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SUMMARY 

 

 The development of advanced combustion energy-conversion systems requires 

accurate simulation tools, such as Direct Numerical Simulation (DNS) and Large Eddy 

Simulation (LES), for capturing and understanding ignition, combustion instability, lean 

blowout, and emissions. However, the characteristic timescales in combustion systems 

can range from milliseconds to picoseconds or even lower. This renders the use of 

detailed finite rate chemistry prohibitive in DNS/LES of turbulent combustion, which 

requires the calculation of a large number of species and reactions on a large number of 

grid cells. Due to these high computational costs, DNS and LES typically employ either a 

flamelet model with detailed chemistry or a simplified/reduced finite rate chemistry with 

non-stiff reactions. Both approaches, however, are of limited accuracy and may reduce 

the overall prediction quality. To address this, a framework with high fidelity by 

incorporating finite rate chemistry, while mitigating additional computational cost, is 

necessary for the development of advanced combustion systems. 

 In this dissertation, a new numerical framework for DNS and LES of turbulent 

combustion is established employing correlated dynamic adaptive chemistry (CoDAC), 

correlated evaluation of transport properties (CoTran), and a point-implicit stiff ODE 

solver (ODEPIM). CoDAC utilizes a path flux analysis (PFA) method to reduce the large 

chemical kinetics mechanism to a smaller size for each location and time step. Thermo-

chemical correlation zones are introduced and only one PFA calculation is required for 

each zone, which diminishes the CPU overhead of CoDAC to negligible computation 

costs. CoTran uses a similar correlation method to accelerate the evaluation of mixture-

averaged diffusion (MAD) coefficients. 

 This framework is firstly applied to investigate the non-equilibrium plasma 

discharge of C2H4/O2/Ar mixtures in a low-temperature flow reactor. The accelerated 
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case has been verified against the benchmark case by both temporal evolution and spatial 

distribution of several key species and gas temperature. Simulation results show that it 

accelerates the total computation time by a factor of 3.16, the calculation of chemical 

kinetics by a factor of 80, and the evaluation of MAD coefficients by a factor of 836. The 

high accuracy and efficiency of this proposed framework illustrate its promise in the 

simulation of diverse combustion problems. 

 Secondly, this framework is evaluated for a canonical turbulent premixed flame 

employing a conventional jet fuel kinetics model. Again, the results show that the new 

framework provides a significant speed-up of chemical kinetics and transport 

computation, enabling DNS with large kinetics mechanisms while maintaining high 

accuracy and good parallel scalability. Detailed diagnostics show that, for this test case, 

calculation of the chemical source term with ODEPIM is 17 times faster than that of a 

pure implicit solver. CoDAC further speeds up the calculation of chemical source terms 

by 2.7 times. CoTran makes the evaluation of MAD coefficients 72 times faster. 

Comparing to the conventional DNS, the total computation time of this framework in this 

test is 20 times faster, with that of chemical kinetics 46 times faster, and that of the 

evaluation of transport properties 72 times faster. 

 Based on the above DNS framework, an efficient finite-rate chemistry (FRC) - 

LES formulation is developed for numerical modeling of a turbulent jet flame. 

Comparing to the conventional FRC-LES, this framework provides a speed-up of 8.6 

times for the chemistry calculation, and 6.4 times for the total computation, using a 20 

species kinetics model. Both the new FRC-LES and flamelet/progress-variable (FPV)-

LES are conducted for a piloted partially premixed methane/air flame (Sandia Flame D).  

The two approaches provide similar predictions in terms of time-averaged flame field and 

statistics, which agree well with the experimental data. For the instantaneous flame field, 

FPV-LES predicts significantly smaller regions with high temperature than the FRC-LES 

case, especially in the downstream region. Near the stoichiometric region, FPV-LES 
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over-predicts the radical generation with respect to the experimental data, but under-

predicts the CO generation and heat release, which explains its under-prediction of 

temperature. In contrast, on the fuel rich side, CO is no longer the bottleneck species, 

thus the FPV-LES predicts a higher temperature than FRC-LES. With respect to the 

experimental data, FRC-LES provides overall better predictions than FPV-LES for both 

temperature and species. 

 Most existing chemical kinetics models offer similar predictions of ignition and 

extinction in 0D/1D finite-rate simulations of laminar combustion processes. Is it 

appropriate, therefore, to extend this observation to a 3D turbulent combustion 

environment? In order to investigate the sensitivity of predictions to chemical kinetics 

models, two different kinetics models, GRI-Mech 3.0 and an 11-species syngas model, 

are compared by performing 3D finite-rate kinetics-based DNS of a temporally evolving 

turbulent non-premixed syngas flame. The framework enables computationally efficient 

simulation incorporating the detailed GRI-Mech 3.0. Both chemical kinetics models 

provide comparable qualitative trends, and capture local extinction/re-ignition events. 

However, significant quantitative discrepancies (e.g. 86~100 K difference in the 

temperature field) indicate high sensitivity to the chemical kinetics model. The 11-species 

model predicts a lower radicals-to-products conversion rate, causing more local 

extinction and less re-ignition. This sensitivity to the chemical kinetics model is 

amplified relative to a 1D steady laminar simulation by the effects of unsteadiness and 

turbulence (up to 7 times for temperature, up to 12 times for CO, up to 13 times for H2, 

up to 7 times for O2, up to 5 times for CO2, and up to 13 times for H2O), with the 

deviations in species concentrations, temperature, and reaction rates forming a nonlinear 

positive feedback loop under reacting flow conditions.  The differences between the 

results from the two models are primarily due to: (a) the larger number of species and 

related kinetic pathways in GRI-Mech 3.0, and (b) the differences in reaction rate 

coefficients for the same reactions in the two models. Both (a) and (b) are sensitive to 
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unsteadiness and other turbulence effects, but (b) is more pronounced. During local 

extinction events, the major differences between the results from the two chemical 

kinetics models are in the peak values and the volume occupied by the peak values, 

which is dominated by unsteady effects. During re-ignition events, differences are mainly 

observed in the spatial distribution of the reacting flow field, which is primarily 

dominated by the complex turbulence-chemistry interaction. Further analysis shows that 

GRI-Mech 3.0 predicts more net radical production associated with the major global 

pathways, explaining the prediction of less local extinction and more re-ignition. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Motivation 

 Increasing demand in an energy economy still dominated by the combustion of 

fossil fuels, coupled with concerns regarding the long-term environmental effects of these 

processes make detailed understanding of the physics and chemistry of turbulent 

combustion a scientific and engineering priority. Particularly, the development of 

advanced propulsion and combustion-energy conversion systems requires accurate 

computational tools, such as Direct Numerical Simulation (DNS) and Large Eddy 

Simulation (LES), which provide a powerful way to investigate the complex interplay of 

turbulent mixing, molecular diffusion, and finite-rate kinetics. However, DNS/LES 

suffers from a bottleneck in the calculation of the stiff finite-rate chemical reactions and 

mixture-averaged transport properties, when moderately complex to detailed chemical 

kinetics models are employed [1-3]. For this reason, except for those consuming 

excessive computational resources and time [4-6], most DNS/LES studies of turbulent 

combustion have used either a flamelet model with detailed chemistry (~50 species or 

more) [7-10] or a simplified/reduced finite-rate chemical kinetics model with non-stiff 

reactions (~10 species) [11-16]. Both approaches, however, are of limited accuracy and 

may reduce the overall accuracy of prediction [17], especially in low-temperature ignition 

zones [17-19]. Therefore, accelerating the computation of chemical kinetics and transport 

properties is required to enable computationally efficient and accurate simulations with 

the DNS/LES approach employing detailed finite-rate chemical kinetics models. In 

combustion systems, the characteristic timescales can range from milliseconds to 

picoseconds or lower. This renders the use of detailed finite rate chemistry prohibitive in 

DNS/LES of turbulent combustion, due to the large number of chemical species and 
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reactions. As a result, chemistry and transport dominate the resource requirements in 

most combustion DNS studies [2, 3, 20, 21].  

 Molecular diffusion transport modeling is another obstacle to accurate and 

efficient DNS of turbulent combustion. Bruno et al. [2] compared three models in DNS 

of a partially premixed flame, and concluded that the mixture-averaged diffusion (MAD) 

model predicts essentially the same fluid-dynamic and thermo-chemical field as the fully 

multi-component diffusion (MCD) model. However, the fast constant Lewis number 

model predicts a significantly different flow-field. Therefore, the MAD model or a higher 

fidelity model is needed to guarantee accurate predictions. Although MAD is much faster 

than the MCD model, applying it at every time step and every grid cell is still expensive; 

it is often the second largest component of the required CPU time for a given 

computation, and could dominate CPU use when the kinetic source term is no longer the 

bottleneck. 

 For any practical simulation method, the key is to provide quantitative solutions 

with minimal empirical constants. LES has drawn significant attention during the past 

three decades, and its predictive capability is continuously enhanced. In LES, the energy-

contained large-eddy motions are resolved with sufficient grid resolution, while motions 

of scales smaller than the grid sizes, i.e. subgrid scale (SGS) motions, are not resolved 

but modeled. In LES of turbulent combustion, turbulent mixing and chemical reactions 

are closely coupled to each other. The chemical reaction rates are highly nonlinear 

functions of species concentrations and temperature, which in turn heavily depend on the 

turbulent mixing. On the other hand, chemical reactions also release heat and 

subsequently affect species concentrations and temperature, which in turn change the 

turbulent mixing. Chemical reactions occurring at different time scales may interact with 

eddies of different length/time scales, further complicating both the physical and 

chemical processes. For these reasons, turbulence/chemistry interaction is considered the 

most challenging topic in turbulent combustion modeling. 
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 Due to the mathematical nature of the governing equations, there are primarily 

three categories of computational fluid dynamics (CFD) solvers: incompressible solvers, 

low Mach solvers, and fully compressible solvers. The intense heat release and 

subsequent gas expansion in turbulent combustion make incompressible solvers less 

preferable. In low Mach solvers, density is decoupled from pressure (acoustics), which 

makes the solvers inaccurate or unstable near the instability limit or at high Mach 

numbers. In fully compressible solvers, conservation equations are closely coupled under 

moderate or high Mach numbers, but become poorly coupled and numerically stiff at low 

Mach numbers. Many fluid flow problems involve a wide range of Mach numbers, which 

poses a great challenge for all three categories. 

 Furthermore, the sensitivity of simulation results to different chemical kinetics 

models is still unclear, particularly concerning the prediction of local extinction and re-

ignition events in highly turbulent combustion environments. These phenomena are 

associated with increased emissions, combustion instability, and flame blowout, so their 

accurate prediction is critical 

 Numerical analysis plays an increasingly important role in the understanding of 

combustion simulation results. However, due to the large sizes and complicated coupled 

relations of chemical kinetics, it remains a formidable task to extract insights from the 

reaction system. Systematic and rigorous analytic tools are necessary to obtain useful 

information from massive simulation datasets. 

 This dissertation attempts to address the above challenging key issues related to 

the numerical modeling and understanding of turbulent combustion and its underlying 

fundamental physicochemical processes at a wide range of fuel types and conditions. 

Specifically, this dissertation (a) establishes an efficient framework to calculate detailed 

finite rate chemistry in DNS/LES of turbulent combustion, (b) studies the influence of 

global mechanism reduction and choices of chemical kinetics mechanisms, and (c) 

investigates the necessity of finite rate chemistry. 
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1.2 Literature Review 

1.2.1 Reduction of Detailed Chemical Kinetics Mechanisms 

Global Reduction 

 In order to reduce computational cost, several mechanism reduction methods have 

been proposed. Typical examples include the visualization method [22], the direct 

relation graph (DRG) method [23], the DRG with error propagation (DRGEP) method 

[24], the multi-generation path flux analysis (PFA) method [25], and the global pathway 

selection (GPS) method [26]. These models essentially reduce the number of species in 

the chemical kinetics models.  

 Well-verified by homogeneous ignition delays, extinction curves in the perfectly 

stirred reactor, and laminar flame speeds, globally reduced models for hydrocarbons 

generally require at least ~40 species to cover all user-defined conditions of interest (fuel 

type, oxidizer type, equivalence ratio, initial pressure and temperature). Any further 

reduction would introduce significant errors, because globally reduced mechanisms 

typically have to be produced based on conditions of interest in practice. Unfortunately, 

the least number of required species is still too large for DNS/LES using the finite-rate 

kinetics approach. 

Dynamic Local Reduction 

 To deal with this issue, several adaptive combustion models have been proposed 

by a number of investigators.  

  To tackle this challenge, dynamic adaptive chemistry (DAC) [27, 28] was 

proposed to utilize detailed stiff finite-rate chemistry. DAC generates locally optimized 

reduced kinetics for each spatial location and time step, and only the reaction rates of 

active species are calculated. DAC has been applied to accelerate the kinetics 

computation in DNS of 0D/1D reactors [29], 2D RANS of DI engines [30], and 3D 
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URANS and LES of spray flames [31]. Liang et al. [32] proposed a pre-partitioned 

adaptive chemistry methodology for 0D partially-stirred reactor using particle probability 

density function (PDF) methods. In contrast, Wu et al. [33] designed a sub-model 

assignment framework to assign different flamelet/finite rate sub-models rather than 

different kinetics to different zones of the simulation domain for a 2D laminar triple 

flame, which matches the boundaries of zones by only conserving the interested 

quantities. 

 Both the DAC and zone partition in all the above methods contain significant 

CPU overhead for mechanism reduction/zone partition. In order to reduce the CPU 

overhead, Liang et al. [32] and Wu et al. [33] proposed pre-generating look-up tables for 

the zone partition. However, covering all conditions through tabulation is very 

challenging, and the large tables make important demands on memory resources.  

 Recently, Sun et al. [34, 35] proposed a simple zone-partition criterion to decide 

whether a new on-the-fly reduction was required or not, and this significantly reduced 

CPU overhead. Employing the correlated version of DAC (CoDAC) technique, Sun et al. 

[34, 35] showed significant reduction of CPU time for chemistry in 0D/1D laminar 

flames. To improve the computation of transport properties, Sun and Ju [36] developed a 

correlated transport (CoTran) technique, and obtained significant further speed-up for 

extensive 0D/1D laminar flames. 

 Both the CoDAC and CoTran techniques have been applied only to 0D and 1D 

simulations of laminar flames. Generalization of these techniques to 3D DNS/LES of 

turbulent combustion gives rise to several critical questions: 1) how to efficiently scan 

and form the correlation zones in 3D space; 2) whether existing CPU overhead reduction 

methods are adequate for 3D turbulent flames; 3) whether correlation grouping is valid 

under high intensity turbulence; 4) how to maintain good parallel scaling performance on 

a large number of processors. In addition, optimized combinations of the above methods 

to provide the best possible computational speed have not yet been developed. 
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 CoDAC and CoTran has not been implemented via parallel high performance 

computing (HPC), which is necessary for high dimensional simulation with immensely 

fine grid. The zoning of CoDAC and CoTran method is convenient for parallelization 

because there is no need to communicate reduced mechanism of one local zone with 

other processors. Ideally, parallel CoDAC and CoTran can resolve the efficiency 

degeneracy issue of CoDAC and CoTran when the number of correlated spatial zones 

increases. In particular, larger number of zones can be distributed to more processors, 

which results in a relatively fixed number of zones on each processor to guarantee the 

efficiency of CoDAC and CoTran. 

1.2.2 Stiff ODE Solvers 

 In a combustion system, the characteristic timescales of different phases can range 

from milliseconds to picoseconds and even smaller. In most of the previous literature, the 

variable-coefficient ODE solver (VODE) [37] is applied to solve the stiff ODE system. 

However, the computation time of VODE solver increases as cubic of the number of 

species due to the iterative “Jacobian matrix decomposition”. For this reason, it is almost 

impossible to involve large detailed mechanisms or moderate mechanisms in simulations 

with a large number of grid points, especially in the high dimensional computational 

domain. 

 In order to enable the detailed combustion chemistry in comprehensive modeling, 

one can directly reduce the stiffness of the ODE system, such as the computational 

singular perturbation (CSP) method [38, 39], the intrinsic low-dimensional manifold 

(ILDM) method [40], the dynamic stiffness removal method [41] and the hybrid multi-

timescale (HMTS) method [42]. The highly reduced kinetics will still keep the multi-

timescale nature of combustion, therefore, much faster stiff ODE solvers, such as the 

point-implicit stiff ODE solver (ODEPIM) [43, 44], are preferred. 

1.2.3 Turbulence/Combustion Interaction Models 
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 Many LES turbulent combustion models have been developed, which can be 

classified into two major categories: the finite-rate chemistry (FRC) models, and the 

flamelet generated manifold (FGM) models.  The FRC models category includes laminar 

chemistry model [45-47], perfectly-stirred reactor (PSR) model [48], partially-stirred 

reactor (PaSR) model [49], linear-eddy model (LEM) [50], Monte Carlo method for 

Lagrangian filtered probability density function (FDF) transport equations [51], thickened 

flame model (TFM) [52], etc. The FGM models category includes steady laminar 

flamelet model [53], Lagrangian flamelet model [54, 55], flamelet/progress-variable 

(FPV) model [56], etc.  

 Among different FGM models, the steady laminar flamelet model pioneered by 

Peters [53] provides the advantages of easy implementation and low computational cost. 

However, there are limitations. Firstly, the mixture fraction essentially does not carry any 

information about the chemical states. The model chooses the filtered dissipation rate of 

mixture fraction as an additional parameter to account for the flame stretching effect, but 

does not provide a unique mapping from mixture fraction to the corresponding reaction 

state. A pure mixing of fuel and oxidizer cannot be accounted by the steady laminar 

flamelet model if the local scalar dissipation rate is close to the quenching limit. In 

addition, the coexistence and interaction between auto-ignition kernels and flame sheet 

[57-59] cannot be captured.  

 In order to overcome the drawbacks of the steady laminar flamelet model, the 

FPV model [56, 60] was proposed by incorporating a transport equation to track a 

progress variable. This model has been developed to account for low-level of extinction, 

ignition, and unsteady mixing effect [56] to some extent. However, it cannot handle 

multiple-feed streams unless adding a third parameter, which makes the look-up table 

very difficult to handle due to the large computer memory requirement and time to build 

up the table. In addition, the higher-dimension look-up table results in a more 
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complicated data retrieval process and coarser table grid, which could introduce higher 

interpolation errors.  

 The main assumption of many FGM models is that the chemical reactions are 

faster than all turbulent flow eddies, such that the combustion process can be decoupled 

from the turbulent flow field. This assumption becomes invalid in three important 

categories of operating conditions. (1) When the turbulence intensity is high enough, the 

local Reynolds number may increase to such a level that small turbulent eddies become 

faster than chemical reactions to penetrate into the flame zone and greatly enhance the 

mixing process. (2) Most chemical reactions related to combustion emissions (NOx, soot, 

aerosol, etc.) are very slow, thus FGM models normally cannot capture emissions 

accurately. (3) For processes of ignition, extinction, and conditions close to flammability 

limits, chemical reactions are often slower than small turbulent eddies. In addition, since 

each FGM model is optimized for one single regime, they are problematic to handle 

turbulent combustion with multiple regimes, like lean blowout (LBO) in partially 

premixed fames. To overcome these limitations, detailed finite-rate chemistry (FRC) is 

desirable. 

 Many fluid flow problems involve a wide range of Mach numbers, which poses a 

great challenge for all these three categories. To resolve this issue, a preconditioning 

method [61-66] was proposed for fully compressible solver to allow a broad range of 

Mach numbers simultaneously in the simulation. 

1.2.4 Analysis Tool for Combustion Simulation Results 

 Realistic chemical kinetic mechanisms describing the combustion process 

typically involve hundreds of species and thousands of reactions. Due to their large sizes 

and complicated coupled relations, it remains a formidable task to extract insights from 

the reaction system. Systematic and rigorous analytic tools are necessary to obtain useful 

information from massive simulation datasets. 
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 The analysis of chemical kinetics may start from timescale decoupling. One 

prominent example is the Computational Singular Perturbation (CSP) [67]developed in 

the mid-1980s. CSP decouples fast and slow subspaces (modes) based on Jacobian 

analysis. The involvement of species and reactions in the fast processes can be identified 

by the radical pointer and the participation index [68], respectively. The wide 

applications of CSP include mechanism reduction [69, 70], analysis of flow-chemistry 

interactions [71], and biochemical systems [72]. Intrinsic low-dimensional manifold 

(ILDM) [73] is another. The identified manifolds represent attractors for the chemical 

kinetics, thus separating the fast processes, which relax towards the attractors, and the 

slow ones, which move within the manifolds [74]. This method is then extended to 

reaction–diffusion manifolds (REDIMs) to tackle the coupling of reaction and diffusion 

processes [75, 76]. A more recent kinetic analysis method is Chemical Explosive Mode 

Analysis (CEMA) proposed by Lu et al. [77]. It quantifies the timescales related to 

chemical explosive modes (CEM) based on the eigenvalue analysis of the Jacobian 

matrix of the chemical source term. Methods to evaluate the contribution of each species 

or elementary reaction to CEM are provided [77-79]. Such diagnostic techniques provide 

insights to analyze complex flame dynamics, such as turbulent lifted jet flames associated 

with auto-ignition [79-83]. Besides the methods based on eigenvalue analysis of Jacobian 

matrix, approaches representing the results with basic physical quantities are available as 

well. In an investigation of diffusion flame extinction, Won et al. [84] introduced the 

concept of radical index, which is the normalized OH radical formation rate, to quantify 

the impact of chemical kinetics, and a transport weighted enthalpy, to assess the mass 

transfer effect. For fuels with distinct chemical properties, a universal correlation 

between diffusion flame extinction strain rates and the product of radical index and 

transport-weighted enthalpy has been demonstrated in that work. Sensitivity analysis [85] 

is another method to analyze the reacting system. However, this method is brute-force 
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and very time-consuming, especially when the number of variables is significant. 

Furthermore, the coupling relations between variables may not be discovered. 

 Recently, a Global Pathway Selection algorithm (GPS) [26] is proposed to 

identify important chemical pathways that converting initial reactants to final products, 

based on atomic flux analysis. Different from the classical Path Flux Analysis algorithm 

(PFA) [25, 86-88], which only considers one or two generations, GPS provides a way to 

consider the relation between species through all generations (reaction steps). GPS has 

been used for effective chemical kinetic mechanism reduction [26, 89]. GPS is further 

extended as an analytic tool, Global Pathway Analysis (GPA) [90-92]. By analyzing the 

dominancy and effects on radical production and consumption of different reaction 

pathways, GPA provide insights to understand the complex reacting system. It has been 

demonstrated using zero-dimensional (0D) simulation results [90]. 

1.3 Research Objectives 

 The first objective of this dissertation is to develop a new regime-independent 

framework for 3D DNS of turbulent combustion with detailed kinetics by incorporating 

CoDAC, CoTran, and ODEPIM into conventional DNS platforms. All three methods are 

modified and optimized to adapt to 3D turbulent combustion and parallel high 

performance computing (HPC). The new framework is tested on a non-equilibrium 

plasma discharge of C2H4/O2/Ar mixtures in a low-temperature flow reactor, a canonical 

premixed flame interacting with decaying isotropic turbulence, a temporally evolving 

turbulent non-premixed syngas flame to evaluate its accuracy for both species and 

temperature evolution, speed-up and parallel performance. 

 The second objective of this dissertation is to incorporate the framework into a 

preconditioning scheme to allow an Eulerian FRC-LES approach in a fully compressible 

CFD solver. The established FRC-LES framework is then used to investigate a low Mach 

piloted turbulent partially premixed flame (Sandia Flame D) as a benchmark case. The 



 11 

results from the FRC model are compared to those from both the FPV model and the 

experiment, in terms of both computational performance and accuracy. For self-

consistency, all LES combustion models are coupled with a fully compressible CFD 

solver using a preconditioning scheme. 

 The last objective of this dissertation is to investigate the sensitivity of simulation 

results to different chemical kinetics models, particularly with regard to the prediction of 

local extinction and re-ignition events. In particular, two different chemical kinetics 

models (GRI-Mech 3.0 [93] and an 11-species model [13]) are used to simulate a 

temporally evolving turbulent non-premixed syngas flame, and the results are compared. 

GPA is applied to investigate the underlying physical processes for this sensitivity. 

1.4 Dissertation Outline 

The dissertation is organized into eight chapters. Chapter 2 describes the 

theoretical framework including governing equations, finite rate chemistry, thermos-

physical and transport properties. Chapter 3 presents the numerical framework for both 

DNS and LES, as well the boundary conditions and parallel implementation. Chapter 4 

focuses on the development of efficient numerical framework for detailed finite rate 

chemistry in turbulent combustion, using ODEPIM, CoDAC, and CoTran. Chapter 5 

numerically verifies the framework for plasma assisted combustion, turbulent premixed 

and non-premixed flames. This is followed by the experimental validation of the 

framework via LES for a turbulent partially premixed jet flame in Chapter 6, in which the 

FRC and FPV models are compared in detail. Chapter 7 systematically investigate the 

sensitivity of simulation prediction to chemical kinetics models. Finally, the conclusions 

of this dissertation and recommendations for the future work are provided in Chapter 8.  
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CHAPTER 2  

THEORETICAL FRAMEWORK 

2.1 Governing Equations 

 The theoretical framework is based on the full conservation equations of mass, 

momentum, energy, and species concentrations in Cartesian coordinate systems. In fluid 

mechanics, assuming continuum and negligible body forces, the differential form of 

Navier-Stokes equations are given by 

0 ,i

i

u

t x

 
 

 
 

(2.1) 

( )
,      ( 1,  2,  3)

i j iji

j j

u uu
i

t x x

   
  

  
 

(2.2) 

  ( )( )
,     

i iji i

i i j

uE p u qE

t x x x

   
   

   
 

(2.3) 

 
,            ( 1,  ,  -1)

k j kk jk
k

j j

D YY uY
k N

t x x

 
   

  




 

(2.4) 

here i, j, and k are indexes of spatial coordinate, summation, and species. For a 

Newtonian fluid with Stokes' hypothesis, the viscous stress tensor, σij in Eq. 2.2 is 

expressed as 

2
 .

3

ji k
ij ij ij ij ij

j i k

uu u
p p

x x x
      

  
              

(2.5) 

 The Dufour effect, which is the heat flux due to concentration gradient, is 

generally very small and thus neglected in the current study. Then qj in Eq. 2.3 is defined 

as 

,

1

ˆ  .
N

j k k k j

kj

T
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(2.6) 
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 The specific total energy is defined as the sum of specific internal energy and 

kinetic energy, given by 

 ,
2

j ju u
E e 

 
(2.7) 

where the specific internal energy is calculated from specific enthalpy, pressure, and 

density, given by 

 ,
p

e h


 

 
(2.8) 

where h is determined by the mixture concentration and partial-mass based enthalpies, 

, for which the definition will be given later.  

1

ˆ  .
N

K k

k

h Y h



 

(2.9) 

 In non-premixed combustion studies, mixture fraction is an important conserved 

variable and often used. The definition of mixture fraction is not unique. In a two-feed 

system, mixture fraction is simply defined as the ratio of the local mass originating from 

the fuel (denoted by 1) to total mass (with mass from the oxidizer stream denoted by 2), 

1

1 2

 .
m

Z
m m


  

(2.10) 

 Although the definition based on Eq. 2.10 is straightforward, it becomes 

ambiguous when there are multiple inlets. In such a case, a more general definition based 

on elemental conservation is used. If aij denote the number of atoms of element j in a 

molecule of species i, then the mass of all atoms j in the system of interest is given by: 

𝑚𝑗 = ∑
𝑎𝑖𝑗𝑀𝑊𝑗

𝑀𝑊𝑖
𝑚𝑖

𝑁

𝑘=1

 (2.11) 

Dividing Eq. 2.11 by the total mass, one has the mixture fraction of element j as: 

𝑍𝑗 =
𝑚𝑗

𝑚
= ∑

𝑎𝑖𝑗𝑀𝑊𝑗

𝑀𝑊𝑖
𝑌𝑖

𝑁

𝑘=1

 (2.12) 

ˆ
kh
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It is obviously that Zj is a linear function of species, Yi. Multiplying Eq. 2.4 by 
𝑎𝑖𝑗𝑀𝑊𝑗

𝑀𝑊𝑖
 and 

summing over all the species, it gives: 

( )
 .

j kk k
k

j j j

u ZZ Z
D

t x x x

  
        




 

(2.13) 

The source term vanishes because of the conservation of chemical elements. If we 

assume that the mass diffusivity for all the species equal to D, the balance equation 

becomes 

( )
 .

j kk k

j j j

u ZZ Z
D

t x x x

  
        




 

(2.14) 

For hydrocarbon fuels ( ), the coupling function can be defined as: (Burke and 

Schumann 1928):  

𝛽 =
𝑍𝐶

𝑚𝑀𝑊𝐶
+

𝑍𝐻
𝑛𝑀𝑊𝐻

−
2𝑍𝑂

𝜈𝑂2
′ 𝑀𝑊𝑂2

 , (2.15) 

where β is a conserved scalar. It can be normalized between 0 and 1 to obtain Bilger’s 

(1988) definition of the mixture fraction: 

𝑓 =

𝑍𝐶
𝑚𝑀𝑊𝐶

+
𝑍𝐻

𝑛𝑀𝑊𝐻
+
2(𝑌𝑂2,2 − 𝑍𝑂)

𝜈𝑂2
′ 𝑀𝑊𝑂2

𝑍𝐶,1
𝑚𝑀𝑊𝐶

+
𝑍𝐻,1
𝑛𝑀𝑊𝐻

+
2𝑌𝑂2

𝜈𝑂2
′ 𝑀𝑊𝑂2

 . (2.16) 

From Eq. 2.17 and Eq. 2.19, one can get the transport equation for the mixture fraction: 

( )
 .

j

j j j

u ff f
D

t x x x




   
          

(2.17) 

2.2 Finite Rate Chemistry 

 The chemical source term in Eq. 2.4 is determined from the selected chemistry 

kinetics. For an elementary reaction mechanism, with L-step reaction and N species, 

m nC H
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∑𝜈𝑘𝑙
′ 𝑋𝑘

𝑘𝑏𝑙
⇐ 

𝑘𝑓𝑙
⇒ ∑𝜈𝑘𝑙

′′

𝑁

𝑘=1

𝑁

𝑘=1

,   𝑙 = 1, 2,⋯ , 𝐿 (2.18) 

the reaction rate constants of the forward and backward reactions, kfl and kbl, may take the 

following form according to the modified Arrhenius’s equation: 

   exp /  .b

l l l uk T AT E R T 
 

(2.19) 

 The net production rate for each species in a multi-step mechanism is given by, 

�̇�𝑘 = 𝑀𝑊𝑘∑(𝜈𝑘𝑙
′′ − 𝜈𝑘𝑙

′ )

𝐿

𝑖=1

[𝑘𝑓𝑙∏[𝑋𝑘]
𝜈𝑘𝑙
′

𝑁

𝑘=1

− 𝑘𝑏𝑙∏[𝑋𝑘]
𝜈𝑘𝑙
′

𝑁

𝑘=1

] 𝑘 = 1, 2,⋯ ,𝑁. (2.20) 

where [𝑋𝑘] is the molar concentration of species 𝑘. 

2.3 Thermo-physical Properties 

 In order to close the aforementioned governing equations, thermodynamic and 

transport properties require to be defined and an equation of state (EOS) is needed to 

correlate pressure, temperature, and density. In this section, first, the EOS is presented, 

and then thermodynamics treatments, including the derivatives appearing in the 

preconditioning matrix are summarized. 

2.3.1 Equation of State (EOS) 

 In the present study, the EOS used is that of an ideal, multi-fluid gas. The formula 

of ideal gas EOS is given by, 

𝑝 = 𝜌𝑅𝑇 =
𝜌𝑅𝑢𝑇

𝑀𝑊
 (2.21) 

where the mean mass density is defined by, 

𝜌 = ∑[𝑋𝑘]𝑀𝑊𝑘

𝑁

𝑘=1

 (2.22) 

The mean molecular weight 𝑀𝑊 is given by, 
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𝑀𝑊 =
1

∑ 𝑌𝑘/𝑀𝑊𝑘
𝑁
𝑘=1

= ∑𝑋𝑘𝑀𝑊𝑘

𝑁

𝑘=1

=
∑ [𝑋𝑘]𝑀𝑊𝑘
𝑁
𝑘=1

∑ [𝑋𝑘]
𝑁
𝑘=1

 (2.23) 

2.3.2 Thermodynamic Properties 

 In this study, the thermodynamic properties are assumed thermally perfect, i.e. 

they are only functions of temperature. Practically, it is convenient to fit the molar heat 

capacities at constant pressure for species 𝑘 in terms of polynomial of temperature: 

𝐶𝑝,𝑘

𝑅
= ∑𝑎𝑛,𝑘𝑇

𝑛−1

𝑁

𝑛=1

 . (2.24) 

 Other thermodynamic properties are given in terms of integrals of the molar heat 

capacities. First, the standard-state molar enthalpy for species 𝑘 is given by, 

𝐻𝑘 = ∫ 𝐶𝑝,𝑘(𝑇)𝑑𝑇
𝑇

298 𝐾

+ 𝐻𝑘(298 𝐾) = 𝑅𝑇 (∑
𝑎𝑛,𝑘𝑇

𝑛−1

𝑛
+
𝑎𝑁+1,𝑘
𝑇

𝑁

𝑛=1

) , (2.25) 

where the parameter 𝑎𝑁+1,𝑘𝑅 represents the standard heat of formation at 298 K. 

 Similarly, the molar entropy for species 𝑘 is written as, 

𝑆𝑘 = ∫
𝐶𝑝,𝑘(𝑇)

𝑇
𝑑𝑇

𝑇

298 𝐾

+ 𝑆𝑘(298 𝐾) 

                     = 𝑅 (𝑎1,𝑘𝑙𝑛𝑇 +∑
𝑎𝑛,𝑘𝑇

𝑛−1

𝑛 − 1
+ 𝑎𝑁+2,𝑘

𝑁

𝑛=2

) , 

(2.26) 

where the parameter 𝑎𝑁+2,𝑘𝑅 represents the standard molar entropy at 298 K. 

 Other thermodynamic properties are given in terms of  𝐶𝑝,𝑘 , 𝐻𝑘 , and 𝑆𝑘 . The 

specific heat capacity at constant volume 𝐶𝑣,𝑘 is defined as: 

𝐶𝑣,𝑘 = 𝐶𝑝,𝑘 − 𝑅, (2.27) 

 The internal energy 𝑈𝑘 is defined as: 

𝑈𝑘 = 𝐻𝑘 − 𝑅𝑇. (2.28) 

 For gas mixtures, the mixture-averaged thermodynamic properties are defined as: 
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𝐶𝑝 = ∑𝐶𝑝,𝑘𝑋𝑘

𝑁

𝑘=1

, (2.29) 

𝐶𝑣 = ∑𝐶𝑣,𝑘𝑋𝑘

𝑁

𝑘=1

, (2.30) 

𝐻 = ∑𝐻𝑘𝑋𝑘

𝑁

𝑘=1

, (2.31) 

𝑈 = ∑𝑈𝑘𝑋𝑘

𝑁

𝑘=1

. (2.32) 

 The mixture-averaged entropy is more complicated: 

𝑆 = ∑(𝑆𝑘 − 𝑅𝑙𝑛𝑋𝑘 − 𝑅𝑙𝑛 (
𝑝

𝑝𝑎𝑡𝑚
))𝑋𝑘.

𝑁

𝑘=1

 (2.33) 

2.4 Transport Properties 

 Accurate calculation of transport properties, including dynamic viscosity, thermal 

conductivity, and binary mass diffusivity, is very important for fluid mixing and 

combustion characteristics. They determine not only the flow dynamics, but also the heat 

and mass transfer rates.  

2.4.1 Dynamic Viscosity and Thermal Conductivity 

 The single component viscosity is given by the standard kinetic theory 

expression: 

𝜂𝑘 =
5

16

√𝜋𝑚𝑘𝑘𝐵𝑇

𝜋𝜎𝑘
2Ω(2.2)∗

 , (2.34) 

where the collision integral 𝛀(𝟐.𝟐)∗ depends on the reduced temperature 𝑇𝑘
∗ = 𝑘𝐵𝑇/𝜖𝑘 and 

the reduced dipole moment 𝛿𝑘
∗ =

1

2
𝜇𝑘
2

𝜖𝑘𝜎𝑘
3. It is determined by a quadratic interpolation of the 

tables based on Stockmayer potentials given in Monchick and Mason [94]. 
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 The individual species thermal conductivities are assume to be composed of 

translational, rotational, and vibrational modes given by Warnatz [95]:  

𝜆𝑘 =
𝜂𝑘
𝑀𝑊𝑘

(𝑓𝑡𝑟𝑎𝑛𝐶𝑣,𝑡𝑟𝑎𝑛 + 𝑓𝑟𝑜𝑡𝐶𝑣,𝑟𝑜𝑡 + 𝑓𝑣𝑖𝑏𝐶𝑣,𝑣𝑖𝑏), (2.35) 

 To expedite the evaluation of transport properties in a computer program, people 

often fit the temperature dependent parts of the pure species transport properties. The 

viscosity and conductivity are independent of pressure. Practically, a polynomial fit of the 

logarithm of the property versus the logarithm of the temperature is often employed. For 

the viscosity, the fitting is: 

𝑙𝑛𝜂𝑘 = ∑𝑎𝑛,𝑘(𝑙𝑛𝑇)
𝑛−1

𝑁

𝑛=1

, (2.36) 

and the fitting of thermal conductivity is: 

 𝑙𝑛𝜆𝑘 = ∑ 𝑏𝑛,𝑘(𝑙𝑛𝑇)
𝑛−1𝑁

𝑛=1 . (2.37) 

 For gas mixtures, we need to get the mixture-averaged transport properties from 

those of single species. The Wilke formula [96] of viscosity is given by: 

𝜂 = ∑
𝑋𝑘𝜂𝑘

∑ 𝑋𝑗Φ𝑘𝑗
𝑁
𝑗=1

𝑁

𝑘=1

, (2.38) 

where, 

Φ𝑘𝑗 =
1

√8
(1 +

𝑀𝑊𝑘

𝑀𝑊𝑗
)

−
1
2

(1 + (
𝜂𝑘
𝜂𝑗
)

1
2

(
𝑀𝑊𝑗

𝑀𝑊𝑘
)

1
4
)

2

 (2.39) 

The mixture-averaged thermal conductivity uses a combination averaging formula 

[97]: 

𝜆 =
1

2
(∑𝑋𝑘𝜆𝑘

𝑁

𝑘=1

+
1

∑
𝑋𝑘
𝜆𝑘

𝑁
𝑘=1

). (2.40) 

2.4.2 Binary Mass Diffusivity 
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 The binary mass diffusion coefficients are given as function of both temperature 

and pressure: 

𝐷𝑗𝑘 =
3

16

√2𝜋𝑘𝐵
3𝑇3/𝑚𝑗𝑘

𝑝𝜋𝜎𝑗𝑘
2Ω(1,1)∗

, 
(2.41) 

where the reduced molecular mass 𝑚𝑗𝑘 is defined as: 

𝑚𝑗𝑘 =
𝑚𝑗𝑚𝑘

𝑚𝑗 +𝑚𝑘
, (2.42) 

 To expedite the evaluation of transport properties in a computer program, people 

often fit the temperature dependent parts of the pure species transport properties. 

