ORIENTATION OF MANIFOLDS AND SMOOTH FIBRE BUNDLES

Md. Shafiul Alam
Department of Mathematics, University of Barishal
Barishal-8200, Bangladesh
E-mail: shafiulmt@gmail.com

Abstract

For a smooth fibre bundle $F=(T, \rho, P, L)$ and a vertical subalgebra of $B_{X}(T)$, it is shown that an isomorphism $g: B_{K}(T) \otimes_{T} B_{X}(T) \xrightarrow{\cong} B(T)$ of graded algebras is given by the multiplication map $\omega \otimes \Upsilon \mapsto$ $\omega \wedge \Upsilon$. If η and ω are two n-forms in $B^{S}(T)$ and their induced forms are $i_{X} \eta, i_{X} \omega$ in $B^{r}\left(L_{x}\right)$, then the orientations of $F=(T, \rho, P, L)$ by η and ω are identical if and only if the orientations of X_{T} by $i_{X} \eta$ and $i_{X} \omega$ are identical. Finally, if the bundle $F=(T, \rho, P, L)$, the manifolds P and T are oriented by an n-form $\omega, d_{P} \in$ $B^{r}(P)$ and the $(r+s)$-form $d_{T}=\rho^{*} d_{P} \wedge \omega$, respectively, then d_{T} depends on ω and d_{P}.

Keywords: Smooth fibre bundle, manifold, vector bundle, bundle isomorphism, bundle orientation, graded subalgebra.

1. Introduction

Consider the manifolds T and P such that $\rho: T \rightarrow P$ is a smooth map between them. If the smooth map ρ has the local product property for a manifold L, then there exists an open covering $\left\{X_{a}\right\}$ of the manifold P and a family of diffeomorphisms $\left\{\gamma_{a}\right\}$, where γ_{a} is given by

$$
\gamma_{a}: X_{a} \times L \rightarrow \rho^{-1}\left(X_{a}\right)
$$

such that $\rho \gamma_{a}(\alpha, \beta)=\alpha$ for $\alpha \in X_{a}, \beta \in L$. For the manifolds T, P, L and the smooth map $\rho: T \rightarrow P$, a fourtuple (T, ρ, P, L) is said to be a smooth fibre bundle if ρ has the local product property.

Let $F=(T, \rho, P, L)$ and $F^{\prime}=\left(T^{\prime}, \rho^{\prime}, P^{\prime}, L^{\prime}\right)$ be two vector bundles. Also, suppose that $f: T \rightarrow T^{\prime}$ is a smooth fibre-preserving map, then the map $f: F \rightarrow F^{\prime}$ is said to be a bundle map if $f_{x}: L_{x} \rightarrow L_{g(x)}^{\prime}$ is linear for $x \in P$ and the smooth map $g: P \rightarrow P^{\prime}$ induced by the map f. The composition of two bundle maps is also a bundle map ([2], [7]).

If a bundle map $f: F \rightarrow F^{\prime}$ is a diffeomorphism, then it is said to be a bundle isomorphism and its inverse is also a bundle isomorphism. If there exists a bundle isomorphism $f: F \xrightarrow{\cong} F^{\prime}$ between the vector bundles F and F^{\prime}, then they are called isomorphic ([8], [9]).

Let K_{T} be a subbundle of i_{T}. Assume that $F=(T, \rho, P, L)$ is a smooth fibre bundle. If $i_{T}=K_{T} \oplus X_{T}$, then
the subbundle K_{T} is called horizontal. For a smooth fibre bundle $F=(T, \rho, P, L)$, let $Z \in Y_{X}(T)$. Suppose that $\omega \in K(T)$ is a differential form. Then, ω is called horizontal if $f(Z) \omega=0$. All these horizontal forms are a graded subalgebra of $B(T)$ as it is obvious that each $f(Z)$ is a homogeneous antiderivation. This kind of algebra will be called the horizontal subalgebra and will be denoted by $B_{K}(T)$ ([1], [3], [11]).

Now we define the vertical subalgebra of $B(T)$. For this, we choose a horizontal subbundle K_{T} of i_{T}. The $\mho(T)$-module of horizontal vector fields on T is $Y_{H}(T)$. Let us define a graded subalgebra $B_{X}(T) \subset$ $B(T)$ by

$$
B_{X}(T)=\{\omega \in B(T): f(X) \omega=0\}
$$

where $X \in X_{H}(T)$ and $B_{X}(T)$ is dependent on the choice of K_{T}. Then, the graded subalgebra $B_{X}(T)$ is called the vertical subalgebra of $B(T)$.

