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SUMMARY

Fluid turbulence is ubiquitous in nature and technology. Despite the fact that

fluid flows are governed by the deterministic Navier-Stokes equation, turbulent phe-

nomena are notoriously difficult to characterize and predict. The difficulty largely

arises because turbulence is chaotic, i.e., it exhibits extreme sensitivity to initial

conditions; practical limitations in knowing the precise initial conditions render long-

term predictions impossible. Furthermore, turbulent flows have a very large number

of degrees of freedom because of their continuous dependence on space and time.

However, a growing body of recent research suggest that turbulent dynamics are ef-

fectively low-dimensional. Hence, an effective tool is needed which can both perform

dimensionality reduction and offer insight into the inherent chaos of turbulent flows.

In this dissertation, two methods of dimensionality reduction are explored in the

context of a quasi-two-dimensional (Q2D) fluid flow. This Q2D flow can be treated

as effectively 2D, making the experimental and numerical aspects of the study more

tractable than that of a fully three-dimensional flow. The first method explored

involves the calculation of exact, unstable solutions of the Navier-Stokes equation.

These solutions, often called “exact coherent structures” (ECS), exist in the same

parameter regime as turbulence and play an important role in guiding the dynamics.

In this work, experimental evidence for the existence and dynamical relevance of ECS

is provided, as well as the first experimental demonstration of how ECS can be used

to forecast weak turbulence. The second method, known as “persistent homology,”

provides a powerful mathematical formalism in which unique geometric features of a

flow field are encoded in a so-called “persistence diagram.” Persistence diagrams exist

xviii



in a well-defined metric space which enables one to make quantitative comparisons

between flow fields. The results herein demonstrate how persistent homology can be

used to characterize individual flow fields, make pairwise comparisons, and identify

dynamical structures in ensembles of data. The substantial progress presented in this

dissertation suggests that Q2D flows provide an excellent platform for testing new

approaches to understanding turbulence.
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CHAPTER I

INTRODUCTION

Fluid turbulence is a ubiquitous phenomenon present over a vast range of scales,

from the airflow around a hummingbird’s wings to the oceanic currents that make up

the Gulf Stream. Such flows are characterized by the irregular motion of eddies and

vortices (i.e., swirling flow structures) across different length and time scales. Due to

its universal presence throughout nature and technology, turbulence has been studied

for hundreds of years. In fact, in 1507 Leonardo da Vinci was the first person to

refer to swirling fluids as “la turbolenza” [3, 4]. In 1822, Claude Navier derived the

Navier-Stokes equation which governs incompressible fluids. Despite the nearly 200

years that the equation governing fluid flows has been known, turbulence still remains

a very active area of scientific and engineering research today.

1.1 Turbulent Flows are Chaotic and High-Dimensional

The Navier-Stokes equation for an incompressible fluid (∇ · v = 0) is given by:

∂tv + v · ∇v = −1

ρ
∇p+ ν∇2v +

1

ρ
F, (1.1)

where v = (vx, vy, vz) is the three-dimensional (3D) velocity, ρ is the density of the

fluid under consideration, p is the pressure, ν is the kinematic viscosity, and F is

the force per unit volume. The Navier-Stokes equation is deterministic in that once

a set of parameters and initial conditions are specified, the evolution of the flow is

completely determined. Nevertheless, the Navier-Stokes equation is challenging to

solve because of its nonlinearity, which appears in the advection term v · ∇v and

is associated with the fluid’s inertia. As a consequence of this nonlinearity, one

cannot find an analytic solution that describes the evolution of turbulent flow. In
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particular, because of this nonlinearity, solutions of the Navier-Stokes equation may

exhibit chaos. Chaos refers to extreme sensitivity to initial conditions, in which two

identical systems evolving from very similar initial conditions will eventually diverge

to vastly different states. Since infinite precision in determining initial conditions is

not possible in real world scenarios (due to, e.g., numerical truncation or experimental

uncertainty), long-term prediction of chaotic evolution is considered impossible. The

atmosphere is a common example of a system for which weather forecasting is limited

due to the chaotic nature of turbulence.

In addition to exhibiting chaos, turbulent fluid flows are high-dimensional. This

high-dimensionality does not refer to the four (three spatial plus one temporal) di-

mensions that fluid flows evolve in, but rather their continuous dependence on space

and time which gives rise to a high number of degrees of freedom. Consider, for

example, a snapshot of a fluid flow shown in Figure 1.1 (a). Suppose this flow field

is confined to two spatial dimensions in the x − y plane for the sake of simplicity,

and that a grid of n ×m vectors adequately resolves all features of the flow. Then,

one can construct a vector composed of the x- and y-components of velocity at each

point in space, which is represented in Figure 1.1 (b). This vector would then have

2 × n × m components, where in principle each component is a degree of freedom.

For flows realized in the laboratory, this dimensionality is often of order 105 or even

much higher.

In fact, the dimensionality of a fluid flow grows with the Reynolds number, Re.

The Reynolds number is the dimensionless ratio of inertial forces to viscous forces in

a fluid flow [5]. When Re is small, the damping effects of viscosity dominate, and

the flow is smooth and regular. As Re is increased, however, inertial effects take over

and fluid flows become turbulent. Scaling arguments show that the dimensionality of

a fluid flow grows quickly, as Re9/4 [6]. Due to this very high dimensionality, even at

moderate Re, characterization of turbulence is a challenging task for scientists and
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Figure 1.1: (a) An example 2D flow field resolved by n × m vectors, and (b) a
high-dimensional vector which can be used to specify the flow field shown in (a). The
color contour in (a) corresponds to the vorticity, and is only included for visualization
purposes.

engineers. When coupled with the fact that such flows are chaotic, the development of

a framework for forecasting and controlling turbulence poses a tremendous challenge.

1.2 Insight from Chaos Theory

The development of chaos theory, beginning in the 1970s, has led to the understanding

that complicated, aperiodic dynamics are not necessarily random, but often arise from

nonlinearities in the governing equations of a system. The framework of chaos has

helped explain the aperiodic dynamics observed in chemical reactions [7], lasers [8],

oscillators [9–11], and cardiac cells [12], to name just a few examples from nature and

technology. Nonlinear models exhibiting chaos have also offered unique insight into

population dynamics [13, 14] and economic fluctuations [15]. Methods for predicting

the evolution of a chaotic time series have been developed [16, 17], and even techniques

for controlling chaos have been proposed [18] and experimentally demonstrated [19,

20]. All of these aforementioned studies, however, have focused on low-dimensional

systems.
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At the same time that chaos theory was finding great success with low-dimensional

systems, there was a substantial scientific effort to use this newfound framework to

explain fluid turbulence. In an influential article published in 1971 [21], Ruelle &

Takens predicted that fluid turbulence could develop through the appearance of a

chaotic “strange attractor” after a series of just three bifurcations (bifurcations are

qualitative changes in a system’s behavior as some control parameter – usually Re for

fluids – is varied). In general, the term “attractor” is used to describe the asymptotic

dynamical behavior of a system; for example, the attractor for a swinging pendulum

with friction is an equilibrium, while the attractor for a swinging pendulum without

friction is a periodic state. The term “strange attractor” was introduced by Ruelle

& Takens because the asymptotic dynamics are chaotic. A few years later, Gollub &

Swinney experimentally confirmed this prediction in a study of Taylor-Couette flow

(the flow between two independently-rotating cylinders) [22]. In the following years,

more routes to chaos were discovered [23, 24] and several more examples of fluid flows

at low Re have emerged which exhibit the chaotic behavior typical of low-dimensional

nonlinear systems [25–27].

1.3 A Low-Dimensional Description of Turbulence

A growing body of evidence supports the notion that it may be possible to describe

turbulence using much lower-dimensional models. This possibility was perhaps first

recognized by Eberhard Hopf in a seminal paper published in 1948 [28], in which Hopf

invokes the state space representation of turbulence. Before discussing Hopf’s radical

insight on turbulence, this alternate description of turbulent dynamics is introduced.

In the state space picture of turbulence, each flow field corresponds to a unique

point in a high-dimensional state space. This concept builds on the discussion sur-

rounding Figure 1.1, i.e., the vector shown in Figure 1.1 (b) represents a specific flow

field and can be thought of as the set of coordinates for a unique point in state space.
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Figure 1.2: A cartoon showing a turbulent trajectory evolving in state space.

One can imagine that as a given flow field smoothly evolves in time, the corresponding

components of the vector continuously change. By plotting the sequence of points

from this continuously changing vector in state space, a smooth, winding trajectory

is swept out. The winding trajectory, which is an equivalent representation of the

evolution of the turbulent flow, is henceforth referred to as a turbulent trajectory in

state space. A two-dimensional (2D) cartoon representing a turbulent trajectory is

shown in Figure 1.2. This representation of turbulence is convenient for visualization

purposes and will be used often throughout this dissertation.

Näıvely, one may expect that a turbulent trajectory aimlessly wanders throughout

the entirety of state space. However, Hopf’s conjecture was that not all regions of state

space are visited, but rather a fluid’s viscosity contracts the turbulent dynamics onto a

finite-dimensional inertial manifold. A manifold is a topological space which is locally

Euclidean, so this inertial manifold is a finite-dimensional, smooth object in state

space which contains the global attractor of the system. In this picture, the simple

laminar state which a fluid exhibits at low Re corresponds to a single point comprising

the inertial manifold in state space. As Re is increased, the size of the inertial manifold

grows and a strange attractor may appear leading to chaotic dynamics. The prospect

of exploiting the low-dimensionality of an inertial manifold offers tremendous new
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insight into turbulent dynamics and the possibility for constructing effective low-

dimensional models. However, this framework requires that dimensionality reduction

be performed. In general, dimensionality reduction refers to any methodology in

which the full number of degrees of freedom is reduced to some smaller set which still

retains key aspects of the dynamics of the full system. Such methods are discussed

in the next section.

1.4 Dimensionality Reduction Methods for Characterizing
Turbulence

By the start of the 1980s, scientists were investigating how the nature of a low-

dimensional strange attractor underlying turbulence could be determined from ob-

servations of the actual fluid flow [29, 30]. The technological and computational

resources available at the time typically limited experimental data acquisition to a

time series of measurements performed at a single point in space. Examples from

simulations of low-dimensional chaotic systems demonstrated that analogous single-

point samples could be used to reconstruct properties of a strange attractor, such as

its dimension [29]. These studies led to the development of the time delay embedding

for characterizing the low-dimensional dynamics of turbulence.

1.4.1 Time Delay Embedding

A mathematical proof, now referred to as Takens’ theorem, was published in 1981 [31]

demonstrating that the properties of an attractor can be reconstructed from a single

time series of some observable φ(t). This methodology utilizes a time delay embedding

in which a vector Φ(t) = (φ(t), φ(t+ τ), φ(t+ 2τ), . . . , φ(t+ nτ)) is constructed from

the time series of data. The time between sample points τ is known as the time

delay and the number of components in the vector (which is equal to n+ 1) is known

as the embedding dimension. In general, one chooses a time delay based on some

characteristic time scale in the problem, such as an autocorrelation time. Then, for
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a sufficiently large embedding dimension, the plot of Φ(t) (or a projection if Φ(t) is

too high-dimensional) may recover the attractor. Algorithms have been developed

for using Φ(t) to calculate, e.g., the dimension and entropy associated with a strange

attractor [32]. For a thorough discussion of the dynamical properties that can be

obtained from experimental observations, see the review articles by Eckmann & Ruelle

[33] and Sauer, Yorke, & Casdagli [34].

Attractor reconstruction from experimental measurements was first demonstrated

for a chaotic chemical reaction in 1980 [35]. In the years since, however, there have

been relatively few studies involving turbulent fluid flows. Examples include investiga-

tions of Taylor-Couette flow [36, 37], convection [38, 39], and atmospheric boundary-

layer turbulence [40]; also worth mentioning is a study of channel flow simulations [41].

The relatively few examples of successful implementation of time delay embeddings is

likely due to the numerous difficulties associated with the method. For example, the

optimal choice for the time delay is far from obvious, although efforts have been made

to address this question [42]. Experimental noise also poses a problem for attractor

reconstruction. Several methods have been developed for performing noise reduction

[43, 44], but fundamentally, these methods rely on assumptions about the form of

the noise, which may not hold. It is also potentially problematic that measurements

are occurring at only a single point in space; the implicit assumption is that this

point is representative of the dynamics of the full system, which may not be the

case. Finally, this methodology is limited to cases where the reduced dimensionality

is very low (about 5 or less), as a time delay embedding breaks down if the embedding

dimension is too large [45].

1.4.2 Proper Orthogonal Decomposition

Even before chaos theory had emerged, the concept of coherent structures had grown
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to become an important research subject among the wider fluid mechanics commu-

nity [46]. Coherent structures refer to the very general concept of large-scale ordered

vortical patterns which are discernible and appear repeatedly in some turbulent flows.

Because coherent structures are large-scale and organized, it is reasonable to expect

that they play an important role in the turbulent dynamics and can perhaps be

captured by low-dimensional models. Hence, by performing some kind of a modal

decomposition which captures the coherent portion of the flow, it may be possible to

construct low-order models which offer insight into the basic processes driving turbu-

lence. Such a modal decomposition was first introduced in the context of turbulence

by John L. Lumley in 1967 [47]. This method is often referred to as proper orthogo-

nal decomposition (POD), although it is sometimes also called principal component

analysis or the Karhunen-Loève decomposition.

POD generates a set of orthogonal basis functions which contain the greatest

kinetic energy of a particular ensemble of data (experimental or numerical); these

highest-energy features often coincide with the coherent structures of a turbulent

flow. Once the set of basis functions is obtained, the Navier-Stokes equation can

be projected onto these modes. This projection typically uses a Galerkin method

to yield a set of ordinary differential equations (ODEs). These ODEs then provide

a low-dimensional deterministic model which is used to explore dynamical behavior.

The book by Holmes, Lumley, and Berkooz [48] is an excellent resource explaining

this methodology.

POD has formed the basis of several studies aimed at discovering the basic mecha-

nisms which generate turbulence. This methodology has offered physical insight into

the generation of turbulent phenomena in boundary layers [49–51], plane Poiseuille

flow [52–54], flow past a circular cylinder [55, 56], convection [57], and plane Cou-

ette flow [58]. For example, the low-dimensional model studied by Aubry et al. [49]

was used to demonstrate the mechanism by which “bursting” events (i.e., violent
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ejections of low-speed fluid near the wall) occur in boundary layers. These results

were directly used to explain observations from pipe flow experiments conducted two

decades earlier [59].

POD is still widely used among scientists and engineers for modeling a wide variety

of fluid flows throughout nature and technology. The low to moderate computational

costs associated these reduced models make POD a very appealing approach. How-

ever, despite its prevalence, there are substantial limitations to this methodology. In

these reduced models, basing the choice of modes on kinetic energy may not necessar-

ily capture the dynamics that generate a particular ensemble of data, as low-energy

features may play an important role. Furthermore, these modes do not relate to the

underlying dynamics at a fundamental level. Most importantly, it should be noted

that by performing such large truncations, these models only generate qualitative

results and thus have a limited scope for use in prediction or control.

1.4.3 Exact Coherent Structures

Further computational improvements leading into the 2000s have allowed for more

widespread implementation of direct numerical simulations (DNS) of fluid flows at

low to moderate Re, in which all relevant length and time scales are fully resolved.

Such DNS studies, coupled with advances in chaos theory and numerical analysis,

have led to the discovery of “exact coherent structures” (ECS), which are sometimes

also called “invariant solutions.” ECS are exact, unstable solutions of the Navier-

Stokes equation which have regular temporal dependence, meaning they correspond

to equilibria, traveling waves, periodic orbits, etc. These solutions can exist in or

near the inertial manifold so that when a turbulent trajectory passes close to an

ECS, the turbulent flow field transiently appears similar to the flow field associated

with the ECS. In a sense, ECS formalize the concept of coherent structures in that

they explain why similar patterns seem to repeatedly appear in turbulent flows—the
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turbulent trajectory is passing close to the same solutions repeatedly. It is for this

reason that Fabian Waleffe [60, 61] introduced the term ECS.

In many ways, ECS form a more natural basis for studying the dynamics of fluid

flows than POD modes. It is hypothesized that, in state space, a chaotic system

spends a substantial amount of time near such solutions [62]. Furthermore, ECS are

saddles in state space, meaning they will attract a turbulent trajectory from some

directions and then repel it away along others. The hope is that knowledge of these

directions can be exploited to forecast or even control turbulence. Hence, ECS form

the basis of a substantial portion of the work presented in this dissertation. A detailed

discussion of ECS is provided in Section 2.1, and results from the application of this

methodology are presented in Chapter 5.

1.4.4 Topological Data Analysis

A very appealing feature of time delay embeddings is that evidence for a low-dimensional

attractor can be obtained directly from experimental data. Approaches utilizing POD

or exact coherent structures involve numerical simulations and implicitly depend on

proper modeling of the flow (e.g., an accurate forcing profile or realistic boundary

conditions). The prospect of directly determining dynamical properties of a low-

dimensional attractor from experimental observations bypasses the potential difficul-

ties associated with simulations. This brings to mind the newly emerging framework

of topological data analysis (TDA), which offers a powerful new tool that is in many

ways in the same spirit as the time delay embedding.

TDA refers to a very general class of methodologies in which algebraic topology

is used for information extraction. Algebraic topology is the mathematical study of

properties of objects that are preserved through deformation, twisting, and stretching.

The underlying premise in applying TDA to turbulence is that the dynamics depend

on the system’s topology, i.e., the interconnectedness of the structures in the flow of
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the fluid. The primary tool for quantifying a system’s topology is persistent homology

[1, 63], which is a powerful mathematical formalism in which well-defined topological

characteristics are plotted as points in a so-called “persistence diagram” (PD). Points

in a PD can be interpreted as corresponding to either dominant topological features

or “noise” which can be neglected, hence providing dimensionality reduction. In

particular, dynamics can be quantified by applying various metrics to PDs, and these

associated distances can be used to construct a persistent homology state space.

Persistent homology is described in detail in Section 2.2.2 and used as a tool for

dimensionality reduction in Chapter 6.

1.5 Thesis Organization

This dissertation is organized as follows. In Chapter 2, an in-depth introduction to

exact coherent structures and persistent homology is presented, as well as motivation

and details of the fluid flow that has been analyzed in this work. In Chapter 3, the

specific flow configuration, which is known as “Kolmogorov-like flow” is introduced,

with an emphasis on reviewing the relevant literature, describing the experimental

setup in detail, and explaining the numerical modeling. Chapter 4 provides a com-

parison of the experiment with the numerical model at low Re by comparing the

primary and secondary bifurcations that are observed. In Chapter 5, a discussion of

how ECS can be used for dimensionality reduction of weak turbulence is presented;

this chapter also includes the first experimental demonstration of forecasting of weak

turbulence using ECS. Chapter 6 covers the application of persistent homology to

Kolmogorov-like flow simulations. Finally, Chapter 7 provides a discussion of the

conclusions which may be drawn from this work.
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CHAPTER II

BACKGROUND

This chapter presents a discussion of the background associated with each of the

two dimensionality reduction methods, starting with ECS and followed by persistent

homology. In each of these associated sections, motivation for studying Kolmogorov-

like flow is provided. Section 2.3 then offers an introduction to Kolmogorov-like flow

experiments.

2.1 Exact Coherent Structures

2.1.1 Overview of ECS

To understand the important role ECS play in the dynamics of a turbulent fluid

flow, it is convenient to again invoke the state space representation of the dynamics.

Recall that Figure 1.2 illustrates a turbulent trajectory in state space, which provides

an equivalent representation of the flow field evolving in time. In this example, the

trajectory is evolving on the inertial manifold of the system which corresponds to a

strange attractor (i.e., the dynamics are chaotic). As the system evolves, the turbulent

trajectory transiently visits the neighborhoods of ECS which are embedded in or near

the inertial manifold. This picture is illustrated in Figure 2.1 (a), where the red circles

represent the simplest class of ECS, unstable equilibria.

The saddle structures of the ECS play a key role in guiding the turbulent trajec-

tory. This saddle structure is illustrated in Figure 2.1 (b), where locally each ECS has

stable and unstable manifolds (red lines), i.e., directions which respectively attract

and repel a turbulent trajectory. The calculation of such manifolds should allow for

forecasting of turbulence over short to moderate time scales. The intersection of the
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Figure 2.1: (a) A cartoon showing a turbulent trajectory (black line) which visits the
neighborhoods of ECS embedded in or near the inertial manifold. Here the red circles
represent unstable equilibria, which are the simplest class of ECS. (b) A network of
heteroclinic connections (red lines) between ECS, which guide the evolution of the
chaotic trajectory.
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unstable manifold of one ECS and the stable manifold of another ECS forms a hete-

roclinic connection (if the associated stable and unstable manifold belong to the same

ECS, it is a homoclinic connection). The calculation of heteroclinic (and homoclinic)

connections is expected to allow for forecasting over longer time scales.

The frequency for which each ECS is visited by a turbulent trajectory depends

on the stability properties of that particular solution. ECS that are the least un-

stable are visited most often. These least unstable ECS will typically have unsta-

ble manifolds with the lowest dimensionality. Hence, the ECS that are the most

dynamically-relevant for the evolution of the turbulent trajectory also offer the great-

est dimensionality reduction in capturing the dynamics.

2.1.2 Previous Work in 3D Periodic Domains

The calculation of a network of ECS and their heteroclinic and homoclinic connections

promises tremendous advancements in characterization, forecasting, and perhaps even

control of turbulence. However, in practice, finding ECS requires numerical calcu-

lations that are so computationally expensive that they have only become possible

in the last 15 years or so. Hence, the development of an ECS-based description of

turbulence is still in its infancy. The vast majority of studies have been numerical

and have focused on calculating ECS in three-dimensional (3D) fluid flows, such as

plane Couette flow [64–67], plane Poiseuille flow [61, 68], and pipe flow [69–71]. In

particular, these studies have largely focused on transitional and weakly turbulent

flows at low Re. They also often use small experimentally-inaccessible flow domains

with periodic boundary conditions; for a thorough overview of such calculations, see

references [72, 73].

For plane Couette, plane Poiseuille, and pipe flows, periodic boundary conditions

are not realizable in experiments. Hence, making direct quantitative comparisons

between experiments and these simulations is difficult. For this reason, there have
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been very few experimental studies in which ECS have been identified in the labo-

ratory [74–76]. Theoretical studies of manifolds and/or heteroclinic connections are

also scarce [77, 78], and there have been no prior experimental validations of their

relevance.

The scarcity of experimental evidence for ECS is also due to the significant chal-

lenge posed by making temporally and spatially resolved velocity field measurements

in 3D. Such measurements require state-of-the-art imaging equipment, careful align-

ment of multiple cameras, storage of very large amounts of data, and sophisticated

algorithms with large computational overhead. Additionally, it is rarely if ever pos-

sible to measure the entire flow field simultaneously, and in the case of pipe flow,

the ability to track turbulent structures is limited by the finite domain size and open

(inflow-outflow) boundary conditions (i.e., the fluid eventually flows out of the end of

the pipe).

2.1.3 Previous and Present Work in 2D Domains

To circumvent many of the challenges associated with studying 3D flows, the analy-

ses described herein focus on a quasi-two-dimensional (Q2D) fluid flow which can be

considered effectively 2D from numerical and experimental standpoints. Experimen-

tally, Q2D flows at low Re offer an appealing test bed for studying ECS because they

only require a single camera for performing velocity measurements; this significantly

reduces the challenges of collecting, storing, and processing data. Furthermore, the

flow fields may easily be observed for arbitrarily long times, which is an attractive

feature for testing the forecasting capabilities of ECS. Finally, as will be demonstrated

in this dissertation, the experimental Q2D flow can be quantitatively described by a

strictly 2D model. This implies that simulations can be performed in 2D, which is

another very appealing feature from the computational perspective.

