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SUMMARY 

Power systems are experiencing drastic changes with the introduction of renewable 

and customer-owned resources. These changes introduce new challenges in the protection, 

control, and operation of power systems. They are concurrent with utilities’ efforts to boost 

system reliability. Such efforts are undermined by the vulnerability of protection system to 

hidden failures. Accordingly, it is necessary to develop new methods that can cope with 

new characteristics and avoid relay misoperations because of hidden failures.  

In response to these challenges, relay manufacturers and researchers have proposed 

several protection schemes. Many of these schemes, especially those concerned with 

hidden failure detection, employ adaptive protection schemes to increase the security of 

protection systems. Adaptive protection schemes have several disadvantages. First, they 

do not address the issue of instrumentation channel (i.e., CT and PT) failures. Moreover, 

they are complex schemes because the algorithms depend on predefined contingencies. 

Hence, they require intensive studies to identify the behavior of each relay under various 

fault conditions and contingencies. Finally, adaptive schemes cannot cope with the 

revolutionary changes in power systems such as the introduction of renewable resources 

and power electronic devices. These disadvantages mandate a new philosophy which is 

capitalizing on technology advancement that paves the way for a paradigm shift in 

protection systems.  

This dissertation introduces a new dynamic state estimation-based centralized 

protection scheme (DSEBCPS) at the substation level. This system supplements dynamic 

state estimation-based protection for individual zones known as “settingless relays” to 



 xix

secure their operation against hidden failures. The DSEBCPS communicates with the 

settingless relays via the station bus and obtains essential information from each protection 

zone, such as phasor quantities, breakers, and disconnect status. This information is 

processed by the DSEBCPS to extract the substation topology and states. Specifically, the 

DSEBCPS performs dynamic state estimations in the quasi-dynamic domain once per cycle 

to detect any sort of abnormality within the substation. Upon detecting abnormalities, the 

DSEBCPS performs hypothesis testing to distinguish between faults and hidden failures. 

The DSEBCPS detects and locates hidden failures within the substation through hypothesis 

testing. Then, the DSEBCPS streams the estimated measurements that correspond to the 

detected bad measurements to the settingless relay to replace the compromised 

measurements. It’s capability to detect hidden failures and replace the compromised 

measurements in real time secure settingless relays from misoperation and ensure high 

dependability even with the presence of hidden failures. Such capability bridges a critical 

gap in protection systems. The integration of the proposed scheme and the individual zone 

protection form a resilient protection system that is self-immunized against hidden failures. 

The DSEBCPS concept has been tested with numerous numerical experiments. More 

specifically, five cases of hidden failures were simulated: (1) PT blown fuse, (2) CT 

saturation, (3) CT short circuit, (4) CT reverse polarity, and (5) wrong CT ratio setting. 

Critical to this work is the ability to manage data and communications between the 

various devices (i.e., MUs, settingless relays, and DSEBCPS) within the substation and 

between the substation and the control center. Therefore, this thesis includes the proposed 

system architecture, which specifies data management, communication protocols, and the 

hierarchical structure of the system. Our design for this architecture complies with IEC-



 xx

61850 standard requirements. This compatibility is achieved by using the data objects, 

services, and communication protocols defined in the standard. Furthermore, we highlight 

the long-term goals of this approach: to support the next generation of energy management 

systems (EMSs), where the proposed system will provide the necessary data and real-time 

models to the control center for performing the usual control center functions such as state 

estimation, optimization, and control. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Power systems around the world are experiencing an evolution driven by the 

introduction of new energy resources, particularly renewable energy resources, power 

electronics conversion systems, and high-voltage direct current (HVDC) transmission. 

According to a recent forecast, renewable energy resources will make up around 31.2% of 

the total world power generation by 2035 [1], [2]. Moreover, around 50% of these resources 

will come from wind and solar energy [1]. This massive deployment of new energy 

resources has already led to several changes in power system characteristics, including 

reduced fault current levels [3], increased dynamics, and wider-frequency variations of 

disturbances. Such changes impose new challenges and mandate new approaches to deal 

with the different aspects of the power system, one of which is the protection and control 

of the power system. 

Another challenge faced by utility companies is to boost system reliability, a goal to 

which they have devoted tremendous effort. However, such efforts could be undermined 

by improper operations, or “misoperations,” of conventional protection systems. 

Therefore, such misoperations must be avoided by designing a reliable protection system. 

This reliability is defined by two fundamental characteristics: dependability and security 

[4], [5]. The term dependability is defined in IEEE C37-100-1992 as “The facet of 

reliability that relates to the degree of certainty that a relay or relay system will operate 

correctly.” This definition implies that dependability describes the ability of the relay to 

accurately respond to abnormalities within its protection zone in a timely manner. The term 
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security is defined in IEEE C37-100-1992 standard as “That facet of reliability that relates 

to the degree of certainty that a relay or relay system will not operate incorrectly.” This 

definition indicates that security describes the relay’s immunity to operate during a fault 

outside its protection zone. In fact, dependability and security are competing characteristics 

of any protection system because a highly dependable system might result in an insecure 

system, and vice versa. Accordingly, protection engineers must consider a tradeoff between 

dependability and security during the overall design of protection systems. Despite all the 

efforts exerted by protection engineers to design a reliable protection system and the 

development in protective devices, relay misoperations are still occurring with significant 

frequency. These misoperations are the reasons for approximately 10% of total power 

system interruptions, as reported by the North American Electric Reliability Corporation 

(NERC) [6]. In many cases, these misoperations lead to wide power system disturbances 

and even blackouts, such as the one that occurred recently in southern California [7]. To 

analyze these concerns in all of its regions, NERC formed the national Protection System 

Misoperation Task Force (PSMTF), which collects and analyzes relay operations [6]. 

Figure 1-1 shows recently released statistics pertaining to relay operations; around 65% of 

misoperations are caused by settings/logic errors, relay instrumentation channels, and 

communications failures. The common characteristic of these problems is that they remain 

hidden until they are exposed by an event in the network, such as a power fault condition 

[7]. This characteristic increases the complexity of the problem because it introduces 

several contingences into a system designed in most cases to handle only one contingency. 

These types of hidden failures remain a critical gap that jeopardizes the reliability of 
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protection systems. Therefore, overcoming these challenges requires a new philosophy in 

power system protection based on the latest developments in technology.  

  

Figure 1-1 Statistics of relay misoperations [6]. 

Technological advancements have played a major role in paving the way for a new 

protection system capable of overcoming present-day challenges. Specifically, the 

introduction of merging units, advancements in computational capabilities and the 

communication infrastructure as well as availability of related standards enable the 

realization of centralized approaches for supervision of protective functions and self-

healing and self-correction of the effects of hidden failures. The introduction of IEC 61850 

provides a blueprint to allow IEDs from various manufacturers to seamlessly participate in 

new protection schemes. Data transfer within the substation has been standardized for any 

application [8], [9]. The standard introduces a new approach to interface the instrument 

transformers with all protection and control devices within the substation. This new 

approach entails separating the analog-to-digital conversion modules from the IED to 
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stand-alone devices called merging units (MUs). IEC 61850-9-1 defines the MU as “an 

interface unit that accepts multiple analogue CT/VT and binary inputs and produces 

multiple time synchronized serial unidirectional multi-drop digital point to point outputs to 

provide data communication via the logical interfaces.” The separation of the D/A modules 

by introducing MUs facilitates the introduction of a substation-centralized protection 

scheme using off-the-shelf hardware [9]. Such hardware is a standard computer 

characterized by high computational capabilities to process massive data streaming from 

the MUs. Finally, this realization of the substation-centralized protection scheme will not 

be possible without advancement in time-synchronization technology using the precision 

time protocol (PTP) as per IEEE 1588-2008. 

1.2 Research Objective  

The evolution in power systems, the risk of relay misoperation because of hidden 

failures, and the technology advancement have driven us to propose a new substation-

centralized protection scheme secured against hidden failures. The objective of this 

research is to design a dynamic state estimation-based centralized protection scheme 

(DSEBCPS) to increase protection system security and dependability. The DSEBCPS 

supervises the dynamic state estimation-based protective relays for individual zones, 

known as “settingless protection” [9]; detects hidden failures; and corrects compromised 

data resulting from hidden failures. Settingless protective relays are an emerging concept 

in protection that can be applied reliably to any power system device, including power 

electronic devices. The proposed centralized protection scheme, along with settingless 

relays, forms a resilient substation-centralized protection system capable of mitigating the 
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limitation in conventional protection systems, including the protection of power 

electronic–based systems and the capability of detecting hidden failures. 

Critical to this work is the ability to manage the data and communication among 

various devices (MUs, settingless relays, DSEBCPS) within the substation and between 

the substation and the control center. Therefore, we defined the details of the system 

architecture, which specifies data management, communication protocols, and the 

hierarchical structure of the system. Currently, there are worldwide efforts to design the 

architecture of the digital substation, and we hope this research will make a significant 

contribution toward this goal.   

1.3 Thesis Outline 

The following chapters include the details of the DSEBCPS. Specifically, the 

dissertation consists of eight chapters divided as follows: Chapter 2 provides a brief review 

of the literature and other background information associated with the proposed research 

topic. Chapter 3 discusses the impact of hidden failures in different components of 

protection systems. The overall concept of the DSEBCPS is introduced in Chapter 4. 

Chapter 5 explains the mathematical formulation of every module within the DSEBCPS. 

In Chapter 6, we demonstrate the capability of the DSEBCPS in detecting hidden failures 

in real time through numerical experiments. This chapter includes the results of five cases 

of hidden failures: (1) PT blown fuse, (2) CT saturation, (3) CT short circuit, (4) CT reverse 

polarity, and (5) wrong CT ratio setting. Chapter 7 presents the proposed architectures for 

data management, communication with zone-level relays within the substation, and 

communication with the control center. This chapter introduces the proposed architecture 

for both grassroots installation and for an existing substation. It also highlights the long-
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term goals of this architecture to support the next generation of energy management 

systems. Finally, Chapter 8 includes concluding remarks, contributions, and directions for 

future research. 
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CHAPTER 2. LITERATURE SURVEY 

2.1 Introduction 

This chapter provides a brief review of the literature and other background 

information associated with the proposed research topic. We first discuss the historical 

development of the centralized protection scheme. Then, we introduce the adaptive scheme 

implementation for hidden failures application. Finally, we discuss emerging concepts that 

can be employed in the centralized protection scheme. More specifically, the concepts of 

settingless relay and pattern recognition protection schemes are highlighted.  

2.2 Historical Development  

The development of centralized protection schemes began in 1980 [9]. One of the 

earliest efforts to develop such a system was the EPRI research project RP-1359, which 

addressed system requirements for the substation control and protection system developed 

by Westinghouse Electric Cooperation [9], [10], [11]. This system is an integrated 

protection system for transmission-level substations, which includes line, transformer, bus, 

shunt reactor, and breaker failure protections. Furthermore, the system includes control 

functions, system restoration aid, revenue metering, and a SCADA system. Two similar 

systems, the integrated modular protection and control system (IMPACS) and the hybrid 

system, were developed by American Electric Power (AEP) and ASEA, respectively [9].  

In 1992, Ontario Hydro developed the integrated protection and control system 

(IPACS), a computer system designed for protection, control, and monitoring [9]. It was a 

centralized system using a single CPU that provided a protection system for transformer 
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stations. It provided protection for the protection zones of typical transformer stations such 

as transformers, buses, and feeders. Additionally, the system provided metering and 

SCADA functions. It was deployed to around 56 substations. In 1994, GE and North West 

utility in Spain developed SIPSUR, which is a centralized protection scheme for medium 

voltage (MV) distribution substations. This system combined the protection schemes of 

two incomers, one transformer, and five feeders into a central platform [9], [12].    

In 2000, a centralized protection system was developed by Vattenfalls Eldistribution 

in cooperation with ABB [9], [13]. The system was developed for control and protection 

of HVDC substations and included several conventional AC protection functions. The 

system was deployed at five different substations. It used the industrial computers of that 

time. Each computer was connected to set of I/O modules with processor cards for digital 

and analog input and output data.  

The aforementioned systems managed to integrate both control and protection 

functions into microprocessor-based devices. These systems provided more monitoring 

and control capabilities that improved the operational aspects of the system. However, they 

were replicas of the legacy protection functions without additional algorithms to enhance 

protection-system security. Therefore, these systems were vulnerable to hidden failures, 

which affected their overall security.   

2.3 Adaptive Scheme-Based Centralized Protection Scheme  

During the last two decades, relay manufacturers and researchers have addressed 

some specific issues related to hidden failures. They have proposed several protection 

schemes that minimize the effects of hidden failures. Most of these schemes employ the 
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concept of adaptive protection schemes, which increase the security of protection systems 

[14]–[18]. Conceptually, adaptive schemes have the capability to automatically adjust the 

settings of the protection system according to system conditions. This type of scheme is 

defined in [16] as a scheme that “automatically adjusts the operating characteristics of the 

relay system in response to changes in power system conditions.”  

One example of an adaptive scheme is the blocking scheme, which can identify a 

faulty zone by monitoring the pickup of all relays that see the fault. Then the scheme blocks 

the relays not located in the faulty zone, as illustrated in Figure 2-1. The authors of [17], 

[19] demonstrated that the blocking signal can be sent in less than 20 ms, which is more 

than fast enough to block backup relays. The introduction of GOOSE messages facilitates 

the implementation of the blocking scheme without additional hardware requirements. The 

blocking scheme increases the security of the protection system by eliminating the 

operation of the relays outside the faulty zone. However, the system is vulnerable to hidden 

failures in instrumentation channels. For example, a hidden failure of a CT short circuit in 

CT2 in Figure 2-1 will cause the nonoperation of Relay-2 in response to a fault in its zone. 

Accordingly, Relay-1 will sense the fault and operate. A similar scenario will result if the 

setting of Relay-2 is not adequate to detect the fault. Moreover, the scheme complexity 

increases with the complexity of the system topology. This complexity might lead to errors 

in developing the overall logic of the blocking scheme. 
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Figure 2-1 Example of blocking scheme. 

A widely used adaptive scheme is the voting scheme, which capitalizes on the fact 

that each protection zone and its backup consist of several relays. The objective of the 

voting scheme is to increase the security of protection systems by involving several relays 

located within a protection zone to make final relay decisions [15], [17], [20], [21]. Usually, 

such a scheme is initiated under certain power system conditions such as heavy load 

conditions, which require a very secure protection system to avoid relay misoperation. A 

simple example of a voting scheme is shown in Figure 2.-2, which shows a transmission 

line with one set of protective relays used to protect the line. Typically, these relays are a 

differential relay (R1), distance relay (R2), and directional relay (R3). Usually, the line has 

another set of similar relays at each side to provide backup protection. The voting scheme 

implemented in this example is known as a two-out-of-three voting scheme, which 

demands two relays to see the fault and operate in order to initiate a trip signal and isolate 

the line. The initiation of the scheme depends on the system’s condition, such as a heavy 
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load condition; otherwise, each relay operates independently [22]. These conditions need 

to be predefined based on comprehensive power system studies. A more advanced voting 

scheme with a real-time intelligent fuzzy factor has been proposed [15]. The objective of 

this scheme is to overcome any uncertainty in the relay’s decision. 

The voting scheme has several disadvantages that could jeopardize protection system 

security. A main disadvantage is that the relays used in the voting scheme are vulnerable 

to hidden failures that might cause relay misoperation. In the given example, a hidden 

failure in the instrumentation channel PT-1 affects the voltage inputs of relays R2 and R3 

and might lead them to misoperate. Moreover, the scheme is complex and subjected to 

several uncertainties such as operating conditions that initiate the scheme.  

 

Figure 2-2 Example of voting scheme in transmission line protection.  

Adaptive schemes have been employed in several centralized protection schemes. 

One of these systems is the strategic power infrastructure defense (SPID), a wide-area 

scheme that employs a multi-agent system to assess power system vulnerability and take 

proper defensive actions, as shown in Figure 2-3 [23]–[25]. The aim of the system is to 



 12

increase power system security and avoid catastrophic failures caused by the various 

sources of vulnerability. The key concept of this system is to secure power system through 

a comprehensive wide-area vulnerability assessment. SPID provides a defense against 

hidden failures in its protection scheme through adapting the concepts of an adaptive 

protection scheme. This is achieved by implementing the blocking and voting schemes 

described earlier. Moreover, the system can activate different setting groups within the 

relays as the system configuration changes.  

 

Figure 2-3 The SPID system [25]. 

Another centralized protection system that employs the adaptive scheme is the 

hidden failure and monitoring and control scheme (HFMCS) proposed in [26],[27]. It is a 

substation-based, wide-area system that employs a voting scheme to minimize the effect 

of hidden failures. This system, which monitors protection systems for hidden failure 

detection, aims to increase protection system security as a response to power system 
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vulnerability. The system architecture consists of three main modules interacting with each 

other, as shown in Figure 2-4. These modules are hidden failure monitoring, hidden failure 

control, and the misoperation tracking database. The hidden failure monitoring module 

allows additional controls to be initiated. It monitors the IEDs in a substation and collects 

the alarms related to the protection system. Moreover, it monitors power system topology 

to identify any stressed power system conditions. The hidden failure control module 

employs a voting scheme to minimize the effect of hidden failures. Upon receiving a 

triggering signal from hidden failure monitoring modules, it will activate the voting 

scheme. The misoperation tracking database module serves as a database of all hidden 

failures that take place within the system.  

 

Figure 2-4 HFMCS modules [28]. 

Another system worth mentioning that uses the adaptive scheme is the relay 

supervisory system (RSS), an advanced supervisory system proposed in [29]. This system 

takes advantage of the latest IED technology and the newly established standard (IEC-

61850) to develop a new condition-based maintenance philosophy and reduce risks from 

hidden failures. It supervises all the IEDs in the substations through the station and process 



 14

bus, as shown in Figure 2.5. Once the RSS receives an alarm from an IED or detects a 

failure, it activates the adaptive scheme.  

 

Figure 2-5 RSS architecture [29]. 

The aforementioned solutions are conceptual, and none has yet been deployed in an 

actual system due to practical considerations. These systems employ the adaptive scheme 

to increase the security of the protection system. However, the adaptive scheme has several 

drawbacks. For one, it depends on IEDs and their instrumentation channels and lacks a 

mechanism that verifies their accuracy. It is also contingency based, which means that its 

operation depends on predefined contingencies. However, because the scheme cannot 

handle all possible contingencies that it may encounter in an actual system, it is incomplete. 

Furthermore, it is extremely complex, requiring a communication system and several relays 

operating at the same time to confirm the final relay decision. To find the most optimal 

algorithm, its implementation requires intensive and comprehensive study (i.e. power flow, 
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short circuit, and transient analyses) beyond normal study to identify each relay’s behavior 

at each fault condition. Finally, this scheme does not have a uniform algorithm because it 

mainly depends on the type and number of relays, which are system specific. Thus, the 

degree of complexity and the lack of standardization may be another source of hidden 

failures. 

2.4 Emerging Concept  

Recently, researchers have proposed new approaches to providing protections. This 

section presents two promising techniques: state estimation–based protection schemes and 

pattern classification–based protection schemes.  

2.4.1 State Estimation–Based Protection Schemes (Settingless Relay) 

The idea of settingless protection was inspired by the differential protection function. 

It requires minimal settings, and what is most important is that it does not require 

coordination with other protective relay functions [30]. Differential protection monitors 

Kirchoff’s current law, which states that the sum of the currents going into a device must 

equal zero when the device operates normally (unfaulted). Similarly, settingless protection 

relays monitor all physical laws the device under protection must satisfy when it operates 

normally (unfaulted). This monitoring is accomplished by performing dynamic state 

estimation (DSE), which continuously compares the collected measurements (sampled 

values) to the dynamic model of the device under protection (protection zone) and provides 
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a quantitative assessment of how well the data fit the dynamic model [30]–[34]. DSE 

quantifies the goodness of fit between the measurements and the device model by applying 

the chi-square test, which calculates the probability that the measurements fit the model. 

The chi-square test typically returns a probability of >80% for healthy protection zones and 

<80% for a protection zone with any type of fault inside the zone [30]– [36]. Figure 2-6 

shows the overall logic of DSE-based protection [37]. Given an accurate dynamic model 

of the protection zone, the performance of the settingless relays is very secure and 

dependable. They are immune to normal transient events or external disturbances, such as 

inrush current in transformers and transient currents in capacitor banks [36]–[39].  

 

Figure 2-6 Settingless relay overall concept [37]. 

The settingless relays acquire the measurements of the protection zones from the 

MUs via a process bus. Similarly, all relay decisions are communicated back to the 

breakers via the process bus. Using MUs has the advantage of minimizing the 
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instrumentation cabling in the substation, which reduces instrumentation errors. Therefore, 

the accuracy of the data acquisition system depends mainly on instrumentation 

transformers. Moreover, the MU is characterized by a high sampling rate, a typical value 

being 4,800 samples/s. This sampling rate allows us to perform DSE 2,400 times per 

second [36]. This time performance results in detecting the fault in a small fraction of a 

cycle, which is superior to any existing technology. It is worthwhile to mention that the 

computational requirements of this proposed scheme are within the computational 

capabilities of modern microprocessors. The current implementation uses two cores of the 

processor for each protection zone in the substation, one dedicated to the execution of the 

DSE and the other for handling user interfaces and visualizations of the performance of the 

protection zone. The settingless relays for the various protection zones in a substation are 

integrated into a substation-centralized scheme, as illustrated in Figure 2-7. 

  

Figure 2-7 Settingless relay architecture. 

The settingless relays are vulnerable to hidden failures, similar to any other relaying 

scheme. Such failures could affect the performance of any relay. Hence, a mechanism to 

detect such failures is essential for reliable protection of power system components. Figure 
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2-7 shows that instrumentation channels are the elements of the system most vulnerable to 

hidden failures. Such failures result in inaccurate measurements going to the settingless 

relays, which will cause misoperation. Therefore, a mechanism to detect such failures is 

needed for secure operation. 