Practically, a polynomial fit of the logarithm of the property versus the logarithm of the 

temperature is often employed. For binary mass diffusion coefficients: 

𝑙𝑛𝐷𝑗𝑘 = ∑𝑑𝑛,𝑗𝑘(𝑙𝑛𝑇)
𝑛−1

𝑁

𝑛=1

. (2.43) 

 The diffusion coefficients depend inversely on pressure. The diffusion coefficient 

fits are computed at unit pressure; the later evaluation of a diffusion coefficient is 

obtained by simply dividing the diffusion coefficient as evaluated from the fit by the 

actual pressure. 

 For gas mixture, the mixture-averaged diffusion coefficient for species 𝑘 is given 

by: 

𝐷𝑘 =
1 − 𝑌𝑘

∑ 𝑋𝑗/𝐷𝑗𝑘𝑗≠𝑘
=

∑ 𝑋𝑗𝑀𝑊𝑗𝑗≠𝑘

𝑀𝑊∑ 𝑋𝑗/𝐷𝑗𝑘𝑗≠𝑘
. (2.44) 
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CHAPTER 3  

NUMERICAL FRAMEWORK 

 

 Although turbulence has been studied for more than ten decades after Osborne 

Reynolds’ experiments, it is still a big challenge in fluid mechanics due to its strong 

nonlinear behavior [98]. Numerical simulations of turbulent motions fall into three major 

categories: Direct Numerical Simulation (DNS), Reynolds-Aaveraged Navier-Stokes 

Equation (RANS), and Large-Eddy Simulation (LES) [99]. 

 Numerical simulations of turbulent combustion bear a series of difficulties. This 

chapter outlines the intrinsic challenges and the corresponding methodologies to handle 

these problems. The numerical schemes are capable of solving the three dimensional 

governing equations in a general curvilinear coordinate system. The solvers use finite 

volume approach with structured grid system. Message passing interface (MPI) - 

parallelization is used to expedite the calculation and reduce the turnaround time. 

3.1 Direct Numerical Simulation 

 DNS is the most straightforward method. The governing equations are discretized 

with enough resolution and solved numerically; it resolves the smallest scales of motion 

and does not require any modeling. This makes it possible to compute and visualize any 

quantity of interest, and it has been a very useful research tool to obtain insight on 

detailed kinematics and dynamics of turbulent flows [100]. DNS has been applied to 

combustion studies [101] to reveal physical and/or chemical processes that would not 

have been possibly revealed with other approaches. The database created by DNS can be 

used to validate existing turbulent models and turbulent/combustion models. However, 

the implementation of DNS requires extensively computational resources. To resolve all 

scales of motion in three-dimensional space, the number of grid points are proportional 
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to ReL
3, e.g., 9 billion grid points for 𝑅𝑒𝐿= 10000. Therefore, DNS is limited to relatively 

small Reynolds number flows and is infeasible for industry-interested applications. 

3.1.1 Compressible Reacting Flow Solver 

 In this study, the well-established reacting flow solver AVF-LESLIE [102, 103] 

was used. It is a multi-physics and multi-species compressible flow solver for DNS/LES 

of non-reacting/reacting flows in canonical and moderately complex flow configurations. 

It has been extensively used in the past to investigate a wide range of combustion 

problems, including acoustic flame-vortex interactions, premixed flame turbulence 

interactions, and scalar mixing [103-105]. The solver uses the 2nd/4th-order accurate 

MacCormack finite volume scheme [106] on generalized curvilinear coordinates, and an 

explicit 2nd-order accurate scheme for time-integration. A fractional-step method [107, 

108] is used to treat the convection-diffusion term and the kinetics source term separately. 

The solver can handle arbitrarily complex finite-rate chemical kinetics, where the 

thermodynamic properties are computed based on a thermally perfect gas assumption, 

and the transport properties are computed using a mixture-averaged (MAD) formulation. 

The solver has been demonstrated in large-scale turbulent combustion simulations on 

HPC platforms exhibiting strongly scalable parallel performance [87, 109]. Our tests 

show that the simulation results are not affected by HPC architecture, processor counts, 

and processors topology obtained from MPI domain decomposition. 

3.2 Larger Eddy Simulation 

 In contrast to DNS, RANS has been commonly applied method to solve turbulent 

flow problems, especially in engineering applications. In RANS, only statistical 

quantities, i.e., the ensemble or time-averaged mean quantities are predicted. The effect 

of all the scales of motion is modeled (except for Unsteady-RANS, in which coherent 

motions are partially resolved) [99]. Although RANS is inherently less expensive and has 
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moderate success in industrial applications, it fails to account for a very wide range of 

scales. Based on Kolmogorov's hypothesis, at sufficiently high Reynolds number, the 

small-scale motions are statistically isotropic and tend to be universal to model [110]. 

However, the large-scale motions are strongly dependent on flow conditions and 

geometric boundaries, thus it is impossible for RANS to achieve a universal model that 

can cover a wide range of scales in turbulent flows [98]. 

 As a trade-off between the accuracy and computational cost of RANS and DNS, 

an intermediate technique known as Large-Eddy Simulation (LES) has been developed. 

LES features higher accuracy than RANS, while it requires much less computational 

effort compared to DNS. In LES, energy-containing large-scale motions are fully 

resolved with the grid and filter employed, while the effect of the smallest-scale motions 

of turbulence is modeled [98]. Since the small-scale motions are more isotropic and 

universal, they can be modeled in a universal manner with much less adjustments in 

model coefficients, as compared to the turbulent models for RANS simulations. The 

demanding computational cost to resolve all scales of motions explicitly and accurately in 

DNS is avoided.  

 LES seems promising to solve turbulent flow problems. However, difficulties 

arise near the wall region, where a series of important events occur. The production and 

dissipation of turbulent kinetic energy achieve peak values at less than 30 wall units 

[110]. The energy-containing scales depend on Reynolds number, but the growth of the 

small scales is prohibited by the presence of the wall, making the exchange mechanisms 

between large and small scales different from unconstrained flows. To capture the 

important energy-production events in the near-wall layer, an extremely fine grid is 

necessary, especially for high Reynolds number flows. Based on Chapman’s estimate 

[111], the boundary layer can be divided into outer and inner layers: the number of grid 

points scales with Re0.4 for the outer layer, and scales with Re1.8 for the inner layer. So for 

a boundary layer flow with a Reynolds number of 106, 99% of the grid points are 
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required to resolve the inner layer, whose thickness is only about 10% of the boundary 

layer. As pointed out by Piomelli [98], the wall layer modeling is probably the most 

urgent challenge when it is intended to apply LES to industrially interested flows. Wall-

modeled LES (WMLES) have been studied by many researchers. Cabot [112] and 

Balaras et. al. [113] used two-layer boundary layer equations to model the near-wall 

region in LES of wall bounded shear flows. Spalart [114] proposed a Detached-Eddy 

Simulation (DES). It used Spalart-Allmaras turbulence model or k-omega SST model for 

the Reynolds stress and the sub-grid stress modeling. DES has been applied to massively 

separated flows and seems promising for wall bounded flows. More discussion on wall 

layer models can be found in review papers by Piomelli [98] and Spalart [114].  

 The small-scale motions are not resolved in LES; however, based on the energy 

cascade analysis, in this range of scales, viscous dissipations drain turbulent kinetic 

energy to internal energy. This part of turbulent motions has to be modeled with 

appropriate SGS models.  

3.2.1 Filtered Governing Equations 

 In LES, large-scale motions, which carry most of the kinetic energy, are fully 

resolved, while small-scale motions, which are universal and appropriate to model, are 

simulated with SGS models. To separate the large-scale motions from the small-scale 

ones, a low-pass filtering operation is performed explicitly or implicitly. A filtered (or 

resolved) variable is defined as, 

       ,ff f G d


  x x x x x

 
(3.1) 

where  𝐺𝑓  is the filter function and satisfies  ∫ 𝐺𝑓(𝑥
′)𝑑𝑥′ = 1 . The filter function 

determines the size and structure of the small scales. Leonard [115] indicated that if 𝐺𝑓 is 

only a function of , the differentiation and filtering operations could commute with 

each other. Although for stretched grids, the commutation between filtering and 

xx 
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differentiation is not strictly valid [116, 117], the commutation error is usually neglected 

for moderately stretched grids [118, 119]. The modeling error is found to be generally 

smaller than the discretization error [118]. One of the most commonly used filter 

functions, the box filter, which is also used in the current study, is defined as: 

   
1

 .
V

f f d
V




 x x x

 

(3.2) 

With the box filter, any filtered quantity is simply its average in the control volume. A 

detailed description of properties of various filters can be found in standard textbooks 

[110]. 

 Based on the Favre-averaging [120], any instantaneous variable (𝑓 ) can be 

expressed as the sum of a Favre-averaged filtered scale (f̃) and a sub-filter scale (f'') 

 ,f f f  
 

(3.3) 

where 

 .
f

f 


  

(3.4) 

Since  f̅ ' ≠ 0  and  𝑓′′ ≠ 0  , the filtering operation in LES is different from the 

conventional Reynolds averaging in time domain. The filtered Favre-averaged mass, 

momentum, energy, mixture fraction, and progress variable transport equations in 

conservative form can be written as 
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(3.7) 

where the SGS terms are defined as: 
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 ,SGS

ij i j i ju u u u   
 

(3.8) 

( ) ,sgs

i i iQ q q 
 

(3.9) 

     ,SGS
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(3.10) 

   ,SGS

ij j ij j iju u   
 

(3.11) 

 The pressure gradient term  𝜕�̅�𝛿𝑖𝑗/𝜕𝑥𝑗  is proportional to  1/𝑀2 . In low Mach 

flows, this term becomes singular and creates great numerical challenges, which makes 

preconditioning scheme necessary for fully compressible solver. The SGS stress term 

, SGS energy flux term , and SGS scalar flux terms  and , result 

from filtering the corresponding convective terms. The SGS viscous work term, , 

comes from correlations of the velocity field with the viscous stress tensor. The modeling 

of these SGS terms is discussed in detail in the following subsections. 

 In addition to the conservation equations, the equation of state must also be 

filtered. The form of EOS can be written as  

𝑝 = 𝜌𝑅𝑇 = 𝜌𝑅𝑢𝑇/𝑀𝑊 (3.12) 

 Filtering EOS [121] gives us 

�̅� = �̅�𝑅�̃� = �̅�𝑅𝑢�̃�/𝑀𝑊 (3.13) 

 The filtered total energy,  can be approximated as 
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where Ψ = ∑ 𝑌𝑘ℎ𝑘
0𝑁

𝑘=1  and 𝑘𝑆𝐺𝑆 =
𝜏𝑘𝑘
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3.2.2 Subgrid-Scale Models 

 In LES, the unresolved motions of sub-grid scales have to be represented by an 

appropriate SGS model. Most of SGS models use the concept of eddy viscosity, , 
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which is similar to dynamic viscosity but generally with much higher value. Using eddy 

viscosity, the subgrid viscous shear stress can be written as, 

𝜏𝑖𝑗
𝑆𝐺𝑆 −

𝛿𝑖𝑗

3
𝜏𝑘𝑘
𝑆𝐺𝑆 = −2𝜈𝑡�̃�𝑖𝑗, (3.15) 

where is the symmetric part of velocity gradient tensor, 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
). In the 

following section, two commonly used SGS models are introduced. 

3.2.2.1 Algebraic Smagorinsky Model 

 The Smagorinsky SGS model [122] has been widely used because of its 

simplicity and good accuracy. The eddy viscosity is obtained algebraically to avoid 

solving additional equations. The model uses the equilibrium hypothesis, which claims 

that the small-scale motions with much short time scales, can rapidly adjust to the flow 

perturbations and recover equilibrium nearly instantaneously. A balance equation 

between turbulent kinetic energy production and viscous dissipation thus 

exists: −𝜏𝑖𝑗�̃�𝑖𝑗 = 𝜖𝜈. Followed by this assumption, the Smagorinsky model is written as, 

 
2

 ,t SC S  
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(3.17) 

3
1 2 3  ,      (3.18) 

where  is the filter width, which is usually proportional to the grid size. The coefficient 

Cs can be determined from a priori test on decaying isotropic turbulence [123] with 

Cs=0.16. Erlebacher et al. [124] extended the above model to compressible flows, 

𝜏𝑖𝑗
𝑆𝐺𝑆 = −2�̅�𝜈𝑡 (�̃�𝑖𝑗 −

𝛿𝑖𝑗

3
�̃�𝑘𝑘) +
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3
�̅�𝑘𝑆𝐺𝑆𝛿𝑖𝑗, (3.19) 
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2( ) ,SGS

I ij ijk C D S S   (3.21) 

where the dimensionless quantities CR and CI represent the compressible Smagorinsky 

constants. The Van-Driest damping function (D) is used to take into account the 

inhomogeneities near the wall [125], and is expressed as 

  2

1 exp / 25  ,D y  
 

(3.22) 

where 𝑦+ = 𝑦𝑢𝜏/𝜈 and 𝑢𝑡  is friction velocity. 

 The subgrid energy flux term 𝐻𝑗
𝑆𝐺𝑆  is modeled based on the gradient transport 

assumption 
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(3.23) 

where Prt represents the turbulent Prandtl number, and a standard value 1.0 is used. The 

SGS viscous work term, 𝜎𝑖𝑗
𝑠𝑔𝑠

 , is neglected due to its small contribution to the total 

energy equation [98, 126]. 

 The convective mixture fraction flux term is usually approximated as 

sgs t
j

t j

f
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(3.24) 

where Sct is the turbulent Schmidt number. However, the use of the gradient transport 

assumption for reactive species is questionable.  

 The algebraic Smagorinsky model described above is the most widely used model 

in LES. However, as pointed out by Germano et al. [127], it has several limitations. First, 

the optimal model constant must be changed for a different class of flows. The model 

does not have the accurate limiting behavior near the wall [128]. The SGS stress does not 

vanish in laminar flow and the model is found to be very dissipative in the 

laminar/transition region. In addition, the model does not account for the backscatter of 
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energy from small to large scale, which has been shown to be of importance in the 

transition region. 

3.2.2.2 Dynamic Smagorinsky Model 

 The dynamic model introduced by Germano et al. [127] improves some of the 

aforementioned deficiencies in algebraic models. The dynamic model uses the 

assumption of scale invariance by applying the coefficient measured from the resolved 

scales to the SGS range. It calculates the model coefficients dynamically from the 

information already contained in the resolved velocity field during the simulation. Apply 

the test-filter , with characteristic  (typically, ), to the equations of motion, 

one obtains filtered governing equations similar to Eqns. 3.5-3.7, but replacing  

with 𝑓̅̃ = 𝜌𝑓̅̅̅̅ /�̃̅�, yields the sub-test scale stress Tij, defined as: 

𝑇𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅ − �̅��̅�𝑖�̅�𝑗 . (3.25) 

 Formally, the dynamical procedure is based on the Germano identity [129] 

𝐿𝑖𝑗 = 𝑇𝑖𝑗 − 𝜏𝑖𝑗
𝑆𝐺𝑆 = �̅��̃�𝑖�̃�𝑗 − �̅��̅�𝑖�̅�𝑗 . (3.26) 

 The following expressions can be derived for the dynamic evaluation of CR and CI 

using the least square minimization approach of Lilly [130] for the momentum SGS 

stress tensor. 
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The forms of Mij, β and α are given as follows 
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The same idea can be applied to model SGS turbulent stress to dynamically calculate the 

turbulent Prandtl number and Schmidt number in Eq. 3.23 and Eq. 3.24. 

3.2.3 Turbulence/Combustion Interaction Models 

 In LES, although the energy-carrying eddy motions are resolved with sufficient 

grid resolution, motions of small scales, such as the Kolmogorov scale, are not resolved, 

which plays a crucial role in reactant mixing at molecular levels. The chemical reaction 

rate is a very strong nonlinear function of local species concentration and temperature at 

the molecular level, which are highly dependent on the turbulent mixing. Chemical 

reactions release heat and alter species concentration and temperature gradients of the 

smallest turbulent eddies, which in turn change the turbulent mixing process. Chemical 

reaction occurring at different time scales may interact with turbulence eddies of different 

length/time scales, which further complicates the picture. The interaction of these two 

processes occurs at length scales from the smallest turbulent scales to much larger inertial 

sub-range scales, which cannot be completely resolved in LES studies. The physical 

processes associated with these interactions are modeled with turbulent combustion 

models.  

3.2.3.1 Finite Rate Chemistry (FRC) Models 

 The FRC models are preferred to handle flows that involve variable Lewis 

number mixing, extinction, ignition, emissions, fuel modulation, and combustion with 
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multiple modes. In this study, to avoid interpolation between grids and particles in 

Lagrangian formulation, an Eulerian formulation is employed to track the detailed species 

transport. The Favre-filtered transport equation of species concentrations in fully 

compressible flow is given as follows: 

𝜕�̅��̃�𝑘
𝜕𝑡

+
𝜕(�̅��̃�𝑗�̃�𝑘)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(�̅��̃�𝑘,𝑗�̃�𝑘 −Φ𝑘,𝑗

𝑠𝑔𝑠
) + �̅̇�𝑘 (3.34) 

 The unclosed filtered species net mass production rate  �̅̇�𝑘  is the key for 

turbulence/combustion modeling. There are several finite rate combustion models for the 

LES of turbulent combustion.  

 The most straightforward way is to evaluate the filtered reaction rate from the 

filtered quantities, without consideration of the sub-grid interactions of turbulence and 

chemistry. This method is called “laminar chemistry model” or “no model”, which has 

been used by several researchers due to its simplicity [131, 132]. As shown in the past 

studies, it actually has similar accuracy as many other major Eulerian SGS closure 

models [45, 46]. In addition, if the simple laminar chemistry FRC model could provide 

more accurate predictions than FGM models, more advanced FRC models are also 

expected to be more accurate than FGM models. Therefore, this model is adopted in the 

present study. 

 Conditioned Momentum Closure (CMC) was developed by Klimenko [133] and 

Bilger [134] independently for non-premixed turbulent combustion. Variables of interest 

are conditioned with mixture fraction before the Favre averaging to obtain conditional 

moment equations. CMC has been used in homogenous and boundary layer flows. With 

those applications, CMC can be related to flamelet equations [135]. However, this 

method solves conditional species equations for all species; the computational cost 

increases with the number of species, which may become prohibitively costly when 

detailed chemical mechanism is used.  
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 The Linear-Eddy Model (LEM) was developed by Kerstein [136, 137] has been 

used by the author, Menon and colleagues [104, 138]. The one-dimensional laminar 

reactive scalar field is combined with stochastically independent rearrangement events to 

mimic turbulence/chemistry interactions. However, this model suffers from prohibitive 

computational costs in applications.  

 The Monte Carlo method for PDF transport equations was developed by Pope and 

extensively tested in RANS and LES [135]. However, the formulation is very 

complicated, and the computation cost is considerably high for even a moderate number 

of species.  

 Dynamically thickened flame was developed by Légier et al. [139] for both 

premixed- and non-premixed combustion. This model can account for unsteady 

combustion such as extinction, re-ignition etc. However, it has similar difficulties when 

detailed chemistry is used.  

3.2.3.2 Laminar Flamelet Model 

 Flamelet concept and flamelet generated manifold (FGM) models proposed by 

Peters [135] has been extensively studied. The basic assumption of the laminar flamelet 

model is that the chemical time scales are shorter than that of the smallest turbulent 

eddies: Kolmogorov scales. Consequently, a turbulent flame can be envisioned as a 

synthesis of thin reaction zones (i.e., flamelets) embedded in an otherwise inert turbulent 

flow field. The inner structure of the flame can be handled separately from turbulent flow 

simulations. Instead of directly treating the reactive scalar (i.e., species concentration), 

the focus is placed on the identification of the flame surface in the flow-field, which can 

be obtained by solving the conservation equation of the mixture fraction together with the 

mass, momentum, and energy equations.  

 The flame thickness is smaller than the grid size employed in LES and is not 

actually resolved. Therefore, the filtered species mass fraction of the 𝑖𝑡ℎ species, �̃�𝑖(𝑥, 𝑡) , 
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in each computational cell should be evaluated by convoluting the state 

relationships,  𝑌𝑖(𝑓, χst)  , with the SGS Filtered Density Function (FDF) of mixture 

fraction, �̃�(𝑓) , and the SGS FDF of scalar dissipation rate, �̃�(𝜒𝑠𝑡) , as shown below:  

1

0 0
( , ) ( , ) ( ) ( ) .i i st st stY x t Y f P P f d df



     
 

(3.35) 

 It should be noted that a statistical independence is intrinsically assumed in above 

relation between the SGS variations of mixture fraction and scalar dissipation. A 

presumed β-shaped Probability Density Function (PDF) parameterized by the filtered 

mixture fraction and its SGS variance commonly represents the unresolved SGS 

fluctuation of the mixture fraction. The full equation is shown in the following where Γ is 

the 𝛾-function. 

𝑃(𝑓; 𝑓, 𝑓′′2) =
𝑓𝛼−1(1 − 𝑓)𝛽−1

Γ(𝛼)Γ(𝛽)
Γ(𝛼 + 𝛽), (3.36) 

The parameters 𝛼 and 𝛽 are defined as 

𝛼 = 𝑓 [
𝑓(1 − 𝑓)

𝑓′′2
− 1], (3.37) 

𝛽 = (1 − 𝑓) [
𝑓(1 − 𝑓)

𝑓′′2
− 1]. (3.38) 

The SGS variance of mixture fraction, 𝑓′′2  , is modeled based on the scale similarity 

assumption [140], 

𝑓′′2 = 𝐾𝑏�̅� (𝑓 − 𝑓)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
/�̅̅�, (3.39) 

where  is a model constant chosen as 3. It has been validated by many researchers that 

the -function PDF provides an excellent estimation of the SGS mixture fraction 

distribution for non-premixed reacting turbulent flows [141]. For simplicity, the SGS 

FDF of the scalar dissipation rate, �̃�(𝜒𝑠𝑡), which is typically assumed to be lognormal, is 

considered as a Dirac peak at the filtered scalar dissipation rate. Further investigation is 

bK
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required to validate this assumption. The filtered rate of scalar dissipation, , is modeled 

based on the eddy viscosity approach as suggested by Girimaji and Zhou [142]  

2( )( ) .t

t j j

f f

Sc Sc x x

 
 

 




 

(3.40) 

 The thermo-chemistry state relation is established through a steady-state flamelet 

approach. Taking advantage of the fact that the flamelet library only needs to be 

calculated once for every specified case, chemistry kinetics with any number of species 

and reaction steps can be used to establish the flamelet library. The flamelet library 

should cover a broad range of strain rates, from near chemistry equilibrium to near-

extinction limit. For all the calculations, the pressure is set fixed as the application; and 

the inlet temperatures of the fuel and oxidizer take the corresponding inlet temperature of 

the application cases. Consistent with the flamelet assumption, the corresponding scalar 

dissipation rate, , for each solution is evaluated as a function of filtered mixture 

fraction. The solutions are then integrated based on Eq. 3.35 and tabulated as functions of 

, , and 𝑓′′2. The calculated filtered mixture fraction, mixture fraction variance, and 

the scalar dissipation rate from LES simulation are used to determine the appropriate 

entry in the table. In particular, the filtered mixture fraction  𝑓  is solved from the 

following transport equation: 
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(3.41) 

where the SGS term is defined as: 

   ,
j

SGS

j ju f u f   
 

(3.42) 

 In the present study, the flamelet library is generated from steady-state laminar 

counter-flow diffusion flames. Thus, the species profile does not include the history 

effect of the chemical reactions, i.e. the time taken to achieve the steady state flame 
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profile. In a real turbulent flame, slow chemistry reactions, such as CO oxidation, take a 

much longer time compared to other reactions. Following Peters’ argument, if the scalar 

dissipation rate is changing slowly enough so that the change of chemical reactions can 

follow the pace of the local flow variations, the steady flamelet is a valid assumption 

[135]. Otherwise, the unsteady effect may become important. According to Pitsch et al. 

[143], it is valid to apply a steady flamelet within the range of 30 nozzle diameter from 

the fuel nozzle exit. Extreme caution must be taken in the further downstream, where the 

scalar dissipation rate becomes small and the chemistry may not be fast enough to follow 

the flow variations. 

 As pointed out by Poinsot and Veynante [144], the effect of external mixing 

(turbulent flow) is lumped into the scalar dissipation rate, while chemistry is decoupled 

from the flow and retrieved from the lookup table. Consequently, the scalar dissipation 

rate accounts for the effect of turbulent mixing as an external parameter on the laminar 

flamelet structures. The procedure to estimate this variable directly affects the chemical 

species distribution, the flame structure, and the combustion dynamics. Instead of 

assuming a pre-assumed shape of scalar dissipation as proposed by Peters, the scalar 

dissipation as a function of the mixture fraction is calculated from the laminar counter-

flow flamelets, which are generated in physical space using a one-dimensional code [145, 

146]. This is different from Pitsch's methods, which are conducted in the mixture fraction 

space, and the dependence of scalar dissipation is modeled by an exponential function of 

the mixture fraction. 

3.2.3.3 Flamelet/Progress-Variable (FPV) Model 

 Although the laminar flamelet method is easy to implement and inexpensive, it 

has several drawbacks. Firstly, the mixture fraction essentially does not carry information 

about the chemical reaction state. The flamelet method uses the scalar dissipation rate as 

an additional parameter to account for the flame stretching and quenching effect. 
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However, the scalar dissipation rate does not provide a unique mapping from the mixture 

fraction to the corresponding chemical state. A pure mixing of fuel and oxidizer cannot 

be accounted for in the flamelet method if the local scalar dissipation is smaller than the 

quenching limit. This drawback is due to the lack of information regarding the local 

chemical state in the flow field. The Flamelet/Progress-Variable (FPV) method is able to 

overcome the limitations of the flamelet method by incorporating an additional transport 

equation for tracking a scalar in the form of a progress variable.  
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(3.43) 

Where the progress variable 𝐶 is often defined as: 

𝐶 = 𝑌𝐶𝑂 + 𝑌𝐶𝑂2 + 𝑌𝐻2 + 𝑌𝐻2𝑂 , (3.44) 

and the SGS term is defined as: 

   .
j

SGS

j ju C u C   
 

(3.45) 

The resolved-scale progress variable production rate, , is also unclosed. The source 

term  �̅̇�𝐶  for the filtered progress variable  �̃�  can only be roughly estimated, and is 

integrated explicitly assuming the timescale of progress variable is larger than Δ𝑡, which 

may not be true. 

 From the implementation point of view, the FPV library differs from the steady 

laminar flamelet library mainly as follows. (1) The library is parametrized by filtered 

progress variable instead of filtered dissipation rate of mixture fraction. (2) The library 

needs to cover part of the unstable branch of the S-shaped curve of ignition and 

extinction to account for the unsteady effects to some extent. During the simulation, the 

filtered mass fractions and their gradients are retrieved from the library as functions of 

filtered mixture fraction, its variance, and the filtered progress variable. 

 C
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 This method has been developed to account for extinction, ignition, and unsteady 

mixing effect [56]. 

3.2.3.4 Differential Diffusion Effect 

 Without solving the species transport equation, constant Lewis number has to be 

assumed to derive the mixture fraction and progress variable equation for FGM models, 

including laminar flamelet and FPV models [135]. It is interesting to know how much 

accuracy of numerical solution is sacrificed by this assumption. The effect of differential 

diffusion has been examined by Pitsch and Peters [147]. They found that the existence of 

a laminar region in the near field of the jet exit causes the differential diffusion effect, 

which is only important within a 10-diameter distance from the jet exit. However, the 

temperature and the species concentration distributions are influenced by the differential 

diffusion effect farther downstream. Generally, in the regions with low turbulence 

intensity, 𝛼𝑡  is smaller than �̃�𝑍  and  �̃�𝐶 , thus differential diffusion effects become 

important, which is likely to introduce relatively larger errors to FPV model. In the 

process of building the flamelet library, the differential diffusion effect is considered 

within the model used herein [148]. 

3.2.4 Preconditioning Scheme 

 Using laminar flamelet model as an example, the three-dimensional, unsteady, 

Favre-filtered governing equations listed in Chapter 2 can be re-written in a vector form: 

∂𝐐

∂t
+
∂(𝐄 − 𝐄v)

∂x
+
∂(𝐅 − 𝐅v)

∂y
+
∂(𝐆 − 𝐆v)

∂z
= 𝐇, (3.46) 

where the vectors 𝐐, 𝐄, 𝐅, 𝐆, 𝐄v, 𝐅v, 𝐆v and 𝐇 are defined as: 
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 0,0,0,0,0,0  ,
T

H
 

(3.54) 

where the superscript stands for the transpose of the vector. 

 There are severe numerical challenges in solving these equations for high-

pressure mixing and combustion. The rapid variation of the fluid state and wide range of 

characteristic time and length scales pose the well-known stiffness problem. The stiffness 

of the system results from: 1) ill-conditioned eigenvalues; 2) competing convective and 

diffusion processes; and 3) pressure singularities in the momentum equation. 

 The Mach number in present simulations is relatively small, and thus the dynamic 

pressure is negligibly smaller than the static pressure (high-pressure situations). This 

could cause the computer round-off error override the dynamic pressure in the 

momentum equation, thus raise the pressure singularity problem. To overcome this 

difficulty, the static pressure is decomposed into a constant reference pressure and a 

gauge pressure [149, 150],  

0  .gp p p 
 

(3.55) 

T
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 Here the averaged pressure in the flow field is generally selected as the reference 

pressure, while the gauge pressure is the fluctuating part induced by unstable flow 

motions. With this decomposition,  is replaced with  in the momentum equations. 

By this way, the acoustic waves can be captured accurately. 

 To solve the ill-conditioned eigenvalue problem, let us look at the following 

equation: 

+ 0 ,
   

  
   

A B C
Q Q Q Q

t x y z  

(3.56) 

where  A = ∂E/ ∂Q ,  𝐁 = 𝜕𝐅/𝜕𝐐 , and  𝐂 = 𝜕𝐆/𝜕𝐐  are the Jacobian matrices. Analysis 

shows that the eigenvalues of matrix A is: 

1 2 3,4,5,6, ,  .u+c u c u     
 

(3.57) 

 In low Mach number flows, 𝑀 ≪ 1, the ratio of the largest eigenvalue to the 

smallest one is close to inverse of Mach number, indicating that the eigenvalues are 

differed by order of magnitude. For a given CFL number, the maximum local time step 

determined by the largest eigenvalue hence is extremely small, resulting in a very slow 

convergence. It becomes unacceptable for even lower-Mach number or time accurate 

simulations.  

 To cure the eigenvalue disparity problem in low Mach number flows, the time-

derivative preconditioning method [149-152] are implemented. Zong and Yang [153] 

made further improvement by changing primitive variable h to T, getting rid of the cost 

intensive computation associated with iterative calculations to get temperature from 

enthalpy. A unified treatment of thermodynamic properties and associated 

preconditioning matrix makes the numerical scheme accurate, robust, and efficient.  

 The basic idea of the preconditioning method is to add a pseudo-time differential 

term, with multiplication factor of a preconditioning matrix: 

p gp
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(3.59) 

If Γ is chosen carefully so that the eigenvalues of these matrixes are of the same order of 

magnitude, the resulting equations have well-conditioned eigenvalues and converge 

efficiently in all Mach number flows. An implicitly iterative process is conducted for the 

asymptotic time advancing in the pseudo-time inner loop. When the pseudo-time iteration 

converges, i.e. steady state solutions with respect to pseudo-time stepping are achieved, 

the physical time-accurate solutions of the original governing equations are recovered. 

Practically, 40~60 pseudo-time iterations are enough for convergence. It can be seen that 

the efficiency of preconditioning method is largely determined by the selection of the 

preconditioning matrix.  

 Following Zong [154], the transfer matrix is derived as: 

T





Q
 .

Z  
(3.60) 

In this matrix, a common term (
𝜕𝜌

𝜕𝑝
)
𝑇,𝑌𝑖

 can be related to speed of sound and specific heat 

capacity ratio: 

2

, ,

 .

i i

p

vT Y s Y

C

p C p a

      
    

    
 

(3.61) 

Here, a2 is replaced with β to define the preconditioning matrix, 
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(3.62) 

where is the total specific enthalpy, and  is defined as 

2

 ,
1 ( 1)

a


 


   

(3.63) 

where  𝜖  ( 0 < 𝜖 ≤ 1 ) is the preconditioning factor. Unlike the definition of 

preconditioning matrix by other researchers, all of the off-diagonal terms have been 

retained. By keeping these terms, the unaltered system is identically restored as 𝜖 → 1; 

1
lim  .T


 
 

(3.64) 

 The conditioned governing equations in the pseudo-time space are characterized 

by the new Jacobian matrices, Γ−1𝐴𝑣, Γ−1𝐵𝑣, Γ−1𝐶𝑣, the eigenvalues of which are given 

by: 

2 2 2

1

2 2 2

2

3,4,5,6

1
[ ( 1) (1 ) 4 ] ,

2

1
[ ( 1) (1 ) 4 ] ,

2

 ,

U U a

U U a

U

   

   



    

    


 

(3.65) 

where U represents , , and  in x-, y- and z-direction, respectively. If 휀  is small 

enough, the first two eigenvalues can achieve the same order of magnitude as others. 

th 

u v w



 41 

Note that no assumption is made to the form of the EOS, it can be applied to any fluid 

state without loss of accuracy. 

3.2.4.1 Determination of the Preconditioning Factor 

 From the definition of the preconditioning matrix, and the resulting system 

eigenvalues, it is clear that the effectiveness of the preconditioning method is totally 

determined by the choice of the preconditioning factor, . The value of  in each 

computational cell is crucial to get well-conditioned eigenvalues and thus the fast 

convergence of the numerical scheme. 

 Various time scales are associated with each computational cell in each direction, 

due to local flow convection, acoustic propagation, momentum, and thermal and mass 

diffusion processes. These processes have to be taken into account when choosing the 

preconditioning factor. The non-dimensional numbers characterizing the time scales 

associated with these physical processes are CFL number, Mach number, von Neumann 

number, cell Reynolds number, Prandtl number, and Schmidt number.  

 The CFL number, which characterizes the local convective propagation rates in 

the three coordinate directions are defined as: 

( )( ) ( )
,   ,   ,

yx z
x y zCFL CFL CFL

x y z

        
  

    

(3.66) 

where , ,  are the maximum eigenvalues in each direction, 

respectively.  

 The von Neumann number, which characterizes the diffusion propagation rates, is 

defined as: 

2 2 2
,  ,  ,x y zVNN VNN VNN

x y z

       
  
    

(3.67) 

 The cell Reynolds number, which indicates the ratio of local velocities to 

momentum diffusion velocity, is defined as: 

 

( )x  ( )y  ( )z 
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Re , Re ,  Re ,x y z

u x v y w z

  

  
  

 
(3.68) 

 If the respective quantities Re, RePr, and ReSc exceed unity in one of directions, 

the convection velocity is larger than the corresponding velocity scale, thus convective 

effects dominant and the conservation equations exhibit a hyperbolic character. For this 

situation, an inviscid criterion must be employed. If Re, RePr,or ReSc are less than or 

equal to unity, diffusive effects dominate, a parabolic character is exhibited and a viscous 

criteria must be employed. 

 The final preconditioning factor is selected based on the methodology developed 

by Choi and Merkel [149], Buelow et al. [155], and Venkateswaran and Merkel [156]. 

Optimal values are specified locally as: 

min[1,max( , )] .inv vis  
 

(3.69) 

The subscripts refer to the inviscid and viscous preconditioning factors, respectively. The 

criteria employed to evaluate these terms are discussed below. 

 In the limit of infinitely large Reynolds numbers, or inviscid flows, following 

Choi and Merkle [149],  is assigned a value proportional to the local Mach number to 

ensure that the pseudo acoustic speed and flow velocity are of the same order of 

magnitude. To achieve correct limiting behavior, as Mach number approaches zero (e.g. 

in the stagnant region), a minimum value (typically  10−5 ) is used. The resulting 

preconditioning factor is defined as: 

2

2

,           ;

2 ,      1 ;

1,             1 .

inv

M

M M
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(3.70) 

In inviscid flows, above equation gives minimal disparity in system eigenvalues and 

optimal damping rates. The convergence rate is primarily dependent on the local pseudo 

CFL number, which is determined by the stability criterion.  
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 In regions where diffusion processes are important, the effect of diffusion on the 

preconditioning factor has to be considered. Buelow et al. [155, 157] have conducted a 

variety of studies to determine an optimal viscous preconditioning factor for the Navier-

Stokes equations. Results from stability analysis indicate that three different requirements 

must be addressed in order to specify a generalized criterion. For high cell Reynolds 

numbers (𝑅𝑒 ≫ 1), the acoustic wave speeds should be scaled to the same order of 

magnitude as the particle speeds, as is accomplished by the inviscid preconditioning 

factor defined by Eq. 3.70. For low cell Reynolds numbers (𝑅𝑒 ≪ 1) and high acoustic 

cell Reynolds numbers (
𝑅𝑒

𝑀
≫ 1), the diffusion rates should be scaled to the same order of 

magnitude as the acoustic speeds. For low cell Reynolds numbers and low acoustic cell 

Reynolds numbers, the diffusion rates should be scaled to the particle speeds. The only 

way to satisfy these conditions simultaneously is to define a viscous preconditioning 

factor that is dependent on the Fourier wavenumber. Such a definition is not appropriate 

for implementation in a CFD code. To overcome the difficulties outlined above, a 

preconditioning factor based on local length scales, which is tuned to damp the low 

wavenumber modes, has been developed. This definition requires a priori assumption of 

the orientation of dominating convective and diffusion processes within a given grid 

configuration and the choice of  is somewhat more involved. In three dimensions, 

there are three possible CFL numbers, and two possible VNN numbers, and six possible 

values of . The most restrictive of the CFL and VNN numbers are usually chosen for 

stability reasons and these values are the most likely candidates for determining . 