The work presented in this dissertation, however, is not the first to study ECS in

15



2D. In recent numerical studies by Chandler & Kerswell [79] and Lucas & Kerswell

[80, 81], dozens of ECS have been identified in weakly turbulent 2D flows. Specifi-

cally, Chandler & Kerswell’s work [79] was called “the most exhaustive study of this

programme undertaken so far in fluid dynamics” [82]. Unfortunately, the particular

parameters and boundary conditions of these simulations are nonphysical, prevent-

ing any possibility of direct comparison with experiments. The details of why these

particular parameters and boundary conditions are inaccessible to experiments are

highlighted throughout Chapters 3 and 4.

The goal then for the ECS-related work presented in this dissertation is to: (i)

introduce a Q2D experiment whose evolution can be described satisfactorily using a

strictly 2D equation, (ii) compare results from the experiment with those computed

numerically using the 2D model in the preturbulent regimes (low Re) as a bench-

marking exercise, (iii) provide evidence for the existence and dynamical relevance of

ECS in the weakly turbulent regime, and (iv) forecast weak turbulence using the

dimensionality reduction offered by ECS.

2.2 Persistent Homology

2.2.1 Computational Homology

Homology is a branch of algebraic topology which characterizes global geometric prop-

erties of patterns in some topological space. The homology of a pattern is described

by a set of non-negative integers, known as “Betti numbers,” which describe the con-

nectivity of that pattern. For an N -dimensional pattern there are N Betti numbers,

denoted βk, where k = 0, 1, 2, ..., N − 1.

Each βk is associated with a unique topological property of the pattern. The

zeroth Betti number, β0, corresponds to the distinct, connected components. For

example, Figure 2.2 (a-b) show two simple, one-dimensional (1D) patterns, for which

β0 = 2 and β0 = 9, respectively. For a 2D pattern, such as those shown in Figure 2.2
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(a) (b) (c) (d)

Figure 2.2: Example 1D and 2D patterns with Betti numbers (a) β0 = 2, (b) β0 = 9,
(c) β0 = 4, β1 = 3, and (d) β0 = 42, β1 = 8.

(c-d), the additional Betti number β1 corresponds to holes (or alternatively loops).

For example, Figure 2.2 (c) has Betti numbers β0 = 4 and β1 = 3, while for the

complicated image in Figure 2.2 (d), β0 = 42 and β1 = 8. For 3D patterns, the

additional Betti number β2 corresponds to cavities. Three hollow 3D objects are

shown in Figure 2.3. For the open cylinder, β0 = 1, β1 = 1, and β2 = 0, while the

case of the hollow sphere corresponds to β0 = 1, β1 = 0, and β2 = 1; the hollow torus

has Betti numbers β0 = 1, β1 = 2, and β2 = 1. Note that the two holes/loops arise

from the separate enclosures along the toroidal and poloidal directions.

As demonstrated, homology characterizes the connectivity of N -dimensional pat-

terns. Several numerical packages, such as CHomP [83], are freely available and have

been developed for performing computational homology. Inherently, this analysis tech-

nique quantifies connectivity in binary discretized patterns, such as those shown in

Figures 2.2 and 2.3. However, quantities that are measured or simulated in many

systems are continuous functions (e.g., velocity or temperature fields), and hence

thresholding is required to generate such binary patterns. The concept of computa-

tional homology can be extended to utilize the topological information contained in

the functional dependence of such quantities—one such formalism is that of persistent

homology.
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(a) (b) (c)

Figure 2.3: Example 3D shapes that when analyzed using homology yield the follow-
ing Betti numbers: (a) β0 = 1, β1 = 1, and β2 = 0 for an open ended cylinder, (b)
β0 = 1, β1 = 0, β2 = 1 for a hollow sphere, and (c) β0 = 1, β1 = 2, β2 = 1 for a
hollow torus.

2.2.2 Overview of Persistent Homology

The principal aspect of the persistent homology analysis is the construction of per-

sistence diagrams (PDs), which each contain a set of points p corresponding to well-

defined topological features of the pattern being analyzed. For an N -dimensional

pattern, N PDs are generated, each associated with the aforementioned forms of

connectivity (components, holes, etc.). In this brief overview, persistent homology is

explained for the 1D case using a continuous, real function f : R→ R. Recall that

a smooth real function f(x) is said to have a critical point at x if f ′(x) = 0. Each

(non-degenerate) critical point corresponds to either a local minimum or a local max-

imum of f(x). To construct a PD, a threshold θ ∈ R is varied from −∞ to ∞ and

the connectivity of the sublevel set:

C(f, θ) = {x ∈ R | f(x) ≤ θ} (2.1)

is considered. This connectivity only changes when a local minimum (at critical point

xmin) or local maximum (at critical point xmax) is encountered. At a local minimum, a

new component appears, which is called a birth; at a local maximum, two components

merge to form just one, which is called a death. When a death is encountered, it is

paired with the highest, adjacent birth and a point (f(xmin), f(xmax)) is plotted in
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the persistence diagram.

To illustrate this methodology, consider the 1D pattern shown in Figure 2.4 to the

left. The critical points have been labeled xi for i = 1, . . . , 6, where {x2, x4, x6} cor-

respond to local minima and {x1, x3, x5} correspond to local maxima. As a threshold

θ is swept along the vertical axis from −∞ to ∞, the first local minimum or “birth”

is encountered at (x4, f(x4)). Continuing, another birth is encountered at (x2, f(x2)).

Next, a local maximum or “death” is encountered at (x3, f(x3)); this death is then

paired with the point (x2, f(x2)) because it is the highest, adjacent birth, and a point

(f(x2), f(x3)) is plotted in the PD to the right. As θ is increased further, another

birth is encountered at (x6, f(x6)), then a death at (x1, f(x1)). This death cannot be

paired with (x6, f(x6)) because it is not adjacent, nor can it be paired with (x2, f(x2))

because that point has already been paired. Hence, the death at (x1, f(x1)) is paired

with (x4, f(x4)), and a point is plotted in the PD at (f(x4), f(x1)). Finally, a death

is encountered at (x5, f(x5)) which is paired with (x6, f(x6)) and a point is plotted

in the PD at (f(x6), f(x5)). This 1D example illustrates the general methodology

for generating a PD. For the case of the 2D patterns analyzed in Chapter 6, a 2D

example is provided.

There are a few important properties of PDs that should be noted. Firstly, as

a consequence of considering the sublevel sets (i.e., sweeping the threshold up), all

points in a PD will be above the diagonal. Secondly, the vertical distance between

the diagonal and any given point in the PD is called the life span. Points far from the

diagonal correspond to features in the pattern which persist the longest, and hence

are considered the most dominant features. Points close to the diagonal are viewed as

small scale features or “noise,” which one may choose to ignore. Figure 2.5 illustrates

this concept. In (a), a smooth function is shown in black, while a similar but noisy

function is shown in red. The points in each corresponding PD, shown in (b), are

very similar with the exception that the red function has several more (potentially
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x

f (x)

x1 x2 x3 x4 x5 x6 Birth

Death

Figure 2.4: A 1D function (left) with three local minima and three local maxima. The
critical points are paired as indicated to form three points in the persistence diagram
(right). This figure is adapted from reference [1].

negligible) points near the diagonal which are generated by the noisy features. This

treatment of noise is an appealing feature in the context of analyzing experimental

data, which is often noisy. By constructing a PD, a substantial dimensionality re-

duction has been performed. For the example shown in Figure 2.5, a function which

has continuous spatial dependence undergoes a substantial reduction to 3 dominant

points in the PD. Finally, it is emphasized that persistent homology is symmetry-

independent. For example, observe that if the black function in Figure 2.5 (a) were

reflected or translated along the x-axis, the resulting PD would remain unchanged.

Now since in certain cases symmetries of a system allow for such transformations, it

is clear that persistent homology automatically removes the redundancies which may

arise due to symmetry operations.

An important feature of persistent homology is that it also provides a framework

for making quantitative comparisons between patterns. This is done by applying

a metric to measure the distance between two PDs denoted PD and PD′. There

are a variety of metrics that can be imposed on persistence diagrams [84–87]. One

commonly used metric is the bottleneck distance, which is defined between PD and
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Figure 2.5: An example illustrating how persistent homology handles noisy data. (a)
Smooth and noisy 1D functions shown in black and red, respectively. (b) The PDs
superimposed on top of each other with the same color convention as the functions.
Notice that the dominant far-from-diagonal points do not change much, but the red
function generates several additional points near the diagonal which correspond to
the noisy features.

PD′ as:

dB(PD,PD′) = inf
γ : PD→PD′

sup
p∈PD
‖p− γ(p)‖∞, (2.2)

where ‖(a0, b0) − (a1, b1)‖∞ := max {|a0 − a1|, |b0 − b1|} and γ ranges over all bi-

jections between persistence points. Similarly, the degree-q Wasserstein distance is

defined as:

dW q(PD,PD′) =

[
inf

γ : PD→PD′

∑
p∈PD

‖p− γ(p)‖q∞

]1/q

. (2.3)

Each calculation involves matching the points p ∈ PD in a one-to-one correspondence

(bijection) with the points in PD′. According to the definition, every persistence

diagram contains an infinite number of points along the diagonal. Hence, there are

many different bijections γ between PD and PD′. Roughly speaking, the distance

between PD and PD′ is defined using the bijections that “minimize the shift” in the

mapping of the points p from PD to γ(p) in PD′. This is illustrated in Figure 2.6,

where (a) shows two superimposed PDs; the black lines between the points indicate

the most efficient way of moving the blue squares to form the configuration of the red

circles. In (b), all possible bijections γ(p) are illustrated with gray lines; the black
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Figure 2.6: An illustration of how distances are computed between PDs. (a) Two
PDs represented by red circles and blue squares, with black lines indicating the least
cost bijection. (b) A graphical representation of all possible bijections (gray lines)
and the most efficient bijections (black lines). Any point on a PD can be matched to
the diagonal, denoted ∆. This figure is adapted from reference [2].

lines correspond to the bijection with the minimized distance.

It is convenient to imagine the metrics as quantifying distance in a persistent

homology state space. In this picture, the persistent homology state space can be

thought of as the set of all possible PDs, henceforth referred to as Per. Then, the

PD for a given pattern corresponds to a single point in Per. By generating the PDs

for several patterns, one then obtains a so-called point cloud, which is nothing more

than a collection of points in some space (in this case, the space is Per). A point

cloud could be generated from many different types of data; for example, the points

may correspond to discrete samples from a system evolving in time. By applying

persistent homology a second time to characterize the connectivity of this point cloud

in Per, useful information about the dynamics can be obtained; for example, period-

icity in a time series could be identified. Persistent homology offers a framework for

dimensionality reduction and dynamical insight which is quite different from that of

the ECS-based approach.

22



2.2.3 Previous and Present Work

Neither computational nor persistent homology have been used very widely in the flu-

ids community. The limited number of studies which have employed computational

homology have used the method for characterizing convection [88–90], bubble swarms

[91], and turbulent plasmas [92, 93]. There are even fewer applications of persistent

homology, which includes a paper in which Rayleigh-Taylor instabilities are charac-

terized [94], a study of structures in ventricular blood flow [95], and an analysis of

Rayleigh-Bénard convection and Kolmogorov flow [96].

A feature of persistent homology which makes it an appealing method for char-

acterizing fluids is its inherent removal of redundancies which may arise due to the

symmetries of a system. Such symmetries are a result of coordinate transformations

which leave the governing equations of a system equivariant. For fluid flows, symme-

tries arise in several different geometries and their physical manifestation is usually

quite intuitive. For example, pipe flow exhibits a rotational symmetry about the

streamwise centerline of the pipe; hence, two flow fields that are identical but rotated

relative to each other by an arbitrary angle about this centerline may appear to be

different flow fields at first glance, but are in fact dynamically equivalent. Accounting

for this redundancy is often referred to as symmetry reduction or quotienting of sym-

metries. Procedures have been developed to perform symmetry reduction, such as the

“method of slices” [97]. However, the use of a method such as persistent homology

automatically quotients any symmetries.

In the analysis presented in Chapter 6, persistent homology is applied to a 2D

doubly-periodic simulation of a canonical problem known as Kolmogorov flow (defined

in the next section). This system is particularly interesting to study because of the

multiple symmetries this system possesses. The lower computational cost of studying

a 2D flow field, as opposed to 3D, is again an appealing feature for exploring this new

methodology. The simulation which is analyzed using persistent homology is based
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on an equation derived from first principles by modeling a Q2D flow in the laboratory.

The following section provides an introduction to experiments in Q2D flows.

2.3 Experiments in Quasi-Two-Dimensional Flows

Flows in 2D have been studied both experimentally and numerically for decades. This

is in part because geophysical flows, such as those of the atmosphere and oceans, can

be described to a good approximation using 2D models [98]. Additionally, as men-

tioned above, 2D flows are much more analytically and numerically tractable than

their fully 3D counterparts, offering a convenient platform for developing new ap-

proaches to understanding turbulence. This was recognized as early as the 1950s,

when Andrey Kolmogorov proposed a 2D problem for studying hydrodynamic sta-

bility [99]. This canonical fluid flow problem, now known as “Kolmogorov flow,”

provides the basis for the analyses performed herein; Kolmogorov flow is detailed in

Section 2.3.1 below.

Despite the appealing aspects of studying 2D flows numerically and experimen-

tally, there is the complication that experimental realizations can only achieve quasi-

two-dimensionality. Real flows are never strictly 2D in the sense that the velocity

field describing the flow depends on all three spatial coordinates and has non-zero

components along all three spatial directions. As a consequence, much research has

been carried out over the last 40 years or so to characterize various Q2D experimental

setups and determine how well their dynamics can be captured by a 2D model. In

this dissertation, a flow is defined as quasi-two-dimensional if it satisfies the following

two conditions: (i) the components of velocity parallel to a plane (horizontal) are

much stronger than the component perpendicular to it (vertical) [100] and (ii) the

direction of the horizontal velocity does not depend on vertical coordinate.

Q2D experiments have been performed in numerous settings, including shallow

electrolytic layers [101], superfluid helium [102], liquid metals [103, 104], soap films
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[105], and electron plasmas [106]. Electrolyte layers have been chosen for this study

because the setup is relatively easy, the materials are not hazardous, and there is

an extensive literature characterizing such flows. A discussion of the associated Q2D

setup variations is presented in Section 2.3.2, followed by a discussion of the actual

two-dimensionality of these setups in Section 2.3.3.

2.3.1 Kolmogorov flow

Kolmogorov flow was introduced by Andrey Kolmogorov in 1959 as a mathematical

problem for studying the transition to turbulence [99]. In its original formulation,

Kolmogorov flow refers to the motion of a viscous fluid in two dimensions (henceforth

referred to as x and y) driven by a forcing that points along the x-direction and

varies sinusoidally along the y-direction. The fluid flow is considered incompressible,

∇ · u = 0, and is governed by the 2D Navier-Stokes equation,

∂tu + u · ∇u = −1

ρ
∇p+ ν∇2u + f . (2.4)

Here, u = (ux, uy) is the velocity field, p is the 2D pressure field, and f = A sin(κy)x̂

represents the driving force per unit mass with amplitude A and wavenumber κ. The

parameters ρ and ν are the density and the kinematic viscosity of the fluid being

driven, respectively. Kolmogorov flow has served as a convenient model for under-

standing a wide variety of hydrodynamic phenomena in 2D, such as fluid instabilities

[107–110], 2D turbulence [111], and coherent structures [79, 112, 113], to name a few.

Since flows in the laboratory are never strictly 2D, experimental approximations

of Kolmogorov flow have often been carried out in either shallow layers of electrolytes

[101] or in soap films [114], wherein geometric confinement suppresses the component

of velocity along one of the spatial directions (z), making the flow closer to being 2D.

The evolution of such Q2D flows has often been described by adding a linear friction

term to the 2D Navier-Stokes equation (2.4):

∂tu + u · ∇u = −1

ρ
∇p+ ν∇2u− αu + f , (2.5)
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where α is a constant. The addition of this term was first suggested by Bondarenko

et al. [101] in the context of a Q2D flow realized in an electromagnetically driven

shallow layer of electrolyte. In such a flow, the bottom of the fluid layer is constrained

to be at rest because it is in contact with the solid surface of the container holding

the fluid. This no-slip constraint at the bottom of the fluid layer causes a gradient

in the magnitude of the horizontal velocity u along the vertical direction z. Bon-

darenko et al. [101] rationalized that the dissipation due to this shear, for sufficiently

shallow fluid layers, is captured by the linear friction term. In the context of Q2D

flows in electrolyte layers, this term has come to be known as “Rayleigh friction.”

Experimental realizations of Kolmogorov flow, which are Q2D and use roughly sinu-

soidal driving, as well as 2D models that employ equation (2.5) with a near-sinusoidal

forcing profile are now commonly referred to as “Kolmogorov-like flow.”

2.3.2 Setup Variations in Thin Electrolyte Layers

When realized in thin electrolyte layers, Kolmogorov-like flow experiments utilize elec-

tromagnetic forcing to generate an approximately sinusoidal forcing profile. Specifi-

cally, this flow is generated by passing a constant current J through a thin electrolyte

layer in the presence of a spatially alternating magnetic field B; the resulting Lorentz

forces F set the fluid in motion (a schematic diagram is provided in Figure 3.1 in

the next chapter). Fluid flows in shallow electrolytic layers have been studied ex-

tensively beyond the context of Kolmogorov-like flow. Such experiments (with fluid

layer thickness usually between 0.2 and 1 cm) have been realized in both homoge-

neous, single layer setups as well as stratified, two layer setups. The first experimental

realization of Kolmogorov-like flow by Bondarenko et al. [101] used a homogeneous,

single electrolyte layer. Several subsequent studies have also used the single layer

setup to investigate variations to the Kolmogorov-like flow geometry [115–120] and

the statistics of freely decaying turbulence [121, 122], among several other studies
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[123–127]. However, all such flows necessarily exhibit a gradient in the z-component

of vorticity along the vertical direction. This vorticity gradient provides a mechanism

for circulation along the z-direction, which is known as “Ekman pumping” [128, 129];

this effect is detrimental to experiments aiming to generate flows that are as 2D as

possible. Consequently, new fluid layer configurations have been introduced which

make use of stratification to inhibit this effect.

In the mid 1990s, in the context of characterizing the statistics of decaying tur-

bulent flow, Marteau et al. [130] introduced the two-miscible-layer configuration. In

this setup, a thin layer of fresh water is suspended above a thin layer of salt water;

the relative densities of the salt water and fresh water maintain the configuration.

This setup has been used extensively to study mixing phenomena [131–136], as well

as to test statistical theories of 2D turbulence, such as the inverse energy cascade

[137], Richardson pair dispersion [138], and the direct enstrophy cascade [139]. A

decade later, a third configuration (the “two-immiscible-layer configuration”) was in-

troduced by Rivera and Ecke [140], in which an electrolyte is suspended on top of an

immiscible, denser dielectric fluid. The dielectric, although not electromagnetically

driven, is viscously coupled to the driven top layer, essentially serving as a lubricant

between the top layer and the solid surface at the bottom of the container. The two-

immiscible-layer setup, having been introduced the most recently of the three setups,

has been implemented the least of the three setups, with a single work focused on

mixing [141] and a couple statistical studies [142, 143] following Rivera and Ecke’s

article which introduced this setup [140].

Each of the three configurations for generating Q2D flows in thin electrolyte layers

has its own advantages and disadvantages. The single layer configuration is, of course,

the simplest of the three; however, without any stratification, it is perhaps the most

prone to 3D effects. The two-miscible-layer configuration is moderately more chal-

lenging to set up. Often, the fresh water is added to the container then the salt water
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is gently injected below; this prevents the mixing of the two layers that would occur

if both were poured into the container. For visualization, it is also advantageous to

seed the interface of the two layers in this setup so that there are no surface tension

effects on the seeding particles [129]. A disadvantage of the two-miscible-layer setup,

however, is that it may only be run for a limited amount of time before diffusion

homogenizes the fluid layers. Of the three setups, the two-immiscible-layer configura-

tion likely offers the best two-dimensionality, as it is the most strongly stratified, but

it also requires the most effort to set up. Since the two layers are immiscible, diffusion

is not an issue and hence experiments using this configuration may be run arbitrarily

long. One potential drawback, however, is that the electromagnetic forcing in this

configuration is somewhat less efficient in the sense that the driven electrolyte layer is

now further away from the permanent magnets located below both fluid layers; this

decrease in the magnetic field essentially requires larger driving currents to achieve

the same Reynolds numbers, which gives rise to more Joule heating, which in turn

may affect the fluid’s viscosity. The question remains, however, to what degree each

of these fluid configurations can closely approximate a 2D flow; this is discussed in

the following section.

2.3.3 How Two-Dimensional Are Flows in Thin Electrolyte Layers?

Efforts to characterize the degree of two-dimensionality of flows in electromagneti-

cally driven thin fluid layers have largely focused on the two-miscible-layer configura-

tion. This is likely because it is generally accepted that stratification enhances two-

dimensionality, making this setup more favorable than the single, homogeneous layer

setup. The fact that the two-immiscible-layer configuration is a decade newer than

the two-miscible-layer configuration may explain why far fewer studies have directly

characterized its two-dimensionality. Historically, there has been some controversy

as to whether the the two-miscible-layer configuration can be considered Q2D. The
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works of Jüttner et al. [144] and Satijn et al. [145] generally supported the notion

that such flows could be considered Q2D. However, the work of Akkermans et al.

[124, 146, 147] indicated that, at high Reynolds numbers (Re ≈ 2000), the vertical

velocity component was comparable to the horizontal components and hence the flow

could no longer be considered Q2D. To explain this discrepancy, Kelley and Ouellette

[129] performed experiments over a wide range of Reynolds numbers (30 < Re < 250)

and showed that there is a critical Reynolds number (Rec ≈ 200) below which the

flow can be considered Q2D.

These studies, aimed at understanding the three-dimensionality of flows in shal-

low electrolytic layers, suggest that there are three mechanisms that lead to three-

dimensionality in thin electrolyte layer flows. Ekman pumping [124, 128, 129], which

results from the variation of vorticity with depth, and interfacial deformations, which

drive gravity waves [147], are small effects that are in play at all Reynolds num-

bers. A shear instability, on the other hand, is a large effect which sets in above a

critical Reynolds number [129]. This instability was observed at Re ≈ 200 for the

two-miscible-layer configuration, so it is reasonable to expect that the two-immiscible-

layer configuration, which is used in the experiments discussed in this dissertation,

may be considered Q2D even beyond Re = 200. Experimental measurements, which

are briefly discussed in Section 3.1.5, verify that the setup employed here is indeed

Q2D for the range of Re considered.
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CHAPTER III

EXPERIMENTAL REALIZATION AND MODELING OF

KOLMOGOROV-LIKE FLOW

In this chapter, Kolmogorov-like flow is discussed from the perspectives of experi-

mental realization, theoretical modeling, and numerical simulation. The goal of this

chapter is to provide a detailed description of the experimental setup and a discus-

sion of the derivation of a model which allows for quantitative agreement between

experiment and simulation. In Section 3.1, all aspects of the experimental realization

are discussed. Section 3.2 presents a discussion of how the experimental flow is mod-

eled. Finally, Section 3.3 provides details of the numerical modeling employed in this

dissertation.

3.1 Experimental Realization

In this section, a thorough discussion of the experimental setup is presented, including

construction of the experimental apparatus, the setup procedure, details of the control

circuit, information concerning data acquisition and processing, and a brief discussion

of the verification of quasi-two-dimensionality which has been obtained.

3.1.1 Constructing the Experimental Apparatus

As discussed in the previous section, the Q2D Kolmogorov-like flow is generated by

passing a direct current density J through a thin layer of electrolyte in the presence of

a spatially alternating magnetic field B, resulting in spatially varying Lorentz forces

J×B. This magnetic field is generated by a permanent magnet array which is imme-

diately below the container which holds the fluids. In this section, the construction

of this apparatus is described in detail.
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The magnet array consists of 14 Nd2Fe14B magnets of grade N42, manufactured by

K&J Magnetics, Inc. Each magnet is 15.24 cm long and 1.27 cm wide, with a thickness

of 0.32 ± 0.01 cm. The magnetization is through the thickness, with a surface field

strength of about 0.2 T. The magnets are positioned side-by-side along their width

to form a 15.24 cm × (14×1.27 cm) × 0.32 cm array such that the adjacent magnets

have fields pointing in opposite directions (along ±ẑ), normal to the plane of the array.

