e′ ∈ e• ∪ {e},∀T ∈ T \ {T}, we

can interpret the (binary) variables fa,t(e, e′) as flows over the arcs ((e, t), (e′, t+ 1)) and

interpret the (binary) decision variables xa,e,t from the MIP detailed in Chapter 2 as the total

flow of agent a entering, leaving, or passing through node (e, t). The precise relationship

depends on whether (e, t) constitutes a “source node” for a, a “sink node” for a, or a “transit

node” for a. We can define these node types and the relevant relationships between the flow

variables, fa,t(e, e′), and the decision variables from Chapter 2, xa,e,t, as follows:

“Source Nodes”: For an agent a ∈ A, a spatio-temporal node, (sa, 0), correspond-

ing to the agent’s unique starting location sa at time t = 0, can be viewed as a “source” for

the commodity represented by agent a, and the total flow exiting this location must sum to 1.

In addition, no amount of flow corresponding to agent a may originate from a node other

than (sa, 0). That is,

∀a ∈ A, ∀e ∈ E,
∑

e′∈e•∪{e}

fa,0(e, e′) = I{e=sa} = xa,e,0. (A.1)

87

“Sink Nodes”: For an agent a ∈ A, a spatio-temporal node, (da, 0), corresponding to the

agent’s destination location da at time t = T , can be viewed as a “sink” for the commodity

represented by agent a, and the total flow entering this location must sum to 1. That is,

∀a ∈ A,
∑
e∈E

fa,T−1(e, da) = 1 = xa,da,T . (A.2)

“Transit Nodes”: For an agent a ∈ A, a spatio-temporal node, (e, t), where t ∈

T \ {0, T}, can be viewed as a “transit” node, and the decision variable xa,e,t can be

conceptualized as the total flow of agent a through node (e, t), which tells us that

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0, T},
∑

e′∈•e∪{e}

fa,t−1(e′, e) = xa,e,t, (A.3)

and that

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0, T},
∑

e′′∈e•∪{e}

fa,t(e, e
′′) = xa,e,t. (A.4)

The vector of flow variables, f , can be combined, much like in Chapter 2, with an

auxiliary variable, w, to form a complete set of decision variables for this new MIP. Using the

equivalences that were defined in the above discussion to make the necessary substitutions,

we can reformulate the MIP of Equations (2.1)–(2.10) in terms of f and w, as follows:

minw (A.5)

s.t.

∀a ∈ A, ∀e ∈ E, ∀t ∈ T ,
∑
e∈E

∑
e′∈e•∪{e}

fa,t(e, e
′) = 1 (A.6)

∀a ∈ A, ∀e ∈ E,
∑

e′∈e•∪{e}

fa,0(e, e′) = I{e=sa} (A.7)

88

∀a ∈ A,
∑
e∈E

fa,T (e, da) = 1 (A.8)

∀a ∈ A, ∀t ∈ T \ {T},
∑
e∈E

fa,t+1(e, da) ≥
∑
e∈E

fa,t(e, da) (A.9)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0, T},
∑

e′∈•e∪{e}

fa,t−1(e′, e) ≤
∑

e′′∈e•∪{e}

fa,t(e, e
′′) (A.10)

∀e = (vi, vj) ∈ E s.t. i < j, ∀t ∈ T \ {0, T},∑
a∈A

[∑
e′∈e•∪{e}

fa,t(e, e
′) +

∑
e′∈ē•∪{ē}

fa,t(ē, e
′)
]
≤ 1 (A.11)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0},
∑

e′∈•e∪{e}

fa,t−1(e′, e)+

+
∑

a′∈A:a′ 6=a

[∑
e′′∈e•∪{e}

fa′,t−1(e, e′′) +
∑

e′′∈ē•∪{ē}

fa′,t−1(ē, e′′)
]
≤ 1 (A.12)

89

∀a ∈ A, w ≥
T∑
t=1

[
1−

∑
e′∈•da∪{da}

fa,t−1(e′, da)
]
− fa,0(da, da)