2.4.2 Pattern Classification–Based Protection Schemes 

The pattern classification scheme relies mainly on the concept of translational 

knowledge, which is defined as “a set of procedures that allow[s] field data to be merged 

with models to produce better decision-making” [40]. It involves converting data to 

information that is mapped to different types of models. Each model fits certain 

applications that can be used to create knowledge to take proper control actions. For 

protection applications, the pattern classification uses the well-known technique of the 

neural network (NN)[40]–[43]. The concept of an NN-based protective relaying approach 

is to define a cluster of patterns through an intensive learning process of the system under 

investigation and match the pattern of system information (i.e., measurements) to a unique 

cluster, as illustrated in Figure 2-8. This process requires NN training and testing, which 

requires intensive analysis to characterize the system and generate the pattern clusters. 

Accordingly, a large number of fault and nonfault cases are required to accomplish the 

process of training and testing for reliable operation of the algorithm. These test cases are 

mainly generated from simulation to include all possible scenarios. The identification of 

the testing cases depends on the power system device under protection because each device 

in the power system has different characteristics and is subjected to different phenomena.  



 19

The technique is vulnerable to hidden failures, like any other relaying scheme. These 

failures could generate incorrect input data and drive the protection system to misoperate. 

Furthermore, the system requires intensive studies to develop predefined patterns from the 

collected inputs. Such requirements could result in incomplete system which is incapable 

of detecting all faulty conditions. 

 

Figure 2-8 NN-based protective relaying approach [42]. 

2.5 Summary 

The concept of a centralized protection scheme was introduced in the 1980s when 

several centralized protection schemes were introduced. These systems combined the 

conventional protection system and control functions into a central platform for more 

controllability. However, these systems were vulnerable to hidden failures because they 

were not equipped with any additional algorithms to detect such failures. To improve 

protection systems’ security against hidden failures, adaptive protection schemes were 
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introduced. The adaptive scheme has the capability to automatically adjust the settings of 

the protection system according to system conditions. A common approach of the adaptive 

scheme is the voting scheme, which includes several protection relays before initiating a 

trip signal. In general, the adaptive scheme has several drawbacks, such as its complexity 

and its vulnerability to hidden failures in instrumentation channels. 

The advancement in the technology enables the introduction of emerging concepts such 

as state estimation–based protection schemes and pattern classification–based protection 

schemes. The estimation-based protection scheme called a settingless relay is a model-

based protection that continually monitors the consistency between the measurements and 

the zone model. Like the legacy protection system, the settingless relay is vulnerable to 

hidden failures in the instrumentation channels. Resolving such vulnerability will make the 

settingless relay a superior protection system in terms of security and dependability 
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CHAPTER 3. HIDDEN FAILURES  

3.1 Introduction 

Hidden failures have been defined as “permanent defects that will cause a relay or 

a relay system to incorrectly and inappropriately remove a circuit element(s) as a direct 

consequence of another switching event” [26]. One characteristic of these problems is that 

they remain hidden (undetected) until an abnormal condition such as a fault occurs.  During 

such condition, hidden failures may provide incorrect input for IEDs, which may result in 

misoperation and initiation of more contingencies by isolating a healthy portion of the 

power system. Accordingly, they might widen power system interruptions and lead to a 

catastrophic scenario, such as a total blackout. Therefore, hidden failures jeopardize 

protection system security.  

A typical protection system shown in Figure 3-1 comprises protective relays, 

instrumentation channels, (i.e. current transformers (CTs) and potential transformers 

(PTs)), communication infrastructure, circuits breakers, and batteries [29]. Each 

component is vulnerable to hidden failures that might cause protection system 

misoperation. However, protective relays and instrumentation channels are more 

vulnerable to hidden failures because of their massive population in the substations. This 

chapter discusses hidden failure modes of different components and their potential impact 

on the protection system. It starts with protective relays vulnerability to hidden failures. 

Then it briefly discusses common hidden failure modes in the communication layers. 

Finally, hidden failure modes in the instrumentation channels are discussed.   
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Figure 3-1 Typical protection scheme [29]. 

3.2 Hidden Failure Modes in Protective Relays  

The protective relays are the watchdog of the power system. They are capable of 

processing data received from the instrumentation channels (i.e., currents and voltages 

measurements) and detecting abnormal conditions in the power system. These protective 

relays have evolved drastically over the last three decades from electromechanical-based 

devices to microprocessor-based devices. The microprocessor-based devices have also 

been developed to include communication and automation functions along with protection 

functions and, therefore, they are referred to as intelligent electronic devices (IEDs) [9]. 

Hidden failures in IEDs can be classified into three categories (a) hardware-related hidden 

failures, (b) setting-related hidden failures, and (c) relay logic-related hidden failures. The 

following paragraphs discuss each of these classes briefly  [44]. 

Figure 3-2 shows the typical hardware structure of IEDs, which include signal 

conditioning to handle the transients and spikes in the signal, an analog-to-digital (A/D) 

converter, a processor to process the input and perform the IED functions, I/O module to 

receive and send digital signals, and a power supply module [45]. These components might 
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fail mainly because of either aging or manufacturer defects. Such failures could lead to 

relay misoperation by initiating a trip signal during healthy condition or relay nonoperation 

during faulty conditions. Most IED vendors have implemented self-testing capabilities 

within their IEDs [46], [47]. Such self-testing is meant to verify the condition of different 

components in the IED. This includes verifying that the voltage of the DC power supply is 

within an acceptable range, checking its ability to access the memory of the processor, and 

validating the A/D conversion. Upon detecting a failure through the self-check, the IED 

sends an alarm to the control center and deactivates itself automatically. However, the self-

check process does not cover the physical I/O modules, which can fail physically (i.e., 

shorted) and initiate the wrong trip signal to the circuit breaker. This type of failure can’t 

be stopped once it is initiated; nevertheless, a good maintenance program reduces the 

probability of its occurrence.   

 

Figure 3-2 The overall structure of IEDs. 

Incorrect settings or logic are the most common modes of hidden failures in IEDs, 

according to NERC [6]. Such failures are, in most cases, related to human factors, 
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represented by the protection engineers and technicians who calculate and implement the 

relay settings. This issue has become more observable recently as the degree of complexity 

in IEDs has increased because protection, control, and automation have been combined in 

one box. This type of hidden failure is critical because it might cause wide power system 

interruptions during the healthy condition of the affected zone. An example of such failures 

in the legacy protection system is relay miscoordination, as illustrated in Figure 3-3, which 

shows relay-A, located in the upper stream portion of a system, operates faster than relay-

B, which is located in the downstream portion, during a fault in the relay-B zone. 

Accordingly, relay-A initiates a trip signal to breaker-A, which leads to power interruptions 

for all customers supplied by this system. To avoid the risk of relay misoperation because 

of incorrect relay settings and logic, many actions have been proposed such as relay settings 

peer reviews, more training for protection engineers, and relay setting templates 

standardization. Furthermore, the emerging concept of settingless relays addressed the risk 

of incorrect relay settings by reducing the required setting of the relay and, more 

importantly, eliminating the need for relay coordination.  

 

Figure 3-3  Example of relay miscoordination. 
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3.3 Hidden Failure Modes in Communication Channels   

In the era of the smart grid, communication systems have become an integral part 

of protection systems. These communication systems have massive applications, such as 

communication between differential relays, transfer blocking, permissive and tripping 

signals, and the transfer of current and voltage inputs from merging units. With such 

massive applications, however, communication systems could suffer from hidden failures, 

which might cause relay misoperations. The common hidden failure modes in 

communication systems include failures in communication media (i.e., fiber optic cables) 

and communication interfaces (i.e., routers) [48]. These failures result in the loss of 

information from the remote ends, which causes a loss of controllability and observability. 

In legacy protection systems, transmission line protection is the most vulnerable system to 

hidden failures in communication channels because it employs several communication-

based protection schemes, such as differential scheme and a permissive 

overreach/underreach transfer trip scheme. These schemes rely mainly on the 

communication channels, and they might misoperate during communication failures. In 

newly emerged digital substations, the entire protection system for all protection zones in 

a substation relies heavily on communication. Accordingly, every protection zone is 

vulnerable to hidden failures in the communication channels. However, this vulnerability 

is captured in the design of the communication system. Such design entails redundant 

communication infrastructure. Subsequently, a failure in a communication channel will not 

impact the integrity of the protection system. Moreover, the design includes initiating an 

alarm to the control center whenever a communication channel is lost. These design criteria 

are available in both legacy and emerging protection systems. 
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3.4 Hidden Failure Modes in Instrumentation Channels   

The instrumentation channels in protection systems consist of instrumentation 

transformers, instrumentation cables, and burdens. They represent the front line of the 

protection systems, and they act as the interphase between the primary devices (i.e., HV 

power system devices) and the IEDs, which require a relatively low current and voltage to 

operate [49], [50]. The instrumentation transformers step down the voltage and current to 

lower values (typically 1 or 5A for CTs and 69V for PTs). These voltages and currents are 

supplied to the IED through instrumentation cables. Moreover, the IEDs are equipped with 

A/D conversion units to convert the collected measurements to digital signals before they 

are processed. Recently, the A/D conversion has been separated from the IEDs with the 

introduction of merging units (MU), which substantially reduce the amount of 

instrumentation cabling [45]. Figure 3-4 shows typical instrumentation channels with and 

without MUs. Figure 3-4b suggests that instrument transformers are the most vulnerable 

elements to hidden failures in the instrumentation channels because the MUs have almost 

eliminated the instrumentation cables. Moreover, the loss of communication between the 

IEDs and the MUs results in data flow interruption, which can usually be detected by the 

IEDs. Also, the redundancy in the fiber optic infrastructure minimizes the risk of 

communication loss. Accordingly, hidden failures in the instrumentation transformers 

remain a gap that needs to be investigated to improve the security of the protection systems. 

The following subsections discuss the common modes of hidden failures in CTs and PTs 

as well as their impact on the legacy protection systems. Furthermore, this research focuses 

on these hidden failures to develop an overall scheme that can detect hidden failures and 

secure protections system operations.    
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Figure 3-4 Instrumentation channels: (a) conventional; (b) recent approach with MU.  

  

3.4.1 Hidden Failure Modes in Current Transformers  

Current transformers (CTs) are instrument transformers used to measure the current 

waveforms of the protected zone and step them down to values that can be handled by the 

IEDs. They are typically based on magnetic core design and characterized by their ratio 

and accuracy class [51]. CT ratio is the ratio of the rated primary current to the rated 

secondary current, which is typically 5A or 1A. CT accuracy class defines the maximum 

permissible voltage that can be developed on CT burden before saturation takes place [52]. 

ANSI C57.13-1978 defines the following two types of CT accuracy based on the 

application: 

 Metering accuracy class used for application that require a high degree of accuracy, 

such as revenue meters. An example of this class is “0.3 B 0.2,” which means that 
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at 0.2 ohm burden and rated secondary current (i.e., 5A or 1A), the CT accuracy is 

0.3% [53], [54]. 

 Relaying accuracy class for protection application. In this application, the relay 

accuracy is identified at 20 times of the rated current [53]. An example of this 

accuracy is “10 C 800,” which means that at a standard burden and a fault current 

of 20 times the CT secondary rating (i.e., 100A or 20A), the CT secondary voltage 

that will be developed is 800V, and the accuracy of the CT at this condition is 10%. 

Usually, CT will saturate beyond this condition. 

The CT circuits, which are shown in Figure 3-5, are vulnerable to hidden failures. 

Such failures will cause the IED to inaccurately read current waveform and misoperate. 

For this research, the CT mathematical model, which is included in Appendix 1, has been 

developed to simulate and analyze the following common hidden failures modes: (1) CT 

saturation, (2) CT short circuit, (3) wrong CT polarity, and (4) wrong CT ratio settings.  

 

Figure 3-5 CT equivalent circuit. 
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3.4.1.1. CT Saturation 

 The CT saturation is one of the most common hidden failure modes in the CT 

circuit. It is caused by the nonlinear behavior of the magnetic core. The nonlinearity is 

depicted in the relationship between magnetizing current (im) and the magnetic flux density 

( ( )t ), as per the following relation: 

 
( )( ) ( ( ))

0
0

n
ti t i sign tm

   

Figure 3-6 depicts the relationship between the magnetizing curve and the 

secondary voltage [49], [55]. The figure shows that the relationship is linear for a secondary 

voltage less than the knee voltage, which is generally defined “as the voltage at which a 

further 10% increase in volts at the secondary side of the CT requires more than 50% 

increase in excitation current.”[56] Moreover, the relationship becomes nonlinear when the 

secondary voltage exceeds the knee voltage. In the nonlinear region, the magnetization 

current increases substantially for a small increase in the voltage. Accordingly, the 

secondary current of the CT will not be a replica of the primary current. Figure 3-7 shows 

a typical waveform of a saturated CT, which is a distorted waveform with a lower 

magnitude than that of the original waveform [55].   

There are four main factors that cause CT saturation; (a) high fault current, (b) high 

CT burden, (c) large DC offset during fault current, and (d) high percentage of remanence 

[56]. The high fault current and the high CT burden cause the voltage across the burden to 

increase substantially during the fault condition. This voltage might exceed the knee 

voltage and drive the CT into the saturation region. The DC offset component increases 
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the positive half cycles of the secondary voltage that might exceed the knee voltage. The 

remanence, which is also called residual flux, is the magnetic flux that remains from the 

previous excitation process. It will add up to the magnetic flux induced by the primary 

current and could push the core into the saturation region.  

 

Figure 3-6 CT excitation curve [55]. 

 

Figure 3-7 Typical waveform of a saturated CT [55]. 

The saturated CT results in current waveform, which does not replicate the primary 

current. In particular, the magnitude of the phasor quantity decreases during the CT 

saturation as shown in Figure 3-7. Moreover, the angle becomes leading [55], [56]. 
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Consequently, all current-based legacy protection devices are vulnerable to misoperation 

during the CT saturation. For example, Figure 3-8 depicts the response of the transformer 

(i.e., 100 MVA, 230kV/115kV) differential relay with CT saturation in the secondary side 

during external ground fault at phase A on the 115 kV side. The figure shows that the CT 

saturation led to a substantial increase in the differential element, which causes the relay to 

operate and isolate a healthy transformer. This simulation assumes that there are no CT 

saturation detection algorithm implemented to secure the relay operation. This example of 

the CT saturation impact on differential relays can be extended to all types of current-based 

legacy protection relays. The impact can take the form of relay misoperation or relay 

nonoperation during an event that requires the relay to operate.  

 

Figure 3-8 Example of the impact of CT saturation on transformer differential 
protection.   

 Researchers and relay manufactures have proposed several algorithms to detect CT 

saturation and inhibit relay operations [57].  Most of these algorithms detect CT saturation 

based on the harmonic contents in the current waveform of the saturated CT. Other 
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techniques have been also proposed such as wave shape identification and flux-restrained 

current differential relay [57]. These techniques mainly block the relay operation or 

desensitize the relay upon detecting saturation. Their main disadvantage is that their 

capability to detect the CT saturation is significantly reduced at lower levels of saturation. 

Additionally, these techniques are also subjected to hidden failures such as improper setting 

to the CT saturation algorithm. Moreover, their philosophy depends on increasing relay 

security in the expense of the dependability because during the detection the affected relays 

will be disabled or desensitized.    

3.4.1.2 CT Short Circuit 

CT short circuit takes place when the CT terminals are shorted. It may take place 

because of a short circuit event in the instrumentation cables of the CT resulting from a 

transient surge in the system or poor workmanship during the construction phase of the 

substation. Also, it might take place following human error during maintenance activities. 

In both cases, the CT terminals are shorted as shown in Figure 3-9. Consequently, the 

protective devices connected to the CT will not receive the actual CT secondary current. 

This might result in the nonoperation of some relays, such as the simple overcurrent relay, 

during severe fault conditions that require the relay to operate instantaneously. Also, it 

might cause the relay to misoperate for some relays, such as differential relays and distance 

relays, during external faults. Figure 3-10 shows the impact of a CT short circuit in a simple 

ground overcurrent relay (i.e., R2, 51/50 G) for a distribution line during a ground fault in 

the line. The figure shows that the relay did not operate and caused the upper stream relay 

(R1, 51N) to operate after a delay and isolate a larger portion of the system.    
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Figure 3-9 CT short circuit model. 

 

Figure 3-10 Example of the impact of a CT short circuit on overcurrent relay. 
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3.4.1.3. CT Reverse Polarity 

The CT polarity is identified using the dot convention, as shown in Figure 3-11. 

This convention indicates that if the primary current flows into the dot of the primary side, 

then the current must flow out of the dot on the secondary side. Similarly, if the current in 

the primary side flows out of the dot, the current flows into the dot on the secondary side. 

Usually, the manufacturers use this convention through either paint marks or symbol marks 

(i.e., H1 and H2 for primary and X1 and X2 for secondary) to identify the polarity [58]. 

These markings are used to connect the CT based on the requirements of each application.   

 

Figure 3-11 CT polarity convention.  

CT reverse polarity occurs when the CT terminals are reversed in the relay 

terminals or in the terminal blocks, which causes the current waveform in the secondary 

side to be 180 degrees out of phase with the primary current. This type of hidden failure 

results in relay misoperation for the protective functions that are sensitive to CT polarity, 

such as differential relays, distance relays, and directional relays. Usually, such hidden 

failure takes place because of poor workmanship during maintenance or pre-

commissioning activities. Also, CT reverse polarity might exist for a long time until a fault 

occurs in the system or an increment in the load takes place, causing the relay to misoperate. 
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Figure 3-12 illustrates the impact of the CT reverse polarity in the operation of the 100 

MVA, 230kV/115kV transformer differential relay during an increment in the transformer 

load from no load condition to 30% of its rating. In this example, the polarity of the CT in 

the secondary side of the transformer is reversed. Figure 3-12 shows that the differential 

element’s current represents the vector sum of the primary and secondary currents read 

from the CTs. Subsequently, the relay operated and initiated a trip signal to isolate the 

transformer because of the reverse polarity. This example illustrates the negative impact of 

hidden failures on power system operations. This impact can also be seen in the operation 

of the directional relay, where CT reverse polarity will always reverse the direction of the 

current and cause the relay to operate during external faults.    

 

 Figure 3-12 Example of CT reverse polarity. 

3.4.1.4 Wrong CT Ratio Setting  

The relay requires the correct CT ratio setting to replicate the precise primary 

current. The CT wrong ratio is one of the hidden failure modes that takes place during relay 

setting implementation or calculation. Protection engineers might consider the wrong 
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setting of the CT ratio during the setting calculation. Also, technicians might implement 

the wrong CT ratio during setting implementation. In the legacy protection system, the 

impact of the wrongly implemented CT ratio is mainly to the wrongly calculated primary 

waveform, which might disturb the metering function within the relay. Also, considering 

the wrong CT ratio during setting calculation might result in an inaccurate setting. 

Consequently, the relay might either misoperate during normal condition and an external 

fault or not operate during an internal fault. Figure 3-13 shows an example of the calculated 

primary current using the wrong CT ratio for two cases (i.e., a higher ratio of 3000/5 and a 

lower ratio of 1000/5). In this example, the correct CT ratio is 2000/5. The example shows 

the difference between the calculated primary currents, considering the correct and wrong 

ratio could be substantial.     

 

Figure 3-13 Example of the impact of using wrong CT ratio to calculate the primary 
current. 

3.4.2 Hidden Failure Modes in Potential Transformers (PT)  

Potential transformers (PT) are instrument transformers that are used to stepdown 

the system voltage to a level that can be handled by protective devices or meters. PTs are 

usually single phase transformers that are connected in three phases. The most common 

connection methods are Y-Y, delta-delta, and open delta, as illustrated in Figure 3-14 [59]. 
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The selection criteria for connection methods mainly depend on the application and 

economic considerations. The Y-Y connection is used in the HV application more often, 

while the open delta connection is used more frequently in the distribution network. Delta-

delta connections are less common because open delta connections are more economical 

with two PTs, compared with three PTs in the delta-delta connection. Moreover, delta-

connected PTs are not suitable for some protection applications, such as directional 

overcurrent relays that need a polarizing voltage [59]. Furthermore, Delta-Y connection is 

used in some application especially in transmission substations.    

  

Figure 3-14 Typical connection methods for potential transformers [59]. 

 

Figure 3-15 shows the PT circuit, which consists of a primary fuse, internal 

winding, secondary fuses, instrumentation cable, and a burden. Every component in this 

circuit is subjected to hidden failures, like any component in the protection circuit. These 

hidden failures can result in inaccurate voltage readings in the protective devices and may 

cause relay misoperation. The primary and secondary fuses protect the PT circuit during 

abnormal conditions. These fuses get blown when the current in the PT circuit exceeds the 

fuse rating because of an internal fault or overload conditions. Moreover, the fuse might 

be blown due to under sizing, transients, or harmonic resonance [60]. Additionally, most 
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failures in the PT circuit will eventually lead to blown fuses. Therefore, blown fuses are 

considered the most common mode of hidden failures in the PT circuit. Accordingly, we 

have modeled the PT circuit (Appendix 2) to analyze the impact of blown fuses in the 

protection system. Figure 3-16 shows an example of such impact on distance relay during 

phase to phase faults occurred outside 115 kV transmission line with length of 25 mile. 

Figure 3-16c shows the mho type distance relay characteristic on the R-X diagram with 

two points A and B that represent the calculated impedance by distance relay phase element 

(i.e. phase AB) with and without the blown fuse condition, respectively. The figure shows 

that the blown fuse caused the calculated impedance to fall within zone 1 setting, while the 

actual impedance during the event was within zone 2 setting. Accordingly, the relay might 

misoperate during this condition.  

The issue of the blown fuse was addressed by the loss of potential (LOP) scheme, 

which detects an unbalanced condition in the voltage measurements and compares it with 

the unbalanced condition in the current measurement [61]. If the unbalanced condition 

exists only in the voltage measurements, loss of potential, which might be caused by a 

blown fuse, is detected. Upon detecting such event, the affected protection schemes will 

be blocked. The main disadvantage of this scheme is that during fault conditions the 

unbalance will appear in both voltage and current measurements and accordingly the LOP 

will not detect the blown fuse condition.   

 

Figure 3-15 Typical potential transformers circuit. 
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Figure 3-16  Example of the impact of PT blown fuse on distance relay.  
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3.5   Summary   

Hidden failures in protection systems are defects that become apparent during 

switching and/or fault events in power system network and cause protection system to 

misoperate. They might widen power system interruption by isolating healthy portions of 

the power system. Each component in a protection system is vulnerable to hidden failures. 

