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SUMMARY

The main goal of the thesis is to study integro-differential equations. Integro-

differential equations arise naturally in the study of stochastic processes with jumps.

These types of processes are of particular interest in finance, physics and ecology.

In the first part of my thesis, we study interior regularity for the regional frac-

tional Laplacian operator. We first obtain the integer order differentiability of the

regional fractional Laplacian. We further extend the integer order differentiability to

the fractional order of the regional fractional Laplacian. Schauder estimates for the

regional fractional Laplacian are also provided.

In the second and third parts of my thesis, we consider uniqueness and existence

of viscosity solutions for a class of nonlocal equations. This class of equations includes

Bellman-Isaacs equations containing operators of Lévy type with measures depending

on x and control parameters, as well as elliptic nonlocal equations that are not strictly

monotone in the u variable.

In the fourth part of my thesis, we obtain semiconcavity of viscosity solutions

for a class of degenerate elliptic integro-differential equations in Rn. This class of

equations includes Bellman equations containing operators of Lévy-Itô type. Hölder

and Lipschitz continuity of viscosity solutions for a more general class of degenerate

elliptic integro-differential equations are also proved.

In the last part of my thesis, we study interior regularity of viscosity solutions

of non-translation invariant nonlocal fully nonlinear equations with Dini continuous

terms. We obtain Cσ regularity estimates for the nonlocal equations by perturbative

methods and a version of a recursive Evans-Krylov theorem.

vii



CHAPTER I

INTRODUCTION

The thesis contains several results about nonlocal equations. We begin with recalling

basic notations whcih will be used in the manuscript.

1.1 Basic notions

We use 0 for both the origin in R and Rn. For a given open set Ω in Rn with ∂Ω 6= ∅,
let

dx = dist(x,Ωc) and Ωδ = {x ∈ Ω; dx > δ}.

For each non-negative integer r and 0 < α ≤ 1, we denote by Cr,α(Ω) (Cr,α(Ω̄))

the subspace of Cr,0(Ω) (Cr,0(Ω̄)) consisting functions whose rth partial derivatives

are locally (uniformly) α-Hölder continuous in Ω. For each j = (j1, j2 · · · jn) ∈ Nn,

we denote |j| = j1 + j2 + · · ·+ jn and ∂ju = ∂|j|u
(∂x1)j1 (∂x2)j2 ···(∂xn)jn

. For any u ∈ Cr,α(Ω̄),

where r is a non-negative integer and 0 ≤ α ≤ 1, define

[u]r,α;Ω =

{
supx∈Ω,|j|=r |∂ju(x)|, ifα = 0;

supx,y∈Ω,x 6=y,|j|=r
|∂ju(x)−∂ju(y)|

|x−y|α , ifα > 0,

and

‖u‖Cr,α(Ω̄) =

{ ∑r
j=0[u]j,0,Ω, ifα = 0;

‖u‖Cr,0(Ω̄) + [u]r,α;Ω, ifα > 0.

For simplicity, we use the notation Cα(Ω) (Cα(Ω̄)), where α > 0, to denote the space

Cr,α′(Ω) (Cr,α′(Ω̄)), where r is the largest integer smaller than α and α′ = α − r.

We note that if α is an integer r, then Cα(Ω) = Cα−1,1(Ω) 6= Cα,0(Ω) (Cα(Ω̄) =

Cα−1,1(Ω̄) 6= Cα,0(Ω̄)). We denote C∞c (Ω) as the space of C∞ functions with compact

support in Ω, S as the Schwartz space of rapidly decreasing C∞ function in Rn, and

Λ∗(Ω̄) as the Zygmund space of all bounded functions on Ω̄ such that

[u]Λ∗(Ω̄) := sup
x,x+h,x−h∈Ω̄

|u(x+ h) + u(x− h)− 2u(x)|
|h|

<∞.

We equip the space Λ∗(Ω̄) with the norm ‖u‖Λ∗(Ω̄) := ‖u‖L∞(Ω̄) + [u]Λ∗(Ω̄). We will

write BUC(Rn) for the space of bounded and uniformly continuous functions in Rn.

For any 1 < θ ≤ 2 and any convex open set Ω′, we say a set of functions {fα}α∈A is

uniformly θ-semiconvex with constant C in Ω′ if, for any x, y ∈ Ω′, α ∈ A,

2fα(
x+ y

2
)− fα(x)− fα(y) ≤ C|x− y|θ.

1



We say a set of functions {fα}α∈A is uniformly θ-semiconcave with constant C in Ω′

if {−fα}α∈A is uniformly θ-semiconvex with constant C in Ω′. If the set A is a unit

set, i.e., A = {α0}, then we just simply say that fα0 is θ-semiconvex (θ-semiconcave)

in Ω′.

1.2 Background and main results

1.2.1 Regional fractional Laplacian

Given real numbers 0 < s < 2, ε > 0, and an open set Ω ⊂ Rn, denote

∆
s
2
Ω,εu(x) = A(n,−s)

∫
Ω∩Bcε (x)

u(y)− u(x)

|x− y|n+s
dy,

where A(n,−s) =
|s|2s−1Γ(n+s

2
)

π
n
2 Γ(1− s

2
)

, Bε(x) is the open ε-ball in Rn centered at x, and

u ∈ L1(Ω, dx
(1+|x|)n+s ), i.e.,

∫
Ω

|u(x)|
(1+|x|)n+sdx < ∞. The regional s-fractional Laplacian

∆
s
2
Ω on Ω is defined as

∆
s
2
Ωu(x) = lim

ε→0
∆

s
2
Ω,εu(x), u ∈ L1(Ω,

dx

(1 + |x|)n+s
),

provided that the limit exists. The regional s-fractional Laplacian can be also defined

on the closure Ω̄ of Ω by talking Ω̄ in place of Ω in the above. We note that, if x ∈ Ω,

then ∆
s
2

Ω̄
u(x) = ∆

s
2
Ωu(x).

When Ω is a bounded Lipschitz open set, the regional s-fractional Laplacian ∆
s
2

Ω̄
is

in fact the generator of the so-called reflected symmetric s-stable process (Xt)t≥0 on

Ω̄, i.e., a Hunt process associated with the regular Dirichlet form (E ,F) on L2(Ω̄, dx):

E(u, v) =
1

2
A(n,−s)

∫
Ω̄

∫
Ω̄

(u(x)− u(y))(v(x)− v(y))

|x− y|n+s
dxdy,

F =
{
u ∈ L2(Ω̄),

∫
Ω̄

∫
Ω̄

(u(x)− u(y))2

|x− y|n+s
dxdy <∞

}
.

It is first shown in [11] that if 0 < s ≤ 1, then the censored s-stable process in

Ω is essentially the reflected s-stable process (Xt)t≥0, and if 1 < s < 2, then the

censored s-stable process in Ω is identified as a proper subprocess of (Xt)t≥0 killed

upon leaving Ω. Later, it is shown in [21] that (Xt)t≥0 can be refined to be a process

starting from each point of Ω̄ which admits a Hölder continuous transition density

function. In [33], not only is the generator of (Xt)t≥0 on Ω̄ shown to be the regional s-

fractional Laplacian, but also a semi-martingale decomposition of (Xt)t≥0 is obtained

by studying the differentiability of the regional fractional Laplacian and its integration

by parts property. For other studies on regional fractional Laplacians, we refer the

2



reader to [31] for a more general integration by parts formula of the regional fractional

and fractional-like Laplacian, and to [32] for some boundary Harnack inequalities for

the regional fractional Laplacian on C1,β−1(Ω), s < β ≤ 2.

If Ω = Rn, the regional fractional Laplacian ∆
s
2
Rn becomes the usual fractional

Laplacian −(−∆)
s
2 defined via Fourier transform: F((−∆)

s
2u)(ξ) = |ξ|sF(u)(ξ) (see

[64]). If we let s tend to 2, then the fractional Laplacian −(−∆)
s
2 becomes the

classical Laplacian ∆, and it is clear that u ∈ Cα for some integer α > 2 implies that

∆u ∈ Cα−2. In the case that u ∈ Cα for some α > s with α− s not being an integer,

one also has −(−∆)
s
2u ∈ Cα−s ([72, Proposition 2.7]). A natural problem then is

whether the regional fractional Laplacian shares similar regularity properties as that

of the classical and fractional Laplacian. This problem is first investigated in [33] in

which the following results are proved.

Theorem 1.2.1. Let Ω be an open set in Rn and u ∈ L1(Ω, dx
(1+|x|)n+s ) for some

0 < s < 2. Then the following holds.

a) ([33, Proposition 8.3]) If u ∈ C1,α(Ω) for some α > s when 0 < s < 1 or

u ∈ C2,α(Ω) for some α > s− 1 when 1 ≤ s < 2, then ∆
s
2
Ωu ∈ C1,0(Ω).

b) ([33, Theorem 8.1]) In the case n = 1, if r is a non-negative integer such that

u ∈ Cr,α(Ω) for some some α > s when 0 < s < 1 or u ∈ Cr+1,α(Ω) for some

α > s− 1 when 1 ≤ s < 2, then ∆
s
2
Ωu ∈ Cr,0(Ω).

It is conjectured in [33] that part b) of the above theorem should hold for higher

dimensions as well. In Section 2.1, we gave an affirmative answer to this conjecture.

Unlike the fractional Laplacian, the differential operator and the regional fractional

Laplacian are not exchangeable in order. To overcome this difficulty, we derive a class

of integral identities (see Lemma 2.1.1) and use them to conclude that all possible

singular terms of Dr(∆
s
2
Ω,εu) as ε → 0+ are in fact non-singular. Making further

estimates, we are able to extend the integer order differentiability result to a fractional

order. Then we have the result analogous to [72, Proposition 2.7] in the case of

regional fractional Laplacian.

Schauder estimate is well-known for the classical Laplacian ∆ (see [28]) as well

as for the fractional Laplacian (see [15, 30, 67, 72]). We refer the reader to [15, 30]

for interior and boundary regularity theory for more general fractional operators. In

Section 2.2, using Schauder estimates for the fractional Laplacian, we are able to show

a similar Schauder estimate holds for the regional fractional Laplacian.
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1.2.2 Nonlocal fully nonlinear equations

The nonlocal fully nonlinear equations we considered are of form

G(x, u,Du,D2u, I[x, u]) = 0 in Ω, (1)

where Ω is a domain in Rn and I[x, u] is an integro-differential operator. The function

u is real-valued. The nonlinearity G : Rn × R × Rn × Sn × R → R is a continuous

function which is coercive, i.e., there is a non-negative constant γ such that, for any

x, p ∈ Rn, r ≥ s, X ∈ Sn, l ∈ R,

γ(r − s) ≤ G(x, r, p,X, l)−G(x, s, p,X, l), (2)

and degenerate elliptic in a sense that, for any x, p ∈ Rn, r, l1, l2 ∈ R, X, Y ∈ Sn

G(x, r, p,X, l1) ≤ G(x, r, p, Y, l2) if X ≥ Y, l1 ≥ l2. (3)

Here Sn is the set of symmetric n × n matrices equipped with its usual order. The

nonlocal operator I is either of Lévy type, i.e.,

IL[x, u] :=

∫
Rn

[u(x+ z)− u(x)− 1B1(0)(z)Du(x) · z]µx(dz), (4)

or of Lévy-Itô type, i.e.,

ILI [x, u] :=

∫
Rn

[u(x+ j(x, z))− u(x)− 1B1(0)(z)Du(x) · j(x, z)]µ(dz), (5)

where 1B1(0) denotes the indicator function of the unit ball B1(0), j(x, z) is a function

that determines the size of the jumps for the diffusion related to the operator ILI and

µx and µ are Lévy measures.

We will also be interested in equations of Bellman-Isaacs type

sup
α∈A

inf
β∈B

{
− Tr

(
σαβ(x)σTαβ(x)D2u(x)

)
− Iαβ[x, u]

+ bαβ(x) ·Du(x) + cαβ(x)u(x) + fαβ(x)
}

= 0, in Ω, (6)

where σαβ : Rn → Rn×m, bαβ : Rn → Rn, cαβ : Rn → R, fαβ : Rn → R are continuous

functions, cαβ ≥ γ in Rn and Iαβ is either of Lévy type or of Lévy-Itô type.

1.2.2.1 Uniqueness

In Chapter 3, we study comparison principles and uniqueness of viscosity solutions

for a simplified version of (1), i.e.,

G(x, u, I[x, u]) = 0 in Ω, (7)

4



where Ω is a bounded domain in Rn, I[x, u] is of Lévy type and {µx : x ∈ Ω} is a

family of Lévy measures, i.e. non-negative, Borel measures on Rn \ {0} such that∫
Rn

min{|z|2, 1}µx(dz) < +∞ for all x ∈ Ω. (8)

The operator I[x, u] is thus well defined at least for functions u ∈ C2(Bδ(x)) ∩
BUC(Rn) for some δ > 0. We point out that the solution u has to be given in

the whole space Rn even if (7) is satisfied only in Ω. We will also be interested in

studying comparison principles and uniqueness of viscosity solutions for equations of

Bellman-Isaacs type

γu+ sup
α∈A

inf
β∈B
{−Iαβ[x, u] + fαβ(x)} = 0, in Ω, (9)

where each Iαβ[x, u] is of Lévy type.

Comparison principles and uniqueness results are well known for equations (1)

and (6) when γ > 0 and the nonlocal operators I and Iαβ are of Lévy-Itô type.

In this case the Lévy measure is fixed which, in the stochastic control/differential

game interpretation of the Bellman-Isaacs equations, means that we can only control

the state through the diffusion coefficients jαβ of a stochastic differential equation

driven by a fixed Lévy process or a fixed random measure. The first comparison and

uniqueness results for such equations were obtained in [68, 74, 75] and many other

results can be found in the literature, including results for equations with second

order PDE terms, see [1, 2, 3, 4, 7, 6, 8, 9, 20, 35, 39, 40].

The case when we have a family of µx measures depending on x is much more

difficult. Some comparison results for time dependent equation like (7) were obtained

in [2] however with restrictive assumptions. In particular the measures µt,x, which

depend on t and x there, are bounded. In Chapter 3, we prove several comparison

theorems for equations (7) and (9). In Section 3.2, we first look at the case when

equations are strictly monotone in the u variable, i.e. when γ > 0 in (2) and in (9).

Since standard comparison proofs do not work for these equations, the idea is to try

to prove comparison assuming that either a viscosity subsolution or a supersolution is

more regular. Of particular interest is the case when one of them is in Cr(Ω) for some

r > 1. We adapt to the nonlocal case the technique from [22], Section 5.6 (see also

[41]). There are many recent Cr(Ω) regularity results [6, 8, 13, 12, 14, 42, 48, 70] for

equations (7) and (9) and we show in Section 3.6 that comparison theorems obtained

in previous sections can be applied to various classes of problems.

Another largely open problem considered in Chapter 3 is comparison results for

equations (7) and (9) when they are not strictly monotone in the u variable, i.e.

when γ = 0. The only result in this direction in [12], Section 5, is for equations

5



corresponding to the case when the measures µx are independent of x. There is also

a remark made in [34], Theorem 9.2, about comparison for a class of equations being

a consequence of an Alexandrov-Bakelman-Pucci estimate for nonlocal equations,

however it is not supported by any proof and it is probably false without additional

assumptions about the nonlocal operator. Our small contribution here in Section 3.3

is in showing how comparison results of Section 3.2 can be extended to the case γ = 0

when equations are elliptic with respect to a good enough class of linear nonlocal

operators. We follow a typical strategy of perturbing viscosity sub/supersolutions to

strict viscosity sub/supersolutions (see [22, 38]). The reader can consult [5, 22, 38, 41]

for comparison results for fully nonlinear elliptic PDE which are not strictly monotone

in the u variable.

In Section 3.4 we show how viscosity sub/supersolutions of equations (7) and (9)

can be regularized by special sup- and inf-convolutions that depend on a family of

smooth functions. We also show how to use these special sup/inf-convolutions to

prove that the difference of a viscosity subsolution and a viscosity supersolution of

the same elliptic equation is a viscosity subsolution of a nonlocal Pucci extremal

equation. Knowing this one can use an Alexandrov-Bakelman-Pucci estimate of [34]

to prove a comparison principle but this part appears to be missing in [34].

1.2.2.2 Existence

In Chapter 4, we use Perron’s method to establish existence of a viscosity solution of{
G(x, u, I[x, u]) = 0 in Ω,

u = g in Ωc,
(10)

where Ω is a bounded domain, I[x, u] is of Lévy type, g is a bounded continuous

function in Rn and {µx : x ∈ Ω} is a family of Lévy measures. We will also be

interested in existence of viscosity solutions of{
γu+ supα∈A infβ∈B{−Iαβ[x, u] + fαβ(x)} = 0 in Ω,

u = g in Ωc.
(11)

Existence of viscosity solutions is well known for equations (1) and (6) with non-

local operators of Lévy-Itô type and γ > 0 or with uniformly elliptic translation-

invariant nonlocal operators of Lévy type and γ = 0, see [7, 12]. In these two cases,

since comparison principle holds, the existence of a viscosity solution can be proved

directly by Perron’s method. The case when we have a family of µx measures depend-

ing on x is slightly more difficult since we do not have a good comparison principle,

see [63]. To our knowledge, the only available results for existence of solutions for

non-translation invariant equations are the following. In Proposition 4.2 of [70], J.
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Serra proved existence of a viscosity solutions of a nonlocal Bellman equation. H.

Chang Lara and D. Kriventsov obtained existence of viscosity solutions of time de-

pendent nonlocal Isaacs equations in Proposition 5.5 of [19]. In both proofs, the

authors used a fixed point argument. The reader can consult [22, 36] for Perron’s

method for viscosity solutions of fully nonlinear partial differential equations.

In Section 4.2, we adapt to the nonlocal case the approach from [36, 44] for obtain-

ing existence of discontinuous viscosity solutions of (74) and (75). Here we assume

that there exist a viscosity subsolution and a viscosity supersolution of each equa-

tion satisfying the boundary condition. Under this assumption, we can construct

a discontinuous viscosity solution by Perron’s method without using a comparison

principle. In Section 4.3, we obtain Hölder estimates for discontinuous viscosity solu-

tions of (74) and (75) constructed in Section 4.2 under uniform ellipticity assumption

for nonlocal terms. The main tool we use is the weak Harnack inequality proved in

[12]. In Section 4.4, we construct a continuous viscosity subsolution and a continu-

ous viscosity supersolution of (74) and (75) satisfying the boundary condition under

uniform ellipticity assumption for nonlocal terms. Here we follow the idea of [65] to

construct appropriate barrier functions. With all these ingredients in hand, we can

finally conclude that there exists continuous viscosity solutions of (74) and (75) when

both equations are uniformly elliptic.

1.2.2.3 Semiconcavity

In Chapter 5, we study semiconcavity of viscosity solutions of (1), satisfying (2) and

(3) with γ > 0, where the nonlocal operator I is of Lévy-Itô type. The Lévy measure

µ is a Borel measure on Rn \ {0} satisfying∫
Rn\{0}

ρ(ξ)2µ(dξ) < +∞, (12)

where ρ : Rn \ {0} → R+ is a Borel measurable, locally bounded function satisfying

limξ→0 ρ(ξ) = 0 and infξ∈Bcr(0) ρ(ξ) > 0 for any r > 0. We will also be interested in

equations of Bellman type

sup
α∈A

{
−Tr

(
σα(x)σTα (x)D2u(x)

)
−Iα[x, u]+bα(x)·Du(x)+cα(x)u(x)+fα(x)

}
= 0, in Rn,

(13)

where Iα is of Lévy-Itô type and cα ≥ γ > 0 in Rn.

The proof of semiconcavity of viscosity solutions is done in two steps. We first

prove Lipschitz continuity of viscosity solutions. We then adapt to the nonlocal case

the approach from [37, 38] for obtaining semiconcavity of viscosity solutions of elliptic

partial differential equations. In recent years, regularity theory of viscosity solutions of
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integro-differential equations has been studied by many authors under different types

of ellipticity assumptions. It is impossible for us to make a complete review of all

the related literature. However, the following are what we have in mind. Regularity

results were initiated by assuming nondegenerate ellipticity of second order terms

such as [10, 27, 29, 53, 54, 55, 56, 57, 58, 59] for both elliptic and parabolic integro-

differential equations. More recently, striking regularity results were obtained under

uniform ellipticity assumption for nonlocal terms. This assumption, introduced by L.

A. Caffarelli and L. Silvestre, is defined using nonlocal Pucci operators. Several Cα,

C1,α and Shauder estimates for nonlocal fully nonlinear equations were obtained by

various authors [12, 13, 14, 16, 17, 18, 42, 48, 69, 70, 71] under this uniform ellipticity

assumption. The other notion of uniform ellipticity was defined by G. Barles, E.

Chasseigne and C. Imbert. It requires either nondegeneracy of the nonlocal terms,

or nondegeneracy of nonlocal terms in some directions and nondegeneracy of second

order terms in the complementary directions. It was used to obtain Hölder and

Lipschitz continuity for a class of mixed integro-differential equations, see [6, 8].

In Section 5.2, we study Hölder and Lipschitz continuity of viscosity solutions for

(1) and (6) with nonlocal operator of Lévy-Itô type and γ > 0 in Rn. Our Hölder

and Lipschitz continuity results are different from these of [6, 8, 71] since we allow

both the nonlocal terms and the second order terms to be degenerate. However, to

compensate for degeneracy, we need to assume that the constant γ is sufficiently large.

The reader can consult [39] for continuous dependence and continuity estimates for

viscosity solutions of nonlinear degenerate parabolic integro-differential equations.

Having the Lipschitz continuity results, in Section 5.3 we derive semiconcavity of

viscosity solutions of equations (1) and (13). To our knowledge, the only available re-

sults in this direction are about semiconcavity of viscosity solutions of time dependent

integro-differential equations of Hamilton-Jacobi-Bellman (HJB) type whose proofs

are based on probabilistic arguments. In [43], the author proved joint time-space

semiconcavity of viscosity solutions of time dependent integro-differential equations

of HJB type with terminal condition, using a representation formula based on forward

and backward stochastic differential equations. However, the proof there depended

on a restrictive assumption that the Lévy measure µ is finite. In another paper [24], it

was shown that the value function of an abstract infinite dimensional optimal control

problem is w-semiconcave, if the data in the state evolution equation are C1,w and the

data in the cost functional are w-semiconcave. The method was then applied to the

finite dimensional Euclidean space providing semiconcavity result for the value func-

tion of a stochastic optimal control problem associated with a time dependent version

of (13). Later the author extended the semiconcavity result in state variables to that

in time and state variables jointly in [25]. Our result for (13) extends results of [24]
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to the time independent case and provide a different purely analytical approach. The

result for (1) is totally new since the solution may not have an explicit probabilistic

representation formula and thus the analytical proof seems to be the only available

method. Finally we remark that regarding semiconcavity of viscosity solutions of

PDEs of HJB type, in addition to the already mentioned analytical proofs of [37, 38],

other proofs by probabilistic methods can be found in [26, 49, 72, 51, 52, 76].

1.2.2.4 Cσ regularity

In Chapter 6, we investigate interior regularity of viscosity solutions of nonlocal equa-

tions of the type

inf
a∈A

{∫
Rn

[
u(x+y)−u(x)−1B1(0)(y)Du(x) ·y

]
Ka(x, y)dy

}
= f(x), in B1(0), (14)

where Ka(x, y) is a positive kernel. The kernels Ka(x, y) are symmetric, i.e., for any

x, y ∈ Rn

Ka(x, y) = Ka(x,−y), (15)

and are uniform elliptic, i.e., for any x ∈ Rn and y ∈ Rn \ {0}
(2− σ)λ

|y|n+σ
≤ Ka(x, y) ≤ (2− σ)Λ

|y|n+σ
, (16)

where 0 < λ ≤ Λ. The symmetry assumption is essential for the regularity theory for

(14), see [73]. Under the symmetry assumption, (14) can be rewritten as

inf
a∈A

{∫
Rn
δu(x, y)Ka(x, y)dy

}
= f(x), in B1(0),

where δu(x, y) = u(x+y)+u(x−y)−2u(x). We furthermore assume that the kernels

Ka satisfy, for any x ∈ Rn, any y ∈ Rn \ {0} and i = 1, 2

|Di
yK(x, y)| ≤ Λ(2− σ)

|y|n+σ+i
. (17)

We will obtain Cσ regularity estimates for (14) with Dini continuous data in two

steps. We first generalize the recursive Evans-Krylov theorem for translation invariant

nonlocal fully nonlinear equations from the case of Hölder continuous data, see [42],

to the Dini continuous case. We then use the perturbative methods to obtain Cσ

regularity estimates for (14).

In Section 6.2, we establish a recursive Evans-Krylov theorem for translation in-

variant nonlocal fully nonlinear equations in the Dini continuous case. The sequence

of equations we consider is, for j = 0, 1, · · · ,m

inf
a∈A

{∫
Rn

j∑
l=0

ρ−(j−l)σw−1(ρj)w(ρl)δvl(ρ
j−lx, ρj−ly)Kj

a(y)dy+w−1(ρj)ba

}
= 0, in B5(0),

(18)
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where w(t) is a Dini modulus of continuity, Kj
a(x) := ρj(n+σ)Ka(ρ

jx) and ρ ∈ (0, 1).

We prove that, for any l = 0, 1, · · · ,m, ‖vl‖Cσ+β̄(B1(0)) ≤ C where 0 < β̄ < 1 and

C > 0 are two constants independent with ρ and m. Recursive Evans-Krylov theorem

was first studied by T. Jin and J. Xiong in [42]. They used it to obtain the uniform

regularity estimates for the approximators at each scale. Instead of using polynomials

as approximators, they used solutions for constant coefficient equations since poly-

nomials grow too fast near infinity. We construct a slightly more general recursive

Evans-Krylov theorem for our purpose. When w(t) = tα for some 0 < α < 1, (18) is

the case studied in [42].

Using the recursive Evans-Krylov theorem in the Dini continuous case, in Section

6.3, we derive Cσ regularity estimates of viscosity solutions for (14) with Dini con-

tinuous data. To our knowledge, the only available results in this direction are the

following. In Proposition 5.2 of [15], the authors proved Cσ regularity estimates for

u = (−∆)−
σ
2 f =

1

Γ(s)

∫ +∞

0

et∆f(x)
dt

t1−
σ
2

, in Rn, (19)

if σ 6= 1. For σ = 1, they obtained Λ∗(Rn) regularity estimates for (19). It can be

easily deduced from Proposition 2.8 of [72] that the corresponding regularity estimates

for weak solutions of (−∆)
σ
2 u = f in Ω hold. We notice that C1(Ω̄) $ Λ∗(Ω). In

Theorem 1.1(b) of [66], it was shown that Cσ regularity estimates for weak solutions

hold for

Lu :=

∫
Sn−1

∫ ∞
−∞

δu(x, θr)
dr

|r|1+σ
dµ(θ) = f(x), in B1(0), (20)

with a weaker ellipticity assumption

0 < λ ≤ inf
ν∈Sn−1

∫
Sn−1

|ν · θ|σdµ(θ) and µ(Sn−1) ≤ Λ < +∞,

where σ 6= 1. If σ = 1, the authors derived Cσ−ε regularity estimates for (20), where

ε can be any positive constant between 0 and σ. It was claimed in [66] that the meth-

ods there can be applied to obtain similar regularity estimates for non-translation

invariant equations. In [23], H. Dong and D. Kim studied Schauder estimates for a

class of nonlocal linear equations with rough kernels in both Hölder and Dini contin-

uous case. However, in the Dini continuous case, they considered the global problem

on translation invariant equations, i.e., Lu = f in Rn where L is defined in (128).

Our results are different from the above results since we are considering the regular-

ity theory of viscosity solutions for non-translation invariant nonlocal fully nonlinear

equations. Weak solutions are not equivalent to viscosity solutions in general unless

uniqueness of viscosity solutions for such equations holds. However, uniqueness of

viscosity solutions for non-translation invariant nonlocal equations is still an open

10



question. Some recent progress has been made in [63]. Finally we refer the reader to

[46, 47] for C2 regularity estimates for viscosity solutions of classical fully nonlinear

PDEs with Dini continuous terms.
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CHAPTER II

INTERIOR REGULARITY FOR REGIONAL

FRACTIONAL LAPLACIAN

In this chapter, we will study interior regularity for regional fractional Laplacian

including both differentiability and Schauder estimate. This is a joint work with

Prof. Yingfei Yi, see [62].

2.1 Differentiability

In this section, we will study the differentiability of the regional fractional Laplacian

in an open set Ω. The proof will be based on some integral identities in Rn.

2.1.1 Integral identities

Given n′ ∈ N, z = (z1, z2, · · · , zn′) ∈ Rn′ and k = (k1, k2, · · · , kn′)
∈ Nn′ , we denote by zk the monomial

∏n′

i=1 z
ki
i . Also, for each j = 1, 2, · · · , n, we let

ej to denote the jth standard unit basis vector in Rn.

Lemma 2.1.1. Consider an annulus domain Rδε(0) := {z ∈ Rn : ε < |z| < δ}, where

0 < ε < δ. Then for any i, j,m ∈ N and k = (k1, k2, · · · , kn) ∈ Nn, we have

1

ki + 1

∫
Rδε(0)

zk+2ei

|z|m
dz =

1

kj + 1

∫
Rδε(0)

zk+2ej

|z|m
dz.

Proof. The result follows from symmetry.

Lemma 2.1.2. ([33, Lemma 8.2]) Let Ω be an open subset of Rn and u ∈ L1(Ω).

Suppose that u is continuous in an open neighborhood U of x0 = (x1, · · · , xn) ∈ Ω

and dist(x0, ∂U) > ε > 0. Then the function f(x) =
∫

Ω∩Bcε (x)
u(y)dy is differentiable

at x0 and
∂f

∂xi
(x0) =

∫
∂Bε(x0)

u(y)
xi − yi
|x− y|

m(dy),

where m(dy) is the n− 1 dimensional surface Lebesgue measure.

2.1.2 Integer order differentiability

We first prepare some technical lemmas concerning derivatives of ∆
s
2
Ω,εu(x).
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Lemma 2.1.3. Let Ω be an open set in Rn and 0 < s < 2. Suppose that u ∈
L1(Ω, 1

(1+|x|)n+s )∩C1,0(Ω). Then for any x ∈ Ω, δ < dx = dist(x, ∂Ω), and 0 < ε < δ,

we have

2

A(n,−s)
∂

∂xi
∆

s
2
Ω,εu(x)

= −
∫
Rδε(x)

∑n
j=1( ∂u

∂xj
(y)− ∂u

∂xj
(x))(yj − xj)(xi − yi)

|x− y|n+s+2
dy (21)

−(n− 1)

∫
Rδε(x)

[u(y)− u(x) +
∑n

j=1
∂u
∂xj

(x)(xj − yj)](xi − yi)
|x− y|n+s+2

dy

−
∫
Bcδ(x)∩Ω

∂u
∂xi

(x)

|x− y|n+s
dy +

∫
∂Bδ(x)∩Ω

(u(y)− u(x))(xi − yi)
|x− y|n+s+1

m(dy)

−(n+ s)

∫
Bcδ(x)∩Ω

(u(y)− u(x))(xi − yi)
|y − x|n+s+2

dy,

where Rδε(x) := Bδ(x) ∩Bc
ε(x).

Proof. The proof follows from that of [33, Proposition 8.3].

Lemma 2.1.4. Let Ω be an open set in Rn and 0 < s < 2. Suppose that u ∈
L1(Ω, 1

(1+|x|)n+s ) ∩ Cr+1,0(Ω) for some positive integer r. For any x ∈ Ω, ε > 0,

δ < dx = dist(x, ∂Ω), and l = (l1, l2, · · · ln), k = (k1, k2, · · · , kn) ∈ Nn, if ki = 0 for

some 1 ≤ i ≤ n, then

∂

∂xi

∫
Rδε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)kdy

= −(n+ 2p−m− 1)

∫
Rδε(x)

∂lu(y)−
∑|j|=m+1
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p+2
(x− y)k+eidy

−
∫
Rδε(x)

[ ∑
|j′|=1

∂l+j
′
u(y)−

∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+j

′+ju(x)

|x− y|n+s+2p+2
(y − x)j

′
]
(x− y)k+eidy,

where Aj = |j|!
j1!j2!···jn!

for each j = (j1, j2, · · · , jn) ∈ N and m, p ∈ N are such that

|l|+m = r and m+ |k| = 2p.

Proof. Since ki = 0, we have by Lemma 2.1.2 that

I : =
∂

∂xi

∫
Rδε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)kdy

= I1 + I2 + I3,
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where

I1 := − 1

m!

∑
|j|=m

Aj∂
l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p
dy,

I2 := −(n+ s+ 2p)

∫
Rδε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p+2
(x− y)k+eidy,

I3 :=

∫
∂Bε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p+1
(x− y)k+eim(dy)

−
∫
∂Bδ(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p+1
(x− y)k+eim(dy).

Using the identity m+ |k| = 2p, integration by parts yields

I2 = −(n+ s+ 2p)

∫ δ

ε
r−n−s−2p−1dr

∫
∂B1(x)

rn+2p−m−1(x− y)k+ei

[
∂lu(x+ r(y − x))−

|j|=m∑
|j|=0

Aj
|j|!

(y − x)j∂l+ju(x)r|j|
]
m(dy)

=

∫ δ

ε
rn+2p−m−1

{∫
∂B1(x)

[
∂lu(x+ r(y − x))−

|j|=m∑
|j|=0

Aj
|j|!

(y − x)j∂l+ju(x)r|j|
]

(x− y)k+eim(dy)
}
dr−(n+s+2p)

= −I3 − (n+ 2p−m− 1)

∫ δ

ε

∫
∂B1(x)

r−m−2−s(x− y)k+ei

[
∂lu(x+ r(y − x))−

|j|=m∑
|j|=0

Aj
|j|!

(y − x)j∂l+ju(x)r|j|
]
m(dy)dr

−
∫ δ

ε

∫
∂B1(x)

r−m−1−s(x− y)k+ei

∑
|j′|=1

[
∂l+j

′
u(x+ r(y − x))(y − x)j

′

−
|j|=m−1∑
|j|=0

Aj
|j|!

(y − x)j
′+j∂l+j

′+ju(x)r|j|
]
m(dy)dr

= −I3 − (n+ 2p−m− 1)

∫
Rδε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p+2
(x− y)k+eidy

−
∫
Rδε(x)

[ ∑
|j′|=1

∂l+j
′
u(y)−

∑|j|=m−1
|j|=0

Aj
|j|!(y − x)j∂l+j

′+ju(x)

|x− y|n+s+2p+2

(y − x)j
′
]
(x− y)k+eidy.
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Therefore,

I2 + I3 = I
(1)
23 + I

(2)
23 + I

(3)
23 ,

where

I
(1)
23 = −(n+ 2p−m− 1)

∫
Rδε(x)

∂lu(y)−
∑|j|=m+1
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p+2
(x− y)k+eidy,

I
(2)
23 = − n+ 2p

(m+ 1)!

∑
|j|=m+1

Aj∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy,

I
(3)
23 = −

∫
Rδε(x)

[ ∑
|j′|=1

∂l+j
′
u(y)−

∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+j

′+ju(x)

|x− y|n+s+2p+2
(y − x)j

′
]
(x− y)k+eidy.

Observe that

I1 + I
(2)
23

= −
∑

t∈N,t≤m
2

C2t
m

m!

∑
|j|=m,ji=2t

Aj−jiei∂
l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

− n+ 2p

(m+ 1)!

∑
t∈N,t≤m

2

C2t+1
m+1

∑
|j|=m+1,ji=2t+1

Aj−jiei∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy

= −
∑

t∈N,t≤m
2

C2t+1
m+1

(m+ 1)!

∑
|j|=m,ji=2t

Aj−jiei(2t+ 1)∂l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

− n+ 2p

(m+ 1)!

∑
t∈N,t≤m

2

C2t+1
m+1

∑
|j|=m+1,ji=2t+1

Aj−jiei∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy

where j = (j1, j2, · · · , jn). An application of Lemma 2.1.1 yields

I1 + I
(2)
23

=
∑

t∈N,t≤m
2

C2t+1
m+1

(m+ 1)!

∑
|j|=m,ji=2t

Aj−jiei

[
n+ 2p− (|k|+ n+m)

]
∂l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k+2ei

|x− y|n+s+2p+2
dy = 0.

Thus, I = I
(1)
23 + I

(3)
23 and the lemma is proved.

Lemma 2.1.5. Let Ω be an open set in Rn and 0 < s < 2. Suppose that u ∈
L1(Ω, 1

(1+|x|)n+s ) ∩ Cr+1,0(Ω) for some positive integer r. For any x ∈ Ω, ε > 0,
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δ < dx = dist(x, ∂Ω), and l = (l1, l2, · · · ln), k = (k1, k2, · · · , kn) ∈ Nn, if ki 6= 0 for

some 1 ≤ i ≤ n, then

∂

∂xi

∫
Rδε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)kdy

= ki

∫
Rδε(x)

∂lu(y)−
∑|j|=m+1
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)k−eidy

−(n+ 2p−m− 1)

∫
Rδε(x)

∂lu(y)−
∑|j|=m+1
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p+2
(x− y)k+eidy

−
∫
Rδε(x)

[ ∑
|j′|=1

∂l+j
′
u(y)−

∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+j

′+ju(x)

|x− y|n+s+2p+2
(y − x)j

′
]
(x− y)k+eidy

where m, p ∈ N are such that |l|+m = r and m+ |k| = 2p.

Proof. Since ki 6= 0, we have by Lemma 2.1.2 that

I = I1 + Ī1 + I2 + I3,

where I and Ii, i = 1, 2, 3, are as in the proof of Lemma 2.1.4 and

Ī1 = ki

∫
Rδε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)k−eidy.

By the proof of Lemma 2.1.4, we have

I2 + I3 = I
(1)
23 + I

(2)
23 + I

(3)
23 .

where I
(i)
23 , i = 1, 2, 3, are defined in the proof of Lemma 2.1.4. Write

Ī1 = Ī1
(1)

+ Ī1
(2)
,

where

Ī1
(1)

= ki

∫
Rδε(x)

∂lu(y)−
∑|j|=m+1
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)k−eidy,

Ī1
(2)

=
ki

(m+ 1)!