= T + 1− I{sa=da} −
T∑
t=1

∑
e′∈•da∪{da}

fa,t−1(e′, da)

= T −
T∑
t=1

fa,t−1(da, da)

=
T−1∑
t=0

∑
e∈E\{da}

∑
e′∈
{
e•∪{e}

} fa,t(e, e′) (A.13)

∀a ∈ A, ∀e ∈ E, ∀e′ ∈ e• ∪ {e}, ∀t ∈ T , fa,t(e, e
′) ∈ {0, 1} (A.14)

Furthermore, the equivalence between the “flow” of an agent through a transit node,

xa,e,t, and the total flows of the same agent into and out of that node (as described in

Equations (A.3) and (A.4)) imply that Equation (A.10) can be replaced with the equality:

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0, T},
∑

e′∈•e∪{e}

fa,t−1(e′, e) =
∑

e′′∈e•∪{e}

fa,t(e, e
′′) (A.15)

Much like in Chapter 2, Equations (A.6)–(A.9) and (A.15) describe “single-agent” con-

straints, and Equations (A.11)–(A.13) describe “coupling” contraints. Equations (A.7),

(A.8), and (A.15) describe “flow-balance” contraints for sources, sinks, and transit edges,

respectively. Equation (A.11) can be thought of as a set of “side” constraints, but also

constitutes a stricter version of the link capacity constraints typical of unit-capacity mul-

ticommodity flow problems. Equations (A.6), (A.9), and (A.13) describe sets of “side”

constraints that correspond, respectively, to Equations (2.2), (2.5), and (2.9). The second

equality of Equation (A.13) is based on the requirement, established in Equation (A.9), that

an agent will not leave its destination once it arrives there. The last equality of Equation

90

(A.13) is based on the requirement, established in Equation (A.6), that an agent’s total flow

between each time step must equal 1, meaning that the the sum of all flows for a given agent

must equal T ; formally,

T−1∑
t=0

∑
e∈E

∑
e′∈e•∪{e}

fa,t(e, e
′) = T, ∀a ∈ A. (A.16)

An important property of this formulation is given by the following theorem:

Theorem A.1. The linear relaxation of the “single-agent” constraints in the new MIP–i.e.,

Equations (A.6)–(A.9), (A.14), and (A.15)–will have an integer-valued optimal solution for

any linear objective function.

Proof: Equations (A.7), (A.8), and (A.15) constitute a set of “flow-balance” constraints.

Since these equations ensure that (i) a unit of flow originates, uniquely, at (sa, 0), (ii) the

full unit of flow reaches (da, T), and (iii) flow in conserved for all t ∈ T \ {0, T}, Equation

(A.6) is actually redundant.

Let the vector fa correspond to an integral flow of agent a through the spatio-temporal

network Na, and let Fa and ba represent the coefficients of Equations (A.7), (A.8), and

(A.15) for agent a. Then we can distill the single-agent constraints down to Equation (A.9)

and

∀a ∈ A, Fafa = ba, (A.17)

while the integrality constraint can be written as

∀a ∈ A, ∀((e, t)(e′, t+ 1)) ∈ Na, fa,t(e, e
′) ∈ {0, 1}. (A.18)

Now, let us modify the spatio-temporal graph Na, for every a ∈ A, such that it includes

every node (e, t) ∈ E × T , but excludes those arcs ((e, t), (e′, t + 1)) where e = da and

e′ 6= da, and let us refer to these new networks as N̂a.

