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SUMMARY

The main goal of the thesis is to study integro-differential equations. Integro-
differential equations arise naturally in the study of stochastic processes with jumps.
These types of processes are of particular interest in finance, physics and ecology.

In the first part of my thesis, we study interior regularity for the regional frac-
tional Laplacian operator. We first obtain the integer order differentiability of the
regional fractional Laplacian. We further extend the integer order differentiability to
the fractional order of the regional fractional Laplacian. Schauder estimates for the
regional fractional Laplacian are also provided.

In the second and third parts of my thesis, we consider uniqueness and existence
of viscosity solutions for a class of nonlocal equations. This class of equations includes
Bellman-Isaacs equations containing operators of Lévy type with measures depending
on x and control parameters, as well as elliptic nonlocal equations that are not strictly
monotone in the u variable.

In the fourth part of my thesis, we obtain semiconcavity of viscosity solutions
for a class of degenerate elliptic integro-differential equations in R™. This class of
equations includes Bellman equations containing operators of Lévy-Ito type. Holder
and Lipschitz continuity of viscosity solutions for a more general class of degenerate
elliptic integro-differential equations are also proved.

In the last part of my thesis, we study interior regularity of viscosity solutions
of non-translation invariant nonlocal fully nonlinear equations with Dini continuous
terms. We obtain C'? regularity estimates for the nonlocal equations by perturbative

methods and a version of a recursive Evans-Krylov theorem.

vil



CHAPTER 1

INTRODUCTION

The thesis contains several results about nonlocal equations. We begin with recalling

basic notations whcih will be used in the manuscript.

1.1 Basic notions

We use 0 for both the origin in R and R™. For a given open set  in R with 9 # (),
let
d, = dist(z,Q°) and Qs = {z € Q;d, > }.

For each non-negative integer r and 0 < o < 1, we denote by C™*(Q2) (C™*(Q2))
the subspace of C™0(Q) (C™°(2)) consisting functions whose rth partial derivatives
are locally (uniformly) a-Holder continuous in €. For each j = (j1,j2- - jn) € N”,

. . . . Y |‘u T, ®
we denote |j| = ji+ja+ -+ jn and Fu = (@1 )71 (aa?;)jz.-.(axn)j"' For any u € C™(€2),
where r is a non-negative integer and 0 < o < 1, define

[u] _ ) SUPzeq|j|=r | u()], ifa = 0;
mos — u(x)—u .
Supm,yéQ,m#yJﬂ:r %, ifa > O,
and
L Z;:o[u]j,o,ﬂ, ifa = 0;
HUHCTva(Q) = i _
||U||cr70(9) + U]y a0, ifa>0.

For simplicity, we use the notation C*(Q2) (C%(£2)), where a > 0, to denote the space
Cm(Q) (C™'(Q)), where r is the largest integer smaller than a and o/ = a — 7.
We note that if a is an integer r, then C%(Q) = CLYQ) £ C*0(Q) (C*(N) =
CoLHQ) # C*0(€)). We denote C°() as the space of C* functions with compact
support in 2, S as the Schwartz space of rapidly decreasing C'*° function in R", and
A, (Q) as the Zygmund space of all bounded functions on € such that

|u(x 4+ h) + u(z — h) — 2u(x)|

[ulp, @ == sup 7] < 00.
z,x+h,x—heQ

We equip the space A,(€2) with the norm |[ully, @) = [|ullp~@) + [ula,@). We will
write BUC(R") for the space of bounded and uniformly continuous functions in R™.
For any 1 < # < 2 and any convex open set ', we say a set of functions {f,}aca is
uniformly #-semiconvex with constant C' in Q' if, for any x,y € ', a € A,

Tty
2fa( 9 ) - fa(x) - foc(y) < C|J] - y|0'




We say a set of functions { f,}aca is uniformly #-semiconcave with constant C' in €
if {—fa}taca is uniformly f-semiconvex with constant C' in €. If the set A is a unit
set, i.e., A = {ap}, then we just simply say that f,, is #-semiconvex (f-semiconcave)

in .

1.2 Background and main results

1.2.1 Regional fractional Laplacian

Given real numbers 0 < s < 2, € > 0, and an open set {2 C R", denote

Lulz) = A(n, —s) / uy) —ulw)

ABe(z) T —y[" T

A

Dlw

Js|2 T
n
m3T(1-3)

u € LY(Q, Miﬁ , 1.e. fQ (1+|x‘)n+sdx < 00. The regional s-fractional Laplacian

Aé on 2 is defined as

where A(n,—s) = , Be(x) is the open e-ball in R" centered at z, and

s dx
2 2 1

),

provided that the limit exists. The regional s-fractional Laplacian can be also defined
on the closure 2 of Q by talking €2 in place of 2 in the above. We note that, if z € €,
then Agu(x) = Aéu(m)

When ) is a bounded Lipschitz open set, the regional s-fractional Laplacian Aé is
in fact the generator of the so-called reflected symmetric s-stable process (X;);>o on
Q, i.e., a Hunt process associated with the regular Dirichlet form (£, F) on L*(Q, dz):

£(u,v) = / / () (v(z) — v(y))dxd%

\x — y|nte

)2
F = ueL2 // ]a:— ’m d:):dy<oo}.

It is first shown in [11] that if 0 < s < 1, then the censored s-stable process in
2 is essentially the reflected s-stable process (Xi)i>0, and if 1 < s < 2, then the

censored s-stable process in €2 is identified as a proper subprocess of (X});>o killed
upon leaving Q. Later, it is shown in [21] that (X});>0 can be refined to be a process
starting from each point of Q which admits a Holder continuous transition density
function. In [33], not only is the generator of (X;);>¢ on Q shown to be the regional s-
fractional Laplacian, but also a semi-martingale decomposition of (X});> is obtained
by studying the differentiability of the regional fractional Laplacian and its integration
by parts property. For other studies on regional fractional Laplacians, we refer the



reader to [31] for a more general integration by parts formula of the regional fractional
and fractional-like Laplacian, and to [32] for some boundary Harnack inequalities for
the regional fractional Laplacian on C1#~1(Q), s < 8 < 2.

If Q = R", the regional fractional Laplacian A%n becomes the usual fractional
Laplacian —(—A)2 defined via Fourier transform: F((—A)zu)(&) = |€]°F (u)(€) (see
[64]). If we let s tend to 2, then the fractional Laplacian —(—A)2 becomes the
classical Laplacian A, and it is clear that u € C* for some integer o > 2 implies that
Au € C*2. In the case that u € C® for some o > s with o — s not being an integer,
one also has —(—A)2u € O ([72, Proposition 2.7]). A natural problem then is
whether the regional fractional Laplacian shares similar regularity properties as that
of the classical and fractional Laplacian. This problem is first investigated in [33] in
which the following results are proved.

Theorem 1.2.1. Let Q be an open set in R" and u € Ll(Q?(lHiﬁ) for some
0 < s < 2. Then the following holds.

a) ([33, Proposition 8.3]) If u € C*(Q) for some a > s when 0 < s < 1 or
u € C**(Q) for some a > s —1 when 1 < s < 2, then Adu € CH0(Q).

b) ([33, Theorem 8.1]) In the case n = 1, if r is a non-negative integer such that
u € C™*(Q) for some some a > s when 0 < s < 1 or u € C"*5*(Q) for some
a>s—1whenl<s <2, then Adu € C™0(9Q).

It is conjectured in [33] that part b) of the above theorem should hold for higher
dimensions as well. In Section 2.1, we gave an affirmative answer to this conjecture.
Unlike the fractional Laplacian, the differential operator and the regional fractional
Laplacian are not exchangeable in order. To overcome this difficulty, we derive a class
of integral identities (see Lemma 2.1.1) and use them to conclude that all possible
singular terms of D”(Aéeu) as € — 07 are in fact non-singular. Making further
estimates, we are able to extend the integer order differentiability result to a fractional
order. Then we have the result analogous to [72, Proposition 2.7] in the case of
regional fractional Laplacian.

Schauder estimate is well-known for the classical Laplacian A (see [28]) as well
as for the fractional Laplacian (see [15, 30, 67, 72]). We refer the reader to [15, 30]
for interior and boundary regularity theory for more general fractional operators. In
Section 2.2, using Schauder estimates for the fractional Laplacian, we are able to show
a similar Schauder estimate holds for the regional fractional Laplacian.



1.2.2 Nonlocal fully nonlinear equations

The nonlocal fully nonlinear equations we considered are of form
G(z,u, Du, D*u,I[z,u]) =0 in , (1)

where ) is a domain in R™ and [z, u] is an integro-differential operator. The function
u is real-valued. The nonlinearity G : R” x R x R” x S x R — R is a continuous

function which is coercive, i.e., there is a non-negative constant + such that, for any
r,peR" r>s X eS" Il eR,

y(r—s) < G(z,r,p, X, 1) — G(z,s,p, X, 1), (2)
and degenerate elliptic in a sense that, for any z,p € R, r,[1,ls € R, XY € S”
G('T7T7p7X7ll) S G(I7T7P7Y7l2) if X Z Y7 ll Z 12- (3)

Here S™ is the set of symmetric n X n matrices equipped with its usual order. The
nonlocal operator [ is either of Lévy type, i.e.,

Bl = [ e +2) = u(o) = L) Du(o)  Apald), ()

or of Lévy-Ito type, i.e.,
Iz, u) = /n[u(a: + j(x, 2)) — u(x) — L, 0)(2) Du(x) - j(x, 2)|pu(dz), (5)

where 15, (o) denotes the indicator function of the unit ball B;(0), j(x, 2) is a function
that determines the size of the jumps for the diffusion related to the operator Iy and
1 and p are Lévy measures.

We will also be interested in equations of Bellman-Isaacs type

223522{ — Tr(oag(z)ols(z)D*u(x)) — Lnglz,u]

+ bag(z) - Du(z) + cap(®)u(z) + fap(z)} =0, inQ, (6)
where 0,5 : R" = R™™ byp : R" = R", cop : R" = R, fo5 : R" = R are continuous
functions, ¢, > v in R™ and 1,4 is either of Lévy type or of Lévy-Ito type.

1.2.2.1 Uniqueness

In Chapter 3, we study comparison principles and uniqueness of viscosity solutions
for a simplified version of (1), i.e.,

G(z,u,Iz,u]) =0 in (7)



where ) is a bounded domain in R", I[x,u] is of Lévy type and {p, : x € Q} is a

family of Lévy measures, i.e. non-negative, Borel measures on R" \ {0} such that

min{|z|?, 1}u,(dz) < +oo  for all x € Q. (8)
R7

The operator I[z,u] is thus well defined at least for functions v € C?*(Bs(z)) N
BUC(R™) for some § > 0. We point out that the solution u has to be given in
the whole space R™ even if (7) is satisfied only in . We will also be interested in
studying comparison principles and uniqueness of viscosity solutions for equations of
Bellman-Isaacs type
yu + sup inf{—Ig[z,u] + fas(z)} =0, in Q, (9)
acAPEB
where each I,s[z,u] is of Lévy type.

Comparison principles and uniqueness results are well known for equations (1)
and (6) when 7 > 0 and the nonlocal operators I and I,z are of Lévy-Ito type.
In this case the Lévy measure is fixed which, in the stochastic control/differential
game interpretation of the Bellman-Isaacs equations, means that we can only control
the state through the diffusion coefficients j,3 of a stochastic differential equation
driven by a fixed Lévy process or a fixed random measure. The first comparison and
uniqueness results for such equations were obtained in [68, 74, 75| and many other
results can be found in the literature, including results for equations with second
order PDE terms, see [1, 2, 3, 4, 7, 6, 8, 9, 20, 35, 39, 40].

The case when we have a family of y, measures depending on x is much more
difficult. Some comparison results for time dependent equation like (7) were obtained
in [2] however with restrictive assumptions. In particular the measures p,, which
depend on t and x there, are bounded. In Chapter 3, we prove several comparison
theorems for equations (7) and (9). In Section 3.2, we first look at the case when
equations are strictly monotone in the u variable, i.e. when v > 0 in (2) and in (9).
Since standard comparison proofs do not work for these equations, the idea is to try
to prove comparison assuming that either a viscosity subsolution or a supersolution is
more regular. Of particular interest is the case when one of them is in C"(2) for some
r > 1. We adapt to the nonlocal case the technique from [22], Section 5.6 (see also
[41]). There are many recent C" () regularity results [6, 8, 13, 12, 14, 42, 48, 70] for
equations (7) and (9) and we show in Section 3.6 that comparison theorems obtained
in previous sections can be applied to various classes of problems.

Another largely open problem considered in Chapter 3 is comparison results for
equations (7) and (9) when they are not strictly monotone in the u variable, i.e.
when v = 0. The only result in this direction in [12], Section 5, is for equations



corresponding to the case when the measures u, are independent of x. There is also
a remark made in [34], Theorem 9.2, about comparison for a class of equations being
a consequence of an Alexandrov-Bakelman-Pucci estimate for nonlocal equations,
however it is not supported by any proof and it is probably false without additional
assumptions about the nonlocal operator. Our small contribution here in Section 3.3
is in showing how comparison results of Section 3.2 can be extended to the case v = 0
when equations are elliptic with respect to a good enough class of linear nonlocal
operators. We follow a typical strategy of perturbing viscosity sub/supersolutions to
strict viscosity sub/supersolutions (see [22, 38]). The reader can consult [5, 22, 38, 41]
for comparison results for fully nonlinear elliptic PDE which are not strictly monotone
in the u variable.

In Section 3.4 we show how viscosity sub/supersolutions of equations (7) and (9)
can be regularized by special sup- and inf-convolutions that depend on a family of
smooth functions. We also show how to use these special sup/inf-convolutions to
prove that the difference of a viscosity subsolution and a viscosity supersolution of
the same elliptic equation is a viscosity subsolution of a nonlocal Pucci extremal
equation. Knowing this one can use an Alexandrov-Bakelman-Pucci estimate of [34]
to prove a comparison principle but this part appears to be missing in [34].

1.2.2.2 Existence

In Chapter 4, we use Perron’s method to establish existence of a viscosity solution of

(10)

G(x,u, Izx,u]) =0 in €,
u=g in Q°

where Q is a bounded domain, I[x,u] is of Lévy type, g is a bounded continuous
function in R™ and {p, : z € Q} is a family of Lévy measures. We will also be

interested in existence of viscosity solutions of

(11)

YU 4 SUp e 4 infpep{—Iag[z, u] + fap(z)} =0 in
u=g in Q¢

Existence of viscosity solutions is well known for equations (1) and (6) with non-
local operators of Lévy-Ito type and v > 0 or with uniformly elliptic translation-
invariant nonlocal operators of Lévy type and v = 0, see [7, 12]. In these two cases,
since comparison principle holds, the existence of a viscosity solution can be proved
directly by Perron’s method. The case when we have a family of 1, measures depend-
ing on z is slightly more difficult since we do not have a good comparison principle,
see [63]. To our knowledge, the only available results for existence of solutions for
non-translation invariant equations are the following. In Proposition 4.2 of [70], J.



Serra proved existence of a viscosity solutions of a nonlocal Bellman equation. H.
Chang Lara and D. Kriventsov obtained existence of viscosity solutions of time de-
pendent nonlocal Isaacs equations in Proposition 5.5 of [19]. In both proofs, the
authors used a fixed point argument. The reader can consult [22, 36] for Perron’s
method for viscosity solutions of fully nonlinear partial differential equations.

In Section 4.2, we adapt to the nonlocal case the approach from [36, 44] for obtain-
ing existence of discontinuous viscosity solutions of (74) and (75). Here we assume
that there exist a viscosity subsolution and a viscosity supersolution of each equa-
tion satisfying the boundary condition. Under this assumption, we can construct
a discontinuous viscosity solution by Perron’s method without using a comparison
principle. In Section 4.3, we obtain Holder estimates for discontinuous viscosity solu-
tions of (74) and (75) constructed in Section 4.2 under uniform ellipticity assumption
for nonlocal terms. The main tool we use is the weak Harnack inequality proved in
[12]. In Section 4.4, we construct a continuous viscosity subsolution and a continu-
ous viscosity supersolution of (74) and (75) satisfying the boundary condition under
uniform ellipticity assumption for nonlocal terms. Here we follow the idea of [65] to
construct appropriate barrier functions. With all these ingredients in hand, we can
finally conclude that there exists continuous viscosity solutions of (74) and (75) when
both equations are uniformly elliptic.

1.2.2.3 Semiconcavity

In Chapter 5, we study semiconcavity of viscosity solutions of (1), satisfying (2) and
(3) with v > 0, where the nonlocal operator [ is of Lévy-It6 type. The Lévy measure
i is a Borel measure on R™\ {0} satisfying

/ p(€)2u(d€) < +oo, (12)
R7\{0}

where p : R" \ {0} — R* is a Borel measurable, locally bounded function satisfying
limg_,0 p(§) = 0 and infecpe(o) p(§) > 0 for any r > 0. We will also be interested in
equations of Bellman type

sup { =T (04 (z)ol () D*u(x)) —Ia[z, u]+ba(z)- Du(x)+co(x)u(z)+ folz)} =0, inR",
acA (19
where I, is of Lévy-I1to type and ¢, > v > 0 in R".

The proof of semiconcavity of viscosity solutions is done in two steps. We first
prove Lipschitz continuity of viscosity solutions. We then adapt to the nonlocal case
the approach from [37, 38| for obtaining semiconcavity of viscosity solutions of elliptic
partial differential equations. In recent years, regularity theory of viscosity solutions of



integro-differential equations has been studied by many authors under different types
of ellipticity assumptions. It is impossible for us to make a complete review of all
the related literature. However, the following are what we have in mind. Regularity
results were initiated by assuming nondegenerate ellipticity of second order terms
such as [10, 27, 29, 53, 54, 55, 56, 57, 58, 59] for both elliptic and parabolic integro-
differential equations. More recently, striking regularity results were obtained under
uniform ellipticity assumption for nonlocal terms. This assumption, introduced by L.
A. Caffarelli and L. Silvestre, is defined using nonlocal Pucci operators. Several C¢,
O and Shauder estimates for nonlocal fully nonlinear equations were obtained by
various authors [12, 13, 14, 16, 17, 18, 42, 48, 69, 70, 71] under this uniform ellipticity
assumption. The other notion of uniform ellipticity was defined by G. Barles, E.
Chasseigne and C. Imbert. It requires either nondegeneracy of the nonlocal terms,
or nondegeneracy of nonlocal terms in some directions and nondegeneracy of second
order terms in the complementary directions. It was used to obtain Holder and
Lipschitz continuity for a class of mixed integro-differential equations, see [6, §].

In Section 5.2, we study Holder and Lipschitz continuity of viscosity solutions for
(1) and (6) with nonlocal operator of Lévy-It6 type and v > 0 in R™. Our Hélder
and Lipschitz continuity results are different from these of [6, 8, 71] since we allow
both the nonlocal terms and the second order terms to be degenerate. However, to
compensate for degeneracy, we need to assume that the constant - is sufficiently large.
The reader can consult [39] for continuous dependence and continuity estimates for
viscosity solutions of nonlinear degenerate parabolic integro-differential equations.

Having the Lipschitz continuity results, in Section 5.3 we derive semiconcavity of
viscosity solutions of equations (1) and (13). To our knowledge, the only available re-
sults in this direction are about semiconcavity of viscosity solutions of time dependent
integro-differential equations of Hamilton-Jacobi-Bellman (HJB) type whose proofs
are based on probabilistic arguments. In [43], the author proved joint time-space
semiconcavity of viscosity solutions of time dependent integro-differential equations
of HJB type with terminal condition, using a representation formula based on forward
and backward stochastic differential equations. However, the proof there depended
on a restrictive assumption that the Lévy measure p is finite. In another paper [24], it
was shown that the value function of an abstract infinite dimensional optimal control
problem is w-semiconcave, if the data in the state evolution equation are C'** and the
data in the cost functional are w-semiconcave. The method was then applied to the
finite dimensional Euclidean space providing semiconcavity result for the value func-
tion of a stochastic optimal control problem associated with a time dependent version
of (13). Later the author extended the semiconcavity result in state variables to that
in time and state variables jointly in [25]. Our result for (13) extends results of [24]



to the time independent case and provide a different purely analytical approach. The
result for (1) is totally new since the solution may not have an explicit probabilistic
representation formula and thus the analytical proof seems to be the only available
method. Finally we remark that regarding semiconcavity of viscosity solutions of
PDEs of HIB type, in addition to the already mentioned analytical proofs of [37, 38],
other proofs by probabilistic methods can be found in [26, 49, 72, 51, 52, 76].

1.2.2.4 (7 regularity

In Chapter 6, we investigate interior regularity of viscosity solutions of nonlocal equa-
tions of the type
it { [ fu(o+9) = u@) ~ oo () Dule) ] Kular )y} = Fla), - in Bi(0), (1)
a Rn

where K,(x,y) is a positive kernel. The kernels K,(z,y) are symmetric, i.e., for any
r,y € R"

Ka(way) = Ka(l', _y>7 (15)
and are uniform elliptic, i.e., for any z € R™ and y € R™\ {0}
(2—0)A (2—0)A
— < Ku(r,y) < —7p—, 16
|y|"te (=:9) ly|"te (16)

where 0 < A < A. The symmetry assumption is essential for the regularity theory for
(14), see [73]. Under the symmetry assumption, (14) can be rewritten as

wt { [ Sun. Koy} = 1@, Bi(0)

acA

where ou(z,y) = u(x+y) +u(r —y) —2u(z). We furthermore assume that the kernels
K, satisfy, for any x € R", any y € R"\ {0} and i = 1,2
A2 —-0)

DK (z,y)| < |

Ty (17)

We will obtain C? regularity estimates for (14) with Dini continuous data in two
steps. We first generalize the recursive Evans-Krylov theorem for translation invariant
nonlocal fully nonlinear equations from the case of Holder continuous data, see [42],
to the Dini continuous case. We then use the perturbative methods to obtain C?
regularity estimates for (14).

In Section 6.2, we establish a recursive Evans-Krylov theorem for translation in-
variant nonlocal fully nonlinear equations in the Dini continuous case. The sequence

of equations we consider is, for j =0,1,--- ,m

inf {/R > /f(j‘”"w‘l(ﬂj)w(p’)5vz(pj‘l:c,pj‘ly)Ké(y)derw‘l(pj)ba} = 0,in Bs(0),
" 1=0
(18)



where w(t) is a Dini modulus of continuity, K7 (z) := p/"*?) K, (p’z) and p € (0,1).
We prove that, for any [ = 0,1,--- ,m, ||vl||ca+g(31(0)) < C where 0 < 5 < 1 and
C > 0 are two constants independent with p and m. Recursive Evans-Krylov theorem
was first studied by T. Jin and J. Xiong in [42]. They used it to obtain the uniform
regularity estimates for the approximators at each scale. Instead of using polynomials
as approximators, they used solutions for constant coefficient equations since poly-
nomials grow too fast near infinity. We construct a slightly more general recursive
Evans-Krylov theorem for our purpose. When w(t) = t* for some 0 < a < 1, (18) is
the case studied in [42].

Using the recursive Evans-Krylov theorem in the Dini continuous case, in Section
6.3, we derive C7 regularity estimates of viscosity solutions for (14) with Dini con-
tinuous data. To our knowledge, the only available results in this direction are the
following. In Proposition 5.2 of [15], the authors proved C regularity estimates for

we (A Ef = 1 /m 2 )2t R (19)
L'(s) Jo ti=3’ ’

if o # 1. For 0 = 1, they obtained A,(R™) regularity estimates for (19). It can be

easily deduced from Proposition 2.8 of [72] that the corresponding regularity estimates

for weak solutions of (—=A)2u = f in © hold. We notice that C'(2) & A,(). In

Theorem 1.1(b) of [66], it was shown that C7 regularity estimates for weak solutions

hold for

Lu = / /OO 5u(x,9r)%du(9) = f(z), in B1(0), (20)
Sn=1J -0 ‘T’

with a weaker ellipticity assumption

0< A< inf / lv-07du(f) and p(S"') < A < +oo,
veSn=1 Jen-1
where 0 # 1. If 0 = 1, the authors derived C?~¢ regularity estimates for (20), where
e can be any positive constant between 0 and o. It was claimed in [66] that the meth-
ods there can be applied to obtain similar regularity estimates for non-translation
invariant equations. In [23], H. Dong and D. Kim studied Schauder estimates for a
class of nonlocal linear equations with rough kernels in both Holder and Dini contin-
uous case. However, in the Dini continuous case, they considered the global problem
on translation invariant equations, i.e., Lu = f in R™ where L is defined in (128).
Our results are different from the above results since we are considering the regular-
ity theory of viscosity solutions for non-translation invariant nonlocal fully nonlinear
equations. Weak solutions are not equivalent to viscosity solutions in general unless
uniqueness of viscosity solutions for such equations holds. However, uniqueness of

viscosity solutions for non-translation invariant nonlocal equations is still an open

10



question. Some recent progress has been made in [63]. Finally we refer the reader to
46, 47] for C? regularity estimates for viscosity solutions of classical fully nonlinear

PDEs with Dini continuous terms.
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CHAPTER 11

INTERIOR REGULARITY FOR REGIONAL
FRACTIONAL LAPLACIAN

In this chapter, we will study interior regularity for regional fractional Laplacian
including both differentiability and Schauder estimate. This is a joint work with
Prof. Yingfei Yi, see [62].

2.1 Differentiability

In this section, we will study the differentiability of the regional fractional Laplacian

in an open set (). The proof will be based on some integral identities in R".

2.1.1 Integral identities

Given ' € N, z = (21,2, ,2v) € RY and k = (ki ko, k)

€ N, we denote by z* the monomial [/, z¥

i1 2. Also, for each j =1,2,--- ,n, we let

e; to denote the jth standard unit basis vector in R".

Lemma 2.1.1. Consider an annulus domain Rs.(0) := {z € R" : € < |z| < 0}, where
0 <e<d. Then for any i,j,m € N and k = (ky, ko, -+ , k) € N*, we have

1 k+2e; 1 k+2e;
ki+1 Jrs0 |2l ki+1 Jrs0 |2l

Proof. The result follows from symmetry. O]

Lemma 2.1.2. ([33, Lemma 8.2]) Let Q2 be an open subset of R® and u € L'(Q).
Suppose that u is continuous in an open neighborhood U of xo = (x1,--+ ,x,) € Q
and dist(xg,0U) > € > 0. Then the function f(x) = meg(x) u(y)dy is differentiable
at xo and

of

Ty — Y
8%( o) /E)Be(zo) ( )|37 — (@)

where m(dy) is the n — 1 dimensional surface Lebesgue measure.

2.1.2 Integer order differentiability

s
We first prepare some technical lemmas concerning derivatives of Ag u(x).
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Lemma 2.1.3. Let ) be an open set in R* and 0 < s < 2. Suppose that u €
LY(9Q, W) NCY(Q). Then for any x € Q, § < d, = dist(x,99), and 0 < € < 4,

we have

2 d s
A(TL, —S) a_xlAQ,eUJ(x)
g S () — )~ )~ ) o
Rs.(z) |z — y[rte+2 Y

dy

_(n—l)/R ()My) (@) + 35 1ax( z)(z; — y;)l (@i — i)

| y|n+s+2

ou (:E) u . L
x; Y UL ) )\ Ti — Yi
B / . n+s dy + / ( ( ) ( zz?l—(s-&-l >m<dy)
B (z)NQ |z -yl OB5(x)NQ [z —yl
BS(2)NQ |y — x|nrst? 7

where Rs.(x) := Bs(x) N BE(x).

Proof. The proof follows from that of [33, Proposition 8.3]. ]

Lemma 2.1.4. Let Q) be an open set in R™ and 0 < s < 2. Suppose that u €
L%Q,W) N C™H9(Q) for some positive integer r. For any v € Q, ¢ > 0,
§ < d, =dist(x,00), and | = (l1,la,---1,), k = (k1,ka, -+ ,kn) € N, if k; = 0 for
some 1 <1 <n, then

0 ( ) Z\j\ =0 |]|l( - x)]al+Ju(x)( _ )kd
axi Rso(2) ‘.’L’ ‘n+s+2p Y Y
duly) — S0 Sy — 2y ()
= —n+2p—m—1/ J J z —y)tedy
( ) Rse(z) | y|n+s+2p+2 ( )
0" uly) - z“' o gy — 2y 0 ()
191=0 |]|' ( J k+e;
- o, y—z) |(z—y)"dy,
where A; = jl!j|23;|~%~jn! for each j = (j1,72, - ,jn) € N and m,p € N are such that

ll| +m =71 and m + |k| = 2p.