∑
|j|=m+1

Aj∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k−ei

|x− y|n+s+2p
dy.
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Note that

I1 + Ī1
(2)

+ I
(2)
23

= − 1

m!

∑
|j|=m

Aj∂
l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

+
ki

(m+ 1)!

∑
|j|=m+1

Aj∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k−ei

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

− n+ 2p

(m+ 1)!

∑
|j|=m+1

Aj∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy.

First let ki be an even number. Then

I1 + Ī1
(2)

+ I
(2)
23

= −
∑

t∈N,t≤m
2

C2t
m

m!

∑
|j|=m,ji=2t

Aj−jiei∂
l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

+
ki

(m+ 1)!

∑
t∈N,t≤m

2

C2t+1
m+1

∑
|j|=m+1,ji=2t+1

Aj−jiei∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k−ei

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

− n+ 2p

(m+ 1)!

∑
t∈N,t≤m

2

C2t+1
m+1

∑
|j|=m+1,ji=2t+1

Aj−jiei∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy

= −
∑

t∈N,t≤m
2

C2t+1
m+1

(m+ 1)!

∑
|j|=m,ji=2t

Aj−jiei(2t+ ki + 1)∂l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

+
∑

t∈N,t≤m
2

C2t+1
m+1

(m+ 1)!

∑
|j|=m,ji=2t

Aj−jiei(n+ 2p)∂l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k+2ei

|x− y|n+s+2p+2
dy.

It follows from Lemma 2.1.1 that

I1 + Ī1
(2)

+ I
(2)
23

=
∑

t∈N,t≤m
2

C2t+1
m+1

(m+ 1)!

∑
|j|=m,ji=2t

Aj−jiei

[
(n+ 2p)− (|k|+ n+m)

]
∂l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k+2ei

|x− y|n+s+2p+2
dy = 0.
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Now let ki be an odd number. Then

I1 + Ī1
(2)

+ I
(2)
23

= −
∑

t∈N,t≤m−1
2

C2t+1
m

m!

∑
|j|=m,ji=2t+1

Aj−jiei∂
l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

+
ki

(m+ 1)!

∑
t∈N,t≤m+1

2

C2t
m+1

∑
|j|=m+1,ji=2t

Aj−jiei∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k−ei

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

− n+ 2p

(m+ 1)!

∑
t∈N,t≤m+1

2

C2t
m+1

∑
|j|=m+1,ji=2t

Aj−jiei∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy

=
ki

(m+ 1)!

∑
|j|=m+1,ji=0

Aj∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k−ei

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

− (n+ 2p)

(m+ 1)!

∑
|j|=m+1,ji=0

Aj∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy

−
∑

t∈N,t≤m−1
2

C2t+1
m

m!

∑
|j|=m,ji=2t+1

Aj−jiei∂
l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

+
ki

(m+ 1)!

∑
t∈N,t≤m−1

2

C2t+2
m+1

∑
|j|=m+1,ji=2t+2

Aj−jiei∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k−ei

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

− n+ 2p

(m+ 1)!

∑
t∈N,t≤m−1

2

C2t+2
m+1

∑
|j|=m+1,ji=2t+2

Aj−jiei∂
l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy.

It again follows from Lemma 2.1.1 that
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I1 + Ī1
(2)

+ I
(2)
23

=
1

(m+ 1)!

∑
|j|=m+1,ji=0

Aj

[
(m+ n+ |k| − (n+ 2p))

]
∂l+ju(x)

∫
Rδε(x)

(y − x)j(x− y)k+ei

|x− y|n+s+2p+2
dy

−
∑

t∈N,t≤m−1
2

C2t+2
m+1

(m+ 1)!

∑
|j|=m,ji=2t+1

Aj−jiei(2t+ 2 + ki)∂
l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p+2

∑
|j′|=1

(x− y)2j′dy

+
∑

t∈N,t≤m−1
2

C2t+2
m+1

(m+ 1)!

∑
|j|=m,ji=2t+1

Aj−jiei(n+ 2p)∂l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k+2ei

|x− y|n+s+2p+2
dy

=
∑

t∈N,t≤m−1
2

C2t+2
m+1

(m+ 1)!

∑
|j|=m,ji=2t+1

Aj−jiei

[
(n+ 2p)− (|k|+ n+m)

]
∂l+j+eiu(x)

∫
Rδε(x)

(y − x)j(x− y)k+2ei

|x− y|n+s+2p+2
dy = 0.

Thus, for any ki 6= 0, I = Ī1
(1)

+ I
(1)
23 + I

(3)
23 and the lemma is proved.

Lemma 2.1.6. Let Ω be an open set in Rn and 0 < s < 2. Suppose that u ∈
L1(Ω, 1

(1+|x|)n+s ) ∩ Cr,0(Ω) for some positive integer r. Then for any x ∈ Ω, ε > 0,

r̂ = (r1, r2, · · · , rn) ∈ Nn with |r̂| = r, δ < dx = dist(x, ∂Ω), all ε-dependent terms of

∂ r̂∆
s
2
Ω,εu(x) have the form

Iε,δl,k,m,p(x) =

∫
Rδε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)kdy, (22)

where l = (l1, l2, · · · ln), k = (k1, k2, · · · , kn) ∈ Nn,m, p ∈ N are such that |l|+m = r

and m+ |k| = 2p.

Proof. We will prove the lemma by induction. In the case of r = 1, we observe that

the only ε-dependent terms on the right hand side of (21) are its first two terms. They

clearly have the form (22) with the first term corresponding to |l| = 1, m = 0, |k| = 2

and p = 1, and the second term corresponding to |l| = 0, m = 1, |k| = 1 and p = 1.

Now suppose that (22) is satisfied when r = q, where q is a fixed positive integer.

We want to show that it is also satisfied when r = q + 1, i.e., for any l, k ∈ N with
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|l|+m = q and m+ |k| = 2p, all ε-dependent terms of

I =
∂

∂xi

∫
Rδε(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)kdy

have the form ∫
Rδε(x)

∂l
′
u(y)−

∑|j|=m′
|j|=0

Aj
|j|!(y − x)j∂l

′+ju(x)

|x− y|n+s+2p′
(x− y)k

′
dy, (23)

where |l′|+m′ = q + 1 and m′ + |k′| = 2p′.

If ki = 0, then, by Lemma 2.1.4, we have I = I
(1)
23 +I

(3)
23 , where I

(1)
23 , I

(3)
23 are as in the

proof of Lemma 2.1.4 which clearly have the form (23) with |l′|+m′ = |l|+m+1 = q+1

and m′ + |k′| = m+ |k|+ 2 = 2(p+ 1).

If ki 6= 0, then, by Lemma 2.1.5, we have I = Ī1
(1)

+I
(1)
23 +I

(3)
23 , where Ī1

(1)
is as in the

proof of Lemma 2.1.5 which is clearly of the form (23) with l′+m′ = |l|+m+1 = q+1

and m′ + |k′| = m+ k = 2p.

Theorem 2.1.7. Let Ω ⊂ Rn be an open set and u ∈ L1(Ω, 1
(1+|x|)n+s ) for some

0 < s < 2. If r is a non-negative integer such that u ∈ Cr,α(Ω) for some 1 ≥ α > s

or u ∈ Cr+1,α(Ω) for some α with 2 ≥ 1 + α > s ≥ α, then ∆
s
2
Ωu ∈ Cr,0(Ω).

Proof. For any ε > 0, x ∈ Ω, r̂ = (r1, r2, · · · , rn) ∈ Nn with |r̂| = r, and δ < dx =

dist(x, ∂Ω), we have by Lemma 2.1.6 that all ε-dependent terms of ∂ r̂∆
s
2
Ω,εu(x) have

the form (22).

In the case 1 ≥ α > s, we note that any integral of the form (22) is bounded above

in absolute value by a constant times
∫ δ
ε
ρα−s−1dρ which is convergent as ε → 0. It

follows that ∂ r̂∆
s
2
Ω,εu converges uniformly on any compact subset of Ω as ε→ 0. Thus,

∂ r̂∆
s
2
Ωu ∈ C(Ω), i.e., ∆

s
2
Ωu ∈ Cr,0(Ω).

In the case 2 ≥ 1 + α > s ≥ α, we again consider an integral Iε,δl,k,m,p(x) of the

form (22) for some l, k ∈ Nn, m, p ∈ N satisfying |l|+m = r and m+ |k| = 2p. Since

m + 1 + |k| = 2p + 1 is an odd number, we have, for any j ∈ Nn with |j| = m + 1,

that ∫
Rδε(x)

(y − x)j(x− y)k

|x− y|n+s+2p
dy = 0.

Hence Iε,δl,k,m,p(x) can be re-written as∫
Rδε(x)

∂lu(y)−
∑|j|=m+1
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)kdy

which is bounded above in absolute value by a constant times
∫ δ
ε
ρα−sdρ that is

convergent as ε → 0. It follows again that ∂ r̂∆
s
2
Ω,εu converges uniformly on any

compact subset of Ω as ε→ 0. Thus, ∂ r̂∆
s
2
Ωu(x) ∈ C(Ω), i.e., ∆

s
2
Ωu ∈ Cr,0(Ω).
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2.1.3 Fractional order differentiability

Let u ∈ L1(Ω, 1
(1+|x|)n+s ) ∩ Cr,α(Ω) for some positive integer r and some real numbers

0 < s < 2, 0 < α ≤ 1. For each ε > 0 sufficiently small, x ∈ Ω, and any r̂ ∈ Nn with

|r̂| ≤ r, we write

∂ r̂∆
s
2
Ω,εu(x) = Iε(x) + I∗(x),

where Iε(x) denotes the ε-dependent term of ∂ r̂∆
s
2
Ω,εu(x) and I∗(x) denotes the re-

maining term.

Lemma 2.1.8. Let u, s, r, α be as in the above. If either 1 ≥ α > s or 2 ≥ 1 + α >

s ≥ α, then

∂ r̂∆
s
2
Ωu(x) = I0(x) + I∗(x), if |r̂| ≤ r,

where I0(x) = limε→0 Iε(x) which consists of terms of the form

Iδl,k,m,p(x) =

∫
Bδ(x)

∂lu(y)−
∑|j|=m
|j|=0

Aj
|j|!(y − x)j∂l+ju(x)

|x− y|n+s+2p
(x− y)kdy, (24)

for any δ < dx = dist(x, ∂Ω) and some l = (l1, l2, · · · ln), k = (k1, k2, · · · , kn) ∈
Nn,m, p ∈ N with |l|+m = |r̂| and m+ |k| = 2p.

Proof. It follows immediately from Lemma 2.1.6 and the proof of Theorem 2.1.7.

Lemma 2.1.9. Let u, s, r, α be as in the above. Then the following holds.

a) If 1 ≥ α > s and |r̂| = r, then there exists a constant C > 0 such that

|I∗(x)− I∗(y)| ≤ C[u]r,α;Ω|x− y|α−s, x, y ∈ Ω, |x− y| � 1.

b) If 2 ≥ 1 + α > s ≥ α and |r̂| = r − 1, then there exists a constant C > 0 such

that

|I∗(x)− I∗(y)| ≤ C[u]r,α;Ω|x− y|1+α−s, x, y ∈ Ω, |x− y| � 1.

Proof. The function I∗ can be derived simply by taking higher order derivatives of the

right hand side of (21) and identifying all ε-independent terms of the derivatives. As

these terms involves only regular integrals, the lemma follows from straightforward

estimates.

Theorem 2.1.10. Let Ω ⊂ Rn be an open set and u ∈ L1(Ω, 1
(1+|x|)n+s ) for some

0 < s < 2. Then the following holds.
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(i) If u ∈ Cr,α(Ω) for some positive number α with s < α ≤ 1 and a non-negative

integer r, then ∆
s
2
Ωu(x) ∈ Cr,α−s(Ω), and moreover,

[∆
s
2
Ωu]r,α−s;Ω ≤ C[u]r,α;Ω.

(ii) If u ∈ Cr,α(Ω) for some positive number α with α < s < 1 + α ≤ 2 and a

positive integer r, then ∆
s
2
Ωu(x) ∈ Cr−1,1+α−s(Ω), and moreover,

[∆
s
2
Ωu]r−1,1+α−s;Ω ≤ C[u]r,α;Ω.

Proof. Let x, y ∈ Ω and take δ < dx,y = min{dx, dy}. For given l = (l1, l2, · · · ln), k =

(k1, k2, · · · , kn) ∈ Nn,m, p ∈ N, consider

J = Iδl,k,m,p(x)− Iδl,k,m,p(y),

where Iδl,k,m,p is as in (24). It is clear that

J = J1 + J2,

where

J1 :=

∫
Bη(0)

[∂lu(x+ z)−
∑|j|=m
|j|=0

Aj
|j|!z

j∂l+ju(x)

|z|n+s+2p

−
∂lu(y + z)−

∑|j|=m
|j|=0

Aj
|j|!z

j∂l+ju(y)

|z|n+s+2p

]
zkdz,

J2 :=

∫
Rδη(0)

[∂lu(x+ z)−
∑|j|=m
|j|=0

Aj
|j|!z

j∂l+ju(x)

|z|n+s+2p

−
∂lu(y + z)−

∑|j|=m
|j|=0

Aj
|j|!z

j∂l+ju(y)

|z|n+s+2p

]
zkdz,

and η = |x− y| < δ.

(i) In this case, we let |l|+m = r and m+ |k| = 2p in J1, J2. On one hand, since

|l|+m = r and u ∈ Cr,α(Ω), there exists a constant C1 > 0 such that

|∂lu(x+z)−∂lu(y+z)−
|j|=m∑
|j|=0

Aj
|j|!
(
∂l+ju(x)−∂l+ju(y)

)
zj| ≤ C1[u]r,α;Ω|z|m+α, z ∈ Bη(0).

Using the fact m+ |k| = 2p, it follows that

|J1| ≤ |
∫
Bη(0)

C1[u]r,α;Ω|z|2p+α

|z|n+s+2p
dz|

≤ C2[u]r,α;Ωη
α−s = C2[u]r,α;Ω|x− y|α−s
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for some constant C2 > 0. On the other hand, we also have

|∂lu(x+ z)− ∂lu(y + z)−
|j|=m∑
|j|=0

Aj
|j|!
(
∂l+ju(x)− ∂l+ju(y)

)
zj|

≤ C3[u]r,α;Ω[
m∑
i=0

|x− y|m+α−i|z|i +
m∑
i=1

|z|m+α−i|x− y|i], z ∈ Bc
η(0),

where C3 > 0 is a constant. It follows that

|J2| ≤ |
∫
Bcη(0)

C3[u]r,α;Ω(
∑m

i=0 |x− y|m+α−i|z|i +
∑m

i=1 |z|m+α−i|x− y|i)
|z|n+s+m

dz|

≤ C[u]r,α;Ω(
m∑
i=0

ηi−m−s|x− y|m+α−i +
m∑
i=1

ηα−s−i|x− y|i) ≤ C4[u]r,α;Ω|x− y|α−s

for some constant C4 > 0. Hence

|J | ≤ |J1|+ |J2| ≤ (C2 + C4)[u]r,α;Ω|x− y|α−s. (25)

Let I0 be as in Lemma 2.1.8. Then Lemma 2.1.8 together with (25) imply that

|I0(x)− I0(y)| ≤ C5[u]r,α.Ω|x− y|α−s

for some constant C5 > 0. With this estimate, the proof is now complete by

Lemma 2.1.8 and Lemma 2.1.9 a).

(ii) In this case, we let |l| + m = r − 1 and m + |k| = 2p in J1, J2. Since

m + 1 + |k| = 2p + 1 is an odd number, we have, for any j ∈ Nn with |j| = m + 1,

any w ∈ Ω, and any ρ < dw that∫
Bρ(w)

zj+k

|z|n+s+2p
dy = 0.

It follows that

J1 =

∫
Bη(0)

[∂lu(x+ z)−
∑|j|=m+1
|j|=0

Aj
|j|!z

j∂l+ju(x)

|z|n+s+2p

−
∂lu(y + z)−

∑|j|=m+1
|j|=0

Aj
|j|!z

j∂l+ju(y)

|z|n+s+2p

]
zkdz,

J2 =

∫
Rδη(0)

[∂lu(x+ z)−
∑|j|=m+1
|j|=0

Aj
|j|!z

j∂l+ju(x)

|z|n+s+2p

−
∂lu(y + z)−

∑|j|=m+1
|j|=0

Aj
|j|!z

j∂l+ju(y)

|z|n+s+2p

]
zkdz.
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The rest of the proof is similar to that of (i). We only note that using facts |l|+m =

r − 1 and u ∈ Cr,α(Ω), the estimate of J1 follows from the inequality

|∂lu(x+ z)− ∂lu(y + z)−
|j|=m+1∑
|j|=0

Aj
|j|!
(
∂l+ju(x)− ∂l+ju(y)

)
zj|

≤ C5[u]r,α;Ω|z|m+1+α,

z ∈ Bη(0), where C5 > 0 is a constant, while, using facts m+ |k| = 2p and s < 1 +α,

the estimate of J2 follows from the inequality

|∂lu(x+ z)− ∂lu(y + z)−
|j|=m+1∑
|j|=0

Aj
|j|!
(
∂l+ju(x)− ∂l+ju(y)

)
zj|

≤ C6[u]r,α;Ω(
m+1∑
i=0

|x− y|m+1+α−i|z|i +
m+1∑
i=1

|z|m+1+α−i|x− y|i), z ∈ Bc
η(0),

where C6 > 0 is a constant.

2.2 Schauder estimates

In this section, we will show the Schauder estimates for the regional fractional Lapla-

cian using those for the fractional Laplacian.

2.2.1 Schauder estimates for the fractional Laplacian

Recall that the fractional Laplacian (−∆)
s
2 is well-defined in S, the Schwartz space

of rapidly decreasing C∞ functions in Rn, and we can then extend its definition to

the space L1(Rn, dx
(1+|x|)n+s ) by

< (−∆)
s
2u, ϕ >Rn=

∫
Rn
u(y)(−∆)

s
2ϕ(y)dy, ∀ϕ ∈ S, (26)

for any u ∈ L1(Rn, dx
(1+|x|)n+s ). In the following Lemma 2.2.1 and 2.2.2, the definition

of (−∆)
s
2 is understood in the sense of (26). We refer the reader to [72] for a more

general definition of the fractional Laplacian.

Lemma 2.2.1. Let 0 < α ≤ 1 and 0 < s < 2. If, for some w ∈ Cα(Ω̄), u ∈ L∞(Rn)

solves the equation (−∆)
s
2u = w in Ω, then for any δ > 0 sufficiently small there

exists a constant C > 0 depending only on n, s, δ and α such that

‖u‖Cα+s(Ω̄δ) ≤ C(‖u‖L∞(Rn) + ‖w‖Cα(Ω̄)).

Proof. The proof follows from that of [72, Proposition 2.8].
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Lemma 2.2.2. Let 0 < s < 2. Suppose that, for some w ∈ L∞(Ω), u ∈ L∞(Rn)

solves the equation (−∆)
s
2u = w in Ω. Then, for any sufficiently small δ > 0, there

exists a constant C > 0 depending only on n, s and δ such that the following holds:

(i) If s 6= 1, then

‖u‖Cs(Ω̄δ) ≤ C(‖u‖L∞(Rn) + ‖w‖L∞(Ω)).

(ii) If s = 1, then

‖u‖Λ∗(Ω̄δ) ≤ C(‖u‖L∞(Rn) + ‖w‖L∞(Ω)).

Proof. We first use the argument in the proof of [72, Proposition 2.8]. By covering and

rescaling arguments, we only need to consider the case Ωδ = B 1
2
(0) and Ω = B1(0).

Let η ∈ C∞c (R) be such that range(η) ⊂ [0, 1], supp(η) ⊂ B1(0), and η(x) = 1 for any

x ∈ B 3
4
(0). Denote

u0(x) := A(n, s)

∫
Rn

η(y)w(y)

|x− y|n−s
dy = (−∆)−

s
2ηw(x).

Then (−∆)
s
2u0 = w = (−∆)

s
2u in B 3

4
(0). It follows that u− u0 ∈ C2(B̄ 1

2
(0)) and

‖u− u0‖C2(B̄ 1
2

(0)) ≤ C‖u− u0‖L∞(Rn) ≤ C(‖u‖L∞(Rn) + ‖w‖L∞(B1(0))),

where C > 0 is a constant depending only on n. We note that C2(B̄ 1
2
(0)) =

C1,1(B̄ 1
2
(0)) 6= C2,0(B̄ 1

2
(0)). The lemma now follows from [15, Proposition 5.2].

2.2.2 Schauder estimates for the regional fractional Laplacian

It is easy to see that the regional fractional Laplacian ∆
s
2
Ω is well-defined for functions

u ∈ C2(Ω) ∩ L∞(Ω). We can then extend the definition of the regional fractional

Laplacian to the space L1(Ω, dx
(1+|x|)n+s ). For any u ∈ L1(Ω, dx

(1+|x|)n+s ), we define

< ∆
s
2
Ωu, ϕ >Ω:=

∫
Ω

u(y)∆
s
2
Ωϕ(y)dy, for any ϕ ∈ C∞c (Ω). (27)

In the following Theorem 2.2.3 and 2.2.4, the definition of ∆
s
2
Ω is understood in the

sense of (27).

Theorem 2.2.3. Let 0 < s < 2. Suppose that, for some w ∈ L∞(Ω), u ∈ L∞(Ω)

solves the equation ∆
s
2
Ωu = w in Ω. Then, for any sufficiently small δ > 0, there exists

a constant C > 0 depending only on n, s, and δ such that the following holds:

(i) If s 6= 1, then

‖u‖Cs(Ω̄δ) ≤ C(‖u‖L∞(Ω) + ‖w‖L∞(Ω)).
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(ii) If s = 1, then

‖u‖Λ∗(Ω̄δ) ≤ C(‖u‖L∞(Ω) + ‖w‖L∞(Ω)).

Proof. Let 0 < s < 2, w ∈ L∞(Ω), and u ∈ L∞(Ω) solves the equation ∆
s
2
Ωu = w in

Ω. Also let ū ∈ L∞(Rn) be such that ū ≡ u in Ω and ū ≡ 0 outside of Ω. Then for

any ϕ ∈ S,∫
Rn

(
−∆

s
2
Ω,εū(x) +A(n,−s)ū(x)

∫
Ωc\Bε(x)

1

|x− y|n+s
dy
)
ϕ(x)dx

= A(n,−s)
∫
Rn

∫
Rn\Bε(x)

ū(x)− ū(y)

|x− y|n+s
dyϕ(x)dx

= A(n,−s)
(∫

Rn

∫
Rn\Bε(x)

ū(x)ϕ(x)

|x− y|n+s
dydx−

∫
Rn

∫
Rn\Bε(y)

ū(y)ϕ(x)

|x− y|n+s
dxdy

)
= A(n,−s)

(∫
Rn

∫
Rn\Bε(x)

ū(x)ϕ(x)

|x− y|n+s
dydx−

∫
Rn

∫
Rn\Bε(x)

ū(x)ϕ(y)

|x− y|n+s
dydx

)
= A(n,−s)

∫
Rn
ū(x)

∫
Rn\Bε(x)

ϕ(x)− ϕ(y)

|x− y|n+s
dydx.

In particular, for any ϕ ∈ C∞c (Ω), we have

−
∫

Ω

u(x)∆
s
2
Ω,εϕ(x)dx+A(n,−s)

∫
supp(ϕ)

u(x)ϕ(x)

∫
Ωc\Bε(x)

1

|x− y|n+s
dydx

=

∫
Rn

(
−∆

s
2
Ω,εū(x) +A(n,−s)ū(x)

∫
Ωc\Bε(x)

1

|x− y|n+s
dy
)
ϕ(x)dx

= A(n,−s)
∫
Rn
ū(x)

∫
Rn\Bε(x)

ϕ(x)− ϕ(y)

|x− y|n+s
dydx.

Letting ε→ 0 in the above, we easily obtain that, for any x ∈ Ω,

(−∆)
s
2 ū(x) = −w(x) +A(n,−s)u(x)

∫
Ωc

1

|x− y|n+s
dy. (28)

Let δ > 0 be sufficiently small. We have by Lemma 2.2.2 and (28) that there exists

a constant C depending on n, s, and δ such that

‖u‖Cs(Ω̄δ) ≤ C(‖ū‖L∞(Rn) + ‖ − w +A(n,−s)u
∫

Ωc

1

| · −y|n+s
dy‖L∞(Ω δ

2
))

≤ C(‖u‖L∞(Ω) + ‖w‖L∞(Ω))

when s 6= 1. Similarly,

‖u‖Λ∗(Ω̄δ) ≤ C(‖u‖L∞(Ω) + ‖w‖L∞(Ω)).

when s = 1.
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Remark 1. The notions of Cα+s(Ω̄δ) and Cα(Ω̄) we defined earlier have unified differ-

ent cases for α, α+s being or not being natural numbers in the statement of Theorem

C. We note that C1(Ω̄δ) = C0,1(Ω̄δ) 6= C1,0(Ω̄δ), C1(Ω̄) = C0,1(Ω̄) 6= C1,0(Ω̄), and

C2(Ω̄δ) = C1,1(Ω̄δ) 6= C2,0(Ω̄δ).

Theorem 2.2.4. Let 0 < α ≤ 1 and 0 < s < 2. If, for some w ∈ Cα(Ω̄), u ∈ L∞(Ω)

solves the equation ∆
s
2
Ωu = w in Ω, then

‖u‖Cα+s(Ω̄δ) ≤ C(‖u‖L∞(Ω) + ‖w‖Cα(Ω̄)),

where δ > 0 is sufficiently small and C is a constant depending only on n, s, δ and

α.

Proof. Using bootstrap arguments, Lemma 2.2.1 and (28) for both cases of α, α + s

being or not being natural numbers, we have, similarly to the above, that

‖u‖Cα+s(Ω̄δ) ≤ C(‖u‖L∞(Ω) + ‖w‖Cα(Ω̄)),

where C > 0 is a constant depending on n, s, δ and α. This proves Theorem 2.2.4.
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CHAPTER III

UNIQUENESS OF VISCOSITY SOLUTIONS FOR A

CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS

In this chapter, we will study uniqueness and comparison principle of viscosity so-

lutions for a class of integro-differential equations. This is a joint work with Prof.

Andrzej Swiech, see [63].

3.1 Definitions and assumptions

Suppose that G is continuous and (2), (3), (8) hold. We recall two equivalent defi-

nitions of a viscosity solution of (7). In order to do it, we introduce two associated

operators I1,δ and I2,δ,

I1,δ[x, p, u] =

∫
|z|<δ

[u(x+ z)− u(x)− 1B1(0)(z)p · z]µx(dz),

I2,δ[x, p, u] =

∫
|z|≥δ

[u(x+ z)− u(x)− 1B1(0)(z)p · z]µx(dz).

Definition 1. A function u ∈ BUC(Rn) is a viscosity subsolution of (7) if whenever

u−ϕ has a maximum over Rn at x ∈ Ω for some test function ϕ ∈ C2(Rn)∩BUC(Rn),

then

G(x, u(x), I[x, ϕ]) ≤ 0.

A function u ∈ BUC(Rn) is a viscosity supersolution of (7) if whenever u− ϕ has a

minimum over Rn at x ∈ Ω for a test function ϕ ∈ C2(Rn) ∩BUC(Rn), then

G(x, u(x), I[x, ϕ]) ≥ 0.

A function u ∈ BUC(Rn) is a viscosity solution of (7) if it is both a viscosity subso-

lution and viscosity supersolution of (7).

It is easy to see that Definition 1 is equivalent to the definition in which the

requirement that ϕ ∈ C2(Rn) ∩ BUC(Rn) is replaced by the requirement that ϕ ∈
C2(Bδ(x))∩BUC(Rn) for some δ > 0. The equivalence of Definition 1 and Definition

2 is also standard.
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Definition 2. A function u ∈ BUC(Rn) is a viscosity subsolution of (7) if whenever

u−ϕ has a maximum over Bδ(x) at x ∈ Ω for a test function ϕ ∈ C2(Bδ(x)), δ > 0,

then

G
(
x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

)
≤ 0.

A function u ∈ BUC(Rn) is a viscosity supersolution of (7) if whenever u− ϕ has a

minimum over Bδ(x) at x ∈ Ω for a test function ϕ ∈ C2(Bδ(x)), δ > 0, then

G
(
x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

)
≥ 0.

A function u ∈ BUC(Rn) is a viscosity solution of (7) if it is both a viscosity subso-

lution and viscosity supersolution of (7).

We make the following assumptions on the nonlinearity G and the family of Lévy

measures {µx}.
(H1) For each Ω′ ⊂⊂ Ω, there is a nondecreasing continuous function wΩ′ satisfying

wΩ′(0) = 0 and a non-negative constant ΛΩ′ such that

G(y, r, l2)−G(x, r, l1) ≤ ΛΩ′(l1 − l2) + wΩ′(|x− y|)

for any x, y ∈ Ω′ and r, l1, l2 ∈ R.

(H2) For every x ∈ Ω the measure µx is absolutely continuous with respect to the

Lebesgue measure on Rn, i.e. µx(dz) = a(x, z)dz, where a(x, ·) ≥ 0 is measurable,

and there exist two constants 0 < θ ≤ 1, 0 < σ < 2 and a positive constant C such

that, for any x, y ∈ Ω, we have

|a(x, z)− a(y, z)| ≤ C
|x− y|θ

|z|n+σ
in B1(0),

a(x, z) ≤ C

|z|n+σ
in B1(0),∫

Rn\B1(0)

|a(x, z)− a(y, z)|dz ≤ C|x− y|θ,∫
Rn\B1(0)

µx(dz) ≤ C.

3.2 Uniqueness of viscosity solutions of (7) for γ > 0

In this section we prove the main comparison theorem which will be a basis for other

comparison results.
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Theorem 3.2.1. Let Ω be a bounded domain. Suppose that the nonlinearity G in (7)

is continuous and satisfies (2) with γ > 0 and (H1). Suppose that the family of Lévy

measures {µx} satisfies assumption (H2). Then, for any 0 < σ < 2, there exists a

constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if r0 < r < 2, θ > max{0, 1− r}, u is

a viscosity subsolution of (7), v is a viscosity supersolution of (7), u ≤ v in Ωc, and

either u or v is in Cr(Ω), we have u ≤ v in Rn.

Proof. Without loss of generality we assume that u ∈ Cr(Ω). The proof is divided

into two cases.

Case 1: 0 < σ ≤ 1.

Without loss of generality we can assume in this case that 0 < r < 1. Suppose

that maxΩ(u − v) = ν > 0. Let K ⊂ Ω be a compact neighborhood of the set of

maximum points of u − v in Ω. Then (see Proposition 3.7 of [22]), for ε sufficiently

small, there are x̂, ŷ ∈ K such that

u(x̂)− v(ŷ)− 1

2ε
|x̂− ŷ|2 = sup

x,y

{
u(x)− v(y)− 1

2ε
|x− y|2

}
≥ ν.

Moreover, we can assume that there is 0 < c < 1 such that B2c(x̂) ∪ B2c(ŷ) ⊂ Ω.

Since

u(x)− v(y)− 1

2ε
|x− y|2 ≤ u(x̂)− v(ŷ)− 1

2ε
|x̂− ŷ|2,

for any x, y ∈ Rn. Putting x = y = ŷ, we thus have

1

2ε
|x̂− ŷ|2 ≤ u(x̂)− u(ŷ) ≤ C|x̂− ŷ|r

for some C > 0 independent of ε, which gives us

|x̂− ŷ|2−r

2ε
≤ C. (29)

By the definition of viscosity subsoltions and supersolutions, we have for 0 < δ < c,

G

(
x̂, u(x̂), I1,δ[x̂,

x̂− ŷ
ε

,
| · −ŷ|2

2ε
] + I2,δ[x̂,

x̂− ŷ
ε

, u(·)]
)
≤ 0,

G

(
ŷ, v(ŷ), I1,δ[ŷ,

x̂− ŷ
ε

,−|x̂− ·|
2

2ε
] + I2,δ[ŷ,

x̂− ŷ
ε

, v(·)]
)
≥ 0.

Therefore, by (2) and assumption (H1), we have

γ
(
u(x̂) − v(ŷ)

)
≤ G

(
ŷ, v(ŷ), I1,δ[ŷ,

x̂− ŷ
ε

,−|x̂− ·|
2

2ε
] + I2,δ[ŷ,

x̂− ŷ
ε

, v(·)]
)

−G
(
x̂, v(ŷ), I1,δ[x̂,

x̂− ŷ
ε

,
| · −ŷ|2

2ε
] + I2,δ[x̂,

x̂− ŷ
ε

, u(·)]
)
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≤ ΛK

{
I1,δ[x̂,

x̂− ŷ
ε

,
| · −ŷ|2

2ε
] + I2,δ[x̂,

x̂− ŷ
ε

, u(·)]

−
(
I1,δ[ŷ,

x̂− ŷ
ε

,−|x̂− ·|
2

2ε
] + I2,δ[ŷ,

x̂− ŷ
ε

, v(·)]
)}

+ wK(|x̂− ŷ|)

≤ ΛK

{∫
|z|<δ

[
1

2ε
|x̂− ŷ + z|2 − 1

2ε
|x̂− ŷ|2 − 1

ε
(x̂− ŷ) · z]µx̂(dz)

+

∫
|z|<δ

[
1

2ε
|x̂− ŷ − z|2 − 1

2ε
|x̂− ŷ|2 +

1

ε
(x̂− ŷ) · z]µŷ(dz)

+

∫
|z|≥δ

[u(x̂+ z)− u(x̂)− 1B1(0)(z)
1

ε
(x̂− ŷ) · z]µx̂(dz)

−
∫
|z|≥δ

[v(ŷ + z)− v(ŷ)− 1B1(0)(z)
1

ε
(x̂− ŷ) · z]µŷ(dz)

}
+ wK(|x̂− ŷ|)

= ΛK

{∫
|z|<δ

|z|2

2ε
µx̂(dz) +

∫
|z|<δ

|z|2

2ε
µŷ(dz)

+

∫
|z|≥δ

[u(x̂+ z)− u(x̂)− 1B1(0)(z)
1

ε
(x̂− ŷ) · z]

(
µx̂(dz)− µŷ(dz)

)
+

∫
|z|≥δ

[u(x̂+ z)− u(x̂)− v(ŷ + z) + v(ŷ)]µŷ(dz)

}
+ wK(|x̂− ŷ|).

Since u(x)− v(y)− 1
2ε
|x− y|2 attains a global maximum at (x̂, ŷ), we have

u(x̂+ z)− u(x̂) ≤ v(ŷ + z)− v(ŷ), for any z ∈ Rn.

Moreover, by assumption (H2) and the boundedness of u, we have∫
|z|≥δ

[u(x̂+ z)− u(x̂)− 1B1(0)(z)
1

ε
(x̂− ŷ) · z]

(
µx̂(dz)− µŷ(dz)

)
≤

∫
|z|≥1

[u(x̂+ z)− u(x̂)]
(
µx̂(dz)− µŷ(dz)

)
+

∫
1>|z|≥c

[u(x̂+ z)− u(x̂)− 1

ε
(x̂− ŷ) · z]

(
µx̂(dz)− µŷ(dz)

)
+

∫
c>|z|≥δ

[u(x̂+ z)− u(x̂)− 1

ε
(x̂− ŷ) · z]

(
µx̂(dz)− µŷ(dz)

)
≤

∫
c>|z|≥δ

[u(x̂+ z)− u(x̂)− 1

ε
(x̂− ŷ) · z]

(
µx̂(dz)− µŷ(dz)

)
+C|x̂− ŷ|θ + C

|x̂− ŷ|1+θ

ε
.
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Therefore,

γ
(
u(x̂)− v(ŷ)

)
≤ ΛK

{∫
|z|<δ

|z|2

2ε
µx̂(dz) +

∫
|z|<δ

|z|2

2ε
µŷ(dz)

+

∫
c>|z|≥δ

[u(x̂+ z)− u(x̂)− 1

ε
(x̂− ŷ) · z]

(
µx̂(dz)− µŷ(dz)

)
+C|x̂− ŷ|θ + C

|x̂− ŷ|1+θ

ε

}
+ wK(|x̂− ŷ|). (30)

Now by assumption (H2), we have for some C > 0∫
|z|<δ

|z|2

2ε
µx̂(dz) +

∫
|z|<δ

|z|2

2ε
µŷ(dz) ≤ C

δ2−σ

ε
, (31)

∫
c>|z|≥δ

[u(x̂+ z)− u(x̂)− 1

ε
(x̂− ŷ) · z]

(
µx̂(dz)− µŷ(dz)

)
≤
∫
c>|z|≥δ

C
(
|z|r|x̂− ŷ|θ + 1

ε
|x̂− ŷ|1+θ|z|

)
|z|n+σ

dz

≤


C|x̂− ŷ|θδr−1 − C 1

ε
|x̂− ŷ|1+θ ln δ if r < σ = 1,

C|x̂− ŷ|θδr−σ + C 1
ε
|x̂− ŷ|1+θ if r < σ < 1,

−C|x̂− ŷ|θ ln δ + C 1
ε
|x̂− ŷ|1+θ if r = σ < 1,

C|x̂− ŷ|θ + C 1
ε
|x̂− ŷ|1+θ if σ < r < 1.

In the rest of the proof we will only consider the case r < σ. The case σ ≤ r < 1

is easier and can be handled similarly. Let δ = n−α and ε = n−β. By (29), we have

|x̂− ŷ| ≤ Cn−
β

2−r .

If r < σ < 1, we have

C
δ2−σ

ε
= Cnα(σ−2)+β,

C|x̂− ŷ|θδr−σ ≤ Cn−
θβ

2−r+α(σ−r),

C
1

ε
|x̂− ŷ|1+θ ≤ Cn

β
2−r (1−r−θ).

Thus, if

β < (2− σ)α, (32)

α(σ − r) < θβ

2− r
, (33)

θ > 1− r, (34)
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it follows

C
δ2−σ

ε
→ 0, (35)

C|x̂− ŷ|θδr−σ → 0, (36)

C
1

ε
|x̂− ŷ|1+θ → 0. (37)

It remains to find proper α > 0, β > 0, and 0 < r0 < σ so that (32) and (33) hold.

We set β = 1 and α > 1/(2− σ) so that (32) is satisfied. Then obviously there exists

a positive constant r0 < σ such that (33) is satisfied if r0 < r < σ.