The magnets are stable in this configuration, with each individual magnet attracting

its immediate neighbors. However, care should be exercised when constructing the

array, as the magnets are brittle and their attracting forces can cause them to break

upon initial contact.

This magnet array is placed on the surface of a flat aluminum plate of dimensions

30.5 cm × 30.5 cm × 1.0 cm and laterally centered. Four thin, rectangular pieces of

aluminum with the same thickness as the magnets (0.32± 0.02 cm) are placed beside

the magnet array to create a level surface. These aluminum pieces are machined such

that when placed beside the magnet array, the magnets and aluminum pieces form a

larger, laterally centered, level array of dimensions 25.4 cm × 25.4 cm × 0.32± 0.02

cm. Manufacturing imperfections in the individual magnets and the aluminum pieces

result in a surface which is not absolutely smooth. Hence, a thin glass plate measuring

25.4 cm × 25.4 cm in area with a thickness of 0.079 ± 0.005 cm is placed atop

the magnet and aluminum array to provide a uniform bottom surface for the fluid

container1. Since the electromagnetic forcing is proportional to the strength of the

magnetic field, and the magnetic field drops off approximately exponentially with z,

it is most efficient to use a thin glass plate. The material used here is “Gorilla Glass”

brand, manufactured by Corning; this material is very thin while also maintaining

the strength, durability, and rigidity necessary for precise dimensions and prevention

1It is noted that the results of Chapter 5 correspond to an older version of the apparatus which
does not have the glass plate in place. Results from Chapter 4, however, correspond to the apparatus
described here.
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of breaking. A layer of silicone adhesive is then applied along the lateral boundaries

of the glass plate and the magnet and aluminum array, such that both are secured to

the aluminum plate.

A thin layer of black, adhesive contact paper (with approximate thickness 0.005

cm) is placed on top of the glass plate to serve as a dark background for imaging. The

surface of the contact paper serves as the bottom boundary for the fluids. The origin

of the coordinate system used throughout this dissertation is placed at this height and

the lateral center of the magnet array, oriented with the x-coordinate aligned with the

magnet length, the y-coordinate pointing in the direction of the magnet periodicity,

and the z-coordinate pointing opposite gravitational acceleration. See Figure 3.1 for

a schematic diagram.

A calibration target of dimensions 17.7 cm × 22.8 cm × 0.6 cm, discussed in more

detail below, is fabricated from acrylic using a laser cutter. This calibration target

is placed atop the contact paper, at the lateral center. Rectangular bars of clear

acrylic are placed adjacent to the calibration target, to create the lateral boundaries

of the fluid container that run parallel to the y-direction. These solid boundaries

for the fluid are hence positioned at a distance of 17.8 cm apart, centered about

the origin, and will henceforth be referred to as the “end walls.” Similarly, running

parallel to the x-direction, two electrodes are mounted on rectangular bars of acrylic

which are placed adjacent to the calibration target. These fluid boundaries are then

positioned at a distance of 22.9 cm, centered about the origin, and will henceforth

referred to as the “side walls.” The electrodes forming the side walls are used to drive

a uniform current density through the electrolyte, and hence they extend slightly

beyond the length of the acrylic bars such that they may be easily connected to a

constant current circuit (described below) using alligator clips. The end walls and

side walls are affixed directly onto the contact paper using a clear silicone adhesive

(Dap “All-Purpose Adhesive Sealant”). A small but adequate amount of silicone is
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Figure 3.1: A schematic diagram of the two-immiscible-layer Kolmogorov-like flow
experimental setup viewed (a) from above and (b) from the transverse cross section.
The fluid flow is driven by Lorentz forces arising from the interaction of a direct
current density J, which is passed through the electrolyte in the y-direction, with a
spatially varying magnetic field B pointed in the ±z-direction, generated by an array
of permanent magnets located below the fluid layers (dashed lines in (a); black and
white rectangles in (b)). The resulting forcing F is in the ±x-direction. The flow is
bounded by two end walls, two side walls (electrodes), and a solid, bottom surface,
while the top surface of the fluid is a free electrolyte-air interface. This container is
mounted on an aluminum plate which is leveled and submerged in a water bath that
is regulated such that the electrolyte is maintained at 23◦C ± 0.2◦C.
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used such that the walls are securely fastened but excess silicone does not adhere the

calibration target. Applying a thin layer of tape to the perimeter of the calibration

target can help ensure it does not end up glued down. After the silicone has dried,

the calibration target is removed. The placement of the end walls and side walls then

form a 17.8±0.1 cm × 22.9±0.1 cm container which will hold the two immiscible fluid

layers. Note that the location of the end walls and side walls leaves a buffer region

of dx = 1.3 cm and dy = 2.5 cm, respectively, between the edge of the magnet array

and these solid boundaries. See Figure 3.1 (a) for a schematic diagram depicting the

locations of the walls. The aluminum plate upon which the magnets are mounted

then has three holes drilled and tapped so that the entire apparatus is supported by

three screws, which can be adjusted to level the system. As a final step, a thin layer

of clear flowable silicone (Dow Corning “734 Flowable Sealant”) is applied to the

exterior of each lateral boundary to ensure that the container is completely sealed.

3.1.2 Setting Up the Experiment

To ensure that the viscosity remains constant throughout the duration of experiments,

it is necessary to temperature-regulate the apparatus. This is necessary because the

viscosity of the electrolyte changes by about 3.5%/◦C and the temperature of the

room in which experiments are performed fluctuates by about 2◦C on a daily basis.

Furthermore, passing a current through a resistive conductor (the electrolyte) results

in Joule heating, which can raise the temperature at least another 1◦C. Hence, when

setting up the experiment, it is placed in a temperature-controlled water bath. The

water level is carefully maintained such that the aluminum plate is wetted, but the

water does not rise above the top surface and short the electrodes. A small aquarium

pump is used to circulate the water in the bath to improve the temperature regulation.

Every time the experiment is set up, it is carefully leveled and optically aligned.

In order to avoid disrupting the leveling and alignment of the apparatus later, one
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should first secure the electrical connections to the electrodes and also position the

arrays of light emitting diodes (discussed below) which illuminate the seeding particles

in the fluids. For leveling, a precision bubble level with a sensitivity of 1 minute /

division is placed atop the bottom surface which holds the fluids and is leveled to

within 0.03◦. A camera (discussed in section 3.1.4) is permanently mounted directly

above the experimental apparatus using a rigid four-leg frame constructed from 80/20.

This camera is connected via USB to a Windows computer, and MATLAB is used

for image acquisition. The calibration grid is carefully placed inside the flow domain

(the fluids have not been added yet) and the water tub containing the apparatus is

slightly nudged until the grid is properly positioned. The lateral positioning should

be such that the entire flow domain is visible, but it need not be precisely centered, as

the calibration grid will be used to perform a coordinate transformation from pixels

to cm and to place the origin at the lateral center of the flow domain. The rotational

alignment, however, must be precise. This can be checked and adjusted in real time

by streaming live video from the camera to the computer. The leveling and optical

alignment can be adjusted iteratively until the apparatus positioning is adequate.

Once the alignment is finalized, an image of the calibration grid is recorded for use

later; an example image of the carefully aligned calibration grid is shown in Figure

3.2. At this point, the calibration grid should be removed very carefully to minimize

any shift to the apparatus’s position.

The interior of the container can now be filled with the two immiscible fluids.

The desired final volumes are 122 mL of each of the electrolyte and dielectric, such

that each fluid layer is 0.30 cm thick. However, in practice, pouring the electrolyte

onto the dielectric when the layers are so thin always results in the electrolyte passing

through the dielectric and wetting the bottom surface. To ensure that the fluid layers

are uniformly stratified in their final configuration, an excess of each fluid is initially

added to the container and then removed using a syringe. To begin, approximately
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Figure 3.2: An image of the calibration grid placed inside the flow domain allows for
careful optical alignment and a coordinate transformation from pixels to cm. The red
circles and blue squares indicate the pairs of cross hairs which are used for determining
the pixel-to-cm scaling constant.
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220 mL of the dielectric fluid is added to the container. Then, approximately 160

mL of electrolyte is carefully added above the dielectric, and two drops of viscosity-

matched surfactant (a solution of dish soap, water, and glycerol) is added to lower

the surface tension. At this point, each fluid layer should be of uniform thickness and

in contact with the entirety of the lateral boundaries, with the possible exception of

a few drops of electrolyte wetting the bottom surface. The excess of the two fluids

as well as the small amount of electrolyte wetting the bottom surface can then be

removed using a syringe. When removing the excess fluids, it is important to be wary

that as the electrolyte becomes thinner, it also becomes less stable in its uniform,

planar configuration. Spilling just a few drops of the dielectric onto the electrolyte

free surface can “break open” the electrolyte layer, exposing the dielectric layer below.

More fluids would then have to be added to and removed from the container to obtain

the uniform stratification again.

The volumes added to the container and then removed from the container are

carefully measured such that the final volumes are 122 ± 4 mL of dielectric and

122±2 mL of electrolyte. The two immiscible layers are then hd = 0.30±0.01 cm and

he = 0.30± 0.005 cm thick, respectively. The dielectric fluid used is perfluorooctane,

which has a viscosity of µd = 1.30 mPa·s and a density of ρd = 1769 kg/m3 at

23.0◦C. The electrolyte fluid is a solution consisting of 60% 1 M copper sulfate solution

and 40% glycerol by weight. The electrolyte’s viscosity is µe = 5.85 mPa·s and

the density is ρe = 1192 kg/m3 at 23.0◦C. Note that the viscosity ratio µe/µd =

4.5 has been increased to enhance the two-dimensionality of the electrolyte, which

is explained below in section 3.2.3. The larger uncertainty in the volume of the

dielectric is a result of how quickly perfluorooctane evaporates when exposed to open

air. Because of this evaporation, the dielectric should be promptly covered by the

electrolyte during the setup process. A calibrated thermistor is placed in the corner

of the flow domain so that temperature measurements can be taken while minimally
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disrupting the flow. Finally, a glass lid is placed on top of the container to limit

evaporation. While the experiment is running, temperature measurements are taken

inside the flow domain via the calibrated thermistor. The water bath surrounding

the apparatus is then iteratively adjusted such that the electrolyte and dielectric

are maintained to 23.0 ± 0.2◦C. By maintaining the temperature of the fluids, their

associated change in viscosity is kept to a minimum.

3.1.3 Constant Current Control Circuit

The direct current which is passed through the electrolyte serves as the control pa-

rameter. By slowly sweeping the current from about 5 to 25 mA (which corresponds

to a current density of about 10 to 50 A/m2), the flow exhibits a series of bifurcations,

transitioning through at least three stable states before becoming weakly turbulent at

higher values. In order to study this sequence of bifurcations, it is convenient to con-

struct a constant current control circuit which can be programmed using MATLAB.

This circuit is discussed in this subsection.

A schematic diagram for the constant current control circuit is shown in Figure 3.3

(a). There are two core components to this circuit: the LM317 3-terminal adjustable

voltage regulator and the AD8400 digital potentiometer (“digipot”). The LM317

device operates in such a way that the OUT terminal will provide the current source

necessary such that the OUT terminal is Vref = 1.25 V greater than the ADJ terminal.

Since Vref is constant, the resistance value of the digipot determines the amount of

current that flows through the digipot and the experimental apparatus to ground.

This constant current I is then given by:

I = Vref/R, (3.1)

where R is the resistance of the 1 kΩ digipot. Note that the constant current value

is independent of the load, meaning the conductivity of the electrolyte does not play

a role in determining I. By adjusting R, the constant current source can be varied.
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Figure 3.3: (a) A schematic diagram of the elementary component of the constant
current control circuit. By adjusting the resistance R of the 1 kΩ digipot (AD8400)
using MATLAB, the voltage regulator (LM317) produces a constant output current
of I = 1.25 V/R. (b) A plot showing the current through the experimental apparatus
as a function of the wiper position for an elementary component of the circuit.

The AD8400 digipot has 256 wiper positions, which allows the resistance to be

varied in steps of ∆R ≈ 4 Ω. However, this device is only rated for a continuous

current of up to 5 mA. Hence, to attain a higher range of current, 5 identical circuits

are constructed and connected to the experimental apparatus in parallel. The wiper

positions of the digipots are adjusted by interfacing them with a Measurement Com-

puting USB-1208FS device which is controlled using MATLAB. By varying the wiper

positions across all 5 digital potentiometers, the constant current passing through

the electrolyte can be increased or decreased throughout the desired range of current

values.

In practice, precise control of the current requires a calibration for each individual

digipot to determine the precise range of output current as a function of the digipot

wiper position. Such a calibration is shown in Figure 3.3 (b) for a single digipot. It is

important to set bounds on the allowable wiper positions, as too small of a resistance

can result in a current greater than 5 mA which will damage the device. In this case,

the maximum allowable wiper position is 210.

Note that the circuit used to drive the light emitting diodes (LEDs) is the same
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as that of Figure 3.3 (a), except that a 200 Ω mechanical potentiometer is used in

place of the AD8400. If the light brightness needs to be adjusted, the wiper position

of the potentiometer is adjusted mechanically using a screwdriver. A constant direct

current is necessary for driving the LEDs so that the brightness is uniform across all

flow images, which are collected at 15 Hz (at this frame rate, an alternating current

power supply would result in “flickering” in the images).

3.1.4 Measuring the Experimental Velocity Fields

A technique known as particle image velocimetry (PIV) is used for measuring the ve-

locity fields in the experiment. To perform PIV, a fluid flow is seeded with tracer par-

ticles for visualization and then rapidly imaged with a camera. By cross-correlating

several pairs of images, a time series of spatially-resolved displacement fields can be

obtained. The displacement fields (which are in units of pixels) can then be dimen-

sionalized by using a calibration grid and the time between the pairs of images. This

process is explained in detail below.

To begin, hollow glass microspheres are added to the fluid for visualization and

are illuminated with two arrays of white light emitting diodes (LEDs). Each array

of LEDs is positioned running along the length of the end walls and points inward

towards the flow. Two separate methods are used to seed the flow with particles,

either at the free surface of the electrolyte or at the dielectric-electrolyte interface.

The simplest is free surface seeding, in which hollow glass microspheres are sprinkled

onto the electrolyte; these particles are Glass Bubbles (K15) manufactured by 3M and

sieved to obtain particles with mean radius 24.5±2 µm and mean density 150 kg/m3.

Seeding at the electrolyte-dielectric interface is more challenging, but is particularly

useful when the experiment will be running continuously for longer than an hour, as

it is observed that particles seeded at the interface remain evenly distributed much

longer than those at the free surface (potentially several hours, depending on the flow
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regime). For interfacial seeding, hollow glass microspheres coated in titanium oxide

(mean radius 9±6 µm and mean density 800 kg/m3), are mixed with perfluorooctane

then injected into the perfluorooctane layer. Although the titanium oxide coated

microspheres are less dense than both fluids, they remain trapped at the dielectric-

electrolyte interface due to interfacial tension. This process works best if performed

after the full excess volumes of fluids have been added to the container. It is of course

important that the volume of perfluorooctane that is used for injecting particles

(usually about 10 mL) also be included in the calculation of the final volume left in

the container. Furthermore, it is useful when removing the excess perfluorooctane to

position the syringe needle over any regions where particles have stuck to the bottom

surface. Removing these static particles from the black bottom surface will improve

the quality of the PIV measurements.

The seeded flow is imaged using a DMK 31BU03 camera manufactured by The

Imaging Source. This camera has a CCD sensor with a resolution of 1024 × 768

pixels, which results in an adequate spatial resolution of about 53 pixels per magnet

width. The images are collected in a continuous uncompressed AVI movie recorded

at 15 Hz, which are later extracted from the video file. PIV is performed for pairs of

images that are dt seconds apart. Note that a general overview of PIV is available

in references [148, 149]. All experimental velocities presented in this dissertation

come from PIV measurements made using Prana [150, 151]. Prana interfaces with

MATLAB, can be run in parallel, and has many advanced features which allow for

high quality velocity measurements. The specific parameters and features of each

package are discussed in detail in Appendix A.

The PIV software outputs two coordinate arrays X and Y and a time series of

displacement fields dx(x, y, t) and dy(x, y, t), all of which are in units of pixels. To

transform these variables into physically-meaningful units, first the scale factor M

which is the ratio relating pixels to cm is calculated by inspecting the calibration
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grid image which was collected when setting up the experiment. This is done by

determining the number of pixels between the cross hairs circled in red in Figure 3.2

to the nearest pixel. This number is divided by the 16.49 cm it corresponds to in

real space. Then, the number of pixels between the cross hairs indicated by blue

squares is determined to the nearest pixel. This number is divided by the 21.54 cm it

corresponds to in real space. These two ratios are averaged to obtain M , which has

an uncertainty which is less than 0.3%. Secondly, the pixel coordinates for the center

of the domain (Xc, Yc) are determined. Then, the coordinate arrays (x, y) in units of

cm, with the origin at the center of the flow domain, can be determined from:

(x, y) = ((X −Xc)M, (Y − Yc)M). (3.2)

To transform the displacement fields dx(x, y, t) and dy(x, y, t), it is necessary to also

use the effective frame rate 1/dt. Note that a thorough discussion of how to choose

the effective frame rate is provided in Appendix A. The displacement fields are then

transformed into units of cm/s using:

(ux, uy) = (dxM/dt, dyM/dt). (3.3)

This completes the process for determining the experimental coordinates and veloci-

ties which are presented throughout this dissertation.

3.1.5 Verification of Quasi-Two-Dimensionality

The quasi-two-dimensionality of the flow has been directly verified by measuring the

normalized in-plane divergence of the horizontal velocity field at the electrolyte free

surface up to Re ≈ 50. This quantity is defined as:

Λ =
he
∫∫ ∣∣∇ · u∣∣dxdy
w
∫∫ ∣∣ω∣∣dxdy , (3.4)

where w = 1.27 cm is the characteristic length scale (magnet width). This quantity is

used by Akkermans et al. [147] and characterizes the ratio of the horizontal velocity

42



to the vertical velocity. Measurements obtained show that Λ varies from about 0.01

to 0.02, with no clear systematic trend. Since small errors is PIV can contribute

significantly to the value of the divergence computed, it is safe to say that Λ = 0.02

provides an upper bound for the relative strength of the vertical flow. This indicates

that for the experiment, even in the weakly turbulent regime, the deviation from

quasi-two-dimensionality is small.

3.2 Theoretical Modeling

In most previous studies, quantitative comparison between Q2D experiments and

theoretical predictions has been hampered by the lack of a reliable and consistent

procedure to relate experimental parameters with the coefficients α, ν, and ρ in equa-

tion (2.5). For instance, bifurcation studies of Q2D Kolmogorov-like flows have often

treated α as a fitting parameter [100, 101] to compare theoretical predictions with

experiments, with an ad hoc assumption that the viscous term (ν∇2u) was negligible.

Furthermore, studies employing Q2D experimental flows realized in stratified layers

of fluids have not accounted for the variation in the viscosity and density across the

fluid layers [144, 152, 153].

To address these deficiencies, the derivation of a new 2D equation [154] is discussed

in this section. In particular, this equation is derived from first principles by starting

from the full 3D Navier-Stokes equation and depth-averaging along the z-direction.

In addition to the new equation which is discussed, analytical expressions for the

coefficients in the model (α, ν, etc.) are also obtained and can be evaluated by

directly substituting experimental parameters. This model, which can be applied to

homogeneous or stratified fluid configurations, is discussed next.

3.2.1 Discussion of the Model Derivation

Consider a shallow layer of fluid, with thickness h, in a laterally extended container

with a flat bottom. As introduced earlier, assume that the x-y plane is parallel to
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the bottom of the container and the z-axis is in the vertical direction, with z = 0

chosen at the bottom of the fluid layer and z = h corresponding to the fluid-air

interface. The velocity field for such a flow is inherently three-dimensional, in the sense

that it generally depends on all three coordinates, v = v(x, y, z, t). This inherent

three-dimensionality is due to the fact that the bottom of the fluid layer (z = 0)

is constrained to be at rest due to the no-slip boundary condition associated with

the solid bottom surface. The velocity field in such a system is governed by the 3D

Navier-Stokes equation for an incompressible fluid (∇ · v = 0) which was given by

equation (1.1), and is stated again for convenience:

ρ(∂tv + v · ∇v) = −∇p + µ∇2v + F + ρg. (3.5)

Note that µ = ρν is the dynamic viscosity and in the context of the experimental

Kolmogorov-like flow, F corresponds to the Lorentz force per unit volume which is

primarily in the plane of the fluid (the x-y plane).

Equation (3.5), combined with the incompressibility condition, describes the evo-

lution of the full 3D velocity field. However, for flows in shallow fluid layers, driven

by weak, in-plane forcing, the vertical velocity component is much smaller compared

to the horizontal one [145]. In such flows the characteristic times describing equili-

bration of momentum in the vertical direction (ρh2/µ) are much smaller than those

associated with the horizontal directions (ρL2/µ). This tends to align an unforced

flow at a particular horizontal position (x, y) and different z along the same direc-

tion. Furthermore, if the direction of the forcing F is independent of z, this forcing

will not destroy the alignment and we can assume the direction of the velocity to be

independent of the height z allowing the velocity field to be factored as [126, 155]:

v(x, y, z, t) = P (z)u(x, y, t) ≡ P (z)[ux(x, y, t)x̂ + uy(x, y, t)ŷ], (3.6)

where P (z) describes the dependence of the horizontal velocity on z, and the unit

vectors x̂ and ŷ lie in the horizontal plane. A thorough discussion on the validity
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Figure 3.4: An illustration of the velocity profile in the two-immiscible-layer con-
figuration. Under the Q2D approximation, the full 3D velocity v(x, y, z, t) can be
decomposed as the 2D in-plane velocity at the free surface u(x, y, t) times a 1D pro-
file P (z).

of this Q2D approximation can found in [145]. The presence of the solid boundary

at the bottom (z = 0) and of a free surface at the top (z = h) are accounted for by

choosing P (0) = 0 and P ′(h) = 0, where P ′ =dP/dz. Furthermore, the following

normalization condition is imposed:

P (h) = 1 (3.7)

to make the factorization unique, so u(x, y, t) can be interpreted as the in-plane

velocity at the free surface (z = h). An illustration of u(x, y, t) and the profile P (z)

for the two-immiscible-layer configuration is provided in Figure 3.4.

Substitution of (3.6) into (3.5) gives:

ρP∂tu + ρP 2u · ∇‖u = −∇‖p+ µP∇2
‖u + µu∇2

⊥P + F,

∇⊥p = ρg,

(3.8)

along with ∇‖ · u = 0, where the subscripts ‖ and ⊥ represent the horizontal and

vertical components, respectively. In general, the profile P (z) depends on the exact

form of forcing F and the horizontal flow profile u. However, it turns out that

assuming the profile P (z) to be independent of u, although not intuitive, proves to

be valid at moderate Re. This is demonstrated in Appendix B.
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Integrating equation (3.8) over the fluid layer depth along the z-direction, i.e.,

from the bottom of the fluid layer (z = 0) to the free surface (z = h), an equation for

the in-plane velocity u is obtained:

∂tu + βu · ∇u = −1

ρ̄
∇p+ ν̄∇2u− αu +

1

ρ̄
f , (3.9)

where the subscript ‖ has been dropped for notational convenience. The parameters

β, ρ̄, ν̄, and α are defined as follows:

β =

∫ h
0
ρP 2dz∫ h

0
ρPdz

, ρ̄ =

∫ h
0
ρPdz

h
, ν̄ =

∫ h
0
µPdz∫ h

0
ρPdz

, α =
(µP ′)z=0∫ h

0
ρPdz

, (3.10)

The source term f on the right-hand side of equation (3.9) corresponds to the depth-

averaged force density:

f =
1

h

∫ h

0

Fdz. (3.11)

To evaluate this expression, F is obtained by modeling the Lorentz forces which drive

the electrolyte in the experiment. It is worth noting that in general, the forcing F

depends on z, most commonly due to a decay in the magnetic field strength. The 2D

source term f takes into account the effect of such decay in the 3D forcing profile F.