Proof. Since k; = 0, we have by Lemma 2.1.2 that

v Puty) = TU Gty — ot L
' 0zi Jrs. (@) o v
= L+ 1L+,

13



where

k

— V(o —
I, = —— Z Aal+3+ez )/ (y —x)(x —y) dy,
Rée(x)

|x — y|n+8+2p
\J\

duly) — S Ay — wpor (o)

|z — y|rtetept

I, = —(n+s+2p) / (z — y)k‘i’eidy,

R5€($)

B u(y) — ST Sy — 2)70 T u(x)
Ig = /aBe( :

k+e;
|CL’ _ |n+s+2p+1 ((L’ - y) m(dy)

_/ duly) — S0 Sy — 2) 0 u(x)
dBs(x)

|z — y|rtstwtl (z — y)k+eim(dy)'
Using the identity m + |k| = 2p, integration by parts yields

5
Iy = —(n+s+2p) / r_"_s_Qp_ldr/ pr2pmm=l g g )kte
€ OB ()

[+ 1y — ) - > S 2P0 uta)r iy

_ /Jrn+2pml{/ [a (:B—i—T' —.Z' i i JalJr] ( )T|J|]
€ 0B1(x) |=0

(z — y)kJreim(dy) }drf(n+8+2p)

§
= —I3—(n+2p—m-—1) / / R C ) L
8B (z)

lil=m
e +r(y Z ) 0 u(z)rll | m(dy)dr

0
_/ / ,r,—m—l—s(:E _ y)k-i-ei
e JOBi(x)

> [0 a4 oy - @)y - 2

l3'1=1
ljl=m—1
A; 5 G gy )]
— Z W(yfm) 0 u(x)r }m(dy)dr
gl=0 "

Puly) - S50 G _x)jawu(x)(x—y)k*eidy

= —I3—(n+2p—m—1)/

Rs.(x) |z — y[rrstapt2
.y il=m—1 A. . A
/ O u(y) — ST Gy — 2) 0 ()
Ry (x) ’:L‘ _ y|n+s+2p+2

l7"1=1

(v =) | (@ —y)F+=dy.
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Therefore,
Iyt Is = 1Y) + 1) + 15,

where

uly) - SHT iy — 2y 0 u(a)
E‘J‘—O il (x _ y)kJreidy7

Iéé):—(n+2p—m—1)/

Rse(2) @ — y[rtetere?
n+2p (y — z)! (x —y)*+e
@ A0 / dy,
N (m+1) |J|Zm+1 Roclw) [ —y[rietarss
145’ lil=m A; ( _\jal+j+j
5 O~ ST =0 )
e [ — [T RN DG
oc |J| 1
Observe that
n+15)
CQt s
- Z ﬁ Z Aj—jieialJr]Jrezu(x)/ (|g£/5_ |n+s+2p+2 Z 2] dy
teNA<Z T |j|=m,j=2t Rse() Y l5/|=1
n+2p 1+ (y — x) (x —y)~te
B (m+1)! Z Cf,fﬂ Z Aj—jieia+]u($)/ |z — y|ntst2r+2 dy
teN<Z lj|l=m—+1,5;=2t+1 Rse(x) y
CQt"r%
+ I+j+e;
= - > ﬁ > A2+ DI ()
tEN,tS% |.7|_ )ji:2t
(y — 2j
dy
/Rae(x) |z — y|n+s+2p+2 lzl
y)tte

n+ 219 2+1 I+j (y — ) (x —
o Z Coni1 Z Aj—jie; 0 u(x) |z — y[rst2rt2 dy
tGN <2 lj|l=m+1,5;=2t+1 Rse(x)

where j = (j1, o2, ,jn). An application of Lemma 2.1.1 yields

L+ 153
C2t+1 ‘
teNtsy (m ! lil=m.ji=2t

_ J . k+2e;
/‘ (y —x) (x—y) dy = 0.
R65 (LB)

|z — y|rrs+ar

Thus, I = IQ(;,) + 12(? and the lemma is proved. O

Lemma 2.1.5. Let Q) be an open set in R* and 0 < s < 2. Suppose that u €

L%Q,W) N C™H9(Q) for some positive integer r. For any v € Q, € > 0,
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§ < dp = dist(x,09), and | = (I1,la,---1,), k = (ki, ko, ,kn) € N, if k; #£ 0 for

some 1 < i <n, then

9 duly) — S0 2y — 2) 0 u(x) .
(z —y)"dy
0% J R, ) |z — y[rerep
m+1 A, Al
— K O'uly) - 2$I0+UM $yyﬂu@%x— Jieig
- Rse(x) |$ - |n+s+2p Y Y
uly) = 205 Gl — 00 u(o) |
%n+%_n%%%éum é—lﬁgww (v —y)* "y
0" uly) — Yiicg iy — )0 Hula)
|5]=0 ! 4 e;
_Z;U |;—“iﬁmm (y =) (e —y)*Tdy
¢ l71=1
where m,p € N are such that |l| +m = r and m + |k| = 2p.
Proof. Since k; # 0, we have by Lemma 2.1.2 that
I=0L+1+ I+ I,
where [ and [;, + = 1,2, 3, are as in the proof of Lemma 2.1.4 and
lil=m A, j l+j
= ( ) ZU' =0 |]|'( _x>-78 ]u(x) k—e;
Il—ki/R(;() & — |t (x —y)" “dy.
By the proof of Lemma 2.1.4, we have
L+ Iy =1 + 1Y) + 1Y)
where IQ(?, 1 =1,2,3, are defined in the proof of Lemma 2.1.4. Write
I, = ]—1(1) +_,—1(2)’
where
duly) = )50 Gy — 2)0 u(a)
[_ 1) = k. |l71=0 ‘J" (ZL’ _ y)k—eidy
1 1 35 () ’.27 _ y’n+s+2p )

k—e;
F2) _ I (y—a)(x -y
LY = > A0 / dy.
1 m + 1 Rse(x) |£E - y|n+s+2p Y

|7]=m+1
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Note that

Il + fl(z) ](2)

k
_ I+jte; (y - 75) (x — y) 24
- ——ZA(? Tu(z )/R |z — y|rretept2 Z(x_y)de
|j| 65(33) |j/‘:1
j k—e;
I+, (y —x)(z —y)" ™ N2
ﬂ%+1 2 A0 (Lw) | =yl 2 (o =y)dy
ll=m+1 i l5'1=1

n+% ! / (y — )y (x —y)**e
A0y (x dy.
|]|zm:+1 Roce) @ —ylrrerere

First let k; be an even number. Then
L+0% 415

— Cg”f A Yltitei (y - 2] d
- Z ! Z J—jiei u(@) |x_y|n+s+2p+2 Z Yy

teNt< 2 m lj]l=m,j:=2t Rse() l5/|=1
—= Y oY A0 ()
teN t<m [jl=m+1,j;=2t+1
@—wV@—yﬁ*i o)
z—y)7 dy
/Rée(x) |z — y|rts 22 |j/z;1( )
e Z 2t+1 I+ (y — x)J(x — y)k+ei
S — ot Y. A () o —dy
(m +1)! teNt< lil=m+1,5,=2t+1 Roc(@) [T =Yl "
Cﬁf—t% l—i—j—i—ei
= — Z m | Z Aj_jie, (2t + ki +1)0 u(x)
teN <2 |J|_ »J¢=2t
(y 2]
dy
Cfrf:::% l+j+e;
+ z: T E: Aj_jei(n+2p)d u(z)
tEN<D ljl=m,ji=2t
/‘ <y—@%m—w“%wy
R&e( ) |£C _ y|n+s+2p+2 .
It follows from Lemma 2.1.1 that
I + j1(2) + Ié?
C2till "
_ m o _ +j+e;
= Y ol X A (0 2p) = (k] + 7+ m) |9 u(a)

tEN<T |j|=m,ji=2t

/’ (y—a)w—y)=2
Rée(x)

|z — y[nstart2 Yy
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Now let k; be an odd number. Then

I + 11(2) + ]é?

C2t+1 l
m +j+e;
= — Y P Y A0
teNg<meL IjI: Ji=2t+1
/ (y — o
dy
— n+5+2 +2 Z
Rse(x) |£I§' y| P =1
k; ;
MR Y. G D AgedMuln)
| teN < mtL ljl=m+1,5;=2t
(y —af(@—y)™ o
ts (z —y)7dy
/R(;E(m) |x — y| +5+2p+2 |j’Z:1
n—+2p "
T (m+ 1) > G > Aied™ul)
" teN < mtL |j|=m+1,5;=2t

_ _ o\ktei
[ edaoge,
Rgg(ai) |x _ y|n+5+ D+

ks ~ (y— 2y x — )t
= — A-8l+]u(:v)/ (z—y
(m+ D, n;,ﬁ_o ’ Ro(w) T — y[rtere? |jf2|::1
2 . _ _ k+e;
(TL + p) Z AjalJrju(x)/ (y l’) (CL’+ +2y)+2
(m 1) ljl=m+1,ji=0 Ra(w) T y[mrerE
Cg’f-i_l l e
o Z m| Z A] ]zeza+J+ Zu(ﬂj)
teN <Mt lil=m.ji=2t+1
(y B x) (]3 — y>k 24"
- d
o |nts+2p+2 Z (z—y)7dy
Rée(a:) ’x y’ |j/‘:1
k; o "
MR 2. Oni ) A0 M)
teN, t<m; |7|=m+1,5;=2t+2
(y—a)(z—y)= 2
(z —y) dy
/Rm) | — e |j’Z=1
n+ 2p 2642 "
T 2 Gl Y Anedtu)
teN, t<m—_ |7|l=m~+1,5;=2t+2

/ (y — x)f (x — y)kte ay.
R&e( )

|aj — y|n+5+2p+2

It again follows from Lemma 2.1.1 that
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L +f(2) + 1Y)
— Z Aj [(m +n+ |kl —(n+ 2p))] O ()

( ) |7l=m+1,5;=

/ (@) |:L» _ y|n+s+2p+2 dy

02t+2

_ Z _omA4l Z Aj—j,-ei(Qt'{' 24+ ki)8l+j+eiu<x)

1)!
teN,tg%*l (m t ) |3|=m,ji=2t+1
(y —x) (x - y)k 2
— o |ntst2pt2 Z (z —y)~ dy
R(Se(x) ’x y’ P |j/‘=1
C2t+%
m l 1 €;
! (m ++1) Yo Ajjia(n+2p) ()
Nt<™ 1 l7|l=m,j;=2t+1
/ |n+s+2p+2 dy
C2t+2 .
= D 2 A 2) = (K] m) |9 ()
teN,tng* |7l=m,5i=2t+1

_ _ k+2e;
/ (y — ) (z —y) dy = 0.
R(Se( )

|z — y|rts 2t

Thus, for any k; # 0, [ = LY+ [éé) + 12(3) and the lemma is proved. ]

Lemma 2.1.6. Let Q) be an open set in R™ and 0 < s < 2. Suppose that u €
L9, W) N C™(Q) for some positive integer . Then for any x € Q, € > 0,
7= (7’1,7“2, ceery) € N with |7] = r, 0 < d, = dist(x,09), all e-dependent terms of
8TAS226 u(x) have the form

€,0
Ilkmp( ):

l7l=m A; _leﬂux
/R() )~ S G-y L

|ZL’ _ |n+5+2p

where | = (Iy,ly, -+ 1,), k= (k1, ko, ,k,) € N*m p €N are such that |l| + m =r
and m + |k| = 2p.

Proof. We will prove the lemma by induction. In the case of r = 1, we observe that
the only e-dependent terms on the right hand side of (21) are its first two terms. They
clearly have the form (22) with the first term corresponding to |l| =1, m =0, |k| = 2
and p = 1, and the second term corresponding to |[| =0, m =1, |k| =1 and p = 1.
Now suppose that (22) is satisfied when r = ¢, where ¢ is a fixed positive integer.
We want to show that it is also satisfied when r = ¢ + 1, i.e., for any [,k € N with
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ll| + m = q and m + |k| = 2p, all e-dependent terms of

9 duly) — S Ty — 2)1 0 u(x)
I=

k
—y)'d
0x; Jp,, |w — y|rtetep S

have the form

k,/

/ O uly) — STy iy — 2) 0 Hu(x)
Rée( )

where [I'| +m' = ¢+ 1 and m' + |K| = 2p'.

If k; = 0, then, by Lemma 2.1.4, we have I = [2(:1)))—{—12(3), where [2(:1))), ]ég) are as in the
proof of Lemma 2.1.4 which clearly have the form (23) with |I'|+m/ = [{|+m+1 = ¢+1
and m' + |[K'| =m+ |k|+2=2(p+1).

If k; # 0, then, by Lemma 2.1.5, we have [ = I_l(l)+1'§:1,,)—|—12(§), where 1:1(1) is as in the
proof of Lemma 2.1.5 which is clearly of the form (23) with I'+m’ = |l|[+m+1 = g+1
and m’ + |K'| = m + k = 2p. O

Theorem 2.1.7. Let Q@ C R™ be an open set and u € Ll(Q,W) for some
0 < s <2 Ifris a non-negative integer such that u € C™*(QQ) for some 1 > a > s

or u € C™TL(Q) for some v with 2 > 1+ a > s > «, then Adu € C™°(Q).

Proof. For any € > 0, z € Q, 7 = (ry,r9,--+ ,7r,) € N* with |#| = r, and § < d, =
dist(x, 0€2), we have by Lemma 2.1.6 that all e-dependent terms of af’Aéeu(:p) have
the form (22).

In the case 1 > a > s, we note that any integral of the form (22) is bounded above
in absolute value by a constant times f€ ’ p*~*Ldp which is convergent as € — 0. It
follows that OfAégu converges uniformly on any compact subset of €2 as € — 0. Thus,
O AZu € C(Q), ie., Adu € CTO(Q).

In the case 2 > 14+ a > s > «a, we again consider an integral Ilf’,fmp(:v) of the
form (22) for some [,k € N", m,p € N satisfying || +m = r and m + |k| = 2p. Since
m+ 1+ |k| =2p+ 1 is an odd number, we have, for any j € N* with [j| = m + 1,

that
_ _ k
/ (y — ) (Qi +2y) dy = 0.
Rocw) [T =yt

€,0 .
Hence I}, () can be re-written as

/ duly) — S 2y — 2V 0 u(x)
Rse(x)

k
|ZE _ |n+s+2p (‘T - y) dy

which is bounded above in absolute value by a constant times fe ’ p**dp that is
convergent as ¢ — 0. It follows again that 8fA576u converges uniformly on any
compact subset of Q as e — 0. Thus, & A2u(z) € C(Q), i.e., Adu € CTO(1). O
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2.1.3 Fractional order differentiability

Let u € L'(Q, W) N C™*(Q) for some positive integer r and some real numbers
0<s<2,0<a<]1. Foreach e > 0 sufficiently small, z € 2, and any 7 € N" with
7| < r, we write

O A u(x) = L(x) + L(z),

where I.(x) denotes the e-dependent term of 8’;Aé7eu(x) and I,(x) denotes the re-

maining term.

Lemma 2.1.8. Let u,s,r,« be as in the above. If either 1 > a > s or2>14+a >
s > «, then \
0" Agu(x) = Io(x) + L(x), if[f| <7,

where Io(x) = lime_o I.(x) which consists of terms of the form

duly) — S0 Ay — 2V u()
By (@) = /B . ‘;_;‘W% (x—y)dy,  (24)
s(x

for any 6 < d, = dist(x,09) and some | = (l1,la,---1,), k = (k1,ka, -+ k) €
N m,p € N with |l| + m = |F| and m + |k| = 2p.

Proof. 1t follows immediately from Lemma 2.1.6 and the proof of Theorem 2.1.7. [
Lemma 2.1.9. Let u,s,r,« be as in the above. Then the following holds.

a) If 1 > o> s and |F| = r, then there exists a constant C' > 0 such that

|I*(:B) - [*(y)| S C[U]ﬁa;(ﬂl’ - y|a—57 z,y € Qv |IE - yl < L

b) If2>1+4+a> s>« and || =1 — 1, then there exists a constant C > 0 such
that
11.(z) = L(y)] < Clulragle =y, 2y € Q, Jo —yl < 1.

Proof. The function I, can be derived simply by taking higher order derivatives of the
right hand side of (21) and identifying all e-independent terms of the derivatives. As
these terms involves only regular integrals, the lemma follows from straightforward
estimates. [

Theorem 2.1.10. Let Q C R" be an open set and u € L'(Q,
0 < s < 2. Then the following holds.

W} for some
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(i) If u € C™*(Q) for some positive number o with s < a < 1 and a non-negative
integer r, then Adu(x) € C™*5(2), and moreover,

[Agzu]r,afs;ﬂ S C[u]r,a;ﬂ-

(ii) If u € C™*(Q2) for some positive number o with o < s < 1+ a < 2 and a

positive integer v, then Adu(x) € C™"H1T=5(Q)  and moreover,

S

[Ag)u]rfl,lJrafs;Q S C[u]r,a;ﬂ-

Proof. Let x,y € (2 and take § < d,, = min{d,,d,}. For given | = (l1,ls,---1,), k =
(k1, ko, -+ k) € N*,m,p €N, consider

J = ng,m,p(‘r) - Il{k,m,p(y%

where I? is as in (24). It is clear that

l,k;m,p
J =+ Jo,

where

P LA o Sk LA
b B,(0) E

|n+s+2p

duly+2) - EX?A%&ﬂww]

k
|Z|n+s+2p zdz,
=m A;
I / [%(erz) - X 5520 ()
2 =
Rsy(0) ‘Z|n+s+2p

\J\ 0 \J\
|Z|n+s+2p

_ 2Fdz,

and n = |z —y| < 9.
(i) In this case, we let || +m = r and m + |k| = 2p in J;, Jo. On one hand, since
]| +m =r and u € C"*(Q), there exists a constant C; > 0 such that

ljl=m

0" u(z+2)—0u(y+2)— Z fj(@lﬂu(x)—alﬂu(y))zﬂ < C1[ulranlz|™"®, 2 € B,(0).

Using the fact m + |k| = 2p, it follows that

[ Claal T
By (0) |Z|n+s+2p

S 02 [u]r,a;ﬂna_s = OQ[U]T,Q;Q|'I - y|oz—s

| 1]

IN
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for some constant Cy > 0. On the other hand, we also have

li]=m
0'u(r + 2) — duly +2) — > A, L (0" u(x) — 0" u(y)) 2|

|
=1

< Glulraal) e —y[™ 7z + Y 2™ e =y, 2 € B(0),
=0 =1

where C3 > 0 is a constant. It follows that

Gl (g [ = g™ e + 0 2™ — yl)

|‘]2| < | B2 (0) |Z|n+s+m ‘
< Cltlnand_ 0"l —y|™+e Z+Z77a e —yl') < Cululralz —y|*7
i=0
for some constant Cy > 0. Hence
|| < [Ji] 4 |2 < (C2 + Co)[u]rasnlz — y|* . (25)

Let Iy be as in Lemma 2.1.8. Then Lemma 2.1.8 together with (25) imply that

| Io(z) — Io(y)| < OS[“]T,Q.Q‘x —y|*s

for some constant Cs; > 0. With this estimate, the proof is now complete by
Lemma 2.1.8 and Lemma 2.1.9 a).

(ii) In this case, we let || + m = r — 1 and m + |k| = 2p in Jy,Jo. Since
m+ 1+ |k| = 2p+ 1 is an odd number, we have, for any j € N* with [j| = m + 1,
any w € (), and any p < d,, that

/ LItk
S —
By(w) |25

It follows that

=m+1 A;
L 8lu(x—|—z)—ZIjI o el u(z)
= 5 (0)[ | z|nts+2p
n
=m A
duly +2) — U™ |,zﬂal+ﬂu<y>] g
— 2"dz
’Z’n+s+2p ’
=m+1 A;
L Ou(z + z) — ZI;I o 52 0 u()
2 = Ay (0)[ | z|nrs+2p
n

2Fdz.

duly +2) — LT G20 u(y)
B |Z|n+s+2p :|
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The rest of the proof is similar to that of (i). We only note that using facts |I| +m =
r—1and u € C™*(Q2), the estimate of J; follows from the inequality

ljl=m+1

|0"u(z + 2) — uly + 2) — Z

l71=0

A;

|J|,(3l” u(x) — 0 u(y)) |

< Cs [u]na;9|z|m+l+av

z € B,(0), where C5 > 0 is a constant, while, using facts m+ |k| = 2p and s < 1+ «,
the estimate of J, follows from the inequality

ljl=m-+1
A; . .
Du(e +2) = duly+2)— > i L (0" u(x) — 0" u(y)) )|
31=0
m+1 m+1

< Golulran() |z —y™ Tt Y e e —yl'), 2 € By(0),

i=1

where Cg > 0 is a constant. O

2.2 Schauder estimates

In this section, we will show the Schauder estimates for the regional fractional Lapla-
cian using those for the fractional Laplacian.

2.2.1 Schauder estimates for the fractional Laplacian

Recall that the fractional Laplacian (—A)2 is well-defined in S, the Schwartz space
of rapidly decreasing C*> functions in R", and we can then extend its definition to

the Space Ll (]Rn W) by

< (—A)2u, o >gpo= /nU(y)(—A)Sw(y)dy, Vo €S, (26)

for any u € L*(R™, W) In the following Lemma 2.2.1 and 2.2.2, the definition

of (—A)2 is understood in the sense of (26). We refer the reader to [72] for a more
general definition of the fractional Laplacian.

Lemma 2.2.1. Let 0 < a < 1 and 0 < s < 2. If, for some w € C%(Q), u € L>®°(R")
solves the equation (—A)2u = w in Q, then for any 6 > 0 sufficiently small there
exists a constant C' > 0 depending only on n, s, d and o such that

HUHCQ“(Q(;) < C(H“HL%(R”) + HwHCa(Q))-

Proof. The proof follows from that of [72, Proposition 2.8]. O
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Lemma 2.2.2. Let 0 < s < 2. Suppose that, for some w € L*(R2), u € L>®(R")
solves the equation (—A)zu = w in Q. Then, for any sufficiently small § > 0, there
exists a constant C' > 0 depending only on n, s and 6 such that the following holds:

(i) If s # 1, then
lulles@y) < Clllullze@n + lwllzoe@)-

(ii) If s =1, then

ulla, @5 < Cl|lullpoe@ny + llw]| Lo (@))-

Proof. We first use the argument in the proof of 72, Proposition 2.8]. By covering and
rescaling arguments, we only need to consider the case {5 = B1(0) and £ = B1(0).
Let n € C2°(R) be such that range(n) C [0, 1], supp(n) C B1(0), and n(z) = 1 for any
x € B%(O). Denote

up(z) == A(n, s) /Rn %dy = (—=A) " 2qu(x).

Then (—A)2uy = w = (=A)>u in B%(O). It follows that u — uy € C?(B1(0)) and

1
2

|u — U0||C2(B%(O)) < Cllu — uol|zoo@ny < C([Jullpoe@ny + ||| Lo, (0)))

where C' > 0 is a constant depending only on n. We note that CQ(B%(O)) =
C’l’l(Bé(O)) # C’Z’O(B%(O)). The lemma now follows from [15, Proposition 5.2]. [
2.2.2 Schauder estimates for the regional fractional Laplacian

It is easy to see that the regional fractional Laplacian Aé is well-defined for functions
u € C?(Q) N L>*(). We can then extend the definition of the regional fractional

Laplacian to the space L*(€2, (H“jg%) For any u € L'(9, Mzﬁ)’ we define
< Bl >ai= [ u)Abe(u)dy. for any ¢ € CX(@), (27)
Q

In the following Theorem 2.2.3 and 2.2.4, the definition of Aé is understood in the
sense of (27).

Theorem 2.2.3. Let 0 < s < 2. Suppose that, for some w € L>®(Q), u € L>®(Q)
solves the equation Adu = w in Q. Then, for any sufficiently small § > 0, there exists
a constant C' > 0 depending only on n, s, and § such that the following holds:

(i) If s # 1, then

[ulles@y) < Clllullze @) + lwllze@)-
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(ii) If s =1, then

a @) < Olfull o) + llwllpooe))-

Proof. Let 0 < s < 2, w € L*(Q), and u € L*>®(Q) solves the equation AQu = w in
Q. Also let u € L*(R"™) be such that & = u in Q and @ = 0 outside of Q. Then for
any ¢ € S,

/ (—hoate) +a—spate) [ oy )olde

a(z) —afy) ,
= dyp(x
/n /”\Be(x |$_y|”+s (z)dz
u(y)e(z)
= A(n,—s / / —dydx—/ / — T dady
( ) n JRA\ B (z) |$_y|"+s n JRA\Be(y |$_y|n+8 >
e(y)
= dydx—/ / — "= dydx
/n /]R"\B (z) |$— |"+S n JRM\ B, (x |x— |"Jrs )

= A(n, —s)/n u(z) /]R”\B Mdydz

o=yl
In particular, for any ¢ € C2°(Q2), we have

s 1
- / u(x)AG p(x)dr + A(n, —s)/ u(x)go(a:)/ — . dydx
Q 7 supp(¢) QN\Be(z ‘x — |

= [ (- k@ + Al ~s)ala) /Q . ﬁ@)w(x)dx

v(y)
= A(n,—s ———dydx.
/n /]R"\B |m —y|te

Letting ¢ — 0 in the above, we easily obtain that, for any = € €2,

(—A)Sa(x) = —w(z) + A(n, —s)u(z) /Q C 1 4 (28)

x — y|nt

Let 0 > 0 be sufficiently small. We have by Lemma 2.2.2 and (28) that there exists
a constant C' depending on n, s, and ¢ such that

1

S—
Qe |- —y|mte ylle @)

lullcs@yy < Cllltllze@ny + || —w + A(n, —s)u
< C(llullze(e) + [[wllze@)

when s # 1. Similarly,

a @) < Ol zoo@) + lwllpos@))-

when s = 1. 0
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Remark 1. The notions of C*T*(Qs) and C*(Q) we defined earlier have unified differ-
ent cases for a, a+ s being or not being natural numbers in the statement of Theorem
C. We note that C*(Qs) = C%H(Qs) # C1O(Qs), CH(Q) = COHQ) # CH(Q), and
C*(Q5) = CVH(Qs) # C20(Qs).

Theorem 2.2.4. Let 0 < o <1 and 0 < s < 2. If, for some w € C*(Q), u € L=()
solves the equation Adu = w in 2, then

HUHCQ*'S(Q(;) < O(H“HL"O(Q) + ”wHoa(Q))a

where 6 > 0 is sufficiently small and C' is a constant depending only on n, s, 6 and

Q.

Proof. Using bootstrap arguments, Lemma 2.2.1 and (28) for both cases of o, + s
being or not being natural numbers, we have, similarly to the above, that

[ullcors(y) < Clllullz=@) + wlica@),

where C' > 0 is a constant depending on n, s, d and . This proves Theorem 2.2.4. []
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CHAPTER II1

UNIQUENESS OF VISCOSITY SOLUTIONS FOR A
CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS

In this chapter, we will study uniqueness and comparison principle of viscosity so-
lutions for a class of integro-differential equations. This is a joint work with Prof.
Andrzej Swiech, see [63].

3.1 Definitions and assumptions

Suppose that G is continuous and (2), (3), (8) hold. We recall two equivalent defi-
nitions of a viscosity solution of (7). In order to do it, we introduce two associated

operators 1'% and 1?9,

19z, p,u] = /| e 2) = ute) = 1 02 B 2)

Iz’é[sc,p, u] = /|>6[u(x + 2) —u(x) — 1, 0)(2)p - 2)pa(dz).

Definition 1. A function u € BUC(R"™) is a viscosity subsolution of (7) if whenever
u—p has a mazimum over R™ at x € Q for some test function p € C*(R")NBUC(R™),
then

G(z,u(x), I[z,¢]) <O.
A function u € BUC(R") is a viscosity supersolution of (7) if whenever u — ¢ has a
minimum over R™ at x € Q for a test function p € C*(R") N BUC(R"), then

G(z,u(x), I[z,¢]) > 0.

