
LARGE SCALE MULTISTAGE STOCHASTIC INTEGER PROGRAMMING
WITH APPLICATIONS IN ELECTRIC POWER SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Jikai Zou

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

August 2017

Copyright c© Jikai Zou 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/304992922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LARGE SCALE MULTISTAGE STOCHASTIC INTEGER PROGRAMMING
WITH APPLICATIONS IN ELECTRIC POWER SYSTEMS

Approved by:

Dr. Shabbir Ahmed (advisor)
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Andy Sun (co-advisor)
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Alexander Shapiro
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Natashia Boland
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Andy Philpott
Department of Engineering Science
The University of Auckland

Date Approved: May 1st, 2017

ACKNOWLEDGEMENTS

I am indebted to a number of remarkable people who supported my thesis in different forms.

First and foremost, I would like to thank my advisors, Dr. Shabbir Ahmed and Dr. Andy

Sun, for their guidance and intellectual insights which are indispensable for this work. I also

want to thank them for their care and support of my personal growth and career pursuit. I

would like to thank my committee members, Dr. Alexander Shapiro, Dr. Natashia Boland,

and Dr. Andy Philpott, for the helpful discussion and feedback.

I feel extremely grateful to have the opportunity to study in such a vibrant and exciting

academic environment in the past four years. In particular, I would like to thank Dr. Craig

Tovey, Dr. Robert Foley, Dr. Arkadi Nemirovski, Dr. Santanu Dey, Dr. David Goldberg,

and Dr. Alejandro Toriello, for their excellent courses. Furthermore, I want to thank all

my classmates, Rui Gao, Weijun Xie, Yifan Liu, Helin Zhu, Yang Cao, Çağlar Çağlayan,

and Fabien Caspani, for the valuable discussions and friendship; I also want to thank Diego

Moran, Daniel Silva, Ezgi Karabulut, Luke Marshall, Beste Basciftci, Yufeng Cao, and

Asteroide Santana, for organizing DOS seminars together. Finally I would like to thank all

the staff of ISyE, especially Amanda Ford and Mark Reese.

I am extraordinarily fortunate to be accompanied by great friends over the past four

years. Those good memories will be my lifelong treasure. My warm thanks go to: Daniel

Zink, Heike Zink, Kevin Ryan, Lauren Ryan, Álvaro Lorca, Mathias Klapp, James Bailey,

Jeffrey Pavelka, Brian Kues, Amelia Musselman, Andres Iroume, Burak Kocuk, Alfredo

Torrico Palacios, Tony Yaacoub, Joshua Hale, Can Zhang, Xiaowei Yue, Yilun Chen, Yuan

Li, Yuchen Zheng, Junzhuo Chen, Yuanshuo Zhao, Di Wu, and Junxuan Li.

Finally, I would like to thank my parents, Jie Zou and Xiaofeng Zhong. Thank you for all

the support and love over the past twenty-nine years of my life. I want to specially dedicate

this thesis to my wife, Zhihua Dong. Thank you for being there all the time despite the

distance, and thanks for your patience, inspiration, and love, along this incredible journey.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction . 1

1.1 Multistage Stochastic Integer Programming 1

1.1.1 Scenario Tree Formulation . 2

1.1.2 Existing Approaches and Challenges 5

1.2 Applications to Energy Sectors . 5

1.3 Summary of Contribution . 6

Chapter 2: Partially Adaptive Stochastic Optimization for Capacity Expansion
Problems . 8

2.1 Introduction . 8

2.2 Related Work . 10

2.3 Model Development . 11

2.3.1 PA Model for GEP Problem . 12

2.3.2 PA Model for General Capacity Expansion Planning 14

2.4 Performance of ΠPA(µ) . 16

iv

2.4.1 Decomposition Reformulation . 17

2.4.2 Some Useful Results for Single-technology Problems 19

2.4.3 An Upper Bound on oP
i(µ) − vM

i 21

2.4.4 Upper and Lower Bounds for Gap(µ) 27

2.5 An Approximation Algorithm for Solving ΠMS 29

2.5.1 Algorithm Description . 29

2.5.2 Optimality of Algorithm 1 for a Special GEP Problem 30

2.6 Computational Experiments . 32

2.6.1 Experiment Data and Setup . 32

2.6.2 Performance of PA Model . 33

2.6.3 Performance of Algorithm 1 . 36

2.6.4 Effect of Different Node Orderings 38

2.7 Concluding Remarks . 41

Chapter 3: Nested Decomposition of Multistage Stochastic Integer Programs
with Binary State Variables . 42

3.1 Introduction . 42

3.2 Related Work . 43

3.3 MSIP with Binary State Variables . 46

3.4 Nested Decomposition . 51

3.4.1 The ND Algorithm . 51

3.4.2 Sufficient Cut Conditions . 53

3.4.3 Finite Convergence . 55

3.5 Cut families . 59

v

3.5.1 Benders’ Cut . 59

3.5.2 Integer Optimality Cut . 60

3.5.3 Lagrangian Cut . 61

3.5.4 Strengthened Benders’ Cut . 64

3.6 Stochastic Nested Decomposition . 65

3.6.1 The SND Algorithm . 65

3.6.2 Convergence . 67

3.6.3 The SDDiP Algorithm . 71

3.7 Computational Experiments . 72

3.7.1 Long-term Generation Expansion Planning 74

3.7.2 Multi-period Portfolio Optimization 83

3.7.3 Airline Revenue Management . 86

3.8 Concluding Remarks . 89

Chapter 4: Multistage Stochastic Unit Commitment Problem Using SDDiP . . . 91

4.1 Introduction . 91

4.2 Related Work . 93

4.3 Stochastic Dual Dynamic Integer Programming 96

4.3.1 Cut Families in Backward Step . 99

4.4 Multistage Stochastic UC . 101

4.4.1 Problem Formulation . 101

4.4.2 Stage-wise Independence in Net Load 104

4.4.3 State Variables . 104

vi

4.5 SDDiP Enhancements . 105

4.5.1 Level Method for Lagrangian Cut 106

4.5.2 Hybrid Model using “Breakstage” 106

4.5.3 Backward Parallelization . 107

4.6 Experimental Settings . 107

4.6.1 Stage Problem Size . 107

4.6.2 Scenario Tree Generation . 108

4.6.3 Other Implementation Details . 109

4.7 Computational Results . 110

4.7.1 14-bus Results . 110

4.7.2 118-bus Results . 115

4.8 Concluding Remarks . 116

References . 132

vii

LIST OF TABLES

2.1 Solving PA models on GEP instances . 35

2.2 Computation results of Algorithm 1 . 37

3.1 SDDiP algorithm with a single class of cutting planes 77

3.2 SDDiP algorithm with multiple classes of cutting planes 78

3.3 SDDiP algorithm on some large instances of GEP 82

3.4 SDDiP algorithm on portfolio optimization 85

3.5 SDDiP algorithm on network revenue management 88

4.1 Net load base profile (Unit: MW) . 104

4.2 Statistics of forecast-to-actual ratio in net load 108

4.3 Computational results for 118-bus system 115

A1 Numerical results of IEEE 14-bus system – cut combinations 120

A2 Numerical results of IEEE 14-bus system – cut combinations (cont’d) . . . 121

A3 Numerical results of IEEE 14-bus system – effect of breakstage 122

A4 Numerical results of IEEE 14-bus system – effect of breakstage (cont’d) . . 123

viii

LIST OF FIGURES

1.1 An example of a scenario tree . 3

2.1 Capacity expansion decisions in ΠMS, ΠPA(µ) and ΠTS 15

2.2 Four topological orderings on a 3-period tree 38

2.3 Solution cost improvement under four different orderings 40

3.1 Bounds improvement with different cut combinations 80

4.1 50 scenarios from scenario tree T 0.2,20
14 (left) and T 1.3,20

118 (right) 109

4.2 SDDiP results with different cut combinations 112

4.3 Evaluation of policies obtained by different cut combinations 112

4.4 Effect of breakstage . 113

4.5 Parallelization speed-up ratio & efficiency (T 0.2,20
14 instance) 114

A1 SDDiP gap for 10-year GEP instances . 118

A2 SDDiP computation time for 10-year GEP instances 118

A3 SDDiP iterations for large GEP instances 119

A4 SDDiP computation time for large GEP instances 119

ix

SUMMARY

Multistage stochastic integer programming (MSIP) is a framework for sequential

decision making under uncertainty, where the uncertainty is modeled by a general stochastic

process, and the decision space involves integer variables and complicated constraints. Many

power system applications, such as generation capacity planning and scheduling under

uncertainty stemming from renewable generation, demand variability and price volatility,

can be naturally formulated as MSIP problems. In this thesis, we develop general purpose

solution methods for large-scale MSIP problems and demonstrate their effectiveness on

various power systems applications.

In the first part of this thesis, we consider an MSIP approach for electrical power

generation capacity expansion problems under demand and fuel price uncertainty. We

propose a partially adaptive stochastic mixed integer optimization model in which the

capacity expansion plan is fully adaptive to the uncertainty evolution up to a certain period,

and is static thereafter. Any solution to the partially adaptive model is feasible to the

multistage model and we provide analytical bounds on the quality of such a solution. We

propose an algorithm that solves a sequence of partially adaptive models, to recursively

construct an approximate solution to the multistage problem. We apply the proposed

approach to a realistic generation expansion case study.

In the second part of this thesis, we develop decomposition algorithms for general MSIP

problems with binary state variables. By exploiting the binary nature of the state variables,

we extend the nested Benders decomposition algorithm to this problem class. Key to our

developments are new families of cuts that guarantee finite convergence of the proposed

algorithm. We also propose a stochastic variant of the nested Benders decomposition

algorithm, called Stochastic Dual Dynamic integer Programming (SDDiP), and give a

rigorous proof of its finite convergence with probability one to an optimal policy. We

provide extensive computational results using the SDDiP approach for generation capacity

x

planning, portfolio optimization, and airline revenue management problems.

The final part of this thesis focuses on adapting the SDDiP approach to solve the

multistage stochastic unit commitment (MSUC) problem. Unit commitment is a key

operational problem in power systems used to determine the optimal generation schedule

over the next day or week. Incorporating uncertainty in this already difficult optimization

problem imparts severe challenges. We reformulate the MSUC problem such that each

stage problem only depends on information from the previous stage and the uncertainty

realization. This new formulation is amenable to our SDDiP approach. We propose a

variety of computational enhancements to adapt the method to MSUC. Through extensive

computational results, we demonstrate the effectiveness of our approach in solving realistic

scale MSUC problems.

xi

CHAPTER 1

INTRODUCTION

1.1 Multistage Stochastic Integer Programming

Multistage stochastic integer programming (MSIP) is a framework for sequential decision

making under uncertainty where the decision space is typically high dimensional and

involves complicated constraints, and the uncertainty is modeled by general stochastic

processes. Integer decisions are required by the nature of specific applications, and they

usually exist in multiple decision periods. To describe a generic formulation for an MSIP,

let us start with a canonical deterministic optimization problem with T stages:

min
(x1,y1),...,(xT ,yT)

{
T∑
t=1

ft(xt, yt) : (xt−1, xt, yt) ∈ Xt, ∀ t = 1, . . . , T

}
.

In the above formulation we explicitly distinguish two sets of decision variables in each

stage, namely, the state variable, denoted by xt, which links successive stages, and the

local or stage variable, denoted by yt, which is only contained in the subproblem at stage

t. This form is without loss of generality since any multistage optimization problem can

be formulated in this form by introducing additional constraints and variables. Note that,

for notational convenience, the above formulation includes variable x0 which is assumed

to be fixed. The function ft and the set Xt denote the objective and constraints associated

with stage t, respectively. We focus on the mixed-integer linear setting where the objective

function ft is linear, and the constraint system Xt is of the form

Btxt−1 + Atxt + Ctyt ≥ bt

1

along with integrality restrictions on a subset of the variables. The data required in stage t is

ξt := (ft, Xt) where, with some notational abuse, we have used ft and Xt to denote the data

for the objective ft and constraints in Xt. Let us denote the feasible region of the stage t

problem by Ft(xt−1, ξt) which depends on the decision in stage t− 1 and the information ξt

available in stage t. Suppose now the data (ξ2, . . . , ξT) is uncertain and evolves according

to a known stochastic process. We use ξt to denote the random data vector in stage t and ξt

to denote a specific realization. Similarly, we use ξ[t,t′] to denote the sequence of random

data vectors corresponding to stages t through t′ and ξ[t,t′] to denote a specific realization of

this sequence of random vectors. The decision dynamics is as follows: in stage t we first

observe the data realization ξt and then take an action (xt, yt) depending on the previous

stage decision xt−1 (also known as state) and the observed data ξt to optimize the expected

future cost. A nested formulation for this MSIP problem is:

min
(x1,y1)∈F1

{
f1(x1, y1) + Eξ[2,T]|ξ[1,1]

[
min

(x2,y2)∈F2(x1,ξ2)

{
f2(x2, y2, ξ2) + · · ·

+ Eξ[T,T]|ξ[1,T−1]

[
min

(xT ,yT)∈FT (xT−1,ξT)

{
fT (xT , yT , ξT)

}]}]}
, (1.1)

where Eξ[t,T]|ξ[1,t−1]
denotes the conditional expectation operation in stage t with respect to

ξ[t,T] given ξ[1,t−1] in stage t− 1. In the cases when all decision variables are continuous,

such a problem is usually referred to as multistage stochastic linear programming, or MSLP.

1.1.1 Scenario Tree Formulation

Computational approaches for MSIP are based on approximating the stochastic process

(ξ2, . . . , ξT) by a process having finitely many realizations in the form of a scenario tree (see

e.g., Ruszczynski and Shapiro 2003). Such an approximation may be constructed by Monte

Carlo methods as in the sample average approximation (SAA) approach or various other

constructive methods (Kuhn 2006; Shapiro 2003; Pennanen 2009; Høyland and Wallace

2001; Pflug 2001; Heitsch et al. 2006). Under the scenario tree setting, problem (1.1) is

2

a stochastic optimization problem over a finite number of scenarios, thus can be regarded

as a large-scale deterministic mixed integer program. In the following, we introduce some

standard notation for the scenario tree model.

1

2

3

a(n)

n

1 2 · · · · · · tn · · · T

P(n)

T (n)

Stn

T (3, tn)

Figure 1.1: An example of a scenario tree

Let T be the scenario tree associated with the underlying stochastic process. There are

T levels corresponding to the T decision-making stages and the set of nodes in stage t is

denoted by St. The root node in stage 1 is labeled 1, i.e., S1 = {1}. Each node n in stage

t > 1 has a unique parent node a(n) in stage t− 1. We denote the stage containing node

n by t(n). The subtree with root n and ending at period τ (tn ≤ τ ≤ T) is denoted as

T (n, τ). Denote T (n, T) as T (n) for simplicity. The set of children nodes of a node n is

denoted by C(n). The set of nodes on the unique path from node 1 to node n, including node

n, is denoted by P(n). A truncated path P(n, t) denotes the path from the t-th ancestor

node of n to n. A node n ∈ St represents a state of the world in stage t and corresponds to

the information sequence {ξm = (fm, Xm)}m∈P(n). The total probability associated with

node n is denoted as pn, which is the probability of realization of the t(n)-period data

sequence {ξm}m∈P(n). The sum of probabilities of all nodes in each level is equal to 1, i.e.,∑
n∈St pn = 1 for all t. For m ∈ T \ {1} and n = a(m), qnm := pm/pn is the conditional

3

probability of transitioning from node n to node m. Therefore, the sum of probabilities

of the nodes with the same parent is equal to the probability of their parent node, i.e.,∑
m∈C(n) pm = pn for all n ∈ T . Each node in the final stage ST corresponds to a realization

of the data for the full planning horizon, i.e., all T periods, and is called a scenario. We say

two scenarios s and s′ are indistinguishable at period t if the paths corresponding to s and

s′ pass through the same set of nodes up to period t. Let Ω = {P(n) : n ∈ ST} be the set

of all possible scenarios and N = |Ω| the total number of scenarios. Figure 1.1 depicts an

illustration of a general scenario tree. A recombining scenario tree is one in which for any

two nodes n and n′ in St, the set of children nodes C(n) and C(n′) are defined by identical

data and probabilities.

Since the decisions in a stage are taken after observing the data realization we associate

the decisions to the nodes of the tree. The resulting formulation, called the extensive form,

is

min
xn,yn

{∑
n∈T

pnfn(xn, yn) : (xa(n), xn, yn) ∈ Xn ∀ n ∈ T

}
. (1.2)

Note that, for notational convenience, we include the variable xa(1) which is assumed to be

fixed. While (1.2) is a deterministic optimization problem, it has very large scale as the size

of the scenario tree grows exponentially with dimension of the uncertain parameters and

the number of stages. An alternative to the extensive form (1.2) is to formulate the MSIP

problem via the following dynamic programming (DP) equations

min
x1,y1

f1(x1, y1) +
∑

m∈C(1)
q1mQm(x1) : (xa(1), x1, y1) ∈ X1

 (1.3)

where for each node n ∈ T \ {1}

Qn(xa(n)) = min
xn,yn

fn(xn, yn) +
∑

m∈C(n)
qnmQm(xn) : (xa(n), xn, yn) ∈ Xn

 . (1.4)

The optimization problem in (1.4) is referred to as a node problem. We will also denote the

4

optimal value function (of xa(n)) and the expected cost-to-go function at node n by Qn(·)

and Qn(·) :=
∑

m∈C(n) qnmQm(·), respectively.

1.1.2 Existing Approaches and Challenges

MSIP involves the triple difficulties of uncertainty, dynamics and nonconvexity, and there-

fore is an extremely challenging class of problems. These problems require carefully

embedding a stochastic process within a mixed integer program while preserving the

decision dynamics. A common formulation involves approximating the stochastic process

by a scenario tree and exploding the underlying optimization problem into a very large

scale mixed integer program (1.2). While such an approach results in problems suitable

for deterministic optimization methods, it is typically limited to fairly small problems. An

alternative approach is a nested value function based formulation akin to the usual dynamic

programming approach. The nonconvexity associated with the value functions of integer

programs and their recursions result in very complex structured dynamic programs. Details

on the related literature can be found in the beginning of each chapter.

1.2 Applications to Energy Sectors

Many power system applications can be naturally formulated as MSIP problems because of

their multistage decision dynamics, integer requirement on decisions, as well as the need of

incorporating both endogenous and exogenous uncertainty. A success story of using general

multistage stochastic programming approach to the energy sector is hydrothermal generation

scheduling in Brazil (Pereira and Pinto 1991), involving the month-to-month planning of

power generation of a system of hydro and thermal plants in order to meet energy demand in

the face of stochastic water inflows into the hydro-reservoirs (see also Cerisola et al. 2012;

Philpott and Matos 2012; Shapiro et al. 2013).

Numerous other applications in energy have been proposed since then. A long term

capacity planning of generation and transmission systems (see e.g., Akbari et al. 2011;

5

Baringo and Conejo 2013) seek optimal investment decisions to expand system generation

and transmission capacities. Such problems usually involve uncertainties from demand,

energy price, technology evolution, and government regulations. Another example is the

mid-term generation scheduling, also known as unit commitment (see e.g. Takriti et al.

2000; Sen et al. 2006; Cerisola et al. 2009a). In these problems, system operator must

determine which generation units to run in each time step (hourly or shorter) over the next

day or week, and at what output level the running units should generate. To ensure the

reliability and security requirement of the schedule, certain forms of reserved capacity

and contingency are often imposed. Other applications include planning and operation

of renewable energy systems (Jacobs et al. 1995; Fleten and Kristoffersen 2008; Bruno

et al. 2016), management of electricity storage systems (Meibom et al. 2011; Mokrian and

Stephen 2006), etc. A more comprehensive introduction of general stochastic programming

applications in energy-related optimization problems can be found in Wallace and Fleten

(2003). It is worth mentioning that the power of MSIP is not limited to energy sector, it

has also found various applications in finance, manufacturing, as well as natural resource

management.

1.3 Summary of Contribution

Motivated by its application potential, there has been a great deal of research on general

multistage stochastic programming. Major progress has been made on theoretical issues

such as structure, complexity, and approximability, as well as on effective decomposition

algorithms. Much of the progress, however, has been restricted to the two-stage setting

(T = 2 in (1.1)), or the linear setting, i.e. MSLP. In this thesis, we study the solution

methods for MSIP. The goal is to design efficient and scalable algorithms to solve this type

of large-scale optimization problems.

In Chapter 2, we consider an MSIP approach for electrical power generation capacity

expansion problems under demand and fuel price uncertainty. We propose a partially

6

adaptive stochastic mixed integer optimization model in which the capacity expansion plan

is fully adaptive to the uncertainty evolution up to a certain period, and is static thereafter.

Any solution to the partially adaptive model is feasible to the multistage model and we

provide analytical bounds on the quality of such a solution. We propose an algorithm that

solves a sequence of partially adaptive models, to recursively construct an approximate

solution to the multistage problem. We apply the proposed approach to a realistic generation

expansion case study.

In Chapter 3, we develop decomposition algorithms for general MSIP problems with

binary state variables. By exploiting the binary nature of the state variables, we extend the

nested Benders decomposition algorithm to this problem class. Key to our developments

are new families of cuts that guarantee finite convergence of the proposed algorithm. We

also propose a stochastic variant of the nested Benders decomposition algorithm, called

Stochastic Dual Dynamic integer Programming (SDDiP), and give a rigorous proof of

its finite convergence with probability one to an optimal policy. We provide extensive

computational results using the SDDiP approach for generation capacity planning, portfolio

optimization and, airline revenue management problems.

Chapter 4 focuses on adapting the SDDiP approach to solve the multistage stochastic

unit commitment (MSUC) problem. Unit commitment is a key operational problem in

power systems used to determine the optimal generation schedule over the next day or

week. Incorporating uncertainty in this already difficult optimization problem imparts severe

challenges. We reformulate the MSUC problem such that each stage problem only depends

on information from the previous stage and the uncertainty realization. This new formulation

is amenable to our SDDiP approach. We propose a variety of computational enhancements

to adapt the method to MSUC. Through extensive computational results, we demonstrate

the effectiveness of our approach in solving realistic scale MSUC problems.

7

CHAPTER 2

PARTIALLY ADAPTIVE STOCHASTIC OPTIMIZATION FOR CAPACITY

EXPANSION PROBLEMS

2.1 Introduction

Generation expansion planning (GEP) is the problem of determining an optimal construction

and generation plan over a finite planning horizon of both existing and new generation

power plants to meet future electricity demand, while satisfying operational, economic and

regulatory constraints. The objective of GEP is to minimize the total investment cost and

generation cost. Investment cost depends on the number of newly built generators over the

planning horizon, and generation cost reflects the cost incurred at the operation level. GEP

is considered a major part of power system planning problems. It is challenging due to

its large scale, long-term horizon, and nonlinear and discrete nature. A major difficulty in

GEP, as well as in more general capacity expansion problems, is to deal with uncertainty in

future demand, and various other uncertainties such as technological breakthroughs, cost

structures, etc.

From the optimization modeling perspective, we can address the uncertainty issue using

a two-stage or multistage stochastic optimization model. In a two-stage model, the capacity

expansion plan for the entire planning horizon is decided prior to the uncertainty realized

and hence allows no adaptivity to uncertainty evolution over time. In contrast, a multistage

stochastic optimization model allows full adaptivity to the uncertainty evolution, but is

extremely difficult to solve.

In this chapter, we develop a unifying framework and an efficient algorithm for solving

the stochastic capacity expansion problem. The key contributions are summarized here.

1. A partial adaptive model for GEP. We propose a partially adaptive (PA) stochastic

8

model for the general capacity expansion planning problem and apply it to the

generation expansion problem. The partially adaptive stochastic model allows the

capacity expansion decision to be fully adaptive to uncertainty up to a certain set

of prescribed nodes in the scenario tree, and then restricts the expansion decisions

to a two-stage structure thereafter. In this way, the PA model provides a natural

generalization for the two-stage and multistage models. A related idea is used to

approximate an infinite horizon stochastic program by a finite-horizon model through

aggregating all future decisions after a finite time period (Grinold 1986). The two

approaches have very different motivations. More importantly, the PA model proposed

in this chapter allows more flexibility in constructing the ‘compressed’ scenario tree.

Also, to the best of our knowledge, partially adaptive models have not been considered

for the stochastic capacity expansion problem.

2. Performance analysis on PA model. We provide theoretical analysis of the

performance of the PA model. In particular, we prove upper and lower bounds

for the performance difference between a PA model and full multistage model. The

bounds are related to the cost parameters as well as the structure of the compressed

scenario tree.

3. An approximation algorithm. We further propose a new efficient approximation

algorithm to solve the PA model. The algorithm recursively solves a sequence of

smaller PA models and constructs a feasible solution to the multistage stochastic

optimization model. We identify analytical conditions on problem parameters under

which the proposed algorithm recovers an optimal multistage solution. We also

conduct extensive computational experiments on a large scale 10-year GEP problem

with real-world demand and fuel price data. The results demonstrate that the proposed

algorithm can solve the GEP problem within a reasonable computation time limit and

yields a significantly better solution than directly solving the multistage model.

9

2.2 Related Work

The first stochastic capacity expansion planning model with demand uncertainty dates back

to Manne (1961), and has been followed by extensive work in the area (see e.g., Erlenkotter

1967; Giglio 1970; Freidenfelds 1980; Davis et al. 1987; Bean et al. 1992). These early

works assume simplified underlying stochastic processes for the uncertainties to obtain

analytical solutions and are typically restricted to capacity expansion with single resource.

Stochastic optimization approaches for capacity expansion problems utilize scenario

trees to model uncertainty. Both two-stage and multistage stochastic optimization models

have been proposed. In a typical two-stage stochastic GEP model, the first-stage decisions

are the capacity expansion decisions over the entire planning horizon, which are made

before any uncertainty is realized; then the operational level decisions for generation

production are made as the second stage decision, which are fully adaptive to uncertainty

realizations. For example, Jin et al. (2011) propose such a two-stage stochastic GEP

model and further consider both risk-neutral and risk-averse objectives, and apply a random

sampling based method to approximately solve the problem. Bloom (1983) and Bloom

et al. (1984) investigate in a two-stage GEP model with probabilistic reliability constraints

and solve it using generalized Benders’ decomposition. The second stage subproblems are

nonlinear because of the system reliability constraints and are solved using a procedure

called probabilistic simulation. Bienstock and Shapiro (1988) propose another type of

two-stage stochastic GEP model which decomposes the entire planning horizon into two

stages. The authors consider demand and fuel price uncertainty, and solve the problem using

a Benders decomposition type algorithm.

Multistage stochastic optimization models allow the capacity expansion decisions to

be fully adaptive to uncertainty realizations. For instance, Berman et al. (1994) consider a

scenario-based multistage stochastic optimization model for capacity expansion of a single

technology. Chen et al. (2002) extend this model to multiple technologies. In both models,

10

the capacity expansion decisions are assumed to be continuous variables. Ahmed and

Sahinidis (2003) consider a multistage stochastic formulation, where the capacity expansion

decisions are binary variables. The authors propose an LP-relaxation-based approximation

algorithm for this problem and prove its asymptotic optimality as the planning horizon goes

to infinity. Ahmed et al. (2003) further exploit the special structure of the stochastic lot-

sizing problem and develop a branch-and-bound algorithm to obtain global optimal solutions.

Singh et al. (2009) propose a column-generation approach for solving such problems. Huang

and Ahmed (2009) show that multistage capacity expansion models can have significant

advantages in terms of total expected costs over two-stage models. Ryan et al. (2011)

and Wallace and Fleten (2003) present comprehensive surveys on stochastic modeling

in planning and operation of electric power systems. In a broader domain of multistage

stochastic optimization, extensive research has been done in term of how to allocate “stages”

(Grinold 1986; Nielsen and Zenios 1996; Dempster et al. 2000; Dupačová et al. 2009), but

most of them assume continuous variables and focus on financial applications. It is fair

to say that, despite the intense research efforts, multistage stochastic expansion models

remain extremely challenging to solve for large-scale cases within a reasonable amount of

computation time.

The remainder of the chapter is organized as follows. Section 2.3 presents the PA model

development. In Section 2.4, we analyze the performance of the PA model. We present the

approximation algorithm in Section 2.5 and computational results in Section 2.6. Finally,

we provide concluding remarks in Section 2.7.

2.3 Model Development

In this section, we develop a partially adaptive stochastic mixed integer optimization model

for the GEP problem. Section 2.3.1 contains a detailed PA model for the GEP problem.

In Sections 2.3.2, we present a PA model for the general capacity expansion problem, and

discuss its connections to two-stage and multistage models.

11

2.3.1 PA Model for GEP Problem

We consider two main sources of uncertainty in the GEP model, namely, the uncertainty

of future demand and fuel prices, mainly natural gas prices, which are historically very

volatile (Jin et al. 2011). A scenario tree approach is adopted to model the evolution of these

uncertainties over a multi-year finite planning horizon.

Now we can introduce the PA model for the GEP problem. The basic structure of

the model is adopted from the two-stage model of Jin et al. (2011). As discussed in the

introduction, the PA-GEP model imposes a multistage structure for the capacity expansion

decision from period 1 up to period µ, i.e. the expansion decisions in these periods need to

satisfy non-anticipativity constraints, and then from period µ+1 to T , the expansion decision

follows a two-stage structure, i.e., they are made without the knowledge of uncertainty

realization after period µ. Note that the operational level decisions of generation production

have a multistage structure throughout the planning horizon. In the following, we present a

detailed PA-GEP model with critical time µ.

Parameters

T Number of time periods in planning horizon.

I Set of available technologies to expand capacity.

Kt Set of sub-periods in each planning period t.

cit Unit cost of a type i generator at period t. ($/MW)

mmax
i Maximum capacity of a type i generator. (MW)

nmaxi Maximum rating of output of a type i generator. (MW)

umaxi Maximum number of type i generators that can be built over the planning

horizon.

u0i Number of pre-existing type i generators.

bink Unit generation cost for a type i generator in sub-period k at node n.

($/MWh)

12

dnk Hourly demand in sub-period k at node n. (MW)

hnk Number of hours in sub-period k at node n.

q Unit penalty cost for unmet demand. ($/MW)

r Annual interest rate.

µ Critical time of the model.

Variables

xin Number of type i generators built at node n.

vink Hourly generation of a type i generator in sub-period k at node n. (MW)

wnk Unmet hourly demand in sub-period k at node n. (MW)

Formulation

min
∑
n∈T

∑
i∈I

pncitnm
max
i

(1 + r)tn−1
xin +

∑
i∈I

∑
k∈Ktn

pnhnkbink
(1 + r)tn−1

vink +
∑
k∈Ktn

pnhnkq

(1 + r)tn−1
wnk

(2.1a)

s.t.
∑

m∈P(n)
xim + u0i ≥

1

nmaxi

vink, ∀ i ∈ I, k ∈ Ktn , n ∈ T (2.1b)

∑
m∈P(n)

xim ≤ umaxi , ∀ i ∈ I, n ∈ ST (2.1c)

∑
i∈I

vink + wnk = dnk, ∀ k ∈ Ktn , n ∈ T (2.1d)

xin1 = xin2 , ∀ i ∈ I, n1, n2 ∈ T (m) ∩ St,m ∈ Sµ, t > µ (2.1e)

xin ∈ Z+, vink, wnk ∈ R+, ∀ i ∈ I, k ∈ Ktn , n ∈ T . (2.1f)

In the PA-GEP model (2.1), the objective function consists of investment, generation,

and penalty costs, all of which are discounted to the beginning of the planning horizon.

Constraints (2.1b) indicate that the output by each type of generators during any sub-period

cannot exceed the aggregate output rating of all available (both pre-existing and newly

built) generators of that type. Constraints (2.1c) require the total number of each type of

generators built in all possible scenarios to be within the quantity limitation. Furthermore, in

13

constraints (2.1d), we enforce the equality between the demand and the sum of generation

output and unmet demand. Note that renewable generation such as wind and solar power

can be easily incorporated in the above expansion model, e.g., by modeling wind and solar

availability as random negative demand on the scenario tree.

The key constraint of the PA-GEP model is (2.1e), which imposes a two-stage model

after period µ at each possible outcome in that period. As a result, for any possible realization

at period µ, there is only one capacity expansion decision in each period subsequently. In

other words, future capacity expansion decisions are made at period µ without knowing

further uncertainty realizations. Note that non-anticipativity constraints, which impose the

requirement that period t decision for two scenarios that are indistinguishable at stage t

must be identical, are implicitly embedded in the nodal formulation due to the scenario tree

structure.