The Lorentz force modeling used to obtain F is discussed below in Section 3.3.1.

It is emphasized that the parameter β is a prefactor to the advection term which

has been unaccounted for (i.e., assumed to be unity) in all previous studies. This

new prefactor β < 1 accounts for the decrease of the mean inertia of the fluid layer

resulting from the velocity gradient along the layer thickness. It can be easily seen

that equations (2.4) and (2.5) can be treated as special cases of equation (3.9) by

suitable choices of the parameters α and β. The parameters ν̄ and ρ̄ are the depth-

averaged kinematic viscosity and the depth-averaged density, respectively. For a single

homogeneous layer of fluid, the depth-averaged kinematic viscosity is simply equal to

the kinematic viscosity of the fluid. However, for stratified layers, the fluid properties

µ and ρ depend on z. In such a case, the integrals in equations (3.10) are computed
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taking into account the variation in µ and ρ. The linear friction term −αu, which

accounts for the presence of the solid boundary at the bottom of the fluid layer, is

a direct consequence of ansatz (3.6) and depth-averaging. This is distinctly different

from how previous studies have included this term in equation (2.5) [100, 101]. It

is important to point out that equation (3.9) is a 2D equation that quantitatively

describes 3D flows in regimes where ansatz (3.6) is valid. In particular, u describes

the velocity at the top, free surface of the electrolyte, facilitating direct comparisons

between experimental PIV measurements and numerical simulations.

3.2.2 Nondimensionalization

Before proceeding to a discussion of the calculation of P (z), a nondimensional form

of equation (3.9) is briefly introduced in this section. It is noted that the governing

equation (3.9) introduced in the previous section was presented in dimensional form

to highlight that parameters β, ρ̄, ν̄, and α can be computed directly from fluid layer

properties. However, in the study of differential equations, nondimensionalization is

usually preferable, as it often simplifies the problem at hand, may provide physical

insight, and is a common convention.

To begin, a characteristic length scale and a characteristic velocity scale are chosen.

A natural choice for the length scale is the width of a magnet, w = 1.27 cm. For

the velocity scale U , the spatial root-mean-square (rms) velocity computed over the

region (|x|, |y|) ≤ (4w, 4w) (cf. Section 3.1.1) is used; this choice is to facilitate a

direct comparison between the experiment and a doubly-periodic simulation with a

smaller domain size, as will be discussed in Section 3.3.2. These two quantities can

be combined to form a characteristic time scale T = w/U .

The nondimensional form of equation (3.9) can then be written as:

∂u

∂t
+ βu · ∇u = −∇p+

1

Re

(
∇2u− γu

)
+ f0, (3.12)

where the Reynolds number Re = Uw/ν̄ defines the complexity of the flow, and
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γ = αw2/ν̄ captures the relative strength of the Rayleigh friction and viscous terms

in equation (3.9). Lastly, f0 = wf/U2 in the above equation represents the nondimen-

sional rescaled forcing profile. Note that from this point on, the characteristic length

scale w, velocity scale U , and time scale w/U will be used for nondimensionalization

in this dissertation.

3.2.3 Velocity Profile in Two Immiscible Layers

In this section, a derivation for the vertical profile P (z) of the horizontal velocity (cf.

equation (3.6)) is briefly discussed for the case of Kolmogorov-like flow. To begin,

it is necessary to assume that the magnet array has an infinite extent and that the

magnetic field is perfectly sinusoidal. Magnetic field measurements taken above the

center of the magnet array, at a height corresponding to the center of the electrolyte

layer are provided in Figure 3.5 and show that the magnetic field is indeed close to

sinusoidal. It is also necessary to assume that the magnetic field drops off with some

functional dependence. It is found that across the depth of the electrolyte layer, a

linear decay of the form Bz = B1z + B0 fits well, where B1 = −0.389± 0.006 T and

B0 = 0.276±0.01 T. This approximation allows the 3D Lorentz force F to be written

analytically.

The form of the horizontal velocity at the free surface u(x, y, t), for low values of

driving, is then also sinusoidal, i.e., u(x, y, t) = u0 sin(κy)x̂. Substituting this form

of the velocity into equations (3.8) yields a hydrostatic pressure distribution and a

boundary value problem for the vertical profile P (z). By applying the appropriate

boundary conditions, along with a normalization condition P (he + hd) = 1, a system

of five equations with five unknowns is then solved to obtain P (z). These lengthy

expressions are not provided here for the sake of brevity.

Based on this analysis, a new measure that characterizes the inherent deviation
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Figure 3.5: Magnetic field measurements (black circles) taken above the center of
the magnet array at height z = 0.394, which corresponds to roughly the middle of
the electrolyte layer. A sinusoidal fit to the data, shown by the black curve, suggests
that the magnetic field is indeed close to sinusoidal here. Uncertainties are the size
of the symbols or smaller.

from two-dimensionality is introduced for the two-immiscible-layer configuration:

S =
P (hd + he)

P (hd)
. (3.13)

The motivation behind using the two-immiscible-layer configuration is that the top

layer is lubricated by the dielectric layer below it, which is subject to the no-slip

boundary condition at the solid bottom surface. For a perfectly two-dimensional

flow, one would expect the velocity field in the top layer to be independent of the

z-coordinate. Hence, for a monotonically varying profile, the value of S describes how

strongly the magnitude of the horizontal velocity field varies with z in the electrolyte,

with S = 1 corresponding to a z-independent velocity profile.

From this analysis, it should be possible to determine what experimental param-

eters can be varied to enhance the two-dimensionality of flow, as characterized by

equation (3.13). Unfortunately, the functional form of expression (3.13) is quite com-

plicated and does not allow one to easily deduce the dependence on experimental

parameters. Hence, a special case referred to as “unidirectional flow” is considered.

Unidirectional flow can be interpreted as the limiting case of very wide magnets where
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Figure 3.6: (a) Analytical results for the vertical profile of the horizontal flow field
in both layers. The ratio of the velocities, as defined by equation (3.13), is S = 1.08.
(b) Experimental measurements of the horizontal flow profile taken separately at the
electrolyte free surface (red circles) and at the electrolyte-dielectric interface (blue
squares). PIV measurements are plotted for the time-independent laminar flow near
the center of the magnet array. A sine wave with fixed periodicity is fit to each data
set. In both (a) and (b), hd = he = 0.236 and the electrolyte layer has viscosity
µe = 6.06 mPa·s. Uncertainties in (b) are the size of the symbols or smaller.

the y-dependence of the magnetic field Bz is ignored (i.e., κ→ 0).

The analysis of unidirectional flow, as well as a justification for its consideration,

are not presented here for the sake of brevity, but instead included in Appendix B.

The results of the analysis suggest that the most straightforward way to enhance

the two-dimensionality of the flow in the electrolyte is by increasing the ratio of

viscosities, µe/µd. For this reason, throughout the work presented in this dissertation,

an electrolyte that is approximately 4.5 times more viscous than the dielectric is used.

The analytical solution for P (z) corresponding to an electrolyte with µe = 6.06 mPa·s

is shown in Figure 3.6 (a). By conducting two separate experiments in which the flow

is seeded at the free surface or at the electrolyte-dielectric interface, as shown in Figure

3.6 (b), the corresponding value of S = 1.08 is verified to within 1%. Furthermore,

it is confirmed that the flow in the electrolyte is much closer to being uniform along

the vertical direction.
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3.2.4 Evaluation of Parameters from Experimental Quantities

The parameters β, ρ̄, ν̄, and α in equation (3.9), as well as S, are evaluated using the

analytical expressions provided in equation (3.10), with the form of the vertical profile

P (z) as described in the previous section. By directly substituting the experimental

quantities presented in Section 3.1.2 while evaluating the integrals in a piecewise

manner in order to account for the inhomogeneity of the two distinct layers, the

following parameters are obtained: β = 0.830, ρ̄ = 976.4 kg/m3, ν̄ = 3.26 × 10−6

m2/s, α = 0.0636 s−1, and S = 1.08.

3.3 Numerical Modeling

In this section, details of the numerical modeling based on equation (3.9) are pre-

sented. In Section 3.2.1, a perfectly sinusoidal forcing profile with a linear decay was

assumed for the sake of analytical convenience in performing depth-averaging. How-

ever, in an effort to capture the form of the experimental forcing more accurately, a

numerical model of the magnetic field is introduced in Section 3.3.1. Then, in Section

3.3.2, the boundary conditions which form the basis for three different numerical sim-

ulations are introduced. Details of the spatial and temporal discretizations, as well

as the integration schemes employed in all three numerical simulations have been

included in Appendix C.

3.3.1 Magnetic Field Modeling

As mentioned, f is obtained by depth-averaging F, which is a model of the Lorentz

forces which drive the electrolyte in the experiment. These Lorentz forces arise from

the interaction of the magnetic field B with a current density J. The current density

is easily calculated from geometrical considerations, but the magnetic field generated

by the array of permanent magnets is quite complicated. For J = J ŷ, as indicated

in Figure 3.1, the Lorentz force density at any location (x, y, z) within the electrolyte
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layer is given by F = J × B = JBzx̂ − JBxẑ. Here, Bx and Bz are the x- and z-

components of the magnetic field, respectively, which vary along all three coordinates

x, y, and z. Experimental measurements show that the typical value of Bx is less

than 3% of the value of Bz at any given location within the electrolyte. Hence, the

Lorentz force density for all practical purposes can be approximated as F ≈ JBzx̂.

Then, for the case of the two-immiscible-layer configuration, equation (3.11) can be

rewritten as:

f =
1

ρ̄

hd+he∫
hd

JBz(x, y, z) dz

hd + he
x̂ (3.14)

where Bz(x, y, z) is yet to be determined.

To characterize the magnetic field Bz(x, y, z) in the experiment, 3D measurements

have been taken using a F. W. Bell Model 4048 handheld Gaussmeter and are plotted

as the black symbols in Figure 3.7. Figure 3.7 (a) shows the experimental measure-

ments of Bz along the line x = 0, passing above the center of the magnet array at

two different heights. Clearly, this profile deviates significantly from that of a pure

sinusoid, especially due near the edges of the array where the fringe fields are non-

negligible. To obtain a magnetic field profile that closely resembles the one in the

experiment, one could measure the z-component of the magnetic field (Bz) across

the entire flow domain at various heights above the magnet array. Using the mea-

sured field, the depth-averaged forcing profile could then be computed using equation

(3.14). However, measuring Bz on a 3D grid is an extremely tedious process; hence,

the following numerical model of the magnet array is used.

Recall that the magnets in the array are arranged such that adjacent ones have

magnetization pointing in opposite directions, along ±ẑ. To obtain a magnetic field

that closely resembles the one due to this array, each magnet is modeled as a 3D

cubic lattice of identical dipoles, each with a moment mẑ. Changing the sign of m

across adjacent magnets accounts for the alternating direction of magnetization. The
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Figure 3.7: (a) Experimental measurements of the z-component of the magnetic
field, Bz, as a function of y at the longitudinal center of the domain (x = 0),
and (b) experimental measurements of Bz along the magnet centerlines at y =
±{0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5}. Measurements in (a) are taken at a height just above
the dielectric-electrolyte interface at z = 0.236 and just below the electrolyte free sur-
face at z = 0.472. A least-squares fit has been performed using the data in (a) to
determine the scaling factor for the dipole summation; the scaled dipole summation
magnetic field is shown in red. The experimental uncertainties are the size of the
symbols or smaller.
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magnetic field at any location (x, y, z) above the array is then approximated using the

linear superposition of the field contribution from all of the dipoles modeling the array.

Hence, this model is referred to as the “dipole summation.” Since the strength of the

dipole m cannot be measured experimentally, a single scaling parameter is calculated

from a least-squares fit with the experimental measurements, taken at two heights.

The rescaled dipole summation magnetic field is shown in Figure 3.7 (a) (red lines),

along with the experimental measurements of Bz (black symbols), corresponding to

the line x = 0 at heights z = 0.265 and z = 0.438. Figure 3.7 (b) shows the magnetic

field comparison at z = 0.438 along the magnet centerlines. Note that the electrolyte

layer in the experiment is bounded by the planes z = 0.236 and z = 0.472. Hence, the

magnetic field Bz(x, y, z) is computed using the dipole summation at various heights,

in steps of 0.0197, in the region 0.236 < z < 0.472 and depth-averaged using a discrete

version of expression (3.14).

3.3.2 Boundary Conditions for Direct Numerical Simulations

In the experimental Kolmogorov-like flow, vertical solid walls serve as the lateral

boundaries, resulting in a no-slip boundary condition. However, for reasons of ana-

lytical and computational feasibility, Kolmogorov flow has been studied almost ex-

clusively using unbounded or periodic domains. Neither an infinite lateral extent nor

periodicity offer a realistic representation of the effect of boundary conditions in the

experiment, as far as the flow’s structure and its stability are concerned. To explore

the role of boundaries, Chapter 4 focuses on comparisons between the experiment

and numerical simulations which use three different computational domains with in-

creasing degrees of confinement. These three different computational domains are

described below.

• Doubly-Periodic Domain: This computational domain is chosen to coincide with

the central 8w × 8w region of the experimental domain, with its boundaries
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coinciding with x = ±4 and y = ±4. The simulated flow is constrained to be

periodic in both the longitudinal and transverse directions, i.e. u(x = −4, y) =

u(x = 4, y) and u(x, y = −4) = u(x, y = 4). Along the transverse direction it

spans a width equaling that of 8 magnets. The 2D forcing profile f over this

doubly-periodic domain is constructed from the depth-averaged magnetic field

presented in Section 3.3.1 by retaining only the two dominant Fourier modes,

sin(κy) and sin(3κy), along the y-direction; along the x-direction the profile is

uniform. This gives f(x, y) = 0.95 sin(κy)x̂ + 0.05 sin(3κy)x̂.

• Singly-Periodic Domain: This computational domain coincides with the re-

gion −7 ≤ x ≤ 7 and −4 ≤ y ≤ 4. The longitudinal dimension is the

same as that of the experiment, while the transverse one spans a width equal-

ing that of 8 magnets, like in the doubly-periodic domain. No-slip bound-

ary conditions are imposed at the end walls, i.e. u(x = ±7, y) = 0, while

periodic boundary conditions are imposed along the transverse direction, i.e.

u(x, y = 4) = u(x, y = −4). The 2D forcing profile f over this singly-periodic

domain is constructed as a product of two one-dimensional profiles. Along

the y-direction the profile is once again constructed by retaining only two domi-

nant Fourier modes, sin(κy) and sin(3κy), of the depth-averaged magnetic field.

Along the x-direction the profile is chosen to be the depth-averaged magnetic

field profile along the magnet centerline y = 0.5. It is noted that the effect of

transverse confinement has been studied by Thess [156], and therefore is not

investigated here separately.

• Non-Periodic Domain: This computational domain is identical to the experi-

mental one in both lateral dimensions, i.e. −7 ≤ x ≤ 7 and −9 ≤ y ≤ 9,

with no-slip boundary conditions imposed at both the end walls and side walls,

i.e. u(x = ±7, y) = 0 and u(x, y = ±9) = 0. As mentioned earlier in Section

55



3.3.1, the forcing over this domain is computed from depth-averaging the dipole

summation.

To compare experimental observations with those predicted by equation (3.9) with

the three types of boundary conditions described above, direct numerical simulations

have been performed. The flow over the doubly-periodic domain is simulated using a

pseudo-spectral method in the vorticity-stream function formulation, as described in

[157]. This simulation is henceforth referred to as the “doubly-periodic simulation,”

abbreviated DPS. For the singly-periodic and the non-periodic domains, numerical

simulations have been performed using a finite-difference scheme, described in [158].

These simulations are hereafter referred to as the “singly-periodic simulation” (SPS)

and the “non-periodic simulation” (NPS).
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CHAPTER IV

PRIMARY AND SECONDARY INSTABILITIES OF

KOLMOGOROV-LIKE FLOW

This chapter presents a comparison between experimental PIV measurements and

direct numerical simulations for low Reynolds numbers. The simulations are based

on equation (3.9) using the three domains described in Section 3.3.2. There are two

primary goals in presenting the comparisons made in this chapter. The first is to

show that equation (3.9), in comparison to equation (2.5), provides a more accurate

description of a Q2D flow. Secondly, and more importantly, this chapter serves to

demonstrate that quantitative agreement can be obtained between experiment and

carefully modeled numerical simulations in the study of a Kolmogorov-like flow. This

bifurcation study sets a solid foundation for the search for ECS which is presented in

Chapter 5.

This chapter is organized as follows. First, the straight uniform flow which is

found at low Reynolds numbers is presented, with a special emphasis on the effect of

boundaries. Then, linear stability analysis is performed to demonstrate that equa-

tion (3.9) predicts the primary instability more accurately than equation (2.5), but

still substantially undershoots the experimentally observed critical Reynolds num-

ber. Next, the primary instability in the experiment and simulations is characterized,

along with the secondary steady flow state which is observed. Finally, the secondary

instability which gives rise to a time-periodic flow is presented.
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Figure 4.1: Straight flow fields at Re = 8.1 for the (a) DPS, (b) SPS, (c) NPS, and
(d) experiment. The dashed lines in (d) indicate the locations of velocity profiles that
are compared to the simulations in Figure 4.2. The vorticity color scale plotted for
(a) also applies to (b-d). The velocity vectors are downsampled in each direction by
a factor of 8 for the simulations and a factor of 4 for the experiment.
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4.1 Straight Flow

For low driving the flow mimics the forcing closely, resulting in spatially alternating

bands of fluid flow along the ±x-directions, as can be see in Figure 4.1. In this figure,

black vectors correspond to the velocity field u and the color indicates the vorticity

ω = (∇×u) · ẑ. For the experiment (Figure 4.1 (d)), the y-component of the velocity

measured near the center of the domain is close to zero. However, there are regions

of strong recirculation near the end walls, characterized by a nonzero y-component

of velocity. Additionally, a careful observation of the flow shows a slight tilt in the

alignment of the flow bands. This tilt is due to the global circulation, resulting from

confinement and the fluid flowing in opposite directions over the end magnets at

y = ±6.5. Figures 4.1 (a) and (b) show the straight flows found in the DPS and

SPS at Re = 8.1. It can be seen that flow fields in the DPS and SPS reproduce the

experimental flow qualitatively away from the lateral walls. Furthermore, the SPS

captures the turnaround flow near the end walls. However, neither the SPS nor the

DPS displays the tilt of the flow bands observed in the experiment since the periodic

flows are devoid of global circulation. In contrast, the NPS generates a flow field that

looks indistinguishable from the experimental one (cf. Figure 4.1 (c)).

For a quantitative description of the straight flow profile, the longitudinal compo-

nent uexpx of the velocity along the line x = 0 in the experiment is plotted in Figure 4.2

(a). The location of this cross section is indicated by the vertical dashed line in Figure

4.1 (d). The difference in ux between the experiment and the numerical simulations

along this line is shown in Figure 4.2 (b). As can be seen, the DPS and SPS, which

are only defined for |y| < 4, show systematic deviation from the experiment as high

as 18% since they do not capture the tilt in the shear bands which results from global

circulation. In comparison, the NPS agrees to within about 5% over the same region,

with no clear systematic deviation. The disagreement between the experiment and

NPS in this region, we believe, is a result of the dipole summation not accounting
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for the variation in the strength of each individual magnet. Closer to the boundaries,

at y ≈ 7 and y ≈ −6, the largest difference between the NPS and the experiment is

around 12%.

The experimental longitudinal velocity component uexpx at y = −0.5 (along a

central magnet centerline) is shown in Figure 4.2 (c). The very slight asymmetry in

the longitudinal velocity is a result of the global circulation. In contrast, the flow

in the DPS is perfectly uniform and thus does not capture this asymmetry, as can

be seen from the plot of its difference with the experimental profile in Figure 4.2

(d). The SPS, which is defined all the way to the end walls, also does not capture

this asymmetry, as the flow in the SPS is also devoid of global circulation. The

NPS produces the closest agreement: the corresponding flow displays the asymmetry

observed in the experiment, with no significant systematic deviation. In summary,

the NPS succeeds in capturing the effects of confinement in the experiment with good

accuracy, while the DPS and SPS show significant systematic deviations.

4.2 Linear Stability Analysis

As the strength of the forcing increases, the flow in the experiment undergoes a qual-

itative change at Rec = 11.07 ± 0.05, with uniform flow bands developing spatial

modulation that eventually gives rise to distinct stationary vortices (cf. Figure 4.2

(d). Hence, this flow is referred to as the “modulated flow.” Several previous ex-

perimental studies have reported this transition and have characterized it using the

critical Reynolds number (Reexpc ) and wavenumber (kexpc ) of the longitudinal modu-

lation [101, 116, 159]. In the experiments reported here, the wavenumber just above

this transition was measured to be kexpc = 0.50κ. In virtually all previous stud-

ies, theoretical estimates for these critical parameters have been obtained by using

equation (2.5) and modeling the straight flow in the experiment as a strict sinusoid
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Figure 4.2: Profiles of the longitudinal velocity and longitudinal velocity differences
at Re = 8.1. (a) uexpx as a function of y at the longitudinal center (x = 0), (b) the
difference between the longitudinal velocity in the simulations and the experiment,
usimx − uexpx , as a function of y at the longitudinal center (x = 0); note that the
curves corresponding to the DPS and SPS are virtually indistinguishable, (c) uexpx

as a function of x at the centerline of a middle magnet (y = −0.5), and (d) the
difference between the longitudinal velocity of the simulations and the experiment,
usimx − uexpx , as a function of x at the centerline of a middle magnet (y = −0.5); note
that the curves corresponding to the DPS and SPS are virtually indistinguishable in
the region |x| < 4, where the DPS is defined. Experimental uncertainties are the size
of the symbols or smaller.
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ustr ∝ sin(κy); the flow stability is then analyzed with respect to longitudinal pertur-

bations δu(y)eikx. In this section, this analytical approach is revisited for equation

(3.9) to provide estimates for the critical parameters. Many previous studies have used

a different nondimensionalization, which corresponds to κ = 1. To make comparison

easier, a scaled wavenumber q = k/κ is used which corresponds to the convention

followed in those studies.

The strictly sinusoidal straight flow governed by equation (3.9) on an unbounded

domain becomes unstable with respect to perturbations of longitudinal wavelength q

above the Reynolds number Re = Ren(q), which to a very good accuracy is given by:

Ren(q) =
π

β

1

q

√
(1 + q2)

(1− q2)

(
q2 +

α

νκ2

)(
1 + q2 +

α

νκ2

)
. (4.1)

This expression was computed by linearizing equation (3.9) around ustr and calculat-

ing its stability with respect to perturbations δu(y)eikx =
∑

n=−1,0,1 εne
iκ(ny+qx) in-

cluding three dominant modes [160]. The critical Reynolds numberRec = minq Ren(q)

and the corresponding critical wavenumber kc = κqc computed using the above ex-

pression can then be compared with experimental observations.

The neutral stability curve (blue dot-dashed line) which corresponds to the ex-

perimental values of parameters α, β, and ν̄ is shown in figure 4.3. The minimum

of this neutral stability curve yields a critical Reynolds number Rec = 9.16 and an

associated critical wavenumber qc = 0.465. The black dot on the plot indicates the

critical values Reexpc = 11.07 and qexpc = 0.50, corresponding to the instability ob-

served in the experiment. The relative difference (Reexpc − Rec)/Reexpc between the

theoretical estimate for the critical Reynolds number and that measured in experi-

ment is about 17%. The critical wavenumber, however, is in better agreement with

the experimentally measured one, with a 7% relative error.