91

Graph N̂a structurally embodies the constraint set of Equation (A.9), allowing us to

simplify the single-agent constraints further; if F̂a is the flow-balance matrix induced by

applying Equations (A.7), (A.8), and (A.15) to the spatio-temporal graphs N̂a, and if f̂a is

revised to include only the arcs of graph N̂a, then we obtain the following representation of

the single-agent and integrality constraints:1

∀a ∈ A, F̂af̂a = ba, (A.19)

∀a ∈ A, ∀((e, t)(e′, t+ 1)) ∈ N̂a, f̂a,t(e, e
′) ∈ {0, 1}. (A.20)

Since the flow-balance matrix F̂a is totally unimodular, and since the components of

ba are integer-valued for every a ∈ A, it follows that the polytope formed by the linear

relaxation of Equations (A.19) and (A.20) will have integer extreme points. Furthermore,

since the linearly relaxed version of Equation (A.20) ensures that the polytope is compact, it

follows that an integer-valued optimal solution must exist for any linear objective function

evaluated over the set specified by the linear relaxation of Equations (A.19) and (A.20). �

Theorem A.1 implies that the MIP of Equations (A.5)–(A.9), Equations (A.11)–(A.14),

and Equation (A.15) possesses the integrality property described in [22]. Hence, the linear

relaxation of Equations (A.5)–(A.9), Equations (A.11)–(A.14), and Equation (A.15) will

provide a lower bound for the optimal makespan that is identical to the bound obtained by

relaxing the coupling constraints (Equations (A.11)–(A.14)) of the same MIP.

This property does not necessarily hold for instances of the MIP described by Equations

(2.1)–(2.10). The important difference is highlighted by the contrast between Equation

(A.10) and Equation (A.15); whereas Equation (A.15) ensures that an edge e cannot receive

any flow after t = 0 beyond what is available from •e ∪ {e}, Equation (A.10) (which is

1Note that ba does not change between Equation (A.17) and Equation (A.19). This is because each row of
Fa corresponds to a specific node (e, t) ∈ Na, and the node set (as well as the flow balance for each node) is
unaffected by the modification of Na to create N̂a.

92

based directly on Equation (2.6), using simple substitutions to formulate it in terms of

arc flows) effectively allows for the possibility that some amount of flow will “teleport”

elsewhere in the spatio-temporal graph.2 This “teleportation” phenomenon cannot occur

when integrality constraints are enforced, which has two consequences: (i) Instances of

the (unrelaxed) MIP formulated in Chapter 2 will have equivalent sets of feasible solutions

and equal optimal objective values to the MIP of Equations (A.5)–(A.9), Equations (A.11)–

(A.14), and Equation (A.15). (ii) The Lagrangian dual derived from the MIP presented

in Chapter 2 can provide a tighter lower bound on the optimal objective value, w∗, than a

simple linear relaxation of Equations (2.1)–(2.10) would.3

2This is possible when loops exist in the guidepath graph, or when agents are allowed to reverse direction.
For example, consider the 3-agent problem instance depicted in Figure 1.1. When the single-agent constraints
(given by Equations (2.2)–(2.6) and (2.10)) are linearly relaxed, fractional solutions may return a better
makespan than what is achievable with integer solutions. For instance, consider the following (fractional)
moves for Agent 1:

1. At time t = 0, the “mass” of Agent 1 at s1 (i.e., edge 28) is 1 (that is, x1,28,0 = 1), and the mass placed
on every other edge equals zero.

2. At time t = 1, the mass of Agent 1 is split; a mass of 0.5 resides on edge 27, and another mass of
0.5 resides on edge 30, with zero mass on every other edge (i.e., x1,27,1 = x1,30,1 = 0.5). Note that
edges 27 and 30 are both considered “neighbors” of one another, with edge 27 ∈ (edge 30)•, and
edge 30 ∈ (edge 27)•.

3. At time t = 2, masses of 0.2 and 0.3 are allocated to edges 27 and 30, respectively, and a mass of 0.5 is
placed upon edge 16, which is d1.

Obviously, this occurrence, which we call “teleportation”, is not physically realizable. Nor is it permitted
within the unrelaxed integer program. However, such solutions do lie within the feasible space of the linear
relaxation of Equations (2.2)–(2.6) and (2.10), and, given an objective function that measures makespan, the
ability to teleport a fraction of an agent directly into its destination makes it possible to return solutions that
are superior to anything that is achievable when Equations (2.2)–(2.6) and (2.10) are not linearly relaxed.