However, the protective relays and the instrumentation channels are more vulnerable to the 

hidden failures due to their massive population in the substations. For the protective relays, 

the most common hidden failure modes are the incorrect setting and logic of the IEDs. For 

the instrumentation channels the most common hidden failures modes are blown fuse, CT 

saturation, CT short circuit, CT reverse polarity, and wrong CT ratio setting. These failures 

in the instrumentation channels cause the protective device to read incorrect measurement 

which might cause a relay misooperation or nonoperation for an external fault or an internal 

fault respectively.    
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CHAPTER 4. PROPOSED RESEARCH  

4.1 Introduction  

This chapter provides an overview of the proposed dynamic sate estimation-based 

centralized protection scheme (DSEBCPS). The scheme name implies that it employs the 

dynamic state estimation approach to secure zone level protection system against hidden 

failure. The objective of the scheme is to continually monitor zone-level protection, detect 

hidden failures, and correct compromised data. We propose integrating the DSEBCPS with 

settingless relays to secure their operation against hidden failures. The DSEBCPS works 

along with the settingless relays to form a resilient protection system. We have 

implemented the proposed scheme in an object-oriented manner, which requires expressing 

the substation model and measurement model in the standard form known as the state and 

control algebraic quadratic companion form (SCAQCF). The substation model in the 

SCAQCF format is used directly by the dynamic state estimation algorithm, which is the 

main process in the proposed scheme.  

4.2 Overall Approach 

The DSEBCPS is a substation-centralized protection scheme that monitors zone-

level relays (i.e., settingless protection relays) in real time to secure their operation against 

potential hidden failures. As depicted in Figures 4-1 and 4-2, the DSEBCPS inside the 

dotted frame is a second layer that monitors the operation of all settingless relays in a 

substation. The DSEBCPS communicates with the settingless relays via the station bus and 

obtains essential information from each protection zone, such as phasor quantities and 

breaker and disconnect status. This information is processed by the DSEBCPS to extract 
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the substation topology and states. Specifically, the DSEBCPS performs dynamic state 

estimations in the quasi-dynamic domain at sampling rate defined by the user to detect any 

sort of abnormality within the substation. The DSEBCPS measures the consistency 

between the phasor quantities obtained from the settingless relays and the quasi-dynamic 

model of the substation. Any inconsistency between the measurements and the model is 

detected by performing the chi-square test, which computes the probability that the 

measurements fit the model [62], [63]. We refer to this probability as the “confidence level” 

[64]. A high confidence level (i.e., close to 1) indicates a healthy substation; lower values 

indicate a faulty one. It is vital to emphasize the object-oriented approach in our 

implementation of the DSEBCPS. Such an approach is depicted in Figure 4-2, which shows 

that the scheme is built through several objects, such as a substation model, measurement 

model, measurement definition, and dynamic state estimation algorithm.  

Upon detecting abnormalities in the substation through a low confidence level, an 

additional process is needed to distinguish whether this abnormality has resulted from a 

fault or hidden failure. For this purpose, we propose performing hypothesis testing, which 

entails identifying a set of suspicious measurements, removing them one at a time, and 

performing dynamic state estimation every time a suspicious measurement or set of 

suspicious measurements are removed.  If the removal process reveals a high confidence 

level, the eliminated suspicious measurements suffer from abnormalities. Moreover, if the 

suspicious measurements represent a complete zone (i.e., all of them are used to model the 

zone), a power fault is detected in the zone. Furthermore, if the suspect measurements do 

not represent the whole zone, hidden failure in the suspect measurement is detected. The 

effectiveness of the hypothesis testing depends on the level of redundancy in 
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measurements. Because all protective relays (i.e., settingless relays) stream their 

measurements to the DSEBCPS, the redundancy is quite high, typically 2,000% [36]. This 

means that the measurements are twenty times more than the number of states describing 

the operation of the substation. This high level of redundancy results in higher residuals 

(the error between the estimated and measured value) for the bad data and minimizes the 

possibility of bad measurements acting as leverage points [64], [65]. This property enables 

fast convergence of the hypothesis testing. The DSEBCPS classifies measurements with 

high residuals as suspect measurements [66]. Then it starts the removal process with the 

measurement (or set of measurements) of the highest residual(s). More details about 

hypothesis testing are presented in Chapter 5.  

Upon detecting hidden failures, the DSEBCPS computes the sampled values 

corresponding to the detected bad data to the settingless relay to replace the bad 

measurements. To facilitate this process, a delay of two cycles is introduced in the 

operation of the settingless relay. Upon replacing the bad measurements, the confidence 

level of the zone under protection recovers from its low level. Subsequently, the relay will 

not initiate a trip signal. Accordingly, the DSEBCPS increases the settingless relay’s 

security without jeopardizing the dependability. Figure 4-3 depicts the overall concept of 

the DSEBCPS. More details about every process in the DSEBCPS are presented in Chapter 

5.  
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Figure 4-1 DSEBCPS overall concept. 

 

Figure 4-2 DSEBCPS overall architecture. 
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Figure 4-3 Flow chart for the DSEBCPS overall concept. 
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4.3 Summary  

The DSEBCPS supervises the individual settingless relays to secure their operations 

against hidden failures. The process starts with data streaming from the settingless relay to 

the DSEBCPS, which processes the data by performing DSE. This process verifies the 

consistency between the measurements and the substation model. Upon detecting 

inconsistency through the chi-square test, the DSEBCPS performs hypothesis testing to 

detect hidden failures. Upon detecting hidden failures, the DSEBCPS initiates bad data 

replacement to secure the settingless relay from misoperation.  
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CHAPTER 5. SUBSTATION-CENTRALIZED PROTECTION 

SCHEME 

5.1 Introduction 

This chapter discusses the mathematical formulation of the proposed centralized 

protection scheme. It starts with a discussion about the object-oriented approach used in 

our design, then moves on to the substation and measurement models. The modeling 

section is followed by the formulation of the dynamic state estimation that monitors the 

settingless relays and detects substation abnormality. Then hypothesis testing, which is 

used to further classify the abnormality as a faulty zone or hidden failure, is discussed in 

detail. Finally, we present the process of replacing the compromised measurement. 

5.2 Object-Oriented Approach  

The object-oriented approach is generally employed in developing a specific 

application by using the object oriented paradigm, which entails dividing the application 

into a set of objects that interact with each other to perform the overall function. This 

approach has many advantages, including that it will [67]:  

 Provide a unified syntax to each component of the proposed application, which 

supports larger-scale implementation. This advantage is depicted in our proposed 

DSEBCPS by defining several components: (1) substation model extraction, which 

reads an external file to extract the substation model; (2) measurement model 

development; (3) dynamic state estimation computation; (4) hypothesis testing; and 
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(5) bad data replacement. Each component has been designed to accommodate 

different substation designs.    

 Simplify the interaction between the different components of the proposed 

application in a reliable manner. For example, in our design of the DSEBCPS, the 

measurement models’ developments rely on the information provided by the 

substation model extraction module. Similarly, the dynamic state estimation 

computation components use the measurement models in performing DSE. 

 Facilitate the expansion of the application to accommodate additional functions. 

For example, in our design of the DSEBCPS, every function represents an object 

so that any additional functions can be integrated as additional objects.  

 Enable integration with other applications to perform a system-level application. 

For example, the DSEBCPS at every substation can be using the energy 

management system in the control center to perform dynamic state estimation at 

the system level.  

5.3 Phasor Extraction  

The DSEBCPS performs dynamic state estimation in the quasi-dynamic domain, 

which is the domain that neglects electrical transient phenomena and uses phasor 

quantities. Therefore, phasor quantities need to be computed from the sample values used 

in the settingless relay. These phasor quantities have been computed using Fourier series 

expansion, which allows us to express the sampled waveform x(t) as follows: 

 ( ) cos( ) sin( )
1 2

x t a wt a wt harmonics      (5.1) 
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To compute the parameters a1 and a2 efficiently, we propose using the circular array-

based algorithm as illustrated in Figure 5-1 [68]. To explain the algorithm, consider a 

sampled value of x(i) and two sets of circular arrays with N entries each. The entries of the 

circular buffers are initialized to zero. Then the process starts by computing the values y(i) 

and z(i) for each sampled value as follows:  

0
( ) ( )cos( )y i x i W Ti  

0
( ) ( )sin( )z i x i W Ti  

where x(i) is the sampled value at sample i, W0 is the frequency, and T is the period of the 

sampled waveform.  

After each sample, the values of V1(k) and V2(k) are computed as follows:  

1
( ) ( )

1
k N

V k y i
i k
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For each new sample beyond the first N samples, the values V1(k) and V2(k) are 

updated as follows: 

1 1
( ) ( 1) ( ) ( )V k V k y i y i N      

2 2
( ) ( 1) ( ) ( )V k V k z i z i N      

where ( )y i N  and ( )z i N are the oldest values in the circular buffer that will be 

overwritten by introducing the latest values of ( )y i  and ( )z i .  

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 
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Finally, the phasor values are computed as follows: 

2( ) ( ( ) ( ))
1 2

x k V k V k
N

   

  

Figure 5-1 Illustration of circular buffer implementation for phasor extraction. 

5.4 Substation Model 

This section demonstrates the process of developing the substation quasi-dynamic 

model in state and control algebraic quadratic companion form (SCAQCF), which relates 

a set of through variables originating from the physical model of the substation to the state 

and control variables of the substation. The SCAQCF is a mathematical model derived 

from the physical model of the power system devices in the substation. Therefore, the 

substation model is a collection of the individual devices’ models within the substation.  

5.4.1 Quadratized Dynamic Model (QDM) 

(5.8) 
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The first step in developing the substation model is to derive the substation physical 

model, which consists of a set of linear and nonlinear algebraic and differential equations. 

These equations are derived from the physical model of the power system devices located 

in the substation. The second step is to quadratize the model to reduce the nonlinearities of 

order to no greater than two. This step is achieved by introducing new state variables. Thus, 

the model consists of only linear and quadratic terms. The model in this format is referred 

to as the quadratized dynamic model (QDM), which has the following standard format: 
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( ) ( ) ( )1 1 11
d t

I t Y t Y t D Ceqx equ eqceqxd dt
   

x
x u
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where ( )I t are through variables; ( )x t are the external and internal state variables of the 

substation model; ( )u t  are control variables of the device model;  is a matrix defining 

the coefficients of the state variables for the linear part; 	, 		, and	  are 

matrices defining the coefficients of the state variables for the quadratic part; and D
eqxd

 

is a matrix defining the coefficients of the state variables for the differential part.  

(5.9) 

(5.10) 

(5.11) 
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The QDM standard format has three sets of equations. The first set is composed of 

external equations that relate the terminal currents to the state variables. The second set is 

internal equations needed to satisfy the physical model of the substation and consists of 

only linear terms. The third set is also composed of internal equations that contain quadratic 

terms. 

5.4.2 State and Control Algebraic Quadratic Companion Form (SCAQCF)  

The third step in developing the substation model is to eliminate the differential terms 

through an integration process. For such a process, we propose a quadratic integration that 

assumes the functions of the integrated waveform vary quadratically within an integration 

time step, as shown in Figure 5-2 [69]. The figure illustrates that the quadratic functions 

are defined by three points: x(t  h), xm, and x(t) within the interval [t – h,t]. The quadratic 

integration has the advantage of improving accuracy and numerical stability and 

minimizing numerical oscillations. The quadratic integration results in a set of SCAQCF 

with the following standard format:  

( )

0

0

( )

0

0

I t

T i T iY F Y Feqx eqx equQDequI tm

T iF Bequx eq
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, ,( ) ( ) ( )eq eq x eq u eq eqB N t h N t h M I t h K       x u    

(5.12) 

(5.13) 
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where tm is midpoint of the integration step; ,  are through variables, which are 

substation terminal currents that flow into the device at times t and tm; , 	 are 

external and internal state variables of the device model at times t and tm; 	 , 	 

are control variables of the device model at times t and tm; 	 is a matrix defining the 

coefficients of the state variables for the linear part; 	, 		, and	  are matrices 

defining the coefficients of the state variables for the quadratic part; 	 is a constant past 

history–dependent vector; 	 is a matrix defining the coefficients of the state variables 

associated with the last integration step; 	 is a matrix defining the coefficients of the 

through variables associated with the last integration step; and 	 is a constant vector. 

 

Figure 5-2  Quadratic function [69]. 
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5.5 Substation Measurement SCAQCF Model 

The substation model explained in the previous section is used to derive the 

measurements model in the SCAQCF standard. These measurements of the substation have 

four types: 

1. Actual measurements, which are real measurements, such as voltage and current 

measurements, obtained from measurement devices and assigned a percentage error 

equal to the standard deviation of the measurement devices. Usually, these 

measurements, such as the current measurements, are modeled by using the 

corresponding equation in the substation models. Also, some of these 

measurements, such as the voltage measurements, are modeled directly by the state 

variables.  

2. Derived measurements, which are derived from actual measurements, such as the 

neutral current of the transformer. Usually, these measurements are modeled by the 

corresponding equations in the substation models.  

3. Pseudo measurements, which are measurements for quantities that are normally not 

measured, such as the voltage of the neutral. For such quantities, we can assume a 

certain value (i.e., zero for neutral voltages) and assign a relatively large 

measurement error.  

4.  Virtual measurements, which represent the zero value on the left-hand side of the 

equations. These measurements originate from the physical model of the substation. 

Usually, they are assigned a small percentage error.  
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The models for all measurements are stacked with each other to form the SCAQCF 

model of the measurements, which has the following standard format: 

, , , , ,
T i T i T i

qm x qm x qm u qm u qm ux qmY F Y F F C

     
               
     
     

z x x x u u u u x

  
        

  
 

, ,( ) ( ) ( )qm qm x qm u qm qmC N t h N t h M I t h K      x u    

where z is the measurement quantity at times t and tm; 	 is a matrix defining the 

coefficients of the state variables for the linear part; 	, 	, and	  are matrices 

defining the coefficients of the state variables for the quadratic part; 	 is a constant past 

history–dependent vector; 	 is a matrix defining the coefficients of the state variables 

associated with the last integration step; 	 is a matrix defining the coefficients of the 

through variables associated with the last integration step; and 	 is a constant vector. 

5.6 Dynamic State Estimation at Substation Level  

In the proposed scheme, the dynamic state estimation method is used to compute the 

best estimate of the state variables for the substation. These computed states are used to 

calculate the estimated measurement using the substation model. The state estimation 

performance is analyzed through a chi-square test, which measures the goodness of fit 

between the measurements and the substation model. The goodness of fit is quantified by 

what is known as the confidence level. Therefore, a high confidence level indicates that the 

measurements’ fit with the model and the substation is healthy. The following subsection 

details the process of the dynamic state estimation formulations.  

(5.14) 

(5.15) 
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5.6.1 Weighted Least-Square Method 

We have used the weighted least-square method to formulate the dynamic state 

estimation at the substation level. This formulation is started by expressing the 

measurements in terms of the state variables of the substation as follows: 

 ( ) ( ) , ,
T iz t h x Y F Cqm x qm x qmk k  

 
        
 
  

x x x



  



  

where z is the measurements;  is the state variables; Yqm, x is the coefficient matrix of the 

linear terms; Fqm,x is the coefficient matrix of nonlinear terms; Cqm is the constant term; and 

 is the measurement error. 

Then the WLS method is formulated as an optimization problem with an objective 

function to minimize the error as follows [64], [65], [70]:  

      

where	 , 	 ⋯ , ,⋯ , and  is the standard deviation of the meter by 

which the corresponding measurement  is measured.  

For the nonlinear case, the solution is given with Newton’s iterative algorithm as 

follows:  
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(5.18) 



 57

where	  is the Jacobean matrix computed as follows: 

 
( )h xH
x


   

For the linear case, the solution is given as follows: 

 1( ) ( )T TX H WH H W Z C  .  

5.6.2  Abnormality Detection 

Abnormality detection is achieved by performing the chi-square test, which 

calculates the goodness of fit between the measurement and the substation model. The 

goodness of fit is quantified by the confidence level. A high confidence level indicates a 

healthy substation, and a low confidence level indicates an abnormality. The chi-square 

test is computed as follows [64]: 
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( ) ( )
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n
k k

k

h x Z t






  

 V m n    

 2Pr( ) ( , )P V      

 Confidence level= 2Pr( ) 1 ( , )P V       

where the   variable in equation 5.21 is the summation of normalized residuals, which 

have a Gaussian distribution within the range of –1 to 1. The variable V in equation 5.22 

represents the degree of freedom, which is the difference between the number of the 

measurement (m) and the number of the states (n). The term 2Pr( )  in equation 5.23 is 

the chi-square probability distribution function, which is shown in Figure 5-3. It represents 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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the probability that the summation of the normalized residuals is out of the bounds. In fact, 

it is the probability that the measurements do not fit the model. Accordingly, this 

probability is used in equation 5.24 to compute the confidence level which is the probability 

that the measurements fit the substation model.  

 

Figure 5-3 Chi-square probability distribution function [64]. 

5.7 Hypothesis Testing 

This module is initiated when the dynamic state estimation has declared the existence 

of bad data (data abnormality). The objective of this module is to identify the root cause of 

the abnormality which is either power fault or hidden failure. In this context we have three 

possible cases: (1) one or more power faults exist in the substation or any of the 

interconnected circuits, (2) one or more hidden failures exist in the overall system (3) both 

faults and hidden failures exist in the substation. The probability of having two 

simultaneous faults or two simultaneous hidden failures within the substation is very low. 
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However two concurrent events of hidden failure and power fault in the substation are more 

likely to occur. Therefore, our design for this module takes into consideration two scenarios 

(a) single event of either hidden failure or power fault and (b) two concurrent even of both 

hidden failure and power fault.   

To identify the type and location of the abnormality, we propose using hypothesis 

testing. The enabler for such approach is the high redundancy in the measurements at the 

substation level [36], [62]. This redundancy minimizes the possibility of leverage point. 

Therefore, the measurements with abnormality will always experience higher residual error 

than the healthy ones. Accordingly, the hypothesis testing starts by characterizing the 

measurements as suspect based on the values of their normalized residuals. Typically the 

measurements with the highest normalized residual are considered as suspicious 

measurements. The Normalized residual is computed during the DSE computation with: 

 ˆi i
i

i

h x z
nr


 

  
 

 

where inr  is the normalized residual for measurement i,  ˆih x is the calculated 

measurement using the estimated substation states, iz is the measurement i, and i is the 

standard deviation of the meter error. 

To classify the abnormality to either hidden failure or power fault we introduce the 

concept of device common mode criteria which enables grouping multiple suspicious 

measurements into one set if they are modeled by a single device and their normalized 

residuals exceed threshold of 2. There are two device common mode criteria: (1) a zone 

(
(5.25) 
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common mode criterion which allows grouping all the measurements associated with a 

zone, for which settingless relay is operated, into a one set of suspicious measurements if 

their normalized residuals exceed 2 and (2) an instrumentation channel common mode 

criterion which enables grouping the measurements extracted from an instrumentation 

channel if their normalized residual exceed threshold of 2.  

Our design considers three types of hypotheses. The first hypothesis considers bad 

measurements only as a result of hidden failure. This hypothesis involves selecting the 

measurement with the highest normalized residual and subjecting it to instrumentation 

channel common mode criterion to identify the associated instrumentation channel. For 

this particular hypothesis, we also verify the measurements associated with the 

instrumentation channels of the adjacent phases. If they exceed a threshold of 2, they are 

included in the set of the suspicious measurements. The set of suspicious measurements 

and the models of their instrumentation channels are removed from the measurement set 

and substation models respectively. Then the DSEBCPS reruns the DSE. If this process 

reveals high confidence level, hidden failure is detected in the instrumentation channels 

corresponding to the removed models and measurements. The second hypothesis is a power 

fault in the zone for which the settingless relay is operated. This hypothesis involves 

selecting the measurements with highest value of normalized residual and subjecting it to 

zone common mode criterion. If the residuals exceed a threshold of 2, the measurements 

are included in the set of the suspicious measurements. The set of suspicious measurements 

and the models of their zone are removed from the measurements set and substation model 

respectively.  Then the DSEBCPS reruns the DSE. If this process reveals high confidence 

level power fault is detected in the zone corresponded to the removed models and 
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measurements. The third hypothesis is both hidden failure in an instrumentation channel 

and power fault in a zone. The two sets of suspicious measurements considered in the 

previous two hypotheses are grouped as one set of suspicious measurements. Then, this set 

of measurements is removed with their associated models. A successful outcome of the 

third hypothesis indicates a detection of both hidden failure and power fault. 

Figure 5-4 depicts our proposed design for the hypothesis testing. The overall 

concept is to identify a suspicious measurement (i.e., the measurement with the highest 

normalized residual). Then, the suspicious measurement is verified for the device common 

mode criteria to identify the hypothesis under consideration and group suspicious 

measurements according to the selected hypothesis. More specifically, the instrumentation 

channel common mode criterion results in selecting the first type of hypothesis which is 

hidden failure in instrumentation channel. Furthermore, the zone common mode criterion 

results in selecting the second type of hypothesis which is power fault in the corresponding 

zone. In case of single event, the DSEBCPS selects the first or second type of hypothesis 

based on the device common mode criteria, removes suspicious measurements from 

substation measurements and the corresponding device model from substation model and 

reruns the DSE. High confidence level indicates a successful hypothesis and abnormality 

is identified based on the selected hypothesis. In case of two simultaneous events the 

process is summarized in the following points: 

1- The DSEBCPS starts with either hypothesis type1 or type 2 based on the qualified 

device common mode criterion. This hypothesis will fail because of the second 

abnormality.  
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2- The DSEBCPS moves to the second hypothesis during which it verifies the 

normalized residual for all measurements that are not included in the removal 

process during the first hypothesis, picks the highest normalized residual, verifies 

the device common mode criteria, groups the suspicious measurements, removes 

suspicious measurements, and reruns the DSE. This hypothesis will fail because of 

the second abnormality.  

3- It is important to note that if the hypothesis is not successful, the removed set of 

measurements must be returned to the list of the measurements.    

4- The DSE moves to the third hypothesis which combines the previous two types. 

This hypothesis should be successful in restoring high confidence level of the 

substation.  

