
INTEGRATING REINFORCEMENT LEARNING INTO A
PROGRAMMING LANGUAGE

A Dissertation
Presented to

The Academic Faculty

By

Christopher L. Simpkins

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology

August 2017

Copyright c© Christopher L. Simpkins 2017

INTEGRATING REINFORCEMENT LEARNING INTO A
PROGRAMMING LANGUAGE

Approved by:

Professor Charles L. Isbell, Jr.,
Advisor
College of Computing
Georgia Institute of Technology

Dr. Douglas Bodner
Tennenbaum Institute
Georgia Institute of Technology

Professor Mark Riedl
School of Interactive Computing
Georgia Institute of Technology

Dr. Spencer Rugaber
School of Computer Science
Georgia Institute of Technology

Professor Andrea Thomaz
Electrical and Computer Engi-
neering
University of Texas at Austin

Date Approved: May 25, 2017

A language that doesn’t change the way you think about programming isn’t worth

knowing.

Alan Perlis

To my children, Isaac and Meredith, who motivated my decision to give up flying

and enter academia.

ACKNOWLEDGEMENTS

First I must thank my parents. My mother was there for me every day. My father

worked multiple jobs to support his family and taught me to work hard for everything

I received. Without their love and support I would not have taken this path.

I started my Ph.D. journey over a decade ago while working at Georgia Tech

Research Institute. Ashwin Ram, my first advisor, guided me through the Ph.D.

application and gave me some of my earliest research opportunities. Sheila Isbell

connected me to the right lab for me at GTRI, ITTL (now ICL). Terry Hilderbrand

and Margaret Loper helped me access GTRI’s Ph.D. support, and supported me as

I balanced my GTRI duties with doctoral studies.

Charles Isbell accepted me as his student just when I needed him. Becoming

Charles’s student and joining his lab was invigorating. Just working near, conversing

with, and meeting with Michael Holmes, Chip Mappus, David Roberts, Peng Zang,

Sooraj Bhat, Luis Carlos “Luisca” Cobo Rus, Liam Mac Dermed, Arya Irani, Mark

Nelson, Jon Scholz, Ryan Curtin, Kaushik Subramanium, Pushkar Kolhe, Ashley

Edwards and Himanshu Sahni did a great deal to shape my development as a re-

searcher. And they were as warm as they were brilliant. My children have as many

fond memories of my lab mates as I do, from Nerf fights to cookouts to chess matches

to “funking out” Charles’s office when he was awarded tenure.

My work builds on the earlier work of my lab mate and friend, Sooraj Bhat. Sooraj

helped me get started in language-integrated reinforcement learning and shared my

interest in advanced programming languages.

As a graduate student I was inspired by Ashok Goel’s Artificial Intelligence and

Cognitive Science classes, Charles’s Machine Learning class, and Spencer Rugaber’s

Programming Language Design class.

v

I am grateful that Mark Riedl and Charles invited me to join their funded project

on computational interactive narratives. Working with them was a joy. After that

project ended, Charles and my current boss, Bill Leahy, gave me the opportunity to

become a lecturer. I am grateful to Bill for welcoming me into a group of outstanding

teaching professionals that will likely be my home for the rest of my professional life.

I did most of my writing during Fall 2016. My CS 1331 Head TA, Taylor Hartman,

took on a great deal of responsibility to allow me more time to write. CS 1331 could

not have functioned so well without her leadership and the groundwork laid by past

Head TAs like Keith Cartledge, Thomas Shields, Aaron Friesen, and Stefano Fenu.

My CS 2316 Head TA, Kate Unsworth also took on additional tasks during a semester

in which I was the new CS 2316 instructor following Jay Summet’s departure. Joshua

Diaddigo and Keith Cartledge wrote the web site and IntelliJ plug-in used in my

programmer study and joined me in several late-night hacking sessions to iron out

the kinks and dry-run the programmer study. Bob Waters covered several CS 2340

lectures at crucial times that allowed me to make progress writing. Without their

help I could not have finished.

My committee has been outstanding. Spencer guided me with great care through

the software engineering portions of my thesis. Doug helped me learn agent-based sim-

ulation and apply an early version of AFABL to behavior modeling. An expert in AI

for games and interactive narratives, Mark helped me place AFABL in context. An-

drea Thomaz encouraged me to conduct the programmer study, which distinguishes

my work from other work in reinforcement learning in programming languages.

vi

I am especially grateful to my advisor, Charles Isbell, for supporting me through

years of personal struggle. Everyone knows that Charles is a brilliant researcher and

leader. I know first hand that he is also an outstanding human being. No matter

how difficult the challenges or how likely it seemed that I would fail, Charles always

told me he believed I could finish. I am happy to have proved him right. I could not

have finished without Charles’s unwavering support and encouragement.

I met John Cortese when he gave a talk on quantum computing as part of his

interview with GTRI in 2004. I asked a question he thought was insightful and after

he was hired he sought me out to discuss it further. Over the ensuing years he became

my best friend. John is not only one of the smartest people on earth (he’s the only

person in history to earn two Ph.D.s from Caltech, one in Electrical Engineering and

one in Theoretical Physics), he has a gift for explaining advanced concepts to lay

people, and he is one of the best human beings I know. Two years ago I was in

despair. It seemed that the cumulative effects of family challenges and full-time work

would prevent me from ever finishing my Ph.D. Without my reporting any of this

to John – as if he had some sort of sixth sense – he called me out of the blue and

offered to help me pay my bills so I could quit my job and finish my Ph.D. The next

semester I went part-time and redoubled my efforts. Although I later went full-time

again, John’s support had reinvigorated me. It is no exaggeration to say that I owe

this Ph.D. to John.

Finally I want to thank my wife, Caroline, who met me before I passed my qualifier,

and after I became a full-time single father. She has endured years of being a “Ph.D.

widow” while taking on the role of stepmother. Caroline has helped me in a million

small and not so small ways as I struggled to manage a young family in distress. No

matter how discouraged I became, no matter how sullen my mood, every time our

eyes met she smiled. It is difficult to overstate the impact of such a seemingly small

gesture. I would not be here without Caroline.

vii

viii

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xv

List of Figures . xvii

Chapter 1: Introduction . 1

1.1 The Dream of AI . 1

1.2 The Challenges of Software Engineering 3

1.3 The Promise of Adaptive Partial Programming 3

1.4 Contributions . 5

1.5 Outline . 6

Chapter 2: Background in Reinforcement Learning 9

2.1 Monolithic Reinforcement Learning 9

2.1.1 Markov Decision Processes . 10

2.1.2 Long Term Reward . 11

2.1.3 Value Functions . 12

2.1.4 Optimal Policies . 12

2.1.5 Solving MDPs with Dynamic Programming 13

ix

2.1.6 Learning Policies via Reinforcement Learning 15

2.2 Decompositional Reinforcement Learning 18

2.2.1 Hierarchical Reinforcement Learning 19

2.2.2 The Curse of Dimensionality in Reinforcement Learning . . . 20

2.2.3 Modular Reinforcement Learning 21

Chapter 3: Robust Command Arbitration for Modular Reinforce-
ment Learning . 25

3.1 Modular reinforcement learning . 25

3.1.1 Merging local signals . 26

3.1.2 Ideal Action Selection is Impossible 26

3.2 Reformulating MRL . 27

3.2.1 Formalization . 28

3.3 The Arbi-Q Command Arbitration Algorithm 29

3.4 Experiments . 31

3.4.1 Bunny-Wolf World . 31

3.5 Results . 33

3.5.1 How GM-Sarsa Degrades with Incomparable Rewards 33

3.5.2 How Arbi-Q does not Degrade with Incomparable Rewards . . 37

3.6 Related Work . 39

3.7 Conclusion . 40

Chapter 4: Background in Software Engineering 43

4.1 Software Reuse . 43

x

4.1.1 Domain-Specific Languages 45

4.2 Software Complexity . 48

4.3 Adaptive Programming . 49

4.3.1 How to Achieve Adaptive Software 50

4.3.2 The Partial Programming Paradigm 50

4.3.3 Related Work in Adaptive Programming 52

Chapter 5: AFABL: A Friendly Adaptive Behavior Language . . . 55

5.1 Why an embedded DSL? . 55

5.2 Why Scala? . 55

5.3 AFABL Concepts . 56

5.3.1 Agent Architecture . 56

5.3.2 Behavior Modules . 56

5.3.3 Adaptive Modules . 57

5.3.4 Command Arbitrators . 57

5.4 The AFABL Language . 58

5.4.1 Worlds . 58

5.4.2 Modules . 60

5.4.3 Agents . 63

5.4.4 A Complete AFABL Bunny 64

5.5 Conclusion . 66

Chapter 6: AFABL Programmer Study 67

6.1 Experiments . 67

xi

6.1.1 Task 1: Bunny-Food-Wolf . 68

6.1.2 Task 2: Mating Bunny . 69

6.1.3 Provided Code . 69

6.2 Quantitative Analysis . 71

6.2.1 Code Size . 71

6.2.2 Time . 71

6.2.3 Cyclomatic Complexity . 71

6.2.4 Performance . 72

6.2.5 Typical Task 1 Submissions 72

6.2.6 Typical Task 2 Submissions 75

6.2.7 Quantitative Results . 77

6.2.8 Qualitative Results . 80

6.3 Threats to Validity . 85

6.4 Conclusion . 86

Chapter 7: AFABL in Context . 89

7.1 AFABL Programs versus Traditional Programs 89

7.1.1 Bunny, Food . 89

7.1.2 Bunny, Food, Wolf . 90

7.1.3 Bunny, Food, Wolf, Mate . 91

7.1.4 Bunny, Wolf, Food, Mate, Spoiling Food 91

7.1.5 Bunny, Food, Wolf, Mate, Spoiling Food, Picky Mate 93

7.1.6 Analysis . 93

xii

7.2 When to Use AFABL . 94

Chapter 8: An Example Application: Deriving Behavior from Per-
sonality . 103

8.1 Introduction . 103

8.1.1 Personality . 105

8.1.2 Modeling Personality with Reinforcement Learning 106

8.2 Related Work . 107

8.3 Experiments . 109

8.3.1 Atkinson’s Ring Toss Experiment 109

8.3.2 Computational Models of Atkinson’s Subjects 110

8.4 Model Validation . 113

8.5 Discussion . 115

8.6 Conclusions and Future Work . 116

Chapter 9: Conclusion . 119

9.1 Review of Major Contributions . 119

9.2 Limitations of Current Work . 120

9.2.1 Reward Authoring . 120

9.2.2 Training . 120

9.2.3 Host Language Limitations . 120

9.3 Directions for Future Work . 121

9.3.1 Refined Module Types . 121

9.3.2 Simplified Syntax . 122

xiii

9.3.3 General Agent Architecture 123

9.3.4 Independent (Non-Embedded) Language 124

Appendix A:AFABL Programmer Study 129

A.1 Experiments . 129

A.1.1 Task 1: The Bunny-Wolf Domain 129

A.1.2 Task 2: Mating Bunny . 130

A.2 Data Collection . 131

A.2.1 Programmer Demographics Survey 131

A.2.2 Reflection Survey . 133

A.3 Evaluation . 136

A.4 Source Code Analysis . 137

A.5 Run-time Analysis . 137

A.5.1 Logistics . 137

References . 147

Vita . 149

xiv

LIST OF TABLES

6.1 Quantitative results of Scala agent code versus AFABL agent code on
Task 1. p-value is for comparison of means between samples of unequal
variances (Welch’s t-test [87]). A p-value of less than .05 mean that the
difference in means is statistically significant at the 95% significance
level, i.e. we reject H0 : µ1 = µ2 and conclude that the means are
different. Power is the probability that we reject the null hypothesis H0

when it is in fact false, given the sample size, variance, and significance
level of 95% (α = .05). 77

6.2 Quantitative results of Scala agent code versus AFABL agent code on
Task 2. p-value is for comparison of means between samples of unequal
variances (Welch’s t-test [87]). A p-value of less than .05 mean that the
difference in means is statistically significant at the 95% significance
level, i.e. we reject H0 : µ1 = µ2 and conclude that the means are
different. Power is the probability that we reject the null hypothesis H0

when it is in fact false, given the sample size, variance, and significance
level of 95% (α = .05). 78

6.3 Comparison of novice vs. experienced coder results. p-value is for
comparison of means between samples of unequal variances (Welch’s
t-test [87]). A p-value of less than .05 mean that the difference in
means is statistically significant at the 95% significance level, i.e. we
reject H0 : µ1 = µ2 and conclude that the means are different. Power
is the probability that we reject the null hypothesis H0 when it is in
fact false, given the sample size, variance, and significance level of 95%
(α = .05). 79

xv

6.4 Comparison of results from programmers no agent programming ex-
perience vs programmers with some agent programming experience.
p-value is for comparison of means between samples of unequal vari-
ances (Welch’s t-test [87]). A p-value of less than .05 mean that the
difference in means is statistically significant at the 95% significance
level, i.e. we reject H0 : µ1 = µ2 and conclude that the means are dif-
ferent. Power is the probability that we reject the null hypothesis H0

when it is in fact false, given the sample size, variance, and significance
level of 95% (α = .05). 80

6.5 Comparison of TA results versus non-TA results. p-value is for com-
parison of means between samples of unequal variances (Welch’s t-
test[87]). A p-value of less than .05 mean that the difference in means
is statistically significant at the 95% significance level, i.e. we reject
H0 : µ1 = µ2 and conclude that the means are different. Power is the
probability that we reject the null hypothesis H0 when it is in fact false,
given the sample size, variance, and significance level of 95% (α = .05). 87

8.1 Validation Results. For each subject group the percentage of shots
taken by Atkinson’s human subjects and by our simulation from each
of three ranges is presented along with a 95% confidence interval for
the mean percentage of shots in 10 simulated replications of Atkinson’s
experiment. 114

xvi

LIST OF FIGURES

2.1 In the grid world above, the bunny must pursue two goals simulta-
neously: find food and avoid the wolf. The bunny may move north,
south, east, or west. When it finds food it consumes the food and new
food appears elsewhere in the grid world, when it meets the wolf it is
eaten and “dies.” . 21

3.1 Performance of GM-Sarsa/Q-decomposition on the bunny-wolf prob-
lem. The learning curves show that Greatest Mass command arbitra-
tion degrades significantly when its module rewards are incomparable. 33

3.2 Performance of Arbi-Q on the bunny-wolf problem. Arbi-Q converges
to similar scores as GM-Sarsa and shows no degradation in perfor-
mance when modules have incomparable rewards, suggesting that it is
amenable to “swappable” modules. 37

5.1 Scala code to represent states in the bunny world. 58

5.2 Scala code to represent the actions that the bunny agent can take in
the bunny world. 59

5.3 The abstract superclass of all world classes for AFABL agents. 59

5.4 Parts of the bunny world class showing important aspects of the im-
plementation of the World abstract class. 60

5.5 AFABL code for a module that represents the goal of constantly finding
food. 61

5.6 An AFABL agent that acts in a world, contains behavior modules, and
has an agent level reward. 64

xvii

5.7 A complete bunny agent in the AFABL DSL. Code for the modules is
repeated from previous figures to give a sense of the full quantity of
code required to write an agent with two behavior modules. 65

6.1 In the grid world above, the bunny must pursue two goals simultane-
ously: find food and avoid the wolf. The bunny may move up, down,
left, or right. When it finds food it consumes the food and new food
appears elsewhere in the grid world, when it meets the wolf it is eaten
and “respawns” elsewhere. 68

6.2 Starter Scala code provided to participants for Task 1. 70

6.3 Starter AFABL code provided to participants for Task 1. 70

6.4 Typical Scala submission for Task 1. 73

6.5 Typical AFABL submission for Task 1. 74

6.6 Typical Scala submission for Task 2. 75

6.7 Typical AFABL submission for Task 2. 76

6.8 Responses to Likert-scale question on reflection survey. 81

7.1 An AFABL bunny agent that finds food. 90

7.2 A Scala bunny agent that finds food. 91

7.3 An AFABL bunny agent that finds food and avoids a wolf. 92

7.4 A Scala bunny agent that finds food and avoids a wolf. 96

7.5 An AFABL bunny agent that finds food, avoids a wolf, and pursues a
mate. 97

7.6 A Scala bunny agent that finds food, avoids a wolf, and finds a mate. 98

7.7 An AFABL bunny agent that finds food that spoils, avoids a wolf, and
finds a mate. 99

7.8 A Scala bunny agent that finds food that spoils, avoids a wolf, and
finds a mate. 99

xviii

7.9 An AFABL bunny agent that finds food that spoils, avoids a wolf, and
finds a mate who rejects the bunny if the bunny hasn’t eaten recently. 100

7.10 A Scala bunny agent that finds food that spoils, avoids a wolf, and
finds a mate who rejects the bunny if the bunny hasn’t eaten recently. 101

7.11 Growth in complexity of agent programs as the task becomes more
complex. 102

7.12 Growth in lines of code in agent programs as the task becomes more
complex. 102

8.1 An agent representing a success-oriented student in Atkinson’s ring toss
experiment, containing two RL modules representing high achievement
motivation and low test anxiety. The code snippets presented here are
simplified versions of the Scala code we used to run our experiments. 111

8.2 A reinforcement learning module representing achievement motivation. 111

8.3 A reinforcement learning module representing Test Anxiety (‘avoidance
motive, a.k.a. “fear of failure”). Note that the rewards are inverted
from the achievement motivation module, that is, the valence of avoid-
ing achievement is higher. 112

8.4 The top plot shows the behavior patterns of human subjects in Atkin-
son’s Ring Toss experiment. The bottom plot shows the behavior pat-
terns of our synthetic agents that re-created Atkinson’s experiment.
Note that Atkinson’s plot is smoothed, while ours is not. 115

9.1 Simplified AFABL syntax with drives and aversions. 123

A.1 In the grid world above, the bunny must pursue two goals simulta-
neously: find food and avoid the wolf. The bunny may move north,
south, east, or west. When it finds food it consumes the food and new
food appears elsewhere in the grid world, when it meets the wolf it is
eaten and “dies.” . 129

xix

SUMMARY

Reinforcement learning is a promising solution to the intelligent agent problem,

namely, given the state of the world, which action should an agent take to maximize

goal attainment. However, reinforcement learning algorithms are slow to converge

for larger state spaces and using reinforcement learning in agent programs requires

detailed knowledge of reinforcement learning algorithms.

One approach to solving the curse of dimensionality in reinforcement learning is

decomposition. Modular reinforcement learning, as it is called in the literature, de-

composes an agent into concurrently running reinforcement learning modules that

each learn a “selfish” solution to a subset of the original problem. For example, a

bunny agent might be decomposed into a module that avoids predators and a module

that finds food. Current approaches to modular reinforcement learning support de-

composition but, because the reward scales of the modules must be comparable, they

are not composable – a module written for one agent cannot be reused in another

agent without modifying its reward function.

This dissertation makes two contributions: (1) a command arbitration algorithm

for modular reinforcement learning that enables composability by decoupling the

reward scales of reinforcement learning modules, and (2) a Scala-embedded domain-

specific language – AFABL (A Friendly Adaptive Behavior Language) – that in-

tegrates modular reinforcement learning in a way that allows programmers to use

reinforcement learning without knowing much about reinforcement learning algo-

rithms. We empirically demonstrate the reward comparability problem and show

that our command arbitration algorithm solves it, and we present the results of a

study in which programmers used AFABL and traditional programming to write a

simple agent and adapt it to a new domain, demonstrating the promise of language-

integrated reinforcement learning for practical agent software engineering.

xx

CHAPTER 1

INTRODUCTION

If you don’t know where you are going, any road will take you there.

– Lewis Carroll, paraphrased from Alice’s Adventures in Wonderland

This chapter sets the stage for the work presented in this dissertation, an overview

of its contributions, and concludes with a road-map of the following chapters.

1.1 The Dream of AI

Artificial intelligence was one of the first grand promises of computing. Almost as soon

as the field of computer science was born the pioneers of AI were promising machines

that could think and act as well as humans within the “visible future” (Herbert Simon,

quoted in 1958). Early research in AI focused on machines that could “think” like

humans and employed symbolic computation to create constraint solvers, planners,

and exert systems that used truth maintenance systems to maintain sets of facts

and inference rules that produced new knowledge. We had computer programs that

solved algebra equations, found paths, played games, and diagnosed illnesses based on

user-reported symptoms. Symbolic, or knowledge-based AI hit a bottleneck in the late

1980s – commonly called the knowledge acquisition bottleneck – and the early promise

of developing systems that replaced humans faded. But AI in general did not fade.

AI reinvented itself. Instead of creating systems of rules and inference engines based

on encoded knowledge, modern AI applies well-developed models from mathematics

and engineering – vector space models for text retrieval, hidden Markov models for

speech recognition, neural networks (though originally invented within AI but then

abandoned and developed by electrical engineers) for image recognition – to problems

1

traditionally considered part of AI. In modern AI the emphasis is on rationality

– achieving optimal results without trying to explicitly mimic human cognition –

and in developing systems that assist humans in some way. In modern AI every

approach must have a performance measure that is being optimized – speech phoneme

recognition rate, generalization error in image classifiers, etc. – and AI algorithms

are not accepted if they do not either define a new category rigorously, or rigorously

compare their performance to existing algorithms using accepted performance criteria.

Most AI algorithms today are concerned with focused problems and find application

in software that assists humans, such as helping humans find the right books to

buy using collaborative filtering or finding photos of their babies using facial image

recognition. Reinforcement learning is notable for applying modern AI approaches to

the age old intelligent agent problem: given the state of the world and all the actions

an agent could take, which action should the agent take, that is, which action results

in the agent accumulating the greatest long-term reward.

One can think of reinforcement learning (RL) as a machine learning approach to

planning, that is, a way of finding a sequence of actions that achieves a goal. The RL

problem formulation is this: an agent’s world is described by a set of states, the agent

can execute an action from a prescribed set of actions in each state, and the agent is

rewarded to greater or lesser degrees for each state-changing action it executes. The

performance measure being optimized by reinforcement learning algorithms is long-

term expected reward. So a reinforcement learning agent learns delayed gratification.

For example, eating cake now provides high immediate reward but low long-term

reward. A reinforcement learning agent learns to choose salad over cake (unless the

agent is Ron Swanson). For the software engineer who would like to employ reinforce-

ment learning without becoming an expert the most important thing to understand

is that the world of an agent can be modeled in terms of states, actions, and one-step

rewards. Our work shows that if you can specify the states, actions, and rewards for

2

an agent our algorithms can work behind the scenes to develop a control policy.

1.2 The Challenges of Software Engineering

Software engineering has struggled to keep pace with the growing size and complexity

of the systems being demanded by users. Over time the field of software engineering,

both in academia and industry, has developed a well-defined set of practices and

design guidelines that result in software systems that are maintainable, reliable and

extensible. Programming languages have been a primary means by which research in

software engineering and formal computer science has been brought to bear for the

working programmer. From structured programming to object-oriented programming

to powerful modern type systems, important advances in computing research have real

impact when they are incorporated as features in practical programming languages.

In the same way that, say, formal methods are used by the modern programmer

in the form of static type systems without requiring the programmer to know much

about formal methods, AFABL’s goal is to allow the programmer to use reinforcement

learning without knowing much about reinforcement learning algorithms.

1.3 The Promise of Adaptive Partial Programming

Our work in integrating reinforcement learning into a programming language is based

on the idea of partial programming developed by researchers in hierarchical reinforce-

ment learning. Partial programming is a framework for programming in which a

programmer or designer specifies the structure of certain parts of the system while

leaving other portions unspecified, such that a learning system can learn how to per-

form them. Hierarchical reinforcement learning defines closed-loop policies that group

action sequences into logical units – subroutines – that achieve intermediate goals.

For example, if the ultimate goal of an agent is to leave a building by exiting a room

3

and walking down an hall, and the agent’s primitive actions are MOVE-FORWARD,

MOVE-LEFT, TURN-RIGHT and so-on, then one of the agent’s subroutines might

be FIND-DOOR, which achieves the intermediate goal of exiting the room. Partial

programming system allows the agent designer to specify intermediate goals, write

code to achieve certain goals, and let reinforcement learning algorithms learn how to

achieve the others.

Hierarchical reinforcement learning decomposes the reinforcement learning prob-

lem temporally, that is, it breaks action sequences into subsequences. Another kind of

adaptive programming – known as modular reinforcement learning (MRL) – is based

on concurrent problem decomposition in which an agent may take only one action at

a time but must pursue several goals simultaneously. MRL is especially well suited

to continuing problems in which an agent is never “done” pursuing certain goals. For

example, for the entire time it is operating a self-driving car will need to avoid other

vehicles, optimize speeds for road conditions subject to speed limits, maximize fuel

economy, minimize travel time, and so on.

MRL is a developing field with few algorithms and a small number of program-

ming systems attempting to make MRL usable for working programmers. Currently

available algorithms for MRL and programming systems based on them suffer from

a reward coupling problem: modules used within the same agent must be authored

together to ensure reward scales are comparable. This reward coupling is an imped-

iment to module reuse in practical software engineering because an existing module

can not simply be reused in a new context without re-engineering its reward function.