Assume that $\operatorname{dim} P=r, \operatorname{dim} L=s$ and $F=(T, \rho, P, L)$ is a smooth fibre bundle. Let σ_{x} denote the inclusion given by

$$
\sigma_{x}: L_{x} \rightarrow T
$$

where $x \in P$, and L_{x} is the fibre at x. Also, L_{x} is a submanifold of T.

Let ω be a differential s-form in $B^{s}(T)$. For each $\omega \in B^{s}(T)$, and $x \in P, \sigma_{x}^{*} \omega$ is a differential r-form in $B^{r}\left(L_{x}\right)$. Since $\sigma_{x}^{*} \omega \in B^{r}\left(L_{x}\right)$, so $\sigma_{x}^{*} \omega$ orients the fibre at $x \in P$, i.e., L_{x}. If $\omega_{1}, \omega_{2} \in B^{s}(T)$, then $\sigma_{x}^{*} \omega_{1}, \sigma_{x}^{*} \omega_{2} \in$ $B^{r}\left(L_{x}\right)$. If, for every $x \in P$, the orientations on L_{x} induced by $\sigma_{x}^{*} \omega_{1}$ and $\sigma_{x}^{*} \omega_{2}$, respectively, are identical, then the differential forms ω_{1} and ω_{2} are called equivalent ([5], [12]).

Consider the smooth fibre bundle $F=(T, \rho, P, L)$ and an r-form ω on T. For every $x \in F$, the r-form ω indeces an r-form $\sigma_{x}^{*} \omega \in B^{r}\left(L_{x}\right)$. Then, the smooth fibre bundle $F=(T, \rho, P, L)$ is orientable if $\sigma_{x}^{*} \omega$ orients L_{x} for every $x \in F$. In this case, an orientation for $F=(T, \rho, P, L)$ is an equivalence class of the r-form ω.

Let P be an oriented base, then the vector bundle $F=(T, \rho, P, L)$ is an oriented bundle over P. Let $\omega \in$ $B^{S}(T)$ and $d_{P} \in B^{r}(P)$. If the orientation of the bundle $F=(T, \rho, P, L)$ is represented by ω and the orientation of the oriented base P is represented by d_{P}, then the orientation of the manifold T is represented by $\rho^{*} d_{P} \wedge \omega$. The orientation represented by $\rho^{*} d_{P} \wedge \omega$ is said to be the local product orientation ([4], [6], [10]).

For the oriented bases P and \hat{P}, let us consider the oriented vector bundles $F=(T, \rho, P, L)$ and $\hat{F}=$ $(\hat{T}, \hat{\rho}, \hat{P}, \hat{L})$ over P and \hat{P}, respectively. Assume that $g: T \rightarrow \hat{T}$ is a fibre-preserving map and $h: P \rightarrow \hat{P}$ is a local diffeomorphism induced by g. Then the map g is called a local diffeomorphism if g is restricted for $z \in$ P to the local diffeomorphism

$$
g_{z}: L_{z} \rightarrow \hat{L}_{h(z)} .
$$

2. Main Results

Theorem 1. Assume that $\omega \in K(T)$ is a differential n-form and $B_{X}(T)$ is the vertical subalgebra of $B(T)$. Then, an isomorphism

$$
g: B_{K}(T) \otimes_{T} B_{X}(T) \stackrel{\cong}{\cong} B(T)
$$

of graded algebras is given by the multiplication map $\omega \otimes \Upsilon \mapsto \omega \wedge \Upsilon$.

Proof. Consider the decomposition $i_{T}=K_{T} \oplus X_{T}$. The following maps are the projections induced by this decomposition:

$$
K_{x}: T_{x}(T) \rightarrow K_{x}(T)
$$

and

$$
X_{x}: M_{x}(T) \rightarrow X_{x}(T) .
$$

For $X \in X_{H}(T)$, the graded subalgebra $B_{X}(T) \subset B(T)$ given by

$$
B_{X}(T)=\{\omega \in B(T): f(X) \omega=0\}
$$

is the vertical subalgebra of $B(T)$, which depends on K_{T}, so it is obvious that the map from $B_{K}(T) \otimes_{T} B_{X}(T)$ to $B(T)$ is a homomorphism of graded algebras, that is, the map g given by

$$
g: B_{K}(T) \otimes_{T} B_{X}(T) \stackrel{\cong}{\cong} B(T)
$$

is a homomorphism of graded algebras.