2.3.2 PA Model for General Capacity Expansion Planning

The model (2.1) can be written in a more abstract and general way to obtain a PA model for a

general stochastic capacity expansion planning problem. All the analysis of the performance

of the PA model in Section 2.4 is done for the following generic model.

[ΠPA(µ)] min
∑
n∈T

pn

(
a>nxn +

∑
k∈Ktn

b>nkynk

)
(2.2a)

s.t.
∑

m∈P(n)
xm ≥ Ankynk, ∀ k ∈ Ktn , n ∈ T (2.2b)

∑
m∈P(n)

xm ≤ u, ∀ n ∈ ST (2.2c)

Bnkynk = dnk, ∀ k ∈ Ktn , n ∈ T (2.2d)

xn1 = xn2 , ∀ n1, n2 ∈ T (m) ∩ St,m ∈ Sµ, t > µ (2.2e)

xn ∈ ZI+, ynk ∈ RJ
+, ∀ k ∈ Ktn , n ∈ T . (2.2f)

14

Here, the vector xn corresponds to the investment decisions (xin) in all types of generators

at node n, thus I = |I|; ynk corresponds to the operation level decisions in sub-period

k at node n, i.e., the generation output (vink) and the amount of unmet demand (wnk),

thus J = I + 1. The parameters an and bnk correspond to the objective coefficients of

xn and ynk, respectively. The matrices Ank and Bnk correspond to the coefficient matrix

on the right-hand-side in constraints (2.1b) and coefficient matrix on the left-hand-side

in constraints (2.1d), respectively. Constraints (2.2e) correspond to (2.1e). Finally, the

parameter vectors u and dnk correspond to the right-hand-side vectors in constraints (2.1c)

and (2.1d), respectively. Note that dnk has dimension of 1 in model (2.1), since electricity is

the only type of output.

As a unifying framework, the proposed PA model ΠPA(µ) generalizes the existing

two-stage and multistage models in the capacity planning literature (see e.g., Ahmed and

Sahinidis 2003; Singh et al. 2009; Jin et al. 2011). Figure 2.1 illustrates the decision

structures of the PA, multistage, and two-stage models. In particular, the left network in

xn

(a) ΠMS : µ = T

xn xn,µ+1 xn,T

(b) ΠPA(µ) : µ = tn

x1 x2 xµ xµ+1 xT

(c) ΠTS : µ = 1

Figure 2.1: Capacity expansion decisions in ΠMS, ΠPA(µ) and ΠTS

Figure 2.1 represents the decision structure of the multistage model, where the decision

maker has a specific expansion plan for each node in the scenario tree. The middle network

corresponds to a PA model, where each node n has an expansion plan xn up to time period

µ. After that, the subtree T (n) is “compressed” into a chain, where the decision maker only

has one expansion plan for all the nodes in each following time period. The two-stage model

15

ΠTS on the right has the most simple expansion plan, where each planning period has only

one decision throughout the planning horizon.

For later use, we also provide explicit formulations for the two-stage and multistage

capacity expansion models below.

[ΠTS] min
T∑
t=1

ātxt +
∑
n∈T

pn

(∑
k∈Ktn

b>nkynk

)
(2.3a)

s.t.
tn∑
s=1

xs ≥ Ankynk, ∀ k ∈ Ktn , n ∈ T (2.3b)

T∑
s=1

xs ≤ u (2.3c)

Bnkynk = dnk, ∀ k ∈ Ktn , n ∈ T (2.3d)

xt ∈ ZI+, ynk ∈ RJ
+, ∀ t = 1, . . . , T, k ∈ Ktn , n ∈ T . (2.3e)

[ΠMS] min

∑
n∈T

pn

(
a>nxn +

∑
k∈Ktn

b>nkynk

)
: (2.2b), (2.2c), (2.2d), (2.2f).

 (2.4)

In ΠTS, āt is the average cost across the period t, i.e., āt =
∑

n∈St pnan. Note that in a

two-stage formulation, other choices of investment cost, such as the highest cost in each

stage may also be used.

2.4 Performance of ΠPA(µ)

In this section, we investigate the performance of the PA model ΠPA(µ), namely, the

difference between optimal values of the PA model and the multistage model ΠMS. Let

vPA(µ) and vMS be the optimal value of ΠPA(µ) and ΠMS, respectively. Note that an optimal

solution to ΠPA(µ) is a feasible solution to the multistage model ΠMS with value vPA(µ).

Thus, we define Gap(µ) := vPA(µ)− vMS as the performance gap between the two models.

It is clear that Gap(µ) ≥ 0, for all 1 ≤ µ ≤ T , and Gap(T) = 0, since the optimal solution

16

to the PA model is a feasible solution to the multistage model. Also, Gap(1) is the gap

between two-stage and multistage models, which is studied in Huang and Ahmed (2009).

Therefore, the following analysis generalizes the bounds therein.

Notice that both ΠPA(µ) and ΠMS are integer programs, thus they both become difficult

to solve when the planning horizon is long. Moreover, as long as µ < T , ΠMS will have

significantly more integer variables than ΠPA(µ) since the number of nodes in a scenario

tree grows exponentially in the number of planning periods. Thus the multistage model

becomes much more difficult to solve. If Gap(µ) is small for modest µ, then ΠPA(µ) can

provide a good, easier-to-compute approximation to ΠMS with guaranteed performance. For

this reason, we provide analytical lower and upper bounds for Gap(µ), using instance data

and the optimal LP-relaxation solutions of these two models.

A brief outline of our approach is summarized as follows. Motivated by an important

substructure of these models, we decompose the original problem into subproblems, each of

which corresponds to a single type of expansion technology. We solve the LP relaxations of

the original PA and multistage models with multiple types of technologies. Then we use

their optimal solutions and input data to bound the gap for single-technology subproblems.

Finally we aggregate these bounds for subproblems to obtain both upper and lower bounds

on Gap(µ).

In the following, we derive an upper bound in detail, a lower bound can be derived in a

similar fashion as explained in subsection 2.4.4. Main results are summarized in Theorems

3 and 4 in Section 2.4.4.

2.4.1 Decomposition Reformulation

We first describe a decomposition reformulation of the generic capacity expansion planning

model. This reformulation separates capacity expansion decisions from operation decisions.

For simplicity, we let x and y denote vectors {xn}n∈T and {{ynk}k∈Ktn}n∈T . The multistage

17

model ΠMS can be decomposed as follows.

vMS = min

∑
n∈T

∑
k∈Ktn

pnb
>
nkynk +

∑
i∈I

Vi(y) : Bnkynk = dnk, ynk ∈ RJ
+,∀k ∈ Ktn , n ∈ T

 ,

(2.5)

where for each i ∈ I,

Vi(y) = min

∑
n∈T

pnainxin : [Ankynk]i ≤
∑

m∈P(n)
xim ≤ ui, xin ∈ Z+,∀k ∈ Ktn , n ∈ T

 .

(2.6)

The above reformulation allows problem (2.6) to be solved for each type of technology

individually, if operation decision y is given. Let {xMLP, yMLP} be an optimal solution to the

linear relaxation of the multistage model ΠMS, and let δin = maxk∈Ktn{[AnkyMLP
nk]i} for all

i ∈ I and n ∈ T . Since yMLP is optimal in the LP relaxation of ΠMS but not necessarily in

ΠPA(µ), and ΠPA(µ) is an integer program, we have

vPA(µ) ≤
∑
n∈T

∑
k∈Ktn

pnb
>
nky

MLP
nk +

∑
i∈I

oP
i (µ), vMS ≥

∑
n∈T

∑
k∈Ktn

pnb
>
nky

MLP
nk +

∑
i∈I

vM
i ,

where

oP
i (µ) = min

∑
n∈T

pnainxin (2.7a)

s.t.
∑

m∈P(n)
xim ≥ δin, ∀ n ∈ T (2.7b)

∑
m∈P(n)

xim ≤ ui, ∀ n ∈ ST (2.7c)

xin1 = xin2 , ∀ n1, n2 ∈ T (m) ∩ St,m ∈ Sµ, t > µ (2.7d)

xin ∈ Z+, ∀ n ∈ T , (2.7e)

18

and

vM
i = min

{∑
n∈T

pnainxin : s.t. (2.7b)− (2.7c), xin ∈ R+, ∀ n ∈ T .

}
(2.8)

Note that oP
i (µ) is the optimal investment cost of a partially adaptive, single-technology

capacity expansion planning problem with fixed operation decisions yMLP. Let vP
i (µ) denote

the optimal value of its LP relaxation. vM
i is the optimal investment cost of the LP relaxation

of a multistage, single-technology problem with fixed operation decisions yMLP. Moreover,

u is an integral vector, thus δin ≤ dδine ≤ ui for all i ∈ I and n ∈ T . Since xin takes

nonnegative integer values in (2.7), the problem remains the same if the right-hand-side of

constraints (2.7b) is rounded up to dδine.

Because of the decomposition reformulation, we can focus on single-technology

problems, and bound the gap between the PA model and the multistage model by

Gap(µ) = vPA(µ)− vMS ≤
∑
i∈I

(oP
i (µ)− vM

i). (2.9)

2.4.2 Some Useful Results for Single-technology Problems

Reformulation of (2.7)

In problem (2.7), constraints (2.7d) enforce two-stage approach after period µ at each

possible outcome in that period. This is equivalent to combining some nodes into a single

node after period µ, but still maintaining a tree structure in the capacity expansion decisions,

as illustrated in Figure 2.1. Therefore, we can formulate a equivalent multistage model on

the “compressed” tree as follows.

oP
i (µ) = min

∑
n∈T̂

p̂nâinxin (2.10a)

s.t.
∑

m∈P(n)
xim ≥ dδ̂ine, ∀ n ∈ T̂ (2.10b)

19

∑
m∈P(n)

xim ≤ ui, ∀ n ∈ ST (2.10c)

xin ∈ Z+, ∀ n ∈ T̂ , (2.10d)

where T̂ is the compressed tree, for any node n ∈ T̂ such that tn ≤ µ, we have p̂n = pn,

âin = ain, δ̂in = δin. For any node n ∈ T̂ such that tn > µ, let Un ⊂ T consist of

the nodes that are “compressed” to node n by constraints (2.7d), and p̂n =
∑

m∈Un pm,

âin =
∑

m∈Un pmaim, δ̂in = max{δim : m ∈ Un}.

Totally unimodularity (TU) of (2.10)

The following result shows that the feasible region of problem (2.10) is an integral polytope

as long as the right-hand-side vector is integral. The boundedness follows directly from

upper bound constraints (2.10c) and nonnegativity of xin. As a result, the LP relaxation of

problem (2.10) admits integer optimal solutions.

Proposition 1. In problem (2.10), the left-hand-side coefficient matrix is TU.

Proof. Let us denote the left-hand-side coefficient matrix corresponding to constraints

(2.10b) by D. The left-hand-side coefficient matrix corresponding to constraints (2.10c) are

the same as some rows in −D. In fact, they correspond to each scenario (path) in the tree T̂ .

Therefore, it is sufficient to show that D is totally unimodular. We know that every entry of

D is either 0 or 1. For each column j, there are exactly |T̂ (j)| 1’s, in particular, Dij = 1 if

i ∈ T̂ (j). We can traverse the tree by depth-first-search, and rearrange the rows according

to the sequence. After rearrangement, D is an interval matrix hence is totally unimodular

(cf. Schrijver 1998).

Redundancy of constraints (2.10c)

Since {δin, i ∈ I, n ∈ T } are defined by an optimal solution {xMLP, yMLP} to the LP

relaxation of multistage model, we can further simplify problem (2.10) by removing the

20

redundant constraints (2.10c).

Proposition 2. If p̂nâin > 0 for all n ∈ T̂ and i ∈ I, then in the LP relaxation of problem

(2.10), constraints (2.10c) are redundant.

Proof. It is sufficient to show that any optimal solution to the problem

min

∑
n∈T̂

p̂nâinxin s.t.
∑

m∈P(n)
xim ≥ dδ̂ine, xin ≥ 0,∀n ∈ T̂

 (2.11)

satisfies constraints (2.10c). Let x̃i be an optimal solution to (2.11). Suppose there exists

n0 ∈ T̂ such that
∑

m∈P(n0)
x̃im = w > ui. Recall that ui ≥ dδ̂ine for all n ∈ T̂ , it

follows that
∑

m∈P(n0)
x̃im > dδ̂ine for all n ∈ T̂ (n0). If x̃in0 > 0, since p̂n0 âin0 > 0, by

optimality of x̃i, we know there must be some n′0 ∈ T̂ (n0), such that dδ̂in′0e = w > ui,

which contradicts the fact that ui ≥ dδ̂ine for all n ∈ T̂ . If x̃in0 = 0, we traverse back

along P(n0) to find the first node n′′0 with x̃in′′0 > 0. Notice such a node must exist since∑
m∈P(n0)

x̃im > 0. It follows that
∑

m∈P(n′′0) x̃im = w > ui. We go back to the first case.

Therefore, the result holds.

As a remark, the result in Proposition 2 also applies to the LP relaxation of problem

(2.7), as well as problem (2.8).

2.4.3 An Upper Bound on oP
i(µ) − vM

i

There are two main steps in obtaining an upper bound on oP
i (µ)− vM

i .

• Step 1. We show that oP
i (µ) ≤ vP

i (µ) +C, where C is some constant that is dependent

on the input data and {δin}n∈T .

• Step 2. We derive upper and lower bounds for vP
i (µ) and vM

i .

Then an upper bound for oP
i (µ) − vM

i can be expressed as “upper bound of vP
i (µ) −

lower bound of vM
i + C”.

21

Step 1 With previous results for the single-technology problems, we have the following

result.

Proposition 3. oP
i (µ) ≤ vP

i (µ) + ai1 · λi, where λi = maxn∈T {dδine − δin}. If {δin}n∈T

are all integers, the inequality is tight.

Proof. In fact, with linear programming duality, Proposition 1 and 2, we have

oP
i (µ) = min

∑
n∈T̂

p̂nâinxin s.t.
∑

m∈P(n)
xim ≥ δ̂in,

∑
m∈P(n)

xim ≤ ui, xin ∈ Z+, ∀n ∈ T̂

(i)
= min

∑
n∈T̂

p̂nâinxin s.t.
∑

m∈P(n)
xim ≥ dδ̂ine,

∑
m∈P(n)

xim ≤ ui, xin ∈ R+, ∀n ∈ T̂

(ii)
= min

∑
n∈T̂

p̂nâinxin s.t.
∑

m∈P(n)
xim ≥ dδ̂ine, xin ∈ R+, ∀n ∈ T̂

(iii)
= max

∑
n∈T̂

dδ̂ineπin s.t.
∑

m∈T̂ (n)

πim ≤ p̂nân, πin ∈ R+, ∀n ∈ T̂

= max

∑
n∈T̂

(δ̂in + dδ̂ine − δ̂in)πin s.t.
∑

m∈T̂ (n)

πim ≤ p̂nân, πin ∈ R+, ∀n ∈ T̂

≤ max

∑
n∈T̂

δ̂inπin s.t.
∑

m∈T̂ (n)

πim ≤ p̂nân, πin ∈ R+, ∀n ∈ T̂

+ max

∑
n∈T̂

πin s.t.
∑

m∈T̂ (n)

πim ≤ p̂nân, πin ∈ R+, ∀n ∈ T̂

 ·max
n∈T
{dδ̂ine − δ̂in}

(iv)
= min

∑
n∈T̂

p̂nâinxin s.t.
∑

m∈P(n)
xim ≥ δ̂in, xin ∈ R+, ∀n ∈ T̂

+ min

∑
n∈T̂

p̂nâinxin s.t.
∑

m∈P(n)
xim ≥ 1, xin ∈ R+, ∀n ∈ T̂

 ·max
n∈T
{dδ̂ine − δ̂in}

(v)

≤ vP
i (µ) + ai1 · λi. (2.12)

Specifically, (i) follows from Proposition 1; (ii) follows from Proposition 2; (iii) and (iv)

22

follow from linear programming duality; (v) follows from Proposition 2, the definition of

{δ̂in}n∈T̂ , the fact that p1 = 1, and the optimal solution to a single-technology GEP problem

with demand 1 at each node is nothing but building one generator at the beginning of the

planning horizon. The tightness of the inequality follows from Proposition 1.

Step 2 Before presenting lower and upper bounds for vP
i (µ) and vM

i , we define some useful

parameters and show their relations. For simplicity, we omit the index i in this step.

Let us define

δ(µ−) :=
∑

n∈Sµ−1

pn max
m∈P(n)

{δm}, δ(µ) :=
∑
n∈Sµ

pn max
m∈P(n)∪T (n)

{δm};

aµ− := min
n∈T :tn≤µ

{an}, aµ+ := min
n∈T :tn≥µ

{an}, a∗ = min
n∈T
{an};

āµ− := max
n∈T :tn≤µ

{an}, āµ+ := max
n∈T :tn≥µ

{an}, a∗ = max
n∈T
{an}.

If µ = 1, we have δ(1−) = 0, δ(1) = maxn∈T {δn}, and a1− = ā1− = a1, a1+ = a∗,

ā1+ = a∗; if µ = T , then δ(T) =
∑

n∈ST pn maxm∈P(n){δm}, and aT− = a∗, āT− = a∗. It

is easy to see that as µ increases from 1 to T , δ(µ−), aµ+ and āµ− are monotone increasing

while δ(µ), aµ− and āµ+ are monotone decreasing. One can treat {δn}n∈T as the “demand”

in the single-technology problem, then δ(1) is the largest demand across the entire scenario

tree, and δ(T) is the average of the maximum demand in each scenario (path). The following

proposition reveals the relation between these δ’s.

Proposition 4. For any µ ∈ {1, . . . , T}, the following relation holds, δ(µ−) ≤ δ(T) ≤ δ(µ) ≤

δ(1).

Proof. Recall that in a scenario tree, the probability associated with a node equals the sums

of probabilities of its children nodes. By definition, we have

δ(µ−) =
∑

n∈Sµ−1

pn max
m∈P(n)

{δm}

23

=
∑

n∈Sµ−1

 ∑
k∈ST∩T (n)

pk max
m∈P(n)

{δm}

 ≤ ∑
n∈Sµ−1

 ∑
k∈ST∩T (n)

pk max
m∈P(k)

{δm}

(δ(T)) =

∑
k∈ST

pk max
m∈P(k)

{δm}

=
∑
n∈Sµ

∑
k∈ST∩T (n)

pk max
m∈P(k)

{δm} ≤
∑
n∈Sµ

 ∑
k∈ST∩T (n)

pk

 max
m∈P(n)∪T (n)

{δm}

(δ(µ)) =
∑
n∈Sµ

pn max
m∈P(n)∪T (n)

{δm} ≤
∑
n∈Sµ

pnδ
(1) = δ(1).

Now we derive lower and upper bounds for vP(µ), and the bounds for vM can be attained

by setting µ = T . We briefly discuss the idea of finding these bounds:

• Lower bound: starting from an optimal solution to the LP relaxation of (2.7), relax

the coefficients in the objective funtion to reach a lower bound for vP(µ);

• Upper bound: construct a feasible solution to the LP relaxation of (2.7), and the

objective function value given by this solution yields an upper bound for vP(µ).

Specifically, we have the following theorem.

Theorem 1. (aµ− − a∗)δ(µ−) + a∗δ(µ) ≤ vP(µ) ≤ (āµ− − āµ+)δ(µ−) + āµ+δ
(µ).

Proof. We change the notation of decision variables for capacity expansion decisions

starting from period µ into a different representation. In particular, for any n ∈ Sµ and

t > µ, {xm : m ∈ T (n) ∩ St} share the same value, let xn,t denote the new variable that

represents the common value of these variables. Given a feasible solution x to the LP

relaxation of problem (2.7), for any n ∈ Sµ−1, by feasibility we have

∑
m∈P(n)

xm ≥ max
m∈P(n)

{δm} ⇒
∑

n∈Sµ−1

pn
∑

m∈P(n)
xm ≥

∑
n∈Sµ−1

pn max
m∈P(n)

{δm}

⇔
µ−1∑
t=1

∑
k∈St

 ∑
m∈Sµ−1∩T (k)

pm

xk ≥ δµ−

24

⇔
µ−1∑
t=1

∑
k∈St

pkxk ≥ δµ−,

where the first equivalence follows from changing the summation sequence; and the second

equivalence follows from the fact that
∑

m∈Sµ∩T (k) pm = pk for all k ∈ T such that tk < µ.

In addition, for any n ∈ Sµ, by feasibility we have

∑
m∈P(a(n))

xm +
T∑
t=µ

xn,t ≥ max
P(n)∪T (n)

{δm} ⇔
T∑
t=µ

xn,t ≥ max
P(n)∪T (n)

{δm} −
∑

m∈P(a(n))
xm.

Then if x∗ is an optimal solution to the LP relaxation of problem (2.7), we have

vP(µ) =
∑
n∈T

pnanx
∗
n (2.13)

=

µ−1∑
t=1

∑
n∈St

pnanx
∗
n +

T∑
t=µ

∑
n∈St

pnanx
∗
n

≥ aµ−

µ−1∑
t=1

∑
n∈St

pnx
∗
n + a∗

T∑
t=µ

∑
n∈St

pnx
∗
n

= aµ−

µ−1∑
t=1

∑
n∈St

pnx
∗
n + a∗

∑
n∈Sµ

pn

T∑
t=µ

x∗n,t

≥ aµ−

µ−1∑
t=1

∑
n∈St

pnx
∗
n + a∗

∑
n∈Sµ

pn

 max
P(n)∪T (n)

{δm} −
∑

m∈P(a(n))
x∗m

= (aµ− − a∗)

µ−1∑
t=1

∑
n∈St

pnx
∗
n + a∗

∑
n∈Sµ

pn max
P(n)∪T (n)

{δm}

≥ (aµ− − a∗)δ(µ−) + a∗δ
(µ), (2.14)

where the last inequality follows from aµ− ≥ a∗ and the definitions of δ(µ) and δ(µ−).

Next, we consider a feasible solution x̂ to the LP relaxation of problem (2.7). For any

n ∈ T such that tn ≤ µ− 1, let x̂n = max{δm : m ∈ P(n)} −max{δm : m ∈ P(a(n))},

and max{δm : m ∈ P(a(1))} = 0; for any n ∈ Sµ, t ≥ µ, let x̂n,t = max{δm : m ∈

25

P(a(n)) ∪ T (n, t)} −max{δm : m ∈ P(a(n)) ∪ T (n, t− 1)}. Then we have

vP(µ) ≤
∑
n∈T

pnanx̂n (2.15)

=

µ−1∑
t=1

∑
n∈St

pnanx̂n +
T∑
t=µ

∑
n∈St

pnanx̂n

≤ āµ−

µ−1∑
t=1

∑
n∈St

pnx̂n + āµ+

T∑
t=µ

∑
n∈St

pnx̂n

= āµ−

µ−1∑
t=1

∑
n∈St

pnx̂n + āµ+
∑
n∈Sµ

pn

T∑
t=µ

x̂n,t

= āµ−

µ−1∑
t=1

∑
n∈St

pn

(
max
m∈P(n)

{δm} − max
m∈P(a(n))

{δm}
)

+ āµ+
∑
n∈Sµ

pn

T∑
t=µ

(
max

m∈P(a(n))∪T (n,t)
{δm} − max

m∈P(a(n))∪T (n,t−1)
{δm}

)
= āµ−

∑
n∈Sµ−1

pn max
m∈P(n)

{δm}+ āµ+
∑
n∈Sµ

pn

(
max

m∈P(a(n))∪T (n)
{δm} − max

m∈P(a(n))
{δm}

)
= (āµ− − āµ+)

∑
n∈Sµ−1

pn max
m∈P(n)

{δm}+ āµ+
∑
n∈Sµ

pn max
m∈P(n)∪T (n)

{δm}

= (āµ− − āµ+) δ(µ−) + āµ+δ
(µ), (2.16)

where the third to last equality follows from the fact that the probability of node n equals to

the sum of probabilities of its children nodes.

Setting µ = T and applying Proposition 4, we immediately have the following corollary.

Corollary 1. a∗δ(T) ≤ vM ≤ a∗δ(T).

Suppose that the cost parameters an are nearly constant, that is, a∗ ≈ a∗ ≈ aµ− ≈

aµ+ ≈ āµ− ≈ āµ+ ≈ a, then we have vP(µ) ≈ aδ(µ) and vM ≈ aδ(T). As µ increases from 1

to T , this approximate value of vP(µ)− vM decreases from a
(
δ(1) − δ(T)

)
to 0. Combining

results in these two steps, we obtain an upper bound of oP(µ) − vM, summarized in the

following theorem.

26

Theorem 2. oP(µ) − vM ≤
[
(āµ− − āµ+)δ(µ−) + āµ+δ

(µ) − a∗δ(T)
]

+ a1 · λi, where

λi = maxn∈T {dδine − δin}.

2.4.4 Upper and Lower Bounds for Gap(µ)

Upper bound As discussed before, aggregating the bound in Theorem 2 for each type of

capacity expansion technology yields an upper bound for Gap(µ).

Theorem 3. Let yMLP be the operation level decisions in an optimal solution to the linear

relaxation of multistage model ΠMS. For each type of expansion technology i ∈ I, let

δin = maxk∈Ktn{[AnkyMLP
nk]i}, and λi = maxn∈T {dδine − δin}. We further define

ai,∗ = min
n∈T
{ain}, āi,µ− = max

n∈T :tn≤µ
{ain}, āi,µ+ = max

n∈T :tn≥µ
{ain},

δ
(µ−)
i =

∑
n∈Sµ−1

pn max
m∈P(n)

{δim}, δ
(τ)
i =

∑
n∈Sτ

pn max
m∈P(n)∪T (n)

{δim},

for τ = µ, T . Then for a capacity expansion planning problem with multiple technologies,

Gap(µ) ≤
∑
i∈I

[
(āi,µ− − āi,µ+)δ

(µ−)
i + āi,µ+δ

(µ)
i − ai,∗δ

(T)
i

]
+
∑
i∈I

ai1 · λi. (2.17)

Lower bound Now suppose we start the entire analysis with an optimal solution

{xPLP, yPLP} to the LP relaxation of PA model ΠPA(µ), and let γin = maxk∈Ktn{[AnkyPLP
nk]i}

for all i ∈ I and n ∈ T . Then we have

vPA(µ) ≥
∑
n∈T

∑
k∈Ktn

pnb
>
nky

PLP
nk +

∑
i∈I

vP
i (µ), vMS ≤

∑
n∈T

∑
k∈Ktn

pnb
>
nky

PLP
nk +

∑
i∈I

oM
i ,

where vP
i (µ) and oM

i are defined similarly as (2.7) and (2.8) with δin substituted by γin.

Applying similar techniques as in Theorem 3, we can obtain

vPA(µ)− vMS ≥
∑
i∈I

(vP
i (µ)− oM

i) ≥
∑
i∈I

[vP
i (µ)− vM

i − ai1 · ηi], (2.18)

27

where ηi = maxn∈T {dγine − γin}. Putting Theorem 1, Corollary 1, and (2.18) together, the

following result follows immediately.

Theorem 4. Let yPLP be the operation level decisions in an optimal solution to the

linear relaxation of PA model ΠPA(µ). For each type of generator i ∈ I, let γin =

maxk∈Ktn{[AnkyPLPnk]i}, and ηi = maxn∈T {dγine − γin}. We further define

a∗i = max
n∈T

{ain}, ai,∗ = min
n∈T
{ain}, ai,µ− = max

n∈T :tn≤µ
{ain},

γ
(µ−)
i =

∑
n∈Sµ−1

pn max
m∈P(n)

{γim}, γ
(τ)
i =

∑
n∈Sτ

pn max
m∈P(n)∪T (n)

{γim},

for τ = µ, T . Then for a capacity expansion planning problem with multiple technologies,

Gap(µ) ≥
∑
i∈I

[
(ai,µ− − ai,∗)γ

(µ−)
i + ai,∗γ

(µ)
i − a∗i γ

(T)
i

]
−
∑
i∈I

ai1 · ηi. (2.19)

The bounds in Theorem 3 and 4 are dependent on the input data, in particular the

investment cost a, and optimal solutions to the LP relaxation of ΠMS and ΠPA(µ). Note

that these bounds could be weak when investment costs in the first planning period are

very large. For general cost structures, however, decision makers can choose a value of µ

within [1, T] and calculate these bounds. If these bounds indicate that the current PA model

with parameter µ is a good enough approximation to the multistage model, then we can

just solve the PA model without bearing addition computational effort. If the bounds are

still not appealing, a larger value of µ should be considered. The following small example

demonstrates the possibility that the bounds in Theorem 3 and Theorem 4 could be useful in

assessing the critical values for µ.

Example 1. Consider a single technology problem. The underlying scenario tree has three

stages and each node has two branches with equal probability. Let S1 = {1}, S2 = {2, 3},

S3 = {4, 5, 6, 7}. Assume investment cost a1 = 10, a2 = · · · = a7 = 8, and unit generation

cost is 1. Let the demand be d1 = 1, d2 = 3, d3 = 5, d4 = 4, d5 = 5, d6 = 5, d7 = 6. We

28

assume that one unit of demand requires one unit of generator. Thus solving a multistage

problem yields an optimal cost of 71, and solving a PA model with µ = 2 yields an optimal

cost of 75, thus Gap(2) = 4. According to (2.17) and (2.19), we have 4 ≤ Gap(2) ≤ 6, the

lower bound is actually tight.

2.5 An Approximation Algorithm for Solving ΠMS

In this section, we first propose an approximation algorithm based on PA, which recursively

traverses the scenario tree and computes a solution to the multistage stochastic optimization

model. Then, we identify sufficient conditions under which the obtained solution is indeed

optimal for the multistage model.

2.5.1 Algorithm Description

The key idea of the proposed algorithm is to traverse the scenario tree T and at each node

n ∈ T solve a PA model on the subtree T (n), then use the solutions of these PA models to

synthesize a multistage solution. To be more precise, let us first introduce some notations.

We denote the PA model (2.2) formulated on the subtree T (n) as ΠPA(µ, n) and ΠPA(µ)

always means ΠPA(µ, 1). Also denote the optimal expansion and generation decision of

ΠPA(µ, n) as zµ,n := {xµ,nm , {yµ,nmk}k∈Km}m∈T (n). A topological ordering σ(T) on the nodes

of a scenario tree T is a linear ordering such that for every edge (u, v) from parent node u

to child node v, u comes before v in the ordering σ(T). An important implication is that,

when the nodes of the tree are traversed in a topological ordering, a node n is always visited

after all its ancestor nodes on the path P(n) from the root node to n are visited.

The proposed algorithm visits each node n ∈ T in the order σ(T) and solves the PA

model ΠPA(µ, n) on the subtree T (n) rooted at node n. In this process, the root node’s

optimal solution zµ,nn of ΠPA(µ, n) is recorded. Since σ(T) is a topological ordering, at

node n, all its ancestors k on the path P(n) have already been traversed by the algorithm,

we can use the obtained generation capacity solutions {xµ,mm }m∈P(n) of these ancestors to

29

compute the initial installed generation capacity for the ΠPA(µ, n) problem (cf. constraints

(2.2b) in model (2.2)). After the entire tree T is traversed in this way, the algorithm outputs

a solution {zµ,nn }Nn=1, in which the expansion decision has a fully adaptive structure over the

entire planning horizon. This procedure is summarized in Algorithm 1.

Algorithm 1 :: Partially Adaptive Recursive Update

Input: A topological ordering σ(T) = {1, 2, . . . , N} of all the nodes
in T , a critical time µ, and the initial installed capacity u0 = 0.

1: Solve the PA model ΠPA(µ, 1) at root node 1. Denote the optimal
solution as {xµ,1, yµ,1}.

2: Update x1 ← xµ,11 and y1 ← yµ,11 .
3: for n = 2, . . . , N do
4: Solve ΠPA(µ, n) on T (n) with initial installed capacity computed

from xk for k ∈ P(a(n)). Denote its optimal solution as
{xµ,n, yµ,n}.

5: Update xn ← xµ,nn and yn ← yµ,nn .
6: end for
7: return {xn, yn}Nn=1.