3Teleportation can be prevented, however, by modifying the MIP of Chapter 2 in a manner that is reflective
of the difference between Equations (A.10) and (A.15); that is, we can replace Equation (2.6) with the
following:

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {T}, xa,e,t = xa,e,t+1 +
∑
e′∈e•

xa,e′,t+1. (A.21)

The equality of Equation (A.21) effectively prevents any fraction of an agent from teleporting across part of
the guidepath graph when the integrality constraints are relaxed, resulting in integer-valued extreme points for
the linear relaxation of Equations (2.2)–(2.5), (2.10), and (A.21). Furthermore, since the original, unrelaxed
MIP of Chapter 2 does not permit teleportation, the substitution of Equation (A.21) for Equation (2.6) does
not eliminate any of the integer-valued solutions of the original MIP of Chapter 2. The exchange of Equation
(A.21) for Equation (2.6) in the MIP of Chapter 2 therefore results in a new MIP that possesses the integrality
property described in [22] and also has the same optimal objective value, w∗, as the original MIP of Chapter 2.
Together, these properties imply that the linear relaxation of the revised MIP would provide a lower bound on

93

The MIP of Equations (A.5)–(A.9), Equations (A.11)–(A.14), and Equation (A.15)

can be streamlined, much like the MIP of Equations (2.1)–(2.10) was, by using a spatio-

temporal graph like the one shown in Figure 4.2, to eliminate extraneous decision variables

(i.e., variables that must equal zero). In the case of the MIP of Equations (2.1)–(2.10),

non-extraneous decision variables correspond to the nodes of spatio-temporal graphs such

as the one shown in Figure 4.2. In the case of the MIP described in this appendix, the

non-extraneous variables correspond instead to the arcs of such graphs.

In fact, a linear relaxation of the MIP of Equations (A.5)–(A.9), Equations (A.11)–

(A.14), and Equation (A.15), streamlined based upon efficient representations such as the

one described by Figure 4.2, is effectively described by the LP of Equations (3.74)–(3.76).

As section 3.3 demonstrates, the dual of the LP of equations (3.74)–(3.76) can then be used

to find Lagrange multipliers corresponding to the “coupling” constraints.

the optimal objective for the original MIP of Chapter 2 that would be identical to the one obtained from the
Lagrangian relaxation of Equations (2.1)–(2.10).

94

REFERENCES

[1] J. Adams, E. Balas, and D. Zawack, “The Shifting Bottleneck Procedure for Job Shop
Scheduling,” Management Science, vol. 34, pp. 391–401, 1988.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms and
Applications. Englewood Cliffs, NJ: Prentice Hall, 1993.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. 1. Belmont, MA:
Athena Scientific, 1995.

[4] ——, Nonlinear Programming (2nd ed.) Belmont, MA: Athena Scientific, 1999.

[5] Y. A. Bozer and M. M. Srinivasan, “Tandem configurations for automated guided
vehicle systems and the analysis of single vehicle loops,” IIE Trans., vol. 23, pp. 72–
82, 1991.

[6] P. Brucker, B. Jurisch, and B. Sievers, “A branch and bound algorithm for the job-
shop scheduling problem,” Discrete Applied Mathematics, vol. 49, no. 1, pp. 107
–127, 1994.

[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems (2nd ed.)
NY,NY: Springer, 2008.

[8] G. Daugherty, S. Reveliotis, and G. Mohler, “A customized dual ascent algorithm for
a class of traffic coordination,” ISyE, Georgia Institute of Technology (submitted for
publication), Tech. Rep., 2016.

[9] ——, “Some novel traffic coordination problems and their analytical study based on
lagrangian duality theory,” in Proceedings of the 55th IEEE Conf. on Decision and
Control (CDC 2016), IEEE, 2016, pp. 1701–1708.

[10] ——, “Optimized multi-agent routing in guidepath networks,” in Proceedings of the
20th World Congress of the International Federation of Automatic Control (IFAC),
2017.