5-  It is important to note that during the two concurrent events the redundancy in the 

measurements at the substation level will guarantee the convergence of the 

hypothesis testing. In other words, this redundancy will enable the successful 

performance of the hypothesis algorithm. 
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Figure 5-4 Flow chart of the hypothesis testing 
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5.8 Data Correction  

The DSEBCPS uses the substation states to compute the estimated values of 

measurements using the substation models. These calculated measurements are used to 

compute the sampled values corresponding to the compromised measurements with the 

following equation: 

  cosX A w tm m m m      

where Xm is the estimated signal, Am is the estimated magnitude computed in the 

DSEBCPS, and  is the estimated angle computed in the DSEBCPS.  

Upon calculating the sampled values of the compromised measurements, the 

DSEBCPS streams these values to the corresponding position in the circular buffers of the 

process bus at the same rate and in sync with the merging units. Note that this data override 

the compromised data in the circular buffers. Then the settingless relay, which suffers from 

hidden failures, will be automatically using the corrected data and the operation of the 

settingless relay will reset accordingly. To facilitate this process, we propose introducing 

a delay of two cycles in the operation of the settingless relay to allow the DSEBCPS to 

perform the computational procedures and start replacing the compromised data, if 

necessary, in less than two cycles. This means that the DSEBCPS must have the 

computational speed to complete its tasks in about 1.75 cycles or less. The breakdown of 

these two cycles is illustrated in Figure 5-5. 

(5.26) 
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Figure 5-5 Breakdown of Time-delay for the settingless relay. 

5.9 Summary 

This chapter provides the theoretical details of the dynamic state estimation-based 

centralized protection scheme. The concept requires an accurate substation model, which 

is a collection of the devices’ models within the substation. This model is used to derive 

the measurements’ models, which are used in the dynamic state estimation formulation. 

This formulation entails defining an optimization problem with the objective to minimize 

the error between the actual and calculated measurements. The output of the DSE is the 

best estimate of the substation state variables. The DSE performance is quantified through 

the confidence level calculated through the chi-square test. The confidence level measures 

the consistency between the measurements and their models. Accordingly, if the 

confidence level is high, the substation is healthy; otherwise, there is an abnormality in the 

substation. This abnormality is further classified as a hidden failure or faulty condition 

through hypothesis testing. Finally, upon detecting the hidden failure, the DSEBCPS 

streams the calculated sampled values corresponding to the detected compromised 

measurements to the sample valued circular buffers at the same rate and in sync with the 

merging units to override the compromised measurements. This process ensures that the 

settingless relays will always operate with validated data. To facilitate this process and 

secure the settingless relay from initiating the trip signal, two cycles delay is introduced. 
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CHAPTER 6. NUMERICAL EXPERIMENTS OF DSEBCPS 

The concept of DSEBCPS is simulated for a relatively small substation which 

comprises five protection zones, as shown in Figures 6-1 and 6-2. The objective of this 

simulation is to demonstrate the concepts explained in Chapters 4 and 5 and show that the 

system can be implemented on a larger scale. The substation is fed by a 115 kV system via 

a 115 kV transmission line. The five protection zones are: (a) the 115 kV transmission line, 

(b) the 115 kV bus, (c) the 115kV/13.8 kV 36 MVA transformer, (d) the 13.8 kV bus, and 

(e) the 13.8 kV distribution line. For simplicity, Figure 6.2 shows only the instrumentation 

channels connected to burdens (i.e., settingless relays). This substation has a total of 202 

measurements (considering real and imaginary quantities for each phase) and 38 states, 

resulting in a redundancy of 513%. Note the redundancy is lower than what will be 

experienced in a typical substation and therefore represents worse conditions from an 

actual substation case. We used this substation to test our concept of DSEBCPS for hidden 

failure detection. We tested the DSEBCPS capabilities for five types of hidden failure: (1) 

PT blown fuse, (2) CT saturation, (3) CT short circuit, (4) CT reverse polarity, and (5) 

Incorrect CT ratio setting.  The simulation for each case includes the effect of the simulated 

hidden failure type in the settingless relays and the response of the DSEBCPS to the event. 

 

Figure 6-1 One line diagram of the substation used in the simulation. 
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Figure 6-2 One line diagram with instrumentation channels. 
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6.1 Case 1: Blown Fuse  

 The blown fuse is one of the common hidden failure modes in the PT circuits. It is 

simulated by modeling the fuse as an ideal switch that opens completely when the fuse 

blows. The fuse of the wye-wye connected PT-4, phase A (PT-4A), which provides the 

settingless relays of the transformer zone with the voltage measurement of the secondary 

side of the transformer, was blown.  This case was simulated for three scenarios: (a) single 

event, blown fuse of PT-4A without fault, (b) two non-simultaneous events, blown fuse of 

PT-4A and phase to phase fault in the distribution line, and (c) two simultaneous events, 

blown fuse of PT-4A and phase to phase fault in the distribution line.  The objective of 

these three scenarios is to demonstrate the capability of DSEBCPS to distinguish between 

a hidden failure and a faulty zone through the hypothesis testing. 

6.1.1 Case 1.1: Single Event, Blown Fuse of PT-4A without Fault 

 This scenario examines the effect of a single event of hidden failure on the 

settingless relay and the response of the DSEBCPS.  The simulation period is 5 seconds.  

The event of the blown fuse was initiated at t=2 seconds.  Furthermore, the case was 

initially simulated with a load of 6 MW.  An additional load of 6MW was switched on at 

t=3 seconds and switched off at t=4 seconds. The results of the settingless relay of the 

transformer zone, as well as the proposed DSEBCPS, are presented below. 

Settingless Relay 

The waveform of the voltage measurement extracted from PT4 and recorded in the 

settingless relay of the transformer zone is shown in Figure 6-3.  The figure clearly shows 
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phase A voltage experienced a significant voltage drop as a result of the blown fuse.  The 

figure also depicts the response of the settingless relay that detected abnormal conditions 

and its confidence level dropped.  Moreover, the relay operated accordingly and initiated a 

trip signal, as shown in Figure 6-3.  If this operation is executed, the transformer will be 

tripped because of the blown fuse condition, which is not a fault in the transformer.  This 

case clearly displays the impact of the hidden failures on the operation of the protection 

system and the potential negative consequences in power system operation. 

 

Figure 6-3 Outcome of the settingless relay of the transformer zone for case 6.1.1.  

DSEBCPS  

Figure 6-4 shows the phasor quantities of the events obtained from the DSEBCPS.  

The figure shows the voltage magnitude of phase A experienced a significant drop as a 

result of the blown fuse.  The DSEBCPS responded immediately to the event, which caused 

the confidence level of the substation to drop, by initiating the hypothesis testing, 

summarized in Table 6-1.  During the hypothesis testing the DSEBCPS scanned the values 

of the normalized residuals of all the measurements and selected the measurement with the 
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highest normalized residual as a suspicious measurement.  According to Figure 6-5, 

measurement#66 extracted from PT-4A has the highest value of the normalized residuals. 

Furthermore, the device common- mode criteria verification revealed that instrumentation 

channel common mode criterion was satisfied.  Also, verifying the adjacent phases of PT-

4A revealed that they did not qualify as suspicious measurements. Thus, only the 

measurement of PT-4A was considered as suspicious measurement. Accordingly, the 

hypothesis under consideration was a hidden failure in PT4, phase A. Subsequently, all the 

measurements extracted from PT-4A were removed from the measurement set. The 

dynamic state estimation was performed again starting at time: t=2 sec. The results are 

shown in Figure 6-5. Note that this test indicates a high confidence level after the removal 

of the measurements extracted from phase A of PT-4. Moreover, as an outcome of 

hypothesis testing (Figure 6-5), the DSEBCPS detected a hidden failure in the substation. 

In this case, the DSEBCPS issued a diagnostic, inhibited temporarily the operation of the 

setting-less relay. Additionally, Figure 6-5 shows the DSEBCPS did not detect a faulty 

zone because the zone common-mode criterion was not satisfied, which indicated unfaulty 

substation.  Subsequently, the DSEBCPS identified exactly which instrumentation 

channels suffered from hidden failure as shown in Figure 6-6.  The figure shows that the 

DSEBCPS identified PT-4, phase A as the instrumentation channel suffering from hidden 

failure.  This identification corresponds to the removed measurements. Subsequently, the 

DSEBCPS streamed estimated values of PT-4, phase A data to settingless relay to replace 

the compromised data. This case demonstrated that measurement redundancy at the 

substation level makes hypothesis testing quite efficient because the measurement 
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suffering from hidden failure experienced the highest normalized residuals and therefore 

placed first in the removal process.  

Table 6-1 Summary of the hypothesis testing for case 6.1.1 

Hypothesis # Hypothesis under Consideration Result 

1 Hidden Failure in PT-4A High confidence 
level 

 

 

Figure 6-4 Voltage magnitude and angle from PT4 for case 6.1.1.  
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Figure 6-5 The highest values of the normalized residual for case 6.1.1. 

 

Figure 6-6 The outcome of hypothesis testing for case 6.1.1. 

 

Figure 6-7 Hidden failure status in instrumentation channels for case 6.1.1 
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Settingless Relay Corrected Response  

 The DSEBCPS computes the substation states as an outcome of the DSE.  These 

states are used by the DSEBCPS to compute the estimated measurements for each 

measurement used in performing the DSE including the removed measurements.  Upon 

detecting hidden failure, the DSEBCPS computes the time domain waveforms using the 

calculated measurements, as explained in Chapter 5. The DSEBCPS streams these 

waveforms to the settingless relay, which suffers from the hidden failures, to override the 

compromised measurement. To facilitate this process a delay of 2 cycles in the settingless 

relay operation is introduced.  This process is depicted in Figure 6-8 where the bad signal 

was overridden in the relay with the calculated sampled values after 2 cycles of the blown 

fuse initiation. Furthermore, the confidence level of the settingless relay responded to the 

bad data replacement and recovered from low confidence level as shown in Figure 6-8, 

which also shows that the trip signal was not initiated because of the 2-cycle delay 

introduced in the operation of the settingless relay.  This process demonstrates the 

advantage of this scheme in maintaining high security and dependability of the protection 

system even with the presence of hidden failures. For this example high security was 

demonstrated in detecting the hidden failure, while high dependability was demonstrated 

by replacing the compromised data to maintain the functionality of the protection system.    
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Figure 6-8 Settingless relay corrected response for case 6.1.1 

6.1.2 Case 1.2: Two Non-Concurrent Events, Blown Fuse of PT-4A and Phase to Phase 

Fault in the Distribution Line 

 The definition of hidden failures states that the hidden failures initiation takes place 

during the switching event in the network such as load switching and fault initiation.  

Moreover, the definition implies that the switching event might be concurrent or ahead of 
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time in a short time window of the hidden failure.  The latter is simulated in this case with 

one cycle time window.  The first event is a phase to phase fault at the middle of the 

distribution line, initiated at t=2 seconds.  One cycle later, at t=2.016s seconds, the second 

event of blown fuse (i.e., hidden failure) was initiated by modeling the fuse as an ideal 

switch that opens completely when the fuse blows.  Similar to the previous case, the fuse 

located in the primary side of the wye-wye connected PT 4, phase A, was blown.  The 

simulation period is 5 seconds.  Furthermore, the case was simulated initially with a load 

of 6 MW.  An additional load of 6MW was switched on at t=3 seconds and switched off at 

t=4 seconds.  The objective of this case is to test the performance of the DSEBCPS for two 

events in the substation.  The results of settingless relay of the transformer zone, as well as 

the proposed DSEBCPS, are presented below. 

Settingless Relay 

Figures 6-9 and 6-10 show the waveforms of the event recorded in the settingless 

relay of the distribution line zone.  Both figures show the line experienced a phase to phase 

fault between phases A and B.  Figures 6-11 depicts the responses of the settingless relay 

of the distribution line zone, which detected abnormal condition and caused the confidence 

level of the relay to drop.  Consequently, the relay operated and initiated trip signals, as 

shown in Figures 6-11.  Moreover, Figures 6-12 shows the voltage waveforms of the 

secondary side of the transformer zone recorded from PT4.  It clearly shows that phase A 

experienced a significant voltage drop as a result of the blown fuse.  Additionally, the 

settingless relay of the transformer zone operated as demonstrated in the previous case.  If 

these operations are executed, the transformer and the distribution line will be tripped 
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because of the blown fuse and phase to phase fault, respectively.  The results of the former 

case, show settingless relay misoperation, if no correction action was inserted.  On the other 

hand, the operation of the settingless relay of the distribution line zone was correct because 

of the faulty condition.  This case demonstrates that hidden failures can widen the power 

system interruptions by including healthy zones. 

 

Figure 6-9 Voltage and current waveforms of distribution line zone side 1 for case 
6.1.2. 

.  

Figure 6-10 Voltage and current waveforms of distribution line zone side 2 for case 
6.1.2. 
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Figure 6-11 settingless relay response of the distribution line zone for case 6.1.2.  

 

Figure 6-12 Settingless relay output of the transformer zone for case 6.1.2.  
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shows the voltage magnitude of phase A experienced significant voltage drop because of 

the blown fuse.  Consequently, the DSEBCPS responded to the first event at t=2s (i.e., the 

fault in the distribution line), which caused the confidence level of the substation to drop 

by initiating the hypothesis testing summarized in Table 6-2 and 6-3.  During the test, the 

DSEBCPS scanned the values of the normalized residuals of all the measurements and 

extracted the highest value.  According to Figure 6-16 measurement #116, extracted from 

CT14, phase A and modeled by the distributing line model had the highest normalized 

residual.  The device common mode criteria verification revealed that the zone common 

mode criterion associated with the distribution line was satisfied because all the 

measurements modeled by zone 5 experienced higher value of normalized residual that 

exceeded the threshold of 2.  Thus all the measurements of the distribution line were 

considered as a set of suspicious measurements. Accordingly, the hypothesis under 

consideration was power fault in the distribution line. Subsequently, the DSEBCPS 

removed these measurements from the measurement set and rerun the dynamic state 

estimation starting at time: t=2 sec. This process revealed high confidence level, which 

indicates a successful hypothesis. 

One cycle later at t=2.016s, the confidence level of the substation dropped and 

initiated the hypothesis testing again.  Figure 6-17 shows the highest set of the 

measurement normalized residuals computed by the DSEBCPS during the second event.  

The figure shows that the measurement#66 extracted from PT-4, phase A had the highest 

normalized residual.  Verifying the device common mode criteria revealed that the 

instrumentation channel common mode criterion associated with only PT4, phase A was 

satisfied.  Therefore, the hypothesis under consideration at t=2.016 was hidden failure in 
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PT4, phase A. Subsequently, the DSEBCPS removed all measurements extracted from PT, 

4 phase A from the measurements set and rerun the DSE.   

Figure 6-18 shows the outcome of the two hypotheses at t=2s and t= 2.016s. The 

figure shows both hypotheses were successful as indicated by high confidence level for the 

substation.  DSEBCPS detected a faulty zone and hidden failure in the substation, as shown 

in Figure 6-18.  Additionally, the figure shows that the phase to phase fault led the blown 

fuse event by one cycle, approximately.  Moreover, the DSEBCPS specified which part of 

the substation suffered from the fault and hidden failures, as shown in Figures 6-19 and 6-

20, respectively.  Accordingly, DSEBCPS issued a diagnostic, inhibited temporarily the 

operation of the settingless relay of the transformer zone and permitted the operation of the 

settingless relay of the distribution line zone.  This simulation shows the redundancy in the 

measurements makes the hypothetical testing very efficient because the measurement 

suffering from hidden failures was placed first in the removal process. 

 

Figure 6-13 Voltage magnitude and phase angle of the distribution line side 1 for case 
6.1.2. 

7997.8 

3922.9 

Distribution_Line_Side1_Volatge_PhA_Mag

1.373 

-7.809 

Distribution_Line_Side1_Volatge_PhA_Ang

7970.5 

3965.4 

Distribution_Line_Side1_Volatge_PhB_Mag

-98.02 

-120.5 

Distribution_Line_Side1_Volatge_PhB_Ang

7965.5 

3968.7 

Distribution_Line_Side1_Volatge_PhC_Mag

120.5 

119.7 

Distribution_Line_Side1_Volatge_PhC_Ang

0.000 s 4.992 s



 80

 

Figure 6-14 Current magnitude and phase angle of the distribution line side 1 for case 
6.1.2 

 

Figure 6-15 Voltage magnitude and phase angle of PT 4 for case 6.1.2. 
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Table 6-2 Summary of the hypothesis testing at t=2s for case 6.1.2. 

Hypothesis # Hypothesis under Consideration Result 

1 Power fault in the distribution line High confidence level 

Table 6-3 Summary of the hypothesis testing at t=2.016s for case 6.1.2. 

Hypothesis # Hypothesis under Consideration Result 

1 Hidden Failure in PT-4A High confidence level 

 

 

Figure 6-16 The highest values of normalized residuals during the phase to phase fault 
for case 6.1.2.  
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Figure 6-17 The highest values of normalized residuals during the blown fuse event 
for case 6.1.2. 

 

Figure 6-18 The outcome of the hypothesis testing conducted by DSEBCPS for case 
6.1.2.  
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Figure 6-19 Faulty zone identification for case 6.1.2.  

 

Figure 6-20 Hidden failure status in instrumentation channel for case 6.1.2 
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was corrected in the settingless relay of the transformer zone after 2 cycles of the blown 

fuse initiation.  Furthermore, the confidence level of the settingless relay responded to the 

bad data replacement and recovered from a low confidence level as shown in Figure 6-21, 

which also shows the trip signal was not initiated because of the 2-cycle delay introduced 

in the operation of the settingless relay. 

 

Figure 6-21 Corrected response of settingless relay of transformer zone for case 6.1.2.  
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6.1.3  Case-3: Two Concurrent Events, Blown Fuse of PT-4A and Phase to Phase Fault 

in the Distribution Line 

The two events of the previous cases were simulated concurrently of each other.  

The simulation period was 5 seconds.  The sequence of events included the initiation of the 

blown fuse of PT-4A and the phase to phase fault at the middle of the distribution line at 

t=2 seconds; the fault was cleared at t=2.5 seconds.  Furthermore, a 6 MW load was 

included during the simulation.  Additionally, 6 MW was switched on and switched off at 

t=3 seconds and t=4 seconds, respectively.  The objective of this case is to test the 

performance of the DSEBCPS for two simultaneous events in the substation.  The results 

of the settingless relays of the transformer zone and distribution line as well as of the 

proposed DSEBCPS are presented below. 

Settingless Relay 

As with the previous two cases, the settingless relays of the transformer zone and 

the distribution line zone detected abnormal conditions, which caused the confidence levels 

of both relays to drop.  Consequently, both relays initiated trip signals. 

DSEBCPS 

The DSEBCPS responded to both events by initiating the hypothesis testing at t=2s 

summarized in Table 6.4.  The DSEBCPS considered three hypotheses for this case. The 

first hypothesis was power fault in the distribution line because the highest normalized 

residual was experienced by measuremnt#116 as shown in Figure 6-22. This measurements 

extracted from CT 14, phase A and modeled by zone-5. Also, measurement#116 satisfied 
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the zone common mode criterion of zone-5. Accordingly the DSEBCPS removed zone-5 

measurements from the measurements set and the zone model from the substation model 

and rerun the DSE.  The outcome of this hypothesis was low confidence level which means 

unsuccessful hypothesis. The second hypothesis was a hidden failure in PT4, phase A. This 

hypothesis was considered because the second highest normalized residual in the 

measurements, which were not part of the first set of suspicious measurement considered 

during the first hypothesis, was experienced in measurement#66 as shown in Figure 6-22. 

This measurement was extracted from PT-4A.  Also, this measurement satisfied the 

instrumentation common mode criterion of PT-4A.  Subsequently the DSE removed all the 

measurements associated with PT4, phase A and rerun the DSE.  The outcome of this 

hypothesis was low confidence level, which means unsuccessful hypothesis. The third 

hypothesis combined the previous two hypotheses. It considered both power fault in the 

distribution line and hidden failures in PT4, phase A. Subsequently, both set of suspicious 

measurements associated with distribution line and PT4, phase A were removed from the 

measurements set and rerun the DSE. This hypothesis was successful as shown in Figure 

6-23, which shows successful hypothesis testing, indicated by a high confidence level after 

the elimination of both set of suspicious measurements.  Moreover, as an outcome of the 

two-level hypothesis testing, the DSEBCPS detected a faulty zone and hidden failure in 

the substation, as shown in Figure 6-23.The DSEBCPS specified which part of the 

substation suffered from the hidden failure and the fault as shown in Figures 6-24 and 6-

25, respectively.  Accordingly, DSEBCPS issued a diagnostic, inhibited temporarily the 

operation of the setting-less relay of the transformer zone and permitted the operation of 

the settingless relay of the distribution line zone.  This simulation showed that the 
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redundancy in the measurements makes the hypothetical testing very efficient because the 

measurements suffering from abnormalities are placed first in the elimination process 

through the device common-mode criteria.  This case demonstrated the capability of the 

DSEBCPS in detecting two concurrent events; hidden failures and power fault, which 

represents the most challenging scenario.  

 

Table 6-4 Summary of the hypothesis testing at t=2.0s for case 6.1.3. 

Hypothesis # Hypothesis under consideration  Result 

1 Power fault in distribution line Low confidence level 

2 Hidden failure in PT-4A Low confidence level 

3 Power fault in distribution line & 

Hidden failure in PT-4A 

High confidence level 

 

 

Figure 6-22 T he highest values of normalized residuals for case 6.1.3. 
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Figure 6-23 The outcome of DSEBCPS for case 6.1.3. 

 

Figure 6-24 Hidden failure status in instrumentation channels for case 6.1.3. 
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Figure 6-25 Faulty zone identification from DSEBCPS for case 6.1.3 
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6.2.1 Case 2.1: Single Event, CT-9A Short Circuit 

This case examines the responses of the setting-less relay and the DSEBCPS to a 

single event of hidden failure.  The sequence of events started at t=2s during which 6 MW 

load was switched on and CT 9, phase A was shorted. The simulation started initially with 

6 MW load and lasted for 5s. The results of the setting-less relay, as well as the proposed 

DSEBCPS, for the simulated event are presented below.  

Settingless Relay  

 Figure 6-26 shows the current waveforms recorded from CT-9A experienced a 

significant drop because of the CT short circuit.  Moreover, the figure shows the setting-

less relay responded to the event indicated by the drop in the confidence level.  