 In practice, the grid system is stretched near the wall, so that predominating 

diffusion processes, which are in a direction normal to the predominating convective 

processes, are resolved. Under these conditions, the rate limiting diffusion processes 

typically coincide with the maximum von Neumann number in a given cell. To retain the 

benefits of the time step given by CFL conditions, this quantity must be optimized with 

vis

vis

vis
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respect to the minimum CFL number. Performing this operation yields an expression of 

the form 

22 2

2 2 2 2 2 2 2 2 2

( 1)( 1) ( 1)
max ,  ,   ,

x y z

y yx x z z
vis

vu w

u a v a w a

    


  

  
  

      

(3.71) 

where  
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(3.72) 

This equation takes into account the effects of momentum, energy, and mass diffusion 

processes on the overall convergence rate. 

 The pseudo-time step size Δ𝜏 is determined based on the numerical stability of the 

algorithm and could be modified to provide the optimal convergence rate for the pseudo-

time iteration process. Practically, pseudo-time CFL numbers between 5 and 10 are 

chosen. 

3.2.5 Spatial Discretization 

3.2.5.1 Finite Volume Approach 

 The conservation laws of fluid motion presented in Chapter 2 can be expressed in 

differential or integral form. The former can be solved by finite differencing approach, 

but it has inherent difficulties associated with irregular gird system [158]. Integral 

methods, including finite volume and finite element methods, can ensure the conservation 

of properties in each computational cell. In the current study, finite volume approach is 

thus implemented. 
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 To utilize the finite-volume approach, the governing equations are integrated over 

the control volume  enclosed by the surface S in the physical domain as 

∭(Γ
𝜕𝒁

𝜕𝜏
+
𝜕𝑸

𝜕𝑡
+
𝜕(𝑬 − 𝑬𝑣)

𝜕𝑥
+
𝜕(𝑭 − 𝑭𝑣)

𝜕𝑦
+
𝜕(𝑮 − 𝑮𝑣)

𝜕𝑧
− 𝑯)𝑑𝑉 = 𝟎. (3.73) 

  

 

 The generalized control volume in a structured grid system is a hexahedron 

formed by eight nodes as shown in Fig. 3.1, where , , and  are area unit vectors 

normal to the surfaces in the -, -, and -directions, respectively. In order to enhance 

numerical efficiency and minimize the complexity arising from the irregular shape of the 

computational mesh, a grid transformation is made to convert a curvilinear coordinate 

system in the physical space into a uniform grid system in the computational space.  
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Figure 3.1: Schematic of three-dimensional computational cell 
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 Upon applying the Gauss’ divergence theorem over a hexahedral cell as shown in 

Fig. 3.1, the Eq. 3.73 can be re-written as: 

∭(Γ
𝜕𝒁

𝜕𝜏
+
𝜕𝑸

𝜕𝑡
) 𝑑𝑉 +∬�⃗⃗⃗⃗� ⋅ �⃗⃗� 𝜉𝑑𝑆𝜉 +∬�⃗⃗⃗⃗� ⋅ �⃗⃗� 𝜂𝑑𝑆𝜂 +∬�⃗⃗⃗⃗� ⋅ �⃗⃗� 𝜁𝑑𝑆𝜁

=∭𝑯𝑑𝑉, 
(3.74) 

where  

       .       W E E i F F j G G k
 

(3.75) 

And 𝑆𝜉, 𝑆𝜂, and 𝑆𝜁 are the surface areas that are perpendicular to the surface vectors ,

 and , respectively. These areas can be combined with the area unit vectors ,  

and into a vector form given by: 
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 ,

 .

x y z

x y z

x y z

S S n S i S j S k

S S n S i S j S k

S S n S i S j S k

     

     

     

   

   

   
 

(3.76) 

And the unit area vectors are related to cell surface areas as 

�⃗⃗� 𝜉 =
�⃗⃗� 𝜉

|�⃗⃗� 𝜉|
, �⃗⃗� 𝜂 =

�⃗⃗� 𝜂

|�⃗⃗� 𝜂|
, �⃗⃗� 𝜁 =

�⃗⃗� 𝜁

|�⃗⃗� 𝜁|
 (3.77) 

The surface vectors and the cell volume can be calculated directly from the grid points 

[159]: 
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(3.78) 
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Assuming that the increments ===1 in the body-fitted coordinate system yields 

the following governing equation in the general coordinates  

{Γ
𝜕𝒁

𝜕𝜏
+
𝜕𝑸

𝜕𝑡
} + (𝑬𝜉 − 𝑬𝜉𝑣)|

𝑖−
1
2
,𝑗,𝑘

𝑖+
1
2
.𝑗,𝑘

+ (𝑭𝜂 − 𝑭𝜂𝑣)|
𝑖,𝑗−

1
2
,𝑘

𝑖.𝑗+
1
2
,𝑘
+ (𝑮𝜁 − 𝑮𝜁𝑣)|

𝑖,𝑗,𝑘−
1
2

𝑖.𝑗,𝑘+
1
2

= 𝑯, 
(3.79) 

where the vectors 𝑬𝝃, 𝑬𝝃𝒗, 𝑭𝜼, 𝑭𝜼𝒗, 𝑮𝜻, 𝑮𝜻𝒗 are defined as  
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(3.80) 

and the quantities 𝑬
𝝃(𝒗),𝑖±

1

2
,𝑗,𝑘
, 𝑭

𝜂(𝒗),𝑖,𝑗±
1

2
,𝑘
, 𝑮

𝜁(𝒗),𝑖,𝑗,𝑘±
1

2

 represent the numerical fluxes 

associated with each cell interface. �̃� represents cell surface areas per cell volume. In fact, 

the above analysis describes the transformation of a quadrilateral cell with a volume V 

in x-y-z coordinates to a cubic cell with unit volume in the general coordinate (i.e., -- 

coordinates). 

 To accelerate convergence, the pseudo-time integration is based on the local time 

step in the computational domain. The maximum pseudo-time increment  of each cell 

can be evaluated by 

 ,
  

     

  


     

  
 

       
 

(3.81) 

where 
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(3.82) 

3.2.5.2 Evaluation of Inviscid Fluxes 

 Different approaches in evaluating the numerical fluxes lead to disparate 

numerical characteristics. In the central difference scheme, the convective flux at a cell 

face in the -direction can be written as 

, 1/ 2,

1ˆ (Z ) (Z )  ,
2

L R

i j  
   E E E

 
(3.83) 

 The above equation corresponds to the stencil illustrated in Fig. 3.2. The 

superscripts L and R represent the left and right cells, respectively. Depending on how 

these terms are evaluated, a wide variety of central and upwind schemes can be obtained. 

According to Rai and Chakravarthy [160], the numerical flux is computed as 

𝑬
𝜉,𝑖+

1
2
,𝑗,𝑘

= 𝑬
𝜉,𝑖+

1
2
,𝑗,𝑘

− 𝜙
𝑖+
1
2
,𝑗,𝑘

(4)
(

𝑬
𝜉,𝑖+

3
2
,𝑗,𝑘

− 2𝑬
𝜉,𝑖+

1
2
,𝑗,𝑘

+ 𝑬
𝜉,𝑖−

1
2
,𝑗,𝑘

24
), (3.84) 

where  is the flux limiter. This term switches the truncation error associated with the 

flux-difference from fourth-order accuracy when , to second-order accuracy when 

. For uniform grid system, these terms are written as follows to facilitate easy 

switching and make the scheme TVD (total-variation-diminishing). 
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(3.85) 
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2, , 1, ,(2)
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(3.86) 

, , 1,  .i j i j i jZ Z Z   
 

(3.87) 

These stencils are fifth-order accuracy ( ), third order accuracy 

( ), and first-order accuracy ( ), respectively. The present 

work utilizes second-order overall accuracy for spatial discretization with the exception 

of first order accuracy close to the physical boundaries. The third-order accurate 

evaluation of the left and right states is thus employed. The fluxes in -, and -directions 

can be computed in a similar fashion as above.  

 

 

 

 

 In practical applications, non-uniform grids are generally used. If the same 

procedure is used to evaluate the left and right state terms, Taylor series expansion shows 
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Figure 3.2: Schematic diagram of the stencil used in evaluating inviscid flux terms in 

the plane. 
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that there is a truncation error of first order. This will significantly reduce the overall 

order of accuracy of the numerical scheme. Extremely refined grids are used to diminish 

such side effect.  

 Fosso et al. [161] proposed higher-order accurate compact interpolation for 

curvilinear finite volume schemes to take into account the effect of grid non-uniformity. 

The values of interest at cell surfaces can be estimated from the cell average values in its 

neighborhood, by applying Taylor series expansion and solving the linear equations. 

Appropriate boundary treatment procedures have been developed for multi-block 

applications. However, this method is more expensive due to extra calculations of the 

surface values in each iteration. The current study compromises by mimicking the so-

called Cartesian-like scheme using curvilinear abscissa scheme in the cited work. Instead 

of implicit equations, explicit equations are obtained to improve the numerical accuracy 

of spatial differencing for convective flux evaluation.  

3.2.5.3 Evaluation of Viscous and SGS Fluxes 

 

 

 

 

Figure 3.3: Schematic diagram for a three-dimensional auxiliary cell. 
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The dash-dotted lines in Fig. 3.3 show a three-dimensional auxiliary cell 

schematically. The viscous fluxes need to be evaluated at the center of the cell faces, i.e., 

𝑖 +
1

2
, 𝑗, 𝑘  for the viscous flux in the axial direction. Using divergence theorem and 

applying it to a small control volume Δ𝑉, the viscous fluxes can be approximated as

∇ ⋅ 𝑓 =
1

Δ𝑉
∮𝑓 ⋅ �⃗� 𝑑𝑆. (3.88) 

Applying the above formulation to the auxiliary cell at ( ) gives 
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(3.89) 

Similarly 
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(3.90) 

1, , , , 1/ 2, 1/ 2,
1/ 2, , 1/ 2, ,

1/ 2, 1/ 2, 1/ 2, , 1/ 2 1/ 2, , 1/ 2

1

 .

z z zi j k i j k i j k
i j k i j k

z z zi j k i j k i j k

f
f S f S f S

z V

f S f S f S

  

  

  
 

     

        

  
  

(3.91) 

Note that  in the above equations are elements of the viscous flux vectors, , , or 

. Physical variables with one-half indices need to be interpolated from the quantities 

at the neighboring cell centers and are given by 

1/ 2, 1/ 2, , , 1, , 1, 1, , 1,
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(3.92) 

The evaluation of SGS fluxes follows a similar procedure as for the viscous and diffusive 

fluxes. 
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f vE vF
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 The viscous term evaluation procedure outlined above results in lower order of 

accuracy for non-uniform grids for reasons similar to the convective flux terms. However, 

in large Reynolds number flows, convection is dominant, and the effect of grid 

uniformity is neglected in the current study. Further study is warranted to consistently 

improve the numerical accuracy.  

3.2.5.4 Evaluation of Artificial Dissipation 

 Artificial dissipation plays a crucial role in the stability of a numerical scheme. 

The form of dissipation terms must be higher order of accuracy than that of the numerical 

scheme to keep their magnitude minimal. For the present case, the numerical 

differentiation of the flux vectors is fourth-order accurate in the core region of the 

computational domain. Accordingly, the artificial dissipation is fourth-order accurate. 

The accuracy order of the numerical scheme decreases near the physical boundary, and 

the artificial dissipation also goes to a lower order. The form of numerical dissipation is 

quite often a blending of second- and fourth-order dissipation terms. The second-order 

terms are used near shock waves and flame zones to prevent spurious oscillations, while 

the fourth-order terms are important for stability and convergence. The standard 

dissipation model can be written as 

1 2 , 1/ 2, ,

AD

 ,i / , j k i j k

artificial dissipation
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(3.93) 
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(3.94) 

  correspond to the coefficients of the second-, fourth- and sixth-order 

accurate artificial dissipation terms and in the present formulation, . 

 Even though the standard dissipation model has been proven to be reasonably 

effective in many cases, there are strong motivations for reducing the numerical 

2 4 6, , and   

1
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dissipation being produced. The standard model also has difficulties in hypersonic flows 

and in density stratified supercritical fluids with steep discontinuities as it occurs in the 

present case. A scalar dissipation model was constructed by Swanson and Turkel [162] 

and by Jorgenson and Turkel [163] to overcome the above difficulties. In their model 

𝑑
𝑖+
1
2
,𝑗,𝑘

= 𝜖
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1
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1
2
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|
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1
2
,𝑗,𝑘

− 𝜖
𝑖+
1
2
,𝑗,𝑘

(4)
𝜌
𝑖+
1
2
,𝑗,𝑘
(𝜆)

𝜕3𝑍

𝜕𝜉3
|
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1
2
,𝑗,𝑘

.  (3.95) 

The modified eigenvalues are given by 

1 2 3 4 5 6 ( ) ,            
 

(3.96) 

where  is the spectral radius of the flux Jacobian matrix . 
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(2) (4)1 1 1 1
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(3.100) 

 The first term on RHS given in Eq. 3.95 is nonlinear. Its purpose is to introduce 

an entropy-like condition and to suppress oscillations in the neighborhood of shock 

discontinuities. This term is small in the smooth portion of the flow field. The switch 

 is important near discontinuities, in which large pressure gradients exist. For high-

pressure fluid mixing and combustion, however, this switch is tuned to include 

temperature or density gradients other than pressure gradients, as pressure may still be 

uniform across the boundary between different fluid layers. The fourth-order term is 

basically linear and is included to damp high-frequency modes and allow the scheme to 

approach a steady state. Only this term affects the linear stability of the scheme and is 

reduced to zero near the discontinuity. 

( )  -1A

kji ,,
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 Although effective for numerical stability, the scalar dissipation model results in 

much dissipation and probably contaminates the accuracy of the simulation. Because the 

scalar dissipation model uses the same artificial dissipation coefficient for all the 

equations regardless of the actual wave speeds, resulting in excessive smearing. This 

situation deteriorates in locations where the local preconditioning factor is not optimized 

such that the eigenvalues of the Jacobian matrix are in different orders of magnitude. 

Furthermore, the scalar dissipation is not conservative, and leads to mass conservation 

problem in practice. 

 To overcome the difficulties with the scalar dissipation model, matrix dissipation 

formulations are derived for real-fluid mixture systems following Swanson and Turkel 

[162] and by Jorgenson and Turkel [163]. To demonstrate the procedure of adding matrix 

artificial dissipation, backward differencing in time is applied to the governing equations, 

giving: 
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or equivalently: 
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(3.102) 

where 𝑎 = 3/2, 𝜙 = (2𝑸𝑛 − 𝑸𝑛−1)/2. 

 At this point, the eigenvalues and eigenvectors of the preconditioned system can 

be derived. Let 
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𝑺 = 𝚪 + 𝑎
Δ𝜏

Δ𝑡
𝑻

= (1 +
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3
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where 𝜌𝑝
′′ = (

𝛾

𝛽
+
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). Then can be derived as: 
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where  
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The eigenvalues are: 

1,2,3,6 Ub 
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The left and right eigenvectors, which correspond to each of the eigenvalues are given by: 
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(3.109) 

where 𝐵1 = −
𝑇𝜌𝑇

𝜌2𝑐𝑝

𝜆5−𝜖
′𝑈𝑏

𝜆5−𝜆4
  and 𝐵2 = −

𝑇𝜌𝑇

𝜌2𝑐𝑝

𝜆4−𝜖
′𝑈𝑏

𝜆4−𝜆5
. 

 Following Swanson and Turkel [162], the matrix dissipation term in  direction 

is given by: 
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(3.112) 

where  𝚲 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6). The half point values are evaluated using Roe 

averaging technique. To avoid numerical difficulties caused by zero artificial viscosity at 

stagnation points or sonic regions, the eigenvalues are limited by:  

      max , ,  with max , 1,6 .i i n iV i      A A
 

(3.113) 

The higher-order term is not helpful to TVD or up-winding property, but is intended to 

eliminate high frequencies and to accelerate numerical convergence.  

 The artificial dissipation coefficient is based on the following switch: 
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where 
1

4
≤ 𝜅(2) ≤

1

2
, 
1

64
≤ 𝜅(4) ≤

1

32
, 0.05 ≤ 𝜔 ≤ 0.5. The resulting scheme is TVD given 

the switches above. 

3.2.6 Temporal Discretization 

 The physical time derivatives are evaluated by backward differencing 
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(3.115) 

The coefficient  and function  can be specified to any level of temporal accuracy 

desired. In the current work, a three-point backward difference with second-order 

accuracy is employed. For this situation 

1
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,  (4 ) .

2 2
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(3.116) 

The superscripts  and denote iterations within the pseudo-time domain (inner-loop) 

and physical time domain (outer-loop), respectively. The physical time term  can be 

linearized as 

1 1  .m m mQ Q T Z   
 

(3.117) 

Then we get the following discretized system 
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 To solve this equation implicitly, matrix “inversion” of (Γ + 𝑎
Δ𝜏

Δ𝑡
𝑇) is required. 

 A fourth-order Runge-Kutta (RK-4) scheme is used to solve the governing 

equation in the pseudo-time space due to its higher temporal accuracy and relatively 

larger CFL number requirement (i.e.,  for an Euler calculation using RK-4). A 

thorough investigation of the stability characteristics of the RK-4 method, based on 

convection of the turbulence energy-spectrum, has been performed by Apt and Yang [164] 

to establish its creditability and accuracy. Using the four-step Runge-Kutta scheme, each 

pseudo-time integration is completed through four consecutive intermediate steps, as 

given below: 

𝑍0 = 𝑍𝑚, 

𝑍1 = 𝑍𝑚 + Δ𝑍1, (Γ +
Δ𝜏

Δ𝑡
𝑇 − Δ𝜏𝐷)Δ𝑍1 = 𝛼1Δ𝜏 ⋅ 𝑅(𝑍0), 

𝑍2 = 𝑍𝑚 + Δ𝑍2, (Γ +
Δ𝜏

Δ𝑡
𝑇 − Δ𝜏𝐷)Δ𝑍2 = 𝛼2Δ𝜏 ⋅ 𝑅(𝑍1), 

𝑍3 = 𝑍𝑚 + Δ𝑍3, (Γ +
Δ𝜏

Δ𝑡
𝑇 − Δ𝜏𝐷)Δ𝑍3 = 𝛼3Δ𝜏 ⋅ 𝑅(𝑍2), 

𝑍𝑚+1 = 𝑍𝑚 + Δ𝑍𝑚+1, (Γ +
Δ𝜏

Δ𝑡
𝑇 − Δ𝜏𝐷)Δ𝑍𝑚+1 = Δ𝜏 ⋅ 𝑅(𝑍3), 

(3.119) 
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(3.120) 

Superscripts ‘m’ and ‘m+1’ stand for the solution at the ‘mth’ and ‘(m+1)th’ pseudo-time 

steps, respectively. The coefficients , , and  can be varied to obtain a variety of 

schemes with different stability properties. The standard four-step scheme has the 

following values (Jameson, 1983) 

22

1 2 3
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(3.121) 

 The iteration begins from pseudo-time steps (inner-loop). At convergence in 

pseudo-time step, the solution proceeds one physical time step (outer-loop). Due to the 

unconditional numerical stability of implicit solvers, the dual-time advancing process 

provides flexibility in the selection of time step sizes. In particular, the physical-time step 

size Δ𝑡 is determined based on the evolution of the unsteady flow. To capture the small 

chemical timescales of most species, Δ𝑡 should not be larger than ~0.5 𝜇𝑠, then the sub-

cycling of pseudo-time steps could guarantee the capture of small chemical timescales of 

~10 ns. On the other hand, the pseudo-time step size Δ𝜏  is determined based on the 

numerical stability of the algorithm and could be modified to provide the optimal 

convergence rate for the pseudo-time iteration process. Practically, pseudo-time CFL 

numbers between 5 and 10 are chosen for most simulations. 

3.3 Boundary Conditions 

 In all cases considered, second-order accurate boundary conditions are 

implemented. The inlet and exit conditions are specified using the method-of-

characteristics (MOC). Adiabatic and no-slip conditions are imposed at the solid wall. 

Elsewhere conditions are specified using second-order extrapolated values. These 

conditions produce zero normal gradients with respect to pressure, velocity, temperature, 

and species mass fraction. 

3.3.1 Characteristic Boundary Conditions 

 At the inlet and outlet boundaries, care must be taken when specifying the 

numerical boundary conditions. One has to ensure that the unphysical spurious wave 

reflections are avoided at the boundary and the flow is capable of relaxing to ambient 

conditions in the prescribed ways, which can be satisfied using the MOC proposed by 

Poinsot and Lele [165]. In the absence of a significant diffusion processes, the MOC 
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method provides correct number of conditions that must be specified, as well as 

conditioned information from the interior domain. 

 Implementation of the MOC procedure involves diagonalizing the governing 

system to a quasi-one-dimensional characteristic form 
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(3.122) 

All of the terms in above equation are evaluated at cell centroids using the finite 

difference methodology. The term  is the vector of specified boundary conditions. The 

term L is a selection matrix that singles out the desired characteristics at respective 

boundaries. The Jabobian matrix  is defined as 𝑆 = 𝜕Ω/𝜕𝑍. 

 In the absence of significant diffusion processes, the MOC procedure dictates the 

correct number of conditions that must be specified at each boundary and provides well-

conditioned information from the interior domain. In this study, the conditions imposed at 

the inlet and exit planes remain subsonic. At the inlet, there is one outgoing characteristic 

and N+3 conditions must be specified. Here the temperature, velocity, and species 

concentrations are employed assuming fully-developed turbulent channel flow. These 

conditions are given by 
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where , , , and , , …,  represent the specified values of velocity 

components, temperature, and species mass fraction, respectively. At the exit, there are 

N+3 outgoing characteristics and one condition must be specified. Here a far-field 

pressure condition is simulated using the methodologies proposed by Rudy and 

Strikwerda [166], Poinsot and Lele [165], and Baum et al. [167]. 

 To simulate the far-field boundary, the incoming characteristic is modified to 

provide a nonreflecting outflow condition. The equation of interest is given by the 

selection matrix 

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
 .

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

L

 
 
 
 
 
 
 
 
 
 
 
 
   

(3.124) 

Associated with this equation is the term 

Π2 = 𝜆2 [
1

𝜖

𝑢 − 𝜆2
𝑎

𝜕𝑝

𝜕𝑥
− 𝜌𝑎

𝜕𝑢

𝜕𝑥
], (3.125) 

which characterizes the time variation of the normal component of acoustic waves that 

propagate from an infinitely distant downstream source into the computational domain. 

The term 𝜆2 is the acoustic eigenvalue. Conceptually, a perfectly non-reflecting subsonic 

outflow condition can be obtained if this term is set equal to zero. Specifying such a 

condition, however, eliminates the information provided by the acoustic waves and leads 

to an ill-posed problem. To simulate this information Rudy and Strikwerda [166], Poinsot 

and Lele [165], and Baum et al. [167] proposed that Eq. 3.81 be replaced with 

Π2
𝑘 = 𝑘(𝑝 − 𝑝∞), (3.126) 
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where  is a constant that determines the speed with which the average pressure in the 

computational domain relaxes towards the imposed pressure at infinity  𝑝∞ . This 

condition introduces small amplitude acoustic waves using scaling arguments that are 

based on known quantities at the exit. Rudy and Strikwerda [166] proposed that optimal 

values of  are given by  

𝑘 = 2
𝜎

𝑥𝑐

𝜖𝑎2(1 − �̅�2)

√𝑢(1 − 𝜖)2 + 4𝜖𝑎2
. (3.127) 

 The factor presented here has been modified from that given by Rudy and 

Strikwerda [166] to accommodate the dual-time preconditioned system. Here  

represents the maximum Mach number in the computational domain,  is the 

characteristic axial length of the domain, 𝜖 is the local preconditioning factor, and  is 

the local speed of sound. The term 𝜎 is a scaling factor used for optimization. Poinsot and 

Lele [165], and Baum et al. [167] have shown that values ranging from 0.25 to 0.5 

provide the best results. When lower values are specified, solutions tend to drift away 

from the reference pressure. When larger values are specified, flow oscillations are 

introduced. 

 To implement the MOC methodology with the far field pressure condition 

described above, the  outgoing characteristics are selected and the incoming 

characteristic is modified by replacing the incoming wave amplitude. These conditions 

are given by  
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The far-field pressure condition has been shown to be effective in reducing reflections at 

the subsonic exit boundary and is relatively accurate and stable. 

3.4 Parallel Implementation 

 Since the explicit time-stepping numerical scheme is applied in the current study, 

only the data from neighboring cells instead of the whole computational domain were 

required during the calculation of variables in each cell. Since the data dependence is 

weak, the domain decomposition technique is best suited for this kind of application. It is 

also commonly implemented in distributed-memory parallel computer systems. In the 

field of computational fluid dynamics (CFD), it is generally referred to as mesh 

partitioning, based on the geometric substructure of the computational domain. In the 

domain-decomposition technique, the physical domain is divided into several sub-

domains. Variables in each cell are updated to the next time step simultaneously. In order 

to calculate the spatial derivatives at the sub-domain boundaries, ghost cells or halo data 

around the computing cells are introduced. Figure 3.4 shows an example of a two-

dimensional sub-domain with ghost cells. Because the variables in the ghost cell are 

updated in another sub-domain, message passing is required to synchronize data between 

different sub-domains. The communication overhead is directly proportional to the 

volume-to-surface ratio of the grid system in that sub-domain. Maximizing the 

computation-to-communication ratio leads to higher parallel execution efficiency. 
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 High Performance Computing (HPC) clusters are used to conduct the large-scale 

computations required in the current studies. The in-house program is highly paralleled, 

and each decomposed sub-domain is computed by one CPU core. Communication at the 

domain boundary is made through a message passing interface (MPI).  

 

 

 

 

  

 

Figure 3.4: Schematic of a two-dimensional sub-domain with ghost cells. 

Computing cells Ghost cells
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CHAPTER 4  

EFFICIENT APPROACHES TO SIMULATE FINITE RATE 

CHEMISTRY  

 The chemical source terms introduce a large and stiff ODE system, which is the 

main reason why detailed FRC calculation is very expensive. In the implementation, 

techniques of ODEPIM [43, 44] and CoDAC [35, 86-88] are utilized to accelerate the 

calculation of chemical source terms. 

4.1 Point-Implicit Stiff ODE Solver (ODEPIM) 

 There are generally 3 categories of ODE solvers available for the calculation of 

chemical kinetics: (1) pure implicit solvers, such as the variable-coefficient stiff ODE 

solver (VODE) [37]; (2) semi-implicit solvers, such as the point-implicit stiff ODE solver 

(ODEPIM) [43, 44]; and (3) pure explicit solvers, such as the 4th-order Runge-Kutta 

(RK4) solver and Euler explicit solver with sub-cycling. Pure implicit solvers, although 

accurate even for stiff mechanisms, are computationally expensive. For example, VODE 

is more than 40 times slower than ODEPIM while employing GRI-Mech 3.0. Pure 

explicit solvers require time step sizes smaller than the smallest chemical timescales; 

otherwise significant errors or even numerical instability may be triggered. For the 

turbulent flames using stiff mechanisms (such as GRI-Mech 3.0), the minimum chemical 

timescales are O (0.1 ns), while the time step sizes from the CFL condition are O (10 ns). 

Numerical experiments show that using RK4 for stiff mechanisms can introduce 

significant errors and incorrect results (for example, the average temperature error was 

more than 400 K in our investigation). For reasons of both accuracy and computational 

speed, ODEPIM is selected in this study. 

 The reaction rate  ω̇𝑘  can be decomposed to two parts: production  𝑃𝑘  and 

destruction 𝐷𝑘. Therefore ODE system of chemical kinetics can be rewritten as: 
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𝑑𝑌𝑘
𝑑𝑡

= 𝑃𝑘 − 𝐷𝑘 (4.1) 

 Above decomposition can be explicitly discretized to the following from, note 

that the superscript 𝑛 means these terms are evaluated using the states at time 𝑡 = 𝑡𝑛. 

𝑌𝑘
𝑛+1 − 𝑌𝑘

𝑛

Δ𝑡
= 𝑃𝑘

𝑛 − 𝐷𝑘
𝑛
𝑌𝑘
𝑛+1

𝑌𝑘
𝑛  (4.2) 

Rearrange above discrete form, we can get a pointwise explicit formula for 𝑌𝑘
𝑛+1. 

𝑌𝑘
𝑛+1 =

𝑌𝑘
𝑛 + Δ𝑡𝑃𝑘

𝑛

1 +
Δ𝑡𝐷𝑘

𝑛

𝑌𝑘
𝑛

 
(4.3) 

 Explicitly time advance using above equation is both unstable and inaccurate 

unless using extremely small time steps approximately the smallest timescale of the 

plasma-combustion kinetics. For this reason, point-implicit stiff ODE solver (ODEPIM) 

introduces an inner iteration to solve the ODE system implicitly. The states at time 𝑡 =

𝑡𝑛 are utilized as the initial values (𝑚 = 𝑙) for the inner iteration: 

𝑌𝑘
𝑛,𝑚=1 = 𝑌𝑘

𝑛 (4.4) 

 The iteration from state 𝑌𝑘
𝑛,𝑚

 to 𝑌𝑘
𝑛,𝑚+1

 is conducted based on Eq. (4.3): 

𝑌𝑘
𝑛,𝑚+1 =

𝑌𝑘
𝑛 + Δ𝑡𝑃𝑘

𝑛,𝑚

1 +
Δ𝑡𝐷𝑘

𝑛,𝑚

𝑌𝑘
𝑛,𝑚

 
(4.5) 

 Iteration stops once 

max
1≤𝑘≤𝑁𝑆

(|
log10 𝑌𝑘

𝑛,𝑚+1

log10 𝑌𝑘
𝑛,𝑚 − 1|) < 𝜖𝑖𝑡𝑒𝑟 = 10−5 (4.6) 

 In the implementation, species with too low mole fractions (< 10−3 𝑝𝑝𝑚) has 

large uncertainty thus should be ruled out from above maximum calculation to improve 

convergence. As a result, the updated states at next time step 𝑡 = 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 is 

𝑌𝑘
𝑛+1 = 𝑌𝑘

𝑛,𝑚+1
 (4.7) 
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 Note that energy equation can also be decomposed to production and destruction 

by the same manner. Then temperature is also combined into above inner iteration and 

the iteration convergence criteria need to include the following condition for temperature: 

|𝑇𝑛,𝑚+1 − 𝑇𝑛,𝑚| < 10−3𝐾 (4.8) 

 The flow chart of ODEPIM is summarized in Fig. 4.1. 

 

 

 

 

 

 

 ODEPIM is a semi-implicit stiff ODE solver. It is much faster than purely implicit 

solvers (e.g. double precision variable coefficient stiff ODE solver (DVODE)) because of 

its pointwise decoupling during the inner iteration. For the same reason, its accuracy 

should stay between purely explicit solvers (e.g. 4th order Runge-Kutta (RK4) and Euler 

Explicit with sub-cycling) and purely implicit solvers. Past studies [43, 44] show that its 

accuracy is close to that of pure implicit solvers but its speed is close to that of pure 

Figure 4.1: Flow chart of the point-implicit stiff ODE solver (ODEPIM). 
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explicit solves, especially for detailed stiff chemical kinetics. Its numerical stability 

allows Δ𝑡 up to O(100 ns), which is enough for DNS and high-fidelity LES. Therefore, 

ODEPIM is a good balance between efficiency and accuracy. 

4.2 Correlated Dynamic Adaptive Chemistry (CoDAC) 

4.2.1 Path Flux Analysis (PFA) Method for Kinetic Mechanism Reduction 

 The kernel engine of CoDAC is a path flux analysis (PFA) method [25] for 

kinetic mechanism reduction. The PFA method can select important species and reactions 

based on both production and destruction fluxes. The PFA reduction procedure begins 

with a list of preselected important species, typically fuel, and oxygen, and then selects 

all species with significant correlation to the selected species to form a sub-mechanism.  

 To illustrate it, consider an arbitrary species A. Its net production and 

consumption fluxes are Eqs. (4.9) and (4.10), respectively: 

𝑃𝐴 =∑max(𝜈𝐴,𝑖�̇�𝑖, 0)

𝐼

𝑖=1

 (4.9) 

𝐶𝐴 =∑max(−𝜈𝐴,𝑖�̇�𝑖, 0)

𝐼

𝑖=1

 

(4.10) 

 The production and consumption fluxes between species A and B are Eqs. (4.11) 

and (4.12), respectively: 

𝑃𝐴𝐵 =∑max(𝜈𝐴,𝑖�̇�𝑖𝛿𝐵
𝑖 , 0)

𝐼

𝑖=1

 (4.11) 

𝐶𝐴𝐵 =∑max(−𝜈𝐴,𝑖�̇�𝑖𝛿𝐵
𝑖 , 0)

𝐼

𝑖=1

 

(4.12) 

 Based on Eq. (4.9-4.12), we can obtain the 1st generation normalized fluxes for 

production and consumption of species A requiring species B: 
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𝑟𝐴𝐵
𝑝𝑟𝑜−1𝑠𝑡 =

𝑃𝐴𝐵
max (𝑃𝐴, 𝐶𝐴)

 (4.13) 

𝑟𝐴𝐵
𝑐𝑜𝑛−1𝑠𝑡 =

𝐶𝐴𝐵
max (𝑃𝐴, 𝐶𝐴)

 
(4.14) 

 Using the 1st generation, the 2nd generation normalized fluxes between A and B 

via any intermediate M are defined as: 

𝑟𝐴𝐵
𝑝𝑟𝑜−2𝑛𝑑 = ∑ 𝑟𝐴𝑀

𝑝𝑟𝑜−1𝑠𝑡 × 𝑟𝑀𝐵
𝑝𝑟𝑜−1𝑠𝑡

𝑀≠𝐴,𝐵

 (4.15) 

𝑟𝐴𝐵
𝑐𝑜𝑛−2𝑛𝑑 = ∑ 𝑟𝐴𝑀

𝑐𝑜𝑛−1𝑠𝑡 × 𝑟𝑀𝐵
𝑐𝑜𝑛−1𝑠𝑡

𝑀≠𝐴,𝐵

 
(4.16) 

 Theoretically, each normalized flux can be assigned a corresponding threshold. 

For simplicity, above 4 normalized fluxes can be agglomerate together which only need 

one threshold value: 

𝑟𝐴𝐵 = 𝑟𝐴𝐵
𝑝𝑟𝑜−1𝑠𝑡 + 𝑟𝐴𝐵

𝑝𝑟𝑜−2𝑛𝑑 + 𝑟𝐴𝐵
𝑐𝑜𝑛−1𝑠𝑡 + 𝑟𝐴𝐵

𝑐𝑜𝑛−2𝑛𝑑 (4.17) 

 Then 𝑟𝐴𝐵 is utilized to evaluate the correlation of species B to species A. PFA 

kinetics reduction starts from a list of preselected important species and selects any 

species with correlation to one of the selected species larger than a threshold 𝜖𝑟. This 

procedure is conducted iteratively until no new species can be added to the list. Then a 

reduced kinetics is generated. In this study, 0.02 is chosen as the threshold value 𝜖𝑟 for 

PFA, which is a compromise between computational efficiency and accuracy [28, 34, 

35]. The flow chart of ODEPIM is summarized in Fig. 4.2. 
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4.2.2 Space-Time Correlations 

 The basic idea of DAC is to generate reduced kinetics for each spatial location 

and time step (via the PFA method). To guarantee conservation of species, transport 

equations of inactive species are still solved but their chemical source terms are frozen to 

zero. Unfortunately, doing on-the-fly reduction by simply applying the PFA method for 

each grid cell and time step demands significant CPU overhead, which severely reduces 

the benefits of DAC [28]. In fact, many spatial locations and time steps have similar 

thermo-chemical states, thus could share the same reduced kinetics. Therefore, it is more 

efficient to group grid points in space-time hyperspace into zones of the chemical 

thermodynamic state space. The PFA calculation is required for only one point in each 

space-time zone of similar thermo-chemical state, and other points can copy and use the 

same reduced kinetics decreasing the CPU overhead requirements [34, 35].  

 This idea of CoDAC is schematically presented in Fig. 4.3. During the 

calculation, the reduced kinetics is firstly generated on the fly based on the chemical 

thermodynamic state of the centroid grid on each parallel processor. Then CoDAC scans 

Figure 4.2: Flow chart of PFA method for kinetic mechanism reduction. 
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all grid cells in dictionary order. Adjacent time steps and spatial neighbors are likely to 

correlate to each other. Therefore, the correlation checking procedure is conducted on a 

7-point stencil (center, upper, lower, front, back, left, and right) for each 3D grid cell. In 

particular, CoDAC checks the time correlation first by comparing the thermo-chemical 

states between the present and previous time steps at this grid cell. If they are correlated 

according to a pre-specified criterion (i.e. their difference is smaller than a user-specified 

threshold), then the reduced kinetics on this grid cell do not need to change. Otherwise, 

CoDAC will check the 3D space correlation by comparing the thermo-chemical state of 

the present grid cell with the most updated states of its 6 neighbors. If any one of them is 

correlated to the present grid cell, then its most updated reduced kinetics will be copied 

and used for the present grid cell. Otherwise a new locally reduced mechanism must be 

generated from the detailed kinetics on that grid point, and search its neighbors on the 

same processor to form a new spatial correlation zone. As the time advances, less and 

less new reduction is required due to the increase of space and time correlations.  

 Note that each processor generates its own reduced kinetics without the need to 

communicate with each other, which efficiently reduces the total simulation time. 