We would like to remark that the algorithm can use different critical times µn at different

nodes n. The algorithm can also be terminated before visiting all the nodes in the scenario

tree — the resulting solution is always a feasible multistage solution. Also note that there

is flexibility in choosing the topological ordering σ(T). We will look into this issue in the

computation section.

2.5.2 Optimality of Algorithm 1 for a Special GEP Problem

In this subsection, we present a sufficient condition under which Algorithm 1 recovers an

optimal solution for a multistage generation expansion planning problem.

Theorem 5. For a multistage generation expansion planning problem (2.4), if the instance

satisfies the following conditions:

i) the unit investment costs of each type of generators are stationary, i.e., in (2.1a),

citn = ci for all i ∈ I and n ∈ T ;

30

ii) all generators share the same unit generation cost, i.e., in (2.1a), bink = bnk for all

k ∈ Ktn and n ∈ T ;

iii) demand must be satisfied by generation, i.e., no penalty is allowed;

then the solution returned by Algorithm 1 is optimal to the multistage problem.

To prove Theorem 5, we need the following lemma.

Lemma 1. Suppose condition (i) in Theorem 5 is satisfied. Let {x∗, y∗} be an optimal

solution to problem (2.2), then x∗i1 = max{d[A1ky
∗
1k]ie : k ∈ K1} for all i ∈ I.

Proof. Suppose there exists i0 ∈ I such that x∗i01 > max{d[A1ky
∗
1k]i0e : k ∈ K1}. Since

x∗i01 ∈ Z+, x∗i01 ≥ max{d[A1ky
∗
1k]i0e : k ∈ K1} + 1. Let x̃i01 = x∗i01 − 1, x̃i0n = x∗i0n + 1

for all n ∈ C(1), x̃i1 = x∗i1 for all i 6= i0, and x̃n = x∗n for n such that tn ≥ 3,

ỹn = y∗n for n ∈ T . It is clear that {x̃, ỹ} is still feasible, but it changes the total cost

by −ci0 +
∑

n∈C(1)

pnci0
(1+r)

= − r
1+r

ci0 < 0, where we use the fact that
∑

n∈C(1) pn = p1 = 1.

This contradicts the optimality of {x∗, y∗}.

Lemma 1 indicates that in every optimal solution to model (2.2), one would never build

a generator of any type that is not used for generation at the first planning period.

Proof of Theorem 5. Suppose conditions (i)-(iii) hold, in the objective function of both

multistage and PA models, the generation cost becomes

∑
n∈T

∑
i∈I

∑
k∈Ktn

pnhnkbink
(1 + r)tn−1

vink =
∑
n∈T

∑
k∈Ktn

pnbnk
(1 + r)tn−1

∑
i∈I

vink =
∑
n∈T

∑
k∈Ktn

pnbnkdnk
(1 + r)tn−1

,

which is a constant. This implies that in both multistage and PA models, the choice of

generators to satisfy demand will only depend on the investment costs. Moreover, for any

subproblem solved during the course of Algorithm 1, it follows from Lemma 1 that both

multistage and PA model will expand the capacity in the most economic way to meet the

current demand, but will not build any generator that is not used in the current period. In

other words, multistage and PA models will make the same capacity expansion decisions

31

at the root node of the subtree corresponding to that subproblem. Therefore, the solution

output by Algorithm 1 is optimal to multistage problem (2.4).

In Theorem 5, the exactness of Algorithm 1 is established on the assumption that all

generators share the same generation cost, which may seem restrictive. However, if all

generators considered have similar generation costs, i.e., bink ∈ [b̄nk − ε, b̄nk + ε] where ε is

small for all i ∈ I, one can use Algorithm 1 to obtain a multistage solution to the problem

with generation cost {b̄nk}n,k, and that solution will have an objective function value of

at most vMS +
∑

n∈T
∑

k∈Ktn
pndnkε

(1+r)tn−1 , where vMS is the optimal value for the multistage

problem with original generation costs. Thus, this result suggests that the algorithm produces

nearly optimal solutions for a larger class of problems than proved in the theorem.

2.6 Computational Experiments

In this section, we present extensive computational experiments to evaluate the proposed

partially adaptive stochastic model and Algorithm 1.

2.6.1 Experiment Data and Setup

All the data in the experiments are obtained from the real world data collected by Jin et al.

(2011). In particular, the authors of Jin et al. (2011) collected hourly electricity demand

data from years 1991 to 2007 for the Midwest region from the Midcontinent Independent

System Operator (MISO), the natural gas price data from years 1970 to 2006 for the same

region from the Energy Information Administration (EIA), and generation build cost data

suggested by the Joint Coordinated System Planning Report 2008 (JCSP). The GEP model

has the year 2008 as the reference year and a 10-year planning horizon.

The uncertainty in the GEP problem comes from two sources: the natural gas price and

the electricity demand. Jin et al. (2011) verified that both of these stochastic processes can be

reasonably modeled as geometric Brownian motions with high temporal correlation. Hourly

electricity demand is aggregated into three types of sub-period: peak-load, medium-load,

32

and low-load, according to the load duration curve of the reference year. The following

years’ load duration curves are assumed to share the same structure as the reference year’s

with incremental demand growth. There are six types of generators available for capacity

expansion, namely Base Load, Combined Cycle (CC), Combined Turbine (CT), Nuclear,

Wind, and Integrated Gasification Combined Cycle (IGCC). Among these six types of

generators, both CC and CT power plants are fueled by natural gas, which are subject to

price uncertainty, and IGCC power plants are fueled by coal, whose price is usually quite

stable and thus assumed known.

The 10-year scenario tree is generated by applying a nonlinear programming approach

introduced in Høyland and Wallace (2001). In particular, the discrete samples and their

associated probability structure for the scenario tree are constructed so that the approximate

distribution matches as well as possible the desired statistical properties of the underlying

continuous random variables, i.e. electricity demand and fuel prices. The number of

branches at each node in the scenario tree is chosen to be 3 to balance the size of the tree

and the accuracy of approximation (Jin et al. 2011). For our case, the resulting tree has in

total 39 = 19, 683 scenarios. The total expected generator investment cost and operation

cost are discounted at an annual rate of 8%.

When solving any mixed integer problem, the relative MIP optimality gap is set to

5× 10−3. Also, we impose a time limit of 5 hours (18000 sec) on solving any of the two-

stage, multistage, and PA models. The same limit is applied to the total computation time

of Algorithm 1 as well. Algorithm 1 is implemented in Python 2.7.8 with Gurobi Python

interface and Gurobi 5.5.0 as the MIP solver. All numerical experiments are conducted on a

Macbook Pro with 8G RAM and a 2.3 GHz Intel Core i5 processor.

2.6.2 Performance of PA Model

In the first set of experiments, we solve the PA model ΠPA(µ) for different planning horizons

T and different critical times µ. The experiments aim to answer two questions: (1) What is

33

the value of the multistage model compared with the two-stage model? (2) How fast can the

PA model be solved and how well does the PA model approximate the multistage model

as µ increase? Recall again, for a fixed T , µ = 1 corresponds to the two-stage model, and

µ = T corresponds to the multistage model. Results are presented in Table 2.1.

Columns 1 and 2 in Table 2.1 show the length of the planning horizon of each instance

and the value of µ, respectively. Column 3 presents two numbers: the left one is the

best lower bound on the optimal cost of the ΠPA(µ) model found within the time limit,

denoted as vL(µ), and the right one is the cost of the best feasible solution for ΠPA(µ),

denoted as vH(µ). Column 4 computes the gap between these two numbers, namely

(vH(µ)− vL(µ))/vL(µ), which measures the quality of the solution of the ΠPA(µ) model.

Column 5 computes lower and upper bounds on the gap between the ΠPA(µ) model and the

multistage model. In particular, the left number in Column 5 is (vL(µ)− vH(T))/vH(T),

and the right one is (vH(µ) − vL(T))/vL(T). For example, when T = 6, µ = 4, the

lower bound is (6203.99− 5630.84)/5630.84× 100% = 10.18%, and the upper bound is

(6267.00− 5555.77)/5555.77× 100% = 12.80%. Column 6 reports the wall clock time of

the MIP solver.

Table 2.1 provides answers to the above two questions. First, there is a significant

value in solving the multistage model. In particular, comparing to the two-stage model, the

multistage model reduces the total expected cost by more than 30% for all test instances (see

Column 5). However, as Column 6 shows, the multistage models for larger instances are

difficult to solve within the time limit. This implies that it may be worthwhile to approximate

the multistage model by a PA model, which leads to the answer to the second question.

Second, as µ increases, the performance of the ΠPA(µ) model improves quite significantly,

especially for instances with larger horizon length. For example, for the T = 9 instance,

solving µ = 4 obtains a gap between PA and multistage models in the range of 17.11-

21.84%, and solving µ = 7 further shrinks the gap to no more than 7.23%. For the T = 10

instance, the ΠPA(µ) model with µ = 5 obtains a gap no more than 18.50% higher than the

34

Table 2.1: Solving PA models on GEP instances

T µ MIPObj OptGap vPA/vMS − 1 Time
(million $) (%) (%) (sec.)

3
1 [3065.34, 3079.21] 0.45 [43.34, 44.39] 0.03
2 [2426.14, 2435.36] 0.39 [13.45, 14.20] 0.06
3 [2132.58, 2138.57] 0.28 0 0.08

4

1 [4598.61, 4598.61] 0.00 [43.70, 44.42] 0.17
2 [4046.02, 4066.33] 0.50 [26.43, 27.70] 2.27
3 [3436.09, 3453.31] 0.50 [7.37, 8.45] 5.45
4 [3184.19, 3200.11] 0.50 0 4.11

5

1 [6225.63, 6250.71] 0.40 [42.92, 44.57] 0.26
2 [5667.38, 5685.59] 0.32 [30.11, 31.50] 26.46
3 [5029.97, 5072.60] 0.85 [15.47, 17.32] 18004.46
5 [4323.61, 4355.93] 0.75 0 18002.52

6

1 [8018.62, 8055.41] 0.40 [42.41, 44.99] 2.73
2 [7360.44, 7397.24] 0.50 [30.72, 33.15] 16.56
4 [6203.99, 6267.00] 1.02 [10.18, 12.80] 18003.85
6 [5555.77, 5630.84] 1.35 0 18003.95

7

1 [9889.73, 9927.02] 0.38 [41.02, 43.57] 9.72
2 [9199.12, 9236.99] 0.41 [31.17, 33.59] 13.86
4 [8033.43, 8097.94] 0.80 [14.55, 17.11] 18010.35
7 [6914.58, 7013.13] 1.43 0 18002.95

8

1 [11825.95, 11884.75] 0.50 [39.41, 42.37] 86.82
2 [11135.28, 11189.00] 0.48 [31.27, 34.04] 309.86
5 [9401.26, 9510.03] 1.16 [10.83, 13.92] 18000.91
8 [8347.79, 8482.69] 1.62 0 18000.30

9

1 [13717.37, 13735.28] 0.13 [35.56, 40.14] 343.97
2 [13110.29, 13174.39] 0.49 [29.56, 34.42] 1261.38
4 [11849.82, 11941.19] 0.77 [17.11, 21.84] 18001.53
7 [10367.49, 10509.44] 1.37 [2.46, 7.23] 18017.75
9 [9801.03, 10118.72] 3.24 0 18007.46

10

1 [15606.96, 15680.86] 0.47 [31.42, 38.82] 3730.84
2 [14998.67, 15087.53] 0.59 [26.30, 33.57] 18002.23
5 [13225.33, 13385.83] 1.21 [11.36, 18.50] 18020.00
8 [11793.87, 12127.18] 2.83 [0.00, 7.36] 18004.19
10 [11295.61, 11875.77] 5.14 0 18083.68

multistage model. Furthermore, for all the test instances, we observe that the PA model

with a mid-range value of µ already decreases the gap of the two-stage model (µ = 1) by

35

more than 50%. This suggests the benefit of solving PA models with small µ values. Indeed,

from Column 6, we can see the PA models with large µ including the multistage model are

computationally challenging to solve. Thus, recursively traversing the tree by solving PA

models with small µ may provide a better multistage solution within a reasonable time limit.

This is demonstrated by the next set of experiments.

2.6.3 Performance of Algorithm 1

This second set of experiments evaluate Algorithm 1 in the following way. On a T -year

scenario tree T , Algorithm 1 solves all the PA models ΠPA(µ, n) with µ = 2 for the subtree

T (n), for each node n up to level T0 in the tree T , where T0 < T . Denote the optimal

solution of ΠPA(µ, n) as zµ,n := {xµ,nm , {yµ,nmk}k∈Km}m∈T (n). The final solution {zn}n∈T

generated by Algorithm 1 is obtained as follows: zn := zµ,nn , for each node n up to level

T0, i.e. tn ≤ T0, and zn := zµ,mn for each node n with tn ≥ T0 + 1, where m = P(n) ∩ ST0 .

That is, the output solution z has a multistage expansion plan up to period T0 + 1, and if

T0 ≤ T − 2, z has a two-stage expansion plan from level T0 + 2 to the end of the planning

horizon T . In other words, z has the same decision structure in capacity expansion plan as

the solution of a PA model ΠPA(µ, 1) for µ = T0 + 1, solved at root node 1.

Compared to directly solving the ΠPA(T0 + 1, 1) model, Algorithm 1 solves a sequence

of much smaller problems of ΠPA(2, n), therefore, may significantly save computation time.

Also, the ΠPA(T0 + 1, 1) model may not be solvable to optimality within the time limit,

whereas ΠPA(2, n) can usually be solved to high precision quickly. In fact, we have already

solved the ΠPA(T0 + 1, 1) model for various T and T0 in the previous experiments. Most

of these models for T ≥ 5 and T0 ≥ 2 cannot be solved within the time limit of 5 hours as

shown in Table 2.1.

Of course, we also need to evaluate how good the resulting solution z is compared to an

optimal (or the best found) solution of ΠPA(T0 + 1, 1). Table 2.1 Column 3 presents

the best lower bounds on the optimal costs of ΠPA(T0 + 1, 1) and the best feasible

36

solution found. Using the notation in the previous subsection, these costs are denoted

as vL(T0 + 1) and vH(T0 + 1), respectively. The expected cost of the z solution is given

as v(z) :=
∑

n∈T pn(a>nxn +
∑

k∈Ktn b
>
nkynk), where x and y are the capacity expansion

and generation production components of z (cf. objective function (2.2a)). For each T and

T0, define OptGap := (v(z)− vL(T0 + 1))/vL(T0 + 1), which gives an upper bound on the

gap between the Algorithm 1’s solution z and the optimal ΠPA(T0 + 1, 1) solution. Also

define ImprvGap := (vH(T0 + 1) − v(z))/vL(T0 + 1), which measures how much the z

solution improves on the best solution found by directly solving ΠPA(T0 + 1, 1) (negative

value means z solution is worse).

Table 2.2: Computation results of Algorithm 1

T T0 v(z) OptGap ImprvGap PA time Alg 1 Time
(million $) (%) (%) (sec.) (sec.)

3 2 2138.57 0.28 0.00 0.08 0.35

4
2 3451.26 0.44 0.06 5.45 2.88
3 3200.11 0.50 0.00 4.11 3.63

5
2 5073.68 0.87 −0.02 18004.46 27.27
4 4353.10 0.68 0.07 18002.52 32.54

6
3 6255.76 0.83 0.18 18003.85 106.19
5 5621.10 1.18 0.17 18003.95 119.86

7
3 8081.19 0.59 0.21 18010.35 360.23
6 6987.25 1.05 0.37 18002.95 519.12

8
4 9463.10 0.66 0.50 18000.91 1324.39
7 8440.01 1.10 0.51 18000.30 1833.46

9
3 11923.71 0.62 0.15 18001.53 1749.95
6 10465.37 0.94 0.42 18017.75 6921.59
8 9951.13 1.53 1.71 18007.46 7141.51

10
4 13302.09 0.58 0.63 18020.00 6838.51
7 11934.25 1.19 1.64 18004.19 14771.03
9 11462.33 1.48 3.66 18083.68 15446.97

Table 2.2 clearly shows that Algorithm 1 significantly reduces the computation time

compared to directly solving the PA model (see Columns 6 and 7). Also as shown in Column

37

4 “OptGap”, Algorithm 1 is able to produce a z solution that is within at most 1.5% from

the optimal ΠPA(T0 + 1, 1) solution. Furthermore, as shown in Column 5 “ImprvGap”, the z

solution constructed by Algorithm 1 actually improves over the best feasible solution found

by directly solving the ΠPA(T0 + 1, 1) for almost all instances, except for T = 5, T0 = 2

where the z solution is slightly worse by 0.02%. In fact, the improvement steadily increases

as T and T0 increase. For the 9-period problem, Algorithm 1 stopping at T0 = 8 improves

over the direct method by 1.71% in expected cost, while the computation time is only 40%

of the latter. For the 10-period problem, Algorithm 1 stopping at T0 = 9 improves over

the direct method by 3.66% in expected cost with computation time reduced by 15%. Also

note that for these two instances, the ΠPA(T0 + 1, 1) model is the full multistage model.

Therefore, the last instance shows that, by recursively traversing the tree with solving small

PA models, the resulting solution is within 1.48% from the true optimal full multistage

solution for the 10-year planning problem. The computation is done within 4.3 hours.

2.6.4 Effect of Different Node Orderings

As alluded to in Section 2.5.1, Algorithm 1 works for any topological ordering chosen for

the nodes of the scenario tree. We distinguish four typical orderings, corresponding to

breath-first-search (BFS) and depth-first-search (DFS) on the tree. For the simplicity of

exposition, suppose for every node n ∈ T , all its children nodes are positioned from top

to bottom in the order of increasing demand. This is possible because the scenario tree is

generated in a way that no two nodes sharing the same parent node have the same demand.

Figure 2.2 illustrates four types of typological orderings on a simple example.

1

2

3

4

5

6

7

8

9

10

(a) BFS LOW

1

4

3

2

10

9

8

7

6

5

(b) BFS HIGH

1

2

6

8

3

4

5

7

9

10

(c) DFS LOW

1

7

5

2

10

9

8

6

4

3

(d) DFS HIGH

Figure 2.2: Four topological orderings on a 3-period tree

38

In particular, we have the following four orderings and their corresponding search

strategies:

(a) BFS_LOW: breath-first-search on the tree, and within each level, nodes are visited

from top to bottom;

(b) BFS_HIGH: breath-first-search, and within each level, nodes are visited from bottom

to top;

(c) DFS_LOW: depth-first-search, and selects the child node with lowest demand;

(d) DFS_HIGH: depth-first-search, and selects the child node with highest demand.

All the experiments in Section 2.6.3 are conducted with the BFS_LOW ordering. It is

interesting to see the performance of Algorithm 1 under different node orderings, because

traversing the scenario tree in different orders may reveal how fast the solution improves

as we explore the node sequence, which may also shed some light on which nodes are

important to explore, thus helps the decision maker decide whether to refine the current

solution by branching through a specific node.

Figure 2.3 contains the cost improvement curves in an 8-year GEP instance under four

different nodes orderings: BFS_LOW, BFS_HIGH, DFS_LOW, and DFS_HIGH. The upper-

left figure shows how cost of the z solution is improved as allowed computation time limit

increases. The other four figures correspond to the cost improvements as the number of

visited nodes increases in these four orderings. Indeed, there is one subproblem associated

with each node of the tree. The more subproblems Algorithm 1 solves, the lower cost the z

solution incurs.

Figure 2.3 shows that, if there is no limit on computation time, i.e. Algorithm 1 is

allowed to run until traversing all nodes in the scenario tree, then, as expected, there is no

difference in the final policies corresponding to the above four different node orderings.

The total computation times required are also almost the same. This is not surprising since

all nodes are explored in a topological ordering, and the sets of subproblems solved are

identical under each of these four orderings. The only difference is the sequence of solving

39

0 500 1000 1500 2000

Time (sec.)

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

C
o
st
 (
b
ill
io
n
 $
)

Policy Cost Improvement (T = 8)

BFS_LOW

DFS_LOW

BFS_HIGH

DFS_HIGH

0 200 400 600 800 1000

Number of nodes visited

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

C
o
st
 (
b
ill
io
n
 $
)

BFS_LOW Search

0

500

1000

1500

2000

T
im
e
 (
se
c.
)

0 200 400 600 800 1000

Number of nodes visited

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

C
o
st
 (
b
ill
io
n
 $
)

DFS_LOW Search

0

500

1000

1500

2000

0 200 400 600 800 1000

Number of nodes visited

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

C
o
st
 (
b
ill
io
n
 $
)

BFS_HIGH Search

0

500

1000

1500

2000

T
im
e
 (
se
c.
)

0 200 400 600 800 1000

Number of nodes visited

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5
DFS_HIGH Search

0

500

1000

1500

2000

T
im
e
 (
se
c.
)

Cost Stamps

Time Stamps

Figure 2.3: Solution cost improvement under four different orderings

these subproblems. However, if computation time is limited, we notice from Figure 2.3

that DFS_HIGH produces a better solution than the other three. This indicates that refining

the solution on the subtree corresponding to higher demands (as well as higher natural gas

prices) improves the solution value faster. Numerical results suggest that as the solution gets

refined along this subtree, capacity expansion decisions are postponed. While generation

cost is also higher in later periods, the savings of postponing capacity expansion dominates

the increment in generation cost.

In the other four figures, we observe that subproblems in earlier periods take more time

since they contain more variables and constraints. In addition, subproblems on some nodes

take more time or reduce the total expected cost in a larger scale than others, and these two

effects usually show up as a pair. These nodes correspond to the ones in early periods of the

scenario tree. However, there do exist some nodes whose subproblems take a long time to

solve but do not substantially improve the total cost. In other words, the subproblems on

40

such nodes do not contribute to a significant improvement to the overall solution. It could

be interesting if the decision maker can identify such nodes beforehand and skip over them

when implementing Algorithm 1.

2.7 Concluding Remarks

We consider a long-term power generation expansion planning problem and propose a new

framework of partially adaptive stochastic mixed integer optimization models for the GEP

problem and generic capacity expansion planning problem. Our model unifies the two-stage

and multistage approaches, and provides the decision maker with the flexibility to adjust

the adaptivity of the capacity expansion decisions with respect to uncertainty realizations.

Since an optimal solution to the PA model is always feasible to the multistage model, we

present nontrivial bounds for the gap between these two models. Furthermore, we propose

an approximation algorithm which recursively solves a sequence of PA models and returns

a feasible multistage solution. We identify a set of sufficient conditions under which the

algorithm produces an optimal multistage solution.

We conduct extensive computational experiments on the PA models and the proposed

recursive algorithm on a realistic scale generation expansion planning problem. Numerical

results show that PA model provides significant value to the long-term generation expansion

problem. It considerably reduces the expected total cost of the GEP problem comparing

to the traditional two-stage model. Computation also shows that, with a small amount of

flexibility in the expansion decision (i.e. small µ in the ΠPA(µ) model), the PA model can

approximate the multistage model fairly well. Computational experiments further shows

that it is not necessary to directly solve the PA model, but rather recursively traversing the

scenario tree and solving a sequence of small sized PA models can produce a near-optimal

solution with a much reduced computation time. We also explore the impact of different

search orderings on the performance of the algorithm and its implications.

41

CHAPTER 3

NESTED DECOMPOSITION OF MULTISTAGE STOCHASTIC INTEGER

PROGRAMS WITH BINARY STATE VARIABLES

3.1 Introduction

In general MSIP problems, if integer decisions are present, the nonconvexity of integer

programming value functions makes it impossible to directly adapt nested decomposition

algorithms such as Benders decomposition or its stochastic variant, stochastic dual dynamic

programming (SDDP), to MSIP. In this chapter we develop effective decomposition

algorithms for MSIP with binary state variables. We focus on binary state variables because

any MSIP problem can be approximated as such under mild conditions. By exploiting

the binary nature of state variables we develop valid (stochastic) nested decomposition

algorithms for MSIP. The key contributions are summarized below.

1. Extension of nested Benders decomposition algorithm. We extend the nested

Benders decomposition algorithm to solve general MSIP problems with binary state

variables. We define a precise notion of valid, tight, and finite cuts, and prove that the

algorithm admits finite convergence to an optimal solution if the cuts satisfy these

three conditions. This algorithm provides a general framework of solving MSIP

problems to optimality and redirects the question to constructing valid and tight cuts

for non-convex expected cost-to-go functions at each node.

2. A new class of Lagrangian cuts. In considering a reformulation of the node problem

and solving its Lagrangian dual problem, we propose a new collection of cutting

planes, termed Lagrangian cuts. In such a reformulation, we make local copies of the

state variables, and the corresponding constraints are relaxed in the Lagrangian dual.

We show that these cuts are valid and tight. A simplified version of a Lagrangian cut

42

is a strengthened version of the standard Benders’ cut. While strengthened Benders’

cuts are not necessarily tight, our computational experience indicates that they provide

significant benefits.

3. SND and SDDiP algorithms. We propose a stochastic variant of the nested

decomposition algorithm, namely Stochastic Nested Decomposition (SND) algorithm

and its practical realization, Stochastic Dual Dynamic Integer Programming (SDDiP)

algorithm, when stochasticity satisfies stage-wise independence, to solve general

MSIP problems with binary state variables. We give a rigorous proof of its finite

convergence with probability one to an optimal policy as long as valid, tight, and finite

cuts are used, and sampling is done with replacement.

4. Effectiveness of SDDiP algorithm. Extensive numerical tests are presented to

demonstrate the effectiveness of the SDDiP algorithm. In particular, we apply

SDDiP with different combinations of cutting planes to three classes of large-

scale MSIP problems that have practical importance: a power generation capacity

planning problem, a multistage portfolio optimization problem, and an airline revenue

management problem. A particularly notable feature is that we transform non-binary

state variables in these problems, either integer or continuous, to binary state variables.

The promising results demonstrate the applicability of SDDiP for solving MSIP with

general (i.e., not necessarily binary) state variables.

3.2 Related Work

In MSLP, the value function Qn(·) defined in (1.4) and therefore the expected cost-to-

go function Qn(·) is piecewise linear and convex. This allows for these functions to be

under approximated by linear cuts as in nested Benders or L-shaped decomposition (Birge

1985). This algorithm approximates the convex cost-to-go functions by adding Benders’

cuts, and converges in finite steps to an optimal solution. When the scenario tree is large,

43

however, it may be computationally impractical to solve the problem using nested Benders

decomposition. Often the underlying stochastic process and the constructed scenario tree

is stage-wise independent, i.e., for any two nodes n and n′ in St the set of children nodes

C(n) and C(n′) are defined by identical data and conditional probabilities. Then the value

functions and expected cost-to-go functions depend only on the stage rather than the nodes,

i.e., we have Qn(·) ≡ Qt(·) for all n ∈ St. This allows for considerable reduction in the

number of DP equations (1.4). By exploiting stage-wise independence, a sampling-based

nested decomposition method – Stochastic Dual Dynamic Programming (SDDP) is proposed

in Pereira and Pinto (1991). This algorithm iterates between forward and backward steps.

In the forward step, a subset of scenarios is sampled from the scenario tree and optimal

solutions for each sample path are computed for each of them independently. Then in the

backward step, starting from the last stage, the algorithm adds supporting hyperplanes to

the approximate cost-to-go functions of the previous stage. These hyperplanes are Benders’

cuts evaluated at the optimal solutions from the previous stage. After solving the problem

at the first stage, a lower bound on the policy value can be obtained. It is then compared

against a statistical upper bound computed from the forward step. Various proofs of almost

sure convergence of SDDP under mild assumptions have been proposed (see e.g., Chen and

Powell 1999; Philpott and Guan 2008; Shapiro 2011; Girardeau et al. 2014). The SDDP

algorithm has also been embedded in the scenario tree framework (Rebennack 2013), and

extended to risk averse multistage linear programming problems (Shapiro 2011; Shapiro

et al. 2013).

While enormous amount of work has been done in both theory and solution strategies

for two-stage (T = 2) stochastic integer programs, the progress on multistage stochastic

integer programming is somewhat limited (cf. Ahmed 2010; Römisch and Schultz 2001). In

MSIP, due to the presence of integer variables, the convexity and continuity of the expected

cost-to-go functions are lost. A natural way to tackle such a problem is to consider the

extensive form of the problem, and then relax the coupling constraints so that it can be

44

decomposed into scenario-based or component-based subproblems. Different decomposition

algorithms involving Lagrangian relaxation (Takriti et al. 1996; Carøe and Schultz 1999;

Nowak and Römisch 2000; Chen et al. 2002) and column generation (Lulli and Sen 2004;

Sen et al. 2006; Singh et al. 2009) have been successful in solving various classes of MSIP

problems. MSIP problems with binary state variables are studied in Alonso-Ayuso et al.

(2003), and a branch-and-fix coordination approach is proposed, which coordinates the

selection of the branching nodes and branches variables in the scenario subproblems such

that they will be jointly optimized. All of the above approaches are based on the extensive

form (1.2) of MSIP and do not scale well to large scenario trees.

Existing attempts at extending the nested decomposition and SDDP approaches for

the dynamic programming formulation (1.3)-(1.4) for MSIP and other nonconvex problem

are based on convex relaxations of the cost-to-go functions. For example, relaxing the

integrality constraints so that the problem becomes an MSLP problem (Newham and

Wood 2007; Flach et al. 2010; Löhndorf et al. 2013); and combining stochastic dynamic

programming and SDDP methods to retain the convexity (Gjelsvik et al. 1999; Helseth

et al. 2015). Another way of dealing with nonconvexity is to approximate the cost-to-go

functions directly. For instance, approximating the bilinear relationship between variables

using McCormick envelope is studied in Cerisola et al. (2012). This approach is further

improved by optimizing the Lagrangian multipliers, which results in tighter cuts (Thomé

et al. 2013). More recently, the concept of locally valid cuts is introduced and integrated in

the SDDP framework (Abgottspon et al. 2014). Note that all the above methods produce

solutions to different forms of relaxations rather than the original problem. In Philpott et al.

(2016), authors propose a new extension of SDDP, which, rather than cutting planes, uses

step functions to approximate the value function.

The remainder of this chapter is organized as follows. In Section 3.3, we describe

the class of MSIP problems we consider in this work. In Section 3.4, we summarize the

exact nested decomposition algorithm with valid, tight and finite cuts and prove its finite

45

convergence. Section 3.5 contains the development of Lagrangian cuts as well as the proof

of its validity and tightness. We present the SND and SDDiP algorithms and prove their

finite convergence with probability one in Section 3.6. Numerical experiments together with

discussions are included in Section 3.7. Finally, we provide some concluding remarks in

Section 3.8.

3.3 MSIP with Binary State Variables

We consider multistage stochastic mixed integer linear programming problems, i.e., we

make the following assumption regarding the MSIP (1.2).

(A1) The objective function fn(xn, yn) in each node n is a linear function in xn and yn, and

the constraint set Xn is a nonempty compact mixed integer polyhedral set.

The results in this chapter can be easily extended to settings with nonlinear objective

functions and constraint sets under mild regularity conditions. However, to make the main

idea clear, we focus on the linear case.

A key requirement of our developments is that the state variables xn in (1.2) are binary.

The local variables yn, however, can be general mixed integer. Recall that, in the presence of

integer local variables, the value functions and expected cost-to-go functions are nonconvex

with respect to the state variables. Existing nested decomposition algorithms use piecewise

convex polyhedral representations of these functions. In general, it is impossible to construct

such convex polyhedral representations of the nonconvex value functions that are tight at

the evaluated state variable values. On the other hand, any function of binary variables can

be represented as a convex polyhedral function. We exploit this fact to develop exact nested

decomposition algorithms for MSIP with binary state variables.

Next we show that under a reasonable assumption any MSIP with mixed integer state

variables can be approximated to desired precision with an MSIP with binary state variables

without increasing the problem size by too much.

Definition 1. We say that an MSIP of the form (1.2) has complete continuous recourse if,

46

for any value of the state variables and the local integer variables, there exist values for

the continuous local variables such that the resulting solution is feasible to (1.2). That is,

suppose yn = (un, vn) where un ∈ Z`1+ and vn ∈ R`2
+ , then given any (x̂a(n), x̂n, ûn), there

exists v̂n ∈ R`2
+ such that (x̂a(n), x̂n, (ûn, v̂n)) ∈ Xn for all n ∈ T .

In addition to (A1) we also make the following assumption.

(A2) Problem (1.2) has complete continuous recourse.

The above assumption can always be achieved by adding nonnegative auxiliary continuous

variables and penalizing them in the objective function.