If r < σ = 1, we have

C
δ2−σ

ε
= Cnβ−α,

C|x̂− ŷ|θδr−σ ≤ Cn−
θβ

2−r+α(1−r),

C
1

ε
|x̂− ŷ|1+θ(− ln δ) ≤ Cn

β
2−r (1−r−θ) ln(n).

Thus, if

β < α, (38)

α(1− r) < θβ

2− r
, (39)

θ > 1− r, (40)

we have

C
δ2−σ

ε
→ 0, (41)

C|x̂− ŷ|θδr−σ → 0, (42)

C
1

ε
|x̂− ŷ|1+θ(− ln δ)→ 0. (43)

Using the same strategy as before, for any θ > 0, we set β = 1, α > 1, and then

choose 0 < r0 < σ such that (39) is satisfied if r0 < r < 1.

Therefore, using (35)-(37), (41)-(43) in (30), we conclude

γν ≤ lim sup
n→+∞

γ
(
u(x̂)− v(ŷ)

)
≤ 0

if r0 < r < σ. This contradiction thus implies that we must have u ≤ v in Rn.

Case 2: 1 < σ < 2.

We assume that r > 1. Suppose that maxΩ(u − v) = ν > 0. Let K ⊂ Ω be

a compact neighborhood of the set of maximum points of u − v in Ω. There is a

sequence of C2(Rn) ∩BUC(Rn) functions {ψn}n such that

u− ψn → 0 as n→ +∞ uniformly on Rn, (44)
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and 
|Du−Dψn| ≤ Cn1−r on K,

|D2ψn| ≤ Cn2−r on K,

|D2ψn(x)−D2ψn(y)| ≤ Cn3−r|x− y| on K,

(45)

where C is a positive constant (see [22]). Let ρ be a modulus of continuity of u and

v.

Let (x̂, ŷ) ∈ Rn × Rn be a maximum point of(
u(x)− ψn(x)

)
−
(
v(y)− ψn(y)

)
− 1

2ε
|x− y|2

over Rn × Rn. Again it is standard to notice (see Proposition 3.7 of [22]) that

lim
ε→0

(
u(x̂)− v(ŷ)

)
= max

Ω
(u− v), (46)

and there must exist 0 < c < 1 such that Bc(x̂) ∪Bc(ŷ) ⊂ K if ε is sufficiently small.

Moreover, since u(·)−ψn(·)−
(
v(ŷ)−ψn(ŷ)

)
− 1

2ε
| · −ŷ|2 has a global maximum at x̂,

we have

Du(x̂)−Dψn(x̂) =
x̂− ŷ
ε

.

Thus, we get
|x̂− ŷ|
ε
≤ Cn1−r. (47)

By the definition of viscosity subsolutions and supersolutions, we have, for any 0 <

δ < c,

G

(
x̂, u(x̂), I1,δ[x̂,

x̂− ŷ
ε

+Dψn(x̂),
| · −ŷ|2

2ε
+ ψn(·)] + I2,δ[x̂,

x̂− ŷ
ε

+Dψn(x̂), u(·)]
)
≤ 0,

G

(
ŷ, v(ŷ), I1,δ[ŷ,

x̂− ŷ
ε

+Dψn(ŷ), ψn(·)− |x̂− ·|
2

2ε
] + I2,δ[ŷ,

x̂− ŷ
ε

+Dψn(ŷ), v(·)]
)
≥ 0.

Therefore, by (2) and assumption (H1), we have

γ
(
u(x̂)− v(ŷ)

)
≤ G

(
ŷ, v(ŷ), I1,δ[ŷ,

x̂− ŷ
ε

+Dψn(ŷ), ψn(·)− |x̂− ·|
2

2ε
] + I2,δ[ŷ,

x̂− ŷ
ε

+Dψn(ŷ), v(·)]
)

− G

(
x̂, v(ŷ), I1,δ[x̂,

x̂− ŷ
ε

+Dψn(x̂),
| · −ŷ|2

2ε
+ ψn(·)] + I2,δ[x̂,

x̂− ŷ
ε

+Dψn(x̂), u(·)]
)

≤ ΛK

{
I1,δ[x̂,

x̂− ŷ
ε

+Dψn(x̂),
| · −ŷ|2

2ε
+ ψn(·)] + I2,δ[x̂,

x̂− ŷ
ε

+Dψn(x̂), u(·)]

−
(
I1,δ[ŷ,

x̂− ŷ
ε

+Dψn(ŷ), ψn(·)− |x̂− ·|
2

2ε
] + I2,δ[ŷ,

x̂− ŷ
ε

+Dψn(ŷ), v(·)]
)}

+ wK(|x̂− ŷ|)
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≤ ΛK

{∫
|z|<δ

[
ψn(x̂+ z) +

1

2ε
|x̂− ŷ + z|2 −

(
ψn(x̂) +

1

2ε
|x̂− ŷ|2

)
−
(1

ε
(x̂− ŷ) +Dψn(x̂)

)
· z
]
µx̂(dz)

−
∫
|z|<δ

[
ψn(ŷ + z)− 1

2ε
|x̂− ŷ − z|2 −

(
ψn(ŷ)− 1

2ε
|x̂− ŷ|2

)
−
(1

ε
(x̂− ŷ) +Dψn(ŷ)

)
· z
]
µŷ(dz)

+

∫
|z|≥δ

[u(x̂+ z)− u(x̂)− 1B1(0)(z)
(1

ε
(x̂− ŷ) +Dψn(x̂)

)
· z]µx̂(dz)

−
∫
|z|≥δ

[v(ŷ + z)− v(ŷ)− 1B1(0)(z)
(1

ε
(x̂− ŷ) +Dψn(ŷ)

)
· z]µŷ(dz)

}
+ wK(|x̂− ŷ|)

≤ ΛK

{∫
|z|<δ

[
1

2ε
|z|2 + ψn(x̂+ z)− ψn(x̂)−Dψn(x̂) · z]µx̂(dz)

−
∫
|z|<δ

[− 1

2ε
|z|2 + ψn(ŷ + z)− ψn(ŷ)−Dψn(ŷ) · z]µŷ(dz)

+

∫
|z|≥δ

[u(x̂+ z)− u(x̂)− 1B1(0)(z)
(1

ε
(x̂− ŷ) +Dψn(x̂)

)
· z]
(
µx̂(dz)− µŷ(dz)

)
+

∫
|z|≥δ

[u(x̂+ z)− u(x̂)− v(ŷ + z) + v(ŷ)− 1B1(0)(z)
(
Dψn(x̂)−Dψn(ŷ)

)
· z]µŷ(dz)

}
+ wK(|x̂− ŷ|).

Since (x̂, ŷ) is a global maximum point of
(
u(x)−ψn(x)

)
−
(
v(y)−ψn(y)

)
− 1

2ε
|x−y|2,

we have

u(x̂+z)−u(x̂)−v(ŷ+z)+v(ŷ) ≤ ψn(x̂+z)−ψn(x̂)−ψn(ŷ+z)+ψn(ŷ), for all z ∈ Rn.

Thus, by (45) and the uniform continuity of u, v, we have∫
|z|≥δ

[u(x̂+ z)− u(x̂)− v(ŷ + z) + v(ŷ)− 1B1(0)(z)
(
Dψn(x̂)−Dψn(ŷ)

)
· z]µŷ(dz)

≤
∫
c≥|z|≥δ

[(
ψn(x̂+ z)− ψn(x̂)−Dψn(x̂) · z

)
−
(
ψn(ŷ + z)− ψn(ŷ)−Dψn(ŷ) · z

)]
µŷ(dz) + C|x̂− ŷ|r−1 + Cρ(|x̂− ŷ|).

Moreover, by assumption (H2), the boundedness of u and Du(x̂) = 1
ε
(x̂−ŷ)+Dψn(x̂)

(in n and ε), we have∫
|z|≥δ

[
u(x̂+ z)− u(x̂)− 1B1(0)(z)

(1

ε
(x̂− ŷ) +Dψn(x̂)

)
· z
](
µx̂(dz)− µŷ(dz)

)
≤
∫
c≥|z|≥δ

+

∫
|z|≥c

≤
∫
c≥|z|≥δ

[
u(x̂+ z)− u(x̂)−

(1

ε
(x̂− ŷ) +Dψn(x̂)

)
· z
](
µx̂(dz)− µŷ(dz)

)
+ C|x̂− ŷ|θ.
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Therefore, we have

γ
(
u(x̂)− v(ŷ)

)
≤ ΛK

{∫
|z|<δ

[ 1

2ε
|z|2 + ψn(x̂+ z)− ψn(x̂)−Dψn(x̂) · z

]
µx̂(dz)

−
∫
|z|<δ

[
− 1

2ε
|z|2 + ψn(ŷ + z)− ψn(ŷ)−Dψn(ŷ) · z

]
µŷ(dz)

+

∫
c≥|z|≥δ

[
u(x̂+ z)− u(x̂)−

(1

ε
(x̂− ŷ) +Dψn(x̂)

)
· z
](
µx̂(dz)− µŷ(dz)

)
+

∫
c≥|z|≥δ

[(
ψn(x̂+ z)− ψn(x̂)−Dψn(x̂) · z

)
−
(
ψn(ŷ + z)− ψn(ŷ)−Dψn(ŷ) · z

)]
µŷ(dz)

}
+ Cρ(|x̂− ŷ|) + C|x̂− ŷ|r−1 + C|x̂− ŷ|θ + wK(|x̂− ŷ|). (48)

Estimate (31) holds. Moreover, by (H2) and (45), we have∣∣∣∣∫
|z|<δ

[ψn(x̂+ z)− ψn(x̂)−Dψn(x̂) · z]µx̂(dz)

∣∣∣∣ ≤ Cn2−rδ2−σ,∣∣∣∣∫
|z|<δ

[ψn(ŷ + z)− ψn(ŷ)−Dψn(ŷ) · z]µŷ(dz)

∣∣∣∣ ≤ Cn2−rδ2−σ,

∫
c≥|z|≥δ

[
u(x̂+ z)− u(x̂)−

(1

ε
(x̂− ŷ) +Dψn(x̂)

)
· z
](
µx̂(dz)− µŷ(dz)

)
≤ C

∫
c≥|z|≥δ

|z|r|x̂− ŷ|θ

|z|n+σ
dz ≤


Cδr−σ|x̂− ŷ|θ if r < σ,

−C|x̂− ŷ|θ ln δ if r = σ,

C|x̂− ŷ|θ if σ < r < 2.

We recall a simple identity. If f ∈ C2(Rn) then for every x, z ∈ Rn

f(x+ z) = f(x) +Df(x) · z +

∫ 1

0

∫ 1

0

D2f(x+ stz)z · z tdsdt.

Using it, (H2), and recalling that Bc(x̂) ∪Bc(ŷ) ⊂ K, we obtain∫
c≥|z|≥δ

[(
ψn(x̂+ z)− ψn(x̂)−Dψn(x̂) · z

)
−
(
ψn(ŷ + z)− ψn(ŷ)−Dψn(ŷ) · z

)]
µŷ(dz)

=

∫
c≥|z|≥δ

∫ 1

0

∫ 1

0
[D2ψn(x̂+ stz)−D2ψn(ŷ + stz)]z · z tdsdtµŷ(dz)

≤ C
∫
c≥|z|≥δ

n3−r|x̂− ŷ| |z|
2

|z|n+σ
dz ≤ Cn3−r|x̂− ŷ|.

In the remainder of the proof we will only consider the case r < σ. The case σ ≤ r < 2

is easier and can be done similarly (see also Remark 3). Assume then that 1 < r < σ.

Let again δ = n−α and ε = n−β. By (47), we have

C
δ2−σ

ε
= Cnα(σ−2)+β,
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Cn2−rδ2−σ = Cn2−r+α(σ−2),

C|x̂− ŷ|θδr−σ ≤ Cn−θ[(r−1)+β]−α(r−σ),

Cn3−r|x̂− ŷ| ≤ Cn−(r−1)−β+(3−r).

Thus, if

β < (2− σ)α, (49)

2− r < α(2− σ), (50)

α(σ − r) < θ(r − 1 + β), (51)

(4− 2r) < β, (52)

we have

C
δ2−σ

ε
→ 0, (53)

Cn2−rδ2−σ → 0, (54)

C|x̂− ŷ|θδr−σ → 0, (55)

Cn3−r|x̂− ŷ| → 0. (56)

We need to find α > 0, β > 0, and 1 ≤ r0 < σ so that (49)-(52) are satisfied if

r0 < r < σ. First fix β such that (52) is satisfied. Then, fix α such that (49) and (50)

are satisfied. It is then clear that there exists a positive constant 1 ≤ r0 < σ such

that (51) is satisfied if r0 < r < σ.

Thus, letting n → +∞ in (48) and using (46) and (53)-(56), we obtain γν ≤ 0

which is a contradiction. Therefore, u ≤ v in Rn.

Remark 2. It follows from the proof of Theorem 3.2.1 that if the kernel functions

a(x, ·) are symmetric, the requirement θ > max{0, 1− r} can be replaced by a weaker

requirement θ > 0. The same remark applies to Theorems 3.2.2, 3.3.1, 3.3.2, 3.4.4,

Lemmas 3.4.1, 3.4.2, and Corollaries 1, 2, 3, 4.

Corollary 1. Let the assumptions of Theorem 3.2.1 be satisfied, 0 < σ < 2, θ >

max{0, 1− r}, 0 < r < 2. If u is a viscosity subsolution, v is a viscosity supersolution

of (7), u ≤ v in Ωc, and either u or v is in Cr(Ω), then:

(i) For 0 < σ ≤ 1, if σ < θ(2−r)
2−r+θ + r, we have u ≤ v in Rn.

(ii) For 1 < σ < 2 and r > 1, if σ < 2− 2 (2−r)2

θ(3−r)+(4−2r)
, we have u ≤ v in Rn.

Proof. (i) Let β = 1 and α = 1/(2 − σ) + η, where η > 0. Then (32) and (34) hold

and (33) will be satisfied if(
1

2− σ
+ η

)
(σ − r) < θ

2− r
.
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An easy calculation shows that the above will be true for some η > 0 if

σ <
θ(2− r)
2− r + θ

+ r.

(ii) Set

β = 4− 2r + η1, α =
4− 2r + η1

2− σ
+ η2,

where η1, η2 > 0. Then (49), (50) and (52) are satisfied, and (51) will be satisfied if(
4− 2r + η1

2− σ
+ η2

)
(σ − r) < θ (r − 1 + 4− 2r + η1)

for some η1, η2 > 0. Again a simple calculation yields that this inequality will be

satisfied for some η1, η2 > 0 if

σ < 2− 2
(2− r)2

θ(3− r) + (4− 2r)
.

Let us consider another important fully nonlinear integro-PDE appearing in the

study of stochastic optimal control and stochastic differential games for processes

with jumps, namely the Bellman-Isaacs equation (9)

γu+ sup
α∈A

inf
β∈B
{−Iαβ[x, u] + fαβ(x)} = 0, in Ω,

where Iαβ[x, u] =
∫
Rn [u(x+z)−u(x)−1B1(0)(z)Du(z)·z]µαβx (dz) and {µαβx } is a family

of Lévy measures with indices α and β ranging in some sets A and B. Equation (9)

is not of the same form as (7), which means that the following theorem and corollary

are not corollaries of Theorem 3.2.1 and Corollary 1, however the proofs follow the

same arguments. Similar results would be true if we included other typical purely

local first and second order terms in (9).

Theorem 3.2.2. Let Ω be a bounded domain. Suppose that γ > 0, the family of Lévy

measures {µαβx } satisfies assumption (H2) uniformly in α ∈ A, β ∈ B, and fαβ are

uniformly bounded in Ω and uniformly continuous in every compact subset K ⊂ Ω,

uniformly in α ∈ A, β ∈ B. Then, for any 0 < σ < 2, there exists a constant

0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if r0 < r < 2, θ > max{0, 1 − r}, u is a

viscosity subsolution of (9), v is a viscosity supersolution of (9), u ≤ v in Ωc, and

either u or v is in Cr(Ω), we have u ≤ v in Rn.

Corollary 2. Let the assumptions of Theorem 3.2.2 be satisfied, 0 < σ < 2, θ >

max{0, 1 − r}, 0 < r < 2. If u is a viscosity subsolution of (9), v is a viscosity

supersolution of (9), u ≤ v in Ωc, and either u or v is in Cr(Ω), then:

(i) For 0 < σ ≤ 1, if σ < θ(2−r)
2−r+θ + r, we have u ≤ v in Rn.

(ii) For 1 < σ < 2 and r > 1, if σ < 2− 2 (2−r)2

θ(3−r)+(4−2r)
, we have u ≤ v in Rn.
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Remark 3. Suppose that the kernel function a(x, z) satisfies the second condition

of (H2). If r > max(σ, 1), or if r > σ and the kernels a(x, ·) are symmetric, then

a viscosity subsolution/supersolution of (7) which is in Cr(Ω) can be considered to

be a classical subsolution/supersolution of (7). In such a case comparison theorem

is standard and we do not need the full assumptions of Theorem 3.2.1. The same

remark applies to Theorem 3.2.2, and Theorems 3.3.1 and 3.3.2 if condition (H3) is

satisfied.

3.3 Uniqueness of viscosity solutions of (7) for γ = 0

In this section we investigate uniqueness of viscosity solutions of (7) when γ = 0 in

(2). As always we assume that G is continuous and (3), (2), (8) hold. To compensate

for the fact that γ = 0, we will assume that the nonlinearity G is uniformly elliptic

with respect to a class of linear nonlocal operators L. A class L is a set of linear

nonlocal operators L of the form

Lu(x) =

∫
Rn

[u(x+ z)− u(x)− 1B1(0)(z)Du(x) · z]µL(dz),

where the Lévy measures µL are symmetric and satisfy supL∈L
∫
Rn min{1, |z|2}µL(dz) <

+∞. We say that the nonlinearity G in (7) is uniformly elliptic with respect to L if

for every ϕ, ψ ∈ C2(Bδ(x)) ∩BUC(Rn), x ∈ Ω, r ∈ R, δ > 0,

M−
L (ψ − ϕ)(x) ≤ G (x, r, I[x, ϕ])−G (x, r, I[x, ψ]) ≤M+

L (ψ − ϕ)(x),

where

M+
L ϕ(x) = sup

L∈L
Lϕ(x),

M−
L ϕ(x) = inf

L∈L
Lϕ(x).

In order to have a comparison principle for the case γ = 0, we need to impose

an additional minimal ellipticity condition on the class L. We will assume that the

following condition holds.

(H3) There exist a non-negative function ϕ ∈ C2(Ω) ∩ BUC(Rn) and δ0 > 0, such

that Lϕ > δ0 in Ω for every L ∈ L.

Theorem 3.3.1. Let Ω be a bounded domain and let a class L satisfy (H3). Suppose

that the nonlinearity G in (7) is continuous and uniformly elliptic with respect to L,

and satisfies (2) with γ = 0 and (H1). Suppose that the family of Lévy measures

{µx} satisfies assumption (H2). Then, for any 0 < σ < 2, there exists a constant

0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if r0 < r < 2, θ > max{0, 1 − r}, u is a
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viscosity subsolution of (7), v is a viscosity supersolution of (7), u ≤ v in Ωc, and

either u or v is in Cr(Ω), we have u ≤ v in Rn.

Proof. By (H3), there is a positive constant M > 0 such that ϕ ≤ M in Rn. For

any ε > 0, let ϕε = ε(1 − 1
M
ϕ) in Rn. Obviously, we have 0 ≤ ϕε ≤ ε in Rn and

M−
L (−ϕε) = M−

L ( ε
M
ϕ) ≥ εδ0

M
in Ω.

We claim that v+ϕε is a viscosity supersolution of G = εδ0
M

in Ω. Suppose that x ∈
Ω, δ > 0 and ψ ∈ C2(Bδ(x))∩BUC(Rn) are such that v+ϕε−ψ has a minimum over

Bδ(x) at x. Thus, there exists a positive constant δ′ > 0 such that Bδ′(x) ⊂ Ω∩Bδ(x).

Since v is a viscosity supersolution of (7), we have G(x, v(x), I[x, ψ − ϕε]) ≥ 0. By

(2) and the uniform ellipticity, we get

G(x, v(x) + ϕε(x), I[x, ψ]) ≥ G(x, v(x) + ϕε(x), I[x, ψ])−G(x, v(x), I[x, ψ − ϕε])
≥ G(x, v(x), I[x, ψ])−G(x, v(x), I[x, ψ − ϕε])

≥ M−
L (−ϕε) ≥

εδ0

M
.

Therefore, the proof of the claim is complete.

We notice that u ≤ v + ϕε in Ωc. We can now repeat the proof of Theorem 3.2.1

to obtain u ≤ v+ϕε ≤ v+ ε in Rn. (Instead of the contradiction γν ≤ 0 we will now

get a contradiction εδ0
M
≤ 0.) Letting ε→ 0+, we thus conclude that u ≤ v in Rn.

Combining the proofs of Corollary 1 and Theorem 3.3.1, we have the following

corollary.

Corollary 3. Let the assumptions of Theorem 3.3.1 be satisfied, 0 < σ < 2, θ >

max{0, 1− r}, 0 < r < 2. If u is a viscosity subsolution, v is a viscosity supersolution

of (7), u ≤ v in Ωc, and either u or v is in Cr(Ω), then:

(i) For 0 < σ ≤ 1, if σ < θ(2−r)
2−r+θ + r, we have u ≤ v in Rn.

(ii) For 1 < σ < 2 and r > 1, if σ < 2− 2 (2−r)2

θ(3−r)+(4−2r)
, we have u ≤ v in Rn.

The same techniques also produce the following two results for equation (9).

Theorem 3.3.2. Let Ω be a bounded domain. Suppose that γ = 0, the family of

Lévy measures {µαβx } satisfies assumption (H2) uniformly in α ∈ A, β ∈ B, and

fαβ are uniformly bounded in Ω and uniformly continuous in every compact subset

K ⊂ Ω, uniformly in α ∈ A, β ∈ B, and the class {Iαβ} satisfies (H3). Then, for

any 0 < σ < 2, there exists a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if

r0 < r < 2, θ > max{0, 1 − r}, u is a viscosity subsolution of (9), v is a viscosity

supersolution of (9), u ≤ v in Ωc, and either u or v is in Cr(Ω), we have u ≤ v in

Rn.
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Corollary 4. Let the assumptions of Theorem 3.3.2 be true, 0 < σ < 2, θ >

max{0, 1 − r} and 0 < r < 2. If u is a viscosity subsolution of (9), v is a vis-

cosity supersolution of (9), u ≤ v in Ωc, and either u or v is in Cr(Ω), then:

(i) For 0 < σ ≤ 1, if σ < θ(2−r)
2−r+θ + r, we have u ≤ v in Rn.

(ii) For 1 < σ < 2 and r > 1, if σ < 2− 2 (2−r)2

θ(3−r)+(4−2r)
, we have u ≤ v in Rn.

3.4 Regularization by sup/inf-convolutions

In this section we show how techniques of Section 3.2 can be adapted to regularize

viscosity sub/supersolutions by sup/inf-convolutions. It is a generally expected prin-

ciple in the theory of viscosity solutions of PDE that whenever one is able to prove

a comparison principle then one should be able to prove that a sup-convolution of

a viscosity subsolution (respectively, inf-convolution of a viscosity supersolution) is

a viscosity subsolution (respectively, supersolution) of a slightly perturbed equation.

The same principle also seems to work for viscosity sub/supersolutions of integro-PDE

under standard assumptions, see e.g. [45] for a proof for a standard Bellman-Isaacs

equation. Here the situation is a bit more complicated. Since in our case the proof

of comparison principle uses auxiliary functions ψn, we have to introduce a notion of

sup/inf-convolution that depends on a parameter ε > 0 and on a function ψ. Such

sup/inf convolutions have been used in [41]. We will also show that if G is uniformly

elliptic with respect to a class L of linear nonlocal operators, u is a viscosity subsolu-

tion of (7) and v is a viscosity supersolution of (7), then u−v satisfies M−
L (v−u) ≤ 0

in the viscosity sense. Similar results can also be proved for equation (9).

We will always assume that G is continuous and satisfies (3), (2), (8). We first

give yet another equivalent definition of viscosity solutions of (7).

Definition 3. A function ϕ is said to be C1,1 at the point x, and we write u ∈ C1,1(x),

if there are a vector p ∈ Rn, a constant M > 0 and a neighborhood Nx of x such that

|ϕ(y)− ϕ(x)− p · (y − x)| ≤M |y − x|2 for y ∈ Nx.

The definition implies that Dϕ(x) = p.

Definition 4. A function u ∈ BUC(Rn) is a viscosity subsolution of (7) if for any

test function ϕ(x) ∈ C1,1(x) ∩ BUC(Bδ(x)) such that u − ϕ has a maximum over

Bδ(x) at x ∈ Ω,

G
(
x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

)
≤ 0.

A function u ∈ BUC(Rn) is a viscosity supersolution of (7) if for any test function

ϕ ∈ C1,1(x) ∩BUC(Bδ(x)) such that u− ϕ has a minimum over Bδ(x) at x ∈ Ω,

G
(
x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

)
≥ 0.
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A function u ∈ BUC(Rn) is a viscosity solution of (7) if it is both a viscosity subso-

lution and viscosity supersolution of (7).

Proposition 1. Let G be continuous and (3), (2), (8) hold. Then Definition 2 is

equivalent to Definition 4.

Proof. Obviously if u is a viscosity sub/supersolution in the sense of Definition 4, it

is a viscosity sub/supersolution in the sense of Definition 2. Assume now that u is a

viscosity subsolution in the sense of Definition 2. Let ϕ ∈ C1,1(x)∩BUC(Bδ(x)) and

u−ϕ have a maximum over Bδ(x) at x. Then I1,δ[x,Dϕ(x), ϕ], I2,δ[x,Dϕ(x), u]) are

well defined. Also because ϕ is C1,1(x), there exist a sequence of C2(Bδ(x)) functions

{ϕn}n and a positive constant C such that ϕ − ϕn has a maximum point at x over

Bδ(x), ϕn ≥ ϕ, ϕn → ϕ uniformly in Bδ(x) and |ϕn(x+z)−ϕn(x)−Dϕn(x)·z| ≤ C|z|2.

Thus u − ϕn has a maximum at x over Bδ(x) and Dϕ(x) = Dϕn(x). Therefore, by

Definition 2,

G
(
x, u(x), I1,δ[x,Dϕ(x), ϕn] + I2,δ[x,Dϕ(x), u]

)
≤ 0.

Letting n→ +∞ and using the Lebesgue Dominated Convergence Theorem we thus

conclude

G
(
x, u(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

)
≤ 0.

Definition 5 (see [41]). Given u, ψ ∈ BUC(Rn), ε > 0, the ψ-sup-convolution uψ,ε of

u is defined by

uψ,ε(x) := (u− ψ)ε(x) + ψ(x) = sup
y∈Rn

{
u(y)− ψ(y)− |x− y|

2

2ε

}
+ ψ(x),

and the ψ-inf-convolution uψ,ε of u is defined by

uψ,ε(x) := (u− ψ)ε(x) + ψ(x) = inf
y∈Rn

{
u(y)− ψ(y) +

|x− y|2

2ε

}
+ ψ(x).

Remark 4. The functions u0,ε and u0,ε are the usual sup- and inf-convolutions of u

respectively, and we will denote them by uε and uε (see [22]).

Remark 5. uψα,ε(x), uψα,ε(x) → u(x) uniformly for x ∈ Rn and α ∈ A as ε → 0 if

the functions {ψα}α∈A ⊂ BUC(Rn) have a uniform modulus of continuity.

Lemma 3.4.1. Let Ω be a bounded domain. Suppose that the nonlinearity G in (7) is

continuous and G(x, ·, l) is uniformly continuous, uniformly for x ∈ Ω, l ∈ R. Assume

moreover that G satisfies (2) with γ = 0 and (H1), and the family of Lévy measures
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{µx} satisfies assumption (H2). Then, for any 0 < σ < 2, there exists a constant

0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if r0 < r < 2, θ > max{0, 1− r}, Ω′ ⊂⊂ Ω is

an open set, u ∈ Cr(Ω) is a viscosity subsolution of (7), then there are a sequence of

C2(Rn)∩BUC(Rn) functions {ψn}n with a uniform modulus of continuity, a sequence

of positive numbers {εn}n with εn → 0, and a modulus ρ such that uψn,εn is a viscosity

subsolution of

G(x, uψn,εn , I[x, uψn,εn ]) = ρ(
1

n
) in Ω′. (57)

Proof. Case 1: 0 < σ ≤ 1.

As in the proof of Theorem 3.2.1, without loss of generality, we can assume that

0 < r < 1. For any x̂ ∈ Ω′ and Bδ̂(x̂) ⊂ Ω′, suppose that there is a test function

ϕ ∈ C2(Bδ̂(x̂)) such that uε − ϕ has a maximum (equal 0) at x̂ over Bδ̂(x̂). Since

u ∈ BUC(Rn), there exists a point ŷ ∈ Ω′ such that uε(x̂) = u(ŷ) − |x̂−ŷ|2
2ε

if ε

is sufficiently small. Thus u(y) − 1
2ε
|x − y|2 − ϕ(x) has a maximum at (ŷ, x̂) over

Rn ×Bδ̂(x̂) and u(ŷ) ≥ uε(x̂). Therefore, we have

|x̂− ŷ|2−r

2ε
≤ C

for some C > 0 independent of ε. Notice that uε is semi-convex, which implies that

there is a paraboloid touching its graph from below at x̂. Since ϕ ∈ C2(Bδ̂(x̂))

touches the graph of uε from above at x̂, we get uε ∈ C1,1(x̂) ∩ BUC(Rn). For any

0 < δ < min{δ̂, 1} and small ε > 0, we have by (2) and (H1),

G
(
x̂, uε(x̂), I1,δ[x̂, Duε(x̂), uε] + I2,δ[x̂, Duε(x̂), uε]

)
−G

(
ŷ, u(ŷ), I1,δ[ŷ,

ŷ − x̂
ε

,
|x̂− ·|2

2ε
] + I2,δ[ŷ,

ŷ − x̂
ε

, u]

)
≤ G

(
x̂, u(ŷ), I1,δ[x̂, Duε(x̂), uε] + I2,δ[x̂, Duε(x̂), uε]

)
−G

(
ŷ, u(ŷ), I1,δ[ŷ,

ŷ − x̂
ε

,
|x̂− ·|2

2ε
] + I2,δ[ŷ,

ŷ − x̂
ε

, u]

)
≤ ΛΩ′

{
I1,δ[ŷ,

ŷ − x̂
ε

,
|x̂− ·|2

2ε
] + I2,δ[ŷ,

ŷ − x̂
ε

, u]

−
(
I1,δ[x̂, Duε(x̂), uε] + I2,δ[x̂, Duε(x̂), uε]

)}
+ wΩ′(|x̂− ŷ|)

≤ ΛΩ′

{∫
|z|<δ

[ 1

2ε
|x̂− ŷ − z|2 − 1

2ε
|x̂− ŷ|2 − 1

ε
(ŷ − x̂) · z

]
µŷ(dz)

−
∫
|z|<δ

[
uε(x̂+ z)− uε(x̂)− 1

ε
(ŷ − x̂) · z

]
µx̂(dz)

+

∫
|z|≥δ

[
u(ŷ + z)− u(ŷ)− 1B1(0)(z)

1

ε
(ŷ − x̂) · z

]
µŷ(dz)
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−
∫
|z|≥δ

[
uε(x̂+ z)− uε(x̂)− 1B1(0)(z)

1

ε
(ŷ − x̂) · z

]
µx̂(dz)

}
+ wΩ′(|x̂− ŷ|).

(58)

Since ŷ−x̂
ε

= Duε(x̂) and uε(z) + |z|2
2ε

is convex, we have

−|z|
2

2ε
≤ uε(x̂+ z)− uε(x̂)− 1

ε
(ŷ − x̂) · z. (59)

Thus, by (58) and (59),

G
(
x̂, uε(x̂), I1,δ[x̂, Duε(x̂), uε] + I2,δ[x̂, Duε(x̂), uε]

)
−G

(
ŷ, u(ŷ), I1,δ[ŷ,

ŷ − x̂
ε

,
|x̂− ·|2

2ε
] + I2,δ[ŷ,

ŷ − x̂
ε

, u]

)
≤ ΛΩ′

{∫
|z|<δ

1

2ε
|z|2
(
µŷ(dz) + µx̂(dz)

)
+

∫
|z|≥δ

[
u(ŷ + z)− u(ŷ)− 1B1(0)(z)

1

ε
(ŷ − x̂) · z

](
µŷ(dz)− µx̂(dz)

)
+

∫
|z|≥δ

[
u(ŷ + z)− u(ŷ)−

(
uε(x̂+ z)− uε(x̂)

)]
µx̂(dz)

}
+ wΩ′(|x̂− ŷ|).

(60)

By the definition of uε, we have

uε(x̂+ z) ≥ u(ŷ + z)− |x̂− ŷ|
2

2ε
,

which implies

uε(x̂+ z)− uε(x̂) ≥ u(ŷ + z)− u(ŷ). (61)

Thus, by (60) and (61), it follows

G
(
x̂, uε(x̂), I1,δ[x̂, Duε(x̂), uε] + I2,δ[x̂, Duε(x̂), uε]

)
−G

(
ŷ, u(ŷ), I1,δ[ŷ,

ŷ − x̂
ε

,
|x̂− ·|2

2ε
] + I2,δ[ŷ,

ŷ − x̂
ε

, u]

)
≤ ΛΩ′

{∫
|z|<δ

1

2ε
|z|2
(
µŷ(dz) + µx̂(dz)

)
+

∫
|z|≥δ

[
u(ŷ + z)− u(ŷ)− 1B1(0)(z)

1

ε
(ŷ − x̂) · z

](
µŷ(dz)− µx̂(dz)

)}
(62)

+wΩ′(|x̂− ŷ|).
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We now let δn = n−α and εn = n−β, and use the same estimates as in Case 1 of the

proof of Theorem 3.2.1 to show that, we can find α > 0, β > 0, and 0 < r0 < σ such

that, if r0 < r < 1 and θ > 1− r, then

G
(
x̂, uεn(x̂), I1,δn [x̂, Duεn(x̂), uεn ] + I2,δn [x̂, Duεn(x̂), uεn ]

)
−G

(
ŷ, u(ŷ), I1,δn [ŷ,

ŷ − x̂
εn

,
|x̂− ·|2

2εn
] + I2,δn [ŷ,

ŷ − x̂
εn

, u]

)
≤ ρ(

1

n
)

for some modulus ρ. Since u is a viscosity subsolution of (7), this implies

G(x̂, uεn(x̂), I[x̂, uεn ]) = G
(
x̂, uεn(x̂), I1,δn [x̂, Duεn(x̂), uεn ] + I2,δn [x̂, Duεn(x̂), uεn ]

)
≤ ρ(

1

n
).

Case 2: 1 < σ < 2.

We take r > 1. Let {ψn}n be a sequence of C2(Rn) ∩ BUC(Rn) functions which

are uniformly bounded and have a uniform (in n) modulus of continuity h, which

satisfy (44) and (45) with K replaced by Ω′.

Let x̂ ∈ Ω′, Bδ̂(x̂) ⊂ Ω′, and suppose that there is a test function ϕ ∈ C2(Bδ̂(x̂))

such that uψn,ε − ϕ has a maximum (equal 0) at x̂ over Bδ̂(x̂). Since u ∈ BUC(Rn)

and ψn ∈ BUC(Rn), there exists a point ŷ ∈ Ω′ such that uψn,ε(x̂) = u(ŷ)− ψn(ŷ) +

ψn(x̂)− |x̂−ŷ|
2

2ε
if ε is sufficiently small. Thus u(y)−ψn(y) +ψn(x)− |x−y|

2

2ε
−ϕ(x) has

a maximum at (ŷ, x̂) over Rn × Bδ̂(x̂) and u(ŷ) − ψn(ŷ) + ψn(x̂) ≥ uψn,ε(x̂). Since

u(·)− ψn(·)− |x̂−·|
2

2ε
has a maximum at ŷ over Rn, we have

Du(ŷ)−Dψn(ŷ) =
ŷ − x̂
ε

.

Thus, by (45),
|ŷ − x̂|
ε
≤ Cn1−r.

Since uψn,ε is semi-convex, there is a paraboloid touching its graph from below at

x̂. Since ϕ ∈ C2(Bδ̂(x̂)) touches the graph of uψn,ε from above at x̂, we obtain that

uψn,ε ∈ C1,1(x̂) ∩ BUC(Rn). Thus, for any 0 < δ < min{δ̂, 1} and small ε > 0, we

have, by (2), (H1), (45), uniform continuity of the ψn and the continuity properties

of G,

G
(
x̂, uψn,ε(x̂), I1,δ[x̂, Duψn,ε(x̂), uψn,ε] + I2,δ[x̂, Duψn,ε(x̂), uψn,ε]

)
−G

(
ŷ, u(ŷ), I1,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ),
|x̂− ·|2

2ε
+ ψn] + I2,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ), u]

)
≤ G

(
x̂, u(ŷ)− ψn(ŷ) + ψn(x̂), I1,δ[x̂, Duψn,ε(x̂), uψn,ε] + I2,δ[x̂, Duψn,ε(x̂), uψn,ε]

)
−G

(
ŷ, u(ŷ), I1,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ),
|x̂− ·|2

2ε
+ ψn] + I2,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ), u]

)
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≤ G
(
x̂, u(ŷ), I1,δ[x̂, Duψn,ε(x̂), uψn,ε] + I2,δ[x̂, Duψn,ε(x̂), uψn,ε]

)
+ ρ1(

1

n
)

−G
(
ŷ, u(ŷ), I1,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ),
|x̂− ·|2

2ε
+ ψn] + I2,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ), u]

)
≤ ΛΩ′

{
I1,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ),
|x̂− ·|2

2ε
+ ψn] + I2,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ), u]

−
(
I1,δ[x̂, Duψn,ε(x̂), uψn,ε] + I2,δ[x̂, Duψn,ε(x̂), uψn,ε]

)}
+ ρ1(

1

n
)

≤ ΛΩ′

{∫
|z|<δ

[( 1

2ε
|x̂− ŷ − z|2 + ψn(ŷ + z)

)
−
( 1

2ε
|x̂− ŷ|2 + ψn(ŷ)

)
−
(1

ε
(ŷ − x̂) +Dψn(ŷ)

)
· z
]
µŷ(dz)

−
∫
|z|<δ

[
uψn,ε(x̂+ z)− uψn,ε(x̂)−

(1

ε
(ŷ − x̂) +Dψn(x̂)

)
· z
]
µx̂(dz)

+

∫
|z|≥δ

[
u(ŷ + z)− u(ŷ)− 1B1(0)(z)

(1

ε
(ŷ − x̂) +Dψn(ŷ)

)
· z
]
µŷ(dz)

−
∫
|z|≥δ

[
uψn,ε(x̂+ z)− uψn,ε(x̂)− 1B1(0)(z)

(1

ε
(ŷ − x̂) +Dψn(x̂)

)
· z
]
µx̂(dz)

}
+ρ1(

1

n
) (63)

for some modulus ρ1 independent of δ, ε.