Now, we have to show that the homomorphism given by

$$
g: B_{K}(T) \otimes_{T} B_{X}(T) \xrightarrow{\cong} B(T)
$$

is bijective. Since the decomposition $i_{T}=K_{T} \oplus X_{T}$ induces $K_{x}: T_{x}(T) \rightarrow K_{x}(T)$ and $X_{x}: M_{x}(T) \rightarrow X_{x}(T)$, so there exist isomorphisms h_{K} and h_{X} given by

$$
h_{K}: \operatorname{Sec} \wedge K_{T}^{*} \xrightarrow{\cong} B_{K}(T)
$$

and

$$
h_{X}: \operatorname{Sec} \wedge X_{T}^{*} \xrightarrow{\cong} B_{X}(T) .
$$

The isomorphisms h_{K} and h_{X} are of $\mho(T)$-modules. Thus, if $\omega \in K(T)$ is a differential form and $t_{i} \in T_{x}(T)$, then we have the following relations:

$$
h_{K} \omega\left(x ; t_{1}, \cdots, t_{n}\right)=\omega\left(x ; K_{x} t_{1}, \cdots, K_{x} t_{n}\right),
$$

and

$$
h_{X} \Upsilon\left(x ; t_{1}, \cdots, t_{n}\right)=\Upsilon\left(z ; K_{x} t_{1}, \cdots, K_{\mathrm{x}} t_{n}\right)
$$

The map from $\wedge K_{T}^{*} \otimes \Lambda X_{T}^{*}$ to Λi_{T}^{*} is a bundle isomorphism and this bundle isomorphism induces another isomorphism h. That means h is induced by

$$
\Lambda K_{T}^{*} \otimes \wedge X_{T}^{*} \xrightarrow{\cong} \Lambda i_{T}^{*}
$$

Since the map from $\operatorname{Sec} \wedge \mathrm{K}_{\mathrm{T}}^{*} \otimes_{\mathrm{T}} \operatorname{Sec} \wedge \mathrm{X}_{\mathrm{T}}^{*}$ to $B_{H}(T) \otimes_{T} B(T)$ is also an isomorphism, we have the following commutative diagram:

Consequently, the map $g: B_{K}(T) \otimes_{T} B_{X}(T) \xrightarrow{\cong} B(T)$ of graded algebras given by the multiplication map $\omega \otimes \Upsilon \mapsto \omega \wedge \Upsilon$ is an isomorphism.

Theorem 2. Assume that $F=(T, \rho, P, L)$ is a smooth fibre bundle and ω is a differential form in $B^{s}(T)$. Let $i_{X} \omega \in \operatorname{Sec} \Lambda^{s} X_{T}^{*}$. Then the vector bundle X_{T} is oriented by $i_{X} \omega$ if F is oriented by ω. Consider two differential forms η and ω in $B^{s}(T)$ and their induced forms $i_{X} \eta, i_{X} \omega$ in $B^{r}\left(L_{x}\right)$. Then, the orientations of $F=(T, \rho, P, L)$ by η and ω are identical if and only if the orientations of X_{T} by $i_{X} \eta$ and $i_{X} \omega$ are identical.

Proof. Suppose that $F=(T, \rho, P, L)$ is a smooth fibre bundle. Let $\operatorname{dim} P=r, \operatorname{dim} L=s$. For $x \in P$, let us consider the inclusion σ_{x} given by

$$
\sigma_{x}: L_{x} \rightarrow T
$$

where L_{x} is the fibre at x and is a submanifold of T.

For each $\omega \in B^{s}(T), \sigma_{x}^{*} \omega$ is a differential form in $B^{r}\left(L_{x}\right)$, where $x \in P$. Since $\sigma_{x}^{*} \omega \in B^{r}\left(L_{x}\right)$, so $\sigma_{x}^{*} \omega$ orients the fibre L_{x} at $x \in P$. If $\omega_{1}, \omega_{2} \in B^{s}(T)$, then $\sigma_{x}^{*} \omega_{1}, \sigma_{x}^{*} \omega_{2} \in B^{r}\left(L_{x}\right)$. If the orientations on L_{x} induced by $\sigma_{x}^{*} \omega_{1}$
and $\sigma_{x}^{*} \omega_{2}$ are identical for every $x \in P$, then the differential forms ω_{1} and ω_{2} are equivalent.