While the critical Reynolds number obtained from the linear stability analysis

disagrees substantially with the experimentally observed one, it is still a significant

improvement over analytical estimates for a flow modeled using equation (2.5), which
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Figure 4.3: Neutral stability curves (4.1) showing the Reynolds number Ren at
which the straight flow in an unbounded domain goes unstable when subjected to
a perturbation of longitudinal wavenumber q. The red dashed line corresponds to
α = 0.064 s−1 and β = 1.00, while the blue dot-dashed line corresponds to α = 0.064
s−1 and β = 0.83. The black circle shows the corresponding measurement from the
experiment. In all cases, ν̄ = 3.26× 10−6 m2/s is held constant.

corresponds to setting β = 1 in equation (3.9). The corresponding neutral stability

curve is indicated by the red dashed line in figure 4.3. From equation (4.1) it can be

seen that the entire neutral stability curve scales as 1/β. This implies that the critical

wavenumber (qc = 0.465) is independent of β, while the predicted critical Reynolds

number for β = 1 is Rec = 7.60. This is a 31% discrepancy with the experimental

value, which is comparable to the 30% discrepancy reported by Bondarenko et al.

[101] in a study based on equation (2.5).

It is noted that the increase in the stability of the straight flow for β < 1 is

due to the vertical gradient in the magnitude of horizontal velocity, which results in

a reduction of the effective inertia and nonlinearity of the flow. Equation (2.5), in

contrast, does not account for this reduction. As is shown in the next section, the

remaining discrepancy can be substantially improved by imposing lateral boundaries.

4.3 Primary Instability and Modulated Flow

Figure 4.4 (a-d) shows the modulated flow fields corresponding to the DPS, SPS, NPS,

and experiment, respectively, at Re = 14. At this Reynolds number the modulated
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flow is well developed and is visually quite distinct from the straight flow. The coun-

terclockwise global circulation in the experiment strongly affects the alignment of the

vortices (see Figure 4.4 (d)) as can be seen by comparing the modulated flows in the

DPS and SPS with the relevant regions of the experimental flow. It should be noted

that the size of the DPS domain along x was chosen a posteriori to be commensurate

with the critical longitudinal wavenumber qexpc = 0.50. However, once again, the flow

field in the NPS captures the features observed in the experiment remarkably well.

This unambiguously demonstrates the importance of properly modeling the confine-

ment effects in both the longitudinal and the transverse direction to reproduce the

features of the flow in the experiment.

This transition to the modulated flow is characterized by the appearance of the

transverse component of velocity throughout the flow domain, uy 6= 0. As the driving

is increased, the magnitude of uy also increases. A bifurcation diagram characterizing

the transition from the straight to the modulated flow is shown in Figure 4.5 (a). The

order parameter is the spatial mean square transverse velocity, 〈u2
y〉, which is plotted

as a function of Re. The spatial average is computed over the central region |x| < 4

and |y| < 4 for all simulations and the experiment. In comparison to the experimental

value of Reexpc = 11.07, the primary bifurcation in the DPS and SPS occurs at much

lower Reynolds numbers Rec = 9.39 and Rec = 9.64, respectively. This result shows

that imposing realistic boundary conditions in the longitudinal direction alone cannot

capture the instability of the straight flow. In contrast, by imposing the correct

(no-slip) boundary conditions in both the longitudinal and transverse directions, in

addition to using a realistic model of the magnetic field, the primary instability can

be predicted quite accurately: the transition in the NPS occurs at Rec = 10.73, which

is within 3% of Reexpc . Note that setting β = 1 results in a much poorer prediction

Rec = 8.91 even in the NPS, which corresponds to a 20% error.
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Figure 4.4: Modulated flow fields at Re = 14 for the (a) DPS, (b) SPS, (c) NPS, and
(d) experiment. The vorticity color scale plotted for (a) also applies to (b-d). The
velocity vectors are downsampled in each direction by a factor of 8 for the simulations
and a factor of 4 for the experiment.
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Figure 4.5: (a) A bifurcation diagram showing the primary instability for the experi-
ment and simulations, and (b) the spatial average of the longitudinal wavelength, λ̄x,
as a function of Re for the modulated flow regime. At each Re, wavelength measure-
ments are made for |y| < 4 then averaged; the uncertainty bars indicate one standard
deviation in the spatial measurements.

Another measure that facilitates a quantitative comparison between the experi-

ment and the simulations is the average longitudinal wavelength λ̄x associated with

the vortex pattern of the modulated flow. This wavelength is defined as a spatial

average computed by measuring the separation between adjacent vortex centers in

the central region of the domain |y| < 4. Just above the initial instability, the vortices

in the experiment form a lattice with a fairly uniform separation, λ̄expx = 4.0. As the

forcing is increased, the mean separation between the vortices increases, as can be

seen from the plot of λ̄x versus Re shown in Figure 4.5 (b). Additionally, at higher

forcing, the vortex lattice becomes spatially irregular, as can be seen in Figure 4.4 (d).

This spatial variation is quantified in the plot in Figure 4.5 (b) wherein the uncer-

tainty bars indicate one standard deviation in the spatial variation of the separation

between adjacent vortices. For comparison, Figure 4.5 (b) also shows the wavelength

measured in the DPS and SPS. The DPS does not capture the spatial variation of the

wavelength or its variation with Re. The SPS, however, shows a qualitatively similar

trend for the mean wavelength dependence on the Reynolds number. The periodicity

in the transverse direction results in a uniform vortex pattern with smaller spatial
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variation in the separation between vortices compared to the experiment. In contrast,

the NPS captures both the spatial variation of the wavelength and the distortion of

the lattice with increasing forcing quite well. The wavelength shortly above the initial

instability agrees with that of the experiment to within about 0.1 (2.5%), but for a

given Reynolds number, the NPS overestimates the wavelength compared to what is

observed in the experiment. The largest discrepancy, which is almost 11%, occurs

around Re = 15. Note that at onset of the modulated flow, the average wavelength in

the experiment is used to define the critical wavenumber kexpc = 2π/λ̄x = 1.58±0.081

(which corresponds to qexpc = 0.50± 0.026).

Careful analysis shows that while in the DPS and SPS the transition from straight

to modulated flow corresponds to a supercritical pitchfork bifurcation, the transition

in the experiment and NPS is described by an imperfect pitchfork bifurcation. In

the experiment and NPS, no instability happens due to a weak symmetry breaking

effect of the boundary conditions. A detailed discussion of the exact nature of the

bifurcation in each of the three simulations is provided in [161].

4.4 Secondary Instability and Time-Periodic Flow

As the forcing is increased further, the modulated flow in the experiment becomes

unstable at Res = 17.6 ± 0.1 giving way to a time-periodic flow with a period of

42.8±0.4 at onset (dimensionally, 120±1 s). The NPS similarly predicts a transition

to a time-periodic flow with a period of 42.8, occurring at Res = 17.0. In contrast,

the modulated flows from neither the DPS nor the SPS transition directly into a time-

periodic flow; hence quantitative comparison of the secondary instability for the DPS

and SPS is not provided here. To quantify this transition in the experiment and NPS,

a bifurcation diagram is shown in Figure 4.6 (a) which plots the peak intensity I of

the temporal power spectrum spatially averaged over the region |x| < 4 and |y| < 4 as

a function of Re. The associated power spectra are shown in Figure 4.6 (b). Note that
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Figure 4.6: (a) A bifurcation diagram showing the power spectrum peak intensity
I as a function of Re, and (b) the temporal power spectrum P as a function of the
frequency f for the experiment (top) and NPS (bottom) as Re is increased. The
temporal power spectrum is averaged over the region |x| < 4 and |y| < 4 before
calculating the intensity I. This transition, which occurs at Res = 17.6 in the ex-
periment and Res = 17.0 in the NPS, corresponds to the flow transitioning from the
modulated flow to a time-periodic flow.

the critical Reynolds number characterizing this bifurcation in the NPS agrees with

the experimental observations to within 4%, and the same nondimensional oscillation

period (to one decimal place) is observed.

As the driving is increased further, the amplitude of the oscillations grows while

the period remains approximately constant. Figure 4.7 shows two snapshots of the

time-periodic flow fields from the experiment (left) and the NPS (right). The most

apparent oscillatory feature is the motion of the central diagonal band of red vortices;

as the oscillations repeat, the vortices forming this band collectively move towards

the line x = 0, then away from the line x = 0, repeatedly. The flow fields shown in

this figure correspond to Re = 17.9 for the experiment and Re = 17.2 for the NPS,

which is approximately the same distance in Re above the bifurcation in each case.
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Figure 4.7: Two snapshots of the experimental (left) and NPS (right) flow fields
in the time-periodic regime. The vorticity color scale plotted for (b) also applies to
(a). The velocity vectors are downsampled in each direction by a factor of 8 for the
simulations and a factor of 3 for the experiment.
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4.5 Discussion

This chapter has presented an analysis of the first three flow regimes observed in a

Kolmogorov-like flow as Re is increased. This analysis has been made by directly

comparing experimental PIV measurements with numerical simulations. In particu-

lar, comparisons have been made with three different numerical simulations (the DPS,

SPS, and NPS) to test the importance of confinement and lateral boundary conditions

in modeling the flow. The results indicate that it is necessary to incorporate realistic,

no-slip boundary conditions at both of the lateral boundaries and a realistic forcing

profile (as is the case for the NPS) to obtain close, quantitative agreement with the

experiment. Specifically, the NPS predicts the Reynolds number Rec for the primary

instability to within 3%; the critical Reynolds number Res, as well as the period at

the onset of the time-periodic state, are predicted to within 2%.

It is emphasized that this is the first study to incorporate equation (3.9), along

with the analytical expressions (3.10) which use experimentally measured fluid layer

properties, for modeling the flow. It is worth noting that even with the proper bound-

ary conditions and a realistic model of the forcing profile, the use of equation (2.5)

would result in a discrepancy of about 20% between experiment and simulation for

both Rec and Res. This is because equation (2.5) does not account for the sup-

pression of the effective nonlinearity (i.e., β = 1). The analysis presented in this

chapter also provides the first quantitative description of the secondary instability of

a Kolmogorov-like flow.

Most importantly, these results demonstrate that the NPS, based on equation

(3.9), can be used to quantitatively capture the dynamics of this Q2D Kolmogorov-

like flow which is realized in the laboratory. This close agreement in the preturbulent

regime suggests that the NPS can be used to gain insight into the dynamics of weak

turbulence found at higher Reynolds numbers. In particular, using this model, one

can test for evidence of the existence and dynamical relevance of exact coherent
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structures guiding the chaotic dynamics. This is the topic of the next chapter.
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CHAPTER V

EXACT COHERENT STRUCTURES IN WEAKLY

TURBULENT KOLMOGOROV-LIKE FLOW

In the previous chapter, it was demonstrated that PIV measurements from the

Kolmogorov-like flow experiment agree quantitatively with the predictions of the

NPS. This comparison was made for the first three flow regimes that are found as

Re is increased, up to about Re = 17.5. Shortly above this Reynolds number, the

system becomes weakly turbulent. This regime is the focus of the present chapter,

with emphasis on identifying signatures of ECS, calculating ECS, and using ECS to

forecast weak turbulence. The analysis herein is conducted at Re = 22.5.

5.1 Weakly Turbulent Dynamics

The weakly turbulent dynamics are characterized by the irregular merging and split-

ting of vortices throughout the flow domain as the system evolves in time. Figure

5.1 shows four sequential weakly turbulent flow fields from the experiment which are

representative samples of the dynamical behavior in this regime. In this figure, be-

tween (a) and (b), the blue vortices in the top right-center merge and a blue vortex

at the bottom center splits. From frame (b) to (c), the stretched blue vortices in top

left further separate, and some red vortices near the very center of the domain begin

to merge. Finally, from (c) to (d), the two rows of red vortices in the bottom right

merge, as well as the two rows of blue vortices in top right. Experimental runs as long

as 4800 characteristic time units (dimensionally, 3 hours) show that the system does

not reach an asymptotic steady state. The temporal power spectrum for a time series

that is 1600 characteristic time units long is shown in Figure 5.2. This broadband
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spectrum suggests that the time series is indeed chaotic [33].

The rate of evolution of the experimental flow fields can be characterized by cal-

culating the normalized autocorrelation time:

C(∆t) =
〈∆u(t) ·∆u(t+ ∆t)〉t
〈∆u(t) ·∆u(t)〉t

, (5.1)

where 〈·〉t denotes temporal averaging and ∆u(t) = u(t) − 〈u(t)〉t. The normalized

autocorrelation is plotted with black circles in Figure 5.3. The autocorrelation time τ

is then defined such that C(∆t) = 1/e (dashed line in Figure 5.3), which yields τ = 12.

This longer time scale is in many ways a better choice than the nondimensionalization

time scale w/U because it characterizes the average time required for the flow field to

change. This time scale τ will be used explicitly throughout this chapter to quantify

the dynamics.

Having described a typical example of the weakly turbulent dynamics and having

introduced a useful characteristic time scale, focus is now shifted to the goal of this

chapter: to demonstrate how ECS can be used to characterize and even forecast

weak turbulence. It is useful to imagine the evolution of this system as corresponding

to a turbulent trajectory evolving in a high-dimensional state space. The reader is

reminded that an introduction to this concept is available in Sections 1.3 and 2.1.

Although this state space is in principle infinite-dimensional, the turbulent trajectory

is expected to evolve (possibly, after some transient) on a finite-dimensional “inertial

manifold” [28, 162], which allows for a drastically reduced description of the dynamics.

The evolution of the turbulent trajectory on this inertial manifold is not arbitrary,

but rather guided by the stable and unstable manifolds of the temporally-regular but

unstable ECS (also introduced in Section 2.1). However, neither the structure of the

inertial manifold nor the ECS are known a priori, but rather must be numerically

calculated.

A first step towards building this fundamentally deterministic description of tur-

bulence is to calculate such ECS. As mentioned previously, ECS have regular temporal
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Figure 5.1: Four sequential weakly turbulent flow fields from the experiment, sepa-
rated by ∆t = 8.0.
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Figure 5.2: The spatially-averaged power spectrum for a long (1 hour) experimental
time series.
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Figure 5.3: The experimental velocity field autocorrelation function C(∆t).
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dependence, meaning they correspond to unstable equilibria, periodic orbits, tori, etc.

If one can identify an instant when a turbulent trajectory is traveling through the

neighborhood of one of these solutions in state space, such an instant can be used as

an initial condition for a specialized Newton solver, allowing the solution to be cal-

culated (if the solver successfully converges). The analysis presented in this chapter

is restricted to the simplest class of ECS, unstable equilibria. Before presenting the

unstable equilibria which have been calculated, the criteria for determining when the

turbulent trajectory is in the neighborhood of such a solution is first presented.

5.2 Calculating Unstable Equilibria

In general, an unstable equilibrium refers to a state in which a system does not

change in time, but a minute perturbation can cause the system to evolve far away

from that state. A simple example of an unstable equilibrium is the inverted position

for a simple pendulum. For a turbulent trajectory evolving through state space, a

sufficiently close pass to an unstable equilibrium requires that the rate of evolution

decrease substantially. Analogously, a pendulum swinging with a large amplitude

also slows down as it passes near its unstable equilibrium. The rate at which the

turbulent trajectory evolves can be quantified using:

s(t) =

∥∥∥∥∂u

∂t

∥∥∥∥ ≈ 1

∆t

{∫∫
[u(t+ ∆t)− u(t)]2 dx dy

}1/2

, (5.2)

where the integral is taken over the entire spatial domain and ∆t defines the temporal

frequency at which velocity fields are sampled in experiments. Hence, a criterion

which can be used for determining when the turbulent trajectory may be close to an

unstable equilibrium is to look for substantial decreases in s(t) [163].

The black curve in Figure 5.4 shows a short experimental time series of s(t) as

a function of time (rescaled by the autocorrelation time τ). The red circles indicate

the deepest minima which are at least one correlation time τ apart; these instants

are expected to be the most likely points in time for finding the turbulent trajectory
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Figure 5.4: The rate of flow evolution, s(t) = ‖∂u/∂t‖, as a function of normalized
time, in the experiment.

close to an unstable equilibrium. Moreover, if the turbulent trajectory is close to

an unstable equilibrium, the spatial structure of that unstable equilibrium should be

similar to the flow field from that instant on the trajectory when s(t) is minimal.

Using experimental flow fields u(t) from such instants as initial conditions, these

corresponding unstable equilibria of equation (3.9) can be calculated using a matrix-

free iterative Newton solver [164].

It is found that many of these initial conditions do indeed successfully converge

to unstable equilibria. Successful convergences are indicated by the filled circles in

Figure 5.4, while open circles correspond to initial conditions for which the solver

failed to converge to an equilibrium. Overall, around 7% of the experimental initial

conditions successfully converge to an unstable equilibrium. Note that the portion of

the time series shown in Figure 5.4 has a particularly high number of convergences.

Overall, a total of 13 distinct solutions have been found from experimental initial

conditions.

As an illustration, Figure 5.5 shows three examples of experimental flow fields used

as initial conditions (left column) and the corresponding unstable equilibria computed

(right column). The degree of similarity is striking, suggesting that turbulent trajec-

tories pass quite close to these ECS. Using an identical methodology, 10 more distinct
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unstable equilibrium solutions have been computed using initial guesses from a nu-

merically generated turbulent trajectory. Of these, 4 were found to coincide with the

ones computed from experimental initial conditions. The frequency with which the

neighborhoods of the unstable equilibria are visited by the turbulent flow suggests

that these ECS play an important dynamical role.

Before proceeding to the next section, there are two brief comments worth men-

tioning. Firstly, it is noted that minimal preprocessing is performed on the exper-

imental flow fields before they are used as initial conditions for the solver. These

experimental flow fields, which were obtained using PIV and are shown in Figure

5.5, are subject to small measurement inaccuracies (for example, a region in the flow

may have a particle density which is too sparse for accurately calculating the cross-

correlation). As a result of even very few incorrect velocity vectors, the experimental

velocity field does not satisfy incompressibility. Additionally, the resolution of this

velocity field is about 4 times less than that of the simulation (along each direction x

and y). Hence, experimental initial conditions are first interpolated onto the finer grid

corresponding to the numerical simulations, and then projected onto a divergence-free

subspace. This projection results in a change to the flow field of about 2% (calculated

as the relative L2 norm). Secondly, it is important to realize that an instance of the

solver failing to converge does not necessarily mean that the initial condition from the

turbulent trajectory was not close to an unstable equilibrium. In some cases, it has

been observed that for an initial condition which failed to converge, a convergence

can be obtained by instead using a flow field from slightly earlier or slightly later in

time as the initial condition.

5.3 Forecasting Weak Turbulence

With several unstable equilibria in hand, it will now be demonstrated how such ECS

can be used to forecast weak turbulence. As briefly mentioned in Section 2.1, the
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(a)

(b)

(c)

Figure 5.5: Three experimental snapshots (left column) which correspond to local
minima of s(t); when used as initial conditions for a Newton solver, each flow field
converges to an unstable equilibrium (right column).
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turbulent trajectory is expected to approach an unstable equilibrium following its

stable manifold and recede following its unstable manifold. Hence, starting from an

instant when the turbulent trajectory is known to be near an unstable equilibrium,

the evolution can then be forecasted using the unstable manifold of that ECS. This

section provides an example demonstrating that this is precisely what happens in the

experiment.

Consider, for example, the unstable equilibrium shown in Figure 5.5 (c). This

equilibrium has a 7-dimensional unstable manifold, with the associated eigenvalue

spectrum consisting of one real and three complex conjugate pairs. These eigenvalues

are: 0.1492, 0.0147 ± 0.1680i, 0.0045 ± 0.1104i, and 0.0009 ± 0.4500i. As can be

seen, the leading (real) eigenvalue is at least ten times greater than the real parts of

the remaining six unstable eigenvalues. Furthermore, in this case the corresponding

eigenfunctions in the physical space are spatially localized, as the respective vorticity

fields shown in Figure 5.6 illustrate. Hence, as the turbulent trajectory recedes from

this ECS, it is expected that it will be guided primarily by a one-dimensional (1D)

invariant submanifold which is associated with the eigenfunction shown in Figure 5.6

(a). To compute this submanifold, a small perturbation is added to the unstable

equilibrium in the direction of the leading eigenvector e1 and then integrated forward

in time.

For visualization purposes, the state space trajectories are projected onto a sub-

space spanned by the dominant eigenvector e1 and vectors e2 and e3 constructed from

the eigenvectors associated with a complex conjugate pair2 such that e1, e2, and e3

form an orthogonal basis. The projection is shown in Figure 5.7 where the red sphere

and the red curve denote the unstable equilibrium and its dominant unstable subman-

ifold, respectively. Note that the trajectory which defines the submanifold is straight

only close to the ECS and becomes curved further away due to the nonlinearity of the

evolution equation (3.9). The blue and green curves correspond to experimental and
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(d) (e)

(f) (g)

Figure 5.6: The vorticity field associated with the seven eigenfunctions of the unstable
equilibrium used for forecasting. (a) The leading real eigenfunction, (b-c) the real and
imaginary part of the first complex conjugate pair, (d-e) the real and imaginary part
of the second complex conjugate pair, (f-g) the real and imaginary part of the third
complex conjugate pair.
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e1

e2

e3

Figure 5.7: A projection showing an unstable equilibrium (red sphere) with its
dominant unstable submanifold (red curve). Both the experimental (blue curve) and
numerical (green curve) turbulent trajectories follow this submanifold as they depart
from the neighborhood of this unstable equilibrium.

numerical turbulent trajectories receding from the ECS, respectively. They follow

the submanifold remarkably well even far away from the ECS, with the length of the

experimental curve corresponding to a total of 3.4τ .

To illustrate the degree of similarity between the turbulent trajectories and the

dominant submanifold in the physical space, snapshots of the flow fields along these

2The projection shown in Figure 5.7 corresponds to a subspace spanned by the leading eigenfunc-
tion (Figure 5.6 (a)) and the eigenfunctions associated with the complex conjugate pair in Figure
5.6 (f) and 5.6 (g) which have eigenvalues of 0.0009 ± 0.4500i. The choice of this specific complex
conjugate pair is motivated by the shape of the submanifold in the full state space. As Figure
5.7 illustrates, the leading submanifold exhibits significant curvature due to the nonlinearity of the
evolution equations. As a result, disturbances initially have no components in the direction of any
of the three complex conjugate pairs, but eventually acquire nonvanishing components along each
of these six directions. The components along the third complex conjugate pair happen to be the
largest by far. As a result, the eigenfunctions associated with that pair, along with the leading
eigenfunction, capture the evolution of the flow with reasonably good accuracy during the entire
time interval represented in Figure 5.7. Note that for the projection, these three directions have
been orthogonalized using the Gram-Schmidt process.

82



trajectories are provided in Figure 5.8. The corresponding sequential time instants

for each trajectory are indicated in Figure 5.7 by an open circle, triangle, and square.

Note that these three instants are separated by about 0.7τ . The flow fields corre-

sponding to all three trajectories are very similar, which validates the conjecture that

dominant manifolds guide neighboring turbulent trajectories. The first set of flow

fields (Figure 5.8 (a)) are characterized by the appearance of new vortices near the

left-center. The localization of this emerging feature corresponds to evolution domi-

nantly along the leading eigenvector (whose eigenfunction is shown in Figure 5.6 (a)).

As the flows evolve, a new column of vortices emerge, first in the top half of the

domain, as shown in Figure 5.8 (b). This new column of vortices then propagates

downward, throughout the rest of the domain, as shown in Figure 5.8 (c).