[11] ——, “Optimized multi-agent routing for a class of guidepath-based transport sys-
tems,” IEEE Transactions on Automation Science and Engineering, (submitted for
publication).

95

[12] G. Desaulniers, A. Langevin, D. Riopel, and B. Villeneuve, “Dispatching and conflict-
free routing of automated guided vehicles: An exact approach,” The Intl. Jrnl of
Flexible Manufacturing Systems, vol. 15, pp. 309–331, 2003.

[13] E. W. Dijkstra, “Cooperating sequential processes,” Technological University, Eind-
hoven, Netherlands, Tech. Rep., 1965.

[14] J. Ezpeleta and J. M. Colom, “Automatic synthesis of colored Petri nets for the control
of FMS,” IEEE Trans. on R&A, vol. 13, pp. 327–337, 1997.

[15] J. Ezpeleta, F. Tricas, F. Garcia-Valles, and J. M. Colom, “A Banker’s solution for
deadlock avoidance in FMS with flexible routing and multi-resource states,” IEEE
Trans. on R&A, vol. 18, pp. 621–625, 2002.

[16] C. I. Fábián and Z. Szőke, “Solving two-stage stochastic programming problems with
level decomposition,” Computational Management Science, vol. 4, no. 4, pp. 313–353,
2007.

[17] M. P. Fanti, “Event-based controller to avoid deadlock and collisions in zone-controlled
AGVS,” Inlt. Jrnl Prod. Res., vol. 40, pp. 1453–1478, 2002.

[18] M. L. Fisher, “Optimal solutions of scheduling problems using Lagrange multipliers:
Part I,” Operations Research, vol. 21, pp. 1114–1127, 1973.

[19] ——, “The Lagrangian relaxation method for solving integer programming problems,”
Management Science, vol. 27, pp. 1–18, 1981.

[20] T. Ganesharajah, N. G. Hall, and C. Sriskandarajah, “Design and operational issues
in AGV-served manufacturing systems,” Annals of OR, vol. 76, pp. 109–154, 1998.

[21] E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel, “Dynamic routing of auto-
mated guided vehicles in real-time,” in Mathematics–Key Technology for the Future,
Springer, 2008, pp. 165–177.

[22] A. M. Geoffrion, “Lagrangian relaxation for integer programming,” Math. Program-
ming Studies, vol. 2, pp. 82–114, 1974.

[23] A. Giua, M. P. Fanti, and C. Seatzu, “Monitor design for colored Petri nets: An appli-
cation to deadlock prevention in railway networks,” Control Engineering Practice,
vol. 10, pp. 1231–1247, 2006.

[24] S. S. Heragu, Facilities Design (3rd ed.) CRC Press, 2008.

96

[25] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms.
I, ser. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1993, vol. 305.

[26] ——, Convex analysis and minimization algorithms. II, ser. Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1993, vol. 305.

[27] D. J. Hoitomt, P. B. Luh, and K. R. Pattipati, “A practical approach to job-shop
scheduling problems,” IEEE Trans. on Robotics & Automation, vol. 9, pp. 1–13,
1993.

[28] J. Huang, U. S. Palekar, and S. G. Kapoor, “A labeling algorithm for the navigation
of automated guided vehicles,” Journ. of Eng. for Industry, vol. 115, pp. 315–321,
1993.

[29] D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble motion on graphs,
the diameter of permutation groups, and applications,” in Proc. IEEE Symp. Found.
Comput. Sci., IEEE, 1984, pp. 241–250.

[30] N. N. Krishnamurthy, R. Batta, and M. H. Karwan, “Developing conflict-free routes
for automated guided vehicles,” Oper. Res., vol. 41, pp. 1077–1090, 1993.

[31] M. Lawley, S. Reveliotis, and P. Ferreira, “The application and evaluation of Banker’s
algorithm for deadlock-free buffer space allocation in flexible manufacturing systems,”
Intl. Jrnl. of Flexible Manufacturing Systems, vol. 10, pp. 73–100, 1998.