 

 

 

Figure 4.3: Flow chart of the time-space correlation algorithm in CoDAC method. 
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 The key for time and space correlation is a reasonable pre-specified criterion. In 

order to form a suitable criterion, important marker species and thermodynamic state 

variables need to be selected. For plasma simulations, electron number density and 

energy dominate the plasma kinetics and indirectly affect chemical kinetics, so electron 

number density must be considered in the criterion. According to equivalence ratio 

effects and the Arrhenius law, fuel, oxidizer, and temperature should be considered in this 

criterion. Radicals and intermediate species are critical for combustion. Radicals, fuel 

fragments and excited species, primarily sustain combustion. For this reason, OH is 

adopted as a representative of radicals in the criterion, and as the marker of high 

temperature chemistry. Actually, other important radicals like O also can serve as the 

representative. In addition, low temperature chemistry (LTC) is important for phenomena 

like cool flame, low-temperature ignition (LTI), and lean blow-out (LBO), thus CH2O 

and HO2 should be considered in the criterion as explained by Sun et al. [35]. Therefore, 

the resulted criterion is the following (quantities with superscript ‘o’ represent the values 

at candidate time step/grid cell):  

𝚫 = (
|𝑇 − 𝑇𝑜|

𝜖𝑇
,
|𝑙𝑛𝑋𝑒𝑙𝑒𝑐 − 𝑙𝑛𝑋𝑒𝑙𝑒𝑐

𝑜 |

𝜖𝑋
,
|𝑙𝑛𝑋𝑓𝑢𝑒𝑙 − 𝑙𝑛𝑋𝑓𝑢𝑒𝑙

𝑜 |

𝜖𝑋
,
|𝑙𝑛𝑋𝑜𝑥 − 𝑙𝑛𝑋𝑜𝑥

𝑜 |

𝜖𝑋
, 

|𝑙𝑛𝑋𝑂𝐻 − 𝑙𝑛𝑋𝑂𝐻
𝑜 |

𝜖𝑋
,
|𝑙𝑛𝑋𝐶𝐻2𝑂 − 𝑙𝑛𝑋𝐶𝐻2𝑂

𝑜 |

𝜖𝑋
,
|𝑙𝑛𝑋𝐻𝑂2 − 𝑙𝑛𝑋𝐻𝑂2

𝑜 |

𝜖𝑋
) 

(4.18) 

 

 For space correlation, quantities with superscript circle represent the values at the 

centroid grid point; for time correlation, they represent the values at previous time step at 

the same grid point. When ‖𝚫‖∞ ≤ 1, the two states are considered as correlated to each 

other, and can share the same reduced kinetic mechanisms. The thresholds are set as 𝜖𝑇 =

20𝐾 and 𝜖𝑌 = 25%. Past work shows that the accuracy of OAK is not sensitive to these 
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thresholds [35]. When the concentration of a species is too small, large relative 

uncertainty arises. Therefore any of the above five species with a very small mass 

fraction (< 10−6) should be removed from the criterion to avoid unnecessary reduction.  

 It is noteworthy that the performance of CoDAC is independent of ODE solver. 

4.3 Correlated Evaluation of Transport Properties (CoTran) 

 Mixture-averaged (MAD) transport coefficients are employed for the computation 

of viscous, thermally conductive, and species diffusion fluxes, and to capture differential 

diffusion and the strong interaction among molecular diffusion, turbulent mixing, and 

finite-rate kinetics.  

 In conventional simulations, transport properties based on the MAD model are 

computed at every time step and grid point, and this takes a significant amount of CPU 

time. As shown in past works [36], the CPU time of diffusion coefficients is often the 2nd 

largest for serial simulations, and can become the largest if CPU time of chemical source 

term is significantly reduced by CoDAC, ODEPIM, etc. On the other hand, diffusion 

coefficients, in fact, also contain time and space correlations. For instance, the 

unburnt/burnt regions far from the premixed flame should have similar transport 

properties. In plane-to-plane plasma discharge reactor, chemical thermodynamic state of 

the plasma is proved relatively uniform except the sheath layers near the walls (i.e. space 

correlation). In the quasi-steady state, the diffusion coefficients from one time step to the 

next change only slightly. Therefore, by the same idea as CoDAC, only one time 

computation is needed in each space-time correlation zone for transport properties, and 

the calculated diffusion coefficients are copied to every point in the zone [36]. Again, the 

copy operations are confined within each processor to eliminate MPI communication, and 

a 7-point stencil is adopted for time and space correlation checking.  

 Just like CoDAC, the idea of CoTran is to agglomerate space and time correlation 

groups in phase space defined by few parameters and a user-specified threshold 𝜖𝑡𝑟𝑎𝑛 (set 
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to be 0.05 in this study). Then the transport properties can be calculated only once for 

each correlation group, as shown in Fig. 2. For computational efficiency, time correlation 

is always applied first, and space correlation is applied only if time correlation is not 

applicable. In the parallel implementation, to minimize MPI communication time, each 

processor calculates its own diffusion coefficients even if its chemical thermodynamic 

states are spatially correlated with some other processors. In another words, spatially 

correlated transport (CoTran) only applies within each processor instead of all processors 

together.  

 The primary difference between CoTran and the correlation grouping in OAK is 

the selection of marker parameters in the correlation criterion, which should reasonably 

represent the transport properties rather than kinetic reactivity. In most models [95], 

viscosity 𝜇𝑘  and conductivity 𝑘𝑘  of the pure 𝑘𝑡ℎ  species depend only on temperature, 

whereas mass diffusivity  𝐷𝑘  depends on both temperature and pressure, but 𝜌𝐷𝑘  only 

depends on temperature. Therefore, temperature must be considered in the criterion while 

the pressure need not be, if  𝜌𝐷𝑚𝑖𝑥  rather than 𝐷𝑚𝑖𝑥  is calculated and copied during 

CoTran. In addition, based on the Wilke formula [96] of the MAD model, diffusion 

coefficients of gas mixture are nonlinear combinations of those of pure species weighted 

by their concentrations. Therefore, species with larger concentration make a greater 

contribution to the transport properties of the gas mixture, even if they are inertial. In this 

study, diluent (N2, Ar, etc.), oxidizer (in most cases: O2), fuel, H2, H2O, CO, and CO2 

contribute more than 95% of the total mole fraction, and contribution from the rest is at 

the same level as the threshold 𝜖𝑡𝑟𝑎𝑛. Therefore, the correlation criterion for CoTran is 

designed as the following: 

𝒅𝒊𝒔𝒕 = (
𝑇 − 𝑇𝑜

𝑇𝑜
,
𝑋𝑑𝑖𝑙𝑢𝑒𝑛𝑡 − 𝑋𝑑𝑖𝑙𝑢𝑒𝑛𝑡

𝑜

𝑋𝑑𝑖𝑙𝑢𝑒𝑛𝑡
𝑜 ,

𝑋𝑓𝑢𝑒𝑙 − 𝑋𝑓𝑢𝑒𝑙
𝑜

𝑋𝑓𝑢𝑒𝑙
𝑜 ,

𝑋𝑜𝑥 − 𝑋𝑜𝑥
𝑜

𝑋𝑜𝑥
𝑜 ,  

𝑋𝐻2 − 𝑋𝐻2
𝑜

𝑋𝐻2
𝑜 ,

𝑋𝐻2𝑂 − 𝑋𝐻2𝑂
𝑜

𝑋𝐻2𝑂
𝑜 ,

𝑋𝐶𝑂 − 𝑋𝐶𝑂
𝑜

𝑋𝐶𝑂
𝑜 ,

𝑋𝐶𝑂2 − 𝑋𝐶𝑂2
𝑜

𝑋𝐶𝑂2
𝑜 ) 

(4.19) 
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where superscript “o” represents the quantities evaluated at the center of the CoTran 

group. When ‖𝒅𝒊𝒔𝒕‖∞ ≤ 𝜖𝑡𝑟𝑎𝑛, the CoTran threshold, the two states are considered as 

correlated to each other with respect to transport properties, and their transport properties 

are taken to be equal. In this study 𝜖𝑡𝑟𝑎𝑛 is 5%, which is larger than the contribution from 

species other than the above seven.  

 Unlike CoDAC, CoTran has no CPU overhead except for the correlation 

checking, so it is highly efficient. The performance of CoTran is also independent of 

ODE solver.  
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CHAPTER 5  

NUMERICAL VERIFICATION 

 

 In Chapter 4, we introduce several numerical techniques (ODEPIM, CoDAC, 

CoTran) to accelerate the calculation of detailed finite-rate chemistry and multi-species 

transport in turbulent combustion. Before applying these innovative techniques to 

investigate the physics of turbulent combustion, both accuracy and efficiency of these 

techniques need to be numerically verified and experimentally validated in a 

comprehensive and solid manner. In this chapter, numerical verification is conducted on 

three cases: a laminar plasma discharge of gas mixture, a canonical turbulent premixed 

flame, and a turbulent non-premixed flame in shear layers. The experimental validation 

will be conducted in the next chapter on a partially premixed jet flame case. 

5.1 Laminar Plasma Discharge of Gas Mixture 

 To enhance the computational efficiency for the simulation of plasma assisted 

combustion (PAC) models, three new techniques, correlated dynamic adaptive chemistry 

(CoDAC), point-implicit stiff ODE solver (ODEPIM), and correlated transport (CoTran), 

are combined together to generate a new simulation framework. This framework is 

applied to non-equilibrium plasma assisted oxidation of C2H4/O2/Ar mixtures in a low-

temperature flow reactor. The new framework is extensively verified by both temporal 

evolution and spatial distribution of several key species and gas temperature. Simulation 

results show that it accelerates the total CPU time by 3.16 times, accelerates the 

calculation of kinetics by 80 times, and accelerates the calculation of transport properties 

by 836 times. The high accuracy and performance of the new framework indicates that it 

has great application potentials to many different areas in the modeling and simulation of 

plasma-assisted combustion.  
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5.1.1 Introduction   

 Recent years, non-equilibrium plasma discharges have drawn great attention due 

to its potential to enhance and stabilize combustion in internal combustion engines, gas 

turbines, and scramjet engines [18, 168-170]. Experimental studies have demonstrated 

that plasmas can shorten the ignition delays [171-173], extend extinction limits [174], 

improve flame stabilization [174], increase flame speed [175] and suppress soot 

formation [176, 177]. However, the understanding of the mechanism of 

plasma/combustion interaction is still lacking due to the complicated thermal, kinetic and 

transport coupling between plasma and combustion. In particular, it is still unclear which 

reaction pathways are dominant, and what reaction pathways are still missing. In order to 

answer this question, a combination of both computational and experimental efforts with 

detailed kinetics is required.  

 In contrast to experimental efforts, there have been only a few detailed numerical 

studies of plasma assisted combustion (PAC). Numerical simulation can be immensely 

advantageous in complementing the experimental efforts and in providing significant 

insights into the mechanism of plasma enhancement of combustion. The multi-scale 

nature of PAC, however, creates significant difficulties of stiffness for comprehensive 

modeling studies. As a result, many studies have resorted to simplified 0D models to gain 

understanding of the plasma kinetic and thermal effects in fuel-air mixtures [178-181]. In 

such models, plasma discharge was assumed to be uniform in the entire volume during 

each discharge pulse. The electric field and electron density were pre-tuned such that the 

coupled energy can match that in experiments. These models did not consider sheath 

formation, and charge accumulation on the dielectric layers. In addition, species and 

thermal diffusion effects were ignored. In the past few years, Nagaraja et al. [86, 172, 

173, 182-184] developed a self-consistent, 1D parallel model to simulate pulsed, 

nanosecond discharges in fuel-air mixtures. The framework is capable of resolving 
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electric field transients from pulse to pulse, as well as the cumulative effects of multiple 

pulses on fuel oxidation and combustion. However, the comprehensiveness of this model 

results in significant computational difficulties even on our supercomputer capable of 

peta-scale and beyond. For example, the simulation of 150 discharge pulses for 

C2H4/O2/Ar mixtures took more than 3 weeks. One of the major computational 

challenges comes from the large number of species and the dramatic stiffness of the 

detailed plasma-combustion kinetics which need to be calculated on every grid point and 

every time step. In a plasma-combustion system, the characteristic timescales of different 

phases can range from millisecond to picosecond and even beyond. In most past works, 

the variable-coefficient ODE solver (VODE) [37] is usually applied to solve the stiff 

ODE system. However, the computation time of VODE solver increases as cubic of the 

number of species due to the iterative “Jacobian matrix decomposition”. For this reason, 

it is almost impossible to involve large detailed mechanisms or moderate mechanisms in 

simulations with large number of grid points, especially in the high dimensional 

computational domain. 

 In order to enable the detailed plasma-combustion kinetics in comprehensive 

modeling, people can either reduce the stiffness of the ODE system, such as the 

computational singular perturbation (CSP) method [38, 39], the intrinsic low-dimensional 

manifold (ILDM) method [40], the dynamic stiffness removal method [41] and the hybrid 

multi-timescale (HMTS) method [42], or reduce the size of the kinetic mechanism, such 

as the visualization method [22], the direct relation graph (DRG) method [23], the DRG 

with error propagation (DRGEP) method [24], and the multi-generation path flux analysis 

(PFA) method [25]. Recently, Sun et al. [34-36, 185] integrated correlated dynamic 

adaptive chemistry and transport (CO-DACT) method with the HMTS method and 

successfully addressed the challenge of utilizing large detailed chemical kinetics in 

combustion modeling. In CO-DACT, correlated reduced chemical mechanisms in time 

and space are generated on-the-fly from the detailed one by the multi-generation PFA 
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method, and the calculation of mixture-averaged transport coefficients is also grouped by 

correlations in space and time. Then HMTS is adopted to replace the VODE method to 

time advance the chemical source term based on the local reduced chemical mechanism. 

The efficiency and accuracy of CO-DACT has been demonstrated by comprehensive 

numerical tests. 

 Despite above efforts, the correlated dynamic adaptive chemistry (CoDAC) and 

correlated transport (CoTran) methods have never been integrated with non-equilibrium 

plasma discharges of gas mixtures. There is a need to investigate whether chemical 

mechanism reduction methods are also valid for plasma kinetics. Furthermore, even the 

highly reduced kinetics will keep the multi-timescale nature of plasma-assisted oxidation. 

For this reason, much faster stiff ODE solvers like point-implicit stiff ODE solver 

(ODEPIM) [43, 44] are preferred. In addition, CoDAC and CoTran have not been 

implemented via parallel high performance computing (HPC), which is necessary for 

high dimensional simulation with immensely fine grid. The zoning of CoDAC and 

CoTran method has advantage for parallelization because there is no need to 

communicate reduced mechanism of local zone with other processors. Ideally, parallel 

CoDAC and CoTran can resolve the efficiency degeneracy issue of CoDAC and CoTran 

when the number of correlated spatial zones increases. In particular, larger number of 

zones can be distributed to more processors, which results in relatively fixed number of 

zones on each processor to guarantee the efficiency of CoDAC and CoTran. 

 This work incorporates CoDAC, ODEPIM, and CoTran to the time-accurate 1D 

model for parallel simulation of non-equilibrium plasma assisted oxidation of C2H4/O2/Ar 

mixtures in a low-temperature flow reactor. In the reactor, the gas mixtures are activated 

by nano-second pulsed discharge at 60 Torr. The simulation can resolve the species and 

temperature evolution across the discharge gap. Detailed analysis is conducted to 

evaluate the efficiency and accuracy of CoDAC, ODEPIM, and CoTran for PAC model.  
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5.1.2 Theoretical Framework   

5.1.2.1 Governing Equations and Numerical Methods  

 The model contains Poisson equation for electric potential, electron energy 

equation, and N species continuity equations for all charged and neutral species given by 

Eqs. (5.1-5.3), respectively, 

 ∇ ⋅ (𝜖∇𝜙) = −𝑒(𝑛+ − 𝑛− − 𝑛𝑒) (5.1) 

𝜕𝑛𝜖
𝜕𝑡

+ ∇ ⋅ 𝐽𝜖 = Q̇𝜖 (5.2) 

𝜕𝑛𝑘
𝜕𝑡

+ ∇ ⋅ 𝐽𝑘 = ω̇𝑘 (5.3) 

where  the electron energy density 𝑛𝜖 is given by the product of electron density 𝑛𝑒 and 

electron energy 𝜖𝑒. The drift (mobility)-diffusion model is used to calculate the transport 

of energy and species. 

 Furthermore, the gas mixture flow is modeled by solving mass, momentum and 

energy conservation equations simultaneously, given by Eqs. (5.4-5.6), respectively, 

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0 (5.4) 

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝐹𝑖

𝐸𝐻𝐷 (5.5) 

𝜕𝜌𝐸

𝜕𝑡
+
𝜕[(𝜌𝐸 + 𝑝)𝑢𝑖]

𝜕𝑥𝑖
= −

𝜕𝑞𝑖
𝜕𝑥𝑖

+
𝜕(𝑢𝑖𝜏𝑖𝑗)

𝜕𝑥𝑗
+ �̇�𝐽𝐻 (5.6) 

 The 2nd order Strang splitting scheme [61, 107, 108] is used to treat the 

convection-diffusion term and the kinetic source term separately in Eq. (3) and (6). In 

particular, the convection-diffusion term is integrated for half time step. Then the resulted 

state variables are used as initial condition to integrate the ODE system with kinetic 

source for one time step. Its results are regarded as the new initial conditions to integrate 
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the convection-diffusion term for another half time step to reach the 2nd order accuracy. 

The ODE system in the second fractional step consists of the followings: 

𝑑𝑛𝑘
𝑑𝑡

= ω̇𝑘 (5.7) 

𝑑𝑇

𝑑𝑡
= −

1

𝜌𝐶𝑝
∑ℎ𝑘ω̇𝑘

𝑁

𝑘=1

 (5.8) 

As we can see, the dimension of above ODE system is (N+1), and the objective of the 

CoDAC approach is to generate zoned reduced kinetics on-the-fly to decrease the number 

of species and thus the size of above ODE system. 

5.1.2.2 Physical Configurations 

 The geometry of the numerical model is shown in Fig. 5.1. The model considers a 

particular cross-section of the flow reactor, and the computational domain is 14 mm long 

from the left electrode to the right electrode (the dashed line in Fig. 5.1). The voltage 

pulses are applied at the right electrode, whereas the left one is connected to the ground. 

The dielectric constants of quartz and silicone rubber dielectric layers are chosen to be 

3.8 and 9.0, respectively. An adaptive mesh is utilized to provide more grid points near 

the boundary to resolve the sheath formation. 48 processors are used for parallel 

computing.  
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5.1.2.3 Nanosecond Voltage Waveforms 

 In the simulations, a Gaussian fit of the experimental high voltage pulse 

waveform is used, as shown in Fig. 5.2. Note that the curve-fit used in the present 

simulations uses only two voltage peaks, whereas the measured waveform has additional 

smaller peaks. It is found that the input energy coupled after the first two peaks of the 

voltage waveform is negligible, so the latter peaks are neglected in the simulation, in 

order to improve computational efficiency. To tackle the multi-scale nature of the 

problem, adaptive time-stepping is implemented with small time-steps (10-13 - 10-12 s) 

during each voltage pulse, and larger time-steps (10-10 s) in the gap between two 

consecutive pulses. More details about the numerical methods can be found in Nagaraja 

et al. [108, 182, 186].  

 

 

Figure 5.1: Geometry of the simulation model for plasma discharge of gas mixtures. 
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5.1.2.4 Plasma-Combustion Chemistry and Gas Mixtures 

 The plasma-combustion kinetics used in the present work is assembled by 

combining the new low temperature (below 700~800 K) plasma-combustion mechanism 

(HP-Mech) [187-189] with Ar and O2 plasma reactions taken from ZDPlasKin [190] 

database. The rate constants of reactions between excited Ar species and ground state O2 

molecules were taken from Sun et al. [191]. In addition, reactions between O(1D) and 

hydrocarbons are added in the kinetic mechanism because they dominate the O(1D) 

pathways and significantly contribute the hydrocarbon oxidation as shown in our past 

studies [183]. The detailed mechanism (85 species) is globally pre-reduced by second-

generation PFA method and validated based on the comprehensive physical conditions of 

present reactor. The resulted kinetics containing 60 species, 375 chemical reactions and 

161 plasma reactions. This is a moderate size kinetic model, but requirement to calculate 

it on each grid point at each time step makes it still extremely expensive even equipped 

with parallel HPC. The simulations are conducted at 60 Torr pressure, and 300 K initial 

Figure 5.2: Gaussian fit to experimental pulse waveform used in simulation. 
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temperature. The initial mixture composition was C2H4:Ar:O2 = 0.062:0.75:0.18 in mole-

fractions.  

5.1.3 Results and Discussions   

 In this study, simulation results generated by VODE with detailed kinetics are 

considered as benchmark for verification.   

5.1.3.1 Performance Analysis 

 To understand why CoDAC method can work, we need to investigate the 

temporal and spatial behavior of active species number.  

 Figure 5.3 illustrates the temporal evolution of active species number and gap 

voltage at the center of discharge gap. Profile of active species number shows periodic 

oscillation following that of gap voltage, but both its crest and trough roughly increase 

with time as more active species are generated by the plasma discharges. Therefore, 

CoDAC can efficiently reduce the size of ODE system benefiting from the periodical 

oscillation phenomenon, but the reduced size gradually increases with time due to the 

progress of chemical reactions. The profile also indicates that the crest and trough of 

active species number finally reach a quasi-equilibrium of 52 and 37, respectively. Our 

tests indicate that electron energy equation is extremely sensitive to total charge and 

plasma kinetics. In particular, even if only one or two plasma reactions are reduced, the 

electron energy can diverge during the simulation. For this reason, CoDAC is not directly 

applicable to plasma kinetics and thereby all charged and excited species have to be kept 

in the pre-selection list. Therefore, the evolution of active species number primarily 

represents the change in chemical species. An interesting fact is that most surges of active 

species number happen during the gap between two adjacent discharge pulses. The 

reason is that chemical reactions are much slower than plasma reactions, which results in 

a relaxation lag for chemical response, i.e. a hysteresis phenomenon.  
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 Figure 5.4 shows the spatial distribution of active species number at the peak of 

the 1st, 15th, 50th, 100th, and 150th discharge voltage pulse. Regions close to boundaries 

often have larger active species number because the higher concentration of reactive 

species in the sheath layers causes more progress of fuel oxidation. Unlike the flat 

profiles of species in bulk plasma as shown in previous study [183], the active species 

number profile is not always uniform. The non-uniformity does not appear in species 

profile because active species number in bulk plasma only varies one or two. This 

observation also justifies the importance of one-dimensional simulations compared to 

zero-dimensional ones. 48 processors are used in the simulation, so averagely only 0.03 

cm of computational domain is allocated in a processor. On the other hand, the spatial 

distribution profile is piecewise constant with each piece much larger than 0.03 cm. 

Therefore, most processors only contain one spatial correlation zone, and only require 

PFA reduction once per time step. The profiles of the 100th pulse and the 150th pulse 

Figure 5.3: Temporal evolution of active species number (green solid line) and gap 

voltage (blue dashed line) at the center of discharge gap. 



 87 

almost coincide with each other, which indicates that the spatial distribution of active 

species number also reaches a quasi-equilibrium just like temporal evolution in Fig. 5.3. 

 

 

 
 

 

 

 Note that the peak values in Fig. 5.4 are smaller than those in Fig. 5.3. This is 

because each spatial distribution in Fig. 5.4 is evaluated at the peak of each discharge 

voltage pulse, while the surge of active species number is mainly during the gap between 

two adjacent pulses as shown in Fig. 5.3. In addition, due to the spatial homogeneity of 

plasma, number of active species/reactions mainly changes with time rather than space. 

Therefore, the time saving from CoDAC also mainly varies with time rather than space. 

In both temporal evolution and spatial distribution, 60 species in detailed kinetics are 

never active together at the same time and space. Furthermore, number of active species 

are significantly smaller than 60 at most time and space. This is where the better 

performance of CoDAC method comes from. 

 Table 5.1 lists the CPU time speed up and saving for five combinations of new 

methods. Among all three methods, ODEPIM provides the most significant speed up of 

more than two for total CPU time. In contrast, CoDAC reduces the total CPU time by 

Figure 5.4: Spatial distribution of active species number. 
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21% and CoTran reduces the total CPU time by 17%. To understand the speed up and 

time saving, CPU time components and their distribution must be diagnosed in detail. 

 

 

w.r.t.  

VODE 

VODE 

+CoDAC 

ODEPIM ODEPIM 

+CoDAC 

ODEPIM 

+CoTran 

ODEPIM 

+CoDAC 

+CoTran 

Speed up 1.267291 2.388692 2.651159 2.892417 3.160962 

Saving 21.0915% 58.1361% 62.2806% 65.4268% 68.3641% 

 

 

 CoDAC method only directly affect the performance of kinetic source term, 

which is the largest component of CPU time in VODE with detailed kinetics.  Figure 5.5 

shows the time evolution of CPU time speed up of kinetic source term by CoDAC 

method, and compare it with that of active species number. For the case with CoDAC 

method, PFA time is added into time of kinetic source term for a fair comparison. It is 

seen that CoDAC method can speed up the kinetics up to approximately 3 times. The 

average speed up is 1.55, which saves 35.5% CPU time of kinetics. The main reason for 

this relatively low speed up is that plasma mechanism cannot be reduced, and all charged 

and excited species are preselected. The periodic oscillation and time variation of cusp 

and trough of speed up roughly follows that of active species number. As the number of 

active species increases with time, the speed up is reduced accordingly. This demonstrate 

the theoretical conclusion that CPU time of kinetics is a monotonically function of active 

species number. The speed up does not strictly follow active species number and is much 

more oscillated. The reason is that for ODE systems with the same dimension, some 

physical conditions (range of timescales) are harder to converge (i.e. stiffer) while some 

others are easier. 

Table 5.1: Speed up and saving of total CPU time by five combinations of new 

methods w.r.t. VODE with detailed kinetics. 
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 To obtain a more clear idea about the performance of CoDAC, ODEPIM, and 

CoTran. Figure 5.6 compares the average CPU time distribution per time step of four 

combinations of methods. Unlike the previous studies [34, 35], PFA time is negligible in 

this work due to the computational intensity of one-dimensional plasma simulation. For 

both VODE and VODE+CoDAC, kinetics solver time dominate the total CPU time. 

More precisely, kinetics solver time accounts for 54% of total CPU time for VODE with 

detailed kinetics, and it accounts for 44% of total time for VODE+CoDAC. For this 

reason, ODEPIM is applied to further improve the performance of kinetics solver, and 

kinetics time is further reduced to only 1.82% of the total CPU time. In particular, 

ODEPIM further speeds up the kinetics calculation by 60 times, which saves 98% of the 

kinetics calculation time. For ODEPIM+CoDAC, CPU time of calculating transport 

properties becomes 16.6% of the total CPU time. To deal with the CPU time for 

transport, CoTran is applied to speed up the transport calculation by 836 times, which 

reduces the percentage of transport time to negligible amount (0.03%) of the total CPU 

Figure 5.5: Temporal evolution of CPU time speed up of kinetic source term by 

CoDAC method (blue dashed line), and that of active species number (green solid 

line) at the center of discharge gap. 
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time. In addition, unlike the PFA overhead of CoDAC method, CoTran has no overhead 

at all. Since the calculation other than kinetics and transport dominates the total CPU 

time for both ODEPIM+CoDAC and ODEPIM+CoDAC+CoTran, which significantly 

dilutes the effects of new methods, we need to further investigate which components 

dominate. The total CPU time includes update time, Input/Output (I/O) communication 

time to write data, calculation time of electric field equation, electron energy equation, 

and Navier-Stokes (NS) equations (species, mass, momentum and energy equations). In 

particular, NS time includes the calculation time of convection, diffusion, transport 

properties, kinetic source term, PFA overhead time and MPI communication between 

parallel processors. Since Fig. 5.6 already illustrate the percentage of CPU time for 

kinetics source term, transport properties and PFA overhead, some of the rest must 

dominate the total CPU time for cases of ODEPIM+CoDAC and 

ODEPIM+CoDAC+CoTran. 

 

 

 

 

 

Figure 5.6: Comparison of average CPU time distribution per time step of VODE, 

VODE+CoDAC, ODEPIM+CoDAC, and ODEPIM+CoDAC+CoTran. 
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 Figure 5.7 shows the temporal evolution of CPU time per time step for update 

time (include I/O), calculation time of electric field equation, electron energy equation, 

convection, diffusion, and MPI communication time during the simulation of 

ODEPIM+OAK+CoTran framework. The last three components are measured together, 

because they are interlocked to each other in the code and thereby difficult to measure 

separately. As expected, CPU times of both electric field and electron energy equations 

are nonzero during the discharge pulses, and zero during the gap between two adjacent 

pulses. Time of electric field equation is extremely small, while that of update and 

electron energy equation can be significant during discharge pulses. The profile of both 

update time (include I/O) and time of convection, diffusion and MPI are highly 

oscillated. Since update, convection, and diffusion have relatively fixed amount of 

calculation, such strong oscillations must come from the unstable performance of MPI 

and I/O communications, which heavily depend on the traffic of cluster network and its 

scheduler. At some extreme situation of heavy traffic, MPI communication time can be 4 

times that of the rest, which dominate the performance and may result in either increase 

or decrease of total time. Also notice that this is a new issue originated from parallel 

computing which does not exist in serial simulations of previous studies [34, 35]. In 

addition, past studies [36] indicate that the CPU time of convection and diffusion 

calculation are much smaller than that of transport properties. Therefore, MPI 

communication must be much larger than the CPU time of convection and diffusion. 
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 The oscillating profiles in Fig. 5.7 cannot illustrate the overall distribution of CPU 

time. In particular, Figure 5.7 shows that the CPU time to compute electric field is very 

small, but it is still unknown, which of the other three components is the dominant one. 

For this reason, Table 5.2 shows the average time per step for each component of total 

CPU time and their percentages during the simulation of ODEPIM+CoDAC+CoTran 

framework. Now it is clear that convection+diffusion+MPI is the dominant component. 

Since MPI communication time is much larger than the CPU time of both convection and 

diffusion as mentioned above, MPI communication time must dominate the total CPU 

time. Therefore, to reduce the dilution effects and further enhance the computational 

efficiency, we must optimize the MPI communication between parallel processors in the 

future. 

 

 

 

Figure 5.7: Temporal evolution of different components of CPU time per time step 

other than kinetics and transport properties during the simulation of 

ODEPIM+CoDAC+CoTran framework. 
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Components  

of CPU time 

Update  

(include I/O) 

Electron  

Energy 

Electric  

Field 

Convetion 

+Diffusion 

+MPI 

Average time  

per step (sec) 

0.003613 0.011262 0.000179 0.118677 

Percentage (%) 2.701941 8.421148 0.134147 88.74276 

 

 

5.1.3.2 Verification of Accuracy 

 Figure 5.8 shows the comparison of temporal evolution of C2H2, CH4, H2O 

concentrations and gas temperature calculated by six combinations of methods: VODE, 

VODE+CoDAC, ODEPIM, ODEPIM+CoDAC, ODEPIM+CoTran, 

ODEPIM+CoDAC+CoTran. It can be seen that the new methods reproduces the results 

of VODE and detailed kinetics well in most predictions, considering each simulation took 

nearly nine million time steps. Overall, CH4 and H2O have relatively larger errors than 

C2H2 and gas temperature because they have smaller concentrations and thus are more 

sensitive to errors introduced by the new methods. For C2H2 and H2O, both CoDAC and 

CoTran show good accuracy, but ODEPIM shows slightly under-predictions. For CH4, 

ODEPIM and CoTran present good agreement with VODE and detailed kinetics, but 

CoDAC introduces some small errors. For gas temperature, all cases show good accuracy 

except VODE+CoDAC, which seems to indicate that CoDAC is more compatible with 

ODEPIM than with VODE. 

 

 

Table 5.2: Average time per step for different components of total CPU time and 

their percentages during the simulation of ODEPIM+CoDAC+CoTran framework. 
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 Figure 5.9 shows the spatial distribution of C2H2, CH4, H2O concentrations and 

gas temperature predicted by VODE with detailed chemistry (benchmark) and 

ODEPIM+CoDAC+CoTran, which is both the fastest version and the one with largest 

errors introduced among all possible combinations. It can be seen that most profiles are 

almost the same, verifying that the precision is maintained by all the three methods. 

However, CH4 profile of the 1st pulse shows significant deviation. Note that this deviation 

is magnified by the log scale and the actual size is much less than 0.1 ppm, which is very 

sensitive and has large uncertainty. On the contrary, later pulses do not contain such 

deviation due to their relatively large concentrations. This is also why species with too 

small concentrations are ruled out from correlation grouping criteria. In addition, this 

significant deviation vanishes as the simulation advance to larger number of pulses, 

which shows that the new framework is both stable and robust. Temperature has 

Figure 5.8: Comparison of VODE (blue solid line), VODE+CoDAC (green dashed 

line), ODEPIM (red dash-dot line), ODEPIM+CoDAC (cyan dotted line), 

ODEPIM+CoTran (magenta solid line with cycle), and ODEPIM+CoDAC+CoTran 

(gold dashed line with cycle) for the temporal evolution of C2H2, CH4, H2O, and gas 

temperature. 
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relatively larger deviation than species since all errors of species accumulate to that of 

temperature. 

 

 

 

 

 

 The excellent agreement in both temporal evolution and spatial distribution 

demonstrates that CoDAC is valid to capture the primary phenomena of plasma 

discharges of gas mixtures. 

5.1.4 Conclusion   

 Correlated dynamic adaptive chemistry (CoDAC), point-implicit stiff ODE solver 

(ODEPIM), and correlated transport (CoTran) are combined together to accelerate the 

simulation of non-equilibrium plasma assisted oxidation of C2H4/O2/Ar mixtures in a 

low-temperature flow reactor. The accuracy and robustness of the new framework are 

Figure 5.9: Comparison of VODE with detailed chemistry (solid line) and 

ODEPIM+CoDAC+CoTran (dashed line) for spatial distribution of C2H2, CH4, 

H2O, and gas temperature. Blue: 1st pulse; green: 15th pulse; red: 50th pulse; cyan: 

100th pulse; magenta: 150th pulse. 
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extensively verified by comparing its results with those of previous simulations without 

the new methods. In particular, temporal evolution and spatial distribution of several key 

species and gas temperature are compared to verify the new framework. Temporal 

evolution of active species number shows periodic oscillation following that of gap 

voltage pulses. For this reason, CoDAC can efficiently reduce the size of ODE system 

benefiting from the periodical oscillation phenomena. Spatial distribution of active 

species number is not always uniform, which justifies the importance of one-dimensional 

simulations compared to zero-dimensional ones. Simulation results indicate that the new 

framework provides a speed up of 3.16 times in total, 80 times in kinetics, and 836 times 

in transport. Therefore, the new framework largely enhance the computational efficiency 

for simulations of plasma-assisted combustion with detailed plasma-combustion kinetics. 

Further analysis indicate that MPI communication between parallel processors dominate 

the total CPU time of the new framework. MPI communication heavily depends on the 

traffic of cluster network and its scheduler, and its highly unstable performance 

significantly dilutes the effects of new methods. If the MPI communication can be 

optimized in the future, the new framework would provide even more significant speed 

up for total CPU time.  

5.2 Turbulent Premixed Flame 

 A new numerical framework for direct numerical simulation (DNS) of turbulent 

combustion is developed employing correlated dynamic adaptive chemistry (CoDAC), 

correlated transport (CoTran), and a point-implicit ODE solver (ODEPIM). The new 

framework is tested on a canonical turbulent premixed flame employing a real 

conventional jet fuel mechanism. The results show that the new framework provides a 

significant speed-up of kinetics and transport computation, which allows DNS with large 

kinetic mechanisms, and at the same time maintains high accuracy and good parallel 

scalability. Detailed diagnostics show that calculation of the chemical source term with 
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ODEPIM is 17 times faster than with a pure implicit solver in this test. CoDAC utilizes a 

path flux analysis (PFA) method to reduce the large kinetic mechanism to a smaller size 

for each location and time step, and it can further speed up the chemical source 

calculation by 2.7 times in this test. CoTran uses a similar correlation method to make the 

calculation of mixture-averaged diffusion (MAD) coefficients 72 times faster in this test. 

Compared to conventional DNS, the final framework is 20 times faster in total, kinetics is 

46 times faster, and transport is 72 times faster in this test.  

5.2.1 Introduction   

 The development of advanced combustion-energy conversion systems requires 

accurate simulation tools, such as Direct Numerical Simulation (DNS) and Large Eddy 

Simulation (LES), for ignition, combustion instability, lean blowout, and emissions. 

Because of high computational cost, DNS and LES typically employ simplified kinetic 

mechanisms. Oversimplified kinetic mechanisms, however, are known to be of limited 

functions and may significantly reduce the quality of prediction [17]. Detailed kinetic 

mechanisms must be considered for accurate prediction, which normally contain a large 

number of species. In combustion systems, the characteristic timescales can range from 

millisecond to picosecond or even beyond, so it is prohibitive to use detailed kinetic 

mechanisms in DNS/LES of turbulent combustion with a large number of grid cells. As a 

result, chemistry and transport dominate the resource requirements in most combustion 

DNS studies [2, 3, 20, 21].  

 In order to reduce the number of species in detailed kinetic mechanisms, several 

methods [23-25] have been proposed. Although the globally reduced kinetic mechanisms 

of around 40 species are small enough for most 0D/1D simulations, they are still too large 

for 3D simulations of turbulent combustion. On the other hand, any further reduction 

would introduce significant errors, because globally reduced mechanisms typically have 
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to be produced based on conditions of interest in practice. To deal with this issue, several 

adaptive combustion models have been proposed by a number of investigators. Gou et al. 

[28] proposed a dynamic adaptive chemistry method with error control for 0D/1D 

laminar flames, reducing kinetics locally for each grid point and time step. Liang et al. 

[32] proposed a pre-partitioned adaptive chemistry methodology for 0D partially-stirred 

reactor using particle probability density function (PDF) methods. In contrast, Wu et al. 

[33] designed a sub-model assignment framework to assign different flamelet/finite rate 

sub-models rather than different kinetics to different zones of the simulation domain for a 

2D laminar triple flame. This method matches the boundaries of zones by only 

conserving the interested quantities. Both the on-the-fly reduction and zone partition in 

methods above contain significant CPU overhead for mechanism reduction/zone 

partition. In order to reduce the CPU overhead, Liang et al. [32] and Wu et al. [33] 

proposed pre-generating look-up tables for the zone partition. Covering all conditions 

through tabulation, however, presents challenges, and the large tables make important 

demands on memory resources. Recently, Sun et al. [34, 35] proposed a simple zone-

partition criterion to decide whether a new on-the-fly reduction was required or not, and 

this significantly reduced CPU overhead. Employing the correlated dynamic adaptive 

chemistry (CoDAC) technique, Sun et al. [34, 35] showed significant reduction of CPU 

time for chemistry in 1D laminar flames. 