5.4 Discussion

The results presented in this chapter provide the first direct and unambiguous ev-

idence in support of the dynamical role played by exact coherent structures in a

weakly turbulent flow. The particular ECS studied here (unstable equilibria) have

been calculated by directly plugging experimental initial conditions into a Newton

solver; these initial conditions were chosen based on the dynamical criterion that s(t)

be a local minimum. Furthermore, as shown in Figure 5.5, these experimental initial

conditions closely resemble the unstable equilibria. By constructing the 1D dominant

unstable submanifold of one such solution, the flow observed in the laboratory can be

forecasted for over 3τ , as depicted in Figures 5.7 and 5.8. This is a demonstration of

forecasting in that whenever the experimental turbulent trajectory is in the vicinity

of this solution, the evolution for the next few τ is known, provided it passes close

enough. This result is the first laboratory demonstration of deterministic forecasting

of weak turbulence using ECS. Further calculations are needed to construct the net-

work of dynamical connections (see, for example, the cartoon provided in Figure 2.1
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Figure 5.8: Representative flow fields from the experimental turbulent trajectory (left
column), 1D dominant submanifold (middle column), and the numerical turbulent
trajectory (right column) at three different instances of time separated by about
0.7τ . Each instance is indicated in Figure 5.7 by (a) a circle, (b) a triangle, and (c)
a square.
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(b)) which would allow forecasting over longer periods of time.
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CHAPTER VI

APPLICATION OF PERSISTENT HOMOLOGY

In this chapter, persistent homology is used as a dimensionality reduction tool to study

sets of flow fields from the doubly-periodic simulation (DPS) of the Kolmogorov-

like flow. The DPS, which has two discrete symmetries as well as a continuous

translational symmetry (described below), is the subject of this study for the purpose

of highlighting how persistent homology handles these symmetries. In Section 6.1,

the data from the DPS is introduced which will be analyzed throughout this chapter.

In Section 6.2, persistence diagrams are generated for flow fields from the DPS and

their features are highlighted. Section 6.3 introduces how metrics can be applied to

probe the dynamics of a time series of flow fields. Finally, in Section 6.4, the concept

of a point cloud is introduced and used to compare flow fields and identify periodic

dynamics.

6.1 The Dynamical Regimes Studied

As mentioned briefly at the end of Chapter 3, flow fields from the DPS are gener-

ated by using the vorticity-stream function formulation [165]. By taking the curl of

equation (3.9), one obtains:

∂ω

∂t
+ βu · ∇ω = ν∇2ω − αω + Aκ cos(κy). (6.1)

where ω is the z-component of the scalar vorticity field ω = (∇ × u) · ẑ, and the

forcing is sinusoidal with amplitude A. Equation (6.1) is solved numerically by using

a semi-discrete spectral method [157] assuming periodic boundary conditions in both

the x- and y-directions, i.e., ω(x, y) = ω(x+Lx, y) = ω(x, y+Ly), where Lx = 6.7 and

Ly = 8.0 are the dimensions of the domain in the x- and y-directions, respectively.
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It is important to note that equation (6.1), with periodic boundary conditions,

is equivariant under any combination of three distinct coordinate transformations:

(i) a translation along x: Tδx(x, y) = (x + δx, y), δx ∈ [0, Lx], (ii) a rotation by π:

R(x, y) = (−x,−y), and (iii) a reflection and a shift: S(x, y) = (−x, y + 1). Because

of these symmetries, each particular solution to equation (6.1) generates a “group

orbit” of solutions which are dynamically equivalent. Physically, equivariance under

continuous translation Tδx means that in addition to equilibrium (EQ) and periodic

orbit (PO) solutions, there are also relative equilibrium (REQ) and relative periodic

orbit (RPO) solutions. The REQ and RPO solutions only differ from EQ and PO

solutions in that they also translate along the continuous symmetry as they evolve.

For Re = 23.55, the flow is characterized by a steady RPO; Figure 6.1 (a) shows

a projection, plotted using the three dominant Fourier modes of this RPO. The RPO

has a period 17.9 and a slow drift speed of 2.07× 10−4. The tunnel-like structure is

a result of the periodic motion superposed over the slow drift along the x-direction.

At higher driving (Re = 24.90), the flow becomes weakly turbulent, as can be seen

from the Fourier projection in Figure 6.1 (b). The weakly turbulent dynamics in

this regime are of great interest as the flow explores a region of the state space

which contains weakly unstable EQ, PO, REQ, and RPO solutions. The turbulent

trajectory depicted in Figure 6.1 (b) passes close to unstable EQ and REQ solutions

which have been calculated and are indicated by the red circles.

6.2 Generating and Interpreting PDs

To analyze the dynamics from the DPS as described in the previous section, persistent

homology is used as a nonlinear dimensionality reduction method. In this method,

the structure of the sublevel sets of the scalar vorticity field ω : D → R is analyzed,

where D is a topological space. The sublevel sets are defined as:

C(f, θ) = {x ∈ D | f(x) ≤ θ} , (6.2)

87



1000

3000

−2700

6000

−3000

4800

I
1

I
2

I
3

(a)

5000

13000

−700

600

−1500

100

R
1

R
2

R
3

(b)

Figure 6.1: (a) Three-dimensional projections of a stable RPO at Re = 23.55 from
the DPS using the imaginary part of the three dominant Fourier modes, I1, I2, and
I3. The gray line indicates the evolution of a RPO; three snapshots sampled from
that orbit are indicated by a red diamond, a red circle, and a red square, which
are analyzed below. (b) Three-dimensional projections of a turbulent trajectory, at
Re = 24.90, using the real parts of the three dominant Fourier modes, R1, R2, and
R3. The gray line indicates the chaotic evolution of the flow, which is influenced by
the presence of unstable equilibria, indicated by red circles, which are also analyzed
below.

where θ ∈ R can be thought of as the sublevel “threshold.” As θ is varied, the

number of components, holes, and cavities in C(f, θ) change. Information regarding

the births, deaths, and life span of these features are encoded into three separate

PDs, denoted PD0, PD1, and PD2, which are associated with components, holes, and

cavities, respectively. An introduction to these concepts is available in Sections 2.2.1

and 2.2.2. Note that only PD0 and PD1 are associated with a 2D domain, but because

of the periodic boundary conditions, D is a torus enclosing a three-dimensional cavity,

which requires that PD2 also be considered. Points with longer life spans in the PDs

(i.e., points far from the diagonal) are associated with geometric features that exist

through larger variations of θ, and are therefore considered dominant features. It is

important to point out that separate features might be represented by persistence

points with the same coordinates. Therefore, the multiplicity of each persistence
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Figure 6.2: A snapshot of the z-component of the vorticity field ω for the Kolmogorov-
like flow DPS. This flow field is sampled from the stable relative periodic orbit found
at Re = 23.55.

point corresponds to the number of features represented by the persistence point.

Moreover, every PD contains infinitely many points along the diagonal θb = θd, which

is important to keep in mind when metrics are applied to PDs.

The numerical data for the vorticity fields is discretized in double precision on a

rectangular grid of dimensions 128× 128. Because of the discretization, the vorticity

field should be thought of as a piecewise-constant function defined on a rectangular

grid. Furthermore, this discretization allows for a finite set Θ to be defined, corre-

sponding to the values of ω which are attained for a given flow field. The Perseus

software [166] is used to compute the corresponding PDk(ω) for k = 0, 1, 2 using only

the values θ ∈ Θ.

To begin the persistent homology analysis, consider the example flow field shown

in Figure 6.2. Four sublevel sets for this vorticity field are shown in Figure 6.3 (a-

d), which help illustrate the features of the associated diagrams PD0(ω) and PD1(ω)
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shown in Figure 6.3 (e-f), respectively. Recall that PD0(ω) is associated with con-

nected components. The minimum value of the vorticity field is −2.7206, and there-

fore, C(ω, θ) = ∅ for all θ < −2.7206. At θ = −2.7206, two components simultane-

ously appear, indicated by the two persistence points with birth value θb = −2.7206.

These components grow as θ increases, and eventually merge at θd = −0.697. By

convention, when a death occurs it is paired with the highest adjacent birth and a

point (θb, θd) is plotted in PD0. Since both adjacent births occur at θ = −2.7206,

the choice is arbitrary, and a single persistence point is plotted at (−2.7206,−0.697).

At higher θ, there is no death which can be matched with the second birth which

occurred at θ = −2.7206; hence, it persists to θd = ∞, and a point is plotted at

(−2.7206,∞). Note that a single point is plotted with θd = ∞, which is consistent

with the homology of a torus, for which Betti number β0 = 1.

Figure 6.3 (a) indicates the subset of D corresponding to C(ω,−1.5). Since D is a

torus, C(ω,−1.5) consists of eight distinct connected components instead of nine. The

existence of these eight connected components can also be extracted from PD0(ω),

shown in Figure 6.3 (e). These connected components correspond to the connected

regions with birth value θb ≤ −1.5 and death value θd > −1.5, which clearly form the

8 dominant points in Figure 6.3 (e). Figure 6.3 (b) indicates that C(ω, 0) consists of

four connected horizontal bands, which agrees with the number of persistence points

in the rectangular region defined by θb ≤ 0 and θd > 0. Each stripe is created as two

distinct components present in Figure 6.3 (a) grow and merge horizontally, causing

one component to die each time. The deaths of these components are captured by

the points for which θb ≤ −1.5 and θd ≤ 0.

Now, considering Figure 6.3 (c), it is clear that three horizontal stripes merge

together before θ = 0.75, as indicated by the two points inside the rectangle defined by

θb ≤ 0 and 0 ≤ θd ≤ 0.75. The two remaining connected components merge together

soon thereafter, and for all greater threshold values, there is only one connected
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Figure 6.3: (a-d) Sublevel sets C(ω, θ) = {x ∈ D : ω(x) ≤ θ} of the vorticity field
shown in Figure 6.2, for different values of θ, depicted in black. (e) PD0(ω) and (f)
PD1(ω) persistence diagrams of the vorticity field indicate the values of θ at which
the connected components and holes appear and disappear (merge together). Every
point (θb, θd) in the PD0(ω) (PD1(ω)) persistence diagram corresponds to a connected
component (hole) that is present in every set C(ω, θ), for θb ≤ θ < θd. A connected
component disappears by merging with a previously existing component and a hole
disappears when it is filled in.
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component. Finally, to conclude the discussion of PD0(ω), the persistence points

close to the diagonal are discussed. These points have very short life spans, which

suggests that they may arise due to numerical artifacts. The points are generated from

very small spatial fluctuations of the vorticity field as the groups of two connected

components (Figure 6.3 (a)) merge to form the thin horizontal bands (Figure 6.3 (b)).

Now recall that the diagram PD1(ω) is associated with holes (or loops) in C(ω, θ).

A hole corresponds to a region of white completely surrounded by black. Keeping

in mind that the domain is doubly-periodic, then Figure 6.3 (d), for example, has 8

holes. From PD1(ω), it is clear that the first hole appears at threshold θ = −0.963.

It corresponds to one of the four horizontal white bands shown in Figure 6.3 (b).

Each horizontal white band generates a single independent hole, corroborated by the

existence of four persistence points in the rectangle defined by −1.5 ≤ θb ≤ 0 and

θd > 1.5 of PD1(ω).

It is noted that the full torus has two holes captured by homology (i.e., recall that

β1 = 2 in Figure 2.3). This is expressed in PD1(ω) by the two persistence points with

θd = ∞. Observe that the first hole that appears at θ = −0.963 is associated with

the toroidal hole (the “center of the donut”), thus it cannot be killed and is hence

captured by the persistence point (−0.963,∞). The other three holes present at θ = 0

are also associated with the toroidal direction and thus must die. In fact, they do

so by θ = 2.5. Note that the birth values θb of these persistence points are close to

the death values θd of the persistence points in the rectangle defined by θb > −1.5

and −1.5 ≤ θd ≤ 0 of PD0(ω). This implies that shortly after the components merge,

they form horizontal bands across the entire domain.

New holes are also created as the black bands start merging. If two horizontal

bands are connected by n links, then the number of holes generated by this object

(two bands plus the links) is (n + 1). Thus, the first additional hole appears when

a second link is created. In the example flow field, this happens near the threshold
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0.75.

In Figure 6.3 (c), there are four distinct links between the two horizontal bands

at the top of the figure. The small holes visible in Figure 6.3 (c) are filled in almost

immediately, and the four links merge into two distinct links. The points in PD1(ω)

that are close to the diagonal capture this behavior. The other two links are present

for a wider range of thresholds, and the hole they generate is represented by one

of the persistence points in PD1(ω) with birth coordinate slightly smaller than 0.75.

The horizontal band at the top and the horizontal band at the bottom are linked in

a similar fashion. This explains the presence of another point with birth coordinate

slightly smaller than 0.75.

At θ = 0.932, a connection from the top to the bottom boundary is created. This

hole is homologically equivalent to the second of the two independent holes of the

torus (i.e., the hole associated with the poloidal direction of the torus), and hence

is identified by the persistence point (0.932,∞). As the threshold passes the value

1.988, the remaining holes shown in Figure 6.3 (d) start filling in and dying. Since the

maximum value of ω is 2.7092, the sublevel set is the whole torus for any threshold

above this, i.e., C(ω, θ) = D for all θ ≥ 2.7092. In this case, there are no more

punctures; hence, for θd > 2.7092 there are only two persistence points.

Finally, the PD2(ω) persistence diagram is considered, but not shown for brevity.

This diagram contains a single persistence point at (θb,∞) = (2.7092,∞). The birth

coordinate, θb, corresponds to the minimum value of θ for which C(ω, θ) = D, and

since C(ω, θ) = D for all θ ≥ θb, this point never dies. In other words, there is

one cavity associated with the torus which does not appear until θ has reached the

maximum value of ω, 2.7092. When θ reaches 2.7092, the remaining portion of the

torus appears and encloses a cavity. As θ continues to increase, no further changes

occur, so the cavity never dies; hence, PD2(ω) contains a single point at (2.7092,∞).
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6.3 Applying Metrics to the Space of PDs

As illustrated in the previous section, a PD codifies, in a reasonably compact form,

considerable information about the geometry of a scalar function. As suggested by

the examples, PDs provide a reduced description of the state of the dynamical system

of interest at any given point in time. Therefore, to analyze the dynamics, we need to

be able to compare one collection of diagrams PD (corresponding to a snapshot of the

flow pattern at an instant of time) to another collection of diagrams PD′ (from another

flow snapshot). The reader is reminded that the calculations of the bottleneck and

Wasserstein distances were introduced in Section 2.2.2. Here, a more general equation

for these distances is provided which accounts for k PDs. The bottleneck distance is

defined between PD and PD′ as:

dB(PD,PD′) = max
k

inf
γ : PDk→PD′

k

sup
p∈PDk

‖p− γ(p)‖∞, (6.3)

where ‖(a0, b0) − (a1, b1)‖∞ := max {|a0 − a1|, |b0 − b1|} and γ ranges over all bi-

jections between persistence points. Similarly, the degree-q Wasserstein distance is

defined as:

dW q(PD,PD′) =

[∑
k

inf
γ : PDk→PD′

k

∑
p∈PDk

‖p− γ(p)‖q∞

]1/q

. (6.4)

It is highlighted that the bottleneck distance dB measures only the single largest

difference between the persistence diagrams and ignores the rest. The Wasserstein

distance dW q , on the other hand, includes all differences between the diagrams. Thus,

it is always true that:

dB ≤ dW q . (6.5)

The sensitivity of the Wasserstein metric to small differences (possibly due to noise)

can be modulated by the choice of the value of q, i.e., if q > r then one expects dW q to

be less sensitive to small changes than dW r . It is emphasized that the application of

the Wasserstein or bottleneck metrics is a Lipschitz-continuous function [167]. This
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implies that, assuming bounded errors from numerical discretization in the simulation

(or even bounded noise in experimental data), the associated errors from the distance

calculations are also bounded.

In Section 6.3.1, these metrics (bottleneck and Wasserstein with q = 1, 2) are

applied to compare example flow fields with an emphasis on symmetry reduction.

Then, in Section 6.3.2, two flow fields are compared and the number of different

small-scale and large-scale features are estimated. Finally, Section 6.3.3 includes a

discussion of how metrics can be used to quantify the rate of evolution from a time

series of flow fields.

6.3.1 Comparing Flow Fields

The most obvious use of the bottleneck and Wasserstein metrics is to distinguish

patterns. As an example, patterns along the RPO from the Kolmogorov-like flow

are considered. As mentioned earlier, this particular trajectory arises from a periodic

orbit with a slow drift along the continuous symmetry. In particular, three sample

points are indicated in Figure 6.1 (a): two that appear to differ by the continuous

symmetry, and a third that lies on the “opposite” side of the periodic orbit. Plots of

the associated vorticity fields at these points (see Figure 6.4) agree with this charac-

terization of the time points. The intent is to identify this information through the

associated diagrams PDa, PDb, and PDc, shown in Figure 6.5. Indeed, the plots of

PDa
k and PDb

k are difficult to distinguish, but PDc
k is clearly distinct. This illustrates

that symmetry reduction of the continuous symmetry is automatically performed in

the process of generating a PD.

To quantify the difference between these flow fields, the distances between the

PDs using dB, dW 2 , and dW 1 are utilized. These values are recorded in Table 6.1. Not

surprisingly, the distances between PDa and PDb are much smaller than the distances

between PDa and PDc. Using these distances, as opposed to the detailed information
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Figure 6.4: Three snapshots of the vorticity fields ω from the stable RPO of the
Kolmogorov-like flow found at Re = 23.55. The vorticity fields correspond to the
(a) diamond, (b) square, and (c) circle in Figure 6.1 (a). The persistence diagrams
for these three snapshots are generated and compared in Figure 6.5. Differences
between the persistence diagrams are qualitatively measured by the distances shown
in Table 6.1.

Table 6.1: Distances between selected persistence diagrams (rounded to 3 decimal
places) in Figure 6.5, corresponding to the vorticity fields shown in Figure 6.4.

dB dW 2 dW 1

(PDa,PDb) 0.01 0.049 0.497
(PDa,PDc) 0.864 2.648 12.35

ratio (PDa,PDc)

(PDa,PDb)
86.4 54.05 24.85

in the PDs, one can obtain a rough estimate of what number of small-scale and

large-scale features have changed between Figure 6.4 (a) and Figure 6.4 (c). This is

demonstrated in the next section.

6.3.2 Estimating the Number of Changes in Small-Scale and Large-Scale
Features

Recall that the bottleneck distance measures only the single largest difference be-

tween the persistence diagrams and ignores the rest. Since the patterns shown in

Figure 6.4 (a) and (b) differ by a symmetry transformation, dB(PDa,PDb) can be

interpreted as a rough estimate of the distance associated with a change in a small-

scale feature (i.e., numerical error arising from discretization). The patterns shown in

Figure 6.4 (a) and (c), however, are not symmetry-related and thus have large-scale

changes which are comparable to dB(PDa,PDc), as well as small-scale changes. The
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Figure 6.5: PD0 persistence diagrams PDa,PDb, and PDc for the vorticity fields shown
in Figure 6.4. The points in PDa and PDb are almost identical because the corre-
sponding vorticity fields are related by a symmetry operation. The points in PDc are
more spread out and do not resemble the points in PDa as well. The same is true
for the PD1 persistence diagrams. Consequently, d?(PD

a,PDb) < d?(PD
a,PDc), for

? ∈ {B,W 2,W 1}, as indicated by Table 6.1.

ratio dB(PDa,PDc)/dB(PDa,PDb) is 86.4, which supports the claim that there is a

significant distinction between the changing small-scale features (due to numerical

error) and the changing large-scale features (due to significant geometric changes).

In this analysis, it is assumed that there are only two different scales at which

the geometric features evolve: one scale corresponding to the large-scale features

(of order dB(PDa,PDc)) and the other representing the noise fluctuations (of order

dB(PDa,PDb)). The distances dW 1(PDa,PDc) and dW 2(PDa,PDc) can then be ap-

proximated as follows:

dW 1(PDa,PDc) ≈ n · dB(PDa,PDc) + k · dB(PDa,PDb), (6.6)

dW 2(PDa,PDc) ≈
√
n(dB(PDa,PDc))2 + k(dB(PDa,PDb))2, (6.7)

where n and k are the number of large-scale and small-scale features that change,

respectively. Now, since dB(PDa,PDb) � dB(PDa,PDc) (as indicated in Table 6.1),

(dB(PDa,PDb))2 will be negligible compared to (dB(PDa,PDc))2. Hence, equation
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Figure 6.6: Contributions to the dW 1(PDa,PDc) distance.

(6.7) can be rewritten as:

dW 2(PDa,PDc) ≈
√
n(dB(PDa,PDc))2. (6.8)

By solving equations (6.6) and (6.8), one obtains n ≈ 9 (large-scale changing features)

and k ≈ 400 (small-scale changing features).

These results are confirmed as good estimates by plotting the sorted sizes of the

individual contributions to dW 1(PDa,PDc), as shown in Figure 6.6. From this plot, it

is clear that there are approximately 200 changing features of order equal to or smaller

than dB(PDa,PDb) and 11 dominant changes of order dB(PDa,PDc). Approximately

28 changes occurring on intermediate scales can be identified, and their sizes are at

least an order of magnitude smaller than dB(PDa,PDc). In fact, most of them are

not much larger than dB(PDa,PDb). Hence, the assumption that the changes can be

roughly divided into two classes of different order seems reasonable. The fact that the

division is not absolutely sharp leads to the discrepancy between the estimates and the

observations from Figure 6.6, but the prediction for the number of changing large-scale

features is very close. This section demonstrates that by comparing measurements

made using different metrics, one can gain insight into the differences in geometry

between two flow fields.
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6.3.3 Measuring the Rate of Evolution

In Section 2.2.2, the concept of a persistent homology state space Per was introduced.

In this section, it is demonstrated how viewing a time series in Per can provide insight

into the underlying dynamics. Let fi denote the scalar field of the system at time ti.

If ∆t = ti+1 − ti is small and the evolution of the system is continuous, then because

d? (for ? ∈ {B,W 2,W 1} ) is a metric,

s?(ti) =
d?(PD(fi),PD(fi+1))

∆t
(6.9)

can be interpreted as an average speed in the space of PDs over the time interval

[ti, ti+1]. Note that this equation is analogous to equation (5.2), but calculated using

a different metric in a different space. The value of s? depends on the particular

choice of metric. For example, sdB is the rate at which the largest change between

the geometric features of the scalar fields occurs. The speeds measured by dW q ,

q = 1, 2, keep track of the rate of change between all geometric features, though to

some extent, dW 2 suppresses the effect of noise.

Figure 6.7 shows distances d? between consecutive sample points, normalized by

the maximum distance, using samples taken along almost four periods of the stable

RPO. Normalizing s? by the maximum speed allows for a straightforward comparison

of the different speed profiles. Each of the graphs of s? indicate that speed is not

uniform along the orbit; there are parts of the orbit where the geometry is changing

slowly, separated by intervals of relatively fast evolution. The evolution is extremely

slow around the instants corresponding to sample points 100, 240, and 380. The

values of the speed (before normalizing) are below the small-scale noise levels given

by the first row of Table 6.1. This suggests that the orbit may be passing close to an

unstable equilibrium.

While the general shapes of the speed profiles for different distances are similar,

there are places where the signs of their derivatives differ. As the system starts
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Figure 6.7: The speed s?, estimated from the distances d? between the consecutive
sample points along the stable RPO, plotted for almost four periods. Distances are
normalized by their maximum value which is 0.0654 for dB, 0.2266 for dW 2 , and 1.9143
for dW 1 . The speed is not uniform along the orbit. Instead, there are parts of the
orbit where the dynamics are slow, separated by relatively fast evolution.

accelerating around t = 100, all three speeds are increasing. Around t = 130, the

speed sW 1 starts decreasing while the other two speeds are still increasing. Note that

around t = 130, the speeds rise above the level of small-scale features (i.e., noise).

The fact that sB and sW 2 are both increasing means that the changes between the

prominent geometric features are growing in this region. The speed sW 1 is decreasing

in this region and so the effect of noisy features is decreasing. At t = 170, the

dominant geometric features start to evolve considerably. Changes of the dominant

features are the most important contributions to all three metrics. Therefore, the

derivatives of the speeds s? have the same sign again.

The plots of s? hint at the underlying dynamics being that of a periodic orbit.

However, it is important to keep in mind that Per is an infinite-dimensional space,

and thus periodicity in the speed of a trajectory does not imply that the trajectory

lies on a closed curve. To conclusively determine that these dynamics are periodic

requires a more global geometric analysis of the time series, which is discussed shortly.