[32] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, “New variants of bundle methods,”
Mathematical Programming, vol. 69, no. 1, pp. 111–147, 1995.

[33] Z. Li, M. Zhou, and N. Wu, “A survey and comparison of Petri net-based deadlock
prevention policies for flexible manufacturing systems,” IEEE Trans. Systems, Man
and Cybernetics – Part C: Applications and Reviews, vol. 38, pp. 173–188, 2008.

[34] Z. W. Li and M. C. Zhou, “Elementary siphons of Petri nets and their application to
deadlock prevention in flexible manufacturing systems,” IEEE Trans. on SMC – Part
A, vol. 34, pp. 38–51, 2004.

[35] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming (4th ed.) NY, NY:
Springer, 2016.

[36] W. L. Maxwell and J. A. Muckstadt, “Design of automatic guided vehicle systems,”
IIE Trans., vol. 14, pp. 114–124, 1982.

97

[37] E. B. Nababan, A. R. Hamdan, S. Abdullah, and M. S. Zakaria, “Branch and bound
algorithm in optimizing job shop scheduling problems,” in Information Technology,
2008. ITSim 2008. International Symposium on, IEEE, vol. 1, 2008, pp. 1–5.

[38] A. Nazeem and S. Reveliotis, “A practical approach for maximally permissive
liveness-enforcing supervision of complex resource allocation systems,” IEEE Trans.
on Automation Science and Engineering, vol. 8, pp. 766–779, 2011.

[39] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge, UK: Cambridge University Press, 2010.

[40] I. M. Ovacik and R. Uzsoy, Decomposition Methods for Complex Factory Scheduling
Problems. Boston: Kluwer Academic Publ., 1997.

[41] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity. Mineola, NY: Dover, 1998.

[42] J. Park and S. A. Reveliotis, “Deadlock avoidance in sequential resource allocation
systems with multiple resource acquisitions and flexible routings,” IEEE Trans. on
Automatic Control, vol. 46, pp. 1572–1583, 2001.

[43] M. Pinedo, Scheduling. Upper Saddle River, NJ: Prentice Hall, 2002.

[44] L. Qui, W.-J. Hsu, S.-Y. Huang, and H. Wang, “Scheduling and routing algorithms
for AGVs: A survey,” IJPR, vol. 40, pp. 745–760, 2002.

[45] S. Reveliotis, Logical Control of Complex Resource Allocation Systems. NOW Series
on Foundations, Trends in Systems, and Control, vol. 4 (1–2), 2017.

[46] S. Reveliotis and E. Roszkowska, “On the complexity of maximally permissive
deadlock avoidance in multi-vehicle traffic systems,” IEEE Trans. on Automatic
Control, vol. 55, pp. 1646–1651, 2010.

[47] S. A. Reveliotis, “Conflict resolution in AGV systems,” IIE Trans., vol. 32(7), pp. 647–
659, 2000.

[48] ——, Real-time Management of Resource Allocation Systems: A Discrete Event
Systems Approach. NY, NY: Springer, 2005.

[49] S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for automated
manufacturing cells,” IEEE Trans. on Robotics & Automation, vol. 12, pp. 845–857,
1996.

98

[50] E. Roszkowska and S. Reveliotis, “On the liveness of guidepath-based, zoned-
controlled, dynamically routed, closed traffic systems,” IEEE Trans. on Automatic
Control, vol. 53, pp. 1689–1695, 2008.

[51] Q. Sajid, R. Luna, and K. E. Bekris, “Multi-agent path finding with simultaneous
execution of single-agent primitives,” in 5th Symposium on Combinatorial Search,
Niagara Falls, ON, Canada, 2012.

[52] H. D. Sherali, S. C. Sarin, and R. Desai, “Models and algorithms for job selection,
routing and scheduling in a flexible manufacturing system,” Annals of Operations
Research, vol. 26, pp. 433–453, 1990.