Since ŷ−x̂
ε

+Dψn(x̂) = Duψn,ε(x̂) and uψn,ε(z) + |z|2
2ε

+ (supΩ′ |D2ψn|)|z|2 is convex

on Bδ̂(x̂), we have for |z| < δ̂

−|z|
2

2ε
− (sup

Ω′
|D2ψn|)|z|2 ≤ uψn,ε(x̂+ z)− uψn,ε(x̂)−

( ŷ − x̂
ε

+Dψn(x̂)
)
· z. (64)

Moreover, by the definition of uψn,ε,

uψn,ε(x̂+ z) ≥ u(ŷ + z)− ψn(ŷ + z) + ψn(x̂+ z)− |x̂− ŷ|
2

2ε
,

which gives

u(ŷ+z)−u(ŷ)−
(
uψn,ε(x̂+z)−uψn,ε(x̂)

)
≤ ψn(ŷ+z)−ψn(ŷ)−

(
ψn(x̂+z)−ψn(x̂)

)
. (65)

Thus, by (63), (64) and (65), we have

G
(
x̂, uψn,ε(x̂), I1,δ[x̂, Duψn,ε(x̂), uψn,ε] + I2,δ[x̂, Duψn,ε(x̂), uψn,ε]

)
−G

(
ŷ, u(ŷ), I1,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ),
|x̂− ·|2

2ε
+ ψn] + I2,δ[ŷ,

ŷ − x̂
ε

+Dψn(ŷ), u]

)
≤ ΛΩ′

{∫
|z|<δ

[ 1

2ε
|z|2 +

(
ψn(ŷ + z)− ψn(ŷ)−Dψn(ŷ) · z

)]
µŷ(dz)

+

∫
|z|<δ

[ 1

2ε
|z|2 + (sup

Ω′
|D2ψn|)|z|2

]
µx̂(dz)
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+

∫
|z|≥δ

[
u(ŷ + z)− u(ŷ)− 1B1(0)(z)

(1

ε
(ŷ − x̂) +Dψn(ŷ)

)
· z
](
µŷ(dz)− µx̂(dz)

)
+

∫
|z|≥δ

[
ψn(ŷ + z)− ψn(ŷ)− 1B1(0)(z)Dψn(ŷ) · z

−
(
ψn(x̂+ z)− ψn(x̂)− 1B1(0)(z)Dψn(x̂) · z

)]
µx̂(dz)

}
+ ρ1(

1

n
).

We now again set δn = n−α and εn = n−β and use the same estimates as these in

Case 2 of the proof of Theorem 3.2.1, to obtain that for any θ > 0, we can find α > 0,

β > 0, and 1 ≤ r0 < σ such that, if r0 < r < 2, then

G(x̂, uψn,εn(x̂), I1,δn [x̂, Duψn,εn(x̂), uψn,εn ] + I2,δn [x̂, Duψn,εn(x̂), uψn,εn ])

−G(ŷ, u(ŷ), I1,δn [ŷ,
ŷ − x̂
εn

+Dψn(ŷ),
|x̂− ·|2

2εn
+ ψn] + I2,δn [ŷ,

ŷ − x̂
εn

+Dψn(ŷ), u])

≤ ρ(
1

n
)

for some modulus ρ. Since u is a viscosity subsolution of (7), this implies

G
(
x̂, uψn,εn(x̂), I[x̂, uψn,εn ]

)
= G

(
x̂, uψn,εn(x̂), I1,δn [x̂, Duψn,ε(x̂), uψn,εn ] + I2,δn [x̂, Duψn,εn(x̂), uψn,εn ]

)
≤ ρ(

1

n
).

The same proof gives the following result for viscosity supersolutions.

Lemma 3.4.2. Suppose that the assumptions of Lemma 3.4.1 are true. Then, for any

0 < σ < 2, there exists a constant 0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if r0 < r < 2,

θ > max{0, 1− r}, Ω′ ⊂⊂ Ω is an open set, u ∈ Cr(Ω) is a viscosity supersolution of

(7), then there are a sequence of C2(Rn)∩BUC(Rn) functions {ψ̃n}n with a uniform

modulus of continuity, a sequence of positive numbers {ε̃n}n with ε̃n → 0, and a

modulus ρ̃ such that uψ̃n,ε̃n is a viscosity supersolution of

G
(
x, uψ̃n,ε̃n , I[x, uψ̃n,ε̃n ]

)
= −ρ̃(

1

n
) in Ω′. (66)

We remark that it is clear from the proofs of Lemmas 3.4.1 and 3.4.2 that we can

always have εn = ε̃n.

The next lemma is standard and can be deduced from Lemmas 4.2 and 4.5 of [12].

Lemma 3.4.3. Let {un}n be a sequence of bounded and uniformly continuous func-

tions on Rn such that:

(i) un is a viscosity subsolution of M+
L (un) = −fn in Ω.

(ii) The sequence {un} converges to u uniformly in Rn for some u ∈ BUC(Rn).

(iii) The sequence {fn} converges to f uniformly in Ω for some f ∈ C(Ω).

Then u is a viscosity subsolution of M+
L (u) = −f in Ω.
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Theorem 3.4.4. Let the assumptions of Lemma 3.4.1 be satisfied and let G be uni-

formly elliptic with respect to L. Then, for any 0 < σ < 2, there exists a constant

0 ≤ r0 < σ (r0 ≥ 1 if σ > 1) such that if r0 < r < 2, θ > max{0, 1− r}, u ∈ Cr(Ω) is

a viscosity subsolution of (7) and v ∈ Cr(Ω) is a viscosity supersolution of (7), then

u− v is a viscosity subsolution of

M−
L (v − u) = 0 (67)

in Ω ∩ {u − v > 0}. If G(x, r, l) is independent of the second variable r, then (67)

holds in Ω.

Proof. For any Ω′ ⊂⊂ Ω, let x ∈ Ω′, uψn,εn(x) > vψ̃n,εn(x), and let ϕ be a C2(Rn) ∩
BUC(Rn) be a test function touching the graph of uψn,εn − vψ̃n,εn from above at x.

Since uψn,εn and −vψ̃n,εn are semi-convex in a neighborhood of x, each of them has a

paraboloid touching its graph from below at x. Therefore, uψn,εn and −vψ̃n,εn must

be in C1,1(x) ∩ BUC(Rn). Thus, by Proposition 1 and Lemmas 3.4.1 and 3.4.2, we

have

G
(
x, uψn,εn(x), I[x, uψn,εn ]

)
≤ ρ(

1

n
)

and

G
(
x, vψ̃n,εn(x), I[x, vψ̃n,εn ]

)
≥ −ρ(

1

n
)

for some modulus ρ. Thus, by (2) and the uniform ellipticity, we obtain

M−
L
(
vψ̃n,εn − u

ψn,εn
)

(x) ≤ 2ρ(
1

n
).

Thus, we have

M−
L ϕ(x) ≤ 2ρ(

1

n
).

Therefore, we have proved that uψn,εn − vψ̃n,εn is a viscosity subsolution of

M−
L
(
vψ̃n,εn − u

ψn,εn
)

= 2ρ(
1

n
)

in Ω′ ∩ {uψn,εn − vψ̃n,εn > 0}.
By Remark 5, we have that uψn,εn − vψ̃n,εn converges uniformly to u − v in Rn.

Thus, for any ε > 0, there exists a sufficiently large nε such that Ω′ ∩ {u− v > ε} ⊂
Ω′∩{uψn,εn−vψ̃n,εn > 0} if n > nε. Therefore, uψn,εn−vψ̃n,εn is a viscosity subsolution

of M−
L (vψ̃n,εn − u

ψn,εn) = 2ρ( 1
n
) in Ω′ ∩ {u − v > ε} if n > nε, and hence, by Lemma

3.4.3, u − v is a viscosity subsolution of M−
L (v − u) = 0 in Ω′ ∩ {u − v > ε}. Since

Ω′ ⊂⊂ Ω and ε > 0 are arbitrary, u − v is a viscosity subsolution of M−
L (v − u) = 0

in Ω ∩ {u− v > 0}.

Remark 6. Theorem 3.4.4, combined with an Alexandrov-Bakelman-Pucci estimate

of [34], can be used as an alternative way to prove comparison theorem when γ = 0,

at least for some class of equations which are independent of the u variable.
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3.5 Regularity

In this section we recall some regularity results for nonlocal equations. We first recall

regularity results proved in [6] and [8]. Here, we only state their simplified versions

applicable for our equations, which can be deduced from the results and techniques

of [6, 8]. The full theorems of [6] and [8] are much more general. An equivalent of

Theorem 3.5.2 has not been stated in [6, 8] but it can be deduced easily from the

proofs there. We impose here an additional requirement θ > max{0, 1 − σ}. It is

possible that Theorems 3.5.1 and 3.5.2 are true without this assumption but it would

require some more substantial changes in the proofs on [6, 8].

Theorem 3.5.1. Let Ω be a bounded domain. Suppose that the nonlinearity G in

(7) is continuous and satisfies (2) with γ = 0 and (H1) with ΛΩ′ > 0 for each

Ω′ ⊂⊂ Ω. Suppose that the family of Lévy measures {µx} satisfies assumption (H2)

with θ > max{0, 1− σ} and, there exists a constant C > 0 such that, for any x ∈ Ω,

d ∈ Sn−1, η ∈ (0, 1), δ ∈ (0, 1),∫
{z:|z|≤δ,|d·z|≥(1−η)|z|}

|z|2µx(dz) ≥ Cη
n−1

2 δ2−σ. (68)

Then, we have:

(1) If 0 < σ ≤ 1, any viscosity solution u of (7) is Cr(Ω) for any r < σ.

(2) If 1 < σ, any viscosity solution u of (7) is C0,1(Ω).

Theorem 3.5.2. Let Ω be a bounded domain. Suppose that γ ≥ 0 in (9), the family

of Lévy measures {µαβx } satisfies assumption (H2) with θ > max{0, 1−σ}, uniformly

in α ∈ A, β ∈ B, and fαβ are uniformly continuous in Ω, uniformly in α ∈ A, β ∈ B.

Suppose that there exists a constant C > 0 such that, for any x ∈ Ω, d ∈ Sn−1,

η ∈ (0, 1), δ ∈ (0, 1), α ∈ A, β ∈ B,∫
{z:|z|≤δ,|d·z|≥(1−η)|z|}

|z|2µαβx (dz) ≥ Cη
n−1

2 δ2−σ.

Then, we have:

(1) If 0 < σ ≤ 1, any viscosity solution u of (9) is Cr(Ω) for any r < σ.

(2) If 1 < σ, any viscosity solution u of (9) is C0,1(Ω).

Let us now introduce some definitions and regularity theorems from [13, 48, 70].

Consider the following nonlocal equations

γu− I[x, u] = f(x) in Ω, (69)

where γ ≥ 0, Ω is a bounded domain, f is bounded and continuous in Ω, and I[x, u]

is a nonlocal operator of the form

I[x, u] = inf
α∈A

sup
β∈B

Iαβ[x, u] := inf
α∈A

sup
β∈B

∫
Rn

[u(x+z)−u(x)−1B1(0)(z)Du(x)·z]Kαβ(x, z)dz.
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We will denote

Iαβ,x0 [x, u] :=

∫
Rn

[u(x+ z)− u(x)− 1B1(0)(z)Du(x) · z]Kαβ(x0, z)dz.

Remark 7. It is easy to see that if Kαβ(x, z) =
aαβ(x,z)

|z|n+σ , λ ≤ aαβ(x, z) ≤ Λ and

|aαβ(x1, z)− aαβ(x2, z)| ≤ h(|x1 − x2|) for some modulus h for any x, x1, x2 ∈ Ω, z ∈
Rn, α ∈ A, β ∈ B, then the nonlocal operator I[x, u] satisfies the following properties:

(1) I[x, u] is well defined as long as u ∈ C1,1(x) and u ∈ L1(Rn, 1
1+|z|n+σ ).

(2) If u ∈ C2(Ω) ∩ L1(Rn, 1
1+|z|n+σ ), then I(x, u) is continuous in Ω as a function of

x.

Thus I[x, u] falls into the class of nonlocal operators considered in [13, 48, 70] which

was a little more general. Moreover the definition of viscosity sub/supersolutions in

[13, 48, 70] was slightly different from Definition 2 as they allowed viscosity sub/supersolutions

to be unbounded (as long as they are in the domain of definition of the nonlocal oper-

ator I) and they did not required them to be uniformly continuous.

We say that the nonlocal operator I above is uniformly elliptic with respect to a

class L of linear nonlocal operators if

M−
L (u− v)(x) ≤ I[x, u]− I[x, v] ≤M+

L (u− v)(x).

The norm ‖I‖ of a nonlocal operator I is defined in the following way.

Definition 6.

‖I‖ : = sup

{
|I[x, u]|
1 +M

: x ∈ Ω, u ∈ C1,1(x), ‖u‖L1(Rn, 1
1+|z|n+σ ) ≤M,

|u(x+ z)− u(x)−Du(x) · z| ≤M |z|2 for any z ∈ B1(0)

}
.

The following classes of linear nonlocal operators L0(λ,Λ, σ) and Lκ(λ,Λ, σ), 0 <

κ ≤ 2 were introduced in [13, 70]. Let 0 < λ ≤ Λ be fixed constants. A linear

nonlocal operator L ∈ L0(λ,Λ, σ) if

Lu =

∫
Rn

[u(x+ z)− u(x)− 1B1(0)(z)Du(x) · z]K(z)dz, (70)

where the kernel K is symmetric and satisfies for all z ∈ Rn \ {0}

(2− σ)
λ

|z|n+σ
≤ K(z) ≤ (2− σ)

Λ

|z|n+σ
. (71)

Since K is symmetric, we have

Lu =

∫
Rn

[u(x+ z) + u(x− z)− 2u(x)]K(z)dz.
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Lemma 3.5.3. The class L0(λ,Λ, σ) satisfies (H3) for any 0 < σ < 2.

Proof. We will be using the form of L in (70). Let R be such that R
3
2 > max{3R, 1 +

R} and Ω ⊂ BR(0). We define ϕ(x) = min(R3, |x|2) (see Assumption 5.1 in [12]). By

the definition of R, the fact that K is symmetric, we now have for every x ∈ Ω(⊂
BR(0))

Lϕ(x) ≥
∫
B1(0)

|z|2K(z)dz +

∫
1≤|z|<R

3
2−R

(|z|2 + 2x · z)K(z)dz

+

∫
{ϕ(x+z)<R3}∩{|z|≥R

3
2−R}

(|z|2 − 2|x||z|)K(z)dz

+

∫
{ϕ(x+z)=R3}∩{|z|≥R

3
2−R}

(R3 −R2)K(z)dz

≥ (2− σ)λ

∫
B1(0)

|z|−n−σ+2dz.

The class Lκ(λ,Λ, σ) is a subclass of L0(λ,Λ, σ) of kernels K such that

[K]Cκ(Bρ) ≤ Λ(2− σ)ρ−n−σ−κ if B2ρ ⊂ Rn \ {0}

for any balls Bρ, B2ρ of radii ρ, 2ρ > 0. We notice that the classes L0(λ,Λ, σ) and

Lκ(λ,Λ, σ) have scale σ. A class L ⊂ L0(λ,Λ, σ) has scale σ if whenever a nonlocal

operator with kernel K(z) is in L, then the one with kernel νn+σK(νz) is also in L
for any ν < 1. The following definition of a distance between two nonlocal operators

takes scaling of order σ into account.

Definition 7. For any 0 < σ < 2 and any nonlocal operator I, we define the rescaled

operator

Iµ,ν [x, u] = νσµI[νx, µ−1u(ν−1·)].

The norm of scale σ is defined as

‖I(1) − I(2)‖σ = sup
ν<1
‖I(1)

1,ν − I
(2)
1,ν‖.

The following regularity theorems for nonlocal equations were proved in [13, 48,

70]. We only state their simplified versions which are suitable for our purposes.

Theorem 3.5.4 (Theorem 2.6 of [13]). Assume that 0 < σ0 < σ < 2. Let u solve

M+
L0
u ≥ −C0 in B1(0),

M−
L0
u ≤ C0 in B1(0)
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in the viscosity sense for some C0 ≥ 0. Then there exists a constant 0 < r < 1,

depending only on λ, Λ, n and σ0, such that u ∈ Cr(B 1
2
(0)) and

‖u‖Cr(B 1
2

(0)) ≤ C

(
‖u‖L∞(B1(0)) + ‖u‖L1(Rn, 1

1+|z|n+σ0
) + C0

)
for some constant C > 0 which depends on σ0, λ, Λ and n.

Theorem 3.5.5 (Theorem 4.1 of [48]). Assume 1 < σ0 < σ < 2. Let

I = inf
α∈A

sup
β∈B

Iαβ

be a nonlocal operator such that {Iαβ,x0 : α ∈ A, β ∈ B, x0 ∈ B1(0)} ⊂ L0(λ,Λ, σ).

Denote Ix0 = infα∈A supβ∈B Iαβ,x0 . There exist constants r > 1, η > 0 such that if for

any x0 ∈ B 1
2
(0),

‖I − Ix0‖σ < η,

and u is a viscosity solution of

I[x, u] = f(x) in B1(0)

for some bounded continuous function f , then u ∈ Cr(B 1
2
(0)) and

‖u‖Cr(B 1
2

(0)) ≤ C

(
‖u‖L∞(B1(0)) + ‖u‖L1(Rn, 1

1+|z|n+σ0
) + ‖f‖L∞(B1(0))

)
for some absolute constant C > 0.

Theorem 3.5.6 (Theorem 1.2 and Remark 1.3 of [70]). Let {Iα}α∈A be a class of

linear nonlocal operators

Iα[x, u] =

∫
Rn

[u(x+ z)− u(x)− 1B1(0)(z)Du(x) · z]Kα(x, z)dz

such that {Iα,x0 : α ∈ A, x0 ∈ B1(0)} ⊂ Lκ(λ,Λ, σ) for some κ > 0 and 0 < σ < 2.

Suppose that for all x1, x2 ∈ B1(0), z ∈ Rn \ {0}, α ∈ A,

|Kα(x1, z)−Kα(x2, z)| ≤ |x1 − x2|θ
Λ(2− σ)

|z|n+σ
.

Then there exists r̄ > 0 such that if κ ∈ (0, r̄], θ ∈ (0, κ) and u is a viscosity solution

of

I[x, u] = inf
α∈A

Iα[x, u] = 0 in B1(0),

then u ∈ Cσ+θ(B 1
2
(0)) and

‖u‖Cσ+θ(B 1
2

(0)) ≤ C‖u‖L∞(Rn)

for some absolute constant C > 0.
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Theorem 3.5.7 (Theorem 5.2 of [13]). Assume 1 < σ0 < σ < 2. Let I0 =

infα∈A supβ∈B I
0
αβ be a nonlocal operator such that {I0

αβ}α∈A,β∈B ⊂ L, where L ⊂
L0(λ,Λ, σ) has scale σ and interior C r̄ estimates for some r̄ > 1. Let

I = inf
α∈A

sup
β∈B

Iαβ

be a nonlocal operator uniformly elliptic with respect to L0(λ,Λ, σ). Then for every

r < min{r, σ0} there is η > 0 such that if

‖I0 − I‖σ < η

and u is a viscosity solution of

I[x, u] = f(x) in B1(0)

for some bounded and continuous function f , then u ∈ Cr(B 1
2
(0)) and

‖u‖Cr(B 1
2

(0)) ≤ C(‖u‖L∞(Rn) + ‖f‖L∞(B1(0)))

for some absolute constant C > 0.

Corollary 5. Let 0 < σ < 2 and let u be a viscosity solution of (69) in B1(0), where

γ ≥ 0, f ∈ C(B1(0)) and I[x, u] = infα∈A(2−σ)
∫
Rn [u(x+z)−u(x)−1B1(0)(z)Du(x) ·

z]aα(x,z)
|z|n+σ dz. Assume that aα(x, ·) is symmetric, λ ≤ aα(x, z) ≤ Λ, aα(x,·)

|·|n+σ ∈ Lκ(λ,Λ, σ)

and |aα(x1, z)−aα(x2, z)| ≤ C|x1−x2|θ for any α ∈ A, x, x1, x2 ∈ B1(0), z ∈ Rn\{0},
and some constants κ > 0, θ > max{0, 1− σ}. Then, for any r < σ, u ∈ Cr(B 1

2
(0)).

Proof. For 0 < σ ≤ 1, since λ ≤ aα(x, z) ≤ Λ for any x ∈ B1(0) and z ∈ Rn, it follows

that the family of Lévy measures {aα(x,z)
|z|n+σ dz}x,α satisfies (68) (see Example 1 in [6]).

Thus, by Theorem 3.5.2, the proof is complete for the case 0 < σ ≤ 1.

For σ > 1, if we fix x0 ∈ B 1
2
(0), then the operator Iα,x0u = (2− σ)

∫
Rn [u(x+ z)−

u(x) − 1B1(0)(z)Du(x) · z]aα(x0,z)
|z|n+σ dz is in Lκ(λ,Λ, σ). Thus, by Theorem 3.5.6, it has

interior Cr estimates for some r > σ. By the Hölder continuity of aα(·, z) for fixed

z ∈ Rn \ {0}, we can find a small ball Br0(x0) such that |aα(x, z) − aα(x0, z)| < η.

Thus, by a simple calculation (see the proof of Theorem 6.1 in [13]), we can derive

that ‖I−Ix0‖σ < Cη in Br0(x0) where C is a positive constant and Ix0 = infα∈A Iα,xo .

Finally, we apply Theorem 3.5.7 with I0 = Ix0 and f := f−γu, scaled in Br0(x0).

Corollary 6. Let 0 < σ < 2. Let u be a viscosity solution of

γu− inf
α∈A

sup
β∈B
{Iαβ[x, u]} = f(x) in B1(0),
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where γ ≥ 0, f ∈ C(B1(0)) and Iαβ[x, u] = (2−σ)
∫
Rn [u(x+z)−u(x)−1B1(0)(z)Du(x)·

z]
aαβ(x,z)

|z|n+σ dz. Assume that aαβ(x, ·) is symmetric, λ ≤ aαβ(x, z) ≤ Λ, and |aαβ(x1, z)−
aαβ(x2, z)| ≤ |x1 − x2|θ for any α ∈ A, β ∈ B, x, x1, x2 ∈ B1(0), z ∈ Rn \ {0} and

some constant θ > max{0, 1 − σ}. Then, if σ > 1, u ∈ Cr(B 1
2
(0)), where r is from

Theorem 3.5.5, and if σ ≤ 1, u ∈ Cr(B 1
2
(0)) for every r < σ.

Proof. For 0 < σ ≤ 1, the proof is the same as for Corollary 5. For σ > 1, by the

Hölder continuity of aαβ(·, z) for fixed z ∈ Rn \ {0}, we can find a small ball Br0(x0)

such that |aαβ(x, z) − aαβ(x0, z)| < η. Thus, like in the proof of Corollary 5, we can

obtain ‖I− Ix0‖σ < Cη in Br0(x0) for some constant C > 0. We then apply Theorem

3.5.5 with f := f − γu, scaled in Br0(x0).

3.6 Applications

In this section, we provide several concrete applications when we have uniqueness of

viscosity solutions.

3.6.1 Nonlinear convex equations with variable coefficients

Theorem 3.6.1. Let Ω be a bounded domain. Consider the following nonlinear non-

local equations

γu+ sup
α∈A
{−Iα[x, u]} = f(x) in Ω, (72)

where γ ≥ 0, 0 < σ < 2, f ∈ C(Ω) and Iα[x, u] = (2 − σ)
∫
Rn [u(x + z) − u(x) −

1B1(0)(z)Du(x) · z]aα(x,z)
|z|n+σ dz. Assume that aα(x, ·) is symmetric, λ ≤ aα(x, z) ≤ Λ,

aα(x,·)
|·|n+σ ∈ Lκ(λ,Λ, σ) and |aα(x1, z)−aα(x2, z)| ≤ C|x1−x2|θ for any α ∈ A, x, x1, x2 ∈
Ω, z ∈ Rn \ {0} and some κ > 0, θ > 0. Suppose that θ > max{0, 1− σ}. Then, if u

is a viscosity solution of (72), v is a viscosity supersolution (respectively, subsolution)

of (72) and u ≤ v (respectively, u ≥ v) in Ωc, we have u ≤ v (respectively, u ≥ v) in

Rn.

Proof. The theorem follows from Theorem 3.3.2, Corollary 5 and Lemma 3.5.3 since

we can take r arbitrarily close to σ.

3.6.2 Nonlinear non-convex equations with variable coefficients

Theorem 3.6.2. Let Ω be a bounded domain. Consider the following nonlinear non-

local equations

γu+ sup
α∈A

inf
β∈B
{−Iαβ[x, u]} = f(x) in Ω, (73)

where γ ≥ 0, 0 < σ < 2, f ∈ C(Ω) and Iαβ[x, u] = (2 − σ)
∫
Rn [u(x + z) − u(x) −

1B1(0)(z)Du(x) · z]
aαβ(x,z)

|z|n+σ dz. Assume that aαβ(x, ·) is symmetric, λ ≤ aαβ(x, z) ≤ Λ
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and |aαβ(x1, z) − aαβ(x2, z)| ≤ C|x1 − x2|θ for any α ∈ A, β ∈ B, x, x1, x2 ∈ Ω and

z ∈ Rn \ {0}. Then, if u is a viscosity solution of (73), v is a viscosity supersolution

(respectively, subsolution) of (73) and u ≤ v (respectively, u ≥ v) in Ωc, we have:

(i) For 0 < σ ≤ 1, if θ > 1− σ, we have u ≤ v (respectively, u ≥ v) in Rn.

(ii) For 1 < σ < 2, if σ < 2− 2 (2−r)2

θ(3−r)+(4−2r)
, where r < 2 is given by Corollary 6, we

have u ≤ v (respectively, u ≥ v) in Rn.

Proof. The theorem follows from Theorem 3.3.2, Corollory 4, Lemma 3.5.3, and Corol-

lary 6.

3.6.3 General nonlocal uniformly elliptic equations with respect to L0

Theorem 3.6.3. Let Ω be a bounded domain and 1 ≥ σ > 0. Suppose that the

nonlinearity G in (7) is continuous and uniformly elliptic with respect to L0, and

satisfies (2) with γ ≥ 0 and (H1). Suppose that the family of Lévy measures {µx}
satisfies assumption (H2). Suppose that u is a viscosity solution of (7), v is a viscosity

supersolution (respectively, subsolution) of (7) and u ≤ v (respectively, u ≥ v) in Ωc.

Then, if σ < θ(2−r)
2−r+θ + r and θ > 1 − r, where r < 1 is given by Theorem 3.5.4, we

have u ≤ v (respectively, u ≥ v) in Rn.

Proof. The theorem follows from Corollary 3(i), Theorem 3.5.4 and Lemma 3.5.3.

3.6.4 General nonlocal equations with a family of Lévy measures satisfy-
ing (68)

Theorem 3.6.4. Let Ω be a bounded domain. Suppose that the nonlinearity G in (7)

is continuous and satisfies (2) with γ > 0 and (H1) with ΛΩ′ > 0 for each Ω′ ⊂⊂ Ω.

Suppose that the family of Lévy measures {µx} satisfies assumption (H2), and there

exists a constant C > 0 such that, for any x ∈ Ω, d ∈ Sn−1, η, δ ∈ (0, 1), we have

(68). If u is a viscosity solution of (7), v is a viscosity supersolution (respectively,

subsolution) of (7) and u ≤ v (respectively, u ≥ v) in Ωc, then:

(i) For 0 < σ ≤ 1, if θ > 1− σ, we have u ≤ v (respectively, u ≥ v) in Rn.

(ii) For 1 < σ < 2, if 0 < θ ≤ 1 and σ < 2− 1
1+θ

, we have u ≤ v (respectively, u ≥ v)

in Rn.

Proof. The theorem follows from Theorem 3.2.1, Corollary 1 and Theorem 3.5.1.

Theorem 3.6.5. Let Ω be a bounded domain. Suppose that the nonlinearity G in (7)

is continuous and uniformly elliptic with respect to L0, and satisfies (2) with γ = 0

and (H1) with ΛΩ′ > 0 for each Ω′ ⊂⊂ Ω. Suppose that the family of Lévy measures

{µx} satisfies assumption (H2) and, there exists a constant C > 0 such that, for any

x ∈ Ω, d ∈ Sn−1, η, δ ∈ (0, 1), we have (68). If u is a viscosity solution of (7), v
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is a viscosity supersolution (respectively, subsolution) of (7) and u ≤ v (respectively,

u ≥ v) in Ωc, then:

(i) For 0 < σ ≤ 1, if θ > 1− σ, we have u ≤ v (respectively, u ≥ v) in Rn.

(ii) For 1 < σ < 2, if 0 < θ ≤ 1 and σ < 2− 1
1+θ

, we have u ≤ v (respectively, u ≥ v)

in Rn.

Proof. This theorem follows from Theorem 3.3.1, Corollary 3, Theorem 3.5.1 and

Lemma 3.5.3.
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CHAPTER IV

PERRON’S METHOD FOR INTEGRO-DIFFERENTIAL

EQUATIONS

In this chapter, we will study existence of viscosity solutions for the following two

classes of integro-differential equations.{
G(x, u, I[x, u]) = 0 in Ω,

u = g in Ωc,
(74)

and {
γu+ supα∈A infβ∈B{−Iαβ[x, u] + fαβ(x)} = 0 in Ω,

u = g in Ωc.
(75)

where Ω is a bounded domain, I[x, u] and Iαβ[x, u] are of Lévy type, g is a bounded

continuous function in Rn.

4.1 Notation and definitions

We will use the following notations: if u is a function on Ω, then, for any x ∈ Ω,

u∗(x) = lim
r→0

sup{u(y); y ∈ Ω and |y − x| ≤ r},

u∗(x) = lim
r→0

inf{u(y); y ∈ Ω and |y − x| ≤ r}.

The function u∗ is called the upper semicontinuous envelope of u and u∗ is called the

lower semicontinuous envelope of u. The following notion of a discontinuous viscosity

solution of (74) will be used in this chapter.

Definition 8. A bounded function u is a discontinuous viscosity subsolution of (74)

if u∗ is a viscosity subsolution of G = 0 and u∗ ≤ g in Ωc. A bounded function u is a

discontinuous viscosity supersolution of (74) if u∗ is a viscosity supersolution of G = 0

and u∗ ≥ g in Ωc. A function u is a discontinuous viscosity solution of (74) if it is

both a discontinuous viscosity subsolution and discontinuous viscosity supersolution

of (74).

Remark 8. If u is a discontinuous viscosity solution of (74) and u is continuous in

Rn, then u is a viscosity solution of (74).
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4.2 Perron’s method

In this section, we discuss Perron’s method for discontinuous viscosity solutions of

(74).

Lemma 4.2.1. Suppose that the nonlinearity G in (74) is continuous and satisfies

(2), (3), (8). Let F be a family of viscosity subsolutions of G = 0 in Ω. Let w(x) =

sup{u(x) : u ∈ F} in Rn and assume that w∗(x) < ∞ for x ∈ Rn. Then w is a

discontinuous viscosity subsolution of G = 0 in Ω.

Proof. Suppose that ϕ is a C2
b (Rn) function such that w∗ − ϕ has a strict max-

imum (equal 0) at x0 ∈ Ω over Rn. We can construct a uniformly bounded se-

quence of C2(Rn) functions {ϕm}m such that ϕm = ϕ in B1(x0), ϕ ≤ ϕm in Rn,

supx∈Bc2(x0){w∗(x) − ϕm(x)} ≤ − 1
m

and ϕm → ϕ pointwise. Thus, for any posi-

tive integer m, w∗ − ϕm has a strict maximum (equal 0) at x0 over Rn. There-

fore, supx∈Bc1(x0){w∗(x) − ϕm(x)} = εm < 0. By the definition of w∗, we have,

for any u ∈ F , supx∈Bc1(x0){u(x) − ϕm(x)} ≤ εm < 0. Again, by the definition of

w∗, we have, for any εm < ε < 0, there exist uε ∈ F and x̄ε ∈ B1(x0) such that

uε(x̄ε)− ϕ(x̄ε) > ε. Since uε ∈ USC(Rn) and ϕm ∈ C2
b (Rn), there exists xε ∈ B1(x0)

such that uε(xε) − ϕm(xε) = supx∈Rn{uε(x) − ϕ(x)} ≥ uε(x̄ε) − ϕm(x̄ε) > ε. Since

w∗−ϕm attains a strict maximum (equal 0) at x0 over Rn and u ≤ w∗ for any u ∈ F ,

then uε(xε) → w∗(x0) and xε → x0 as ε → 0−. Since uε is a viscosity subsolution of

G = 0, we have

G(xε, uε(xε), I[xε, ϕm]) ≤ 0. (76)

Since {xε}ε ⊂ B1(x0) and xε → x0 as ε→ 0−, there exists a sufficiently small δ0 > 0

such that Bδ0(xε) ⊂ B1(0) for any ε ∈ (−δ0, 0). By the choice of ϕm, we can rewrite

(76) as

G(xε, uε(xε), I
1,δ0 [xε, Dϕ(xε), ϕ] + I2,δ[xε, Dϕ(xε), ϕm]) ≤ 0. (77)

Since xε → x0, uε(xε)→ w∗(x0), ϕm → ϕ pointwise as ε→ 0−, ϕ ∈ C2
b (Rn) and G is

continuous, we have, letting ε→ 0− in (77),

G(x0, w
∗(x0), I[x0, ϕ]) ≤ 0.

Therefore, w∗ is a discontinuous viscosity subsolution of G = 0.

Theorem 4.2.2. Suppose that the nonlinearity G in (74) is continuous and satisfies

(2), (3), (8). Let u, ū be bounded continuous functions and be respectively a viscosity

subsolution and a viscosity supersolution of G = 0 in Ω. Assume moreover that

ū = u = g in Ωc and u ≤ ū in Rn. Then

w(x) = sup
u∈F

u(x),

58



where

F = {u ∈ C0(Rn); u ≤ u ≤ ū in Rn and u is a viscosity subsolution of G = 0 in Ω},

is a discontinuous viscosity solution of (74).

Proof. Since u ∈ F , then F 6= ∅. Thus, w is well defined, u ≤ w ≤ ū in Rn and

w = ū = u in Ωc. By Lemma 4.2.1, w is a discontinuous viscosity subsolution of

G = 0 in Ω. We claim that w is a discontinuous viscosity supersolution of G = 0 in

Ω. If not, without loss of generality, we assume that 0 ∈ Ω and there exists a function

ϕ ∈ C2
b (Rn) such that w∗ − ϕ has a strict minimum (equal 0) at point 0 over Rn and

G(0, w∗(0), I[0, ϕ]) < −ε0,

where ε0 is a positive constant. Thus, we can find sufficiently small constants ε1 > 0

and δ0 > 0 such that Bδ0(0) ⊂ Ω and there exists a C2
b (Rn) function ϕε1 satisfying

that ϕε1 = ϕ in Bδ0(0), ϕε1 ≤ ϕ in Rn, infx∈Bc2δ0 (0){w∗(x)− ϕε1(x)} ≥ ε1 > 0 and

G(0, ϕε1(0), I[0, ϕε1 ]) < −ε0
2
. (78)

Thus, by the Dominated Convergence Theorem, there exists δ1 < δ0 such that, for

any x ∈ Bδ1(0),

G(x, ϕε1(x), I[x, ϕε1 ]) < −ε0
4
. (79)

By the definition of w, we have ϕε1 ≤ w∗ ≤ ū in Rn. If ϕε1(0) = w∗(0) = ū(0), then

ū− ϕε1 has a strict minimum at point 0 over Rn. Since ū is a viscosity supersolution

of G = 0 in Ω, we have

G(0, ϕε1(0), I[0, ϕε1 ]) ≥ 0,

which contradicts with (78). Thus, we have ϕε1(0) < ū(0). Since ū and ϕε1 are

continuous function in Rn, we have ϕε1(x) < ū(x)− ε2 in Bδ2(0) for some 0 < δ2 < δ1

and ε2 > 0. We define

∆r = sup
x∈Bcr(0)

{ϕε1(x)− w∗(x)}.

Since infx∈Bc2δ0 (0){w∗(x) − ϕε1(x)} ≥ ε1 > 0, w∗ − ϕε1 has a strict minimum (equal

0) at point 0 and −w∗ ∈ USC(Rn), we have ∆r < 0 for each r > 0. For any

y ∈ Ω̄ \ Br(0), there exists a function vy ∈ F such that vy(y) − ϕε1(y) ≥ −3∆r

4
.

Since vy and ϕε1 are continuous in Rn, there exists a positive constant δy such that

infx∈Bδy (y){vy(x) − ϕε1(x)} ≥ −∆r

2
. Since Ω̄ \ Br(0) is a compact set in Rn, there

exists a finite set {yi}nri=1 ⊂ Ω̄ \ Br(0) such that Ω̄ \ Br(0) ⊂ ∪nri=1Bδyi
(yi). Thus, we

define

vr(x) = sup
1≤i≤nr

{vyi(x)}, x ∈ Rn.
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By Lemma 4.2.1 and the definition of vr, we have vr ∈ F and infx∈Ω̄\Br(0){vr(x) −
ϕε1(x)} ≥ −∆r

2
. Let αr be a constant such that 0 < αr <

1
2

and −αr∆r < ε2. Thus,

we define

U(x) =

{
max{ϕε1(x)− α∆r, vr(x)}, x ∈ Br(0),

vr(x), x ∈ Bc
r(0),

where 0 < r < δ2 and 0 < α < αr. By the definition of U , we obtain U ∈ C0(Rn),

u ≤ U ≤ ū in Rn, and there exists a sequence {xn}n ⊂ Br(0) such that xn → 0 as

n→ +∞ and U(xn) > w(xn).