With the same data set used to generate Figure 6.7 and letting ωj denote the

vorticity field at time tj, Figure 6.8 shows the dW 2 distance matrix M, with color-

coded entries M(i, j) := dW 2(PD(ωi),PD(ωj)). (The dB and dW 1 distance matrices
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Figure 6.8: A distance matrix M, generated by the dW 2 metric, for approximately
three periods of the stable RPO. The large black patches correspond to the parts
of the orbit with slow dynamics. Equally spaced black lines parallel to the diagonal
suggest periodicity of the orbit with period equal to the distance between these lines.

look very similar and are not shown.) Observe thatM(i, i) = 0 andM is symmetric

since M(i, j) =M(j, i). Furthermore, Figure 6.7 can be interpreted as a plot of the

immediate off-diagonal entries. A striking feature of the distance matrix in Figure 6.8

is the existence of dark lines parallel to the diagonal, spaced at intervals of roughly

110 samples. This indicates that, in the space of persistence diagrams, the trajectory

periodically repeats the same, or nearly the same, state. Since the diagonals are

spaced at roughly 110 samples, we can indeed say that the orbit revisits very similar

states at intervals of roughly 110 samples. Similarly, the light regions close to the

diagonal in Figure 6.8 correspond to the times in Figure 6.7 at which the speed is

large, indicating significant changes in the pattern at these times. Distance matrices

provide a convenient way to visualize dynamics and identify recurrent behavior of a

time series of data.

6.4 Analyzing a Point Cloud

The discussion in the previous section suggests that interesting information concern-

ing the dynamics of the geometry of the time-evolving vorticity fields can be obtained
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by studying the time series in persistent homology state space, Per. Note that each

vorticity field is represented by a set of persistence diagrams PDk(f), k = 1, 2, 3

which correspond to a single point in Per. This time series, with discrete sample

points, then forms a point cloud X in Per (as introduced in Section 2.2.2). By study-

ing the geometry of this point cloud, useful information about the dynamics can be

obtained.

6.4.1 Introduction to the Analysis of Point Clouds

To characterize the geometry of a given point cloud, persistent homology is applied

a second time by studying the connectivity of the points comprising the point cloud

in Per as a distance threshold is increased. One can imagine this could be done

by growing balls (i.e., N -dimensional solid spheres) around each point in the point

cloud and tracking the connectivity of the points as the balls intersect one another.

The radius of the balls is then the distance threshold θ, and as θ increases, one can

conduct an analysis of the births and deaths of connected components and holes in

the point cloud (note that cavities and higher-dimensional homological structures are

not considered here). Mathematically, the sublevel sets can now be defined for a new

scalar function g : Per → [0,∞). This function gives the distance from any point in

Per to the point cloud X and is defined by:

g(x) := d(x,X) := min
xi∈X

d(x, xi), (6.10)

where d is a given metric (bottleneck or Wasserstein with q = 1, 2). The sublevel sets

C(g, θ) in Per are then a union of balls:

C(g, θ) =
⋃

PD∈X

B(PD, θ), (6.11)

where B(PD, θ) = {PD′ ∈ Per | d(PD′,PD) ≤ θ}, and d is a given metric.

In general, one should expect that the sets C(g, θ) are complicated. Furthermore,

tracking the intersections of several N -dimensional hyperspheres as θ is continuously
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increased could be very computationally expensive. Hence, to carry out the persistent

homology analysis of the point cloud, a discrete representation of C(g, θ) is used which

is known as the Vietoris-Rips complex. The Vietoris-Rips complex is nothing more

than a discrete collection of simplexes which indicate the connectivity of the points.

Simplexes are an N -dimensional generalization of triangles, i.e., for two connected

points the simplex is a line, for three a triangle, for four a tetrahedron, and so on. Each

union of connected points, lines, triangles, etc. is known as a simplicial complex, and

the Vietoris-Rips complex is then a collection of all the distinct simplicial complexes

as θ varies.

Mathematically, the Vietoris-Rips complex is defined as follows. Given a point

cloud X = {x0, ..., xN} in a metric space with distance function d, the Vietoris-Rips

complex at scale θ, denoted R(X, θ), is defined by the the simplicial complex defined

by the collection of simplexes:{
〈xn0 , ..., xnk

〉 | d(xni
, xnj

) ≤ 2θ, for all i, j ∈ {0, 1, 2, ..., k}
}
. (6.12)

The computations involving the Vietoris-Rips complex were also performed using the

Perseus software [166]. Note that there are a variety of references which discuss these

concepts in more detail: e.g., [167] for Vietoris-Rips complexes, [168] for discussions of

issues related to approximations, and [167, 169] for how one proceeds from a complex

to computing persistent homology.

It is worth noting that the Vietoris-Rips complex is determined solely by the

distance matrix associated with X, and hence, there is a finite set of threshold values

Θ = {θi} at which the complex changes. Thus, given a point cloud X in a metric

space with metric d, the associated persistence diagrams PD(X, d) are determined

by the Vietoris-Rips complexes R(X, θ) for θ ∈ Θ. It is emphasized that the only

data used to analyze a point cloud based on the persistent homology of Vietoris-Rips

complexes are the pairwise distances between the points given by the distance matrix

associated with X. Two separate examples involving point clouds, one concerned
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Figure 6.9: (a) A distance matrix representing the pairwise Euclidean distances dE
between the points in (b), which is a point cloud X. (c-e) The balls (blue shaded
regions) indicate the sublevel sets C(X, θ) for θ = 0, 0.1755, 0.5135, and 0.816, while
the points, lines, and triangles indicate the Vietoris-Rips complexes R(X, θ). For
θ = 0.1755, as shown in (c), the set C(g, θ) consist of three distinct connected clusters;
the same is true for R(X, θ). The three components remain distinct until θ = 0.5135,
shown in (d), at which point two components of C(g, θ) merge and a line connecting
the points in the merged components appears in R(X, θ). The last merger occurs at
θ = 0.816, as shown in (e).

with connected components and the other holes, are provided next.

This first example, which is concerned with connected components, illustrates the

use of persistent homology as a clustering tool. This idea is demonstrated on a point

cloud with pairwise distances given by the distance matrix shown in Figure 6.9 (a).

A possible configuration of six points in R2 is depicted in Figure 6.9 (b). Using the

length scale presented in Figure 6.9 (b) as an indicator of the order of magnitude at

which one may want to declare a separation length for the clusters, there are three

clusters of points.

Geometric information about the point cloud shown in Figure 6.9 (b-e) is also

104



PD
0

Birth 

D
e
a
th

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

∞

Figure 6.10: Persistence diagram PD0(X, dE) corresponding to the distance matrix
shown in Figure 6.9 (a).

conveyed by PD0(X, dE) shown in Figure 6.10, where dE is the Euclidean distance.

Observe that C(g, 0) = R(X, 0) consists of 6 points. As θ increases, the distinct

connected components of C(g, θ) start merging together. In fact, when the balls

B(xi, θ) and B(xj, θ) merge together, a line 〈xi, xj〉 appears in R(X, θ). Therefore,

the connectivity of C(g, θ) and R(X, θ) are equivalent for all θ ∈ R, and PD0(g) =

PD0(X, dE). Note that it is impossible for a new connected component to appear

for θ > 0. Hence, all persistence points in PD0(X, dE) have a birth value equal to

zero. The death coordinates represent the spatial scales at which distinct connected

components (clusters) merge together. If one is interested in identifying clusters where

the minimal separation is on the order of length scale 1, these clusters correspond to

the points in PD0(X, dE) with the death coordinate greater than approximately 0.5,

for which there are three persistence points. Thus, one may conclude that there are

three clusters. If the relevant scale for separation is of an order of magnitude smaller,

then there are five clusters, since, in addition to the three points with death values

greater than 0.5, two points have death values slightly larger than 0.05.

Alternatively, if one was interested in dividing the data into two clusters, then
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PD0(X, dE) could be used to determine the magnitude of the separation between the

clusters. Observe that the persistence point (0,∞) corresponds to the final connected

component. The persistence point (0, 0.816), with the largest finite death coordinate,

indicates that the components merged at a distance 0.816. Hence, the minimal dis-

tance between points from the point cloud X that belong to two distinct clusters is

1.632.

The second example illustrates the use of persistent homology as a tool for iden-

tifying periodicity that arises in the dynamics. This periodicity is associated with

holes/loops. Consider any point cloud that generates a distance matrix such as the

one shown in Figure 6.11 (a). Again, for the sake of intuition, Figure 6.11 (b) provides

an example of a point cloud X ⊂ R2 with pairwise distances given by the distance

matrix shown. The persistence diagrams for the associated Vietoris-Rips complex

filtrations are shown in Figure 6.12.

Applying the reasoning from the previous section, one can ask whether there

is a natural or interesting clustering of the data. If, as before, the interest is in

clusters where the minimal separation is on the order of length scale 1, shown in

Figure 6.11 (b), then (0,∞) is the only persistence point with death value greater

than 0.5, i.e., at this scale there is only one component. Thus, we conclude that

from a geometric perspective the point cloud may be treated as arising from a single

dynamical structure.

To look for periodic structures, observe that PD1(X, dE) contains two persistence

points. One point occurs at (0.177, 0.250), whose birth is shown in Figure 6.11 (b)

and whose death occurs at a value of θ between that of Figure 6.11 (b) and (c). The

other persistence point occurs at (0.343, 0.596), whose birth is shown in Figure 6.11

(c) and whose death is shown in Figure 6.11 (d). From this example, it is clear that

births of holes/loops occur when lines in the Vietoris-Rips complex form a complete

loop, and deaths occur when triangles completely fill in the loop.
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Figure 6.11: (a) A distance matrix representing the pairwise Euclidean distances dE
between the points in (b), which is a point cloud X. (c-e) Sets C(f, θ) for θ = 0, 0.177,
0.343, and 0.596. The homology of C(f, θ) can be approximated using the Vietoris-
Rips complex R(X, θ) given by the points, lines, and triangles shown in (b-e). The
first hole in C(f, θ) is created at θ = 0.177 (corresponding to (c)). This hole is due to
the noisy sampling and is filled in almost immediately. The dominant hole is born at
θ = 0.343 (corresponding to (d)) and persists until θ = 0.596 (corresponding to (e)).

107



PD
0

Birth 

D
e
a
th

 

0 0.2 0.4 0.6
0

0.2

0.4

0.6
∞

(a)

PD
1

Birth 

D
e
a
th

 

0 0.2 0.4 0.6
0

0.2

0.4

0.6
∞

(b)

Figure 6.12: Persistence diagrams (a) PD0(X, dE) and (b) PD1(X, dE) corresponding
to the distance matrix in Figure 6.11 (a). The persistence diagram PD1(X, dE) con-
tains a dominant point (0.343, 0.596) corresponding to the robust loop whose birth
is shown in Figure 6.11 (d), while the point (0.177, 0.25) represents the small loop
whose birth is shown in Figure 6.11 (c).

To study the importance of these loop features, consider that the life span of

point (0.177, 0.250) is 0.06, which is short compared to the order 1 length scale. Thus

it is reasonable to think of this as a result of noise in the data. The life span of

point (0.343, 0.596) is 0.253 and suggests that the point cloud is generated by a loop

with a minimal radius of 0.596, which is on the order of the scale of the data. This

suggests that the associated loop, whose birth is shown in Figure 6.11 (d), represents

an observable, robust dynamical feature.

Characterizing the geometry of a continuous orbit via an approximation by a dis-

crete time series depends on the frequency of sampling, and thus becomes a challenge

in the setting of dynamics with multiple time scales, i.e., when the rate of change of

the patterns is far from constant. If the sampling rate is too slow, then parts of the

orbit will be poorly sampled (or not sampled at all). Note that the geometry of the

continuous trajectory may be more complicated than that of a circle; secondary struc-

tures might occur if the orbit is twisted, pinched, or bent in Per. Thus, the missing
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parts of the orbit could distort (or entirely miss) significant features in the geometry

of the sampled trajectory as compared to the geometry of the underlying (continu-

ous) dynamics. Thus, in order to obtain a description of the geometry on all relevant

spatial scales, including information about secondary structures, the sampling rate

needs to be fast enough.

To determine if a trajectory has been sampled densely enough to resolve the

geometry of the underlying dynamics, it is useful to compare the following three values

related to the point cloud in Per: the noise threshold of the system, the maximum

consecutive distance in the sampled trajectory, and the diameter of the point cloud.

Ideally, once a noise threshold has been computed, one would like distances between

consecutive points from the sampled trajectory to be on the length scale of the noise.

If sampling faster than this, the features detected from the sample that are on the

scale of the noise would be indistinguishable from artifacts generated from the noise in

the sample. Thus, ideally, the distance profiles (e.g., Figure 6.7) should have maxima

no larger than the noise. Unfortunately, this is not practical for reasons that will be

explained next, and fortunately it is often not necessary.

Consider, for example, the case where the length scale of the computational noise

is much smaller than the relevant length scale of interest for studying the geometry

of the dynamics. In this case, a comparison of the maximum consecutive distance in

the sample to the diameter of the point cloud in Per is often useful. For instance, if a

point cloud has diameter 100 and the smallest relevant length scale for the geometry

to be studied is 10, then a maximum consecutive distance of 10 is sufficient for the

sampling of the time series, even if the noise threshold is on length scale 1. Thus, it is

the interplay of these three numbers that determine if one has sampled a continuous

time series densely enough. This interplay has been taking into account in sampling

the time evolving dynamics presented below in Section 6.4.3.
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6.4.2 Distinguishing Flow Fields

The ideas presented in the previous section are now applied to the problem of cluster-

ing symmetry-related unstable equilibria of the Kolmogorov-like flow at Re = 24.90.

As discussed in Section 6.1, the turbulent trajectory shown in Figure 6.1 (b) is sampled

and EQ and REQ solutions are calculated using a Newton solver. The initial guesses

for the Newton solver are the vorticity fields ω that are local minima of the L2 norm of

∂ω/∂t. These converged solutions form a point cloudX = {PD(ωn) | n = 1, . . . , 67} of

PDs from vorticity fields corresponding to EQ and REQ solutions of the Kolmogorov-

like flow. These 67 solutions may be related to one another through any combination

of the coordinate transformations listed in Section 6.1. Hence, it is non-trivial to

determine how many unique classes of solutions there are and which solutions belong

to which class. Persistent homology is used to perform this analysis.

To begin, PD0(X, dB) is analyzed. The pairwise distances between the points in

X are shown in Figure 6.13 (a). The distance between PDs of vorticity fields related

by symmetry is small (but nonzero due to discretization), while PDs corresponding

to the vorticity fields that are not symmetry-related differ by a larger amount. This

implies that the question of identifying symmetry-related classes of unstable equilibria

can be reformulated as a clustering problem.

The diagram PD0(X, dB), depicted in Figure 6.13 (b), shows a clear gap between

the persistence point with death value θd = 0.0285 and the persistence point with

death value θd = 0.1215. This gap is interpreted as the separation between the signal

and noise (numerical errors). Indeed, 0.0285 is just twice the estimate of the lower

bound on numerical errors obtained in Section 6.3.1. There are 7 points in PD0(X, dB)

with a death coordinate greater than 0.12, and so it is concluded that there are 7

distinct classes of solutions.

These results from the persistent homology analysis are validated by performing

clustering using the Fourier amplitudes as follows. If ω̂(kx, ky) is the Fourier amplitude
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Figure 6.13: (a) Pairwise dB distances between the EQ and REQ points in X =
{PD(ωn) | n = 1, . . . , 67} found at Re = 24.90 using a Newton solver. (b) The corre-
sponding persistence diagram PD0(X, dB) shows a clear gap between the points with
death value θd = 0.1215 and θd = 0.0285. This gap is interpreted as the separation
between the signal and noise.

of a mode (kx, ky), then a translation of the pattern in the x- or y-directions in real

space merely adds to the phase of ω̂(kx, ky), leaving the magnitude unchanged. Hence,

by comparing the amplitudes of the Fourier modes, the vorticity fields which are

related by translations can be grouped. Since the conjugate modes ω̂(±kx,±ky) relate

fields which are related by inversion, to group the vorticity fields which are related by

a combination of inversion and translation, the amplitudes of the conjugate modes

are summed. Adding the amplitudes of conjugate modes yields a “reduced matrix,”

which is unique for all the vorticity fields related by the coordinate transformations

that leave equation (6.1) equivariant. This approach also yields 7 distinct classes of

solutions.

An analysis of PD0(X, dW q), q = 1, 2 yields the same results. There are several

gaps between the death values of the points in the PDs. Again one of the gaps starts

at roughly twice the value of the estimated lower bound of the noise. However, the

separation is less pronounced. As discussed in Section 6.3.1, the dW q metrics capture
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all the differences between the PDs, and the local numerical errors are summed to-

gether. Thus, a large number of small errors can obscure the distinction between the

signal and noise.

6.4.3 Identifying Periodic Dynamics

The previous section demonstrated the practicality of using persistent homology to

perform symmetry reduction and cluster equilibria. In this section, these ideas are

extended to the setting of periodic orbits observed in the Kolmogorov-like flow DPS.

As is indicated in Figure 6.1 (a), the projection of the orbit onto the imaginary parts

of the three dominant Fourier modes suggests a periodic orbit that is undergoing a

slow drift in the direction of the continuous symmetry. Since persistent homology is

invariant under continuous translation, this type of drift is not present in Per. As

a result, it is expected that the time series will lie on a closed loop in Per. This is

consistent with the information provided by the distance matrix shown in Figure 6.7,

in which the dark lines parallel to the diagonal indicate that the distance between

PDs becomes very small at regular time intervals.

For the remainder of this section, the focus is on verifying that a circle provides

a good description of the geometry of the point cloud X ⊂ Per generated by the

time series sampled from the RPO. More precisely, it is shown that there is a single

dominant feature in PD0(X, dB) and a single dominant feature in PD1(X, dB), which

agrees with the PDs corresponding to a circle.

There are two issues that need to be considered: the first is the size of the data set,

and the second is the spacing between the data points. As is indicated in Section 6.4,

the Vietoris-Rips complex is used to compute persistent homology of point clouds.

Given n data points, the full Vietoris-Rips complex has 2n cells. Considering this,

the analysis herein is performed with the distance matrices corresponding to dB, dW 1 ,

and dW 2 for 500 points, or roughly three periods of the RPO.
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Figure 6.14: (a) The persistence diagram PD0(X, dB) for RPO at Re = 24.90. Since
all points with finite death coordinates die before 0.025, there is only a single dom-
inant point. (b) The persistence diagram PD1(X, dB), showing the single dominant
generator at (0.0215, 0.1559).

Since a single continuous trajectory is being sampled, it is expected that PD0(X, dB),

as shown in Figure 6.14 (a), suggests the existence of a single component. The di-

agrams PD0(X, dW q), q = 1, 2, yield similar results and are not shown. However, it

is worth noting that this is not a foregone conclusion as the location of and spacing

between the points of the time series are dependent upon the speed along the peri-

odic orbit. As is clear from Figure 6.7, the speed of the trajectory is not constant.

However, it is fairly smooth; thus, there is no expectation for extreme differences in

the spacings between points.

It is mentioned that the maximum distance between consecutive samples is more

than six times larger than the length scale of the noise for this system. However,

the diameter of the point cloud is more than forty times larger than the consecutive

sample distance. Thus, features on the length scale of one fortieth of the diameter of

the entire point cloud will be resolved, which is sufficiently small to consider this an

adequate sampling.
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Table 6.2: The coordinate of the dominant point in the persistence diagram
PD1(X, d?) for ? = B,W 2,W 1, its life span, and the second largest life span.

PD1 Dominant
coordinate

Max life span 2nd largest life span

dB (0.022, 0.156) 0.134 0.013
dW 2 (0.075, 0.405) 1.366 0.105
dW 1 (0.703, 2.069) 0.330 0.016

As indicated in Figure 6.14 (b), the persistence diagram PD1(X, dB) clearly detects

a single dominant loop along which the data is organized. Thus, it is concluded that

in Per, equipped with the metric dB, the point cloud X generated by the time series

forms a loop with a minimal radius of 0.1344. Table 6.2 shows the coordinates of the

point with the longest life span, its life span value, and the second longest life span for

each of the diagrams PD1(X, d?), ? ∈ B,W 2,W 1. As the table indicates, the life span

of the dominant point is an order of magnitude larger than the next longest life span

in each case, and so there is a single dominant feature in PD1(X, d?). Additionally,

note that the second longest life span values are as small or smaller than the lower

bounds on numerical errors indicated by the first row of Table 6.1.

6.5 Discussion

Persistent homology provides a powerful mathematical formalism for dimensionality

reduction. By encoding the topological features of a scalar function into a set of PDs,

a substantial reduction is performed. In the case of the snapshot shown in Figure 6.2,

the associated PDs (show in Figure 6.3 (d-f)) have less than 10 dominant points each.

However, despite this reduced description, one can still apply a metric to the space

of PDs which allows for quantitative characterization of the dynamics with bounded

errors. In particular, three different metrics on the space of PDs have been used for

studying pattern evolution on large versus small spatial scales. These metrics offer

an estimate of the numerical error in the space of PDs.

Constructing a set of PDs for a given flow field can be thought of as plotting a
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single point in the persistent homology state space, Per. A collection of flow fields,

then, corresponds to a point cloud in Per. With a chosen metric in hand, one can

then use the Vietoris-Rips complex to study the structure of this point cloud. By

studying point clouds in two-dimensional Euclidean space, one can develop intuition

for this approach. In Per, this second application of persistent homology can be used

to cluster equilibria and identify periodic dynamics, as demonstrated. This method

is particularly useful when solutions must be identified that lie on a group orbit.

The efficacy of these methods has been demonstrated using a Kolmogorov-like

flow simulation with doubly-periodic boundary conditions, and the results have been

compared to traditional Fourier methods where appropriate. These results show

that the geometry of the dynamics are recovered in each case. An extension of this

analysis to the other simulations (the SPS and NPS) would be very straightforward.

Furthermore, this method is robust to noise, suggesting that it is appropriate for

studying dynamics on data sets obtained experimentally.
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CHAPTER VII

CONCLUSIONS

In the research presented in this dissertation, two dimensionality reduction methods

have been used to describe the dynamics of a canonical two-dimensional (2D) flow

known as Kolmogorov flow. The experiment, which is quasi-two-dimensional, approx-

imates Kolmogorov flow by driving two thin fluid layers with electromagnetic forces.

The fact that the experimental flow can be treated as effectively 2D is very appealing

in comparison to more onerous three-dimensional (3D) flows. Specifically, imaging

2D flows is substantially easier and the computational costs associated with perform-

ing PIV and simulating the flow are considerably less. Hence, this more tractable

2D flow provides a convenient platform for testing new approaches to understanding

turbulence.

In modeling the experimental flow, numerous aspects have been considered in

order to obtain a simulation which quantitatively captures the dynamics of the ex-

periment. The model, introduced in Chapter 3, was derived by depth-averaging the

full 3D Navier-Stokes equation over the confined direction. The resulting equation has

a prefactor to the advection term, β, which has been unaccounted for in all previous

studies. Additionally, this derivation produces analytical expressions which provide

estimates for all parameters in the model; these parameters are calculated using prop-

erties of the fluid layers. The boundary conditions have also been chosen carefully.

Many dynamical studies of turbulence, in both 2D [79–81] and 3D [61, 65–71], have

employed periodic boundary conditions. However, it was found that the periodic

simulations explored here hardly offer qualitative agreement with the experiment.
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Rather, it is necessary to impose no-slip boundary conditions along all lateral bound-

aries, as is the case for the non-periodic simulation. When comparing the experiment

and non-periodic simulation, the flow fields for both the straight and modulated flows

look virtually indistinguishable. Furthermore, the critical Reynolds numbers for the

first two bifurcations observed in the experiment and non-periodic simulation agree

to within a few percent. The purpose of this validation in the preturbulent regime

was to obtain a version of the simulation which would capture the dynamics of the

experiment in the weakly turbulent regime as closely as possible.

The results presented in Chapter 5 provide unambiguous evidence supporting the

claim that the experimental turbulent trajectory visits the neighborhoods of unstable

equilibrium ECS in state space. In this approach, unstable equilibria have been cal-

culated directly from experimental flow fields based on a dynamical criterion—that

the rate of evolution be a local minimum, as it should when a turbulent trajectory

passes near such a solution. These ECS closely resemble the experimental flow fields

at these instants. Furthermore, this chapter presents the first demonstration of de-

terministic forecasting of a weakly turbulent fluid flow in the laboratory. This was

done by calculating the unstable manifold associated with an unstable equilibrium.