Theorem 6. For an MSIP with general mixed integer state variables satisfying assumptions

(A1) and (A2) we can construct an approximate MSIP that has binary state variables such

that any optimal solution to the approximating MSIP is an ε-optimal solution to the original

MSIP, and the number, k, of the binary state variables per node in the approximating MSIP

satisfies

k ≤ d(blog2(M
√
d/ε)c+ 1)

where d is the number of the state variables per node in the original MSIP and M is a

positive constant depending on the problem data.

Proof. Consider an MSIP with d := d1 + d2 mixed-integer state variables per node:

min
xn,yn

∑
n∈T

pnfn(xn, yn)

s.t. (xa(n), xn, yn) ∈ Xn ∀ n ∈ T

xn ∈ Zd1+ × Rd2
+ ∀ n ∈ T .

(3.1)

Since the state variables are bounded by (A1), we can assume that xn ∈ [0, U]d for some

positive integer U for all n ∈ T .

We approximate (3.1) as follows. For an integer state variable x ∈ {0, . . . , U},

we substitute by its binary expansion: x =
∑κ

i=1 2i−1λi where λi ∈ {0, 1} and κ =

47

blog2 Uc + 1. For a continuous state variable x ∈ [0, U], we approximate it by binary

approximation to a precision of ε ∈ (0, 1), i.e. x =
∑κ

i=1 2i−1ελi where λi ∈ {0, 1} and

κ = blog2(U/ε)c+ 1 (see e.g., Glover 1975). Note that |x−
∑κ

i=1 2i−1ελi| ≤ ε. The total

number k of binary variables introduced to approximate the d state variables thus satisfies

k ≤ d(blog2(U/ε)c + 1). We then have the following approximating MSIP with binary

variables λn ∈ {0, 1}k

min
λn,yn

∑
n∈T

pnfn(Aλn, yn)

s.t. (Aλa(n), Aλn, yn) ∈ Xn ∀ n ∈ T

λn ∈ {0, 1}k ∀ n ∈ T ,

(3.2)

where the d× k matrix A encodes the coefficients of the binary expansion.

Recall that the local variables are mixed integer, i.e. yn = (un, vn) with un ∈ Z`1+ and

vn ∈ R`2
+ . Given x := {xn ∈ Zd1 × Rd2}n∈T , let

φ(x) := min
u,v

{∑
n∈T

fn(xn, (un, vn)) : (xa(n), xn, (un, vn)) ∈ Xn, ∀n ∈ T

}
=
∑
n∈T

min
un,vn

{
fn(xn, (un, vn)) : (xa(n), xn, (un, vn)) ∈ Xn

}
=
∑
n∈T

min
un∈Un

{
ψn(xa(n), xn, un)

}
,

where

ψn(xa(n), xn, un) = min
vn∈R`2+

{
fn(xn, (un, vn)) : (xa(n), xn, (un, vn)) ∈ Xn

}
,

and Un is the finite set of integer values the local variable un can take. By the compactness

assumption (A1) and the complete continuous recourse assumption (A2), the function ψn

is the value function of a linear program that is feasible and bounded for all values of

(xa(n), xn, un). By Hoffman’s lemma (Hoffman 1952), there exists a constant Cn(un) which

48

is dependent on the data defining (fn, Xn) and un, such that ψn(xa(n), xn, un) is Lipschitz

continuous with respect to (xa(n), xn) with this constant. It follows that φ(x) is Lipschitz

continuous with respect to x with constant C =
∑

n∈T maxun∈Un Cn(un), i.e.,

|φ(x)− φ(x′)| ≤ C‖x− x′‖ ∀ x, x′.

Let (λ̃, ỹ) be an optimal solution to problem (3.2) and w2 be its optimal value. Define

x̃n = Aλ̃n for all n ∈ T , then (x̃, ỹ) is a feasible solution to (3.1) and has the objective

value of w2. From the definition of φ we have that w2 = φ(x̃). Now let (x̂, ŷ) be an optimal

solution of (3.1) and w1 be its optimal value. Note that w1 = φ(x̂). Let us construct a

solution (λ̂, ŷ′) such that

‖x̂−Aλ̂‖ ≤
√
|T |dε, and ŷ′n = argminyn

{
f(Aλ̂a(n), Aλ̂n, yn) : (Aλ̂a(n), Aλ̂n, yn) ∈ Xn

}
.

Then (λ̂, ŷ′) is clearly a feasible solution to (3.2) and has the objective value φ(Aλ̂). Thus

we have the following inequalities

φ(x̂) ≤ φ(x̃) ≤ φ(Aλ̂).

Thus

0 ≤ φ(x̃)− φ(x̂) ≤ |φ(Aλ̂)− φ(x̂)| ≤ C‖Aλ̂− x̂‖ ≤ C
√
|T |dε = C ′

√
dε,

where C ′ = C
√
|T |. By choosing ε = ε/C ′

√
d and M = UC ′ we have that (x̃, ỹ) is a

ε-optimal solution of (3.1) and k ≤ d(blog2(M
√
d/ε)c+ 1) as desired.

Based on the above result, for the remainder of the chapter we consider MSIP with

binary state variables. Next, we introduce a simple, but key reformulation of (1.2) based on

making local copies of the state variables. That is, we introduce an auxiliary variable zn for

49

each node n and equate it to the parent node’s state xa(n). The resulting formulation is

min
xn,yn,zn

∑
n∈T

pnfn(xn, yn)

s.t. (zn, xn, yn) ∈ Xn ∀ n ∈ T (3.3a)

zn = xa(n) ∀ n ∈ T (3.3b)

zn ∈ [0, 1]d ∀ n ∈ T (3.3c)

xn ∈ {0, 1}d ∀ n ∈ T . (3.3d)

This reformulation turns out to be crucial for the development of a class of valid and tight

inequalities to approximate the cost-to-go functions. Detailed study of (3.3), especially a

certain strong duality property, will be given in Section 3.5.3. The important role of the

redundant constraint (3.3c) will become clear there. However, except in Section 3.5.3, we

will fold constraint (3.3c) into Xn to save space.

Now we can write down the DP equations for the optimal value function of the multistage

problem (3.3) at node n ∈ T as follows:

(P1) : min
x1,y1,z1

f1(x1, y1) +
∑

m∈C(1)
q1mQm(x1) (3.4)

s.t. (z1, x1, y1) ∈ X1

z1 = xa(1)

x1 ∈ {0, 1}d.

where for each node n ∈ T \ {1},

(Pn) : Qn(xa(n)) := min
xn,yn,zn

fn(xn, yn) +
∑

m∈C(n)
qnmQm(xn) (3.5)

s.t. (zn, xn, yn) ∈ Xn

50

zn = xa(n)

xn ∈ {0, 1}d.

3.4 Nested Decomposition

In this section, we present a Nested Decomposition (ND) algorithm for solving the MSIP

(3.3) with binary state variables. The proposed ND algorithm solves the DP recursion

(3.5) by iteratively strengthening a convex piecewise polyhedral lower approximation of

the expected cost-to-go function Qn(·) at each node n ∈ T . The key to the success of

such an ND algorithm lies in a certain notion of tightness of the lower approximation of

the value functions achieved by valid linear inequalities, which we will precisely define.

In the following, we will first outline the ND algorithm, and then introduce the sufficient

cut conditions, and prove the finite convergence of the ND algorithm to a global optimal

solution of problem (3.3) under these conditions.

3.4.1 The ND Algorithm

The proposed ND algorithm can be outlined as follows. In each iteration i, the ND algorithm

consists of a forward step and a backward step. The forward step proceeds stage-wise from

t = 1 to T by solving a DP equation with an approximate expected cost-to-go function at

each node n. In particular, at node n with the parent node’s state xia(n), the DP recursion

(3.5) is approximated by the following forward problem

(P i
n(xia(n), ψ

i
n)) : Qi

n
(xia(n), ψ

i
n) := min

xn,yn,zn
fn(xn, yn) + ψin(xn) (3.6a)

s.t. (zn, xn, yn) ∈ Xn (3.6b)

zn = xia(n) (3.6c)

xn ∈ {0, 1}d, (3.6d)

51

where ψin(·) is defined as:

ψin(xn) := min
{
θn : θn ≥ Ln, (3.7a)

θn ≥
∑

m∈C(n)
qnm(v`m + (π`m)>xn), ∀` = 1, . . . , i− 1

}
. (3.7b)

In other words, the forward problem in iteration i is characterized by xia(n), which is

obtained from solving its parent node a(n)’s forward problem, as well as by ψin(·) defined

by (3.7a)–(3.7b), which provides a piecewise-linear convex lower-approximation of the

expected cost-to-go function Qn(xn). Here, we assume there is a lower bound Ln in (3.7a)

to avoid unboundedness of the forward problem. An optimal solution of the state variable

in (P i
n(xia(n), ψ

i
n)), denoted as xin, is passed on to the forward problems (P i

m(xin, ψ
i
m)) of

its children nodes m ∈ C(n). In other words, the forward step updates the state variable

solution xin for each n ∈ T .

When all the forward problems are solved in iteration i, the backward step starts from

the last stage T . The goal of the backward step is to update the lower approximation ψin for

each node n. In particular, in a last-stage node n ∈ ST , a suitable relaxation of the forward

problem (P i
n(xia(n), ψ

i
n)), denoted as (Ri

n), is solved, which produces a linear inequality that

lower approximates the true value function Qn(xia(n)). Note that the last stage problem does

not have a cost-to-go function, therefore ψin ≡ 0 for all i. Going back one stage, at a node

n ∈ ST−1, all the linear inequalities generated from n’s children nodes are aggregated in the

form of (3.7b) and added to update its lower approximation from ψin(·) to ψi+1
n (·). Then, a

suitable relaxation of the updated problem (P i
n(xia(n), ψ

i+1
n)) is solved in the backward step

at node n. This generates a new linear inequality, which will be aggregated to its parent’s

node. The backward step continues in this way until it reaches back to the root node of the

tree.

Since the linear cuts in (3.7a)-(3.7b) are under-approximations of the true expected

cost-to-go function, the optimal value of the forward problem (P i
1) in node 1 provides a

52

lower bound to the true optimal value of (3.3). Once all the forward problems in the tree

are solved in iteration i, we obtain a feasible solution {(xin, yin, zin)}n∈T to the original

multistage problem (3.3), whose total objective value,
∑

n∈T fn(xin, y
i
n), provides an upper

bound to the true optimal value of (3.3). If the lower and upper bounds coincide, the ND

algorithm terminates; otherwise, another iteration starts. The steps of the ND algorithm

are summarized in Algorithm 2. Note that Algorithm 2 is identical to the standard Nested

Benders Decomposition for MSLP (Birge and Louveaux 2011), except here we solve suitable

relaxations of the stage problems to generate cuts in the backward step.

3.4.2 Sufficient Cut Conditions

The ND algorithm has different implementations according to how the relaxation problem

(Ri
n) is formed and how the cut coefficients are obtained in the backward step (Line 14).

However, regardless of detailed mechanisms for relaxation and cut generation, the ND

algorithm is valid as long as the cuts satisfy the following three sufficient conditions, namely,

they are valid, tight, and finite, as defined below.

Definition 2. Let {(vin, πin)}n∈T be the cut coefficients obtained from the backward step of

the i-th iteration of the ND algorithm (Line 14). We say such a collection of cuts is

(i) valid, if for all n ∈ T and all iteration i,

Qn(xa(n)) ≥ vin + (πin)>xa(n) ∀ xa(n) ∈ {0, 1}d, (3.8)

(ii) tight, if for all n ∈ T and all iteration i,

Qi

n
(xia(n), ψ

i+1
n) = vin + (πin)>xia(n), (3.9)

where Qi

n
(xia(n), ψ

i+1
n) is defined in (3.6) and xia(n) is the solution of state variable

xa(n) obtained from the forward step in iteration i, and

53

Algorithm 2 :: Nested Decomposition
1: set i = 1, LB = −∞, UB =∞, and an initial lower

approximation {ψ1
n(·)}n∈T

2: while UB − LB > 0 do
3: /* Forward step */
4: for t = 1, . . . , T do
5: for n ∈ St do
6: solve forward problem P i

n(xia(n), ψ
i
n)

7: collect solution (xin, y
i
n, z

i
n, θ

i
n = ψin(xin))

8: end for
9: end for

10: /* Backward step */
11: for t = T − 1, . . . , 1 do
12: for n ∈ St do
13: for m ∈ C(n) do
14: solve a suitable relaxation (Ri

m) of the
updated problem P i

m(xin, ψ
i+1
m) and collect

cut coefficients (vim, π
i
m)

15: end for
16: add cut (3.7b) using the coefficients

{(vim, πim)}m∈C(n) to ψin to get ψi+1
n

17: end for
18: end for

19: /* Lower and upper bounds update */
20: LB = f1(x

i
1, y

i
1) + θi1 and

UB = min{UB,
∑

n∈T pnfn(xin, y
i
n)}

incumbent solution {(x∗n, y∗n)}n∈T ← {xin, yin}n∈T
21: i← i+ 1
22: end while
23: return {(x∗n, y∗n)}n∈T

(iii) finite, if in each iteration i of the ND algorithm, solving the relaxation problem (Ri
n)

of (P i
n(xia(n), ψ

i+1
n)) can only generate finitely many different cut coefficients (vin, π

i
n).

It is easy to see that valid cuts are needed. The tightness of the cuts means that the

cut generated from solving a relaxation of (P i
n(xia(n), ψ

i+1
n)) needs to exactly recover the

objective value Qi

n
(xia(n), ψ

i+1
n) of (P i

n(xia(n), ψ
i+1
n)) at xia(n). The tightness property alludes

to a certain strong duality of the cuts that we introduce in Section 3.5.3, and is crucial in

54

ensuring the convergence of the ND algorithm. The finiteness condition is important to

guarantee finite convergence. In Section 3.5, we discuss various types of relaxations and

associated cuts that can be used in the context of the ND algorithm.

3.4.3 Finite Convergence

Next we show that under the sufficient cut conditions identified above, the ND algorithm

produces an optimal solution in a finite number of iterations. Before we dive into the details

of the proof, we first give a high-level description of the proof. In particular, we prove the

convergence of the ND algorithm in two steps. In step 1, we show that the approximation

function ψin(·) obtained from the backward steps of the ND algorithm converges to a certain

piecewise linear convex function after a finite number of steps for each node n. Once

{ψin(·)}n∈T converges, we prove by induction that the cuts generated in the backward steps

are not only tight at the lower estimate of the value functions as in (3.9), but also tight at the

true value functions, Qi
n(xia(n), ψ

i+1
n)’s, evaluated at the forward step solutions, which is a

stronger tightness property. In step 2, by exploiting the finiteness of the set of stage variable

values and using the stronger property of tightness of the generated cuts, we prove that the

lower and upper bounds coincide, i.e., the algorithm terminates.

Theorem 7. If the linear cuts used in the Nested Decomposition algorithm are valid, tight,

and finite, then the ND algorithm terminates in a finite number of iterations with an optimal

solution to the multistage stochastic program (3.3).

Proof. We first prove the following claim. (In this chapter, claims are numbered globally

for cross reference.)

Claim 1. For any T -stage problem (3.3), after a finite number (i∗T) of iterations, the solutions

{xin}n∈T generated in the forward steps (in Line 7) and the cuts {(vin, πin)}n∈T obtained

from the backward steps (in Line 14) of the ND algorithm satisfy the following equality for

55

all n ∈ T and i ≥ i∗T ,

Qn(xia(n)) = vin + (πin)>xia(n). (3.10)

Proof of Claim 1: First notice that xn is a binary vector thus can take at most 2d different

values for all n ∈ T , where d is the dimension of xn. For any n ∈ ST and i ≥ 1, ψin(·) ≡ 0.

For n ∈ ST−1, since xn only has finitely many different values, and the cuts used in the ND

algorithm satisfy the finite property, it follows that the total number of distinct cuts that may

be added to node n in the backward steps (Line 14) of the ND algorithm is finite, hence

there are only finitely many different polyhedral models for ψin(·) for any i ≥ 1. Similarly,

using each of them as the approximate cost-to-go function can only generate finitely many

distinct cuts for n’s parent node. Continuing this way to node 1, we know there are only

finitely many cuts that can be added to any n ∈ T . Since the number of cuts in {ψin(·)}n∈T

is a monotone nondecreasing sequence with respect to iteration i, there exists i∗T <∞ such

that {ψin(·)}n∈T ≡ {ψ∗n(·)}n∈T for all i ≥ i∗T .

Next, we want to show that, after {ψin(·)}n∈T converges to {ψ∗n(·)}n∈T , the lower

estimate of the value function, Qi

n
(xia(n), ψ

∗
n) in (3.6), will support the true value function

Qn(xia(n)) given in (3.5) evaluated at the forward solution xia(n) at all n ∈ T after i ≥ i∗T .

Therefore, the cuts {(vin, πin)}n∈T generated from the backward steps satisfy a stronger

notion of tightness, namely, they are not only tight at the lower estimate of the value function

as described in (3.9), but also tight at the true value function as shown in (3.10).

We prove (3.10) by induction over the stages for any T -stage problem. In particular,

at any node n in the last stage T , i.e., n ∈ ST , the cost-to-go function ψin ≡ 0. Therefore,

Qi

n
(xia(n), ψ

i
n) = Qi

n(xia(n)) for all i ≥ 1 and all binary xia(n). Then, (3.10) follows from the

tightness property of the cuts (3.9).

For the induction step, consider a node n ∈ St with t ≤ T − 1, and assume that

the cuts {(vim, πim)}m∈C(n) generated at its children nodes m ∈ C(n) satisfy (3.10), i.e.,

56

Qm(xin) = vim + (πim)>xin. We want to show the cut (vin, π
i
n) generated at node n by solving

a suitable relaxation (Ri
n) of the updated forward problem (P i

n(xia(n), ψ
i+1
n)) also satisfies

(3.10). We have the following relations:

Qn(xia(n)) ≥ vin + (πin)>xia(n) (3.11a)

= Qi

n
(xia(n), ψ

i+1
n) (3.11b)

= Qi

n
(xia(n), ψ

∗
n) (3.11c)

= fn(xin, y
i
n) + ψ∗n(xin) (3.11d)

≥ fn(xin, y
i
n) +

∑
m∈C(n)

qnm(vim + (πim)>xin) (3.11e)

= fn(xin, y
i
n) +

∑
m∈C(n)

qnmQm(xin) (3.11f)

≥ Qn(xia(n)). (3.11g)

The inequality in (3.11a) follows from the validity of the cut (vin, π
i
n) from (3.8). The

equality in (3.11b) follows from the fact that (vin, π
i
n) is a tight cut for the relaxation problem

of (P i
n(xia(n), ψ

i+1
n)) and uses the definition of tight cuts given in (3.9). Notice that after i∗T

iterations, the lower approximation functions ψin converged to ψ∗n. Therefore, the problem

(P i
n(xia(n), ψ

i+1
n)) in the backward step is identical to the forward problem (P i

n(xia(n), ψ
i
n))

in iteration i, which in turn is the same as (P i
n(xia(n), ψ

∗
n)). Thus, we have the equality in

(3.11c). Since (xin, y
i
n) is an optimal solution of the forward problem (P i

n(xia(n), ψ
∗
n)), we

also have the equality in (3.11d). Since the cuts {(vim, πim)}m∈C(n) are already contained

in the description of ψ∗n, the inequality in (3.11e) follows from the construction of ψ∗n in

(3.7b). The equality in (3.11f) holds due to the induction hypothesis. Lastly, (3.11g) follows,

because (xin, y
i
n) is a feasible solution of the problem (Pn) with the parent state xia(n) as

defined in (3.5). This closes the induction step and proves Claim 1. �

Since there are finitely many feasible state vectors {xn}n∈T , in a finite number of

iterations after i∗T , the ND algorithm will repeat a solution {xin}n∈T with i ≥ i∗T that has

57

been obtained in a previous iteration j ≥ i∗T . (Note that there could be multiple optimal

solutions, so this may not happen in the (i∗T + 1)-th iteration.) Consider xjn = xin = x̂n for

j < i and all n ∈ T . Note that the upper bound at the end of iteration j is

UBj ≤
∑
n∈T

pnfn(x̂n, ŷn), (3.12)

where

ŷn ∈ argminyn{fn(x̂n, yn) : (x̂a(n), x̂n, yn) ∈ Xn}. (3.13)

The cuts generated in the backward step of iteration j are of the form (c.f. (3.7b))

θn ≥
∑

m∈C(n)
qnm(v̂`m + (π̂`m)>xn),

which are tight at x̂n by (3.10), i.e., Qm(x̂n) = v̂`m+(π̂`m)>x̂n. Since a cut is never discarded

and x̂n is an optimal solution of the forward problem P i
n(xia(n), ψ

∗
n) for all n in iteration i,

we must have θin ≥
∑

m∈C(n) qnmQm(x̂n) for all n ∈ T . In particular, the lower bound at

iteration i is

LBi = f(x̂1, ŷ1) + θi1 ≥ f(x̂1, ŷ1) +
∑

m∈C(1)
q1mQm(x̂1). (3.14)

Now note that with fixed state vector {x̂n}n∈T , the multistage stochastic problem (3.3)

separates by nodes, thus we have

Qn(x̂a(n)) = fn(x̂n, ŷn) +
∑

m∈C(n)
qnmQm(x̂n) ∀ n ∈ T , (3.15)

where ŷn satisfies (3.13). Combining (3.15) with (3.14), we have

LBi ≥
∑
n∈T

pnfn(x̂n, ŷn) ≥ UBj ≥ UBi,

58

where the second inequality follows from (3.12) and the third inequality follows from the

fact that the upper bounds are nonincreasing. Thus the algorithm will terminate at the end

of iteration i. Upon termination, due to the complete continuous recourse assumption, the

solution vector {(xin, yin, zin)}n∈T is feasible and has an objective value equal to a valid lower

bound, and hence is optimal to the multistage stochastic program (3.3). This completes the

proof of the theorem.

In the above description of the algorithm, we only use one direction to traverse the

scenario tree – proceed forward in time all the way, and then update all the node subproblems

by cuts and start again from stage 1. Alternatively one can consider various other tree

traversal schemes, e.g., alternating between generating solutions for next stage and then

passing cuts back for some steps before proceeding forward (Gassmann 1990).

3.5 Cut families

In this section, we discuss various types of cuts that can be used within the ND algorithm. We

discuss the well known Benders’ and integer optimality cuts, and introduce the Lagrangian

cuts derived from a Lagrangian relaxation corresponding to the reformulation (3.3), where

local copies of state variables are introduced, and an associated collection of strengthened

Benders’ cuts.

3.5.1 Benders’ Cut

A well known family of cuts is the Benders’ cut (Benders 1962), where the relaxation (Ri
n)

solved in the backward step is the LP relaxation of problem (P i
n(xia(n), ψ

i+1
n)). Therefore,

the cost coefficients (vin, π
i
n) are computed based on the optimal value of the LP relaxation

and a basic optimal dual solution. Specifically, the cut added to node n in the backward step

59

evaluated at a forward solution xin takes the following form

θn ≥
∑

m∈C(n)
qnmQ

LP
m (xin) +

∑
m∈Cn

qnm(πim)
>

(xn − xin), (3.16)

where QLP
m (xin) is the optimal LP relaxation objective function value of problem

(P i
m(xin, ψ

i+1
m)) and πim is a basic optimal dual solution corresponding to constraints zm = xin.

This is the cut family used in nested decomposition algorithms for MSLP. For MSIP, Benders’

cut are valid and finite (when basic dual optimal solutions are used) but not tight in the sense

of (3.9) in general. Accordingly, for MSIP, the ND algorithm is not guaranteed to produce

an optimal solution using only Benders’ cuts.

3.5.2 Integer Optimality Cut

Another interesting collection of cutting planes is introduced by Laporte and Louveaux 1993

and is designed for solving two-stage stochastic programs with binary first-stage variables.

It is generated by evaluating the subproblem at a feasible first-stage solution and coincides

with the true expected cost-to-go function at the proposed first-stage solution. We present a

natural extension of them to the ND algorithm for the multistage setting.

Let xin be a solution to the problem (P i
n(xia(n)ψ

i
n)) solved in iteration i at node

n in the forward step. The relaxations solved in the backward step are the original

problems themselves. That is, let vi+1
m be the optimal objective value of problem

(Ri
m) = (P i

m(xin, ψ
i+1
m)) given xin for all m ∈ C(n). Then the integer optimality cut

added to (P i
n(xia(n), ψ

i
n)) in the backward step takes the following form

θn ≥ (v̄i+1
n − Ln)

(∑
j

(xin,j − 1)xn,j +
∑
j

(xn,j − 1)xin,j

)
+ v̄i+1

n , (3.17)

where v̄i+1
n =

∑
m∈C(n) qnmv

i+1
m . It is easy to verify that integer optimality cuts are valid,

tight and finite. Thus the ND algorithm with this cut family is an exact approach for

60

solving MSIP with binary state variables. However, these cuts are only tight at the proposed

binary solution xin and could be very loose at other solutions, and hence may not perform

satisfactorily.

3.5.3 Lagrangian Cut

We consider another class of cuts obtained by solving a Lagrangian dual of the node forward

problems. The relaxation solved in the backward step of iteration i in node n in this case is:

(Ri
n) : max

πn

{
Lin(πn) + π>n x

i
a(n)

}
(3.18)

where

Lin(πn) = min
xn,yn,zn,θn

fn(xn, yn) + θn − π>n zn

s.t. (zn, xn, yn) ∈ Xn

xn ∈ {0, 1}d

zn ∈ [0, 1]d

θn ≥ Ln

θn ≥
∑

m∈C(n)
qnm(v`m + (π`m)>xn) ∀` = 1, . . . , i.

(3.19)

We will denote the feasible region defined by the first four constraint systems of Lin(πn) as

X ′n and that defined by all five constraint systems as X ′′n.

Given any {xin}n∈T with xin ∈ {0, 1}d, a collection of cuts given by the coefficients

{(vin, πin)}n∈T is generated in the backward step of iteration i, where πin is an optimal

solution to the Lagrangian dual problem (Ri
n) and vin = Lin(πin) for all n ∈ T . We call this

collection of cuts the Lagrangian cuts.

Theorem 8. Given any {xin}n∈T with xin ∈ {0, 1}d, let πin be an optimal solution to

the Lagrangian dual problem (Ri
n) in (3.18) and vin = Lin(πin). Then, the collection of

Lagrangian cuts {(vin, πin)}n∈T is valid and tight in the sense of (3.8)-(3.9).

61

Proof. First, we prove that the Lagrangian cuts generated in iteration i of the ND algorithm

are tight at the forward solution {xin}n∈T . The tightness of the Lagrangian cuts is essentially

implied by a strong duality between the Lagrangian relaxation defined by (3.18)-(3.19) and

the forward problem (P i
n(xia(n), ψ

i
n)) defined in (3.6). Then, we prove by induction that they

are also valid cuts.

Take any node n ∈ T . Let πin be an optimal dual solution of (3.18). Then, we have the

following equalities:

Lin(πin) + (πin)>xia(n) = min
{
fn(xn, yn) + θn − (πin)>(zn − xia(n)) : (zn, xn, yn, θn) ∈ X ′′n

}
= min

{
fn(xn, yn) + θn : (zn, xn, yn, θn) ∈ conv(X ′′n), zn = xia(n)

}
,

(3.20)

where (3.20) follows from Theorem 6.2 in Nemhauser and Wolsey 1999. Let

(ẑn, x̂n, ŷn, θ̂n) ∈ conv(X ′′n) be an optimal solution of (3.20). Then there exists

{(ẑkn, x̂kn, ŷkn, θ̂kn)}k∈K ∈ X ′′n such that (ẑn, x̂n, ŷn, θ̂n) =
∑

k∈K λk · (ẑkn, x̂kn, ŷkn, θ̂kn), where

K is a finite set, λk ≥ 0 for all k ∈ K, and
∑

k∈K λk = 1. Since xia(n) ∈ {0, 1}d and

ẑkn ∈ [0, 1]d for all k, we have that
∑

k∈K λkẑ
k
n = ẑn = xia(n), which implies that ẑkn = xia(n)

for all k. Thus (ẑn, x̂n, ŷn, θ̂n) ∈ conv(X ′′n ∧ {zn = xia(n)}) and

Lin(πin) + (πin)>xia(n) = min
{
fn(xn, yn) + θn : (zn, xn, yn, θn) ∈ conv(X ′′n ∧ {zn = xia(n)})

}
= min

{
fn(xn, yn) + θn : (zn, xn, yn, θn) ∈ X ′′n, zn = xia(n)

}
= fn(xin, y

i
n) + θin = Qi

n
(xia(n), ψ

i
n),

where the second equality follows since fn(xn, yn) is linear. This proves the tightness of the

Lagrangian cuts according to (3.9).

Next, we show by induction that the Lagrangian cuts are valid. For the base case, we

consider any node n ∈ ST . Note that ψin ≡ 0 in the last stage problem. Relaxing the

constraint zn = xa(n) in the definition (3.5) of Qn(xa(n)) using the optimal multiplier πin of

62

(3.18), we have for any xa(n) ∈ {0, 1}d,

Qn(xa(n)) ≥ min{fn(xn, yn)− (πin)>(zn − xa(n)) : (zn, xn, yn) ∈ X ′n}

= min{fn(xn, yn)− (πin)>zn : (zn, xn, yn) ∈ X ′n}+ (πin)>xa(n)

= Lin(πin) + (πin)>xa(n).

Thus the Lagrangian cut is valid at any n ∈ ST . For the induction step, consider a node

n ∈ St with t ≤ T − 1, and assume that the Lagrangian cuts defined by {(vim, πim)}m∈C(n)

are valid. Note that

Qn(xa(n)) = min
{
fn(xn, yn) + θn : (zn, xn, yn) ∈ Xn, zn = xa(n), θn ≥

∑
m∈C(n)

qnmQm(xn)
}
.

(3.21)

Since the cuts defined by {(πim, vim)}m∈C(n) are valid, i.e. Qm(xn) ≥ vim + (πim)>xn for any

xn ∈ {0, 1}d, X ′′n with these cuts is a relaxation of the feasible region of (3.21). Therefore,

we have

Qn(xa(n)) ≥ min
{
fn(xn, yn) + θn : (zn, xn, yn, θn) ∈ X ′′n, zn = xa(n)

}
≥ min

{
fn(xn, yn) + θn − (πin)>zn : (zn, xn, yn, θn) ∈ X ′′n

}
+ (πin)>xa(n)

= Lin(πin) + (πin)>xa(n),

where the second inequality is by relaxing the constraint zn = xa(n). Thus the Lagrangian

cut defined by (πin, v
i
n) is valid. This completes the proof of the theorem.

If we restrict the set of dual optimal solutions πin of (Ri
n) to be basic, then the set

of Lagrangian cuts is also finite. Accordingly, the ND algorithm with this cut family is

guaranteed to produced an optimal solution to MSIP with binary state variables in a finite

number of iterations.

63

3.5.4 Strengthened Benders’ Cut

The Lagrangian problem is an unconstrained optimization problem, thus for any fixed πn,

solving (3.19) to optimality yields a valid cut. Therefore, one can strengthen Benders’ cut

by solving a node mixed integer program. More concretely, we solve (3.19) at all m ∈ C(n)

with πm equal to a basic optimal LP dual solution πim corresponding to the constraints

zm = xin. Upon solving all these node subproblems, we can construct a valid cut which is

parallel to the regular Benders’ cut,

θn ≥
∑

m∈C(n)
qnmLm(πim) +

∑
m∈Cn

qnm(πim)
>
xn. (3.22)

Indeed, we have Lm(πim) ≥ QLP
m (xin) − (πim)>xin, thus (3.22) is at least as tight as

Benders’ cuts (3.16). For this reason, we call these cuts strengthened Benders’ cuts. The

strengthened Benders’ cuts are valid and finite but are not guaranteed to be tight according

to (3.9). Nonetheless these cuts afford significant computational benefits as demonstrated in

Section 3.7.

Even though Lagrangian cuts are tight, whereas strengthened Benders’ cuts are not

in general, the latter are not necessarily dominated by the previous one, as shown in the

following example.