We claim that U is a viscosity subsolution of G = 0 in Ω. For any y ∈ Ω, suppose

that there is a test function ψ ∈ C2
b (Rn) such that U − ψ has a maximum (equal 0)

at y over Rn. We then divide the proof into two cases.

Case 1: U(y) = vr(y).

Since vr ≤ U ≤ ψ in Rn, then vr − ψ has a maximum (equal 0) at y over Rn. We

recall that vr is a viscosity subsolution of G = 0 in Ω. Therefore, we have

G(y, U(y), I[y, ψ]) ≤ 0.

Case 2: U(y) = ϕε1(y)− α∆r.

We first notice that y ∈ Br(0). Since ϕε1 − α∆r ≤ U ≤ ψ in Br(0), then ϕε1 −
α∆r − ψ ≤ 0 in Br(0). By the definition of U , we have ψ ≥ U = vr in Bc

r(0). Thus,

ϕε1 − α∆r − ψ ≤ ϕε1 − α∆r − vr ≤ ∆r

2
− α∆r ≤ 0 in Bc

r(0). Therefore, we have

ϕε1 − α∆r − ψ has a maximum (equal 0) at y ∈ Br(0) ⊂ Bδ1(0) over Rn. Since (79)

holds and G is a continuous function, we can choose sufficiently small α independent

of ψ such that

G(y, ψ(y), I[y, ψ]) ≤ G(y, ϕε1(y)− α∆r, I[y, ϕε1 ]) ≤ 0.

Based on the two cases, we have U is a viscosity subsolution of G = 0 in Ω.

Therefore, U ∈ F , which contradicts with the definition of w. Thus, w is a discontin-

uous viscosity supersolution of G = 0 in Ω. Therefore, w is a discontinuous viscosity

solution of G = 0 in Ω.

Theorem 4.2.3. Let u, ū be bounded continuous functions and be respectively a

viscosity subsolution and a viscosity supersolution of

γu+ sup
α∈A

inf
β∈B
{−Iαβ[x, u] + fαβ(x)} = 0, in Ω, (80)

where γ ≥ 0, fαβ is a continuous function and Iαβ[x, u] is of Lévy type. Assume

moreover that ū = u = g in Ωc and u ≤ ū in Rn. Then

w(x) = sup
u∈F

u(x),
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where

F = {u ∈ C0(Rn); u ≤ u ≤ ū in Rn and u is a viscosity subsolution of (80) in Ω},

is a discontinuous viscosity solution of (75).

4.3 Regularity

In this section we give Hölder estimates of the discontinuous viscosity solution con-

structed by Perron’s method. As always we assume that G is continuous and (2),

(3), (8) hold. To have Hölder estimates, we will assume that the nonlinearity G is

uniformly elliptic with respect to the class of linear nonlocal operators L0(σ, λ,Λ),

where 0 < σ < 2 and 0 < λ ≤ Λ, and G(x, 0, 0) is bounded in Rn.

The following lemma we borrow from [12] is crucial in our proof of the Hölder

estimates.

Lemma 4.3.1. Let u ≥ 0 in Rn and u is a viscosity supersolution of M−
L0(λ,Λ,σ)u = C0

in B2r(0) for positive constants C0 and r. Assume σ ≥ σ0 for some σ0 > 0. Then

|{u > t} ∩Br(0)| ≤ Crn(u(0) + C0r
σ)εt−ε for any t > 0,

where the positive constants ε and C depends on λ, Λ, n and σ0.

Theorem 4.3.2. Assume that σ > σ0 for some σ0 > 0. Let F be a class of bounded

continuous functions in Rn such that, for any u ∈ F , we have −1
2
≤ u ≤ 1

2
in

Rn, u is a viscosity subsolution of M+
L0(λ,Λ,σ)u = − ε0

2
in B1(0) and w = supu∈F u

is a discontinuous viscosity supersolution of M−
L0(λ,Λ,σ)w = ε0

2
in B1(0) where ε0 is

a sufficienlty small positive constant. Then there exist positive constants α > 0 and

C > 0 depending on λ, Λ, n and σ0 such that

−C|x|α ≤ w∗(x)− w∗(0) ≤ w∗(x)− w∗(0) ≤ C|x|α.

Proof. We claim that there exist an increasing sequence {mk}k and a decreasing

sequence {Mk}k such that Mk−mk = 8−αk and mk ≤ infB
8−k (0) w∗ ≤ supB

8−k (0) w
∗ ≤

Mk. We will prove this claim by induction.

For k = 0, we can choose m0 = −1
2

and M0 = 1
2

since −1
2
≤ u ≤ 1

2
for any u ∈ F .

Assume that we have the sequences up to mk and Mk. In B8−k−1(0), we have either

|{w∗ ≥
Mk +mk

2
} ∩B8−k−1(0)| ≥ |B8−k−1(0)|

2
, (81)

or

|{w∗ ≤
Mk +mk

2
} ∩B8−k−1(0)| ≥ |B8−k−1(0)|

2
. (82)
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We first assume that (81) holds. We define

v(x) :=
w∗(8

−kx)−mk

Mk−mk
2

.

Thus, v ≥ 0 in B1(0) and

|{v ≥ 1} ∩B 1
8
(0)| ≥

|B 1
8
(0)|
2

.

Since w is a discontinuous viscosity supersolution of M−
L0(λ,Λ,σ)w = ε0

2
in B1(0), then

v is a viscosity supersolution of

M−
L0(λ,Λ,σ)v = ε0 in B8k(0), if α < σ0.

By the inductive assumption, we have, for any k ≥ j ≥ 0,

v ≥ mk−j −mk

Mk−mk
2

≥ mk−j −Mk−j +Mk −mk

Mk−mk
2

= 2(1− 8αj) in B8j(0). (83)

Moreover, we have

v ≥ 2 · 8αk[−1

2
− (

1

2
− 8−αk)] = 2(1− 8αk) in Bc

8k(0). (84)

By (83) and (84), we have

v(x) ≥ −2(|8x|α − 1), for any x ∈ Bc
1(0).

For any x ∈ B 3
4
(0), we can choose suffciently small α < σ0 such that

M−
L0(λ,Λ,σ)v

+(x) ≤ M−
L0(λ,Λ,σ)v(x) +M+

L0(λ,Λ,σ)v
−(x)

≤ M−
L0(λ,Λ,σ)v(x)− Λ(2− σ)

∫
Rn\{v(x+y)<0}

v(x+ y)

|y|n+σ
dy

≤ M−
L0(λ,Λ,σ)v(x)− Λ(2− σ)

∫
Bc1

4

(0)

min{−2(|8(x+ y)|α − 1), 0}
|yn+σ|

dy

≤ M−
L0(λ,Λ,σ)v(x) + ε0 ≤ 2ε0.

where v+(x) := max{v(x), 0} and v−(x) := −min{v(x), 0}. Given any point x ∈
B 1

8
(0), we can apply Lemma 4.3.1 in B 1

4
(x) to obtain

C(v+(x) + 2ε0)ε ≥ |{v+ > 1} ∩B 1
4
(x)| ≥ |{v+ > 1} ∩B 1

8
(0)| ≥

|B 1
8
(0)|
2

.

Thus, we can choose sufficiently small ε0 such that v+ ≥ θ in B 1
8
(0) for some θ > 0.

Therefore,

v(x) =
w∗(8

−kx)−mk

Mk−mk
2

≥ θ in B 1
8
(0).
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If we setmk+1 = mk+θ
Mk−mk

2
andMk+1 = Mk, we must havemk+1 ≤ infB

8−k−1 (0)w∗ ≤
supB

8−k−1 (0)w
∗ ≤ Mk+1. Moreover, Mk+1 − mk+1 = (1 − θ

2
)8−αk. Therefore, we

can choose α and θ sufficiently small such that (1 − θ
2
) = 8−α. Then we have

Mk+1 −mk+1 = 8−α(k+1).

We then assume that (82) holds. For any u ∈ F , we obtain that u ∈ C0(Rn) is a

viscosity subsolution of M+
L0(λ,Λ,σ)u = − ε0

2
in B1(0) and u ≤ w∗ in Rn. Thus, we have

|{u ≤ Mk +mk

2
} ∩B8−k−1(0)| ≥ |B8−k−1(0)|

2
.

We define

vu(x) :=
Mk − u(8−kx)

Mk−mk
2

.

Thus, vu ≥ 0 in B1(0) and

|{vu ≥ 1} ∩B 1
8
(0)| ≥

|B 1
8
(0)|
2

.

Since u is a viscosity subsolution of M+
L0(λ,Λ,σ)u = − ε0

2
in B1(0), then vu is a viscosity

supersolution of

M−
L0(λ,Λ,σ)vu ≤ ε0 in B8k(0), if α < σ0.

By the inductive assumption, we have, for any k ≥ j ≥ 0,

vu ≥
Mk −Mk−j

Mk−mk
2

≥ Mk −mk +mk−j −Mk−j
Mk−mk

2

= 2(1− 8αj) in B8j(0). (85)

Moreover, we have

vu ≥ 2 · 8αk(−1

2
+ 8−αk − 1

2
) = 2(1− 8αk) in Bc

8k(0). (86)

By (85) and (86), we have

vu(x) ≥ −2(|8x|α − 1), for any x ∈ Bc
1(0).

For any x ∈ B 3
4
(0), we can choose suffciently small α < σ0 such that

M−
L0(λ,Λ,σ)v

+
u (x) ≤ 2ε0, (87)

where v+
u (x) := max{vu(x), 0}. Given any point x ∈ B 1

8
(0), we can apply Lemma

4.3.1 in B 1
4
(x) to obtain

C(v+
u (x) + 2ε0)ε ≥ |{v+

u > 1} ∩B 1
4
(x)| ≥ |{v+

u > 1} ∩B 1
8
(0)| ≥

|B 1
8
(0)|
2

.
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Thus, we can choose sufficiently small ε0 such that v+
u ≥ θ in B 1

8
(0) for some θ > 0.

Therefore,

vu(x) =
Mk − u(8−kx)

Mk−mk
2

≥ θ in B 1
8
(0),

which implies

u(8−kx) ≤Mk − θ
Mk −mk

2
in B 1

8
(0).

By the definition of w, we have

w∗(8−kx) ≤Mk − θ
Mk −mk

2
in B 1

8
(0).

If we setmk+1 = mk andMk+1 = Mk−θMk−mk
2

, we must havemk+1 ≤ infB
8−k−1 (0)w∗ ≤

supB
8−k−1 (0)w

∗ ≤ Mk+1. Moreover, Mk+1 − mk+1 = (1 − θ
2
)8−αk. Therefore, we

can choose α and θ sufficiently small such that (1 − θ
2
) = 8−α. Then we have

Mk+1 −mk+1 = 8−α(k+1).

Corollary 7. Assume that σ > σ0 for some σ0 > 0 and G(x, 0, 0) is bounded in

Rn. Assume that G is uniformly elliptic with respect to L0(σ, λ,Λ). Let u be the

bounded discontinuous viscosity solution of G = 0 in Ω constructed in Theorem 4.2.2.

Then there exists a positive constant α > 0 depending on λ, Λ, n and σ0 such that

u ∈ Cα(Ω).

Corollary 8. Assume that {fαβ}α,β is a set of uniformly continuous and bounded

functions in Ω, γ ≥ 0 and Iαβ is of Lévy type and uniformly elliptic with respect to

L0(λ,Λ, σ) for some 2 > σ > σ0 > 0. Let u be the bounded discontinuous viscosity

solution of (80) constructed in Theorem 4.2.3. Then there exists a positive constant

α > 0 depending on λ, Λ, n and σ0 such that u ∈ Cα(Ω).

4.4 A sub/supersolution and existence of a solution

In this section we construct a subsolution and a supersolution that are needed in

proving the existence of a viscosity solution by Perron’s method. For the construction,

we first follow the ideas in [65] to construct a class of barrier functions. We define

vα(x) = ((x1 − 1)+)α where x1 = x · e1.

Lemma 4.4.1. Given any σ ∈ (0, 2), there exists a sufficiently small α > 0 such that

M+
L0(λ,Λ,σ)vα((1 + r)e1) = −ε0rα−σ for any r > 0 where ε0 is some positive constant.

Proof. For any α > 0 and r > 0,

M+
L0(λ,Λ,σ)vα((1 + r)e1)

= (2− σ)

∫
Rn

Λ(δvα((1 + r)e1), y)+ − λ(δvα((1 + r)e1), y)−

|y|n+σ
dy
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= (2− σ)
[ ∫

Rn

Λ(((r + y1)+)α + ((r − y1)+)α − 2rα)+

|y|n+σ
dy

−
∫
Rn

λ(((r + y1)+)α + ((r − y1)+)α − 2rα)−

|y|n+σ
dy
]

= (2− σ)rα−σ
[ ∫

Rn

Λ(((1 + y1)+)α + ((1− y1)+)α − 2)+

|y|n+σ
dy

−
∫
Rn

λ(((1 + y1)+)α + ((1− y1)+)α − 2)−

|y|n+σ
dy
]
.

By the Dominated Convergence Theorem, we have

lim
α→0+

∫
Rn

(((1 + y1)+)α + ((1− y1)+)α − 2)+

|y|n+σ
dy = 0

and

lim
α→0+

∫
Rn

(((1 + y1)+)α + ((1− y1)+)α − 2)−

|y|n+σ
dy >

∫
y1<−1

1

|y|n+σ
dy > 0.

Therefore, for some sufficiently small fixed α, there exists a positive constant ε0 > 0

such that

M+
L0(λ,Λ,σ)vα((1 + r)e1) ≤ −ε0rα−σ, for any r > 0.

Lemma 4.4.2. Assume that σ ∈ (0, 2). Then there are α > 0 and r0 > 0 suffi-

ciently small so that the function uα(x) = ((|x|− 1)+)α satisfies M+
L0(λ,Λ,σ)uα ≤ −1 in

B̄1+r0(0) \ B̄1(0).

Proof. We notice that uα and M+
L0(λ,Λ,σ) are rotation-invariant. Then we only need

to prove that M+
L0(λ,Λ,σ)uα((1 + s)e1) ≤ −1 for any s ∈ (0, r0] where α > 0 and r0 > 0

are sufficiently small. Note that, ∀s > 0, uα((1 + s)e1) = vα((1 + s)e1) and that,

∀y ∈ B1(0),

|(|(1 + s)e1 + y| − 1)+ − (s+ y1)+| ≤ C|y′|2,

where y = (y1, y
′). Therefore, we have

0 ≤ (uα − vα)((1 + s)e1 + y) ≤


Csα−1|y′|2, y ∈ B s

2
(0),

C|y′|2α, y ∈ B1(0) \B s
2
(0),

C|y|α, y ∈ Rn \B1(0).

Therefore, we have, ∀L ∈ L0(λ,Λ, σ),

0 ≤ L(uα − vα)((1 + s)e1)

= (2− σ)

∫
Rn

[(uα − vα)((1 + s)e1 + y) + (uα − vα)((1 + s)e1 − y)]K(y)dy

≤ C(2− σ)Λ(

∫
B s

2

sα−1|y′|2

|y|n+σ
dy +

∫
B1(0)\B s

2 (0)

|y′|2α

|y|n+σ
dy +

∫
Rn\B1(0)

|y|α

|y|n+σ
dy)

≤ C(sα−σ+1 + s2α−σ + 1).
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Thus, we have M+
L0(λ,Λ,σ)(uα − vα)((1 + s)e1) ≤ C(sα−σ+1 + s2α−σ + 1). Therefore, by

Lemma 4.4.1, there exists a sufficienlty small α > 0 such that

M+
L0(λ,Λ,σ)uα((1 + s)e1) ≤ M+

L0(λ,Λ,σ)(uα − vα)((1 + s)e1) +M+
L0(λ,Λ,σ)vα((1 + s)e1)

≤ C(sα−σ+1 + s2α−σ + 1)− ε0sα−σ.

Thus, there exists a sufficienlty small r0 > 0 such that we have M+
L0(λ,Λ,σ)uα(e1+se1) ≤

−1 for any s ∈ (0, r0].

In the rest of this section, we assume that Ω is a bounded domain satisfying uni-

form exterior ball condition with uniform radius rΩ(< 1). Without loss of generality,

we can assume that Ω ⊂⊂ {x|x1 < 0}. For any x ∈ ∂Ω and any 0 < r < rΩ, there

exists yrx ∈ Ωc such that B̄r(y
r
x) ∩ Ω̄ = {x}.

Lemma 4.4.3. Assume that σ ∈ (0, 2). There exists an ε0 > 0 such that, for any

x ∈ ∂Ω and 0 < r < rΩ, there is a continuous function ϕx,r satisfying
ϕx,r ≡ 0, in B̄r(y

r
x),

ϕx,r > 0, in B̄c
r(y

r
x),

ϕx,r ≡ 2, in Bc
2r(y

r
x),

M+
L0(λ,Λ,σ)ϕx,r ≤ −ε0, in Ω.

Proof. We define a uniformly continuous function ϕ in Rn such that 1 ≤ ϕ ≤ 2 and{
ϕ(y) = 1, in y1 > 1,

ϕ(y) = 2, in y1 ≤ 0.

We pick some sufficiently large C > 2
rα0

and we define ϕx,r(y) = min{ϕ(y), Cuα(y−y
r
x

r
)}

where α and r0 are defined in Lemma 4.4.2. It is easy to verify that ϕx,r ≡ 0 in B̄r(y
r
x),

ϕx,r > 0 in B̄c
r(y

r
x), and ϕx,r ≡ 2 in Bc

2r(y
r
x). By Lemma 4.4.2, we have M+

L0(λ,Λ,σ)uα ≤
−1 in B̄1+r0(0) \ B̄1(0). It is obvious that, for any y ∈ B̄(1+r0)r(y

r
x) \ B̄r(y

r
x), we have

(M+
L0(λ,Λ,σ)uα( ·−y

r
x

r
))(y) ≤ − 1

rσ
.

For any y ∈ B̄
(1+( 2

C
)

1
α )r

(yrx) \ B̄r(y
r
x), then we have ϕx,r(y) = Cuα(y−y

r
x

r
). Suppose

that there exists a test function Ψ ∈ C2(Rn) ∩ BUC(Rn) touches ϕx,r from below

at y. Thus, Ψ
C

touches uα( ·−y
r
x

r
) from below at y. Thus, M+

L0(λ,Λ,σ)Ψ(y) ≤ − C
rσ

. For

any y ∈ Ω ∩ B̄c

(1+( 2
C

)
1
α )r

(yrx), we have ϕx,r(y) = ϕ(y) = maxRn ϕx,r = 2. Suppose that

there exists a test function Ψ ∈ C2(Rn) ∩ BUC(Rn) touches ϕx,r from below at y.
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Therefore,

(M+
L0(λ,Λ,σ)Ψ)(y) = (2− σ)

∫
Rn

ΛδΨ(y, z)+ − λδΨ(y, z)−

|z|n+σ
dz

= −λ(2− σ)

∫
Rn

δΨ(y, z)−

|z|n+σ
dz

≤ −λ(2− σ)

∫
Rn

(Ψ(y + z)− 2)−

|z|n+σ
dz

≤ −λ(2− σ)

∫
{z|z1>−y1+1}

1

|z|n+σ
dz

≤ −λ(2− σ)

∫
{z|z1>−min{y1|y∈Ω}+1}

1

|z|n+σ
dz.

Based on the above argument, if we set ε0 = min{ C
rσΩ
, λ(2−σ)

∫
z1>−min{y1|y∈Ω}+1

1
|z|n+σ dz},

we have

M+
L0(λ,Λ,σ)ϕx,r ≤ −ε0, in Ω.

Theorem 4.4.4. Assume that 0 < σ < 2 and G(x, 0, 0) is bounded in Rn. Suppose

that G is uniformly elliptic with respect to L0(λ,Λ, σ) and g is a bounded continu-

ous function in Rn. Then (74) admits a viscosity supersolution ū and a viscosity

subsolution u and ū = u = g in Ωc.

Proof. For any x ∈ Ω̄c, we let ũx be a bounded continuous function touches g from

above at x and ũx ≥ 2C(‖g‖L∞(Rn) + 1) in Ω for some sufficiently large C(> 1)

we determine later. Thus, we define ux = min{C(‖g‖L∞(Rn) + 1)ϕ, ũx} where ϕ

is defined in Lemma 4.4.3. It is obvious that ux ≥ g in Rn, ux(x) = g(x) and

ux = C{‖g‖L∞(Rn) + 1}ϕ = 2C(‖g‖L∞(Rn) + 1) = maxRn ux in Ω. For any y ∈ Ω, we

have

(M+
L0(λ,Λ,σ)ux)(y) = (2− σ)

∫
Rn

Λδux(y, z)
+ − λδux(y, z)−

|z|n+σ
dz

= −λ(2− σ)

∫
Rn

δux(y, z)
−

|z|n+σ
dz

≤ −λ(2− σ)

∫
Rn

(ux(y + z)− 2C(‖g‖L∞(Rn) + 1))−

|z|n+σ
dz

≤ −λ(2− σ)C(‖g‖L∞(Rn) + 1)

∫
{z|z1>−y1+1}

1

|z|n+σ
dz

≤ −λ(2− σ)C(‖g‖L∞(Rn) + 1)

∫
{z|z1>−min{y1|y∈Ω}+1}

1

|z|n+σ
dz

≤ −‖G(x, 0, 0)‖L∞(Rn),
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where C is chosen sufficiently large such that the last inequality holds. Although ux

does not depend on r, we define ux,r = ux for any 0 < r < rΩ.

Since g is a continuous function, let ρR be a modulus of continuity of g in BR(0).

Let R0 be a sufficiently large constant such that Ω ⊂ BR0−1(0). For any x ∈ ∂Ω, we

let ux,r = ρR0(3r) + g(x) + max{‖g‖L∞(Rn),
‖G(x,0,0)‖L∞(Rn)

ε0
}ϕx,r where ϕx,r is defined

in Lemma 4.4.3. It is obvious that ux,r(x) = ρR0(3r) + g(x), ux,r ≥ g in Rn and

M+
L0(λ,Λ,σ)ux,r ≤ −‖G(x, 0, 0)‖L∞(Rn) in Ω.

Now we define ū = infx∈Ωc,0<r<rΩ{ux,r}. Therefore, ū = g in Ωc and ū ≥ g in Rn.

For any x ∈ ∂Ω and y ∈ Rn, we have g(y) − g(x) ≤ ū(y) − ū(x) = ū(y) − g(x) ≤
ρR0(3r) + max{‖g‖L∞(Rn),

‖G(x,0,0)‖L∞(Rn)

ε0
}ϕx,r(y) for any 0 < r < rΩ. Therefore, ū is

continuous on ∂Ω. For any y ∈ Ω, we define dy = dist(y, ∂Ω) > 0. If r < dy
2

, then we

have, for any z ∈ B dy
2

(y),

ux,r(z) =

{
ρR0(3r) + g(x) + 2 max{‖g‖L∞(Rn),

‖G(x,0,0)‖L∞(Rn)

ε0
}, x ∈ ∂Ω,

2C(‖g‖L∞(Rn) + 1), x ∈ Ω̄c.

Thus, we have, for any z ∈ B dy
2

(y),

inf
x∈∂Ω,

dy
2
<r<rΩ

{ux,r(z)− ux,r(y), 0} ≤ ū(z)− ū(y) ≤ sup
x∈∂Ω,

dy
2
<r<rΩ

{ux,r(z)− ux,r(y), 0}.

Since {ux,r}x∈∂Ω,
dy
2
<r<rΩ

has a uniform modulus of continuity, then ū is continuous in

Ω. Therefore, ū is a bounded continuous function in Rn and ū = g in Ωc.

By Lemma 4.2.1, we have M+
L0(λ,Λ,σ)ū ≤ −‖G(x, 0, 0)‖L∞(Rn) in Ω. Therefore, for

any x ∈ Ω, G(x, ū, I[x, ū]) − G(x, 0, 0) ≥ M−
L0(λ,Λ,σ)(−ū)(x) = −M+

L0(λ,Λ,σ)(ū)(x) ≥
‖G(·, 0, 0)‖L∞(Rn). Thus, G(x, ū, I[x, ū]) ≥ 0 in Ω.

Similarly, we can construct a subsolution and a supersolution of (75).

Theorem 4.4.5. Assume that {fαβ}α,β is a set of uniformly continuous and bounded

functions in Ω, g is a bounded continuous function in Rn, γ ≥ 0 and Iαβ is of Lévy

type and uniformly elliptic with respect to L0(λ,Λ, σ) for some 2 > σ > 0. Then (75)

admits a viscosity supersolution ū and a viscosity subsolution u and ū = u = g in Ωc.

Now we have enough ingredients to conclude

Theorem 4.4.6. Assume that 0 < σ < 2, G(x, 0, 0) is bounded in Rn and g is a

bounded continuous function. Suppose that G is uniformly elliptic with respect to

L0(λ,Λ, σ). Then (74) admits a viscosity solution u.

Proof. The result follows from Theorem 4.4.4 and Corollary 7.
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Theorem 4.4.7. Assume that {fαβ}α,β is a set of uniformly continuous and bounded

functions in Ω, γ ≥ 0, g is a bounded continuous function and Iαβ is of Lévy type and

uniformly elliptic with respect to L0(λ,Λ, σ) for some 2 > σ > 0. Then (75) admits

a viscosity solution u.

Proof. The result follows from Theorem 4.4.5 and Corollary 8.
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CHAPTER V

SEMICONCAVITY OF VISCOSITY SOLUTIONS FOR A

CLASS OF DEGENERATE ELLIPTIC

INTEGRO-DIFFERENTIAL EQUATIONS IN RN

In this chapter, we will study semiconcavity of viscosity solutions for a class of de-

generate elliptic integro-differential equations in Rn, see [60].

5.1 Notation and Definitions

We recall the definition of a viscosity solution of (1). In order to do it, we introduce

two associated operators I1,δ and I2,δ,

I1,δ[x, p, u] =

∫
|ξ|<δ

[u(x+ j(x, ξ))− u(x)− 1B1(0)(ξ)p · j(x, ξ)]µ(dξ),

I2,δ[x, p, u] =

∫
|ξ|≥δ

[u(x+ j(x, ξ))− u(x)− 1B1(0)(ξ)p · j(x, ξ)]µ(dξ).

Definition 9. A bounded function u ∈ USC(Rn) is a viscosity subsolution of (1)

if whenever u − ϕ has a maximum over Bδ(x) at x ∈ Rn for a test function ϕ ∈
C2(Bδ(x)), δ > 0, then

G
(
x, u(x), Dϕ(x), D2ϕ(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

)
≤ 0.

A bounded function u ∈ LSC(Rn) is a viscosity supersolution of (1) if whenever u−ϕ
has a minimum over Bδ(x) at x ∈ Rn for a test function ϕ ∈ C2(Bδ(x)), δ > 0, then

G
(
x, u(x), Dϕ(x), D2ϕ(x), I1,δ[x,Dϕ(x), ϕ] + I2,δ[x,Dϕ(x), u]

)
≥ 0.

A function u is a viscosity solution of (1) if it is both a viscosity subsolution and

viscosity supersolution of (1).

5.2 Hölder and Lipschitz continuity

In this section we prove the Hölder and Lipschitz continuity of viscosity solutions of

(1) and (6). We start with equation (1). We make the following assumptions on the

nonlinearity G and the function j(x, ξ).
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(H1) There are a constant 0 < θ ≤ 1, a non-negative constant Λ and two positive

constants C1, C2 such that, for any x, y ∈ Rn, r, lx, ly ∈ R, X, Y ∈ Sn and L, η > 0,

we have

G(y, r, Lθ|x− y|θ−2(x− y), Y, ly)−G(x, r, Lθ|x− y|θ−2(x− y) + 2ηx,X, lx)

≤ Λ(lx − ly) + C1(1 + L)|x− y|θ + C2η(1 + |x|2),

if (
X 0

0 −Y

)
≤ L|x− y|θ−2

(
I −I
−I I

)
+ 2η

(
I 0

0 0

)
.

(H2) For any x, y ∈ Rn, we have

|j(x, ξ)− j(y, ξ)| ≤ |x− y|ρ(ξ) for ξ ∈ Rn,

|j(0, ξ)| ≤ ρ(ξ) for ξ ∈ Rn.

The following lemma is a nonlocal version of the Jensen-Ishii lemma we borrow from

[40], Theorem 4.9. The reader can consult [9] for a more general Jensen-Ishii lemma

for integro-differential eqations, which allows for arbitrary growth of solutions at

infinity. Before giving the lemma, we notice that our Definition 9 corresponds to the

alternative definition of a viscosity solution in [40], see Lemma 4.8.

Lemma 5.2.1. Suppose that the nonlinearity G in (1) is continuous and satisfies

(12)-(3). Let u, v be bounded functions and be respectively a viscosity subsolution and

a viscosity supersolution of

G(x, u,Du,D2u, I[x, u]) = 0 and G(x, v,Dv,D2v, I[x, v]) = 0 in Rn.

Let ψ ∈ C2(R2n) and (x̂, ŷ) ∈ Rn × Rn be such that

(x, y) 7→ u(x)− v(y)− ψ(x, y)

has a global maximum at (x̂, ŷ). Furthermore, assume that in a neighborhood of (x̂, ŷ)

there are continuous functions g0 : R2n → R, g1 : Rn → Sn with g0(x̂, ŷ) > 0,

satisfying

D2ψ(x, y) ≤ g0(x, y)

(
I −I
−I I

)
+

(
g1(x) 0

0 0

)
.

Then, for any 0 < δ < 1 and ε0 > 0, there are X, Y ∈ Sn satisfying(
X 0

0 −Y

)
−

(
g1(x̂) 0

0 0

)
≤ (1 + ε0)g0(x̂, ŷ)

(
I −I
−I I

)
,

such that

G
(
x̂, u(x̂), Dxψ(x̂, ŷ), X, I1,δ[x̂, Dxψ(x̂, ŷ), ψ(·, ŷ)] + I2,δ[x̂, Dxψ(x̂, ŷ), u(·)]

)
≤ 0,

G
(
ŷ, v(ŷ),−Dyψ(x̂, ŷ), Y, I1,δ[ŷ,−Dyψ(x̂, ŷ),−ψ(x̂, ·)] + I2,δ[ŷ,−Dyψ(x̂, ŷ), v(·)]

)
≥ 0.
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Remark 9. The statement of Lemma 5.2.1 is weaker than Theorem 4.9 in [40]. By

Theorem 4.9 in [40], the same result as Lemma 5.2.1 is also true for Bellman-Isaacs

equations (6).

Lemma 5.2.2. Suppose that a Lévy measure µ satisfies (12) and j(x, ξ) satisfies

assumption (H2). Then we have

M1 : = sup
x 6=y

{
|x− y|−θ

∫
Rn

[
|x− y + j(x, ξ)− j(y, ξ)|θ − |x− y|θ

−1B1(0)(ξ)θ|x− y|θ−2(x− y) ·
(
j(x, ξ)− j(y, ξ)

)]
µ(dξ)

}
< +∞. (88)

Proof. We first define

φ(x, y) = |x− y|θ. (89)

By calculation, we have

Dφ(x, y) = θ|x− y|θ−2

(
x− y
y − x

)
, (90)

D2φ(x, y) = θ|x− y|θ−2

(
I −I
−I I

)
+ θ(θ − 2)|x− y|θ−4

(
x− y
y − x

)
⊗

(
x− y
y − x

)

≤ θ|x− y|θ−2

(
I −I
−I I

)
. (91)

Since limξ→0 ρ(ξ) = 0, there exists a positive constant δ1 < 1 such that supξ∈Bδ1 (0) ρ(ξ) ≤
1
2
. By (12), (90), (91) and (H2), we have, for any x, y ∈ Rn and x 6= y

|x− y|−θ
∫
Rn

[
|x− y + j(x, ξ)− j(y, ξ)|θ − |x− y|θ

−1B1(0)(ξ)θ|x− y|θ−2(x− y) ·
(
j(x, ξ)− j(y, ξ)

)]
µ(dξ)

≤ |x− y|−θθ
∫
Bδ1 (0)

(
sup

0≤t≤1
|x− y + t(j(x, ξ)− j(y, ξ))|θ−2|j(x, ξ)− j(y, ξ)|2

)
µ(dξ)

+|x− y|−θ
∫
Rn\Bδ1 (0)

[
|x− y + j(x, ξ)− j(y, ξ)|θ − |x− y|θ

−1B1(0)(ξ)θ|x− y|θ−2(x− y) ·
(
j(x, ξ)− j(y, ξ)

)]
µ(dξ)

≤ 22−θθ

∫
Bδ1 (0)

ρ(ξ)2µ(dξ) +

∫
Rn\Bδ1 (0)

ρ(ξ)θµ(dξ) + θ

∫
B1(0)\Bδ1 (0)

ρ(ξ)µ(dξ) < +∞.

(92)
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Theorem 5.2.3. Suppose that the nonlinearity G in (1) is continuous, and satisfies

(12)-(3) and (H1). Suppose that j(x, ξ) satisfies assumption (H2). Then, if u ∈
BUC(Rn) is a viscosity solution of (1) and γ > ΛM1 + C1 where M1 is defined in

(88), we have u ∈ C0,θ(R̄n).

Proof. Let Φ(x, y) = u(x) − u(y) − ψ(x, y) where ψ(x, y) = Lφ(x, y) + η|x|2 and

φ(x, y) is defined in (89). We want to prove, for any η > 0, we have Φ(x, y) ≤ 0 for

all x, y ∈ Rn and some fixed sufficiently large L. Otherwise, there exists a positive

constant η0 such that supx,y∈Rn Φ(x, y) > 0 if 0 < η < η0. By boundedness of u, there

is a point (x̂, ŷ) such that Φ(x̂, ŷ) = supx,y∈Rn Φ(x, y) > 0. Therefore, we have

max{η|x̂|2, L|x̂− ŷ|θ} < u(x̂)− u(ŷ). (93)

By (90) and (91), we obtain

D2ψ(x̂, ŷ) ≤ θL|x̂− ŷ|θ−2

(
I −I
−I I

)
+ 2η

(
I 0

0 0

)
.

By Lemma 5.2.1, since u ∈ BUC(Rn) is a viscosity solution of (1), for any 0 < δ < 1

and ε0 > 0, there are X, Y ∈ Sn satisfying(
X 0

0 −Y

)
− 2η

(
I 0

0 0

)
≤ (1 + ε0)θL|x̂− ŷ|θ−2

(
I −I
−I I

)
, (94)

such that

G
(
x̂, u(x̂), LDxφ(x̂, ŷ) + 2ηx̂,X, lx̂

)
≤ 0,

G
(
ŷ, u(ŷ),−LDyφ(x̂, ŷ), Y, lŷ

)
≥ 0,

where

lx̂ = I1,δ[x̂, LDxφ(x̂, ŷ) + 2ηx̂, Lφ(·, ŷ) + η| · |2] + I2,δ[x̂, LDxφ(x̂, ŷ) + 2ηx̂, u(·)],

lŷ = I1,δ[ŷ,−LDyφ(x̂, ŷ),−Lφ(x̂, ·)] + I2,δ[ŷ,−LDyφ(x̂, ŷ), u(·)].

Thus, by (2), (93) and (H1), we have

γL|x̂− ŷ|θ ≤ γ
(
u(x̂)− u(ŷ)

)
≤ G

(
ŷ, u(ŷ),−LDyφ(x̂, ŷ), Y, lŷ

)
−G

(
x̂, u(ŷ), LDxφ(x̂, ŷ) + 2ηx̂,X, lx̂

)
≤ Λ(lx̂ − lŷ) + C1(1 + L)|x̂− ŷ|θ + C2η(1 + |x̂|2). (95)
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Now we focus on estimating the integral term lx̂ − lŷ. Thus,

lx̂ − lŷ = L

∫
Bδ(0)

[
|x̂− ŷ + j(x̂, ξ)|θ − |x̂− ŷ|θ − θ|x̂− ŷ|θ−2(x̂− ŷ) · j(x̂, ξ)

]
µ(dξ)

+L

∫
Bδ(0)

[
|ŷ − x̂+ j(ŷ, ξ)|θ − |ŷ − x̂|θ − θ|ŷ − x̂|θ−2(ŷ − x̂) · j(ŷ, ξ)

]
µ(dξ)

+η

∫
Bδ(0)

(
|x̂+ j(x̂, ξ)|2 − |x̂|2 − 2x̂ · j(x̂, ξ)

)
µ(dξ)

+

∫
Bcδ(0)

[
u(x̂+ j(x̂, ξ))− u(x̂)− u(ŷ + j(ŷ, ξ)) + u(ŷ)

−1B1(0)(ξ)
(
θL|x̂− ŷ|θ−2(x̂− ŷ)

)
·
(
j(x̂, ξ)− j(ŷ, ξ)

)
−1B1(0)(ξ)2ηx̂ · j(x̂, ξ)

]
µ(dξ).