Accordingly, the relay initiated a trip signal to isolate the transformer. This response is a 

relay misoperation because no power fault exists in the system, which demonstrates the 

effect of the hidden failures.  

 

Figure 6-26 Settingless relay response for case 6.2.1 
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DSEBCPS 

The DSEBCPS responded to the event by initiating the hypothesis testing, which is 

summarized in Table 6-5. During hypothesis testing the DSEBCPS scanned the values of 

the normalized residuals of all the measurements and extracted the highest value. 

According to Figure 6-27, measurement#72 extracted from CT-9A has the highest 

normalized residual. Subsequently, the DSEBCPS verified the common mode criteria, 

which revealed the instrumentation channel common mode criterion associated with CT-

9A was satisfied. Accordingly, the hypothesis under consideration was a hidden failure in 

CT-9A. Therefore, all the measurements extracted from CT-9A were removed from the 

measurements set and the DSEBCPS re-performed the dynamic state estimation. The 

output of the new DSE is shown in Figure 6-28 which depicts high confidence level 

following the removal process that took place at t=2s. Furthermore, Figure 6-28 shows the 

DSEBCPS detected hidden failure because of the satisfaction of the instrumentation 

channel common mode criterion. Additionally, the DSEBCPS specified exactly the 

location of the hidden failure that corresponded to the removed measurements as shown in 

Figure 6-29. Accordingly, DSEBCPS issued a diagnostic, inhibited temporarily the 

operation of the setting-less relay of the transformer zone.  It is important to note that the 

hypothesis testing and the re-performance of the DSE took place only for one time sample 

that corresponds to the initiation of the abnormality.  

Table 6-5 Summary of the hypothesis testing at t=2s for case 6.2.1. 

Hypothesis # Hypothesis Under Consideration Result 

1 Hidden Failure in CT-9A High confidence level 
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Figure 6-27 Highest values of normalized residual for case 6.2.1 

 

Figure 6-28 The DSEBCPS results for case 6.2.1. 

 

Figure 6-29 Hidden failures identification for case 6.2.1. 
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Corrected Settingless Response  

Figure 6-30 shows the corrected response of the setting-less relay.  This figure shows that 

the detected bad signal from CT-9 was overridden by the calculated measurements 

computed in the DSEBCPS.  These calculated sampled values corresponding to the bad 

signal were streamed from the DSEBCPS to the setting-less relay with their time stamps 

to override the compromised measurement.  Furthermore, the confidence level of the 

setting-less relay responded to the replacement of the bad data and recovered to a high 

level, as shown in Figure 6-30, which also shows that the trip signal was not initiated 

because of the two-cycle delay introduced in the operation of the setting-less relay.  

 

Figure 6-30 Settingless relay corrected response for case 6.2.1 
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6.2.2 Case 2.2: Concurrent Events, CT-9A Short Circuit and Power Fault 

This scenario tests the response of the DSEBCPS for two concurrent events, CT 

short circuit in CT9, phase A and phase to phase fault in the 13.8 kV feeder.  Both events 

were initiated simultaneously at t=2s.  Moreover, the fault was cleared at 2.5s. The 

simulation was started with load of 12 MW and lasted for 5s. The response of both 

settingless relays and DSEBCPS are presented below 

Settingless Relay 

Figure 6-31 shows the settingless relay of the transformer zone.  Moreover, the figure 

shows that the relay responded to the event of CT short circuit as indicated by the drop in 

the confidence level. Subsequently, the relay initiated a trip signal to isolate the transformer 

zone. Furthermore, the response of the setting-less relay for the distribution line is depicted 

in Figure 6-32, which shows that the relay responded to the phase to phase fault and 

initiated a trip signal. Therefore, this scenario resulted in the tripping of two zones (i.e., the 

transformer and the distribution line). If the relays’ operations are executed, the transformer 

and the distribution line will be tripped because of the CT short circuit and phase to phase 

fault, respectively. The former case results in isolating the transformer because of the CT 

short circuit, which is not a faulty condition.  
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Figure 6-31 Settingless relay output of transformer zone for case 6.2.2 

 

Figure 6-32 Settingless relay output of distribution line zone for case 6.2.2 
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DSEBCPS 

        The phasor quantities of the current waveform recorded from CT-9 are shown in 

Figure 6-33.  The figure clearly shows that the current magnitude of phase A experienced 

a significant drop because of the CT short circuit condition.  The DSEBCPS responded to 

the event by initiating the hypothesis testing summarized in Table 6-6.  The table shows 

three hypotheses were considered because of the two simultaneous events.  The first two 

hypotheses considered only one device (i.e., full zone or instrumentation channel) during 

the removal process, which all failed to achieve high confidence level.  On the other hand, 

the third hypothesis was successful.  This hypothesis was power fault in the distribution 

line and hidden failure in CT-9A.  The process started by selecting the measurement with 

the highest normalized residual and verifying the device common mode criteria.  According 

to Figure 6-34 measurement#92 extracted from CT-12A and modeled by the zone-5 had 

the highest normalized residual. This measurement satisfied the device common mode 

criterion associated with zone 5 and therefore, all the measurements modeled by zone 5 

were selected as first set of the suspicious measurements. Then, the measurement with the 

second highest normalized residual value, which was not part of the first set of suspicious 

measurements, was selected as second suspicious measurement and subjected to common 

mode criteria. According to Figure 6-34, this measurement was measurement #72 which 

satisfied the instrumentation channels common mode criterion associated with CT9, phase 

A. Therefore, the third hypothesis under consideration was a fault in the distribution feeder 

and a hidden failure in CT9, phase A which both were considered in the previous two 

hypotheses. Hence, the DSEBCPS removed all the measurements and the models 

associated with these devices. This removal process results in high confidence level, which 
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indicates a successful hypothesis. Figure 6-35 depicts the result of the DSEBCPS, which 

shows both fault and hidden failure were detected as a result of the two level hypothesis 

testing. Additionally, the DSEBCPS located the portions of the system that suffer from the 

abnormalities as shown in Figures 6-36 and 6-37.   

 

Figure 6-33 Current Phasor quantities from CT 9 of transformer Zone for case 6.2.2. 

Table 6-6 Summary of the hypothesis testing at t=2.0s for case 6.2.2. 
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Figure 6-34 The highest values of the normalized residual for case 6.2.2. 

 

Figure 6-35 The outcome of DSEBCPS for case 6.2.2 
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Figure 6-36 Faulty zone status for case 6.2.2 

 

Figure 6-37 Hidden failure status for case 6.2.2. 
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Settingless Relay Corrected Response 

Figure 6-38 shows the corrected response of the setting-less relay. This figure shows that 

the detected bad signal from CT-9 has been replaced by the calculated measurement 

computed in the DSEBCPS as explained in Chapter 5. The calculated sampled values are 

streamed from the DSBCPS to the settingless relay with their time stamps to override the 

compromised measurements in the settingless relay. Furthermore, the confidence level of 

the setting-less relay responded to the replacement of the bad data and recovered to a high 

level, as shown in Figure 6-38, which also shows that the trip signal was not initiated 

because of the two-cycle delay introduced in the operation of the setting-less relay.  

 

Figure 6-38 Corrected response of settingless relay of transformer zone for case 6.2.2. 
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6.3 Case 3: CT Saturation 

CT saturation is one of the common hidden failure modes that might cause relay 

misoperation.  This mode of hidden failure is modeled and simulated to test the response 

of the settingless relay and the DSEBCPS. specifically, CT-3, phases A and B, which 

provide the settingless relay of the transmission line zone with the current measurement, 

were modeled to saturate during phase to phase fault in the primary side of the transformer.  

The model entailed increasing the CT burden to a higher level that drives the CT to saturate 

during fault condition.  Moreover, we increased the short circuit level of the source to drive 

a higher short-circuit current.  The sequence of events started by initiating phase to phase 

fault inside the transformer at t=1.5 seconds; the fault was cleared at around t=2 seconds.  

The case was simulated during a no-load condition.  The performance of the settingless 

relay for the transformer zone, as well as the proposed DSEBCPS, is presented below. 

Settingless Relay 

 Figure 6-39 shows the current waveforms of the primary side of the transformer 

depicted from the settingless relay of the transformer zone.  It shows that the transformer 

zone experienced phase to phase fault between phase A and phase B.  Moreover, Figure 6-

39 depicts the relay operations for this event, which shows that the confidence level of the 

relay dropped and the trip signal was initiated.  This operation is correct, given the fault 

within the transformer zone.  Figures 6-40 and 6-41 show the output of the settingless 

relays of the transmission line zone.  Both figures show that the current waveforms of CT3, 

phase A and phase B are distorted because of the CT saturation.  The response of the 

settingless relay depends on whether the CT model was included in the overall zone model.  
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In the event the CT model is not included, the relay will operate and initiate a trip signal as 

shown in Figure 6-40, because the saturated wave violates the overall transmission line 

model.  This action is considered as a relay misoperation because of hidden failure.  

However, if the CT model is included with the zone models, the relay will not operate as 

shown in Figure 6-41; this is because the CT model captures the saturation condition.   

 

Figure 6-39 The outcome of the settingless relay of the transformcer zone for case 6.3. 

Figure 6-40 The outcome of the settingless relay of the transmission line without the 
CT model for case 6.3. 
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Figure 6-41 The outcome of the settingless relay of the transmission line with CT 
model for case 6.3. 

DSEBCPS 

Figure 6-42 depicts the phasor quantities of the current measurement of the primary 

side of the transformer, clearly showing that the transformer experienced phase to phase 

fault in the primary side of the transformer.  Moreover, Figure 6-42 shows the phasor 

quantities of the current measurement extracted from CT-3.  There is a notable reduction 

in the current magnitude of phase A and phase B because of the CT saturation. 

The DSEBCPS responded to both events by initiating the hypothesis testing 

summarized in Table-7. There were three hypotheses under consideration. The first two 

considered a single event of either hidden failure or power fault, which both failed to restore 

8697.5 A

-8616.3 A

Transmission_Line_Current_PhA (From CT_3A) (A)

8608.5 A

-8693.6 A

Transmission_Line_Current_PhB (From CT_3B) (A)

15.55 A

-9.496 A

Transmission_Line_Current_PhC (From CT_3C) (A)

100.0 

0.000 

Confidence_Level

1.000 u

-1.000 u

Trip_Decision

1.235 s 2.307 s



 104

high confidence level of the substation. The third hypothesis combined the previous two 

hypotheses by considering both power fault in the transformer and hidden failure in CT 3A 

and B.  The selection of these two hypotheses was based on the values of the normalized 

residuals. As shown in Figure 6-44, measurement#42 experienced the highest normalized 

residual. This measurement satisfied the transformer common mode criterion and 

therefore, all transformer measurements were grouped as a set of suspicious measurements.  

Furthermore, measurement #25 experienced the second highest normalized residual of the 

measurements that was not included in the first set of suspicious measurements.  These 

measurements satisfied the instrumentation channel common mode criterion of CT3 phases 

A and B.  Accordingly all measurements extracted from CT3A and CT3B were grouped as 

a second set of suspicious measurements.  Subsequently, The DSEBCPS removed both set 

of suspicious measurements from the measurements set and rerun the DSE.  This 

hypothesis was successful as indicated by the high confidence level of the substation as 

shown in Figure 6-45.  Moreover, as an outcome of the two-level hypothesis testing, the 

DSEBCPS detected a faulty zone and hidden failure in the substation as shown in Figure 

6-45.  Furthermore, the DSEBCPS specified which part of the substation suffered from 

hidden failures and the fault as shown in Figures 6-46 and 6-47, respectively.  This 

simulation also shows that the redundancy in the measurements makes two-level 

hypothesis testing very efficient because the measurements that display abnormalities 

experienced the highest normalized residuals which placed them first in the removal 

process.  
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Table 6-7 Summary of the hypothesis testing at t=1.5s for case 6.3. 

Hypothesis # Hypothesis under consideration Result 

1 Power fault in Transformer Low confidence level 

2 Hidden failure in CT-3A and 3B Low confidence level 

3 Power fault in Transformer & 

Hidden failure in C3-A and 3B 

High confidence level 

 

 

Figure 6-42 Current phasor quantities of the primary side of the transformer for case 
6.3. 

 

Figure 6-43 Current phasor quantities of the calculated primary side of CT-3 for case 
6.3 
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Figure 6-44 The highest values of the normalized residual for case 6.3 

 

Figure 6-45 The outcome of DSEBCPS for case 6.3 
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Figure 6-46 Hidden failure detection for case 6.3. 

 

Figure 6-47 Faulty zone detection for case 6.3. 
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Settingless Relay Corrected Response 

 Similar to the previous cases, the DSEBCPS streamed the calculated sampled 

values corresponding to the detected bad signals to the settingless relay of the transmission 

line zone to override the bad signals.  This process is depicted in Figure 6-48.  

 

Figure 6-48. Corrected response of settingless relay of transmission line zone for case 
6.3.  

 



 109

6.4 Case4: CT Reverse Polarity 

CT reverse polarity is one type of hidden failures in the CT circuit.  Typically, this 

event occurs following pre-commissioning activities for a new substation or maintenance 

activities for an existing substation. In either case, the problem remains hidden following 

the energization until the affected zone is loaded. This case simulates the CT reverse 

polarity to analyze the response of both the setting-less relay and the DSEBCPS. 

Specifically, we modeled CT-10 phases A, B, and C, which provide the setting-less relay 

of the transformer zone with the current measurements, with reverse polarity by swapping 

the terminals of each CT at the relay terminals. The sequence of events starts with 

energizing the substation at t=0 s with no load. Then, the transformer is loaded with 15 

MW at t=3 s. The response of the settingless relay and the DSEBCPS is presented below.  

Settingless Relay 

Figure 6-49 shows the current waveforms of the secondary side of the transformer depicted 

from the setting-less relay of the transformer zone. The figure shows 180 degree-phase 

shift between the current waveforms extracted from CT 9 (i.e., the healthy CT) and CT 10 

because of the reverse polarity. Figure 6-49 also depicts the setting-less relay operation for 

this event, which shows that the relay operated and initiated a trip signal to isolate the 

transformer. This response is a relay misoperation because of the hidden failure. This case 

demonstrated the negative consequences of the hidden failure in power system operation, 

which requires a proper action.   
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Figure 6-49 The outcome of the settingless relay of the transformer zone for case 6.4. 
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instrumentation channels were grouped as suspicious measurements and removed from the 

measurements set. The DSEBCPS rerun the DSE which revealed high confidence level as 

shown in Figure 6-52.  This indicates a successful hypothesis.  Accordingly, the DSEBCPS 

detected hidden failures within the substation and did not detect any faulty zones.  

Additionally, the DSEBCPS precisely identified the instrumentation channels that suffer 

from the hidden failures, as shown in Figure 6-53. This case demonstrates the advantage 

of redundancy in the measurements, which makes the hypothesis testing very efficient by 

placing the detected faulty measurements first during the removal process. 

 

Figure 6-50 Angles of the current waveform extratced from CT9 and CT 10 for case 
6.4 
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Figure 6-51 The highest values of the normalized residual for case 6.4 

 

Figure 6-52 The outcome of DSEBCPS for case 6.4. 
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Corrected Response of Settingless Relay  

Similar to the previous cases, the detected bad waveform in the settingless relay 

were overridden by calculated sampled values computed in the DSEBCPS and streamed to 

the settingless relay as shown in Figure 6-54. This process results in confidence level 

recovery which eliminates the initiation of the trip signal.   

 

Figure 6-54 Corrected response of settingless relay of transformer zone for case 6.4. 
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6.5 Case5: CT Incorrect Ratio Settings 

 Another common hidden failure that could affect protection system operation is the 

incorrect CT ratio setting.  It is usually a protection engineer’s responsibility to provide the 

relay setting, which includes the CT ratio.  Therefore, if the engineer sets the ratio 

incorrectly or the technician implements it in the relay inaccurately, the relay will have the 

incorrect setting.  Subsequently, the settingless relay will read the incorrect primary current 

values and might misoperate.  Generally, this event occurs following pre-commissioning 

activities for a new substation or maintenance activities for an existing substation.  In both 

cases, the problem remains hidden following the energization until the affected zone starts 

to be loaded.  This case examines the effect of the wrong CT ratio setting in the settingless 

relays and DSEBCPS.  More specifically, the ratio associated with CT-10, phases A, B, 

and C, which provide the settingless relay of the transformer zone with the current 

measurements, is set to 1000/5 instead of 4000/5 (i.e., the correct ratio).  The sequence of 

events starts by energizing the substation at t=0 seconds with no load.  Then, the 

transformer is loaded with 15 MW at t=3 seconds.  The results of the settingless relays of 

the transformer zone, as well as the proposed DSEBCPS, are presented below. 

Settingless Relay 

 Figure 6-55 shows the current waveforms of the secondary side of the transformer 

seen in the settingless relay of the transformer zone.  It shows a drop in the current 

measurement of CT-10 compared to CT-9 because of the wrong CT ratio.  Figure 6-55 also 

depicts the settingless relay operation for this event, which shows that the relay operated 
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and initiated a trip signal to isolate the transformer.  This response is a relay misoperation 

because there was no faulty condition in the transformer. 

 

Figure 6-55 The outcome of the settingless relay of the transformer zone for case 6.5. 

DSEBCPS 

Figure 6-56 shows the magnitude of the phasor currents extracted from CT-9 and 

CT-10.  The figure clearly shows the reduction in the current magnitude seen by the 

DSEBCPS because of the wrong CT ratio.  This event caused the confidence level of the 

substation to drop.  Therefore, DSEBCPS initiated hypothesis testing (Table 6-9), during 

which the DSEBCPS verified the values of the normalized residuals of all the 

measurements and extracted the highest value.  According to Figure 6-57, the measurement 

#81 extracted from CT-10, phase B has the highest normalized residual.  Hence, the 

DSEBCPS selected this measurement as suspicious measurement and subjected it to device 

common-mode criterion.  For this case, the instrumentation channel common mode 

criterion associated with CT-10, phases A, B and C was satisfied. Therefore, the hypothesis 
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under consideration was hidden failure in CT-10, phases A, B and C.   Subsequently, the 

DSEBCPS removed all the measurements extracted from CT10 and rerun the DSE. Figure 

6-58 shows that this hypothesis was successful and resulted in a high confidence level.  

Moreover, The DSEBCPS managed to detect hidden failures within the substation and did 

not detect a faulty zone.  Additionally, the DSEBCPS identified the instrumentation 

channels that suffer from the hidden failures, which is CT-10 as shown in Figure 6-59.  As 

in the previous cases, we see the advantage of the redundancy at the substation level in 

making the hypothesis testing very efficient. 

 

Figure 6-56 Magnitudes of the current phasor quantities of CT9 and CT 10 for case 
6.5. 

Table 6-9 Summary of the hypothesis testing at t=3 s for case 6.5 

Hypothesis # Hypothesis under consideration Result 

1 Hidden Failure in CT-10A,B and C High confidence level 
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Figure 6-57 The highest values of the normalized residual for case 6.5. 

 

Figure 6-58 The outcome of DSEBCPS for case 6.5. 

 

Figure 6-59 Hidden failure detections from DSEBCPS for case 6.5. 
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Corrected Response of Settingless Relay 

 Similar to the previous cases, the response of the settingless relay is corrected by 

replacing the detected bad measurements, as shown in Figure 6-60.  The DSEBCPS 

streamed the calculated sampled values corresponding to the bad signal to override the bad 

measurements in the settingless relay of the transformer zone. Accordingly the confidence 

level recovered and the relay did not initiate the trip signal. 

 

Figure 6-60 Corrected response of settingless relay of transformer zone for case 6.5. 
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6.6  Summary 

This chapter demonstrated the capability of the DSEBCPS to detect hidden failures 

in real time.  Moreover, it shows the capability of the DSEBCPS to secure the settingless 

relay operation during hidden failures while maintaining high degree of dependability.  

Five cases of hidden failures were simulated: (1) PT blown fuse, (2) CT saturation, (3) CT 

short circuit, (4) CT reverse polarity, and (5) Wrong CT ratio setting.  The DSEBCPS 

managed to detect the hidden failure for each case and identified the instrumentation 

channels that suffer from the hidden failures. Additionally, the simulation cases 

demonstrated the DSEBCPS capacity to distinguish between hidden failures and power 

faults through the hypothesis testing.  Furthermore, the cases show the advantage of high 

redundancy in the measurements at the substation level, which makes hypothesis testing 

quite efficient because the suspicious measurements always experience the highest 

normalized residual. This characteristic eliminates the possibility of leverage points and 

places the suspicious measurements first in the removal process for the bad data.  

 

 

 

 

 

 

 

 



 120

CHAPTER 7. SYSTEM ARCHITECTURE 

7.1 Introduction 

Critical to this work is the ability to manage data and communications between the 

various devices (i.e., merging units, settingless relays and DSEBCPS) within the substation 

and also between the substation and the control center. We define the details of the system 

architecture, which specifies data management, communication protocols, and the 

hierarchical structure of the system. Figure 4-2 in Chapter 4 depicts conceptually the top 

view of the architecture, which shows that the system consists of the following three layers 

of communication: (1) the communication between merging units (MUs) and settingless 

relays through the process bus, (2) the communication between settingless relays and 

DSEBCPS through the station bus, and (3) the communication between DSEBCPS and the 

control center through the station bus. This chapter explains the details of our proposed 

design for each layer and how the layers interact with one another to form the overall 

system architecture. Our design for this architecture complies with IEC-61850 standard 

requirements. We achieve this compatibility by using the data objects, services, and 

communication protocols defined in the standard. The implementation of IEC 61850 

permits interoperability between products from different vendors, which enables seamless 

migration to our proposed scheme within existing substations [1]. Furthermore, this chapter 

sheds light on this approach’s long-term goals: to support the next generation of energy 

management systems (EMS), where the proposed system will provide the necessary data 

and real-time models to the control center for performing the usual control center functions, 

including state estimation, optimization, and control. 
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7.2 IEC 61850 Overview 

 The main objective of IEC 61850 is to standardize data communication within the 

substation [7], [71]. The overall concept of IEC 61850 uses abstract modeling and 

virtualization approaches [7], [71], [72]. Abstract modeling entails creating abstract 

definitions of data items/objects and services that are independent of the communication 

protocol [7], [73], [74]. Data modeling, which is performed using an object-oriented 

approach, consists of logical nodes (LNs) that represent functions or equipment that 

exchange data [7], [75]. Abstract services are services that act on the data to read, write, 

issue control commands, receive alarms, and manage audit logs [76], [77]. IEC 61850-7-1 

explains virtualization as a tool “that provides a view of those aspects of a real device that 

are of interest for the information exchange with other devices.” Figure 7-1 illustrates this 

concept, showing that the real devices on the right-hand side are modeled virtually as LNs 

[71]. Furthermore, the standard defines communication protocols to map the abstract 

models of data and services for data transfer between interfaces. Several protocols satisfy 

the application requirements in terms of performance and technicality. Finally, the standard 

specifies a configuration tool to put each individual part of the system together. This 

configuration is implemented using XML-based Substation Configuration Language 

(SCL), which provides the topology of the entire system in the context of IEC 61850 [78]. 