 Molecular diffusion transport modeling is another obstacle to accurate and 

efficient DNS of turbulent combustion. Bruno et al. [2] compared three models in DNS 

of a partially premixed flame, and concluded that the mixture-averaged diffusion (MAD) 

model predicts essentially the same fluid-dynamic and thermo-chemical field as the fully 

multi-component diffusion (MCD) model, but the fast constant Lewis number model 

predicts a significantly different flow field. Therefore, the MAD, or a higher fidelity 

model is needed to guarantee accurate predictions. Although much faster than the MCD 
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model, applying the MAD model at every time step and every grid cell is still expensive; 

it is often the 2nd largest component of the CPU time for a given computation, and could 

dominate CPU use if the kinetic source term is accelerated. To improve the computation 

of transport properties, Sun and Ju [36] developed a correlated transport (CoTran) 

technique, and obtained significant further speed-up for extensive 0D/1D laminar flames. 

 Both the CoDAC and CoTran techniques have been applied only to 0D and 1D 

simulations of laminar flames. Generalization of these techniques to 3D DNS of turbulent 

combustion gives rise to several critical questions. 1) How to efficiently scan and form 

the correlation zones in 3D space. 2) Whether existing CPU overhead reduction methods 

are adequate for 3D turbulent flames. 3) Whether correlation grouping is valid under high 

intensity turbulence. 4) How to maintain good parallel scaling performance on a large 

number of processors. In addition, optimized combinations of the above methods to 

provide the best possible speed have not yet been developed. 

 In the present work, a new regime-independent framework for 3D DNS of 

turbulent combustion with detailed kinetics is developed by incorporating correlated 

dynamic adaptive chemistry (CoDAC), correlated transport (CoTran) techniques, and an 

efficient point-implicit ODE solver (ODEPIM) into a conventional DNS platform. All 

three methods are modified and optimized to adapt to 3D turbulent combustion and 

parallel high performance computing (HPC). The new framework is tested on a canonical 

premixed flame interacting with decaying isotropic turbulence to evaluate its accuracy, 

speed-up and parallel performance. 

5.2.2 Theoretical Framework  

5.2.2.1 Physical Configurations 
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 A canonical turbulent premixed flame configuration (Figure 5.10) corresponding 

to the thin reaction-zone regime based on the initial conditions (
𝑢′

𝑆𝐿
= 15,

𝑙

𝑓
= 0.87, 

where  𝑢′  is the root-mean-square velocity fluctuations,  𝑆𝐿  is the flame speed,  𝑙  is the 

integral length-scale, and  𝛿𝑓  is the thermal flame thickness) is considered, where an 

initially planar premixed flame front interacts with a decaying isotropic turbulence. The 

computational domain consists of a cube with length 0.015 m. Periodic boundary 

conditions are specified in the span-wise (z) and transverse (y) directions, whereas a 

characteristic based inflow/outflow boundary condition [192] is specified in the x-

direction with a mean flow velocity of 1.5 m/s. The initial isotropic turbulence is 

generated following the Kraichnan spectrum [193] and the planar flame solution is 

obtained at equivalence ratio of 0.8 (unburnt temperature is 300 K, and pressure is 1 atm). 

All the simulations are conducted to 1.5 times initial eddy turn-over time (0.127 ms) to 

allow flame-turbulence interactions to evolve. 

 Full-scale DNS simulations with grid size smaller than the Kolmogorov length-

scales and large kinetic mechanism is prohibitive for conventional brute force DNS with 

DVODE solver, so the verification is conducted on a coarse grid of  643  cells (
δf

Δ𝑥
=

1.8, 𝑘𝑚𝑎𝑥𝜂 = 0.178 , where  𝑘𝑚𝑎𝑥  is the grid wavenumber, and  𝜂  is the Kolmogorov 

length-scale). Therefore, the results presented here should be considered as coarse DNS. 

Note that ODEPIM+CoDAC+CoTran has run on a fine grid of 3843  grid cells (
δf

Δ𝑥
=

11, 𝑘𝑚𝑎𝑥𝜂 = 1.069) using 1728 processors and finished 1.5 initial eddy turnover time 

within two days. 
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5.2.2.2 Combustion Chemistry 

 The kinetic mechanism used in this study is a real jet fuel pyrolysis mechanism 

(C11H22, Hai Wang, Stanford University, personal communication, 2015). The detailed 

kinetic mechanism contains 112 species and 790 elementary reactions, and so is 

prohibitively large for use in DNS. For validation purposes, therefore, a globally reduced 

kinetic mechanism from this detailed kinetic mechanism is used instead. The globally 

reduced kinetic model (Y. Gao, T. Lu, R. Xu, H. Wang, D.F. Davidson, C.T. Bowman, 

R.K. Hanson, personal communication, 2015) contains 38 species and 185 elementary 

reactions, and has been extensively validated against the detailed kinetic mechanism for 

parameters such as flame speed, ignition delay, and blowout.  

5.2.3 Results and Discussions 

 To verify the new DNS framework proposed in this study, simulation results from 

the conventional brute force DNS with the DVODE solver and the new DNS framework 

integrating ODEPIM, CoDAC, and CoTran methods are compared at the end of the 

simulation time.  

5.2.3.1 Performance Analysis 

Figure 5.10: A canonical turbulent premixed flame configuration. 
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 To understand the performance of CoDAC, it is necessary to visualize the 

correlation zones of local kinetics. Figure 5.11 shows the spatial distribution of active 

species number. Both the cold reactants side and the hot products side have small active 

species numbers. The cold unburnt side (0 ≤ 𝑥 ≤ 0.006 𝑚 ) has two active species 

(preselected fuel and O2) and zero active reaction. Therefore, the kinetics in the unburnt 

side is reduced completely. The hot side (0.009 𝑚 ≤ 𝑥 ≤ 0.015 𝑚) contains 10 active 

species and 27 active reactions, which is a size tolerable to conventional DNS/LES. In 

particular, the burnt side has more active species and reactions, due to the long lifespan of 

some minor species like OH. Large active species numbers only exist near the flame 

surface, and the buffer layers between the flame and non-flame regions have intermediate 

active species numbers. The brush of large kinetics is significantly wrinkled by flow 

turbulence.  

 

 

 

 

 

 Figure 5.12 shows the CPU time distribution of the four methods, to illustrate the 

speed-up of each component, and conventional DNS with DVODE solver are used as the 

benchmark case. The CPU time contains the CoDAC overhead, time for calculating 

Figure 5.11: Spatial distribution of the number of active species at the center plane 

(z = 0.75 cm). 
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chemical source terms, thermal and transport properties, and other components. With 

ODEPIM, calculation of the chemical source term is 17 times faster, and the total 

calculation is 6 times faster. With ODEPIM+CoDAC, the chemical source calculation is 

46 times faster, but the total calculation is only 8 times faster. This is because calculation 

of transport properties becomes the dominant component of total CPU time when 

ODEPIM is applied, so the significant further acceleration of chemistry calculation 

cannot provide a much better total speed-up. Also, note that the CPU overhead of 

CoDAC is negligible, due to the space and time correlation grouping. With 

ODEPIM+CoDAC+CoTran, calculation of transport properties is 72 times faster without 

overhead, and the total calculation is 20 times faster. Quantified CPU time distribution 

can be found in Table 5.3. 

 

 

 

 

 

 

 

Figure 5.12: Average CPU time distribution per cell per step (𝝁𝒔) for four methods 

(from left to right): DVODE, ODEPIM, ODEPIM+CoDAC, and ODEPIM + 

CoDAC + CoTran. 
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CPU time distribution (%) CoDAC 

overhead 

Chemistry Thermal Transport Others 

DVODE 0 84.61 1.23 8.62 5.54 

ODEPIM 0 30.84 7.89 50.92 10.35 

ODEPIM+CoDAC 0.67 14.18 9.87 64.73 10.54 

ODEPIM+CoDAC+CoTran 1.90 38.38 24.26 3.07 32.40 

 

 

 Full scale DNS requires a large number of processors, so it is important to 

evaluate the parallel scalability performance of the new frameworks. Figure 5.13 shows 

the weak scaling of the speed-up for all three new frameworks, and the strong scaling of 

ODEPIM+CoDAC+CoTran. 323 grid cells/processor are used in weak scaling test, and 

the profiles of the speed-up of all three new frameworks are roughly flat, which indicates 

a good weak scaling of speed-up. The strong scaling test utilizes a grid of 2563 cells 

(
δf

Δ𝑥
= 7.3, 𝑘𝑚𝑎𝑥𝜂 = 0.713), and uses the CPU time of 64 processors as the benchmark. 

The strong scaling profile fluctuates slightly around the ideal curve, which indicates a 

good strong scaling. 

 

 

 

 

 

Table 5.3: CPU time distribution of the four methods. 

Figure 5.13: Left: weak scaling of the speed-up (w.r.t. DVODE) of the three new 

frameworks; right: strong scaling of ODEPIM+CoDAC+CoTran. 
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5.2.3.2 Verification of Accuracy 

 Figure 5.14 shows a comparison of temperature and vorticity from the two 

methods. Both methods capture the same wrinkled flame as shown by temperature field 

and density field. Due to gas expansion, turbulence is damped on the products side. This 

phenomenon is captured by both methods as shown by the vorticity field. Therefore, the 

new framework well reproduces results for thermodynamic state and flow field.  

 

 

 

 

 

 It is important to verify that the locally reduced kinetics from CoDAC can provide 

accurate reaction rates and concentrations. Fuel mass fraction and reaction rate for the 

two methods are shown in Fig. 5.15. Wrinkling of the flame surface can be observed in 

both quantities, but the flame remains contiguous while the reaction rate contour is 

disconnected, due to turbulence fluctuations. For both mass fraction and reaction rate, 

there is no observable difference between the two methods.  

 

 

Figure 5.14: Temperature (upper) and vorticity (lower) at the center plane (z = 0.75 

cm) using conventional DNS (left) and proposed framework (right). 
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 Since there is no observable difference between the two methods based on 2D 

contours, more quantitative comparison is conducted to further evaluate the accuracy of 

the new frameworks. In Fig. 5.16, stream-wise profiles of the spatially-averaged flame 

structure of the conventional DNS with DVODE solver and three new frameworks 

ODEPIM, ODEPIM+CoDAC, ODEPIM+CoDAC+CoTran are compared, and results 

show no observable difference. Based on the fuel mass fraction profile in Fig. 5.16, 

unburned mixture, reaction region, and burned mixture account for 46.76%, 19.36%, and 

33.88% of the computational domain, respectively.  

 

 

Figure 5.15: Mass fraction (upper) and reaction rate (lower) of fuel at the center 

plane (z = 0.75 cm) from conventional DNS (left) and proposed framework (right). 
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 In Fig. 5.17, PDF profiles of mass fractions and reaction rates are compared 

among the conventional DNS with DVODE solver and three new frameworks. The 

complete PDF profiles show almost no difference among the four methods. Note that all 

profiles are also zoomed in to show detailed differences.  

 

 

 

Figure 5.16: Stream-wise profiles of spatially-averaged scaled temperature, fuel 

mass fraction, and fuel reaction (In the legend, OAK=CoDAC). 

Figure 5.17: PDF profiles of mass fraction (upper left) and reaction rate (lower left) 

of fuel, mass fraction (upper right) and absolute reaction rate (lower right) of OH. 

In the legend, OAK=CoDAC. 
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 To further quantify errors introduced by the new methods, 𝐿2 and 𝐿∞ errors are 

calculated using the conventional DNS with DVODE solver as the benchmark case. 𝐿2 

error is the root-mean-square of errors at all locations, and 𝐿∞ error is the maximal error. 

Table 5.4 shows both 𝐿2 and 𝐿∞ errors of the three new frameworks. All 𝐿2 errors are 

very small, and increase slightly from ODEPIM to ODEPIM+CoDAC to 

ODEPIM+CoDAC +CoTran. 𝐿∞ errors show some rare but extreme behaviors of the new 

methods concealed by 𝐿2 errors. As expected, 𝐿∞ errors are significantly larger than the 

corresponding 𝐿2  errors. From ODEPIM to ODEPIM+CoDAC to 

ODEPIM+CoDAC+CoTran,  𝐿∞  errors are not monotonically increasing, and even 

decrease for temperature, 𝑌𝑂𝐻, and �̇�𝐹.  

 

 

 

Error Temperature 

(K) 
𝑌𝐹 𝑌𝑂𝐻 �̇�𝐹 

[
𝑘𝑔

𝑚3 ⋅𝑠𝑒𝑐
] 

�̇�𝑂𝐻 

[
𝑘𝑔

𝑚3 ⋅𝑠𝑒𝑐
] 

ODEPIM (𝐿2) 1.19E-4 

5.91E-

09 

9.50E-

10 1.30E-4 1.01E-05 

ODEPIM+CoDAC (𝐿2) 1.27E-4 

6.46E-

09 

1.09E-

09 1.36E-4 2.77E-05 

ODEPIM+CoDAC 

+CoTran (𝐿2) 3.52E-4 

1.02E-

08 

1.59E-

09 1.62E-4 2.85E-05 

ODEPIM (𝐿∞) 9.83 1.80E-

04 

7.89E-

05 

12.83 7.22E-01 

ODEPIM+CoDAC (𝐿∞) 9.74 1.92E-

04 

7.75E-

05 

12.83 1.05E+00 

ODEPIM+CoDAC 

+CoTran (𝐿∞) 

9.36 2.28E-

04 

7.44E-

05 

12.38 1.09E+00 

 

 

Table 5.4: 𝑳𝟐 and 𝑳∞ errors of the three frameworks. 
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 Relative errors of ODEPIM+CoDAC+CoTran at mean flame plane (x = 0.75 cm) 

is shown in Fig. 5.18. Relative errors of temperature are always smaller than 0.5%. All 

locations with large relative errors of mass fractions and reaction rates only contain 

negligible corresponding values. Spatial and temporal distributions of errors are shown in 

Fig. 5.19 in the supplemental material. Most large errors appear on the flame, and they 

are not sensitive to time. 

 

 

 

Figure 5.18: Relative errors of ODEPIM+CoDAC+CoTran at the mean flame plane 

(x = 0.75 cm). 
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5.2.4 Conclusion 

 A new framework for 3D DNS of turbulent combustion is developed by 

combining CoDAC, CoTran, and ODEPIM strategies. ODEPIM is a fast semi-implicit 

stiff ODE solver, which has accuracy similar to that of an implicit solver, and speed 

similar to that of an explicit solver. Simulation results show that in this test, calculation of 

the chemical source term is 17 times faster with ODEPIM as compared to DVODE, a 

pure implicit solver. CoDAC utilizes the PFA method to reduce the kinetic mechanism 

Figure 5.19: Spatial (left) and temporal (right) distribution of errors of 

ODEPIM+CoDAC+CoTran. 
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for each location and time step, which significantly reduces the stiffness of the highly 

nonlinear kinetic system and greatly accelerates the calculation of the chemical source 

term. The kinetics in the cold unburnt side is reduced to zero reaction, which indicates 

that CoDAC provides an optimized local reduction. Thermo-chemical zones are 

introduced and only one PFA calculation is required for each zone, which diminishes the 

CPU overhead of CoDAC to negligible. Overall, in this test, with ODEPIM+CoDAC, the 

chemical source calculation is 2.7 times faster than ODEPIM, and 46 times faster than 

DVODE. CoTran uses a similar correlation technique to reduce the calculation of MAD 

transport properties, which is the dominant component of total CPU time after application 

of ODEPIM. In this test, calculation of the transport properties is 72 times faster, and the 

total calculation is 20 times faster than DVODE. A turbulent premixed flame is utilized 

to test both the accuracy and the performance of the new framework. Verifications, 

including 2D contours, stream-wise spatially averaged flame structure, PDF profiles, and 

quantified errors indicate that the new framework provides highly accurate results. In 

addition, parallel scaling tests show that the new framework has good weak scaling of 

speed-up and good strong scaling due to the minimization of MPI communication. In 

summary, the new framework provides a significant speed-up of calculation of both 

chemistry and transport, which enables DNS with detailed kinetics and at the same time, 

maintains high accuracy and good parallel scaling performance. 

5.3 Turbulent Non-premixed Flame 

 Two different kinetics models, GRI-Mech 3.0 and an 11-species syngas model, 

are compared by performing 3D finite-rate kinetics-based direct numerical simulations 

(DNS) of a temporally evolving turbulent non-premixed syngas flame. Dynamic adaptive 

chemistry and correlated transport techniques are applied to enable computationally 

efficient simulation with the detailed GRI-Mech 3.0.  

5.3.1 Introduction 
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 Direct numerical simulation (DNS) and large eddy simulation (LES) are powerful 

tools for understanding the complex interplay of turbulent mixing, molecular diffusion, 

and finite-rate kinetics. These approaches are critical to analyzing and improving the 

design and development of advanced energy conversion and propulsion systems. 

However, DNS/LES suffers from a bottleneck in the calculation of the stiff finite-rate 

chemical reactions and transport properties, when moderately complex to detailed 

chemical kinetics models are employed to account for a wide range of combustion 

processes.  

 Detailed finite-rate chemistry and mixture-averaged transport are computationally 

intensive, especially in 3D turbulent combustion simulations [1-3]. For this reason, 

except for those consuming excessive computational resources and time [4-6], most past 

DNS/LES studies of turbulent combustion have used either a flamelet model with 

detailed chemistry (~50 species or more) [7-10] or a simplified/reduced finite-rate 

chemical kinetics model with non-stiff reactions (~10 species) [11-16]. Both approaches, 

however, are of limited accuracy and may reduce the overall quality of prediction [17]. 

Therefore, acceleration of the computation of chemical kinetics and transport properties 

will be required to enable computationally efficient and accurate simulations with the 

DNS/LES approach employing detailed finite-rate chemical kinetics models. 

 In order to reduce computational cost, several mechanism reduction methods [23-

26] have been proposed. These models essentially reduce the number of species in the 

chemical kinetics models. Well-verified by homogeneous ignition delays, extinction 

curves in the perfectly stirred reactor, and laminar flame speeds, globally reduced models 

for hydrocarbons generally require at least ~40 species to cover all user-defined 

conditions of interest (fuel type, oxidizer type, equivalence ratio, initial pressure and 

temperature). Unfortunately, such a large number of species is still too large for 

DNS/LES using the finite-rate kinetics approach. To tackle this challenge, dynamic 

adaptive chemistry (DAC) [27, 28] was proposed to utilize detailed stiff finite-rate 
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chemistry. DAC generates locally optimized reduced kinetics for each spatial location 

and time step, and only the reaction rates of active species are calculated. DAC has been 

applied to accelerate the kinetics computation in DNS of 0D/1D reactors [29], 2D RANS 

of DI engines [30], and 3D URANS and LES of spray flames [31]. To further reduce the 

large computational overhead of DAC in mechanism reduction, Correlated - DAC (CO-

DAC) [35] and Correlated - DAC & Transport (CO-DACT) [36] were introduced to 

further accelerate both chemistry and transport calculation in 0D/1D simulation of 

laminar flames. Recently, Yang et al. rigorously verified and optimized CO-DACT in 

DNS of a turbulent premixed flame in the thin reaction zone regime [87], and in LES of a 

turbulent partially premixed flame [80], to allow computationally efficient DNS/LES 

with detailed finite-rate chemistry. 

5.3.2 Physical Model and Flow Conditions 

 In this study, we consider a canonical temporally evolving non-premixed flame 

(Figure 5.20). This type of flame has been extensively studied in the past, using DNS [12, 

13, 15] and LES [14, 16].  

 

 

 

 

 

Figure 5.20: Schematic of the canonical temporally evolving non-premixed flame. 
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 The flow parameters and the grid information are provided in Table 5.5. We 

consider a reduced characteristic jet velocity U = 100 m/s to allow for simulations with a 

coarse grid. All the simulations are conducted at pressure P = 1 atm. The canonical flow 

configuration comprises an inner fuel jet (50% CO, 10% H2, and 40% N2 by volume) and 

an outer oxidizer stream (25% O2 and 75% N2 by volume), which are counter-flowing in 

the stream-wise direction. The jet has a Reynolds number (Rejet) of 2315 and a 

Damkohler number (Da) of 0.01, which is low enough to induce local extinction during 

turbulence-chemistry interaction and evolution.  

 

 

 Mach 𝑅𝑒𝑗𝑒𝑡 𝐷𝑎 𝜂 (m) Δ𝑥 (m) Grid points 

Simulation Case 0.11 2315 0.01 1.2 × 10−5 5.25 × 10−5 128 × 256 × 64 

 

 

 The extent of the computational domain is Lx × Ly × Lz ≡ 12H × 14H × 8H, 

where H = 0.96 mm is the initial width of the fuel jet. The simulations in this study 

employ about 18 uniformly spaced points along H, which leads to approximately 2.1M 

grid points total, with a minimum resolution of approximately 4 𝜂 , where 𝜂  is the 

Kolmogorov length-scale. A past DNS study [13] reports that 𝜂 grows with time and 

becomes comparable to the grid size Δ𝑥; the grid resolution considered in this study is 

therefore adequate to capture the extinction and re-ignition dynamics. Figure 5.21 is a 

grid convergence test to show that the observations in this study are insensitive to grid 

resolution. 

 

 

Table 5.5: Simulation case of a canonical temporally evolving non-premixed flame. 
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 The reacting flow field is initialized with a laminar flamelet solution [53] at a bulk 

strain rate 𝜅 = 0.75𝜅𝑞, where 𝜅𝑞 = 1295 𝑠−1 is the extinction bulk strain rate. Here, 𝜅𝑞 

is obtained by gradually increasing the bulk strain rate in the laminar flamelet calculation 

until extinction occurs. To allow for the evolution of shear layer turbulence, broadband 

isotropic turbulence is superimposed on the mean flow with an initial integral length-

Figure 5.21: Grid convergence test: comparison of GRI-Mech 3.0 (blue) and 11-

species model (red) by the conditional means (left) and spatially averaged transverse 

profiles (right) of T (top), and mass fractions of H2O (middle) and H (bottom), using 

grids of 𝟐𝟓𝟔 × 𝟓𝟏𝟐 × 𝟏𝟐𝟖  (resolution of ~2𝜼 : solid line) and 𝟏𝟐𝟖 × 𝟐𝟓𝟔 × 𝟔𝟒 

(resolution of ~4𝜼: dashed line) at 𝟏𝟓𝒕𝒋. 
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scale of H/3, and turbulence intensity of 0.05U. A perfectly non-reflecting, characteristic-

based outflow boundary condition is used in the transverse (y) direction, whereas a 

periodic boundary condition is specified along the streamwise (x) and spanwise (z) 

directions. The characteristic transient jet time is defined as  𝑡𝑗 = 𝐻/𝑈 , and the 

simulations are conducted up to  40 𝑡𝑗  to capture both the extinction and re-ignition 

events.  

5.3.3 Chemical Kinetics Models 

 Two chemical kinetics models are compared in this study. The first model, GRI-

Mech 3.0 [93], comprises 325 steps and 53 species, and serves as a detailed stiff 

mechanism for syngas. The second is a 21-step, 11-species non-stiff mechanism [13] 

developed by Hawkes et al., which has been used in past DNS [13] and LES [14, 16] 

studies. 

5.3.4 Results and Discussions  

5.3.4.1 Assessment of Computational Cost 

 Figure 5.22(a) shows the speed-up using CoDAC and CoTran versus the 

ODEPIM benchmark. Notably, CoDAC speeds up the calculation of chemical kinetics by 

3.4 times, and CoTran speeds up the calculation of mixture-averaged transport properties 

by 32 times. Together, they provide a net speed-up of a factor of four. Since ODEPIM is 

used for the time-integration of chemical reactions, it is the calculation of transport 

properties that dominates the total computational time of the benchmark simulation, and, 

therefore, CoTran contributes most to the net speed-up. 

 The speed-up from CoDAC depends heavily on the stiffness of the chemical 

kinetics models. This is apparent from Fig. 5.22(b), which shows the distribution of the 

number of active species at local extinction (20 𝑡𝑗). Outside the shear layers, there are no 

active reactions but only 3 “hibernating” species, fuels (𝐶𝑂 and 𝐻2) and oxygen, which 
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are the seeds of the chemical mechanism reduction [25]. Inside the shear layers, the high 

temperature region has no more than 40 reactions and 10 species, while the relatively low 

temperature regions have a greater number of active reactions and species. 

 

 

 

 

 

5.3.4.2 Assessment of Accuracy 

 CoDAC and CoTran have been rigorously verified in the past by simulating 

0D/1D laminar flames [35, 36], a turbulent premixed flame [87], and a turbulent partially 

premixed flame [80]. In the present study, the accuracy of CoDAC and CoTran is verified 

Figure 5.22: (a) Comparison of computational time use distribution for benchmark 

and CoDAC+CoTran (‘New’); (b) 2D contours of active species number at local 

extinction (𝟐𝟎 𝒕𝒋). 
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for a turbulent non-premixed flame. Figure 5.23 shows a comparison of the benchmark 

(using ODEPIM) and CoDAC+CoTran (‘New’) at the centerline of the computational 

domain under local extinction (20 𝑡𝑗) for temperature, vorticity magnitude, mass fraction, 

and reaction rate of OH. There are no observable differences in the quantities under 

comparison. The same results were confirmed by comparison of the 2D contours, which 

are omitted here for the sake of brevity.  

 

 

 

 

 

 To further quantify errors, the absolute 𝐿2 error is defined as: 

𝜖𝑎𝑏𝑠 =
1

𝑉
√∫(𝑌𝑘

𝑁𝑒𝑤 − 𝑌𝑘
𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘)

2
𝑑𝑉, (5.9) 

Figure 5.23: Comparison of benchmark and CoDAC+CoTran (‘New’) at centerline 

of computational domain under local extinction (𝟐𝟎 𝒕𝒋) for (a) temperature, (b) 

vorticity magnitude, (c) mass fraction of OH, and (d) reaction rate of OH. 
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and the relative 𝐿2 error is defined as: 

𝜖𝑟𝑒𝑙 = √∫(𝑌𝑘
𝑁𝑒𝑤−𝑌𝑘

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘)
2
𝑑𝑉

∫(𝑌𝑘
𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘)2𝑑𝑉

. (5.10) 

 These metrics provide the most stringent test, since local point-wise errors can be 

made even if the benchmark and the new method have similar means and PDFs. Figure 

5.24 presents the PDF of errors of  𝑌𝑂𝐻  at local extinction (20 𝑡𝑗 ), and the temporal 

evolution of relative errors of temperature, vorticity magnitude, and  𝑌𝑂𝐻 . The error 

distribution is highly concentrated at its mean value near zero, and large errors are rare 

events. There is some error accumulation for all quantities, but it is slow considering the 

long run time of 40 𝑡𝑗. In addition, the error of temperature grows much slower than that 

of  𝑌𝑂𝐻 and vorticity magnitude.  
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 Table 5.6 shows the quantified errors of CoDAC+CoTran at local extinction 

(20 𝑡𝑗) and re-ignition (40 𝑡𝑗) for temperature, vorticity magnitude, and mass fraction of 

representative species. The error is small even at the end of the simulation, especially for 

temperature (0.02 K) and major species (within 6%). In summary, CoDAC+CoTran 

provides an accurate prediction of the 3D turbulent non-premixed flame. 

 

 

 

 

Figure 5.24: (a) PDF of mass fraction errors of OH under local extinction (𝟐𝟎 𝒕𝒋), 

and (b) temporal evolution of relative 𝑳𝟐 errors of temperature, vorticity magnitude, 

and mass fraction of OH through 3D computational domain for CoDAC+CoTran. 
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Error T (K) Vor. 

(𝑠−1) 

𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

𝜖𝑎𝑏𝑠 : 

20 tj 
0.003 

 

1.70 

 
1.68
× 10−6 

1.22
× 10−8 

7.64
× 10−7 

2.24
× 10−9 

2.27
× 10−8 

1.04
× 10−8 

7.73
× 10−7 

1.08
× 10−7 

𝜖𝑎𝑏𝑠 : 

40 tj 
0.021 

 

4.65 

 
5.38
× 10−6 

2.61
× 10−8 

4.72
× 10−6 

1.04
× 10−8 

1.87
× 10−7 

7.84
× 10−8 

5.22
× 10−6 

3.68
× 10−7 

𝜖𝑟𝑒𝑙 (%)

: 20 tj 
0.66 

 

3.93 

 

1.48 

 

1.49 

 

0.47 

 

1.79 

 

3.46 

 

3.78 

 

2.05 

 

1.46 

 

𝜖𝑟𝑒𝑙 (%)

: 40 tj 
2.87 

 

15.76 6.14 

 

5.64 

 

3.29 4.79 

 

11.23 9.69 6.18 3.99 

 

 

 Figure 5.25 shows the transverse variation of mass fraction and reaction rate of 

OH on 5 arbitrary transverse lines through the flame region at local extinction time, i.e., 

20 𝑡𝑗 . It can be observed that the use of CoDAC and CoTran does not lead to any 

numerical instabilities and the profiles of YOH show expected behavior across the flame 

region, where peaks are observed corresponding to the region of peaks of reaction rate of 

OH. 

 

 

 

 

Table 5.6: Errors of CoDAC and CoTran at Local Extinction (𝟐𝟎 𝒕𝒋 ) and Re-

ignition (𝟒𝟎 𝒕𝒋). 

Figure 5.25: Transverse variation of mass fraction (left) and reaction rate (right) of 

OH on five arbitrary transverse lines at local extinction (𝟐𝟎 𝒕𝒋). 
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5.3.5 Conclusion 

 Using the ODEPIM solver, techniques of correlated dynamic adaptive chemistry 

(CoDAC) and correlated transport (CoTran) are verified and applied in a 3D finite-rate 

simulation of a temporally evolving turbulent non-premixed syngas flame with extinction 

and re-ignition, and are found to allow 4 times more efficient computation of 3D finite-

rate simulations of turbulent combustion using detailed GRI-Mech 3.0. Comprehensive 

verifications indicate that CoDAC+CoTran provides accurate results that allow for 

comparison of predictions by the two chemical kinetics models.  
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CHAPTER 6  

EXPERIMENTAL VALIDATION AND COMPARISON OF FINITE 

RATE AND FLAMELET MODELS 

 

 An efficient finite-rate chemistry (FRC) - large-eddy simulation (LES) 

formulation is developed for numerical modeling of turbulent combustion, using a point-

implicit stiff ODE solver (ODEPIM) and a correlated dynamic adaptive chemistry 

algorithm (CoDAC). Compared to conventional FRC-LES, this new version provides a 

speed-up of 8.6 times for chemistry, and 6.4 times for total computation using a 20 

species kinetics model. Both the new FRC-LES and flamelet/progress-variable (FPV)-

LES are conducted for a piloted partially premixed methane/air flame, which contains 

relatively low-level of local extinction and re-ignition.  Although the two approaches 

predict similar time-averaged flame fields and statistics, which agree well with the 

experimental data, the instantaneous prediction for high temperature region from FPV-

LES is significantly smaller than that from FRC-LES case, especially in the downstream. 

Near the stoichiometric region, with respect to experimental data, FPV-LES over-predicts 

the radical generation, but under-predicts the CO generation and heat release, which 

explains its under-prediction of temperature. In contrast, on the fuel rich side, CO is no 

more the bottleneck, thus FPV-LES predicts higher temperature. Comparing to 

experimental data, FRC-LES provides better predictions for both temperature and 

species. 

6.1 Introduction 

 Due to the increasing combustion-based energy demand and its environmental 

concerns, high-fidelity simulation of turbulent combustion becomes highly important. For 

any practical simulation method, the key is to provide quantitative solutions with minimal 

empirical constants. Large-eddy simulation (LES) has drawn significant attention during 
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the past three decades, and its predictive capability is continuously increasing. In LES, 

the energy-contained large-eddy motions are resolved with sufficient grid resolution, 

while motions of scales smaller than the grid sizes, i.e. sub-grid scale (SGS) motions, are 

not resolved. The chemical reaction rates are highly nonlinear functions of species 

concentrations and temperature, which heavily depend on the turbulent mixing. On the 

other hand, chemical reactions also release heat and subsequently affect species 

concentrations and temperature, which in turn change the turbulent mixing. Chemical 

reactions occurring at different time scales may interact with eddies of different 

length/time scales, which further complicates both the physical and chemical processes. 

Therefore, turbulence/chemistry interaction is considered the most challenging topic in 

turbulent combustion modeling. 

 Many LES turbulent combustion models have been developed, which can be 

classified into two major categories: the finite-rate chemistry (FRC) models, and the 

flamelet generated manifold (FGM) models.  The FRC models category includes laminar 

chemistry model [45-47], perfectly-stirred reactor (PSR) model [48], partially-stirred 

reactor (PaSR) model [49], linear-eddy model (LEM) [50], Monte Carlo method for 

Lagrangian filtered probability density function (FDF) transport equations [51], thickened 

flame model (TFM) [52], etc. The FGM models category includes steady laminar 

flamelet model [53], Lagrangian flamelet model [54, 55], flamelet/progress-variable 

(FPV) model [56], etc.  

 Among different FGM models, the steady laminar flamelet model pioneered by 

Peters [53] provides advantages of easy implementation and low computational cost, 

however, there are limitations. Firstly, the mixture fraction essentially does not carry any 

information about the chemical states. The model chooses the filtered dissipation rate of 

mixture fraction as an additional parameter to account for the flame stretching effect. 

However, it does not provide a unique mapping from mixture fraction to the 

corresponding reaction state. A pure mixing of fuel and oxidizer cannot be accounted by 
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the steady laminar flamelet model if the local scalar dissipation rate is close to the 

quenching limit. In addition, the coexistence and interaction between auto-ignition 

kernels and flame sheet [57-59] cannot be captured. In order to overcome the drawbacks 

of the steady laminar flamelet model, the FPV model [56, 60] was proposed by 

incorporating a transport equation to track a progress variable. This model has been 

developed to account for low-level of extinction, ignition, and unsteady mixing effect 

[56] to some extent. However, it cannot handle multiple-feed streams unless adding a 

third parameter, which makes the look-up table very difficult to handle due to the large 

computer memory requirement and time to build up the table. In addition, the higher-

dimension look-up table results in a more complicated data retrieval process and coarser 

table grid, which could introduce higher interpolation errors.  

 The main assumption of many FGM models is that the chemical reactions are 

faster than all turbulent flow eddies, such that the combustion process can be decoupled 

from the turbulent flow field. This assumption becomes invalid in three important 

categories of operating conditions. (1) When the turbulence intensity is high enough, the 

local Reynolds number may increase to such a level that small turbulent eddies become 

faster than chemical reactions to penetrate into the flame zone and greatly enhance the 

mixing process. (2) Most chemical reactions related to combustion emissions (NOx, soot, 

aerosol, etc.) are very slow, thus FGM models normally cannot capture emissions 

accurately. (3) For processes of ignition, extinction, and conditions close to flammability 

limits, chemical reactions are often slower than small turbulent eddies. In addition, since 

each FGM model is optimized for one single regime, they are problematic to handle 

turbulent combustion with multiple regimes, like lean blowout (LBO) in partially 

premixed fames. 

 To overcome these limitations, detailed FRC models are desirable. Among all 

FRC models, one of the most popular models is the Lagrangian FDF model, due to the 

reason that Lagrangian approaches do not introduce errors associated with the 
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discretization of spatial gradients. However, these errors can be re-introduced by the 

interpolation between particles and grid points. In addition, for most Lagrangian FRC 

models, standard Eulerian approaches are still employed for the velocity components. For 

this reason, Lagrangian FRC models introduce complicated couplings between the 

Eulerian and Lagrangian solvers, which can be critical in the feedback of chemistry into 

the flow solver, and some “correction” methods are often required in the LES context. 

Thus, Eulerian FRC models are simpler to implement than Lagrangian models, and are 

easier to extend to a multi-scalar situation in any grid. Among different Eulerian FRC 

models, many past studies has shown that the simple laminar chemistry model actually 

has similar accuracy as many other major Eulerian SGS closure models [45, 46]. For this 

reason, the laminar chemistry model is adopted in this study.  

 Compared to FGM model, the detailed kinetics models in FRC models are 

computationally prohibitive for LES application due to the large number of species and 

stiffness. For this reason, conventional finite-rate LES often employs over-simplified 

kinetics models, which may significantly increase the uncertainties, especially in low-

temperature ignition zones [17-19]. To resolve this issue, a regime-independent 

framework of a point-implicit stiff ODE solver (ODEPIM) [43, 44] and a correlated 

dynamic adaptive chemistry (CoDAC) [35] were proposed. In particular, CoDAC 

generates locally reduced chemical kinetics for each spatial location and time step, and 

only calculates the reaction rates of active species and reactions. This framework has 

been comprehensively evaluated in the simulations of laminar plasma-assisted 

combustion [18, 19, 86, 172, 183], and in the direct numerical simulations (DNS) of 

turbulent premixed [87] and non-premixed [88] flames. The new approach provides a 

significant speed-up (20~50 times), which allows FRC simulations using kinetics models 

with a reasonable number of species in a computationally manageable manner. 

 Due to the mathematical nature of the governing equations, there are primarily 

three categories of computational fluid dynamics (CFD) solvers: incompressible solvers, 
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low Mach solvers, and fully compressible solvers. The intense heat release and 

subsequent gas expansion in turbulent combustion make incompressible solvers less 

preferable. In low Mach solvers, density is decoupled from pressure (acoustics), which 

makes the solvers problematic near the instability limit or at high Mach numbers. In fully 

compressible solvers, conservation equations are closely coupled under moderate or high 

Mach numbers, but become poorly coupled and numerically stiff at low Mach numbers. 

Many fluid flow problems involve a wide range of Mach numbers, which poses a great 

challenge for all these three categories. To resolve this issue, a preconditioning method 

[61-66] was proposed for fully compressible solver to allow a broad range of Mach 

numbers simultaneously in the simulation. 

 In the present study, for the first time, the highly efficient framework of ODEPIM 

and CoDAC is incorporated into a preconditioning scheme to allow an Eulerian FRC-

LES approach in a fully compressible CFD solver. The established FRC-LES framework 

is then used to investigate a low Mach piloted turbulent partially premixed flame (Sandia 

Flame D) as a benchmark case. In the past, Sandia Flame D has been widely investigated 

using both FGM and FRC models, mostly with low Mach CFD solvers. For FGM 

models, steady laminar flamelet [194, 195], Lagrangian flamelet [54, 55, 196], and FPV 

[8, 197] have been employed. For FRC models, most work employed transported FDF 

models, including both Lagrangian [198-200] and Eulerian [201, 202] FDF models, while 

few others employed other Eulerian models such as laminar chemistry [47], PSR [48] and 

PaSR [49] models. In addition, most FRC studies use global kinetics models with only a 

few reactions due to the high computational cost of finite-rate calculation. In this study, a 

relatively more detailed chemical kinetics model is employed.  