Example 2. Consider the following two-stage program with only 1 scenario,

min
x
{x1 + x2 +Q(x1, x2) : x1, x2 ∈ {0, 1}}

where Q(x1, x2) = min {4y : y ≥ 2.6− 0.25x1 − 0.5x2, y ≤ 4, y ∈ Z+}. It is easy to

compute that Q(0, 0) = 12. The Benders’ cut described in (3.16) is θ ≥ 10− x1 − 2x2; the

strengthened Benders’ cut described in (3.22) is θ ≥ 11− x1 − 2x2; and the Lagrangian cut

is θ ≥ 12− 4x2. We see that the Lagrangian cut supports function Q(x1, x2) at (0, 0), while

the other two do not. Also, it is clear that the strengthened Benders’ cut strictly improves

64

the Benders’ cut, and the strengthened Benders’ cut and the Lagrangian cut do not dominate

each other. �

3.6 Stochastic Nested Decomposition

The number of nodes in a scenario tree, in most cases, can be enormous. Therefore, traversing

the tree back and forth in every iteration of the ND algorithm can be computationally

expensive. In this section, we present a Stochastic Nested Decomposition (SND) algorithm

and its special case, Stochastic Dual Dynamic Integer Programming, or SDDiP, when the

stochasticity satisfies stage-wise independence, for solving the MSIP (3.1) with binary state

variables.

3.6.1 The SND Algorithm

In contrast to the ND algorithm, the SND algorithm does not solve all the forward problems

in each iteration. Instead, a subset of scenarios, i.e., a set of paths from root to a subset of

leaf nodes, is sampled from the tree in each forward step. In particular, we consider the

following sampling procedure: in each iteration of the SND algorithm, M nodes, denoted

as {nj1 , . . . , njM}, out of all the N nodes in the last stage of the scenario tree are sampled

based on the distribution {pn : n ∈ ST}. Let P(njk) denote the scenario path from root to

the leaf node njk . The set {ωk := P(njk)}k contains all the corresponding scenario paths

for all k = 1, . . . ,M . The sampling can be done with or without replacement, and there is

no significant practical difference between them as M is usually much smaller than N . As

in ND, each iteration of the SND algorithm consists of a forward step and a backward step.

In the forward step, we solve forward problems defined in (3.6) along each sampled scenario

path and collect forward solutions. We call them candidate solutions. In the backward step,

we only add cuts to the subproblems at the nodes which were traversed in the previous

forward step and keep all subproblems at other nodes the same as in the previous iteration.

The full algorithm is described in Algorithm 3.

65

Algorithm 3 :: Stochastic Nested Decomposition
1: Initialize: LB ← −∞, UB ← +∞, i ← 1, and an initial lower

approximation {ψ1
n(·)}n∈T

2: while some stopping criterion is not satisfied do
3: Sample M scenarios Ωi = {ωi1, . . . , ωiM}

4: /* Forward step */
5: for k = 1, . . . ,M do
6: for n ∈ ωik do
7: solve forward problem P i

n(xia(n), ψ
i
n)

8: collect solution (xin, y
i
n, z

i
n, θ

i
n = ψin(xin))

9: end for
10: uk ←

∑
n∈ωik

fn(xin, y
i
n)

11: end for

12: /* (Statistical) upper bound update */
13: µ̂← 1

M

∑M
k=1 u

k and σ̂2 ← 1
M−1

∑M
k=1(u

k − µ̂)2

14: UB ← µ̂+ zα/2
σ̂√
M

15: /* Backward step */
16: for t = T − 1, . . . , 1 do
17: for n ∈ St do
18: if n ∈ ωik for some k then
19: for m ∈ C(n) do
20: solve a suitable relaxation (Ri

n) of the updated problem
P i
n(xia(n), ψ

i+1
n) and collect cut coefficients (vim, π

i
m)

21: end for
22: add cut (3.7b) using the coefficients {(vim, πim)}m∈C(n) to

ψin to get ψi+1
n

23: else
24: ψi+1

n ← ψin
25: end if
26: end for
27: end for

28: /* Lower bound update */
29: solve P i

1(x̄0, ψ
i+1
1) and set LB be the optimal value

30: i← i+ 1
31: end while

The SND algorithm (Algorithm 3) does not specify a termination condition. One

possibility is to stop when the upper bound UB and lower bound LB are sufficiently

66

close. It is important to note that the upper bound is a statistical upper bound. Its validity

is guaranteed with certain probability provided that M is not too small (e.g., M > 30).

However, no matter how largeM is, it could still happen that this upper bound is smaller than

the valid lower bound evaluated in the backward step. As a result, one needs to be careful

when using the stopping criterion UB−LB ≤ ε. A conservative test is to compare the lower

bound with the estimated upper bound plus two standard deviations. Other stopping criteria

are also used in the literature, e.g., stop the algorithm when the lower bounds become stable

and the statistical upper bound given by a large sample size is close to the lower bound; or

enforce a limit on the total number of iterations (Shapiro et al. 2013; Bruno et al. 2016).

3.6.2 Convergence

In this section, we prove the convergence of the SND algorithm. In particular, we show that,

with probability one, the approximate cost-to-go functions constructed using valid, tight,

and finite cuts define an optimal solution to MSIP with binary state variables in a finite

number of iterations. We have the following technical assumption.

(A3) In any node n ∈ T and iteration i in the SND algorithm, given the same parent

solution xia(n) and the same approximate cost-to-go function ψin, the node problem

P i
n(xia(n), ψ

i
n) is always solved to the same optimal solution xin.

This assumption is to avoid the situation, where the algorithm for solving the same node

problem keeps generating different optimal solutions (if they exist). Most deterministic

MIP solvers, e.g. CPLEX and Gurobi, satisfy (A3). Therefore, it is a practical assumption.

However, notice that we do not assume the node problem P i
n(·) has a unique optimal

solution.

Theorem 9. Suppose the sampling procedure in the forward step is done with replacement,

the cuts generated in the backward step are valid, tight, and finite, and the algorithm for

solving the node problems {P i
n(·)}n∈T satisfies (A3), then with probability one, the forward

step of the SND algorithm defines an optimal solution to the multistage stochastic program

67

(3.3) after a finite number of iterations.

Proof. First, notice that each binary state variable xn in (3.3) can only take at most 2d

different values and the cutting planes used in the backward steps are finite (see Definition

2), it follows that there are finitely many possible realizations (polyhedral models) for the

approximate expected cost-to-go functions {ψin(·)}n∈T for all i ≥ 1.

At the beginning of any iteration i ≥ 1, the current approximate expected cost-to-go

functions {ψin(·)}n∈T define a solution (xin, y
i
n) over the tree obtained by the forward step

of iteration i, i.e.,

(xin, y
i
n) ∈ argmin

min
xn,yn

fn(xn, yn) + ψin(xn)

s.t. (xia(n), xn, yn) ∈ Xn ∀n ∈ T

 . (3.23)

It is worth noting that during a particular iteration, the SND algorithm does not compute

all of these solutions but only those along the sampled paths (scenarios). We first prove

the following claim, which gives a sufficient condition under which the solution defined in

(3.23) is optimal to the original problem.

Claim 2. If, at iteration i of the SND algorithm, ψin(xin) = Qn(xin) for all n ∈ T , then the

forward solution {xin, yin}n∈T is optimal to problem (3.3).

Proof of Claim 2: Since the cuts generated in backward steps are valid, {ψin(·)}n∈T is a

lower approximation to the true expected cost-to-go functions, i.e., ψin(xn) ≤ Qn(xn) for

all xn ∈ {0, 1}d and n ∈ T . Therefore, Qi

n
(xia(n), ψ

i
n) ≤ Qn(xia(n)) (cf. (3.5) and (3.6)).

Furthermore, we have

Qi

n
(xia(n), ψ

i
n) = fn(xin, y

i
n) + ψin(xin) (3.24a)

= fn(xin, y
i
n) +Qn(xin) (3.24b)

≥ Qn(xia(n)), (3.24c)

68

where (3.24a) is true because xin by definition is an optimal solution of (P i
n(xia(n), ψ

i
n)),

(3.24b) follows the assumption ψin(xin) = Qn(xin), and (3.24c) holds because (xin, y
i
n) is

feasible for the true DP recursion (3.5). Therefore, (xin, y
i
n) is also optimal for the true DP

recursion (3.5) for all n ∈ T , thus (xin, y
i
n) is optimal for (3.3). This completes the proof of

Claim 2. �

Suppose the solution defined by (3.23) at the beginning of iteration i is not optimal,

then there must exist some n ∈ T such that ψin(xin) < Qn(xin). Any iteration j ≥ i can be

characterized as either one of the following two types:

(a) {ψj+1
n (·)}n∈T 6= {ψjn(·)}n∈T , i.e., at least one ψjn(·) changes during the backward

step;

(b) {ψj+1
n (·)}n∈T = {ψjn(·)}n∈T , i.e., all ψjn(·) remain the same after the backward step.

It is possible that consecutive iterations after i may belong to Type-a or Type-b iterations.

Let us denote Ika and Ikb as the k-th such set of consecutive Type-a and Type-b iterations,

respectively. Let K = sup{i : {xin, yin}n∈T is not optimal}, and let Ka and Kb respectively

be the total number of sets of consecutive Type-a and Type-b iterations, when the forward

tree solution {xin, yin}n∈T is not optimal. Let us also denote |Ika | and |Ikb | as the cardinality

of the k-th set of consecutive Type-a and Type-b iterations, respectively. Since there are

only finitely many cuts that can be added, both Ka and each |Ika | must be finite. As will

be shown below, each Ikb occurrence before the SND algorithm converges is followed by a

Type-a iteration. Therefore, Kb ≤ Ka, hence Kb is also finite. We next show that each |Ikb |

is finite with probability 1.

Claim 3. With probability 1, |Ikb | is finite for all 1 ≤ k ≤ Kb.

Proof of Claim 3: For any 1 ≤ k ≤ Kb, let jk be the iteration when Ikb starts, since

{ψjk+1
n (·)}n∈T = {ψjkn (·)}n∈T and by assumption (A3), we have {xjk+1

n , yjk+1
n }n∈T =

{xjkn , yjkn }n∈T . Because the solution {xjkn , yjkn }n∈T is not optimal, by Claim 2, there exists

njk ∈ T such that ψjknjk (xjknjk
) < Qnjk (xjknjk

). Choose such an node njk so that t(njk) is the

largest, hence for all m ∈ C(njk), ψjkm (xjkm) = Qm(xjkm). The sampling in the forward step is

69

done with replacement, thus each scenario is sampled independently. Since there are finitely

many scenarios, and each one is sampled with a positive probability, we know that with

probability 1, after finitely many number of iterations, a scenario that contains node njk will

be sampled in an iteration, say j′k. In the backward step of iteration j′k, the same state vector

x
j′k
njk

= xjknjk
will be evaluated at all children nodes of njk , and a cut will be added to ψj

′
k
njk

(·).

We want to show that ψj
′
k+1
njk

(xjknjk
) = Qnjk (xjknjk

) after adding this cut.

Note that we have the following relations:

ψ
j′k+1
njk

(xjknjk
) ≥

∑
m∈C(njk)

qnjkm(vjkm + (πjkm)>xjknjk
) (3.25a)

=
∑

m∈C(njk)
qnjkmQ

jk
m

(xjknjk
, ψjkm) (3.25b)

=
∑

m∈C(njk)
qnjkm(fm(xjkm , y

jk
m) + ψjkm (xjkm)) (3.25c)

=
∑

m∈C(njk)
qnjkm(fm(xjkm , y

jk
m) +Qjkm(xjkm)) (3.25d)

≥
∑

m∈C(njk)
qnjkmQ

jk
m(xjknjk

, ψ
j′k
m) (3.25e)

= Qnjk (xjknjk
). (3.25f)

The inequality in (3.25a) follows from the construction of ψj
′
k+1
njk

(xjknjk
) in (3.7). The equality

in (3.25b) follows from the fact that (vjkm , π
jk
m) is a tight cut for the relaxation problem of

(P jk
m (xjknjk

, ψjk+1
m)) and uses the definition of tight cuts given in (3.9). The equality in (3.25c)

follows from the definition of Qjk
m

in (3.6). The equality (3.25d) holds due to the fact for

all m ∈ C(njk), ψjkm (xjkm) = Qm(xjkm). Then, (3.25e) follows because (xjkm , y
jk
m) is a feasible

solution of the problem (P jk
m (xjknjk

, ψjk+1
m)) with the parent state xjknjk as defined in (3.5).

Lastly, (3.25f) is the definition of Qnjk (xjknjk
).

Since ψj
′
k+1
njk

(xjknjk
) = Qnjk (xjknjk

), a new Type-a occurrence starts from the j′k-th iteration.

In other words, when the SND algorithm has not converged, i.e., (xin, y
i
n)n∈T is not optimal,

70

each consecutive Type-b occurrence is followed by a Type-a iteration. This proves Kb ≤ Ka.

Therefore, the number of iterations in Ikb for 1 ≤ k ≤ Kb is finite with probability 1. �

It follows from Claim 3 that the condition in Claim 2 will hold after K =
∑Ka

k=1 |Ika |+∑Kb
k=1 |Ikb | iterations. We have the following relations.

1 ≥ Pr

(
Ka∑
k=1

|Ika |+
Kb∑
k=1

|Ikb | <∞

)

= Pr

(
Kb∑
k=1

|Ikb | <∞

)

= Pr
(
|Ikb | <∞, ∀ 1 ≤ k ≤ Kb

)
= 1,

where the first equality follows from the finiteness of
∑Ka

k=1 |Ika | and the second is due to

Kb <∞ for sure, and the last follows from Claim 3. Hence Pr(K <∞) = 1. Therefore,

the SND algorithm converges to an optimal solution of problem (3.3) in a finite number of

iterations with probability 1.

3.6.3 The SDDiP Algorithm

We now propose the SDDiP algorithm for the setting where the scenario tree satisfies stage-

wise independence, i.e., for any two nodes n and n′ in St the set of children nodes C(n)

and C(n′) are defined by identical data and conditional probabilities. In this case, the value

functions and expected cost-to-go functions depend only on the stage rather than the nodes,

i.e., we have Qn(·) ≡ Qt(·) for all n ∈ St. As a result, only one problem is maintained per

stage, and cuts generated from different candidate solutions are added to the same problem.

We consider the setting where the scenario tree is created by sampling a stage-wise

independent stochastic process. LetNt be the number of realizations of uncertain parameters

at stage t = 2, . . . , T , each outcome has an equal probability of 1/Nt. The total number

of scenarios is N =
∏T

t=2Nt. For any 1 ≤ t ≤ T and i ≥ 1, let ψit(·) be the approximate

expected cost-to-go function in stage t at the beginning of iteration i (cf. (3.6)-(3.7)). For a

71

particular uncertain data realization ξkt (1 ≤ k ≤ Nt) in stage t, let (P i
t (x

ik
t−1, ψ

i
t, ξ

k
t)) be the

corresponding stage problem given state variable xikt−1 at the beginning of iteration i, and

denote its optimal solution by (xikt , y
ik
t , z

ik
t , θ

ik
t). In the backward step, given a candidate

solution xikt−1, let (Rik
t) be a suitable relaxation of the updated problem (P i

t (x
ik
t−1, ψ

i+1
t , ξjt))

for some 1 ≤ j ≤ Nt, and (vijt , π
ij
t) be the corresponding cut coefficients collected from

solving the relaxation problem. Since each outcome of the uncertain data process has

the same probability, the cut (3.7b) is obtained by taking the average of all generated cut

coefficients, i.e.,

θt ≥
1

Nt

Nt∑
j=1

(vijt + (πijt)>xt−1). (3.26)

The SDDiP algorithm is described in Algorithm 4, and its almost sure convergence

immediately follows from Theorem 9.

For the problem with right hand side uncertainty, simple stage-wise dependency, e.g.,

p-th order autoregressive model, can be transformed into the independent case by adding

additional decision variables (Shapiro et al. 2013). However this approach in general does

not extend to the situation where uncertainty exists in the objective coefficients or left hand

side matrix of constraints because bilinear terms will be introduced but cannot be handled

by the standard SDDP method. In our setting, however, these bilinear terms are products of

two binary variables after reformulation using binary expansion or approximation, which

can be easily reformulated as linear constraints. This is another significant advantage of

considering the 0-1 state space.

3.7 Computational Experiments

In this section, we present computational experiments to evaluate the SDDiP Algorithm

4 on a power generation expansion planning problem, a financial portfolio optimization

problem, and an airline revenue management problem. Algorithm 4 is implemented in C++

with CPLEX 12.6.0 to solve the MIP and LP subproblems. The Lagrangian dual problem is

72

Algorithm 4 :: Stochastic Dual Dynamic Integer Programming
1: Initialize: LB ← −∞, UB ← +∞, i ← 1, and an initial lower

approximation {ψ1
t (·)}t=1,...,T

2: while some stopping criterion is not satisfied do
3: Sample M scenarios Ωi = {ξk1 , . . . , ξkT}k=1...,M

4: /* Forward step */
5: for k = 1, . . . ,M do
6: for t = 1, . . . , T do
7: solve forward problem P i

t (x
ik
t−1, ψ

i
t, ξ

k
t)

8: collect solution (xikt , y
ik
t , z

ik
t , θ

ik
t = ψit(x

ik
t))

9: end for
10: uk ←

∑
t=1,...,T ft(x

ik
t , y

ik
t , ξ

k
t)

11: end for

12: /* (Statistical) upper bound update */
13: µ̂← 1

M

∑M
k=1 u

k and σ̂2 ← 1
M−1

∑M
k=1(u

k − µ̂)2

14: UB ← µ̂+ zα/2
σ̂√
M

15: /* Backward step */
16: for t = T, . . . , 2 do
17: for k = 1, . . . ,M do
18: for j = 1, . . . , Nt do
19: solve a suitable relaxation (Rij

t) of the updated problem
P i
t (x

ik
t−1, ψ

i+1
n , ξjt) and collect cut coefficients (vijt , π

ij
t)

20: end for
21: add cut (3.26) to ψit−1 to get ψi+1

t−1
22: end for
23: end for

24: /* Lower bound update */
25: solve P i

1(x̄0, ψ
i+1
1) and set LB to the optimal value

26: i← i+ 1
27: end while

solved to optimality using a basic subgradient algorithm (see e.g., Bertsekas 1999, Sec. 6.3)

with an optimality tolerance of 10−4. All other relative MIP tolerance is set to 10−4 except

when specified. All computations are conducted on a Linux (Fedora 22) desktop with four

2.4GHz processors and 8GB RAM.

73

3.7.1 Long-term Generation Expansion Planning

In a power generation expansion planning (GEP) problem, one seeks to determine a long-

term construction and generation plan for different types of generators, taking into account

the uncertainties in future demand and natural gas prices. Suppose there are n types of

expansion technologies available. Let xt be a vector representing numbers of different types

of generators to be built in stage t, and yt be a vector of the amount of electricity produced

by each type of generator per hour in stage t. A deterministic formulation is as follows.

min
T∑
t=1

(a>t xt + b>t yt) (investment cost + generation cost)

s.t. ∀ t = 1, . . . , T

t∑
s=1

xs ≥ Atyt (generation capacity)

t∑
s=1

xs ≤ ū (limitation on total number of generators)

1>yt = dt (demand satisfaction)

xt ∈ Zn+, yt ∈ Rn
+.

In the above formulation, at and bt are investment and generation cost at stage t, respectively.

MatrixAt contains maximum rating and maximum capacity information of generators, ū is a

pre-determined construction limits on each type of generators due to resource and regulatory

constraints, and dt is the electricity demand at stage t.

Scenario generation Among all data, {bt}t=1,...,T and {dt}t=1,...,T are subject to

uncertainty. All data (except demand and natural gas price) used in this numerical study

can be found in Jin et al. (2011), where demand and natural gas price are modeled as two

correlated geometric Brownian motions. We simplify the stochastic processes of electricity

demand and natural gas price as follows. We assume that both processes are stage-wise

74

independent. At each stage, electricity demand follows a uniform distribution, and natural

gas price follows a truncated normal distribution with known first and second moments.

In addition, these two processes are considered as independent to each other. There are

six types of generators available for capacity expansion, namely Coal, Combined Cycle

(CC), Combined Turbine (CT), Nuclear, Wind, and Integrated Gasification Combined Cycle

(IGCC). Among these six types of generators, both CC and CT power generators are fueled

by natural gas.

In the implementation, we create a new set of general integer variables st, representing

the cumulative numbers of different types of generators built until stage t. After binary

expansion, there are 48 binary state variables per stage. The local variables are xt and yt,

containing 6 general integer variables and 7 continuous variables, respectively.

Performance Comparison We first consider an instance of the GEP problem with 10

decision stages. At each stage, three realizations of the uncertainty parameters are drawn,

thus in total there are 39 = 19683 scenarios with equal probability. We construct the

extensive formulation on the scenario tree and use CPLEX to solve the problem as one large

MIP. This formulation contains nearly 620,000 binary variables and 207,000 continuous

variables. CPLEX returns an incumbent solution with an objective function value 7056.7,

and the best bound 6551.6, i.e., a 7.16% gap remains after two hours.

We solve the same instance using SDDiP algorithm with seven different combinations

of cutting planes and compare their performance. Each of the combinations includes at least

one collection of tight cuts. The stopping criterion used in this numerical test is to terminate

the algorithm once lower bounds obtained in the backward steps become stable, and the

computation time limit is set to be 5 hours. After the lower bounds become stable, we

evaluate the objective function value for 1500 forward paths independently, and construct

a 95% confidence interval. The right endpoint of this interval is reported as the statistical

upper bound of the optimal value. The seven combinations of cuts are specified below:

75

(1) Integer optimality cut (I);

(2) Lagrangian cut (L);

(3) Benders’ cut + Integer optimality cut (B + I);

(4) Benders’ cut + Lagrangian cut (B + L);

(5) Strengthened Benders’ cut + Integer optimality cut (SB + I);

(6) Strengthened Benders’ cut + Lagrangian cut (SB + L);

(7) Strengthened Benders’ cut + Integer optimality cut + Lagrangian cut (SB + I + L).

In Table 3.1, we compare the performance of the SDDiP algorithm with integer optimality

cuts (I) and Lagrangian cuts (L). The first column indicates the type of cuts; Column 2

represents the number of forward paths sampled in the forward step; Column 3 contains

the best lower bound computed by the algorithm when stopping criterion (or computation

time limit) is reached; Column 4 shows the average number of iterations used; Column 5

contains a 95%-confidence statistical upper bound on the optimal value; Column 6 shows

the gap between the statistical upper bound and the best lower bound in Column 2; and the

last two columns contain the average total computation time and time used per iteration for

each experiment setting.

From Table 3.1 we can see that, if only integer optimality cuts are used in the backward

step, the lower bound improves very slowly. As a result, it takes a long time for the algorithm

to stop. In fact, none of the experiments converges within 5 hours of computation time

and large gaps are observed between the lower and upper bounds on the optimal values. In

comparison, if only Lagrangian cuts are used, the algorithm converges much faster. The

lower bounds obtained are also significantly higher than those attained only with integer

optimality cuts. In addition, for the Lagrangian cuts, the gap between the statistical upper

bound and the deterministic lower bound is very small in all experiments with different

choices of the number of forward sample paths. The reason behind these results should be

clear from the construction of integer optimality cuts. Namely, they are much looser than

76

Table 3.1: SDDiP algorithm with a single class of cutting planes

cuts # FW best LB # iter stat. UB gap time (sec.) time/iter.

I

1 4261.1 4041 8999.1 52.65% 18000 4.5
2 4184.5 2849 9005.5 53.53% 18000 6.3
3 4116.2 2426 10829.9 61.99% 18000 7.4
5 3970.4 1908 9730.0 59.19% 18000 9.4

10 3719.8 1384 9868.5 62.31% 18000 13.0
20 3427.8 969 10011.1 65.76% 18000 18.6
50 3055.8 603 10002.9 69.45% 18000 29.9

L

1 6701.1 110 6762.4 0.91% 1810 16.5
2 6701.1 57 6781.9 1.19% 1021 18.0
3 6701.0 45 6769.5 1.01% 1595 35.5
5 6701.1 36 6851.8 2.20% 741 20.6

10 6701.3 34 6796.6 1.40% 1223 36.0
20 6701.2 28 6803.3 1.50% 1274 45.5
50 6701.1 30 6801.6 1.48% 2092 69.7

Lagrangian cuts everywhere else except at the candidate solution being evaluated.

Table 3.2 presents similar computational results but in addition to using a single class of

tight cuts (i.e. I or L), we further adopt either Benders’ cuts or strengthened Benders’ cuts

(i.e. B or SB). We have the following comparisons.

1. (B+I) v.s. I: It is observed that adding Benders’ cuts together with integer optimality

cuts (B+I) leads to a significant improvement of the algorithm performance, comparing

to the performance of only integer optimality cuts (I) in Table 3.1. Not only

all experiments converge within 5 hours, the quality of the solutions is also very

satisfactory, i.e., the gap between the statistical upper bound and deterministic lower

bound is small (≤ 2%) in most cases.

2. (B+I) v.s. (SB+I) and (B+L): Another significant improvement on the algorithm

performance can be observed by comparing (B + I) and (SB + I) of Table 3.2, where

we substitute Benders’ cuts with strengthened Benders’ cuts. We can still attain small

gaps, i.e., good estimations on the optimal value. Moreover, the number of iterations,

the total time, and the average computation time all significantly decrease due to

77

Table 3.2: SDDiP algorithm with multiple classes of cutting planes

cuts # FW best LB # iter stat. UB gap time (sec.) time/iter.
($MM) ($MM) (sec.) (sec.)

B + I

1 6701.1 399 6874.7 2.53% 3905 9.8
2 6701.1 263 6757.1 0.83% 3524 13.4
3 6701.0 204 6755.8 0.81% 3594 17.6
5 6701.1 173 6799.5 1.44% 4457 25.8

10 6701.1 146 6752.9 0.77% 5579 38.1
20 6701.1 137 6874.3 2.52% 8167 59.8
50 6701.1 135 6840.1 2.03% 14719 109.0

B + L

1 6701.1 70 6772.7 1.06% 467 7.1
2 6701.1 56 6753.9 0.78% 632 14.8
3 6701.1 38 6831.0 1.90% 546 15.7
5 6701.2 34 6807.0 1.56% 752 20.8

10 6701.0 24 6818.6 1.72% 737 32.7
20 6700.9 23 6838.3 2.01% 952 39.1
50 6701.1 21 6843.5 2.08% 1230 60.5

SB + I

1 6700.3 178 6808.1 1.58% 461 2.6
2 6701.0 114 6825.9 1.82% 643 5.7
3 6701.1 95 6800.6 1.46% 618 6.5
5 6701.1 35 6768.4 0.99% 624 9.5

10 6701.1 31 6763.0 0.91% 760 14.9
20 6701.1 25 6803.9 1.51% 814 20.7
50 6701.1 27 6860.6 2.32% 1239 32.4

SB + L

1 6701.0 61 6808.5 1.58% 401 6.6
2 6701.0 40 6788.5 1.29% 457 11.6
3 6701.0 33 6766.3 0.97% 496 14.9
5 6701.1 29 6827.9 1.86% 621 21.8

10 6701.0 22 6768.9 1.00% 611 28.1
20 6701.1 20 6761.2 0.89% 767 37.7
50 6701.1 20 6783.9 1.22% 1083 53.3

SB + I + L

1 6701.0 57 6800.5 1.46% 437 7.6
2 6701.0 42 6763.5 0.92% 582 14.0
3 6701.0 30 6817.1 1.70% 404 13.8
5 6701.1 27 6783.4 1.21% 527 19.3

10 6701.0 21 6835.1 1.96% 580 28.1
20 6701.1 21 6796.8 1.41% 772 36.7
50 6701.1 20 6813.3 1.65% 960 47.2

78

the tighter strengthened Benders’ cuts. Comparing (B + I) with (B + L) suggests

that replacing integer optimality cuts with Lagrangian cuts also results in a major

improvement in both the total number of iterations and computation time.

3. (SB+I) v.s. (SB+L) and (SB+I+L): No significant improvement is observed between

(SB + I) and (SB + L). This is because the optimal Lagrangian dual multipliers do not

deviate much from the LP dual optimal in these instances. Therefore, strengthened

Benders’ cuts and Lagrangian cuts are “similar” in this sense. Finally, adding integer

optimality cuts in addition to the strengthened Benders’ and Lagrangian cuts (SB + I +

L) does not significantly affect algorithm performance, because integer optimality cuts

do not contribute much in approximating the expected cost-to-go functions except at

the candidate solutions.

As we increase the number of sample paths evaluated in the forward step, the total

computation time as well as the time used per iteration increase in general. The more

scenarios are selected in the forward step, the more subproblems need to be solved, and it is

often the case that more candidate solutions will be generated and evaluated in the backward

step. A significant advantage of using only 1 sample path in the forward step was reported

in Shapiro et al. (2013). Similar results can be observed in our experiments. Though for

some instances (e.g., B + I), a slightly bigger number (e.g., 3) of forward paths results in

better performance of SDDiP algorithm. In general, the best choice of forward sample

size remains small (1, 2, or 3). Moreover, in the experiments where Lagrangian cuts are

used, the time used per iteration is usually longer. Since generating integer optimality cuts

only requires solving the subproblem as an integer program, whereas one needs to solve a

Lagrangian dual problem to get a Lagrangian cut, and the basic subgradient method usually

takes more time. A visualization summary of the final gap and computation time for each

cut combination discussed above can be found in Figure A1 and A2 in Appendix.

To better illustrate the contribution of each type of cuts, Figure 3.1 contains the

deterministic lower bounds and stochastic upper bounds in the first 50 iterations of the

79

Figure 3.1: Bounds improvement with different cut combinations

SDDiP algorithm, for different cut combinations. In addition to the seven combinations

mentioned above, we also include using only Benders’ or strengthened Benders’ cuts. In

Figure 3.1, the 95% confidence intervals for the upper bounds are constructed by evaluating

50 forward sample paths each iteration till the lower bounds become stable, then the number

is increased to 300 afterwards. If the algorithm converges before the 50th iteration, to make

each subfigure have the same horizontal axis, we keep evaluating the upper bounds by

sampling 300 forward sample paths per iteration. It is clear that using only Benders’ cuts

in the SDDiP algorithm does not close the gap between the upper and lower bounds. Even

though strengthened Benders’ cuts are not tight in general, the lower and upper bounds are

much closer comparing to using only Benders’ cuts. Using a single collection of integer

optimality cuts results in a very slow improvement of the lower bounds. Finally, while

using only Lagrangian cuts leads to a faster convergence, the computation time requirement

80

indicated in Table 3.1 makes it less appealing. Further computational improvement to obtain

the Lagrangian cuts will be discussed in Chapter 4.

In summary, cut combinations (B + L), (SB + I), (SB + L), and (SB + I + L), appear to

be good choices for the SDDiP algorithm. In the case where the Lagrangian dual problem

is difficult to solve, strengthened Benders’ cuts and integer optimality cuts yield a better

performance.

Scalability To further test the scalability of the algorithm, we generate several large-scale

instances with planning horizons ranging from 5 to 9, and each period contains 30 to

50 realizations of the uncertain parameters, which are sampled independently from their

distributions.The extensive scenario tree formulation (3.3) for these instances contains as

many as 11 trillion binary variables, so it is impossible to expect any solver can solve such

a problem as a single MIP. However, the SDDiP algorithm is able to estimate the optimal

values of these instances with very high accuracy, as shown in Table 3.3.

In Table 3.3, Column 1 indicates the planning horizon of the corresponding instance,

Column 2 shows the number of branches of each node in the scenario tree, and Column

3 indicates the cut combinations used in the backward step. In these instances, we do

not enforce computation time limit, the algorithm stops when the lower bounds become

stable. In all experiments, we achieve good estimates on the optimal value (small gaps

between upper and lower bounds) within a reasonable computation time. Notice that the

reduction in the number of iterations and computation time from cut combination (B + I)

to (SB + I) or (B + L) is significant. Moreover, the time per iteration is also significantly

reduced even though SB and L require solving additional integer subproblems. This is

perhaps because the later iterations, where more cuts are accumulated, take longer time,

and using SB and L reduces the iteration count. The difficulty and time requirement for

solving Lagrangian dual problems can be observed by comparing cut combination (SB + I

+ L) with (SB + I). Although the number of iterations decreases after adding Lagrangian

81

Table 3.3: SDDiP algorithm on some large instances of GEP

T # branch cuts best LB # iter stat. UB gap time time/iter
($MM) ($MM) (hr.) (sec.)