A function u € BUC(R™) is a viscosity solution of (7) if it is both a viscosity subso-

lution and viscosity supersolution of (7).

It is easy to see that Definition 1 is equivalent to the definition in which the
requirement that ¢ € C*(R") N BUC(R") is replaced by the requirement that ¢ €
C?*(Bs(z))NBUC(R") for some § > 0. The equivalence of Definition 1 and Definition
2 is also standard.
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Definition 2. A function u € BUC(R™) is a viscosity subsolution of (7) if whenever
u— ¢ has a mazimum over Bs(x) at x € Q for a test function ¢ € C*(Bs(z)), § > 0,
then

G (z,u(x), "z, Dp(z), ] + I*°[z, Do(z),u]) < 0.

A function u € BUC(R") is a viscosity supersolution of (7) if whenever u — ¢ has a
minimum over Bs(z) at x € Q for a test function p € C*(Bs(x)), 6 > 0, then

G (z,u(x), Y[z, Dp(z), o] + I*[x, Dy(x),u]) > 0.

A function u € BUC(R™) is a viscosity solution of (7) if it is both a viscosity subso-

lution and viscosity supersolution of (7).

We make the following assumptions on the nonlinearity G' and the family of Lévy
measures {/i,}.
(H1) For each Q' CC €, there is a nondecreasing continuous function wq satisfying

wer(0) = 0 and a non-negative constant Ao/ such that
G(yara l?) - G(‘Ta r, ll) < AQ/(ll - l?) + UJQ/(|:E - y|)

for any z,y € Q" and r, 11,1, € R.

(H2) For every x € ) the measure p, is absolutely continuous with respect to the
Lebesgue measure on R", i.e. p,(dz) = a(x, z)dz, where a(x,-) > 0 is measurable,
and there exist two constants 0 < 6 < 1, 0 < 0 < 2 and a positive constant C' such

that, for any x,y € 2, we have

0
x—uyl? .
\M%d—a@%HSC%ﬁ;; in B,(0),

C

|z|n+0'

a(z,z) < in B;(0),

[ Jalw )~ aly 2 < Clao— o
R”\B1(0)

/ pe(dz) < C.
R™\B1(0)

3.2 Uniqueness of viscosity solutions of (7) for v > 0

In this section we prove the main comparison theorem which will be a basis for other

comparison results.
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Theorem 3.2.1. Let Q) be a bounded domain. Suppose that the nonlinearity G in (7)
is continuous and satisfies (2) with v > 0 and (H1). Suppose that the family of Lévy
measures {j.} satisfies assumption (H2). Then, for any 0 < o < 2, there exists a
constant 0 < 1o < o (ro > 1if o > 1) such that if ro <r < 2,0 > max{0,1 —r}, u is
a viscosity subsolution of (7), v is a viscosity supersolution of (7), u < v in °, and

either u or v is in C"(Q2), we have u < v in R".

Proof. Without loss of generality we assume that u € C"(£2). The proof is divided
into two cases.

Case 1: 0 <o <1.

Without loss of generality we can assume in this case that 0 < r < 1. Suppose
that maxq(u —v) = v > 0. Let K C Q be a compact neighborhood of the set of
maximum points of u — v in Q. Then (see Proposition 3.7 of [22]), for e sufficiently
small, there are z, y € K such that

X NS NPT 1 2
_ N o — _ R P >
(@) = o) = 51 = 3 = sup {ule) — o) = 5l ~ 2} 20
Moreover, we can assume that there is 0 < ¢ < 1 such that By.(Z) U Ba.(y) C Q.
Since . )
u() —o(y) — 5-lo =y <u(@) —o(g) — 5-|@ — 3
2¢ 2¢
for any x, y € R". Putting x = y = ¢, we thus have
| . . A
2|7 =91 = u(?) —u(y) < Clz |
for some C' > 0 independent of €, which gives us
S B|2—r
=" _ (29)
2e

By the definition of viscosity subsoltions and supersolutions, we have for 0 < ¢ < ¢,

A _ A~ . _/\ 2 A _ A
G (:e,u(:z;),fw[zf, — %} +1%9[3, 2 y,u(-)]) <0,
A A A~ 2 A A
Aa N L LY
e A R = RO
Therefore, by (2) and assumption (H1), we have
A A~ A 2 A A~
. . S LT =Y L —- LY
)~ o(@) <6 (.06, 2L - g T2 )
A A~ A~ 2 A A~
PPN e L LY
-G (x)’v(y%]l’é[aj’ € 7%] +]2’5[Z’7 B 7U()])
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=D
=>
Ny
|
<

€ 2¢e
_([15[:&’1’—9’ |.T_ | ]_'_[25[:&’ ij( )])}‘i_wl{(‘x_y‘)
€ 2€
1, . e L,
< Ag [l =9+ 2" = ]2 = 91" — = (2 = 9) - 2]pa(dz)
|z|<6 2€ 2
L. . 2 Lo e, 1,
A — —|z - - d
o gl il LG ) )

Since u(z) — v(y) — 5|z — y|? attains a global maximum at (%,¢), we have

w(z+z) —u(@) <v(g+z) —o(y), forany ze R"

Moreover, by assumption (H2) and the boundedness of u, we have

LG 2) () = L ()6 )] (1a(02) — =)

IN
=
A%

—

=

=

+

&

|
<

—~

=
—
=

8

S
&
|
=
<
S
N
N’

IA

/>| ‘>6[U(£i’ + Z) - U(SAC) — 1(£ — g)) . Z] (,ugz(dz) . Mg(dZ))

€

. A 7 — 1 1460
Lol — gt 4+ B9
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Therefore,

Now by assumption (H2), we have for some C' > 0

’Z|2 |Z|2 62—0’

—pz(dz +/ —uy(dz) < C——
/M ereld)+ [ e < 0%

a |

/>| N[U(i +2) —u(z) — =(& — §) - 2] (na(dz) — py(dz))

</ C =2 =gl + cl& = gI™"1al) |
- n+o ?
c>|z|>8 |Z’

Cle —glfo — CLz —g[*PIné if r<o=1,
< Clz —g|om + CL|z — g|'*+o if r<o<l,
“ | —Clz—9|mo+ Ciz— g|t? if r=0<1,

Clz —g|° + CYjz — g|*** if o<r<L

(31)

In the rest of the proof we will only consider the case r < 0. The case 0 <r <1
is easier and can be handled similarly. Let 6 = n~ and ¢ = n=". By (29), we have

& — g < Cn~ 7.

If r <o <1, we have
527(7

€

C— = Cn7 17,
C|i’ - y|05r—0 < Cvnf%#»oz(afr)7

01|a:~ — [ < o),
€

Thus, if
ﬂ< (2—0’)04,
05
aloc—r) < 5
0>1-—r,
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it follows

52—0
C — 0, (35)
€
Cliz —9|%"7 =0, (36)
1
C-|z — g/ —o0. (37)
€

It remains to find proper a > 0, § > 0, and 0 < ry < o so that (32) and (33) hold.
We set § =1 and a > 1/(2—0) so that (32) is satisfied. Then obviously there exists
a positive constant ry < o such that (33) is satisfied if 1o < r < 0.

If r <o =1, we have
52—0

€
08
C‘i’ o Q‘H(Srfa < Cn—ﬂ—&-a(l—r)’

1
Ol =g (~ no) < Cn2"7 =m0 In(n).

C— = Cnfe,

Thus, if
B <a, (38)
05
1—
ol =r) < 5, (3)
0>1-—r, (40)
we have
62—0
C — 0, (41)
€
Cla — 9% — 0, (42)
1
C=|& —g|"(=Ind) — 0. (43)
€

Using the same strategy as before, for any 6 > 0, we set § = 1,a > 1, and then
choose 0 < 1y < o such that (39) is satisfied if 7y < r < 1.
Therefore, using (35)-(37), (41)-(43) in (30), we conclude

v < limsupy(u(z) — v(g)) <0

n—-+40o

if rg < r < o. This contradiction thus implies that we must have v < v in R".

Case 2: 1 <o < 2.
We assume that » > 1. Suppose that maxqg(u —v) = v > 0. Let K C Q be

a compact neighborhood of the set of maximum points of ©u — v in . There is a
sequence of C*(R™) N BUC(R™) functions {1, }, such that

u—1Y, -0 as n— +oo uniformly on R", (44)
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and
|Du — Di,| < Cn'™" on K,
| D%, < Cn*" on K, (45)
| D%, (2) — D*y(y)| < Cn~|z —y| on K,

where C is a positive constant (see [22]). Let p be a modulus of continuity of u and
v.
Let (2,9) € R" x R" be a maximum point of

1
(u(z) = ¥n(@)) = (v(y) = Ualy)) — 5w =yl
over R" x R"™. Again it is standard to notice (see Proposition 3.7 of [22]) that

lim (u(2) —v(g)) = mgx(u —0), (46)

e—0

and there must exist 0 < ¢ < 1 such that B.(z) U B.(y) C K if € is sufficiently small.
Moreover, since u(-) = ¥n() = (v(9) = ¥u(3)) — 5| - =7

we have

2 has a global maximum at #,

Du(#) — Dun () = 2= 4.

€

Thus, we get
& — 9]
€
By the definition of viscosity subsolutions and supersolutions, we have, for any 0 <

0 <ec,

< Cn'. (47)

~

J— 7 . —A 2 7 —_— [
G <5c,u<:f:>, 100 220 4 Dy (), VI 0+ 270, 20 4 D), u(-)]) <0,

G (90000): 1013, 2 4 D) ) -

& —?
2¢

Y

[+ 2903, 20 4 D (3,00 2 0,

Therefore, by (2) and assumption (H1), we have

v (u(@) = v())

A5 Ao 2 A5
< 65001705, 5 4 Do @)va() - B4 PO D) 00)
I 12 Ao
— 6 (@) 1 T D@, 5 0 200 5 4 D).t
Ao a2 Ao
< AK{[L(S['& Ley + Dwn(‘%)7 | 2€y| + %()] + 1275[‘%7 Ty + Dwn(‘%%u()]
Ao A2 Ao
- (o D) - 5 20 S 4 D)) }

+ wi(|E - gl)
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. | . 1,
< AK{/ [wn(x+z)+2—]:1:—y+z]2—(1/1n(a:)+—\a:—y\2)
|z|<6 € 2¢

(A - i) + D)) - sl
X 1. o )
— o [ 2) = e =2 = () = 5l =)
(- i) + D) -2l gla)
+ /||>6[u(56 +2) —u(@) — 131(0)(2)(%(55 —§) + D (@) - 2)pa(dz)

_ /||>5[v(33 +2) —v(f) — ]131(0)(2)(%(:% —9) + DY (9)) 'Z]Mg(dz)} +wg(d = §))

iz2 T+2z)— 2) — ) - 2l (de
< AK{/|z|<6[2€| | +wn( + ) ¢n( ) D¢n( ) ]Mm(d)
el ) )~ DY) -l

+ /||>6[U(50 +2) —u(?) — 131(0)(2)(%(.@ — ) + Dn (@) - 2] (na(dz) — pg(dz))

+ /||>§[U(§: +2) —u(E) —v(f + 2) + v(§) — L, 0)(2) (Dn(E) — Do (3)) - Z],Ug(dz)}
+ wi(|Z - g).

Since (£, 9) is a global maximum point of (u(z) — ¢, (z)) — (v(y) —¥n(y)) — |z —y[%,
we have

U(i+2) —u(@) 0§ +2)+0(9) £ Yali+2)—Yal)—Un(§+2)+0a(3), for all 2 € R,
Thus, by (45) and the uniform continuity of u,v, we have
/| G 2) @) 42 +000) ~ 1,0 () (DY) ~ D) -t
< (T + 2) — Y (T) — D, () - 2
_/szlzé[(w +2) = Yn(#) = Dibn(2) - 2)
~(n(§ + 2) = ¥n(@) — DUnl§) - 2) | g(dz) + Cla = G + Cp(la - ).

Moreover, by assumption (H2), the boundedness of v and Du(z) = %(gz_g) + D), (2)
(in n and €), we have

/||>5 [u(@ + 2) — u(@) — L, (o) (Z)(%(fc — ) + Dy (2)) - 2] (pa(dz) — py(dz))

< / +/
c>|z|>0 |z|>c

= />| - [(® +2) — u(@) - (%(’3 — )+ Dipn(#)) - 2] (na(dz) — py(d2)) + Cli — §I°.
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Therefore, we have

7 (u(@) — v())
< AK{/ i‘z|2+¢n(-@+z) _wn(«@) _D¢n<§?) Z]Mﬁc(dz)
- ol <s L 2€
- /|<6 B %|Z’2 + wn(:g + Z) - %(@) - Dwn(?)) . Z} Mﬁ(dZ)

+ / s [u(ﬁv +2) —u(Z) — (%(QAU —9) + Ddin(f)) . z} (,uiq(dz) — ,ug(dz))
+ / . [(wn(fv +2) = (@) — DY (@) - 2) — (¥n(§ + 2) — Pn(G) — Dn(y) - z)}
Mg(dZ)} +Cp(le = gl) + Cli = "~ + Cli = 9" + wie (|7 - §1)- (48)
Estimate (31) holds. Moreover, by (H2) and (45), we have

< Cn*rére,

‘/«swn(fij +2) = Yn(2) — D (2) - 2]ps(dz)

2—r ¢2—
< Cn* 677,

’/|<5[¢n(z) +2) = Un(§) — D (9) - 2] pag(dz)

/>| - [u(i +2) —u(z) — (%(f —9)+ len(ﬁv)) . z} (uj(dz) — Mg(dz))

2|71 — g Com=|z — g if r<o,
2"z —
S C dez S —C‘i' — g)‘eln(s if r= g,

(& z Zn 7 A~ A~ .

2[#20 Clz —g|° it o<r<2

We recall a simple identity. If f € C%(R") then for every z,z € R"
flx+2) = f(z)+ Df(z) -z + /01 /01 D?f(x + stz)z - z tdsdt.
Using it, (H2), and recalling that B.(#) U B.(y) C K, we obtain
L [0 +2) = @) = D) 2) = (i +2) = ) ~ D) =) (42

1 1
— / / / [D%ﬁn(.@ + stz) — Dan(Z} + StZ)]Z . thSdt/Lg(dz)
c>|z[>6 J0 Jo

z|?
= C/ n®7 |z — g | dz < Cn®"|& — g
c>|2|>6 |z|nte

In the remainder of the proof we will only consider the case r < . The case g < r < 2
is easier and can be done similarly (see also Remark 3). Assume then that 1 < r < o.
Let again § =n~% and e = n=%. By (47), we have

527(7

€

C — Cna(a—2)+ﬂ

)
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C«n2—7‘52—(7 _ Cn?—r+a(a—2)’
C|.’1A3 o y|05r—a < C«n—e[(r—l)-‘rm—a(r—a)

Y

Cvn3fr’i, o g’ < Cnf(r71)75+(3fr).

Thus, if
f<(2—-0)a, (49)
2—r<a2-o), (50)
alc—r) <0(r—1+p), (51)
(4-2r) < B, (52)
we have
5270
C — 0, (53)
Cn*7"5*7 =0, (54)
C|z — g% =0, (55)
Cn*"|& — 9| — 0. (56)

We need to find o > 0, § > 0, and 1 < ry < o so that (49)-(52) are satisfied if
ro < r < o. First fix # such that (52) is satisfied. Then, fix a such that (49) and (50)
are satisfied. It is then clear that there exists a positive constant 1 < ry < o such
that (51) is satisfied if ro < r < 0.

Thus, letting n — +o0 in (48) and using (46) and (53)-(56), we obtain yv < 0
which is a contradiction. Therefore, u < v in R™. O]

Remark 2. It follows from the proof of Theorem 3.2.1 that if the kernel functions
a(x,-) are symmetric, the requirement 0 > max{0,1 —r} can be replaced by a weaker
requirement 0 > 0. The same remark applies to Theorems 3.2.2, 3.3.1, 3.3.2, 3.4.4,
Lemmas 3.4.1, 3.4.2, and Corollaries 1, 2, 3, 4.

Corollary 1. Let the assumptions of Theorem 3.2.1 be satisfied, 0 < o < 2,0 >
max{0,1 —r}, 0 <r < 2. If u is a viscosity subsolution, v is a viscosity supersolution
of (7), u <win Q°, and either u or v is in C"(2), then:

(i) For0 <o <1, ifo < g(_2;3+r, we hcweugg in R™.

(i) For 1 <o <2andr > 1, if 0 <2 — 2550

we have u < v in R".

Proof. (i) Let f =1 and o = 1/(2 — o) +n, where > 0. Then (32) and (34) hold
and (33) will be satisfied if

(2i0+n> (a—r)<2ﬁr.
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An easy calculation shows that the above will be true for some n > 0 if

- 6(2—r)
O' —
2—r+0
(ii) Set

4 —2r+

B=4-2r+m, a=-—""Tiy
2—o0
where 71,79 > 0. Then (49), (50) and (52) are satisfied, and (51) will be satisfied if
4 —2r+
(#4‘772) (U—’f‘) <9<T’—1+4—2T+7]1)

for some 7,12 > 0. Again a simple calculation yields that this inequality will be
satisfied for some 7,7, > 0 if

(2-r)
O3 —r)+(4—2r)

o<2—-2

]

Let us consider another important fully nonlinear integro-PDE appearing in the
study of stochastic optimal control and stochastic differential games for processes
with jumps, namely the Bellman-Isaacs equation (9)

Yu + sup 1nf{ Ioglz,u] + fap(x)} =0, in €,
acAB

where Ioglz,u] = [, [u(z+2)—u(z)—1p,0)(2) Du(z)-2]u2?(dz) and {p2P} is a family
of Lévy measures with indices o and f ranging in some sets A and B. Equation (9)
is not of the same form as (7), which means that the following theorem and corollary
are not corollaries of Theorem 3.2.1 and Corollary 1, however the proofs follow the
same arguments. Similar results would be true if we included other typical purely
local first and second order terms in (9).

Theorem 3.2.2. Let €2 be a bounded domain. Suppose that v > 0, the family of Lévy
measures {u”} satisfies assumption (H2) uniformly in o € A, 3 € B, and f.5 are
uniformly bounded in Q0 and uniformly continuous in every compact subset K C (2,
uniformly in o € A, € B. Then, for any 0 < o < 2, there exists a constant
0<ry<o (ro>1ifoc>1)suchthat ifro <r < 2,0 >max{0,1 —r}, u is a
viscosity subsolution of (9), v is a wviscosity supersolution of (9), u < v in Q°, and
either u or v is in C"(Q2), we have u < v in R".

Corollary 2. Let the assumptions of Theorem 3.2.2 be satisfied, 0 < o < 2,0 >
max{0,1 —r},0 < r < 2. Ifu is a viscosity subsolution of (9), v is a viscosity
supersolution of (9), uw < wv in Q°, and either u or v is in C"(Y), then:

(i) For0 <o <1, if o < 22 7") +r, we have u < v in R™.

(ii) For 1 < o <2 andr>1, zfa<2—2%, we have u < v in R".
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Remark 3. Suppose that the kernel function a(x,z) satisfies the second condition
of (H2). If r > max(c,1), orif r > o and the kernels a(z,-) are symmetric, then
a wiscosity subsolution/supersolution of (7) which is in CT(§2) can be considered to
be a classical subsolution/supersolution of (7). In such a case comparison theorem
1s standard and we do not need the full assumptions of Theorem 3.2.1. The same
remark applies to Theorem 3.2.2, and Theorems 3.3.1 and 3.3.2 if condition (H3) is
satisfied.

3.3 Uniqueness of viscosity solutions of (7) for v =0

In this section we investigate uniqueness of viscosity solutions of (7) when v = 0 in
(2). As always we assume that G is continuous and (3), (2), (8) hold. To compensate
for the fact that v = 0, we will assume that the nonlinearity G is uniformly elliptic
with respect to a class of linear nonlocal operators £. A class L is a set of linear

nonlocal operators L of the form
Lu(e) = [ fule+2) = ula) Loy (=) Du(e) - 2luH(dz),

where the Lévy measures (i~ are symmetric and satisfy sup;e, [p, min{1, |z|*}u*(dz) <
+00. We say that the nonlinearity G in (7) is uniformly elliptic with respect to L if
for every ¢,1 € C*(Bs(x)) N BUC(R™),x € Q,r € R,§ > 0,

ME(¢ - ‘10)(:[) S G([E,?‘,I[$, 90]) - G(x,r,[[x,@/}]) S MZ(¢ - gp)($),

where

Mfo(z) = sup Ly(z),
LeLl

M p(z) = inf Ly(z).
In order to have a comparison principle for the case v = 0, we need to impose

an additional minimal ellipticity condition on the class £. We will assume that the

following condition holds.

(H3) There exist a non-negative function ¢ € C*(Q2) N BUC(R™) and &, > 0, such
that Ly > dp in 2 for every L € L.

Theorem 3.3.1. Let Q2 be a bounded domain and let a class L satisfy (H3). Suppose
that the nonlinearity G in (7) is continuous and uniformly elliptic with respect to L,
and satisfies (2) with v = 0 and (H1). Suppose that the family of Lévy measures
{pz} satisfies assumption (H2). Then, for any 0 < o < 2, there exists a constant
0<rg<o (ro>1ifc >1) such that if ro <7 < 2,0 >max{0,1 —r}, u is a
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viscosity subsolution of (7), v is a viscosity supersolution of (7), u < v in Q°, and

either u or v is in C"(Q2), we have u < v in R".

Proof. By (H3), there is a positive constant M > 0 such that ¢ < M in R™. For
any € > 0, let ¢ = €(1 — —go) in R™. Obviously, we have 0 < ¢, < € in R™ and
Mg (=po) = Mz (570) > §f in Q.

We claim that v+, is a viscosity supersolution of G = %1 in . Suppose that x €
Q0,8 > 0 and ¢ € C*(B;(x))NBUC(R™) are such that v+ ¢, — 1 has a minimum over
Bs(x) at x. Thus, there exists a positive constant ¢’ > 0 such that By (x) C QN Bs(z).
Since v is a viscosity supersolution of (7), we have G(z,v(z), I[z,v — ¢]) > 0. By
(2) and the uniform ellipticity, we get

Gz, v(x) + @c(2), Iz, ¢9]) = G, 0(x) + @e(), Iz, ¢]) — Gz, v(z), [z, — @)
> G(x,v(x), Iz, ¢]) = G(z,v(x), I[z,7 — @)
Z MZ(_SOE)E%

Therefore, the proof of the claim is complete.

We notice that u < v + ¢, in 2°. We can now repeat the proof of Theorem 3.2.1
to obtain u < v+ p. < v+e€in R". (Instead of the contradiction yv < 0 we will now
get a contradiction 650 < 0.) Letting € — 0T, we thus conclude that u < v in R". [

Combining the proofs of Corollary 1 and Theorem 3.3.1, we have the following
corollary.

Corollary 3. Let the assumptions of Theorem 3.3.1 be satisfied, 0 < o < 2,0 >
max{0,1 —r} 0 <r < 2. Ifu is a viscosity subsolution, v is a viscosity supersolution
of (7), u <win Q°, and either w or v is in C"(2), then:

(i) For 0 <o <1, zf0<22hfg—|—7" we have u < v in R™.

(i) For1 <o <2 andr >1, zfa<2—2%, we have u < v in R™.

The same techniques also produce the following two results for equation (9).

Theorem 3.3.2. Let Q be a bounded domain. Suppose that v = 0, the family of
Lévy measures {u®P} satisfies assumption (H2) uniformly in o € A, € B, and
fap are uniformly bounded in 2 and uniformly continuous in every compact subset
K C Q, uniformly in o« € A, 5 € B, and the class {l,3} satisfies (H3). Then, for
any 0 < o < 2, there exists a constant 0 < rg < o (ro > 1 if 0 > 1) such that if
ro <71 < 2,0 >max{0,1 —r}, u is a viscosity subsolution of (9), v is a viscosity
supersolution of (9), u < v in Q°, and either u or v is in C"(Q2), we have u < v in
R™.
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Corollary 4. Let the assumptions of Theorem 3.3.2 be true, 0 < o < 2, 6 >
max{0,1 — 7} and 0 < r < 2. If u is a viscosity subsolution of (9), v is a vis-
cosity supersolution of (9) u < w in Q°, and either u or v is in C"(2), then:

0(2—r) n
(i) For 0 <o <1, if o < 55—+, we have u < v in R".

(i) For1 <o <2 andr >1, zf0<2—2m, we have u < v in R".

3.4 Regularization by sup/inf-convolutions

In this section we show how techniques of Section 3.2 can be adapted to regularize
viscosity sub/supersolutions by sup/inf-convolutions. It is a generally expected prin-
ciple in the theory of viscosity solutions of PDE that whenever one is able to prove
a comparison principle then one should be able to prove that a sup-convolution of
a viscosity subsolution (respectively, inf-convolution of a viscosity supersolution) is
a viscosity subsolution (respectively, supersolution) of a slightly perturbed equation.
The same principle also seems to work for viscosity sub/supersolutions of integro-PDE
under standard assumptions, see e.g. [45] for a proof for a standard Bellman-Isaacs
equation. Here the situation is a bit more complicated. Since in our case the proof
of comparison principle uses auxiliary functions v,,, we have to introduce a notion of
sup/inf-convolution that depends on a parameter ¢ > 0 and on a function . Such
sup/inf convolutions have been used in [41]. We will also show that if G is uniformly
elliptic with respect to a class £ of linear nonlocal operators, u is a viscosity subsolu-
tion of (7) and v is a viscosity supersolution of (7), then u —v satisfies M (v —u) <0
in the viscosity sense. Similar results can also be proved for equation (9).

We will always assume that G is continuous and satisfies (3), (2), (8). We first
give yet another equivalent definition of viscosity solutions of (7).

Definition 3. A function o is said to be CY at the point z, and we write u € C1'(z),
if there are a vector p € R", a constant M > 0 and a neighborhood N, of x such that

o(y) —p(z) —p- (y— )| < Mly —a|* fory € N,.
The definition implies that Dy(x) =

Definition 4. A function u € BUC(R") is a viscosity subsolution of (7) if for any
test function o(x) € CYY(z) N BUC(Bs(x)) such that u — ¢ has a mazimum over
Bs(x) at x € Q,

G (2, u(2), I'[z, Dp(x), ] + I**[z, Dip(x), u]) < 0.

A function uw € BUC(R™) is a viscosity supersolution of (7) if for any test function
o € CYY(x) N BUC(B;s(x)) such that uw — ¢ has a minimum over Bs(z) at x € Q,

G (z,u(z), 1"z, Dp(x), ] + I*°[z, Dp(x),u]) > 0.
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A function u € BUC(R™) is a viscosity solution of (7) if it is both a viscosity subso-

lution and viscosity supersolution of (7).

Proposition 1. Let G be continuous and (3), (2), (8) hold. Then Definition 2 is

equivalent to Definition 4.

Proof. Obviously if u is a viscosity sub/supersolution in the sense of Definition 4, it
is a viscosity sub/supersolution in the sense of Definition 2. Assume now that u is a
viscosity subsolution in the sense of Definition 2. Let ¢ € C%(x) N BUC(Bs(z)) and
u — ¢ have a maximum over Bs(x) at x. Then I'°[z, Do(z), @], I*°[x, Dp(x),u]) are
well defined. Also because ¢ is C11(z), there exist a sequence of C?(B;s(x)) functions
{¢n}n and a positive constant C' such that ¢ — ¢, has a maximum point at x over
Bs(z), ©n > ¢, pn — @ uniformly in Bs(z) and |p,(x+2)—¢,(z)— Do, (z)-2] < C|z]2
Thus u — ¢, has a maximum at z over Bs(x) and Dy(z) = Dy, (x). Therefore, by
Definition 2,

G (z,u(z), Iz, Dp(), o) + 1*°[2, Dp(x), u]) < 0.

Letting n — +o0 and using the Lebesgue Dominated Convergence Theorem we thus
conclude
G (z,u(x), "z, Dp(x), ] + I*°[x, Dp(x), u]) <0.