Since Φ(x, y) attains a global maximum at (x̂, ŷ), we have, for any ξ ∈ Rn,

u(x̂+ j(x̂, ξ))− u(x̂)− u(ŷ + j(ŷ, ξ)) + u(ŷ)

≤ L
(
|x̂− ŷ + j(x̂, ξ)− j(ŷ, ξ)|θ − |x̂− ŷ|θ

)
+ η
(
|x̂+ j(x̂, ξ)|2 − |x̂|2

)
. (96)

Thus, by (91) and (96), we have

lx̂ − lŷ ≤ θL

∫
Bδ(0)

(
sup

0≤t≤1
|x̂− ŷ + tj(x̂, ξ)|θ−2|j(x̂, ξ)|2

+ sup
0≤t≤1

|ŷ − x̂+ tj(ŷ, ξ)|θ−2|j(ŷ, ξ)|2
)
µ(dξ)

+η

∫
Rn

(
|x̂+ j(x̂, ξ)|2 − |x̂|2 − 1B1(0)(ξ)2x̂ · j(x̂, ξ)

)
µ(dξ)

+L

∫
Bcδ(0)

[
|x̂− ŷ + j(x̂, ξ)− j(ŷ, ξ)|θ − |x̂− ŷ|θ

−1B1(0)(ξ)θ|x̂− ŷ|θ−2(x̂− ŷ) ·
(
j(x̂, ξ)− j(ŷ, ξ)

)]
µ(dξ). (97)

We claim that η|x̂|2 → 0 as η → 0. Since u is bounded in Rn, for any positive integer

k, let (xk, yk) be a point such that

u(xk)− u(yk)− Lφ(xk, yk) ≥M − 1

k
,

where M := supx,y∈Rn{u(x)− u(y)− Lφ(x, y)} < +∞. Thus,

M − 1

k
− η|xk|2 ≤ Φ(xk, yk) ≤ Φ(x̂, ŷ) ≤M. (98)

Letting η → 0 and then letting k → +∞ in (98), we have limη→0 Φ(x̂, ŷ) = M . If we

notice that

Φ(x̂, ŷ) + η|x̂|2 = u(x̂)− u(ŷ)− Lφ(x̂, ŷ) ≤M, ∀η > 0,
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the claim follows. Since u ∈ BUC(Rn) and (93) holds, we have

ε1 ≤ |x̂− ŷ| ≤ ε−1
1 ,

where ε1 is a positive constant independent of η. Letting δ → 0 and then letting

η → 0 in (95), we have, by (12), (97) and (H2),

γL|x̂− ŷ|θ ≤ ΛL

∫
Rn

[
|x̂− ŷ + j(x̂, ξ)− j(ŷ, ξ)|θ − |x̂− ŷ|θ

−1B1(0)(ξ)θ|x̂− ŷ|θ−2(x̂− ŷ) ·
(
j(x̂, ξ)− j(ŷ, ξ)

)]
µ(dξ)

+C1(1 + L)|x̂− ŷ|θ.

Therefore, by Lemma 5.2.2,

γ ≤ Λ|x̂− ŷ|−θ
∫
Rn

[
|x̂− ŷ + j(x̂, ξ)− j(ŷ, ξ)|θ − |x̂− ŷ|θ

−1B1(0)(ξ)θ|x̂− ŷ|θ−2(x̂− ŷ) ·
(
j(x̂, ξ)− j(ŷ, ξ)

)]
µ(dξ) + C1(1 +

1

L
)

≤ ΛM1 + C1(1 +
1

L
) < +∞, (99)

where M1 is defined in (88). It is now obvious from (99) that, if γ > ΛM1 + C1, we

can find a sufficiently large L such that we have a contradiction. Therefore, we have

u ∈ C0,θ(R̄n).

Let us consider another important fully nonlinear integro-PDE appearing in the

study of stochastic optimal control and stochastic differential games for processes

with jumps, namely the Bellman-Isaacs equation (6). Equation (6) is not of the same

form as (1), which means that the following theorem is not a corollary of Theorem

5.2.3.

Theorem 5.2.4. Suppose that cαβ ≥ γ in Rn uniformly in α ∈ A, β ∈ B. Suppose

that the Lévy measure µ satisfies (12), and the family {jαβ(x, ξ)} satisfies assumption

(H2) uniformly in α ∈ A, β ∈ B. Suppose moreover that there exist a positive constant

C and 0 < θ ≤ 1 such that

sup
α∈A,β∈B

max{|σαβ(0)|, |bαβ(0)|} < C, (100)

and

sup
α∈A,β∈B

max{[σαβ]0,1;Rn , [bαβ]0,1;Rn , [cαβ]0,θ,Rn , [fαβ]0,θ,Rn} < +∞. (101)
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Then, if u ∈ BUC(Rn) is a viscosity solution of (6) and γ > N1 where

N1 : = sup
x 6=y

sup
α∈A,β∈B

{
θ|x− y|−2Tr

[(
σαβ(x)− σαβ(y)

)
(σαβ(x)− σαβ(y)

)T]
+θ|x− y|−2

(
bαβ(y)− bαβ(x)

)
· (x− y)

+|x− y|−θ
∫
Rn

[
|x− y + jαβ(x, ξ)− jαβ(y, ξ)|θ − |x− y|θ

−1B1(0)(ξ)θ|x− y|θ−2(x− y) ·
(
jαβ(x, ξ)− jαβ(y, ξ)

)]
µ(dξ)

}
< +∞,

(102)

we have u ∈ C0,θ(R̄n).

Proof. At the beginning of the proof, we will show that the constant N1 has an upper

bound. By (101) and the estimates in (92), we have

N1 ≤ θ sup
α∈A,β∈B

[σαβ]20,1;Rn + θ sup
α∈A,β∈B

[bαβ]0,1;Rn + 22−θθ

∫
Bδ1 (0)

ρ(ξ)2µ(dξ)

+

∫
Rn\Bδ1 (0)

ρ(ξ)θµ(dξ) + θ

∫
B1(0)\Bδ1 (0)

ρ(ξ)µ(dξ) < +∞,

where δ1 was chosen in Lemma 5.2.2.

Then we want to prove that, for any η > 0, we have Φ(x, y) = u(x) − u(y) −
ψ(x, y) ≤ 0 for all x, y ∈ Rn and some fixed sufficiently large L where ψ(x, y) is

given in Theorem 5.2.3. Otherwise, there exists a positive constant η0 such that

supx,y∈Rn Φ(x, y) > 0 if 0 < η < η0. By boundedness of u, there is a point (x̂, ŷ) such

that Φ(x̂, ŷ) = supx,y∈Rn Φ(x, y) > 0. Therefore, we have (93). By Remark 9, since

u ∈ BUC(Rn) is a viscosity solution of (6), for any 0 < δ < 1 and ε0 > 0, there are

X, Y ∈ Sn satisfying (94) such that

sup
α∈A

inf
β∈B

{
−Tr

(
σαβ(x̂)σTαβ(x̂)X

)
−lx̂,αβ+bαβ(x̂) ·Dxψ(x̂, ŷ)+cαβ(x̂)u(x̂)+fαβ(x̂)

}
≤ 0,

sup
α∈A

inf
β∈B

{
−Tr

(
σαβ(ŷ)σTαβ(ŷ)Y

)
− lŷ,αβ−bαβ(ŷ) ·Dyψ(x̂, ŷ)+cαβ(ŷ)u(ŷ)+fαβ(ŷ)

}
≥ 0,

where

lx̂,αβ = I1,δ
αβ [x̂, Dxψ(x̂, ŷ), ψ(·, ŷ)] + I2,δ

αβ [x̂, Dxψ(x̂, ŷ), u(·)],

lŷ,αβ = I1,δ
αβ [ŷ,−Dyψ(x̂, ŷ),−ψ(x̂, ·)] + I2,δ

αβ [ŷ,−Dyψ(x̂, ŷ), u(·)].

Since (90) and (93) hold, and cαβ ≥ γ in Rn uniformly in α ∈ A, β ∈ B, we have

γL|x̂− ŷ|θ ≤ sup
α∈A,β∈B

{
Lαβ +Nαβ

}
, (103)
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where

Lαβ = Tr
(
σαβ(x̂)σTαβ(x̂)X − σαβ(ŷ)σTαβ(ŷ)Y

)
+
(
bαβ(ŷ)− bαβ(x̂)

)
· LDxφ(x̂, ŷ)

+
(
cαβ(ŷ)− cαβ(x̂)

)
u(ŷ) + fαβ(ŷ)− fαβ(x̂)− 2ηbαβ(x̂) · x̂,

and

Nαβ = lx̂,αβ − lŷ,αβ.

By (94), (100) and (101), we see that (see also Example 3.6 in [22])

Tr
(
σαβ(x̂)σTαβ(x̂)X − σαβ(ŷ)σTαβ(ŷ)Y

)
≤ (1 + ε0)θL|x̂− ŷ|θ−2Tr

[(
σαβ(x̂)− σαβ(ŷ)

)
(σαβ(x̂)− σαβ(ŷ)

)T]
+2ηTr

(
σαβ(x̂)σTαβ(x̂)

)
≤ (1 + ε0)θL|x̂− ŷ|θ−2Tr

[(
σαβ(x̂)− σαβ(ŷ)

)
(σαβ(x̂)− σαβ(ŷ)

)T]
+2η(C + sup

α∈A,β∈B
[σαβ]0,1;Rn|x̂|)2.

Thus, we can estimate the local term Lαβ easily. Using (90), (100), (101) and bound-

edness of u, we obtain

Lαβ ≤ (1 + ε0)θL|x̂− ŷ|θ−2Tr
[(
σαβ(x̂)− σαβ(ŷ)

)
(σαβ(x̂)− σαβ(ŷ)

)T]
+2η(C + sup

α∈A,β∈B
[σαβ]0,1;Rn|x̂|)2 + θL|x̂− ŷ|θ−2

(
bαβ(ŷ)− bαβ(x̂)

)
· (x̂− ŷ)

+ sup
α∈A,β∈B

[cαβ]0,θ;Rn|u|0;Rn|x̂− ŷ|θ + sup
α∈A,β∈B

[fαβ]0,θ;Rn|x̂− ŷ|θ

+2η(C|x̂|+ sup
α∈A,β∈B

[bαβ]0,1;Rn|x̂|2). (104)

Similarly as in the proof of Theorem 5.2.3, we have η|x̂|2 → 0 as η → 0 and

ε1 ≤ |x̂− ŷ| ≤ ε−1
1 ,

where ε1 is a positive constant independent of η. Letting δ → 0, η → 0 and ε0 → 0

in (103), we have, by (104) and the same estimates on the nonlocal term Nαβ as

Theorem 5.2.3,

γL|x̂− ŷ|θ ≤ sup
α∈A,β∈B

L
{
θ|x̂− ŷ|θ−2Tr

[(
σαβ(x̂)− σαβ(ŷ)

)
(σαβ(x̂)− σαβ(ŷ)

)T]
+θ|x̂− ŷ|θ−2

(
bαβ(ŷ)− bαβ(x̂)

)
· (x̂− ŷ)

+

∫
Rn

[
|x̂− ŷ + jαβ(x̂, ξ)− jαβ(ŷ, ξ)|θ − |x̂− ŷ|θ

−1B1(0)(ξ)θ|x̂− ŷ|θ−2(x̂− ŷ) ·
(
jαβ(x̂, ξ)− jαβ(ŷ, ξ)

)]
µ(dξ)

}
+ sup

α∈A,β∈B
[cαβ]0,θ;Rn|u|0;Rn|x̂− ŷ|θ + sup

α∈A,β∈B
[fαβ]0,θ;Rn|x̂− ŷ|θ.
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Therefore,

γ ≤ sup
α∈A,β∈B

{
θ|x̂− ŷ|−2Tr

[(
σαβ(x̂)− σαβ(ŷ)

)
(σαβ(x̂)− σαβ(ŷ)

)T]
+θ|x̂− ŷ|−2

(
bαβ(ŷ)− bαβ(x̂)

)
· (x̂− ŷ) (105)

+|x̂− ŷ|−θ
∫
Rn

[
|x̂− ŷ + jαβ(x̂, ξ)− jαβ(ŷ, ξ)|θ − |x̂− ŷ|θ

−1B1(0)(ξ)θ|x̂− ŷ|θ−2(x̂− ŷ) ·
(
jαβ(x̂, ξ)− jαβ(ŷ, ξ)

)]
µ(dξ)

}
+

1

L
sup

α∈A,β∈B
[cαβ]0,θ;Rn|u|0;Rn +

1

L
sup

α∈A,β∈B
[fαβ]0,θ;Rn

≤ N1 +
1

L
sup

α∈A,β∈B
[cαβ]0,θ;Rn|u|0;Rn +

1

L
sup

α∈A,β∈B
[fαβ]0,θ;Rn , (106)

where N1 is defined in (102). It now follows from (105) that, if γ > N1, we can

find a sufficiently large L such that we have a contradiction. Therefore, we have

u ∈ C0,θ(R̄n).

5.3 Semiconcavity

In this section we investigate the semiconcavity of viscosity solutions of (1) and (13).

Again we start with equation (1). We impose the following conditions on G and

j(x, ξ).

(H̄1) If ϕ ∈ C0,1(R̄n), there are a constant 1 < θ̄ ≤ 2, a non-negative constant

Λ and two positive constants C3, C4 such that, for any x, y, z ∈ Rn, lx, ly, lz ∈ R,

X, Y, Z ∈ Sn and L, η > 0, we have

2G(z, ϕ(z),−L
2
Dzφ(x, y, z),

Z

2
, lz)

−G(x, ϕ(x), LDxφ(x, y, z) + 2ηx,X, lx)−G(y, ϕ(y), LDyφ(x, y, z), Y, ly)

≤ −γ
(
ϕ(x) + ϕ(y)− 2ϕ(z)

)
+ Λ(lx + ly − 2lz) + C3(1 + L)φ(x, y, z)

+C4η(1 + |x|2),

(107)

if  X 0 0

0 Y 0

0 0 −Z



≤ L

φ(x, y, z)

θ̄(2θ̄ − 1)|x− y|2θ̄−2

 I −I 0

−I I 0

0 0 0

+

 I I −2I

I I −2I

−2I −2I 4I



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+2η

 I 0 0

0 0 0

0 0 0

 , (108)

where γ is given by (2) and φ(x, y, z) = (|x− y|2θ̄ + |x+ y − 2z|2)
1
2 .

(H̄2) (H2) holds and, with the same θ̄ in (H̄1) and for any x, y ∈ Rn, we have

|j(x, ξ) + j(y, ξ)− 2j(
x+ y

2
, ξ)| ≤ |x− y|θ̄ρ(ξ) for ξ ∈ Rn.

Example 5.3.1. Since the assumption (H̄1) is complicated, we provide a concrete

example to show when it is satisfied. We consider the nonlinear convex nonlocal

equation

−Tr
(
σ(x)σT (x)D2u(x)

)
+ F (I[x, u]) + b(x) ·Du(x) + c(x)u(x) + f(x) = 0, in Rn,

(109)

where F : R → R is a continuous function. Suppose the following conditions are

satisfied: there exists a non-negative constant Λ such that, for any lx, ly ∈ R,

c ≥ γ in Rn and c ∈ C1,θ̄−1(R̄n),

f is θ̄-semiconvex in Rn,

max{[σ]0,1;Rn , [σ]1,θ̄−1;Rn , [b]0,1;Rn , [b]1,θ̄−1;Rn , [f ]0,1;Rn} < +∞,

F is convex in Rn and F (ly)− F (lx) ≤ Λ(lx − ly). (110)

By the estimates on the local terms in Theorem 5.3.5, if equation (109) does not

contain the nonlocal term F (I[x, u]), then (109) satisfies (H̄1). Thus, we only need

to estimate the nonlocal terms. For any lx, ly, lz, we have, by (110),

2F (lz)− F (lx)− F (ly) ≤ 2F (lz)− 2F (
lx + ly

2
) +

(
2F (

lx + ly
2

)− F (lx)− F (ly)
)

≤ Λ(lx + ly − 2lz).

Therefore, equation (109) satisfies (H̄1).

This example can be generalized to equation

G(x, u,Du,D2u) + F (I[x, u]) = 0, in Rn, (111)

where G satisfies (107) without the last argument if ϕ ∈ C0,1(R̄n) and (108) holds,

and F satisfies (110). It is obvious that (H̄1) holds for equation (111).

Lemma 5.3.1. Suppose that the nonlinearity G in (1) is continuous and satisfies

(12)-(3). Let u, v, w be bounded functions and be respectively a viscosity subsolution,

a viscosity subsolution and a viscosity supersolution of

G(x, u,Du,D2u, I[x, u]) = 0, in Rn,
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G(x, v,Dv,D2v, I[x, v]) = 0, in Rn,

G(x,w,Dw,D2w, I[x,w]) = 0, in Rn.

Let ψ ∈ C2(R3n) and (x̂, ŷ, ẑ) ∈ Rn × Rn × Rn be such that

(x, y, z) 7→ u(x) + v(y)− 2w(z)− ψ(x, y, z)

has a global maximum at (x̂, ŷ, ẑ). Furthermore, assume that in a neighborhood

of (x̂, ŷ, ẑ) there are continuous functions g0, g1 : R3n → R, g2 : Rn → Sn with

g1(x̂, ŷ, ẑ) > 0, satisfying

D2ψ(x, y, z) ≤ g0(x, y, z)

 I −I 0

−I I 0

0 0 0

+ g1(x, y, z)

 I I −2I

I I −2I

−2I −2I 4I


+

 g2(x) 0 0

0 0 0

0 0 0

 .

Then, for any 0 < δ < 1 and ε0 > 0, there are X, Y, Z ∈ Sn satisfying X 0 0

0 Y 0

0 0 −Z

−
 g2(x̂) 0 0

0 0 0

0 0 0


≤ (1 + ε0)

g0(x̂, ŷ, ẑ)

 I −I 0

−I I 0

0 0 0

+ g1(x̂, ŷ, ẑ)

 I I −2I

I I −2I

−2I −2I 4I


 ,

such that

G
(
x̂, u(x̂), Dxψ(x̂, ŷ, ẑ), X, I1,δ[x̂, Dxψ(x̂, ŷ, ẑ), ψ(·, ŷ, ẑ)]+I2,δ[x̂, Dxψ(x̂, ŷ, ẑ), u(·)]

)
≤ 0,

G
(
ŷ, v(ŷ), Dyψ(x̂, ŷ, ẑ), Y, I1,δ[ŷ, Dyψ(x̂, ŷ, ẑ), ψ(x̂, ·, ẑ)]+I2,δ[ŷ, Dyψ(x̂, ŷ, ẑ), v(·)]

)
≤ 0,

G
(
ẑ, w(ẑ),−1

2
Dzψ(x̂, ŷ, ẑ),

Z

2
, I1,δ[ẑ,−Dzψ(x̂, ŷ, ẑ)

2
,−ψ(x̂, ŷ, ·)

2
]

+I2,δ[ẑ,−Dzψ(x̂, ŷ, ẑ)

2
, w(·)]

)
≥ 0.

Proof. This lemma can be deduced from the proof of Theorem 4.9 in [40].

Remark 10. Lemma 5.3.1 is also true for Bellman-Isaacs equations (6).
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Lemma 5.3.2. Suppose that a Lévy measure µ satisfies (12) and j(x, ξ) satisfies

assumption (H̄2). Then

M2 : = sup
φ(x,y,z)6=0

{
φ(x, y, z)−1

∫
Rn

[
φ(x+ j(x, ξ), y + j(y, ξ), z + j(z, ξ))− φ(x, y, z)

1B1(0)(ξ)
(
Dxφ(x, y, z), Dyφ(x, y, z), Dzφ(x, y, z)

)
·
(
j(x, ξ), j(y, ξ), j(z, ξ)

)]
µ(dξ)

}
< +∞,

(112)

where φ(x, y, z) is defined in (H̄1).

Proof. By direct calculations, we have

Dφ(x, y, z) =
1

φ(x, y, z)

θ̄|x− y|2θ̄−2

 x− y
y − x

0

+

 x+ y − 2z

x+ y − 2z

−2x− 2y + 4z


 (113)

and

D2φ(x, y, z) = − 1

φ(x, y, z)
Dφ(x, y, z)⊗Dφ(x, y, z) (114)

+
1

φ(x, y, z)

[
θ̄|x− y|2θ̄−2

 I −I 0

−I I 0

0 0 0


+θ̄(2θ̄ − 2)|x− y|2θ̄−4

 x− y
y − x

0

⊗
 x− y

y − x
0

+

 I I −2I

I I −2I

−2I −2I 4I

]

≤ 1

φ(x, y, z)

θ̄(2θ̄ − 1)|x− y|2θ̄−2

 I −I 0

−I I 0

0 0 0

+

 I I −2I

I I −2I

−2I −2I 4I


 .

(115)

Since limξ→0 ρ(ξ) = 0, there exists a positive constant δ2 < 1 such that

sup
ξ∈Bδ2 (0)

ρ(ξ) ≤ 1

4
.

By (113) and (115), we have, for any x, y, z ∈ Rn and φ(x, y, z) 6= 0,
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φ(x, y, z)−1

∫
Rn

[
φ(x+ j(x, ξ), y + j(y, ξ), z + j(z, ξ))− φ(x, y, z)

−1B1(0)(ξ)
(
Dxφ(x, y, z), Dyφ(x, y, z), Dzφ(x, y, z)

)
·
(
j(x, ξ), j(y, ξ), j(z, ξ)

)]
µ(dξ)

≤ φ(x, y, z)−1
{∫

Bδ2 (0)

[
sup

0≤t≤1

(
j(x, ξ), j(y, ξ), j(z, ξ)

)
D2φ

(
x+ tj(x, ξ), y + tj(y, ξ), z + tj(z, ξ)

)(
j(x, ξ), j(y, ξ), j(z, ξ)

)T ]
µ(dξ)

+

∫
Bcδ2

(0)

[(
|x− y + j(x, ξ)− j(y, ξ)|2θ̄ + |x+ y − 2z + j(x, ξ) + j(y, ξ)− 2j(z, ξ)|2

) 1
2

−φ(x, y, z)− 1B1(0)(ξ)
1

φ(x, y, z)

(
θ̄|x− y|2θ̄−2(x− y) ·

(
j(x, ξ)− j(y, ξ)

)
+(x+ y − 2z) ·

(
j(x, ξ) + j(y, ξ)− 2j(z, ξ)

))]
µ(dξ)

}
≤ φ(x, y, z)−1

{∫
Bδ2 (0)

[
sup

0≤t≤1

1

φ(x+ tj(x, ξ), y + tj(y, ξ), z + tj(z, ξ))((
j(x, ξ) + j(y, ξ)− 2j(z, ξ)

)2
+θ̄(2θ̄ − 1)|x− y + t

(
j(x, ξ)− j(y, ξ)

)
|2θ̄−2

(
j(x, ξ)− j(y, ξ)

)2)]
µ(dξ)

+

∫
Bcδ2

(0)

[(
|x− y + j(x, ξ)− j(y, ξ)|2θ̄ + |x+ y − 2z + j(x, ξ) + j(y, ξ)− 2j(z, ξ)|2

) 1
2

−φ(x, y, z)− 1B1(0)(ξ)
1

φ(x, y, z)

(
θ̄|x− y|2θ̄−2(x− y) ·

(
j(x, ξ)− j(y, ξ)

)
+(x+ y − 2z) ·

(
j(x, ξ) + j(y, ξ)− 2j(z, ξ)

))]
µ(dξ)

}
.

By (H̄2), we have

|j(x, ξ) + j(y, ξ)− 2j(z, ξ)|

≤ |j(x, ξ) + j(y, ξ)− 2j(
x+ y

2
)|+ |2j(x+ y

2
, ξ)− 2j(z, ξ)|

≤ ρ(ξ)
(
|x− y|θ̄ + |x+ y − 2z|

)
.

Using it, we obtain, for any ξ ∈ Bδ2(0) and t ∈ [0, 1],

φ(x+ tj(x, ξ), y + tj(y, ξ), z + j(z, ξ))

=
[
|x− y + t

(
j(x, ξ)− j(y, ξ)

)
|2θ̄ + |x+ y − 2z + t

(
j(x, ξ) + j(y, ξ)− 2j(z, ξ)

)
|2
] 1

2

≥
[
(
3

4
)2θ̄|x− y|2θ̄ +

(3

4
|x+ y − 2z| − 1

4
|x− y|θ̄

)2] 1
2

≥
{[

(
3

4
)2θ̄ − 1

16

]
|x− y|2θ̄ +

9

32
|x+ y − 2z|2

} 1
2

≥ 1

2
φ(x, y, z).
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Therefore, for any x, y, z ∈ Rn and φ(x, y, z) 6= 0, we have by (12),

φ(x, y, z)−1

∫
Rn

[
φ(x+ j(x, ξ), y + j(y, ξ), z + j(z, ξ))− φ(x, y, z)

−1B1(0)(ξ)
(
Dxφ(x, y, z), Dyφ(x, y, z), Dzφ(x, y, z)

)
·
(
j(x, ξ), j(y, ξ), j(z, ξ)

)]
µ(dξ)

≤ 2

∫
Bδ2 (0)

[
2 + (

5

4
)2θ̄−2θ̄(2θ̄ − 1)

]
ρ(ξ)2µ(dξ)

+

∫
Bcδ2

(0)

{√
2
[(

1 + ρ(ξ)
)θ̄

+ ρ(ξ)
]
− 1
}
µ(dξ)

+(θ̄ +
3

2
)

∫
B1(0)∩Bcδ2 (0)

ρ(ξ)µ(dξ) < +∞. (116)

Theorem 5.3.3. Suppose that the nonlinearity G in (1) is continuous, and satisfies

(12)-(3) and (H̄1). Suppose that j(x, ξ) satisfies assumption (H̄2). Then, if u ∈
C0,1(R̄n) is a viscosity solution of (1) and γ > ΛM2 + C3 where M2 is defined in

(112), then u is θ̄-semiconcave in Rn.

Proof. Let Φ(x, y, z) = u(x)+u(y)−2u(z)−ψ(x, y, z) where ψ(x, y, z) = Lφ(x, y, z)+

η|x|2 and φ(x, y, z) is defined in (H̄1). We want to prove, for any η > 0, we

have Φ(x, y, z) ≤ 0 for all x, y, z ∈ Rn and some fixed sufficiently large L. Oth-

erwise, there exists a positive constant η0 such that supx,y,z∈Rn Φ(x, y, z) > 0 if

0 < η < η0. By boundedness of u, there is a point (x̂, ŷ, ẑ) such that Φ(x̂, ŷ, ẑ) =

supx,y,z∈Rn Φ(x, y, z) > 0. Therefore, we have

max{η|x̂|2, Lφ(x̂, ŷ, ẑ)} < u(x̂) + u(ŷ)− 2u(ẑ). (117)

By (113) and (115), we have

D2ψ(x̂, ŷ, ẑ)

≤ L

φ(x̂, ŷ, ẑ)

θ̄(2θ̄ − 1)|x̂− ŷ|2θ̄−2

 I −I 0

−I I 0

0 0 0

+

 I I −2I

I I −2I

−2I −2I 4I




+2η

 I 0 0

0 0 0

0 0 0

 .

By Lemma 5.3.1, since u ∈ BUC(Rn) is a viscosity solution of (1), for any 0 < δ < 1
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and ε0 > 0, there are X, Y, Z ∈ Sn satisfying X 0 0

0 Y 0

0 0 −Z

− 2η

 I 0 0

0 0 0

0 0 0


≤ (1 + ε0)L

φ(x̂, ŷ, ẑ)

[
θ̄(2θ̄ − 1)|x̂− ŷ|2θ̄−2

 I −I 0

−I I 0

0 0 0

+

 I I −2I

I I −2I

−2I −2I 4I

],
(118)

such that

G(x̂, u(x̂), LDxφ(x̂, ŷ, ẑ) + 2ηx̂,X, lx̂) ≤ 0,

G(ŷ, u(ŷ), LDyφ(x̂, ŷ, ẑ), Y, lŷ) ≤ 0,

G(ẑ, u(ẑ),−L
2
Dzφ(x̂, ŷ, ẑ),

Z

2
, lẑ) ≥ 0,

where

lx̂ = I1,δ[x̂, LDxφ(x̂, ŷ, ẑ) + 2ηx̂, Lφ(·, ŷ, ẑ) + η| · |2]

+I2,δ[x̂, LDxφ(x̂, ŷ, ẑ) + 2ηx̂, u(·)],
lŷ = I1,δ[ŷ, LDyφ(x̂, ŷ, ẑ), Lφ(x̂, ·, ẑ)] + I2,δ[ŷ, LDyφ(x̂, ŷ, ẑ), u(·)],

lẑ = I1,δ[ẑ,−L
2
Dzφ(x̂, ŷ, ẑ),−L

2
φ(x̂, ŷ, ·)] + I2,δ[ẑ,−L

2
Dzφ(x̂, ŷ, ẑ), u(·)].

Therefore, by (H̄1) and (117), we have

γLφ(x̂, ŷ, ẑ) ≤ Λ(lx̂ + lŷ − 2lẑ) + C3(1 + L)φ(x̂, ŷ, ẑ) + C4η(1 + |x̂|2). (119)

We now estimate the integral term lx̂ + lŷ − 2lẑ.

lx̂ + lŷ − 2lẑ

= L

∫
Bδ(0)

(
φ(x̂+ j(x̂, ξ), ŷ, ẑ)− φ(x̂, ŷ, ẑ)−Dxφ(x̂, ŷ, ẑ) · j(x̂, ξ)

)
µ(dξ)

+η

∫
Bδ(0)

(
|x̂+ j(x̂, ξ)|2 − |x̂|2 − 2x̂ · j(x̂, ξ)

)
µ(dξ)

+L

∫
Bδ(0)

(
φ(x̂, ŷ + j(ŷ, ξ), ẑ)− φ(x̂, ŷ, ẑ)−Dyφ(x̂, ŷ, ẑ) · j(ŷ, ξ)

)
µ(dξ)

+L

∫
Bδ(0)

(
φ(x̂, ŷ, ẑ + j(ẑ, ξ))− φ(x̂, ŷ, ẑ)−Dzφ(x̂, ŷ, ẑ) · j(ẑ, ξ)

)
µ(dξ)

+

∫
Bcδ(0)

[
u(x̂+ j(x̂, ξ))− u(x̂) + u(ŷ + j(ŷ, ξ))− u(ŷ)− 2

(
u(ẑ + j(ẑ, ξ))− u(ẑ)

)
−1B1(0)(ξ)

(
LDxφ(x̂, ŷ, ẑ) + 2ηx̂

)
· j(x̂, ξ)− 1B1(0)(ξ)LDyφ(x̂, ŷ, ẑ) · j(ŷ, ξ)

−1B1(0)(ξ)LDzφ(x̂, ŷ, ẑ) · j(ẑ, ξ)
]
µ(dξ).
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Thus, by (113) and (115), we have

lx̂ + lŷ − 2lẑ

≤ L

∫
Bδ(0)

[
sup

0≤t≤1

1

φ(x̂+ tj(x̂, ξ), ŷ, ẑ)(
θ̄(2θ̄ − 1)|x̂− ŷ + tj(x̂, ξ)|2θ̄−2 + 1

)
|j(x̂, ξ)|2

]
µ(dξ)

+L

∫
Bδ(0)

[
sup

0≤t≤1

1

φ(x̂, ŷ + tj(ŷ, ξ), ẑ)(
θ̄(2θ̄ − 1)|x̂− ŷ − tj(ŷ, ξ)|2θ̄−2 + 1

)
|j(ŷ, ξ)|2

]
µ(dξ)

+4L

∫
Bδ(0)

(
sup

0≤t≤1

1

φ(x̂, ŷ, ẑ + tj(ẑ, ξ))
|j(ẑ, ξ)|2

)
µ(dξ) + η

∫
Bδ(0)

|j(x̂, ξ)|2µ(dξ)

+

∫
Bcδ(0)

[
u(x̂+ j(x̂, ξ))− u(x̂) + u(ŷ + j(ŷ, ξ))− u(ŷ)− 2

(
u(ẑ + j(ẑ, ξ))− u(ẑ)

)
−1B1(0)(ξ)L

(
Dxφ(x̂, ŷ, ẑ), Dyφ(x̂, ŷ, ẑ), Dzφ(x̂, ŷ, ẑ)

)
·
(
j(x̂, ξ), j(ŷ, ξ), j(ẑ, ξ)

)
−1B1(0)(ξ)2ηx̂ · j(x̂, ξ)

]
µ(dξ).

Since Φ(x, y, z) attains a global maximum at (x̂, ŷ, ẑ), we have, for any ξ ∈ Rn,

u(x̂+ j(x̂, ξ))− u(x̂) + u(ŷ + j(ŷ, ξ))− u(ŷ)− 2
(
u(ẑ + j(ẑ, ξ))− u(ẑ)

)
≤ Lφ(x̂+ j(x̂, ξ), ŷ + j(ŷ, ξ), ẑ + j(ẑ, ξ))− Lφ(x̂, ŷ, ẑ) + η|x̂+ j(x̂, ξ)|2 − η|x̂|2.

(120)

By (120), we have

lx̂ + lŷ − 2lẑ

≤ L

∫
Bδ(0)

[
sup

0≤t≤1

1

φ(x̂+ tj(x̂, ξ), ŷ, ẑ)(
θ̄(2θ̄ − 1)|x̂− ŷ + tj(x̂, ξ)|2θ̄−2 + 1

)
|j(x̂, ξ)|2

]
µ(dξ)

+L

∫
Bδ(0)

[
sup

0≤t≤1

1

φ(x̂, ŷ + tj(ŷ, ξ), ẑ)(
θ̄(2θ̄ − 1)|x̂− ŷ − tj(ŷ, ξ)|2θ̄−2 + 1

)
|j(ŷ, ξ)|2

]
µ(dξ)

+4L

∫
Bδ(0)

(
sup

0≤t≤1

1

φ(x̂, ŷ, ẑ + tj(ẑ, ξ))
|j(ẑ, ξ)|2

)
µ(dξ)

+η

∫
Rn

(
|x̂+ j(x̂, ξ)|2 − |x̂|2 − 1B1(0)(ξ)2x̂ · j(x̂, ξ)

)
µ(dξ)

+L

∫
Bcδ(0)

[
φ(x̂+ j(x̂, ξ), ŷ + j(ŷ, ξ), ẑ + j(ẑ, ξ))− φ(x̂, ŷ, ẑ)

−1B1(0)(ξ)
(
Dxφ(x̂, ŷ, ẑ), Dyφ(x̂, ŷ, ẑ), Dzφ(x̂, ŷ, ẑ)

)
·
(
j(x̂, ξ), j(ŷ, ξ), j(ẑ, ξ)

)]
µ(dξ).

(121)
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Similarly as in the proof of Theorem 5.2.3, we have η|x̂|2 → 0 as η → 0 and

ε1 ≤ φ(x̂, ŷ, ẑ) ≤ ε−1
1 ,

where ε1 is a positive constant independent of η. Letting δ → 0 and then letting

η → 0 in (119), we have, by (12), (121) and (H̄2),

γLφ(x̂, ŷ, ẑ) ≤ ΛL

∫
Rn

[
φ(x̂+ j(x̂, ξ), ŷ + j(ŷ, ξ), ẑ + j(ẑ, ξ))− φ(x̂, ŷ, ẑ)

−1B1(0)(ξ)
(
Dxφ(x̂, ŷ, ẑ), Dyφ(x̂, ŷ, ẑ), Dzφ(x̂, ŷ, ẑ)

)
·
(
j(x̂, ξ), j(ŷ, ξ), j(ẑ, ξ)

)]
µ(dξ)

+C3(1 + L)φ(x̂, ŷ, ẑ).

Therefore, by Lemma 5.3.2,

γ ≤ Λφ(x̂, ŷ, ẑ)−1

∫
Rn

[
φ(x̂+ j(x̂, ξ), ŷ + j(ŷ, ξ), ẑ + j(ẑ, ξ))− φ(x̂, ŷ, ẑ)

−1B1(0)(ξ)
(
Dxφ(x̂, ŷ, ẑ), Dyφ(x̂, ŷ, ẑ), Dzφ(x̂, ŷ, ẑ)

)
·
(
j(x̂, ξ), j(ŷ, ξ), j(ẑ, ξ)

)]
µ(dξ)

+C3(1 +
1

L
)

≤ ΛM2 + C3(1 +
1

L
) < +∞,

where M2 is defined in (112). This yields a contradiction, if γ > ΛM2 + C3, for

sufficiently large L. Therefore, u is θ̄-semiconcave in Rn.

Let us consider the semiconcavity of viscosity solutions of the Bellman equation

(13). The following estimates will be frequently used in the proof of the semiconcavity.

Lemma 5.3.4. (a) If f is θ̄-semiconvex with constant C in Rn and [f ]0,1;Rn < +∞,

then

2f(z)− f(x)− f(y) ≤ C|x− y|θ̄ + [f ]0,1;Rn|x+ y − 2z|.

Moreover, if [f ]1,θ̄−1;Rn < +∞, then

|f(x) + f(y)− 2f(z)| ≤
√
n

2
[f ]1,θ̄−1;Rn|x− y|θ̄ + [f ]0,1;Rn|x+ y − 2z|.

(b) If f ∈ C0,1(R̄n), then

|f(x)− f(z)| ≤ 2 max{|f |0;Rn , [f ]0,1;Rn}φ(x, y, z)
1
2 ,

where φ(x, y, z) is defined in (H̄1).

Proof. (a) Since f is θ̄-semiconvex with constant C in Rn and [f ]0,1;Rn < +∞,

2f(z)− f(x)− f(y) = 2f(
x+ y

2
)− f(x)− f(y) +

(
2f(z)− 2f(

x+ y

2
)
)

≤ C|x− y|θ̄ + [f ]0,1;Rn|x+ y − 2z|.
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Moreover, if [f ]1,θ̄−1;Rn < +∞, then f is θ̄-semiconvex and θ̄-semiconcave with a

constant
√
n

2
[f ]1,θ̄−1;Rn in Rn. Thus, the result follows from the above estimate.

(b) Since g ∈ C0,1(R̄n), then

|g(x)− g(z)| ≤ |g(x)− g(
x+ y

2
)|+ |g(

x+ y

2
)− g(z)|

≤ [g]0,1;Rn|
x− y

2
|+
(

2|g|0;Rn [g]0,1;Rn
|x+ y − 2z|

2

) 1
2

≤ 2 max{|g|0;Rn , [g]0,1;Rn}φ(x, y, z)
1
2 .

Theorem 5.3.5. Suppose that cα ≥ γ in Rn uniformly in α ∈ A. There exist a

positive constant C and 1 < θ̄ ≤ 2 such that (100) holds and

sup
α∈A

max{[σα]0,1;Rn , [σα]1,θ̄−1;Rn , [bα]0,1;Rn , [bα]1,θ̄−1,Rn , [fα]0,1,Rn} < +∞. (122)

Suppose that the Lévy measure µ satisfies (12), the family {jα(x, ξ)} satisfies as-

sumption (H̄2) uniformly in α ∈ A, and cα ∈ C1,θ̄−1(R̄n) and {fα} is uniformly

θ̄-semiconvex with constant C5, uniformly in α ∈ A. Then, if u ∈ C0,1(R̄n) is a

viscosity solution of (13) and γ > N2 where

N2 := sup
φ(x,y,z)6=0,α∈A

φ(x, y, z)−2
{
θ̄(2θ̄ − 1)|x− y|2θ̄−2

Tr
[(
σα(x)− σα(y)

)(
σα(x)− σα(y)

)T]
+Tr

[(
σα(x) + σα(y)− 2σα(z)

)(
σα(x) + σα(y)− 2σα(z)

)T]
+θ̄|x− y|2θ̄−2(x− y) ·

(
bα(y)− bα(x)

)
+ (x+ y − 2z) ·

(
2bα(z)− bα(x)− bα(y)

)
+φ(x, y, z)

∫
Rn

[
φ
(
x+ jα(x, ξ), y + jα(y, ξ), z + jα(z, ξ)

)
− φ(x, y, z)

−1B1(0)(ξ)
(
Dxφ(x, y, z), Dyφ(x, y, z), Dzφ(x, y, z)

)
·
(
jα(x, ξ), jα(y, ξ), jα(z, ξ)

)]
µ(dξ)

}
< +∞, (123)

then u is θ̄-semiconcave in Rn.