Our work solves this problem with a reformulation of MRL and an algorithm that

makes module reuse possible, and integrates this new kind of MRL in a practical

programming language.

4

1.4 Contributions

The work presented in this dissertation marries artificial intelligence and software

engineering in a way that advances both fields. The needs of practical software

engineering for reuse and composability inspires a new AI algorithm for modular

reinforcement learning. Integrating this new formulation of modular reinforcement

learning and associated algorithms into a programming language enables a new kind

of software engineering: modular adaptive agent programming. In particular, this

work makes the following contributions:

• We explain a problem with the current state of the art in modular reinforce-

ment learning, namely, that performance degrades if modules have differing,

incomparable reward scales. While there may be other incompatibility prob-

lems, such as synchronization and impedance mismatch, we focus on reward

incomparability because our goal is to enable independently authored modules.

• We empirically demonstrate the performance degradation of modular reinforce-

ment learning agents whose modules have incomparable reward scales.

• We present an analysis of the shortcoming of current approaches to modular

reinforcement learning based on Arrow’s Impossibility Theorem for social choice

in order to frame our solution.

• We reformulate the modular reinforcement learning problem as one of command

arbitration instead of merging MDPs or Q-functions.

• We present a command arbitration algorithm – Arbi-Q – that uses our theoret-

ically grounded reformulation of modular reinforcement learning.

• We empirically demonstrate that modular reinforcement learning agents using

Arbi-Q exhibit no performance degradation when modules have incomparable

5

reward scales.

• We present a Scala-embedded domain-specific language – AFABL – that in-

tegrates modular reinforcement learning and our Arbi-Q command arbitration

algorithm.

• We demonstrate and quantify the value of integrating modular reinforcement

learning into a programming language to practical software engineering in a

programmer study applying AFABL in a synthetic agent programming domain.

• We apply AFABL to a practical problem in psychology-based human agent

modeling to demonstrate AFABL’s practical potential.

1.5 Outline

In the following chapters we present the two major contributions of this disserta-

tion: command arbitration for modular reinforcement learning and a practical agent

programming language that integrates modular reinforcement learning: AFABL. For

both major contributions there is a chapter providing the necessary background, then

a chapter presenting our contributions. Related work is provided in each chapter

where it is most relevant rather than gathered in a single place.

Chapter 2 provides background information in modular reinforcement learning

and existing approaches to modular reinforcement learning.

Chapter 3 presents an empirical demonstration of the performance degradation

of modular reinforcement learning agents whose modules have incomparable reward

scales. Arrow’s Impossibility Theorem for social choice provides an explanation for

the failure of existing approaches to modular reinforcement learning and a framework

for our solution. We present our solution, the Arbi-Q command arbitration algo-

rithm, and empirically demonstrate that it does not exhibit the same performance

6

degradation as existing approaches to modular reinforcement learning.

Chapter 4 provides background information on software engineering that moti-

vates the use of modular reinforcement learning in building practical software systems,

and the integration of modular reinforcement learning into a programming language.

Chapter 5 presents a programming language, AFABL, which integrates modular

reinforcement learning. AFABL, a domain-specific language embedded in the Scala

language, allows programmers to write adaptive software agents in a declarative style

using elements of modular reinforcement learning: modules with states, actions, and

rewards. We present the results of a programmer study that shows the value of

integrating reinforcement learning into a programming language: AFABL agents are

less complex, easier to write, and easier to adapt to changes in the environment.

Chapter 8 presents a practical application of AFABL that further demonstrates

the usefulness of integrating modular reinforcement learning into a programming lan-

guage.

Chapter 9 concludes the dissertation by reviewing how the central theses of this

dissertation were confirmed and the present work’s context, limitations, and conse-

quences and discuss directions for future work.

7

8

CHAPTER 2

BACKGROUND IN REINFORCEMENT LEARNING

The field of reinforcement learning is large and growing. In this chapter we provide the

background in reinforcement learning and modular reinforcement learning necessary

to understand our work and place it in context.

2.1 Monolithic Reinforcement Learning

One can think of reinforcement learning (RL) [1, 2] as a machine learning approach

to planning, that is, as a way of finding a sequence of actions that achieves a goal. In

RL, problems of decision-making by agents interacting with uncertain environments

are usually modeled as Markov decision processes (MDPs). In the MDP framework,

at each time step the agent senses the state of the environment and executes an

action from the set of actions available to it in that state. The agent’s action (and

perhaps other uncontrolled external events) cause a stochastic change in the state

of the environment. The agent receives a (possibly zero) scalar reward from the

environment. The agent’s goal is to find a policy; that is, to choose actions so as to

maximize the expected sum of rewards over some time horizon. An optimal policy is

a mapping from states to actions that maximizes the long-term expected reward. In

short, a policy defines which action an agent should take in a given state to maximize

its chances of reaching a goal.

9

2.1.1 Markov Decision Processes

The basic Markov decision process is a 3-tuple,

〈S,A, T (s, a, s′)〉 (2.1)

where

• S is a set of states,

• A is a set of actions, and

• T (s, a, s′) is a transition function which gives the probability that executing

action a in state s will result in s′.

Most definitions of MDPs include a reward function, R(s, a, s′) which specifies the

reward that the world provides to an agent for taking action a in state s and arriving

in state s′ or, equivalently, a reward for arriving in state s, R(s). Some definitions of

MDPs include an initialization function, I(s), which specifies the probability the the

agent will start in some state s ∈ S, others specify a particular state from S as the

start state.

We prefer to think of the basic 3-tuple MDP as representing the states and state

transition dynamics of a world, and an agent solving a Markov Decision Problem which

adds the reward function, initialization function, and discount factor – the rate at

which long-term rewards are discounted compared to short-term rewards, usually 0.9.

This distinction between Markov Decision Processes and Markov Decision Problems

leads to a more natural expression of worlds and agents for programmers who are

not familiar with the underlying theory of reinforcement learning. For example, most

people would not include a single universal reward function as part of the “world”

because different agents may value states differently. Similarly, different agents may

10

have a shorter or longer term view of decision optimality and thus different discount

factors. Separating the world dynamics from the agent’s use of the world dynamics

doesn’t change the reinforcement learning algorithms, but as we will see in Chapter

5, separating worlds from agents is useful in practical programming.

The solution to a Markov Decision Problem is a policy, denoted π, which is a

mapping from states to actions. The policy says, for any state, what is the best

action to take in order to maximize the agent’s long term reward.

2.1.2 Long Term Reward

Acting optimally in the world means maximizing your long term reward. In the MDP

setting there are many ways to compute long term reward depending on whether you

consider rewards gained during a finite or infinite time horizon, can depend on there

being a terminal state the agent is guaranteed to reach, or whether the agent’s task

is episodic or continuing. The most commonly used formulation of long term reward

is geometrically discounted rewards over an infinite time horizon, which works for

episodic tasks, continuing tasks, and results in stationary policies, that is, policies

that depend only on the current state no matter the time step in which the state is

visited:

Rt =
∞∑
k=0

γkrt+k+1 (2.2)

where Rt is the long-term sum of rewards at time step t, rt+k+1 is the one-step

reward for a particular step in the future, and γ is a discount factor less than 1 which

causes short-term rewards to be more important than rewards received in the future.

We use this conception of long term reward to calculate the values of states.

11

2.1.3 Value Functions

A value function assigns a number to each state indicating how good is it for an

agent to be in that state. If you know the values of all the possible next states of

your current state, then the action you should take is the action most likely to get

you into the next state having the highest value.

The value of a state (or state, action pair) under a particular policy π is the

expected long term reward an agent would get starting from state s if it followed π.

The value is computed from the rewards and state transition dynamics of a world as

follows:

V π(s) = E

[
∞∑
t=0

γtR(st)

]
(2.3)

State value functions form the basis of dynamic programming approaches to solv-

ing MPDs. The reinforcement learning algorithms we discuss in Section 2.1.6 use

action value functions, which assign values directly to the actions available in a given

state.

2.1.4 Optimal Policies

Since some states have higher values than others, and some actions have higher prob-

abilities of causing transitions to higher-valued successor states, there is an optimal

action in each state, namely, the action most likely to cause a transition to the highest-

valued successor state. The optimal actions in each state is the optimal policy:

π∗(s) = argmax
a∈A

∑
s′

T (s, a, s′)V (s′) (2.4)

There may be many optimal policies for a given MDP, but without loss of gener-

ality we usually simply say “the optimal policy.”

12

2.1.5 Solving MDPs with Dynamic Programming

If you have the full MDP – you know the transition function and reward function

– you can solve for the value of each state using value iteration, from which the

optimal policy is derived, or find the policy directly using policy iteration. Although

a practical reinforcement learning agent usually does not have the full MDP model,

the theory of dynamic programming is useful in understanding reinforcement learning

algorithms.

Value Iteration

Previously we defined the value of a state under a particular policy. If we assume

the optimal policy, we can define the maximum value of a state in terms of optimal

actions:

V (s) = R(s) + max
a∈A

∑
s′

T (s, a, s′)V (s′) (2.5)

This equation is called the Bellman optimality equation [3, 4]. There is one

Bellman equation for each state – n equations in n unknowns (the values) for a state

space of size n. However, since the max operator is nonlinear we cannot solve the

system of simultaneous Bellman equations using linear algebra. One solution is to

use an iterative dynamic programming approach: value iteration. The value iteration

algorithm initializes each state’s value to a random value, then iteratively update these

values by turning the Bellman equation into an update rule (the Bellman update):

Vi+1(s)← R(s) + max
a∈A

∑
s′

T (s, a, s′)Vi(s
′) (2.6)

These updates are applied at the same time for all states, i.e., the values in

iteration i + 1 are calculated from the values in iteration i. The value iteration

13

algorithm is shown in Algorithm 2.1

Algorithm 2.1 Value Iteration

V ← random initial values
repeat

V ′ ← V
for each s ∈ S do

V ′(s)← R(s) + maxa∈A
∑

s′ T (s, a, s′)V (s′)

V ← V ′

until V changes by a sufficiently small amount

If we apply the Bellman update infinitely often, then value iteration reaches an

equilibrium at which point the values of the states are solutions to the Bellman

equations, that is, they are optimal. A policy derived from these values is an optimal

policy.

In practice we may iterate until the updated values change by a sufficiently small

amount. If all we care about is finding the optimal policy, then it does not matter

that we find the optimal values, only that the values we find lead to the same optimal

policy.

Policy Iteration

In policy iteration [5] we start with a random initial values and policy and alternate

between two steps for each iteration i:

• Policy evaluation. Use policy πi to calculate the values of each state using

the discounted current values of their successor states. Since we are calculating

the values under a particular policy, we drop the max operator:

Vi+1(s) = R(s) + γ
∑
s′

T (s, a, s′)V (s′) (2.7)

• Policy improvement. Calculate policy pi+1 using the values calculated in the

previous step.

14

When policy improvement does not change the policy, an optimal policy has been

found and policy iteration terminates.

Note that since the update equation used in policy evaluation is linear, we can

use linear algebra to solve the set of simultaneous linear equations in O(n3). This

method works fine for smaller state spaces but may be too expensive for large state

spaces. A solution to this problem is known as modified policy iteration [6, 7], which

combines policy iteration with value iteration by using a bounded number of Bellman

updates to perform the policy evaluation step.

2.1.6 Learning Policies via Reinforcement Learning

If the agent does not have the model, then the agent must learn a behavior policy

by interacting with the world by taking actions, observing the effects of these actions

(state transitions and reward signals), and using these observations to update some

model of the world that can be used to guide future behavior. Unlike the MDP

solvers discussed previously which calculate values for every state in every iteration,

reinforcement learning agents choose which states to visit and often do not visit every

state, leading to a central issue in reinforcement learning: exploration vs. exploitation.

Much of the reinforcement learning information in this section can be found in the

excellent introductory book by Sutton and Barto [1], the survey by Kaelbling and

colleagues [2] or even a general AI textbook such as the excellent book by Russell and

Norvig [8]

Exploration versus Exploitation

Exploration means visiting some state of the world you have not yet visited. Eating

at a restaurant or ordering a dish you have not tried to see if you like it is an example

of exploration. Exploitation means using knowledge already learned. Eating a dish

you know you like at a restaurant you know you like is an example of exploitation.

15

The exploration versus exploitation question is one of risk versus reward: exploration

risks wasting effort on a possibly bad outcome, exploitation trades that risk for a

known reward but risks missing a discovery of something better.

In the case of reinforcement learning exploration means taking an action in a

state that may take the agent to a state not yet visited. Exploitation means using

the agent’s current value estimates to choose an action. We call exploitation greedy

action selection because it chooses an action that is likely to result in higher reward.

There is a saying in machine learning: the less you know the less you should trust

your knowledge, the more you know the more you should trust your knowledge. A

reinforcement learning agent should favor exploration early in its learning process and

exploitation after its model of the world stabilizes.

Implementing an exploration strategy in a reinforcement learning algorithm can

be done using softmax action selection such as a Boltzmann distribution, which uses

a decaying temperature parameter similar to annealing to gradually decrease the

randomness of action selection, or by a simpler method known as ε-greedy action

selection. ε is a real number in (0, 1) that represents the probability of choosing an

action randomly (exploring). ε is decayed over time so that action selection favors

exploration early in the learning process and exploitation later. We use ε-greedy

action selection in our algorithm implementations.

Q-Learning

An alternative value function assigns values to state-action pairs instead of states.

Such a function is called a Q-function, and the optimal Q-function is defined as:

Q∗(s, a) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′) (2.8)

which means that the value of taking action a in state s is the reward received

from state s plus the discounted probabilistic sum of the Q-values of successor states

16

assuming that optimal successor action a′ are taken in the successor state s′.

An important consequence of learning a Q-function instead of a state-value func-

tion is that, although Q-values can be defined as above, a reinforcement learning

agent can approximate the Q-function using temporal difference learning which does

not require the model. A reinforcement learning agent only needs to know the Q-

values because the purpose is only to learn a policy which is derived directly from

the Q-function. This is the idea behind the Q-learning algorithm [9], which uses the

following temporal difference update rule:

Q(s, a)← Q(s, a) + α[R(s) + γmax
a′

Q(s′, a′)−Q(s, a)] (2.9)

α is a learning rate parameter. Temporal difference algorithms like Q-learning

use the differences between Q-values in successive states to update Q-values in each

iteration. Like value and policy iteration, Q-learning has been shown to converge to

Q∗ in the limit with infinite exploration. In practice developing a close approximation

to Q∗ isn’t necessary as long as the same policy results.

Algorithm 2.2 Q-Learning

Q← random initial values
for each episode do

s← world.initialState()
repeat

a← ε−greedy action for s from π derived from Q
Execute a, observe effects r and s′

Q(s, a)← Q(s, a) + α[R(s) + γmaxa′ Q(s′, a′)−Q(s, a)]
s← s′

until s is terminal

Sarsa

Because it uses the best successor Q-value in its update rule, Q-learning is an off-

policy learning algorithm, meaning that it does not use the policy being followed by

17

the agent. A close relative of Q-learning is the Sarsa algorithm [10], which is an

on-policy algorithm that uses the following update rule:

Q(s, a)← Q(s, a) + α[R(s) + γQ(s′, a′)−Q(s, a))] (2.10)

Sarsa gets its name from the elements of its update rule: s, a, r, s′, a′. The key

difference is that the Q(s′, a′) from the agent’s policy is used in the update rule.

Algorithm 2.3 Sarsa

Q← random initial values
for each episode do

s← world.initialState()
a← ε−greedy action for s from π derived from Q
repeat

Execute a, observe effects r and s′

a′ ← ε−greedy action for s′ from π derived from Q
Q(s, a)← Q(s, a) + α[R(s) + γQ(s′, a′)−Q(s, a))]
s← s′

a← a′

until s is terminal

Q-learning has the advantage of being able to learn an optimal policy even if the

control policy during learning is poor. The advantage of Sarsa over Q-learning is that

if the agent does not have full control over action selection, Sarsa will learn a policy

that is optimal in the presence of external control over action selection, such as other

(sub)agents. For this reason, Sarsa is used in modular reinforcement learning.

2.2 Decompositional Reinforcement Learning

Decomposition is an important tool in designing software systems in general, and as

we will see in Section 2.2.2 a necessity for larger state spaces likely to be encountered

in real-world problems. Hierarchical reinforcement learning (HRL), discussed first

below, has had as a primary goal improved authoring based on temporal subgoals

that allows intermediate tasks to be modeled as higher-level actions. HRL has also

18

formed the basis of current approaches to RL-based programming systems. Modular

reinforcement learning (MRL) decomposes the original problem concurrently, model-

ing an agent as a set of concurrently running reinforcement learning modules. MRL

has been used primarily to model multiple-goal problems and to deal with large state

spaces. This work is the first to use MRL as the basis of a practical programming

system and validate its advantages to working programmers scientifically.

2.2.1 Hierarchical Reinforcement Learning

Current implementations of partial programming are based on hierarchical reinforce-

ment learning (HRL), which exploits a temporal decomposition of the Q function. In

the case of HRL, the designer typically specifies a delegation hierarchy of components

with points of adaptation where a policy is learned to perform the delegation. The

designer programs the policies of some of these components, which constitute a partial

specification of the agent’s behavior, and some of the components use reinforcement

learning to adapt to the hierarchy by learning the control policies for their parts of

the problem. The adaptive components relieve the designer from writing the parts of

the program that are hard to specify, or require difficult to write adaptivity, and the

partial program constrains the learning problem faced by the adaptive components,

which speeds convergence. Components can be reused in other contexts, providing

for modularity in temporal problem decompositions.

The current state of the art in HRL is based on the theory of Semi-Markov

Decision Processes (SMDPs). In an SMDP some actions are allowed to take more

than one time step. These multi-step actions, sometimes called macros, subroutines,

options, or hierarchical machines represent a form of procedural abstraction that

may allow a programmer to write reinforcement learning agents in a manner similar

to writing other kinds of computer programs. The SMDP-based thread of research

in HRL also includes work in developing programming languages and systems that

19

exploit HRL models, making this line of research particularly relevant to our work.

Precup’s Options [11, 12, 13] framework develops a detailed theory of temporal

abstraction based on SMDPs. Dietterich’s MAXQ [14, 15] and Hierarchical Ab-

stract Machines [16] models decompose an MDP into a hierarchies of smaller MDPs.

These smaller MDPs represent subroutines in the MAXQ framework or HAMs in the

Hierarchical Abstract Machines framework. Andre’s Programmable Hierar-

chical Abstract Machines [17, 18] develops a programming language for HAMs

called ALisp (Adaptive Lisp), and Marthi and colleagues [19] extend ALisp (Con-

current ALisp) for single reinforcement learning agents with multiple simultaneous

actions, such as as robots with multiple effectors or a controller for multiple characters

in a computer game.

2.2.2 The Curse of Dimensionality in Reinforcement Learn-

ing

As with other kinds of machine learning, reinforcement learning must deal with the

curse of dimensionality. In reinforcement learning the curse of dimensionality man-

ifests itself primarily in the size of the state space, namely, the state space grows

exponentially in the number of state features. As an example, consider the 5× 5 grid

of the bunny world in Figure A.1.

The bunny, food, and wolf can be in one of 25 possible locations. If the task of

the bunny were only to reach a particular location, then the number of states would

be 25. But if you add the task of avoiding a wolf that pursues the bunny, then the

state space grows to 252 = 625. Add the food that reappears in a new location after

it is found and “eaten” and the state space grows to 253 = 15625. If you model this

problem as two separate modules, one in which the bunny avoids the wolf and another

in which the bunny finds food, then each module solves a problem with a state space

of 252 = 625 states (bunny plus wolf and bunny plus food).

20

Figure 2.1: In the grid world above, the bunny must pursue two goals simultaneously:
find food and avoid the wolf. The bunny may move north, south, east, or west. When
it finds food it consumes the food and new food appears elsewhere in the grid world,
when it meets the wolf it is eaten and “dies.”

2.2.3 Modular Reinforcement Learning

A second kind of decomposition in reinforcement learning, which is somewhat con-

fusingly referred to as modular reinforcement learning (MRL) [20, 21], decomposes

the original problem concurrently rather than temporally. Instead of composing se-

quential actions into subsequences, a MRL agent is decomposed into several modules

each of which is concurrently learning a different subgoal of the original, complex,

multiple-goal learning problem. The architecture of an MRL agent is reminiscent of

Brooks’s subsumption architecture [22], where an agent is decomposed into several

modules that each receive sensor input and each independently suggest an action for

the overall agent to take (Brooks refers to these modules as layers). As we will soon

discuss, our approach uses Brooks’s idea of a central arbitrator to choose the agent’s

actions from the suggestions of its modules.

There have been two major kinds of approaches to modular reinforcement learning:

merging MDPs [23], and merging Q functions [21, 20]. Since we are interested in

applying reinforcement learning in practical domains where we can not assume, or do

21

not want to require, complete knowledge of the world’s state transition dynamics, we

focus on approaches to MRL that merge Q-functions.

In an MRL agent each module observes the action taken by the agent, the state

transition and a reward signal specific to the module. On each occasion that a decision

for what action to take is needed, the agent combines the action preferences of the

modules to compute the output of the joint policy. The current state of the art in

modular reinforcement learning uses the the Q-values of the modules directly to effect

this action selection. The joint policy is derived from a joint Q-function in which the

Q-values for each module are added.

Qjoint(s, a) =
∑

Qi(s, a) (2.11)

Russel’s and Zimdars’ Q-decomposition [20] is equivalent to Sprague and Bal-

lard’s GM-Sarsa [21]. In this work we will refer mostly to GM-Sarsa. Both of these

investigations of Q-function (de)composition showed that Sarsa is a better choice for

agent modules than Q-learning because Sarsa is on-policy. As we discussed earlier,

Sarsa updates its Q-function based on the policy being followed by the agent where

as Q-learning updates its Q-function assuming the optimal policy will be followed.

Because modules do not have direct control over the policy being followed, on-policy

learning algorithms like Sarsa perform better. For this reason, and so we can compare

directly to GM-Sarsa, we also use Sarsa in our modules.

There is clearly a desire to model agents with multiple goals represented as rein-

forcement learning modules. We list only a few examples here. Sprague and Ballard

have applied GM-Sarsa to problems in eye movement scheduling [24, 25]. Konidaris

and Barto applied an algorithm derived from GM-Sarsa to adaptive robot control

[26]. Aissani and colleagues used GM-Sarsa to develop a system for dynamic schedul-

ing of maintenance tasks in the petroleum industry [27, 28]. Rowe and colleagues

used GM-Sarsa for interactive narrative planning [29]. All of the work applying MRL

22

has been done by single teams of researchers applying MRL to research problems.

Thus, modules were authored together with comparable reward scales. To support

reusability in a software engineering sense we need to support the separate authoring

of modules. Separately authored modules may use reward scales that are internally

consistent within modules but incomparable to the rewards used in other modules.

In the next chapter we show that existing approaches to MRL degrade when modules

use incomparable reward scales and present an algorithm that does not exhibit the

same degradation.

23

24

CHAPTER 3

ROBUST COMMAND ARBITRATION FOR MODULAR

REINFORCEMENT LEARNING

In this chapter we demonstrate the performance degradation of modular reinforcement

learning agents whose module have incomparable reward scales. Arrow’s Impossibility

Theorem for social choice provides an explanation for the failure of existing approaches

to modular reinforcement learning and a framework for our solution. We present our

solution, the Arbi-Q command arbitration algorithm, and empirically demonstrate

that it does not exhibit the same performance degradation as existing approaches to

modular reinforcement learning.

3.1 Modular reinforcement learning

In the previous chapter we explained the state of the art in modular reinforcement

learning as a decomposition of an implicitly global Q-function in to additive modules.

To support software engineering we would like these components to be truly modular.

In particular, we would like the components to be reusable and easily understood by

agent authors. Unfortunately, current approaches implicitly require a global, mono-

lithic reward signal, which detracts from these properties. In particular, it detracts

from the ability of the agent author to locally define the reward for a component

because the reward scales of other modules must be taken into account.

Like any software engineering, agent programming would benefit from modularity.

Truly modular reinforcement learning would facilitate speed of learning convergence,

state abstraction, and transfer – a module written in one context can be reused in an-

other context because the component is dependent only on its own local reward signal.

25

In this section we discuss the difficulties that current approaches face in achieving true

modularity and present a new formulation which solves the core problem in Section

3.2.

3.1.1 Merging local signals

Difficulty arises when multiple single goals are being combined in a larger, multi-goal

learning problem. Take AvoidWolf and FindFood for instance; it is fairly straightfor-

ward to code an internally consistent reward signal for each. However, it is unclear

how to combine the two into the larger task of LiveLong. For example, if there is

no penalty for failing to eat within a certain time period (starvation), then the ob-

vious policy is to avoid the predator and ignore the food. Such a degenerate case

could also happen if the reward signal for one learning module were scaled without

re-engineering the other reward signals in the system, a problem explained by Bhat,

et., al. [30]. For example, one could imagine swapping-in a new AvoidWolf module

with a reward several times higher than the previous module, such that avoiding the

predator always carries higher reward than finding the food. In this case, a delegat-

ing agent would favor AvoidWolf to the near exclusion of FindFood. The ability to

substitute learning modules without modifying the rest of the system is one of the

primary benefits of true modularity, and this modularity is difficult to achieve if local

reward signals must be merged.