5 50

B + I 2246.4 92 2260.7 0.63% 0.96 37.6
SB + I 2246.4 34 2278.2 1.39% 0.09 9.4
B + L 2246.4 34 2279.6 1.45% 0.19 20.3

SB + L 2246.4 21 2276.4 1.32% 0.14 23.4
SB + I + L 2246.4 25 2279.4 1.45% 0.11 15.4

6 50

B + I 2818.8 237 2840.6 0.77% 2.24 34.0
SB + I 2818.9 74 2855.8 1.29% 0.60 29.0
B + L 2818.9 63 2848.5 1.04% 0.96 54.7

SB + L 2818.9 56 2849.2 1.06% 0.70 45.2
SB + I + L 2818.9 50 2820.7 0.06% 1.03 73.9

7 50

B + I 3564.5 239 3614.8 1.39% 8.10 122.0
SB + I 3564.4 111 3588.9 0.68% 1.08 34.9
B + L 3564.5 100 3569.1 0.13% 2.48 89.2

SB + L 3564.5 66 3576.9 0.35% 2.37 129.0
SB + I + L 3564.5 69 3577.6 0.37% 1.95 101.6

8 30

B + I 4159.4 340 4254.2 2.23% 7.78 82.4
SB + I 4159.4 152 4207.5 1.14% 1.53 36.3
B + L 4159.6 147 4227.7 1.61% 4.00 97.9

SB + L 4159.6 87 4218.9 1.41% 2.55 105.4
SB + I + L 4159.6 103 4278.0 2.77% 2.72 94.9

9 30

B + I 5058.0 520 5081.5 0.46% 19.85 137.4
SB + I 5058.6 230 5102.0 0.85% 2.57 40.2
B + L 5058.7 218 5108.6 0.98% 8.01 132.3

SB + L 5058.7 120 5145.3 1.68% 2.96 88.8
SB + I + L 5058.9 119 5079.4 0.40% 4.39 132.8

cuts (which implies that these cuts provide better approximation than integer optimality

cuts), both the total computation time and time used per iteration increase considerably.

We finally point out that in all our experiments, the combination of strengthened Benders’

cuts and integer optimality cuts (SB + I) outperforms other combinations in terms of total

computation time. A visualization summary of number of iterations and computation time

for each cut combination discussed above can be found in Figure A3 and A4 in Appendix.

These computational results demonstrate that the SDDiP algorithm with the proposed

82

cuts successfully estimates the optimal value of large-scale generation capacity expansion

problems with high accuracy and reasonable computation time.

3.7.2 Multi-period Portfolio Optimization

In this section, we test SDDiP algorithm on a multi-period portfolio optimization problem

(see e.g., Dantzig and Infanger 1993), where the uncertain parameters are the returns of

different assets in each period. In this problem, the objective is to maximize the expected

return over a fixed length of time periods, by adjusting the holding position of each type of

asset. Each completed transaction will incur a certain amount of fee, referred as transaction

cost, which is assumed to be a proportional cost to the total value of assets involved in

the corresponding transaction. At any time period, the total number of assets possessed is

restricted to be less than some prescribed threshold.

In particular, we consider n types of stocks and a risk-free asset (the (n+ 1)-th asset)

over a T -period investment horizon. Let xt be a vector denoting the values of assets at

period t, and zt be a binary vector, representing whether the account holder owns each asset

at period t. The account holder decides how much of each stock to buy (bt) or sell (st) at

period t, with return information r0, . . . , rt−1 which have been realized. We assume that the

initial risk-free asset value is x̄0 and all others are 0. A deterministic model is as follows:

max r>T xT

s.t. ∀t = 1, . . . , T,

xti = rt−1,ixt−1,i + bt,i − st,i ∀i = 1, . . . , n, (transaction flow balance)

xt,n+1 = rfxt−1,n+1 − (1 + αb)
>bt + (1− αs)>st, (self-financing)

xt ≤Mzt, sti ≤ rt−1,ixt−1,i, ∀i = 1, . . . , n, (variable relationships)

1>zt ≤ K, (number of assets possessed)

x0 = [0, . . . , 0, x̄0]
>,

83

zt ∈ {0, 1}n, 0 ≤ bt, st ≤ u, 0 ≤ xt ≤ v,

where αb and αs are the transaction cost coefficients for buy and sell, respectively, and u, v

are implied bounds on variables. For the stochastic model, the uncertainty is in the return

vector r.

Scenario Generation We test the problem on all the stocks from the S&P 100 index. The

optimization problem has an investment horizon of 5 to 12 periods, each of which is a

two-week (10 business days) span. The scenarios of returns for each stock are generated

using historical returns data without assuming specific distributions. In particular, we collect

500 bi-weekly returns over the past 2 years for each stock, and regard these 500 overlapping

returns as the universe of all possible return realizations for each investment period. Then

we sample (with replacement) a subset of realizations at each period independently to form a

recombining scenario tree. To preserve the correlation between different stocks, the sampled

scenario contains a return vector in which all components correspond to the same time span.

In the scenario tree, the number of branches ranges from 10 to 20.

Note that in this problem, xt are continuous state variables. We will resort to the binary

approximation discussed in Section 3.3. We assume that at the beginning the account

holder has 100 units of cash and none of the stocks. The continuous state variables are

approximated using the binary expansion with approximation accuracy ε = 10−2. Each

stage subproblem contains approximately 1500 binary state variables. The local variables

are zt, bt, and st, each has a dimension of 100.

Algorithm Performance Table 3.4 summarizes the performance of SDDiP algorithm on

the test instances. Since this is a maximization problem, the negation of the lower bound

reported by SDDiP algorithm is a valid upper bound on the true optimal value (Column

5). The algorithm also produces a statistical lower bound on the expected return (Column

6), obtained by evaluating 500 sample paths independently after the upper bounds become

84

Table 3.4: SDDiP algorithm on portfolio optimization

T # branch # scen # FW Best UB Stat. LB gap time (sec)

4

10 1000

1 108.1 105.7 0.66% 185
2 108.1 106.4 1.33% 210
5 108.1 106.3 1.41% 313

10 108.1 106.1 1.00% 456

15 3375

1 106.9 105.1 1.10% 309
2 106.9 104.4 1.42% 356
5 106.9 104.6 1.07% 518

10 106.9 104.3 0.36% 884

20 8000

1 108.1 106.2 1.05% 418
2 108.1 106.1 1.63% 423
5 108.1 105.0 1.25% 630

10 108.1 106.1 1.49% 1027

5

10 10000
1 116.1 112.9 1.49% 343
2 116.1 112.0 1.79% 414
5 116.1 112.8 1.30% 580

15 50625
1 109.6 106.9 1.65% 567
2 109.6 106.6 0.98% 686
5 109.6 106.3 2.07% 933

20 160000
1 109.0 106.9 1.45% 425
2 109.0 106.1 1.49% 715
5 109.0 106.3 1.54% 1156

6 20 3.2× 106
1 112.2 109.1 1.14% 704
2 112.2 109.8 1.58% 1091
5 112.2 108.2 2.08% 1573

7 20 6.4× 107
1 116.5 112.8 1.71% 938
2 116.5 112.8 1.24% 1201
5 116.5 112.8 1.64% 2008

8 15 1.7× 108 1 120.57 119.29 1.08% 1182
10 10 109 1 125.21 122.43 2.27% 1032
12 10 1011 1 129.79 126.83 2.33% 1299

stable. Column 1 shows the time horizon of the test instances; Columns 2 and 3 contain

information of the scenario tree, i.e., number of branches of each node and total number of

scenarios; Column 4 indicates how many forward sample paths are used in the forward step;

Columns 7 and 8 report the gaps between the lower and upper bounds on the optimal values,

85

and the total computation time, respectively.

The stopping criterion remains the same, i.e., the algorithm stops when the deterministic

upper bounds become stable. Among all test instances, the algorithm reaches the stopping

criterion within 10 iterations, and gaps between the upper bound and the statistical lower

bound are all small. We solve the extensive scenario tree formulation for the first two

instances T = 4, #branch = 10 and 15 as two examples to demonstrate the accuracy of

attained upper bounds. The first instance has an optimal value of 108.02 and the second is

106.8. The gap between the lower and upper bounds mostly come from the evaluation of

lower bounds, and can be made smaller by evaluating more forward paths. Similar to the

generation capacity expansion example, we observe that it is more efficient to use a small

number of sample paths in the forward iteration. Note that we generate a different scenario

tree for each instance (T , #branch), thus the optimal values are not necessary monotone.

3.7.3 Airline Revenue Management

In the airline industry, revenue management usually refers to dynamic pricing and controlling

seat sales based on the passenger demand forecast in a flight network. In this section, we

focus on the latter approach. The objective is to maximize the revenue generated from ticket

sales. We consider a multistage stochastic model which is similar to the one in Möller et al.

(2008). A deterministic formulation of such a problem is given as follows.

max
T∑
t=1

[
(f bt)

>bt − (f ct)
>ct)

]
s.t. ∀t = 1, . . . , T,

Bt = Bt−1 + bt, Ct = Ct−1 + ct

Ct = bΓtBt + 0.5c

A(Bt − Ct) ≤ R, bt ≤ dt

B0 = B̄0, C0 = C̄0

86

Bt, Ct, bt, ct ∈ Zm+ .

In the above formulation, T is the number of booking intervals. The numbers of

fulfilled bookings (resp. cancellations) of period t and cumulative fulfilled bookings (resp.

cancellations) up to period t are denoted by bt (resp. ct) and Bt (resp. Ct). Each of these

quantities is an m-dimensional vector, whose components correspond to particular origin-

destination itineraries and fare classes. f bt and f ct are the booking price and refund for

cancellation at period t, respectively. The matrix Γt is a diagonal matrix, whose elements

are the cancellation rate of each type of tickets. Passenger demand is denoted by dt, which is

subject to uncertainty. The seat capacity on each leg is denoted by R, and A is a 0-1 matrix

that indicates whether a booking request for a particular itinerary and fare class fills up one

unit of capacity of each leg.

Scenario Generation The underlying flight network contains a single hub and three

destinations. There are in total 6 legs and 12 itineraries. Ticket prices and refund are

fixed over booking intervals. Cancellation rates for different fare classes are also given

as constants. All data can be found in Möller et al. (2008). As proposed in the literature

(see e.g., Boer et al. 2002; Chen and Mello 2010), the booking process is modeled by

a non-homogeneous Poisson process. The total number of cumulative booking request

G over the entire booking horizon for a particular itinerary and fare class is assumed to

follow a Gamma distribution G ∼ Γ(k, θ), and the corresponding arrival pattern β follows

a Beta distribution β ∼ Beta(a, b). The arrival pattern determines an allocation of total

booking requests among booking intervals. The cumulative booking requests up to time

t ∈ [0, T] can be represented by D(t) = G · Fβ(t, a, b), where Fβ(t, a, b) is the cumulative

density function of the Beta distribution. We generate the scenario tree as follows. First, we

generate N0 realizations for the cumulative booking request for each itinerary and class fare

combination, and allocate them according to the corresponding arrival patterns into each

87

booking interval. Then, for each booking interval, Nb samples are drawn independently out

of the N0 realizations, where Nb is the number of branches of each node in the scenario tree.

In this way, we obtain a recombining scenario tree which preserves stage-wise independence.

It has T stages, each of which contains Nb nodes, hence there are NT−1
b scenarios in total.

In this problem, the state variables are Bt and Ct, and local variables are bt and ct. After

binary expansion, the stage problem contains about 3000 binary state variables, and the

local variables are general integers with dimension 144.

Algorithm Performance We divide the booking horizon of 182 days into different

numbers of booking intervals (stages), from 6 to 14 (not necessarily evenly divided),

and generate scenario trees separately for each of them. The scenario tree information

is contained in the first three columns of Table 3.5. We test SDDiP algorithm on these 5

instances. During the experiment, we notice that the stage subproblem is more difficult to

solve than in the previous two examples, hence we relax the relative MIP tolerance from the

default (10−4) to 0.05. In addition, we enforce limits on both the number of total iterations

(120) and computation time (5 hours).

Table 3.5: SDDiP algorithm on network revenue management

T # branch # scen # iter Best UB Stat. LB gap time (sec)

6 10 105 120 214357 204071 5.04% 10983
8 10 107 120 214855 201099 6.84% 12095
10 10 109 120 215039 199896 7.58% 14674
12 10 1011 120 210110 196237 7.07% 15413
14 10 1013 120 210012 196280 7.00% 15241

Table 3.5 summarizes the results for these 5 instances. All of them terminate because

of reaching the limit on number of iterations. We observe relatively larger but acceptable

gaps between the lower and upper bounds on the optimal values. These relatively larger

gaps could be a consequence of early termination due to the difficulty of solving the stage

88

problems, or possibly because the 5% relative MIP error accumulated over the stages. We

would also like to note that, due to the very large scale of the underlying multistage stochastic

programs, the extensive form problems can not be solved by existing solvers. Therefore, the

SDDiP algorithm with proposed cuts provides a viable and systematic way to tackle these

extremely challenging problems in network revenue management.

3.8 Concluding Remarks

We consider a large class of multistage stochastic integer programs in which the variables

that carry information from one stage to the next are purely binary. By exploiting the binary

nature of the state variables, we propose an exact and finite nested decomposition algorithm

and its stochastic variants. We remark that the binary feature of the state variables and

making a local copy of state variables are the key elements to the success of the approach. It

allows us to construct supporting hyperplanes to the expected cost-to-go functions, which is

crucial for the correctness of the method. Extensive computational experiments on three

classes of real-world problems, namely electric generation expansion, financial portfolio

management, and network revenue management, show that the proposed methodology may

lead to significant improvement on solving large-scale, multistage stochastic optimization

problems in real-world applications.

There are several interesting directions worth investigating for future research.

Improvements to the integer optimality cut for two-stage stochastic integer programs are

recently proposed in Angulo et al. (2016), and this may be considered for extension to

the multistage setting. In addition, since we have observed that the stage problem is

sometimes not very easy to solve, to further improve performance, one needs to explore

the problem substructure and tailor the algorithm according to specific problems. Effective

cut management strategies could be explored to keep the problem sizes small, especially

in later iterations. Finally, extension of the proposed approach to the risk averse setting

would be valuable. Most previous work in risk averse multistage stochastic programming is

89

restricted to the linear or convex settings (Shapiro 2009; Shapiro 2012; Philpott and Matos

2012; Shapiro et al. 2013; Bruno et al. 2016), it is intriguing to study how the nonlinearity

of risk in the presence of integer variables affect the problem structure.

90

CHAPTER 4

MULTISTAGE STOCHASTIC UNIT COMMITMENT PROBLEM USING SDDIP

4.1 Introduction

Unit commitment (UC) is one of the key problems in power system operations. It is often

used in a deregulated market by an independent system operator, to decide a commitment

schedule of generation units for the next 24 hours or a longer period of time, under which

the forecast demand can be met in the most cost efficient way. Besides satisfying the load

requirements, the commitment decisions also need to satisfy certain physical constraints,

e.g., generator capacity, minimum up/down time, ramping limit, as well as the flow limit of

each transmission line. To ensure the reliability and security requirement of UC solutions,

certain form of reserved generation capacity and N − 1 contingency are often enforced. Due

to the presence of binary variables, which are used to model generator status, together with

other constraints, UC is proven to be NP-hard (Tseng 1996).

In recent years, an increasing penetration of renewable energy has cast another layer of

complexity to the UC problem. Due to the intermittent nature renewable energy, the grid

system needs to be more flexible when dealing with uncertainty. Stochastic optimization

approaches have been utilized in UC problems to achieve this goal. There are typically

two modeling approaches, namely two-stage and multistage. In a two-stage model, the

commitment decisions are determined day-ahead thus the generator commitment schedule

is fixed regardless what happens in real time. To accommodate uncertainty in load and

renewable output, system reserve requirement is often imposed. In contrast, a multistage

model handles uncertainty more dynamically. A solution to the multistage model is referred

to as a policy, which system operator can use in real time to adjust the generator status

according to actual load and renewable output. There has been a great amount of work to

91

solve the UC problem in both two-stage and multistage settings. We refer the reader to

several comprehensive surveys Tahanan et al. 2015; Zheng et al. 2015 for the progress in the

two-stage setting, and we will summarize the existing work in the multistage setting in the

next section.

In this chapter, we consider an MSUC problem with uncertain net load, i.e., the difference

between the total demand and the renewable output. It captures the uncertainty from both

the demand and supply sides. We solve the MSUC problem with an objective to minimize

the total expected cost of start-up, shut-down, generation, and possible penalties. The key

contributions are summarized below.

1. A new solution approach for MSUC. We propose a new type of decomposition

algorithm based on the SDDiP algorithm to solve large-scale MSUC problems. To

the best of our knowledge, this is the first attempt to tackle the MSUC problem

using a stage-wise decomposition framework. Upon termination of the algorithm, a

multistage, implementable policy is returned. Operators can use such a policy in real

time to deal with system uncertainties.

2. Computational enhancement of SDDiP. We propose several enhancement of the

SDDiP algorithm to improve running time, including using the Level Method to

compute the Lagrangian cuts, a “hybrid” mixed-integer and linear modeling approach

with the notion of “breakstage”, and a parallel implementation of the backward step

in SDDiP.

3. Computational study in large-scale MSUC applications. Extensive computational

experiments are conducted on the IEEE 14-bus and 118-bus systems. We study the

effectiveness of three types of cuts for solving the MSUC problem and the impact of

breakstage. Our experiments show that the proposed method can handle MSUCs with

a huge number of scenarios that were considered impossible before.

92

4.2 Related Work

To capture the uncertainty dynamics, a scenario tree (cf. Ruszczynski and Shapiro 2003)

is usually used to model the underlying stochastic process. Previous work has considered

various types of uncertainty in the UC model, such as demand (Carpentier et al. 1996; Takriti

et al. 1996; Sen et al. 2006), renewable output (Uçkun et al. 2016; Jiang et al. 2016), unit

failure and outage (Carpentier et al. 1996; Shiina and Birge 2004), price of electricity, fuel,

and reserve (Takriti et al. 2000; Li et al. 2007).

The advantage of multistage model is accompanied by the significantly higher

computation requirement. As the number of decision stages increases, the number of

scenarios in a scenario tree grows exponentially. Solving the deterministic mixed integer

programming formulation under the scenario tree becomes almost computationally infeasible.

Existing literature has addressed this issue from different perspectives. Various scenario

reduction algorithms have been proposed (Dupačová et al. 2003; Gröwe-Kuska et al.

2003; Heitsch and Römisch 2003). These algorithms usually compare the scenarios

according to some probabilistic metric and reduce the total number of scenarios without over

compromising the approximation accuracy. Uçkun et al. (2016) divide the planning horizon

into several time blocks and propose two different ways to construct “buckets” for wind

scenarios in each time block. The commitment decisions are required to be the same for the

scenarios within the same bucket. Such a model is essentially an intermediate formulation

between the two-stage and multistage settings.

A second stream of efforts is to develop advanced decomposition algorithms for the

multistage UC problem. Two different approaches have been proposed, namely unit

decomposition and scenario decomposition. In the unit decomposition, the demand and

spinning reserve constraints are relaxed so that each subproblem corresponds to a single

generation unit. Carpentier et al. (1996) first consider such a decomposition scheme. They

also observe the benefit of using augmented Lagrangian relaxation compared to the classic

93

version. Takriti et al. (2000) study an extension by incorporating electricity contracts and

spot-market prices into the model. Nowak and Römisch (2000) uses a similar decomposition,

but the single generator subproblem is solved by stochastic dynamic programming and the

Lagrangian dual problem is solved by a faster and more stable proximal bundle method (cf.

Kiwiel 1983). Bacaud et al. (2001) also utilizes bundle method to solve the Lagrangian

dual problem. They associate a set of weights to each scenario using their probability

information, these weights are reported to be critical to the algorithm performance. A

Dantzig-Wolfe decomposition approach is studied in Shiina and Birge (2004), where the

single-unit subproblems are solved by dynamic programming and their schedules are added

back to the restricted master problem. Alternatively, the scenario decomposition approach

attempts to relax the coupling constraints among scenarios, usually referred to as non-

anticipativity constraints. The resulting subproblems then become deterministic, each of

which corresponds to a single scenario. Different methods have been used to solve the

relaxed problem, such as Progressive Hedging algorithm(Takriti et al. 1996) and Dantzig-

Wolfe decomposition (Wu et al. 2007; Schulze et al. 2015).

Most of the works above has demonstrated the benefit (profit gain/cost reduction) of

using the multistage approach compared to the deterministic setting where a conservative

spinning reserve is usually used. A few other papers focus on evaluating the benefit of using

a multistage model over a deterministic approach (Tuohy et al. 2009; Sturt and Strbac 2012;

Schulze and McKinnon 2016). These simulations are mostly carried out in a rolling horizon

framework.

Besides the development of scenario reduction and decomposition techniques, there

have been efforts to improve the solver performance by strengthening the formulation using

effective cutting planes. A majority of these works focus on the two-stage setting (e.g.,

Rajan and Takriti 2005; Ostrowski et al. 2012; Morales-España et al. 2013, etc.). Recently,

some new results have been developed for the multistage model. Pan and Guan (2016)

derive cross-scenario strong valid inequalities. They show that the proposed inequalities

94

describe the convex hull for some special cases. Jiang et al. (2016) extend the results in

Rajan and Takriti (2005) into the stochastic setting and propose several families of strong

valid inequalities via lifting schemes for the ramping and load balance polytopes. In both

works, a branch-and-cut algorithm is used to demonstrate the effectiveness of the proposed

cutting planes. However, existing cutting plane approaches are limited to relatively small

trees.

Pereira and Pinto (1991) propose a stochastic variant of nested Benders decomposition,

known as Stochastic Dual Dynamic Programming (SDDP) to solve multistage stochastic

linear programs. It has been successfully applied to multistage stochastic hydro-thermal

scheduling problems since then (e.g. Rotting and Gjelsvik 1992; Archibald et al. 1999;

Shapiro et al. 2013). SDDP is a sampling-based algorithm and benefits from stage-wise

independence of the underlying stochastic process. Due to the presence of integer recourse

decisions in MSUC, such Benders-type decomposition algorithm has its own limitation,

thus has only been used in a two-stage setting (see e.g. Cerisola et al. 2009b; Wang et al.

2013; Zheng et al. 2013). An extension of SDDP to solve MSIP problems, called Stochastic

Dual Dynamic integer Programming (SDDiP), is proposed in Chapter 3. The algorithm

is designed for MSIP with binary state variables, and can also accommodate general state

variables under mild conditions. In SDDiP algorithm, state variables refer to those whose

values will be passed to the next stage problem as inputs, and the rest are referred to as local

variables. A new family of cuts, termed Lagrangian cuts, is proposed in this work and is

shown to be the key to close optimality gap and to guarantee almost sure convergence of

SDDiP.

The remainder of this chapter is organized as follows. In Section 4.3, we describe the

SDDiP algorithm and different cut families to make this chapter self-contained. In Section

4.4, we present the mathematical formulation for MSUC. In Section 4.5, we describe

various computational enhancements of SDDiP for solving MSUC. Sections 4.6-4.7 discuss

experiment settings and detailed computational results. Finally, we provide some concluding

95

remarks in Section 4.8.

4.3 Stochastic Dual Dynamic Integer Programming

We start with a scenario tree formulation of an MSIP problem with binary state variables.

min
xn,yn,zn

∑
n∈T

pngn(xn, yn)

s.t. ∀n ∈ T

(zn, xn, yn) ∈ Xn (4.1a)

zn = xa(n), zn ∈ [0, 1]d (4.1b)

xn ∈ {0, 1}d. (4.1c)

In the above formulation, xn ∈ {0, 1}d is the state variable of node n in the scenario tree

T and yn is the local variable. In addition, zn ∈ [0, 1]d is another continuous local variable

which is a copy of the state variable from previous stage. Note that in this formulation

only successive stages are linked together. This can be always be ensured by a proper

reformulation of the problem. We assume that (4.1) has complete continuous recourse, i.e.

given any value of the state and local integer variables, there exist a value of continuous local

variables such that (4.1) is feasible. If the state variables are not binary, we can use binary

expansion/approximation to transform them into binary. Suppose x ∈ [0, U] is a continuous

state variables, we substitute it by
∑κ

i=0 2i−1ελi, where λi ∈ {0, 1}, κ = blog2(U/ε)c+ 1,

and ε is the approximation accuracy. In this way |x−
∑κ

i=0 2i−1ελi| ≤ ε. For general integer

variables, setting ε = 1 results in an exact representation.

Now we can write down the DP equations for the optimal value function of the multistage

problem (4.1) as follows:

(P1) min g1(x1, y1) +
∑

m∈C(1)
q1mQm(x1)

96

s.t. (4.1a)− (4.1c) (for n = 1)

and for each node n ∈ T \ {1},

(Pn) Qn(xa(n)) := min gn(xn, yn) +
∑

m∈C(n)
qnmQm(xn)

s.t. (4.1a)− (4.1c),

where qnm is the conditional probability from n to its children node m. We will refer

to Qn(·) as the optimal value function (of xa(n)) at node n and denote the function

Qn(·) :=
∑

m∈C(n) qnmQm(·) as the expected cost-to-go (ECTG) function at node n.

In the SDDiP algorithm, the scenario tree satisfies stage-wise independence, i.e., for any

two nodes n and n′ in stage t, the set of their children nodes C(n) and C(n′) are defined by

identical data and conditional probabilities. In this case, the ECTG functions depend only

on the stage rather than the nodes, i.e., we have Qn(·) ≡ Qt(·) for all n in stage t. More

specifically, let Nt be the number of possible data realizations at stage t = 2, . . . , T , each

outcome has an equal probability of 1/Nt. Then total number of scenarios is N =
∏T

t=2Nt.

By exploiting the stage-wise independence of the underlying stochastic process, SDDiP

algorithm proceeds stage-wise from t = 1 to T by solving a dynamic programming equation

with an approximated ECTG function at each stage. The ECTG function at each stage is

approximated from below by a convex piece-wise linear function, and these approximations

are improved through iterations. In particular, the stage problem in the i-th iteration

P i
t (x

i
t−1, ψ

i
t, ξ

k
t) is of the following form:

Qi

t
(xit−1, ψ

i
t, ξ

k
t) := min

xt,yt,zt
gt(xt, yt, ξ

k
t) + ψit(xt) (4.2a)

s.t. (xt, yt, zt) ∈ Xt(ξ
k
t) (4.2b)

zt = xit−1 (4.2c)

97

xt ∈ {0, 1}d, zt ∈ [0, 1]d, (4.2d)

where ψit(·) is defined as:

ψit(xt) := min
{
θt : θt ≥ Lt, (4.3a)

θt ≥
1

Nt+1

Nt+1∑
j=1

(v`jt+1 + (π`jt+1)
>xt), ∀` = 1, . . . , i− 1

}
. (4.3b)

The function ψit(xt) is the current convex lower-approximation of the true ECTG function

Qt(xt).

Given a solution xit−1 from the previous stage, the current approximation ψit(·), and a

particular uncertainty realization ξkt (1 ≤ k ≤ Nt) at stage t, the forward problem in iteration

i is fully characterized. We assume that a lower bound exists for the ECTG function to avoid

unboundedness. Once a forward iteration is completed, we have obtained a feasible solution

{(xit, yit)}Tt=1 for the corresponding scenario.

The backward step starts from the last stage T . Given the solution xiT−1 from iteration

i and a particular uncertainty realization ξjT (1 ≤ j ≤ NT), let Rij
T be a relaxation of the

forward problem P i
T (xiT−1, ψ

i+1
T , ξjT). Note that ψiT ≡ 0 for all i ≥ 0. Solving Rij

T for each

j produces a linear inequality defined by (vijT , π
ij
T) and it is valid for the value function

QT (xT−1, ξ
j
T). Then the inequalities are aggregated to obtain one of form (4.3b), which is

valid for ECTG function QT−1(xT−1). The lower approximation of the ECTG function is

updated from ψiT−1(·) to ψi+1
T−1(·). The backward step then proceeds to stage T − 1. When

the first stage is completed, since we have solved a lower approximation of the original

problem, the optimal value of the first stage problem is an exact lower bound of the original

problem.

One can also generate more than one scenario in the forward step. These single scenario

cost can be used to compute a confidence interval of their mean value. The mean value of

these costs is usually referred as a statistical upper bound for the original problem. In fact,

98

common stopping criteria for SDDP-type algorithm is often based on this statistical upper

bound and the exact lower bound obtained from the backward step. A complete description

of the SDDiP algorithm and the proof of almost surely convergence can be found in Section

3.6.

4.3.1 Cut Families in Backward Step

Depending on the relaxation problems Rij
t solved in the backward step, different families of

linear inequalities can be obtained. In this chapter, we implement the SDDiP algorithm with

standard Benders’ cuts, a type of Lagrangian cuts obtained from a particular reformulation,

and strengthened Benders’ cuts, which are a byproduct of the Lagrangian cuts.

Benders’ cut (Benders 1962)

These cuts are derived from the LP relaxation of P i
t (x

i
t−1, ψ

i+1
t , ξjt), and the cut coefficients

(vijt , π
ij
t) correspond to the optimal value of the LP relaxation and a basic feasible dual

solution. To be precise, the cut added to ψit−1 takes the form:

θt−1 ≥
1

Nt

Nt∑
j=1

Qij
LP,t +

1

Nt

Nt∑
j=1

(πijLP,t)
>(xt−1 − xit−1), (4.4)

where Qij
LP,t is the optimal LP relaxation objective function value of problem

P i
t (x

i
t−1, ψ

i+1
t , ξjt), and πijLP,t is a basic optimal dual solution in connection with the

constraints zt = xit−1. Benders’ cut are in general not tight when integer variables are

present. Therefore almost sure convergence is not guaranteed if only these cuts are used.

99

Lagrangian cut

This family of cuts is based on solving a Lagrangian dual of P i
t (x

i
t−1, ψ

i+1
t , ξjt). In particular,

the relaxation problem Rij
t is

(Rij
t) : max

πt

{
Lijt (πt) + π>t x

i
t−1
}

(4.5)

where
Lijt (πt) = min gt(xt, yt, zt) + ψit − π>t zt

s.t. (xt, yt, ξ
j
t) ∈ Xt(ξ

j
t)

xt ∈ {0, 1}d, zt ∈ [0, 1]d

(4.6)

The cut coefficients (vijt , π
ij
t) are then equal to Lijt (πijLG,t) and πijLG,t, where πijLG,t is an

optimal solution of the Lagrangian dual problem Rij
t . It can be proven that the Lagrangian

dual problem has zero duality gap and almost sure convergence is guaranteed if these cuts

are used in the backward step (see Theorem 8).

Strengthened Benders’ cut.

Instead of solving the Lagrangian dual problem to optimality, we can solve (4.6) with

πt = πijLP,t. The cut then takes the form

θt−1 ≥
1

Nt

Nt∑
j=1

Lijt (πijLP,t) +
1

Nt

Nt∑
j=1

(πijLP,t)
>(xt−1 − xit−1).

The cut is valid because πijLP,t is feasible to (4.5). It is parallel to and at least as tight as

standard Benders’ cuts.

100

4.4 Multistage Stochastic UC

4.4.1 Problem Formulation

We present an extensive formulation for MSUC where the uncertain net load is modeled by

a scenario tree. Below is a summary of notation.

