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SUMMARY 

It is a simple idea that there is an adversarial relationship between how quickly 

one performs an action and how well that action is performed. This phenomenon, known 

as the speed-accuracy tradeoff (SAT), has received some attention in the literature, 

notably through modeling work beginning in the 1960’s. However, it has not been 

measured as a cognitive construct using latent variable analysis, as is common with other 

constructs such as working memory capacity (WMC), fluid intelligence (Gf), attentional 

control, task switching, memory updating, and so on. The goal of the present study is to 

address this gap in the literature. Specifically, I propose that the ability to appropriately 

implement speed and accuracy across different tasks is an important executive function 

strongly related to higher-order cognition. I tested this hypothesis by implementing tasks 

of SAT in a large-scale correlational study involving measures of other constructs, 

namely WMC and Gf. Results are mixed, there is evidence that SAT can be measured at 

the latent level and that this construct relates to higher-order cognition. However, the 

magnitude of this relationship is small, and trial-by-trial analyses suggest that lower 

ability individuals are also capable of adjusting performance to meet task demands. 
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CHAPTER 1. INTRODUCTION 

From Luce (1986): 

…we face a very common problem in psychology: the existence of a tradeoff 

between dependent variables, in this case false alarms and reaction time. The only 

sensible long-term strategy is, in my opinion, to study the tradeoff… and to devise 

some summary statistic to describe it. (p. 56-57). 

In the 19th century, Hermann von Helmholtz connected an electrode to a frog leg 

and demonstrated that the speed of nerve conduction could be quantified. This seemingly 

pedestrian finding was a pivotal step in showing that reaction time (RT) can serve as a 

dependent variable to measure neuronal processing. RT has since become an important 

measure in psychology, even more so with the rise of information-processing (now 

cognitive) psychology. To that end, RT is the primary dependent variable used to 

measure cognitive processing today. 

The use of RT has its advantages, however, there is one major issue that is well 

known but often ignored. And that is the relationship between how quickly one performs 

an action against how well one executes said action. This relationship between speed and 

accuracy manifests itself in numerous ways. Across individuals, those who are more 

accurate also tend to be faster due to expertise. Similarly, within an individual, both 

speed and accuracy increase across extended periods of practice or training. But within an 

individual and at a particular period of time, emphasizing either speed or accuracy will 

result in a deficit in the other. That is, emphasizing accuracy will lead to the individual 
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slowing down, and emphasizing speed will result in the individual committing more 

errors. This sacrifice of either speed or accuracy for the other is known as the speed-

accuracy tradeoff (SAT), and it is perhaps the most ubiquitous and pervasive 

phenomenon we encounter in daily life.  
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CHAPTER 2. BACKGROUND  

2.1 Brief History 

 Although it is well known that humans balance speed and accuracy, the SAT had 

not been systematically studied in psychology up until the mid-late 1960’s (Fitts, 1966; 

Ollman, 1966; Pachella and Pew, 1968; Scouten and Bekker, 1967). It was around this 

time that mathematical decision models were first applied to speed and accuracy data 

from psychological tasks (Fitts, 1966). These models, known as random walk (Pearson, 

1905), assume that speed and accuracy are related stochastic processes and that 

information for a particular decision accumulates over time until a response is made. The 

random walk models soon proliferated into other nuanced models, one example being the 

Ratcliff diffusion model (Ratcliff, 1978). These models are incredibly useful in that 

different parameters can be estimated that represent bias for one response over the other, 

drift rate (i.e., rate of information accumulation), indecision time, and threshold (i.e., 

amount of information that needs to be accumulated before a response is made). The 

threshold parameter represents speed-accuracy tendencies. Despite their widespread 

usage, these models are not without their drawbacks. First, most of them are only suitable 

for measuring performance on very simple two-choice tasks in which decisions are made 

quickly and there are few stages involved in the decision process. Second, the models 

require hundreds or even thousands of trials in order to reliably estimate the parameters. 

 In terms of RT research, SATs are problematic because the assumption is made 

that all differences in performance will manifest through RT and that all individuals 

emphasize accuracy to the same extent. This is a tenuous assumption that can lead to 

faulty conclusions when violated. As an example, a subject taking an average of 5 

seconds to respond to a trial is said to have performed worse than a subject taking 4 
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seconds. But what if the first subject committed no errors whereas the second subject was 

barely above chance performance? It would seem that the first subject, despite being 

slower, performed the task better1. As such, any results from cognitive tasks using RT 

ought to be qualified with respect to accuracy as well. And while it is true that 

researchers often attempt to account for SATs in RT-based research by asking the subject 

to, “Respond as fast and accurately as possible,” this instruction is likely not sufficient. 

Subjects may not heed the instruction in the first place, or, even more likely, there will be 

individual differences in what subjects deem to be fast and accurate. Additionally, asking 

someone to respond, “As fast and accurate as possible,” requests two things that are 

inherently contradictory, analogous to asking someone to go as “northward as southward 

as possible.” 

2.2 How to Deal with SATs 

Given that SATs are a persistent issue in RT research, what recourse do researchers 

have?2 One option is to equate individuals on SAT via task design or instruction. 

Instructions to respond as quickly and accurately as possible are typically employed in 

RT research as a quick and easy method to account for the SAT, but again this instruction 

is likely insufficient. Researchers can, however, create or modify tasks in such ways that 

makes SATs less of an issue. One good example from our lab is the antisaccade task in 

which subjects see a cue on one side of the screen immediately followed by a target letter 

on the opposite side. The target letter is presented briefly and quickly masked such that if 

                                                
1 This is, of course, dependent upon task demands and assumes that subjects were given the 
typical instructions to be as fast as possible without sacrificing accuracy. If subjects were instead 
instructed to perform the task as fast as possible without worrying about making errors, then the 
faster subject did indeed perform the task better. 
2 SATs are also problematic for research using accuracy as the dependent variable, however many 
tasks that rely on accuracy scores do so in a manner that equates or controls for RT in some 
manner. As such, in the literature it seems that SATs particularly plague RT research. 
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the subject’s attention is captured by the anti-informative cue, he or she will miss the 

target. Because RT is unimportant in this task (the subject either sees the target or does 

not) and accuracy is the dependent variable of interest, I would argue that this task is 

unaffected by subject-level SAT tendencies. For this reason our lab is looking into 

designing and modifying more attention control tasks that operate like the antisaccade. 

Another option is to give subjects feedback on their performance level, which is designed 

to reduce the overall amount of errors thus holding error rates to a minimum such that RT 

can be looked at in isolation. The idea here being that if error rates are low, then subjects 

have been effectively equated in terms of one dependent variable and differences in RT 

can be trusted insomuch as the differences are not being affected by the SAT. 