3.1.2 Ideal Action Selection is Impossible

Aside from the practical challenges cited above, Bhat, et., al. [30] showed that ideal

action selection is impossible in full generality because the problem reduces to Arrow’s

Paradox [31]: an agent is a “society” of modules, and action selection is social choice.

The problem is that we want the action selection mechanism to have the following

reasonable properties:

26

• Universality: the ability to handle any possible set of modules.

• Unanimity: guarantee that if every module prefers action A, action A will be

selected.

• Independence of Irrelevant Alternatives: each module’s preference for

actions A and B are independent of the availability of any other action C. This

property prevents any particular module from affecting the global action choice

by dishonestly reporting its own preference ordering.

• Scale Invariance: ability to scale any module’s Q-values without affecting the

arbitrator’s choice. This is the crucial property that allows separately authored

modules with incomparable reward signals.

• Non-Dictatorship: no module gets its way all the time.

[32]

According to Arrow’s Paradox, if |A| ≥ 3, then there does not exist an arbitration

function that satisfies each of the properties listed above. So even simple agents with

more than three actions are too complex for theoretically ideal arbitration. This dis-

sertation contributes a novel formulation of MRL and an algorithm that implements

it, which we discuss in Section 3.3.

3.2 Reformulating MRL

Bhat, et., al., [30] argued for a “benevolent dictator”, a special module executing a

command arbitration function for action selection but left the arbitration algorithm

unspecified. Here we present a command arbitration algorithm embodying the ideas

in [30] and show that it performs competitively with other MRL algorithms and shows

superior robustness to module modification. This robustness to module modification

27

is the chief enabler of truly modular reinforcement learning in which modules can

be transferred from one system to another without having to re-engineer the reward

signals to fit the new host system.

This formulation relaxes the non-dictatorship requirement of ideal action selec-

tion if you think of the arbitrator as a special module. By Arrow’s theorem, other

properties will still hold. In the next section we present our Arbi-Q algorithm based

on this practicalized arbitrator-based framework.

3.2.1 Formalization

Our reformulation of MRL adds a command arbitrator [22], Bhat’s “benevolent dic-

tator” module. The arbitrator has a state space that may be the same as or different

from the modules’ state spaces, an action set that represents choosing a module,

ACA = 1...n, and a reward signal that represents the “greater good.” The arbitra-

tor’s reward function, Ra(s), is independently defined rather than being derived from

the module rewards. It is now another part of the problem specification; in the partial

programming setting, this corresponds to Ra(s) being human-authored. Note that

Ra(s) may or may not be equal to the sum of the rewards of the agent’s modules. In

fact, the module rewards Ri(s, a) may not have any correlation with the arbitrator’s

reward Ra(s).

The agent’s policy is defined indirectly by the arbitrator’s policy, πCA(s, a), which

assigns probabilities to the selection of each module’s preferred action for each state.

For the agent author, this formulation adds the requirement of authoring a dedi-

cated reward signal for the arbitrator. For our bunny agent, this is LiveLongProsper:

• Why avoid predator, why eat? To live longer.

• Encodes the tradeoffs between modules – perhaps food is more important to

some bunnies.

28

• The arbitrator could be hand-authored, or could be another RL agent.

For the small cost of authoring a reward signal that represents the “greater good”

you get true modularity, that is, the ability to combine separately authored modules

with incomparable rewards. This new reward signal is now the metric we use to

measure the performance of the agent.

In our MRL framework an agent is an arbitrator plus a list of modules. Formally,

an agent consists of the following elements:

1. A reward function for the command arbitrator, RCA(s),

2. An action set A for the agent as a whole, shared by each module,

3. A set of reinforcement learning modules, M

4. A state abstraction function, moduleStatei for each module mi

5. A reward function, rewardi for each module mi

In the next section we present a reinforcement learning-based command arbitra-

tion algorithm.

3.3 The Arbi-Q Command Arbitration Algorithm

Our reformulation of MRL is based on an independently specified arbitrator [22] that

is itself a reinforcement learner. The state space for the arbitrator is the world state

– no state abstraction is used for the arbitrator. The arbitrator’s action set, ACA,

is a set of integer indexes to the agent’s list of modules (we use CA in subscript to

refer to the command arbitrator and numbers or i to refer to modules). As with any

reinforcement learner, the arbitrator learns a policy. In the case of the arbitrator this

policy, πCA is a mapping from states to modules. The modules’ policies are mappings

29

from abstracted module state to actions in the world, that is, the agent’s actions.

The policy defines which module chooses the agent’s action in a particular state.

Arbi-Q uses the Sarsa Q-Learning algorithm to learn the arbitrator’s policy. At

each time step the arbitrator uses its policy to select a module, then the module uses

its local policy to select an action that the agent executes. The results of executing the

action are communicated to the arbitrator as a consequence of the module selection,

and to the modules as a consequence of action selection. Each module uses a state

abstraction function to transform the world state into the the subset of the state

relevant to the module, and a reward function that is based on the module’s state

abstraction. In this way the modules are coupled to the world in which they operate

– the modules can only operate in worlds which contain the state features expected

by its state abstraction function – but the modules are not coupled to other modules

or to an arbitrator. The Arbi-Q algorithm is detailed in Algorithm 3.1

Algorithm 3.1 Arbi-Q

QCA ← random initial values
for each module i do

Qi ← random initial values

for each episode do
s← world.initialState()
m← ε−greedy action for s from πCA derived from QCA . choose module
sm ← moduleState(s) . abstract state for module
a← ε−greedy action for sm from πm derived from Qm

repeat
Execute a, observe effects rCA and s′

m← ε−greedy action for s from πCA derived from QCA . choose module
sm ← moduleState(s) . abstract state for module
a′ ← ε−greedy action for s′ from π derived from Q
QCA(s, a)← QCA(s, a) + α[RCA(s) + γQCA(s′, a′)−QCA(s, a)]
for each module i do

s′i ← moduleState(s′) . abstract state for module
ri ← reward(si) . module-specific reward
Qi(s, a)← Qi(s, a) + α[ri + γQ(s′i, a

′)−Q(si, a)]

s← s′

a← a′

until s is terminal

30

3.4 Experiments

Our principal claim is that Arbi-Q is robust to modules with incomparable reward

scales, which would be an authoring error in existing MRL approaches. Our exper-

iments show that GM-Q/Q-decomposition degrades when modules are modified to

have incomparable reward scales and that Arbi-Q is robust to such modification.

3.4.1 Bunny-Wolf World

We use a world derived from Sprague and Ballard [21]. In Bunny-Wolf world, our

agent is a bunny that must eat food and avoid being eaten by a wolf. The bunny world

is a continuing world rather than an episodic world. There is no specified start state

and there is no termination of episodes. When the bunny finds and eats food, a new

food item appears elsewhere. When the wolf eats the bunny the bunny “respawns”

in a new location, similar to video games. We can represent such a bunny agent in

our formulation as follows:

• Module 1: FindFood. The bunny agent must find food in order to continue

living. When the bunny finds food it gets a reward of 1.0. In each step that it

does not eat the bunny gets a reward of -0.1 to represent increasing hunger.

• Module 2: AvoidWolf. The bunny agent must avoid the wolf. Meeting the wolf

gives the bunny a reward of -1.0. In each time step that the bunny avoids the

wolf the bunny receives a reward of 0.1.

• Agent’s overall goal (implemented in arbitrator): LiveLongProsper – get as

much food per time step as possible, which will require balancing food finding

with wolf avoidance. The arbitrator’s reward function is 0.0 for meeting the

wolf, 1.0 for finding food, and 0.5 for each step in which the wolf is avoided

but no food is eaten. This is the same as the score used to evaluate algorithm

31

performance (discussed below). Using the score makes sense because the score

is the overall goal of the agent.

To facilitate comparison between Arbi-Q and GM-Sarsa we use a performance

metric – a score – that is independent of the reward received by any modules or agents

as a whole. The learning of the modules is still guided by their reward functions,

but an independent score is necessary for comparison between algorithms to avoid

coupling their reward scales. The score we use is 0.0 for meeting the wolf, 1.0 for

finding food, and 0.5 for each step in which the wolf is avoided but no food is eaten.

We validate Arbi-Q’s performance by comparing it with Greatest Mass Sarsa,

which is a Q-decomposition algorithm that orders actions by their summed Q-value,

Xa =
∑

j Qj(s, a). We evaluate each algorithm similarly to Sprague and Ballard [21].

We run each learning algorithm for n steps, suspending learning every n/100 steps

to evaluate performance. Performance is evaluated by running the greedy policy in

the world for 1000 episodes and calculating the average score per time step. Each

algorithm used a discount rate of 0.9 and ε-greedy action selection during training

with ε linearly discounted from 0.4, as in Sprague and Ballard’s experiments.

For baselines, GM and Arbi-Q algorithms used modules with similarly scaled

rewards. For robustness validation, we scaled the AvoidWolf module reward by 10

to simulate the swapping out of separately-authored learning modules. We believe

that a truly modular arbitrator function should handle such module modification

without serious degradation of performance. Otherwise, any time a learning module

were modified, the arbitrator, and possibly all the other modules, would need to be

modified to ensure compatibility.

32

3.5 Results

Empirical results show that the performance of GM-Sarsa degrades when the reward

scales of the modules are not comparable. The learning curves depicted in Figure 3.5

show that GM-Sarsa bunny agent with incomparable reward scales for its modules

converges to a lower score than with comparable rewards.

Figure 3.1: Performance of GM-Sarsa/Q-decomposition on the bunny-wolf problem.
The learning curves show that Greatest Mass command arbitration degrades signifi-
cantly when its module rewards are incomparable.

3.5.1 How GM-Sarsa Degrades with Incomparable Rewards

To illustrate how GM-Sarsa degrades when modules have incomparable reward scales,

consider a simplified example of the composite Q-values computed by GM-Sarsa with

comparable rewards (B is for bunny, F is for food, W is for wolf):

33

B W F

FindFood with Comparable Reward Scales

With comparable rewards the Q-value of moving right for FindFood would be (we

use deterministic state transition dynamics here for simplicity)

Q(s, Right) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′)

= −0.1 + 0.9(1.0)

= 0.8

because the max next action would find the food. The value of moving left would

be

Q(s, Left) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′)

= −0.1 + 0.9(0.8)

= 0.72

because the max next action would be Right, to get closer to the food.

34

AvoidWolf with Comparable Reward Scales

With comparable rewards the Q-value of moving right for AvoidWolf would be

Q(s, Right) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′)

= 0.5 + 0.9(−1.0)

= −0.4

because the next state meets the wolf. The value of moving left would be

Q(s, Left) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′)

= 0.5 + 0.9(0.5)

= 0.95

because the max next action would again avoid the wolf.

Composite GM-Sarsa Q-values with Comparable Reward Scales

Given the module Q-values above, the composite Q-values for the Right and Left

actions would be

Q(s, Right) = 0.8− 0.4 = 0.4

Q(s, Left) = 0.72 + 0.95 = 1.67

.

35

Given these composite Q-values the next action decided by GM-Sarsa would be

Left, which is correct because it avoids getting eaten by the wolf.

FindFood with Incomparable Reward Scales

If we scale the FindFood module’s rewards by 10, the Q-values for moving right and

left would be

Q(s, Right) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′)

= −1.0 + 0.9(10.0)

= 8.0

and

Q(s, Left) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′)

= −1.0 + 0.9(8.0)

= 6.2

Composite GM-Sarsa Q-values with Incomparable Reward Scales

Using the same AvoidWolf values as above and the scaled FindFood Q-values using

incomparable rewards the composite Q-values would be

Q(s, Right) = 8.0− 0.4 = 7.6

Q(s, Left) = 6.2 + 0.95 = 7.15

36

.

and the bunny would move right and get eaten by the wolf.

This example demonstrates how scaling the FindFood module’s rewards causes the

preferences of FindFood to dominate action selection, resulting in the bunny getting

eaten and not getting to the food.

3.5.2 How Arbi-Q does not Degrade with Incomparable Re-

wards

Figure 3.2: Performance of Arbi-Q on the bunny-wolf problem. Arbi-Q converges to
similar scores as GM-Sarsa and shows no degradation in performance when modules
have incomparable rewards, suggesting that it is amenable to “swappable” modules.

As Figure 3.5.2 shows, Arbi-Q does not exhibit any performance degradation

when the agent’s modules have incomparable reward scales. Arbi-Q does not use

the Q-values of its modules directly. Instead, Arbi-Q learns when it should listen

to a particular module. More precisely, Arbi-Q develops a probability distribution

37

for each state which says which module has the best advice in that state. Using

the example above with incomparable reward scales, the modules would learn the

same local policies using the same Q-values as above, but the arbitrator would learn

a policy based on Q-values for selecting modules that chose actions that resulted in

particular rewards for the agent as a whole. Our LiveLongProsper reward function

assigned 0 for getting eaten by the wolf, 1.0 for finding food, and 0.5 for avoiding the

wolf but not finding food. The resulting Q-values for the arbitrator for its actions of

choosing FindFood and AvoidWolf would be

Q(s, F indFood) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′)

= 0.5 + 0.9(0)

= 0.5

and

Q(s, AvoidWolf) = R(s) + γ
∑
s′

T (s, a, s′) max
a′

Q(s′, a′)

= 0.5 + 0.9(0.5)

= 0.95

and in this state Arbi-Q would delegate to the AvoidWolf module, which would

move left, which is correct.

So Arbi-Q learns that when the wolf is close AvoidWolf should decide the bunny

agent’s action, and when the wolf is comfortably distant FindFood should decide the

bunny agent’s action.

38

3.6 Related Work

Zhang, Song and Ballard [33] build on Sprague’s and Ballard’s earlier work on GM-

Sarsa to develop three algorithms for deriving a global policy from independent mod-

ules. Their first algorithm is simply GM-Sarsa/Q-decomposition. The second chooses

the action of the module with the greatest “weight”, where the weight of a module is

defined as the standard deviation of the modules Q-values for a state. The intuition is

that a module with higher standard deviation more strongly prefers its max action to

alternative actions. Their third algorithm is based on voting. Each module votes for

its optimal action, but the vote is weighted by the weight measure calculated from

its Q-values’ standard deviation. All of these algorithms still rely on the internal

Q-values of the modules and thus require comparable reward scales.

Rohanimanesh and Mahadevan extended the options HRL framework to concur-

rent settings in which multiple agents executing multiple simultaneous actions [34,

35]. Their work differs from ours in that their framework applies to a single agent

taking multiple actions or multiple agents taking simultaneous actions, whereas we

are concerned with a single agent executing a single action that is decided by multiple

reinforcement learning modules.

Marthi and colleagues [19] suggest extending their work in concurrent ALisp to

include the Q-decomposition algorithm of Russel and Zimdars [20], but this line of

research was not pursued. Lau and colleagues developed a modular reinforcement

learning system that uses a central coordinator for multiple concurrent MPDs [36].

Lau’s work differs form ours in that they develop a constraint system in the central

coordinator that limits the allowable actions of the component reinforcement learners,

thereby constraining their learning. Our approach does not require the arbitrator to

know details of component learners, and component learners require no explicit or

implicit knowledge of the arbitrator or the other components.

39

Due to the curse of dimensionality, abstraction of various kinds has long been

an active area of research in reinforcement learning. One thread in abstraction is

to use examples to guide abstraction. Zang and colleagues used examples of nearly

optimal action sequences, or trajectories, to dynamically discover options from data,

delivering speedups of up to 30 times in some cases [37]. Learning from demonstration

[38] uses human input to improve reinforcement learning performance. Zang and

colleagues developed a value function approximation algorithm that leveraged human

input to speed convergence for function approximation-based reinforcement learning

algorithms [39]. Cobo Rus and colleagues’ Abstraction from Demonstration technique

uses human demonstrations to infer state abstractions and builds policies based on

those state abstractions [40, 41, 42].

Another thread in abstraction seeks to use models from the physical world to create

abstractions of (simulated) physical state spaces. Cobo Rus and colleagues created

abstractions of state spaces by organizing state spaces into classes of objects and

using non-optimal Q-functions to estimate the risk of ignoring certain classes of ob-

jects. Cobo Rus’s Object-Focused Q-Learning (OFQ) achieved exponential speedups

in some cases [43]. Scholz and colleagues developed Physics-Based Reinforcement

Learning [44], which uses computational physics engines such as Box2D [45] as model

representations, resulting in more sample-efficient learning compared to traditional

object-oriented MDP approaches. Physics-based reinforcement learning was then

applied successfully in robotic mobile manipulation [46] and robot navigation [47]

applications.

3.7 Conclusion

In a software engineering sense, modularity means compositionality and reusability

in different contexts. To our knowledge, no other approach to modular reinforcement

40

learning permits general reuse of separately authored modules due to the requirement

of reward scale comparability. In addition to state and reward function abstraction,

the primary contribution of our reformulation of MRL and the Arbi-Q command

arbitration algorithm is the reusability afforded by reward scale decoupling. The

Arbi-Q command arbitration algorithm makes it possible for modules written by

different programmers with different reward scales to be used together within the

same modular reinforcement learning agent. As we will see in the next chapter, reuse

is an essential part of modern software engineering. With our MRL framework and

the Arbi-Q algorithm it is now possible to integrate modular reinforcement learning

into practical programming systems.

41

42

CHAPTER 4

BACKGROUND IN SOFTWARE ENGINEERING

Software engineering is the process of creating software that is correct, reliable, and

maintainable. This chapter provides background in software engineering that relates

to our work. In particular, we claim in the next chapter that AFABL provides two

benefits that have been central issues in software engineering: AFABL facilitates

reuse and reduces complexity. Here we discuss the issue of reuse in software engi-

neering and relate reuse to domain-specific languages, then briefly discuss complexity

measurement in software engineering. Finally, we close with a discussion of adaptive

programming.

4.1 Software Reuse

Software reuse was identified as a primary tool in improving software engineering

practice since the birth of the field of software engineering in 1968 [48]. Software

reuse means using an existing software artifact in a new software system, ideally

without modifying the original artifact [49, 50]. Reusable artifacts may be source

code libraries, components, programming languages, and application frameworks [51]

as well as concepts such as software schemas, architectures, and design patterns. The

benefits of software reuse seem obvious, and empirical studies have indeed shown that

reuse reduces defect rates, reduces refactoring costs, and increases productivity [52,

53]. In the next chapter we also quantify the reduction in code complexity afforded

by the AFABL DSL. DSLs, as we discuss below, are a particular kind of reusable

artifact.

Krueger presents a useful framework for understanding and assessing reuse tech-

43

niques. Of particular interest to our work, he discusses reuse techniques in terms of

cognitive distance, which he defines as an intuitive measure of the effort required to

use a reusable software artifact in the process of turning the concept of a software

application into a working system. The smaller the cognitive distance between a

reusable software artifact and the concept of the application program in which it is

to be reused, the more successful the reuse. Thus, abstraction is crucial to software

reuse, the higher the level of abstraction the better. Krueger proposes three tech-

niques for minimizing the cognitive distance in reusable software artifacts: “(1) using

fixed and variable abstractions that are both succinct and expressive, (2) maximizing

the hidden parts of the abstractions, and (3) using automated mappings from abstrac-

tion specifications to abstraction realizations” [49]. Krueger was the first to recognize

that high level languages such as C and Java are themselves examples of software

reuse – language constructs are abstraction specifications, assembly language or byte

code are abstraction realizations. DSLs (or VHLLs – Very High Level Languages – as

he called them) are also examples of software reuse that raise the level of abstraction

even higher, offering abstraction specifications that are entities in some problem do-

main such as set theory or circuit design. In the next chapter we will analyze AFABL

according to Krueger’s framework.

Gacek argues for creating domain-specific reference architectures to facilitate reuse[54].

A domain-specific application architecture identifies all of the components that com-

prise a software application for a particular domain and the interactions between the

components. A domain-specific language can be seen as a domain-specific architec-

ture, whose components are modeled as language abstractions. AFABL, in this sense,

is a domain-specific architecture for agents with multiple continuing goals.

44

4.1.1 Domain-Specific Languages

A domain-specific language (DSL) is a language that provides constructs and seman-

tics tailored to a specific problem domain. Specialized programming languages were

already widespread when Landin proposed the first unified framework for designing

domain specific languages in 1966 [55]. In Landin’s framework the design of a DSL

consists of two independent parts: the written form of the language, and the kinds of

abstractions that can be expressed in the language. Every language has an abstract

syntax, axiomatization, and an underlying abstract machine. Today many DSLs are

in widespread use for various application domains such as typesetting and manuscript

preparation (TEXand LATEX), circuit design (VHDL), web page authoring (HTML and

CSS), data exchange (JSON and XML), and many more.

Perhaps the most successful DSL, with which every reasonably literate software

engineer or computer scientist is familiar, is Structured Query Language (SQL). SQL

was originally presented as SEQUEL in 1974 by Chamberlin and Boyce of IBM Re-

search [56]. Today SQL is used in all significant relational databases and its ANSI/ISO

standard is on its third version. SQL has succeeded so completely because it provides

exactly the right abstractions and semantics for using relational databases.

Domain-specific languages provide two primary benefits in software engineering:

improving programmer productivity and improving communication with domain ex-

perts [57]. In Chapter 5 we show that AFABL improves programmer productivity

by reducing the effort required to write agents and reducing the complexity of agent

code. In Chapter 8 we present an application of AFABL to the domain of personality

modeling in psychology to demonstrate AFABL’s usefulness as a tool for bridging

specialist knowledge from a non-computing domain with computational models.

Hudak argued that a domain-specific language is the “ultimate abstraction,” pro-

viding abstractions and semantics tailored to a particular application domain, but

45

that languages are typically difficult to implement and difficult to evolve as the do-

main is better understood and changes need to be made to the language [58]. To

solve this problem Hudak argued for and demonstrated domain-specific embedded

languages, that is, DSLs embedded in a general-purpose host language, inheriting

the tooling, syntax, and semantics of the host language while adding domain-specific

constructs. Hudak used Haskell and showed how higher-order typed languages were

particularly well-suited for hosting DSLs [59]. For AFABL we used Scala, which has

similarities to Haskell, as we discuss in the next chapter.

Ward [60] proposed Language Oriented Programming as a way of organizing soft-

ware development. Instead of developing reusable libraries in a general purpose lan-

guage the software engineer develops a formal domain-specific specification of the

application, then implements this specification as a DSL. He calls the resulting soft-

ware development process “middle-out” development, where the DSL is created first

(the middle layer) then the DSL is implemented (the lower layer) and specific applica-

tions are developed using the DSL (the upper layer). He presents several examples of

this approach, including LATEX[61] as a collection of TEX[62] macros and Emacs [63],

which is essentially a Lisp interpreter with addressable memory buffers – what users

think of as the editor is actually implemented as a collection of Emacs Lisp functions,

making Emacs infinitely extensible. Neighbors was the first to propose domain lan-

guages specifically for the purpose of reuse [64]. Lorenz and colleagues tie together

the concept of reuse with Language Oriented Programming in software engineering

[65], comparing the effort and benefits of implementing and using internal versus ex-

ternal DSLs. They performed a case study in which they created an external DSL

(using a language workbench system called Meta-Programming System MPS [66])

and internal DSL using the experimental LOP language Cedalion [67] for the same

task (calculator software product line). They found that both approaches achieved

their code reuse goals but, while both DSLs took similar effort to use, the external

46

DSL took four times longer to implement. They concluded that internal DSLs should

be favored over external DSLs for most software development projects. Rosenan ar-

gues that host languages themselves can be designed with internal DSL creation in

mind – a kind of “Language-Oriented Programming language” – and presents a LOP

language as a proof of concept [67]. As we discuss in the next chapter, while not

explicitly advertised as an LOP language, hosting DSLs has been a design goal of the

Scala language that we use to host AFABL.

There are downsides to using DSLs in application development. Creating a DSL

takes time and effort. If productivity is a concern, then a DSL should only be cre-

ated if it will be used in a sufficient number of projects that the sum of the cost

savings in those projects outweighs the cost of creating the DSL. Related this this

concern, implementing DSLs, whether internal or external, requires significantly more

programming expertise than application or even traditional library development. Fi-

nally, DSLs require programmers to learn the DSL, and for external DSLs a new tool

chain. Internal DSLs that needlessly create new syntax often frustrate programmers.

For example, in Scala DSL designers can create operators, which are simple method

calls, with just about any symbols. Scala’s support for internal DSL construction has

spurned a tremendous number of DSLs, and there is a tremendous amount of push-

back from developers tired of learning odd new operator symbols instead of simply

using familiar method calls with readable names.

Writing AFABL as a DSL is justified because (1) for the cost of learning the DSL

the programmer is freed from learning details of reinforcement learning algorithms,

and (2) AFABL is a shallow DSL using familiar Scala language constructs and idioms.