The standard’s advantage is that it provides a uniform communication mechanism within 

the substation that every IED vendor is obligated to follow. Therefore, utilities enjoy 

interoperable IEDs regardless of their manufacturer, which saves a significant amount of 

time, cost, and effort in dealing with the system. Moreover, the standard provides the 

flexibility to accommodate new applications as they evolve or are introduced to the market.  
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Figure 7-1 IEC 61850 virtual modeling approach [71]. 

7.2.1 Abstract Data and Service Modeling in IEC 61850 Context 

 The modeling process starts by introducing a virtual representation of a physical 

device through a logical device [7]. The physical device, which may contain several logical 

devices, is an actual device connected to the network and typically defined by its network 

address. Furthermore, each logical device contains one or more LNs that represent a set of 

data and services associated with a power system function [73], [75], [79]. The LNs are 

grouped according to the nature of the data and function of each LN. Therefore, the names 

of LNs begin with a character that represents their group; for example, the LNs for 

automatic control start with the letter “A” [75]. Additionally, each LN contains several data 

elements, each of which is assigned a unique name specified in the standard. An example 

of an LN and its data elements is an XCBR LN, which is used to model a circuit breaker. 

Its data elements include Loc to indicate remote or local operation, OpCnt to indicate 

operations count, Pos to indicate position status, a BlkOpn block to indicate open 

commands, a BlkCls block to indicate close commands, and CBOpCap for the circuit 

breaker operating capability [75]. These data elements belong to common data classes 
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(CDCs) specified in IEC 61850-7-3. The CDC describes the nature and structure of the 

data within the LN [73], [80]. The specified CDCs are, for example, controllable status 

information, controllable analog set point information, status settings, and analog settings. 

Each CDC has a defined name and a set of data attributes; the data attributes are simply 

the data elements, such as the status of the breaker. Figure 7-2 shows the overall data 

modeling approach.   

 

Figure 7-2 IEC 61850 data modeling [73]. 

 Data is communicated between different LNs within the substation by abstract 

services defined in IEC 61850, part 7.3. Figure 7-3 shows a top view of communication 

using these services [74]. 
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Figure 7-3 IEC 61850 abstract services acting on data models [74]. 

7.2.2 Communication Protocols 

 The abstract data models and services defined in IEC 61850 can be mapped to 

several communication protocols defined in IEC 61850-8-1 and depicted in Figure 7-4 

[81]. Furthermore, Figure 7-5 shows the performance requirement for each application. In 

general, the standard defines two types of communication mechanisms. The first type is a 

client/server-based mechanism typically used for HMI and SCADA applications [82]. The 

second type is peer-to-peer communication, which is typically used for fast data transfer 

between IEDs and MUs [7]. This type is based on a publisher–subscriber mechanism that 

uses a multicast transmission approach. An example implementation used the following 

three communication protocols to transmit data through the aforementioned mechanisms: 

1. The MMS protocol is used for client/server communication, which runs over 

TCP/IP or OSI networks [7], [73]. Thus, it functions with IP addresses through 

routers. Typically, an MMS client, such as SCADA, sends a request for an explicit 
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data element to the MMS server, which is usually an IED, specified through its IP 

address. The server responds to the request by returning the specified data to the 

client defined by its IP address. This protocol relies on the TCP protocol to verify 

data delivery.  

2. GOOSE messages capitalize on the multicast functionality, provided by Ethernet 

switches, that allows simultaneous communication with several IEDs [72], [83]. 

Thus, they operate on the publisher/subscriber principle. GOOSE communication 

transmits a fast event-driven signal such as a trip signal, which is not cyclic in nature 

[7]. Typically, an IED or MU sends a GOOSE message with the variables of the 

events that need to be communicated. Because of the messages’ multicast nature, 

the destination does not acknowledge delivery [72]. Therefore, to guarantee 

delivery, the same GOOSE message is resent several times. Moreover, to verify the 

virtual connectivity between source and destination, a cyclic GOOSE message is 

sent at a low rate of T0 specified by the user [7]. In most cases, GOOSE messages 

are applied directly to Ethernet switches (i.e., LAN) [7]. Subsequently, they are 

identified by their source MAC addresses. Moreover, GOOSE messages are not 

routable and cannot cross the routers.  

3. The sampled values protocol, as specified in IEC 61850-9-2, is used to 

communicate analog values (current and voltage) from unconventional sensors or 

MUs to the IEDs [84], [85]. Like GOOSE, this protocol capitalizes on the multicast 

functionality provided by Ethernet switches. Moreover, the messages are identified 

by their MAC addresses and are communicated periodically at high frequencies 

after being digitalized [1]. The standard (i.e., 61859-9-2LE) specifies a sampling 
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period of 250 and 208.3 s  for 50 and 60 Hz systems, respectively, for protection 

and most applications as well as a higher rate for metering and power quality.  

 

Figure 7-4 IEC 61850 communication protocols [81]. 

 

Figure 7-5 IEC 61850 performance requirement [7]. 

 The standard also specifies a configuration tool, XML-based Substation 

Configuration Language (SCL) [78]. There are four different configuration files:  
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1. A system-specification description (SSD) file that includes project information and 

the substation one-line diagram. 

2. An IED capability description (ICD) file that defines the LNs and services within 

an IED. 

3. A substation configuration description (SCD) file that details the connectivity and 

data transfer between the IEDs within the substation.  

4. A configured IED description (CID) file that is used to configure the IED with its 

intended function. 

7.2.3 IEC 61850 Substation Architecture 

 Figure 7-6 shows a typical IEC 61850 substation architecture consisting of two 

main layers [7], [73]. The first layer is the “process bus,” where data from MUs are 

collected and transmitted to the IEDs. The MUs collect the analog and digital data from 

the switchyard, convert the analog data to digital signals, and transmit all the data in digital 

format to the process bus [84]. Physically, the process bus consists of redundant fiber-optic 

cables connected to a redundant Ethernet switch [7]. To eliminate network congestion in 

the process bus, both virtual LAN (VLAN) and priority tagging are used [72]. The 

communication protocols used in the process bus are SV for analog signals and GOOSE 

for status and control signals. Therefore, the multicast communication mechanism is used. 

Furthermore, a timing signal (IEEE 1588) is available at the process bus connected to the 

MUs, and data are time-tagged accordingly. 

 The second layer in the architecture is the station bus through which data transfer 

takes place among and between IEDs, SCADA, and HMI. The communication protocols 
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used in the station bus are GOOSE for communication between IEDs and MMS for 

communication with SCADA and HMI [7], [72], [82]. Furthermore, a timing signal is 

available at the station bus, and data are time-tagged accordingly [2]. 

 

Figure 7-6 IEC 61850 substation architecture [7]. 

 Finally, this architecture supports remote network access through the station bus. 

Accordingly, an authorized client can access a wide range of information. Such clients 

could be local HMI, a control center, maintenance technician, or protection engineer [82]. 

7.2.4 Time Synchronization  

 Time synchronization is crucial for data communication between different devices 

within the substation. To reflect the power system operating states, these data are 

synchronized to a common time reference [86], [87]. The standard time reference currently 

used for most applications, including power systems, is coordinated universal time (UTC), 

which can be obtained through GPS satellite clock receivers [88]. Time synchronization is 

achievable through a dedicated timing system using a separate cabling system, as Figure 
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7-7 shows, or through the network used for substation automation, as Figure 7-8 shows 

[86], [87]. The former often uses one pulse per second (1-PPS) and the IRIG-B time code 

as time synchronization techniques, which both satisfy  1 μs accuracy [87]. The 

substation automation network can use the network time protocol (NTP) and the newly 

established IEEE 1588v2 protocol for applications that require time synchronization 

accuracy of  1 ms and  1 μs, respectively [87]. IEEE 1588v2 is expected to dominate in 

the near future because it has the advantage of using the local area network and providing 

high synchronization accuracy [86]–[88].  

  

Figure 7-7 Separate timing and communication networks in a substation [87]. 

  

Figure 7-8 Network topology for NTP and IEEE 1588v2 time synchronization [87]. 
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7.3 DSEBCPS System Architecture for Grassroots Installations  

 This section introduces our proposed architecture for the DSEBCPS considering 

grassroots installations, which means that the limitations of existing installations do not 

constrain the architecture. Figure 7-9 depicts the proposed architecture, showing that 

continuous data streaming in the process bus and station bus is key to the scheme’s reliable 

operation. The figure shows that data flow starts from the MU and telemetry data interface 

and proceeds to the settingless relays through the process bus, which consists of data 

concentrators and a set of Ethernet switches. This data are sampled values streamed at a 

rate of 4,800 samples/s for 60 Hz systems or 4,000 samples/s for 50 Hz systems. Such 

streaming at this rate from every measurement tool in the substation results in a huge set 

of data that requires special management. Therefore, the following subsections detail data 

management at the process bus. Furthermore, at the station bus, phasor quantities, which 

are computed in the settingless relays and transmitted from the remote substation through 

the telemetry data interface, are streamed to DSEBCPS at a rate of 1 sample/cycle through 

the station bus. Such data streaming of the phasor quantities from every IED is unique at 

the station bus. The following subsections also detail this process. Our architectural design 

proposes separating the process bus and the station bus into two separate networks because 

of the massive data traffic in the process bus. Additionally, a critical element for this 

architecture’s successful operation is time synchronization for the data, without which the 

settingless relay and DSEBCPS cannot operate reliably. Therefore, the entire architecture 

is based on GPS-synchronized measurements using the IEEE 1588v2 protocol, which 

sends a timing signal for both the process bus connected to the MUs and the station bus 

connected to the IEDs. All data are time-tagged accordingly. 
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Figure 7-9 Overall system architecture.  

7.3.1 Process Bus 

 The process bus carries data traffic in the form of sampled values originating from 

MUs or unconventional instrumentation channels. Figure 7-10 shows our proposed design 

for the process bus. The design consists of three main elements: (1) network topology, (2) 

data concentrator, and (3) time synchronization. 

7.3.1.1  Network Topology  

The process bus facilitates data flow from MUs to IEDs. Therefore, the process bus 

topology must ensure a reliable data flow to avoid unnecessary data interruption. The 

criteria for network topology selection are data recovery requirements and network 

bandwidth requirements [89], [90]. The data recovery requirements for the process bus 

have already been specified by IEC technical committee 57 (TC57) working group 10 

(WG10) to be zero time [91]. Zero time means that the recovery process must take place 

within the time of one sampling period. This requirement indicates that the process bus 

cannot afford data flow interruption. The bandwidth consumption during normal operation 
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for each MU is estimated to be up to 5 Mbps for the protection applications [89]. Therefore, 

the network backbone of the process bus must be designed to accommodate the total 

bandwidth consumption associated with data streaming from all MUs in the substation. For 

example, if the substation contains 100 MUs, the total bandwidth consumption is 500 

Mbps. Accordingly, the selection of the Ethernet switches must be sized accordingly to the 

total bandwidth. 

Considering the two criteria highlighted above, IEC 61850-9-2 explicitly specifies 

two topologies that satisfy the data recovery requirements [85], [91], [92]. The first 

topology is the high-availability seamless ring (HASR), which simply connects each 

element in the network in a ring topology. This configuration is not practical for process 

buses in big substations with massive numbers of MUs because of the limitation in the 

bandwidth capacity. Consequently, HASR cannot accommodate data traffic for large 

substations. The second topology specified in IEC 61850-9-2 is the parallel redundancy 

protocol (PRP), which simply duplicates the infrastructure for the network backbone. This 

entails creating two separate local area networks (i.e., LAN_A and LAN_B). These two 

networks are used simultaneously to carry data traffic streaming from each MU. 

Accordingly, the destinations (i.e., the IEDs) receive duplicate data from both networks 

when they are healthy. Therefore, a duplicate detection mechanism must be implemented 

to phase out one set of the duplicate information [91]. The PRP consists of the network 

backbone, which is a set of Ethernet switches connected to each other, and network 

branches (i.e., MUs and IEDs). The size of the network backbone from a data perspective 

depends on the size of the Ethernet switches, which are available up to 1 Tbps. Thus, the 

PRP can fit perfectly into a larger substation because it can accommodate massive data 
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traffic without any limitations. Moreover, the redundancy in the PRP topology ensures 

reliable and uninterrupted data flow, which is extremely important for power system 

protection applications. 

Our design for the process bus, depicted in Figure 7-10, adapts the PRP topology. 

We have introduced a data concentrator into the design as part of the network backbone. 

The function of the data concentrator is to receive data streaming from MUs, align them, 

generate time stamps, and stream them again to IEDs (i.e., settingless relays). In this 

topology, duplicated set of data are streamed from each MU and telemetry data interface 

to the data concentrators in LAN_A and LAN_B through Ethernet switches. The data 

concentrators process the data and stream them to the settingless relays through another set 

of Ethernet switches as data packets for each relay. The design is fully redundant as per the 

PRP topology structure, where each element in the backbone network is duplicated, 

including the data concentrator. The design does not include any single point of failure. 

Accordingly, each settingless relay is equipped with a duplicate data detection mechanism 

to handle redundant data streams. Moreover, the selection of the Ethernet switches must be 

engineered properly according to the expected data traffic in the substation, which depends 

primarily on the number of MUs and telemetry data interfaces. It is important to note that 

each settingless relay consists of several LNs to facilitate the required functions; for 

example, each relay will include an LN that represents DSE functions. Similarly, MUs 

consist of several LNs, such as TCTR for current measurements and TVTR for voltage 

measurements. Accordingly, the data transfer will take place between these LNs.  
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Figure 7-10 Process bus topology for grassroots installation.  

7.3.1.2 Data Concentrator 

Accurate data streaming is extremely important for reliable operation of both 

settingless relays and DSEBCPS. Consequently, in our design of the system architecture, 

we have introduced a data concentrator, which is a device that collects data streaming from 

MUs and telemetry interfaces, aligns, and streams them again as data packets to individual 

IEDs. Accordingly, each IED receives its corresponding data packet, which is ready for 

final processing. Each data concentrator includes two interfaces: an MU data interface and 

an elementary data interface. These are separated because the telemetry data’s remotely 

communicated destination is transmitted through different communication channels. This 

could impose additional challenges in handling such data. Moreover, as Figure 7-10 shows, 

we propose including two concentrators in the substation to satisfy the PRP topology’s 
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redundancy requirement. Each data concentrator is capable of performing the required 

functions independently.  

The data concentrator’s main task is to aggregate data from different sources. This 

task could be undermined by data latency if it is not handled properly [93]–[95]. Data 

latency is the time difference between data creation at a source and data processing at a 

destination. The main sources of the data latency is the time required to transmit the data 

through switches as well as transmit the data over fiber-optic cable. This time depends on 

the switch design as well as the distance the data must travel between the source and the 

destination. Figure 7-11 depicts the different components that could affect the latency time 

and shows that each node within the communication path increases the latency time [93]. 

Moreover, this time is magnified for the telemetry data because they are traveling across 

long distances and pass through several communication channels. Furthermore, the 

Ethernet port in the data concentrator must be properly sized to handle the massive data 

streaming from the substation and avoid further latency time. 

There is a very important distinction here: SVs are time tagged as they come out of 

the MU in the Data concentrators. Telemetry SV are time tagged at the source. If these two 

things happen, latency can be tolerated and it will not cause problems. The data 

concentrator task is to time align the data. This distinction justifies the separation in 

handling the SV and telemetry data    
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Figure 7-11 Latency time illustration.   

The issue of latency is network related and cannot be avoided. However, we must 

deal with it to ensure reliable operation of the settingless relays. Thus, we propose 

aggregating the data into a circular buffer with a maximum waiting time for each sample 

that should be more than the maximum latency time. The circular buffer is designed to 

handle a specific amount of data at each time tag. The process is depicted in Figure 7-12, 

which shows that when the last piece of data within a specific time tag has arrived, or when 

the maximum waiting time has elapsed, the data are aligned, tagged in a timely manner, 

and placed in the output channel. The data in the output channel are grouped into data 

packets based on the final destination. This process also justifies the separation of the 

telemetry data interface into a separate circular buffer because of the expected longer 

latency time and different time tagging mechanism. When the data concentrator does not 

receive all the expected measurements, they will be considered missing data. Moreover, if 

the data are received after the waiting time, they will be discarded. The data in the output 

channel includes data aggregated from both circular buffers. This process of data 

aggregation introduces the data concentrator’s latency, which needs to be considered in the 

overall performance of the system. 
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Figure 7-12 Data aggregation in the circular buffer.   

The circular buffers in the data concentrators have a limited storage capacity for the 

aggregated data from MUs and telemetry data interfaces. This storage capacity specifies 

the buffer size, which is dependent on maximum expected latency. Accordingly, the buffer 

size is critical and must be calculated properly to avoid important data losses. The chosen 

size must allow a significant margin for the processing time of the data concentrator in 

addition to the waiting time. Data concentrator design must also take input capacity into 

consideration. This capacity is defined as the capability to successfully process 

measurements without increasing the concentrator latency [93]. Input capacity is very 

important because of the enormous number of input measurements at the substation level. 

Therefore, the input capacity must be sized properly based on the size of the data streaming 

at the substation level.  
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7.3.1.3 Time Synchronization  

Time synchronization is critical for reliable operation of both settingless relays and 

centralized protection schemes. The required timing accuracy for such applications is less 

than 1 μs. Accordingly, we propose using the IEEE 1588v2 time synchronization standard 

known as the precision time protocol. This protocol operates through a data network and 

can achieve time accuracy of less than 1 μs. This section offers more details about the 

overall concept of the protocol and its implementation requirements. 

IEEE 1588v2 is a time synchronization protocol that uses a data network and 

accomplish timing accuracy of less than 1 μs [87], [88], [96]. The synchronization network 

consists of a master clock and a set of slave clocks. Each slave clock is synchronized to the 

master clock so that both clocks provide exactly the same time. This master–slave IEEE 

1588v2 synchronization network consists of the following three types of clock based on 

the location of the clock in the network [87], [96]: 

1. An ordinary clock, which is a clock located in an end device, such as an IED. It 

can act as both master and slave clock. 

2. A boundary clock, which is a clock located in the interface between two 

subnetworks. It will act as a slave clock for the upstream network and master 

clock for the downstream network.   

3. A transparent clock is an intermediate layer (i.e., Network Bridge or switch) 

between the master and slave clocks. It has the ability to measure the residence 

time of an IEEE 1588v2 message within the clock and the delay of the link to 

the destination (i.e., the slave clock). 
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The first step in the 1588v2 synchronization process is to identify the type of each clock 

in the network and then establish the master–slave hierarchy. The best master clock 

algorithm is used to identify the most suitable clock in the network as the master clock 

[27]. Furthermore, the algorithm defines the state of each clock as either master or 

slave. Subsequently, the master clock port will stream IEEE 1588 messages to the 

network. This process is clarified in Figure 7-13, which shows the time difference 

between the master and slave clocks, denoted by 1
t

 
[96]. This time is measured by 

sending IEEE 1588 messages (i.e., data packet A) from the master clock through the 

Ethernet network to the slave clocks. The master clock records the time when data 

packet was sent, denoted by t1. The data packet propagates in the network and reaches 

the slave clock after a propagation delay denoted by 2
t . When the slave clock receives 

the data packet, it generates timestamp t2. Thus, the relationship between t1 and t2 is 

expressed as the following: 

2 1 2 1
t t t t     

Similarly, the slave clock sends back IEEE 1588 messages (i.e., data packet B) with 

timestamp t3 at the slave clock. This data packet reaches the master clock after a 

propagation delay of 2
t . When the master clock receives this data packet, it generates 

a timestamp of t4. Therefore, the relationship between t3 and t4 is expressed as the 

following: 

 
4 3 1 2

t t t t       

(7.1) 

 ( 7.2) 
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The timestamps at the master clock (i.e., t1 and t4) are sent to the slave clock and are 

used along with the slave clock’s timestamps (i.e., t2 and t3) to calculate 1
t  as follows: 

 1 2 3 4
1 2

t t t t
t

  
     

The slave clock uses 1
t to correct its internal time to synchronize with the master clock. 

This process becomes more involved with the introduction of transparent clocks, which 

introduce additional propagation delay that must be considered.    

 

Figure 7-13 Illustration of the master–slave clock operation principle.  

 The time synchronization process is used to timely align the sampled values in the 

MUs and create time stamp for each sample in the process bus. The MUs align the data by 

establishing a 1-second sampling window that starts at the beginning of each second. 

During this period the MU uses a counter that counts the number of samples per second. It 

        (7.3) 
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is initialized with 0 and incremented by one. At the end of the second, it sets back to 0. 

This process is repeated every second to continually align the sampled values streamed to 

the process bus. The data concentrator in the process bus receives the data streams from 

the MU and establishes the time stamp for each sample using the sampling rate and the 

sample value count.  

7.3.2 Station Bus  

 The station bus facilitates data exchange between settingless relays and DSEBCPS. 

This includes phasor quantities streaming from settingless relays to DSEBCPS at a 

sampling rate specified by the end user. Moreover, upon detecting hidden failure the 

DSEBCPS streams the calculated sampled values corresponding to the compromised data 

to the settingless relay, which suffers from hidden failures, at a rate and in sync with the 

MUs to override the compromised measurements. Furthermore, GOOSE message 

exchanges between the IED and DSEBCPS takes place in the station bus. These GOOSE 

messages include but are not limited to breaker status, disconnect status, settingless relays 

operation status, and DSEBCPS permissive signal to settingless relays.  