 There are only very few direct comparisons between FGM and FRC models for 

Sandia Flame D [47], and only the steady laminar flamelet model instead of more 

advanced FGM models (e.g. FPV model) is compared, thus it is less conclusive on the 

comparison of these two models. In this study, the results from the laminar chemistry 
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FRC model are compared to those from both the FPV model and the experiment, in terms 

of both computational performance and accuracy. For self-consistency, all LES 

combustion models are coupled with a fully compressible CFD solver using a 

preconditioning scheme. 

6.2 Theoretical Framework 

 In this study, two turbulence/chemistry interaction models are considered: FPV 

model and FRC model.  

6.2.1 Physical Configurations: Sandia Flame D 

 The Sandia flames [203] include a series of experiments employing a piloted 

turbulent partially premixed methane/air flame configuration, which provides detailed 

experimental data and has been widely simulated for validation purpose [54, 198, 202]. 

Sandia flame series are low Mach flames, in which the preconditioning scheme becomes 

necessary for fully compressible solvers. In this study, Sandia Flame D is simulated as a 

benchmark using both FPV and FRC models. To our best knowledge, this work is the 

first attempt to employ a fully compressible solver with Eulerian FRC model for Sandia 

Flame D. Previous work [8, 60] on Sandia Flame D shows that FPV can predict 

experimental results well, therefore, Sandia Flame D is employed in this study as a 

starting point for model comparison and validation. In addition, most previous studies 

employ low Mach CFD solvers, but this study employs a fully compressible CFD solver 

with a preconditioning scheme. Therefore, when the results from present and previous 

studies are compared, the choice of CFD solvers is a possible source of difference. 

 In the simulations, the computation domain is designed as 6 mm upstream the 

nozzle exit of the inlet injector, 600 mm downstream the exit, 36 mm in radial direction 

at inlet, and 150 mm in radial direction at the end of the domain. There are 310 grid 

points in axial direction, 130 points in radial direction, and 64 points in azimuthal 
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direction. Grid clustering is employed to resolve the high gradient regions near both inner 

and outer shear layers. The total grid number is approximately 2.6 million. Following the 

grid structure, 231 AMD Abu Dhabi processors are employed to perform parallel 

computing via Massage Passing Interface (MPI) system. All time-averaged statistics are 

taken after three flow-through-time, to ensure that the flow field has reached its 

statistically stationary state. 

6.2.2 Boundary Conditions 

 The Reynolds number in this case is 22400, which is relatively low. The detailed 

flow boundary conditions are presented in Table 6.1.  

 

 

 

 Components Inner 

diameter 

Outer 

diameter 

Bulk 

velocity 

Temperature 

Fuel 

jet 
25% 𝐶𝐻4 / 75% air (by 

volume) 

7.2 mm 7.7 mm 49.6 m/s 294 K 

Piloted 

flame 
Equilibrium: 𝐶𝐻4/air 

mixture (𝜙 = 0.77) 

7.7 mm 18.2 mm 11.4 m/s 1880 K 

Co-

flow 

Air 18.9 mm N/A 0.9 m/s 291 K 

 

 

 Experimental velocity profile and specified turbulence intensity are enforced as 

the inlet boundary conditions, while the outlet flow is enforced with fixed backpressure. 

 In this study, mixture fraction 𝑍 is defined as: 

𝑍 =
0.5 ×

𝑌𝐻 − 𝑌𝐻,𝑐𝑜𝑓𝑙𝑜𝑤
𝑊𝐻

+ 2 ×
𝑌𝐶 − 𝑌𝐶,𝑐𝑜𝑓𝑙𝑜𝑤

𝑊𝐶

0.5 ×
𝑌𝐻,𝑗𝑒𝑡 − 𝑌𝐻,𝑐𝑜𝑓𝑙𝑜𝑤

𝑊𝐻
+ 2 ×

𝑌𝐶,𝑗𝑒𝑡 − 𝑌𝐶,𝑐𝑜𝑓𝑙𝑜𝑤
𝑊𝐶

, (6.1) 

Table 6.1: Flow boundary conditions of Sandia Flame D. 
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where the ‘coflow’ subscript represents the quantities in the co-flow stream, the ‘jet’ 

subscript represents the quantities in the main jet stream, and the rest quantities are 

measured samples.  

6.2.3 Combustion Chemistry 

 

 

 

 

 

 A methane kinetics model with 20 species and 84 reactions (GRIred20) is utilized 

in both FPV and FRC models, which is globally reduced from GRI-Mech 3.0 [93] via 

Global Pathway Selection (GPS) algorithm [26, 58, 204] and verified in terms of 

homogeneous ignition delays, extinction curves in the perfectly-stirred reactor (PSR), and 

laminar flame speeds [205]. The reduced methane kinetics model and its verification 

plots are provided as the Supplemental Materials.  

 

Figure 6.1: Numerical verification of GRIred20 by homogeneous auto-ignition 

delays. 
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6.3 Results and Discussions 

6.3.1 Performance Analysis 

6.3.1.1 Local reduction  

 Figure 6.3 shows the snapshots of the spatial distribution of number of active 

species and number of active reactions, generated from the local PFA mechanism 

reduction of CoDAC method. Outside the jet brush, only 2 species (preselected seed 

species: fuel and oxidizer) and none of the reactions are selected, because no chemical 

reactions occur there. Near the highly distributed turbulent partially premixed flame, a 

large number of species and reactions are selected, which is close to the full mechanism 

(20 species and 84 reactions). There is a large buffer zone between above two regions, 

which has intermediate number of selected species and reactions. The reduction of 

Figure 6.2: Numerical verification of GRIred20 by extinction curves in the perfectly 

stirred reactor. 
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number of species and reactions in most spatial locations is responsible for the 

acceleration of chemistry calculation from the CoDAC method. Due to the highly 

efficient correlation techniques, the PFA mechanism reduction time is more than 500 

times smaller than the chemistry calculation time, and only occupies 0.135% of the total 

computation time. Therefore, the computational overhead of CoDAC is negligible.  

 

 

 

 

 

6.3.1.2 Speed-up  

 Figure 6.4 shows the computation time distribution. The Frozen case (multi-

species transport equations without chemical kinetics source terms) serves as the 

theoretical upper limit for the computation speed of all FRC models. From FPV to 

Frozen, the number of equations rises up from 7 to 24 by a factor of 3.4. For this reason, 

Figure 6.3: Instantons spatial distribution of numbers of active species (upper) and 

reactions (lower), generated from the CoDAC method with the FRC-LES approach. 
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the total computation time increases by a factor of 2.7 from FPV to Frozen, which is even 

better than the ideal linear computational complexity. The time for preconditioning 

matrix inversion increases by a factor of 11.2≈ 3.42 , which is much better than the 

theoretical cubic computational complexity. This super-scaling maybe due to the 

relatively small size of chemical kinetics mechanism used in this study. The chemistry 

calculation is very expensive, and dominates the total computation time. With respect to 

the conventional FRC model using DVODE, the new FRC model using ODEPIM and 

CoDAC significantly accelerates the chemistry calculation by a factor of 8.6, and reduces 

the total computation by a factor of 6.4. The chemistry time, however, still occupying 

70% of the computation time in the new FRC model, which is the largest portion of the 

total computation time. In contrast, preconditioning matrix inversion only accounts for 

7.4% of the total computational time. Therefore, the reduction of computational time in 

this part is not at high priority. In summary, the computation time of the new FRC model 

is within 3 times of that of the Frozen model without chemistry, within 8 times of that of 

the FPV model, and 6.4 times smaller than the conventional FRC model. 

 

 

 

Figure 6.4: Average computation time distribution of the four models: FPV, Frozen 

(multi-species transport equations without chemical kinetics source terms), New 

(new FRC model using ODEPIM and CoDAC), Old (conventional FRC model using 

DVODE). 
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6.3.2 Spatial Distribution 

 Figure 6.5 shows the time-averaged temperature distribution calculated by FRC-

LES and FPV-LES approaches. Note that the contours in previous studies [8, 48] are 

smoother because the additional azimuthal average performed based on the time-

averaged data. Both simulation results resemble a simple diffusion flame, and agree with 

Nd:YAG laser beam images from the experiment [203]. The flame has relatively simple 

flow characteristics, and the chemical reactions interlink to the local strain in both inner 

and outer shear layers. At approximately x/d = 40, an intense flame region can be 

observed, where the mixing and combustion are close to complete such that peak 

temperatures are achieved there. The flame length is approximately 65d, which is very 

close to experiment (67d). The two models predict similar time-averaged temperature 

field, but flame temperature prediction from FPV-LES are lower than that from FRC-

LES. 
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 In contrast to time-averaged temperature distributions, the instantaneous 

temperature distributions of the two models are much more different (Figure 6.6). 

Particularly, results from FRC-LES agree well with those from previous Eulerian FRC 

studies [48], and results from FPV-LES approach agree with those from previous FPV 

studies [8]. It is not obvious which one is closer to the experiment here, because a 

quantitative experimental measurement of instantaneous temperature distribution is not 

available. Therefore, even though both models could predict similar time-averaged 

statistics or spatial distributions, the prediction of unsteady/un-stationary evolution 

between FRC-LES and FPV-LES approaches could still be significantly different from 

each other. In view of the unsteady/un-stationary phenomena (e.g. ignition, extinction, 

Figure 6.5: Time-averaged temperature distribution from the FRC-LES approach 

(left) and the FPV-LES approach (right). 
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combustion instability), such magnification of deviation between the two models 

becomes an important issue. 

 

 

 

 

 

 Both models predict very dynamic jet flow and flame structures and low levels of 

local extinction. Near the inlet, the broad pilot flame enhances the stability of the flame 

and results in minimal local extinction. In addition, turbulence intensity is very low in 

this region, and the flow field is close to laminar. This means that multi-species 

differential diffusion effect should be important [54], which cannot be captured by the 

FPV-LES approach. In the downstream region, the outer co-flow and the inner fuel jet 

interact with each other in the high temperature region of the shear layer, which results 

more local extinction. In this region, the FPV-LES approach predicts significantly 

smaller regions with high temperature than the FRC-LES approach. Note that the large 

Figure 6.6: Instantaneous temperature distribution from the FRC-LES approach 

(left) and the FPV-LES approach (right) at a same time. 
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deviations between the two models is mainly in the downstream region. This indicates 

that FRC model is only necessary for certain combustion regimes, and the cheaper FPV 

model is accurate enough for the rest part of Sandia Flame D. 

 To better understand the deviations between the two models, detailed species 

distributions are investigated. Figure 6.7 compares the distributions of OH radical 

predicted by the two models. FPV-LES predicts more regions with high OH 

concentration, although it is more distributed. However, FPV-LES actually predicts less 

regions with high temperature. This contradicts with the general understanding that 

higher radical levels will result a stronger heat release and higher temperature.  

 

 

 

 

 

 To explain this phenomenon, distributions of CO from the two models (Figure 

6.8) are compared. FPV-LES predicts both smaller peak CO level and smaller regions 

Figure 6.7: Instantaneous 𝒀𝑶𝑯 distribution from the FRC-LES approach (left) and 

the FPV-LES approach (right) at a same time. 
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with high CO levels. CO+OH=CO2+H is one of the primary heat release reactions for 

methane flame. For this reason, CO oxidation becomes the rate-controlling step for the 

heat release in FPV-LES model, which explains why it predicts significantly smaller 

regions with high temperature and partially explains its over-prediction of OH. The 

comparison of concentrations of major products (CO2 and H2O) between the two models 

(not show here for succinct) indicates that the FPV-LES approach predicts both lower 

peak product level and smaller regions with high product levels, which further confirms 

the above conclusion. 

 

 

 

 

 

 On the other hand, FPV-LES predicts smaller regions with high level of CH4 (not 

show here for succinct). Therefore, in the prediction of FPV-LES, part of the carbon 

Figure 6.8: Instantaneous 𝒀𝑪𝑶 distribution from the FRC-LES approach (left) and 

the FPV-LES approach (right) at a same time. 
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element must be stuck at some intermediate species between CH4 and CO, which mainly 

includes CH2O and HCO. The conversion from HCO to CO is very fast, thus, only very 

low level of HCO can be accumulated in the flames (up to mass fractions of 10−5 level in 

this problem). In the generation of FPV table using 1D steady counter-flow 

configurations, the flame temperature is higher than the real unsteady conditions in 

turbulent combustion, thus CH2O+OH=HCO+H2O tends to dominate the conversion 

from CH2O to HCO. However, according to Fig. 6.6, there are many holes in the intense 

flame regions with lower temperature of ~1200 K, in which CH2O+O2=HCO+HO2 

should dominate the conversion from CH2O to HCO. In the S-curve of ignition and 

extinction, this intermediate-temperature region is primarily located on the unstable 

middle branch and thus CH2O+O2=HCO+HO2 is more likely to occur during the 

unsteady evolution. However, the steady FPV table cannot capture the unsteady evolution 

history of the flame, and has difficulty to predict the unstable branch accurately, thus 

could easily overlook this important reaction. As a result, in those holes, carbon element 

in FPV case is partially stuck at CH2O and has difficulty to convert into HCO and CO. In 

this problem, CH2O is accumulated up to mass fractions of 10−3 level. 

 The deviations between the two models could come from the FPV library, the 

unsteady evolution of filtered mixture fraction and progress variable in the FPV-LES 

approach, or some combinations of them. For this reason, in the following sections, 

predictions from the two models will be compared to experimental data in terms of (1) 

axial and radial distribution of both mixture fraction and progress variable, and (2) the 

conditional statistics in mixture fraction space. 

6.3.3 Axial Profiles 

 Figure 6.9 shows the axial profiles of time-averaged statistics for temperature 

and 𝑌𝑂𝐻 (to represent minor species). For temperature, the deviation between FRC-LES 

and FPV-LES approaches are small. Both models predict the axial location of the peak 
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temperature reasonably well, indicating the capture of turbulence and its interaction with 

heat release. Similar to previous Eulerian FRC studies [48, 201], FRC-LES matches the 

experimental mean temperature (3% uncertainty) very well, while FPV-LES over-

predicts the upstream mean temperatures and under-predicts the peak mean temperatures 

near the intense flame region (x/d = 40~60). This is consistent with the observations in 

the snapshots of temperature distribution (Fig. 6.5-6.6). In contrast, the temperatures from 

both experiment and FRC model are lower than those from FGM models in previous 

studies (both steady laminar flamelet [47] and FPV [8, 197]), possibly because previous 

studies employed low Mach CFD solvers but this work employ a fully compressible CFD 

solver with a preconditioning scheme. However, both present and previous [47] studies 

show that FRC models agree with experimental data better than FGM models, even if the 

simple laminar chemistry FRC model is employed and the SGS composition fluctuations 

are neglected. In fact, the influence of the SGS composition fluctuations in Sandia Flame 

D have been proved to be very limited in previous studies [201]. For normalized root-

mean-square (RMS), FRC-LES matches well with the experimental data in the upstream 

region, while FPV-LES over-predicts RMS in the same region. However, both models 

under-predict RMS in the downstream region. In addition, all models in both present and 

some previous [47] studies over-predict peak RMS, but some other studies [8] only 

slightly under-predict peak RMS. It is known that RMS is composed of fluctuations, 

which are very sensitive and much more difficult to capture than mean quantities. 

Comparing to temperature, significantly larger deviation between the two models shows 

up for 𝑌𝑂𝐻 , in terms of both mean values and RMS. The FRC-LES case matches the 

experimental data well, but the FPV-LES case significantly over-predicts both mean and 

RMS in the downstream region, which is limited by the significantly lower CO prediction 

from FPV-LES case, as discussed previously. This is consistent with previous FRC [201] 

and FPV [197] studies. The uncertainty of the experimental data is 10% for mean 𝑌𝑂𝐻. 

Therefore, the errors of the FPV-LES approach are significantly beyond the experimental 
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uncertainty, while those of the FRC-LES approach are within the uncertainty level for 

most axial locations. In addition, the OH prediction in present study is much more 

accurate than previous Eulerian FRC study using PSR model [48], which implies that the 

PSR assumption is too strong such that even the simple laminar chemistry model could 

be more accurate than PSR model.  

 

 

 

 

 

 Figure 6.10 shows the axial profiles of time-averaged statistics for mixture 

fraction and progress variable (to represent major species). Similar to previous Eulerian 

FRC studies [201], FRC-LES matches the experimental mean values very well, while 

FPV-LES, under-predicts the upstream mean mixture fraction, over-predicts the upstream 

mean progress variable, and slightly under-predicts the peak mean progress variable near 

Figure 6.9: Axial profiles of mean (left) and RMS (right) of temperature (upper) 

and 𝒀𝑶𝑯 (lower), from the experiment, the FRC-LES approach, and the FPV-LES 

approach. 
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the intense flame region (x/d = 40). This is consistent with the under-prediction of 

temperature from FPV model in the intense flame region (Fig. 4-5), and is also consistent 

with some previous FPV studies [197]. In contrast, in some other previous studies [8], 

FPV-LES only slightly over-predicts the mean mixture fraction, which employed a more 

detailed chemical kinetics (GRI 2.11 mechanism: 49 species and 279 reactions) model 

than both the present study and most other previous FPV studies. The largest error of 

mean mixture fraction occurs near x/d=30. For the RMS of mixture fraction, both models 

cannot provide a good prediction for most axial locations. For the RMS of progress 

variable, FRC-LES matches well with the experimental data in the upstream region and 

the intense flame region, while FPV-LES over-predicts in the upstream region but under-

predicts in the intense flame region. However, both models under-predicts the RMS of 

progress variable in the downstream region.  
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 In summary, the FRC-LES approach provides better prediction than the FPV-LES 

approach on both temperature and species, and this superiority is even larger for minor 

species. Note that in spite of this limitation of the FPV-LES approach, the time evolution 

of filtered progress variable significantly enhances the prediction capability of the model 

compared to steady laminar flamelet model. 

6.3.4 Radial Profiles 

 

  

Figure 6.10: Axial profiles of mean (left) and RMS (right) of mixture fraction 

(upper) and progress variable (lower), from the experiment, the FRC-LES 

approach, and the FPV-LES approach. 
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 Figure 6.11 shows the radial profile of mean temperature at four representative 

axial locations. Simulation results from both FRC and FPV models are very close to each 

other except near the centerline, and in roughly good agreement with experimental data 

(3% uncertainty) and previous Eulerian FRC studies [201]. At x/d=7.5, the errors of both 

models are much smaller than the other three axial locations. At x/d=15, FRC-LES 

slightly under-predicts the mean temperature near the centerline, while FPV-LES slightly 

under-predicts the mean temperature of the pilot flame. At x/d=30, both models not only 

over-predict the mean temperatures near the centerline, but also show a different trend 

from the experimental data. Therefore, the mean temperature prediction at x/d=30 is the 

most unreliable one among all these four representative axial locations. At x/d=45, both 

models under-predict the mean temperature near the centerline and over-predict it near 

the co-flow, but show a consistent trend with the experimental data. In addition, FPV-

Figure 6.11: Radial profiles of time-averaged temperature at x/d = 7.5 (upper-left), 

15 (upper-right), 30 (lower-left), 45 (lower-right), from the experiment, the FRC-

LES approach, and the FPV-LES approach. 
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LES predicts several hundred Kelvin lower than FRC-LES case near the centerline 

(intense flame region), which is consistent with their comparison in both time-averaged 

and instantaneous snapshots (Fig. 6.5-6.6).  

 

 

 

 

 

 Figure 6.12 shows the radial profile of mean mixture fraction at four 

representative axial locations. Mean mixture fraction near the centerline gradually 

decreases from the upstream region to the downstream region, indicating significant 

breakup and consumption of the main fuel jet. Simulation results from both FRC and 

FPV models are very close to each other, and in roughly good agreement with the 

experimental data and previous Eulerian FRC studies [201]. The deviation between the 

simulation results and the experimental data gradually increase from the upstream to the 

Figure 6.12: Radial profiles of time-averaged mixture fraction at x/d = 7.5 (upper-

left), 15 (upper-right), 30 (lower-left), 45 (lower-right), from the experiment, the 

FRC-LES approach, and the FPV-LES approach. 
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downstream. Near the centerline, mean mixture fraction agrees perfectly with that of the 

experimental data at x/d = 7.5; it is slightly over-predicted at x/d = 15, but significantly 

under-predicted further downstream (at x/d = 30, 45), possibly due to their over-

prediction of fuel jet-breakup and consumption there. These trends are consistent with 

those in previous FPV studies [197]. At x/d=30, the simulation data not only contains the 

largest errors, but also provides a trend different from that of experimental data. 

Therefore, the mean mixture fraction prediction at x/d=30 is the most unreliable one 

among all these four representative axial locations. There are several possible reasons for 

this phenomenon: (1) in the simulations, the inlet velocity and turbulence are specified 

using the experimental data, while the outlet flow is enforced with fixed backpressure. 

For this reason, predictions in the upstream region tends to be more accurate, and errors 

may accumulate to the downstream. (2) Local extinction and re-ignition are challenging 

to capture accurately, and they occur more frequently in the downstream region than in 

the upstream region. 

6.3.5 Conditional Statistics 

 Since the two models predict very similar mixture fraction profiles as discussed in 

the previous two sections 6.3.3 and 6.3.4 (both axial and radial), their deviations in 

temperature and species profiles can mostly be represented by the conditional statistics in 

mixture fraction space. In addition, the conditional statistics can show more insight in 

turbulence/chemistry interactions, and can clearly show of the difference between FPV 

library table and FRC. 

 Figure 6.13 shows the conditional mean temperature at four different axial 

locations of x/d = 7.5, 15, 30, and 45. Results from the two models are close, but still 

contain noticeable deviations. In particular, results from the FRC-LES case agrees better 

with the experimental data than those from the FPV-LES approach for all locations, 

except for the rich side at x/d = 30, where the mean mixture fraction itself contains the 
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largest errors and is unreliable (Figure 6.10 and Figure 6.12). The predictability of the 

FRC-LES approach is better in the upstream region than in the downstream region. One 

possible reason is that the upstream region (near inlet) contains smaller turbulence 

intensity, and differential diffusion effects become important, which cannot be captured 

by the FPV-LES approach. In the upstream region (x/d = 7.5 and 15), the FRC-LES case 

agrees perfectly with the experimental data for almost all mixture fraction values. In the 

downstream (x/d = 30 and 45) region, both models agree very well with the experimental 

data on the fuel lean side, but significantly under-predict the mean temperature on the 

fuel rich side. In contrast, previous FPV studies [8] only slightly over-predict the mean 

temperature on the fuel rich side, possibly because they employed a more detailed 

chemical kinetics model (GRI 2.11 mechanism: 49 species and 279 reactions) than the 

one in the present work. The present FPV model employs a smaller kinetics model to be 

consistent with the present FRC model, which cannot afford very detailed kinetics model. 

Near the stoichiometric mixture fraction ( 𝑍 = 0.35 ), comparing to the FRC-LES 

approach, the FPV-LES approach under-predicts the peak temperature, which is 

consistent with their comparison in the snapshots of temperature distribution (Figure 6.5 

and Figure 6.6). In contrast, on the fuel rich side, temperature from the FPV-LES 

approach is always higher than that from the FRC-LES approach. During the evolution, 

the same location could be lean, stoichiometric, or rich at different time instances. 

Therefore, the time-averaged data at one location could be some averages of 

instantaneous lean, stoichiometric, and rich data, in which the opposite trends of the latter 

two could offset each other to some extent such that the time-averaged data between the 

two models have significantly smaller differences than the instantaneous data, as shown 

in Figure 6.5 and Figure 6.6. Due to the jet-breakup and consumption of fuel in the 

downstream region, all profiles end up with some mixture fraction values much smaller 

than one, and simulation data normally ends up with smaller mixture fraction values than 

experimental data.  
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 Figure 6.14 shows the conditional mean of  𝑌𝐻2𝑂 to represent major products. The 

profiles and performance of the two models are very similar to those of conditional mean 

temperature. This fact indicates that the major heat release is closely correlated with the 

formation of 𝐻2𝑂. The level of 𝑌𝐻2𝑂 at x/d = 45 is higher than that at x/d = 15, which 

indicates the occurrence of re-ignition. In addition, the strong partially premixed burning 

(i.e. the triple-flame structure) at x/d = 45 leads to a plateau region in the 𝑌𝐻2𝑂 profile 

from both simulation and experiment, which does not exist in pure diffusion flames. 

Again, results from the FRC-LES approach agrees with experimental data better (4% 

uncertainty) than those from the FPV-LES approach for all the locations, except the fuel 

Figure 6.13: Conditional average of temperature at x/d = 7.5 (upper-left), 15 (upper-

right), 30 (lower-left), 45 (lower-right), from the experiment, the FRC-LES 

approach, and the FPV-LES approach. 
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rich side at x/d = 30, where the mean mixture fraction itself contains the largest errors 

and is unreliable (Fig. 9 and Fig. 11). At x/d = 7.5, 15, and 45, the FRC-LES case agrees 

very well with the experimental data for almost all mixture fraction values. Near the 

stoichiometric mixture fraction (𝑍 = 0.35), FPV-LES predicts less major products than 

FRC-LES. In contrast, on the fuel rich side, level of major products from the FPV-LES 

approach is always higher than that from the FRC-LES approach. 

 

 

 

 

 

 Figure 6.15 shows the conditional mean of 𝑌𝐶𝐻4 to represent major reactants. All 

models and experiment show monotonically increasing profiles, which follows the 

definition of mixture fraction. The FRC-LES case still shows advantages over the FPV-

Figure 6.14: Conditional average of 𝒀𝑯𝟐𝑶 at x/d = 7.5 (upper-left), 15 (upper-right), 

30 (lower-left), 45 (lower-right), from the experiment, the FRC-LES approach, and 

the FPV-LES approach. 
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LES case in upstream, but the deviations are smaller than those in temperature and 𝑌𝐻2𝑂. 

At x/d = 7.5, 15, and 45, the FRC-LES case agrees perfectly with the experimental data 

for almost all mixture fraction values. At x/d = 30, both models over-predict the 𝑌𝐶𝐻4 

level on the fuel rich side, which is consistent with their under-prediction of temperature 

at the same location. The large errors at this location are mainly due to the large errors in 

the mean mixture fraction at the same location (Figure 6.10 and Figure 6.12). On the fuel 

rich side, the FPV-LES approach predicts lower fuel level than the FRC-LES case, which 

further confirms that the FPV-LES approach over-predicts the reactant-to-product 

conversion, and thus over-predicts the temperature there. 

 

 

 

 

 

Figure 6.15: Conditional average of 𝒀𝑪𝑯𝟒
 at x/d = 7.5 (upper-left), 15 (upper-right), 

30 (lower-left), 45 (lower-right), from the experiment, the FRC-LES approach, and 

the FPV-LES approach. 
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 Figure 6.16 shows the conditional mean of 𝑌𝐶𝑂 to represent intermediate species, 

in which experiment data contain 10% ~ 20% uncertainties. For all locations, very lean or 

very rich parts normally contain small errors, but both models under-predict the peak 

values near mixture fraction  𝑍 = 0.5 , which explains the under-prediction of peak 

temperature (Figure 6.13) for all locations except the most upstream one (x/d = 7.5) near 

the inlet. In contrast, some previous FRC [202] and FPV [8] studies over-predict the peak 

values, both of which employed low Mach solvers. In particular, the FRC study 

employed a chemical kinetics (a 19 species mechanism, which is also globally reduced 

from GRI-Mech 3.0) similar to the present study, so these opposite trends is not likely 

due to different chemical kinetics models, but more likely due to the different choices of 

CFD solvers. At very upstream locations, the influence of piloted flame dominates, so the 

peak level of 𝑌𝐶𝑂  cannot directly represent the temperature peak value. Similar to 

Figure 6.16: Conditional average of 𝒀𝑪𝑶 at x/d = 7.5 (upper-left), 15 (upper-right), 

30 (lower-left), 45 (lower-right), from the experiment, the FRC-LES approach, and 

the FPV-LES approach. 
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temperature, 𝑌𝐻2𝑂, and 𝑌𝐶𝐻4 , the FRC-LES approach predicts better than the FPV-LES 

case at all locations except the fuel rich side at x/d = 30, where the mean mixture fraction 

itself contains the largest errors and is unreliable (Figure 6.10 and Figure 6.12). Near the 

stoichiometric mixture fraction (𝑍 = 0.35), FPV-LES predicts less CO than FRC-LES, 

which is consistent with the limiting effect of CO for FPV-LES observed in its snapshots 

(Figure 6.8). In contrast, on the fuel rich side, the CO level predicted from the FPV-LES 

approach is always higher than that from the FRC-LES approach. For this reason, the 

limiting effect of CO disappears on the fuel rich side, and FPV-LES approach predicts 

higher temperature than FRC-LES there (Figure 6.13). 

6.4 Conclusion 

 An efficient finite-rate chemistry (FRC)-LES formulation is developed for the 

numerical modeling of turbulent combustion. A 20-species and 84-reactions methane/air 

kinetics model reduced from detailed GRI-3.0 is employed with point-implicit stiff ODE 

solver (ODEPIM) and a correlated dynamic adaptive chemistry (CoDAC) algorithm. In 

particular, the CoDAC method provides a very effective local mechanism reduction with 

negligible computational overhead. In FRC-LES, the techniques of ODEPIM and 

CoDAC provide a speed up of 8.6 times for chemistry, and 6.4 times for the total 

computation. 

 With this new framework, simulations using both FRC-LES and 

flamelet/progress-variable (FPV)-LES approaches are conducted for a piloted partially 

premixed methane/air flame, which contains low level of local extinction and re-ignition. 

The results of both approaches provide a good agreement with the experimental data. 

Although the two models have similar spatial distributions of time-averaged quantities, 

for instantaneous flame field, the FPV-LES approach predicts significantly smaller 

regions with high temperature than the FRC-LES approach, especially in the downstream 

intense flame region. This is because the FPV-LES approach predicts less CO level, 
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which becomes the rate controlling step for one of the primary heat release reactions 

CO+OH=CO2+H. For axial profiles of time-averaged statistics, the FRC-LES approach is 

more accurate than the FPV-LES approach for both temperature and species, and this 

superiority is even larger for minor species. For radial profiles of time-averaged statistics, 

the two models have very similar predictions for temperature and mixture fraction, which 

also reasonably agree with the experimental data. The deviations in the upstream region 

are generally smaller than those in the downstream region. For conditional statistics, the 

FRC-LES approach provides better predictions for both temperature and species. 

Compared to the FRC-LES approach, the FPV-LES approach predicts lower temperature 

near the stoichiometric region due to the bottleneck effect of CO, but predicts higher 

temperature on the fuel rich side where the limiting effect disappears. 
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CHAPTER 7  

SENSITIVITY OF PREDICTIONS TO CHEMICAL KINETICS 

 To investigate the sensitivity of predictions to chemical kinetics models, two 

different kinetics models, GRI-Mech 3.0 and an 11-species syngas model, are compared 

by performing 3D finite-rate kinetics-based direct numerical simulations (DNS) of a 

temporally evolving turbulent non-premixed syngas flame. Both chemical kinetics 

models, providing comparable qualitative trends, capture local extinction and re-ignition 

events. However, significant quantitative discrepancies (86~100 K difference in the 

temperature field) indicate high sensitivity to the chemical kinetics model. The 11-species 

model predicts a lower radicals-to-products conversion rate, causing statistically more 

local extinction and less re-ignition. This sensitivity to the chemical kinetics model is 

magnified relative to a 1D steady laminar simulation by the effects of unsteadiness and 

turbulence (up to 7 times for temperature, up to 12 times for CO, up to 13 times for H2, 

up to 7 times for O2, up to 5 times for CO2, and up to 13 times for H2O), with the 

deviations in species concentrations, temperature, and reaction rates forming a nonlinear 

positive feedback loop under reacting flow conditions.  The differences between the 

results from the two models are primarily due to: (a) the larger number of species and 

related kinetic pathways in GRI-Mech 3.0; and (b) the differences in reaction rate 

coefficients for the same reactions in the two models. Both (a) and (b) are sensitive to 

unsteadiness and other turbulence effects, but (b) is dominant and is more sensitive to 

unsteadiness and other turbulence effects. At local extinction, the major differences 

between the results from the two chemical kinetics models are in the peak values and the 

volume occupied by the peak values, which is dominated by unsteady effects; at re-

ignition, the differences are mainly observed in the spatial distribution of the reacting 

flow field, which is primarily dominated by the complex turbulence-chemistry 

interaction. 
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7.1 Introduction 

 It is unclear how different chemical kinetics models affect DNS/LES results on 

local extinction and re-ignition phenomena in turbulent combustion environments. These 

events may lead to increased emissions, combustion instability, or flame blowout; thus, 

accurate prediction of them is an important aspect of high-fidelity simulations. Accurate 

prediction will in turn require a quantitative understanding of the wide range of time and 

length scales involved, and of the complex interactions between turbulent mixing, 

molecular diffusion, and chemical reactions.  

 The sensitivity of simulation results to different chemical kinetics models is still 

unclear, particularly with regard to the prediction of local extinction and re-ignition 

events, which will be investigated in this chapter.   

 Most existing chemical kinetics models offer similar predictions of ignition and 

extinction in 0D/1D finite-rate simulations of laminar combustion processes. Is it 

appropriate, therefore, to extend this observation to a 3D turbulent combustion 

environment? This question is practically important because most large-scale combustion 

simulations were conducted using (globally reduced) chemical kinetics models 

validated/verified purely based on 0D/1D steady laminar tests. In order to answer this 

question, two different chemical kinetics models (GRI-Mech 3.0 [93] and an 11-species 

model [13]) are used to simulate a temporally evolving turbulent non-premixed syngas 

flame, and the results are compared. 

7.2 Physical Model and Flow Conditions 

 In this study, we consider a canonical temporally evolving non-premixed flame 

(Figure 5.20). This type of flame has been extensively studied in the past, using DNS [12, 

13, 15] and LES [14, 16]. The flow parameters and the grid information are provided in 

Table 5.5. We consider a reduced characteristic jet velocity U = 100 m/s to allow for 

simulations with a coarse grid. All the simulations are conducted at pressure P = 1 atm. 
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The canonical flow configuration comprises an inner fuel jet (50% CO, 10% H2 , and 

40%  N2  by volume) and an outer oxidizer stream (25%  O2  and 75%  N2  by volume), 

which are counter-flowing in the stream-wise direction. The jet has a Reynolds number 

(Rejet) of 2315 and a Damkohler number (Da) of 0.01, which is low enough to induce 

local extinction during turbulence-chemistry interaction and evolution. The extent of the 

computational domain is Lx × Ly × Lz ≡ 12H × 14H × 8H, where H = 0.96 mm is the 

initial width of the fuel jet. The simulations in this study employ about 18 uniformly 

spaced points along H, which leads to approximately 2.1M grid points total, with a 

minimum resolution of approximately 4𝜂, where 𝜂 is the Kolmogorov length-scale. A 

past DNS study [13] reports that 𝜂 grows with time and becomes comparable to the grid 

size Δ𝑥; the grid resolution considered in this study is therefore adequate to capture the 

extinction and re-ignition dynamics. A grid convergence test (Figure 5.21) is included to 

show that the observations in this study are insensitive to grid resolution. 

 The reacting flow field is initialized with a laminar flamelet solution [53] at a bulk 

strain rate 𝜅 = 0.75𝜅𝑞, where 𝜅𝑞 = 1295 𝑠−1 is the extinction bulk strain rate. Here, 𝜅𝑞 

is obtained by gradually increasing the bulk strain rate in the laminar flamelet calculation 

until extinction occurs. To allow for the evolution of shear layer turbulence, broadband 

isotropic turbulence is superimposed on the mean flow with an initial integral length-

scale of H/3, and turbulence intensity of 0.05U. A perfectly non-reflecting, characteristic-

based outflow boundary condition is used in the transverse (y) direction, whereas a 

periodic boundary condition is specified along the streamwise (x) and spanwise (z) 

directions. The characteristic transient jet time is defined as  𝑡𝑗 = 𝐻/𝑈 , and the 

simulations are conducted up to  40 𝑡𝑗  to capture both the extinction and re-ignition 

events. 

7.3 Chemical Kinetics Models 
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 Two chemical kinetics models are compared in this study. The first model, GRI-

Mech 3.0 [93], comprises 325 steps and 53 species, and serves as a detailed stiff 

mechanism for syngas. The second is a 21-step, 11-species non-stiff mechanism [13] 

developed by Hawkes et al., which has been used in past DNS [13] and LES [14, 16] 

studies. Predictions of the extinction strain rates and the laminar flame speeds by the 11-

species model are within 1% and 5%, respectively, of those from GRI-Mech 3.0 (Figure 

7.1). The two kinetics models predict very close adiabatic flame temperatures (~12 K 

difference). Further examination of the 11-species model and GRI-Mech 3.0 shows that 

most reaction rate coefficients for the same reactions are different for these two models. 

It should be emphasized that the 11-species model is independent of GRI-Mech 3.0. 

Since the transport data for these models are identical, any difference in simulation 

results must come from differences in the chemical reactions. 
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7.4 Results and Discussions 

7.4.1 Instantaneous Reacting Flow Features  

 Figure 7.2 (a-b) shows the contours of the OH mass fraction to illustrate the 

spatial evolution of the flame structure during local extinction and re-ignition processes. 

The flame location is identified using the stoichiometric mixture fraction iso-lines. 

Mixture fraction 𝑍 is defined as  

Figure 7.1: Comparison of GRI-Mech 3.0 and the 11-species model by (a) 

homogeneous ignition delay times, (b) extinction curves in the perfectly stirred 

reactor, and (c) laminar flame speeds. 
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𝑍 = [
𝑠𝑌𝐹−𝑌𝑂+𝑌𝑂,0

𝑠𝑌𝐹,0+𝑌𝑂,0
], (7.1) 

where 𝑠 = 𝐴𝐹𝑅𝑠𝑡𝑜𝑖𝑐ℎ = (𝑊𝑂 × 𝜈𝑂)/(𝑊𝐹 × 𝜈𝐹), with 𝑌𝐹,0  being the fuel mass fraction at 

the fuel stream inlet,  𝑌𝑂,0 denoting the oxidizer mass fraction at the oxidizer stream inlet, 

and 𝑌𝑂  denoting the local oxidizer mass fraction. Here, 𝑊𝐹  and 𝑊𝑂  are the species 

molecular weights, and 𝜈𝐹  and 𝜈𝑂  are the fuel and oxygen stoichiometric coefficients, 

respectively. 