47

4.2 Software Complexity

A second goal of AFABL is reducing the complexity of agent code. For our purposes

we define complexity as a measure of the effort required to understand, modify, or test

a piece of code. Many kinds of complexity measures have been proposed, including

function point analysis [68], Halstead’s “software science” [69], information flow [70]

and many others. But perhaps the most widespread complexity measure is McCabe’s

cyclomatic complexity [71, 72]. Roughly speaking, the McCabe cyclomatic complexity

number is a measure of the number of unique paths through a program. McCabe’s

metric is a measure of control-flow complexity.

Research in software complexity has continued and evolved in the age of object-

oriented programming. Object-oriented programs tend to have far fewer control flow

structures, but these are traded for classes, methods, and inheritance hierarchies that

contribute in their own ways to the cognitive burden of a programmer trying to use

an object-oriented library or maintain an object-oriented system. Chidamber and

Kemerer [73] developed a suite of six metrics to capture the complexity of an object-

oriented program and analyzed them using Weyuker’s software metrics evaluation

principles [74]. Briand and colleagues placed Chidamber and Kemerer’s work and

many other metrics within a framework of property-based measurement which ab-

stracts over language constructs [75]. Basili and colleagues experimentally validated

Chimader and Kumarer’s metrics on software projects and found their metrics to be

useful predictors of software quality [76].

While the modern object-oriented metrics are better suited to modern large-scale

software development, they are less well-suited to the study we report in Chapter

6. The Scala-based agent programs only used one class and grew in the number of

decision structures to handle more complex agent problems. Even using a general

framework like Briand’s which allows consideration of helper methods as modules,

48

the Scala agent programs simply used helper methods to thematically group decision

structures, so modular complexity simply reduces to McCabe cyclomatic complexity.

In the case of AFABL agents, each agent uses the same agent and module classes.

Agent’s differ in their reward functions, which are typically implemented with if state-

ments. Again, cyclomatic complexity better captures the differences in the complex-

ities of AFABL agent programs. For these reasons, in this work we evaluate program

complexity using McCabe’s cyclomatic complexity measure.

Though there are critiques of cyclomatic complexity [77] and proposed modifica-

tions [74], McCabe’s cyclomatic complexity measure is still in widespread use and has

been shown to be a useful and valid measure. Curtis and colleagues found that both

Halstead and McCabe complexity metrics correlate with psychological complexity of

code, especially for less experienced programmers [78]. Finally, McCabe’s cyclomatic

complexity number has a simple method of calculation which makes it particularly

appealing. We explain McCabe’s cyclomatic complexity in Chapter 6.

4.3 Adaptive Programming

By adaptive software we refer to the notion used in the machine learning community:

software that learns to adapt to its environment during run-time, not software that

is written to be easily changed by modifying the source code and recompiling. In

particular, we use Peter Norvig’s definition of adaptive software:

Adaptive software uses available information about changes in its envi-

ronment to improve its behavior [79].

In this work we are particularly interested in programming intelligent agents that

operate in real environments, and in virtual environments that are designed to sim-

ulate real environments. Examples of these kinds of agents include robots, and non-

player characters in interactive games and dramas. Unlike traditional programs,

49

agents operate in environments that are often incompletely perceived and constantly

changing. This incompleteness of perception and dynamism in the environment cre-

ates a strong need for adaptivity. Programming this adaptivity by hand in a language

that does not provide built-in support for adaptivity is very cumbersome. Due to its

integration of reinforcement learning, AFABL provides this kind of adaptivity, making

the construction of adaptive agents much easier.

4.3.1 How to Achieve Adaptive Software

Norvig identifies several requirements of adaptive software—adaptive programming

concerns, agent-oriented concerns, and software engineering concerns—and five key

technologies—dynamic programming languages, agent technology, decision theory,

reinforcement learning, and probabilistic networks—needed to realize adaptive soft-

ware. AFABL integrates two of Norvig’s key technologies: agent technology and

reinforcement learning.

4.3.2 The Partial Programming Paradigm

The model of computation, or “control regime,” supported by a language is the fun-

damental semantics of language constructs that molds the way programmers think

about programs. PROLOG provides a declarative semantics in which programmers

express objects and constraints, and pose queries for which PROLOG can find proofs.

In C, programmers manipulate a complex state machine. Functional languages such

as ML and Haskell are based on Lambda Calculus. AFABL, being a domain-specific

language (DSL) [58] embedded in Scala [80, 81], is effectively multi-paradigmatic, sup-

porting functional and object-oriented programming through its direct use of Scala,

and partial programming semantics based on reinforcement learning, in which the

programmer defines the agent’s actions and allows the learning system to select them

based on states and rewards. An AFABL programmer writes a partial agent con-

50

sisting of modules with states and reward functions, and the action-selection logic

of the agent is handled by the integrated reinforcement learning algorithms. Thus

partial programming represents a new paradigm which results in a new way of writing

programs that is much better suited to certain classes of problems, namely adaptive

agents, than other programming paradigms. AFABL facilitates adaptive agent pro-

gramming in the same way that PROLOG facilitates logic programming. While it is

possible to write logic programs in a procedural language, it is much more natural

and efficient to write logic programs in PROLOG. The issue here is not Turing-

completeness, the issue is cognitive load on the programmer. In a Turing-complete

language, writing a program for any decidable problem is theoretically possible, but

is often practically impossible for certain classes of problems. If this were not true

then the whole enterprise of language design would have reached its end years ago.

The essential characteristic of partial programming that makes it the right paradigm

for adaptive software is that it enables the separation of the “what” of agent behav-

ior from the “how” in those cases where the “how” is either unknown or simply

too cumbersome or difficult to write explicitly. Returning to our PROLOG analogy,

PROLOG programmers define elements of logical arguments. The PROLOG system

handles unification and backtracking search automatically, relieving the programmer

from the need to think of such details. Similarly, in AFABL the programmer defines

elements of behaviors – states, actions, and rewards – and leaves the language’s run-

time system to handle the details of how particular combinations of these elements

determine the agent’s behavior in a given state. AFABL allows an agent programmer

to think at a higher level of abstraction, ignoring details that are not relevant to defin-

ing an agent’s behavior. When writing an agent in AFABL, the primary task of the

programmer is to define the actions that an agent can take, define whatever conditions

are known to invoke certain behaviors, and define other behaviors as “adaptive,” that

is, to be learned by the AFABL’s integrated reinforcement learning. This ability to

51

program partial behaviors relieves a great deal of burden from the programmer and

greatly simplifies the task of writing adaptive agents. In the next chapter we will see

how AFABL implements its support for adaptivity and partial programming.

4.3.3 Related Work in Adaptive Programming

There is already a body of work in integrating reinforcement learning into program-

ming languages, mostly from Stuart Russell and his group at UC Berkeley [82, 18].

Their work is based on hierarchical reinforcement learning [16, 14], which enables

the use of prior knowledge by constraining the learning process with hierarchies of

partially specified machines. This formulation of reinforcement learning allows a pro-

grammer to specify parts of an agent’s behavior that are known and understood

already while allowing the learning system to learn the remaining parts in a way that

is consistent with what the programmer specified explicitly.

The notion of programmable hierarchical abstract machines (PHAM) [82] was

integrated into a programming language in the form of a set of Lisp macros (ALisp)

[18]. Andre and Russell provided provably convergent learning algorithms for partially

specified learning problems and demonstrated the expressiveness of their languages,

paving the way for the development of RL-based adaptive programming. Our work

builds on theirs except that AFABL integrates modular, rather than hierarchical

reinforcement learning, and we validate the software engineering benefits through a

programmer study.

Bauer’s Ph.D. work in adaptation-based programming [83] is the closest to ours in

its focus on the practical application of adaptive programming. Bauer implemented

automated adaptation as a Java library [84] and as a Haskell embedded DSL [85].

These systems used Q-learning internally but did not use modular reinforcement

learning. Bauer also did not conduct empirical software engineering studies of pro-

grammers to quantify and qualify the benefits of integrating reinforcement learning

52

into a programming language. In the next chapter we present our language, AFABL,

which integrates modular reinforcement learning and report the results of a program-

mer study that demonstrates its value.

53

54

CHAPTER 5

AFABL: A FRIENDLY ADAPTIVE BEHAVIOR LANGUAGE

AFABL is an internal domain-specific language (DSL) shallowly embedded in the

Scala programming language. In this chapter we explain why we chose to implement

AFABL as a Scala-embedded DSL, present the basic elements of AFABL with exam-

ples, and report the results of a programmer study which confirm and quantify the

usefulness of integrating reinforcement learning into a programming language.

5.1 Why an embedded DSL?

We chose to implement AFABL as a shallowly embedded domain-specific language

because of the exploratory nature of this research. Our goal at this point is to confirm

our expectation that integrating reinforcement learning is useful to programmers writ-

ing agents, to explore the nature of this integration, and to get qualitative feedback

from programmers on their experience using a language that integrates reinforcement

learning. Writing a full language with its own lexical and syntactic structure, internal

representations, and tools (interpreters, compilers, linkers, etc.) would distract from

the core questions we are trying to answer. As we discuss in Section 9.3.4, creating

a full independent language is a direction for future research which will be guided by

the results we present here, for which an embedded DSL is sufficient.

5.2 Why Scala?

Hosting DSLs is a primary design goal of the Scala programming language. Scala is

an expressive and concise language which already enables the expression of domain

55

models with little syntactic baggage. By employing just a few Scala language features

that are designed for writing expressive and convenient libraries, we can create a DSL

that Scala programmers will find familiar and non-Scala programmers can use to

encode adaptive agents. Indeed, the nature of Scala’s syntax and language features

is such that many Scala libraries that are not explicitly labeled as DSLs qualify as

shallow embedded DSLs. In Scala a DSL is simply a library which takes advantage

of Scala’s language features and idioms that makes code using the library look like a

custom language.

5.3 AFABL Concepts

AFABL is a language for encoding adaptive (intelligent) agents. Before we present

the AFABL language, we review basic adaptive agent concepts that can be encoded

in AFABL.

5.3.1 Agent Architecture

An AFABL agent is a behavioral agent that is composed of reusable behavior mod-

ules. We use behavioral agent in the sense common in agent programming literature

[86] – an agent receives a percept from the environment and executes an action in

response. Each behavior module is itself an agent that has a preferred action for each

state. An AFABL agent performs command arbitration to choose one of its modules’

recommended actions for each state. The behavior modules recommend actions in

each state, and the arbitrator chooses which module to ”listen to” in each state.

5.3.2 Behavior Modules

Behavior modules, sometimes called subagents in the modular reinforcement learning

literature, are agents that are meant to be combined to form larger agents. Behav-

56

ior modules are similar to the layers of Brooks’s subsumption architecture with an

important difference: autonomy. The internal working of a behavior module is never

altered externally. A behavior module defines a state abstraction that converts the

state observation it is given to a (possibly) simpler state that is used internally for

decision making and learning. Module state abstractions that are simpler (contain

fewer features) than the global state help to speed the convergence of the underlying

reinforcement learning algorithms. The decision making and adaptation mechanisms

inside a module remain completely under the module’s control. Interaction with the

module consists entirely of reporting a state observation to the module, asking the

module for an action, and reporting to the module the effect of executing an action.

5.3.3 Adaptive Modules

An adaptive module employs learning algorithms under the hood to achieve automatic

adaptivity. By adaptive we mean two things: (1) adaptation to new worlds, and

(2) run-time adaptation. A module that is programmed to work for worlds with

a given state representation will work with any world that provides the same state

representation, even if the dynamics of the worlds differ. An adaptive module need

simply be retrained for the new world. Once an adaptive module is running in an

active agent, the module may continue to tune its internal learning models as the

agent acts in the world, providing for run-time adaptation.

5.3.4 Command Arbitrators

A command arbitrator takes as input the state of the world and the action preferences

of a set of modules, and selects one of the modules or actions to be executed by the

agent.

57

5.4 The AFABL Language

AFABL is a DSL implemented as a library in the Scala programming language de-

signed for writing adaptive agents. An AFABL agent operates in a world, is composed

of one or more modules, and has an agent level reward function that it uses to learn

a command arbitration policy.

5.4.1 Worlds

Every AFABL module and agent is designed to operate in a world. A world defines

the states, actions and state transition dynamics for a given set of states and actions.

Details are discussed below.

States

The states of a world can be represented with any kind of Scala class. Case classes

are good for representing states because of their concise syntax and built-in equality

methods. Figure 5.4.1 shows a case class for a state with three state variables: the

locations of a bunny, wolf, and food.

case class Location(x: Int, y: Int)

case class BunnyState(

bunny: Location,

wolf: Location,

food: Location

)

Figure 5.1: Scala code to represent states in the bunny world.

58

Actions

Actions are represented by objects which can be instances of any class. As with

states, case classes make a good choice for implementing actions. Figure 5.4.1 shows

actions for the bunny world implemented as a Scala enumeration.

object BunnyAction extends Enumeration {

val Up = Value("^")

val Down = Value("v")

val Left = Value("<")

val Right = Value(">")

}

Figure 5.2: Scala code to represent the actions that the bunny agent can take in the
bunny world.

World Dynamics

An agent executes actions in a world, and those actions potentially change the state

of the world. Having defined Scala representations for states and actions, we can

define a world. Figure 5.4.1 shows the abstract class which defines the basic interface

of world objects, which are instances of subclasses of World. As we discuss in Sections

5.4.2 and 5.4.3, all modules and agents are defined to act in a particular instance of

a world. As with states and actions, world representations make no advanced use of

the Scala programming language.

abstract class World[S, A] {

def init(): S

def resetAgent(): S

def states: Seq[S]

def actions: Seq[A]

def act(action: A): S

}

Figure 5.3: The abstract superclass of all world classes for AFABL agents.

59

Figure 5.4.1 shows some of the code for the Bunny World.

class BunnyWorld(val width: Int = 5, val height: Int = 5)

extends World[BunnyState, BunnyAction.Value] with LazyLogging {

// Initialize the world state

var state = init()

// In Scala, defs can be overridden with vals

val states = {

// Calculate every possible combination of locations for the

// bunny, wolf, and food

}

// This line returns all the values of the BunnyAction enumeration

val actions = BunnyAction.values.toSeq

def init(): BunnyState = {

// Calculate initial locations for the bunny, wolf, and food.

//

}

def resetAgent(): BunnyState = {

// "Respawn" the bunny at a new location, update the world state

// and return the new state

}

def act(intendedAction: BunnyAction.Value): BunnyState = {

// Code to calculate the actual action due to uncertainty in the

// environment and update the state of the world based on the

// actual action.

}

// Helper functions ...

}

Figure 5.4: Parts of the bunny world class showing important aspects of the imple-
mentation of the World abstract class.

5.4.2 Modules

Figure 5.4.2 shows the complete code for an AFABL implementation of a behav-

ior module that represents the goal of finding food. First is the definition of a

case class, FindFoodState, to represent the state abstraction for FindFood modules.

FindFoodState includes only two of the three state variables in the bunny world.

60

case class FindFoodState(bunny: Location, food: Location)

val findFood = AfablModule(

world = new BunnyWorld,

stateAbstraction = (worldState: BunnyState) => {

FindFoodState(worldState.bunny, worldState.food)

},

moduleReward = (moduleState: FindFoodState) => {

if (moduleState.bunny == moduleState.food) 1.0

else -0.1

}

)

Figure 5.5: AFABL code for a module that represents the goal of constantly finding
food.

case class FindFoodState(bunny: Location, food: Location)

We store a reference to an AfablModule for FindFood in findFood.

val findFood = AfablModule(

The AfablModule factory method takes three arguments: an instance of a World

that the module can act and learn in, a stateAbstraction function, and a moduleReward

function.

The first argument to AfablModule is the world:

world = new BunnyWorld

The world and = are optional, but if included must be verbatim, i.e., considered

part of the AFABL language.

The second argument is a state abstraction function that takes a world-state object

as a parameter and returns an instance of our state abstraction class:

61

stateAbstraction = (worldState: BunnyState) => {

FindFoodState(worldState.bunny, worldState.food)

}

The stateAbstraction and = are optional, but if included should be considered

part of the AFABL language. worldState is a user-chosen name, BunnyState must

match the state type defined for the world in which the module and agent operate,

in this case it is the first type parameter to World in the BunnyWorld code in Figure

5.4.1. The last expression in the body of the stateAbstraction function must be an

instance of a module state, in this case FindFoodState.

The third and final argument to the AfablModule factory method is a module

reward function that takes an instance of our state abstraction class and returns the

reward this module receives for being in that state:

moduleReward = (moduleState: FindFoodState) => {

if (moduleState.bunny == moduleState.food) 1.0

else -0.1

}

The moduleReward and = are optional, but if included should be considered

part of the AFABL language. moduleState is a user-chosen name, but the pa-

rameter type, FindFoodState in this example, must match the return type of the

stateAbstraction function. The last expression in the body of the moduleReward

function must be a Double value. In this case, which is typical, the body of the

moduleReward function is an if expression which simply returns the reward based

on state predicates. This example is another case where we could have implemented

DSL-specific syntax, such as a list of predicates and values, but the syntactic over-

head of Scala’s if expression is minimal and the code is crystal clear to any Scala

programmer.

These three components – world, state abstraction and module reward – define a

module specific learning problem on a subset of the world in which the module (and

62

agent containing the module) may act. Internally, AFABL uses these components

to instantiate a Sarsa learning algorithm using the algorithm parameters discussed

in Chapter 3, but the programmer need not be aware of any details of reinforce-

ment learning algorithms. The AFABL programmer need only be familiar with the

reinforcement learning problem.

This module example shows the value of splitting the world dynamics from the

agent module’s reward function. We can think of the world and the agent indepen-

dently. In essence, the definition of a full MDP is split across the definition of a world,

and the definition of an agent that acts in that world.

Here we also begin to see syntactic conveniences afforded by the AFABL DSL.

There are only two type annotations and one control structure (in the reward func-

tion). The rest of the types are inferred by Scala’s type inferencer thanks to the way

we wrote the factory method that creates AfablModules. It’s worth noting that we

could have refined the DSL to further strip the few Scala syntactic artifacts (like the if

statement and the anonymous functions for stateAbstraction and moduleReward)

but the syntactic overhead is minimal and there is a tradeoff between writing spe-

cific DSL syntax and using Scala’s built-in syntax directly. Creating unique syntax

for a DSL imposes cognitive burden on programmers who are proficient in the host

language. The benefit of the unique syntax must outweigh this cognitive burden.

Here we hope to strike the right balance between convenient domain-specific syntax

and familiarity to programmers. Thanks to Scala’s already concise and expressive

language and idioms, although this looks like a DSL there is no special syntax in this

example. This code is a good example of shallow DSL embedding.

5.4.3 Agents

An AFABL agent is an agent that acts in a particular world, is composed of inde-

pendent behavior modules pursuing their own continuing goals, and has a central

63

command arbitrator that uses an agent level reward function to learn when it should

listen to each module. As the code in Figure 5.4.4 shows, an AFABL agent allows pro-

grammers to express these components concisely, with very little cognitive distance

between the concepts that make up the agent and the code that represents them. As

with modules, the AfablAgent class uses features of the Scala programming language

to make the syntax more convenient. For example, there is only one explicit type

annotation in the AFABL bunny agent code in Figure 5.4.4, but behind the scenes a

carefully written factory method in the companion object allows Scala’s static type

inferencer to infer type parameters of the AfablAgent constructor, return types for

anonymous functions, and assign a concrete type value to a path-dependent abstract

type variable. Figuring out all this stuff and wrestling with Scala’s type checker

directly is not easy. Writing an AFABL agent is easy.

val bunny = AfablAgent(

world = new BunnyWorld,

modules = Seq(findFood, avoidWolf),

agentLevelReward = (state: BunnyState) => {

if (state.bunny == state.wolf) 0.0

else if (state.bunny == state.food) 1.0

else 0.5

}

)

Figure 5.6: An AFABL agent that acts in a world, contains behavior modules, and
has an agent level reward.

5.4.4 A Complete AFABL Bunny

A complete bunny agent using the AFABL DSL is shown in Figure 5.4.4. This code

would typically fit in a single editor window and represents a tremendous amount

of functionality. This agent pursues two goals simultaneously and prioritizes them

64

based on the relative locations of the bunny, the food, and the wolf.

val bunnyWorld = new BunnyWorld

case class FindFoodState(bunny: Location, food: Location)

val findFood = AfablModule(

world = bunnyWorld,

stateAbstraction = (worldState: BunnyState) => {

FindFoodState(worldState.bunny, worldState.food)

},

moduleReward = (moduleState: FindFoodState) => {

if (moduleState.bunny == moduleState.food) 1.0

else -0.1

}

)

case class AvoidWolfState(bunny: Location, wolf: Location)

val avoidWolf = AfablModule(

world = bunnyWorld,

stateAbstraction = (worldState: BunnyState) => {

AvoidWolfState(worldState.bunny, worldState.wolf)

},

moduleReward = (moduleState: AvoidWolfState) => {

if (moduleState.bunny == moduleState.wolf) -0.1

else 0.1

}

)

val bunny = AfablAgent(

world = new BunnyWorld,

modules = Seq(findFood, avoidWolf),

agentLevelReward = (state: BunnyState) => {

if (state.bunny == state.wolf) 0.0

else if (state.bunny == state.food) 1.0

else 0.5

}

)

Figure 5.7: A complete bunny agent in the AFABL DSL. Code for the modules is
repeated from previous figures to give a sense of the full quantity of code required to
write an agent with two behavior modules.

65

5.5 Conclusion

In the next Chapter we provide a quantitative evaluation of the benefits of integrating

reinforcement learning into a programming language.

66

CHAPTER 6

AFABL PROGRAMMER STUDY

AFABL supports a declarative style in which the agent programmer specifies which

states are desirable and undesirable, but not how the agent should choose actions

to pursue or avoid those states. Action selection logic is derived automatically by

reinforcement learning algorithms that the AFABL programmer never sees. AFABL

also provides agent-based software abstractions that permit code to be reused in new

domains. This reuse is one of the things we mean by adaptivity: existing AFABL code

can adapt to new domains without modifying the code. In this chapter we report the

results of a programmer study to quantify the value of AFABL’s agent programming

abstractions.

6.1 Experiments

Programmers were randomly assigned to two equally-sized groups based on their

demographics (see Appendix A for details): one group used Scala without AFABL

first – the Scala-first group – and the other group used AFABL first – the AFABL-first

group. Each group completed two programming tasks using Scala and AFABL in the

order determined by their group. For each task the programmers were asked to write

elegant code that meets the requirements of the task as quickly as possible, balancing

the quality of their solutions with time. The idea was to get a good solution quickly,

not a perfect solution in a long time.

67

Figure 6.1: In the grid world above, the bunny must pursue two goals simultaneously:
find food and avoid the wolf. The bunny may move up, down, left, or right. When
it finds food it consumes the food and new food appears elsewhere in the grid world,
when it meets the wolf it is eaten and “respawns” elsewhere.

6.1.1 Task 1: Bunny-Food-Wolf

In this task each programmer wrote an agents that control a bunny character in a

simple world, depicted in Figure A.1. The bunny world works as follows:

• The bunny world is a discrete grid of cells. The bunny, wolf, and food each

occupy one cell.

• During each time step the bunny may move north, south, east, or west – this

is the bunny agent’s action set.

• Every two time steps the wolf moves towards the bunny.

• If the bunny moves to the cell currently occupied by the food, the agent should

be written to recognize this fact and give the agent an appropriate reward

signal. In any case the simulation assumes food is “eaten” and new food appears

elsewhere.

• If the wolf moves to the cell currently occupied by the bunny it eats the bunny

68

and the bunny “respawns” in a new location.

Programmers were asked to write bunny agents that meet the wolf as little as

possible and eat as much food as possible. The bunny’s percepts are complete state

descriptions: the locations of the bunny and the wolf.

6.1.2 Task 2: Mating Bunny

In this task each programmer wrote a bunny agent for a world that is identical to

the world in Task 1 except that the bunny must also find mates. This world includes

one static potential mate that behaves similarly to the food. When the bunny finds

the potential mate, the simulation assumes that the bunny has “mated,” the mate

disappears, and another potential mate appears elsewhere. The simulation runs as in

Task 1, and the scorer additionally keeps track of how many mates the bunny finds.

As in Task 1, programmers were asked to write bunny agents that meet the wolf as

little as possible, eat as much food as possible, and find as many mates as possible.

As in Task 1, the bunny’s percepts are complete state descriptions: the locations of

the bunny, the wolf and the mate.

6.1.3 Provided Code

Study participants were given starter code so they could focus on writing the behav-

ior of their agents. We provided the world for each task and the files in which to

write their code. Participants were also given general documentation for AFABL but

assumed to already be proficient in Scala.

Figure 6.1.3 shows the code given to participants for the Scala bunny on Task 1.

Figure 6.1.3 shows the code given to participants for the AFABL bunny on Task 1.

The BunnyWorld, BunnyState, and BunnyAction classes were also provided. It was

up to participants to write state abstraction classes if they chose to do so.