 Another approach for accounting for SATs is to analyze the SAT rather than 

treating it as a nuisance, similarly to how differential research investigates variance 

among individuals instead of treating these inter-individual differences as error as in 

experimental research. One such method is to conditionalize accuracy by RT. Using what 

is known as the conditional accuracy function, accuracy rates are plotted within particular 

range of RTs. This method was used to good effect in a flanker task in Heitz and Engle 

(2007) to show attentional differences in low and high working memory individuals. This 

method is particularly well suited to post-hoc investigations of data, but the SAT can be 

studied more directly through a priori means. As mentioned, this can be achieved through 

modeling, requiring a lot of resources, but also experimental manipulation. The most 

common manipulations are response deadlines and payoff matrices. With response 

deadlines, subjects are given a limited time to respond on each trial. The amount of time 

can be the same for all subjects and conditions, or adaptive in some manner (e.g., 
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different for each subject based on their RT distribution from previous trials). Payoff 

matrices are used to reward subjects for responding per instruction. That is, when the 

instructions emphasize accuracy the subject is rewarded more for accuracy than speed, 

and vice versa for instructions emphasizing speed. These manipulations are a 

psychometric improvement over basic RT research, however individual differences are 

still an issue. Furthermore, how to set the deadlines and matrices requires preplanning 

and subjective decisions from the researcher. For instance, deadlines that are too long or 

too short will not be informative, and thus the researcher must have knowledge of the RT 

distribution beforehand (see Heitz, 2014, for a more thorough review of SAT history and 

methodology). 

Wickelgren (1977) argues that methods of either partitioning or directly 

manipulating speed and accuracy tradeoffs are so superior to RT methods that cognitive 

psychologists should use the former in most instances. We have argued similarly in our 

lab after reanalyzing RT data from task switching paradigms (Draheim, Hicks, and Engle, 

2015). In this particular dataset, the initial analysis using RT revealed that individuals of 

higher cognitive ability were actually worse at task switching than individuals of lower 

ability. However, this finding was a result of only looking at RTs, specifically RT-based 

difference scores (switch costs) that suffer from demonstrably low reliability and validity 

(e.g., Hughes, Linck, Bowls, Koeth, & Bunting, 2014; Paap & Sawi, 2016). When we 

considered accuracy, it became quite clear that higher ability individuals performed 

better, but that they had opted to slow down relative to lower ability individuals, 

particularly after committing an error. Reanalysis of data from Oberauer, Süß, Wilhelm, 

and Wittmann (2003) revealed a similar pattern, in which the reliability and strength of 
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the relationship of task switching to higher-order cognition was much lower with RT-

based scores and indeed improved when accuracy was taken into account. 

2.3 Present Study 

It has become increasingly clear to me that the ability to make an adjustment in 

speed and accuracy is a particular strategy that subjects adopt to meet the demands of the 

task at hand (see Draheim, Hicks, & Engle, 2015). That is, although it is true that some 

people may, in general, favor one over the other (e.g., elderly individuals opt for accuracy 

even when instructed to be fast; Forstmann et al., 2011; Starns & Ratcliff, 2010), it is also 

the case that adjustments in speed and accuracy are made in response to how difficult or 

demanding the task is, and how the subject feels he or she is performing on the task at the 

moment. This is because the optimal balance of speed and accuracy is not the same for all 

tasks, but depends on myriad factors such as the difficulty of the task, instructions on 

how to perform the task,  rewards or consequences of performing a certain way, and so 

forth. As such, some individuals will more efficiently alter their performance (i.e., speed 

and accuracy) to meet these demands. Some subjects will be more averse to making 

errors than others and therefore will react differently following an error. It does not seem 

like a stretch to hypothesize that differences in performance adjustment (i.e., SAT) will 

also relate to higher-order cognition, such as WMC, Gf, attention control, etc. As 

previously stated, some of our work provides support for this view, as does other work 

demonstrating that individuals of higher Gf show accuracy, but not RT, differences in 

task switching (e.g., Unsworth & Engle, 2008).  
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 The goals for the present study are therefore to demonstrate that SAT is an 

executive function that is related to WMC and Gf. The first challenge will be to establish 

that a single dependent variable of SAT can form a coherent latent variable, and the 

second is to model the relationship between this variable and higher-order cognition. 
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CHAPTER 3. METHOD 

3.1 Overview 

Results from the present study were collected as part of a larger study designed to 

answer numerous research questions. The experiment at large consisted of four two-hour 

long sessions completed on separate days and included forty-five tasks of nearly a dozen 

cognitive constructs. For my purposes, I will limit the focus to three constructs of 

interest; WMC, Gf, and speed-accuracy optimization (SAO). 

3.2 Constructs 

3.2.1 Working Memory Capacity 

Working memory is the ability to simultaneously maintain, process, and 

manipulate chunks of goal-relevant information in readily-accessible form (see Baddeley, 

1992, and Engle, 2002, for an overview). Working memory has limitations as to how 

much information can be maintained at any given time. As such, it is often measured in 

terms of capacity – estimated to be between three and five chunks of information for the 

typical young adult (Cowan, 2001). Working memory capacity (WMC) is an important 

construct in psychology as it has been shown to predict a wide range of cognitive abilities 

and real-world behaviors. For instance, individuals of higher WMC are better at 

multitasking (Hambrick, Oswald, Darowski, Rench, & Brou, 2010), task-switching 

(Draheim, Hicks, & Engle, 2016), language learning (e.g., Baddeley, Gathercole, & 

Papagno, 1998), language comprehension (e.g., Daneman & Merikle, 1996), attention 

control (e.g., Kane, Bleckley, Conway, & Engle, 2001), following directions (Engle, 
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Carullo, & Collins, 1991), reasoning (e.g., Kyllonen & Christal, 1990), and many others. 

Crucially, WMC shares a substantial amount of variance with fluid intelligence (Gf; 

Ackerman, Beier, & Boyle, 2005; Engle, Tuholski, Laughlin, & Conway, 1999; Kane, 

Hambrick, & Conway, 2005; Oberauer, Schulze, Wilhelm, & Süß, 2005), which is the 

ability to reason in novel situations. This relationship resulted in a separate line of 

research dedicated to exploring the efficacy of improving intelligence through working 

memory training (see Harrison et al., 2013), and indeed some commercial products claim 

that performing WMC-like tasks can make you smarter3. Additionally, WMC is 

important in clinical psychology as numerous psychopathologies and diseases are linked 

to deficits in WMC, such as attention deficit hyperactive disorder (Barkley, 1997), 

schizophrenia (Goldman-Rakic, 1994), depression (Joormann & Gotlib, 2008), and 

Alzheimer’s (Baddeley, 1991). 

We measured WMC with three complex span tasks: symmetry span, rotation 

span, and operation span. These tasks follow the same design, with the principle 

difference being the nature of the stimuli. Complex span tasks are dual tasks in which the 

subject answers a true/false “processing” question, and is then presented with a to-be-

remembered stimulus. After several such presentations, the subject recalls the to-be-

remembered stimuli in the correct serial order. The processing portion of the task thus 

serves as a distractor to prevent rehearsal, and the subject must maintain an active 

representation of the to-be-remembered stimuli in the face of this distraction and as 

proactive interference builds up. The presence of the processing trials is what 

                                                
3 I am not endorsing this claim, but am merely pointing it out in support of my argument that 
WMC is an important construct. 
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differentiates these measures from traditional simple span tasks, which measure short-

term memory. 