Indices

n,m Node in the scenario tree

i Generation unit

b Load bus

` Transmission line

t Decision stage

t(n) Decision stage of node n

Sets

T Scenario tree

B Set of all buses

G Set of generation units

Gb Set of generation units at bus b

D Set of demand bus

L Set of all transmission lines

P(n, t) Path from the t-th ancestor node of n to n

Parameters

pn Probability associated with node n

Si, Si Start-up/shut-down cost of generation unit i

Cp Penalty cost for unsatisfied demand and over generation

Dnb Load demand of bus b at node n

Fl Maximum flow capacity of line `

Kl Vector of the shift vectors of transmission line `

101

P i, P i Maximum/minimum output of generation unit i

Rt Reserve requirement in period t

∆i, ∆i Regular ramp up/down rate for generation unit i

∆SU, ∆SD Start-up/shut-down ramp rate for generation unit i

UTi, DTi Minimum up/down time for generation unit i

Decision variables

xni State of generator i at node n, equals 1 if it is on, 0 otherwise

yni Electricity produced by generation unit i at node n

uni Start up decision for generation unit i, equals 1 if it is turned on at

node n, 0 otherwise

vni Shut down decision for generation unit i, equals 1 if it is turned

off at node n, 0 otherwise

rni Reserved spinning capacity from generation unit i at node n

δ+n Unsatisfied demand across the network at node n

δ−n Over-generation across the network at node n

A multistage stochastic programming formulation can be written as follows.

min
∑
n∈T

pn

[∑
i∈G

(
Siuni + Sivni + fi(yni)

)
+ Cp(δ

+
n + δ−n)

]
(4.7a)

s.t.
∑
i∈G

yni + δ+n − δ−n =
∑
b∈D

Dnb, ∀n ∈ T (4.7b)

∑
i∈G

rni ≥ Rt(n), ∀n ∈ T (4.7c)

− F` ≤
∑
b∈B

K`b

(∑
i∈Gb

yni −Dnb

)
≤ F`, ∀n ∈ T , ` ∈ L (4.7d)

yni + rni ≤ P ixni, ∀n ∈ T , i ∈ G (4.7e)

yni ≥ P ixni, ∀n ∈ T , i ∈ G (4.7f)

yni − ya(n),i ≤ ∆SU
i uni + ∆ixa(n),i, ∀n ∈ T , i ∈ G (4.7g)

102

ya(n),i − yni ≤ ∆SD
i vni + ∆ixni, ∀n ∈ T , i ∈ G (4.7h)

xni − xa(n),i ≤ uni, ∀n ∈ T , i ∈ G (4.7i)

xni − xa(n),i = uni − vni, ∀n ∈ T , i ∈ G (4.7j)∑
m∈P(n,UTi−1)

umi ≤ xni, ∀n ∈ T , i ∈ G (4.7k)

∑
m∈P(n,DTi−1)

vmi ≤ 1− xni, ∀n ∈ T , i ∈ G (4.7l)

xni, uni, vni ∈ {0, 1}, yni, rni ≥ 0, ∀n ∈ T , i ∈ G. (4.7m)

In the above formulation, the objective function (4.7a) consists of the expected start-up

cost, shut-down cost, generation cost (denoted by fi(yni)), and the possible penalty cost

from electricity shortage or over generation. Network load balance constraint is enforced in

(4.7b), and constraints (4.7c) indicates the requirement for total reserved capacity at each

stage. Linearized power flow equations using shift factors are imposed by constraints (4.7d).

Constraints (4.7e) and (4.7f) specify the output capacities for each generator. Ramping

constraints are shown in (4.7g) and (4.7h). Constraints (4.7i) and (4.7j) link the generator

states with commitment decisions. Minimum up and down time constraints are enforced by

(4.7k) and (4.7l). These constraints are proposed by Rajan and Takriti (2005) in the two-

stage setting and the authors show that such a formulation is a convex hull representation of

the minimum up and down time polytope. Jiang et al. (2016) verify that such formulation is

still tight under the stochastic setting. Lastly, (4.7m) contains the binary and non-negativity

constraints for decision variables. At the time of solving this problem, any initial state of the

system can be accommodated by constraints (4.7g)–(4.7l). In our numerical experiments,

we assume that each generator is off and has met the minimum downtime requirement thus

can be turned on immediately.

103

4.4.2 Stage-wise Independence in Net Load

The demand process and renewable output are usually correlated across different hours.

However, they exhibit certain patterns throughout a day. We assume that a base net

load profile (24-hour resolution) is given and the true net load deviates from this profile

according to a given distribution. The deviations at each hour are assumed to be independent.

Specifically, let {Dt}Tt=1 be the nominal hourly net load profile. For each t = 1, . . . , T , the

true net load D̃t is generated as follows:

D̃t = Dt · ξt, (4.8)

where ξt ∼ Ξt, and Ξt is the inferred distribution from historical data. The total net load

across the network is then allocated to each load bus according to the ratio implied from the

base load profile, i.e., the proportion of the net load at each bus is the same for all realizations

within the same stage. Table 4.1 shows the base net load profiles for two different systems.

Table 4.1: Net load base profile (Unit: MW)

#bus 12am 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am

14 259 243 215 148 184 223 259 287 303 326 329 311
118 4242 3987 3521 2418 3012 3648 4242 4709 4963 5345 5387 5090

#bus 12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm

14 295 282 326 334 313 329 347 363 370 334 321 303
118 4836 4624 5345 5472 5133 5387 5684 5939 6066 5472 5260 4963

4.4.3 State Variables

In formulation (4.7), decisions at node n are dependent on information passed from node n’s

ancestors. This information includes the generator state xa(n) of the last stage, the generation

level ya(n) at the previous stage, and a sequence of commitment decisions from earlier stages,

104

i.e., {um,m ∈ P(n, UT − 1)}, and {vm,m ∈ P(n,DT − 1)}. They are the state variables,

and have a dimension of
∑

i∈G(UTi +DTi).

One obstacle of applying SDDiP directly to MSUC is the minimum up and down time

constraints. They link variables from more than two stages, while SDDiP requires that

the current stage problem depend only on the previous stage. To resolve this problem, we

reformulate these constraints by making copies of decisions from nodes in P(n, UTi − 1)

and P(n,DTi − 1). More specifically, we create two sets of new variables at each node n:

{u(k)ni , k = 0, . . . , UTi − 1} and {v(k)ni , k = 0, . . . , DTi − 1}. Constraints (4.7k)-(4.7l) are

then equivalent to the following set of inequalities:

∑UTi−1
k=0 u

(k)
ni ≤ xni,

∑DTi−1
k=0 v

(k)
ni ≤ 1− xni, (4.9a)

u
(0)
ni − uni = 0, v

(0)
ni − vni = 0, (4.9b)

u
(k)
ni = u

(k−1)
a(n),i , ∀k = 1, . . . , UTi − 1 (4.9c)

v
(k)
ni = v

(k−1)
a(n),i , ∀k = 1, . . . , DTi − 1 (4.9d)

As a result, it is sufficient to pass xa(n),i, ya(n),i, {u(k)a(n),i}
UTi−2
k=0 , and {v(k)a(n),i}

DTi−2
k=0 to node n,

all of which comes from the parent node a(n).

Moreover, SDDiP requires all state variables to be binary. In MSUC, generator states

(x) and commitment decisions (u, v) are already binary, however, the dispatch decision (y)

is continuous and requires a binary approximation.

With the above two modeling treatment and the stage-wise independence assumption,

the MSUC problem (4.7) can be reformulated as a DP equation ready for SDDiP, and the

state space has a dimension of
∑

i∈G(UTi +DTi + blog2(P i/ε)c).

4.5 SDDiP Enhancements

In this section, we describe several enhancements to the basic SDDiP method described

previously.

105

4.5.1 Level Method for Lagrangian Cut

To obtain the cut coefficients of the Lagrangian cuts, one needs to solve the Lagrangian

dual problem (4.5). This is a non-smooth convex optimization problem often solved by

a subgradient method (see e.g.,Boyd et al. 2003). We propose to use the Level Method

due to Lemaréchal et al. 1995. This method is similar to a cutting plane method that

proceeds by considering an approximation or model of the objective function constructed

from subgradients evaluated at proceeding iterates. The next iterate is obtained by projecting

a minimizer of the model function to an appropriate level set so that its objective value lies

in some neighborhood of the objective of the current iterate. In this way the iterates are

regularized and the method achieves a theoretical optimal convergence rate. It has also been

proven to be very effective in practice. In Section 4.7, we compare the performance of the

Level Method with a basic subgradient algorithm for obtaining Lagrangian cut coefficients.

4.5.2 Hybrid Model using “Breakstage”

The quality of a policy obtained by SDDiP depends on the quality of the approximation

of the ECTG in each stage. Intuitively, the stages further in the future has less influence

on the current stage. Motivated by this, we propose a hybrid modeling approach, which

allows us to improve the solution time while not compromising its quality to a large extent.

This approximation relies on a prescribed stage tb, which we will refer to as the breakstage

hereafter. More specifically, in any decision stage before tb, we solve the formulation

P i
t (x

i
t−1, ψ

i+1
t , ξjt), where state variables are binary. From stage tb onward, we change the

state variables back into their original space. It is still valid to add all three types of cuts at

every stage, except that the Lagrangian cuts after tb are not guaranteed to be tight.

In our experiments, we further relax all integrality constraints after tb to improve solution

time. As a result, only Benders’ cuts are added for stage problems after tb. If tb = 0,

the method reduces to SDDP applied to the LP relaxation of the original formulation; if

tb = T + 1, the fully discretized problem is solved by SDDiP.

106

The breakstage gives us the flexibility to evaluate the trade-off between solution time and

solution quality. Solving the LP relaxation and using a state space of smaller dimension both

contribute to the reduction of solution time. In addition, one can always adjust the policy if

new information, e.g., a more accurate renewable output forecast, becomes available.

4.5.3 Backward Parallelization

In the backward step of SDDiP, multiple scenario problems are solved, then the cut

coefficients returned by each of them are aggregated to produce a cut for its previous stage

problem. Since these scenario problems are independent from each other, we implement a

simple parallelization scheme using OpenMP to speed up the backward step.

4.6 Experimental Settings

In this section, we discuss our experimental settings. The 14-bus system has 5 generators,

20 transmission lines, and 11 demand buses; the 118-bus system includes 54 generators, 186

transmission lines, and 91 demand buses. Most data about the physical electrical network is

from MatPower 6.0. Ramping limit is set to be 80% of the maximum generation capacity

or specified otherwise. Minimum up and down times vary from 1 to 10 hours. To avoid

infeasibility, slack variables are added to the load balance constraints and penalized with a

large cost in the objective function. All penalty costs are assumed to be $5000 per MW.

4.6.1 Stage Problem Size

Deriving strengthened Benders’ cuts and Lagrangian cuts require solving MIPs in each stage.

Therefore, the size of the stage problem greatly affects the solution time. In the 14-bus

system, the numbers of (binary) state variables, integer local variables, and continuous local

variables are 127, 10, and 174, respectively. For the 118-bus system, the corresponding

numbers are 1086, 108, and 1514.

107

4.6.2 Scenario Tree Generation

To generate a recombining scenario tree, we start with a given net load in the first stage

(12am, t = 1). At each following hour (stage), realizations are independently generated

according to (4.8). For the 14-bus system, we assume ξt ∼ U(1− α, 1 + α) for all t > 1,

and α ∈ [0.1, 0.3]. Six types of scenarios trees are generated, each of them is characterized

by net load variation (α) and the number of outcomes at each stage (β). The corresponding

tree is denoted by T α,β14 . In our experiments, we consider α = 0.1, 0.2, 0.3 and β = 10, 20.

For the 118-bus system, we use a truncated normal distribution, which is estimated based

on data from California ISO website. We used the hourly net load forecast and the actual net

load data across the entire California network in February 2017. The forecast is generated

day ahead. For each hour, the distribution of forecast-to-actual ratio is approximated by a

normal distribution. Some statistics of these ratios are summarized in Table 4.2.

Table 4.2: Statistics of forecast-to-actual ratio in net load

Hour mean std min max Hour mean std min max

12am 1.01 0.02 0.97 1.04 12pm 1.04 0.07 0.94 1.20
1am 1.01 0.02 0.98 1.05 1pm 1.04 0.07 0.93 1.20
2am 1.02 0.02 0.97 1.05 2pm 1.06 0.07 0.94 1.22
3am 1.02 0.02 0.97 1.05 3pm 1.03 0.07 0.92 1.20
4am 1.02 0.02 0.97 1.05 4pm 1.02 0.06 0.91 1.15
5am 1.01 0.03 0.93 1.04 5pm 1.00 0.04 0.91 1.07
6am 1.00 0.03 0.91 1.06 6pm 1.00 0.03 0.93 1.05
7am 1.00 0.03 0.92 1.07 7pm 1.00 0.02 0.93 1.03
8am 1.03 0.05 0.95 1.16 8pm 0.99 0.02 0.94 1.04
9am 1.05 0.07 0.95 1.23 9pm 0.99 0.02 0.95 1.03

10am 1.05 0.07 0.94 1.23 10pm 0.99 0.02 0.96 1.04
11am 1.05 0.07 0.95 1.20 11pm 1.00 0.02 0.96 1.06

We assume ξt ∼ TN(µt, k
2σ2

t), where TN(µt, k
2σ2

t) is the normal distribution

N (µt, k
2σ2

t) truncated between µt ± 3kσt, and µt, σt are shown as in Table 4.2. The

scenario tree, denoted by T k,β118 , is then characterized by k and the number of outcomes at

108

each stage (β). In our experiments, we fix β = 20 and consider k varying from 1.0 to 1.3.

Figure 4.1 is an illustration of 50 independent scenarios from scenario tree T 0.2,20
14 (left) and

T 1.3,20
118 (right).

12am 6am 12pm 6pm 11pm
100

150

200

250

300

350

400

450

M
W

Net load scenarios (IEEE 14-bus)

12am 6am 12pm 6pm 11pm
2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

M
W

Net load scenarios (IEEE 118-bus)

Figure 4.1: 50 scenarios from scenario tree T 0.2,20
14 (left) and T 1.3,20

118 (right)

4.6.3 Other Implementation Details

In the forward step of the SDDiP algorithm, we generate candidate solutions for five

independent sample paths, and in the backward step, we evaluate two of them which result

in the highest cost. The Lagrangian dual problem is solved to optimality using a basic

subgradient algorithm and the Level Method with an optimality tolerance of 10−4 for the 14-

bus system and 5× 10−4 for the 118-bus system, respectively. Other relative MIP tolerance

is set to be the same as above for each system. The SDDiP algorithm is implemented in C++

with CPLEX 12.7.0 to solve the MIP and LP subproblems. All experiments are performed

on a 16-core machine with Intel Xeon E5-2630 v3 @2.40GHz CPUs and 128GB of main

memory. Reported solution times are wall clock times.

109

4.7 Computational Results

4.7.1 14-bus Results

We generate six different instances for the 14-bus system: T α,β14 , α = 0.1, 0.2, 0.3 and

β = 10, 20. An instance with β = 10 involves, 1023 scenarios, and its extensive form has

over 2.5× 1024 variables, motivating the need for a sampling based decomposition method

such as SDDiP. For each instance, the designed experiment consists of two phases: Phase

I, Run SDDiP and obtain a policy; Phase II, Evaluate the policy with restored integrality

constraints. For each (α, β) pair, we generate two scenario trees, the first one is used in

Phase I to obtain policies, and the other is used for evaluation in Phase II.

In Phase I, we solve SDDiP with different breakstages (tb). As mentioed earlier, when

tb = 0, SDDiP reduces to standard SDDP. If tb = 1, nothing changes except that the first-

stage problem becomes a MIP. When tb > 1, other types of cuts may be added to the stage

problems before tb − 1. In particular, we consider five different cut combinations: Benders’

cut only (B), strengthened Benders’ cut only (SB), Lagrangian cut obtained by subgradient

method (Sub), Lagrangian cut obtained by the Level Method (Level), and strengthened

Benders’ cut plus Lagrangian cut obtained by the Level Method (SB + Level).

Once tb and cut families are determined, SDDiP starts. In the first half of iterations, we

ignore any integrality constraints and only turn on Benders’ cuts to get a rough estimation

of the ECTG functions. In the second half, we restore these integrality constraints and add

other types of cuts to improve the estimation. The final statistical upper bound is evaluated

based on a set of 800 independent forward sample paths. SDDiP terminates after a fixed

number of iterations.

In Phase II, we reinstate the integrality constraints in stage problems after tb. A set of

800 scenarios is sampled independently from the second scenario tree, forward problems

are solved with the policy obtained in Phase I, and the cost associated with each scenario is

recorded. The performance of the policy is evaluated by comparing the lower bound returned

110

by SDDiP in Phase I, with the right endpoint of 95%-CI for the sample mean of scenario

costs obtained from Phase II. All results in this section are averaged over 3 independent

runs.

We discuss our findings with respect to following three aspects:

1. Which cut combination(s) perform the best in SDDiP?

2. What is the effect of different choices of breakstage?

3. What is the speed-up ratio and parallel efficiency from the backward parallelization?

Cut Combinations

To test the power of different families of cuts, we solve each instance with breakstage tb = 25,

i.e., the fully discretized problem. In the forward step, we solve MIPs to obtain binary

candidate solutions, and in the backward step, different cuts are generated by evaluating

these solutions. The power of each cut family is assessed based on the SDDiP gap, solution

time, and final evaluation of corresponding policies. The number of iterations in SDDiP is

fixed at 150 for instances with α = 0.1, 0.2 and 500 for instances with α = 0.3.

Figure 4.2 shows the SDDiP results of the six instances with different cut combinations.

The figure on the left presents the gap between the lower bound obtained from the last

backward step and statistical upper bound returned by the last forward step. The one on the

right side contains the solution time of the SDDiP algorithm. The horizontal axis indicates

the instances indexed by the (α, β) pair.

Clearly, SB+Level and Level yield the smallest gap with a reasonable solution time

among all. When the net load variation is small, using any type of these cuts is sufficient to

solve the problem. When the variation becomes bigger, however, at least one family of tight

cuts is in need to close the gap. Strengthened Benders’ cut slightly improves the SDDiP

gap of only using Benders’ cut. Even though Lagrangian cuts and strengthened Benders’

cuts are not dominated by each other, there is a significant improvement in SDDiP gap

when Lagrangian cuts are used. In addition, it is evident that the Level Method is better

111

(0.1-10) (0.1-20) (0.2-10) (0.2-20) (0.3-10) (0.3-20)
0

1

2

3

4

5

6

7

S
D

D
iP

 g
a
p
 (

%
)

SDDiP gap for different cut combinations

B

SB

Sub

Level

SB+Level

(0.1-10) (0.1-20) (0.2-10) (0.2-20) (0.3-10) (0.3-20)
0

1000

2000

3000

4000

5000

6000

S
D

D
iP

 t
im

e
 (

s
e
c
.)

SDDiP time for different cut combinations

B

SB

Sub

Level

SB+Level

Figure 4.2: SDDiP results with different cut combinations
Horizontal axis indicates instance label (α, β), where α represents the demand variation (U(1− α, 1 + α)), β
represents the number of branches in the scenario tree. SDDiP gap and time are evaluated upon termination:

150 iterations for Instance 1–4, and 500 for Instance 5 and 6.

than standard subgradient method. It takes less time to reach a much smaller gap, and the

solution time is also more stable.

The Phase II evaluation results are summarized in Figure 4.3. SB+Level and Level

(0.1-10) (0.1-20) (0.2-10) (0.2-20) (0.3-10) (0.3-20)
0

1

2

3

4

5

6

7

8

9

E
v
a

lu
a

ti
o

n
 g

a
p

 (
%

)

Evaluation gap for different cut combinations

B

SB

Sub

Level

SB+Level

Figure 4.3: Evaluation of policies obtained by different cut combinations
The gap is between LB from SDDiP and statistical UB from policy evaluation on 800 sample paths from the

second scenario tree.

produce the most stable policies and yield the tightest statistic upper bound estimation. The

policy approximated by Lagrangian cuts using subgradient method is again shown to be

inferior to the one with the Level Method. In addition, we can observe a large evaluation

112

gap for the policy characterized by the strengthened Benders’ cut in the instance (0.3, 10).

A possible reason is that 10 realizations per stage is not enough to represent the uncertainty

with such big variation, the scenario tree used in the evaluation phase has some extreme

scenarios that was not assessed in Phase I.

In summary, SB+Level or Level is the best cut combination for SDDiP, and solving

the Lagrangian dual problem using the Level Method is more efficient and stable. Detailed

results can be found in Table A1 - A2 in Appendix.

Effect of Breakstage

We next study the hybrid modeling approach proposed in Section 4.5.2. In particular, we

choose 6 values for tb, ranging from 0 to 25. When tb = 0, the standard SDDP algorithm is

used to solve the LP relaxation of the original problem. When tb > 1, both strengthened

Benders’ cuts and Lagrangian cuts (using the Level Method) are used in the backward step

for stage problems before tb. The number of iterations in SDDiP is fixed at 150 for instances

with α = 0.1, 0.2 and 500 for instances with α = 0.3.

 0 1 6 12 18 25

Breakstage

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

L
o
g
 (

 S
D

D
iP

 t
im

e
)

SDDiP time for different breakstage

(0.1,10)

(0.1,20)

(0.2,10)

(0.2,20)

(0.3,10)

(0.3,20)

 0 1 6 12 18 25

Breakstage

0

10

20

30

40

50

60

70

80

90

E
v
a
lu

a
ti
o
n
 g

a
p
 (

%
)

Evaluation gap for different breakstage

(0.1,10)

(0.1,20)

(0.2,10)

(0.2,20)

(0.3,10)

(0.3,20)

Figure 4.4: Effect of breakstage
SDDiP gap and time are evaluated upon termination: 150 iterations for Inst. 1–4, and 500 for Inst. 5 and 6.

Figure 4.4 summarizes the effect of different breakstage values. The solution time for

the SDDiP algorithm increases as the breakstage increases. This is simply because more

MIPs are solved as tb increases. On average, when the breakstage increases from 0 (LP case)

113

to 25 (fully discretized problem), the solution time increases by a factor of 4. SDDiP gap is

not reported here since the algorithm terminates with a gap smaller than 0.6% for all these

instances. The right figure in Figure 4.4 summarizes the evaluation results. The evaluation

gap tends to decrease as breakstage increases. For instances with smaller net load variation,

a policy obtained by solving an approximation model with small breakstage is sufficiently

good, i.e., evaluation gap is small. When the uncertainty variation is high (e.g., α = 0.3),

such a policy results in too much penalty. Therefore, solving an approximation model to

optimality does not necessarily imply that SDDiP has produced a good policy, sometimes

the effort of recovering the true ECTG function at each stage is necessary. Refer to Table

A3 - A4 in Appendix for more detailed computational results.

Backward Parallelization

Let T (k) be the solution time when k threads are used. We define speed-up ratio by T (1)
T (k)

,

and efficiency by k T (1)
T (k)

. Figure 4.5 depicts an average speed-up ratio and efficiency graph

with respect to the number of threads for a particular instance. We use 32 threads in all

of our computation experiments. On average, the maximum speed-up ratio is 4.8 with an

efficiency of 15%.

 1 2 4 8 16 32

threads

1

1.5

2

2.5

3

3.5

4

4.5

S
p

e
e

d
-u

p
 r

a
ti
o

10

20

30

40

50

60

70

80

90

100

E
ff

ic
ie

n
c
y

Speed-up ratio and efficiency

Speed Up

Efficiency

Figure 4.5: Parallelization speed-up ratio & efficiency (T 0.2,20
14 instance)

114

4.7.2 118-bus Results

Similar to the 14-bus system, the experiments for the 118-bus system also consists of two

phases: SDDiP and policy evaluation. We fix β = 20 in each scenario tree tested. An

instance involves, 2× 1024 scenarios, and its extensive form has over 5.4× 1026 variables.

Each instance is indexed by a pair (r, k), where r is ramping ratio with respect to the output

capacity, and k is the parameter in the truncated normal distribution. We consider twelve

instances with r = 0.9, 0.8, 0.7 and k = 1.0, 1.1, 1.2, 1.31. A smaller r indicates more

restricted ramping constraints, while a larger k value suggests a more volatile scenario tree.

We combine SDDiP with sample average approximation (SAA) to evaluate the quality

of returned policy. For each pair of (r, k), we generate six scenario trees independently. We

solve SDDiP on the first five trees (the algorithm is terminated after 500 iterations), and test

each returned policies on the sixth tree. SDDiP results are taken as average over the five

runs on the first five trees, and the final evaluation results are the 95%-CIs calculated based

on the five policy assessments on the sixth tree.

Table 4.3 contains the SDDiP computation time and evaluation results for the 118-bus

system. The results indicate using SDDiP with Benders’ cut only is sufficient to produce an

accurate and reliable policy for all 12 instances. This could be due to the tight formulation of

Table 4.3: Computational results for 118-bus system

Instance Time Eval. Gap Instance Time Eval. Gap
(r, k) (sec.) (%) (r, k) (sec.) (%)

(0.9, 1.0) 4389 [0.47, 0.68] (0.8, 1.2) 4424 [0.51, 0.75]
(0.9, 1.1) 4387 [0.51, 0.59] (0.8, 1.3) 4455 [0.55, 0.96]
(0.9, 1.2) 4394 [0.50, 0.77] (0.7, 1.0) 4389 [0.37, 0.63]
(0.9, 1.3) 4405 [0.55, 0.69] (0.7, 1.1) 4427 [0.58, 0.84]
(0.8, 1.0) 4333 [0.48, 0.63] (0.7, 1.2) 4455 [0.50, 1.12]
(0.8, 1.1) 4362 [0.48, 0.58] (0.7, 1.3) 4521 [0.67, 1.28]

1We do not consider value bigger than 1.3 because a larger value incurs a net load which exceeds the
system’s total generation capacity.

115

a single scenario deterministic UC problem. To verify the tightness of the LP relaxation gap,

we independently generate 100 scenarios from the most volatile load distribution (k = 1.3),

and solve a deterministic 24-hour UC problem and its LP relaxation for each of the scenarios.

The ramping limit is set to be 70% of the maximum generation capacity. Indeed, the average

LP gap over these 100 instances is only 0.254%. Given that our uncertainty variation is

based on real data, such a small LP relaxation gap suggests that the SDDiP with standard

Benders’ cut is good enough to solve this large-scale MSUC instance.

4.8 Concluding Remarks

In this chapter, we propose a stagewise-decomposition algorithm based on SDDiP with

various algorithmic enhancements to solve the MSUC problem. Extensive numerical

experiments demonstrate that the proposed algorithm can successfully handle MSUC

problems with a huge number of scenarios that were impossible before. It is also verified

that Lagrangian cuts are indispensable in achieving exact solution and convergence. Our

experiments show that when solving the Lagrangian relaxation of the stage problem, the

Level Method performs superior to the standard subgradient method. We also observe that

for the 118-bus system, it suffices to use SDDiP with only standard Benders’ cuts to obtain

a good policy.

There are several interesting future research questions related to MSUC. In this chapter,

we decompose the 24-hour MSUC problem on an hourly base. An alternative is to

consolidate several consecutive hours into one stage. Such a formulation increases the

size of a stage problem but reduces the total number of decision stages. It would be

interesting to investigate how such an aggregated model performs compares to the hourly

based multistage model. Another direction is to study the MSUC problem under a risk-averse

setting, as system reliability is of the utmost importance in practice.

116

Appendices

117

0.0

0.2

0.4

0.6

I L B+I B+L S+I S+L S+I+L

method

g
a
p

FW

1

2

3

5

10

20

50

Figure A1: SDDiP gap for 10-year GEP instances

0

5000

10000

15000

I L B+I B+L S+I S+L S+I+L

method

ti
m

e

FW

1

2

3

5

10

20

50

Figure A2: SDDiP computation time for 10-year GEP instances

118

(5,50) (6,50) (7,50) (8,30) (9,30)

Instance

0

100

200

300

400

500

600

S
D

D
iP

 i
te

ra
ti
o

n
s

SDDiP iterations for different cut combinations

B + I

SB + I

B + L

SB + L

SB + I + L

Figure A3: SDDiP iterations for large GEP instances

(5,50) (6,50) (7,50) (8,30) (9,30)

Instance

0

2

4

6

8

10

12

14

16

18

20

S
D

D
iP

 t
im

e
 (

h
o

u
r)

SDDiP time for different cut combinations

B + I

SB + I

B + L

SB + L

SB + I + L

Figure A4: SDDiP computation time for large GEP instances

119

Ta
bl

e
A

1:
N

um
er

ic
al

re
su

lts
of

IE
E

E
14

-b
us

sy
st

em
–

cu
tc

om
bi

na
tio

ns

In
st

an
ce

Ph
as

e
I:

SD
D

iP
Ph

as
e

II
:E

va
lu

at
io

n
(α
,β

)
C

ut
L

B
95

%
-C

IU
B

G
ap

Ti
m

e
95

%
-C

IU
B

G
ap

M
in

M
ax

St
d

(k
$)

(k
$)

(%
)

(s
ec

.)
(k

$)
(%

)
(k

$)
(k

$)
(k

$)

(0
.1

,1
0)

B
88

.6
6

[8
9.

25
,8

9.
41

]
0.

85
20

0
[8

9.
24

,8
9.

40
]

0.
83

85
.8

5
92

.9
3

1.
17

SB
88

.9
6

[8
9.

31
,8

9.
47

]
0.

57
24

3
[8

9.
29

,8
9.

45
]

0.
55

85
.7

1
93

.1
6

1.
19

Su
b

89
.3

0
[8

9.
25

,8
9.

42
]

0.
13

29
6

[8
9.

29
,8

9.
46

]
0.

17
85

.5
0

92
.8

8
1.

21
L

ev
el

89
.3

0
[8

9.
28

,8
9.

45
]

0.
16

28
2

[8
9.

24
,8

9.
41

]
0.

12
85

.4
2

93
.1

0
1.

20
SB

+
L

ev
el

89
.3

4
[8

9.
28

,8
9.

45
]

0.
13

35
8

[8
9.

32
,8

9.
48

]
0.

16
85

.9
1

92
.8

9
1.

20

(0
.1

,2
0)

B
88

.5
5

[8
9.

05
,8

9.
23

]
0.

76
24

8
[8

9.
13

,8
9.

29
]

0.
83

85
.3

3
92

.9
3

1.
17

SB
88

.8
3

[8
9.

14
,8

9.
31

]
0.

54
31

4
[8

9.
02

,9
0.

14
]

1.
46

85
.6

2
31

4.
79

8.
08

Su
b

89
.1

8
[8

9.
21

,8
9.

37
]

0.
22

36
0

[8
9.

10
,8

9.
27

]
0.

10
85

.7
1

93
.1

4
1.

20
L

ev
el

89
.1

4
[8

9.
08

,8
9.

26
]

0.
13

37
2

[8
9.

12
,8

9.
29

]
0.

17
85

.5
3

92
.3

9
1.

22
SB

+
L

ev
el

89
.2

1
[8

9.
04

,8
9.

21
]

0.
00

50
1

[8
9.

10
,8

9.
26

]
0.

06
85

.3
3

92
.4

7
1.

17

(0
.2

,1
0)

B
89

.0
5

[8
9.

52
,8

9.
85

]
0.

89
20

6
[8

9.
55

,8
9.

88
]

0.
92

82
.0

4
98

.7
8

2.
44

SB
89

.1
8

[8
9.

41
,8

9.
74

]
0.

62
26

3
[8

9.
51

,8
9.

83
]

0.
73

82
.4

6
97

.4
8

2.
34

Su
b

89
.6

1
[8

9.
60

,8
9.

93
]

0.
36

32
2

[8
9.

65
,8

9.
99

]
0.

42
82

.9
7

97
.1

1
2.

46
L

ev
el

89
.5

7
[8

9.
58

,8
9.

93
]

0.
40

34
0

[8
9.

63
,8

9.
96

]
0.

43
82

.6
2

96
.1

7
2.

42
SB

+
L

ev
el

89
.5

9
[8

9.
54

,8
9.

89
]

0.
33

41
7

[8
9.

45
,8

9.
78

]
0.

22
81

.2
7

97
.4

6
2.

43

120

Ta
bl

e
A

2:
N

um
er

ic
al

re
su

lts
of

IE
E

E
14

-b
us

sy
st

em
–

cu
tc

om
bi

na
tio

ns
(c

on
t’d

)

In
st

an
ce

Ph
as

e
I:

SD
D

iP
Ph

as
e

II
:E

va
lu

at
io

n
(α
,β

)
C

ut
L

B
95

%
-C

IU
B

G
ap

Ti
m

e
95

%
-C

IU
B

G
ap

M
in

M
ax

St
d

(k
$)

(k
$)

(%
)

(s
ec

.)
(k

$)
(%

)
(k

$)
(k

$)
(k

$)

(0
.2

,2
0)

B
89

.8
0

[9
2.

86
,9

3.
94

]
4.

41
26

8
[9

3.
03

,9
3.

99
]

4.
45

83
.6

1
18

7.
07

6.
89

SB
89

.9
6

[9
2.

88
,9

3.
89

]
4.

18
35

0
[9

2.
43

,9
3.

48
]

3.
76

81
.3

9
18

5.
01

7.
54

Su
b

90
.6

3
[9

2.
26

,9
2.

87
]

2.
42

56
19

[9
2.

03
,9

2.
62

]
2.

16
83

.6
1

10
5.