For every $x \in F$, the r-form ω indeces an r-form $\sigma_{x}^{*} \omega \in B^{r}\left(L_{x}\right)$. If $\sigma_{x}^{*} \omega$ orients L_{x} for every $x \in F$, then the smooth fibre bundle $F=(T, \rho, P, L)$ is orientable. In this case, an orientation for $F=(T, \rho, P, L)$ is an equivalence class of the r-form ω.

The bundle $F=(T, \rho, P, L)$ is oriented by ω. If we choose an element y in the fibre L_{x} and $x \in P$, then we have

$$
\left(\sigma_{x}^{*} \omega\right)(y) \neq 0
$$

Since the differential form ω in $B^{s}(T)$ induces the differential form $i_{X} \omega$ in $B^{r}\left(L_{x}\right)$, consequently, for $y \in T$, we have

$$
\left(i_{X} \omega\right)(y) \neq 0
$$

Therefore, X_{T} is oriented by $i_{X} \omega$.

It is obvious that for $y \in T$, the nonzero scalars j_{y} are unique. Since the bundle $F=(T, \rho, P, L)$ is oriented by η and ω, then for $x \in P, y \in L_{x}$ and the nonzero unique scalars j_{y}, we have

$$
\left(\sigma_{x}^{*} \omega\right)(y)=j_{y} \cdot\left(\sigma_{x}^{*} \eta\right)(y)
$$

The both conditions are equivalent to $j_{y}>0, y \in T$, since in this case we have

$$
\left(i_{T} \omega\right)(y)=j_{y} \cdot\left(i_{T} \omega\right)(y)
$$

Therefore, the orientations of $F=(T, \rho, P, L)$ by η and ω are identical if and only if the orientations of X_{T} by $i_{X} \eta$ and $i_{X} \omega$ are identical.

Lemma 1. If $F=(T, \rho, P, L)$ is a smooth fibre bundle, then the map $i_{X} \omega: F \rightarrow X_{T}$ is bijective.

Proof. Consider the smooth fibre bundle $F=(T, \rho, P, L)$ and an r-form ω on T. For every $x \in F$, the r form $\sigma_{x}^{*} \omega \in B^{r}\left(L_{x}\right)$ is induced by the r-form ω. Then, the smooth fibre bundle $F=(T, \rho, P, L)$ is orientable if $\sigma_{x}^{*} \omega$ orients L_{x} for every $x \in F$. It is obvious from Theorem 2 that the map from orientations of the smooth fibre bundle $F=(T, \rho, P, L)$ to orientations of X_{T} is one-to-one, that is, the correspondence $\omega \mapsto i_{T} \omega$ is injective. Let us consider an element $\Gamma \in \operatorname{Sec} \Lambda^{s} X_{T}^{*}$. Suppose that X_{T} is oriented by Γ. Let $B_{X}(T) \subset B(T)$ be the vertical subalgebra corresponding to a particular horizontal subbundle. Then, there is an isomorphism i_{T} which maps $B_{X}(T)$ onto $\operatorname{Sec} \wedge X_{T}^{*}$. Consequently, there exists a unique element in $B_{X}^{S}(T)$, say ω, such that

$$
i_{X} \omega=\Gamma
$$

Therefore, $F=(T, \rho, P, L)$ is oriented by ω. Thus, the map $i_{X} \omega: F \rightarrow X_{T}$ is bijective.

Theorem 3. Consider a connected base P and a smooth fibre bundle $F=(T, \rho, P, L)$ over P. Assume that $F=(T, \rho, P, L)$ is oriented by two elements $\eta, \omega \in B^{s}(T)$ and their induced maps are $\sigma_{c}^{*} \eta$ and $\sigma_{c}^{*} \omega$ for a fixed $c \in P$. Then, the orientations in $F=(T, \rho, P, L)$ represented by η and ω are identical if the orientations in L_{c} represented by $\sigma_{c}^{*} \eta$ and $\sigma_{c}^{*} \omega$ are identical.

Proof. Let us consider any component U of T. For U, L_{U} is the union of components of L. Then, there exists a smooth bundle $\left(U, \rho_{U}, P, L_{U}\right)$ if ρ is restricted to U. Let us choose two elements η and ω in $B^{s}(T)$ such that they orients $F=(T, \rho, P, L)$. Let L_{c} be the fibre at $c \in P$ and be a submanifold of T, then σ_{c} denote the inclusion given by

$$
\sigma_{c}: L_{c} \rightarrow T
$$

Also, the maps induced by η and ω are $\sigma_{c}^{*} \eta$ and $\sigma_{c}^{*} \omega$, respectively. Since the orientations in L_{c} by $\sigma_{c}^{*} \eta$ and $\sigma_{c}^{*} \omega$ are identical, so the orientations in $\left(L_{U}\right)_{c}$ by $\sigma_{c}^{*} \eta$ and $\sigma_{c}^{*} \omega$ are also identical. As a result, we can conclude that T is connected.