As an example (see Figure 1), in the operation span the subject first sees a simple 

arithmetic string (e.g., (2 x 3) – 3 = ?) and is then shown a number along with a “True” or 

“False” option. The subject indicates if the number accurately solves the arithmetic 

problem. After doing so, the to-be-remembered stimulus is displayed (a letter in the case 

of the operation span), and the process repeats some number of times depending on the 

set size for that particular trial. Once enough arithmetic and letter pairings have been 

displayed, a recall screen appears in which the subject has to recall all of the letters 

shown in the correct serial order. A common dependent variable is the partial span score, 

which is the total number of correct letters recalled in the correct position (Conway et al., 

2005). To ensure that subjects are fully attending to the processing portion of the task and 

not rehearsing the to-be-remembered stimuli instead, the processing trials have a subject-

adaptive response deadline equal to 2.5 SD’s above mean RT on the practice trials. 

Additionally, data from subjects who do not perform the processing trials with at least 

85% accuracy are typically thrown out. 

We administered only two blocks of each complex span task instead of the typical 

three (see Foster et al. 2015). Additionally, we added longer set sizes for each of the tasks 

(e.g., set sizes 8 and 9 for the operation span) in order to better discriminate high ability 

individuals (see Draheim, Harrison, Embretson, & Engle, 2017). Thus maximum scores 

for the rotation and symmetry span tasks is 54, and the maximum score for the operation 

span is 84.  Figure 1 shows the three complex span tasks that our lab typically uses. 
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Figure 1 – Illustration of the Complex Span Tasks. Subjects are shown a processing or 
distractor task and given their mean RT on practice trials + 2.5 x their SD to respond. 
Then the to-be-remembered stimulus is displayed. This process repeats a number of times 
until a recall screen appears. In the standard-length tasks, each set size from 3 to 7 is 
administered three times in the operation span, and each set size from 2 to 5 is 
administered three times in the symmetry and rotation span. We administered only two 
blocks and included two larger set sizes for each task. 
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3.2.2 Fluid Intelligence 

Gf is the ability to reason in novel situations, and is one of the two factors of 

general intelligence according to the Cattell (1963) model. We used three pattern 

recognition tasks to measure Gf: Raven’s Advanced Progressive Matrices (odd problems; 

see Figure 2), number series, and letter sets. In the Raven’s, subjects see a 3x3 grid of 

figures with the bottom-right figure missing, and have to choose which completes the 

figure out of eight possible choices. In the number series, subjects see several numbers 

and have to fill in the missing number that fits the pattern. In letter sets, subjects see five 

different four-letter combinations and must choose which one of the five combinations 

does not follow the pattern of the rest. The link between WMC and Gf is well established, 

and thus investigating the relationship between these two constructs is not of primary 

interest for this study (see Ackerman, Beier, & Boyle, 2005; Engle, Tuholski, Laughlin, 

& Conway, 1999; Kane, Hambrick, & Conway, 2005; Oberauer, Schulze, Wilhelm, & 

Süß, 2005). 
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Figure 2 – Example Problem from Raven’s Advanced Progressive Matrices. The 
goal is to choose which of the eight figures completes the pattern. In this example, the 
correct answer is #5 (I think). 
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3.2.3 Speed-accuracy Optimization (SAO) 

The measurement of the speed-accuracy variable is not as straightforward as the 

other constructs. Here I operationalize speed-accuracy optimization (SAO) as the ability 

to adjust performance in speed and accuracy in order to meet task demands and perform 

the task most effectively. I combined response deadline (Pachella and Pew, 1968) and 

payoff matrix (Fits, 1966) methodologies to create the three SAO tasks. All three 

followed a similar design shown on Table 1. After performing 48 trials under normal 

instructions (i.e., baseline trials), the subject’s mean RT for those trials was used to create 

an auditory response deadline for subsequent trials4. During those timed trials, the subject 

received both points and feedback based on their response. If the response was accurate 

and occurred before the response deadline (the beep), they received two points and saw, 

“Perfect!” in blue ink. If the response was accurate but after the tone, they lost a point 

and saw, “Too slow!” in red ink. If the response was inaccurate, but before the tone, they 

lost a point and saw, “Wrong!” in red ink. If the response was inaccurate and also after 

the beep, they lost two points and saw, “Wrong and slow!” in red ink5. In total, 384 trials 

in each task included the adaptive response deadline. The points accumulated from these 

trials served as the dependent variable for the SAO score. The rationale for using the 

points system was that each subject would have to find an optimal balance between speed 

                                                
4 The reason for using an adaptive response deadline is to account for individual differences in 
RT for these tasks, and thus eliminate variance due to processing speed. That is, if a subject is 
missing a deadline set from their individual distribution of responses, it is because they responded 
slowly in terms of their own performance, and not just because they responded slower than other 
subjects. 
5 Subjects were not shown a cumulative total of their points, but rather only the points they 
received on each trial immediately following the trial. 
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and accuracy to maximize their score, and that this optimal balance would be different for 

each subject depending on their ability and normal speed-accuracy tendencies.  

The specific tasks used were arrow flanker, line-length discrimination, and lexical 

decision task. In the lexical decision task, subjects see a letter string and must decide if 

the string represents an actual English word. Stimuli were chosen from the English 

Lexicon Project (Balota et al., 2007) such that all stimuli were four-letters long with a 

mean accuracy rate of 95-100% and a mean RT of between 600 and 700ms. In the arrow 

flanker, subjects focus on a cross fixation (+) at the center of the screen until a target 

arrow appears slightly above the fixation. The target arrow is flanked by two arrows on 

either side, and the subject must indicate which direction the central arrow is pointing 

(left or right). On congruent trials, the flanking arrows are in the same direction as the 

central arrow (    ); on incongruent trials, the flanking arrows are in the 

opposite direction (    ); and on neutral trials, the central arrow is flanked by 

dashes (--- ---  --- ---). An equal number of congruent, incongruent, and neutral trials 

were presented. In the line-length discrimination task, subjects were simultaneously 

presented two white bars on a black background and had to decide which one was longer. 

The bars were jittered such that the subject could not simply line them up to make a 

decision, and some bar pairings were long whereas others were short. The difference in 

the length of the bars was set to 35 pixels, which piloting indicated is about twice as long 

as the average subject’s threshold for 75% accuracy. 
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Table 1 – Trial Design for SAO Tasks.  