80
4.

29
L

ev
el

92
.3

5
[9

2.
18

,9
2.

73
]

0.
41

57
3

[9
2.

24
,9

2.
81

]
0.

49
78

.8
6

10
6.

22
4.

05
SB

+
L

ev
el

92
.4

2
[9

2.
12

,9
2.

68
]

0.
27

68
9

[9
2.

26
,9

2.
80

]
0.

41
82

.8
2

10
6.

82
3.

91

(0
.3

,1
0)

B
87

.1
7

[9
1.

30
,9

3.
06

]
6.

34
10

83
[9

1.
05

,9
2.

80
]

6.
07

78
.4

0
38

2.
15

12
.6

8
SB

87
.4

9
[9

0.
41

,9
1.

39
]

4.
27

15
43

[8
9.

93
,9

5.
71

]
8.

59
76

.0
9

12
22

.0
5

41
.7

3
Su

b
90

.5
7

[9
0.

58
,9

3.
22

]
2.

84
31

58
[9

0.
93

,9
5.

54
]

5.
20

77
.9

4
90

0.
15

33
.2

1
L

ev
el

90
.6

5
[9

0.
04

,9
0.

79
]

0.
15

26
14

[9
0.

56
,9

1.
33

]
0.

75
75

.3
5

11
0.

28
5.

58
SB

+
L

ev
el

90
.7

0
[9

0.
55

,9
1.

31
]

0.
66

33
90

[9
0.

05
,9

0.
83

]
0.

14
76

.6
8

11
0.

32
5.

60

(0
.3

,2
0)

B
92

.0
6

[9
3.

50
,9

8.
06

]
6.

12
15

40
[9

3.
96

,9
5.

09
]

3.
19

81
.1

0
20

1.
46

8.
16

SB
92

.2
3

[9
4.

38
,9

6.
07

]
4.

00
21

09
[9

3.
72

,9
4.

61
]

2.
52

78
.2

2
20

3.
20

6.
42

Su
b

92
.9

5
[9

3.
77

,9
4.

79
]

1.
95

51
82

[9
3.

91
,9

4.
80

]
1.

95
79

.4
8

20
0.

80
6.

39
L

ev
el

93
.9

4
[9

3.
64

,9
4.

31
]

0.
39

29
55

[9
3.

45
,9

4.
07

]
0.

14
81

.3
4

11
5.

17
4.

52
SB

+
L

ev
el

93
.9

5
[9

3.
86

,9
4.

56
]

0.
64

39
92

[9
3.

87
,9

4.
56

]
0.

64
80

.7
5

11
6.

15
4.

97

121

Ta
bl

e
A

3:
N

um
er

ic
al

re
su

lts
of

IE
E

E
14

-b
us

sy
st

em
–

ef
fe

ct
of

br
ea

ks
ta

ge

In
st

an
ce

Ph
as

e
I:

SD
D

iP
Ph

as
e

II
:E

va
lu

at
io

n
(α
,β

)
t b

L
B

95
%

-C
IU

B
G

ap
Ti

m
e

95
%

-C
IU

B
G

ap
M

in
M

ax
St

d
(k

$)
(k

$)
(%

)
(s

ec
.)

(k
$)

(%
)

(k
$)

(k
$)

(k
$)

(0
.1

,1
0)

-1
88

.6
6

[8
8.

56
,8

8.
73

]
0.

08
80

[8
9.

27
,8

9.
43

]
0.

87
86

.0
0

93
.3

3
1.

17
0

88
.6

7
[8

8.
61

,8
8.

78
]

0.
12

84
[8

9.
27

,8
9.

44
]

0.
85

85
.3

7
93

.6
7

1.
20

6
88

.9
1

[8
9.

04
,8

9.
21

]
0.

34
14

1
[8

9.
46

,8
9.

64
]

0.
82

85
.4

5
94

.1
7

1.
30

12
89

.0
7

[8
9.

17
,8

9.
33

]
0.

30
21

6
[8

9.
28

,8
9.

44
]

0.
42

86
.1

7
92

.8
7

1.
20

18
89

.1
0

[8
9.

03
,8

9.
20

]
0.

11
29

4
[8

9.
23

,8
9.

39
]

0.
33

86
.1

4
93

.6
5

1.
19

23
89

.3
4

[8
9.

28
,8

9.
45

]
0.

13
35

8
[8

9.
32

,8
9.

48
]

0.
16

85
.9

1
92

.8
9

1.
20

(0
.1

,2
0)

-1
88

.5
5

[8
8.

41
,8

8.
58

]
0.

03
13

4
[8

9.
25

,8
9.

42
]

0.
97

85
.1

8
92

.9
8

1.
22

0
88

.5
7

[8
8.

55
,8

8.
72

]
0.

17
13

3
[8

9.
17

,8
9.

34
]

0.
86

85
.8

1
93

.6
4

1.
23

6
88

.8
5

[8
8.

87
,8

9.
03

]
0.

21
22

0
[8

9.
11

,8
9.

28
]

0.
49

85
.2

6
92

.7
7

1.
18

12
89

.0
0

[8
8.

97
,8

9.
13

]
0.

15
29

4
[8

9.
24

,8
9.

42
]

0.
48

85
.3

5
93

.6
3

1.
33

18
89

.0
2

[8
9.

01
,8

9.
16

]
0.

16
39

1
[8

9.
09

,8
9.

26
]

0.
26

85
.3

2
92

.7
8

1.
19

23
89

.2
1

[8
9.

04
,8

9.
21

]
0.

00
50

1
[8

9.
10

,8
9.

26
]

0.
06

85
.3

3
92

.4
7

1.
17

(0
.2

,1
0)

-1
89

.0
6

[8
8.

91
,8

9.
26

]
0.

23
90

[8
9.

47
,8

9.
81

]
0.

83
80

.6
9

97
.9

6
2.

43
0

89
.0

7
[8

8.
98

,8
9.

31
]

0.
27

88
[8

8.
69

,9
2.

44
]

3.
64

82
.7

1
85

1.
31

27
.0

4
6

89
.1

5
[8

9.
00

,8
9.

32
]

0.
19

14
9

[8
9.

56
,9

0.
07

]
1.

02
83

.0
1

16
9.

30
3.

66
12

89
.3

2
[8

9.
26

,8
9.

59
]

0.
31

24
7

[8
9.

43
,8

9.
78

]
0.

52
83

.0
7

96
.9

8
2.

55
18

89
.3

2
[8

9.
08

,8
9.

40
]

0.
09

31
8

[8
9.

47
,8

9.
82

]
0.

56
82

.4
3

98
.4

7
2.

53
23

89
.5

9
[8

9.
54

,8
9.

89
]

0.
33

41
7

[8
9.

45
,8

9.
78

]
0.

22
81

.2
7

97
.4

6
2.

43

122

Ta
bl

e
A

4:
N

um
er

ic
al

re
su

lts
of

IE
E

E
14

-b
us

sy
st

em
–

ef
fe

ct
of

br
ea

ks
ta

ge
(c

on
t’d

)

In
st

an
ce

Ph
as

e
I:

SD
D

iP
Ph

as
e

II
:E

va
lu

at
io

n
(α
,β

)
t b

L
B

95
%

-C
IU

B
G

ap
Ti

m
e

95
%

-C
IU

B
G

ap
M

in
M

ax
St

d
(k

$)
(k

$)
(%

)
(s

ec
.)

(k
$)

(%
)

(k
$)

(k
$)

(k
$)

(0
.2

,2
0)

-1
89

.8
1

[8
9.

81
,9

0.
15

]
0.

38
14

4
[3

54
.5

3
,4

25
.9

5
]

78
.9

2
83

.0
1

25
60

.0
0

51
5.

36
0

89
.8

3
[8

9.
72

,9
0.

06
]

0.
26

14
2

[2
98

.2
3

,3
63

.4
2

]
75

.2
8

81
.6

7
29

20
.0

0
47

0.
34

6
89

.8
8

[8
9.

94
,9

0.
27

]
0.

43
21

5
[3

38
.6

7
,4

10
.2

8
]

78
.0

9
84

.5
7

24
10

.0
0

51
6.

69
12

90
.0

8
[8

9.
96

,9
0.

28
]

0.
22

34
7

[9
2.

44
,9

3.
08

]
3.

22
83

.3
7

10
9.

11
4.

62
18

91
.9

8
[9

1.
97

,9
2.

72
]

0.
80

57
7

[9
2.

20
,9

2.
73

]
0.

81
84

.4
6

10
5.

12
3.

85
23

92
.4

2
[9

2.
12

,9
2.

68
]

0.
27

68
9

[9
2.

26
,9

2.
80

]
0.

41
82

.8
2

10
6.

82
3.

91

(0
.3

,1
0)

-1
87

.1
6

[8
6.

94
,8

7.
49

]
0.

37
65

2
[3

56
.4

2
,4

20
.3

2
]

79
.2

6
77

.1
4

25
20

.2
3

46
1.

05
0

87
.2

0
[8

7.
18

,8
7.

74
]

0.
62

64
2

[3
54

.7
8

,4
22

.0
0

]
79

.3
4

76
.5

9
24

13
.3

3
48

4.
99

6
87

.5
2

[8
7.

40
,8

7.
97

]
0.

51
11

67
[3

90
.4

3
,4

57
.5

8
]

80
.8

7
75

.5
3

22
99

.3
0

48
4.

49
12

87
.7

2
[8

7.
34

,8
7.

89
]

0.
19

16
60

[3
79

.8
5

,4
47

.6
6

]
80

.4
0

76
.0

7
24

01
.9

8
48

9.
28

18
90

.0
8

[9
0.

23
,9

0.
87

]
0.

87
28

12
[9

0.
47

,9
3.

74
]

3.
91

77
.0

9
55

6.
37

23
.6

0
23

90
.7

0
[9

0.
55

,9
1.

31
]

0.
66

33
90

[9
0.

05
,9

0.
83

]
0.

14
76

.6
8

11
0.

32
5.

60

(0
.3

,2
0)

-1
92

.0
5

[9
1.

65
,9

2.
20

]
0.

16
11

95
[2

31
.0

9
,2

91
.9

3
]

68
.4

7
82

.9
9

25
32

.5
4

43
8.

99
0

92
.0

8
[9

2.
10

,9
2.

62
]

0.
57

12
05

[2
02

.2
4

,2
56

.9
9

]
64

.1
7

83
.4

3
25

79
.3

1
39

4.
98

6
92

.1
8

[9
2.

11
,9

2.
66

]
0.

52
15

17
[2

02
.9

6
,2

54
.9

0
]

63
.8

4
79

.0
9

22
71

.5
8

37
4.

76
12

92
.4

3
[9

2.
07

,9
2.

60
]

0.
18

23
94

[2
03

.2
6

,2
58

.9
5

]
64

.3
1

79
.1

3
23

58
.7

8
40

1.
87

18
93

.4
7

[9
3.

19
,9

3.
97

]
0.

53
34

63
[9

3.
72

,9
5.

48
]

2.
10

81
.0

1
42

6.
44

12
.6

8
23

93
.9

5
[9

3.
86

,9
4.

56
]

0.
64

39
92

[9
3.

87
,9

4.
56

]
0.

64
80

.7
5

11
6.

15
4.

97

123

REFERENCES

Abgottspon, H. et al. “Risk-averse medium-term hydro optimization considering provision
of spinning reserves”. In: Probabilistic Methods Applied to Power Systems (PMAPS),
2014 International Conference on. IEEE. 2014, pp. 1–6.

Ahmed, S. “Two-Stage Stochastic Integer Programming: A Brief Introduction”. In: Wiley
Encyclopedia of Operations Research and Management Science. Ed. by J. J. Cochran
et al. John Wiley & Sons, Inc., 2010.

Ahmed, S. and N. V. Sahinidis. “An approximation scheme for stochastic integer programs
arising in capacity expansion”. In: Operations Research 51.3 (2003), pp. 461–471.

Ahmed, S., A. J. King, and G. Parija. “A multi-stage stochastic integer programming
approach for capacity expansion under uncertainty”. In: Journal of Global Optimization
26.1 (2003), pp. 3–24.

Akbari, T., A. Rahimikian, and A. Kazemi. “A multi-stage stochastic transmission expansion
planning method”. In: Energy Conversion and Management 52.8 (2011), pp. 2844–2853.

Alonso-Ayuso, A., L. F. Escudero, and M. T. Ortuno. “BFC, a branch-and-fix coordination
algorithmic framework for solving some types of stochastic pure and mixed 0–1
programs”. In: European Journal of Operational Research 151.3 (2003), pp. 503–519.

Angulo, G., S. Ahmed, and S. S. Dey. “Improving the integer L-shaped method”. In:
INFORMS Journal on Computing (2016). To appear.

Archibald, T. et al. “Nested Benders decomposition and dynamic programming for reservoir
optimisation”. In: Journal of the Operational Research Society 50.5 (1999), pp. 468–479.

Bacaud, L. et al. “Bundle methods in stochastic optimal power management: A disaggregated
approach using preconditioners”. In: Computational Optimization and Applications 20.3
(2001), pp. 227–244.

Baringo, L. and A. J. Conejo. “Risk-constrained multi-stage wind power investment”. In:
Power Systems, IEEE Transactions on 28.1 (2013), pp. 401–411.

Bean, J. C., J. L. Higle, and R. L. Smith. “Capacity expansion under stochastic demands”.
In: Operations Research 40.3-supplement-2 (1992), S210–S216.

Benders, J. F. “Partitioning procedures for solving mixed-variables programming problems”.
In: Numerische mathematik 4.1 (1962), pp. 238–252.

124

Berman, O., Z. Ganz, and J. M. Wagner. “A stochastic optimization model for planning
capacity expansion in a service industry under uncertain demand”. In: Naval Research
Logistics (NRL) 41.4 (1994), pp. 545–564.

Bertsekas, D. P. Nonlinear programming. Athena scientific Belmont, 1999.

Bienstock, D. and J. F. Shapiro. “Optimizing resource acquisition decisions by stochastic
programming”. In: Management Science 34.2 (1988), pp. 215–229.

Birge, J. R. “Decomposition and partitioning methods for multistage stochastic linear
programs”. In: Operations Research 33.5 (1985), pp. 989–1007.

Birge, J. R. and F. Louveaux. Introduction to Stochastic programming. 2nd ed. Springer,
2011.

Bloom, J. A. “Solving an electricity generating capacity expansion planning problem by
generalized Benders’ decomposition”. In: Operations Research 31.1 (1983), pp. 84–100.

Bloom, J. A., M. Caramanis, and L. Charny. “Long-range generation planning using
generalized benders’ decomposition: Implementation and experience”. In: Operations
Research 32.2 (1984), pp. 290–313.

Boer, S. V. de, R. Freling, and N. Piersma. “Mathematical programming for network revenue
management revisited”. In: European Journal of Operational Research 137.1 (2002),
pp. 72–92.

Boyd, S., L. Xiao, and A. Mutapcic. “Subgradient methods”. In: lecture notes of EE392o,
Stanford University, Autumn Quarter 2004 (2003).

Bruno, S. et al. “Risk neutral and risk averse approaches to multistage renewable investment
planning under uncertainty”. In: European Journal of Operational Research 250.3
(2016), pp. 979–989.

Carøe, C. C. and R. Schultz. “Dual decomposition in stochastic integer programming”. In:
Operations Research Letters 24.1 (1999), pp. 37–45.

Carpentier, P. et al. “Stochastic optimization of unit commitment: a new decomposition
framework”. In: IEEE Transactions on Power Systems 11.2 (1996), pp. 1067–1073.

Cerisola, S. et al. “Stochastic power generation unit commitment in electricity markets: A
novel formulation and a comparison of solution methods”. In: Operations Research 57.1
(2009), pp. 32–46.

125

Cerisola, S. et al. “Stochastic power generation unit commitment in electricity markets: A
novel formulation and a comparison of solution methods”. In: Operations Research 57.1
(2009), pp. 32–46.

Cerisola, S., J. M. Latorre, and A. Ramos. “Stochastic dual dynamic programming applied
to nonconvex hydrothermal models”. In: European Journal of Operational Research
218.3 (2012), pp. 687–697.

Chen, L. and T. Homem-de Mello. “Re-solving stochastic programming models for airline
revenue management”. In: Annals of Operations Research 177.1 (2010), pp. 91–114.

Chen, Z.-L. and W. B. Powell. “Convergent cutting-plane and partial-sampling algorithm
for multistage stochastic linear programs with recourse”. In: Journal of Optimization
Theory and Applications 102.3 (1999), pp. 497–524.

Chen, Z.-L., S. Li, and D. Tirupati. “A scenario-based stochastic programming approach for
technology and capacity planning”. In: Computers & Operations Research 29.7 (2002),
pp. 781–806.

Dantzig, G. B. and G. Infanger. “Multi-stage stochastic linear programs for portfolio
optimization”. In: Annals of Operations Research 45.1 (1993), pp. 59–76.

Davis, M. H. A. et al. “Optimal capacity expansion under uncertainty”. In: Advances in
Applied Probability (1987), pp. 156–176.

Dempster, M. et al. “Planning logistics operations in the oil industry”. In: Journal of the
Operational Research Society (2000), pp. 1271–1288.

Dupačová, J., N. Gröwe-Kuska, and W. Römisch. “Scenario reduction in stochastic
programming”. In: Mathematical programming 95.3 (2003), pp. 493–511.

Dupačová, J., M. Bertocchi, and V. Moriggia. “Testing the structure of multistage stochastic
programs”. In: Computational Management Science 6.2 (2009), pp. 161–185.

Erlenkotter, D. “Optimal plant size with time-phased imports”. In: Investments for Capacity
Expansion: Size, Location, and Time-Phasing 5 (1967), p. 157.

Flach, B., L. Barroso, and M. Pereira. “Long-term optimal allocation of hydro generation
for a price-maker company in a competitive market: latest developments and a stochastic
dual dynamic programming approach”. In: IET generation, transmission & distribution
4.2 (2010), pp. 299–314.

Fleten, S.-E. and T. K. Kristoffersen. “Short-term hydropower production planning by
stochastic programming”. In: Computers & Operations Research 35.8 (2008), pp. 2656–
2671.

126

Freidenfelds, J. “Capacity expansion when demand is a birth-death random process”. In:
Operations Research 28.3-part-ii (1980), pp. 712–721.

Gassmann, H. I. “MSLiP: A computer code for the multistage stochastic linear programming
problem”. In: Mathematical Programming 47.1-3 (1990), pp. 407–423.

Giglio, R. J. “Stochastic capacity models”. In: Management Science 17.3 (1970), pp. 174–
184.

Girardeau, P, V Leclere, and A. Philpott. “On the convergence of decomposition methods
for multistage stochastic convex programs”. In: Mathematics of Operations Research
40.1 (2014), pp. 130–145.

Gjelsvik, A., M. M. Belsnes, and A. Haugstad. “An algorithm for stochastic medium-term
hydrothermal scheduling under spot price uncertainty”. In: Proceedings of 13th Power
Systems Computation Conference. 1999.

Glover, F. “Improved linear integer programming formulations of nonlinear integer
problems”. In: Management Science 22.4 (1975), pp. 455–460.

Grinold, R. C. “Infinite horizon stochastic programs”. In: SIAM journal on control and
optimization 24.6 (1986), pp. 1246–1260.

Gröwe-Kuska, N., H. Heitsch, and W. Römisch. “Scenario reduction and scenario tree
construction for power management problems”. In: Power tech conference proceedings,
2003 IEEE Bologna. Vol. 3. IEEE. 2003, 7–pp.

Heitsch, H. and W. Römisch. “Scenario reduction algorithms in stochastic programming”.
In: Computational optimization and applications 24.2-3 (2003), pp. 187–206.

Heitsch, H., W. Römisch, and C. Strugarek. “Stability of multistage stochastic programs”.
In: SIAM Journal on Optimization 17.2 (2006), pp. 511–525.

Helseth, A. et al. “Co-optimizing sales of energy and capacity in a hydropower scheduling
model”. In: PowerTech, 2015 IEEE Eindhoven. IEEE. 2015, pp. 1–6.

Hoffman, A. J. “On approximate solutions of systems of linear inequalities.” In: Journal of
Research of the National Bureau of Standards 49.4 (1952), pp. 263–265.

Høyland, K. and S. W. Wallace. “Generating scenario trees for multistage decision problems”.
In: Management Science 47.2 (2001), pp. 295–307.

Huang, K. and S. Ahmed. “The value of multistage stochastic programming in capacity
planning under uncertainty”. In: Operations Research 57.4 (2009), pp. 893–904.

127

Jacobs, J. et al. “SOCRATES: A system for scheduling hydroelectric generation under
uncertainty”. In: Annals of Operations Research 59.1 (1995), pp. 99–133.

Jiang, R., Y. Guan, and J.-P. Watson. “Cutting planes for the multistage stochastic unit
commitment problem”. In: Mathematical Programming 157.1 (2016), pp. 121–151.

Jin, S. et al. “Modeling and solving a large-scale generation expansion planning problem
under uncertainty”. In: Energy Systems 2.3-4 (2011), pp. 209–242.

Kiwiel, K. C. “An aggregate subgradient method for nonsmooth convex minimization”. In:
Mathematical Programming 27.3 (1983), pp. 320–341.

Kuhn, D. Generalized bounds for convex multistage stochastic programs. Vol. 548. Springer
Science & Business Media, 2006.

Laporte, G. and F. V. Louveaux. “The integer L-shaped method for stochastic integer
programs with complete recourse”. In: Operations research letters 13.3 (1993), pp. 133–
142.

Lemaréchal, C., A. Nemirovskii, and Y. Nesterov. “New variants of bundle methods”. In:
Mathematical programming 69.1 (1995), pp. 111–147.

Li, T., M. Shahidehpour, and Z. Li. “Risk-constrained bidding strategy with stochastic unit
commitment”. In: IEEE Transactions on Power Systems 22.1 (2007), pp. 449–458.

Löhndorf, N., D. Wozabal, and S. Minner. “Optimizing trading decisions for hydro storage
systems using approximate dual dynamic programming”. In: Operations Research 61.4
(2013), pp. 810–823.

Lulli, G. and S. Sen. “A branch-and-price algorithm for multistage stochastic integer
programming with application to stochastic batch-sizing problems”. In: Management
Science 50.6 (2004), pp. 786–796.

Manne, A. S. “Capacity expansion and probabilistic growth”. In: Econometrica: Journal of
the Econometric Society (1961), pp. 632–649.

Meibom, P. et al. “Stochastic optimization model to study the operational impacts of high
wind penetrations in Ireland”. In: Power Systems, IEEE Transactions on 26.3 (2011),
pp. 1367–1379.

Mokrian, P. and M. Stephen. “A stochastic programming framework for the valuation of
electricity storage”. In: 26th USAEE/IAEE North American Conference. 2006, pp. 24–27.

Möller, A., W. Römisch, and K. Weber. “Airline network revenue management by multistage
stochastic programming”. In: Computational Management Science 5.355–377 (2008).

128

Morales-España, G., J. M. Latorre, and A. Ramos. “Tight and compact MILP formulation
for the thermal unit commitment problem”. In: IEEE Transactions on Power Systems
28.4 (2013), pp. 4897–4908.

Nemhauser, G. and L. Wolsey. Integer and Combinatorial Optimization. Wiley Series in
Discrete Mathematics and Optimization. Wiley, 1999.

Newham, N. and A Wood. “Transmission investment planning using SDDP”. In: Power
Engineering Conference, 2007. AUPEC 2007. Australasian Universities. IEEE. 2007,
pp. 1–5.

Nielsen, S. S. and S. A. Zenios. “A stochastic programming model for funding Single
Premium Deferred Annuities”. In: Mathematical Programming 75.2 (1996), pp. 177–
200.

Nowak, M. P. and W. Römisch. “Stochastic Lagrangian relaxation applied to power
scheduling in a hydro-thermal system under uncertainty”. In: Annals of Operations
Research 100.1-4 (2000), pp. 251–272.

Ostrowski, J., M. F. Anjos, and A. Vannelli. “Tight mixed integer linear programming
formulations for the unit commitment problem”. In: IEEE Transactions on Power
Systems 27.1 (2012), pp. 39–46.

Pan, K. and Y. Guan. “Strong Formulations for Multistage Stochastic Self-Scheduling Unit
Commitment”. In: Operations Research 64.6 (2016), pp. 1482–1498.

Pennanen, T. “Epi-convergent discretizations of multistage stochastic programs via
integration quadratures”. In: Mathematical Programming 116.1-2 (2009), pp. 461–
479.

Pereira, M. V. and L. M. Pinto. “Multi-stage stochastic optimization applied to energy
planning”. In: Mathematical programming 52.1-3 (1991), pp. 359–375.

Pflug, G. C. “Scenario tree generation for multiperiod financial optimization by optimal
discretization”. In: Mathematical programming 89.2 (2001), pp. 251–271.

Philpott, A. B. and Z Guan. “On the convergence of stochastic dual dynamic programming
and related methods”. In: Operations Research Letters 36.4 (2008), pp. 450–455.

Philpott, A. B. and V. L. de Matos. “Dynamic sampling algorithms for multi-stage stochastic
programs with risk aversion”. In: European Journal of Operational Research 218.2
(2012), pp. 470–483.

Philpott, A., F. Wahid, and B. Frédéric. “MIDAS: A Mixed Integer Dynamic Approximation
Scheme”. In: Optimization-online (2016).

129

Rajan, D. and S. Takriti. “Minimum up/down polytopes of the unit commitment problem
with start-up costs”. In: IBM Res. Rep (2005).

Rebennack, S. “Combining sampling-based and scenario-based nested Benders
decomposition methods: application to stochastic dual dynamic programming”. In:
Mathematical Programming (2013), pp. 1–47.

Römisch, W. and R. Schultz. “Multistage Stochastic Integer Programs: An Introduction”. In:
Online Optimization of Large Scale Systems. Ed. by M. Grötschel, S. O. Krumke, and
J. Rambau. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 581–600.

Rotting, T. and A Gjelsvik. “Stochastic dual dynamic programming for seasonal scheduling
in the Norwegian power system”. In: IEEE Transactions on Power Systems 7.1 (1992),
pp. 273–279.

Ruszczynski, A. P. and A. Shapiro. Stochastic programming. Vol. 10. Elsevier Amsterdam,
2003.

Ryan, S. M., J. McCalley, and D. L. Woodruff. Long term resource planning for electric
power systems under uncertainty. Tech. rep. Technical report, Iowa State University,
2011.

Schrijver, A. Theory of linear and integer programming. John Wiley & Sons, 1998.

Schulze, T. and K. McKinnon. “The value of stochastic programming in day-ahead and
intra-day generation unit commitment”. In: Energy 101 (2016), pp. 592–605.

Schulze, T., A. Grothey, and K. McKinnon. “A stabilised scenario decomposition algorithm
applied to stochastic unit commitment problems”. In: Rapport technique, The University
of Edinburgh, School of Mathematics (2015).

Sen, S., L. Yu, and T. Genc. “A stochastic programming approach to power portfolio
optimization”. In: Operations Research 54.1 (2006), pp. 55–72.

Shapiro, A. “Inference of statistical bounds for multistage stochastic programming
problems”. In: Mathematical Methods of Operations Research 58.1 (2003), pp. 57–
68.

— “On a time consistency concept in risk averse multistage stochastic programming”. In:
Operations Research Letters 37.3 (2009), pp. 143–147.

— “Analysis of stochastic dual dynamic programming method”. In: European Journal of
Operational Research 209.1 (2011), pp. 63–72.

130

Shapiro, A. “Minimax and risk averse multistage stochastic programming”. In: European
Journal of Operational Research 219.3 (2012), pp. 719–726.

Shapiro, A. et al. “Risk neutral and risk averse stochastic dual dynamic programming
method”. In: European journal of operational research 224.2 (2013), pp. 375–391.

Shiina, T. and J. R. Birge. “Stochastic unit commitment problem”. In: International
Transactions in Operational Research 11.1 (2004), pp. 19–32.

Singh, K. J., A. B. Philpott, and R. K. Wood. “Dantzig-Wolfe decomposition for solving
multistage stochastic capacity-planning problems”. In: Operations Research 57.5 (2009),
pp. 1271–1286.

Sturt, A. and G. Strbac. “Efficient stochastic scheduling for simulation of wind-integrated
power systems”. In: IEEE transactions on Power Systems 27.1 (2012), pp. 323–334.

Tahanan, M. et al. “Large-scale Unit Commitment under uncertainty”. In: 4OR 13.2 (2015),
pp. 115–171.

Takriti, S., J. R. Birge, and E. Long. “A stochastic model for the unit commitment problem”.
In: Power Systems, IEEE Transactions on 11.3 (1996), pp. 1497–1508.

Takriti, S., B. Krasenbrink, and L. S.-Y. Wu. “Incorporating fuel constraints and electricity
spot prices into the stochastic unit commitment problem”. In: Operations Research 48.2
(2000), pp. 268–280.

Thomé, F. et al. “Non-Convexities Representation on Hydrothermal Operation Planning
Using SDDP”. In: URL: www. psr-inc. com, submitted (2013).

Tseng, C.-L. On power system generation unit commitment problems. University of
California, Berkeley, 1996.

Tuohy, A. et al. “Unit commitment for systems with significant wind penetration”. In: IEEE
Transactions on Power Systems 24.2 (2009), pp. 592–601.

Uçkun, C., A. Botterud, and J. R. Birge. “An improved stochastic unit commitment
formulation to accommodate wind uncertainty”. In: IEEE Transactions on Power Systems
31.4 (2016), pp. 2507–2517.

Wallace, S. W. and S.-E. Fleten. “Stochastic programming models in energy”. In: Handbooks
in Operations Research and Management Science 10 (2003), pp. 637–677.

Wang, J. et al. “Stochastic unit commitment with sub-hourly dispatch constraints”. In:
Applied energy 105 (2013), pp. 418–422.

131

Wu, L., M. Shahidehpour, and T. Li. “Stochastic security-constrained unit commitment”. In:
IEEE Transactions on Power Systems 22.2 (2007), pp. 800–811.

Zheng, Q. P. et al. “A decomposition approach to the two-stage stochastic unit commitment
problem”. In: Annals of Operations Research 210.1 (2013), pp. 387–410.

Zheng, Q. P., J. Wang, and A. L. Liu. “Stochastic optimization for unit commitment – A
review”. In: IEEE Transactions on Power Systems 30.4 (2015), pp. 1913–1924.

132

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Multistage Stochastic Integer Programming
	Scenario Tree Formulation
	Existing Approaches and Challenges

	Applications to Energy Sectors
	Summary of Contribution

	Partially Adaptive Stochastic Optimization for Capacity Expansion Problems
	Introduction
	Related Work
	Model Development
	PA Model for GEP Problem
	PA Model for General Capacity Expansion Planning

	Performance of PA()
	Decomposition Reformulation
	Some Useful Results for Single-technology Problems
	An Upper Bound on oiP() - viM
	Upper and Lower Bounds for Gap()

	An Approximation Algorithm for Solving MS
	Algorithm Description
	Optimality of Algorithm 1 for a Special GEP Problem

	Computational Experiments
	Experiment Data and Setup
	Performance of PA Model
	Performance of Algorithm 1
	Effect of Different Node Orderings

	Concluding Remarks

	Nested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables
	Introduction
	Related Work
	MSIP with Binary State Variables
	Nested Decomposition
	The ND Algorithm
	Sufficient Cut Conditions
	Finite Convergence

	Cut families
	Benders' Cut
	Integer Optimality Cut
	Lagrangian Cut
	Strengthened Benders' Cut

	Stochastic Nested Decomposition
	The SND Algorithm
	Convergence
	The SDDiP Algorithm

	Computational Experiments
	Long-term Generation Expansion Planning
	Multi-period Portfolio Optimization
	Airline Revenue Management

	Concluding Remarks

	Multistage Stochastic Unit Commitment Problem Using SDDiP
	Introduction
	Related Work
	Stochastic Dual Dynamic Integer Programming
	Cut Families in Backward Step

	Multistage Stochastic UC
	Problem Formulation
	Stage-wise Independence in Net Load
	State Variables

	SDDiP Enhancements
	Level Method for Lagrangian Cut
	Hybrid Model using ``Breakstage''
	Backward Parallelization

	Experimental Settings
	Stage Problem Size
	Scenario Tree Generation
	Other Implementation Details

	Computational Results
	14-bus Results
	118-bus Results

	Concluding Remarks

	References