]

Definition 5 (see [41]). Given u,vp € BUC(R"™), e > 0, the 1-sup-convolution u?< of
u s defined by

uwww—W—wﬂm+w@»—wp{m»—ww—ﬁiﬁﬁ}+w@,

yER™ 2¢
and the -inf-convolution uy . of u is defined by

lz -yl

uwww=W—¢Mm+www=mf{mn—ww+————}+wm.

yeR” 2€

0,¢

Remark 4. The functions u™ and ug are the usual sup- and inf-convolutions of u

respectively, and we will denote them by u¢ and u. (see [22]).

Remark 5. u?*(z),uy, () — u(z) uniformly for v € R" and o € A as ¢ — 0 if
the functions {ta}aca € BUC(R™) have a uniform modulus of continuity.

Lemma 3.4.1. Let Q) be a bounded domain. Suppose that the nonlinearity G in (7) is
continuous and G(zx, -, 1) is uniformly continuous, uniformly for x € Q,1 € R. Assume
moreover that G satisfies (2) with v =0 and (H1), and the family of Lévy measures
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{1} satisfies assumption (H2). Then, for any 0 < o < 2, there exists a constant
0<ry<o (ro>1ifo>1) such that if ro <r <2, >max{0,1—r}, Q' CC Q is
an open set, u € C"(Q2) is a viscosity subsolution of (7), then there are a sequence of
C*(R")NBUC(R") functions {t, }, with a uniform modulus of continuity, a sequence
of positive numbers {e, },, with €, — 0, and a modulus p such that u¥™ is a viscosity

subsolution of

1
Gla, ul e, Iz, u]) = p(=) in Q. (57)

Proof. Case 1: 0 <o < 1.

As in the proof of Theorem 3.2.1, without loss of generality, we can assume that
0 <r < 1. Forany & € ¥ and By(z) C €, suppose that there is a test function
¢ € C*(By(z)) such that u¢ — ¢ has a maximum (equal 0) at & over B;(&). Since

u € BUC(R™), there exists a point g € € such that u(z) = u(y) — % if €
k

is sufficiently small. Thus u(y) — o-|z — y|> — ¢(z) has a maximum at (§,) over

R"™ x B;(2) and u(y) > u(2). Therefore, we have

i = gl
<C
2¢

for some C' > 0 independent of €. Notice that u is semi-convex, which implies that
there is a paraboloid touching its graph from below at . Since ¢ € C?*(B;())
touches the graph of u¢ from above at &, we get u¢ € C*'(&) N BUC(R"). For any
0 < & < min{d, 1} and small € > 0, we have by (2) and (H1),

G (2,u(2), I"°[&, Du(2),u] + I*°[&, Du(%), u )
P [

)
R R g — -
—G(%u@xﬂﬁgg——, |+ 120pg, 9= uﬂ

€ 2€ €

< G (&,u(f), [z, Du(2), u] + [*°[2, Du’(%), u’])
SN L y—x |z —- L y—z
‘G<%u@xﬂﬁy———i——iﬁ+f”w M)
€ 2¢ €
< Aw{ﬂﬁ@y i W PR
€ 2¢ €
— (I"°[&, Du’(2), u) + I*°[&, Du‘(%), u‘]) } + wo (|12 — gyl)
1. 1 . 1.
< o [ [le-i- 2P - oo = 0P - 16— ) 2Jus(a)
|z| <6 2¢ 2



. G4 2,
Since =% = Duf(2) and u(z) + % is convex, we have

=>

s —w@) - L - ) (59)
26 SUuU\xr z u \xr c y X Z.

Thus, by (58) and (59),

A A 2 A A
“ “ Y- |r—- ~Yy—a
-6 (st 1900 L s o T )

which implies
u(z+2) —u(z) > u(g+2) —u(y). (61)

Thus, by (60) and (61), it follows

1
A~ A A 2 A~ A
P ]1,5Ay—$ 1z — | ]2,5A?J—93
R e R A )

G (2,u(2), I"°[#, Du(%), u] + [*°[&, Du(%), uf])
-G

< AQ,{ /| |22 (g(d) + ps(d2)

z|<6 2e

[ fuo+2) - o) - a2 G- )4 (Mg(dZ)—u@(dZ))} (62)
|2|>6 €

+wer (|2 — 7).
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We now let §,, = n~® and ¢, = n~?, and use the same estimates as in Case 1 of the
proof of Theorem 3.2.1 to show that, we can find a > 0, 8 > 0, and 0 < ry < ¢ such

that, if ro <r <1and € > 1 —r, then
G(fc u™ (), Jhon (&, Du (%), u’ ]—1—[2’5”[:%, Du‘ A),ue”])
N

(
o e U |? 96,1~ U— 1
—G  g,u(y), "y, : |+ I7[g, , ul Sp(ﬁ)

€n 2€,, €n,

=>

for some modulus p. Since u is a viscosity subsolution of (7), this implies
G(&,u™ (%), I[Z,u]) = G (2, u (&), [V [&, Du (2), u™] + I*°"[&, Du (3), u])
1
< p(—).
<)

Case 2: 1 <o < 2.

We take r > 1. Let {1y}, be a sequence of C?(R") N BUC(R") functions which
are uniformly bounded and have a uniform (in n) modulus of continuity h, which
satisfy (44) and (45) with K replaced by Y.

Let # € ', B;(2) C €', and suppose that there is a test function ¢ € C*(B;(%))
such that u¥¢ — ¢ has a maximum (equal 0) at & over B;(z). Since u € BUC(R")
and 1, € BUC’(R") there exists a point § € Q' such that u¥(2) = u(9) — ¥n(9) +
Y (2) — B0 y‘ if € is sufficiently small. Thus u(y) — ¥, (y) + ¥n(x) — % — () has
a maximum at (§,2) over R x B;(Z) and u(f) — ¥n(9) + ¥n(&) > u¥™(&). Since
u(s) — n(v) — % has a maximum at ¢ over R", we have

~

y—2x

Du(g) — Dipn(9) =

Thus, by (45),

|g B i‘| < Cnlfr.
€

Since u¥"* is semi-convex, there is a paraboloid touching its graph from below at
#. Since ¢ € C?(B;(2)) touches the graph of u*~* from above at &, we obtain that

ulme e CH(#) N BUC(R™). Thus, for any 0 < § < min{d,1} and small ¢ > 0, we
have, by (2), (H1), (45), uniform continuity of the 1, and the continuity properties
of G,

A~

P @) 18 DUt @), ]+ T8 Dut(3) wmﬂ)
Ji-

y—1 . y

< 5 +wn]+1”[ Y= 4 Dyn(9), ]>
&y u(§) — Y (§) + n(2), IM[E, Du¥™ (%), u¥™e] _|_[275[@71)”%,6@)’u%,e])

IA
@Q

A~ ~ A 2 A~
N N Y= N -
(@) 1705, 2 4 D),

2€+wm+ﬂ%ﬁ;x+&M@mQ
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1
< G (m u(@), IV (2, Dub™<(&), u¥™<] + 1292, Du¥n<(3), u%’e]) (D)
n

~ ~ .~ Yy—-x . €
-G <y7u(y)711’6[y7 c + Dwn(y)a

IN

L y—x |z —=-
AQ,{IM[% P24 D) T

IN
=
=2
—N—
T
AN
>
| —
=
|
<>
|
N
o
_I_
=
3
—~~
<
_|_
N
=
|
|
=
|
©
+
S
3
<
S~—
SN—

+P1(E
for some modulus p; independent of 9, €.
Since =2 + Dy, (&) = Du¥>¢(%) and u¥¢(z) + % + (supgy | D*1,|)|2|* is convex
on Bj(&), we have for |z] < o
2] j—

o (sg/p |D2, )| 2)? < u¥™ (2 + 2) — u¥(3) — (T + D@Dn(i")) <z, (64)

Moreover, by the definition of u¥»*,

Y

w4 2) 2 u(f 4 2) = Ya(f +2) + (@ +2) -

which gives

u(§+z)—u(g)— (u (F+2)—u"(2)) < Ya(§+2)=¥a(9) = (Ya(E+2)—¥u(@)). (65)
Thus, by (63), (64) and (65), we have

G (&, u (@), 1"[3, Du (&), ] 4 1[, Du(2),u))

~ _ A~ ~ _ . 2 ~ _ A~
-G (@,u@), o, 92 4 o), By + 20, 2= 1 Do), u]>

€ 2¢ €

< AQ,{ [ (5l (nti 2 = a(3) = D))t

1
b [ [l up 00 IaP sdz)
|z|<é € Q
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' /| 15 [0(+2) —u(d) - 151(0)(2)(%@ = &)+ Do) - 2] (13(d2) — pra(d2))

+ /M 5+ 2) = ¥09) — Ly (=) D) - =

N A . 1
— (U + 2) = Yu(E) = L, ) (2) Do) - z)}w(dz)} +o().
We now again set 6, = n~® and €, = n~? and use the same estimates as these in
Case 2 of the proof of Theorem 3.2.1, to obtain that for any # > 0, we can find a > 0,
£ >0, and 1 <ry < o such that, if rg < r < 2, then

G(j:, fu/wn’ﬁn (j:)’ [1,571 [i) Duwnyﬁn (i.), uwnyﬁn] + 127577, [i-, Duwnﬁn (i.)7 u"ﬁnﬁn])

A~ A A 2 A~ A
A L y—z T = Y-z .
(@), (5. =+ D). T 4 2, U0 Dy () )

n

< P(E)

for some modulus p. Since w is a viscosity subsolution of (7), this implies

G (i-’ uwnﬁn (i.)’ I[£.7 ud’n:en])
1
— G (i*7 uwnyfn (j‘;)7 I]-:(Sn [:i;7 Du¢na€ (i)’ uwnyfn] _'_ 1'27671 [j\:’ Duwnyfn (i.)’ uwnyﬁn]) S p(_)
n
]

The same proof gives the following result for viscosity supersolutions.

Lemma 3.4.2. Suppose that the assumptions of Lemma 3.4.1 are true. Then, for any
0 < 0 < 2, there exists a constant 0 < ro < o (rg > 1 ifo > 1) such that if ro <r < 2,
0 > max{0,1 —r}, Q' CC Q is an open set, u € C"(2) is a viscosity supersolution of
(7), then there are a sequence of C*(R™) N BUC(R") functions {t,}, with a uniform
modulus of continuity, a sequence of positive numbers {€,}, with €, — 0, and a
modulus p such that u¥™~ is a viscosity supersolution of
- - 1
G (wulne I, b)) = =p(-) in QY. (66)
n
We remark that it is clear from the proofs of Lemmas 3.4.1 and 3.4.2 that we can
always have €, = €,.

The next lemma is standard and can be deduced from Lemmas 4.2 and 4.5 of [12].

Lemma 3.4.3. Let {u,}, be a sequence of bounded and uniformly continuous func-
tions on R™ such that:

(i) u,, is a viscosity subsolution of M/ (u,) = — f, in Q.

(i) The sequence {u,} converges to u uniformly in R™ for some uw € BUC(R").

(iii) The sequence { f,} converges to f uniformly in Q0 for some f € C(2).

Then u is a viscosity subsolution of M/} (u) = —f in Q.
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Theorem 3.4.4. Let the assumptions of Lemma 3.4.1 be satisfied and let G be uni-
formly elliptic with respect to L. Then, for any 0 < o < 2, there exists a constant
0<ry<o (ro>1ifo >1)suchthat ifro <r < 2,0 >max{0,1—r}, ue C"(Q) is
a viscosity subsolution of (7) and v € C"(Q) is a viscosity supersolution of (7), then

u — v is a viscosity subsolution of
M;(v—u)=0 (67)

in QN {u—wv > 0}. If G(z,r 1) is independent of the second variable r, then (67)
holds in §2.

Proof. For any Q' CC Q, let x € @', u¥(z) > v; . (x), and let ¢ be a C*(R") N
BUC(R™) be a test function touching the graph of u¥m¢ — Vg, e, from above at z.
Since u¥» and —Vy, ¢, are semi-convex in a neighborhood of x, each of them has a
paraboloid touching its graph from below at x. Therefore, u¥» and —Vj, ¢, Must
be in CY(z) N BUC(R™). Thus, by Proposition 1 and Lemmas 3.4.1 and 3.4.2, we

have
1

G (z,u?(2), I[z,u’"]) < p(;

)

and

1
G (2,05, 0, (), T2, 05,0 ]) = —p(>)
for some modulus p. Thus, by (2) and the uniform ellipticity, we obtain

_ . 1
M (v, — u*) (2) < 20(-).

Thus, we have

1
n

Mz p(z) < 2p(=).

Therefore, we have proved that u¥m¢ — Uy e, 18 @ Viscosity subsolution of

Mg (v, — ") = 29(-)
in Q' N {uvmr —v; >0}

By Remark 5, we have that u%» — Vg e, converges uniformly to u — v in R".
Thus, for any € > 0, there exists a sufficiently large n. such that Q' N {u —v > €} C
QN {uvmen =, .. > 0} if n > n.. Therefore, y¥nen —v,; ., 18 a viscosity subsolution
of My (v, . —u’) =2p(+) in & N{u—wv>e}if n>n,, and hence, by Lemma
3.4.3, u — v is a viscosity subsolution of M, (v —u) = 0in Q' N{u —v > €}. Since
Y CcC Q and € > 0 are arbitrary, u — v is a viscosity subsolution of M (v —u) =0
in QN {u—v >0} O

Remark 6. Theorem 3.4.4, combined with an Alerandrov-Bakelman-Pucci estimate
of [84], can be used as an alternative way to prove comparison theorem when v = 0,

at least for some class of equations which are independent of the u variable.
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3.5 Regularity

In this section we recall some regularity results for nonlocal equations. We first recall
regularity results proved in [6] and [8]. Here, we only state their simplified versions
applicable for our equations, which can be deduced from the results and techniques
of [6, 8]. The full theorems of [6] and [8] are much more general. An equivalent of
Theorem 3.5.2 has not been stated in [6, 8] but it can be deduced easily from the
proofs there. We impose here an additional requirement § > max{0,1 — o}. It is
possible that Theorems 3.5.1 and 3.5.2 are true without this assumption but it would
require some more substantial changes in the proofs on [6, 8].

Theorem 3.5.1. Let €2 be a bounded domain. Suppose that the nonlinearity G in
(7) is continuous and satisfies (2) with v = 0 and (H1) with Aoy > 0 for each
Y ccC Q. Suppose that the family of Lévy measures {u,} satisfies assumption (H2)
with > max{0,1 — o} and, there exists a constant C > 0 such that, for any x € €,
de 8", ne(0,1),6 € (0,1),

/ 2 =) > O 777 (63)

{z:|2|<6)|d-2| > (1—n)|2(}

Then, we have:
(1) If 0 < o < 1, any viscosity solution u of (7) is C™(Q) for any r < o.
(2) If 1 < o, any viscosity solution u of (7) is C*1 ().

Theorem 3.5.2. Let € be a bounded domain. Suppose that v > 0 in (9), the family
of Lévy measures {u2?} satisfies assumption (H2) with 0 > max{0,1 — o}, uniformly
ina € A, B e B, and f,z are uniformly continuous in Q, uniformly in o € A, 5 € B.
Suppose that there exists a constant C > 0 such that, for any x € Q, d € S*7!,
ne0,1),0 €(0,1), a € A5 € B,

/ |22ueP(dz) > Oy 87

{z:|21<6,|d-z| > (1—n)|2[}

Then, we have:
(1) If 0 < o < 1, any viscosity solution u of (9) is C"(Q2) for any r < o.
(2) If 1 < o, any viscosity solution u of (9) is C*1(Q).

Let us now introduce some definitions and regularity theorems from [13, 48, 70].

Consider the following nonlocal equations

where v > 0, Q is a bounded domain, f is bounded and continuous in €2, and [z, u]

is a nonlocal operator of the form

I[z,u] = inf sup I,s[z,u] := inf sup/ [u(z+2)—u(x)—1p,0)(2) Du(r) 2| Kap(z, 2)dz.
acA gep a€A geB Jrn
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We will denote

Iog 2|z, u] i= /n[u(x + 2) —u(x) — L, (0)(2)Du(z) - 2] Kop(wo, 2)dz.

Remark 7. It is easy to see that if K,5(z,2) = &‘C;T,Eif), A < agg(z,2) < A and

laap (21, 2) — aap(x2, 2)| < h(|x1 — x2|) for some modulus h for any x, 1,22 € Q, 2z €

R™ o € A, 5 € B, then the nonlocal operator Iz, u] satisfies the following properties:

(1) Iz, u] is well defined as long as v € CH'(x) and u € L'(R", W)

(2) If u € C*(Q2) N LY(R™, ﬁ), then I(x,u) is continuous in €2 as a function of

x.

Thus I[x,u] falls into the class of nonlocal operators considered in [13, 48, 70] which

was a little more general. Moreover the definition of viscosity sub/supersolutions in

[13, 48, 70] was slightly different from Definition 2 as they allowed viscosity sub/supersolutions
to be unbounded (as long as they are in the domain of definition of the nonlocal oper-

ator I) and they did not required them to be uniformly continuous.

We say that the nonlocal operator I above is uniformly elliptic with respect to a
class £ of linear nonlocal operators if

M (u—v)(z) < Iz,u] — Iz,v] < M} (u—0v)(z).
The norm ||I]| of a nonlocal operator I is defined in the following way.

Definition 6.

)< M,

1
T Te

[z, ull
||I|| . = sup {H——M A Q,u c 0171(25), HuHLl(R”

lu(z + 2) — u(x) — Du(z) - 2| < M|z|* for any z € Bl(O)}.
The following classes of linear nonlocal operators Lo(\, A, o) and L,(\, A, 0),0 <

k < 2 were introduced in [13, 70]. Let 0 < A < A be fixed constants. A linear
nonlocal operator L € Lo(\, A, o) if

Lu = / [u(z + z) — u(x) — Lp,0)(2)Du(x) - 2| K (2)dz, (70)
where the kernel K is symmetric and satisfies for all z € R™\ {0}
A
2 — <K(z)<(2- . 71
(2= 0) s <K < (2-0) o ()

Since K is symmetric, we have

Lu = /n[u(x +2) +ulr — 2) — 2u(z)|K(2)dz.
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Lemma 3.5.3. The class Lo(\, A, 0) satisfies (H3) for any 0 < o < 2.

Proof. We will be using the form of L in (70). Let R be such that R2 > max{3R, 1+
R} and Q C Bg(0). We define p(z) = min(R?, |z|?) (see Assumption 5.1 in [12]). By
the definition of R, the fact that K is symmetric, we now have for every z € Q(C
Br(0))

Lo(z) > / 12> K (2)dz + / , (|2|* + 22 - 2)K(2)dz
B1(0) 1<|z|<R2—R

+f (P 2D K ()
{p(z+2)<R3}n{|z|>RZ —R}

+/ , (R°—R*)K(z)dz
{p(e+m)=R#n{|=1>RE ~R)

> (2- 0))\/ |z| "7 2.
B1(0)

The class L,(\, A, 0) is a subclass of Lo(A, A, o) of kernels K such that
[K]C’“(Bp) < A(2 — O')p_n_a_"i if By, C R" \ {O}

for any balls B,, By, of radii p,2p > 0. We notice that the classes Lo(\, A, o) and
L.(A\, A, o) have scale 0. A class £ C Ly(A, A, o) has scale o if whenever a nonlocal
operator with kernel K(z) is in £, then the one with kernel v" "7 K (vz) is also in £
for any v < 1. The following definition of a distance between two nonlocal operators
takes scaling of order ¢ into account.

Definition 7. For any 0 < o < 2 and any nonlocal operator I, we define the rescaled
operator

Liylz,u] = vopllve, p~ u(v™)].

The norm of scale o is defined as

1 2
110 — 1@, = sup 173 = 121l

The following regularity theorems for nonlocal equations were proved in [13, 48,
70]. We only state their simplified versions which are suitable for our purposes.

Theorem 3.5.4 (Theorem 2.6 of [13]). Assume that 0 < 09 < 0 < 2. Let u solve
Mz u>—Cy in By(0),

MEOU S CO m Bl(O)

o1



in the viscosity sense for some Cy > 0. Then there exists a constant 0 < r < 1,
depending only on A\, A, n and oy, such that u € C”"(B%(O)) and

ey < € (= + lullisen g+ Co)
for some constant C' > 0 which depends on oy, A\, A and n.

Theorem 3.5.5 (Theorem 4.1 of [48]). Assume 1 < 09 < 0 < 2. Let

I = inf suplag
acA BeB

be a nonlocal operator such that {I.g., : @ € A, € B,xg € B1(0)} C Lo(N A, 0).
Denote I, = infocasupgep lopa,- There exist constants r > 1,17 > 0 such that if for
any o € B1(0),

1 = L |lo <,

and u is a viscosity solution of
Ie.u] = f(x) in Bi(0)

(0)) and

for some bounded continuous function f, then u € C’T(B%

luller sy o) < € (HUHLM o) + [ull 21 @, )+ HfHLw(Bl(O)))

|n+00
for some absolute constant C' > 0.

Theorem 3.5.6 (Theorem 1.2 and Remark 1.3 of [70]). Let {I,}aca be a class of
linear nonlocal operators

Iz, u] = / [u(z + z) — u(x) — 1p,0)(2)Du(x) - 2| Ko, 2)dz
such that {I, ., : « € A,z € B1(0)} C Li(A\A,0) for some k>0 and 0 < 0 < 2.
Suppose that for all x1,x9 € B1(0),z € R"\ {0}, € A,
A2 —o0)

|[Ka(w1,2) = Ka(22,2)] < |y — 2’ 2

Then there exists T > 0 such that if k € (0,7],6 € (0,k) and u is a viscosity solution

of
Iz, u] = ini]a[x,u] =0 n By(0),
ac

then u € C°*(B.1(0)) and

1
2
HUHC’”JFG(B%(O)) < Ollul|poe my

for some absolute constant C > 0.
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Theorem 3.5.7 (Theorem 5.2 of [13]). Assume 1 < 09 < o < 2. Let I’ =
inf,cq supﬁegl 5 be a monlocal operator such that {I 5}aeA5€B C L, where L C

Lo(X, A, 0) has scale o and interior C™ estimates for some 7 > 1. Let

I = inf sup[ag
acA BeB

be a nonlocal operator uniformly elliptic with respect to Lo(A, A, o). Then for every
r < min{7, oo} there is n > 0 such that if

11° = Ils <7
and u is a viscosity solution of
Ie.u] = f(z) in By(0)

(0)) and

for some bounded and continuous function f, then u € C"(B

SIS

lullery @) = Cllull @y + | fllz=o)
for some absolute constant C' > 0.

Corollary 5. Let 0 < 0 < 2 and let u be a viscosity solution of (69) in By(0), where
>0, f e C(B(0)) and I[z,u] = infae4(2—0) Janlu(z+2) —u(z) — 15, 0)(2) Du(x) -

2] T“‘nﬁ? dz. Assume that ay(z,-) is symmetric, X < aq(z,2) < A, T‘rﬁg) € L.(\A o)
and |ag (11, 2) —ao (12, 2)| < Clz1—29]° for any o € A, x, 71,25 € B1(0), 2 € R*\ {0},
and some constants k > 0,0 > max{0,1 — o}. Then, for anyr <o, u € C”"(B%(O)).

Proof. For 0 < o <1, since A < a,(x, z) < A for any € B;(0) and z € R", it follows
that the family of Lévy measures {2&2 2}, | satisfies (68) (see Example 1 in [6]).

|Z‘n+o
Thus, by Theorem 3.5.2, the proof is complete for the case 0 < o < 1.
For o > 1, if we fix xg € B%(O), then the operator I, ;o u = (2 -0 fRn T+ 2)
u(x) — 1p,0)(2)Du(x) - z]%dz is in L,(\, A, o). Thus, by Theorem 3.5.6, it has

interior C" estimates for some 7 > o. By the Holder continuity of a,(-, z) for fixed
z € R"\ {0}, we can find a small ball B,,(z¢) such that |a.(x,z) — as(x0, 2)| < 1.
Thus, by a simple calculation (see the proof of Theorem 6.1 in [13]), we can derive
that ||/ — I, |l < Cnin B,,(zo) where C' is a positive constant and I, = inf,e4 Lo 4, -
Finally, we apply Theorem 3.5.7 with I® = I, and f := f —~yu, scaled in B,, (7). [

Corollary 6. Let 0 < 0 < 2. Let u be a viscosity solution of

~vu — inf sup{[ag[x ul} = f(x) in By(0),

aEA
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wherey > 0, f € C(B1(0)) and Ioglz,u] = (2—0) [pu[u(z+2)—u(x)—1p,©)(2) Du(x)-
]arjn(ff) dz. Assume that ans(z,-) is symmetric, A < anp(x, 2) < A, and |aqp(z1, 2) —
aap(T2, 2)| < |21 — 29]° for any o € A, B € B, x,x1,22 € B1(0), 2 € R*\ {0} and
some constant 0 > max{0,1 —o}. Then, ifc > 1, u € C"(B1(0)), where r is from

Theorem 3.5.5, and if o <1, u € C’T(B%(O)) for every r < o.

Proof. For 0 < o < 1, the proof is the same as for Corollary 5. For ¢ > 1, by the
Hélder continuity of ans(-, z) for fixed z € R™ \ {0}, we can find a small ball B, (zo)
such that |ans(x, z) — anp(xo, 2)| < n. Thus, like in the proof of Corollary 5, we can
obtain ||/ — I, ||, < Cn in B,,(xo) for some constant C' > 0. We then apply Theorem
3.5.5 with f := f — ~yu, scaled in B,,(xo). O

3.6 Applications

In this section, we provide several concrete applications when we have uniqueness of

viscosity solutions.

3.6.1 Nonlinear convex equations with variable coefficients

Theorem 3.6.1. Let Q) be a bounded domain. Consider the following nonlinear non-

local equations
yu + sup{—I,[z,u]} = f(z) in Q, (72)
acA

where v > 0, 0 < 0 <2, f € C(Q) and L[z, u] = (2 — 0) [p.[u(z + 2) — u(z) —
1, (0)(2)Du(z) - 2] 0elr2) qo  Assume that as(x,-) is symmetric, X < ao(z,2) < A,

||

C‘L‘T,(Lia) € L.\ A, 0) and |ag (11, 2) —an (9, 2)| < Clry—x2|? for anya € A, 2,31, 15 €
Q, z€ R*"\ {0} and some k> 0,0 > 0. Suppose that 0 > max{0,1 — o}. Then, if u
is a viscosity solution of (72), v is a viscosity supersolution (respectively, subsolution)
of (712) and w < v (respectively, u > v) in Q°, we have u < v (respectively, u > v) in
R™.

Proof. The theorem follows from Theorem 3.3.2, Corollary 5 and Lemma 3.5.3 since

we can take r arbitrarily close to o. O

3.6.2 Nonlinear non-convex equations with variable coefficients

Theorem 3.6.2. Let Q) be a bounded domain. Consider the following nonlinear non-

local equations
yu + sup inf{—Ig[z,ul} = f(z) in Q, (73)
acABEB

where v >0, 0 < 0 <2, f € C(Q) and Loglz,u] = (2 = 0) [pa[u(z + 2) — u(z) —
15,(0)(2)Du(x) - 2] 9052) 12 Assume that aes(z,-) is symmetric, A < aqs(z,2) < A

|z|n+o'
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and |ans(z1,2) — aap(z2,2)] < Clzy — 29|° for any o € A, B € B, z,21,29 € Q and
z € R\ {0}. Then, if u is a viscosity solution of (73), v is a viscosity supersolution
(respectively, subsolution) of (73) and uw < v (respectively, u > v) in ¢, we have:

(i) For0 <o <1, if0 >1— 0, we have u < v (respectively, u > v) in R".

(ii) For 1 <o <2, if o <2— 25520
have u < v (respectively, u > v) in R".

where v < 2 is given by Corollary 6, we

Proof. The theorem follows from Theorem 3.3.2, Corollory 4, Lemma 3.5.3, and Corol-
lary 6. [l

3.6.3 General nonlocal uniformly elliptic equations with respect to £,

Theorem 3.6.3. Let 2 be a bounded domain and 1 > o > 0. Suppose that the
nonlinearity G in (7) is continuous and uniformly elliptic with respect to Ly, and
satisfies (2) with v > 0 and (H1). Suppose that the family of Lévy measures {j,}
satisfies assumption (H2). Suppose that u is a viscosity solution of (7), v is a viscosity
supersolution (respectively, subsolution) of (7) and u < v (respectively, u > v) in Q°.
Then, if o < 2(37_42 +7r and 6 > 1 —1r, where r < 1 is given by Theorem 3.5.4, we
have w < v (respectively, u > v) in R".