Amount of Trials Purpose Time to Respond Feedback 

8 Practice Infinite Accuracy 

48 Obtain Baseline RT 5000ms None 

48 SAO Mean + 1.5 SDs Time, Accuracy, and Score 

48 SAO Mean + .75 SDs Time, Accuracy, and Score 

48 SAO Mean Time, Accuracy, and Score 

48 SAO Mean - .75 SDs Time, Accuracy, and Score 

48 SAO Mean + 1.5 SDs Time, Accuracy, and Score 

48 SAO Mean + .75 SDs Time, Accuracy, and Score 

48 SAO Mean Time, Accuracy, and Score 

48 SAO Mean - .75 SDs Time, Accuracy, and Score 

Note. The tasks were counterbalanced such that half of the subjects received the trials in 
the exact order shown, and the other half received the SAO trials in reverse order (i.e., 
received the quickest response deadline condition first). Subjects had to be at a minimum 
accuracy of 75% on the practice block (at least 6 correct trials) in order to proceed to the 
experimental trials. If accuracy was lower, additional instructions appeared and the 
practice block was repeated. After three such instances, the experimenter was alerted and 
the subject was either given further instruction from the experimenter or dismissed from 
the study. 
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3.3 Subjects 

Our screening process required all subjects to be native English speakers aged 18-

35 (M = 24.5) with normal or corrected-to-normal vision. A total of 351 subjects (179 

female) completed all four sessions. Subjects were recruited from Georgia Tech (n = 86), 

Georgia State University (n = 36), and the greater Atlanta community (n = 229)6. Of the 

351 subjects, 180 indicated that they were currently attending, or had attended, college. 

Subjects were compensated at a rate of $10/hour plus a $10 completion bonus after the 

final session. Georgia Tech students enrolled in introductory psychology courses could 

choose to receive SONA participation credit instead of financial compensation (1 hour = 

1 credit = $10). Institutional review board approval was obtained for the study and there 

were no protocol deviations to report. 

 

                                                
6 The majority of the subjects were recruited from our existing database, as we ask all subjects if 
they would like to be contacted for future studies. New subjects were recruited primarily through 
flyers, newspaper, Craigslist, and SONA. 
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CHAPTER 4. RESULTS 

4.1 Correlational Results 

4.1.1 Task-level 

Descriptive statistics and zero-order correlations for all tasks in question are shown 

below (Table 2 and Table 3. As for reliability of the SAO tasks, I obtained internal 

consistency using an even-odd split-half procedure in which scores were separately 

calculated for each subject on even trials and odd trials, and then correlated with one 

another (stepping up the correlation via the Spearman-Brown prophecy formula). The 

SAO scores were highly reliable in terms of internal consistency estimates, with the 

lexical decision SAO task having a split-half coefficient of .98, and the other two tasks 

having a split-half coefficient of .99. Lastly, there was no significant difference in scores 

based on counterbalance conditions (i.e., if subjects received the trials in ascending or 

descending order in terms of the response deadline). 

What is of primary interest here is the relationship among the SAO tasks as well as 

the relationship of SAO to WMC and Gf. The SAO scores correlate fairly well with one 

another (r = .40 - .55), demonstrating convergent validity. The major concern is the 

different pattern in how the SAO tasks correlate with the WMC and Gf tasks. The flanker 

SAO score does not significantly correlate with any of the Gf scores (r = -.01 - .07), and 

only one WMC score (r = .03 - .16). However, the lexical SAO score correlates 

moderately and significantly (r = .24 - .39) with all of the WMC and Gf tasks. The line 

discrimination SAO task is in the middle, as scores correlate weakly (r = .10 - .18, two 
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significant) to WMC scores and not at all with Gf scores (r = .04 - .09, none significant). 

Another concern is that the line SAO scores are very leptokurtic, with a kurtosis at 4.0. 

At the composite level (Z-Score average across the tasks). WMC and Gf correlate quite 

strongly as expected, but more importantly the SAO composite scores correlate strongly 

with WMC (r = .33) and Gf (r = .29; Table 4). Also included on Table 4 are the Z-score 

composites for the number of missed deadlines in each of the SAO tasks. That is, how 

many times in each task the subject responded after the adaptive deadline across all 

conditions. This variable correlated highly with the overall SAO score unsurprisingly, but 

less with WMC and Gf (r = .20 and r = .14, respectively). Total accuracy on the SAO 

trials (i.e., trials in the SAO tasks that included a response deadline) was nearly 

isomorphic with the SAO score (r = .97), correlating similarly to WMC and Gf than the 

SAO score (r = .31 and r = .29, respectively), but correlating more weakly with the 

number of missed deadlines (r = .41). The difference between the correlations of SAO 

score to missed deadlines versus accuracy on SAO trials and missed deadlines was 

significant using Steiger’s (1980) recommended test of dependent correlations (t = 

116.996, p < .001). Lastly, total accuracy for the baseline trials of the SAO tasks (i.e., 

trials without the deadlines and scoring feedback) correlated strongly with WMC and Gf 

(r = .32 and r = .34, respectively), very strongly with the SAO score (r = .71), strongly 

with the number of missed deadlines (r = .39) and very strongly with the accuracy on the 

SAO trials (r = .72). 
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Table 2 – Descriptive statistics.  

Task M SD Min - Max Skew Kurtosis  
WMC       

1. OSpan 49.5 18.1 4 - 82 -.35 -.70  
2. SymSpan 23.5 10.1 4 - 50 .35 -.23  
3. RotSpan 21.5 9.7 3 - 47 .35 -.38  

 
Gf 

  
 

   

4. Raven 8.7 3.7 1 – 17 .14 -.90  
5. LetterSet 14.6 4.7 3 – 26 0 -.47  
6. NumSeries 8.1 3.2 0 - 15  .26 -.72  

 
SAO 

  
 

   

7. Line 278 66 -48 - 371 -1.5 4.0  
8. Lexical 211 75 -102 - 350 -1.1 1.7  
9. Flanker 282 54 33 - 364 -1.3 2.5  

Note. Ospan = operation span; SymSpan = symmetry span; RotSpan = rotation span. DV 
for WMC tasks is the partial span score. DV for the Gf tasks is the total number of 
correct responses. DV for the SAO tasks is the cumulative score for being fast and/or 
accurate on each trial. 
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Table 3 – Zero-order correlations of imputed WMC, Gf, and SAO scores. 

WMC Gf SAT
Task 1 2 3 4 5 6 7 8 9

1. OSpan 1.00

2. SymSpan .58* 1.00

3. RotSpan .55* .72* 1.00

4. Raven .45* .52* .58* 1.00

5. LetterSet .47* .45* .45* .54* 1.00

6. NumSeries .52* .50* .50* .67* .61* 1.00

7. Line .10 .15* .18* .08 .09 .04 1.00

8. Lexical .24* .31* .39* .36* .35* .35* .46* 1.00

9. Flanker .08 .03 .16* .07 .00 -.01 .55* .40* 1.00
Note. OSpan = operation span; RotSpan = rotation span; SymSpan = symmetry span. 
*p < .05. 
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Table 4 – Zero-order correlations of composite scores. 