69

class ScalaBunny1 extends Agent[BunnyState, BunnyAction.Value]

with Task1Scorer {

// Your code goes in the body of this method. This method defines

// your agent’s behavior, that is, what action it takes in a given

// state. The last expression in this method must be a

// BunnyAction. You may create as many helper functions as you

// like, but please do not alter any of the provided code.

def getAction(state: BunnyState, shouldExplore: Boolean = false) = {

// This is a stub to make the code compile. Please

// replace this with your code.

BunnyAction.Up

}

}

Figure 6.2: Starter Scala code provided to participants for Task 1.

object AfablTask1 {

// Use this val in your agent definitions.

val bunnyWorld = new BunnyWorld

// Please place all of your AFABL code for Task 1 in this singleton

// object.

// Your solution must assign your AFABL bunny agent for Task 1 to

// the val afablBuny1.

val afablBunny1 = ???

}

Figure 6.3: Starter AFABL code provided to participants for Task 1.

The provided code for Task 2 was identical to the provided code for Task 1,

except for the names of the files. For Task 2 participants were encouraged to copy

code from Task 1 if they found it helpful, or to use any objects defined for Task 1

that would be helpful, such as behavior modules. As we discuss below, reusing code

was straightforward for the AFABL agents but not for the Scala agents. As in Task

1, it was up to participants to write state abstraction classes if they chose to do so,

but they could reuse any state abstraction classes written for Task 1.

70

Each task had a main method which ran the agents in the world to evaluate their

performance.

6.2 Quantitative Analysis

We analyzed the submissions of study participants to compare Scala agents to AFABL

agents in terms of code size, time spent writing Scala versus AFABL agents, the

complexity of Scala versus AFABL agent code, and the performance of the agents on

the assigned tasks.

6.2.1 Code Size

The size of a code base is often correlated with the level of effort required to write or

understand the code. We computed the number of lines of code for each agent, not

including comments.

6.2.2 Time

Study participants used the IntelliJ IDEA IDE with a plug-in that we wrote especially

for this study. The plug-in recorded timestamps each time the editor tab with Task

1 or Task 2 files gained or lost the focus. We processed these logs to add up the time

deltas between gaining and losing focus as an indication of the time programmers

spent writing the code for each bunny agent.

6.2.3 Cyclomatic Complexity

We computed a complexity measure for all the submitted bunny agents. For Scala

code we employed the simplified McCabe cyclomatic complexity measure [71]:

v = π + 1 (6.1)

71

where v is the complexity score and π is the number of predicates in decision

structures.

6.2.4 Performance

Each programmer’s Scala bunny and AFABL bunny were run for 1000 time steps

and their average scores recorded. The score is based on how much food the bunny

eats and how many times the bunny is eaten by the wolf for Task 1, and additionally

how many times the bunny mates for Task 2. The score is normalized by the number

of steps to indicate a sort of “happiness index,” a ratio of rewards to lifespan. This

score happens to correspond to the measure used to validate Arbi-Q in Chapter 3 to

facilitate comparison between programmer authored agents and the performance of

the algorithms we implemented for our reformulated MRL. It is important to note,

however, that our aim here is not to achieve optimal performance but to create a pro-

gramming system that makes it easy to write agents that achieve good performance.

6.2.5 Typical Task 1 Submissions

Figure 6.2.5 shows a typical Scala submission for Task 1. The action selection strategy

is about as simple as possible. For example, there is no determination of where the

wolf is in relation to the bunny and food other than distance. If the wolf is closer

to the food than the bunny, move away from the wolf, otherwise move toward to the

food. The agent does not distinguish between cases where the wolf is between the

wolf and the food, or if the wolf is closer but sufficiently far away. One could imagine

writing code to calculate the projection of the wolf’s position onto the line between

the bunny and the food to determine a safe closure rate for the wolf. However, this

simple strategy is all that is needed to achieve nearly optimal results. This Scala-only

bunny agent achieves an average performance score of 0.54, the same as the AFABL

bunny.

72

class ScalaBunny1 extends Agent[BunnyState, BunnyAction.Value]

with Task1Scorer {

def getAction(state: BunnyState, shouldExplore: Boolean = false) = {

if (wolfNearFood(state))

moveAwayFromWolf(state)

else

moveTowardFood(state)

}

def wolfNearFood(state: BunnyState) = {

val wolfToFood = sqrt(pow(state.food.x - state.wolf.x, 2) +

pow(state.food.y - state.wolf.y, 2))

val bunnyToFood = sqrt(pow(state.food.x - state.bunny.x, 2) +

pow(state.food.y - state.bunny.y, 2))

wolfToFood < bunnyToFood

}

def moveTowardFood(state: BunnyState) = {

if (state.food.x > state.bunny.x)

BunnyAction.Right

else if (state.food.x < state.bunny.x)

BunnyAction.Left

else if (state.food.y < state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

def moveAwayFromWolf(state: BunnyState) = {

if (state.wolf.x < state.bunny.x)

BunnyAction.Right

else if (state.wolf.x > state.bunny.x)

BunnyAction.Left

else if (state.wolf.y > state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

}

Figure 6.4: Typical Scala submission for Task 1.

Figure 6.2.5 shows a typical AFABL submission for Task 1. As in our earlier

examples, the AFABL bunny is composed of behavior modules for finding food and

avoiding the wolf. The AFABL documentation contained tips for reward authoring

in modules and at the agent level.

73

case class FindFoodState(bunny: Location, food: Location)

val findFood = AfablModule(

world = bunnyWorld,

stateAbstraction = (worldState: BunnyState) => {

FindFoodState(worldState.bunny, worldState.food)

},

moduleReward = (moduleState: FindFoodState) => {

if (moduleState.bunny == moduleState.food) 1.0

else -0.1

}

)

case class AvoidWolfState(bunny: Location, wolf: Location)

val avoidWolf = AfablModule(

world = bunnyWorld,

stateAbstraction = (worldState: BunnyState) => {

AvoidWolfState(worldState.bunny, worldState.wolf)

},

moduleReward = (moduleState: AvoidWolfState) => {

if (moduleState.bunny == moduleState.wolf) -0.1

else 0.1

}

)

val afablBunny1 = AfablAgent(

world = bunnyWorld,

modules = Seq(findFood, avoidWolf),

agentLevelReward = (state: BunnyState) => {

if (state.bunny == state.wolf) 0.0

else if (state.bunny == state.food) 1.0

else 0.5

}

)

Figure 6.5: Typical AFABL submission for Task 1.

The AFABL solution to Task 1 contains 31 lines of code and has a cyclomatic

complexity of 5 (4 predicates in decision structures). The Scala solution to Task 1

uses 34 lines of code and has a cyclomatic complexity of 8 (7 predicates in decision

structures). Both programs achieve the same nearly optimal level of performance

with scores of 0.54. Optimal performance was determined by running GM-Sarsa/Q-

decomposition on the problem, which has been shown by Russell and Zimdars to be

74

optimal [20].

6.2.6 Typical Task 2 Submissions

class ScalaBunny2 extends Agent[BunnyState, BunnyAction.Value]

with Task2Scorer {

def getAction(state: BunnyState, shouldExplore: Boolean = false) = {

if ((distance(state.wolf, state.food) < distance(state.food, state.bunny))

|| distance(state.wolf, state.mate) < distance(state.mate, state.bunny))

moveAwayFromWolf(state)

else if (distance(state.bunny, state.food) < distance(state.bunny,

state.mate))

moveToward(state.bunny, state.food)

else

moveToward(state.bunny, state.mate)

}

def distance(a: Location, b: Location) = {

sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2))

}

def moveToward(from: Location, to: Location) = {

if (to.x > from.x)

BunnyAction.Right

else if (to.x < from.x)

BunnyAction.Left

else if (to.y > from.y)

BunnyAction.Up

else

BunnyAction.Down

}

def moveAwayFromWolf(state: BunnyState) = {

if (state.wolf.x < state.bunny.x)

BunnyAction.Right

else if (state.wolf.x > state.bunny.x)

BunnyAction.Left

else if (state.wolf.y > state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

}

Figure 6.6: Typical Scala submission for Task 2.

75

Figure 6.2.6 shows a typical Scala solution for Task 2. While the Scala solution

to Task 2 is more complex than the Scala solution to Task 1, it uses only one more

line of code – 35 – due to refactoring of common logic. Of course, this refactoring

took extra time and without the refactoring the line count and likely the cyclomatic

complexity would have been higher.

case class FindMateState(bunny: Location, mate: Location)

val findMate = AfablModule(

world = bunnyWorld,

stateAbstraction = (state: BunnyState) => {

FindMateState(state.bunny, state.mate)

},

moduleReward = (state: FindMateState) => {

if (state.bunny == state.mate) 1.0

else -0.1

}

)

// Your solution must assign your AFABL bunny agent for Task 2 to

// the val afablBuny2.

val afablBunny2 = AfablAgent(

world = bunnyWorld,

modules = Seq(AfablTask1.findFood, AfablTask1.avoidWolf, findMate),

agentLevelReward = (state: BunnyState) => {

if (state.bunny == state.wolf) 0.0

else if (state.bunny == state.food) 1.0

else if (state.bunny == state.mate) 1.0

else 0.5

}

)

Figure 6.7: Typical AFABL submission for Task 2.

Figure 6.2.6 shows typical AFABL code for Task 2. Notice that the findFood

and avoidWolf modules from Task 1 have been reused directly. This works because

the world, BunnyWorld, is the same. In Task 1 the bunny was ignoring the mate. In

Task 2 we adapt the bunny to find the mate, and all we need to do is add a findMate

module and add a line to the agentLevelReward function so that the agent will also

76

value finding mates.

The AFABL solution to Task 2 contains 21 lines of code due to reuse of modules

from Task 1, and has the same cyclomatic complexity of 5 (4 predicates in decision

structures) even though the agent is solving a more complex problem. Even with

the refactoring of common logic in Task 2 the Scala solution has a higher cyclo-

matic complexity of 10 (9 predicates in decision structures), which McCabe says is

the maximum allowable cyclomatic complexity for a testable, maintainable software

module [71]. Finally, the performance of the Scala solution to Task 2 decreases to

0.48, while the AFABL solution continues to achieve the same nearly optimal 0.54.

With additional work perhaps the Scala agent’s performance on Task 2 could have

been improved, but the point here is that AFABL agents are easier to write, easier to

adapt to new domains, have less complex code, and perform well without requiring a

great deal of effort beyond choosing reward signals.

6.2.7 Quantitative Results

Table 6.1: Quantitative results of Scala agent code versus AFABL agent code on
Task 1. p-value is for comparison of means between samples of unequal variances
(Welch’s t-test [87]). A p-value of less than .05 mean that the difference in means
is statistically significant at the 95% significance level, i.e. we reject H0 : µ1 = µ2

and conclude that the means are different. Power is the probability that we reject
the null hypothesis H0 when it is in fact false, given the sample size, variance, and
significance level of 95% (α = .05).

Task 1 Scala Mean AFABL Mean p-value Power
Time in seconds 1511.45 1780.91 0.47 0.11
Lines of code 39.33 31.20 0.22 0.85
Complexity 10.80 5.27 0.01 1.00
Performance 0.44 0.53 0.02 0.73

Overall results for Task 1 are summarized in Table 6.1. Overall results for Task

2 are summarized in Table 6.2. All but one of the study programmers created good

77

Table 6.2: Quantitative results of Scala agent code versus AFABL agent code on
Task 2. p-value is for comparison of means between samples of unequal variances
(Welch’s t-test [87]). A p-value of less than .05 mean that the difference in means
is statistically significant at the 95% significance level, i.e. we reject H0 : µ1 = µ2

and conclude that the means are different. Power is the probability that we reject
the null hypothesis H0 when it is in fact false, given the sample size, variance, and
significance level of 95% (α = .05).

Task 2 Scala Mean AFABL Mean p-value Power
Time in seconds 797.82 626.73 0.53 0.10
Lines of code 41.67 39.20 0.62 0.08
Complexity 11.27 8.20 0.05 0.95
Performance 0.48 0.54 0.03 0.98

AFABL agents. One programmer failed to understand the right way to write the

reward function and therefore got very poor performance with their AFABL agents.

The data do not show statistically significant differences in time or lines of code,

but for the same amount of time and number of lines of code AFABL solutions

were less complex and performed better. We also believe that the AFABL results

for time are unreliable because programmers left their editors open while they were

reading documentation on AFABL. So the time measures for AFABL solutions include

programming time and the time spent learning AFABL. Given this fact, the similarity

in time between Scala and AFABL solutions indicates that AFABL programs are

indeed quicker to write, but we cannot say that with statistical certainty.

Programmer Demographics

We collected demographic data from each programmer, including professional pro-

gramming experience (work experience), the largest program personally written (code

experience), agent programming proficiency, Scala proficiency, level of education, and

major. Almost all participants were undergraduate students, and all participants

were computer science majors except for one electrical engineering major who was

an experienced professional programmer proficient in Scala. The only categories in

which there was a nearly 50% split were code experience and agent programming ex-

78

perience, so we compared these splits to get a sense of how programming proficiency

affected their results.

Interestingly, the only metric on which experienced and novice coders had sta-

tistically significant difference was in lines of code for the Scala solution to Task 1.

This result makes some sense given that Scala is an expressive language with terse

idioms available to experienced programmers. The lack of differences in other metrics

suggest that the agent programming problem was simply to small to reveal differences

in programmer proficiency.

Table 6.3: Comparison of novice vs. experienced coder results. p-value is for compar-
ison of means between samples of unequal variances (Welch’s t-test [87]). A p-value
of less than .05 mean that the difference in means is statistically significant at the
95% significance level, i.e. we reject H0 : µ1 = µ2 and conclude that the means are
different. Power is the probability that we reject the null hypothesis H0 when it is in
fact false, given the sample size, variance, and significance level of 95% (α = .05).

Afabl Task 1 Coding Novice Mean Experienced Coder Mean p-value Power
Time in Seconds 2071.00 1539.17 0.39 0.12
Lines of Code 31.43 31.00 0.69 0.07
Complexity 5.00 5.50 0.35 0.24
Performance 0.55 0.51 0.30 0.26

Afabl Task 2 Coding Novice Mean Experienced Coder Mean p-value Power
Time in Seconds 470.20 757.17 0.30 0.18
Lines of Code 40.43 38.12 0.62 0.08
Complexity 8.29 8.12 0.75 0.06
Performance 0.55 0.54 0.45 0.11

Scala Task 1 Coding Novice Mean Experienced Coder Mean p-value Power
Time in Seconds 1487.60 1531.33 0.92 0.05
Lines of Code 25.71 51.25 0.04 0.67
Complexity 8.14 13.12 0.13 0.33
Performance 0.44 0.44 0.99 0.05

Scala Task 2 Coding Novice Mean Experienced Coder Mean p-value Power
Time in Seconds 470.20 757.17 0.30 0.18
Lines of Code 40.43 38.12 0.62 0.08
Complexity 8.29 8.12 0.75 0.06
Performance 0.55 0.54 0.45 0.11

As the results in Table 6.4 show, agent programming experience had no effect on

79

any of the programming metrics. This results suggests that simple agent problems

are readily soved with AFABL, and that the agent problems in the study were not

sufficiently complex to bring out differences in agent programming experience.

Table 6.4: Comparison of results from programmers no agent programming experience
vs programmers with some agent programming experience. p-value is for comparison
of means between samples of unequal variances (Welch’s t-test [87]). A p-value of
less than .05 mean that the difference in means is statistically significant at the 95%
significance level, i.e. we reject H0 : µ1 = µ2 and conclude that the means are
different. Power is the probability that we reject the null hypothesis H0 when it is in
fact false, given the sample size, variance, and significance level of 95% (α = .05).
Afabl Task 1 Agent Novice Mean Some Agent Exp Mean p-value Power
Time in Seconds 1770.00 1787.14 0.98 0.05
Lines of Code 31.83 30.78 0.45 0.14
Complexity 5.67 5.00 0.36 0.29
Performance 0.55 0.51 0.34 0.19

Afabl Task 2 Agent Novice Mean Some Agent Exp Mean p-value Power
Time in Seconds 552.50 669.14 0.71 0.06
Lines of Code 40.67 38.22 0.57 0.08
Complexity 8.17 8.22 0.92 0.05
Performance 0.55 0.54 0.54 0.09

Scala Task 1 Agent Novice Mean Some Agent Exp Mean p-value Power
Time in Seconds 1717.50 1393.71 0.56 0.09
Lines of Code 40.83 38.33 0.84 0.05
Complexity 11.17 10.56 0.87 0.05
Performance 0.43 0.44 0.81 0.06

Scala Task 2 Agent Novice Mean Some Agent Exp Mean p-value Power
Time in Seconds 552.50 669.14 0.71 0.06
Lines of Code 40.67 38.22 0.57 0.08
Complexity 8.17 8.22 0.92 0.05
Performance 0.55 0.54 0.54 0.09

6.2.8 Qualitative Results

Programmers responded to a questionnaire to give their impressions of agent pro-

gramming in AFABL versus agent programming in Scala. Here we summarize the

responses of the eight participants who were not TAs of the principal investigator.

Figure 6.8 shows that programmers had a positive response to AFABL. The most

80

Figure 6.8: Responses to Likert-scale question on reflection survey.

81

interesting responses of these is for the question “If given the choice, I would choose

AFABL over Scala for agent programming projects.” Although every programmer

found AFABL to be easier than Scala for Task 2, and almost all programmers found

AFABL easier for Task 1, some of the study participants were very experienced Scala

programmers who would still prefer the familiarity of Scala. The programmer who

reported that they would choose Scala over AFABL did report for Task 2 that they

found it easier to adapt their AFABL agent to Task 2 after they had developed some

basic knowledge of AFABL.

Internal Validity of Reflection Survey

The Cronbach alpha coefficient measures the correlation between the answers to ques-

tions that measure the same construct and is given by:

α =
k

k − 1
× (1− s2T −

∑
s2I

s2T
)

where

• s2T is the total variance of all the items (questions) for a construct

• s2I is the variance of an individual item, and

• k is the number of items.

We evaluated the internal consistency of the survey by calculating the Cronbach

alpha coefficients for the following constructs:

1. User satisfaction with Scala for agent programming tasks.

• Questions 1 and 3

• Cronbach alpha: 1.38

2. User satisfaction with AFABL for agent programming tasks.

82

• Questions 2 and 4

• Cronbach alpha: 1.35

3. User preference for AFABL over Scala for agent programming tasks.

• Questions 5 and 7

• Cronbach alpha: 1.28

Since all Cronbach alpha scores were above 0.7, we may consider the reflection

survey to be reliable.

Free Response Questions

Two of the questions on the survey allowed for free responses. These responses are

listed below, again, only for non-TAs.

What was it about AFABL that made Task 1 easier or harder?

• I didn’t have to put so much thought into the mechanics of moving and distance

calculation, and didn’t have to think about priorities.

• The choice of going towards to food or avoiding the wolf is tricky. Should you

only avoid the wolf when it’s adjacent? 2 Squares away? what exactly does it

mean to avoid? Answering these questions is hard, but expressing the rewards

and punishments for getting food and meeting the wolf is easy. AFABL did not

require me to express these domain-specific problems, instead it learned based

on the rewards and costs what policy is optimal.

• No need to explicitly compare locations, calculate distances or balance separate

goals.

• Easier because it only asks for important parts of the specific domain, more

difficult as I don’t know how different goals interact and I don’t know why my

end score was lower in AFABL or what changes improve a score.

83

• While learning AFABL had some overhead for Task 1, being able to program

in terms of rewards and punishments was much more intuitive than coding an

algorithm from scratch that may or may not be correct.

• I’ve written agents similar to my Scala agent in the past, so it took much less

new thought to develop it, whereas the AFABL agent was conceptually and

structurally very different from anything I’ve written before, and were therefore

harder to approach.

• You simply define success and failure scenarios; there’s no dealing with weight-

ing different values and that makes it MUCH easier to work with, as a program-

mer.

• There was no need to define the movement algorithm

What was it about AFABL that made Task 2 easier or harder?

• All I had to do was add a 3rd module which was very much like FindFood.

• Same arguments as 1, but now there’s the mate. I actually found that I could

treat the mate exactly as a food source by adding another module very similar

to the food module. The problem then became how to maximize the total

reward by playing around with the module-level rewards and the agent-level

rewards. If it were very important to find good reward values, one could run

some optimization program on the rewards. It’s worth mentioning that if I were

faced with this problem, I would feel more comfortable running an optimization

algorithm than writing my own domain-specific agent behavior. AFABL would

pair nicely with a solver that optimizes on rewards.

• The design of independent modules made adding an additional module/goal

trivial.

84

• Both were pretty easy to add 1 more goal. But in Scala I copied and pasted.

In AFABL it was really neat to just import modules from the other file with no

effort to integrate them.

• Being able to just add in another module and tack it onto the agent with

AFABL was much easier and more elegant than having to go in and modify

existing methods and logic in Scala. Adding the additional functionality with

AFABL was much more convenient in this respect.

• After understanding AFABL to some degree, it was quite easy to modify my

existing agent to the new task and thereby receive a good score.

• You can much more clearly see the similarities between Task 1 and Task 2 in

the AFABL version, for one thing. Second, it doesn’t require modifying existing

code nearly as much as the plain Scala version does. It’s a delight to use, and

as a programmer at a startup, I would much rather work with this format over

what I have to do to work with AWS’ Machine Learning program.

• Too many cases to work on in Scala, hard to figure out whether mating or eating

takes importance, takes far less time with AFABL.

Many of the answers above mention the reduced time and effort of writing AFABL

agents. These answers corroborate our belief that the time tracking in the quantitative

section was unreliable due to programmers not following directions to move the focus

off their editors while reading documentation, and possible malfunctions in the IntelliJ

IDEA plug-in used to automatically track time.

6.3 Threats to Validity

The first threat to validity is sample size – there were only 16 study participants. In-

deed the statistical power calculations for most comparisons indicate that results are

85

inconclusive due to the small sample sizes and large variances in many metrics. How-

ever, two core metrics – complexity and performance – yielded very high statistical

power, supporting our claim that AFABL agent programs are simpler to write than

their non-AFABL equivalents, and that it takes less effort to get good performance

from AFABL agents.

The second threat is problem size. The tasks that programmers were given were

smaller than typical software engineering tasks. Given the difficulty of getting pro-

grammers to work for hours writing programs for a study, and the further challenge of

finding Scala programmers, the problem size had to be limited. We believe that the

insights are still valid because the chief differences between AFABL agent programs

and traditional programs are the control-flow complexity and the additional effort

required to adapt agent programs to more complex domains. As our results showed,

the small tasks were sufficient to show these differences.

The final threat to validity is the fact that 8 of the 16 study participants were

teaching assistants for the principal investigator. This fact may have biased them

towards writing better AFABL solutions in order to help me show positive results.

However, as Table 6.5 shows, the data do not show that the TAs’ results differed

from the non-TAs’ results. Again, due to small samples sizes the statistical power of

these comparisons is low, but nevertheless we cannot show a statistically significant

difference between the results of TAs and non-TAs.

6.4 Conclusion

As you can see from the similarity of the submission in Figure 6.2.5 to our explana-

tory example, most AFABL bunny agents look the same. There is one obvious way

to implement a bunny agent that must pursue multiple goals. This uniformity is

desirable. As Tim Peters says in the Zen of Python [88], “There should be one– and

86

Table 6.5: Comparison of TA results versus non-TA results. p-value is for comparison
of means between samples of unequal variances (Welch’s t-test[87]). A p-value of less
than .05 mean that the difference in means is statistically significant at the 95%
significance level, i.e. we reject H0 : µ1 = µ2 and conclude that the means are
different. Power is the probability that we reject the null hypothesis H0 when it is in
fact false, given the sample size, variance, and significance level of 95% (α = .05).

Afabl Task 1 TA Mean Non-TA Mean p-value Power
Time in Seconds 1620.00 1733.33 0.86 0.05
Lines of Code 31.38 31.12 0.82 0.06
Complexity 5.00 5.50 0.35 0.26
Performance 0.51 0.54 0.42 0.19

Afabl Task 2 TA Mean Non-TA Mean p-value Power
Time in Seconds 686.83 552.00 0.62 0.08
Lines of Code 41.75 38.25 0.47 0.11
Complexity 8.38 8.12 0.61 0.08
Performance 0.55 0.54 0.19 0.26

Scala Task 1 TA Mean Non-TA Mean p-value Power
Time in Seconds 1520.67 1462.17 0.89 0.05
Lines of Code 36.88 40.12 0.80 0.06
Complexity 10.62 11.12 0.88 0.05
Performance 0.46 0.42 0.47 0.11

Scala Task 2 TA Mean Non-TA Mean p-value Power
Time in Seconds 686.83 552.00 0.62 0.08
Lines of Code 41.75 38.25 0.47 0.11
Complexity 8.38 8.12 0.61 0.08
Performance 0.55 0.54 0.19 0.26

preferably only one –obvious way to do it.” The similarity in most AFABL solutions

to a particular modular agent programming problem is an indication that AFABL

provides the right abstractions for adaptive agent programming. This regularity re-

sults from exploiting the structure of certain kinds of agent programming problems.