Proof. The theorem follows from Corollary 3(i), Theorem 3.5.4 and Lemma 3.5.3. [

3.6.4 General nonlocal equations with a family of Lévy measures satisfy-
ing (68)

Theorem 3.6.4. Let Q) be a bounded domain. Suppose that the nonlinearity G in (7)
is continuous and satisfies (2) with v > 0 and (H1) with Aq > 0 for each ' CC Q.
Suppose that the family of Lévy measures {u,} satisfies assumption (H2), and there
exists a constant C' > 0 such that, for any v € Q, d € 8" ', 0,6 € (0,1), we have
(68). If u is a viscosity solution of (7), v is a viscosity supersolution (respectively,
subsolution) of (7) and u < v (respectively, u > v) in Q°, then:

(i) For 0 <o <1,if0 >1— 0, we have u < v (respectively, u > v) in R™.

(i) For1 <o <2, if0<0<1ando <2—
in R™.

1_41re; we have u < v (respectively, u > v)

Proof. The theorem follows from Theorem 3.2.1, Corollary 1 and Theorem 3.5.1. [

Theorem 3.6.5. Let Q) be a bounded domain. Suppose that the nonlinearity G in (7)
is continuous and uniformly elliptic with respect to Ly, and satisfies (2) with v = 0
and (H1) with Aq > 0 for each Q' CC Q. Suppose that the family of Lévy measures
{ps} satisfies assumption (H2) and, there exists a constant C' > 0 such that, for any
r e, de S nd e (0,1), we have (68). If u is a viscosity solution of (7), v
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is a viscosity supersolution (respectively, subsolution) of (7) and w < v (respectively,
u >v) in Q°, then:

(i) For0 <o <1, if0 >1— 0, we have u < v (respectively, u > v) in R".

(ii) For1 <o <2,if0 <0 <1ando <2— =, we have u < v (respectively, u > v)

1467
in R™.

Proof. This theorem follows from Theorem 3.3.1, Corollary 3, Theorem 3.5.1 and
Lemma 3.5.3. O
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CHAPTER IV

PERRON’S METHOD FOR INTEGRO-DIFFERENTIAL
EQUATIONS

In this chapter, we will study existence of viscosity solutions for the following two
classes of integro-differential equations.

{ G(z,u, Ix,u]) =0 ?n Q, (74)
u=g in Q¢
and
YU+ supgeq infpep{—laplz,u] + fop(x)} =0 in Q, (75)
u=gq in Q°.

where (2 is a bounded domain, [z, u| and I,s[x, u| are of Lévy type, g is a bounded

continuous function in R”.

4.1 Notation and definitions

We will use the following notations: if u is a function on 2, then, for any = € €2,
u*(w) = limsup{u(y); y € Qand [y — =z <7},
r—

us(z) = 11ﬂ1_r>r(1) inf{u(y); y € Qand |y — x| <r}.

The function u* is called the upper semicontinuous envelope of u and wu, is called the
lower semicontinuous envelope of u. The following notion of a discontinuous viscosity

solution of (74) will be used in this chapter.

Definition 8. A bounded function u is a discontinuous viscosity subsolution of (74)
if u* is a wviscosity subsolution of G =0 and u* < g in Q°. A bounded function u is a
discontinuous viscosity supersolution of (74) if u. is a viscosity supersolution of G =0
and u, > g in Q°. A function u is a discontinuous viscosity solution of (74) if it is

both a discontinuous viscosity subsolution and discontinuous viscosity supersolution

of (74).

Remark 8. If u is a discontinuous viscosity solution of (74) and u is continuous in

R™, then u is a viscosity solution of (74).
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4.2 Perron’s method

In this section, we discuss Perron’s method for discontinuous viscosity solutions of
(74).

Lemma 4.2.1. Suppose that the nonlinearity G in (74) is continuous and satisfies
(2), (3), (8). Let F be a family of viscosity subsolutions of G =0 in Q. Let w(z) =
sup{u(z) : v € F} in R™ and assume that w*(x) < oo for x € R". Then w is a
discontinuous viscosity subsolution of G =0 in €.

Proof. Suppose that ¢ is a CZ(R™) function such that w* — ¢ has a strict max-
imum (equal 0) at o € Q over R". We can construct a uniformly bounded se-
quence of C*(R") functions {®, }m such that ¢, = ¢ in Bi(zg), ¢ < ¢, in R
SUD ¢ g (20) LW (2) — pm(7)} < —L and ¢, — ¢ pointwise. Thus, for any posi-
tive integer m, w* — ¢, has a strict maximum (equal 0) at xy over R”. There-
fore, sup,epe(zo{w*(x) — om(x)} = €n < 0. By the definition of w*, we have,
for any u € F, sup,epe(an{t(r) — ¢m(r)} < €, < 0. Again, by the definition of
w*, we have, for any €,, < € < 0, there exist u. € F and z. € Bj(zg) such that
u(Ze) — o(z.) > €. Since u. € USC(R™) and ,,, € CZ(R™), there exists x. € By(xg)
such that uc(z.) — pm(x) = supyepn{uc(x) — ()} > u(Ze) — pm(Ze) > €. Since
w* — p,, attains a strict maximum (equal 0) at zp over R™ and u < w* for any u € F,
then u.(z.) — w*(zo) and x. — x¢ as € — 0~. Since u, is a viscosity subsolution of
G =0, we have

G(xe, uc(xe), I[xe, o)) < 0. (76)

Since {z.}. C Bi(xo) and . — x¢ as € — 07, there exists a sufficiently small §y > 0
such that Bs,(z.) C B1(0) for any € € (—dp,0). By the choice of ¢,,,, we can rewrite
(76) as

G(wesuc(we), IV [z, Dp(e), @] + I*xe, Dp(), o)) <0, (77)

Since z. — o, u(x) = w*(x0), Ym — ¢ pointwise as € — 07, ¢ € CZ(R") and G is
continuous, we have, letting e — 0~ in (77),

G (g, w*(20), I[70, ¢]) < 0.
Therefore, w* is a discontinuous viscosity subsolution of G' = 0. [

Theorem 4.2.2. Suppose that the nonlinearity G in (74) is continuous and satisfies
(2), (3), (8). Let u,u be bounded continuous functions and be respectively a viscosity
subsolution and a viscosity supersolution of G = 0 in Q. Assume moreover that
u=u=¢g in Q° and u < u in R"™. Then

w(z) = supu(a),
ueF
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F={uecC'R"); u<u<uinR" and u is a viscosity subsolution of G =0 in Q},
is a discontinuous viscosity solution of (74).

Proof. Since u € F, then F # (. Thus, w is well defined, © < w < @ in R™ and
w = u = wu in Q° By Lemma 4.2.1, w is a discontinuous viscosity subsolution of
G = 01in Q. We claim that w is a discontinuous viscosity supersolution of G = 0 in
Q. If not, without loss of generality, we assume that 0 € {2 and there exists a function
¢ € CZ(R™) such that w, — ¢ has a strict minimum (equal 0) at point 0 over R™ and

G(0,w,(0),I[0,¢]) < —¢o,

where ¢ is a positive constant. Thus, we can find sufficiently small constants €; > 0
and dy > 0 such that Bs,(0) C 2 and there exists a CZ(R") function ¢, satisfying
that Per = P n 350 (0)7 Per < ¥ n Rn’ infxEBgéo(O){w* ([E) — Pe (ZL‘)} > €1 > 0 and

€0

G(O7 Pey (O)a [[07 9061]) < _5' (78>

Thus, by the Dominated Convergence Theorem, there exists d; < dy such that, for
any = € By, (0),
€0
G(x7§061(‘r)71[$7¢61]> < _Z' (79)
By the definition of w, we have ¢, < w, < u in R™. If ¢, (0) = w.(0) = u(0), then
U — @, has a strict minimum at point 0 over R". Since @ is a viscosity supersolution

of G =0 in €2, we have
G(0,¢6,(0), 110, ¢, ]) = 0,

which contradicts with (78). Thus, we have ¢, (0) < @(0). Since @ and ¢, are
continuous function in R™, we have ¢, (z) < u(z) — €2 in By, (0) for some 0 < § < &y
and €5 > 0. We define

Ar = sup {pq(z) —w.(z)}.
x€BE(0)
Since infxeggéo(o){w*(x) — ()} > e > 0, w, — @, has a strict minimum (equal
0) at point 0 and —w, € USC(R"), we have A, < 0 for each r > 0. For any
y € Q\ B,(0), there exists a function v, € F such that v,(y) — ¢ (y) > —22=.

Since v, and ¢., are continuous in R", there exists a positive constant ¢, such that

infoep;, @ {vy(r) — @ ()} 2 —&=. Since O\ B,(0) is a compact set in R", there
exists a finite set {y;}i=; C Q\ B,(0) such that Q\ B,(0) C Uz, Bs, (y;). Thus, we
define

ve(x) = sup {v,(z)}, zeR"

1<i<n,
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By Lemma 4.2.1 and the definition of v,, we have v, € F and inf,cq\ g, o) {vr(7) —
0o, ()} > —%. Let o, be a constant such that 0 < «, < % and —a, A, < €. Thus,

we define

Uia) = { max{p., (z) — aA,, v,(z)}, € B,(0),
ve(x), @€ B0),
where 0 < r < §; and 0 < @ < «,.. By the definition of U, we obtain U € C°(R"),
u < U < @in R", and there exists a sequence {x,}, C B,.(0) such that z, — 0 as
n — +oo and U(z,) > w(z,).

We claim that U is a viscosity subsolution of G = 0 in €. For any y € €2, suppose
that there is a test function ¢ € CZ(R™) such that U — ¢ has a maximum (equal 0)
at y over R™. We then divide the proof into two cases.

Case 1: U(y) = v,(y).

Since v, < U < 1 in R", then v, — 1) has a maximum (equal 0) at y over R". We

recall that v, is a viscosity subsolution of G = 0 in 2. Therefore, we have

G(y, U(y), Iy, ¢]) < 0.

Case 2: U(y) = ¢e, (y) — a,.

We first notice that y € B,(0). Since ¢, — aA, < U < ¢ in B,(0), then ¢, —
aA, — 1 < 0in B,.(0). By the definition of U, we have ¢ > U = v, in B¢(0). Thus,
Ve, — QA — U < o — A, — v, < % —al, < 0in BE(0). Therefore, we have
Yo, — A, — 1) has a maximum (equal 0) at y € B,.(0) C By, (0) over R". Since (79)
holds and G is a continuous function, we can choose sufficiently small o independent
of ¢ such that

Gy, Y(y), Iy, ¥]) < Gy, e (y) — @, Iy, o, ]) < 0.

Based on the two cases, we have U is a viscosity subsolution of G = 0 in Q.
Therefore, U € F, which contradicts with the definition of w. Thus, w is a discontin-
uous viscosity supersolution of G = 0 in €2. Therefore, w is a discontinuous viscosity
solution of G =0 in Q. O

Theorem 4.2.3. Let u, u be bounded continuous functions and be respectively a

viscosity subsolution and a viscosity supersolution of

yu 4 sup inf{—I,s[z,u] + fap(x)} =0, inQ, (80)
acABEB

where v > 0, fop is a continuous function and I.glx,u] is of Lévy type. Assume
moreover that u =u = g in Q° and u < u in R™. Then

w(z) = supu(a),
ueF
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F={ucC'R"); u<u<uinR" and u is a viscosity subsolution of (80) in Q},

is a discontinuous viscosity solution of (75).

4.3 Regularity

In this section we give Holder estimates of the discontinuous viscosity solution con-
structed by Perron’s method. As always we assume that G is continuous and (2),
(3), (8) hold. To have Hélder estimates, we will assume that the nonlinearity G is
uniformly elliptic with respect to the class of linear nonlocal operators Ly(o, A, A),
where 0 < 0 <2 and 0 < A < A, and G(z,0,0) is bounded in R".

The following lemma we borrow from [12] is crucial in our proof of the Holder

estimates.

Lemma 4.3.1. Letu > 0 in R™ and u is a viscosity supersolution ofMEO(/\ Aoyt = Co

in Bs,.(0) for positive constants Cy and r. Assume o > oy for some og > 0. Then
{u >t} N B.(0)] < Cr™*(u(0) + Cor®)t=  for any t > 0,
where the positive constants € and C depends on A\, A, n and oy.

Theorem 4.3.2. Assume that o > oy for some og > 0. Let F be a class of bounded
continuous functions in R™ such that, for any u € F, we have —1 < u < % m

R™, u is a wviscosity subsolution of MZ{)()\AO’)U = —% in Bi(0) and w = sup,cru

. . . . . ; _ o .
s a discontinuous viscosity supersolution of MLO(/\’A’O)U) = in B1(0) where €y is

2
a sufficienlty small positive constant. Then there exist positive constants o > 0 and
C > 0 depending on X\, A, n and oqg such that

—Clz|* S w.(z) — w*(0) < w*(z) — w(0) < C|z|®.

Proof. We claim that there exist an increasing sequence {my}; and a decreasing
sequence { My}, such that My, —my, = 8 % and my, < infBg_k(O) wy < SUPp__, (0) w* <
M. We will prove this claim by induction.

For k = 0, we can choose mg = —% and My = % since —% <u< % for any u € F.

Assume that we have the sequences up to my and My. In Bg-x-1(0), we have either

M, Be x-1(0
> My 0 oy > PO (81)
or
My, + my, | Bg-r-1(0)]
{w. < T} N Bg--1(0)] = 5 (82)
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We first assume that (81) holds. We define

w, (87 Fx) —my
v(z) = TPE— )

Thus, v > 0 in B;(0) and

{v>1}nB.(0)] >

. . . . L . _ o
Since w is a discontinuous viscosity supersolution of M LoAnW = 5 10 By (0), then

v is a viscosity supersolution of
MEO()\7A7U)U =¢ in Bg(0), if a < oy.

By the inductive assumption, we have, for any k > 7 > 0,

o = My + My, — j
o> Mg = M M k=g + M mk:2(1—8aj) in By (0). (83)

— My —my — My —my

Moreover, we have
11
v > 2. 8“'“[—5 - (5 — 8] =2(1 —8%) in B&(0). (84)

By (83) and (84), we have
v(x) > —2(|8z|* — 1), for any z € B{(0).

For any z € B s (0), we can choose suffciently small o < o such that

LoV (@) < Mp oy u(@) + ME v (@)
_ v(z +y)
< Mﬁo()HA’U)v(x) —A(2-0) /Rn\{v(achy)<0} Wdy
< Mgy 0le) — A2 - 0>/ min{—2(\8(|xn—|+—ay)]a —1),0} a
1O Y|
< ZO(/\A’U)U(QJ) + €9 < 2¢p.
where vt (z) := max{v(x),0} and v~ (z) := —min{v(z),0}. Given any point x €

B%(O), we can apply Lemma 4.3.1 in B1 (x) to obtain

|B

Cv*(2) +26) > [{v* > 1} N Bi(2)] = [{v" > 1} N B1(0)]

Thus, we can choose sufficiently small ¢y such that v* > 6 in B (0) for some 6 > 0.

Therefore,

—k .
'U(x) = w*(SMk‘onk i > 0 in B% (0)

2
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My —my
2

If we set my1 = my+0 and My, = M}, we must have my; < infBS_k_l(o) Wy <

supp _, (o) W* < My Moreover, My — mppy = (1 — £)8=°F. Therefore, we
can choose a and 6 sufficiently small such that (1 — g) = 8. Then we have
a(k+1)

M1 —mp1 =87 :
We then assume that (82) holds. For any u € F, we obtain that u € C°(R") is a

viscosity subsolution of MZO()\AU)U = —%in B;(0) and v < w, in R". Thus, we have
M, Bg—r-1(0
{u < M} N By 1(0)] > |Bs-+-1(0)]
2 2
We define (5-42)
My, —u(8 " x
vy () == —

Thus, v, > 0 in B;(0) and

1 B1(0)]
o> 1} 0 By (0)] >
Since u is a viscosity subsolution of MZO(/\ Aoyt = —F in Bi(0), then v, is a viscosity

supersolution of

Mg anoyVu <€ in Bge(0), if o < oo.

By the inductive assumption, we have, for any k > 7 > 0,

v > Mk_Mkfj > Mk—mk—ka,]’ —Mk,]’
v = My —my, = My —my,
2 2

=2(1 —8%) in Bg(0). (85)

Moreover, we have
ak 1 —ak 1 ak . c
v, >2-8 (—5—1—8 —5):2(1—8 ) in Bg.(0). (86)
By (85) and (86), we have
vu(z) > —=2(|8z|* — 1), for any = € B{(0).

For any x € B s (0), we can choose suffciently small oo < o such that

L_O(/\,Aﬂ)vj(x) < 2¢, (87)
where v (z) := max{v,(z),0}. Given any point = € Bé(O), we can apply Lemma
4.3.11in Bi(x) to obtain

. o . 1B,(0)
Clog (2) +260)" 2 [{vy > 1} N Bi(2)] = [{vy > 1} N B1(0)] =2 —3
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Thus, we can choose sufficiently small ¢, such that v}” > 6 in B% (0) for some 6 > 0.

Therefore,

My, — u(87F
UU<I):%>@ inBé(O),

2
which implies
M, e — My

u(87Fx) < M), — 0 5 in B, (0).

By the definition of w, we have
M. —

w(87x) < My — 0= in B, (0).
If we set my1 = my and My, = Mk—QM’“gm’f, we must have my 1 < inBB_k_l(o) w, <
SUPp__, (o) w* < M. Moreover, My — mpy = (1 — g)S_O‘k. Therefore, we
can choose a and 6 sufficiently small such that (1 — g) = 8. Then we have
M1 — mypyq = 8 FD), []

Corollary 7. Assume that o > o for some oy > 0 and G(z,0,0) is bounded in
R™.  Assume that G is uniformly elliptic with respect to Lo(o, X\, \). Let u be the
bounded discontinuous viscosity solution of G = 0 in €2 constructed in Theorem 4.2.2.

Then there exists a positive constant o > 0 depending on X\, A, n and o¢ such that

ue C*Q).

Corollary 8. Assume that {fustas is a set of uniformly continuous and bounded
functions in Q, v > 0 and I.p is of Lévy type and uniformly elliptic with respect to
Lo(A\, A, o) for some 2 > 0 > oy > 0. Let u be the bounded discontinuous viscosity
solution of (80) constructed in Theorem 4.2.3. Then there exists a positive constant
a > 0 depending on X\, A, n and oy such that u € C*(Q).

4.4 A sub/supersolution and existence of a solution

In this section we construct a subsolution and a supersolution that are needed in
proving the existence of a viscosity solution by Perron’s method. For the construction,
we first follow the ideas in [65] to construct a class of barrier functions. We define

vo(z) = ((x1 — 1)7)* where x1 = x - €.

Lemma 4.4.1. Given any o € (0,2), there ezists a sufficiently small o > 0 such that
MZFO(/\AU)UQ((l +r)e;) = —eyr® 7 for any r > 0 where € is some positive constant.

Proof. For any a > 0 and r > 0,

MZLO(A,A,U)Uoc((l +7)er)
~ (2-0) /n A(dva (14 7)er), y)t — AMdva (1 4 1r)ey), y)_dy

|y|n+e
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A +y) )"+ ((r —y) )" = 2r)"
ly|"te

_ / A +y) )"+ (r =) ) = 27‘“)_dy]

|y|n+0'

Y

_ (g_g)ra—a[/n A(((1+y1)+)a+((1_yl)+)a_2)+dy

|y|n+0'

_/ A((L+y) D)+ (1 —yy)H)> —2)~

|y’n+a

dy] .

By the Dominated Convergence Theorem, we have

T+ y1)H)e + (1 —y1) ") — 2)*
Y A RSN TR
a—0t Jrn |y
and
B N (R 1 e (LR Ll e R e
a0t Jr ly|™+e ! e
m y1<—1

Therefore, for some sufficiently small fixed «, there exists a positive constant ¢y > 0
such that
MZO(A,A,J)Ua((l +7r)e;) < —eer®?, for any r > 0.

]

Lemma 4.4.2. Assume that o € (0,2). Then there are o > 0 and ro > 0 suffi-
ciently small so that the function u,(x) = ((|x| — 1)1)* satisfies M;)(/\A’a)ua < —1lin
Bi4,(0) \ B1(0).
Proof. We notice that u, and M} o(\A,0) Are rotation-invariant. Then we only need
to prove that M/ JoAeUal(1 ~|—s)61) —1 for any s € (0,ry] where & > 0 and ry > 0
are sufficiently small. Note that, Vs > 0, us((1 + s)e1) = v,((1 + s)e;) and that,
Yy € By1(0),
(1 +s)er+yl = 1)F = (s + ) | < CT,
where y = (y1,’). Therefore, we have
Cs*y'1?, y € B;(0),
0 < (ta —va)((1+s)er +y) < ¢ ClY*, vy € Bi(0)\ B;(0),
Clyl*,  y € R"\ By(0).
Therefore, we have, VL € Lo(\, A, 0),
0 < L(ua = va)((1 4 5)e1)

= 2-0) [ (0= v)((1+ )es +3)+ (0 = w)((1+ s)er — )} (w)dy

Sa—l y/ 2 |y 200 y a
0(2 o U)A(/ n|+a| dy + / 7‘1-&-0 dy + / ‘ n’-i-a dy)
5 |y B1(0)\Bs (o) Yl R™\B1 (0 |y|

C«(Sa—a—l—l +82a—0+ 1)

IN

IN
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Thus, we have MZ_()()\AO')<ua —0a)((1+ 8)er) < C(s* 7 + 277 + 1). Therefore, by

Lemma 4.4.1, there exists a sufficienlty small o > 0 such that

MZO()VA’U)UQ((l +8)e;) < M;o(A,A,a)wa — o) (1 + s8)er) + MZFO(/MA,U)UQ((l + s)ep)
< C«(Sa—a—i-l =+ 82a—0 4 1) o EoSa_U.

Thus, there exists a sufficienlty small o > 0 such that we have MZFO (A a)ua(el+sel) <
—1 for any s € (0, 70]. O

In the rest of this section, we assume that 2 is a bounded domain satisfying uni-
form exterior ball condition with uniform radius ro(< 1). Without loss of generality,
we can assume that Q CC {z|z; < 0}. For any x € 92 and any 0 < r < rq, there
exists y7 € Q¢ such that B,(y7) N Q = {x}.

Lemma 4.4.3. Assume that o € (0,2). There exists an €y > 0 such that, for any

x € 00 and 0 < r < rq, there is a continuous function @, , satisfying

0rr =0, in B.(y"),
ur >0, in B(yL),
pr,r = 27 ln Bgr(y;)v

+ .
MLO(,\J\,U)QDI,T S —€0, in €.

Proof. We define a uniformly continuous function ¢ in R" such that 1 < ¢ <2 and

@(y) = 17 mn Y1 > 17
=2, my <0

We pick some sufficiently large C' > = and we define ¢, ,(y) = min{p(y), Cua(%)}
where « and rg are defined in Lemma 4.4.2. Tt is easy to verify that ¢, , = 0in B,(y"),
¢rr > 0in By(y;), and @, = 2 in Bs, (y;). By Lemma 4.4.2, we have M\ | juq <
—1in B4y, (0) \ B1(0). It is obvious that, for any y € Byr)r(y5) \ Br(y}), we have
(MZ’_O()\,A,O')UOZ(#))(y) < —%o‘

For any y € B(H(%)%)r(yg) \ B,(y%), then we have @, ,.(y) = Cua(
that there exists a test function ¥ € C?*(R") N BUC(R") touches ¢, from below
at y. Thus, % touches ua('_ry;) from below at y. Thus, Mgo(/\’A,o)\I/(y) < —7%. For
any y € 1N B(Cl+(%)é)r(y;)’ we have ¢, ,(y) = ¢(y) = maxgnr ., = 2. Suppose that
there exists a test function ¥ € C?*(R™) N BUC(R") touches ¢, , from below at y.

y;y; ). Suppose
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Therefore,

A(S‘Ij(y7z)+ — )\5\I’(y,2:)_
(Mo ®) = 2-o) [ SEBE R0,
VU (y,z)~
= —A2—-0 / ——dz
( ) R™ ‘Z|n+cr
(Wly+2)—2)
< —A(Q—U)/n s
< =2 )/ ! dz
> - —0 T oo
{z|z1>—y1+1} |Z|n+a
1
< —)\(2—0)/ —dz.
{z|z1>— min{y1 |yeQ}+1} ’Z‘

dz},

' — min{ & — _ 1
Based on the above argument, if we set g = min{ o N2=0) [, .- min{y1 lyeQ)+1 T2

we have

MZ_O(A,A7O')()0§U,T < —€p, in €.

]

Theorem 4.4.4. Assume that 0 < 0 < 2 and G(x,0,0) is bounded in R™. Suppose
that G is uniformly elliptic with respect to Lo(\,A,0) and g is a bounded continu-
ous function in R™. Then (74) admits a viscosity supersolution u and a viscosity
subsolution u and u = u = g in Q°.

Proof. For any = € Q°, we let @, be a bounded continuous function touches g from
above at z and i, > 2C(||g|/zem®n) + 1) in Q for some sufficiently large C'(> 1)
we determine later. Thus, we define u, = min{C(||g|/zem@r) + 1)¢, U} where ¢
is defined in Lemma 4.4.3. It is obvious that u, > ¢ in R", wu,(x) = g(z) and
uy = C{||gl| @y + 1} = 2C(||g|| Lo rr) + 1) = maxg» u, in Q. For any y € Q, we

have
Aoy (y, 2)T — Noug(y, 2)~
Mfyppou)®) = @=0) [ e @z
oug(y, 2)~
= —)\(2—0')/ %dz
i — 20|19l poe ey + 1))~
< Ao [ Lt D=2l 0,
n |Z|n+a
1
< 2= )C(lgllmen + 1) [
{z|]z1>—y1+1} |Z|
1
< 2= )0l + 1) | e
{z|z1>— min{y1 |yeQ}+1} |Z’
S _||G(x7070)||L°°(R”)7
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where C' is chosen sufficiently large such that the last inequality holds. Although wu,
does not depend on r, we define u,, = u, for any 0 <r < rq.

Since g is a continuous function, let pr be a modulus of continuity of g in Bg(0).
Let Ry be a sufficiently large constant such that @ C Bg,-1(0). For any = € 09, we
let ug, = pr,(3r) + g(z) + max{||g|| L ®n), ”G(x’O’OE)OHLOO(Rn) }pzr where ¢, is defined
in Lemma 4.4.3. It is obvious that u,,(x) = pg,(3r) + g(z), uz, > ¢ in R™ and
MZFO(,\,A,J)UW < —|G(2,0,0)| poerny in Q.

Now we define @ = inf,cqe g<rrg{ts}. Therefore, 7 = ¢ in Q° and @ > ¢ in R™.
For any x € 02 and y € R", we have g(y) — g(z) < u(y) — u(z) = u(y) — g(z) <
Pho(37) + max{ | g o o, L2 E

€0

continuous on 0f2. For any y € Q, we define d, = dist(y,0Q2) > 0. If r < %y, then we

Your(y) for any 0 < r < rq. Therefore, u is

have, for any z € Ba, (y),
2

€0

GCE,0,0 oo (R
wo () = { PR+ 9(@) + 2max{ g, EEETEEE, 0 € 00
7 20(||gll oo @ny + 1), z € Q°.

Thus, we have, for any z € Ba, (v),
2

inf {uer(2) = uer(y), 0} < u(2) —ufy) < sup {uer(2) — uer(y), 0}

d
€N, 7 <r<rg xeaa,%y<r<m

Since {u, .} has a uniform modulus of continuity, then % is continuous in

$€3§2,d7y<r<'r9
Q). Therefore, u is a bounded continuous function in R" and @ = ¢ in §°.
By Lemma 4.2.1, we have M/ \ yu < —[|G(,0,0)| =(n) in Q. Therefore, for
any r € QJ G($,ﬁ,[[$,ﬂ]) - G(IE, 070) > EO(A7A7U)<_Q>(‘T> = _M[J,FO(A7A,U)(17’)<I) =

|G (-,0,0)| Lo (mny. Thus, G(z,a, Iz, u]) > 0 in Q. O
Similarly, we can construct a subsolution and a supersolution of (75).