Measure 1 2 3 4 5 6 7 8 

1. WMC 1.00 

  
 

    

2. Gf .67* 1.00 

 
 

    

3. SA Point Total .33* .29* 1.00  
    

4. SA Missed 
Deadlines .20* .14* .63* 1.00     

5. SA Accuracy .31* .29* .97* .41* 1.00   
 

6. SA RT .28* .29* -.09 .25* -.19* 1.00  
 

7. Baseline Trial 
Accuracy .32* .34* .71* .39* .72* .02 1.00 

 

8. Baseline Trial   
RT .32* .35* -.16* .13* -.14* .78* .05 1.00 

 

WMC = composite Z-score for the three complex span tasks. Gf = composite Z-score for 
the three reasoning tasks. SAO = composite Z-score of the cumulative score for each of 
the SAO tasks. MDL = composite Z-score of the cumulative missed response deadlines 
in each of the SAO tasks. SAcc = composite Z-score of the total accuracy in each of the 
SAO tasks on trials with response deadlines. BAcc = composite Z-score of the total 
accuracy in each of the SAO tasks on the baseline trials. Correlations involving MDL 
were multiplied by (-1) such that a positive correlation indicates that individuals who 
missed fewer deadlines also tended to score higher on the other tasks. 
* p < .05. 
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4.1.2 Exploratory Factor Analysis 

I conducted two different exploratory factor analyses on the data. The first was 

unrotated and did not specify any factors. From this, a general factor emerged due to 

positive manifold. Specifically, all task scores loaded .3 or higher onto a general factor, 

and the SAO task scores loaded .679 - .753 onto their own factor as well. For the second 

exploratory factor analysis three factors were specified and I used a varimax rotation such 

that simple structure would emerge. The results are shown below (Table 5). When simple 

structure was imposed using an orthogonal rotation, the highest loadings for the WMC 

tasks were on the first factor, the highest loadings for the Gf tasks were on the second 

factor, and the highest loadings for the SAO tasks were on the third factor. This provides 

support that the SAO tasks do indeed form their own coherent factor independent of 

WMC and Gf. 
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Table 5 – Exploratory Factor Analysis of WMC, Gf, and SAO Tasks. 

Task 

Factor 

1 2 3 

OSpan .758 .323 .016 

SymSpan .869 .264 .062 

RotSpan .814 .318 .202 

Raven .381 .758 .101 

LetterSet .257 .791 .154 

NumSeries .305 .842 .055 

Line SAO .091 .271 .815 

Lexical SAO .086 .044 .844 

Flanker SAO .047 -.003 .766 

Note. OSpan = operation span; SymSpan = symmetry span; RotSpan = rotation span. 
Varimax rotation was used to attain simple structure. Boldface indicates the highest 
factor loading for that variable. 
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4.1.3 Confirmatory Factor Analysis 

I ran a confirmatory factor analysis specifying three factors (WMC, Gf, and 

SAO), allowing them to freely correlate. Scale of measurement was established by setting 

one variable per factor to 1, and there were no crossloadings or correlated error terms. 

The primary area of interest in this model are the factor paths, which indicate the strength 

of the relationship between the different constructs. It is well established that WMC and 

Gf share a substantial amount of variance, but what about the SAO tasks? Additionally, 

will SAO be differentially related to WMC and Gf? 

As shown in Figure 2, the model fits well, with a CFI of .96, and the residuals are 

acceptable (RMSEA = .07). However, the model is significant with X²(24) = 51.41, p < 

.01, indicating that there are some relationships in the covariance matrix that are not 

adequately reproduced in the model. Ignoring this issue for a moment, it should be noted 

that the SAO construct shares a substantial and significant amount of variance with both 

WMC and Gf. The path from SAO to WMC is .44, and the path from SAO to Gf is .36. 

Again model is not ideal given that it is significant, but these results are encouraging and 

suggest that the ability to balance speed and accuracy to meet task demands is indeed 

highly related to higher order functioning. Furthermore, the data suggest a differentiation 

in the relationship of SAO to WMC and Gf, with SAO being more strongly related to 

WMC. 
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Figure 3 – Confirmatory Factor Analysis – Listwise Deletion. n = 213. OSpan = 
operation span; RotSpan = rotation span; SymSpan = symmetry span. All paths and 
loadings are significant at the .05 level. 
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One caveat in respect to the model above (Figure 3) is that listwise deletion was 

used. Of the 351 subjects from the study, only 213 had acceptable data for all tasks (i.e., 

non-zero scores within 2.5 SDs of the mean). To test whether this was a problem, I 

conducted an additional model equivalent to Figure 3 but with all subjects, using data 

imputation to fill in missing data. This model is shown below (Figure 4). Overall, the 

model fit, factor paths, and task loadings were very similar between the two models. The 

major change was the standardized path coefficient between WMC and SAO decreased 

from .44 to .37 when imputation was used. However, all paths were still significant and 

the loadings for SAO tasks remained high, thus I can still conclude that the SAO scores 

form a coherent latent factor that relate to WMC and Gf.  

 The confirmatory factor analysis shown in Figure 4 is also significant, meaning 

that there are relationships from the original covariance matrix that the model does not 

adequately account for. I used the Lagrange Multiplier Test to investigate which 

relationships would improve the model the most. The top three changes to the model that 

would most improve model fit were to crossload the lexical SAO task onto the Gf factor, 

to crossload the rotation span task onto the SAO factor, and to crossload the line SAO 

score onto the Gf factor. I decided to not make any of these changes to the model as the 

overall model fit was not an issue and I could not justify making these alterations. 
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Figure 4 – Confirmatory Factor Analysis – Imputation. OSpan = operation span; 
RotSpan = rotation span; SymSpan = symmetry span. All paths and loadings are 
significant at the .05 level. 
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4.2 Trial-level Analyses 

4.2.1 Post-error Slowing 

Trial-by-trial analyses can answer questions that mean-level analyses cannot. One 

example is the phenomenon of post-error slowing, in which subjects tend to be slower on 

a trial following an error. As discussed, we have shown that post-error slowing during 

task switching procedures interacted with WMC (Draheim, Hicks, & Engle, 2016). In 

short, higher ability individuals were much more likely to slow down after an error 

whereas lower ability individuals did not make this adjustment. As a result, higher ability 

subjects looked as though they were performing worse on the task when just RT was 

considered, but when considering accuracy and looking at trial-by-trial data, it became 

clear that this was not the case.  

Post-error slowing for the three SAO tasks are shown below (Table 6). When 

collapsing across all conditions for each task, there is a difference in mean RT in the 

flanker task (high spans are faster), but not the line discrimination or lexical decision 

SAO tasks. Most noteworthy is that high and low subjects alike exhibited post-error 

slowing in all three tasks and to the same degree, approximately 30ms (significantly 

different from 0 in all cases). That is, when feedback is provided such that subjects are 

aware of their errors, high and low cognitive ability individuals both show the same 

slowing on trials immediately following an error. I conducted the same analysis on 

accuracy to see how subjects’ accuracy rates changed after making an error (Table 7). In 

short, high spans were more accurate than low spans in all three tasks. However, neither 

group had differing accuracy rates before and after making an error. 
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Table 6 – Post-error slowing among high and low spans in SAO tasks. 