Continuous phasor quantities streaming is critical for reliable operation of 

DSEBCPS. Thus, station bus topology must insure a reliable data flow to avoid 

unnecessary data interruption. As in the case of the process bus, the criteria for network 

topology are data recovery requirements and network bandwidth requirements[88]-[90]. 

The data recovery requirement for the station bus for our application is zero time. We 

impose this requirement to enable the DSEBCPS to have continuous supervision of the 

settingless relays through continuous DSE performance in the quasi-domain. This 
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requirement indicates that the station bus cannot afford data flow interruption. The size of 

the network bandwidth depends on the rate of the data flow, which is smaller than that of 

the process bus. According to the mentioned criteria, we propose to use the Parallel 

Redundancy Protocol (PRP), which simply duplicates the network backbone infrastructure. 

This entails creating two separate local area networks (i.e., LAN_A and LAN_B), as Figure 

7-14 shows. These two networks are used simultaneously to carry data from each IED to 

DSEBCPS, which receives duplicated data from both networks when they are healthy. 

Therefore, a duplicate detection mechanism must be implemented to phase out one of the 

duplicated data [91]. Similar to the process bus, the PRP consists of a network backbone, 

which is a set of Ethernet switches connected with each other, and network branches (i.e., 

IEDs and DSEBCPS). The size of the network backbone from the data perspective depends 

on the size of the Ethernet switches, which depends on the amount of data exchanged.  

Figure 7-14 shows phasor quantities streaming from settingless relays and 

telemetry interfaces to DSEBCPS. In this design, we have incorporated the data 

concentrator within the DSEBCPS. Therefore, the data concentrator in the station bus is 

considered a function in the DSEBCPS. The concept of the data concentrator is identical 

to that of the process bus. It is important to note that the DSE function within the DSEBCPS 

is considered for this design as a logical node. The degree of redundancy can be extended 

to the DSEBCPS hardware by considering two separate DSEBCPS devices (i.e., 

computers). This option is left to the end user to decide. Finally, time synchronization at 

the station bus is achieved by using PTP as per IEEE1588v2. 



 143

 

Figure 7-14 Station bus topology.   

7.4 DSEBCPS System Architecture for Existing Installations  

This section discusses the deployment of the DSEBCPS in existing substations, 

including legacy protection relays. Moreover, the substation could include settingless 

relays as primary protection for some zones or in parallel with the legacy protection relays. 

Therefore, this setup forms a conventional substation, which includes digital technology 

deployed in part of the substation. Conventional substations with legacy protection have 

always used copper cable wiring to transfer signals between the primary equipment, such 

as circuit breakers, instrumentation channels, and legacy protection relays. For digital 

technologies, data transfer takes place through communication networks as per IEC 61850 

requirements. This setup of a conventional substation supplemented with digital 

technology is expected to dominate in the short term. Therefore, defining the architecture 

of such a substation will pave the way for smooth migration toward deploying both 

settingless relays and DSEBCPS and adapting the digital substation technology.  

The proposed architecture is depicted in Figure 7-15, which shows that the 

instrumentation channels at the switchyard are connected through hardwires to the legacy 
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protection relays. Additionally, the settingless relays receive sampled values streaming 

from MUs and telemetry data interfaces at a rate of 4800 sample/s through the process bus, 

which will be created to facilitate such data transfer. Moreover, phasor quantities are 

streaming from the settingless relays and telemetry interfaces to the DSEBCPS at the rate 

of one sample/cycle. The legacy protection relays could participate in the phasor quantity 

streaming if they have such streaming capabilities. Moreover, GOOSE messages are 

transferred between the MU and settingless relays through the process bus and between the 

legacy protection relays and DSEBCPS through the station bus. Finally, the entire 

architecture is based on GPS-synchronized measurements using the IEEE 1588v2 protocol. 

 

Figure 7-15 Overall system architecture of existing substation. 

      The process bus in this application for existing substations facilitates 

communication between the settingless relays and MUs. It is identical to the process bus 

explained in the previous section for the grass-root implementation. For the station bus we 

suggest introducing a dedicated new portion for data streaming to the DSEBCPS, as Figure 

7-16 shows. This new portion is connected with the existing station bus to communicate 
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the phasor quantities from the legacy protection relays, which have such capabilities, to the 

DSEBCPS. This design could require reinforcement to the existing part to accommodate 

the new data streaming. Several design options are available for the station bus in an 

existing substation, depending on the end users’ requirements. 

 

Figure 7-16 Proposed station bus topology for existing substation. 

7.5 Future Energy Management Systems 

The advancement in power systems and the introduction of new resources, which involve 

new operational challenges, necessitate more capable control centers for reliable operation. 

Decision making in the future grid requires innovative approaches to overcome existing 

limitations. These approaches include advanced data management, sophisticated analytics 

capabilities, and massive computational capabilities. Our proposed DSEBCPS and its 

architecture provide the required infrastructure at the substation level for future energy 

management systems. The DSEBCPS makes enormous measurement data available on a 

central platform that can be streamed to the control center. Moreover, the availability of 



 146

the accurate substation model within the DSEBCPS, which can be sent to the control 

centers, provides opportunities for real-time applications such as contingency analysis 

before executing switching scenarios. These capabilities make the control centers more 

effective in decision making and ensure a reliable and cost-effective operation for power 

system networks. 

       The future EMSs use a distributed state estimation, the DSEBCPS, as a source of 

data acquisition and substation models to support all required applications. Specifically, 

each substation sends its real-time model through the DSEBCPS to the EMS whenever the 

substation topology is changed or a new device is introduced, which are not frequent 

events. Therefore, the process of synthesizing the substation model does not require 

continuous processing, which drastically decreases throughput requirements for the 

communication network. Additionally, the estimated substation states phasor quantities 

computed by the DSEBCPS are available to be sent to EMS once every cycle and can be 

streamed to the EMS at this rate or at a different rate based on communication infrastructure 

capabilities and the application’s requirements. Along with the estimated phasor quantities, 

the DSEBCPS can send several sets of substation alarms that can be used to develop 

awareness about substation conditions and activate any security measurements to ensure 

reliable operation.   

       Furthermore, the EMS uses the states of each substation to compute the system 

states in real time. These states can be used in many applications associated with 

economical and secure power system operation, as Figure 7-17 shows. In computing the 

system states, the EMS combines substation models to represent the entire system model. 

Then the phasor quantities of substations’ states are used to compute the system states. The 
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availability of the system models and the system data, which are synchronized through a 

GPS clock, makes this process straightforward. Furthermore, this process is computed in 

the quasi-dynamic domain, which means the data obtained from the DSEBCPS can be used 

without further processing. Finally, the DSEBCPS paves the way for advanced EMS 

capable of performing several applications for a resilient power system and overcoming 

the challenges of operating the future grid. 

  

Figure 7-17 Future energy management system. 

7.6 Cybersecurity  

We envision the proposed DEBCPS and its architecture as an important step toward 

a seamless transition to digital substations. The digital substation represents a new cyber 

infrastructure paradigm for the power grid. As for any cyber infrastructure, cybersecurity 

arises as a critical risk that could undermine this architecture’s advantages. The enormous 
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number of electronic devices (i.e., DSEBCPS and settingless relays) interconnected via 

communication networks at the system level multiplies such risk. These devices represent 

the heart of power system operation, which cannot afford malfunctions resulting from 

cyber-attacks on the system. Accordingly, this issue jeopardizes power system operation 

reliability and security; such an attack would subject the system to a catastrophic scenario 

such as a total blackout or infrastructure damage. The most critical attacks for a digital 

substation include (a) malicious modification of control data, such as the settings of the 

protection system, operation parameters and others and (b) insertion of malicious 

commands that would cause the power system to misoperate [97]–[99]. Therefore, 

researchers have given cybersecurity much attention. In general, any cybersecurity solution 

has two main requirements: attack detection and efficient communication protocol 

maintenance [98], [99]. The former includes continually monitoring network traffic to 

identify abnormal conditions resulting from attacks. This can be achieved through an 

authentication process for every command to verify its legitimacy. The second important 

requirement entails that any proposed solution does not affect the efficiency of the 

communication protocol. This requirement is critical because most digital substation 

applications are time sensitive, which requires an efficient communication protocol. 

Accordingly, researchers have proposed several solutions such as access control, trusted 

computing, and authentication and intrusion detection [99], [100]. Research into more 

effective solution is ongoing.  

7.7 Summary  

This chapter discussed our design to the architecture of the proposed DCEBCPS. 

This architecture is based on IEC 61850, which permits interoperability between products 
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from different vendors. The proposed architecture for grassroots installation entails 

separating the station bus and process bus into two separate networks, each of which was 

designed using the parallel redundancy protocol (PRP) topology, which duplicates the 

infrastructure for the network backbone and provides full redundancy. Moreover, the entire 

architecture is based on GPS-synchronized measurements using the IEEE 1588v2 protocol, 

which sends a timing signal for both the process bus connected to the MUs and the station 

bus connected to the IEDs. All data are time-tagged accordingly. Additionally, the 

architecture of the DSEBCPS in existing substations, which includes legacy protection 

relays, paves the way for smooth migration to the proposed system. The proposed 

architecture provides the necessary infrastructure for the next generation of energy 

management systems by providing the necessary data and real-time models to the control 

center to perform the usual control center functions, such as state estimation, optimization, 

and control. Finally, cybersecurity arises as critical risk that could undermine the proposed 

system’s advantages. This risk requires more attention from researchers and experts to 

develop a reliable solution. 
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CHAPTER 8. CONCLUSIONS, CONTRIBUTIONS, AND 

FUTURE WORK 

8.1 Conclusion  

The power system is experiencing revolutionary changes driven by the introduction 

of customer-owned and renewable energy resources. These resources introduce significant 

changes in power system characteristics. These changes impose new challenges for every 

aspect of the power system, one of which is protection. These challenges are concurrent 

with utilities’ efforts to boost system reliability. Such efforts are undermined by protection 

system vulnerability to hidden failures, which are defects that become apparent during a 

switching event in the power system network and cause the protection system to 

misoperate. They might widen the power system interruption by isolating a healthy portion 

of the power system. Each component in the protection system is vulnerable to such 

failures. Furthermore, technology advancements pave the way for introducing a new 

protection system to overcome the aforementioned challenges. Employing these 

technologies in developing new approaches results in protection systems able to cope with 

the new changes in the power system, detect hidden failures, and avoid misoperations.  

Toward that goal, we developed a dynamic state estimation-based centralized 

protection scheme (DSEBCPS) to secure the protection system of a substation against 

hidden failures. The DSEBCPS supervises all the individual protection zone relays within 

a substation, detects and identifies hidden failures, and corrects the compromised data. We 

have employed the dynamic state estimation to detect any substation abnormality. Once an 

abnormality has been detected, hypothesis testing is employed to distinguish between 
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hidden failure(s) and power fault(s). The high level of redundancy in the measurements at 

the substation level eliminates the possibility of leverage points which enables highly 

efficient hypothesis testing. During hidden failure detection, the scheme activates a data 

correction module to replace compromised data with valid data. We have tested the 

DSEBCPS with numerous numerical experiments that demonstrated the capabilities of the 

proposed DSEBCPS. They showed that the scheme exploits the huge redundancy in 

measurements at the substation level that makes hypothesis testing quite efficient. Also, it 

can be concluded from the numerical examples that the scheme is capable of detecting 

other types of hidden failures in the instrumentation channels. The research proposed the 

integration of DSEBCPS with the newly emerged concept of settingless relays to ensure 

its secure and dependable operation even in the presence of hidden failures. The concept 

of DSEBCPS can be easily applied with legacy protection zone relays. Whether a 

substation is equipped with legacy-protective relays or settingless relays, the DSEBCPS 

closes a critical gap in protection systems, namely securing the operation of relays in the 

case of hidden failures while maintaining high dependability. The integration of the 

proposed scheme and the individual zone protection schemes forms a resilient protection 

system that is self-immunized against hidden failures.  

Moreover, we have proposed an IEC 61850-based architecture of the DSEBCPS with 

a high degree of redundancy at every layer. The architecture entails separating the process 

bus and the station bus into two separate local networks. We proposed a PRP topology for 

the process and station buses to satisfy the criterion of “zero time” data recovery. 

Furthermore, we introduced data concentrators at both the station and process buses. The 

data concentrators aggregate data from different sources and overcome the challenge of 
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data latency. Moreover, the entire architecture is based on GPS-synchronized 

measurements using the IEEE 1588v2 protocol. All data are accordingly time tagged. 

Furthermore, the proposed architecture provides the necessary infrastructure for the next 

generation of energy management systems. This mission is achieved by providing the 

necessary data and real-time models to the control center to perform the usual control center 

functions, such as state estimation, optimization, and control. Finally, cybersecurity arises 

as a critical risk that could undermine the advantage of the proposed system. This risk 

requires more attention from researchers and experts to develop a reliable solution. 

8.2 Contributions 

The present thesis has made the following contributions: 

 A new substation-centralized protection scheme based on dynamic state estimation 

(DSE). The new scheme is implemented in an object-oriented manner that makes 

it comprehensive and applicable for any substation. It monitors the whole 

substation through its measurements collected from the individual protection zones 

and uses these measurements to perform dynamic state estimation for the whole 

substation. The proposed scheme is capable of detecting abnormalities within the 

substation in a secure, dependable, and timely manner.  

 The proposed scheme is capable of detecting hidden failures in the individual 

protection zone via hypothesis testing. This capability bridges a critical gap in 

protection systems that causes numerous misoperations.  

 The integration of the proposed scheme and individual zone protection form a 

resilient protection system self-immunized against hidden failures. 
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 The proposed architecture is IEC-61850 compliant. It is aligned with worldwide 

efforts to design the architecture of the digital substation, and we hope that our work 

will make a significant contribution toward this goal.  

8.3 Future Research Directions  

The DSEBCPS performs DSE at the substation level using all the available 

measurements at the substation and the substation model, which consists of the model of 

different devices within the substation. This modeling approach can be enhanced by 

including the model of the instrumentation channels along with the main devices. The 

advantage of such a step is to increase the accuracy of the DSE by eliminating the error 

generated by considering an ideal instrumentation channel. This step will increase the 

computational burden of the DSEBCPS. Therefore, a thorough evaluation of the most 

optimal approach to include the models of instrumentation channels is needed.  

Furthermore, we have proposed in the DSEBCPS a data correction module that 

streams the calculated sampled values corresponding to the detected bad measurements to 

the sample value circular buffers to override the compromised measurements. The scheme 

ensures that all settingless relays use validated data. In its present implementation, this 

process may be affected by the harmonic components and transient conditions in the system 

which might affect the settingless relay response. Therefore, the settingless relay response 

can be enhanced by including the harmonic components of the waveforms in performing 

the DSE. Furthermore using the time-dynamic domain for the centralized protection 

scheme instead of the quasi-dynamic domain will eliminate the aforementioned limitations. 

Such enhancements will increase the accuracy of the DSE. However, they will also increase 



 154

the computational burden of the DSEBCPS and increase data traffic in the station bus. 

Accordingly, this process needs to be evaluated in terms of feasibility and the need for such 

enhancements.  

We envision the proposed DSEBCPS and its architecture as an important step toward 

a seamless transition to the digital substation. This involves a dramatic increase in the cyber 

infrastructure in the substations and eventually in the power system. This makes the system 

vulnerable to cyberattacks. The proposed dynamic state estimation-based method in this 

dissertation can be employed to detect cyberattacks. More specifically, the DSE algorithm 

and hypothesis testing can be used to (a) detect data attacks in real time and (b) develop a 

command authentication method to detect maliciously inserted commands. Such a 

technique needs to be developed further and assisted with faster-than-real-time simulation 

for command authentication, which involves three steps: (1) command capturing (i.e., 

intrusion), (2) impact evaluation of the captured commands through performing the DSE 

and hypothesis testing, and (3) command authentication or command blocking.  

DSEBCPS and its architecture can be used as the base for a future energy 

management system where the proposed system will provide the necessary data and real-

time models to the control center for performing the usual control center functions, such as 

state estimation, optimization, and control. The EMS uses the substation model and states 

obtained from the DSEBCPS of each substation to compute the system states in real time. 

These states can be used in many applications associated with a power system’s economic 

and secure operation. A detailed framework for such EMS needs to be developed and 

detailed. 
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APPENDIX A.  CURRENT TRANSFORMER 

A.1   Introduction  

This Appendix presents the time domain single-phase current transformer model. The 

equivalent circuit of a current transformer is illustrated in Figure A-1.  

 

Figure A-1 CT Equivalent Circuit 

The user interface and parameter settings of CT model is shown in Figure A-2. 
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Figure A-2 User interface and parameters of a Current Transformer  

A.2  Time Domain Model  

A.2.1 Compact Form 

Circuit analysis yields the following equations: 
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 (A.1) 

 (A.2) 

0  (A.3) 

0


 (A.4) 

0
1 1

 (A.5) 

For linear case  

0
1

  (A.6a) 

For nonlinear case 

0



  (A.6b) 

There are six equations and six state variables: 

, , 0, 0, 0, 0  

, , , ,  ,  

A.2.2 Quadratized Model  

 The model is quadratized by introducing additional internal state variables, so that 

the nth exponent is replaced by equations of at most quadratic degree. Since the exact degree 



 159

of nonlinearity is not known until the user specifies it, the model performs automatic 

quadratization of the equations. A special procedure is used, so that the model is 

quadratized using the minimum number of additional internal states, while also 

maintaining the scarcity of the resulting equations. The methodology is based on 

expressing the exponent in binary form. The binary representation provides all the 

information about the number of new variables and equations that need to be introduced 

and about the form of the equations (products of new variables). The procedure is described 

later. Following this procedure the model can be converted into the standard quadratized 

form: 

  

 (A.7) 

 (A.8) 
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0
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For linear case:  

0
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  (A.13a) 

For nonlinear case: 
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0 ∙ ∙   (A.13b) 

0



 (A.13b+1) 

0  (A.13b+2) 

0 ∙  (A.13b+m1+1) 

0 ∙  (A.13b+m1+2) 

⋯⋯  

⋯⋯  

0 ∙ , 	 	

0 ∙



						, 	 	

 (A.13b+m) 

 

There are 7 + m equations and 7 + m state variables: 

, , 0, 0, 0, 0… , 0  

, , , , ,  , , …  

Based on the above formulation, the number of additional internal states and equations m 

is computed as follows: 

21 mmm   

where 

))(int(log21 nm   
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2m (# of ones in the binary representation of n) – 1 

Given the exponent = 5, the mathematical expression of the time domain quadratized 

device model is: 
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A.2.3 SCAQCF Model   

The differential equations in above model are integrated with the quadratic integration 

method and the equations that are algebraic are sufficed to be written at times t and tm. The 

SCAQCF model yields the following model. 

The standard time domain SCAQCF device model is: 
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APPENDIX B.  POTENTIAL TRANSFORMER 

B.1 Introduction  

This appendix presents the time domain model for single-phase potential transformer. The 

equivalent circuit of a potential transformer is illustrated in Figure B-1. 
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Figure B-1 PT Equivalent Circuit  

where h is the integration time step, and resistance gs stabilizes the numerical integration. 

The value is  

 
5s

h
g

L
                                                             

The user interface and parameter settings of PT model is shown in Figure 2. 

B.1 
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Figure B-2 User interface and parameters of a potential Transformer  

B.2.  Time Domain Model 

B.2.1. Compact Form 

Circuit analysis yields the following equations: 
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 (B.7) 
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For linear case:  
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0
1

  (B.11a) 

For nonlinear case: 

0



  (B.11b) 

There are 10 equations and 10 state variables: 

, , , , 0, 0, 0, 0,0,0  

, , , , , , , , ,  

B.2.1  Quadratized Form 

The model is quadratized by introducing additional internal state variables, so that the nth 

exponent is replaced by equations of at most quadratic degree. Since the exact degree of 

nonlinearity is not known until the user specifies it, the model performs automatic 

quadratization of the equations. A special procedure is used, so that the model is 

quadratized using the minimum number of additional internal states, while also 

maintaining the scarcity of the resulting equations. The methodology is based on 

expressing the exponent in binary form. The binary representation provides all the 

information about the number of new variables and equations that need to be introduced 

and about the form of the equations (products of new variables). The procedure is described 

later. Following this procedure the model can be converted into the standard quadratized 

form: 
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0  (B.23) 

0
1

 (B.24) 

0  (B.25) 

0  (B.26) 

For linear case:  
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  (B.27a) 

For nonlinear case: 

0 ∙ ∙   (B.27b) 

0
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⋯⋯  

⋯⋯  

0  (B.29b+m1) 

0 ∙  (B.29b+m1+1) 
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0 ∙  (B.29b+m1+2) 

⋯⋯  

⋯⋯  

0 ∙ , 	 	

0 ∙


						, 	 	
 (B.29b+m) 

 

There are 16 + m equations and 16 + m state variables: 

, , , , 0, 0, … ,0,0  

 

, , , , , , , ,
	 , , , , , , , , , … ,

 

where m is computed as explained in Appendix A 

 

B.2.3 SCAQCF Model  

The differential equations in above model are integrated with the quadratic integration 

method and the equations that are algebraic are sufficed to be written at times t and tm. The 

SCAQCF model yields the following model. 