Proof. At the beginning of the proof, we will show that the constant N2 has an upper

bound. By (122), Lemma 5.3.4 and the estimates in (116), we have

N2 ≤ θ̄(2θ̄ − 1) sup
α∈A

[σα]20,1;Rn +
(√n

2
sup
α∈A

[σα]1,θ̄−1;Rn + sup
α∈A

[σα]0,1;Rn
)2

+θ̄ sup
α∈A

[bα]0,1;Rn +
(√n

2
sup
α∈A

[bα]1,θ̄−1;Rn + sup
α∈A

[bα]0,1;Rn
)

+2

∫
Bδ2 (0)

[
2 + (

5

4
)2θ̄−2θ̄(2θ̄ − 1)

]
ρ(ξ)2µ(dξ)
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+

∫
Bcδ2

(0)

{√
2
[
(1 + ρ(ξ))θ̄ + ρ(ξ)

]
− 1
}
µ(dξ) + (θ̄ +

3

2
)

∫
B1(0)∩Bcδ2 (0)

ρ(ξ)µ(dξ)

< +∞,

where δ2 was chosen in Lemma 5.3.2.

Then we want to prove that, for any η > 0, Φ(x, y, z) = u(x) + u(y) − 2u(z) −
ψ(x, y, z) ≤ 0 for all x, y, z ∈ Rn and some fixed sufficiently large L, where ψ(x, y, z)

is given in Theorem 5.3.3. Otherwise, there exists a positive constant η0 such that

supx,y,z∈Rn Φ(x, y, z) > 0 if 0 < η < η0. By boundedness of u, there is a point

(x̂, ŷ, ẑ) such that Φ(x̂, ŷ, ẑ) = supx,y,z∈Rn Φ(x, y, z) > 0. Therefore, we have (117).

By Remark 10, since u ∈ BUC(Rn) is a viscosity solution of (13), we have, for any

0 < δ < 1 and ε0 > 0, there are X, Y, Z ∈ Sn satisfying (118) such that

sup
α∈A

{
− Tr

(
σα(x̂)σTα (x̂)X

)
− lx̂,α + bα(x̂) ·Dxψ(x̂, ŷ, ẑ) + cα(x̂)u(x̂) + fα(x̂)

}
≤ 0,

sup
α∈A

{
− Tr

(
σα(ŷ)σTα (ŷ)Y

)
− lŷ,α + bα(ŷ) ·Dyψ(x̂, ŷ, ẑ) + cα(ŷ)u(ŷ) + fα(ŷ)

}
≤ 0,

sup
α∈A

{
− Tr

(
σα(ẑ)σTα (ẑ)

Z

2

)
− lẑ,α − bα(ẑ) · Dzψ(x̂, ŷ, ẑ)

2
+ cα(ẑ)u(ẑ) + fα(ẑ)

}
≥ 0,

where

lx̂,α = I1,δ[x̂, Dxψ(x̂, ŷ, ẑ), ψ(·, ŷ, ẑ)] + I2,δ[x̂, Dxψ(x̂, ŷ, ẑ), u(·)],

lŷ,α = I1,δ[ŷ, Dyψ(x̂, ŷ, ẑ), ψ(x̂, ·, ẑ)] + I2,δ[ŷ, Dyψ(x̂, ŷ, ẑ), u(·)],

lẑ,α = I1,δ[ẑ,−Dzψ(x̂, ŷ, ẑ)

2
,−ψ(x̂, ŷ, ·)

2
] + I2,δ[ẑ,−Dzψ(x̂, ŷ, ẑ)

2
, u(·)].

Thus, for any ε > 0, there exists αε ∈ A such that

cαε(x̂)u(x̂) + cαε(ŷ)u(ŷ)− 2cαε(ẑ)u(ẑ) ≤ Lαε +Nαε + ε, (124)

where

Lαε = Tr
(
σαε(x̂)σTαε(x̂)X + σαε(ŷ)σTαε(ŷ)Y − σαε(ẑ)σTαε(ẑ)Z

)
−
(
bαε(x̂) ·Dxψ(x̂, ŷ, ẑ) + bαε(ŷ) ·Dyψ(x̂, ŷ, ẑ) + bαε(ẑ) ·Dzψ(x̂, ŷ, ẑ)

)
+2fαε(ẑ)− fαε(ŷ)− fαε(x̂)

and

Nαε = lx̂,αε + lŷ,αε − 2lẑ,αε .
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Since cα ∈ C1,θ̄−1(R̄n) uniformly in α ∈ A and u ∈ C0,1(R̄n), using Lemma 5.3.4, we

have

cαε(x̂)u(x̂) + cαε(ŷ)u(ŷ)− 2cαε(ẑ)u(ẑ)

= cαε(ẑ)
(
u(x̂) + u(ŷ)− 2u(ẑ)

)
+
(
cαε(x̂) + cαε(ŷ)− 2cαε(ẑ)

)
u(ẑ)

+
(
cαε(x̂)− cαε(ẑ)

)(
u(x̂)− u(ẑ)

)
+
(
cαε(ŷ)− cαε(ẑ)

)(
u(ŷ)− u(ẑ)

)
≥ γ

(
u(x̂) + u(ŷ)− 2u(ẑ)

)
−|u|0;Rn

(√n
2

sup
α∈A

[cα]1,θ̄−1;Rn|x̂− ŷ|θ̄ + sup
α∈A

[cα]0,1;Rn|x̂+ ŷ − 2ẑ|
)

−8 max{|u|0;Rn , [u]0,1;Rn} sup
α∈A

max{|cα|0;Rn , [cα]0,1;Rn}φ(x̂, ŷ, ẑ). (125)

By (100), (118) and (122), we see that

Tr
(
σαε(x̂)σTαε(x̂)X + σαε(ŷ)σTαε(ŷ)Y − σαε(ẑ)σTαε(ẑ)Z

)
≤ (1 + ε0)L

φ(x̂, ŷ, ẑ)

{
θ̄(2θ̄ − 1)|x̂− ŷ|2θ̄−2Tr

[(
σαε(x̂)− σαε(ŷ)

)(
σαε(x̂)− σαε(ŷ)

)T]
+Tr

[(
σαε(x̂) + σαε(ŷ)− 2σαε(ẑ)

)(
σαε(x̂) + σαε(ŷ)− 2σαε(ẑ)

)T]}
+2η

(
C + sup

α∈A
[σα]0,1;Rn|x̂|

)2
.

Thus, we can estimate the local term Lαε easily. By (100), (113), (122), uniform

θ̄-semiconvexity of fα with constant C5 and Lemma 5.3.4, we have

Lαε ≤
(1 + ε0)L

φ(x̂, ŷ, ẑ)

{
θ̄(2θ̄ − 1)|x̂− ŷ|2θ̄−2Tr

[(
σαε(x̂)− σαε(ŷ)

)(
σαε(x̂)− σαε(ŷ)

)T]
+Tr

[(
σαε(x̂) + σαε(ŷ)− 2σαε(ẑ)

)(
σαε(x̂) + σαε(ŷ)− 2σαε(ẑ)

)T]}
+2η

(
C + sup

α∈A
[σα]0,1;Rn|x̂|

)2
+
θ̄L|x̂− ŷ|2θ̄−2

φ(x̂, ŷ, ẑ)
(x̂− ŷ) ·

(
bαε(ŷ)− bαε(x̂)

)
+

L

φ(x̂, ŷ, ẑ)
(x̂+ ŷ − 2ẑ) ·

(
2bαε(ẑ)− bαε(x̂)− bαε(ŷ)

)
+2η

(
C|x̂|+ sup

α∈A
[bα]0,1;Rn|x̂|2

)
+ C5|x̂− ŷ|θ̄ + sup

α∈A
[fα]0,1;Rn|x̂+ ŷ − 2ẑ|.

(126)

Similarly as in the proof of Theorem 5.2.3, we have η|x̂|2 → 0 as η → 0 and

ε1 ≤ φ(x̂, ŷ, ẑ) ≤ ε−1
1 ,

where ε1 is a positive constant independent of η. Letting δ → 0, η → 0, ε → 0

and ε0 → 0 in (124), we have, by (117), (125), (126) and the same estimates on the
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nonlocal term Nαε as Theorem 5.3.3

γLφ(x̂, ŷ, ẑ)

≤ L sup
α∈A

φ(x̂, ŷ, ẑ)−1
{
θ̄(2θ̄ − 1)|x̂− ŷ|2θ̄−2Tr

[(
σα(x̂)− σα(ŷ)

)(
σα(x̂)− σα(ŷ)

)T]
+Tr

[(
σα(x̂) + σα(ŷ)− 2σα(ẑ)

)(
σα(x̂) + σα(ŷ)− 2σα(ẑ)

)T]
+θ̄|x̂− ŷ|2θ̄−2(x̂− ŷ) ·

(
bα(ŷ)− bα(x̂)

)
+ (x̂+ ŷ − 2ẑ) ·

(
2bα(ẑ)− bα(x̂)− bα(ŷ)

)
+φ(x̂, ŷ, ẑ)

∫
Rn

[
φ
(
x̂+ jα(x̂, ξ), ŷ + jα(ŷ, ξ), ẑ + jα(ẑ, ξ)

)
− φ(x̂, ŷ, ẑ)− 1B1(0)(ξ)(

Dxφ(x̂, ŷ, ẑ), Dyφ(x̂, ŷ, ẑ), Dzφ(x̂, ŷ, ẑ)
)
·
(
jα(x̂, ξ), jα(ŷ, ξ), jα(ẑ, ξ)

)]
µ(dξ)

}
+C5|x̂− ŷ|θ̄ + sup

α∈A
[fα]0,1;Rn|x̂+ ŷ − 2ẑ|

+|u|0;Rn
(√n

2
sup
α∈A

[cα]1,θ̄−1;Rn|x̂− ŷ|θ̄ + sup
α∈A

[cα]0,1;Rn|x̂+ ŷ − 2ẑ|
)

+8 max{|u|0;Rn , [u]0,1;Rn} sup
α∈A

max{|cα|0;Rn , [cα]0,1;Rn}φ(x̂, ŷ, ẑ).

Therefore,

γ ≤ sup
α∈A

φ(x̂, ŷ, ẑ)−2
{
θ̄(2θ̄ − 1)|x̂− ŷ|2θ̄−2Tr

[(
σα(x̂)− σα(ŷ)

)(
σα(x̂)− σα(ŷ)

)T]

+Tr
[(
σα(x̂) + σα(ŷ)− 2σα(ẑ)

)(
σα(x̂) + σα(ŷ)− 2σα(ẑ)

)T]
+θ̄|x̂− ŷ|2θ̄−2(x̂− ŷ) ·

(
bα(ŷ)− bα(x̂)

)
+ (x̂+ ŷ − 2ẑ) ·

(
2bα(ẑ)− bα(x̂)− bα(ŷ)

)
+φ(x̂, ŷ, ẑ)

∫
Rn

[
φ
(
x̂+ jα(x̂, ξ), ŷ + jα(ŷ, ξ), ẑ + jα(ẑ, ξ)

)
− φ(x̂, ŷ, ẑ)− 1B1(0)(ξ)(

Dxφ(x̂, ŷ, ẑ), Dyφ(x̂, ŷ, ẑ), Dzφ(x̂, ŷ, ẑ)
)
·
(
jα(x̂, ξ), jα(ŷ, ξ), jα(ẑ, ξ)

)]
µ(dξ)

}
+
C6

L
≤ N2 +

C6

L
, (127)

where N2 is defined in (123) and C6 is a positive constant. Hence, if γ > N2, we can

find a sufficiently large L such that we have a contradiction in (127). Therefore, u is

θ̄-semiconcave in Rn.
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CHAPTER VI

INTERIOR REGULARITY FOR NONLOCAL FULLY

NONLINEAR EQUATIONS WITH DINI CONTINUOUS

TERMS

In this chapter, we will study Cσ estimates of viscosity solutions of nonlocal fully

nonlinear equations with Dini continuous terms, see [61].

6.1 Preliminaries

In this chapter, Ω is always assumed to be a bounded domain in Rn. We first review

some properties of

Lu :=

∫
Rn
δu(x, y)K(y)dy, (128)

see [42].

Lemma 6.1.1. Suppose that u ∈ C4(B2(0)) ∩ L∞(Rn) and L ∈ L2(λ,Λ, σ). Then

‖Lu‖C2(B1(0)) ≤ C(‖u‖C4(B2(0)) + ‖u‖L∞(Rn)),

where L is defined in (128) and C is a positive constant depending on n, σ0 and Λ.

Lemma 6.1.2. Suppose that u ∈ Cσ+α(Rn), 0 ≤ K(y) ≤ (2 − σ)Λ|y|−n−σ and

K(y) = K(−y). Then

‖Lu‖Cα(Rn) ≤ C‖u‖Cσ+α(Rn),

where L is defined in (128) and C is a positive constant depending on n, α, σ0 and

Λ.

Lemma 6.1.3. Suppose that u ∈ Cσ+α(B2(0))∩L∞(Rn), 0 ≤ K(y) ≤ (2−σ)Λ|y|−n−σ,

K(y) = K(−y) and |DK(y)| ≤ Λ|y|−n−σ−1. Then

‖Lu‖Cα(B1(0)) ≤ C(‖u‖Cσ+α(B2(0)) + ‖u‖L∞(Rn)),

where L is defined in (128) and C is a positive constant depending on n, α, σ0 and

Λ.

Lemma 6.1.4. Let v ∈ Cσ+α
c (B 1

2
(0)) be such that ‖v‖Cσ+α(B 1

2
(0)) ≤ 1, and p(x) be

the Taylor polynomial of v at x = 0 of degree [σ + α]. For any L ∈ L0(λ,Λ, σ), there

exists P ∈ C∞c (B 1
2
(0)) such that P (x) = p(x) in B 1

4
(0), ‖P‖C4(B 1

2
(0)) ≤ C and

LP (0) = Lv(0),
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where C is a positive constant depending on n, λ, Λ, σ0 and α.

We borrow the following two approximation lemmas from [42].

Lemma 6.1.5. [42, Lemma A.1] For some σ ≥ σ0 > 0, we consider nonlocal oper-

ators I0, I1 and I2 uniformly elliptic with respect to L0(λ,Λ, σ). Assume that I0 is

translation invariant and I0(0) = 1.

Given M > 0, a modulus of continuity w1 and ε > 0, there exist η1 > 0 and R > 5

such that if u, v, I0, I1 and I2 satisfy

I0(v, x) = 0, I1(u, x) ≥ −η1 and I2(u, x) ≤ η1 in B4(0)

in the viscosity sense, and

‖I1 − I0‖B4(0) ≤ η1, ‖I2 − I0‖B4(0) ≤ η1,

u = v in Rn \B4(0),

‖u‖L∞(Rn) ≤M in Rn,

and

|u(x)− u(y)| ≤ w1(|x− y|) for any x ∈ BR(0) \B4(0) and y ∈ Rn \B4(0),

then |u− v| ≤ ε in B4(0).

and

Lemma 6.1.6. [42, Lemma A.2] For some σ ≥ σ0 > 0, we consider nonlocal operators

I0, I1 and I2 uniformly elliptic with respect to L0(λ,Λ, σ). Assume that

I0v(x) := inf
a∈A

{∫
Rn
δv(x, y)Ka(y)dy + ha(x)

}
in B4(0),

where each Ka ∈ L2(λ,Λ, σ) and for some constant β ∈ (0, 1),

[ha]Cβ(B4(0)) ≤M0 and inf
a∈A

ha(x) = 0, for any x ∈ B4(0).

Given M0, M1, M2, M3 > 0, R0 > 5, 0 < β, ν < 1 and ε > 0, there exists η2 such

that if u, v, I0, I1 and I2 satisfy

I0(v, x) = 0, I1(u, x) ≥ −η2 and I2(u, x) ≤ η2 in B4(0),

in the viscosity sense and

‖I1 − I0‖B4(0) ≤ η2, ‖I2 − I0‖B4(0) ≤ η2
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u = v in Rn \B4(0),

u = 0 in Rn \BR0(0),

‖u‖L∞(Rn) ≤M1,

[u]Cν(BR0−τ (0)) ≤M2τ
−4, for any 0 < τ < 1,

[v]Cσ+β(B4−τ (0)) ≤M3τ
−4, for any 0 < τ < 1,

then |u− v| ≤ ε in B4(0).

We now introduce a modification of Evans-Krylov theorem for concave translation

invariant nonlocal fully nonlinear equations.

Theorem 6.1.7. [42, Theorem 2.1] Assume that Ka(y) ∈ L2(λ,Λ, σ) with 2 > σ ≥
σ0 > 1 and ba is a constant for any a ∈ A. If u is a bounded viscosity solution of

inf
a∈A

{∫
Rn
δu(x, y)Ka(y)dy + ba

}
= 0, in B1(0),

then u ∈ Cσ+ᾱ(B 1
2
(0)) with

‖u‖Cσ+ᾱ(B 1
2

(0)) ≤ C(‖u‖L∞(Rn) + | inf
a
ba|),

where ᾱ and C are positive constants depending on n, σ0, λ and Λ.

In the rest of this chapter, ᾱ will always be the constant from Theorem 6.1.7. We

recall the definition of Dini modulus of continuity.

Definition 10. We say that w(t) is a Dini modulus of continuity, if it satisfies∫ t0

0

w(r)

r
dr < +∞, for some t0 > 0.

We will make some additional assumption on our Dini modulus of continuity w(t).

Let β̄ > 0 and 0 < σ < 2.

(H1)β̄ There exists some 0 < β < β̄ such that

lim
µ→0+

sup
i∈N

µβw(µi)

w(µi+1)
= 0. (129)

(H1)β̄,σ There exists some 0 < β < min{2− σ, β̄} such that (129) holds.

(H2)β̄,σ Let w(t) be a Dini modulus of continuity satisfying (H1)β̄,σ. There exists an-

other Dini modulus of continuity w̃(t) satisfying (H1)β̄,σ such that, for any small

0 < s ≤ 1 and 0 ≤ t ≤ 1 we have

w(st) ≤ η(s)w̃(t),

where η(s) is a positive function of s such that lims→0+ η(s) = 0.
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Remark 11. For any β̄ > 0 and 0 < σ < 2, we define

Sβ̄,σ := {Dini modulus of continuity satifying (H2)β̄,σ}.

It is obvious that w(t) = tα ∈ Sβ̄,σ for any 0 < α < min{β̄, 2−σ} and ∩β̄>0,0<σ<2Sβ̄,σ
does not contain any modulus of w(t) = tα.

Lemma 6.1.8. ∩β̄>0,0<σ<2Sβ̄,σ 6= ∅.

Proof. We claim that w(t) = (ln 1
t
)κ−1 ∈ ∩β̄>0,0<σ<2Sβ̄,σ for any κ < 0. For any fixed

β̄ > 0 and 0 < σ < 2, it is easy to verify that w(t) is a Dini modulus of continuity

satisfying (H1)β̄,σ. Now let us prove that w(t) satisfies (H2)β̄,σ. For any 0 < s < 1,

we have

w(st) = (ln
1

st
)κ−1 =

(ln 1
st

)κ−1

(ln 1
t
)
κ
2
−1

(ln
1

t
)
κ
2
−1.

We notice that (ln 1
t
)
κ
2
−1 is also a Dini modulus of continuity satisfying (H1)β̄,σ. For

any ε > 0, there exists a sufficiently small constant δ0 > 0 depending only on ε such

that
(ln 1

st
)κ−1

(ln 1
t
)
κ
2
−1

=
(ln 1

s
+ ln 1

t
)κ−1

(ln 1
t
)
κ
2
−1

< ε, if t < δ0.

Then there exists a sufficiently small constant δ1 > 0 depending only on ε such that

(ln 1
st

)κ−1

(ln 1
t
)
κ
2
−1

< ε, if δ0 ≤ t < 1 and 0 < s < δ1.

6.2 A recursive Evans-Krylov theorem

The following theorem is a version of the recursive Evans-Krylov theorem we will use

to prove Cσ interior regularity.

Theorem 6.2.1. Assume that 2 > σ ≥ σ0 > 0, ba is a constant and Ka(y) ∈
L2(λ,Λ, σ) for any a ∈ A. Assume that w is a modulus of continuity which satisfies

(H1)β̄ where β̄ depends on n, σ0, λ, Λ. For each m ∈ N ∪ {0}, let {vl}ml=0 be a

sequence of functions satisfying (18) in the viscosity sense for any j = 0, 1, · · · ,m,

where Kj
a(x) := ρj(n+σ)Ka(ρ

jx) and ρ ∈ (0, 1). Suppose that ‖vl‖L∞(Rn) ≤ 1 for any

l = 0, 1, · · · ,m and | infa∈A ba| ≤ 1. Then, there exist a sufficiently large constant

C > 0 and a sufficiently small constant ρ0 > 0, both of which depend on n, σ0, λ, Λ

and w, such that vl ∈ Cσ+β̄(B1(0)) and, if ρ ≤ ρ0, we have

‖vl‖Cσ+β̄(B1(0)) ≤ C, for any l = 0, 1, · · · ,m. (130)
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Remark 12. If σ0 > 1, then Theorem 6.2.1 holds for β̄ = ᾱ.

Proof of Theorem 6.2.1. We will give the proof of Theorem 6.2.1 in the case σ0 > 1.

For the case 0 < σ0 ≤ 1 the proof is similar. We adapt the approach from [42].

Let M be a sufficiently large constant to be fixed later. By normalization, we can

assume that

‖vl‖L∞(Rn) ≤
1

M
and | inf

a∈A
ba| ≤

1

M
, for any l = 0, 1, · · · ,m.

Then we need to prove that (130) holds for C = 1.

We will prove Theorem 6.2.1 by induction on m. For the case of m = 0, (130)

holds for β̄ = ᾱ by Theorem 6.1.7. Now we assume that Theorem 6.2.1 is true up to

m = i for any positive integer i. We want to show that the theorem is also true for

m = i+ 1. Define

R(x) =
i∑
l=0

ρ−(i−l)σw−1(ρi)w(ρl)vl(ρ
i−lx),

and, for any function v

vlρ(x) = ρ−σ
w(ρl)

w(ρl+1)
v(ρx).

By (18), we have

inf
a∈A
{Li+1

a Ri
ρ(x) + w−1(ρi+1)ba} = 0, in B 5

ρ
(0),

where Li+1
a is the linear operator with kernel Ki+1

a ∈ L2(λ,Λ, σ). Hence, there exists

ā ∈ A such that

0 ≤ Li+1
ā Ri

ρ(0) + w−1(ρi+1)bā < ρᾱ−α, (131)

where α is given by (H1)ᾱ. Let η0 = 1 in B 1
4
(0) and η0 ∈ C∞c (B 1

2
(0)) be a fixed

cut-off function. Let

vl = vlη0 + vl(1− η0) =: v1
l + v2

l ,

and pl(x) be the Talyor polynomial of v1
l (x) at x = 0 of degree [σ + ᾱ]. By Lemma

6.1.4, there exists Pl ∈ C∞c (B 1
2
(0)) such that Pl(x) = pl(x) inB 1

4
(0) and ‖Pl‖C4(B 1

2
(0)) ≤

C and

LlāPl(0) = Llāv
1
l (0). (132)

Let

vl = (v1
l − Pl) + (v2

l + Pl) =: V 1
l + V 2

l .

Thus, we have

‖V 1
l ‖L∞(Rn) + ‖V 2

l ‖L∞(Rn) ≤ C, V 1
l (0) = 0,
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V 1
l ∈ Cσ+ᾱ

c (B 1
2
(0)), ‖V 1

l ‖Cσ+ᾱ(Rn) + ‖V 2
l ‖Cσ+ᾱ(B1(0)) ≤ C, (133)

V 1
l = vl − pl in B 1

4
(0), V 2

l = pl in B 1
4
(0), ‖V 1

l (x)‖ ≤ C|x|σ+ᾱ in Rn.

Decompose R(x) as

R(x) = R(1)(x) +R(2)(x),

where

R(1)(x) =
i∑
l=0

ρ−(i−l)σw−1(ρi)w(ρl)V 1
l (ρi−lx),

and

R(2)(x) =
i∑
l=0

ρ−(i−l)σw−1(ρi)w(ρl)V 2
l (ρi−lx).

Then, we have that, for each a ∈ A

Li+1
a R(1)i

ρ (x) =
i∑
l=0

∫
Rn
ρ−(i+1−l)σw−1(ρi+1)w(ρl)δV 1

l (ρi+1−lx, ρi+1−ly)Ki+1
a (y)dy

=
i∑
l=0

∫
Rn
w−1(ρi+1)w(ρl)δV 1

l (ρi+1−lx, y)K l
a(y)dy

=
i∑
l=0

w(ρl)

w(ρi+1)
(LlaV

1
l )(ρi+1−lx) (134)

and

Li+1
a R(2)i

ρ (x) =
i∑
l=0

w(ρl)

w(ρi+1)
(LlaV

2
l )(ρi+1−lx). (135)

It follows from (131) and (132) that

Li+1
ā R(1)i

ρ (0) = 0, (136)

0 ≤ Li+1
ā R(2)i

ρ (0) + w−1(ρi+1)bā ≤ ρᾱ−α. (137)

By (H1)ᾱ, (133), (134), (136) and Lemma 6.1.2, we have, for any x ∈ Rn

|Li+1
ā R(1)i

ρ (x)| = |Li+1
ā R(1)i

ρ (x)− Li+1
ā R(1)i

ρ (0)|

≤
i∑
l=0

w(ρl)

w(ρi+1)
|LlaV 1

l (ρi+1−lx)− LlaV 1
l (0)|

≤ C|x|ᾱ
i∑
l=0

w(ρl)

w(ρi+1)
ρ(i+1−l)ᾱ‖V 1

l ‖Cσ+ᾱ(Rn)

≤ C|x|ᾱ
i∑
l=0

ρ(i+1−l)(ᾱ−α)

≤ Cρᾱ−α|x|ᾱ. (138)
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Using (H1)ᾱ, (133), (135) and Lemma 6.1.3, we have, for any x ∈ B5(0)

|Li+1
ā R(2)i

ρ (x) − Li+1
ā R(2)i

ρ (0)| ≤
i∑
l=0

w(ρl)

w(ρi+1)
|LlaV 2

l (ρi+1−lx)− LlaV 2
l (0)|

≤ C|x|ᾱ
i∑
l=0

w(ρl)

w(ρi+1)
ρ(i+1−l)ᾱ(‖V 2

l ‖Cσ+ᾱ(B1(0)) + ‖V 2
l ‖L∞(Rn))

≤ Cρᾱ−α|x|ᾱ. (139)

Thus, by (137) and (139), we have

|Li+1
ā R(2)i

ρ (x) + w−1(ρi+1)bā| ≤ Cρᾱ−α(|x|ᾱ + 1), for any x ∈ B5(0). (140)

We define

ṽi+1 := vi+1 +R(1)i
ρ .

By (133), we have

|ṽi+1(y)| ≤ ‖vi+1‖L∞(Rn) + |R(1)i
ρ (y)|

≤ 1

M
+

i∑
l=0

ρ−(i+1−l)σw−1(ρi+1)w(ρl)V 1
l (ρi+1−ly)

≤ 1

M
+

i∑
l=0

ρ−(i+1−l)(σ+α)|ρi+1−ly|σ+ᾱ

≤ 1

M
+ ρᾱ−α|y|σ+ᾱ. (141)

By the definition of ṽi+1, the following two equations are equivalent

inf
a∈A

{
Li+1
a (vi+1 +Ri

ρ)(x) + w−1(ρi+1)ba
}

= 0, in B5(0), (142)

and

inf
a∈A

{
Li+1
a (ṽi+1 +R(2)i

ρ )(x) + w−1(ρi+1)ba
}

= 0, in B5(0). (143)

By (138), (140), (142) and (143), we have

Li+1
ā vi+1(x) ≥ −Cρᾱ−α, in B5(0),

Li+1
ā ṽi+1(x) ≥ −Cρᾱ−α, in B5(0).

Lemma 6.2.2. Let K be a symmetric kernel satisfying 0 ≤ K(y) ≤ (2−σ)Λ|y|−n−σ.

Then, for any smooth function η̃ such that

0 ≤ η̃(x) ≤ 1 in Rn, η̃(x) = η̃(−x) in Rn, η̃(x) = 0 in Rn \B 4
5
(0), η̃(x) = 1 in B 3

4
(0),

we have

M+
L2

(
η̃(x)

∫
B1(0)

δṽi+1(x, y)K(y)dy
)
≥ −C(ρᾱ−α +

1

M
), in B 3

5
(0).
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Proof. Define

φk(y) = 1B1(0)\B 1
k

(0)(y)K(y)

and

Tkv(x) =

∫
Rn
δv(x, y)φk(y)dy, for any function v.

By (143), we have

Li+1
a ṽi+1(x) + Li+1

a R(2)i
ρ (x) + w−1(ρi+1)ba ≥ 0, for any x ∈ B3(0) and a ∈ A.

It follows that, for any x ∈ B 3
2
(0)

0 ≤
(
Li+1
a ṽi+1 + Li+1

a R(2)i
ρ + w−1(ρi+1)ba

)
∗ φk(x)

≤ Li+1
a

(
ṽi+1 ∗ φk

)
(x) + Li+1

a R(2)i
ρ ∗ φk(x) + w−1(ρi+1)ba‖φk‖L1(Rn).

It also follows from (143) that

inf
a∈A

{
‖φk‖L1(Rn)

(
Li+1
a ṽi+1(x)+Li+1

a R(2)i
ρ (x)+w−1(ρi+1)ba

)}
= 0, for any x ∈ B3(0).

Thus, for any x ∈ B 3
2
(0)

sup
a∈A

Li+1
a

(
ṽi+1∗φk−‖φk‖L1(Rn)ṽi+1

)
(x)+sup

a∈A

{
Li+1
a R(2)i

ρ ∗φk(x)−‖φk‖L1(Rn)L
i+1
a R(2)i

ρ (x)
}
≥ 0.

By (133), (135) and Lemma 6.1.1, we have, for any x ∈ B 3
2
(0) and a ∈ A

2|Li+1
a R(2)i

ρ ∗ φk(x)− ‖φk‖L1(Rn)L
i+1
a R(2)i

ρ (x)|

≤
∣∣∣ ∫

B1(0)\B 1
k

(0)|
δ
(
Li+1
a R(2)i

ρ

)
(x, y)K(y)dy

∣∣∣
≤

i∑
l=0

w(ρl)

w(ρi+1)

∫
B1(0)\B 1

k
(0)

∣∣∣δLlaV 2
l (ρi+1−lx, ρi+1−ly)

∣∣∣K(y)dy

≤
i∑
l=0

ρ(i+1−l)σ w(ρl)

w(ρi+1)

∫
B
ρi+1−l (0)\B

ρi+1−l
k

(0)

∣∣∣δLlaV 2
l (ρi+1−lx, y)

∣∣∣K−(i+1−l)(y)dy

≤
i∑
l=0

ρ(i+1−l)σ w(ρl)

w(ρi+1)

∫
B
ρi+1−l (0)

‖LlaV 2
l ‖C2(B 1

8
(0))|y|2K−(i+1−l)(y)dy

≤ C

i∑
l=0

ρ(i+1−l)σ w(ρl)

w(ρi+1)

(
‖V 2

l ‖C4(B 1
4

(0)) + ‖V 2
l ‖L∞(Rn)

) ∫
B
ρi+1−l (0)

(2− σ)Λ|y|2

|y|n+σ
dy

≤ C
i∑
l=0

ρ(i+1−l)(2−α) ≤ Cρ2−α.

Therefore,

M+
L2

(
ṽi+1 ∗ φk − ‖φk‖L1(Rn)ṽi+1

)
(x) ≥ −Cρ2−α, in B 3

2
(0).
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Thus, we have

M+
L2

(Tkṽi+1)(x) ≥ −Cρ2−α, in B 3
2
(0). (144)

Let L̄ be any operator with kernel K̄ ∈ L2(λ,Λ, σ). For any x ∈ B 3
5
(0), we have

L̄(η̃Tkṽi+1)(x) =

∫
Rn
δ(Tkṽi+1)(x, y)K̄(y)dy −

∫
Rn
δ
(
(1− η̃)Tkṽi+1

)
(x, y)K̄(y)dy

= L̄
(
Tkṽi+1

)
(x)− 2

∫
Rn

(
1− η̃(x− y)

)
Tkṽi+1(x− y)K̄(y)dy.(145)

We now estimate the second term in (145). For any x ∈ B 3
5
(0)∣∣∣ ∫

Rn
Tkvi+1(x− y)

(
1− η̃(x− y)

)
K̄(y)dy

∣∣∣
=

∣∣∣ ∫
Rn
vi+1(x− y)Tk

(
(1− η̃(x− ·))K̄(·)

)
(y)dy

∣∣∣
≤ ‖vi+1‖L∞(Rn)

∫
Rn

∫
B1(0)

∣∣∣(1− η̃(x− y − z)
)
K̄(y + z)

+
(
1− η̃(x− y + z)

)
K̄(y − z)− 2

(
1− η̃(x− y)

)
K̄(y)

∣∣∣K(z)dzdy

≤ C‖vi+1‖L∞(Rn) ≤
C

M
, (146)

and, by (133) and Lemma 6.1.2,

|TkR(1)i
ρ (x)| =

∣∣∣ ∫
B1(0)\B 1

k
(0)
δR(1)i

ρ (x, y)K(y)dy
∣∣∣

=
∣∣∣ i∑
l=0

∫
B1(0)\B 1

k
(0)
ρ−(i+1−l)σw−1(ρi+1)w(ρl)δV 1

l (ρi+1−lx, ρi+1−ly)K(y)dy
∣∣∣

=
∣∣∣ i∑
l=0

∫
B
ρi+1−l (0)\B

ρi+1−l
k

(0)
w−1(ρi+1)w(ρl)δV 1

l (ρi+1−lx, y)K−(i+1−l)(y)dy
∣∣∣

≤
i∑
l=0

w−1(ρi+1)w(ρl)
∣∣∣ ∫

B
ρi+1−l (0)\B

ρi+1−l
k

(0)

(
δV 1

l (ρi+1−lx, y)− δV 1
l (0, y)

)
K−(i+1−l)(y)dy

∣∣∣
+

i∑
l=0

w−1(ρi+1)w(ρl)
∣∣∣ ∫

B
ρi+1−l (0)\B

ρi+1−l
k

(0)
δV 1

l (0, y)K−(i+1−l)(y)dy
∣∣∣

≤ C

i∑
l=0

w−1(ρi+1)w(ρl)|ρi+1−lx|ᾱ

+C

i∑
l=0

w−1(ρi+1)w(ρl)

∫
B
ρi+1−l (0)

(2− σ)Λ|y|σ+ᾱ

|y|n+σ
dy

≤ Cρᾱ−α(1 + |x|ᾱ). (147)
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Since σ > ᾱ holds, we have, for any x ∈ B 3
5
(0)∣∣∣ ∫

Rn

(
1− η̃(x− y)

)
TkR

(1)i
ρ (x− y)K̄(y)dy

∣∣∣
=

∣∣∣ ∫
Rn

(1− η̃(y))TkR
(1)i
ρ (y)K̄(x− y)dy

∣∣∣
=

∣∣∣ ∫
Rn\B 3

4
(0)

(
1− η̃(y)

)
TkR

(1)i
ρ (y)K̄(x− y)dy

∣∣∣
≤ Cρᾱ−α

∫
|y|> 1

64

(2− σ)Λ

|y|n+σ−ᾱ dy ≤ Cρᾱ−α. (148)

Taking the supremum of all K̄ ∈ L2(λ,Λ, σ) in (145) and using (144), (146) and

(148), we have, for any x ∈ B 3
5
(0)

M+
L2

(η̃Tkṽi+1)(x) ≥ −Cρ2−α − C

M
− Cρᾱ−α

≥ −C(ρᾱ−α +
1

M
).

By Theorem 6.1.7, we know that ṽi+1 ∈ Cσ+ᾱ(B4(0)). Thus∫
B1(0)\B 1

k
(0)

δṽi+1(x, y)K(y)dy →
∫
B1(0)

δṽi+1(x, y)K(y)dy, in B 3
2
(0) uniformly,

as k → +∞. It is obvious that, in L1(Rn, 1
1+|x|n+σ ),

η̃(x)

∫
B1(0)\B 1

k
(0)

δṽi+1(x, y)K(y)dy → η̃(x)

∫
B1(0)

δṽi+1(x, y)K(y)dy.

Thus, the result follows by Lemma 5 in [12].

Lemma 6.2.3. There is a constant C depending on n, σ0, λ,Λ such that, for any

operator L with a symmetric kernel K satisfying 0 ≤ K(y) ≤ (2− σ)Λ|y|n+σ we have

|Lvi+1(x)| ≤ C(ρᾱ−α +
1

M
), in B1(0).

Proof. The proof follows from that of Lemma 2.9 and Lemma 2.10 in [42].

Lemma 6.2.4. There is a constant C depending on n, σ0, λ,Λ such that

max{|M+
L0
vi+1|, |M−

L0
vi+1|} ≤ C(ρᾱ−α +

1

M
), in B1(0). (149)

Moreover, we have

‖∇vi+1‖L∞(B 1
2

(0)) ≤ C(ρᾱ−α +
1

M
), (150)

and

‖∇ṽi+1‖L∞(B 1
2

(0)) ≤ C(ρᾱ−α +
1

M
). (151)
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Proof. (149) follows directly from Lemma 6.2.3. To prove (150), we first notice that

vi+1 satisfies

inf
a∈A
{Li+1

a (vi+1 +Ri
ρ)(x) + w−1(ρi+1)ba} = 0, in B5(0).