 
     Flanker  LineDiscrim        Lexical 

Variable (ms) High Low  High Low 
 

High Low 

PreRT 408 469 
 

460 482 
 

510 521 

PostRT 434 504 
 

489 503 
 

542 550 

Slowing 26 35 
 

29 31 
 

32 29 
Note. PreRT = Mean RT on trials preceding an error. PostRT = Mean RT on trials 
following an error. Highs and lows are defined by tertile split of composite WMC scores. 
Boldface indicates a statistically significant difference between highs and lows for that 
variable (p < .05). 
 
 
 
 

Table 7 – Post-error accuracy among high and low spans in SAO tasks. 

 
     Flanker  LineDiscrim        Lexical 

Variable (%) H L  H L 
 

H L 

PreAcc 94 89 
 

90 84 
 

88 77 

PostAcc 94 89 
 

90 84 
 

88 77 

Improvement 0 0 
 

0 0 
 

0 0 
Note. PreAcc = Mean accuracy rate on trials preceding an error. PostAcc = Mean 
accuracy rate on trials following an error Highs and lows are defined by tertile split of 
composite WMC scores. Boldface indicates a statistically significant difference between 
highs and lows for that  
variable (p < .05). 
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4.2.2 Performance Conditional on Score 

Related to the post-error slowing analysis, I conducted analyses on how subjects 

performed in terms of pre- and post-accuracy and RT contingent upon how they scored 

on the present trial. That is, if a subject is slow but correct (thus losing one point), are 

they more likely to speed up for the next trial? Similarly, how will subjects respond to 

being both slow and wrong? The analyses are shown in Tables 8, 9, and 10 below. 

 

Table 8 – Performance in flanker SAO task conditional on score. 

 
  RightSlow     WrongFast     WrongSlow 

Variable H L  H L 
 

H L 

PreRT 427 500 
 

403 462  420 488 

PostRT 414 485 
 

428 488  471 535 

Slowing -13 -15 
 

25 26  51 47 

PreAcc% 88 87 
 

94 91  88 82 

PostAcc% 92 88 
 

94 90  95 86 

Improvement 4 1 
 

0 -1  7 4 
Note. PreRT = Mean RT (in ms) on trials preceding the particular score. PostRT = Mean 
RT (in ms) on following trial. PreAcc% = Mean accuracy rate on trials preceding the 
particular score. PostAcc% = Mean accuracy rate on following trial. RightSlow = subject 
was correct but did not meet deadline. WrongFast = subject was wrong but responded 
before deadline. WrongSlow = subject was wrong and did not meet the response 
deadline. Highs and lows are defined by tertile split of composite WMC scores. The first 
and last trials for each block were excluded from analysis. Boldface indicates a 
statistically significant difference between highs and lows for that variable (p < .05). 
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Table 9 – Performance in line discrimination SAO task conditional on score. 

 
  RightSlow     WrongFast     WrongSlow 

Variable H L  H L 
 

H L 

PreRT 498 522 
 

457 476  486 527 

PostRT 476 492 
 

487 500  511 525 

Slowing -21 -30 
 

30 24  25 -2 

PreAcc% 81 81 
 

90 83  84 85 

PostAcc% 85 86 
 

90 83  86 84 

Improvement 4 5 
 

0 0  2 -1 
Note. PreRT = Mean RT (in ms) on trials preceding the particular score. PostRT = Mean 
RT (in ms) on following trial. PreAcc% = Mean accuracy rate on trials preceding the 
particular score. PostAcc% = Mean accuracy rate on following trial. RightSlow = subject 
was correct but did not meet deadline. WrongFast = subject was wrong but responded 
before deadline. WrongSlow = subject was wrong and did not meet the response 
deadline. Highs and lows are defined by tertile split of composite WMC scores. The first 
and last trials for each block were excluded from analysis. Boldface indicates a 
statistically significant difference between highs and lows for that variable (p < .05). 
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Table 10 – Performance in lexical decision SAO task conditional on score. 

 
  RightSlow     WrongFast     WrongSlow 

Variable H L  H L 
 

H L 

PreRT 537 569 
 

508 515  521 579 

PostRT 524 549 
 

535 539  596 616 

Slowing -13 -20 
 

27 24  75 37 

PreAcc% 77 72 
 

89 77  75 73 

PostAcc% 83 77 
 

88 77  85 74 

Improvement 6 5 
 

-1 0  10 1 
Note. PreRT = Mean RT (in ms) on trials preceding the particular score. PostRT = Mean 
RT (in ms) on following trial. PreAcc% = Mean accuracy rate on trials preceding the 
particular score. PostAcc% = Mean accuracy rate on following trial. RightSlow = subject 
was correct but did not meet deadline. WrongFast = subject was wrong but responded 
before deadline. WrongSlow = subject was wrong and did not meet the response 
deadline. Highs and lows are defined by tertile split of composite WMC scores. The first 
and last trials for each block were excluded from analysis. Boldface indicates a 
statistically significant difference between highs and lows for that variable (p < .05). 
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The results from the analyses conditional on score in the flanker SAO task (Table 

8) reveal that high spans are quicker than lows in all non-perfect conditions (e.g., trials in 

which the subject was not both accurate and met the response deadline). However, both 

groups made similar adjustments to performance after receiving feedback about being 

slow and/or inaccurate. When correct but not meeting the deadline, both groups slowed 

down by about 14ms and were slightly (but not statistically significantly) more accurate 

on subsequent trials. When wrong but meeting the response deadline, both high and low 

spans slowed by 25-26ms on the subsequent trial and maintained similar accuracy levels 

(evidence of post-error slowing as in previous analyses). Interestingly, when on trials in 

which the response was both slow and wrong, both groups slowed by about 50ms and 

improved accuracy by 4-7% on the subsequent trial. While the 7% improvement for high 

spans was significantly different from 0, and the 4% improvement for low spans was not, 

the two were not statistically significantly different from one another. Therefore in all 

conditions, high and low spans make similar adjustments to performance when given 

feedback and instruction to either speed up, slow down, or improve accuracy. Also 

noteworthy is that high and low spans were equal on overall accuracy except on trials 

preceding or following being both wrong and slow (missing deadline). 

In the line discrimination SAO task (Table 9), high spans were faster than low 

spans in all conditions. However, both groups sped up (21ms for high spans, 30ms for 

lows) when they were correct and missed the response deadline, and this was also 

associate with higher accuracy (by 4-5%) on following trials. When subjects were 

incorrect but met the response deadline, both high and low span subjects exhibited 

slowing (30ms & 24ms, respectively), but this was not associated with any change in 
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accuracy on the following trial. This was also the only condition with overall accuracy 

differences, as high spans were 7% more accurate on the trials preceding and following 

being wrong and fast. Finally, on trials in which subjects were both wrong and missed the 

response deadline, high spans adjusted by slowing down (25ms) with a slight, but not 

statistically significant, increase in accuracy (2%). Low spans made no real adjustment on 

these trials, as their performance was the same before and after being wrong and slow. 