In the next chapter we discuss the kinds of problems for which AFABL is well-suited

and those for which it is less well-suited.

87

88

CHAPTER 7

AFABL IN CONTEXT

In this chapter we place AFABL in context. First we present an extended example

that compares typical AFABL code to typical Scala code for a series of agent pro-

grams for increasingly complex but closely related task environments. This example

demonstrates the sub-linear progression of complexity of AFABL code compared to

a linear progression of complexity for traditional code on the same task progression.

Finally we discuss the kinds of problems that are well-suited to AFABL and those

that are not well-suited to AFABL.

7.1 AFABL Programs versus Traditional Programs

In this section we incrementally expand the Bunny world from previous chapters to

show how AFABL programs and traditional programs grow in response to additional

world dynamics. The sections below show typical submissions from the previous

chapter and build on them using similar styles to handle increasingly complex world

dynamics. These examples demonstrate the superior scalability of AFABL.

7.1.1 Bunny, Food

To help keep the code straight, we will number each task starting at 0. We start with

the simplest task, that of finding food. Figure 7.1 shows the AFABL agent for Task

0.

Figure 7.2 shows the Scala code for Task 0.

89

object AfablTask0 {

case class FindFoodState(bunny: Location, food: Location)

val findFood = AfablModule(

world = bunnyWorld,

stateAbstraction = (worldState: BunnyState) => {

FindFoodState(worldState.bunny, worldState.food)

},

moduleReward = (moduleState: FindFoodState) => {

if (moduleState.bunny == moduleState.food) 1.0

else -0.1

}

)

val afablBunny0 = AfablAgent(

world = bunnyWorld,

modules = Seq(findFood),

agentLevelReward = (state: BunnyState) => {

if (world.bunnyEats()) 1.0

else 0.5

}

)

}

Figure 7.1: An AFABL bunny agent that finds food.

7.1.2 Bunny, Food, Wolf

Task 1 adds the task of avoiding a wolf. As we see in Figure 7.3, the AFABL version

looks quite similar – we simply add a module with a different state abstraction and

reward function, and incorporate the added criterion of avoiding the wolf to the agent

level reward.

Figure 7.4 shows the Scala code for Task 1, which adds logic for analyzing the

relative distance of the wolf to the food in order to choose between pursuing food or

running away from the wolf.

90

class ScalaBunny0 extends Agent[BunnyState, BunnyAction.Value] {

def getAction(state: BunnyState) = {

moveTowardFood(state)

}

def moveTowardFood(state: BunnyState) = {

if (state.food.x > state.bunny.x)

BunnyAction.Right

else if (state.food.x < state.bunny.x)

BunnyAction.Left

else if (state.food.y < state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

}

Figure 7.2: A Scala bunny agent that finds food.

7.1.3 Bunny, Food, Wolf, Mate

Task 2 adds the task of finding a mate. The AFABL agent is able to reuse modules

from afablBunny1 directly. ScalaBunny2 also benefits from the refactoring of common

logic in ScalaBunny1.

In ScalaBunny2, shown in Figure 7.6, we follow the advice of Martin Fowler: if

you need the same code in two places, copy and paste. If you need the same code in a

third place, refactor the common logic in reusable program units. In ScalaBunny2 we

factor out the code for finding distance and the code for moving towards something.

7.1.4 Bunny, Wolf, Food, Mate, Spoiling Food

Task 3 adds spoilage to the food. If the bunny does not eat the food within SPOIL TIME

time steps the food disappears and new food respawns elsewhere. Here we begin to see

the scalability benefits of AFABL. As we see in Figure 7.7, adapting afablBunny2 to

Task 3 requires no new code whatsoever. The reinforcement learning algorithms un-

derlying the AFABL code adjust to the new world dynamics automatically. The Scala

91

object AfablTask1 {

case class FindFoodState(bunny: Location, food: Location)

case class AvoidWolfState(bunny: Location, wolf: Location)

val avoidWolf = AfablModule(

world = bunnyWorld,

stateAbstraction = (worldState: BunnyState) => {

AvoidWolfState(worldState.bunny, worldState.wolf)

},

moduleReward = (moduleState: AvoidWolfState) => {

if (moduleState.bunny == moduleState.wolf) -0.1

else 0.1

}

)

val afablBunny1 = AfablAgent(

world = bunnyWorld,

modules = Seq(AfablTask0.findFood, avoidWolf),

agentLevelReward = (state: BunnyState) => {

if (world.bunnyDies()) 0.0

else if (world.bunnyEats()) 1.0

else 0.5

}

)

}

Figure 7.3: An AFABL bunny agent that finds food and avoids a wolf.

version, on the other hand, adds a tremendous amount of logic to add consideration

of spoiling food.

Figure 7.8 shows the Scala code for Task 3. ScalaBunny3 extends ScalaBunny2 to

inherit its distance and moveTowards methods, but we must add logic to determine

when it doesn’t make sense to move towards the food because it will spoil before the

bunny gets to it. This is a fairly straightforward approach but required some thought

to come up with and the resulting code is slightly more complex due to the additional

predicates in decision structures.

92

7.1.5 Bunny, Food, Wolf, Mate, Spoiling Food, Picky Mate

Task 4 adds a picky mate that won’t mate unless the bunny has eaten within the last

HUNGER LIMIT time steps. Here again we see that no new code needs to be written

for the AFABL agent in Figure 7.9. The reinforcement learning algorithms simply

learns new behavior for the changing world dynamics.

ScalaBunny4, shown in Figure 7.10, requires much more logic than ScalaBunny3.

ScalaBunny4 must keep a reference to the world to know when it has eaten, it must

keep track of its hunger level, and the decision of whether to pursue the food or the

mate is now more complicated.

7.1.6 Analysis

Figure 7.11 shows the complexity of AFABL programs is lower than equivalent pro-

grams in traditional programming languages, that the complexity of AFABL code

grows more slowly, and that once AFABL code has been written for the basic el-

ements of a task environment, the complexity does not increases as the dynamics

of the world change. In contrast, agent programs in traditional languages increase

in complexity as the task environment increases in complexity in a linear fashion.

The complexity of AFABL programs grows in a sub-linear, often logarithmic fash-

ion when the task environment changes can be handled automatically by AFABL’s

reinforcement learning algorithms. We discuss this further in the next section.

In Figure 7.12 we see a similar pattern in lines of AFABL code. The number

of lines of code increases until the basic modules are defined, then the lines of code

actually decrease as modules are reused. This reuse is one of the goals of AFABL.

With the Scala code we see the benefit of refactoring code in traditional languages.

While the Scala agents require far more code, the growth in lines of code slows as

reusable functions are created. However, the complexity still grows due to the need

93

to manually encode all the decision logic in the agent.

7.2 When to Use AFABL

AFABL shows the greatest scalability benefit when adapting agents to worlds with

changing dynamics but the same state representation. As long as the state represen-

tation stays the same, the same AFABL code can be used in a world with different or

changing dynamics. In fact, AFABL modules written separately with different reward

structures can be used.

AFABL is a good choice for agent programs when:

• the agent pursue multiple subgoals simultaneously that are clearly separated

and non-overlapping and thus can be modeled with behavior modules;

• the subgoals are sometimes at odds, that is, when one two or more modules

would choose to go in different directions;

• there is an agent-level reward signal that represents goals that may or may not

be represented in any module;

• there is a single action set shared by all the modules; and

• the world dynamics may change but retain the same state representation.

AFABL is not a good choice for all agent programs. In particular, AFABL is not

a good choice when:

• the best action in some states is a compromise action, not the first choice of any

module. In such cases AFABL’s arbitration algorithm will choose a suboptimal

action.

• the agent’s goals cannot be well modeled with concurrent subgoals;

94

• there is no clear agent-level reward signal that can be used to automatically

learn how to arbitrate modules’ action choices; and

• the problem itself is not well-suited to reinforcement learning agents in general.

95

class ScalaBunny1 extends Agent[BunnyState, BunnyAction.Value] {

def getAction(state: BunnyState) = {

if (wolfNearFood(state))

moveAwayFromWolf(state)

else

moveTowardFood(state)

}

def wolfNearFood(state: BunnyState) = {

val wolfToFood = sqrt(pow(state.food.x - state.wolf.x, 2) +

pow(state.food.y - state.wolf.y, 2))

val bunnyToFood = sqrt(pow(state.food.x - state.bunny.x, 2) +

pow(state.food.y - state.bunny.y, 2))

wolfToFood < bunnyToFood

}

def moveTowardFood(state: BunnyState) = {

if (state.food.x > state.bunny.x)

BunnyAction.Right

else if (state.food.x < state.bunny.x)

BunnyAction.Left

else if (state.food.y < state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

def moveAwayFromWolf(state: BunnyState) = {

if (state.wolf.x < state.bunny.x)

BunnyAction.Right

else if (state.wolf.x > state.bunny.x)

BunnyAction.Left

else if (state.wolf.y > state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

}

Figure 7.4: A Scala bunny agent that finds food and avoids a wolf.

96

object AfablTask2 {

case class FindFoodState(bunny: Location, food: Location)

case class AvoidWolfState(bunny: Location, wolf: Location)

case class FindMateState(bunny: Location, mate: Location)

val findMate = AfablModule(

world = bunnyWorld,

stateAbstraction = (state: BunnyState) => {

FindMateState(state.bunny, state.mate)

},

moduleReward = (state: FindMateState) => {

if (world.bunnyMates()) 1.0

else -0.1

}

)

val afablBunny2 = AfablAgent(

world = bunnyWorld,

modules = Seq(AfablTask0.findFood, AfablTask1.avoidWolf, findMate),

agentLevelReward = (state: BunnyState) => {

if (world.bunnyDies()) 0.0

else if (world.bunnyEats()) 1.0

else if (world.bunnyMates()) 1.0

else 0.5

}

)

}

Figure 7.5: An AFABL bunny agent that finds food, avoids a wolf, and pursues a
mate.

97

class ScalaBunny2 extends Agent[BunnyState, BunnyAction.Value] {

def getAction(state: BunnyState) = {

if ((distance(state.wolf, state.food) < distance(state.food, state.bunny))

|| distance(state.wolf, state.mate) < distance(state.mate, state.bunny))

moveAwayFromWolf(state)

else if (distance(state.bunny, state.food) < distance(state.bunny,

state.mate))

moveToward(state.bunny, state.food)

else

moveToward(state.bunny, state.mate)

}

def distance(a: Location, b: Location) = {

sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2))

}

def moveToward(from: Location, to: Location) = {

if (to.x > from.x)

BunnyAction.Right

else if (to.x < from.x)

BunnyAction.Left

else if (to.y > from.y)

BunnyAction.Up

else

BunnyAction.Down

}

def moveAwayFromWolf(state: BunnyState) = {

if (state.wolf.x < state.bunny.x)

BunnyAction.Right

else if (state.wolf.x > state.bunny.x)

BunnyAction.Left

else if (state.wolf.y > state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

}

Figure 7.6: A Scala bunny agent that finds food, avoids a wolf, and finds a mate.

98

object AfablTask3 {

val afablBunny3 = AfablAgent(

world = bunnyWorld,

modules = Seq(AfablTask0.findFood, AfablTask1.avoidWolf, AfablTask2.findMate),

agentLevelReward = (state: BunnyState) => {

if (world.bunnyDies()) 0.0

else if (world.bunnyEats()) 1.0

else if (world.bunnyMates()) 1.0

else 0.5

}

)

}

Figure 7.7: An AFABL bunny agent that finds food that spoils, avoids a wolf, and
finds a mate.

class ScalaBunny3 extends ScalaBunny2 {

val SPOIL_TIME = 10

var stepCount = 0

override def getAction(state: BunnyState) = {

stepCount = stepCount + 1

if ((distance(state.wolf, state.food) < distance(state.food, state.bunny))

|| distance(state.wolf, state.mate) < distance(state.mate, state.bunny))

moveAwayFromWolf(state)

else if (distance(state.bunny, state.food) < distance(state.bunny, state.mate)

&& distance(state.bunny, state.food) < stepCount % SPOIL_TIME)

moveToward(state.bunny, state.food)

else

moveToward(state.bunny, state.mate)

}

def moveAwayFromWolf(state: BunnyState) = {

if (state.wolf.x < state.bunny.x)

BunnyAction.Right

else if (state.wolf.x > state.bunny.x)

BunnyAction.Left

else if (state.wolf.y > state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

}

Figure 7.8: A Scala bunny agent that finds food that spoils, avoids a wolf, and finds
a mate.

99

object AfablTask4 {

val afablBunny4 = AfablAgent(

world = bunnyWorld,

modules = Seq(AfablTask0.findFood, AfablTask1.avoidWolf, AfablTask2.findMate),

agentLevelReward = (state: BunnyState) => {

if (world.bunnyDies()) 0.0

else if (world.bunnyEats()) 1.0

else if (world.bunnyMates()) 1.0

else 0.5

}

)

}

Figure 7.9: An AFABL bunny agent that finds food that spoils, avoids a wolf, and
finds a mate who rejects the bunny if the bunny hasn’t eaten recently.

100

class ScalaBunny4(val world: BunnyWorld) extends ScalaBunny3 {

val HUNGER_LIMIT

val SPOIL_TIME = 10

var stepCount = 0

var hungerLevel = 0

override def getAction(state: BunnyState) = {

stepCount = stepCount + 1

if (world.bunnyEats()) {

hungerLevel = 0

} else {

hungerLevel = hungerLevel + 1

}

if ((distance(state.wolf, state.food) < distance(state.food, state.bunny))

|| distance(state.wolf, state.mate) < distance(state.mate, state.bunny))

moveAwayFromWolf(state)

else if ((distance(state.bunny, state.food) < distance(state.bunny,

state.mate)

&& distance(state.bunny, state.food) < stepCount % SPOIL_TIME)

|| (hungerLevel + distance(state.bunny, state.mate) > HUNGER_LIMIT)

moveToward(state.bunny, state.food)

else

moveToward(state.bunny, state.mate)

}

def moveAwayFromWolf(state: BunnyState) = {

if (state.wolf.x < state.bunny.x)

BunnyAction.Right

else if (state.wolf.x > state.bunny.x)

BunnyAction.Left

else if (state.wolf.y > state.bunny.y)

BunnyAction.Up

else

BunnyAction.Down

}

}

Figure 7.10: A Scala bunny agent that finds food that spoils, avoids a wolf, and finds
a mate who rejects the bunny if the bunny hasn’t eaten recently.

101

Figure 7.11: Growth in complexity of agent programs as the task becomes more
complex.

Figure 7.12: Growth in lines of code in agent programs as the task becomes more
complex.

102

CHAPTER 8

AN EXAMPLE APPLICATION: DERIVING BEHAVIOR FROM

PERSONALITY

In this chapter we present an application of language-integrated reinforcement learn-

ing to the problem of personality simulation. Creating artificial intelligent agents that

are high-fidelity simulations of natural agents will require that behavioral scientists

be able to write code themselves, not merely act as consultants with the ensuing

knowledge acquisition bottleneck. However, translating personality models into the

concrete behavior of an agent using currently available programming constructs would

require a level of code complexity that would make the system inaccessible to behav-

ioral scientists. What we need is a way to derive the concrete actions of an agent

directly from psychological personality models. This chapter describes a reinforce-

ment learning approach to solving this problem in which we represent trait-theoretic

personality models as reinforcement learning agents. We validate our approach by cre-

ating a virtual reconstruction of a psychology experiment using human subjects and

showing that our virtual agents exhibit similar behavior patterns. Note that this work

was conducted and published before we finished the Arbi-Q command arbitration al-

gorithm of Chapter 3, so the AFABL agents used the Greatest-Mass q-decomposition

algorithm. We have also updated the code from our original work to use AFABL

syntax.

8.1 Introduction

There is tremendous interest in creating synthetic agents that behave as closely as

possible to natural (human) agents. Rich, interactive intelligent agents will advance

103

the state of the art in training simulations, interactive games and narratives, and

social science simulations. However, the programming systems for creating such rich

synthetic agents are too complex, or rather too steeped in computational concepts,

to be used directly by the behavioral scientists who are most knowledgeable in mod-

eling natural agents. Engaging behavioral scientists more directly in the authoring

of synthetic agents would go a long way towards improving the fidelity of synthetic

agents.

What we need is a programming language that a behavioral scientist can use to

write agent programs using concepts familiar to behavioral scientists. This task is

complicated by the fact that the most popular and best understood personality models

from behavioral science do not lend themselves to direct translation into computer

programs. Requiring a behavioral scientist to specify behaviors in the detail required

in even the most cutting edge purpose-built programming language would plunge

the would-be behavioral scientist agent programmer right into a morass of complex

computational concepts that lie outside the expertise of most dedicated behavioral

experts. To solve this problem we need a way to get from personality models to

behaviors, to derive specific agent actions in an environment from a personality model

without having to program the derivation in great detail.

In this chapter, we describe a way to model motivational factors from trait-oriented

personality theory with reinforcement learning modules. We describe a virtual agent

simulation that reconstructs a human subject experiment from psychology, namely

some of Atkinson’s original work in achievement motivation and test anxiety, and

show that our simulation exhibits the same general behavior patterns as the human

subjects in Atkinson’s experiments. First, we briefly discuss relevant personality

research and provide some background.

104

8.1.1 Personality

Personality is a branch of psychology that studies and characterizes the underlying

commonalities and differences in human behavior. Within psychology, there are two

broad categories of personality theories: processing theories, and dispositional, or

trait theories. Social-cognitive and information-processing theories identify processes

of encodings, expectancies, and goals in an attempt to characterize the mechanisms

by which people process their perceptions, store conceptualizations, and how those

processes drive their interactions with others [89, 90, 91]. A strength of processing

theories, especially from a computational perspective, is that they provide a detailed

account of the cognitive processes that give rise to personality and drive behavior.

This strength is also a drawback – processing theories tend to be detailed and often

low-level (though not as low-level as cognitive architectures, which we will discuss

below), and this makes them less intuitive and less suited to describing personality

in broad, easily understood terms.

Trait theories [90], the most well-known example of which is the Five-Factor model

[92], attempt to identify stable traits (sometimes called “trait adjectives”) that can be

measured on numerical scales and remain invariant across situations in determining

behavior. A strength of the trait approach is that they are well-suited to describing

individuals in broad, intuitive terms. Two drawbacks of the approach are that there

is not yet widespread agreement on a set of truly universal traits (or how many there

are), and it is not clear how trait models drive behavior. A promising line of research

by Elliot and Thrash [93] is working towards solving these problems by integrating

motivation into personality in a general way. The work of Elliot and Thrash par-

ticularly supports the approach we present here, as they show that approach and

avoidance motivation underpins all currently popular trait theories.

While debate continues about the merits and drawbacks of the different approaches

105

to personality, the psychology community is also attempting to unify personality and

motivation theory [94]. While the work we present here is focused on bridging the

gap between the descriptive power of trait-oriented models and the behavior that

arise from them, we consider this work to be complementary to work in encoding

information processing theories. In the future, rich computational agents may be

built by combining approaches.

8.1.2 Modeling Personality with Reinforcement Learning

The essential idea behind modeling personality traits with reinforcement learning is

that each motivational factor can be represented by a reinforcement learning module.

In psychology, the inherent desirability or attractiveness of a behavior or situation is

referred to as valence. For a person high in success approach motivation, behaviors or

situations that provide an “opportunity to excel” will have high valence, while other

behaviors will have lower valence. The notion of valence translates fairly directly into

the concept of reward in reinforcement learning. Just as people with certain moti-

vational factors will be attracted to high-valence behaviors, a reinforcement learner

is attracted to high-reward behaviors. This is the basis for modeling motivational

factors with reinforcement learning modules. By encoding the valence of certain be-

haviors as a reward structure, reinforcement learners can learn the behavioral patterns

that are associated with particular motivational factors. This is a powerful idea, be-

cause it allows an agent author to write agent code using motivational factors while

minimizing the need to encode the complex mechanisms by which such factors lead

to concrete behavior.

A critical aspect of trait theory is that traits can have interactive effects. It is

clear that a person who is high in achievement motivation will “go for it” when given

the opportunity and that a person who is high in avoidance motivation will be more

reserved. But what happens when a person is high in both motivations? Such in-

106

teractive effects cannot be ignored in a credible treatment of personality, but it is

hard to predict the behavioral patterns that will arise from given combinations of

motivational factors. One can imagine the code complexity that might result from

trying to model such interactive effects with production rules or other traditional pro-

gramming constructs. As we demonstrate later, our reinforcement learning approach

handles such interactive effects automatically.

It is important to note that we are not creating a new theory of personality. We are

creating a computational means of translating existing theories of personality from

psychology (not computer science) into actions executed by synthetic agents. We are

also not committing to a particular theory from psychology, but rather supporting

the general category of trait theories of personality which, until now, have not been

directly realizable in computer agents.

In the remainder of this chapter we discuss some related work in agent modeling,

present our virtual reconstruction of a human subject experiment using our reinforce-

ment learning approach, and discuss the promising results and their implications for

future work.

8.2 Related Work

There is a great deal of work in modeling all sorts of phenomena in synthetic agents.

Cognitive architectures provide computational models of many low-level cognitive

processes, such as memory, perception, and conceptualization [95, 96]. Cognitive

architectures support scientific research in cognitive psychology by providing runnable

models of cognitive processes, support research in human-computer interaction with

detailed user models [97], and can serve as the “brains” of agents in a variety of

contexts. The most notable and actively developed cognitive architectures are Soar

[98] and ACT-R [99]. Recently, some effort has gone into integrating reinforcement

107

learning into Soar [100]. While RL is used to improve the reasoning system in Soar, we

are using RL to support new paradigms of computer programming for agent systems.

In general, our work differs from and complements work in cognitive architectures

in that we are drawing on psychological theory that is expressed at a much higher

level of abstraction. Cognitive psychology and AI have often built on each other.

Indeed, cognitive psychology is the basis of cognitive architectures in AI. Our work

is an attempt to bring in mainstream personality psychology as a basis for building

intelligent agents, which we hope will complement the detailed models of cognitive

architectures in creating rich synthetic agents.

There is a large and rich body of work in believable agents. Mateas and Stern

built on the work of the Oz project [101] in creating a programming language and

reactive–planning architecture for rich believable agents. They implemented their

theory in the computer game Facade, a one-act interactive drama in which the player

interacts with computer simulated characters that provide rich social interactivity

[102]. Gratch, Marsella and colleagues have a large body of work in creating rich

simulations of humans for training simulations that incorporate models of appraisal

theory and emotion [103, 104]. A distinctive feature of the work of both Mateas, et.

al., and Gratch, et. al., is that they are dealing with the entire range of AI problems

in creating believable agents that sense, act, understand and communicate in natural

language, think, and exhibit human-like personalities. Our work differs from other

work in personality modeling in that we are not attempting to simulate personality,

but using definitions of personality to drive the behavior of synthetic agents. We

want to derive behavior that is consistent with a given personality model, but not

necessarily to ensure that the agent gives the appearance of having that personality.

108

8.3 Experiments

To test our claim that personality can be modeled by reinforcement learning modules,

we created a population of simple two-module multiple-goal reinforcement learning

agents and ran them in a world that replicated experiments carried out with humans

by psychologist John Atkinson. First we describe Atkinson’s original research, and

then discuss our virtual reconstruction of his experiments.

8.3.1 Atkinson’s Ring Toss Experiment

John Atkinson was among the first researchers to study the existence and role of ap-

proach and avoidance motivation in human behavior. Prior to Atkinson’s work, it was

believed that test anxiety was equivalent to low achievement motivation. However,

Atkinson showed that test anxiety is actually a separate avoidance motivation, a “fear

of failure” dimension that works against and interacts with achievement motivation

[105]. To test his hypothesis, he administered standard tests of achievement motiva-

tion and test anxiety to a group of undergraduate psychology students and devised

a series of experiments which examined the effort put forth in achieving success in

tasks such as taking a final exam. It is important to note that he did not measure the

outcomes of the task, but rather the effort put forth in doing well in them. Thus, his

experiments examined the relationship between motivation and behavior, not neces-

sarily competence. One of his experiments, a ring toss game, produced results that

clearly show the interplay of approach and avoidance motivation and is particularly

well-suited to computer simulation.

In Atkinson’s ring toss experiment, subjects played a ring toss game in which

players attempted to toss a ring from a specified distance onto a peg. Subjects made

10 tosses from any distance they wished, from 1 through 15 feet, and the distance

at which each subject made each toss was recorded. For analysis, subjects were

109

divided into four groups according to their measures of achievement motivation and

test anxiety so that the relationship between these motivations and their behavior

could be analyzed. For each of the two measures – achievement motivation and test

anxiety – subjects were classified as either high or low, with the dividing line between

high and low set at the median scores in each measure. (For example, a H-L subject

is high in achievement motivation and low in test anxiety). Subjects were divided

into four groups – H-L, H-H, L-L, and L-H – and the percentage of shots taken at

each distance by each group was recorded. We discuss his results and our simulation

below.