Theorem 4.4.5. Assume that { fas}ap is a set of uniformly continuous and bounded
functions in Q, g is a bounded continuous function in R™, v > 0 and I,z is of Lévy
type and uniformly elliptic with respect to Lo(\, A, o) for some 2 > o > 0. Then (75)

admits a viscosity supersolution u and a viscosity subsolution u and u = u = g in °.
Now we have enough ingredients to conclude

Theorem 4.4.6. Assume that 0 < o < 2, G(x,0,0) is bounded in R™ and g is a
bounded continuous function. Suppose that G is uniformly elliptic with respect to
Lo(\, A,0). Then (74) admits a viscosity solution u.

Proof. The result follows from Theorem 4.4.4 and Corollary 7. m
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Theorem 4.4.7. Assume that { fap}as is a set of uniformly continuous and bounded
functions in §2, v > 0, g is a bounded continuous function and I.g is of Lévy type and
uniformly elliptic with respect to Lo(A\, A, o) for some 2 > o > 0. Then (75) admits

a viscosity solution u.

Proof. The result follows from Theorem 4.4.5 and Corollary 8. O
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CHAPTER V

SEMICONCAVITY OF VISCOSITY SOLUTIONS FOR A
CLASS OF DEGENERATE ELLIPTIC
INTEGRO-DIFFERENTIAL EQUATIONS IN R¥Y

In this chapter, we will study semiconcavity of viscosity solutions for a class of de-
generate elliptic integro-differential equations in R", see [60].

5.1 Notation and Definitions

We recall the definition of a viscosity solution of (1). In order to do it, we introduce
two associated operators I and 29,

I”hmwhiémww+4@£n—M@—H&@@WJ@KWW@,

f“ummkiémwu+¢@@»—w@—ﬂﬁ@@mjm@mmw.

Definition 9. A bounded function v € USC(R™) is a viscosity subsolution of (1)
if whenever u — ¢ has a mazximum over Bs(x) at x € R™ for a test function ¢ €

C?(Bs(x)), 6 > 0, then
G(z,u(x), Dy(z), D*p(x), I"°[z, Dp(), ] + Iz, Dip(), u]) < 0.

A bounded function u € LSC(R™) is a viscosity supersolution of (1) if whenever u— ¢
has a minimum over Bs(x) at x € R™ for a test function ¢ € C*(Bs(x)), § > 0, then

G (z,u(x), Dp(x), D*¢p(x), I'°[x, Dp(x), @] + I*°[x, Dp(x), u]) > 0.
A function u is a viscosity solution of (1) if it is both a wiscosity subsolution and
viscosity supersolution of (1).
5.2 Holder and Lipschitz continuity

In this section we prove the Holder and Lipschitz continuity of viscosity solutions of
(1) and (6). We start with equation (1). We make the following assumptions on the
nonlinearity G and the function j(x,§).
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(H1) There are a constant 0 < # < 1, a non-negative constant A and two positive
constants C, Cy such that, for any z,y € R", r,l;,l, € R, X,Y € S" and L,n > 0,

we have
G(y,r, LO|x — y|9’2(:c —y),Y,l,) — G(z,r, Lz — y|9’2(:c —y) + 2nz, X, ;)
< Al — 1)+ Ci(1+ L)|z — y|” + Con(1 + []?),

X 0 I -1 I 0
< Llz—y"? +2 .
(H2) For any =,y € R", we have

9(2, ) =3y, O < |z —ylp(§)  for £ € R”,
5(0,8)[ < p(&)  for & € R™,

The following lemma is a nonlocal version of the Jensen-Ishii lemma we borrow from
[40], Theorem 4.9. The reader can consult [9] for a more general Jensen-Ishii lemma
for integro-differential eqgations, which allows for arbitrary growth of solutions at
infinity. Before giving the lemma, we notice that our Definition 9 corresponds to the
alternative definition of a viscosity solution in [40], see Lemma 4.8.

Lemma 5.2.1. Suppose that the nonlinearity G in (1) is continuous and satisfies
(12)-(3). Let u,v be bounded functions and be respectively a viscosity subsolution and
a viscosity supersolution of

G(z,u, Du, D*u,I[z,u]) =0 and G(x,v, Dv, D*v,I[z,v]) =0 inR™
Let ¢ € C*(R*™) and (z,9) € R" x R™ be such that

has a global maximum at (,y). Furthermore, assume that in a neighborhood of (Z,4)
0

)

there are continuous functions gy : R*™ — R, g1 : R® — S™ with go(Z,79) >

D*y(x,y) < gol,y) < _I] —]I > ! ( 91(()“") 8 > |

Then, for any 0 < § <1 and ¢y > 0, there are X, Y € S" satisfying
X 0 g1(z) 0 o T I
_ < (1
( 0 —Y) ( 0 0 < (1+€0)go(Z,9) 7|
such that

G (&, u(®), Dptp(#, ), X, IV[&, Dytp(,9), (-, 9)] + I*°[2, Datp (2, 9), u(-)]) <0,
G(Q? U(@)’ —Dy’ll)(i, g)> Y7 ]176[?% —Dy’ll)(i, g)> _¢(i’ )] +1276[g7 —Dy¢(§77 :g)v U()]

satisfying

Y
o
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Remark 9. The statement of Lemma 5.2.1 is weaker than Theorem 4.9 in [40]. By
Theorem 4.9 in [40], the same result as Lemma 5.2.1 is also true for Bellman-Isaacs

equations (6).

Lemma 5.2.2. Suppose that a Lévy measure p satisfies (12) and j(x,§&) satisfies
assumption (H2). Then we have

M = s {le =yl [ [lo-y+ i) - 0P - o ol

7Y

1,08z — 9" 2w = ) - ((2,€) — (5, €)) ] (&) } < +00. (88)

Proof. We first define

Oz, y) =|o -y’ (89)
By calculation, we have
_ X —
Dé(x,y) = O]z —y|”™* < Y ) : (90)
y—x
2 6—2 I = o—4 | T Y r—y
D g(x,y) = Oz —yl +0(0 = 2)|z —y| ®
-1 I y—z y—x
I -1
< Oz —y|' : 91
< tla ] ( o ) o1)

Since limg_,¢ p(§) = 0, there exists a positive constant §; < 1 such that SUDge; (0) p(€) <
1. By (12), (90), (91) and (H2), we have, for any z,y € R” and z # y

o=y [ [lo-yt i@ - i@l ~ o -l
~Lp,0)(€)0lz — "2 — ) - (j(2. &) — (1,€)) | u(de)

< o0 [ (sup e -yt 1) — 0. )Pl ~ (0.0 u(de)
B, (0) \0<t<1
Ho—o? [ fle—y 8 - o ool
R”\B;, (0)
1,001z — 91" 2 — ) - (j(x. ) — §(9,€)) | u(de)
< 2% [ pepuae) s [ p(futdg) o [ p(E)u(de) < +oo.
Bs,(0) R™\Bs, (0) B1(0)\Bs, (0)
(92)
[
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Theorem 5.2.3. Suppose that the nonlinearity G in (1) is continuous, and satisfies
(12)-(3) and (H1). Suppose that j(x,§) satisfies assumption (H2). Then, if u €
BUC(R™) is a viscosity solution of (1) and v > AM; + Cy where M, is defined in
(88), we have u € C%(R™).

Proof. Let ®(z,y) = u(z) — u(y) — ¥(x,y) where ¥ (z,y) = Lo(x,y) + n|z[* and
¢(z,y) is defined in (89). We want to prove, for any n > 0, we have ®(z,y) < 0 for
all z,y € R™ and some fixed sufficiently large L. Otherwise, there exists a positive
constant 7y such that sup, ,cg« ®(z,y) > 0if 0 <7 < no. By boundedness of u, there
is a point (&, 7) such that ®(z,7) = sup, ,cgn ®(7,y) > 0. Therefore, we have

max{n|2]*, LIz — §|"} < u(z) - u(g). (93)

By (90) and (91), we obtain

I I I 0
D*)(&,4) < OL|3 — §|°2 +2 .
(z,9) < 0Lz — g (_[ I) o o

By Lemma 5.2.1, since u € BUC(R") is a viscosity solution of (1), for any 0 < § < 1
and €y > 0, there are X,Y € S” satisfying

X 0 I 0 I —I
-2 < (1 OL|z — |72 04
<0 _Y> 77(0 O)_<+€o) |z — 9| (_I I>, (94)

such that
G(2,u(2), LDy¢(2,9) + 2n&, X, 1;) <0,

G (9, u(), —LDyd(#,9),Y,15) > 0,
where

ly = IY°[2, LD,¢(2,9) + 202, Lo (-, 9) + 0l - |?] + I*°[&, LD, (%, 9) + 20, u(-)],

ly = 11, =LDyo(#,9), =Lo (&, )] + I*°[, = LDy (%, §), ()]
Thus, by (2), (93) and (H1), we have

YL|IZ - 97 < y(w(@) —u(@))
< Ay — 1)+ C1(1 + L)|2 — §|° + Con(1 + |2]?). (95)
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Now we focus on estimating the integral term [; — [;. Thus,
b=ty = L[ [le— g+ i@ O — 1o - 31 0l — 412 — 9) 56, O] u(de)
Bs(0)
AL [ la= a4 5.9 - 1o - 31— 019 - 5120 - 8) 5069 u(de)
Bs(0)
wn [ (64 5@ O - 4 - 26 (2.€))a(ae)
B;(0)

[ [ule 0.9 = u(@) - g +(3,€) + ()
B§(0)
—1p,(0)(&) (OL1E — 972 (& — 9)) - ((,€) — §(9,€))
~L,0)(€)208 - §(2,€) | ().
Since ®(x,y) attains a global maximum at (Z,7), we have, for any £ € R",
u(® + j(2,8)) — w(@) — w(@+5(9,8) + u(@)
< L(le =9+ = i@ oI — o —3l") + (& + i@ 2 — o). (96)

Thus, by (91) and (96), we have

Loty < 0L [ ( sup fo— g+ ti@ 6 @)
B;(0)

0<t<1

+ sup |5 — &+ (5,1 21(3, €)1 ) )

0<t<1
e [ (1 5@ OF = 16F — Loy (€26 56,9 u(de)
L[ le-g+0.6 - 5.9 ~ 16 - 3l
B§(0)
~Lp (€01 — 9172 — 9) - ((2,€) - 15,9) |wg).  (97)

We claim that n|2|*> — 0 as n — 0. Since u is bounded in R™, for any positive integer
k, let (xy,yx) be a point such that

u(wr) — u(ye) — Lo(wp, yp) > M — %7

where M := sup, ,cge{u(z) — u(y) — Lo(x,y)} < +oo. Thus,

1 A
M — . Nk < @k, ye) < (2, 9) < M. (98)

Letting 7 — 0 and then letting & — +o00 in (98), we have lim,_,o ®(2,9) = M. If we
notice that

(&, 9) +nlaf* = w(@) —u(@) — Lé(z,§) < M, V>0,
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the claim follows. Since v € BUC(R™) and (93) holds, we have
€1 S |j—?)| S 61_17

where €, is a positive constant independent of 7. Letting 6 — 0 and then letting
n — 0 in (95), we have, by (12), (97) and (H2),

-l < AL [ [l 6.9 - @01 - 2 - 3l

+C (14 L)|2 — g|°.

Therefore, by Lemma 5.2.2,
v < Al [

L€l — 31 — ) (§(5,€) — (5, )| u(de) + Cu(1 + 1)

1
< AM, +Ci(1+ E> < 400, (99)

1=+ (2,6 = 53,01 — |& - I

n

where M is defined in (88). It is now obvious from (99) that, if v > AM; + C}, we
can find a sufficiently large L such that we have a contradiction. Therefore, we have
u € C%9(R™). O

Let us consider another important fully nonlinear integro-PDE appearing in the
study of stochastic optimal control and stochastic differential games for processes
with jumps, namely the Bellman-Isaacs equation (6). Equation (6) is not of the same
form as (1), which means that the following theorem is not a corollary of Theorem
5.2.3.

Theorem 5.2.4. Suppose that cop > v in R™ uniformly in o € A, 3 € B. Suppose
that the Lévy measure pu satisfies (12), and the family {jas(x, &)} satisfies assumption
(H2) uniformly in o € A, B € B. Suppose moreover that there exist a positive constant
C and 0 < 0 <1 such that

sup_ ma{|oas(0)], Bas(O)} < €, (100)
acA,BeB
and
sup max{[oas]0,1:r"; [Daslo1rn [Caploorn, [fasloorn} < +00. (101)

acA,BeB
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Then, if uw € BUC(R™) is a viscosity solution of (6) and v > Ny where

Vs = s sy {olo =17 (ons(e) = 00s)) (o) = o)

0]z = 91 (bas(v) — bas(x) ) - (@~ v)
#lo =y [ o=yt suae.€) = aaw, I ~ o~

L€l = ¥ 2@ = 1) - (jas(2:€) = Jas (4 6)) | 1(d€) } < +o,
(102)

we have u € C%9(R"™).

Proof. At the beginning of the proof, we will show that the constant N; has an upper
bound. By (101) and the estimates in (92), we have

N < 0 sup [0ap]g120 +0 sup [baﬁ]o,l;Rn+22_60/ p(€)*p(de)
acA,peB acA,peB Bs, (0)

T / p(€)° (d€) + p(E)(de) < +o0,
R™\Bs, (0) (0)\Bs, (0)

where 0; was chosen in Lemma 5.2.2.

Then we want to prove that, for any n > 0, we have ®(z,y) = u(z) — u(y) —
Y(z,y) < 0 for all z,y € R™ and some fixed sufficiently large L where ¢ (z,y) is
given in Theorem 5.2.3. Otherwise, there exists a positive constant 79 such that
sup, yern ®(,y) > 0if 0 <n < n. By boundedness of u, there is a point (,7) such
that ®(2,9) = sup, yegn ®(z,y) > 0. Therefore, we have (93). By Remark 9, since
u € BUC(R™) is a viscosity solution of (6), for any 0 < § < 1 and ¢, > 0, there are
X,Y € S" satisfying (94) such that

sup mf { Tr(0ap(2)0s(£)X) —ls.ap+bap(E) - Dot (£, §) +Cap(2)u(d) + fas(2) } <0,

acABEB

sup inf, { —Tr(005(9)0as(1)Y) 1.0 —=bas(§) Dyt (2, 9) + Cap(§)u(d) + fap(9)} 2 0.

where

g = 1512, Dato(#,9), 9 (. 9)] + L5, Datp (&, 9), u(-)],
lg],aﬁ_lla[ Y, yqﬁ(‘fi‘:g})a_ ( )]+I B[y’ y¢(jag)7u()]
Since (90) and (93) hold, and c,g > 7 in R™ uniformly in o € A, € B, we have

VLE =31 < sup {Las+ Nas}, (103)
acA,BeB
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where
Lag = Tr(0as(@)ols(8)X = 0us(@)0ms(@)Y ) + (bas(§) = bas(@) ) - LD26(2,)
+(Cas(®) = cap(@) )ul@) + fap(d) = Jas(&) = 2nbas(@) - .
and
Nop = liap = ljap-
By (94), (100) and (101), we see that (see also Example 3.6 in [22])
Tr(003(2)024(0)X = 0a3(3)055(0)Y )
< (1 @)L = 912 Tr | (0as(#) = 0as()) (7as(@) — 0as()) |
+2nTr (00p(2)0ls(2))
< (1 @)L — 912 Tr | (0as(#) — 0aa(9)) (as(#) — 0as())” |

+2n(C' +  sup [O'aﬁ]o,l;RanDQ.
acA,BeB

Thus, we can estimate the local term L,z easily. Using (90), (100), (101) and bound-

edness of u, we obtain
N ~1O— ~ ~ ~ ~\ T
Ly < (14 @0Ld = 51" 2Tr| (7as(®) = 0as()) (7as(#) - 0as())” |

+277(C + sup [0-04,3]0,1;]1%"|:%|)2 + 0L|i' - @|0_2 <ba5(g) - baﬁ(j)> ’ (i' - @)

a€ABEB
+ sup [caglogrnltfopn|E — 91"+ sup [faslogre |2 — 9|’
a€cA,peB acA,peB
+2n(C|&] + sup [baglomrn|E]?). (104)
acA,BEB

Similarly as in the proof of Theorem 5.2.3, we have 7|2 — 0 as  — 0 and
€1 S |9AU—?)| S 61_1a

where €, is a positive constant independent of 7. Letting 6 — 0, n — 0 and ¢g — 0
n (103), we have, by (104) and the same estimates on the nonlocal term N,z as
Theorem 5.2.3,

L=l < swp L{0L = 70T | (0as() — 0as@)) (7as(d) — 0as(9) ]
01 = 9172 (bas(3) — bas(®) ) - (& = )
[ [l =04 @ ©) = @O~ 1o
—15,0)(€)017 — 91" = 9) - (Jas (5 €) — Jap () | plde) }

+ sup [caplogme|tlopn|Z —9)° + sup [faploemn|E — 9]’
acA,BEB acA,BeB
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Therefore,

v s s {00 =g (0as(d) — 0as(3)) (7as(d) — 7as(®)”
01 = 5172 (bas(9) — bap(®)) - (= §) (105)
#lo =gl [ [lo =9+ dns(8:€) — a3 )1 ~ [ = 31
L0 ()01 = 91" 72(@ = ) - (jas(@,€) — Gn(3.©)) | (@) |

1 1
+— sup [CaB]O,G;Rnlu‘O;R"—i__ sup [faﬁ]O,H;R”

L a€A,BEB L acA,BeB
1 1
< Ni+— sup [caglogrn|tforn + = sup [fasloern, (106)
L aeapes L acapes

where N; is defined in (102). It now follows from (105) that, if v > Ny, we can

find a sufficiently large L such that we have a contradiction. Therefore, we have

u € CO(R"). O

5.3 Semiconcavity

In this section we investigate the semiconcavity of viscosity solutions of (1) and (13).
Again we start with equation (1). We impose the following conditions on G and
j(,6).
(H1) If ¢ € C%Y(R"), there are a constant 1 < § < 2, a non-negative constant
A and two positive constants Cs, Cy such that, for any z,y,z € R*, I;,[,,l, € R,
XY, Z €S" and L,n > 0, we have
L Z
2G(27 @(2)7 _EDZ¢(x7 Y, Z)7 57 lZ)
G, p(w), LD.(w,y, 2) + 20w, X, ) — Gly, o(y), LDy, 3, 2), Y 1)

< —y(p(@) +9(y) = 20(2)) + A(le + 1y — 20) + C3(1 + L)(, y, 2)
+Cyn(1 + |x|2)7
(107)
if
X 0 0
0 Y 0
0 0 —Z
. o ) I -1 0 I 1 =2
< 020 —V)|x—y*2| -1 1 o |+| I I -2
o(,y,2)
0 0 0 —2] —2I Al
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+2n (108)

S O N
o o O
o O O

where 7 is given by (2) and ¢(z,y,2) = (|z — y[?? + |z + y — 22|)2.
(H2) (H2) holds and, with the same # in (H1) and for any z,y € R™, we have

(2,6 + (0,6 = 2L O S lw — yp(6) for € € R,

Example 5.3.1. Since the assumption (H1) is complicated, we provide a concrete
example to show when it is satisfied. We consider the nonlinear conver nonlocal

equation

—Tr(o(z)o” (x)D*u(z)) + F(I[z,u]) + b(z) - Du(z) + c(z)u(z) + f(z) =0, inR",
(109)
where F' : R — R is a continuous function. Suppose the following conditions are

satisfied: there exists a non-negative constant A such that, for any l,,l, € R,
c>vmR" and c e Cl’é’l(f&"),
f is O-semiconvex in R",
max{[o]o,1;r", [0]1 5 1.0, Do, [b]1 6180, [flo,umn } < 400,
F is convex in R" and F(l,) — F(l,) < A(l, —1,). (110)

By the estimates on the local terms in Theorem 5.3.5, if equation (109) does not
contain the nonlocal term F(I[z,u]), then (109) satisfies (H1). Thus, we only need

to estimate the nonlocal terms. For any l,,1,,1,, we have, by (110),

2P(L) - Fl)— FA,) < 2P0 -2+ (ar(=l) ) - Pay)
< A(ly +1,—2L,).
Therefore, equation (109) satisfies (H1).
This example can be generalized to equation
G(z,u, Du, D*u) + F(I[z,u]) =0, inR", (111)

where G satisfies (107) without the last argument if ¢ € C%Y(R") and (108) holds,
and F satisfies (110). It is obvious that (H1) holds for equation (111).

Lemma 5.3.1. Suppose that the nonlinearity G in (1) is continuous and satisfies
(12)-(3). Let u,v,w be bounded functions and be respectively a viscosity subsolution,
a viscosity subsolution and a viscosity supersolution of

G(x,u, Du, D*u, I[x,u]) =0, in R",
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G(z,v, Dv, D*v,I[z,v]) =0, inR",
G(z,w, Dw, D*w, I[z,w]) =0, inR™
Let ¥ € C*(R*) and (z,7,%) € R" x R" x R™ be such that

(x,y,z) = U(ZL’) + U(y) - 2w(z) - 1/1(I,y,2)

has a global mazimum at (Z,9,2). Furthermore, assume that in a neighborhood
4, 2) there are continuous functions go,q1 : R™ — R, go : R® — S™ with

of (&,
g91(2,79,2) > 0, satisfying

I -1 0 1 I =2
DZ@D(CL’,y,Z) < gg(iC,y,Z) -1 I 0 +gl($7yvz) I I —2I
0 0 O -2 =21 4]

g2(z) 0 0

+ 0 0 O

0 0 O

X 0 0 g2(%) 0 0
0O Y 0 - 0 0 0
0 0 —Z 0 0 0
I -1 0 I 7
< (1+4e€) |go(z,9,2)| —1I I 0 |+aqn(z,92) I I =21 ,
0 0 0 —21 =21 4]

such that

G( ( ) y,@b(i‘ g 2) ]16[?/’ y'@b( gaé)ﬂ#(‘@v"2)]+[275[Q7Dy¢<£7:&7 2)71}()]) S 07

Lo ] Z DAp(#,9,2)  (&,9,-)
G __Dz “ ]—1,5 . ’J . ) J
(Z7w<z> 2 w( )7 27 [ 2 ? 2 ]
‘DZ A? A’ 2
[2 6[ w(g ) Z)’w(_)]) >0
Proof. This lemma can be deduced from the proof of Theorem 4.9 in [40]. O

Remark 10. Lemma 5.3.1 is also true for Bellman-Isaacs equations (6).
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Lemma 5.3.2. Suppose that a Lévy measure u satisfies (12) and j(z,€) satisfies
assumption (H2). Then

My = s o)t [ [0+ 000+ 5062+ 52, 0) - ow.2)
¢(,y,2)7#0 "

15,0)(€) (Da6(, . 2), Dy, 2), D29, 2))
(32, 5,9,3(2.)) | ntae) }

< +o00,
(112)
where ¢(x,y, ) is defined in (H1).
Proof. By direct calculations, we have
] i T —y r+y—2z
Do(x,y,2) = —— [Olz —y[* 2| y—z | + T4+y—2z (113)
o(z,y, 2)
0 —2x — 2y + 4z
and
1
D2¢x7y7z :_—D¢xay72 ®D¢x7yaz 114
(3:2) = ~ 55 Doy, 2) @ Dol 2) (114)
1 i I -1 0
+m Olz —yl* 2| -1 I 0
7y7 O 0 O
T —vy T —y 1 I =21 \ -
+0020 — 2|z -y | y—2z |@| y—2 |+ I I =21
0 0 —21 =21 41 .
. ) I -1 0 1 I =21
< — 020 -V|e -y 2| -1 T o |+ 1 I =21
¢(2,y,2)
0 0 0 —21 =21 4]
(115)

Since limg_,o p(§) = 0, there exists a positive constant d; < 1 such that

1 =

sup p(&) <
€EB52 (0)

By (113) and (115), we have, for any x,y, z € R" and ¢(x,y, z) # 0,
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o2 [ [0l @€+ 50,95+ 5(06) — 6o,
~15,0)(€) (Dat(w. . 2), Dyo(, 9, 2), Dy, 2) ) - (3(2,€),5(9:€),3(2,€) ) | ()
otey ) { [ [ s (1609.90:0).5(,9)

IN

D2 (a -+ 1, &),y + 13(0,€), 2 + 12, ) (1,6, 3(0,€),3(2,9)) |lae)

t [ (=i — S O o4y =2+ (. +3(0.6) 20 OP)
B, (0)

~0(@,9,2) = 13, (0)(€) (Ole =y 2@ = y) - (§(2,8) ~ (. €)

o4y —22) - (j(@,6) +5(0,€) — 21(,0)) ) | o) |
-1 1
#9:2) {/352@ [02‘221 @ 1 (@, €.y + i (5.6) 2 + 1j(=,€))

(G, +i:6) = 2i(,9)°
+0(20 = )|z — g+ £(j(,€) — iy )72 (3 (,6) — (. €)*) ] u(d€)

N
¢<x7 y7 Z)

IN

N

[ o=y — SO oty =2+ () +0(06) - 20 )
Bg, (0)

~0(.1:2) = L0/ 3 (Tl = o2 = ) - () — 5 0.))

o4y —22) - ((0,) +(5:6) - 2i(,9) ) | ulde) }.

By (H2), we have
< 16 +i,6) - 25D+ RIS - 24(2,6)

< p&)(Je =y’ + |z +y —22).

Using it, we obtain, for any ¢ € By, (0) and ¢ € [0, 1],

oz +1j(z,8),y +1j(y, ), 2+ j(2,6))

7=y +1(i(@,€) = iy ) + o +y — 22 +1(j(2,€) + i (1,€) — 2§(2 &) ]

NI

1

2

Y

3.9 L 1 3\ 2
(2 =y + (Flr+y =22 = 1l —l”)’]
1

_ 9 =
+ lo+y— 22

vV
N | =~
—
—
=] W
N—
[\~
>
|
3k
|
=
(&)
>
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Therefore, for any z,y,z € R" and ¢(z,y, z) # 0, we have by (12),

0wy [ [0+ @€+ 50,95+ 5() - 6o,

15, 0)(&) (Dab(w, 9, 2), Dyl,y, 2), D-(,9,2)) - ()., €),3(,6) ) | )
5 o o0

2 [ o [ Qe ]

+/c (0) {V2[(14+0(0)" + ()] — 1)

IN

HO+ D) /B o A < 4 (116)

]

Theorem 5.3.3. Suppose that the nonlinearity G in (1) is continuous, and satisfies
(12)-(3) and (H1). Suppose that j(x,€) satisfies assumption (H2). Then, if u €
COL(R") is a viscosity solution of (1) and v > AM, + Cs where My is defined in

(112), then u is §-semiconcave in R™,

Proof. Let ®(z,y, z) = u(x)+u(y) —2u(z) —(z, y, 2) where ¥(x,y, 2) = Lo(z,y, z)+
nz|? and ¢(x,y,z) is defined in (H1). We want to prove, for any n > 0, we
have ®(z,y,2z) < 0 for all z,y,z € R™ and some fixed sufficiently large L. Oth-
erwise, there exists a positive constant 7o such that sup,, cg. ®(7,y,2) > 0 if
0 < n < no. By boundedness of u, there is a point (Z, 9, 2) such that ®(z,7,2) =
sup,, .ern (2,9, 2) > 0. Therefore, we have

max{n|a|*, Lo(2,7, 2)} < u(@) +u()) — 2u(Z). (117)

By (113) and (115), we have

D*)(, 7, 2)
I -1 0 I 1 =2
< SGiD 020Dz —g* 2 -1 1 o |+| I 1 =-2I
’ 0 0 0 —2I —2I 4]
I 0 0
+2n|1 0 0 O
0 0 0

By Lemma 5.3.1, since v € BUC(R") is a viscosity solution of (1), for any 0 < § < 1
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and €y > 0, there are X,Y, Z € S" satisfying

X 0 0 I 0 0
0O Y O —-2n]1 0 0 O
0o 0 —Z 0O 0 0
(1+e)L ) I -1 0 I I =21
<SG f) g0 —Vi—g®2| -1 1 o |+| 1 1 —21 ||,
ol 0 0 0 —21 =21 41
(118)
such that
G(Z,u(), LDo(2, 9, 2) + 202, X, ;) <0,
G(Q?“’(g)?LDy (Avgv’%)?}clg) S Oa
L A
G(Q,U(ZA’)7—§DZ¢(.@,Q7ZA’), Ealé) Z 07
where

L = IY[, LD,(&, 9, 2) + 20, L(-, 3, 2) + ] - ]
+1%°[&, LD, ¢(&, 4, 2) + 2n&, u(-)],

lg =19, LDy$(&, 9, 2), Lo (-, 2)] + I*°[3, LD,yp(2, . 2), u(-)],

I = 08, ~ 5 D@5, 2), 5 625, )]+ P12, 2 Do(i, 3, ), u()]
Therefore, by (H1) and (117), we have

YLO(2, G, 2) < A(lz + Iy — 20z) + Cs(1+ L)p(&, 9, 2) + Can(1 + |2]*). (119)

We now estimate the integral term [ + ; — 21;.