In the lexical decision SAO task (Table 10), there were RT differences between 

highs and lows preceding and following trials in which they were right but missed the 

response deadline, as well as trials in which they were wrong and missed the deadline. 

But not when they were wrong and responded before the deadline. When correct and 

missing the deadline (i.e., slow to respond), both highs and lows sped up (13ms & 20ms, 

respectively) and this was associated with an increase in accuracy (6% & 5%, 

respectively). There were differences in overall accuracy between high and low span 

subjects (by 5-6%). In trials in which subjects were wrong but responded before the 

deadline, both highs and lows sped up on the following trial to the same degree (27ms & 

24ms, respectively), and there was no change in accuracy. Again there were overall 

accuracy differences between highs and lows here, too. Finally, on trials in which 

subjects were both wrong and missed the response deadline, both high and low span 

subjects slowed down, but high spans slowed down much more (75ms) than low span 

subjects (37ms). Interestingly, this was associated with a massive increase in accuracy on 

the following trial for high spans (10%), but not for low spans (1%). As a result, high and 

low spans had different accuracy rates after being both wrong and slow (85% & 74%), 

but not before (73% & 75%). These results will be discussed further below. 
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CHAPTER 5. DISCUSSION 

The major goals of this study were to demonstrate that SAO ability can be 

measured with a single dependent variable and that tasks measuring SAO ability form a 

coherent latent variable related to higher-order cognition. Results favor these hypotheses. 

Modeling analyses reveal that there are meaningful differences in the amount of points 

accrued (via accuracy and responding before response deadlines) even when feedback is 

given. These differences relate moderately (in terms of strength) with high-order 

cognition (i.e., WMC and Gf). However, the nature of the point system ought to be 

discussed, as results need to be qualified with respect to the methodology. Each subject 

received an adaptive deadline that was based on his or her performance on the 48 practice 

trials for each task. The deadlines were set based on standard deviations from their mean 

RT on correct trials during practice. While this is an improvement over using non-

adaptive response deadlines (i.e., the same deadline for all subjects), this method is not 

perfect. The extent to which subjects have differing RT distributions will make these 

deadlines easier or harder for certain subjects. For instance, a subject with a small 

variance in their RTs (narrow distribution) will encounter deadlines that are all very close 

to their mean performance, whereas subjects with larger variance will encounter very 

tough deadlines in the fast conditions but easier deadlines in the slower conditions. I did 

try to account for this by making it such that each deadline had to be at least 50ms 

different from the next (e.g., the fastest condition had to be 50ms faster than the second 

fastest, which had to be 50ms faster than the third fastest) and that there was an absolute 

limit for all deadlines (i.e., if deadlines were too slow or fast, they were adjusted to some 
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minimum or maximum) based on piloting work, but this is not a foolproof method. 

Therefore the deadlines might not have affected all of the subjects the same, thus not 

equating them as I had intended. I still contend that this method is an improvement over 

static (i.e., non-adaptive) deadlines, however. 

The SAO scores also correlated nearly perfectly with total accuracy on the SAO 

trials and strongly, but significantly less so, with the number of overall missed deadlines. 

This suggests that the SAO scores (i.e., points accrued by being quick and/or accurate on 

the response deadline trials) were heavily influenced by if the subject was accurate or not 

on each trial, and less so by their ability to respond before the response deadline. Missed 

deadlines also correlated weaker with WMC and Gf, demonstrating that high ability 

individuals and low ability individuals were relatively equal in terms of how many 

response deadlines they missed, but showed more differences in terms of overall 

accuracy (high ability individuals being more accurate). This is likely a product of the 

response deadlines being adaptive for each subject based on their baseline RTs. One 

caveat of the SAO score relating to higher-order cognition is that accuracy on both 

baseline and experimental (i.e., trials with deadline and scoring feedback) correlated 

similarly to WMC and Gf as the SAO scores did with WMC and Gf. As such, it can be 

argued that the SAO scores are merely a function of accuracy. Perhaps the SAO scores 

are not a reflection of the subject’s ability to balance speed and accuracy to meet task 

demands, but rather a general reflection of if the subject tends to be overall accurate or 

not. To answer this, I did another regression model predicting WMC from baseline 

accuracy and then SAO score. If the SAO score is nothing more than accuracy 

tendencies, it should not be a significant predictor above and beyond baseline accuracy 
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levels. Table 11 shows this regression model. When SAO score is entered after baseline 

accuracy, it still significantly predicts WMC, though admittedly the overall effect size is 

small SAO scores account for 2% more variance in WMC than baseline accuracy. Thus I 

argue that the SAO score is heavily influenced by baseline accuracy levels, but that the 

scores also reflect a bit more than just these accuracy tendencies, likely the ability to 

adopt a certain responding criterion in the face of changing task demands and quick 

deadlines. 

 

Table 11 – Predicting WMC from baseline accuracy and SAO score in the SAO 
tasks. 

 
 

 
Predictor 

 
R 

Adjusted 
R-Square 

 
SE 

 
p 

 
 

Step 1 

 
Baseline 
Accuracy 

 
 

.32 

 
 

.10 

 
 

.783 

 
 

<.001 

 
Step 2 

 
Baseline 

Accuracy + 
SAO Score 

 
 

.35 

 
 

.12 

 
 

.776 

 
 

.027 

Note. Baseline accuracy on the non-SAO trials from the flanker, line discrimination, and 
lexical SAO tasks were entered in step 1. In step 2, the SAO scores from the SAO trials 
of these tasks were entered. The outcome variable being predicted is the composite WMC 
score. 
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Interestingly, despite the latent variable of SAO ability relating to higher-order 

cognition, trial-by-trial analyses revealed that high and low subjects generally adjust to 

performance in a similar manner when given feedback. Across the three tasks, there were 

only two conditions in which high and lows differentially adjusted performance based on 

feedback – when both wrong and slow (i.e., missing the response deadline) in the lexical 

decision and line discrimination SAO tasks. In both of these cases, high spans responded 

to the feedback by slowing down (25ms in line discrimination, 75ms in lexical decision), 

but this only resulted in improved accuracy for the following trial in the line 

discrimination task (by 10%). Low spans did not slow down after being both wrong and 

slow in the line discrimination task, but did slow down in the flanker (by 47ms) and 

lexical decision SAO tasks (37ms). This slowing was not associated with increased 

accuracy on the following trials, however. It thus appears that high and low spans 

typically respond similarly when given feedback about performance, except in some 

cases in which their responses are both wrong and slow. In this case, it is more difficult to 

make the decision on how to alter performance since it is not clear if one should be 

quicker or emphasize more on accuracy. High spans seem to favor slowing down, 

sometimes associated with increase accuracy. Low spans also slow down, but to a lesser 

degree, and this does not result in higher accuracy. In conditions in which it is more clear 

on how to adjust performance (i.e., being slow but correct or quick but incorrect), high 

and lows adjust similarly when given feedback 

Given the totality of results from the trial-by-trial analyses, it seems the case that 

all subjects are capable of altering performance to meet task demands to the same degree, 

counter to the latent variable analyses. In my opinion, these results indicate that the SAO 
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scores derived from the tasks are not good estimates of actual SAO ability. I conducted 

analyses looking at if there were individual differences in the number of total deadlines 

missed, mean RT, or mean accuracy rates, and if so if these differences related to WMC 

and Gf. In terms of total accuracy, accuracy correlated significantly to WMC (.r = .15 in 