[53] D. Silver, “Cooperative pathfinding,” in Proceedings of the 1st Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, 2005, pp. 23–28.

[54] T. Stanley and R. Korf, “Complete algorithms for cooperative pathfinding problems,”
in Proc. 22nd Intl. Joint Conf. Artif. Intell., 2011.

[55] P. Surynek, “Towards optimal cooperative path planning in hard setups through
satisfiability solving,” in Proc. 12th Pacific Rim Int. Conf. Artif. Intell., 2012, pp. 564–
576.

[56] I. F. A. Vis, “Survey of research in the design and control of automated guided vehicle
systems,” European Journal of Operational Research, vol. 170, pp. 677–709, 2006.

[57] N. Viswanadham, Y. Narahari, and T. L. Johnson, “Deadlock avoidance in flexi-
ble manufacturing systems using Petri net models,” IEEE Trans. on Robotics and
Automation, vol. 6, pp. 713–722, 1990.

[58] R. M. Wilson, “Graph puzzles, homotopy, and the alternating group,” Journal of
Combinatorial Theory, B, vol. 16, pp. 86–96, 1974.

[59] W. L. Winston, Introduction To Mathematical Programming: Applications and Algo-
rithms, 2nd ed. Belmont, CA: Duxbury Press, 1995.

[60] L. A. Wolsey, Integer Programming. NY, NY: John Wiley & Sons, 1998.

[61] N. Wu and M. Zhou, “Resource-oriented Petri nets in deadlock avoidance of AGV
systems,” in Proceedings of the ICRA’01, IEEE, Seoul, Korea, 2001, pp. 64–69.

[62] T. Yamada and R. Nakano, “Genetic algorithms for job-shop scheduling problems,” in
Proceedings of Modern Heuristic for Decision Support, UNICOM seminar, London,
1997, pp. 67–81.

99

[63] J. Yu and S. M. LaValle, “Optimal multi-robot path planning on graphs: Structure
and computational complexity,” ArXiv: http://arxiv.org/pdf/1507.03289v1.pdf, 2015.

[64] ——, “Optimal multirobot path planning on graphs: Complete algorithms and effec-
tive heuristics,” IEEE Trans. on Robotics, vol. 32, pp. 1163–1177, 2016.

[65] J. Yu and D. Rus, “Pebble motion on graphs with rotations: Efficient feasibility tests
and planning,” in Workshop on the Algorithmic Foundations of Robotics, Istanbul,
Turkey, 2014.

[66] M. Zhou and M. P. Fanti (editors), Deadlock Resolution in Computer-Integrated
Systems. Singapore: Marcel Dekker, Inc., 2004.

100

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Problem Description and Motivation
	Literature Review
	AGV-Related Literature and Practice
	Literature on Multi-Robot Path Planning (MPP)

	Goals and Outline of the Proposed Research Program

	Problem Formulation
	Overview of the Main Modeling Representations and Assumptions
	Mathematical Formulation
	Notation
	Decision Variables
	MIP

	A Lagrangian-Duality Approach for the Considered MIP
	Formulation of the Lagrangian Relaxation and the Dual Problem
	A Dual-Ascent Approach to the Optimization of the Relaxed Dual Problem
	Definition of a Streamlined Dual-Ascent Algorithm
	Customization of the Algorithm of Section 3.2.1 to the Dual Problem of Section 3.1

	Optimizing the Lagrangian Dual Problem Using a Single LP

	A Heuristic Approach to the Considered Traffic Scheduling Problem
	Formal Representation of the Solution Space
	Obtaining an Initial Feasible Solution
	Local Search for Improved Solutions
	A Complete and Canonical Description of the Presented Scheduling Algorithm
	Complexity Analysis for the Algorithm of Figure 4.3
	Enhancing the Algorithm Performance
	Controlled Excursions into the Infeasible Solution Space
	Multi-Agent Simultaneous Search
	Lagrange-Multiplier Heuristic

	Experimental Results
	Conclusion
	Alternative MIP Formulation
	References