Although it cannot be expected that the eigenvalues associated with an ECS will

always show a hierarchy, it is a general result that when this does happen, the local

dynamics are guided by an even lower-dimensional submanifold. For the particular

unstable equilibrium considered here, the seven-dimensional (7D) unstable manifold

can be reduced to an effectively one-dimensional (1D) unstable submanifold because

the leading eigenvalue is much larger than the rest. The dimensionality reduction

offered by ECS is tremendous. In this demonstration, the flow is evolving in essen-

tially a 106-dimensional space (the number of grid points in the simulation), but in

the vicinity of this unstable equilibrium the dynamics are reduced to a 7D subspace,

which is in turn reduced even further to a 1D subspace.
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The forecasting demonstrated in this dissertation is only a small step towards

building a predictive framework. There are several important extensions which have

yet to be made. Perhaps most importantly, it is necessary to include unstable periodic

orbits in these calculations, which are thought to be dynamically more important than

unstable equilibria [170]. In particular, such calculations would enable experimental

testing of periodic orbit theory [171], which provides a framework for calculating dy-

namical averages of observables (e.g., dissipation or turbulent drag [77]) from ECS.

The calculation of heteroclinic and homoclinic connections between ECS should allow

for forecasting over longer periods of time. In fact, by constructing a network of such

connections between the dynamically-relevant ECS, it may be possible to describe

turbulent evolution using symbolic dynamics [78, 171].

This picture also hints at the possibility for very effective control. Knowledge of

the structure of heteroclinic and homoclinic connections between ECS in state space

would allow one to apply low cost, highly effective perturbations to “steer” a turbulent

trajectory towards a desired state. Ultimately, this approach could enable relaminar-

ization of turbulent flows at high Reynolds numbers, which would be revolutionary

throughout industry and engineering. Beyond the development of a deterministic

framework for prediction and control of turbulence, there is still immense value in

calculating ECS, in that each solution can be thought of as a fundamental process

driving turbulence [79]. Therefore, the spatial and temporal properties of these solu-

tions can be studied to gain insight into the underlying physics. Studies of ECS have

already uncovered many physical mechanisms generating and sustaining turbulence

[73].

Unlike the ECS-based approach, which has been gaining momentum over the last

15 years or so, persistent homology is a much newer method for characterizing turbu-

lence, and hence requires careful consideration to ensure that the proper conclusions

are drawn from the results. For this reason, Chapter 6 was largely restricted to
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analyses which could be verified via alternative methods. The results of this chapter

show that persistent homology can be used to compare flow fields, probe the geo-

metric features of patterns on different scales, and measure the rate of evolution of

a time series. Although such analyses can be performed using alternative methods,

persistent homology is perhaps preferable for characterizing fluid flows because it

automatically removes any redundancies that may arise due to the symmetries of a

system’s governing equations.

Persistent homology offers an approach to dimensionality reduction that is quite

different from that of the ECS-based approach. This method relies on the generation

of persistence diagrams, in which each point corresponds to a unique, well-defined

geometric feature. The points that have the largest life span, i.e. those farthest from

the diagonal, are considered the most dominant features, while those close to the

diagonal can be considered noisy features which may be neglected. This allows for a

substantial dimensionality reduction. For example, the flow field shown in Figure 6.2

is in principle 16,384-dimensional (it is generated using 1282 Fourier modes); however,

a collection of fewer than 20 dominant points in the persistence diagrams capture the

geometric features of this pattern. Beyond the analysis conducted here, persistence

diagrams provide a powerful tool for characterizing patterns in N dimensions. This

suggests that persistent homology may prove useful in probing the physical structure

of 2D and 3D turbulent flows at arbitrarily high Reynolds numbers.

Perhaps the most useful feature of persistent homology demonstrated here is the

ability to identify structures in persistent homology state space, Per. In the exam-

ple from Section 6.4.3, a relative periodic orbit is identified as a loop structure in

Per. This deduction is based purely on a series of observations of the flow fields.

Extension of this analysis to experimental data should be very straightforward, as

persistent homology is known to be robust to the noise associated with experimental

measurements. In future research, applying this methodology in the turbulent regime
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may offer insight into the low-dimensional attractor guiding the turbulent dynamics.

An attractive feature is that this can be achieved directly from experimental obser-

vations, with no modeling required. This is very much in the same spirit as the time

delay embedding, but more powerful because this methodology uses the full spatial

and temporal information available.

There are many open questions remaining and the possibility for complementary

overlap between these two approaches to dimensionality reduction. For example, the

two measures of the rate of evolution given by equations (5.2) and (6.9) offer different

results when applied to the same time series. It is not yet known which quantity

offers a better measure of the proximity to an unstable equilibrium. Additionally,

the use of persistent homology to identify periodic structures in the turbulent regime

may prove useful in identifying optimal initial conditions for calculating periodic orbit

ECS. The utility of these methods is currently being studied in the context of fluid

turbulence, but such tools may prove useful in many other systems which exhibit

dynamics that are complicated in space and time. Specifically, future extensions of

these approaches may enable better weather forecasting, improve engineering process

control, or offer insight into the dynamics of biological systems (e.g., epilepsy and

cardiac arrhythmias).
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APPENDIX A

PARTICLE IMAGE VELOCIMETRY

Particle image velocimetry (PIV) refers to a methodology which has emerged in the

last two decades in which the instantaneous velocity field of a fluid flow is determined

by measuring the displacements in flow patterns arising from several tracer particles

which follow the motion of the fluid. Some general PIV concepts will be discussed

here, but for a thorough introduction to PIV, see references [148, 149]. In 2D, the

general concept of PIV is the following. A pair of images of the seeded flow is

collected with some known amount of time dt between the frames. The first image

is then divided into several smaller interrogation windows. For each window, a cross-

correlation is performed with the second image to determine how much that region

of flow has been displaced. This results in an array of displacement fields along each

direction, dx and dy. Since dt is known and the relation between physical length and

pixels can be determined using a calibration target, these displacement fields can be

converted to velocity fields. By analyzing a time series of images, one can obtain

temporally and spatially resolved velocity fields.

A few PIV parameters are first introduced before proceeding to discussion of the

PIV software. The correlation step is a PIV parameter which must be chosen for each

PIV processing job. For a fixed camera frame rate of 15 Hz, choosing a correlation

step of 1, 2, 3, etc. corresponds to setting dt equal to 1/15 s, 2/15 s, 3/15 s, etc. It

is necessary to carefully choose the correlation step by taking into account the speed

of the flow in pixels. This is generally not known a priori but rather a few PIV trial

runs must be conducted to determine a good correlation step. As a general rule of

thumb, the correlation step should be chosen such that the “one-quarter rule” [148]
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is approximately satisfied. This rule states that the maximum pixel displacement

should approximately equal one-quarter of the size of the interrogation window. For

example, if the interrogation window is 24×24 pixels, then the correlation step should

be chosen such that the maximum pixel displacement is about 6.

The frame step is a PIV parameter which should not be confused with the corre-

lation step. The frame step is simply the number of images to skip when performing

PIV on a time series. For example, in a time series of 45 images, a correlation step of

2 and a frame step of 15 means that images 1 and 3, images 16 and 18, and images 31

and 33 will be correlated. Typically, for Kolmogorov-like flow, a frame step of 15 is

acceptable, as the flow does not change significantly in 1 s. If necessary, smaller frame

steps can be used and then the velocity fields can be averaged over small windows to

reduce noise.

A.1 Prana

The Prana software package has many appealing features. It comes complete with a

graphic user interface, as well as the option for running PIV jobs from the command

line. It offers an option for parallel computing and a mask can be applied to exclude

regions outside the flow domain from the PIV calculations. Prana has several PIV

methods, but the one that is best for Kolmogorov-like flow is the “Multigrid - De-

form (CWO)” option. This method iteratively deforms images to better resolve the

high shear in the flow. Two sets of Prana parameters are provided below. The first

is a “standard” set of parameters, which has been used for the experimental data

presented in Chapter 4. The second is a “fine” set of parameters which results in

velocity fields with considerably higher spatial resolution. This second set of parame-

ters has been used for the experimental data presented in Chapter 5, particularly for

the experimental velocity fields which were used as initial conditions in the Newton

solver.
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A.1.1 “Standard” Parameters

-----------------------PIV Processing------------------------

Algorithm: Multigrid - Deform (DWO)

Velocity Interp Function: Cubic

Image Interpolation Function: Cardinal Function w/ Blackman Filter

------------------------Pass 1 Setup-------------------------

Window Resolution (first image) (pix): 32,32; 32,32

Window Resolution (second image) (pix): 32,32; 32,32

Window Size (pix): 64,64

Grid Resolution (pix): 8,8

Window Overlap Percentage: 75,75

Grid Buffer (pix): 8,8

Bulk Window Offset (pix): 0,0

Correlation: RPC

RPC Diameter: 2.8,2.8

Zero-Mean Image Windows: Yes

Subpixel Peak Location Method: Three-Point Gaussian

Smoothing: Yes

Smoothing Weight (STD): 2

Deformation Infromation:

Minimum Number of Iterations: 2

Maximum Number of Iterations: 5

Convergence Error: 0.1

Validation Type(s): UOD

UOD Type: Median

UOD Window Sizes: 3,3;3,3
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UOD Thresholds: 3,2

Try Additional Peaks: No

Write Output: No

------------------------Pass 2 Setup-------------------------

Window Resolution (first image) (pix): 24,24;24,24

Window Resolution (second image) (pix): 24,24;24,24

Window Size (pix): 64,64

Grid Resolution (pix): 8,8

Window Overlap Percentage: 66.6667,66.6667

Grid Buffer (pix): 8,8

Bulk Window Offset (pix): 0,0

Correlation: RPC

RPC Diameter: 2.8,2.8

Zero-Mean Image Windows: Yes

Subpixel Peak Location Method: Three-Point Gaussian

Smoothing: No

Deformation Infromation:

Minimum Number of Iterations: 2

Maximum Number of Iterations: 5

Convergence Error: 0.1

Validation Type(s): UOD

UOD Type: Median

UOD Window Sizes: 3,3;3,3

UOD Thresholds: 3,2

Try Additional Peaks: No

Write Output: Yes
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Output Basename: PIV_pass2_

Save Add. Peak Info: No

Save Correlation Planes: No

A.1.2 “Fine” Parameters

-----------------------PIV Processing------------------------

Algorithm: Multigrid - Deform (DWO)

Velocity Interp Function: Cubic

Image Interpolation Function: Cardinal Function w/ Blackman Filter

------------------------Pass 1 Setup-------------------------

Window Resolution (first image) (pix): 32,32; 32,32

Window Resolution (second image) (pix): 32,32; 32,32

Window Size (pix): 64,64

Grid Resolution (pix): 8,8

Window Overlap Percentage: 75,75

Grid Buffer (pix): 8,8

Bulk Window Offset (pix): 0,0

Correlation: RPC

RPC Diameter: 2.8,2.8

Zero-Mean Image Windows: Yes

Subpixel Peak Location Method: Three-Point Gaussian

Smoothing: Yes

Smoothing Weight (STD): 2

Deformation Infromation:

Minimum Number of Iterations: 2
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Maximum Number of Iterations: 5

Convergence Error: 0.08

Validation Type(s): UOD

UOD Type: Median

UOD Window Sizes: 3,3;3,3

UOD Thresholds: 3,2

Try Additional Peaks: No

Write Output: No

------------------------Pass 2 Setup-------------------------

Window Resolution (first image) (pix): 24,24;24,24

Window Resolution (second image) (pix): 24,24;24,24

Window Size (pix): 64,64

Grid Resolution (pix): 8,8

Window Overlap Percentage: 66.6667,66.6667

Grid Buffer (pix): 8,8

Bulk Window Offset (pix): 0,0

Correlation: RPC

RPC Diameter: 2.8,2.8

Zero-Mean Image Windows: Yes

Subpixel Peak Location Method: Three-Point Gaussian

Smoothing: Yes

Smoothing Weight (STD): 2

Deformation Infromation:

Minimum Number of Iterations: 2

Maximum Number of Iterations: 5

Convergence Error: 0.08
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Validation Type(s): UOD

UOD Type: Median

UOD Window Sizes: 3,3;3,3

UOD Thresholds: 3,2

Try Additional Peaks: No

Write Output: No

------------------------Pass 3 Setup-------------------------

Window Resolution (first image) (pix): 24,24;24,24

Window Resolution (second image) (pix): 24,24;24,24

Window Size (pix): 64,64

Grid Resolution (pix): 6,6

Window Overlap Percentage: 75,75

Grid Buffer (pix): 8,8

Bulk Window Offset (pix): 0,0

Correlation: RPC

RPC Diameter: 2.8,2.8

Zero-Mean Image Windows: Yes

Subpixel Peak Location Method: Three-Point Gaussian

Smoothing: No

Deformation Infromation:

Minimum Number of Iterations: 2

Maximum Number of Iterations: 5

Convergence Error: 0.08

Validation Type(s): UOD

UOD Type: Median

UOD Window Sizes: 3,3;3,3
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UOD Thresholds: 3,2

Try Additional Peaks: No

Write Output: Yes

Output Basename: PIV_pass3_

Save Add. Peak Info: No

Save Correlation Planes: No
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APPENDIX B

UNIDIRECTIONAL FLOW

In this appendix, a derivation for the vertical profile P (z) of the horizontal velocity is

provided for the case of unidirectional flow. Although the unidirectional flow cannot

be realized in the experiment, it allows for the derivation of simple expressions for

α, ν̄, ρ̄, and β in equation (3.9), which are helpful in understanding the parametric

dependence of these coefficients. As mentioned in Section 3.2.3, the unidirectional flow

can be interpreted as the limiting case of very wide magnets where the y-dependence

of the magnetic field Bz is ignored (i.e., κ → 0). The form of u(x, y, t) is then also

unidirectional, i.e., u(x, y, t) = u0x̂.

Substituting this into equations (3.8) yields a hydrostatic pressure distribution

and a boundary value problem for the vertical profile P (z):

P ′′ = − J

u0µe
(B1z +B0), hd < z < hd + he,

P ′′ = 0, 0 < z < hd

(B.1)

where the prime denotes differentiation with respect to z. The solution to equations

(B.1) is given by:

P =

 −
JB1

6u0µe
z3 − JB0

2u0µe
z2 + Cz +D, hd < z < hd + he,

Ez + F, 0 < z < hd.
(B.2)

To solve for u0, C, D, E, and F , one must use the boundary conditions that P (z)

must satisfy. These are the no-slip boundary condition at the bottom of the dielectric

(z = 0), the continuity of the velocity and stress at the dielectric-electrolyte interface

(z = hd), and the stress-free and normalization boundary conditions at the top (free)
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surface of the electrolyte (z = hd + he):

P (0) = 0, P (h−d ) = P (h+
d ), µdP

′(h−d ) = µeP
′(h+

d ),

P ′(hd + he) = 0, P (hd + he) = 1.

(B.3)

Using these boundary conditions to solve equations (B.2), one obtains:

u0 = S
hehd
µd

J〈B〉, (B.4)

C =
1

S

µd
µe

(
he + hd
hehd

)(
1− 1

2

hd
he

∆B

〈B〉

)
, (B.5)

D =
1

S

µd
µe

hd
he

[
µe
µd

he
hd
− he
hd
− 1

2
+

(
1

4
+

1

6

hd
he

)
∆B

〈B〉

]
, (B.6)

E =
1

hdS
and F = 0. (B.7)

It turns out that the shape of the vertical profile in the case of unidirectional flow

is virtually indistinguishable from that of Kolmogorov flow, as illustrated in Figure

B.1. This suggests that Q2D flows with arbitrary horizontal flow profiles u(x, y, t)

and moderately high Reynolds numbers (up to Re ≈ 40) may be accurately described

using the velocity profile from the simpler, unidirectional case.

Using P (z), analytical expression are now provided for S and the parameters in

equation (3.9). The measure of two-dimensionality, S, is given by:

S = 1 +
1

2

µdhe
µehd

(
1 +

1

6

∆B

〈B〉

)
, (B.8)

where ∆B = B1he is the change in magnetic field across the electrolyte and 〈B〉 =

B0 + B1hd + 1
2
B1he is the mean magnetic field in the electrolyte. For the Rayleigh

friction coefficient, one obtains:

α =

µd
ρe

1
hdhe

1 + 1
2
hd
he

ρd
ρe

+ 1
3
he
hd

µd
µe

(
1 + 1

8
∆B
〈B〉

) . (B.9)

For the depth-averaged kinematic viscosity, one obtains:

ν̄ = νe
1 + 1

2
hd
he

µd
µe

+ 1
3
he
hd

µd
µe

(
1 + 1

8
∆B
〈B〉

)
1 + 1

2
hd
he

ρd
ρe

+ 1
3
he
hd

µd
µe

(
1 + 1

8
∆B
〈B〉

) . (B.10)
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Figure B.1: Analytical results for the vertical profile of the horizontal flow field in
both layers, with hd = he = 0.236. The Kolmogorov flow corresponds to the solid
line, while the unidirectional flow corresponds to the dashed line. The ratios of the
velocities, as defined by equation (3.13), are: S = 1.10 for unidirectional flow and
S = 1.08 for Kolmogorov flow.

For the depth-averaged density, one obtains:

ρ̄ =
ρe

hd + he

[
1 +

1

2

hd
he

ρd
ρe

+
1

3

he
hd

µd
µe

(
1 +

1

8

∆B

〈B〉

)]
. (B.11)

The exact expression for β is too complicated to yield much insight, but it can be

evaluated using the profile P (z) and the coefficients for any set of experimental param-

eters. It should be noted that, for the values of parameters used in the experiment,

the coefficients S, α, ν̄, ρ̄, and β have a very weak dependence on ε = ∆B/〈B〉:

setting ε = 0 changes the values by less than 5%. In the limit where ε = 0, one finds:

β =
1 + 1

3
hd
he

ρd
ρe

+ 2
3
he
hd

µd
µe

+ 2
15
h2e
h2d

µ2d
µ2e

1 + 1
2
hd
he

ρd
ρe

+ 5
6
he
hd

µd
µe

+ 1
4
ρd
ρe

µd
µe

+ 1
6
h2e
h2d

µ2d
µ2e

. (B.12)

Similarly, for the case of Kolmogorov flow, the dependence on κ is also very weak.

Evaluating the coefficients using P (z) from Kolmogorov flow instead of unidirectional

flow changes their values by less than 6%.

Expression (B.8) suggests that even if the magnetic field across the electrolyte

were uniform, i.e. ∆B = 0, the flow in the electrolyte would still deviate significantly
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from being perfectly 2D. For a typical case where µe = µd and he = hd, one obtains

S = 1.5. Using instead the value ε = −0.6 corresponding to the experiment gives

S = 1.45. Hence, the decay in the magnetic field does not contribute significantly

to the deviation from two-dimensionality. Expression (B.8) also suggests that the

shallower the electrolyte layer is (relative to the dielectric layer), the closer one comes

to a vertically uniform profile in the electrolyte (S = 1). However, electrolyte layers

with thickness less than about 0.236 (dimensionally, 0.3 cm) are found to be unstable

in the experiment, as they break up to form configurations that correspond to lower

total surface energy. Alternatively, one may increase the thickness hd of the dielectric

layer. This has the drawback that one moves farther from the magnets, requiring

larger currents to drive the flow. Also, the Q2D approximation, an assumption whose

validity depends partially on strong geometric confinement, is compromised. Hence,

the most straightforward way to improve the two-dimensionality of the electrolyte is

by increasing the ratio of viscosities. The optimal choice of the electrolyte viscosity is

not obvious. For the variation in the velocity of the electrolyte to be at most 10%, µe

should exceed the solution of equation (B.8) with S = 1.1. Substituting the typical

values of µd = 1.30 mPa·s, ε = −0.6, and hd = he gives µe ≥ 5.85 mPa·s.
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APPENDIX C

NUMERICAL METHODS

In this Appendix, details are provided concerning the spatial and temporal discretiza-

tions and the numerical integration schemes employed in the Kolmogorov-like flow

simulations.

C.0.3 Non-Periodic Simulation (NPS) and Singly-Periodic Simulation
(SPS)

Since the NPS, as well as the SPS, require prescribing no-slip (e.g., Dirichlet) bound-

ary conditions on the velocity field u, numerical simulations are performed using the

primitive variable (ux, vx, and p) formulation by employing a semi-implicit fractional-

step method detailed in [158]. To begin with, equation (3.9) is discretized in time to

obtain the following difference equation:

un+1 − un

∆t
+

3

2
Nun −

1

2
Nun−1 = −1

ρ
∇pn+1 +

1

2
L(un+1 + un) + f . (C.1)

In the above equation un and pn+1 are the velocity and kinematic pressure fields

with the subscript n indicating a discrete time instant tn = n∆t, where ∆t is the

time step for the update. For purposes of brevity, the notation Nun = βun · ∇un

and Lun = ∇2un − αun have been used to represent the nonlinear and linear terms,

respectively. The above equation results from a semi-implicit approximation for the

temporal evolution described by equation (3.9), where the linear terms in the update

are treated implicitly using the Crank-Nicholson scheme, while the nonlinear term

is handled explicitly using the Adams-Bashforth scheme. The velocity field un+1 at

every instant satisfies the incompressibility condition:

∇ · un+1 = 0, (C.2)
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which is enforced on each update through the three-fractional-step P2 (pressure cor-

rection) projection method discussed in [158].

Spatial discretization of the velocity and pressure fields is carried out using the

standard marker and cell (MAC) staggered grid [172]. The spatial derivatives in

equation (C.1) are approximated using finite differences; the 2D Laplacian operator

(∇2) uses a five-point stencil formula and the nonlinear term uses a modified MAC

formula [173].

For both the NPS and the SPS, 20 cells per magnet width w have been chosen

discretizing the velocity and pressure fields. Since the dimensions of the NPS are

identical to the lateral dimensions of the experiment, i.e., 14w × 18w, a total of

280× 360 cells were used to sample the flow domain. The SPS, however, corresponds

to a domain of dimensions 14w × 8w, which maps to a region including the central

eight magnets in the experiment. Hence, a total of 280 × 160 cells were used to

discretize the SPS domain. For both the SPS and NPS, a time step of ∆t = 1/40 s

was used for all the numerical simulations.

C.0.4 Doubly-Periodic Simulation (DPS)

Simulations on the doubly-periodic domain can be sped up significantly using a spec-

tral method [157]. Since solving linear equations involving the Laplacian is very cheap

in the spectral method, it is convenient to use the vorticity-stream function formula-

tion instead of the velocity-pressure formulation. Taking the curl of equation (3.9),

one obtains the following equation for the z-component of vorticity ω = (∇× u) · ẑ:

∂tω + βu · ∇ω = ν∇2ω − αω +W, (C.3)

where W = (∇× f) · ẑ. The horizontal components of the velocity field ux = ∂ψ/∂y

and uy = −∂ψ/∂x can be computed using the stream function ψ, which satisfies the

Poisson equation ∇2ψ = −ω.

The vorticity field ω is discretized in the Fourier space using 128 modes along each
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of the x- and y-directions. Since the lateral dimensions of the periodic domain are

8w× 8w units, the spatial resolution associated with the Fourier grid corresponds to

16 grid points per magnet width w. Taking the Fourier transform of equation (C.3),

one obtains:

∂tΩ = −βF [u · ∇ω] + ν∇2Ω− αΩ + F [W ], (C.4)

where F [·] represents the Fourier transform and Ω = F [ω].

Equation (C.4) is stepped forward in time (t → t + ∆t) using a 3-substep semi-

implicit Strang-Marchuk splitting algorithm [174] where the first and last substeps

advance the vorticity field using the nonlinear term by means of a second-order ex-

plicit Runge-Kutta scheme (using a time step ∆t/2), while the intermediate substep

advances the vorticity field using the Crank-Nicholson scheme (using a time step ∆t).

A time step of ∆t = 1/32 s has been used.
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