(flanker, r = .22 in line discrimination, and r = .32 in lexical decision) in the SAO 

conditions. However, WMC also significantly correlated with baseline accuracy in the 

practice trials (r = .23, r = 17, and r = .26, respectively) to the same degree. Therefore 

there was no interaction in terms of high spans being more accurate than lows in the SAO 

trials than the baseline trials. The pattern of results was the same for RT; there was a 

significant correlation between WMC and RT in the SAO trials (r = .42, r = .15, and r = 

.11, respectively) such that high ability individuals were faster. However, correlations 

were similar between WMC and baseline RT in the practice trials (r = .40, r = .14, and r 

= .19, respectively), suggesting no interaction. In terms of missed deadlines in the SAO 

conditions, missed deadlines correlated significantly with WMC in the lexical decision 

task (r = .18, p = .005) but not the line discrimination (r = .11, p = .079) or flanker (r = 

.12, p = .072). It therefore appears that there was a weak relationship between WMC and 

the amount of response deadlines subjects missed in the SAO trials7. As such, it appears 

that higher WMC individuals performed better on the SAO tasks (in terms of the score) 

due to higher overall accuracy rates, which results in more points earned. 

The post-error slowing findings are interesting given prior data from our lab 

demonstrating that there indeed are differences in post-error slowing among high and low 

                                                
7 Relationships between all of these discussed variables and Gf were very similar to the 
relationships to WMC, with the magnitude of the correlations being slightly smaller or slightly 
weaker in some cases. 
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span subjects. In particular, subjects in this study also performed a flanker task (96 trials) 

in which no feedback was given about their performance. The results from this task show 

that high spans (again, top third in terms of WMC composite score) slowed down after 

errors by an average of 55ms (527ms prior to error on average, 582ms on trials following 

an error on average), whereas low spans only slowed down by 30ms (592ms before error, 

622ms after). This 30ms for low spans is consistent with results from previously 

discussed analyses, but the 55ms is a much larger slowing for high spans. This difference 

in post-error slowing among highs and lows might be the result of the absence of 

feedback on every trial that was present in the analyses discussed previously. It therefore 

appears that the presence or absence of trial-by-trial feedback is a determining factor of 

how high and low spans differentially alter performance, particularly after making an 

error. These flanker data do potentially suggest one very key point, however, in that low 

spans may be aware of making errors even without being given direct feedback about 

their accuracy levels. More evidence in favor of this position ought to be obtained before 

making any strong conclusions, however. 
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CHAPTER 6. CONCLUSION 

More broadly, one end goal for this line of research is to establish that SAO is 

both an ability and an executive function related to higher-order cognition. The evidence 

from the present study suggest that these hypotheses are viable. A potential application of 

this is that impulsive individuals (e.g., those with A.D.H.D.) might benefit from programs 

aimed toward teaching them to favor accuracy over speed when the situation requires it, 

and to better evaluate whether the task at hand requires a greater emphasis of accuracy or 

speed. Such training will stand a better chance of being successful than attempting to 

increase intelligence through WMC training, because the goal is to train a particular 

strategy that can be applied universally, rather than train an entire construct in hopes it 

transfers to another. If these training programs were to be implemented, then formerly 

impulsive individuals would do better in class, score higher on standardized tests, and, in 

general, have a better quality of life because of their ability to perform tasks more 

efficiently and effectively.  

One useful takeaway from the trial-by-trial analyses is that low ability or 

otherwise poorly functioning individuals seemingly benefit from direct feedback, as they 

perform better when given feedback than when no feedback is present. As such, program 

could be implemented that are directed towards initially providing performance feedback, 

and then teaching subjects better self-evaluative skills such that direct feedback is no 

longer required.  

Ultimately, I argue that this study provides a starting point and lays the foundation 

for future researchers to use related methodologies to study the nature of SAO differences 
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and how low performing individuals can be instructed, taught, and/or trained to meet task 

demands not necessarily in the research lab, but in the real world. In the future, I intend to 

do conduct studies using a more in-depth modeling approach (e.g., diffusion modeling) to 

even better understand the nature of individual differences in adopting the optimal SAO 

to meet task demands. 
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APPENDIX A. DESCRIPTIVE STATISTICS FOR SAO TASKS 

 The following tables show more in-depth descriptives for the line, lexical 

decision, and flanker SAO tasks. Note that due to a coding issue, a couple variables are 

missing from the tables. The variables are labeled by condition, for instance 

“LDTVeryFastAcc” is the accuracy for the 96 trials of the lexical decision task that had 

the quickest response deadline. LexicalVeryFastMissedDL is total number of missed 

response deadlines for that same condition. LexicalMDL is the total number of missed 

deadlines across all conditions. “Score” refers to the points accrued in the trials with a 

response deadline. 
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Table A1 – Descriptive Statistics for Lexical Decision SAO Task. 
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Table A2 – Descriptive Statistics for Line Discrimination SAO Task. 
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Table A3 – Descriptive Statistics for Flanker SAO Task. 
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APPENDIX B. SCORES BY COUNTERBALANCE CONDITION 

Scores for the counterbalance conditions in the SAO tasks are shown below 

(Figure B1 and B2). There were no statistically significant differences. Note that these 

descriptives might not like up 100% with the descriptives from Table 2, and this 

discrepancy is due to using the imputed scores here rather than the raw listwise deletion 

scores. 

 

Figure B1 – Descriptive Statistics of Counterbalance Scores for Each Task. 

 

 

Figure B2 – Significance Testing of the Different Counterbalance Conditions. 
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APPENDIX C. EXPLORATORY FACTOR ANALYSIS WITH NO 

ROTATION 

Table C1 – Exploratory Factor Analysis of WMC, Gf, and SAO Tasks. 

Task 

Factor 

1 2 3 

OSpan .721 -.275 .290 

SymSpan .772 -.252 .411 

RotSpan .821 -.116 .343 

Raven .789 -.173 -.279 

LetterSet .748 -.093 -.385 

NumSeries .778 -.210 -.395 

Line SAO .526 .679 -.086 

Lexical SAO .385 .753 .077 

Flanker SAO .300 .702 .079 

Note. OSpan = operation span; SymSpan = symmetry span; RotSpan = rotation span. 
No rotation was used. Boldface indicates the highest factor loading for that variable. 
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