8.3.2 Computational Models of Atkinson’s Subjects

We reconstructed Atkinson’s ring toss experiment in a computer simulation. We cre-

ated 49 virtual agents that corresponded to each of the 49 human subjects in Atkin-

son’s experiments, with the same distribution of high and low measures of achievement

motivation and test anxiety. Simplified code for a representative student subject is

presented in Figure 8.1. Since we did not have access to Atkinson’s source data, we

modeled high motivation measures as having a mean of 1.5 and low motivation with

a mean of 0.5, both with standard Normal distributions (mean = 0, variance = 1)

scaled by 1
2
, so virtual test subjects did not all have the same measures.

As discussed earlier, each of the motivational dimensions of the virtual subjects

was implemented with reinforcement learning modules that learned to satisfy the

preference for perceived valence of behaviors (modeled as reward). For example, in

the achievement motivation module (see Figure 8.2), the greater the distance from

the peg, the greater the reward because it represents greater achievement. Similarly,

in the test anxiety module (see Figure 8.3), greater reward is given to closer distances,

because they minimize, or “avoid” the chance of failure from a long-distance toss.

Internally, each personality module is implemented with the standard Q-learning

110

val motivatedStudent = GmAgent(

world = RingTossWorld,

// Sequence of pairs where the second element of each pair

// is the weight of the pair, corresponding to the personality

// trait measure

modules = Seq((achievementMotivation, 1.5 + X ~ N(0, 1) / 2),

(testAnxiety, .5 + X ~ N(0, 1) / 2))

}

Figure 8.1: An agent representing a success-oriented student in Atkinson’s ring toss
experiment, containing two RL modules representing high achievement motivation
and low test anxiety. The code snippets presented here are simplified versions of the
Scala code we used to run our experiments.

val achievementMotivation = AfablModule(

world = RingTossWorld,

moduleReward = (state: RingTossState) => state match {

case OneFootLine => 1,

case TwoFootLine => 2,

...

case FifteenFootLine => 15

}

)

Figure 8.2: A reinforcement learning module representing achievement motivation.

algorithm [1]. The ring toss world consists of 16 states – a start state and one state for

each of the 15 distances, and 15 actions available in each state that represent playing

(making a toss) from a particular distance. Each reinforcement learning module used

a step-size parameter of α = 0.1, a discount factor of γ = 0.9 (though discounting

wasn’t important given that the 15 states representing playing lines were terminal

states, since each play was a training episode), and employed an ε-greedy action

selection strategy with ε = 0.2. (Readers familiar with reinforcement learning will

also notice that this game is equivalent to a 15-armed bandit problem.) We emphasize

that the details of the reinforcement learning algorithms are not essential to modeling

motivational factors, and those details are hidden inside the implementation of the

111

val testAnxiety = AfablModule(

world = RingTossWorld,

moduleReward = (state: RingTossState) => state match {

case OneFootLine => 15,

case TwoFootLine => 14,

...

case FifteenFootLine => 1

}

)

Figure 8.3: A reinforcement learning module representing Test Anxiety (‘avoidance
motive, a.k.a. “fear of failure”). Note that the rewards are inverted from the achieve-
ment motivation module, that is, the valence of avoiding achievement is higher.

modules. Indeed a major goal of our work is to simplify the task of writing synthetic

agents by taking care of such details automatically.

Recall that reinforcement learning algorithms learn an action value for each action

available in a given state. An action value for a state represents the expected total

reward that can be achieved from a state by executing that action and transitioning

to a successor state. For each of the modules – Achievement and TestAnxiety – the

action values represent the learned utility of the actions in serving the motivational

tendencies the modules represent. The Student agents take into account the prefer-

ences of the modules – represented by action values – by summing their action values

weighted by their module weights to get a composite action value for each action in

a given state. If we denote each module’s action value by Q(s, a) and the weights by

W , then the composite, or overall, action value is:

Qstudent(s, a) =WAchievementQAchievement(s, a)+ (8.1)

WTestAnxietyQTestAnxiety(s, a) (8.2)

112

For the virtual experiments, each module – Achievement and TestAnxiety – was

run to convergence and then the student agents simulated 10 plays of the ring toss

game, just as in Atkinson’s experiment. We discuss the results of the experiment

below.

8.4 Model Validation

A model is a set of explicit assumptions about how some system of interest works

[106]. In psychology the system of interest is (usually) a human or group of humans.

Our virtual reconstruction of Atkinson’s experiments constitutes a computational

representation of Atkinson’s two-factor model of personality. Thus, our agents are

simulation models of Atkinson’s subjects (the students in his ring toss experiment).

While the work presented here is only a proof of concept, we do hope to achieve a

high level of validity as we refine our approach, so it will be useful to validate our

models using techniques from simulation science [106].

As we described earlier, Atkinson divided his subjects into four groups according

to their measures (high or low) on achievement motivation and test anxiety. For each

of these four groups – H-L, H-H, L-L, L-H – he recorded the percentage of shots

that each group took from each of the 15 distances. We ran 10 replications of our

simulation and recorded the mean percentages for each group and distance. For each

percentage mean we calculated a 95% confidence interval. We consider a model to be

valid if the confidence intervals calculated on the simulation percentage means contain

the percentages obtained by Atkinson in his experiments with human subjects.

The validation results are presented in Table 8.1. Atkinson analyzed his experi-

mental data by aggregating the shots taken by subjects into three “buckets” repre-

senting low, medium, and high difficulty. In Atkinson’s analyses the dividing lines

between the three buckets were set in four different ways with each yielding similar

113

Table 8.1: Validation Results. For each subject group the percentage of shots taken
by Atkinson’s human subjects and by our simulation from each of three ranges is
presented along with a 95% confidence interval for the mean percentage of shots in
10 simulated replications of Atkinson’s experiment.

Achievement: High High Low Low
Test Anxiety: Low High Low High

Atkinson Atkinson Atkinson Atkinson
Simulation Simulation Simulation Simulation

Range Conf. Int. Conf. Int. Conf. Int. Conf. Int.

1-7 11 26 18 32
7.7 14.0 5.6 8.5

(4.0, 11.4) (5.6, 22.4) (1.4, 9.7) (4.4, 12.5)
8-12 82 60 58 48

75.4 69.0 74.4 80.0
(65.1, 85.7) (61.1, 76.9) (62.0, 86.9) (74.1, 85.9)

13-15 7 14 24 20
16.9 17.0 20.0 11.5

(8.8, 25.0) (9.4, 24.6) (8.3, 31.7) (6.9, 16.2)

results. For brevity we present the division obtained by using both geographical dis-

tance and distribution of shots about the median shot of 9.8 ft, in other words, the

dividing line one would choose by inspecting the histogram for distinct regions. This

strategy resulted in the three buckets listed in the left column of Table 8.1. Each cell

of the four subject groups – H-L, H-H, L-L, L-H - contains the percentage of shots

taken by Atkinson’s subjects, the mean percentage obtained by running 10 replica-

tions of our simulation of Atkinson’s experiment, and a 95% confidence interval for

the mean percentage. While our model did not achieve formal validation, the general

patterns of behavior are quite similar to Atkinson’s human subject experiment, as

shown in Figure 8.4, and we consider these results to be a good proof of concept. We

discuss some reasons behind these results and strategies for improvement below.

114

Figure 8.4: The top plot shows the behavior patterns of human subjects in Atkinson’s
Ring Toss experiment. The bottom plot shows the behavior patterns of our synthetic
agents that re-created Atkinson’s experiment. Note that Atkinson’s plot is smoothed,
while ours is not.

8.5 Discussion

We made several assumptions in our models that affected the validation results. First,

because we did not have access to Atkinson’s original data, only summary presen-

tations, we did not know the exact distribution of motivational factors among his

subjects, or even the scales used in his measures. We assumed normally distributed

measures and tried several different scales before settling on the values used in the

115

simulations reported here. Second, it is not clear how the valence of behaviors should

be translated into reward structures for RL agents. We chose a simple linear reward

structure in hopes that the system would be robust to naive encodings. To make our

approach widely useful we will need to address the manner in which reward structures

are determined.

We chose the Atkinson ring toss experiment on the advice of psychologists who

recommended it as a well-known example of trait-oriented behavior theory, and be-

cause of its simplicity. However, our goal is to create large agent systems, so future

work will need to address scalability – to greater numbers of trait factors and more

complex worlds – and generalizability, or transferability, to other domains.

Finally, notice that the example code presented in this paper contains no logic

for implementing behavior. The agents and the modules are defined declaratively by

specifying a state space, an action set, and a reward structure. The run-time system

derives the concrete behavior of the agents automatically from these specifications.

This technique, sometimes called partial programming or adaptive programming[107],

is a key concept that increases the usability of agent programming by allowing pro-

grammers to specify what an agent is to do without getting mired in how the agent

should do it.

8.6 Conclusions and Future Work

Much work remains to make accessible personality-based agent programming systems

a reality, and our work is progressing on three paths. First, the integration of rein-

forcement learning into agent programming systems needs to be studied further so

that we know when it is useful and how much detail can be hidden from the agent

programmer. This dissertation has confirmed what we already know, namely, that

authoring reward functions is not straightforward. We need to be able to specify

116

modules in simpler terms and let the reward structure be derived automatically (we

will discuss this further in Chapter 9. Second, the examples presented here were writ-

ten together so that the reward signals of each agent were directly comparable, which

allowed us to use the Greatest-Mass q-decomposition algorithm for combining the

modules. Now that we have an arbitration algorithm that is robust to incomparable

reward scales, we can either use a GmAgent for personality modeling, as we have done

here, or extend AFABL with weighting to enable trait-oriented personality modeling.

Finally, while AFABL is currently able to handle the personality modeling presented

in this chapter, AFABL is still a shallowly-embedded Scala DSL and therefore beyond

the programming capabilities of most psychologists. We will need to make AFABL

simpler to use. Nevertheless, reinforcement learning provides a promising approach

to modeling personality traits and motivational factors in synthetic agents. In par-

ticular, it provides us with a means to create agent programming systems that are

at least comprehensible by behavioral scientists and harness their knowledge directly

while minimizing the need for complex programming.

117

118

CHAPTER 9

CONCLUSION

9.1 Review of Major Contributions

This dissertation has reported on two primary contributions: a command arbitration

algorithm for robust modular reinforcement learning, and a domain-specific language

that supports modular reinforcement learning, AFABL. Our new command arbitra-

tion algorithm solves a problem that existed in previous approaches to modular rein-

forcement learning, namely, that reward scales for all modules had to be comparable.

Supporting modules with incomparable rewards allows modules to be written sepa-

rately, which supports modular agent software engineering, towards which AFABL is

a first step. We demonstrated the benefits of language-integrated reinforcement learn-

ing in a study of programmers’ solutions to agent programming tasks using AFABL

compared to solutions using a traditional programming language. AFABL agents are

easier to write, are expressed in less complex code, and have more readily reused

components than agents written in traditional programming languages. In the re-

mainder of this chapter we discuss some implications of AFABL (as a representative

first step in language-integrated modular reinforcement learning), limitations of the

current work, and directions for future work.

119

9.2 Limitations of Current Work

9.2.1 Reward Authoring

As many other researchers have noted, reward authoring is not straightforward for

programmers not trained in reinforcement learning. Study participants spent much

of their AFABL writing time trying out different reward structures in an effort to

improve their agents’ performance. Although we provided documentation with hints

on how to author reward structures, writing good reward functions is too opaque for

most programmers. In the next section we discuss a possible improvement to AFABL

which would relieve programmers from writing the reward functions of modules.

9.2.2 Training

Using any reinforcement learning-based programming system requires the availability

of a simulation environment to train the learning modules before being used “in

production.” Using an untrained reinforcement learning agent and accepting that

it will perform poorly until it learns is not practical because reinforcement learning

algorithms typically require hundreds or thousands of iterations to reach an acceptable

level of performance. Separate modules with local state abstractions and reward

functions help speed up training, but finding good factorizations into modules is a

potentially steep burden to place on the programmer for larger agents.

9.2.3 Host Language Limitations

Writing AFABL agents is writing Scala code, so AFABL programmers must have at

least basic competence with Scala and the Scala tool chain. Since it was outside the

scope of the present work, we did not try to determine how much of the Scala tooling

can be hidden or automated for AFABL programmers. We required study participants

120

to use a recent version of IntelliJ IDEA and provided a pre-configured Scala/AFABL

project and an IntelliJ plug-in to automate the time tracking and submission process.

Still, several participants had trouble running the study code smoothly, as is often

the case with development tools. Many study participants who did not participate in

a group session simply abandoned the study. We advertised the study to the Atlanta

Scala Meet-up, a group of local software engineers either using Scala professionally or

interested in learning. Approximately 15 Scala Meet-up members started the study

and only one finished. Due to the number of individual software issues we needed to

help participants solve – differing operating systems, IntelliJ versions, etc – we believe

many of these dropouts were due to simple software setup issues.

In addition to Scala tooling issues, AFABL programmers must deal with the Scala

programming language. For example, when a programmer makes a mistake in their

code the error messages come from the Scala compiler and run-time system, not

AFABL. Luckily, in the study few people had such issues with AFABL code itself.

With more complex agents problems are more likely to occur, and the programmer

may be faced with the famous complexity of the Scala type system. The AFABL pro-

grammer who is not also a competent Scala programmer has little hope of debugging

non-trivial errors.

9.3 Directions for Future Work

9.3.1 Refined Module Types

AFABL currently supports a narrow definition of an agent: a behaving entity with a

set of states that must constantly be pursued or avoided. In reinforcement learning

these kinds of modules are called continuing tasks, as opposed to episodic goals.

Previous versions of AFABL supported a greater set of features but we removed them

to focus on AFABL’s core for the purpose of this work. With a cleaner core AFABL

121

we could re-implement some of these features and more, which we discuss below. The

following features would provide a richer set of agent modeling tools for programmers.

Drives A Drive is a behavior module that runs throughout the life of its containing

agent and represents a state that an agent should constantly seek.

Aversions An Aversion module is a behavior module that runs throughout the life

of its containing agent and represents a state that an agent should constantly avoid.

It is a constraint in the sense that, in certain states, a constraint module will identify

actions that should *not* be executed.

Objectives An objective is a short-term goal state that generates a drive module

that is active until its goal is achieved. The command arbitrator gives objective

modules priority over drive modules, but all modules are constrained by constraint

modules.

Tasks A task is a temporally-extended action, a ”mini-policy” that achieves a sub-

goal. Tasks are equivalent to subtasks (MaxQ), abstract machines (PHAM), or op-

tions from hierarchical reinforcement learning. Tasks could be manually authored, or

algorithms from hierarchical reinforcement learning could be integrated into AFABL.

9.3.2 Simplified Syntax

The features listed above may make it possible to automatically author reward func-

tions for modules. For example, the Bunny agent for Task 2 from Chapter 6 could

be written with Drives and Aversions as shown in Figure 9.3.2

Instead of writing code to specify modules, the programmer specifies states that

are to be constantly sought or avoided – expressed as state predicates – and the

modules are derived from them automatically. Note also that this proposed syntax

122

val afablBunny2 = AfablAgent(

world = bunnyWorld,

drives = Drives(state: BunnyState) {

(state.bunny == state.food),

(state.bunny == state.mate)

},

aversions = Aversions(state: BunnyState) {

(state.bunny == state.wolf)

}

agentLevelReward = (state: BunnyState) => {

if (state.bunny == state.wolf) 0.0

else if (state.bunny == state.food) 1.0

else if (state.bunny == state.mate) 1.0

else 0.5

}

)

Figure 9.1: Simplified AFABL syntax with drives and aversions.

does not include state abstraction functions in modules because they could be derived

automatically from the states that are to be sought or avoided.

Drama Manager Support

The features discussed above would go along way toward supporting drama managers

for intelligent interactive narratives. In addition, a drama manager would need to

be able to activate and deactivate modules and inject new objectives to support

particular story goals.

9.3.3 General Agent Architecture

The current version of AFABL focuses on integrated reinforcement learning but could

easily be extended to support integrated intelligence, that is, mixing of agent modules

that employ different kinds of AI algorithms. Because an AFABL agent performs

command arbitration over modules that support a behavioral interface (providing

123

an action given a state observation) as opposed to merging elements of reinforcement

learners (like Q-values), the modules themselves can employ any mechanism to decide

on actions given a state. This information hiding means that AFABL agents could

be composed of a mixture of modules that use many different kinds of AI, including

statistical learning, rule-based reasoning, or (reactive) planning. In this sense AFABL

would be an integrated intelligence architecture.

Knowledge-Based Arbitrators In addition to the modules the arbitrator itself

could employ different kinds of algorithms for command arbitration. A knowledge-

based arbitrator could use hand-coded logic to decide from among the actions rec-

ommended by an agent’s modules. Simple arbitrators with few modules to arbitrate

can often be coded quite simply as knowledge-based arbitrators.

Hierarchical Decomposition Because modules are themselves agents, modules

can contain other modules and perform command arbitration over those modules

just as the top-level agent does. Agents can thus be decomposed recursively into

behavioral subsystems. This recursive behavior module decomposition would provide

the agent designer with great flexibility. Recursive module composition is somewhat

similar to the levels of competence in Brooks’s subsumption architecture with an

important difference: the internal workings of modules are never altered externally.

Modules are treated as black-boxes. Command arbitration accomplishes the same

result that output suppression does in classic subsumption.

9.3.4 Independent (Non-Embedded) Language

Finally, once the additions to the language are integrated into the internal DSL and

studied and refined sufficiently, an external DSL could be considered. Although an

external DSL is far more work to implement, the benefits could justify the cost. A

stand-alone version of AFABL would have its own set of development tools, report

124

agent-oriented error messages to the user, and potentially run faster than equivalent

internal DSL code.

125

126

Appendices

127

APPENDIX A

AFABL PROGRAMMER STUDY

A.1 Experiments

Programmers were randomly assigned to two equally-sized groups: one group used

Scala without AFABL first – the Scala-first group – and the other group used AFABL

first – the AFABL-first group. Each group completed two programming tasks using

Scala and AFABL in the order determined by their group. For each task the program-

mers were asked to design and implement elegant code that meets the requirements

of the task as quickly as possible, balancing the quality of their solutions with time.

The idea is to get a good solution quickly, not a perfect solution in a long time.

A.1.1 Task 1: The Bunny-Wolf Domain

Figure A.1: In the grid world above, the bunny must pursue two goals simultaneously:
find food and avoid the wolf. The bunny may move north, south, east, or west. When
it finds food it consumes the food and new food appears elsewhere in the grid world,
when it meets the wolf it is eaten and “dies.”

129

In this task each programmer wrote an agent that controls a bunny character in

a simple world, depicted in Figure A.1. The bunny world works as follows:

• The bunny world is a discrete grid of cells. The bunny, wolf, and food each

occupy one cell.

• During each time step the bunny may move north, south, east, or west.

• Every two time steps the wolf moves towards the bunny.

• If the bunny moves to the cell currently occupied by the food, the bunny eats

the food, receives a signal from the simulation that it has eaten the food, and

new food appears elsewhere.

• If the wolf moves to the cell currently occupied by the bunny it eats the bunny

and the episode ends.

The simulation runs several episodes, keeping track of how much food the bunny

eats and how long (how many time steps) the bunny “lives” in each episode. Pro-

grammers will be asked to write bunny agents that live as long as possible and eat as

much food as possible.

A.1.2 Task 2: Mating Bunny

In this task each programmer will write a bunny agent for a world that is identical

to the world in Task 1 except that the bunny must also find mates. The world will

include one static potential mate that behaves similarly to the food. When the bunny

finds the potential mate, the bunny receives a signal that it has “mated,” the mate

disappears (because it goes off to have babies), and another potential mate appears

elsewhere. The simulation runs as in Task 1, additionally keeping track of how many

mates the bunny finds. As in Task 1, programmers will be asked to write bunny

130

agents that live as long as possible, eat as much food as possible, and find as many

mates as possible.

A.2 Data Collection

Data were collected from programmers in three ways: directly through question-

naires and surveys, automatically with a custom-developed IntelliJ IDEA plug-in

that tracked time and submitted solutions, and independently through static and dy-

namic analysis of programmers’ submitted solutions to the programming tasks [108].

The following sections discuss each of the data collection methods.

A.2.1 Programmer Demographics Survey

The demographics survey was be given to participants after they read and agreed to

the consent form and before they were given task instructions and assigned to groups.

Purpose The purpose of this survey was to place the programmers in groups ac-

cording to their programming experience and skills. In particular, the web application

used this survey to assign participants to the Scala-first and AFABL-first groups so

that each group had similar distributions of programmer experience and skill levels.

Survey results were also used to develop other quantitative and qualitative measures

relating demographic information to task performance.

Questionnaire

1. What is your level of education?

(a) High School

(b) Associate Degree, or currently enrolled in Bachelor degree program

(c) Bachelor Degree

131

(d) Master Degree

(e) Doctoral Degree

Rationale: education level can affect programming proficiency.

2. What is your most applicable college major? By most applicable we mean the

major you are using most in your profession. For example, if you got a B.S. in

electrical engineering and a M.S. in computer science and work as a software

engineer, then your most applicable major is computer science.

Rationale: college major can affect programming proficiency. Additionally, we

may code the data to distinguish between technical (but not necessarily com-

puter science) and non-technical majors.

3. Number of years of professional programming experience. You may include

years spent working on graduate research projects. Count a semester as .5

years.

Rationale: programming experience can affect programming proficiency.

4. How proficient are you at game/agent programming?

(a) Not proficient

(b) Familiar (have done tutorials or simple examples)

(c) Proficient (can write programs with multiple objects and files)

(d) Expert

Rationale: game/agent programming proficiency is not common in the general

programmer population. Knowing programmers proficiencies in game/agent

programming will help randomize the experiment groups and allow additional

inferences relating game/agent programming proficiency and proficiency with

AFABL.

132

5. How proficient are you at Scala programming?

(a) Not proficient

(b) Familiar (have done tutorials or simple examples)

(c) Proficient (can write programs with multiple objects and files)

(d) Expert

Rationale: Scala is our baseline language, and AFABL is embedded in Scala.

Scala proficiency will have a profound effect on task proficiency and thus needs

to be accounted for in randomizing the experiment groups.

A.2.2 Reflection Survey

The purpose of the reflection survey is to develop a qualitative assessment of pro-

grammer satisfaction with AFABL.

Questionnaire For each question, select the degree to which you agree with the

statement based on the agent programming tasks you completed for this experiment.

1. I have a positive impression of agent programming in AFABL.

(a) Strongly disagree

(b) Disagree

(c) Neutral

(d) Agree

(e) Strongly Agree

Rationale: programmers impression of Scala will provide a baseline for evaluat-

ing programmers impression of AFABL.

133

2. I found it easier to write the agents using AFABLs programming constructs

compared to bare Scala.

(a) Strongly disagree

(b) Disagree

(c) Neutral

(d) Agree

(e) Strongly Agree

Rationale: the point of AFABL is to facilitate agent programming, so program-

mers should have a more positive impression of AFABL for agent programming.

3. I believe that AFABL facilitated more reusable and maintainable code for agents

compared to bare Scala.

(a) Strongly disagree

(b) Disagree

(c) Neutral

(d) Agree

(e) Strongly Agree

Rationale: answers to this question should correlate with answers to Question

1.

4. If given the choice, I would choose AFABL over Scala for agent programming

projects.

(a) Strongly disagree

(b) Disagree

134

(c) Neutral

(d) Agree

(e) Strongly Agree

Rationale: answers to this question should correlate with answers to Question

2.

5. I found it easier to use AFABL compared to Scala for Task 1.

(a) Strongly disagree

(b) Disagree

(c) Neutral

(d) Agree

(e) Strongly Agree

Rationale: in addition to objective analyses of task submissions, we want to

know whether programmers subjectively prefer AFABL.

6. What was it about AFABL that made the Task 1 easier or harder?

Rationale: we want to get open-ended feedback for things we did not anticipate.

7. I found it easier to use AFABL compared to Scala for Task 2.

(a) Strongly disagree

(b) Disagree

(c) Neutral

(d) Agree

(e) Strongly Agree

135

Rationale: in addition to objective analyses of task submissions, we want to

know whether programmers subjectively prefer AFABL.

8. What was it about AFABL that made the Task 2 easier or harder?

Rationale: we want to get open-ended feedback for things we did not anticipate.

A.3 Evaluation

Using results from the pilot study, we evaluated the internal consistency of the survey

by calculating the Cronbach alpha coefficients for the following constructs:

1. User satisfaction with Scala for agent programming tasks.

• Questions 1 and 3

2. User satisfaction with AFABL for agent programming tasks.

• Questions 2 and 4

3. User preference for AFABL over Scala for agent programming tasks.

• Questions 5 and 7

The Cronbach alpha coefficient measures the correlation between the answers to

questions that measure the same construct and is given by:

α =
k

k − 1
× (1− s2T −

∑
s2I

s2T
)

where

• s2T is the total variance of all the items (questions) for a construct

• s2I is the variance of an individual item, and

136

• k is the number of items.