The standard time domain SCAQCF device model is: 



 173

( )

0

0

( )

0

0

T i T i T i
eqx equ eqx equ equx eq

m

i t

Y Y F F F B
i t

 
 
       
       

            
       

      
 
 

x u x x u u u x

  

  

 

( ) ( ) ( )eq eqx eq u eq eqB N t h N t h M i t h K       x u  

Where  

1 1 1

2 2 2

3

1 1 1

2 2 2

3

4 8

2

6 3
0

1 2

2

24 3
0

eqxd eqx eqxd

eqxd eqx eqx

eqx

eqx

eqxd eqxd eqx

eqx eqxd eqx

eqx

D Y D
h h

h h
D Y Y

Y
Y

D D Y
h h
h h

Y D Y

Y

   
 
  
 
   

 
 
   
 
  

 

 

1

2 2

3

1

2 2

3

0

2

6 3
0

0

24 3
0

equ

equ equ

equ

equ
equ

equ equ

equ

Y

h h
Y Y

Y
Y

Y

h h
Y Y

Y

 
 
 
 
 
 
 
 
 
 
  

 

 



 174

3

3

0 0

0 0

0

0 0

0 0

0

eqxx

eqx

eqxx

F
F

Y

 
 
 
 

  
 
 
 
  

 

 

3

3

0 0

0 0

0

0 0

0 0

0

equu

equ

equu

F
F

F

 
 
 
 

  
 
 
 
  

 

 

3

3

0 0

0 0

0

0 0

0 0

0

equx

equx

equx

F
F

F

 
 
 
 

  
 
 
 
  

 



 175

1 1

2 1

1 1

2 1

4

6
0

1 5

2 2
5

24
0

eqx eqxd

eqx eqxd

eqx

eqx eqxd

eqx eqxd

Y D
h

h
Y D

N

Y D
h

h
Y D

   
 
  
 
 
 

 
 
  
 
 

 

1

2

1

2

6
0

1

2
5

24
0

equ

equ

equ

equ

equ

Y

h
Y

N
Y

h
Y

 
 
 
 
 
 

  
 
 
 
 
 
 

 

( ( ))

( ( ))

0

0

1

2
0

0

size i t

eq

size i t

I

M
I

 
 
 
 
   
 
 
 
  

 



 176

2

3

1

1

3

0

3

2
1

2

eqc

eqc

eq eqc

eqc

eqc

hC

C

K C

hC

C

 
 
 
 
 
 
 
 
 
 
  

 

 

 

 

 

 

 

 

 

 

 

  



 177

REFERENCES  

[1] C. Lins, L.E. Williamson, S. Leitner, and S. Teske, “10 years of renewable energy 
         progress,” REN21 Secretariat, Paris, France, 2014. 
  
[2] “The future of the global power sector preparing for emerging opportunities and 

threats,” Deloitte, London, 2015 
 

[3] R. Li, C. Booth, A. Dyśko, A. Roscoe, H. Urdal and J. Zhu, "Protection challenges in  
         future converter dominated power systems: Demonstration through simulation and  
         hardware tests," International Conference on Renewable Power Generation (RPG  
         2015), Beijing, 2015, pp. 1-6. I 
 
[4] IEEE Standard Definitions for Power Switchgear, IEEE Standard C37.100 
       ,1992.  
 

[5] NERC System Protection and Control Subcommittee, “Reliability Fundamentals of 
        System Protection,” NERC, 2010  
 
[6] Protection System Misoperation Task Force, “Misoperations report,” NERC Planning 
         Committee, 2014. 
 

[7] H. F. Albinali and A. P. Meliopoulos, "A Centralized Substation Protection Scheme 
that detects hidden failures," 2016 IEEE Power and Energy Society General Meeting 
(PESGM), Boston, MA, 2016, pp. 1-5. 

 
[8] R. E. Mackiewicz, "Overview of IEC 61850 and Benefits," 2006 IEEE PES Power  
        Systems Conference and Exposition, Atlanta, GA, 2006, pp. 623-630. 
 

[9] S., Brahma. “Advancements in centralized protection and control within a 
        substation, ”IEEE Transactions on Power Delivery, vol. 31, no. 4, pp. 1945–1952, 
        Aug. 2016. 
  

[10] WG K15, “Advancements in centralized protection and control within a substation,” 
IEEE Power System Relaying Committee, 2015 

            

[11] S. L. Nilsson, D. F. Koenig, E. A. Udren, B. J. Allguren and K. P. Lau, "Pros and  
        Cons of Integrating Protection and Control in Transmission Substations," in IEEE  
         Transactions on Power Apparatus and Systems, vol. PAS-104, no. 5, pp. 1207-1224,  
         May 1985. 
 
[12] E. Bondia, E. Suarez and F. Cobelo, "Integrated protection and control digital system  



 178

        for rural substations," 1989 Fourth International Conference on Developments in  
        Power Protection, Edinburgh, 1989, pp. 113-115. 
 
[13] P. Norberg, A. Fogelberg., and A. Johnsson, “Field experiences from using PC 

software for protection and control of AC substations,” presented at the CIGRE 
General Session, Paris, France, 2006, pp. B3–208. 

 
[14] Mohd Aifaa bin Mohd Arif, “Adaptive Protection and Control for Wide-Area 

Blackout Prevention,” PhD Dissertation, Imperial College London, 2014. 
 

[15]  J. Huang, “Adaptive wide area protection of power systems,” PhD Dissertation, Iowa 
         State University, 2004. 
 

[16] “Feasibility of adaptive protection and control,” in Power Delivery, IEEE 
         Transactions, vol. 8, no. 3, pp. 975–983, Jul. 1993. 
 

[17] N. Thomas., L Chen-Ching, and H. Michael, “Adaptation of relay operations in real 
         time,” presented at the 15th PSCC, Liege, 2005. 
 

[18] A.Y. Abdelaziz, H.E. Talaat, A.I Nosseir, and , A.H. Ammar, “An adaptive protection 
scheme for optimal coordination of overcurrent relays,” Electric Power Systems 
Research, vol. 61, no. 1, pp. 1–9, Feb. 2002. 

 

[19] B. Kasztenny, and F. Fischer, “Advanced Protection, Automation, and Control 
Functions,” presented at the 1st Annual Protection, Automation and Control World 
Conference, 2010. 

 

[20] M. Thomas, “Implementation of the Security-Dependability Adaptive Voting   
Scheme,” MSC Dissertation, Virginia Polytechnic Institute and State University, 
Blacksburg, 2011. 

 

[21] B. Zaremski, “The Advancement of Adaptive Relaying in Power Systems Protection,” 
MSC Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, 
2012. 

 

[22] GE Multilin, “Transmission Line Protection Principles.” 
https://www.gegridsolutions.com/multilin/journals/issues/PCJ_2007-12.pdf 

 

[23] Liu, C., "Strategic power infrastructure defense (SPID): a wide area protection and 
control system," IEEE/PES Transmission and Distribution Conference and 
Exhibition, 2002, pp. 500-502 vol.1. 



 179

 
[24] Hao Li, G. W. Rosenwald, J. Jung and Chen-ching Liu, "Strategic Power 

Infrastructure Defense," in Proceedings of the IEEE, vol. 93, no. 5, pp. 918-933, May 
2005.  

 
[25] Chen-Ching Liu, Juhwan Jung, G. T. Heydt, V. Vittal and A. G. Phadke, "The 

strategic power infrastructure defense (SPID) system. A conceptual design," in IEEE 
Control Systems, vol. 20, no. 4, pp. 40-52, Aug. 2000. 

 

[26] S. Tamronglak, S. H. Horowitz, A. G. Phadke and J. S. Thorp, "Anatomy of power 
system blackouts: preventive relaying strategies," in IEEE Transactions on Power 
Delivery, vol. 11, no. 2, pp. 708-715, Apr 1996. 

 

[27] A. G. Phadke and J. S. Thorp, "Expose hidden failures to prevent cascading outages 
[in power systems]," in IEEE Computer Applications in Power, vol. 9, no. 3, pp. 20-
23, Jul 1996. 

 
[28] Q. Qiu,, “Risk assessment of power system catastrophic failures and hidden failure 

monitoring & control system,” PhD Dissertation, Virginia Polytechnic Institute and 
State University, 2003. 

 
[29] X. Gao, J. S. Thorp and D. Hou, "Case studies: Designing protection systems that 

minimize potential hidden failures," 2013 66th Annual Conference for Protective 
Relay Engineers, College Station, TX, 2013, pp. 384-393. 

 

[30]  A. P. S. Meliopoulos et al., "Dynamic State Estimation-Based Protection: Status and 
Promise," in IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 320-330, Feb. 
2017. 

 
[31] R. Fan, A. P. S. Meliopoulos, G. J. Cokkinides, L. Sun and Yu Liu, "Dynamic state 

estimation-based protection of power transformers," 2015 IEEE Power & Energy 
Society General Meeting, Denver, CO, 2015, pp. 1-5. 

 
[32] Yu Liu, A. P. Sakis Meliopoulos, Rui Fan and Liangyi Sun, "Dynamic State 

Estimation based protection of microgrid circuits," 2015 IEEE Power & Energy 
Society General Meeting, Denver, CO, 2015, pp. 1-5. 

 

[33] Z. Tan, “Dynamic State Estimation Based Transmission Line Protection,” PhD 
Dissertation, Georgia Institute of Technology, Atlanta, 2016.  

 

[34] L. Sun, R. Fan, A. P. S. Meliopoulos, Y. Liu and Z. Tan, "Capacitor bank protection 
via constraint WLS dynamic state estimation method (CWLS-DSE)," 2016 North 
American Power Symposium (NAPS), Denver, CO, 2016, pp. 1-6. 



 180

 

[35] Y. Liu, A. P. Meliopoulos, L. Sun and R. Fan, "Dynamic state estimation based 
protection of mutually coupled transmission lines," in CSEE Journal of Power and 
Energy Systems, vol. 2, no. 4, pp. 6-14, December 2016. 

 

[36] A. P. Meliopoulos, et al., “Integration & automation: From protection to advanced 
energy management systems,” in Bulk Power System Dynamics and Control-IX 
Optimization, Security and Control of the Emerging Power Grid (IREP), 2013 IREP 
Symposium, 2013, pp. 1–11. 

  
[37] R. Fan, A. P. S. Meliopoulos, L. Sun, Z. Tan and Y. Liu, "Transformer inter-turn 

faults detection by dynamic state estimation method," 2016 North American Power 
Symposium (NAPS), Denver, CO, 2016, pp. 1-6. 

 

[38] R. Fan, “TRANSFORMER PROTECTION BASED ON DYNAMIC STATE 
ESTIMATION,” PhD Dissertation, Georgia Institute of Technology, Atlanta, 2016.  

 

[39] A. P. S. Meliopoulos, G. J. Cokkinides, Z. Tan, S. Choi, Y. Lee and P. Myrda, 
"Setting-Less Protection: Feasibility Study," 2013 46th Hawaii International 
Conference on System Sciences, Wailea, HI, USA, 2013, pp. 2345-2353. 

 
[40] M. Kezunovic, "Translational Knowledge: From Collecting Data to Making 

Decisions in a Smart Grid," in Proceedings of the IEEE, vol. 99, no. 6, pp. 977-997, 
June 2011. 

 

[41] S. Vasilic,, and M. Kezunovic, "Fuzzy ART neural network algorithm for classifying 
the power system faults," in IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 
1306-1314, April 2005. 

 

[42] S. Vasilic, “Fuzzy neural network pattern recognition algorithm for classification of 
the events in power system networks,” PhD Dissertation, Texas A&M University, 
College Station, Texas, USA, 2004. 

 

[43] S. Vasilic, and M. Kezunovic, "An improved neural network algorithm for classifying 
the transmission line faults," 2002 IEEE Power Engineering Society Winter Meeting. 
Conference Proceedings (Cat. No.02CH37309), 2002, pp. 918-923 vol.2. 

 

[44] Y. Cheng, X.  Chen, J. Ren, X. Xuan, and X. Li, "Study on hidden failure of relay 
protection in power system,"2013 IEEE International Conference on Cyber 
Technology in Automation, Control and Intelligent Systems, Nanjing, 2013, pp. 434-
439. 

 

[45] A. P. Meliopoulos, G. J. Cokkinide, “Power System Relaying, An Introduction,” in 



 181

Power System Relaying: Theory and Applications,Ch.1, unpublished. 
 
[46] E.O.Schweitzer, B. Morris, and D. Costello, “Monitoring the Health of SEL 

Relays.” .SEL, Pullman, WA, AN2012-01, 2012. 
  
[47] E. Murat, “The watchdog : a main component in the protection scheme,” Schneider-

Electric, watchdog_sepam_05, 2005. 
 

[48] System Protection and Control Working Group, “Relay Communication 
Misoperations,” SPP, Little Rock, AR, SPP-White Paper, 2014.  

 

[49] L. G. Hewitson ,M. Brown, and R. Balakrishnan, “Instrument transformers,” in  
Practical Power System Protection,1st ed, Newnes, 2004, ch.6., sec. 6.4, pp. 54–65. 

 

[50] Paul M. Anderson, "Protection Measurements and Controls," in Power System 
Protection , 1, Wiley-IEEE Press, 1999,ch.2., pp.1330- 

 

[51] H.J.Altuve, N. Fischer, G. Benmouyal, and D. Finney, “Sizing Current Transformers 
for Line Protection Applications,” presented at the 67th Annual Georgia Tech 
Protective Relaying Conference, Atlanta, 2013. 

 
[52] Relay Work Group, “Relaying Current Transformer Application,” WECC, Salt Lake 

City, Utah, White Paper, 2014. 
 

[53] EEE Standard Requirements for Instrument Transformers," in IEEE Std C57.13-
1993(R2003) (Revision of IEEE Std C57.13-1978 , vol., no., pp.i-73, 2003. 

 

[54]  “Instrument Transformer Basic Technical Information and Application,” GE Digital 
Energy. 

 

[55] B. Kasztenny, J. Mazereeuw, and K. Jones, “CT Saturation in Industrial Applications 
– Analysis and Application Guidelines,” GE Multlin.  

 
[56] Z. Xu, M. Proctor, I. Voloh, and M. Lara, “CT saturation tolerance for 87L 

applications,” presented at the 2015 68th Annual Conference for Protective Relay 
Engineers, College Station, 2015. 

 
[57] B. E. Lee, J. Lee, S. H. Won, B. Lee, P.A. Crossley, and Y. C. Kang, “Saturation 

Detection-Based Blocking Scheme for Transformer Differential Protection,” 
energies, vol. 7., pp. 4571-4587, 2014. 

 



 182

[58] IEEE Guide for the Application of Current Transformers Used for Protective 
Relaying Purposes," in IEEE Unapproved Draft Std PC37.110/D911Oct 07 , vol., 
no., pp., 2007 

 

[59] “Voltage TRANSFORMERS,” GE  
 
[60] Y. Cao, and P. Shao, "PT 10kV high-voltage fuse bus causes and solutions," 2011 

International Conference on Advanced Power System Automation and Protection, 
Beijing, 2011, pp. 1643-1645.  

 

[61] Line Protection Subcommittee Working Group D-7, “Loss of ac Voltage 
Considerations for Line Protection,” Line Protection Subcommittee of the IEEE 
Power Engineering Society, Power System Relaying Committee. 

 
[62] H. F. Albinali, A. P. Meliopoulos and C. Vournas, "Dynamic state estimation-based 

centralized protection scheme," 2017 IEEE Manchester PowerTech, Manchester, 
United Kingdom, 2017, pp. 1-6. 

 
[63] S. M. David, “Chi_square test,” Purdue University. 
 

[64] A. P. Meliopoulos, “Operating State Estimation,” in Power System Modeling, 
Analysis and Control, Ch.7 unpublished. 

 
[65] A. Ali and G. E.  Antonio, "Bad data detection and identification," in Power System 

State Estimation: Theory and Implementation, 2nd ed., vol. 3. J. Peters, Ed. New 
         York: McGraw-Hill, pp. 15–67, 1964. 
 
[66] H. Albinali, A. P. Meliopoulos, G. Cokkinides, and P. Myrda “Hidden failures 

detection and correction via substation wide dynamic state estimation,” presented at 
the PAC World Americas Conference, Raleigh, NC, USA, pp. 1–6, 2016.  

 
[67] T. Alquthami, “A SMART HOUSE ENERGY MANAGEMENT SYSTEM,” PhD 

Dissertation, Georgia Institute of Technology, 2015. 
 
[68] A. P. Meliopoulos and G. J. Cokkinide, “Basic Concepts,” in Power System Relaying: 

Theory and Applications, Ch.2, unpublished. 
 
[69] A. P. Meliopoulos, G. J. Cokkinides, and G. Stefopoulos,”Quadratic Integration  
       Method”, Proceedings of the 2005 International Power System Transients Conference  
       (IPST 2005), Montreal, Canada, June 19-23, 2005. 
 
[70] A. Mukhtar, “Weighted Least Square Estimation” in Electric Power System State 

Estimation, 1st ed. Artech House, 2012. 
 



 183

[71] Communication networks and systems for power utility automation – Part 7-1: Basic 
communication structure - Principles and models, IEC Standard 61850-7-1, Ed. 2, 
Mar., 2010. 

 

[72] D. Hou, and D. Dolezilek, “IEC 61850 – What it can and cannot offer to traditional 
protection schemes,” Presented at the 1st Annual Protection, Automation and Control 
World Conference, 2010. 

 

[73] R. Mackiewicz and H. Falk, “Insight in IEC 61850: What is it?” Presentation, 2012.   
 
[74] Zhu Yongli, Wang Dewen, Wang Yan and Zhao Wenqing, "Study on interoperable 

exchange of IEC 61850 data model," 2009 4th IEEE Conference on Industrial 
Electronics and Applications, Xi'an, 2009, pp. 2724-2728. 

 

[75] Communication networks and systems for power utility automation – Part 7-4: Basic 
communication structure – Compatible logical node classes and data object classes, 
IEC Standard 61850-7-4, Ed. 2, Mar. 2010. 

 

[76] Communication networks and systems for power utility automation – Part 7-2: Basic 
information and communication structure - Abstract communication service interface 
(ACSI), IEC Standard 61850-7-2, Ed. 2, Mar. 2010. 

 

[77]  “IEC 61850 information model concepts and update for distributed energy 
resources (DER) use cases and functions,” A white paper ,Smart Grid Interoperability 
Panel (SGIP), Wakefield, MA  , October 2015. 

 
[78] Communication networks and systems for power utility automation – Part 6: 

Configuration description language for communication in electrical substations 
related to IEDs, IEC Standard 61850-6, Ed. 2, Mar. 2010. 

 

[79] P. Terwiesch, C. Rytoft, E. M. Hugo, H. Bawa, P. Reinhardt, and Moglestue, A., 
“Special Report IEC 61850,” ABB, Baden, Switzerland. 

 

[80]  C. R. Ozansoy, A. Zayegh and A. Kalam, "Object Modeling of Data and DataSets in 
the International Standard IEC 61850," in IEEE Transactions on Power Delivery, vol. 
24, no. 3, pp. 1140-1147, July 2009. 

 

[81] Communication networks and systems for power utility automation – Part 8-1: 
Specific Communication Service Mapping (SCSM) – Mappings to MMS, IEC 
Standard 61850-8-1, Ed. 2, Mar. 2010. 

 

[82] Ryan L. O’Fallon, Dean A. Klas, Timothy Tibbals, and Saurabh Shah “IEC 61850 
MMS SCADA Network Optimization for IEDs,” Presented at Rockwell Automation 



 184

on the Move, Spokane, WA.  
 

[83] K. P. Brand, "IEC 61850 as backbone for smart PAC systems," in CSEE Journal of 
Power and Energy Systems, vol. 2, no. 4, pp. 15-22, December 2016. 

 

[84] D. M. E. Ingram, P. Schaub, R. R. Taylor and D. A. Campbell, "Performance Analysis 
of IEC 61850 Sampled Value Process Bus Networks," in IEEE Transactions on 
Industrial Informatics, vol. 9, no. 3, pp. 1445-1454, Aug. 2013. 

 

[85] Communication networks and systems for power utility automation – Part 9-2: 
Specific Communication Service Mapping (SCSM) – Sampled values, IEC Standard 
61850-9-2, Ed. 2, Mar. 2010. 

 

[86] D. Ingram, and B. Smellie, “Solving Electrical Substation Timing Problems.” Tekron 
Whitepaper, October 2014. 

 

[87] P. A. Crossley, H. Guo and Z. Ma, "Time synchronization for transmission 
substations using GPS and IEEE 1588," in CSEE Journal of Power and Energy 
Systems, vol. 2, no. 3, pp. 91-99, Sept. 2016. 

 

[88] K. Behrendt, and K. Fodero, “The perfect time: An examination of time-
synchronization techniques,” presented at the 32nd Annual Western Protective Relay 
Conference, 2005. 

 

[89] J. McGhee and M. Goraj, "Smart High Voltage Substation Based on IEC 61850 
Process Bus and IEEE 1588 Time Synchronization," 2010 First IEEE International 
Conference on Smart Grid Communications, Gaithersburg, MD, 2010, pp. 489-494.  

 

[90] H. Kirrmann, P. Rietmann, and S. Kunsman, “Network redundancy using IEC 
62439,” PAC World, Autumn 2008. 

 

[91] H. Kirrmann, "Seamless redundancy", In ABB Review: Special Report IEC 61850, 
August 2010. 

 
[92] C. Wester, M. Adamiak and J. Vico, "IEC61850 protocol - practical applications in 

industrial facilities," 2011 IEEE Industry Applications Society Annual Meeting, 
Orlando, FL, 2011, pp. 1-7. 

 

[93] H. A. Retty, “Evaluation and standardizing of phasor data concentrators,” MSc 
Dissertation, Virginia Polytechnic Institute and State University, 2013. 

 
[94] Power System Relaying Committee, “IEEE Guide for phasor data concentrator 



 185

requirements for power system protection, control, and monitoring,” 2013. 
 

[95] M. Kanabar, M. G. Adamiak and J. Rodrigues, "Optimizing Wide Area Measurement 
System architectures with advancements in Phasor Data Concentrators 
(PDCs)," 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, 
2013, pp. 1-5. 

 

[96] B. Baumgartner, C. Riesch, and M. Rudigier, “IEEE 1588/PTP: The future of time 
synchronization in the electric power industry,” OMICRON electronics GmbH, 
Klaus, Austria, 

 

[97] S. Meliopoulos, G. Cokkinides, R. Fan, L. Sun and B. Cui, "Command authentication 
via faster than real time simulation," 2016 IEEE Power and Energy Society General 
Meeting (PESGM), Boston, MA, 2016, pp. 1-5. 

 

[98] S. Meliopoulos, G. Cokkinides, R. Beyah, S. Walters and P. Myrda, "Cyber Security 
and Operational Reliability," 2015 48th Hawaii International Conference on System 
Sciences, Kauai, HI, 2015, pp. 2655-2663. 

 

[99] W. Wenye, L. Zhuo, “Cyber security in the Smart Grid: Survey and challenges,” 
Computer Networks, vol. 57, no. 2, April 2013, Pages 1344–1371. 

 

[100] A. P. S. Meliopoulos, G. Cokkinides, R. Fan and L. Sun, "Data Attack Detection 
and Command Authentication via Cyber-Physical Comodeling," in IEEE Design & 
Test, vol. 34, no. 4, pp. 34-43, Aug. 2017. 

 