 At 20 𝑡𝑗, only few discrete OH pockets survive and attach to the stoichiometric 

surfaces, indicating that local extinction is approached in most regions of the shear layers. 

However, at  40 𝑡𝑗 , the values of OH mass fraction increase sharply in most regions 

around the stoichiometric surfaces within the shear layers, indicating the approach of re-

ignition. Some of the disconnected small radical pockets observed at 20 𝑡𝑗  become the 

source of re-ignition at 40 𝑡𝑗 . The transverse movement of the flame occurs due to the 

spatial evolution of the shear layers in the transverse direction with time. Figure 7.2 (c-d) 

clearly substantiate this phenomenon, where the contours of the vorticity magnitude 

qualitatively illustrate the transverse spreading of the shear layers. Due to this spreading, 

we observe dominant large-scale structures at 40 𝑡𝑗 as compared to 20 𝑡𝑗 , with reduced 

peak values of vorticity magnitude. 
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7.4.2 Comparison of the Two Kinetics Models 

 In this section, the predictions of local extinction and re-ignition from GRI-Mech 

3.0 and the 11-species model are compared through the instantaneous flame structure, 

conditional statistics, syngas flame structure, and scalar dissipation rate statistics. The 

counterparts in all the comparisons have exact the same conditions except for chemical 

kinetics models: the same grid, initial conditions, initial turbulence perturbation, HPC 

system, processor count and topology, etc. Therefore, all the differences are attributed to 

the chemical kinetics models. 

7.4.2.1 Instantaneous Flame Structure 

 

Figure 7.2: Contours of OH mass fraction overlaid with stoichiometric mixture 

fraction (upper) and vorticity magnitude (lower) in 3D computational domain at 

local extinction (𝟐𝟎 𝒕𝒋, left) and re-ignition (𝟒𝟎 𝒕𝒋, right) from GRI-Mech 3.0. 
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 Figure 7.3 compares the temporal evolution and PDF of the temperature field on 

the stoichiometric surface obtained from simulations using GRI-Mech 3.0 and the 11-

species model. The mean stoichiometric temperature starts at approximately 1600 K, 

gradually drops to 1200 K ~ 1250 K at 20𝑡𝑗, and increases gradually to ~1600 K at 40𝑡𝑗. 

This evolution of the mean temperature clearly demonstrates the approach of local 

extinction followed by the subsequent re-ignition. Although the starting temperature and 

the trend are the same, the prediction from the 11-species model gradually deviates from 

Figure 7.3: (a) Temporal evolution of mean temperature on the stoichiometric 

surface obtained from GRI-Mech 3.0 and 11-species model; (b) PDF of temperature 

on the stoichiometric surface at local extinction (𝟐𝟎 𝒕𝒋) and re-ignition (𝟒𝟎 𝒕𝒋) from 

GRI-Mech 3.0 and 11-species model. 
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that of GRI-Mech 3.0. The deviation reaches its peak of 86 K (6%) near  20𝑡𝑗 , but 

decreases slightly afterwards, stabilizes at ~50 K, and remains stable to the end of the 

simulation. Temperature from the 11-species model is always lower than that from GRI-

Mech 3.0, as a result of different heat release pathways/rates.  

 The most probable temperatures in the PDF plots follow the temporal evolution of 

mean temperature. PDFs at re-ignition are much narrower than those at local extinction, 

which indicates that even at local extinction, there are some pockets of gas in a fully 

burning state. The two models show a qualitatively similar structure of the PDF, but their 

peak values and the right tails of high temperatures are quantitatively different, as shown 

in Table 7.1. Comparing with GRI-Mech 3.0, the PDFs from the 11-species model are 

biased toward lower temperatures, which is consistent with the mean temperature 

evolution, and the standard deviation is smaller, which indicates a narrower PDF. 

 

 

Statistics GRI-Mech 

3.0 (20 𝑡𝑗) 
11-species 

model (20 𝑡𝑗) 
GRI-Mech 3.0 

(40 𝑡𝑗) 
11-species 

model (40 𝑡𝑗) 

Mean 1243 K 1194 K 1622 K 1580 K 

Standard 

deviation 

194 K 163 K 141 K 115 K 

Skewness -0.15 -0.21 -0.66 -0.58 

 

 

 The initial mean temperatures (Figure 7.3(a)) are generated from 1D steady 

laminar flamelet solutions (from a counter-flow configuration), and the values are close 

for the two chemical kinetics models (0.76% difference), indicating that the deviation is 

small in 1D steady laminar flames. The deviation between the two chemical kinetics 

models is magnified by the unsteady turbulent configuration.  

Table 7.1: Statistics of the PDF of temperature on the stoichiometric surface (𝒁𝒔𝒕) 
for the two chemical kinetics models. 
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 Turbulence and unsteady turbulent reacting flows are chaotic dynamical systems 

that evolve on strange attractors of maximum dimension equal to the available degrees of 

freedom of the discretized system. By reducing the dimensionality of this system through 

elimination of governing equations, the attractor could be significantly altered, and the 

chaotic system may deviates and follows a different attractor. Therefore, this is one of the 

potential reasons to explain the observed deviation magnification. To directly investigate 

the effects of chaos in this system, Figure 7.4 shows the temporal evolution of mean 

temperature on the stoichiometric surface obtained from 11-species model with ±5% 

perturbations to the initial temperatures. In the evolution, the deviations are the same 

order of magnitude to the initial perturbations, with the largest deviation of ~7% 

(deviation magnification), and the smallest deviation of ~2% (deviation reduction). 

Therefore, there is no significant magnification of the initial perturbations. This prove 

that the system is insensitive to initial perturbations, and thus not a typical chaotic 

system.  

 

 

 

 

 

Figure 7.4: Temporal evolution of mean temperature on the stoichiometric surface 

obtained from 11-species model with ±𝟓% perturbations to initial temperatures. 
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 To quantitatively investigate this observation and compare with the flamelet 

solutions, absolute and relative mean deviations between the two chemical kinetics 

models (in mixture fraction space) of the 1D steady laminar flame, 3D unsteady laminar 

flame, and 3D turbulent flame are presented in Table 7.2. For an arbitrary quantity 𝜙, its 

absolute mean deviation is defined as:  

𝑑𝑒𝑣𝑎𝑏𝑠,𝑠𝑡
𝜙

= max
0≤𝑡≤40𝑡𝑗

|⟨𝜙𝐺𝑅𝐼|𝑍 = 𝑍𝑠𝑡⟩(𝑡) − ⟨𝜙11−𝑠𝑝|𝑍 = 𝑍𝑠𝑡⟩(𝑡)| (7.2) 

and its relative mean deviation is defined as: 

𝑑𝑒𝑣𝑟𝑒𝑙,𝑠𝑡
𝜙

= max
0≤𝑡≤40𝑡𝑗

|
⟨𝜙𝐺𝑅𝐼|𝑍 = 𝑍𝑠𝑡⟩(𝑡) − ⟨𝜙11−𝑠𝑝|𝑍 = 𝑍𝑠𝑡⟩(𝑡)

⟨𝜙𝐺𝑅𝐼|𝑍 = 𝑍𝑠𝑡⟩(𝑡)
| (7.3) 

 

 

 

Abs. 

deviation 

T 

(K) 
𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

1D steady 

laminar: 11-

sp 

12.2

2 

0.001

7 

0.000

01 

0.001

2 

0.0000

07 

0.000

04 

0.000

44 

0.002

5 

0.000

1 

3D unsteady 

laminar: 11-

sp 

89.0

0 

0.002

7 

0.000

02 

0.001

9 

0.0001

01 

0.000

86 

0.000

44 

0.004

5 

0.002

4 

3D turbulent: 

11-sp 

86.4

7 

0.003

8 

0.000

10 

0.002

6 

0.0001

18 

0.001

43 

0.000

33 

0.005

4 

0.001

8 

3D turbulent: 

CoDAC+CoT

ran 

01.3

0 

0.000

2 

3.44E-

6 

0.000

2 

0.0000

03 

0.000

04 

0.000

01 

0.000

4 

3.1E-

5 

1D steady 

laminar: 

GRIred11 

04.0

3 

0.000

4 

1.65E-

6 

0.000

3 

7.40E-

07 

0.000

04 

0.000

02 

0.000

8 

0.000

1 

3D turbulent: 

GRIred11 

11.2

5 

0.001

2 

0.000

02 

0.000

8 

0.0000

06 

0.000

10 

0.000

04 

0.001

3 

0.000

2 

 

Table 7.2: Maximal (over time) deviations/errors of the 11-species model (11-sp), 

GRI-Mech 3.0 using CoDAC+CoTran, and GRIred11, with respect to GRI-Mech 

3.0. Mean values of temperature and mass fractions of representative species on the 

stoichiometric surface. 
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Table 7.2 continued 

Rel. dev. (%) T 𝑌𝐶𝑂 𝑌𝐻2  𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

1D steady laminar: 11-

sp 0.76 2.07 03.69 2.08 02.03 00.69 17.77 1.18 0.51 

3D unsteady laminar: 

11-sp 5.18 4.80 08.64 4.82 32.82 21.62 13.24 1.65 7.77 

3D turbulent: 11-sp 5.96 2.82 21.09 2.80 49.55 33.86 14.11 5.00 8.51 

3D turbulent: 

CoDAC+CoTran 0.09 0.19 00.45 0.19 01.23 01.10 00.83 0.34 0.15 

1D steady laminar: 

GRIred11 0.25 0.45 00.48 0.44 00.20 00.76 00.62 0.35 0.51 

3D turbulent: GRIred11 0.91 0.77 02.01 0.77 02.88 04.02 04.10 1.38 0.90 

 

 

 Since the 3D turbulent flame problem is of concern here, the same configuration 

is used for the 3D unsteady laminar case with the initial turbulence turned off and the 

Reynolds number reduced to 500 to avoid the generation of turbulence from the shear 

layers. Due to the lower mean strain rate, local extinction does not occur in this 3D 

unsteady laminar flame. As shown in Table 7.2, the deviations increase sharply from the 

1D steady laminar flame to the 3D unsteady laminar flame to the 3D turbulent flame for 

most quantities, including temperature and major species. In particular, the absolute 

deviation magnification factor is 7 for temperature, 10 for H2, and 13 for H2O; the 

relative deviation magnification factor is 8 for temperature, 6 for H2, 4 for CO2, and 17 

for H2O. Turbulence and other unsteady effects significantly increase the deviations 

between the two chemical kinetics models. The 3D unsteady laminar case is a non-

chaotic system, thus chaotic system and strange attractor cannot explain the deviation 

magnification due to general unsteadiness effects. Similar deviation enlargement has also 

been observed recently in an opposing-jet laminar flame impinged with unsteady vortex 

[206], which is also not a chaotic system.  

 The shear layers undergo unsteady growth, and the complex interaction of these 

unsteady effects with the kinetics significantly increases the discrepancies between the 
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two chemical kinetics models. For example, in 3D unsteady laminar simulations, the 

correlation coefficient of the two chemical kinetics models for the reaction rate of H2O 

(defined as 𝜌
�̇�𝐻2𝑂
𝐺𝑅𝐼 ,�̇�𝐻2𝑂

11−𝑠𝑝 =
𝑐𝑜𝑣(�̇�𝐻2𝑂

𝐺𝑅𝐼 ,�̇�𝐻2𝑂
11−𝑠𝑝

)

𝜎
�̇�𝐻2𝑂
𝐺𝑅𝐼 ⋅𝜎

�̇�
𝐻2𝑂
11−𝑠𝑝

, where 𝑐𝑜𝑣 is the covariance, and 𝜎𝑋  is the 

standard deviation of 𝑋) is 0.96. These deviations in reaction rates, and therefore heat 

release rate accumulate over time, which result in the above deviations in both mass 

fraction and temperature. 

 For most quantities (except for H2 and CO2), the deviations between the two 

chemical kinetics models in the unsteady laminar case is either close to or even larger 

than those in the turbulent case, which means that general unsteadiness effects are more 

significant than turbulence effects in the mixture fraction space. Therefore, the observed 

deviation magnification in turbulent case is not primarily due to the chaotic system and 

strange attractor. Comparing to the unsteady laminar case, the addition of turbulence 

amplifies the deviations for some quantities, but reduces the deviations for some others. 

The former ones may come from different attractors in the chaotic system. However, for 

the latter ones, either chaos is not the dominant factor, or the altered attractor is very 

close to the original attractor in the chaotic system. The most important effect of 

turbulence is on the spatial distribution of the shear layers and mixture fraction Z, but this 

effect is averaged out, as shown in Table 7.2. Note that the error quantification is much 

more stringent in Table 5.6 than in Table 7.2, because large local point-wise deviations 

can occur even if predictions from the two chemical kinetics models have similar means 

and PDFs on the stoichiometric surface. Table 7.2 provides better error quantification of 

CoDAC+CoTran using Eqs. (5.9-5.10). For the prediction of all quantities, the error 

introduced by CoDAC+CoTran is only 0.09~1.23%. Both the absolute and relative errors 

of CoDAC+CoTran are one to two orders of magnitude smaller than the corresponding 

deviations between the results from the two chemical kinetics models. This suggests that 
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CoDAC+CoTran introduces only negligible errors, which do not affect the observations 

discussed here. 

 The differences between the results using the two chemical kinetics models can be 

related to two major differences in the models: (a) GRI-Mech 3.0 contains 42 more 

species than the 11-species model, and thus contains 293 more kinetic reactions related to 

those 42 species, and (b) for those reactions included in both models, the reaction rate 

coefficients are different. To quantify the difference in the simulation results caused by 

the larger number of species in GRI-Mech 3.0, a globally reduced version of GRI-Mech 

3.0 was created. The reduced version, which is referred to as ‘GRIred11’, only includes 

the 11 species treated in the 11-species model, and incorporates only those reactions 

related to these 11 species. Table 7.2 includes the deviations between detailed GRI-Mech 

3.0 and GRIred11. Note that these deviations are always 2~10 times larger than the 

corresponding errors introduced by CoDAC+CoTran, which verifies that CoDAC is more 

accurate than the conventional global reduction. 

 Table 7.3 shows the contribution of (a) to the total absolute deviations between 

the two chemical kinetics models, and the absolute deviation magnification factors for 

(a), (b), and the total. The contribution of (a) is defined as the ratio of the deviations 

between GRI-Mech 3.0 and GRIred11 to the deviations between GRI-Mech 3.0 and the 

11-species model: 𝐶(𝑎),𝑠𝑡
𝜙

= 𝑑𝑒𝑣𝑎𝑏𝑠,𝑠𝑡
𝜙,(𝐺𝑅𝐼 𝑣𝑠 𝐺𝑅𝐼𝑟𝑒𝑑11)

/𝑑𝑒𝑣𝑎𝑏𝑠,𝑠𝑡
𝜙,(𝐺𝑅𝐼 𝑣𝑠 11−𝑠𝑝)

. In the 1D steady 

laminar case, (b) dominates the total deviations for most quantities (except O and H2O). 

In the 3D turbulent case, (b) dominates the total deviations for all quantities. Both (a) and 

(b) are sensitive to unsteadiness and other turbulence effects for all quantities, but with 

only (a), even though the deviation magnification is significant (up to 12 times), the 

relative deviations are still within ~4% for all quantities. Therefore, the global 

mechanism reduction is still valid to use. For temperature and all species with more than 

10 times total deviation magnification (H, O, H2O), (b) is more sensitive, which results in 

the rise of its contribution to total deviations from 1D steady laminar case to 3D turbulent 
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case. In particular, for O and H2O in the 1D steady laminar case, (a) and (b) cause 

deviations in opposite directions at  𝑍𝑠𝑡 . As a result, (a) contributes more than 100% 

deviations for O and H2O in the 1D steady laminar case. However, the magnification 

factors of (b) for O and H2O are 414 and 1329, respectively, which are 200~1000 times 

larger than those of (a) and makes (b) the dominant part in the 3D turbulent case. 

Essentially, (a) means the reaction rates of the globally reduced pathways are linearly 

removed. In contrast, (b) means that the difference in reaction rate coefficients (e.g. 

activation energy) can be nonlinearly (e.g. exponentially) enlarged. In summary, (b) is the 

dominant source of the discrepancies between the results using the two models, and is 

more sensitive to unsteadiness and other turbulence effects. 

 

 

Contribution from (a) 

to total deviation (%) 

T 𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

1D steady laminar 32.98 23.53 16.5 25.00 10.57 >100 04.55 32.00 >100 

3D turbulent 13.01 31.58 20.0 30.77 05.08 6.99 12.12 24.07 11.11 

Dev. magnification 

factor 

T 𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

(a) Reduced 

pathways 

2.79 3.00 12.12 2.67 08.11 002.54 2.00 1.63 0001.38 

(b) Different RR 

coefficients 

9.18 2.00 09.58 2.00 17.89 414.12 0.69 2.41 1329.36 

Total 7.08 2.24 10.00 2.17 16.86 039.59 0.75 2.16 0012.55 

 

 

 Figure 7.5 shows a comparison of 2D contours of temperature as computed using 

GRI-Mech 3.0 and the 11-species model. The stoichiometric mixture fraction iso-lines 

are marked as black curves. Local extinction and re-ignition are clearly captured by both 

Table 7.3: Contribution from the global reduction of reaction pathways to the 

maximal (over time) absolute deviations between GRI-Mech 3.0 and 11-species 

model; absolute deviation magnification factors for (a) global reduction of reaction 

pathways, (b) different reaction rate coefficients, and total. Based on mean values of 

temperature and mass fractions of representative species on the stoichiometric 

surface. 
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models. At 20 𝑡𝑗, the extinction level is high (93% of the computational domain is below 

1300 K), and only a few discrete flame pockets survive. At 40 𝑡𝑗, most regions in the 

shear layers have been re-ignited and the flames are connected. In addition, the shear 

layers at  40 𝑡𝑗  are spread much more widely than at  20 𝑡𝑗 . The peak combustion 

intensities (quantified by peak temperature), as modeled using GRI-Mech 3.0 (1627 K 

at 20 𝑡𝑗, and 1882 K at 40 𝑡𝑗), are higher than those from the 11-species model (1547 K 

at 20 𝑡𝑗, and 1812 K at 40 𝑡𝑗); this is consistent with the previously-discussed statistics of 

T conditioned on Zst. Flame surface area varies by up to 26% (at 20 𝑡𝑗) between the two 

chemical kinetics models, and the spatial distribution of combustion intensity is different, 

especially at 40 𝑡𝑗 . These differences are not revealed by comparison of T versus Zst, 

because those analyses average out the differences in the spatial distribution of the shear 

layers and mixture fraction. For this reason, the average of the local point-wise deviation 

between the two chemical kinetics models is significantly larger than those shown in 

Table 5.6. These differences are particularly important in practice, as they can quickly 

affect the interplay of molecular diffusion, finite-rate kinetics, and turbulent mixing, thus 

altering the combustion dynamics. 
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7.4.2.2 Conditional Statistics 

 Figure 7.6 shows the mixture-fraction conditioned mean values of temperature, 

and mass fractions of OH, O, and H at local extinction (20 𝑡𝑗) and re-ignition (40 𝑡𝑗). The 

initial values and the laminar flamelet data at extinction from both chemical kinetics 

models are obtained by gradually increasing the bulk strain rate in the laminar flamelet 

calculation until extinction occurs. As shown in Figure 7.6, for both chemical kinetics 

models, the temperature and mass fractions of OH and H decrease below the extinction 

values of the laminar flamelet solution at  20 𝑡𝑗 , indicating approach toward local 

extinction. Temperatures drop to ~1300 K, which is ~300 K lower than the initial 

temperatures, and rise again beyond the extinction values at 40 𝑡𝑗, indicating re-ignition. 

The behavior of H is different from those of the other three quantities, as it increases 

continuously regardless of extinction and re-ignition. This is because most H2 is 

Figure 7.5: Instantaneous 2D contours of temperature at 𝟐𝟎 𝒕𝒋  (left) and 𝟒𝟎 𝒕𝒋 

(right) on center plane (Z = 4H); GRI-Mech 3.0 (upper) and 11-species model 

(lower). 
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converted into H and OH radicals within the fuel stream, rather than reacting at the 

stoichiometric flame surface, and thus it is less affected by the change in the intensity of 

combustion.  

 

 

 

 

 

Figure 7.6 Comparison of GRI-Mech 3.0 (solid line) and 11-species model (dashed 

line) in 1D steady laminar solutions (initial data and laminar flamelet values at 

extinction) and 3D turbulent simulations (at 𝟐𝟎𝒕𝒋 and 𝟒𝟎𝒕𝒋): the conditional means 

of (a) T, (b) YOH, (c) YO, and (d) YH. 
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 The comparison of heat release rates from the two models is shown in Figure 7.7. 

GRI-Mech 3.0 has a higher peak heat release rate than the 11-species model, which 

explains the higher temperature in the simulation using GRI-Mech 3.0.  

 

 

 

 

 

  Although the predictions from the two chemical kinetics models show the same 

trends, the 11-species model predicts lower temperature and higher radical levels at all 

mixture fractions. In other words, it predicts a lower radicals-to-products conversion rate 

for release heat. As a result, the 11-species model predicts more local extinction (mean 

T|Zst is 49 K smaller) but less re-ignition (mean T|Zst is 42 K smaller). The largest 

deviations and peak values of temperature, OH, and O in the 1D steady laminar case are 

located near the stoichiometric mixture fraction of 0.42. The mixture fractions 

corresponding to the largest deviations or peak values in 3D turbulent simulations, on the 

Figure 7.7 Comparison of GRI-Mech 3.0 (red solid line) and 11-species model (blue 

dashed line) in 3D turbulent simulations (at 40𝒕𝒋 ): conditional statistics of heat 

release rate. 
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other hand, are all on rich side (Z > 0.42), due to the relatively high diffusivities of fuels. 

For example, at 20 𝑡𝑗, H peaks and deviates most at approximately Z = 0.7, a highly rich 

value. Moreover, all deviations in the 3D turbulent simulations are significantly larger 

than those in the 1D steady laminar solutions, except for the OH mass fraction, which has 

different laminar flamelet predictions in the two chemical kinetics models. In contrast, 

there are no observable errors in the same comparison between the results from the 

benchmark and from CoDAC+CoTran (not shown here); this demonstrates that 

CoDAC+CoTran technique does not affect the observations presented here. There are 

only minor deviations between GRI-Mech 3.0 and GRIred11 in the same comparison (not 

shown here). 
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 Figure 7.8 compares the conditional means of mass fractions of CO, H2, CO2, and 

H2O with respect to mixture fraction from both chemical kinetics models. Profiles of the 

conditional 𝑌𝐶𝑂  are close to linear, while those of 𝑌𝐻2 contain significant variations of 

slope with respect to mixture fraction. More precisely, the slopes of 𝑌𝐻2 are larger than 

those of 𝑌𝐶𝑂 near Z=1 (the fuel stream) because the early consumption of H2 inside the 

fuel stream provides H and OH radicals for the oxidation of CO. On the other hand, the 

Figure 7.8 Mass fractions of (a) CO, (b) H2, (c) CO2, and (d) H2O, in 1D steady 

laminar solution (initial data and laminar flamelet values at extinction) and 3D 

turbulent simulations (at 𝟐𝟎𝒕𝒋 and 𝟒𝟎𝒕𝒋); GRI-Mech 3.0 (solid line) and 11-species 

model (dashed line). 
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slopes of 𝑌𝐻2  are smaller than those of 𝑌𝐶𝑂  near Z=0 (the oxidizer stream), due to the 

recombination of radicals to reform H2. Following the consumption of fuel, at 

approximately Z=0.9 at 40 𝑡𝑗, the profiles of both 𝑌𝐶𝑂 and 𝑌𝐻2 end. 

 The behavior of 𝑌𝐶𝑂2 is similar to that of the OH and O radicals – it is lower than 

the extinction values at 20 𝑡𝑗  but higher at 40 𝑡𝑗 . In contrast, instead of recovering to 

values exceeding the extinction cutoff, H2O levels further decrease at 40 𝑡𝑗 . There are 

two reasons for this phenomenon. On one hand, as shown in Figure 7.8 (a-b), the initial 

jet contains only 10% H2 but 50% CO (by volume) so that at 40 𝑡𝑗 there is limited H2 left 

in the fuel stream to generate H, OH and H2O, but a significant amount of CO left for 

CO2 generation. On the other hand, thermal decomposition of H2O (H2O+M=H+OH+M, 

H2O+O=2OH) dominates the reactions at the high re-ignition temperature, as can be seen 

in the high level of H and OH at 40 𝑡𝑗 , as shown in Figure 7.6 (b, d). 

 At 20 𝑡𝑗 , as compared with H radical, both products peak and deviate most at 

above Z=0.6, a less-rich value, because of the smaller diffusivities. All predictions of the 

conditional 𝑌𝐶𝑂 from the two chemical kinetics models match well, while there are slight 

deviations in 𝑌𝐻2 and 𝑌𝐶𝑂2. Moreover, the 11-species model predicts a significantly lower 

level of 𝑌𝐻2𝑂 in turbulent simulations (especially in the range of 0.2 < Z < 0.8), but a 

slightly higher level in 1D steady laminar solutions.  The reason for these opposite 

deviation trends is that the deviations in H2O from (a) global reduction in kinetics 

pathways, and (b) different reaction rate coefficients, are in the opposite direction. 

Furthermore, (a) dominates the total deviations in 1D steady laminar flames, while (b) 

dominates in 3D turbulent flames, as discussed in section 7.4.2.1. For this reason, for 

H2O in 1D steady laminar flames, the deviation between GRI-Mech 3.0 and GRIred11 

(contribution from (a): 𝑑𝑒𝑣𝑎𝑏𝑠,𝑠𝑡
𝐻2𝑂,(𝐺𝑅𝐼 𝑣𝑠 𝐺𝑅𝐼𝑟𝑒𝑑11)) is larger than the deviation between GRI-

Mech 3.0 and the 11-species model (total deviation: 𝑑𝑒𝑣𝑎𝑏𝑠,𝑠𝑡
𝐻2𝑂,(𝐺𝑅𝐼 𝑣𝑠 11−𝑠𝑝)). As a result, 
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(a) contributes more than 100% of the total deviation of H2O in 1D steady laminar 

flames, as shown in Table 7.3. Even though, both the total deviation and the contribution 

from (a) are actually very small (within 0.5%) in 1D steady laminar flames. According to 

the Arrhenius law, the reaction rate  RR = k(T)∏ [Yk]
νk
′

k , and the reaction rate 

constant k(T) = A Tb exp (−
Ea

RT
). 

 In 1D steady laminar solutions, the deviations in species concentration and 

temperature between the two chemical kinetics models (GRI-Mech 3.0 and the 11-species 

model) are negligible, so the additional reaction pathways in GRI-Mech 3.0 and the 

deviations of pre-exponential factor A dominate the total deviations. More precisely, both 

chemical kinetics models have exactly the same coefficients (A, b, Ea) for the major H2O 

formation reaction (H2+OH=H2O+H), but the pre-exponential factor A of the major 

decomposition reaction of H2O (the inverse of H+OH+M=H2O+M) for GRI-Mech 3.0 is 

72% higher than in the 11-species model. This is why the 11-species model predicts a 

slightly higher level of H2O and a slightly lower level of H in the 1D steady laminar 

solution. 

 In unsteady simulations, the deviations in species concentration and temperature 

are significantly higher. In addition, according to Table 7.3 and a comparison of the same 

conditional statistics between GRI-Mech 3.0 and GRIred11 (not shown here), (a) is not 

the main driver for these large deviations. This suggests that, instead of deviations in pre-

exponential factor A or deviations from (a), deviations in reactant concentration and the 

nonlinear temperature-dependent term  Tbexp (−
Ea

RT
)  are responsible for the total 

deviations. Note that the 11-species model predicts a lower H2 level and significantly 

lower temperature than GRI-Mech 3.0, so that the major H2O formation pathway 

(H2+OH=H2O+H) is significantly slower. In addition, this reaction (with Ea  = 3430 

cal/mole) is more sensitive to temperature than H2O’s major decomposition pathway (the 

inverse of H+OH+M=H2O+M with Ea = 0), so that the H2O decomposition rates in the 
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two chemical kinetics models are similar. These considerations explain why the 11-

species model predicts a significantly lower H2O level in unsteady simulations. In 

summary, the deviations in species concentration, temperature, and reaction rates form a 

nonlinear positive feedback loop in unsteady simulations, which significantly magnifies 

the sensitivity of simulation results to chemical kinetics models. 

 To provide further quantitative detail on the conditional mean deviations between 

the two chemical kinetics models, absolute and relative deviations of the 1D steady 

laminar flame (initial and at extinction), 3D unsteady laminar flame (both  20 𝑡𝑗 

and 40 𝑡𝑗), and turbulent flame (both 20 𝑡𝑗  and 40 𝑡𝑗 ) using the two chemical kinetics 

models are presented in Table 7.4. The absolute conditional mean deviation of an 

arbitrary quantity 𝜙 is defined as: 

𝑑𝑒𝑣𝑎𝑏𝑠
𝜙

= max
0≤𝑍≤1

|⟨𝜙𝐺𝑅𝐼|𝑍⟩ − ⟨𝜙11−𝑠𝑝|𝑍⟩| (7.4) 

and its relative conditional mean deviation is defined as: 

𝑑𝑒𝑣𝑟𝑒𝑙
𝜙

= max
0≤𝑍≤1

|
⟨𝜙𝐺𝑅𝐼|𝑍⟩ − ⟨𝜙11−𝑠𝑝|𝑍⟩

⟨𝜙𝐺𝑅𝐼|𝑍⟩
| (7.5) 
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Absolute 

deviation 

T 

(K) 
𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

Init. (1D steady 

laminar): 11-sp 

23.2

8 

0.00

2 

0.0000

3 

0.001

3 

0.0000

2 

0.000

2 

0.0004

4 

0.00

3 

0.000

6 

Ext. (1D steady 

laminar): 11-sp 

22.1

4 

0.00

2 

0.0000

6 

0.001

7 

0.0000

2 

0.000

3 

0.0004

4 

0.00

3 

0.000

6 

20𝑡𝑗 (3D 

unsteady 

laminar): 11-sp 

96.7

6 

0.00

6 

0.0000

3 

0.006

2 

0.0000

6 

0.001

3 

0.0005

7 

0.00

6 

0.002

3 

40𝑡𝑗 (3D 

unsteady 

laminar): 11-sp 

89.2

5 

0.00

4 

0.0000

6 

0.002

7 

0.0000

4 

0.001

1 

0.0006

0 

0.00

6 

0.001

9 

20𝑡𝑗 (3D 

turbulent): 11-sp 

70.9

7 

0.00

4 

0.0003

5 

0.008

5 

0.0001

1 

0.000

7 

0.0001

7 

0.00

9 

0.002

2 

40𝑡𝑗 (3D 

turbulent): 11-sp 

86.2

0 

0.02

4 

0.0003

9 

0.005

6 

0.0001

9 

0.001

6 

0.0005

7 

0.01

6 

0.002

3 

20𝑡𝑗 (3D 

turbulent): 

CoDAC+CoTra

n 

06.8

1 

0.00

2 

0.0000

9 

0.000

5 

5.62E-

6 

5.6E-

5 

0.0000

2 

0.00

1 

0.000

2 

40𝑡𝑗 (3D 

turbulent): 

CoDAC+CoTra

n 

11.2

7 

0.00

4 

0.0000

8 

0.001

3 

0.0000

2 

9.7E-

5 

0.0000

4 

0.00

3 

0.000

4 

Init. (1D steady 

laminar): 

GRIred11 

08.5

5 

0.00

1 

0.0000

5 

0.000

2 

4.22E-

6 

4.5E-

5 

0.0000

2 

0.00

1 

0.000

2 

20𝑡𝑗 (Turbulent): 

GRIred11 

22.5

2 

0.00

3 

0.0001

9 

0.001

5 

0.0000

1 

0.000

1 

0.0000

6 

0.00

4 

0.000

7 

40𝑡𝑗 (Turbulent): 

GRIred11 

14.3

9 

0.00

2 

0.0000

6 

0.001

5 

0.0000

2 

9.9E-

5 

0.0000

5 

0.00

2 

0.000

2 

Rel. deviation 

(%) 

T 𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

Init. (1D steady 

laminar): 11-sp 1.52 

01.3

6 31.18 4.11 30.69 08.89 17.61 

01.1

6 02.47 

Ext. (1D steady 

laminar): 11-sp 1.49 

01.3

6 00.89 4.54 16.29 10.71 18.50 

01.4

9 02.37 

20𝑡𝑗 (3D 

unsteady 

laminar): 11-sp 5.08 

05.4

7 06.52 3.05 34.07 47.08 28.55 

02.5

9 07.66 

40𝑡𝑗 (3D 

unsteady 

laminar): 11-sp 4.59 

10.6

2 03.09 2.77 47.64 54.13 29.72 

02.8

5 06.64 

Table 7.4: Maximal (over mixture fraction Z) deviations/errors of the conditional 

means in the 11-species model (11-sp), GRI-Mech 3.0 using CoDAC+CoTran, and 

GRIred11, with respect to GRI-Mech 3.0: temperature and mass fractions of 

representative species. 



 179 

Table 7.4 continued 

Rel. deviation (%) T 𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

20𝑡𝑗 (3D turbulent): 11-sp 5.26 73.41 07.79 2.95 23.64 21.46 32.49 30.80 62.36 

40𝑡𝑗 (3D turbulent): 11-sp 5.46 05.21 14.51 5.56 58.99 33.51 26.05 14.56 11.16 

20𝑡𝑗 (3D turbulent): 

CoDAC+CoTran 

1.02 00.35 02.28 0.002 01.15 01.60 01.44 04.23 04.57 

40𝑡𝑗 (3D turbulent): 

CoDAC+CoTran 

1.00 01.00 02.98 0.011 05.44 02.34 03.53 06.30 02.40 

Init. (1D steady laminar): 

GRIred11 

0.99 00.20 01.23 00.78 02.16 00.83 00.76 02.80 0.57 

20𝑡𝑗 (Turbulent): 

GRIred11 

3.68 00.50 03.26 00.48 03.22 04.52 04.68 04.76 03.86 

40𝑡𝑗 (Turbulent): 

GRIred11 

1.00 00.38 02.25 01.11 06.99 01.60 02.63 01.78 01.12 

 

 

 For the 1D steady laminar case in Table 7.4, the ~31% relative deviation of H and 

H2 happens near Z=1 (pure fuel) and Z=0 (pure oxidizer), where the concentrations of H 

and H2 are close to zero (see Figure 7.6 and Figure 7.8) resulting in this large deviation. 

Similar to the trend shown in Table 7.2, the deviations in Table 7.4 increase sharply from 

the 1D steady laminar to the 3D unsteady laminar to the 3D turbulent for most quantities, 

including temperature and major species. As shown in Table 7.2, the relative deviation in 

3D turbulent simulations is up to 50 times larger than that in the 1D steady laminar 

solutions for CO, almost 20 times for H2, almost 30 times larger for CO2 and H2O, and 

nearly 4 times larger for temperature. The absolute deviation magnification factor is 4 for 

temperature, 12 for CO, 13 for H2, 7 for O2, 5 for CO2, and 4 for H2O. This further proves 

that the effects of unsteadiness and turbulence can significantly increase the deviations 

between the two chemical kinetics models, not only on the stoichiometric surface, but 

also for all values of mixture fraction. Again, the effect of unsteadiness is larger than that 

of turbulence for most quantities, because the major influence of turbulence is on the 

spatial distribution of the shear layer flow field and mixture fraction, and the spatial 

distribution is diminished in both Table 7.2 and Table 7.4. Therefore, the observed 



 180 

deviation magnification in turbulent case is not primarily due to the chaotic system and 

strange attractor. Comparing to the unsteady laminar case, the addition of turbulence 

amplifies the deviations for some quantities, but reduces the deviations for some others. 

The former ones may come from different attractors in the chaotic system. However, for 

the latter ones, either chaos is not the dominant factor, or the altered attractor is very 

close to the original attractor in the chaotic system. At 20 𝑡𝑗, the deviation in unsteady 

simulation is nearly 100 K, which is hardly acceptable for high-fidelity prediction, and 

could significantly affect the prediction of many important quantities, including NOx 

emission. 

 To verify that CoDAC+CoTran does not affect the above observations, Table 7.4 

also provides its error quantification using Eqs. (7.4) and (7.5). The errors are one half to 

three orders of magnitude smaller than the corresponding differences between the two 

chemical kinetics models. Table 7.4 also includes the differences between GRI-Mech 3.0 

and GRIred11 to show the contribution from the global reduction of kinetics pathways to 

the total deviations. 

 To better understand the contribution to the total deviations from (a) the global 

reduction of kinetics pathways, and from (b) the differences in reaction rate coefficients, 

Table 7.5 shows the contribution of (a) to the total absolute deviations between the two 

chemical kinetics models, and the absolute deviation magnification factors for (a), (b), 

and total. The contribution of (a) is defined as the ratio of the deviations between GRI-

Mech 3.0 and GRIred11 to the deviations between GRI-Mech 3.0 and the 11-species 

model: 𝐶(𝑎)
𝜙

= 𝑑𝑒𝑣𝑎𝑏𝑠
𝜙,(𝐺𝑅𝐼 𝑣𝑠 𝐺𝑅𝐼𝑟𝑒𝑑11)

/𝑑𝑒𝑣𝑎𝑏𝑠
𝜙,(𝐺𝑅𝐼 𝑣𝑠 11−𝑠𝑝)

. In the 1D steady laminar case, 

part (b) dominates the total deviations for most quantities except fuels (CO and H2). In 

the 3D turbulent case, part (b) dominates the total deviations for all quantities. Both (a) 

and (b) are sensitive to unsteadiness and other turbulence effects, but for temperature and 

all major species, (b) is more sensitive than (a). In particular, (a) contributes 
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approximately 50% of the deviation for CO and more than 100% for H2 in the 1D steady 

laminar case, which indicates that (a) and (b) cause deviations in opposite directions for 

H2. However, the magnification factors of (b) for O and H2O are 21 and 18, respectively, 

which are 6~7 times larger than those of (a) and makes (b) the dominant factor in the 3D 

turbulent case. In addition, with only (a), even after the large deviation magnification (up 

to 7.5 times), the deviations are still within ~2% for temperature and major species. The 

global mechanism reduction can thus still be considered appropriate for use. In summary, 

(b) dominates the deviations and is more sensitive to unsteadiness and other turbulence 

effects. 