Typically a construct is considered valid if its Cronbach alpha coefficient is at least

0.7. As we report in Chapter 6, all Cronbach alpha coefficients were greater than 1.

A.4 Source Code Analysis

The code submitted for each task was analyzed to determine:

• How much code was required for each task with and without AFABL.

• How consistent the solutions were between programmers in each task with and

without AFABL. Did AFABL lead to more consistent designs?

• How well the programmers understood the problem.

A.5 Run-time Analysis

The performance of the solutions submitted for each task was recorded for comparison.

The purpose of this comparison was to determine how much effort was required to

get good performance, not to get the best possible performance.

A.5.1 Logistics

The experiments were conducted online to provide easy access to the greatest number

of participants. Participants:

1. Register online with (optional) confidential identifying information.

2. Complete demographics survey. The web application used the demographic

survey to place participants in the Scala-first or AFABL-first groups.

3. Downloaded code and task instructions.

137

4. Completed Task 1 in Scala or AFABL.

5. Complete Task 2 in Scala or AFABL.

6. Submitted their solutions using our IntelliJ IDEA plug-in.

7. Completes a reflection survey.

138

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement learning: An introduction. Cambridge,
MA: MIT Press, 1998.

[2] L. P. Kaelbling, M. L. Littman, and A. P. Moore, “Reinforcement learning: A
survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[3] R. E. Bellman, Dynamic programming. Princeton University Press, 1957.

[4] D. P. Bertsekas, Dynamic programming and optimal control, 3rd ed. Athena
Scientific, 2013, vol. 1,2.

[5] R. Howard, “Dynamic programming and markov processes,” PhD thesis, 1960.

[6] J. Van Nunen, “A set of successive approximation methods for discounted
markovian decision problems,” Zeitschrift fuer operations research, vol. 20,
no. 5, pp. 203–208, 1976.

[7] M. L. Puterman and M. C. Shin, “Modified policy iteration algorithms for
discounted markov decision problems,” Management Science, vol. 24, no. 11,
pp. 1127–1137, 1978.

[8] S. Russell and P. Norvig, Artificial intelligence: A modern approach. Upper
Saddle River, NJ: Prenticce Hall, 2003.

[9] C. J. Watkins, “Models of delayed reinforcement learning,” PhD thesis, Ph.
D. thesis, Cambridge University, 1989.

[10] G. A. Rummery and M. Niranjan, On-line q-learning using connectionist sys-
tems. University of Cambridge, Department of Engineering, 1994.

[11] D. Precup, R. S. Sutton, and S. Singh, “Theoretical results on reinforcement
learning with temporally abstract options,” in Machine Learning: ECML-98:
10th European Conference on Machine Learning Chemnitz, Germany, April
21–23, 1998 Proceedings, C. Nédellec and C. Rouveirol, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1998, pp. 382–393, isbn: 978-3-540-69781-7.

[12] R. S. Sutton, D. Precup, and S. P. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,” Artificial
Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

139

[13] D. Precup, “Temporal abstraction in reinforcement learning,” PhD thesis, Uni-
versity of Massacheusetts Amherst, 2000.

[14] T. G. Dietterich, “The MAXQ method for hierarchical reinforcement learning,”
in Proc. 15th International Conf. on Machine Learning, Morgan Kaufmann,
San Francisco, CA, 1998, pp. 118–126.

[15] ——, “Hierarchical reinforcement learning with the maxq value function de-
composition,” Journal of Artificial Intelligence Research, vol. 13, pp. 227–303,
2000.

[16] R. Parr and S. Russell, “Reinforcement learning with hierarchies of machines,”
in Advances in Neural Information Processing Systems, M. I. Jordan, M. J.
Kearns, and S. A. Solla, Eds., vol. 10, The MIT Press, 1998.

[17] D. Andre and S. Russell, “Programmable reinforcement learning agents,” in
Advances in Neural Information Processing Systems (NIPS), vol. 13, MIT
Press, 2000.

[18] ——, “State abstraction for programmable reinforcement learning agents,” in
AAAI-02, Edmonton, Alberta: AAAI Press, 2002.

[19] B. Marthi, S. Russell, D. Latham, and C. Guestrin, “Concurrent hierarchical
reinforcement learning,” in IN PROCEEDINGS IJCAI-2005, 2005, pp. 779–
785.

[20] S. Russell and A. L. Zimdars, “Q-decomposition for reinforcement learning
agents,” in Proceedings of the Twentieth International Conference on Machine
Learning (ICML-2003), Washington, D.C., 2003.

[21] N. Sprague and D. Ballard, “Multiple-goal reinforcement learning with mod-
ular sarsa(o),” in IJCAI’03: Proceedings of the 18th international joint con-
ference on Artificial intelligence, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003, pp. 1445–1447.

[22] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[23] S. Singh and D. Cohn, “How to dynamically merge markov decision processes,”
in Advances in Neural Information Processing Systems, vol. 10, 1998.

[24] N. Sprague and D. Ballard, “Eye movements for reward maximization,” in
Advances in neural information processing systems, 2003, None.

140

[25] N. Sprague, D. Ballard, and A. Robinson, “Modeling embodied visual behav-
iors,” ACM Transactions on Applied Perception (TAP), vol. 4, no. 2, p. 11,
2007.

[26] G. Konidaris and A. Barto, “An adaptive robot motivational system,” in In-
ternational Conference on Simulation of Adaptive Behavior, Springer, 2006,
pp. 346–356.

[27] N. Aissani, B. Beldjilali, and D. Trentesaux, “Dynamic scheduling of main-
tenance tasks in the petroleum industry: A reinforcement approach,” Engi-
neering Applications of Artificial Intelligence, vol. 22, no. 7, pp. 1089–1103,
2009.

[28] T. Chaari, S. Chaabane, N. Aissani, and D. Trentesaux, “Scheduling under un-
certainty: Survey and research directions,” in Advanced Logistics and Transport
(ICALT), 2014 International Conference on, IEEE, 2014, pp. 229–234.

[29] J. P. Rowe and J. C. Lester, “A modular reinforcement learning framework for
interactive narrative planning,” in Proceedings of the 9th AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 2013, pp. 57–63.

[30] S. Bhat, C. Isbell, and M. Mateas, “On the difficulty of modular reinforcement
learning for real-world partial programming,” in Proceedings of the Twenty-
First National Conference on Artificial Intelligence (AAAI-06), Boston, MA,
USA, 2006.

[31] K. J. Arrow, Social choice and individual values, 2nd. John Wiley and Sons,
1963.

[32] K. W. Roberts, “Interpersonal comparability and social choice theory,” The
Review of Economic Studies, pp. 421–439, 1980.

[33] R. Zhang, Z. Song, and D. H. Ballard, “Global policy construction in modular
reinforcement learning.,” in AAAI, 2015, pp. 4226–4227.

[34] K. Rohanimanesh and S. Mahadevan, “Decision-theoretic planning with con-
current temporally extended actions,” in Proceedings of the Seventeenth Con-
ference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers
Inc., 2001, pp. 472–479.

[35] ——, “Learning to take concurrent actions,” in Advances in neural information
processing systems, 2002, pp. 1619–1626.

[36] Q. P. Lau, M. L. Lee, and W. Hsu, “Coordination guided reinforcement learn-
ing,” in Proceedings of the 11th International Conference on Autonomous

141

Agents and Multiagent Systems-Volume 1, International Foundation for Au-
tonomous Agents and Multiagent Systems, 2012, pp. 215–222.

[37] P. Zang, P. Zhou, D. Minnen, and C. L. Isbell, “Discovering Options from
Example Trajectories,” in Proceedings of the Twenty-sixth International Con-
ference on Machine Learning (ICML), (ICML), 2009.

[38] P. Zang, R. Tian, C. L. Isbell, and A. Thomaz, “Batch versus interactive learn-
ing by demonstration,” in Proceedings of the Ninth International Conference
on Development and Learning (ICDL), (ICDL), 2010.

[39] P. Zang, A. Irani, P. Zhou, C. L. Isbell, and A. Thomaz, “Using Training
Regimens to Teach Expanding Function Approximators,” in Proceedings of the
Ninth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), (AAMAS), 2010.

[40] L. C. C. Rus, P. Zang, C. L. Isbell, and A. Thomaz, “Automatic State Abstrac-
tion from Demonstration,” in Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI), (IJCAI), 2011.

[41] L. C. C. Rus, C. L. Isbell, and A. Thomaz, “Automatic Decomposition and
State Abstraction from Demonstration,” in Proceedings of the Eleventh In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), (AAMAS), 2012.

[42] L. C. C. Rus, K. Subramanian, C. L. Isbell, A. Lanterman, and A. Thomaz,
“Abstraction from Demonstration for Efficient Reinforcement Learning in High-
Dimensional Domains,” Artificial Intelligence, vol. 216, no. 0, pp. 103–128,
2014.

[43] L. C. C. Rus, C. L. Isbell, and A. Thomaz, “Object Focused Q-learning for
Autonomous Agents,” in Proceedings of the Twelfth International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), (AAMAS),
2013.

[44] J. Scholz, M. Levihn, C. L. Isbell, and D. Wingate, “A Physics-Based Model
Prior for Object-Oriented MDPs,” in Proceedings of the 31st International
Conference on Machine Learning (ICML), (ICML), 2014.

[45] E. Catto. (2013). Box2d physics engine, (visited on 2013).

[46] J. Scholz, M. Levihn, C. L. Isbell, H. Christensen, and M. Stilman, “Learning
Non-Holonomic Object Models for Mobile Manipulation,” in Proceedings of the
the 2015 IEEE International Conference on Robotics and Automation (ICRA),
(ICRA), 2015.

142

[47] J. Scholz, J. Nehchal, M. Levihn, and C. L. Isbell, “Navigation Among Mov-
able Obstacles with Learned Dynamic Constraints,” in Proceedings of the the
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), (IROS), 2016.

[48] M. D. McIlroy, J Buxton, P. Naur, and B. Randell, “Mass-produced software
components,” in Proceedings of the 1st International Conference on Software
Engineering, Garmisch Pattenkirchen, Germany, sn, 1968, pp. 88–98.

[49] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24, no. 2, pp. 131–
183, Jun. 1992.

[50] W. B. Frakes and K. Kang, “Software reuse research: Status and future,” IEEE
Transactions on Software Engineering, vol. 31, no. 7, pp. 529–536, 2005.

[51] G. Polančič, M. Heričko, and I. Rozman, “An empirical examination of appli-
cation frameworks success based on technology acceptance model,” Journal of
Systems and Software, vol. 83, no. 4, pp. 574–584, 2010.

[52] V. R. Basili, L. C. Briand, and W. L. Melo, “How reuse influences productivity
in object-oriented systems,” Commun. ACM, vol. 39, no. 10, pp. 104–116, Oct.
1996.

[53] P. Mohagheghi and R. Conradi, “An empirical investigation of software reuse
benefits in a large telecom product,” ACM Trans. Softw. Eng. Methodol., vol.
17, no. 3, 13:1–13:31, Jun. 2008.

[54] C. Gacek, “Exploiting domain architectures in software reuse,” SIGSOFT
Softw. Eng. Notes, vol. 20, no. SI, pp. 229–232, Aug. 1995.

[55] P. J. Landin, “The next 700 programming languages,” Communications of the
ACM, vol. 9, no. 3, pp. 157–166, 1966.

[56] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query lan-
guage,” in Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop
on Data description, access and control, ACM, 1974, pp. 249–264.

[57] M. Fowler, Domain specific languages. Addison-Wesley, 2011.

[58] P. Hudak, “Building domain-specific embedded languages,” ACM COMPUT-
ING SURVEYS, vol. 28, 1996.

[59] ——, “Modular domain specific languages and tools,” Proceedings of the Fifth
International Conference on Software Reuse, pp. 134–142, 1998.

143

[60] M. P. Ward, “Language-oriented programming,” Software-Concepts and Tools,
vol. 15, no. 4, pp. 147–161, 1994.

[61] L. Lamport and A LaTEX, Document preparation system. Addison-Wesley
Reading Mass, 1986.

[62] D. E. Knuth and D. Bibby, The texbook. Addison-Wesley Reading, 1984, vol. 3.

[63] R. M. Stallman, The gnu emacs 24.4 reference manual. Samurai Media Lim-
ited, 2014.

[64] J. M. Neighbors, “The draco approach to constructing software from reusable
components,” IEEE Transactions on Software Engineering, no. 5, pp. 564–574,
1984.

[65] D. H. Lorenz and B. Rosenan, “Code reuse with language oriented program-
ming,” in Top Productivity through Software Reuse, ser. Lecture Notes in Com-
puter Science, K. Schmid, Ed., vol. 6727, Springer Berlin / Heidelberg, 2011,
pp. 167–182.

[66] S. Dmitriev, “Language oriented programming: The next programming paradigm,”
JetBrains onBoard, vol. 1, no. 2, pp. 1–13, 2004.

[67] B. Rosenan, “Designing language-oriented programming languages,” in Pro-
ceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion, ACM, 2010, pp. 207–
208.

[68] A. J. Albrecht, “Measuring application development productivity,” in Proceed-
ings of the joint SHARE/GUIDE/IBM application development symposium,
vol. 10, 1979, pp. 83–92.

[69] M. H. Halstead, Elements of software science. Elsevier New York, 1977, vol. 7.

[70] S. Henry and D. Kafura, “Software structure metrics based on information
flow,” IEEE transactions on Software Engineering, no. 5, pp. 510–518, 1981.

[71] T. J. McCabe, “A complexity measure,” IEEE Transactions on software En-
gineering, no. 4, pp. 308–320, 1976.

[72] T. J. McCabe and C. W. Butler, “Design complexity measurement and test-
ing,” Communications of the ACM, vol. 32, no. 12, pp. 1415–1425, 1989.

144

[73] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, pp. 476–
493, 1994.

[74] E. J. Weyuker, “Evaluating software complexity measures,” IEEE transactions
on Software Engineering, vol. 14, no. 9, pp. 1357–1365, 1988.

[75] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software engi-
neering measurement,” IEEE Transactions on Software Engineering, vol. 22,
no. 1, pp. 68–86, 1996.

[76] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented
design metrics as quality indicators,” IEEE Transactions on software engi-
neering, vol. 22, no. 10, pp. 751–761, 1996.

[77] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity density and software
maintenance productivity,” IEEE transactions on software engineering, vol.
17, no. 12, pp. 1284–1288, 1991.

[78] B. Curtis, S. B. Sheppard, P. Milliman, M. Borst, and T. Love, “Measuring the
psychological complexity of software maintenance tasks with the halstead and
mccabe metrics,” IEEE Transactions on software engineering, no. 2, pp. 96–
104, 1979.

[79] P. Norvig and D. Cohn. (1998). Adaptive software, (visited on 1998).

[80] M. Odersky, L. Spoon, and B. Venners, Programming in scala, 1st ed. Artima,
2008.

[81] M. Odersky and M. Zenger, “Scalable component abstractions,” in OOPSLA
’05: ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2005.

[82] D. Andre and S. J. Russell, “Programmable reinforcement learning agents,”
Advances in neural information processing systems, pp. 1019–1025, 2001.

[83] T. Bauer, “Adaptation-based programming,” PhD thesis, Oregon State Uni-
versity, 2013.

[84] T. Bauer, M. Erwig, A. Fern, and J. Pinto, “Adaptation-based programming
in java,” in Proceedings of the 20th ACM SIGPLAN workshop on Partial eval-
uation and program manipulation, ACM, 2011, pp. 81–90.

[85] ——, “Adaptation-based programming in haskell,” arXiv preprint arXiv:1109.0774,
2011.

145

[86] M. Mateas and A. Stern, “Life-like characters. tools, affective functions and
applications,” in, H. Prendinger and M. Ishizuka, Eds. Springer, 2004, ch. A
Behavior Language: Joint Action and Behavioral Idioms.

[87] B. L. Welch, “The generalization ofstudent’s’ problem when several different
population variances are involved,” Biometrika, vol. 34, no. 1/2, pp. 28–35,
1947.

[88] T. Peters. (2004). Pep 20 – the zen of python, (visited on 2016).

[89] C. S. Dweck and E. L. Leggett, “A social-cognitive approach to motivation
and personality,” Psychological Review, vol. 95, no. 2, pp. 256–273, 1988.

[90] D. Cervone and L. A. Pervin, Personality: Theory and research. John Wiley
and Sons, 2009.

[91] D. Cervone and Y. Shoda, “The coherence of personality: Social-cognitive
bases of consistency, veriability, and organization,” in, D. Cervone and Y.
Shoda, Eds. New York: Guilford Press, 1999, ch. Social-cognitive Theories and
the Coherence of Personality, pp. 3–33.

[92] R. R. McCrae and J. Paul T. Costa, “Handbook of personality: Theory and
research,” in, O. John, R. Robins, and L. Pervin, Eds. New York: Guilford,
2008, ch. The Five-Factor Theory of Personality, pp. 159–181.

[93] A. J. Elliot and T. M. Thrash, “Approach-avoidance motivation in personality:
Approach and avoidance temperaments and goals,” Journal of Personality and
Social Psychology, vol. 82, no. 5, pp. 804–818, 2002.

[94] W. Mischel and Y. Shoda, “Handbook of personality: Theory and research,”
in, O. John, R. Robins, and L. Pervin, Eds. New York: Guilford, 2008, ch. To-
ward a Unified Theory of Personality: Integrating Dispositions and Processing
Dynamics within the Cognitive-Affective Processing System, pp. 208 –241.

[95] R. M. Jones, “An introduction to cognitive architectures for modeling and
simulation,” in Proceedings of the Interservice/Industry Training/Simulation
and Education Conference, 2005.

[96] P. Langley, J. E. Laird, and S. Rogers, “Cognitive architectures: Research
issues and challenges,” Cognitive Systems Research, 2008.

[97] B. E. John, “Cognitive modeling for human-computer interaction,” in In-
vited paper in the Proceedings of Graphics Interface ‘98, Canadian Human-
Computer Communications Society, Vancouver, British Columbia, Canada,
1998.

146

[98] J. E. Laird, “Extending the soar cognitive architecture,” in Proceedings of the
First Conference on Artificial General Intelligence (AGI-08), 2008.

[99] J. R. Anderson, D. Bothell, and M. D. Byrne, “An integrated theory of the
mind,” Psychological Review, vol. 111, no. 4, pp. 1036–1060, 2004.

[100] S. Nason and J. E. Laird, “Soar-rl: Integrating reinforcement learning with
soar,” in 6th International Conference on Cognitive Modeling, Pittsburgh, PA,
2008.

[101] A. B. Loyall and J. Bates, “Hap: A reactive adaptive architecture for agents,”
Tech. Rep. CMU-CS-91-147, 1991.

[102] M. Mateas and A. Stern, “Life-like characters. tools, affective functions and
applications,” in, H. Prendinger and M. Ishizuka, Eds. Springer, 2004, ch. A
Behavior Language: Joint Action and Behavioral Idioms.

[103] J. Gratch and S. Marsella, “Lessons from emotion psychology for the design
of lifelike characters,” Journal of Applied Artificial Intelligence (special issue
on Educational Agents - Beyond Virtual Tutors), vol. 19, no. 3-4, pp. 215–233,
2005.

[104] W. Swartout, J. Gratch, R. Hill, E. Hovy, S. Marsella, J. Rickel, and D. Traum,
“Toward virtual humans,” AI Magazine, vol. 27, no. 1, 2006.

[105] J. W. Atkinson and G. H. Litwin, “Achievement motive and test anxiety con-
ceived as motive to approach success and motive to avoid failure,” Journal of
Abnormal and Social Psychology, vol. 60, no. 1, pp. 52–63, 1960.

[106] A. M. Law, Simulation modeling and analysis, 4th. McGraw-Hill, 2007.

[107] C. Simpkins, S. Bhat, C. Isbell, and M. Mateas, “Towards adaptive program-
ming: Integrating reinforcement learning into a programming language,” in
OOPSLA ’08: ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Onward! Track, Nashville, TN USA,
2008.

[108] J. Singer, S. E. Sim, and T. C. Lethbridge, “Software engineering data collec-
tion for field studies,” in, F. Shull, J. Singer, and D. I. Sjøberg, Eds. Springer,
2008, ch. 1, pp. 9–34.

147

148

VITA

Chris Simpkins is the oldest of four brothers. An Air Force brat born in Biloxi,

Mississippi at Keesler AFB, he lived in Germany from ages 6 through 13. He speaks

German and French and enjoys returning to Europe to teach in study abroad programs

and see old friends. After his dad retired from the Air Force Chris moved with his

family to Shady Spring, West Virginia.

Chris began his professional life in the U.S. Air Force where he was a pilot, software

engineer, and instructor. He was selected as the first ever first-assignment space

instructor upon graduation from Undergraduate Space Training (UST) in 1992, where

he taught basic Newtonian mechanics. He returned to flying after three years as a

classroom instructor and interactive courseware developer to fly the KC-135, rising

to the highest co-pilot position (Stan/Eval), being one of only two co-pilots in his

squadron to earn special-ops qualification, and winning an outstanding crew award

while deployed in Saudi Arabia. He finished his Air Force career doing one of the

things he love most: teaching, this time as a T-37 instructor pilot at Columnbus AFB,

MS. He left the Air Force in 2000 to pursue his other professional passion: computing.

Chris is currently a Lecturer in Computer Science at the Georgia Institute of

Technology. He completed his MS in Computer Science in 2004 specializing in Ar-

tificial Intelligence. A 1990 graduate of the United States Air Force Academy, his

background includes research, software engineering, flying, and teaching. During 15

years as a professional software engineer in private industry, the military, and applied

research, he built and delivered dozens of successful enterprise-scale and single-user

systems, mostly as chief architect or lead software engineer. As a researcher, he has

applied machine learning to text analysis, radio emmiter identification, automated

antenna design, and adaptive agent technology.

149

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The Dream of AI
	The Challenges of Software Engineering
	The Promise of Adaptive Partial Programming
	Contributions
	Outline

	Background in Reinforcement Learning
	Monolithic Reinforcement Learning
	Markov Decision Processes
	Long Term Reward
	Value Functions
	Optimal Policies
	Solving MDPs with Dynamic Programming
	Learning Policies via Reinforcement Learning

	Decompositional Reinforcement Learning
	Hierarchical Reinforcement Learning
	The Curse of Dimensionality in Reinforcement Learning
	Modular Reinforcement Learning

	Robust Command Arbitration for Modular Reinforcement Learning
	Modular reinforcement learning
	Merging local signals
	Ideal Action Selection is Impossible

	Reformulating MRL
	Formalization

	The Arbi-Q Command Arbitration Algorithm
	Experiments
	Bunny-Wolf World

	Results
	How GM-Sarsa Degrades with Incomparable Rewards
	How Arbi-Q does not Degrade with Incomparable Rewards

	Related Work
	Conclusion

	Background in Software Engineering
	Software Reuse
	Domain-Specific Languages

	Software Complexity
	Adaptive Programming
	How to Achieve Adaptive Software
	The Partial Programming Paradigm
	Related Work in Adaptive Programming

	AFABL: A Friendly Adaptive Behavior Language
	Why an embedded DSL?
	Why Scala?
	AFABL Concepts
	Agent Architecture
	Behavior Modules
	Adaptive Modules
	Command Arbitrators

	The AFABL Language
	Worlds
	Modules
	Agents
	A Complete AFABL Bunny

	Conclusion

	AFABL Programmer Study
	Experiments
	Task 1: Bunny-Food-Wolf
	Task 2: Mating Bunny
	Provided Code

	Quantitative Analysis
	Code Size
	Time
	Cyclomatic Complexity
	Performance
	Typical Task 1 Submissions
	Typical Task 2 Submissions
	Quantitative Results
	Qualitative Results

	Threats to Validity
	Conclusion

	AFABL in Context
	AFABL Programs versus Traditional Programs
	Bunny, Food
	Bunny, Food, Wolf
	Bunny, Food, Wolf, Mate
	Bunny, Wolf, Food, Mate, Spoiling Food
	Bunny, Food, Wolf, Mate, Spoiling Food, Picky Mate
	Analysis

	When to Use AFABL

	An Example Application: Deriving Behavior from Personality
	Introduction
	Personality
	Modeling Personality with Reinforcement Learning

	Related Work
	Experiments
	Atkinson's Ring Toss Experiment
	Computational Models of Atkinson's Subjects

	Model Validation
	Discussion
	Conclusions and Future Work

	Conclusion
	Review of Major Contributions
	Limitations of Current Work
	Reward Authoring
	Training
	Host Language Limitations

	Directions for Future Work
	Refined Module Types
	Simplified Syntax
	General Agent Architecture
	Independent (Non-Embedded) Language

	AFABL Programmer Study
	Experiments
	Task 1: The Bunny-Wolf Domain
	Task 2: Mating Bunny

	Data Collection
	Programmer Demographics Survey
	Reflection Survey

	Evaluation
	Source Code Analysis
	Run-time Analysis
	Logistics

	References
	Vita