I + 1y — 21

-1f oy (0 +5(8:0).9:2) = 9(2.9.2) = Dro(@,5,2) - 5@, uld)

2 oa il
o [ (10 el 20 (69 e
L[ (00004 0,6).9) — 60.9:2) = Dyl 9,2) - 3(3.€) ()
Bs5(0)
+L 2,
( ( ( J(2

(
/ 63,92+
Bs(0

)
b [ [l 556) — u@) + (g +3(3.€) ~ u(d) - 2z +3(,6) - ulz)
B§(0)

_ﬂBl(O) (5) (LDCL‘ (Avga 2) + 277'%) ’ ](ia 6) - ]]-Bl(O) (g)LDyﬁb(i“a Y, '2) ’ ](Qa 6)
1,0y (©)LD:6(2,5,2) - §(2,€) | ().

€)= 02,3, 2) = Do, 5, 2) - 5(2,€) ) u(dg)
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Thus, by (113) and (115), we have

Iz + l@ — 213
L/ { sup L
Bs(0) Lo<t<1 (& +tj(2,€),9,2)

(028 = D)l = §+ (2, P72+ 1) (2, )| ()

IN

1
+L/ su — — p
Bs(0) |:O<tl<)1 ¢(:I:7y+t](y7£)’z)

(920 = Dl = 5~ (3, O +1) (3, O ()
1 05 )2 a2
I /Ba(O) <osgli§1 PR ENILAGIL )/‘(d@ +”/B o 15(&, &7 p(de)

)

[ [ute e 0.€0) = u(@) + (g +30:€) — u(d) - 2(ulz + (2. €)) ~ u(2)
B§(0)

1, o) ()L (Dat(2,5, 2), Dy(@,9, 2), D26(8,5,2)) - (3(2,€),5(5,€),3(2,9))
L, 0y (€)20 (3, €)| ().

Since ®(x,y, z) attains a global maximum at (z, ¢, 2), we have, for any £ € R",

u(@ +5(#,8)) — u(@) + (@ + 55, €) — u(@) — 2(u(z +j(£,€)) — u(2))
(120)

By (120), we have

l;f;—f-lg—ng

1
= L /35(0) [Oi‘i% (@ +j(2,€).7, 2)
(0020 = Dl — 5+ (2, 72 + 1) (3, O] ()

1
+L/ sup — — S
Bs(0) [ogtg (2,9 +t5(9,8), 2)

(020 = Dl = 5 = i3, O + 1) 1(5 &) 2| ()

1 o 9
kL /Bg(o) (2, s ey e OF Ju@)

w0 [ (1645 OF = 16 ~ La,0)(©28 - 1(2.€))(de)

L[ [0+ 3(.9.0 4+ 50:€). 5+ 5 €) - 6(2,3.2)
B§(0)

~L,0)(€) (Da(@, 3, 2), Dy, 5, 2), Da(@,5,2) ) - (3(8,€),5(5,€),3(2,) ) | ).
(121)
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Similarly as in the proof of Theorem 5.2.3, we have n|z|* — 0 as n — 0 and
€1 S ¢(iay7é) S 61_17

where €; is a positive constant independent of 7. Letting 6 — 0 and then letting
n — 0 in (119), we have, by (12), (121) and (H2),

VLO(,3.2) S AL [ [0+ 58,60+ 10,5+ S(2,9) - 6(0.9.2)

~15,0)(€) (Da(#. 5, 2), Dy(,5: 2), D@, 5,2) ) - (3(8,€),3(5,€),3(2,€) ) | ()
+C3(1 + L)$(&, 9, 2).

Therefore, by Lemma 5.3.2,

(60 +(5:€). 5+ 3(5:€). 2 + (2. 8) — 9(0,9.2)

n

Y < AB(#,5,5) /

1
+Cg(1 + Z)

1
< AM;y + C3(1 + f) < 400,

where My is defined in (112). This yields a contradiction, if v > AM, + Cj, for

sufficiently large L. Therefore, u is f-semiconcave in R™. O

Let us consider the semiconcavity of viscosity solutions of the Bellman equation
(13). The following estimates will be frequently used in the proof of the semiconcavity.

Lemma 5.3.4. (a) If f is 0-semiconvex with constant C' in R™ and [f]o1rn < +00,

then )
2f(2) = f(x) = f(y) < Clz —y” + [floamn |z +y — 22|.

Moreover, if [f];5_1.rn < +00, then

£(2)+ 1)~ 2£)] < Y[y szl — ol + [Pl +y - 221

(b) If f € COY(R™), then
(@) = F(2)] < 2max{| floe [Flopme Yola. . 2)2.
where ¢(x,y,2) is defined in (H1).

Proof. (a) Since f is f-semiconvex with constant C' in R™ and [f]o1zn < +00,

21(2) — () = ) = 2 = f@) - fw) + (22) 20 (D)

< Clz - y|é + [floare|z +y — 22|
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Moreover, if [f];5_1.gn < 400, then f is f-semiconvex and f-semiconcave with a
constant */TE[ flig-1re in R™. Thus, the result follows from the above estimate.

(b) Since g € C%(R™), then

@) = 92)| < lota) — 9D + 1o ~ 9(:)
< [g]oﬂl?R"ﬁ ; y| + <2|Q|O;Rn [9]0,1;}1@%)2

1
2

S 2maX{|9|0;]R"7 [9]0,1;R”}¢(w7 Y, Z) .

O

Theorem 5.3.5. Suppose that c, > v in R™ uniformly in o € A. There exist a
positive constant C' and 1 < 6 < 2 such that (100) holds and

sup max{[oa]o1.r", [Talt g—1mn, [Dalo,1rn, [Dal1 g—1.rns [falore } < 400 (122)
aE

Suppose that the Lévy measure p satisfies (12), the family {j.(x,&)} satisfies as-
sumption (H2) uniformly in o € A, and co, € CY~YR") and {f,} is uniformly
-semiconvex with constant Cs, uniformly in o € A. Then, if u € COYR") is a
viscosity solution of (13) and -y > Ny where

Nyi=  sup  o(w,y,2) 2{0(20 - D -y
o(z,y,2)#0,a€A

Tr[(0a(x) = 0a(y)) (7a() = 7a(¥) ']
T [(aa (%) + 0aly) = 20a(2)) (0a(x) + Ta(y) — 200(2)) }
]z =y ~ ) (baly) = ba(@)) + (x +y = 22) - (26a(2) = ba(x) = ba(y)
+0002) [ [0+ dal €.+ 1ol +al:€) — 0(.1:2)
~13,0)() (Dab (@, 2). Dy (.9, 2), D:o(, 9, 2))

(Jal@:),50(9.€):a(2 ) ) | u(d) }
< o0, (123)

—

then u is 8-semiconcave in R™.

Proof. At the beginning of the proof, we will show that the constant N, has an upper
bound. By (122), Lemma 5.3.4 and the estimates in (116), we have

o n 2
Ny <60(20—1) sup[aa]al;Rn + (£ suploali g 1.pe + sup[aa]m;Rn)
acA 2 acA acA
_ n
+0 Sup[ba]o,l;R" + (£ SUP[ba]Lé—l;Rn + SUP[ba]o,l;Rn)
acA 2 aeA acA

2 /B » 24+ (272828 — 1)] o€)?u(de)
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wf o Aveloener spe) - @) [ e

< 400,

where 0, was chosen in Lemma 5.3.2.

Then we want to prove that, for any n > 0, ®(x,y, 2z) = u(z) + u(y) — 2u(z) —
Y(x,y,2z) <0 for all z,y,z € R™ and some fixed sufficiently large L, where ¢ (x,y, z)
is given in Theorem 5.3.3. Otherwise, there exists a positive constant 7y such that
SUpP, 4 »ern O(x,y,2) > 0if 0 < n < ny. By boundedness of u, there is a point
(Z,9,2) such that ®(z,9,2) = sup,, .cgn (z,9,2) > 0. Therefore, we have (117).
By Remark 10, since u € BUC(R") is a viscosity solution of (13), we have, for any
0 <d<1and e >0, there are XY, Z € S™ satisfying (118) such that

sup { = Tr(0a(2)0l(2)X) = lia + ba(®) - Dutp(#, 9, 2) + ca(®)u(d) + fuld)} <0,

Sug{ Tr(0a()0a (DY) = lg.a +a() - Dyp(#, 5, 2) + ca(@)u(§) + fa(§)} <0
ac
Z Dz Au A7 2 2 2 2
sup { —T?"(Ja(é)ag(é)g) — s — ba(2) w;: 5:%) + ca(Z)u(2) + fa(2)} >0
acA
where
Lo = IM[2, Dotp(2,9, 2), (-, 9, 2)] + I*°[2, Dpp(&, 9, 2), u(-)],
Lo = I°10, Dyb(, 9, 2), (2, -, 2)] 4+ I°[§, Dy (2,9, 2), ul-)],
D.y(x,y, 2 r,q, - D , 2
léazll’(s[é,— Zw(x7y7z)7_w( 7y7 )]+]276[2,_ Zw( y Z) U()]
’ 2 2 2
Thus, for any € > 0, there exists a, € A such that
Cae (i)u(i‘) + Cae (@)U/(:&) - 20045 (é)u('g) S Lae + Nae + €, (124)

where

Lo, = Tr(00 )0k (8)X + 00 ()05, ()Y = 00, ()05 (5)2)

(B (@) - Dath( 3, 2) + ba (5) - Dyo(d5,2) + ba (2) - D29, )
+2f045(2) - fae (Q) o fOée (:@

and
No. =lia. +lja. — 2ls0,.
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Since ¢, € CH~1(R") uniformly in o € A and u € C®'(R"), using Lemma 5.3.4, we

have

Ca, (T)ul(Z )+ Ca, (§)u(§) = 2¢a, (2)u(2)
u(®) +u(y) — 2u(z ) (cae fi")+cae 9) = 2ca,(2))u(2
L(2) (u(@) = ul(2) + (ca.(9) = ca(2)) (ul(@) - ul2))
U( )—QU( ))

SUP Ca 1,0— 1Rn|$—y| +SUP[Ca]01Rn|$+y—22|>

—_= ca

€

+(Ca
v (u(i
_|U|O;R"<

—8 max{ |U|0;R"7 [U]o,l;Rn} sup max{|calogn, [Calo,1mn }O (2, 7, 2). (125)
ac

(
(%)
)+

v

By (100), (118) and (122), we see that

N
N~—
3
ISl
Py
<>
N—
)~<
|
Q
5
—
Q>
N—
S
2
—~
N>
N——
N
N——

Tr(aaﬁ(:i') (&)X + 00

(1 + 60)
o(2, 9, 2

N2
+2n(C + suploaoarn|2]) "
acA

Thus, we can estimate the local term L, easily. By (100), (113), (122), uniform
f-semiconvexity of f, with constant Cs and Lemma 5.3.4, we have

(1+e)Llyz. = L A120-2 - - B N
L., < W{0<29 — 1|z -9 ’ Tr[(aaf(l’) - Uae(y)) (Uae(x) - Uae(y)) ]
4Ty [(aae(fc) + 00 () = 200, (2)) (0o () + Ou, (§) — 204.(2)) T} }
OL|7 — & 20—2
+27](C—|—21612[0'a]071;ﬂ{n|i’|)2+%(3}_ ) (b ( ) b ( ))
(19— 28) - (260, (2) — b (B) — b ()

o3, ) :
+277(O‘:i‘| + Suﬁ[ba]o,l;R”|i|2) + 05’-% - @’6 + Sug[fa]o,l;Rnlj + g - 22|
ac ac
(126)

Similarly as in the proof of Theorem 5.2.3, we have n|2|> — 0 as n — 0 and
€1 < ¢<£7@72> < eflv

where €, is a positive constant independent of 7. Letting 6 — 0, n — 0, ¢ — 0
and ¢y — 0 in (124), we have, by (117), (125), (126) and the same estimates on the
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nonlocal term N, as Theorem 5.3.3

TLo(Z, 9, 2)

013 — G220 = §) - (ba() — ba(2)) + (@ + 5 — 22) - (2ba(2) = ba(#) — ba(9))
+¢(j7@a 2) /n [¢(i’ +ja(ia€)7g +ja(g>€)a z +]O¢(27€)) - ¢(-’1A7,(7;, 2) - ]131(0)(5)

(De0(@,3.2), Dy3(0, 5, 2), Do0(2,3,2)) - (ol ), 50 ), Ja(2:) ) | () }
+C5‘£IAZ' — Z)‘é + Slel.]i)‘[fa]o’l;ﬂgn‘i' + ?) — 22’|

n
s (G
+8 max{|ulo;r~, [u]o,,rn } sup max{|calorn, [Calo,1mn }O(T, 9, 2).

ac

SUp e gy | — 917 + suplealo, |+ — 22
acA acA

Therefore,

1S swp6(#,§,2) B0~ DI — i Tr | (0u(#) — 0a(0) (7a(2) ~ 0a(3)]
17| (0a(®) + 0al§) — 200(2)) (0a(2) + 0a() — 200(2) ]
013 — 91773 — ) - (ba () = ba(®)) + (& + § — 2) - (2ba(2) — ba() — ba(D))
+¢(ia ga 2) / [QS(i' + ja(i‘a 6), ?j + ja(ga 5)7 zZ+ ja(éa 5)) - ¢(£7 g? ZA) - 131(0)(5)

Cs Cs
=6 < N, 4+ 8 127
+ SNt —, (127)

where Nj is defined in (123) and Cj is a positive constant. Hence, if v > Ny, we can
find a sufficiently large L such that we have a contradiction in (127). Therefore, u is

f-semiconcave in R™. O

90



CHAPTER VI

INTERIOR REGULARITY FOR NONLOCAL FULLY
NONLINEAR EQUATIONS WITH DINI CONTINUOUS
TERMS

In this chapter, we will study C'? estimates of viscosity solutions of nonlocal fully

nonlinear equations with Dini continuous terms, see [61].

6.1 Preliminaries

In this chapter, €2 is always assumed to be a bounded domain in R™. We first review
some properties of

Lui= [ bue)K )y (128)
see [42].
Lemma 6.1.1. Suppose that u € C*(By(0)) N L>°(R™) and L € L2(A\, A, o). Then

[ Lullc2B,0)) < Cllullcasaoy + [ull oo @n),
where L is defined in (128) and C' is a positive constant depending on n, og and A.

Lemma 6.1.2. Suppose that v € C°T*(R"), 0 < K(y) < (2 — o)Aly|™" 7 and
K(y) = K(—y). Then
||L“||CQ(R”) < C”UHCUM(RH);

where L is defined in (128) and C' is a positive constant depending on n, o, o9 and

A.

Lemma 6.1.3. Suppose thatu € C7*(B(0))NL>*(R"), 0 < K(y) < (2—0)Aly| "7,
K(y) = K(—y) and |DK(y)| < Ay|™°"!. Then

| Lul|casi0)) < C|Jullcota(saoy + |ullzemn),

where L is defined in (128) and C' is a positive constant depending on n, «, o9 and
A.

Lemma 6.1.4. Let v € Cg+a(B%(o)) be such that ||v]|co+aip, (o) < 1, and p(x) be
2

the Taylor polynomial of v at x = 0 of degree [0 + «]. For any L € Ly(\, A, 0), there
exists P € CSO(B% (0)) such that P(x) = p(x) in B%(O), I1Pllcas, 0y < C and

1
2

LP(0) = Lv(0),
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where C' is a positive constant depending on n, A\, A, oy and «.
We borrow the following two approximation lemmas from [42].

Lemma 6.1.5. [42, Lemma A.1] For some 0 > oy > 0, we consider nonlocal oper-
ators Iy, Iy and Iy uniformly elliptic with respect to Lo(A\, A, o). Assume that Iy is
translation invariant and 1y(0) = 1.

Given M > 0, a modulus of continuity wy and € > 0, there exist n; > 0 and R > 5
such that if u, v, Iy, Iy and I5 satisfy

Iy(v,2) =0, Li(u,z)>—n and Iy(u,z) < in By(0)
in the wiscosity sense, and
| = IollByoy < s |12 = Lol Bao) < s
u=uv nR"\ By0),

ul|Loorny < M in R,

and
lu(z) —u(y)| <wi(Jxr —y|) for any v € Br(0) \ B4(0) and y € R™\ B,(0),
then |u —v| < € in By(0).
and

Lemma 6.1.6. [42, Lemma A.2] For some o > 0o > 0, we consider nonlocal operators

Iy, Iy and I uniformly elliptic with respect to Lo(\, A, o). Assume that

Iyv(z) := inf {/ dv(z,y)Ka(y)dy + ha(x)} in By(0),
aEA Rn
where each K, € Lo(\, A, o) and for some constant 5 € (0,1),
[ha)cs(By)) < Mo and igﬁ ho(z) =0, for any x € B4(0).

Given My, My, My, M3 > 0, Ry > 5, 0 < B,v < 1 and € > 0, there exists 1y such
that if u, v, Iy, 11 and Iy satisfy

In(v,z) =0, Li(u,x)>—n2 and Iy(u,x) <mny in By(0),
in the viscosity sense and

i — Io|lByo)y £ 25 |2 = Lol Bago) < 12
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u=wv inR"\ By(0),
u=0 inR"\ Bg,(0),
||| oo (mmy < My,
[U]CV(BRO,T(O)) < My, forany 0 <71 <1,
[V]cots(Bar 0)) < M™%, forany 0 <71 <1,
then |u — v| < € in By(0).

We now introduce a modification of Evans-Krylov theorem for concave translation

invariant nonlocal fully nonlinear equations.
Theorem 6.1.7. [42, Theorem 2.1] Assume that K,(y) € Lo(\, A, 0) with 2 > o >

oo > 1 and b, is a constant for any a € A. If u is a bounded viscosity solution of

;gﬁl{ . du(z,y) K, (y)dy + ba} =0, n B(0),

then u € C"”&(B%(O)) with
lullor+a(s, ©) < Cllull e @) + it bal),
where @ and C' are positive constants depending on n, og, A and A.

In the rest of this chapter, & will always be the constant from Theorem 6.1.7. We

recall the definition of Dini modulus of continuity.

Definition 10. We say that w(t) is a Dini modulus of continuity, if it satisfies

to
/ w(r) dr < 400, for some ty > 0.
A

We will make some additional assumption on our Dini modulus of continuity w(t).
Let 3>0and 0 <o < 2.

(H1)5 There exists some 0 < 3 < (3 such that

Bo( 1
. prw(p')
1 ——— = 0. 129
ot e w (i) 12
(H1)5, There exists some 0 < < min{2 — o, 3} such that (129) holds.

(H2)5, Let w(t) be a Dini modulus of continuity satisfying (H1)z,. There exists an-
other Dini modulus of continuity w(t) satisfying (H1)z,, such that, for any small
0<s<landO<t<1wehave

w(st) < n(s)w(t),

where 7(s) is a positive function of s such that lim, .+ n(s) = 0.
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Remark 11. For any 8> 0 and 0 < o < 2, we define
S5, = { Dini modulus of continuity satifying (H2)5,}.

It is obvious that w(t) = t* € Sz, for any 0 < a < min{B,2 — o} and Nzs0<e<2S5.0

does not contain any modulus of w(t) = t*.
Lemma 6.1.8. ﬂ5>070<0<25570 % @

Proof. We claim that w(t) = (In )" € Ngugerc2Ss, for any x < 0. For any fixed
f>0and 0 < o < 2, it is easy to verify that w(t) is a Dini modulus of continuity
satisfying (H1)5,. Now let us prove that w(t) satisfies (H2)5,. For any 0 < s < 1,

we have 1y Lyset
1 =)
w(st) = (In=)"1 = %(ln

()i,
st (In %)5_1 t

We notice that (In1)2~" is also a Dini modulus of continuity satisfying (H1)z,. For
any € > 0, there exists a sufficiently small constant d; > 0 depending only on € such
that (InL)~=1  (Ini 4 Inl)st

st s

= : <e ift<dy.

(In %)5_1 (ln%)%_l

Then there exists a sufficiently small constant ; > 0 depending only on € such that

<e ifdy<t<landO<s<d.

6.2 A recursive Evans-Krylov theorem

The following theorem is a version of the recursive Evans-Krylov theorem we will use

to prove C' interior regularity.

Theorem 6.2.1. Assume that 2 > o > o9 > 0, b, is a constant and K,(y) €

Lo(X, A, o) for any a € A. Assume that w is a modulus of continuity which satisfies
(H1)z where 3 depends on n, oy, A\, A. For each m € N U {0}, let {v;}]", be a

sequence of functions satisfying (18) in the viscosity sense for any j = 0,1,--- ,m,
where Ki(x) := p "I K, (pPx) and p € (0,1). Suppose that ||vj||pe@ny < 1 for any
I =0,1,---,m and |inf,e 4 by| < 1. Then, there exist a sufficiently large constant

C > 0 and a sufficiently small constant py > 0, both of which depend on n, o9, A, A
and w, such that v; € C°TP(B1(0)) and, if p < py, we have

vill o5 (pyy) < €5 for anyl=0,1,--- m. (130)
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Remark 12. If oy > 1, then Theorem 6.2.1 holds for 3 = a.

Proof of Theorem 6.2.1. We will give the proof of Theorem 6.2.1 in the case og > 1.
For the case 0 < 0y < 1 the proof is similar. We adapt the approach from [42].

Let M be a sufficiently large constant to be fixed later. By normalization, we can
assume that

1 1
|v1]] Loo (mny < U and ]igﬁtba\ < i for any 1 =0,1,--- ,m.

Then we need to prove that (130) holds for C' = 1.

We will prove Theorem 6.2.1 by induction on m. For the case of m = 0, (130)
holds for 3 = @& by Theorem 6.1.7. Now we assume that Theorem 6.2.1 is true up to
m = ¢ for any positive integer :. We want to show that the theorem is also true for
m =1+ 1. Define

By (18), we have
inf { L5 Ry (2) + 0™ (0 )ba} = 0, in Bs(0),
ac P

where Lt is the linear operator with kernel K:*! € L£5(\, A, o). Hence, there exists
a € A such that
i+1 i —1( it a—a
0< LIFRY0) + w7 (5 H)ba < g0 (131)
where « is given by (H1);. Let 9 = 1 in Bi(()) and ny € CX(B

cut-off function. Let

(0)) be a fixed

1
2

v = v + vl —no) = v + 07,
and p;(z) be the Talyor polynomial of v} (z) at x = 0 of degree [0 + @]. By Lemma
6.1.4, there exists P, € C’SO(B% (0)) such that P(z) = pi(z) in B%(O) and || P[|c(s, (0))
C and 2

IN

Ly Fi(0) = Liv (0). (132)

Let
w=(y —R)+ @ +P)=V + V2

Thus, we have
IV poo @ny + VP | e @ey < C, ViH(0) = 0,
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Vit € C7T(B1(0)),  [[Vi'loosagen) + [Vl ooraayo) < C

V== in By(0), V2 = prin By(0), |V (@)] < Clal* in R

Decompose R(z) as
R(z) = R (z) + R (x),

where
R(l)(l‘) — Z p—(i—l)aw—l(pi)w(pl)wl (pi_l:x),

and

R®(x) = p~ 07w (0w (o) Vi ().

1=0
Then, we have that, for each a € A

(133)

L’(L'l—i-lel)i(q:) _ Z/ p—(i+1—l)crw—1(pi+1)w<pl)5‘/ll(pi+l—lx7pi—i-l—ly)Ké—l-l(y)dy
1=0 YR”

= Z/ wH (p ) w(p") oV (0, y) K (y)dy
1=0 “R"

> ()

1=0
and

LR @) = 3 O () (vl

It follows from (131) and (132) that
i+1 p(1)i () —
L RGP(0) =0,
0 S Lza—i-lRl()Q)z(O) +w—1(pi+1)ba S p@—oc‘
By (H1)a, (133), (134), (136) and Lemma 6.1.2, we have, for any = € R"
i+1 p(1)i _ |7t p(1)i i+1 p(1)i
LR (@) = L R (2) — L RV(0)

¢ 1
wlp i+1—
> L) ~ o)
=0 P

IN

i

& w(pl> itl-l)a
Clal Z:w(pi+1)p( NV oo ey
=0

C’|x|a‘ Z p(i—i—l—l)(&—a)
=0

Cp&_a|9$'|&.

IN

IN

IN
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Using (H1)4, (133), (135) and Lemma 6.1.3, we have, for any = € B;(0)

i 1
i+1 p(2)i i+l p(2)i w(p') |1 it1—1.\ _ 7l1/2
|L6, Rp (.T) L& Rp <O>’§lz(;w(pz+1>’l;a‘/2 (p LC) La‘/l (0)|
& : w(pl) i+tl-l)a
< Claf* Y ——A=p (VP loosasaop + 1Vl @)
— w(p)
< Cp* x| (139)

Thus, by (137) and (139), we have
]Lé“Rl(f)i(x) +w H(p™ba| < Cp* (|x|* + 1), for any = € Bs(0). (140)
We define

Vig1 = Vjp1 + R,(Jl)l

By (133), we have

IN

||Uz‘+1||L°° Rn) JF|R(1)i( )

_+Z —(i+1-0o, —1 pz+1)w(pl>vll(pi+lfly)

Vi1 (y)|

IN

1 . . _
—(i+1-0)(o+a)| Ji+1—1, o+
< ?_O p [Pyl

1 _ _
< a—o a-i—a' 141
< g7t (141)

By the definition of 9;,1, the following two equations are equivalent

123{[/”1 Vs + RY) () + w0 (p )b} =0, in Bs(0), (142)
and
inf {Li (i1 + RO (@) + w (0 )ba} =0, in Bs(0). (143)
ac

By (138), (140), (142) and (143), we have
Lé+1’Ui+1 (‘f) > —0,0&70(, in B5(O),
L2+1'UZ+1( ) 2 —Cpaia, in B5(O)

Lemma 6.2.2. Let K be a symmetric kernel satisfying 0 < K(y) < (2—o0)Aly|™"°.
Then, for any smooth function 1 such that

0<7n(z)<1inR" fz)="n(—z)inR" 7(x)=01in R"\ B%(O), n(z) =1 1in B%(O),
we have

V(e [ oK @)s) 2 =Cl" g, in By(0),
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Proof. Define
O(y) = Leons, 0 () K (y)

and
Trv(z) = / dv(z,y)or(y)dy, for any function v.