 

 

Contribution from (a) to 

total deviation (%) 

T 𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

1D steady laminar 36.73 50.0 >100 15.38 21.10 22.50 04.55 33.33 33.33 

3D turbulent 26.13 12.5 48.72 17.65 10.53 06.25 10.53 25.00 30.43 

Deviation magnification 

factor 

T 𝑌𝐶𝑂 𝑌𝐻2 𝑌𝑂2 𝑌𝐻 𝑌𝑂 𝑌𝑂𝐻 𝑌𝐶𝑂2 𝑌𝐻2𝑂 

(a) Reduced kinetics 

pathways 

2.63 03 03.8 7.50 04.74 2.22 3.00 4.00 3.50 

(b) Different RR 

coefficients 

4.32 21 10.0 6.36 10.77 9.68 1.21 6.00 4.00 

Total 3.89 12 13.0 6.54 09.50 8.00 1.30 5.33 3.83 

 

 

 Note that the above observations were shown to be insensitive to grid resolution 

in the grid convergence test, as presented in Figure 5.21. When the grid resolution is 

increased by a factor of 2 in all spatial directions, the temperature and mass fractions of 

H2O and H only change up to approximately 0.5% (7 K), 1%, and 5%, respectively. In 

contrast, for both grid resolutions, the deviations between the two chemical kinetics 

Table 7.5: Contribution from the global reduction of reaction pathways to the 

maximal (over mixture fraction Z) absolute deviations between GRI-Mech 3.0 and 

the 11-species model; absolute deviation magnification factors for (a) global 

reduction of reaction pathways, (b) different reaction rate coefficients, and total. 

Temperature and mass fractions of representative species. 
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models in temperature and mass fractions of H2O and H are approximately 6% (84 K), 

6%, and 20%, respectively, and these sizes are independent of the grid refinement. The 

spatially averaged transverse profiles provide similar mesh-independent results. When the 

grid resolution is increased by a factor of 2 in all spatial directions, the temperature and 

mass fractions of H2O and H only change up to approximately 1% (10 K), 1%, and 6.5%, 

respectively. In contrast, for both grid resolutions, the deviations between the two 

chemical kinetics models in temperature and mass fractions of H2O and H are 

approximately 5.3% (67 K), 5.5%, and 40%, respectively, and these sizes are independent 

of the grid refinement. 

7.4.2.3 Syngas Flame Structure 

 

 

 

 

 

Figure 7.9: Comparison of GRI-Mech 3.0 (upper) and 11-species model (lower): 

instantaneous 2D contours of vorticity magnitude at 𝟐𝟎 𝒕𝒋 (left) and 𝟒𝟎 𝒕𝒋 (right) on 

center plane (Z = 4H). 
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 To further investigate the effects of turbulence, which are not clear from the 

statistics in mixture fraction space, 2D contours of vorticity magnitude and mixture 

fraction obtained from turbulent simulations are shown in Figure 7.9 and Figure 7.10, 

respectively. The two chemical kinetics models produce similar vorticity magnitude and 

mixture fraction fields at 20 𝑡𝑗 (local extinction), but significantly different fields at  40 𝑡𝑗 

(re-ignition). However, the same comparison for 3D unsteady laminar simulations (not 

shown here) shows almost identical vorticity magnitude and mixture fraction fields from 

both the chemical kinetics models, with less than 0.6% deviations in peak values. The 

deviations in flow and mixture fraction field seem therefore likely to be the result of the 

complex turbulence-chemistry interaction. Furthermore, the vorticity magnitude field 

does not contain the initial isotropic turbulence at both time instants, but is dominated by 

the shear-generated turbulence triggered by the initial turbulence. At both time instants, 

the stoichiometric mixture fraction value of 0.42 is found inside the shear layers. 
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Figure 7.10: Comparison of GRI-Mech 3.0 (upper) and 11-species model (lower): 

instantaneous 2D contours of mixture fraction at 𝟐𝟎 𝒕𝒋 (left) and 𝟒𝟎 𝒕𝒋 (right) on 

center plane (Z = 4H). 

Figure 7.11: Instantaneous 2D contours of CO mass fraction at 𝟐𝟎 𝒕𝒋 (left) and 𝟒𝟎 𝒕𝒋 

(right) on the center plane (Z = 4H): GRI-Mech 3.0 (upper) and 11-species model 

(lower). 
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 The 2D contours of 𝑌𝐶𝑂 and 𝑌𝐻2 in turbulent simulations using the two chemical 

kinetics models are shown in Figure 7.11 and Figure 7.12, respectively. Due to fuel 

consumption, the levels of both CO and H2 decrease significantly from 20 𝑡𝑗 to 40 𝑡𝑗. As 

shown in Figure 7.8, the consumption of H2 is much faster than that of CO, as is 

consistent with the conditional statistics. This is because CO can only be consumed by 

combustion near the stoichiometric surface, but H2 can be consumed inside the hot fuel 

stream by thermal decomposition (chain initiation reaction H2+M=2H+M); this effect is 

also suggested by the spatial distribution of consumption rates of CO and H2 (not shown 

here). In Figure 7.8, at 20 𝑡𝑗 , the major deviations between the two chemical kinetics 

models are in the peak values and the volume occupied by the peak values, as is further 

demonstrated by the conditional mean statistics. In contrast, the deviations at 40 𝑡𝑗 are 

primarily in the spatial distribution, which is controlled by the flow field deviations 

shown in Figure 7.9. 
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 Since OH is the key radical consuming CO and releasing heat, its 2D contours 

from the two chemical kinetics models are presented in Figure 7.13. Interestingly, the 

contours of OH roughly wrap around those of H2 in Figure 7.12, which means that OH is 

mainly generated from the remaining H2 in the fuel stream via chain branching reactions 

(i.e., H+O2=O+OH, O+H2=H+OH). The behavior of OH is similar to that of temperature 

in Figure 7.5, which indicates local extinction and re-ignition. Even at 20 𝑡𝑗, however, a 

few disconnected small OH pockets survive and become the source of later re-ignition. A 

larger spread of OH in the transverse direction is clearly observed in the 11-species 

model as compared to GRI-Mech 3.0, especially at 40 𝑡𝑗; this also demonstrates that the 

model with a lower radicals-to-products conversion rate (11-species model) can cause 

more local extinction and less re-ignition under the effect of turbulence. 

 

Figure 7.12: Instantaneous 2D contours of H2 mass fraction at 𝟐𝟎 𝒕𝒋 (left) and 𝟒𝟎 𝒕𝒋 

(right) on the center plane (Z = 4H): GRI-Mech 3.0 (upper) and 11-species model 

(lower). 
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7.4.2.4 Scalar Dissipation Rate Statistics 

 Figure 7.14 presents a comparison of the two chemical kinetics models through 

2D contours in the symmetry plane of the scalar dissipation rate  𝜒 = 2𝐷∇𝑍 ⋅ ∇𝑍 , 

normalized by its extinction value 𝜒𝑞 = 961 𝑠𝑒𝑐−1, where 𝐷 is the mixture diffusivity, 

assuming unity Lewis numbers. A logarithmic scale is used here to account for the wide 

range of the scalar dissipation rate field. The stoichiometric mixture fraction iso-lines are 

marked as black curves. The contours clearly show that the flow is fully turbulent, and 

the high dissipation regions are concentrated in thin “laminar” sheets. The scalar 

dissipation rate is much more spatially distributed at  40 𝑡𝑗  than at 20 𝑡𝑗 , due to more 

transverse spreading of the shear layers, but the peak values are similar. The thin sheets 

of peak values are generally located near the stoichiometric surface, where mixture 

Figure 7.13: Instantaneous 2D contours of OH mass fraction at 𝟐𝟎 𝒕𝒋 (left) and 𝟒𝟎 𝒕𝒋 

(right) on the center plane (Z = 4H): GRI-Mech 3.0 (upper) and 11-species model 

(lower). 
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fraction has the largest gradients. As in the flow and mixture fraction fields, the two 

chemical kinetics models produce similar scalar dissipation rate distributions at  20 𝑡𝑗 

(local extinction) and different at  40 𝑡𝑗  (re-ignition), but the two chemical kinetics 

models show almost identical scalar dissipation rate fields in the 3D unsteady laminar 

simulations (not shown here). This suggests that the deviations in scalar dissipation rate 

also come from the turbulence-chemistry interaction. 

 

 

 

 

 

  In order to remove possible bias resulting from the unmixed oxidizer fluid [207], 

Figure 7.15 shows a comparison of the normalized PDFs of scalar dissipation rate on the 

stoichiometric surface (𝑍𝑠𝑡 ) from both chemical kinetics models. Results from both 

chemical kinetics models match well, except for some slight deviations in the left tail 

Figure 7.14: Instantaneous 2D contours of 𝐥𝐨𝐠𝟏𝟎(𝝌/𝝌𝒒)  at 𝟐𝟎 𝒕𝒋  (left) and 𝟒𝟎 𝒕𝒋 

(right) on the center plane (Z = 4H): GRI-Mech 3.0 (upper) and 11-species model 

(lower). 
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(normalized 𝜒𝑠𝑡 < −3). The results from both chemical kinetics models match well even 

for the un-normalized PDF, with the detailed comparison shown in Table 7.6. Re-ignition 

(40 𝑡𝑗) has a slightly smaller mean scalar dissipation rate than local extinction (20 𝑡𝑗), 

due to the spreading of mixture fraction. 

 

 

 

 

 

Statistics GRI-

Mech 

3.0 

(20 𝑡𝑗) 

11-

species 

model 

(20 𝑡𝑗) 

GRI-

Mech 

3.0 

(40 𝑡𝑗) 

11-

species 

model 

(40 𝑡𝑗) 

Mean 3.25 3.23 2.64 2.59 

2nd central 

moment 

0.25 0.25 0.43 0.42 

Standard 

deviation 

0.50 0.50 0.66 0.65 

3rd central 

moment 

-0.06 -0.06 -0.10 -0.08 

Skewness -0.48 -0.45 -0.34 -0.31 

 

Figure 7.15: PDF of normalized logarithm of scalar dissipation rate on the 

stoichiometric surface at 𝟐𝟎 𝒕𝒋 (blue) and 𝟒𝟎 𝒕𝒋 (red):  GRI-Mech 3.0 (solid lines), 

11-species model (dashed lines), and log-normal distribution (dash-lot line). 

Table 7.6: Statistics of non-normalized PDFs of scalar dissipation rate on 

stoichiometric surface (𝒁𝒔𝒕) from the two chemical kinetics models. 
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 Both chemical kinetics models show a negatively skewed mono-modal log-

normal-like distribution with small departure from the ideal log-normal distribution on 

both tails [207]. With respect to the ideal log-normal distribution, they both over-predict 

the PDF at the left tail (normalized 𝜒𝑠𝑡 < −2) and under-predict the PDF at the right tail 

(normalized 𝜒𝑠𝑡 > 2). This is the so-called “scalar intermittency” in turbulent mixing 

theory [13]. Therefore, the log-normal distribution, which is applied in flamelet methods 

to model 𝜒𝑠𝑡 [208], has low accuracy at high and low values of 𝜒𝑠𝑡, but good accuracy for 

the rest regions. Interestingly, re-ignition (40 𝑡𝑗 ) is slightly closer to the log-normal 

distribution than local extinction (20 𝑡𝑗), which indicates that the amount of intermittency 

decreases with the temporal evolution. Thus, the log-normal model in flamelet methods 

may perform better in long-term simulations of time-evolving problems, in which 

turbulence decays. The log-normal-like distribution is consistent with the results from the 

DNS study with over-resolved grid of Hawkes et al. [13] (this further confirms the use of 

reasonable grids in the present study). As tested, the continuous log-normal-like 

distribution of 𝜒𝑠𝑡 is only seen in turbulent combustion, while both 1D steady and 3D 

unsteady laminar simulations contain only one single value of  𝜒𝑠𝑡 . 

 The standard scalar dissipation rate 𝜒 is defined based on mixture fraction. At the 

same time, each species has its own scalar dissipation rate, defined as 𝜒𝑘 = 2𝐷𝑘∇𝑌𝑘 ⋅ ∇𝑌𝑘 

for the kth species, where 𝐷𝑘 is its mass diffusivity. As in Figure 7.15, normalized PDFs 

of stoichiometric 𝜒𝐶𝑂 and 𝜒𝑂𝐻 in the turbulent cases also approximately follow the log-

normal distribution, except in the two tails, while laminar cases only contain a few 

discrete values of stoichiometric  𝜒𝐶𝑂 and 𝜒𝑂𝐻 (not shown here).  

 Figure 17 presents the PDF of 𝜒/𝜒𝑞, 𝜒𝐶𝑂, and 𝜒𝑂𝐻 on the stoichiometric surface. 

The stoichiometric PDFs of 𝜒 and 𝜒𝐶𝑂 are similar to that of temperature (Figure 7.3), but 

are different from that of 𝜒𝑂𝐻  (which is more closely normally distributed). The most 
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likely 𝜒𝑠𝑡 of local extinction (20 𝑡𝑗) is 3.5 times larger than 𝜒𝑞 from the flamelet solution, 

while that of re-ignition (40 𝑡𝑗) is almost 2 times smaller than 𝜒𝑞. This result is consistent 

with the theory that short local time-scales could prevent chemical reactions from 

releasing enough heat to sustain combustion, and would thus result in extinction [209]. 

On the other hand, re-ignition (40 𝑡𝑗) has narrower PDFs than local extinction (20 𝑡𝑗) for 

all three scalar dissipation rates, for the same reason as the PDFs of temperature in Figure 

7.3.  
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Figure 7.16: PDF of (a) 𝝌/𝝌𝒒, (b) 𝝌𝑪𝑶, and (c) 𝝌𝑶𝑯 on the stoichiometric surface at 

𝟐𝟎 𝒕𝒋  (blue) and 𝟒𝟎 𝒕𝒋  (red), calculated using GRI-Mech 3.0 (solid lines) and 11-

species model (dashed lines). 
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 For the PDFs of all three scalar dissipation rates, the deviations between the two 

chemical kinetics models are small near the peak values. For both steady and unsteady 

laminar simulations, the PDFs of all scalar dissipation rates are mono-modal. Unlike 1D 

steady laminar simulations, however, the 3D unsteady laminar simulations using the two 

chemical kinetics models have different principal modes of scalar dissipation rates: only 

~2% difference for 𝜒, but 5%~6% for 𝜒𝐶𝑂, and 20%~55% for 𝜒𝑂𝐻, due to the unsteady 

shear layer expansion. The high sensitivity to (species-based) scalar dissipation rates 

results in large deviations in temperature and species concentrations in 3D unsteady 

laminar simulations. 

7.4.3 Global Pathway Analysis (GPA) 

 Global Pathway Analysis (GPA) [91, 92] is applied in the present works to 

understand the 3D turbulent non-premixed syngas/air flame simulated with the two 

different kinetics models, GRI-Mech 3.0 and 11-species model.  

 Due to the large number of the temporal-spatial points in the 3D dataset, Global 

Pathways are firstly identified from the simulation results of auto-ignition in a 0D closed 

reactor. The reactants are stoichiometric mixture of the fuel and oxidizer used in 3D 

dataset. The simulation is conducted at 1 atm and initial temperature ranging from 700K 

to 1300K, using both GRI-Mech 3.0 and 11-species models. The following Global 

Pathways are identified as the major Global Pathways from H2 to H2O. 

H2HOHH2O GP-H2-1 

H2  H  HO2  H2O2  OH  H2O GP-H2-2 

H2  H  HO2  OH  H2O GP-H2-3 
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 GP-H2-2 is a major Global Pathway for the case of GRI-Mech 3.0, but it is not 

defined for the case of 11-species model as H2O2 is not included in 11-species model. 

The net radical production, 𝑅𝐺𝑃, are illustrated in Figure 7.17 for GP-H2-1 and Figure 

7.18 for GP-H2-3. At 20 tj, two kinetics model predict similar RGP for GP-H2-1, which is 

producing radicals at this moment, as illustrated by the positive RGP shown in Figure 

7.17(a) and (c). However, for GP-H2-3, two kinetics model shows large deviation. GRI-

Mech 3.0 predicts weak radical consumption effect of GP-H2-3, shown in Figure 7.18(a), 

but 11-sepcies model predicts the radical consumption effect is dominant, shown in 

Figure 7.18(c). This indicate that 11-species model predicts more radicals being 

consumed. This difference becomes more clear as time goes to 40 tj. GRI-Mech 3.0 

predicts that GP-H2-1 is still producing radicals, shown in Figure 7.17(b), but 11-species 

model predicts that GP-H2-1 is consuming radicals for a large region. For GP-H2-3, GRI-

RGP [mole/m3-s]

(a) Temperature, 20 tj (b) Temperature, 40 tj

(a) GRI, 20 tj (b) GRI, 40 tj

(c) SKE, 20 tj (d) SKE, 40 tj

Figure 7.17: Instantaneous 2D contours of net radical production rate, RGP, 

associated with GP-H2-1, at 20 tj (left) and 40 tj (right) on center plane (Z = 4H): 

GRI-Mech 3.0 (upper) and 11-species model (=SKE: lower). 
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Mech 3.0 predicts that radicals are produced as well as consumed by this Global 

Pathway, depending on the local conditions, shown in Figure 7.18(b), but 11-species 

model predicts that GP-H2-3 is almost always consuming radicals at this moment, shown 

in Figure 7.18(d). These observations show that, GRI-Mech 3.0 predicts faster net radical 

production comparing to 11-species model, and this is true for both moments (20 tj and 

40 tj), which is consistent with the observation that GRI-Mech 3.0 statistically predicts 

less local extinction and more re-ignition comparing to 11-species model, shown in 

Figure 7.5. 

 

 

 

 

 

 In summary, this complex reacting system is analyzed by GPA using several 

Global Pathways describing the oxidization process from H2 to H2O. GPA finds that 

RGP [mole/m3-s]

(a) Temperature, 20 tj (b) Temperature, 40 tj

(a) GRI, 20 tj (b) GRI, 40 tj

(c) SKE, 20 tj (d) SKE, 40 tj

Figure 7.18: Instantaneous 2D contours of net radical production rate, RGP, 

associated with GP-H2-3, at 20 tj (left) and 40 tj (right) on center plane (Z = 4H): 

GRI-Mech 3.0 (upper) and 11-species model (=SKE: lower). 
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GRI-Mech 3.0 predicts more net radical production associated with the major Global 

Pathways, which explains the observation that GRI-Mech 3.0 predicts less local 

extinction and more re-ignition. 

7.5 Conclusions 

 To study the sensitivity of predictions to chemical kinetics models, two chemical 

kinetics models, GRI-Mech 3.0 [93] and an 11-species syngas model [13], are compared 

in a 3D finite-rate simulation of a temporally evolving turbulent non-premixed syngas 

flame with extinction and re-ignition.  

 Local extinction and re-ignition are clearly captured by both chemical kinetics 

models, with similar qualitative trends. However, significant quantitative deviations are 

observed, indicating that simulation of turbulent combustion is highly sensitive to the 

choice of chemical kinetics model. In particular, the temperatures predicted by the 11-

species model are consistently lower than those predicted by GRI-Mech 3.0 in 

stoichiometric PDFs and means (~86 K), conditional statistics (nearly 100 K), and 2D 

contours. This is due to the presence of fewer radicals-to-products conversions to release 

heat in the 11-species model. This is also manifested as prediction of more local 

extinction (mean T|Zst is 49 K smaller) and less re-ignition (mean T|Zst is 42 K smaller). 

As expected, the mixture-fraction conditioned mean deviations in major species are 

smaller than those in intermediate and minor species. In the conditional statistics on the 

major species, the deviations are significant for H2O, moderate for H2 and CO2, and 

negligible for CO. 

 Although the two models start with almost identical 1D steady laminar flamelet 

solutions, the prediction of the 11-species model gradually deviates from that of GRI-

Mech 3.0. The deviations in species concentration, temperature, and reaction rates form 

an interaction cycle to gradually reinforce each other under the effects of unsteadiness 

and turbulence. This reinforcement can change the dominant factors from the global 
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reduction of kinetics pathways to the deviations in reaction rate coefficients, causing 

deviations in directions opposite to those seen in 1D steady laminar solutions. In general, 

the deviations between the two chemical kinetics models increase sharply from the 1D 

steady laminar to the 3D unsteady laminar to the 3D turbulent simulations for most 

quantities, including temperature and major species. Thus, the absolute deviation in 

turbulent combustion simulations is up to 7 times larger than that in the 1D steady 

laminar solutions for temperature, up to 12 times larger for CO, up to 13 times larger for 

H2, up to 7 times larger for O2, up to 5 times larger for CO2, and up to 13 times larger for 

H2O. It can be concluded that the effects of unsteadiness and turbulence significantly 

magnify the sensitivity of turbulent combustion simulation to chemical kinetics. The 

deviations between the two chemical kinetics models include two major sources: (a) GRI-

Mech 3.0 contains 42 more species than the 11-species model, and thus contains 293 

more kinetic reactions related to those 42 species; and (b) for those reactions included in 

both models, their reaction rate coefficients are different. Both (a) and (b) are sensitive to 

unsteadiness and other turbulence effects, but (b) is the dominant part and is more 

sensitive to unsteadiness and other turbulence effects. Essentially, (a) means the reaction 

rates of those globally reduced kinetics pathways, which are linearly removed from the 

net path fluxes. In contrast, (b) the difference in reaction rate coefficients can grow 

exponentially. 

 In the stoichiometric means and conditional statistics of most quantities, the 

magnification of the deviations between the two chemical kinetics models due to 

unsteadiness is larger than that due to turbulence. Therefore, the effect of unsteadiness 

dominates the deviation in mixture fraction space. The two chemical kinetics models 

provide similar spatial distribution of vorticity magnitude, mixture fraction, and scalar 

dissipation rates at local extinction, but completely different fields at re-ignition, and 

these are dominated by the complex turbulence-chemistry interaction.  
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 Both chemical kinetics models show negatively skewed mono-modal log-normal-

like distributions for scalar dissipation rates, with small departures on both tails (that is, 

scalar intermittency). The log-normal distribution, which is used in flamelet methods to 

model 𝜒𝑠𝑡, is not accurate enough at high and low values of 𝜒𝑠𝑡, but should have good 

accuracy for the remaining regions. Interestingly, re-ignition is slightly closer to the log-

normal distribution than local extinction, which tends to indicate that the amount of 

intermittency decreases with temporal evolution, so the log-normal model in flamelet 

methods might perform better for time-evolving problems with decaying turbulence. Due 

to the expansion of the unsteady shear layer, the two chemical kinetics models have 

different principal modes of the scalar dissipation rates. Consequently, the high 

sensitivity to scalar dissipation rates results in large deviations in temperature and species 

concentrations between the two models.   
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CHAPTER 8  

CONCLUSIONS 

 

 This dissertation established a new framework for 3D DNS/LES of turbulent 

combustion by combining CoDAC, CoTran, and ODEPIM strategies. ODEPIM is a fast 

semi-implicit stiff ODE solver, which has accuracy approaching that of an implicit solver, 

and speed approaching that of an explicit solver. DAC utilizes the PFA method to reduce 

the kinetic mechanism for each location and time step, which significantly reduces the 

stiffness of the highly nonlinear kinetics system and greatly accelerates the calculation of 

the chemical source term. Thermo-chemical zones are introduced such that only one PFA 

calculation is required for each zone, which diminishes the CPU overhead of CoDAC to 

the point where it is negligible. CoTran uses a similar correlation technique to reduce the 

calculation of MAD transport properties, the dominant component of total CPU 

requirement after application of ODEPIM.  

 First, the framework was applied to accelerate the simulation of non-equilibrium 

plasma discharge of C2H4/O2/Ar mixtures in a low-temperature flow reactor. The 

accuracy and robustness of the new framework are extensively examined by comparing 

its results with those of previous simulations without the new methods. In particular, 

temporal evolution and spatial distribution of several key species and gas temperature are 

compared to verify the new framework. Temporal evolution of active species number 

shows periodic oscillation following that of gap voltage pulses. For this reason, CoDAC 

can efficiently reduce the size of ODE. Simulation results indicate that the new 

framework provides a speed up of 3.16 times in total, including 80 times for kinetics and 

836 times for transport. Therefore, the new framework significantly enhances the 

computational efficiency for simulations of plasma-assisted 

pyrolysis/oxidation/combustion with detailed plasma-combustion kinetics.  
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 Next, performance and accuracy of the framework was tested on a canonical 

turbulent premixed flame. Simulation results show that in this test, calculation of the 

chemical source term is 17 times faster with ODEPIM as compared to DVODE, a pure 

implicit solver.  The kinetics in the cold unburnt side is reduced to zero reaction, which 

reveals that the DAC provides an optimized local reduction. Overall, in this test, with 

ODEPIM+CoDAC, the chemical source calculation is 2.7 times faster than ODEPIM, 

and 46 times faster than DVODE. In this test, calculation of the transport properties is 72 

times faster, and the total calculation is 20 times faster than DVODE. In addition, parallel 

scaling tests show that the new framework has good weak scaling of speed-up and good 

strong scaling due to the minimization of MPI communication. Verifications of 2D 

contours, stream-wise spatially averaged flame structure, PDF profiles, and quantified 

errors illustrate that the new framework provides highly accurate results. In summary, the 

framework provides a significant speed-up of calculation of both chemistry and transport, 

which enables DNS with detailed kinetics, while maintaining high accuracy and good 

parallel scaling performance. 

 Based on above DNS framework, an efficient novel finite-rate chemistry (FRC)-

LES formulation is developed for numerical modeling of turbulent combustion. With this 

framework, simulations using both FRC-LES and flamelet/progress-variable (FPV)-LES 

approaches are conducted for a piloted partially premixed methane/air flame, which 

contains low level of local extinction and re-ignition. A 20-species and 84-reactions 

methane/air mechanism reduced from detailed GRI-3.0 is employed. In FRC-LES, the 

techniques of ODEPIM and CoDAC provide a speed up of 8.6 times for chemistry, and 

6.4 times for the total computation. The results of both approaches provide good 

agreement with experimental data. The two models have similar spatial distributions of 

time-averaged quantities. In terms of the instantaneous flame field, the FPV-LES 

approach predicts significantly smaller regions with high temperature than the FRC-LES 

approach, especially in the downstream intense flame region. This is because the FPV-
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LES approach predicts less CO level, which becomes the rate controlling step for one of 

the primary heat release reactions CO+OH=CO2+H. For axial profiles of time-averaged 

statistics, the FRC-LES approach is more accurate than the FPV-LES approach for both 

temperature and species, and this better fidelity is even more apparent for minor species. 

For radial profiles of time-averaged statistics, the two models have very similar 

predictions for temperature and mixture fraction, which agree reasonably with the 

experimental data. The deviations in the upstream region are generally smaller than those 

in the downstream region. For conditional statistics, the FRC-LES approach provides 

better predictions for both temperature and species. Compared to the FRC-LES approach, 

the FPV-LES approach predicts lower temperature near the stoichiometric region due to 

the bottleneck effect of CO, but predicts higher temperature on the fuel rich side where 

the limiting effect disappears. 

 To study the sensitivity of predictions to chemical kinetics models, two chemical 

kinetics models, GRI-Mech 3.0 and an 11-species syngas model, are compared in a 3D 

finite-rate simulation of a temporally evolving turbulent non-premixed syngas flame with 

extinction and re-ignition.  

 Local extinction and re-ignition are clearly captured by both chemical kinetics 

models with similar qualitative trends. However, significant quantitative deviations are 

observed, indicating that simulation of turbulent combustion is highly sensitive to the 

choice of chemical kinetics model. In particular, the temperatures predicted by the 11-

species model are consistently lower than those predicted by GRI-Mech 3.0 in 

stoichiometric PDFs and means (~86 K), conditional statistics (nearly 100 K), and 2D 

contours. This is due to the presence of fewer radicals-to-products conversions to release 

heat in the 11-species model. This also manifests in the prediction of more local 

extinction (mean T|Zst is 49 K smaller) and less re-ignition (mean T|Zst is 42 K smaller). 

As expected, the mixture-fraction conditioned mean deviations in major species are 

smaller than those in intermediate and minor species. In the conditional statistics on the 
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major species, the deviations are significant for H2O, moderate for H2 and CO2, and 

negligible for CO.  

 Although the two models start with almost identical 1D steady laminar flamelet 

solutions, the prediction of the 11-species model gradually deviates from that of GRI-

Mech 3.0. The deviations in species concentration, temperature, and reaction rates form 

an interaction cycle to gradually reinforce each other under the effects of unsteadiness 

and turbulence. This reinforcement can change the dominant factors from the global 

reduction of kinetics pathways to the deviations in reaction rate coefficients, causing 

deviations in directions opposite to those seen in 1D steady laminar solutions. In general, 

the discrepancies between the two chemical kinetics models increase sharply from the 1D 

steady laminar to the 3D unsteady laminar to the 3D turbulent simulations for most 

quantities, including temperature and major species. Thus, the absolute deviation in 

turbulent combustion simulations is up to 7 times larger than that in the 1D steady 

laminar solutions for temperature, up to 12 times larger for CO, up to 13 times larger for 

H2, up to 7 times larger for O2, up to 5 times larger for CO2, and up to 13 times larger for 

H2O. We conclude that the effects of unsteadiness and turbulence significantly amplify 

the sensitivity of turbulent combustion simulation to chemical kinetics.  

 The deviations between the two chemical kinetics models include two major 

sources: (a) GRI-Mech 3.0 contains 42 more species than the 11-species model, and thus 

contains 293 more kinetic reactions related to those 42 species; and (b) for those reactions 

included in both models, the reaction rate coefficients are different. Both (a) and (b) are 

sensitive to unsteadiness and other turbulence effects, with (b) being the dominant part 

and is more susceptible to unsteadiness and other turbulence effects. Essentially, (a) 

means the reaction rates of those globally reduced kinetics pathways, which are linearly 

removed from the net path fluxes. In contrast, (b) the difference in reaction rate 

coefficients can grow exponentially.  
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 In the stoichiometric means and conditional statistics of most quantities, the 

amplification of the deviations between the two chemical kinetics models due to 

unsteadiness is larger than that due to turbulence. Therefore, the effect of unsteadiness 

dominates the deviations in mixture fraction space. The two chemical kinetics models 

provide similar spatial distribution of vorticity magnitude, mixture fraction, and scalar 

dissipation rates at local extinction, but completely different fields during re-ignition, 

which are dominated by the complex turbulence-chemistry interaction. 
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CHAPTER 9  

FUTURE RECOMMENDATION 

9.1 More Efficient Approaches to Simulate Finite Rate Chemistry 

 The numerical framework developed in this dissertation, employing ODEPIM, 

CoDAC, and CoTran, has been proved both accurate and highly efficient for the 

simulations of turbulent combustion with detailed finite rate chemistry. 

 However, even with this framework, the finite rate simulations are still very 

expensive and are much slower than the corresponding simulations using FGM models. 

Therefore, based on the present framework, some further improvements are still needed 

for computational efficiency.  Based on the results of the present study, the following are 

some recommendations for future work. 

 First, although ODEPIM adopted in this dissertation is an efficient iteration based 

(semi-)implicit stiff ODE solvers for chemical kinetics, the non-iteration based stiff ODE 

solver, such as  analytic Jacobian solver [210, 211], could be more efficient than 

ODEPIM for many cases. In analytic Jacobian solver, the stiff ODE system is linearized 

to Jacobian matrices, and their analytic inversions are obtained and stored at the 

beginning of the simulation. Then only inverse matrices evaluation and matrix 

multiplication are required in all following time steps, and iteration operations become 

unnecessary. Analytic Jacobian solver requires fixed-size Jacobian matrices, but the 

CoDAC method dynamically varies the sizes of the Jacobian matrices in both space and 

time. This is why Analytic Jacobian solver has not been coupled with CoDAC method 

yet. One possible solution is to generate analytic inversions on the fly instead of pre-

processing. This could introduce significant computational overhead to calculate the 

analytic inversions, but a space-time correlation method similar to CoDAC and CoTran 

could possibly reduce this overhead to small enough. 
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 Second, the performance of CoDAC on HPC has loading balance issue. 

Generally, the classical domain decomposition distributes approximately equal number of 

grid points to each CPU core. However, when CoDAC is employed, some CPU cores 

have to solve relatively detailed chemical kinetics, while some others only need to solve 

relatively simplified chemical kinetics. Therefore, the workload of different CPU cores 

become very different, and many CPU cores waste a lot of time to wait for others. This 

issue is not very severe for DNS of canonical configurations, in which the orientations of 

the flames are well-know in advance. The user could decide to use Cartesian 

decomposition or pencil decomposition based on the orientations, and then the loading is 

roughly balanced again. However, for LES of complicated configurations, the 

orientations of the flames are complicated and vary dynamically. Therefore, the 

prescribed domain decomposition cannot solve the loading balance issue. This is a very 

challenging issue, and there is no obvious solution so far. Similar loading balance issue 

happens with adaptive mesh refinement (AMR) techniques and many new techniques to 

tackle the issue have been proposed during the past few years. Those techniques could be 

extended to CoDAC, and CoDAC could directly couple with AMR for better accuracy. 

 Third, CoTran could be generalized to efficiently evaluate both thermodynamics 

and transport properties of real fluids for supercritical mixing and combustion, with 

modified correlation criteria [212]. In addition, for transcritical and supercritical 

conditions, real fluid equations of state become necessary, and the key is to evaluate the 

compressibility factor Z=PV/(RT) via solving a cubic equation iteratively, which is also 

expensive. The time-space correlation idea could also be possibly applied to the 

evaluation of compressibility factor [212]. 

9.2 Future Development of FRC and FGM Models 

 The key for future development of FRC and FGM models is to find better balance 

between accuracy and efficiency. There are three major categories of attempts to improve 
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FRC and FGM models. The first category is improving the efficiency of FRC models. 

The second category is improving the accuracy and generality of FGM models. The third 

category is developing hybrid FRC/FGM models. 

 The first category has been discussed in details in Section 9.1. Although CoDAC 

effectively reduces the calculation of chemical source terms, the number of transport 

equations is still too large. As shown in Chapter 6, even the frozen FRC-LES without 

chemical source term is much slower than FGM-LES. For this reason, the next target is to 

reduce the number of transport equations. The simplest idea is to employ a small globally 

reduced chemical kinetics mechanism. However, to guarantee accuracy, even relatively 

small hydrocarbons require a reduced mechanism of ~40 species, which is still too large. 

Therefore, the first category alone cannot well handle this difficulty. 

 For the second category, normally each FGM model is designed and optimized 

for one single combustion regime. For this reason, how to handle the complicated multi-

regime problems using FGM models become challenging. The conventional way is to 

determine which regime dominates this problem, and then select the corresponding FGM 

model. Obviously, this way sacrifices the accuracy for other regimes, and in many cases, 

there is no single dominant regime. To tackle this issue, one solution is to dynamically 

assign different FGM sub-models based on some regime indicators [33, 213]. However, 

the treatment of the boundary between different FGM sub-models is tricky, and some ad 

hoc “corrections” are needed. A better way is to develop a more general FGM 

formulation to cover all combustion regimes [214], which could be reduced to the 

corresponding FGM model for each regime.  

 Most formulations to generate FGM tables are steady state equations. For this 

reason, although the conservative scalars and progress-variables are transported 

unsteadily, the FGM tables themselves are still in steady state, and have difficulty to 

capture the unsteady evolution history of turbulent flames, as shown in Chapter 6. There 

are some attempts of unsteady FGM formulation [215], but they are analytically 
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challenging, and have difficulty for multi-regimes generalization. In the future, more 

theoretical and analytical efforts are required for the development of unsteady FGM 

models. 

 To capture more physics in more complicated configurations, high dimensional 

FGM models are proposed. For example, multiple injectors are very common in engine 

combustors, which often provide different definitions of mixture fraction. To cover all 

these injectors, multiple conservative scalars are included as FGM look-up table 

parameters [216], which enlarge the dimension of the table. However, high dimensional 

tables require larger computer memory and more pre-processing time. In addition, the 

higher-dimension table results in more complicated data retrieval process and coarser 

table grid, which could introduce higher interpolation errors. To resolve this difficulty, 

one idea is to solve the FGM formulations dynamically instead of pre-processing to build 

look-up tables, but this will result in a primitive version LEM model and large 

computational overhead. Again, time-space correlation idea could be employed here to 

reduce this overhead. 

 The third category contains two major ideas. The first idea is still to dynamically 

assign FGM or FRC sub-models based on some regime indicators [33, 213]. However, 

the treatment of the boundary between FGM and FRC sub-models is even more 

challenging than that between two FGM sub-models, and thus more ad hoc “corrections” 

are needed. More importantly, this idea creates great loading balance issue: the CPU 

cores assigned with FGM models need to wait for those assigned with FRC models, thus 

the net computational time is not much reduced from pure FRC models due to this 

bottleneck effect. A better idea without loading balance issue is the hybrid transported-

tabulation strategy to downsize the number of species transport equations, proposed by 

Ribert et al. [217]. In this strategy, the detailed chemical kinetics mechanism is retained, 

but only species with non-zero concentration outside the flame layers are transported with 

the flow. Intermediate chemical species within the flame layers are expressed resorting to 
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their self-similar properties observed in a series of FGM formulations, and projected into 

an optimized progress variable defined from all transported species. Based on above 

discussion, the coupling between CoDAC and hybrid transported-tabulated strategy is a 

promising option for future attempts. 

9.3 Better Selection and Global Reduction of Chemical Kinetics 

 Based on Chapter 7, deviations from reaction rate coefficients are much more 

sensitive to unsteadiness than global reduction; therefore, it is relatively safer to conduct 

global reduction. In contrast, it is very risky to modify the reaction rate coefficients, 

especially the activation energy. For most cases, even after the magnification of 

deviations due to unsteadiness, the deviations from global reduction are still small (e.g. 

within ~2%). 

 Chapter 7 also shows that the conventional 0D/1D steady laminar validation and 

verification procedure is not enough for both selection and global reduction of chemical 

kinetics mechanisms. Therefore, unsteady/turbulent CFD simulations should participate 

into the validation and verification procedures. To accelerate the validation/verification 

process, the new framework with ODEPIM, CoDAC, and CoTran should be employed in 

the unsteady/turbulent CFD simulations. However, this also create higher requirement for 

experimental measurement, because temporal evolution data instead of time-averaged 

data become necessary for model validation. 
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