We define

I0 · (x) = inf
a∈A
{Li+1

a · (x) + Li+1
a Ri

ρ(0) + w−1(ρi+1)ba}.

By Theorem 6.1.7, we know that I0 has Cσ+ᾱ estimates. By (138) and (139), we have

that vi+1 is a bounded function solves

I0vi+1(x) ≤ − inf
a∈A
{Li+1

a Ri
ρ(x)− Li+1

a Ri
ρ(0)} ≤ Cρᾱ−α, in B1(0),

and

I0vi+1(x) ≥ − sup
a∈A
{Li+1

a Ri
ρ(x)− Li+1

a Ri
ρ(0)} ≥ −Cρᾱ−α, in B1(0).

It follows from Theorem 5.2 in [12] that vi+1 ∈ C1,α1(B 1
2
(0)) for any α1 < σ0 − 1 and

‖vi+1‖C1,α1 (B 1
2

(0)) ≤ C(
1

M
+ ρᾱ−α).

By (133), we have |∇V 1
l (x)| ≤ C|x|σ+ᾱ−1 in B 1

2
(0). Thus, for any x ∈ B 1

2
(0) we have

|∇R(1)i
ρ (x)| =

∣∣∣∇ i∑
l=0

ρ−(i+1−l)σw−1(ρi+1)w(ρl)V 1
l (ρi+1−lx)

∣∣∣
≤ C

i∑
l=0

ρ−(i+1−l)(σ+α−1)ρ(i+1−l)(σ+ᾱ−1)

≤ C
i∑
l=0

ρ(i+1−l)(ᾱ−α) ≤ Cρᾱ−α.

Thus, (151) follows.

Lemma 6.2.5. There is a constant C depending on n, σ0, λ,Λ such that∫
Rn
|δvi+1(x, y)| 2− σ

|y|n+σ
dy ≤ C(ρᾱ−α +

1

M
) in B1(0).

Proof. By Lemma 6.2.3 and 6.2.4, it follows from the proof of Theorem 7.4 in [14].

Let η̃ be the smooth function in Lemma 6.2.2. For any symmetric measurable set

A, we define

wA(x) := η̃(x)

∫
B1(0)

(
δṽi+1(x, y)− δṽi+1(0, y)

)
KA(y)dy,
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where

KA(y) =
2− σ
|y|n+σ

1A(y).

By Lemma 6.1.2, we have for any x ∈ B1(0)∣∣∣ ∫
B1(0)

(
δR(1)i

ρ (x, y)− δR(1)i
ρ (0, y)

)
KA(y)dy

∣∣∣
=

∣∣∣ i∑
l=0

ρ−(i+1−l)σw−1(ρi+1)w(ρl)∫
B1(0)

(
δV 1

l (ρi+1−lx, ρi+1−ly)− δV 1
l (0, ρi+1−ly)

)
KA(y)dy

∣∣∣
=

∣∣∣ i∑
l=0

w−1(ρi+1)w(ρl)

∫
B1(0)

(
δV 1

l (ρi+1−lx, y)− δV 1
l (0, y)

)
K l−1−i
A (y)dy

∣∣∣
≤

i∑
l=0

ρ−(i+1−l)α‖V 1
l ‖Cσ+ᾱ(Rn)ρ

(i+1−l)ᾱ|x|ᾱ ≤ Cρᾱ−α|x|ᾱ. (152)

Using Lemma 6.2.5 and (152), we get

|wA| ≤ C(ρᾱ−α +
1

M
), in Rn.

It follows from Lemma 6.2.3 and (147) that∣∣∣ ∫
B1(0)

δṽi+1(0, y)KA(y)dy
∣∣∣ ≤ C(ρᾱ−α +

1

M
).

By Lemma 6.2.2, we have

M+
L2
wA ≥ −C(ρᾱ−α +

1

M
), in B 3

5
(0) uniformly in A.

We define

P (x) := sup
A
wA(x) = η̃(x)

∫
B1(0)

(
δṽi+1(x, y)− δṽi+1(0, y)

)+ 2− σ
|y|n+σ

dy,

and

N(x) := sup
A
−wA(x) = η̃(x)

∫
B1(0)

(
δṽi+1(x, y)− δṽi+1(0, y)

)− 2− σ
|y|n+σ

dy.

Lemma 6.2.6. For any x ∈ B 1
4
(0), we have

λ

Λ
N(x)− C(ρᾱ−α +

1

M
)|x| ≤ P (x) ≤ λ

Λ
N(x) + C(ρᾱ−α +

1

M
)|x|. (153)
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Proof. For any x ∈ B 1
2
(0), we define ṽi+1,x(z) := ṽ(x+ z). By (143), we have

M+
L2

(ṽi+1,x − ṽi+1)(0) ≥ − sup
a∈A

(Li+1
a R(2)i

ρ (x)− Li+1
a R(2)i

ρ (0))

and

M−
L2

(ṽi+1,x − ṽi+1)(0) ≤ sup
a∈A

(Li+1
a R(2)i

ρ (0)− Li+1
a R(2)i

ρ (x)).

By Lemma 6.1.1 and (133),

|Li+1
a R(2)i

ρ (x) − Li+1
a R(2)i

ρ (0)| =
∣∣∣ i∑
l=0

w(ρl)

w(ρi+1)

(
LlaV

2
l (ρi+1−lx)− LlaV 2

l (0)
)∣∣∣

≤ C

i∑
l=0

ρ−(i+1−l)α(‖V 2
l ‖C4(B 1

4
(0)) + ‖V 2

l ‖L∞(Rn)

)
ρi+1−l|x|

≤ Cρ1−α|x|.

Thus, we have

M+
L2

(ṽi+1,x − ṽi+1)(0) ≥ −Cρ1−α|x| and M−
L2

(ṽi+1,x − ṽi+1)(0) ≤ Cρ1−α|x|. (154)

For any L ∈ L2(λ,Λ, σ), we have

L(ṽi+1,x − ṽi+1)(0) =

∫
Rn

(
δṽi+1(x, y)− δvi+1(0, y)

)
K(y)dy

=

∫
B1(0)

(δṽi+1(x, y)− δṽi+1(0, y))K(y)dy

+

∫
Rn\B1(0)

(δṽi+1(x, y)− δṽi+1(0, y))K(y)dy.

By (141), (151) and L ∈ L2(λ,Λ, σ), we have, for any x ∈ B 1
4
(0)

1

2

∫
Rn\B1(0)

(
δṽi+1(x, y)− δṽi+1(0, y)

)
K(y)dy

=

∫
Rn
ṽi+1(y)

(
K(y − x)1Bc1(0)(y − x)−K(y)1Bc1(0)(y)

)
dy

−
(
ṽi+1(x)− ṽi+1(0)

) ∫
Rn\B1(0)

K(y)dy

≤
∫
Rn\B1(0)

|ṽi+1(y)||K(y − x)−K(y)|dy

+‖ṽi+1‖L∞(B1+|x|(0))

∫
B1+|x|(0)\B1−|x|(0)

K(y)dy + C(ρᾱ−α +
1

M
)|x|

≤ C(ρᾱ−α +
1

M
)|x|.
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Therefore, we have∫
Rn

(δṽi+1(x, y)− δṽi+1(0, y))K(y)dy

≤
∫
B1(0)

(δṽi+1(x, y)− δṽi+1(0, y))K(y)dy + C(ρᾱ−α +
1

M
)|x|. (155)

By (154) and (155), we obtain

−Cρ1−α|x| ≤M+
L2

(ṽi+1,x − ṽi+1)(0)

≤ sup
λ(2−σ)

|y|n+σ ≤K≤
Λ(2−σ)

|y|n+σ

∫
B1(0)

(δṽi+1(x, y)− δṽi+1(0, y))K(y)dy + C(ρᾱ−α +
1

M
)|x|.

Therefore, we have

ΛP (x)− λN(x) ≥ −C(ρᾱ−α +
1

M
)|x|.

The second inequality of (153) follows from M−
L2

(ṽi+1,x − ṽi+1)(0) ≤ Cρ1−α|x|.

Now the proof of Theorem 6.2.1 follows from the proofs of Lemma 2.14 and The-

orem 2.2 in [42].

6.3 Cσ regularity

Before introducing the main theorem, we remind that, for any σ ∈ (0, 2), [σ] denotes

the largest integer which is less than or equal to σ.

Theorem 6.3.1. Assume that 2 > σ ≥ σ0 > 0 and Ka(x, y) ∈ L2(λ,Λ, σ) for any

a ∈ A. Assume that w(t) is a Dini modulus of continuity satisfying (H2)β̄,σ, where β̄

is given in Theorem 6.2.1. Assume that f satisfies, for some Cf > 0,

|f(x)− f(0)| ≤ Cfw(|x|) and |f(x)| ≤ Cf , in B1(0), (156)

and Ka(x, y) satisfies, for any 0 < r ≤ 1, a ∈ A and x ∈ B1(0),∫
Rn
|Ka(x, y)−Ka(0, y)|min{|y|min{2,σ+β̄}, rmin{2,σ+β̄}}dy ≤ Λw(|x|)rmin{2−σ,β̄}. (157)

If u is a bounded viscosity solution of (14), then there exists a polynomial p(x) of

degree [σ] such that

|u(x)− p(x)| ≤ C(‖u‖L∞(Rn) + Cf )|x|σψ(|x|), in B 1
2
(0),

and

|Dip(0)| ≤ C(‖u‖L∞(Rn) + Cf ), i = 0, · · · , [σ],

where ψ(t) := w(t) +
∫ t

0
w(r)
r
dr and C is a constant depending on λ,Λ, n, σ0, σ and w.
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Proof. By covering and rescaling arguments, we can assume (14), (156) and (157)

hold in B5(0). We will give the proof of Theorem 6.3.1 in the most complicated case

σ0 ≥ 1. Without loss of generality, we can assume that w(1) > 1.

We claim that we can find a sequence of functions {ul}l=+∞
l=0 such that, for any

ρ ≤ ρ0, 0 < κ ≤ σ + β̄ and i = 0, 1, 2, · · · , we have

inf
a∈A

{∫
Rn

i∑
l=0

δul(x, y)Ka(0, y)dy
}

= f(0), in B4ρi(0), (158)

(u−
i∑
l=0

ul)(ρ
ix) = 0, in Rn \B4(0), (159)

‖ui‖L∞(Rn) ≤ ρσiw(ρi), (160)

‖ui‖Cκ(B(4−τ)ρi (0)) ≤ C2ρ
(σ−κ)iw(ρi)τ−κ, (161)

‖u−
i∑
l=0

ul‖L∞(Rn) ≤ ρσ(i+1)w(ρi+1), (162)

[u−
i∑
l=0

ul]Cα1 (B(4−3τ)ρi (0)) ≤ 8C1ρ
(σ−α1)iw(ρi)τ−3, (163)

where ρ0 is given by Theorem 6.2.1, τ is an arbitrary constant in (0, 1], α1 and C1

are positive constants depending on n, λ, Λ, σ0, and C2 is the constant in (130).

Suppose that we have (158)-(163). Then, for any ρi+1 ≤ |x| < ρi∣∣∣u(x)−
+∞∑
l=0

ul(0)−
+∞∑
l=0

∇ul(0) · x
∣∣∣

≤
∣∣∣u(x)−

i∑
l=0

ul(x)
∣∣∣+
∣∣∣ i∑
l=0

(
ul(x)− ul(0)−∇ul(0) · x

)∣∣∣
+
∣∣∣ +∞∑
l=i+1

ul(0)
∣∣∣+
∣∣∣ +∞∑
l=i+1

∇ul(0) · x
∣∣∣

≤ ρσ(i+1)w(ρi+1) + C|x|min{2,σ+β̄}
i∑
l=0

ρ−min{2−σ,β̄}lw(ρl)

+
+∞∑
l=i+1

ρσlw(ρl) + C|x|
+∞∑
l=i+1

ρ(σ−1)lw(ρl).

By (H1)β̄,σ, we have, for ρi+1 ≤ |x| < ρi

|x|min{2,σ+β̄}
i∑
l=0

ρ−min{2−σ,β̄}lw(ρl) ≤ ρiσw(ρi)
i∑
l=0

ρmin{2−σ,β̄}(i−l)w(ρl)

w(ρi)

≤ ρiσw(ρi)
i∑
l=0

ρ

(
min{2−σ,β̄}−β

)
(i−l)
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≤ ρiσw(ρi)
+∞∑
l=0

ρ

(
min{2−σ,β̄}−β

)
l

≤ Cρiσw(ρi) ≤ Cρ−β−σρ(i+1)σw(ρi+1)
ρβw(ρi)

w(ρi+1)

≤ Cρ(i+1)σw(ρi+1).

We notice that min{2, σ + β̄} −min{2− σ, β̄} = σ. Thus, for ρi+1 ≤ |x| < ρi

∣∣∣u(x)−
+∞∑
l=0

ul(0)−
+∞∑
l=0

∇ul(0) · x
∣∣∣

≤ Cρσ(i+1)w(ρi+1) +
(
ρσ(i+1) + Cρiρ(σ−1)(i+1)

) +∞∑
l=i+1

w(ρl)

≤ Cρσ(i+1)w(ρi+1) + Cρσ(i+1)

+∞∑
l=i+1

w(ρl)

≤ Cρσ(i+1)ψ(ρi+1),

where ψ(t) = w(t) +
∫ t

0
w(r)
r
dr.

We first prove the claim for i = 0. Let u0 be the viscosity solution of{
I0u0 := infa∈A

{∫
Rn δu0(x, y)Ka(0, y)

}
− f(0) = 0, in B4(0),

u0 = u, in Bc
4(0).

Then, by Lemma 3.1 in [42], we have

‖u0‖L∞(Rn) ≤ C(‖u‖L∞(Rn) + ‖f‖L∞(B5(0))).

By normalization, we can assume that

‖u0‖L∞(Rn) ≤
1

2
and ‖u‖L∞(Rn) + ‖f‖L∞(B5(0)) ≤

1

2
.

Using Theorem 6.2.1, we have, for any 0 < κ ≤ σ + β̄

‖u0‖Cκ(B4−τ (0)) ≤ C2τ
−κ,

where C2 is the constant in (130). Since u is a bounded viscosity solution of (14),

it follows from Theorem 12.1 in [13] that there exist constants α1 > 0 and C1 > 0,

depending only on n, λ, Λ, σ0, such that, for any 0 < τ ≤ 1

‖u‖Cα1 (B4−τ (0)) ≤
C1

2
τ−α1 . (164)
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Let ε := ρσ+β̄ ≤ ρσw(ρ), M = 1 and w1(r) := rα1 . Then, for these w1, ε and M , there

exist η1 > 0 and R > 5 such that Lemma 6.1.5 holds. Without loss of generality, we

can assume that, for any 0 < r ≤ 1

|f(x)− f(0)| ≤ γw(|x|), in B5(0),∫
Br(0)

|Ka(x, y)−Ka(0, y)||y|min{2,σ+β̄}dy ≤ γw(|x|)rmin{2−σ,β̄}, in B5(0),∫
Bcr(0)

|Ka(x, y)−Ka(0, y)|dy ≤ γw(|x|)r−σ, in B5(0),

|u(x)− u(y)| ≤ w1(|x− y|), for any x ∈ BR(0) \B4(0) and y ∈ Rn \B4(0), (165)

where γ is a sufficiently small constant we determine later. This can be achieved by

scaling. For a sufficiently small s > 0, if we let

K̃a(x, y) = sn+σKa(sx, sy) ∈ L2(λ,Λ, σ),

ũ(x) = u(sx),

f̃(x) = sσf(sx),

then we see that

Ĩ ũ(x) := inf
a∈A

∫
Rn
δũ(x, y)K̃a(x, y)dy = f̃(x), in B5(0).

It follows from (H2)β̄,σ that, if we choose s sufficiently small, then for any x ∈ B5(0)

|f̃(x)− f̃(0)| ≤ Cfs
σw(s|x|) ≤ Cfs

ση(s)w̃(|x|) ≤ γw̃(|x|),∫
Br(0)

|K̃a(x, y)− K̃a(0, y)||y|min{2,σ+β̄}dy

= s−min{2−σ,β̄}
∫
Bsr(0)

|Ka(sx, y)−Ka(0, y)||y|min{2,σ+β̄}dy

≤ Λw(s|x|)rmin{2−σ,β̄} ≤ Λη(s)w̃(|x|)rmin{2−σ,β̄} ≤ γw̃(|x|)rmin{2−σ,β̄},

and∫
Bcr(0)

|K̃a(x, y)− K̃a(0, y)|dy = sσ
∫
Bcsr(0)

|Ka(sx, y)−Ka(0, y)|dy

≤ Λw(s|x|)r−σ ≤ Λη(s)w̃(|x|)r−σ ≤ γw̃(|x|)r−σ,

where w̃(t) is another Dini modulus of continuity satisfying (H1)β̄,σ and η(s) is a

positive function of s such that lims→0+ η(s) = 0. Using (164) with τ = 1, we have, if

we let s sufficiently small,

‖ũ‖Cα1 (B2R(0)) ≤ ‖ũ‖Cα1 (B 3
s

(0)) ≤ sα1
C1

2
≤ 1.
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Since R > 5 and ‖ũ‖Cα1 (B2R(0)) ≤ 1,

|ũ(x)− ũ(y)| ≤ |x− y|α1 for any x ∈ BR(0) \B4(0) and y ∈ B2R(0) \B4(0),

and

|ũ(x)− ũ(y)| ≤ 1 ≤ |x− y|α1 for x ∈ BR(0) \B4(0) and y ∈ Bc
2R(0).

Therefore, (165) holds for ũ.

If x ∈ B4(0), h ∈ C1,1(x), ‖h‖L∞(Rn) ≤ M and |h(y) − h(x) − (y − x) · ∇h(x)| ≤
M
2
|x− y|2 for any y ∈ B1(x), we have

‖I − I0‖B4(0) ≤
1

M + 1

{∫
Rn
|δh(x, y)||Ka(x, y)−Ka(0, y)|dy + f(x)− f(0)

}
≤ M

M + 1

{∫
B1(0)

|y|2|Ka(x, y)−Ka(0, y)|
}
dy + 4

∫
Rn\B1(0)

|Ka(x, y)−Ka(0, y)|dy
}

+f(x)− f(0) ≤ 6γw(|x|) ≤ 6γw(5). (166)

We will choose γ < min{ η1

6w(5)
, 1

(C2+4)w(4)
}. By Lemma 6.1.5, we have

‖u− u0‖L∞(B4(0)) ≤ ε ≤ ρσw(ρ),

and thus

‖u− u0‖L∞(Rn) ≤ ‖u− u0‖L∞(B4(0)) ≤ ε ≤ ρσw(ρ).

Let v(x) = u(x)− u0(x). Since u0 ∈ Cσ+β̄
loc (B4(0)), v is a viscosity solution of

I(0)v(x) : = inf
a∈A

{∫
Rn
δv(x, y)Ka(x, y) + δu0(x, y)Ka(x, y)dy

}
− f(0)

= f(x)− f(0) in B4(0).

It is clear that I(0) is uniformly elliptic with respect to L0(λ,Λ, σ). Since γ <
1

(C2+4)w(4)
, we have for any x ∈ B4−2τ (0)

|I(0)0(x)| =
∣∣∣ inf
a∈A

{∫
Rn
δu0(x, y)Ka(x, y)dy

}
− f(0)

∣∣∣
≤ sup

a∈A

∫
Rn
|δu0(x, y)||Ka(x, y)−Ka(0, y)|dy

≤ sup
a∈A

{∫
Bτ (0)

C2τ
−min{2,σ+β̄}|y|min{2,σ+β̄}|Ka(x, y)−Ka(0, y)|dy

+4

∫
Rn\Bτ (0)

|Ka(x, y)−Ka(0, y)|dy
}

≤ γC2τ
−min{2,σ+β̄}w(|x|)τmin{2−σ,β̄} + 4γw(|x|)τ−σ

= γ(C2 + 4)w(|x|)τ−σ ≤ γ(C2 + 4)w(4)τ−σ ≤ τ−σ.
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It follows from Theorem 12.1 in [13] that

‖v‖Cα1 (B4−3τ (0)) ≤ C1τ
−α1(τ−σ + w(4)γ + 1) ≤ 8C1τ

−3,

and thus

[u− u0]Cα1 (B4−3τ (0)) ≤ 8C1τ
−3.

We then assume (158)-(163) hold up to i ≥ 0 and we will show that they hold for

i+ 1 as well. Let

U(x) = ρ−(i+1)σw−1(ρi+1)
(
u−

i∑
l=0

ul
)
(ρi+1x),

vl(x) = ρ−lσw−1(ρl)ul(ρ
lx),

and

Ki+1
a (x, y) = ρ(n+σ)(i+1)Ka(ρ

i+1x, ρi+1y).

Since ul ∈ Cσ+β̄
loc (B4ρl(0)) for each 0 ≤ l ≤ i, then U is a viscosity solution of

I(i+1)U = w−1(ρi+1)f(ρi+1x)− w−1(ρi+1)f(0), in B 4
ρ
(0),

where

I(i+1)U := inf
a∈A

{∫
Rn

(
δU(x, y) +

i∑
l=0

ρ−(i+1)σw−1(ρi+1)δul(ρ
i+1x, ρi+1y)

)
Ki+1
a (x, y)dy

}
−w−1(ρi+1)f(0)

= inf
a∈A

{∫
Rn

(
δU(x, y) +

i∑
l=0

ρ−(i+1−l)σw−1(ρi+1)w(ρl)δvl(ρ
i+1−lx, ρi+1−ly)

)
Ki+1
a (x, y)dy

}
−w−1(ρi+1)f(0).

It is clear that I(i+1) is uniformly elliptic with respect to L0(λ,Λ, σ). Denote

I
(i+1)
0 v := inf

a∈A

{∫
Rn

(
δv(x, y) +

i∑
l=0

ρ−(i+1)σw−1(ρi+1)δul(ρ
i+1x, ρi+1y)

)
Ki+1
a (0, y)dy

}
−w−1(ρi+1)f(0)

= inf
a∈A

{∫
Rn

(
δv(x, y) +

i∑
l=0

ρ−(i+1−l)σw−1(ρi+1)w(ρl)δvl(ρ
i+1−lx, ρi+1−ly)

)
Ki+1
a (0, y)dy

}
−w−1(ρi+1)f(0),

which is also uniformly elliptic with respect to L0(λ,Λ, σ). Let vi+1 be the viscosity

solution of {
I

(i+1)
0 vi+1 = 0, in B4(0),

vi+1 = U, in Bc
4(0).
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With our induction assumption (158), it follows that for all m = 0, · · · , i + 1 and

x ∈ B4(0),

inf
a∈A

∫
Rn

( m∑
l=0

ρ−(m−l)σw−1(ρm)w(ρl)δvl(ρ
m−lx, ρm−ly)

)
Km
a (0, y)dy = w−1(ρm)f(0).

It follows from Theorem 6.2.1 that vi+1 ∈ Cσ+β̄
loc (B4(0)) and for any 0 < κ ≤ σ + β̄

‖vi+1‖Cκ(B4−τ (0)) ≤ C2τ
−κ.

We then want to prove that

‖vi+1‖L∞(Rn) ≤ ‖U‖L∞(Rn) ≤ 1.

Since ‖u‖L∞(Rn) ≤ 1
2
, (160), (164) and ul ∈ Cσ+β̄

loc (B4ρl(0)) for any 0 ≤ l ≤ i hold,

it follows from Theorem 3.2 in [12] that vi+1 ∈ C(B4(0)). Suppose that there exists

x0 ∈ B4(0) such that vi+1(x0) = maxB4(0) vi+1 > ‖U‖L∞(Rn\B4(0)). Then

sup
a∈A

∫
Rn
δvi+1(x0, y)Ki+1

a (0, y)dy < 0. (167)

Since I
(i+1)
0 0(x) = 0 for any x ∈ B4(0), then we have

0 = I
(i+1)
0 vi+1(x)− I(i+1)

0 0(x) ≤ sup
a∈A

∫
Rn
δvi+1(x, y)Ki+1

a (0, y)dy, for any B4(0),

which contradicts (167). Similarly, we have vi+1(x) ≥ −‖U‖L∞(Rn\B4(0)) for any x ∈
B4(0). By induction assumptions, we have ‖U‖L∞(Rn) ≤ 1, U = 0 in Bc

4
ρ

(0) and

[U ]Cα1 (B 4−3τ
ρ

(0)) ≤ 8C1
w(ρi)

w(ρi+1)
ρα1−στ−3 ≤ 8C1ρ

−3τ−3.

By Lemma 6.1.3, we have, for any x1, x2 ∈ B4(0)

∣∣∣ ∫
Rn

i∑
l=0

ρ−(i+1−l)σw−1(ρi+1)w(ρl)

(
δvl(ρ

i+1−lx1, ρ
i+1−ly)− δvl(ρi+1−lx2, ρ

i+1−ly)
)
Ki+1
a (0, y)dy

∣∣∣
=

∣∣∣ i∑
l=0

ρ−(i+1−l)σw−1(ρi+1)w(ρl)∫
Rn

(
δvl(ρ

i+1−lx1, ρ
i+1−ly)− δvl(ρi+1−lx2, ρ

i+1−ly)
)
Ki+1
a (0, y)dy

∣∣∣
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=
∣∣∣ i∑
l=0

w−1(ρi+1)w(ρl)

∫
Rn

(
δvl(ρ

i+1−lx1, y)− δvl(ρi+1−lx2, y)
)
K l
a(0, y)dy

∣∣∣
≤

i∑
l=0

w−1(ρi+1)w(ρl)‖Llavl‖Cβ̄(B
4ρi+1−l (0))ρ

(i+1−l)β̄|x1 − x2|β̄

≤
i∑
l=0

w−1(ρi+1)w(ρl)C(‖vl‖Cσ+β̄(B
5ρi+1−l (0)) + ‖vl‖L∞(Rn))ρ

(i+1−l)β̄|x1 − x2|β̄

≤
i∑
l=0

w−1(ρi+1)w(ρl)C(C2 + 1)ρ(i+1−l)β̄|x1 − x2|β̄

≤
i∑
l=0

C
w(ρl)

w(ρi+1)
ρ(i+1−l)β̄|x1 − x2|β̄ ≤ Cρβ̄−β|x1 − x2|β̄.

Then we will show that we can choose γ sufficiently small such that

‖I(i+1) − I(i+1)
0 ‖B4(0) ≤ η2 ≤ 1, (168)

where η2 is given in Lemma 6.1.6 depending on ε = ρσ+β̄, R0 = 4
ρ
, M0 = Cρβ̄−β,

M1 = 1, M2 = 8C1ρ
−3 and M3 = C2. For any x ∈ B4(0), h ∈ C1,1(x), ‖h‖L∞(Rn) ≤M ,

|h(y)− h(x)− (y − x) · ∇h(x)| ≤ M
2
|x− y|2 for any y ∈ B1(x), we have

‖I(i+1) − I(i+1)
0 ‖B4(0) ≤

1

M + 1
sup
a∈A

∣∣∣ ∫
Rn
δh(x, y)

(
Ki+1
a (x, y)−Ki+1

a (0, y)
)
dy
∣∣∣

+
i∑
l=0

sup
a∈A

∣∣∣ ∫
Rn
ρ−(i+1)σw−1(ρi+1)δul(ρ

i+1x, ρi+1y)
(
Ki+1
a (x, y)−Ki+1

a (0, y)
)
dy
∣∣∣

= I1 + I2.

It follows from the same computation as that in (166) that

|I1| ≤ 5γw(5).

By (161), we have, for any a ∈ A, l = 0, · · · , i and x ∈ B4(0)∣∣∣ ∫
Rn
δul(ρ

i+1x, ρi+1y)
(
Ki+1
a (x, y)−Ki+1

a (0, y)
)
dy
∣∣∣

≤ ρσ(i+1)

∫
Rn
|δul(ρi+1x, y)||Ka(ρ

i+1x, y)−Ka(0, y)|dy

≤ ρσ(i+1)

∫
B
ρl

(0)

C2ρ
−min{2−σ,β̄}lw(ρl)|y|min{2,σ+β̄}|Ka(ρ

i+1x, y)−Ka(0, y)|dy

+ρσ(i+1)

∫
Rn\B

ρl
(0)

4ρlσw(ρl)|Ka(ρ
i+1x, y)−Ka(0, y)|dy

≤ (C2 + 4)ρσ(i+1)w(ρl)γw(ρi+1|x|)
≤ (C2 + 4)ρσ(i+1)w(ρl)γw(ρi).

111



Thus, we have

I2 ≤ (C2 + 4)
w(ρi)

w(ρi+1)
γ

i∑
l=0

w(ρl) ≤ (C2 + 4)ρ−1γ

+∞∑
l=0

w(ρl) < +∞.

We finally choose γ such that

γ ≤ min
{ η2(

5w(5) + (C2 + 4)ρ−1
∑+∞

l=0 w(ρl)
) , η1

6w(5)
,

1

(C2 + 4)w(4)

}
.

Therefore, (168) holds. By Lemma 6.1.6, we have

‖U − vi+1‖L∞(Rn) = ‖U − vi+1‖L∞(B4(0)) ≤ ε = ρσ+β̄ ≤ ρσ
w(ρi+2)

w(ρi+1)
.

Let

ui+1(x) = ρσ(i+1)w(ρi+1)vi+1(ρ−(i+1)x),

and

V = U − vi+1 = ρ−σ(i+1)w−1(ρi+1)
(
u−

i+1∑
l=0

ul
)
(ρi+1x).

Then, for any x ∈ B4(0) we have

Ī(i+1)V : = inf
a∈A

∫
Rn
δV (x, y) +

i+1∑
l=0

ρ−σ(i+1)w−1(ρi+1)δul(ρ
i+1x, ρi+1y)Ki+1

a (x, y)dy

−w−1(ρi+1)f(0)

= w−1(ρi+1)f(ρi+1x)− w−1(ρi+1)f(0).

Moreover, we have for any x ∈ B4−2τ (0)

Ī(i+1)0 = inf
a∈A

{∫
Rn

i+1∑
l=0

ρ−σ(i+1)w−1(ρi+1)δul(ρ
i+1x, ρi+1y)Ki+1

a (x, y)dy
}

−w−1(ρi+1)f(0)

= inf
a∈A

{∫
Rn

i+1∑
l=0

ρ−σ(i+1)w−1(ρi+1)δul(ρ
i+1x, ρi+1y)Ki+1

a (x, y)dy
}

− inf
a∈A

{∫
Rn

i+1∑
l=0

ρ−(i+1)σw−1(ρi+1)δul(ρ
i+1x, ρi+1y)Ki+1

a (0, y)dy
}

≤ sup
a∈A

{ i+1∑
l=0

∫
Rn
ρ−σ(i+1)w−1(ρi+1)δul(ρ

i+1x, ρi+1y)
(
Ki+1
a (x, y)−Ki+1

a (0, y)
)
dy
}

≤ (C2 + 4)ρ−1τ−σγ

+∞∑
l=0

w(ρl) ≤ η2τ
−σ ≤ τ−σ.
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It is clear that Ī(i+1) is uniformly elliptic with respect to L0(λ,Λ, σ). Thus, for any

x ∈ B4−2τ (0)

M+
L0
V ≥ Ī(0)V − Ī(0)0 = w−1(ρi+1)(f(ρi+1x)− f(0))− τ−σ

≥ −γw−1(ρi+1)w(ρi+1|x|)− τ−σ

≥ −γw−1(ρi+1)w(4ρi+1)− τ−σ

≥ −γρ−1 − τ−σ,

and similarly,

M−
L0
V ≤ γρ−1 + τ−σ.

It follows from Theorem 12.1 of [13] that,

[V ]Cα1 (B4−3τ (0)) ≤ C1τ
−α1(‖V ‖L∞(Rn) + γρ−1 + τ−σ)

≤ C1τ
−α1(ε+ γρ−1 + τ−σ)

≤ 8C1τ
−3.

Thus, we finish the proof.

Corollary 9. Assume that 2 > σ ≥ σ0 > 0 and Ka(x, y) ∈ L2(λ,Λ, σ) for any a ∈ A.

Assume that w(t) is a Dini modulus of continuity satisfying (H2)β̄,σ, where β̄ is given

in Theorem 6.2.1. Assume that there exists Cf > 0 such that, for any x1, x2 ∈ B1(0)

|f(x1)− f(x2)| ≤ Cfw(|x1 − x2|) and ‖f‖L∞(B1(0)) ≤ Cf

and Ka(x, y) satisfies, for any 0 < r ≤ 1∫
Rn
|Ka(x1, y)−Ka(x2, y)|min{|y|min{2,σ+β̄}, rmin{2,σ+β̄}}dy ≤ Λw(|x1−x2|)rmin{2−σ,β̄}.

If u is a bounded viscosity solution of (14), then there exists a constant C > 0 de-

pending on λ,Λ, n, σ0, σ and w such that

‖u‖Cσ(B 1
2

(0)) ≤ C(‖u‖L∞(Rn) + Cf ).

Example 6.3.1. Since the assumption (157) is slightly complicated, we provide sev-

eral examples when it is satisfied. We first consider the kernel Ka(x, y) which satisfies,

for any r > 0∫
B2r(0)\Br(0)

|Ka(x, y)−Ka(0, y)|dy ≤ Λw(|x|)r−σ, in B1(0). (169)

Thus, for any 0 < r < 1, x ∈ B1(0) and non-negative integer n, we have∫
B r

2n
(0)\B r

2n+1
(0)

|Ka(x, y)−Ka(0, y)||y|min{2,σ+β̄}dy ≤ Λw(|x|)2σ−nmin{2−σ,β̄}rmin{2−σ,β̄},
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and∫
B2n+1r(0)\B2nr(0)

|Ka(x, y)−Ka(0, y)||r|min{2,σ+β̄}dy ≤ Λw(|x|)2−nσrmin{2−σ,β̄}.

Then it is not hard to verify that (169) implies (157). Another more concrete example

satisfying (157) is given by the kernel of the form

Ka(x, y) =
ka(x, y)

|y|n+σ
, for any x ∈ B1(0) and y ∈ Rn, (170)

where |ka(x, y)− ka(0, y)| ≤ Λw(|x|).
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order non-linear elliptic integro-differential equations, J. Eur. Math. Soc. (JEMS)
13 (2011) 1–26.

[9] G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Vis-
cosity solutions’ theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire 25
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[16] H. Chang Lara and G. Dávila, Regularity for solutions of nonlocal parabolic
equations, Calc. Var. Partial Differential Equations 49 (2014), 139–172.

[17] H. Chang Lara and G. Dávila, Regularity for solutions of nonlocal parabolic
equations II, J. Differential Equations 256 (2014), 130–156.

[18] H. Chang Lara and G. Dávila, Cσ+α estimates for concave, nonlocal parabolic
equations with critial drift, preprint (2014), arXiv:1408.5149.

[19] H. Chang Lara and D. Kriventsov, Further time regularity for nonlocal, fully
nonlinear parabolic Equations, to appear in Comm. Pure Appl. Math. (2016).

[20] E. Chasseigne, The Dirichlet problem for some non-local diffusion equations,
Diff. Int. Eq. 20 (2007), 1389–1404.

[21] Z. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-
sets, Stochastic Process Appl. 108 (2003), 27–62.

[22] M. Crandall, H. Ishii and P. Lions, User’s guide to viscosity solutions of second
order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1–67.

[23] H. Dong and D. Kim, Schauder estimates for a class of non-local elliptic equa-
tions, Discrete Contin. Dyn. Syst. 33 (2013), 2319–2347.

[24] E. Feleqi, Generalized semiconcavity of the value function of a jump diffusion op-
timal control problem, NoDEA Nonlinear Differential Equations Appl. 22 (2015),
777–809.

[25] E. Feleqi, Joint time-state generalized semiconcavity of the value function of a
jump diffusion optimal control problem, preprint, (2014).

[26] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity
solutions, Applications of Mathematics, 25. Springer-Verlag, New York, 1993.

[27] M. G. Garroni and J. L. Menaldi, Second order elliptic integro-differential prob-
lems, Chapman & Hall/CRC Research Notes in Mathematics 430, Chapman &
Hall/CRC, Boca Raton, FL, 2002.

[28] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second
Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag,
Berlin, 2001.

116



[29] F. Gimbert and P. L. Lions, Existence and regularity results for solutions of
second-order, elliptic integro-differential equations, Ricerche Mat. 33 (2) (1984),
315–358.

[30] G. Grubb, Regularity of spectral fractional Dirichlet and Neumann problems, to
appear in Math. Nachr. (2015).

[31] Q. Guan, Integration by parts formula for regional fractional Laplacian, Comm.
Math. Phys. 266 (2006), 289–329.

[32] Q. Guan, Boundary Harnack inequality for regional fractional Laplcian,
arXiv:0705.1614 (2007).

[33] Q. Guan and Z. Ma, Reflected symmetric α-stable processes and regional frac-
tional Laplacian, Probab. Theory Related Fields 134 (2006), 649–694.

[34] N. Guillen and R. Schwab, Aleksandrov-Bakelman-Pucci type estimates for
integro-differential equations, Arch. Ration. Mech. Anal. 206 (2012), 111–157.

[35] C. Imbert, A non-local regularization of first order Hamilton-Jacobi equations,
J. Differential Equations 211 (1) (2005) 218–246.

[36] H. Ishii, Perron’s method for Hamilton-Jacobi Equations, Duke Math. J. 55
(1987), 369–384.

[37] H. Ishii, On the equivalence of two notions of weak solutions, viscosity solutions
and distribution solutions, Funkcial. Ekvac. 38 (1) (1995), 101–120.

[38] H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic
partial differential equations, J. Differential Equations 83 (1990), 26–78.

[39] E. R. Jakobsen and K. H. Karlsen, Continuous dependence estimates for viscosity
solutions of integro-PDEs, J. Differential Equations 212 (2005), 278–318.

[40] E. R. Jakobsen and K. H. Karlsen, A “maximum principle for semicontinuous
functions” applicable to integro-partial differential equations, NoDEA Nonlinear
Differential Equations Appl. 13 (2006), 137–165.

[41] R. Jensen, Uniqueness criteria for viscosity solutions of fully nonlinear elliptic
partial differential equations, Indiana Univ. Math. J. 38 (1989), 629–667.

[42] T. Jin and J. Xiong, Schauder estimates for nonlocal fully nonlinear equations,
to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire (2015).
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