By (143), we have
L0 (x) + LT RP (@) + w™ (p )by > 0, for any x € B;(0) and a € A.
It follows that, for any = € B3(0)
0 < (L0 + LI R +w ™ (p™)ba) * di(x)
< L (Diga * dn) () + LZHR,f)i * o) + w (0 ) bal| Okl L)
It also follows from (143) that
inf {11nllo2 o (L5 B (2) + L RP @)+ (07 )ba) | = 0, for any @ € By (0).
Thus, for any = € B (0)
jgpL o (Bigrxdr— | drll L1 e Uz+1)(9€)+21€13{LZ“Rf)iwk( )=l okl o1 ey L5 RP(2)} > 0.
By (133), (135) and Lemma 6.1.1, we have, for any = € Bs (0) and a € A
AL RD 5 gy(2) — fall s ey L RO (2]

|/ (L RE) (o) K (3)d]
B1(0)\B1 (0)]

IN

IN

i w(ﬁl) / ‘5LZV2 i1l szrll ‘K
P w(ptt) B1(0)\B (0)

%

(i+1-1)o w(Pl) L1/2( i+1—1 —(i+1-1)
o — = ‘5LaVz (p x,y)’K (y)dy
— w(P™) JB 1 O\B 1 0)

IN

%

it 1— w(Pl) 11,2 2 1 —(i+1—1
< 37 e Ll / VELVE|| 2, cop [y P KD () dy
lz; w<pl+1) B it1-1(0) : ( %( )
w(p) (2—0a)Aly|?
< O piie Velormyon + Wellimgen) [ B2
Z z+1)( 51(0) ! ( )) B i) ly[te

< Czp(i—i-l—l)(Q—Oc) < CpQ_a.

Therefore,

M, (Vi1 % b = |Gl 2 n) O ) () = =Cp*™%,  in By (0).
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Thus, we have
M{,(Tibi1) () > —Cp*™*,  in By(0). (144)

Let L be any operator with kernel K € £5(\, A, o). For any x € Bs (0), we have

L)) = [ 6Tau) @)Ky~ [ (0= Tt 0K @)y

= L(Tn) (@) =2 [ (1= (o~ ) Tidins (o~ 9K ()dy. (195

We now estimate the second term in (145). For any x € Bs (0)

‘ / Tywvii(z —y) (1 — 7(z — y))[_((y)dy)
- ‘ / vier(z = y) T (1 =i — '))f((‘))(y)dy‘

||Uz+1HL°°Rn//
n Bl

+<1—n<x—y+z>K< 2) = 2(1 =iz — ) K (y) | K (2)dzdy

IN

(1—i(z—y—2)K(y+=z)

C
< Cllviga ||l peemny < e (146)
and, by (133) and Lemma 6.1.2,
mR @l =] [ Vi, y) K (y)dy
Bi(0 \Bl
_ ‘Z/B —(i+1-)o 71(piJrl)w(pl)(;Vll(pZ#lfll,’piJrlfly)K(y)dy‘
%
- \Z / W™ (o (5 e ) KD ()
pit1— 1 (0\B z+1 1 (0)
< Zw pul)| [ OV (1) = 6V (0,)) KD (y)dy
Lit1-1(0\B z+1 1 (0)
+Zw ol [ 5V (0, ) K10 () dy|
it1— 1(0\B H—l 1 (0)
S CZ’LU z—i—l |pz+1 l ‘
+CZw Fowgh [ CmOM,
B i+1-1(0) ly[te
< Cp™ a(l—Hx\ ), (147)
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Since o > & holds, we have, for any x € B%(O)
| (=i - ) LAY @~ R W]

— | [ 0= i) R )R - )y

= [, ()RR @R~

] 92— o)A ]
< Cpie C=o)h, _ cpama (148)
1 ‘ ’n+ofa

lyl>5z Yy

Taking the supremum of all K € Ly(\,A,0) in (145) and using (144), (146) and
(148), we have, for any = € B%(O)

~ ~ —a C a—o
M, (T30 ) (2) = —Cp*™" = 2 Cr
1
> —C(p"" + 7).

By Theorem 6.1.7, we know that 0;,; € C7T*(B,(0)). Thus

/ Vi1 (2, y) K (y)dy — 00i11(z,y)K(y)dy, in Bs(0) uniformly,
B1(0)\B (0) B1(0) :

as k — +oo0. It is obvious that, in L}(R", —2-—),

) 1+|x‘n+o
fi(z) / 551 (2, ) K (y)dy — ii(x) / Sissa (2, ) K (y)dy.
31(0)\3%(0) B1(0)

Thus, the result follows by Lemma 5 in [12]. O

Lemma 6.2.3. There is a constant C' depending on n,oq, A\, A such that, for any
operator L with a symmetric kernel K satisfying 0 < K(y) < (2 —0)Aly|"*" we have

_ 1 )
Lua(@)] < Co™ 2+ ), in By(0).

Proof. The proof follows from that of Lemma 2.9 and Lemma 2.10 in [42]. H

Lemma 6.2.4. There is a constant C' depending on n,og, A\, A\ such that

] 1 ,
max{|Mz vinl, Mz vin|} < C(p" " + 27 Bi0). (149)
Moreover, we have
1
IVvisillz=(sy 0 < OO + 17), (150)
2
and )
IVOi1ll oo (s, 0)) < C(p"* + 7 (151)
2



Proof. (149) follows directly from Lemma 6.2.3. To prove (150), we first notice that

v;11 satisfies
inf {L (Vi1 + RY) () +w ™ (p™)ba} = 0, in Bs(0).

We define

17+ () = inf { L™ - () + LT RL(0) + w ™ (07 ba )

By Theorem 6.1.7, we know that I° has C*® estimates. By (138) and (139), we have
that v;,1 is a bounded function solves

I (2) < — inf (LI R (2) — LT RI0)} < Cp™, in By (0)

and

IPv; 1 (x) > —sup{ L, R) () — LiP'R(0)} > —Cp®~*,  in By(0).
acA

It follows from Theorem 5.2 in [12] that v;,; € C'*1(B1(0)) for any a; < og — 1 and

[N

1

Hvz'+1||olya1(3%(0)) < C(M +p*79).

By (133), we have |[VV}!(z)| < Clz|°** ! in B1(0). Thus, for any = € B1(0) we have

|VR/()1)Z(:E)‘ _ ‘v Z pf(i+1fl)aw71(pi+1)w(pl)%1(pi+1flx>
=0
< CZp—(i—i-l—l)(J—l—oc—l)p(i-l—l—l)(a—‘r&—l)
=0

< Czp(ﬁ&fl)(dfa) < Cpo_cfa.
=0

Thus, (151) follows. O

Lemma 6.2.5. There is a constant C' depending on n,oq, \, A such that

2—0 P | .
|5vi+1(x,y)\|y|T+ady < C(pa + M) m Bl<0)

Rn
Proof. By Lemma 6.2.3 and 6.2.4, it follows from the proof of Theorem 7.4 in [14]. O

Let 77 be the smooth function in Lemma 6.2.2. For any symmetric measurable set
A, we define

wa(z) = 77(95)/]3 " (5172-+1($,y) - 5@i+1(07y))KA(y)dy,
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where
2—0

Ka(y) = [y[e

La(y).

By Lemma 6.1.2, we have for any x € B;(0)
’/ (z,y) — SRV (0,)) Kaly dy‘
B1
— ’ Z o~ z+1fl)awfl(pi+1)w(pl)
1=0
/ (OVZ ("1, 71 ly) — GV (0, 911y Ka(y)
Bl(())
- ]Zw ) [ O ) - V0. K )y
B1(0)
< pr DNV gora gy o D)™ < Cp* |, (152)

=0

Using Lemma 6.2.5 and (152), we get

wal € CGF 4+ 2), R
It follows from Lemma 6.2.3 and (147) that
~ a—o 1
[ 800, ) Kaly)dy| < C(0° + ).
B1(0) M

By Lemma 6.2.2, we have

. 1
MEwy > —C(p*™* + M)’ in Bg(O) uniformly in A.

We define

2—0

Pla) = swpwa(@) = i(e) [ (3fia(ey) = 07 (0.9) TSy
A B1(0) Y|

and
N - N _2—0
N(z) = sup —wy(z) = 7j() (001 (2,y) = 60:11(0,y)) T dy.
A B1(0) |y
Lemma 6.2.6. For any x € Bi(O), we have
AN() = O™ + )] < P(s) < 2N@) + C(0" + —)lal.  (153)
A V(@ p el s Plo) < TN (@ p AL
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Proof. For any = € B%(O), we define 0,41 ,(2) := 0(x + 2). By (143), we have

MZQ(@HLI—@H)(O) —SUE(LIHR “(z) — LZ+IRE)2)i<O))
ac

and

MEQ (’ai-&-l,x — 17z‘+1)(0) < SUP(LZHR(Q)Z(O) - LZHR,(;z)i(x))-
a€A

By Lemma 6.1.1 and (133),

i !
i i i i w\p i+1—
LR () — LORPO) = |3 L () - L)

%
< CY p (VP leas, o) + VPl ) o o
< C’pll_oa|x|.
Thus, we have
ME, (D341, — 0341)(0) > =Cp'~Ja| and Mz, (Ti410 — 0541)(0) < Cp'~a].

For any L € L5(\, A, 0), we have

L0412 — 0:41)(0) = (0041 (2, y) — 001 (0,9)) K (y)dy

Rn

5Uz+1 x y 66i+1(0,y))K(y)dy

I
\

B1(0)

+/ R\ 6U1+1 z,y) — 60;41(0,y)) K (y)dy.
B1(0

By (141), (151) and L € Ly(\, A, 0), we have, for any x € B%(O)

1

3 [ (talay) - 65 (0.9) K )iy
R™\B1(0)

= / i (y) (K(y — 2)Lpeo)(y — ©) — K(y)Lpe(o) () dy

< / B (WK (y — 2) — K(y)ldy
R"\Bl(O)
~ a—o 1
i1l oo (B4 10 0)) / K(y)dy+C(p** + M)|$|
Bi 4121 (0\B1_|¢|(0)
_ 1
< O+ 1)l
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Therefore, we have
/ (0031 (,y) — 0011(0,y)) K (y)dy
~ ~ a—o 1
< [ @) - 5a0.9) Ky + Ol + plel. (155)
B;(0)
By (154) and (155), we obtain
—Cp' o] < ME, (D10 — 0i41)(0)

- ~ a—o 1
< sup / (00i41(%,y) = 60:41 (0, ) K (y)dy + C(p" ™" + 7).
Momo) < 2en) J B0 e

Yy n+o — — |y n+o

Therefore, we have

1
Lyl
The second inequality of (153) follows from M (0i11, — 0;41)(0) < Cp'~*z|. O

AP(z) — AN(z) > —C(p™“ +

Now the proof of Theorem 6.2.1 follows from the proofs of Lemma 2.14 and The-
orem 2.2 in [42].

6.3 (" regularity

Before introducing the main theorem, we remind that, for any o € (0, 2), [¢] denotes
the largest integer which is less than or equal to o.

Theorem 6.3.1. Assume that 2 > 0 > 0o > 0 and K,(z,y) € Lo(N\, A, 0) for any
a € A. Assume that w(t) is a Dini modulus of continuity satisfying (H2)z,,, where B
is giwen in Theorem 6.2.1. Assume that [ satisfies, for some Cy >0,

[f(x) = fFO) < Crw(lz|) and |f(z)| < Cy, in Bi(0), (156)

and K,(x,y) satisfies, for any 0 <r <1, a € A and z € B1(0),

| Ko, y) = Ko (0, )| min [y o2 pminot8hy dy < (|| )rmn = (157)
Rn

If w is a bounded wviscosity solution of (14), then there exists a polynomial p(z) of
degree [o] such that

u(z) = p(e)| < C(lJullo@ny + Cp)lz|"P(|2]), in B(0),

and
|D2p(0)| SC((HUHLD"(R”)—i—ctf)v 1=0,--- 7[0-]’

where ¥ (t) := w(t) +f(f @dr and C'is a constant depending on X\, \,n,oq, 0 and w.
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Proof. By covering and rescaling arguments, we can assume (14), (156) and (157)
hold in Bs5(0). We will give the proof of Theorem 6.3.1 in the most complicated case
oo > 1. Without loss of generality, we can assume that w(1) > 1.

We claim that we can find a sequence of functions {u;}/=7> such that, for any
p§p0,0<m§0+ﬁand2—0,1,2 , we have

mf{/ Zdula:y Oy)dy} £(0), in Byyi(0), (158)

acA

%

(= w)(p'z) =0, inR"\ By(0), (159)

=0
i || Lo mmy < p7'w(p'), (160)
||Uz||cf<(B<4 () < Cop'?iw(p )", (161)
Ju— ZUZHLC"’(R" < p7 (ph, (162)
[w~ Z uloa (s, ., 0 < 8C1p ™ w(pl) 7, (163)

where pg is given by Theorem 6.2.1, 7 is an arbitrary constant in (0, 1], oy and C4
are positive constants depending on n, A, A, 0o, and Cs is the constant in (130).
Suppose that we have (158)-(163). Then, for any p'* < |z| < p’

‘u(:c) - +iul(o) - fvul(m : x‘

< ‘u(a:) ‘ ’ Z w(x) —u(0) — Vay (0) - x)‘
1=0
l=i+1 l=i+1
< pa(i+1)w(pi+1> + C‘x’min{Z,aJrﬁ} prmin{Zfa,ﬁ}lw(pl)
1=0
+Zp w( +O|x|Zp" Yu(p).
l=i+1 l=i+1

By (H1)z,, we have, for p < |z| < pf

o _ i !
|x’min{2,o+ﬂ} Z o min{Q—U,B}lw(pl) < pww(pz) Z pmin{Q—o,B}(i_l) WEP)
o
=0 =0

w(pz) Z p( min{Z—o‘ﬁ}—ﬁ) (i-1)
=0

g

~—
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+o0 B
(pz) Z p(min{Z—Uﬁ}—ﬂ)l
=0

3 i

io i —B—0c (i+1)o it1y P w(p')

< Cpw(p') < Cp "7 p" ™ %w(p )—w(pi+1>
< Cp(i+l)aw(pi+1).

We notice that min{2, o + 3} — min{2 — o, 3} = 0. Thus, for p'™! < |z| < p!

+oo +o0o
’u(m) - ZUZ(O) - Z Vu(0) - x’
1=0 1=0
+oo
< Cp7 T w(pth) 4 (07D + Cplpl D) N " ()
I=i+1
. . . +m
< Cpcr(erl)w(szrl) + Cpa(erl) Z w(pl)
I=i+1

< Cp (),

where (1) )+ f ' wff
We first prove the claim for ¢ = 0. Let uy be the viscosity solution of

Tgug := inf ey { Jan Ot (, y)Ka(O,y)} — f(0) =0, in By(0),
up =wu, in B(0).

Then, by Lemma 3.1 in [42], we have
[[wo]| oo ey < C(llull oo ny + 112 (B50))-

By normalization, we can assume that

||U0||Loo(Rn) < and HUHL”(R”) + ||f||L°°(B5( 0) =

N =
l\:)ll—

Using Theorem 6.2.1, we have, for any 0 < k < o + /3

luollon(Bar (o)) < Cot™",

where Cy is the constant in (130). Since u is a bounded viscosity solution of (14),
it follows from Theorem 12.1 in [13] that there exist constants oy > 0 and C} > 0,
depending only on n, A, A, g, such that, for any 0 < 7 <1

Ci
lulleor e op < 577 (164)
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Let € := p7t8 < p7w(p), M = 1 and w;(r) := r*. Then, for these wy, € and M, there
exist 71 > 0 and R > 5 such that Lemma 6.1.5 holds. Without loss of generality, we

can assume that, for any 0 <r <1

[f(z) = f(O)] < ~yw(|z]), in B5(0),

/ Ko, y) = Ka(0,)[[y["™7 P dy < yw(|z])r™™E=7% in Bs(0),
0

/ | VEal,0) = 0.y < (e, in By(0),
B<(0

lu(z) —u(y)| < wi(Jx —y|), forany z € Bgr(0)\ B4(0) and y € R™\ B,4(0), (165)

where 7 is a sufficiently small constant we determine later. This can be achieved by

scaling. For a sufficiently small s > 0, if we let

Ky (z,y) = s"T7K,(sz,sy) € Lo(\, A, 0),
u(z) = u(sx),

flz) = s f(sa),

then we see that

(o) i= int, [ S(e)Ra(og)dy = o), in Bi(0)

It follows from (H2)z,, that, if we choose s sufficiently small, then for any x € B5(0)

f(@) = F(0)] < Opsw(slz]) < Cpsn(s)a|a]) < ~yi|a]),

/ | V)= R0, 9) e Dy
(0

= S—min{2—a,ﬁ}/ o |Ka(sx,y) _ Ka(o,y)||y|min{2’g+5}dy
ST 0
< Muw(sla)rmm o < Ag(s)a(fe )t < (el
and

/ |Ko(2,y) — K. (0,9)|dy = 8"/ |Ka(sz,y) — Kq(0,y)|dy
<(0) Bg,.(0)

p

< Aw(s

2|)r=? < An(s)w(|z])r= < yw(lz])re,

where w(t) is another Dini modulus of continuity satisfying (H1)z, and n(s) is a
positive function of s such that limg ,o+ n(s) = 0. Using (164) with 7 = 1, we have, if

we let s sufficiently small,

Ch

]| cor (Byr(0)) < ||ﬂ||ca1(3%(0)) < 3“17 <1
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Since R > 5 and ||@||cer(B,50) < 1,
[u(z) —u(y)| < [z —y|* for any x € Br(0) \ B4(0) and y € Bagr(0) \ B4(0),
and
a(z) —a(y)| <1 <[z —y[*™ for x € Br(0)\ Bi(0) and y € Byr(0).

Therefore, (165) holds for u
If 2 € Bi(0), h € C¥(a), [H]lsme) < M and [h(y) — h(z) - (y — ) - Vh()] <

Ylx — y|? for any y € Bi(z), we have

IT=llmo) < 37574 L @ )l Kale) = Kol 9)ldy + @) — O}

il
S Ka z,y _Ka 0731 dy+4/ Ka z,y _Ka O7y dy
STy 0 7 Keles) = KalOml py 4 [ [Faloy) = KalO9)ldu

+f(x) = f(0) < 6yw(fz]) < 6yw(5). (166)

We will choose v < min{ 6;725), (02+i)w(4)}. By Lemma 6.1.5, we have

[ — ol Lo (Bao)) < € < p7w(p),
and thus
[ = uol|Loerny < [Ju — ol Lo (Ba(0)) < € < pw(p).

Let v(z) = u(x) — up(zx). Since uy € C’JH}( 1(0)), v is a viscosity solution of

loc

1O0a)s = iut { [ sute)Kuln) + Suali ) Kae )y} = £(O

= [f(x) = f(0) in By(0).

It is clear that I(®) is uniformly elliptic with respect to Lo\, A,0). Since 7 <
m, we have for any « € By ,(0)

(0) _ | N
100 = [int { [ duste.p)Kaea)in} - 10)
< sup | |duo(z,y)||Ka(,y) — Ku(0,y)|dy
acA JRn
< sup { Cyr ™ min{2048} |y min{2048} | /¢ (2 4) — K, (0, y)|dy
acA * JB.(0)

s [ Ry - K0l
R™\B-(0)

< fVC?Ti min{2,cr+5}w(|I|)Tmin{270,5} + 4’YU)(|I|)7'70
= YO+ Duw(lz)777 < A(Co+Aw(d)r7 <777
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It follows from Theorem 12.1 in [13] that
’|’(JHca1(B4737_(0)) S 017'70[1 (Tﬁg -+ w(4)7 -+ 1) S 8017'73,
and thus
[ — wolcor (B, s, (0)) < 8CIT .

We then assume (158)-(163) hold up to ¢ > 0 and we will show that they hold for
i+ 1 as well. Let

i

U(e) = o0 () (u = 3 ) (1),
=0
u(z) = p~ 7w (pw(p'e),

and
KM (2,y) = prt UK (o, ot y).

Since u; € Cf;fg (B4, (0)) for each 0 <1 <4, then U is a viscosity solution of
100 = w ™ (p* ) f(p ) — w™ (P £(0),  in Ba(0),
P

where

i

JiGR e 123{/ (5U(x,y) + Zp*(i+1)aw71(pi+1)5ul(pi+1x’pi+1y))KCiL+1(x’y)dy}
a R =0

—w ™ () £(0)

— égﬁt{/R (6U (x,y) + Zp*(iJrlfl)crwfl(pi+1)w(pl)5vl(pi+lflx7pi+1fly))Ké+1(x,y)dy}
" 1=0

—u () £(0).

It is clear that 70FV is uniformly elliptic with respect to Lo(), A, o). Denote

I(gi+1)v = ;g‘ { /Rn (5U(x7y) + Zp_(”l)”w_l(pi+1)5ul(pi+1x,,oi“y))Ksz(O,y)dy}
1=0

—w ™ () £(0)

= ggﬂ{jé GMK$JD4—2:p’“+kﬂaw’Vp”lﬁﬂﬁﬁ5w0**L4xuf+L4yDBﬁ*VOJDdy}
" 1=0

_w_l(pi+1)f(0)7

which is also uniformly elliptic with respect to Lo(A, A, o). Let v;41 be the viscosity

solution of

150,00 =0, in By(0),
Vit1 = U, in BZ(O)
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With our induction assumption (158), it follows that for all m = 0,--- i 4+ 1 and
S B4(0),

int [ (300 bl o ) 0. )dy = 0 () F(O)
=0

It follows from Theorem 6.2.1 that v;41 € C’ng(B4(O)) and for any 0 < k < 0 + 3

Vi1 |on(Ba_,r 0)) < CoT ™"

We then want to prove that
[Vi41l| oo @y < JU][zoe@ny < 1.

Since ||ul|pem@ny < 3, (160), (164) and w; € C’HB(BM(O)) for any 0 < 1 < ¢ hold,

loc

it follows from Theorem 3.2 in [12] that v;11 € C(B4(0)). Suppose that there exists
Xg € B4(0) such that UZ'+1<:C0) = Il’laXB4(0) Vig1 > HU‘|Loo(Rn\B4(0)). Then

sup/ Sviy1(zo, y) K0, y)dy < 0. (167)
acA JRn
Since Iéiﬂ)O(a:) = 0 for any x € B4(0), then we have

0= I8 (2) — I§V0(2) <sup [ 0vpa(z,y) K0, y)dy,  for any By(0),
acA JRn
which contradicts (167). Similarly, we have v;y1(x) > —||U/|| Lo\ B4(0)) for any z €
B4(0). By induction assumptions, we have ||U||pe@n < 1, U =0 in B(0) and
w(p')
w(pth)

[Uleor(Bas. (0)) < 8Ch p 7T < 8C1p i
P

By Lemma 6.1.3, we have, for any x1, s € By(0)

‘/ Zpf(iJrlfl)owfl(pz#l)w(pl)
" 1=0

(Svi(p™ g, p T y) — Su(pt s, T y) ) KO, y)dy‘

_ ‘ Zp—(i—i-l—l)ow—l(pi—i-l)w(pl)
=0

/ (v (p™ tay, py) — Su(pT g, T y) ) KO, y)dy’
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= )Zw ”1 l)/ (501(01'“71551,3/) - 5111(01'“71952,?/))Ké(0>y)dy‘

< Zw H—l )||Lflvl||C,;(B,4PHH(()))Io(zdrl—l)ﬁlgg1 _ x2|5

IN

Z w™ (o w(C oo, 0oy T 1otz @n) ™ = |y — 2o

IN

S w (0w O + 1)p Dy — ]

=000 iy 5 < 0 ;
S ch(pm)ﬂ( Dy — 2| < CpP Py — @)’
=0

Then we will show that we can choose v sufficiently small such that
114 = 1Py < < 1, (168)

where 7, is given in Lemma 6.1.6 depending on € = p‘”g, Ry = %, My = C’pB*B,
My =1, My =8Cyp~? and My = Cs. Forany x € B4(0), h € CH(x), ||h|| oo ey < M,
\h(y) — h(z) — (y — x) - Vh(z)| < & |z — y|? for any y € Bi(z), we have

Hl(i—i-l) I (i+1)

”34

< Sh(z,y) (K K10, y))d ‘
ey 21613‘/n (2, ) (K. (2, y) — (0,y))dy

SUB ‘/ @Dy Y (Y (g ) (K (2, y) — Ké“(O,y))dy‘
ac n

= ]1 + Is.
It follows from the same computation as that in (166) that

|1 < 5yw(5).

By (161), we have, for any a € A, [ =0,--- ,i and x € B4(0)

‘/ duy(pw p”ly)(Ké“(x,y)—Ké“(O,y))dy‘

IN

p7 D fu(p™ )| Ka(p™ 2, y) — Ka(0,9)ldy
R”

/f’“’*”/ o G0 Ty O ) — K0,y
1 (0

IA

7 / 4p7w (o) Ka(p i, y) — Ka(0,9)|dy
R™\B ; (0)

IA

(Ca+4)p T Dw(p)yw(p™x))
(Co +4)p" ™ Vw(p)yw(p').

IN
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Thus, we have

125(02+4)ww(f’i) y Z w(p') < (Cy+ 4)p~ VZ ) < +o0.

We finally choose ~ such that

72 M 1 }
5w(5) + (Co +4)p~1 355 w(ph)) 6w(5)” (C2 + 4w(4) )

Therefore, (168) holds. By Lemma 6.1.6, we have

’ygmin{(

, wl o2
IU = viglloony = U = viga || Lo a0y < €= p7 ™ < PU%-
Let
wira () = p"w(pt i (o7 V),
and i+1
V = U = 1 = p 00Dy (541 (u — Zuz)(PiHﬂf).
1=0
Then, for any = € B,(0) we have
i+1
Iy = inf | V(wy )+ > p o T (o sy (p o y) K (2, ) dy
1=0
—w ™ (p™) £(0)
= w (P (P a) —wT (P £(0).
Moreover, we have for any = € B, »,(0)
i+1
I0+g = inf /n Zp‘” HD = (p oy (p e, p Ty KT (2, y)dy}
—w” (P’H)f(o)

i+1
_ algﬁ‘ / Zp 01—}—1) 1+1)5u( z+1x p”ly)KéH(x,y)dy}
" 1=0

i+1

i f —(i+1)o PV Sy (0 e, p ) K0, y)d }

inf, /an )ow(p™ e, py) K0, y)dy

< sug{z [ o ) (K o) — K (0.9))
ac 1=0 n

< (Co+4)ptr fyz <7727-*"§7-*",
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It is clear that I0+Y is uniformly elliptic with respect to Lo(A, A, o). Thus, for any
x e B4_27—(0)

MEV > TOV - TO0 = w (o) (f(p'Ha) — f(0) — 777
> —yw (P w(p M a|) - 77
> —qw (P Hw(4p™h) =177
> —yp =T,

and similarly,
M,V < T

It follows from Theorem 12.1 of [13] that,

Vicar sy < O (V| oo@ny + 707 +777)
< G etp Tt +777)
S 8017'_3.
Thus, we finish the proof. 0

Corollary 9. Assume that2 > o > 0o > 0 and K,(z,y) € L2(N\, A, 0) for any a € A.
Assume that w(t) is a Dini modulus of continuity satisfying (H2)z,,, where 3 is given
in Theorem 6.2.1. Assume that there exists Cy > 0 such that, for any x1, x5 € B1(0)

|f(z1) = f(22)| < Crw(|zy — x2]) and || f|| (B, 0)) < Cy

and K,(x,y) satisfies, for any 0 <r <1

| Ka(1,y) = Ka(wa, y)| min{ |y 2ot pmintotf gy < A(|ay — | )rmn7o7
Rn
If w is a bounded viscosity solution of (14), then there exists a constant C' > 0 de-

pending on X\, A,n, oy, 0 and w such that
lullem(sy @) < Clllullze@n) + Cy)-

Example 6.3.1. Since the assumption (157) is slightly complicated, we provide sev-
eral ezamples when it is satisfied. We first consider the kernel K,(x,y) which satisfies,

for anyr >0
/ Ku(e.y) — Ku(0.)ldy < Aw(a)r, in B(0).  (169)
Bar(0)\Br(0)
Thus, for any 0 <r <1, x € B1(0) and non-negative integer n, we have
J [, )~ Ko 0, ) [y "™+ Pdy < Aao(fa] 27 2e Pl pmintze),
32%(0)\32”11 (0)
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and

/ Ko, 4) — Kal0,9)] P dy < Auw(al)277rmin2-75),
B2n+1r(0)\B2”r(O)

Then it is not hard to verify that (169) implies (157). Another more concrete example
satisfying (157) is given by the kernel of the form

ka(,y)

’y|n+g 5 fOT' any x € Bl<0) and Yy < Rn, (170)

Ko(z,y) =

where |kqo(x,y) — ka(0,y)| < Aw(|z]).
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