Again, let us consider T to be connected. For $\eta, \omega \in B^{s}(T)$, the vector bundle X_{T} is oriented by the induced maps $i_{X} \eta$ and $i_{X} \omega$. If we choose a map $h \in \mho(T)$ such that h has no zeros, then it follows immediately that

$$
i_{X} \eta=h \cdot i_{X} \omega
$$

Since T is connected, so we have either $h>0$ or $h<0$. In this case, we will show that $h>0$. For $y \in L_{x}$ and $x \in P$, we have

$$
\left(\sigma_{c}^{*} \omega\right)(y) \neq 0
$$

Since $i_{X} \omega$ is the map induced by ω, so, for $y \in T$, we have

$$
\left(i_{X} \omega\right)(y) \neq 0
$$

Since η and ω orient the bundle $F=(T, \rho, P, L)$, then for $x \in P, y \in L_{x}$ and the nonzero unique scalars j_{y}, we have

$$
\left(\sigma_{c}^{*} \omega\right)(y)=j_{y} \cdot\left(\sigma_{c}^{*} \eta\right)(y)
$$

Thus, $\left(i_{T} \omega\right)(y)=j_{y} \cdot\left(i_{T} \omega\right)(y)$. As a result, we have $j_{y}>0, y \in T$. Equivalently, there exists $j_{y}>0$ and $y \in$ L_{c} such that

$$
\left(\sigma_{c}^{*} \eta\right)(y)=j_{y} \cdot\left(\sigma_{c}^{*} \omega\right)(y)
$$

Therefore, $h(y)=j_{y}>0$, that is, $h>0$. Hence, we can conclude that the orientations of F represented by η and ω are identical if the orientations of L_{c} represented by $\sigma_{c}^{*} \eta$ and $\sigma_{c}^{*} \omega$ are identical.

Lemma 2. Let $g: T \rightarrow \widehat{T}$ be a fibre preserving map for the smooth fibre bundles $F=(T, \rho, P, L)$ and $\hat{F}=$ $(\hat{T}, \hat{\rho}, \hat{P}, \hat{L})$. Assume that if P is connected, then F and \hat{F} are oriented bundles. The bundle orientations are preserved by g if g_{z} is orientation preserving, where $z \in P$ and g_{z} is restricted to the following local diffeomorphisms

$$
g_{z}: L_{z} \rightarrow \hat{L}_{h(z)} .
$$

Proof. Consider the smooth fibre bundles $F=(T, \rho, P, L)$ and $\hat{F}=(\hat{T}, \hat{\rho}, \hat{P}, \hat{L})$. Let the map

$$
h: P \rightarrow \hat{P}
$$

be induced by a smooth fibre-preserving map $g: T \rightarrow \widehat{T}$. For $z \in P$, the map $g: T \rightarrow \widehat{T}$ is restricted to the following diffeomorphism

$$
g_{z}: L_{z} \rightarrow \hat{L}_{h(z)} .
$$

Here, g_{z} is local diffeomorphism. The map g preserves the bundle orientations if $F=(T, \rho, P, L)$ and $\hat{F}=$ $(\hat{T}, \hat{\rho}, \hat{P}, \hat{L})$ are oriented and g_{z} is orientation preserving.

Consider a differential form ω in $B^{s}(\hat{T})$. Let the orientation of \hat{P} be represented by ω. Then, $g^{*} \omega$ orients F if for each $z \in P$, we have

$$
\sigma_{z}^{*} g^{*} \omega=g_{z}^{*} \sigma_{h(z)}^{*} \omega
$$

Therefore, the bundle orientations are preserved by g if F is oriented by $g^{*} \omega$.

Equivalently, let g_{z} be orientation preserving. If the orientation of \hat{P} is presented by ω and the orientation of F is presented by η, then the orientations of L_{z} presented by $\sigma_{c}^{*} \eta$ and $\sigma_{c}^{*} g^{*} \omega$ are identical. Therefore, the orientation of F is presented by $g^{*} \omega$, that is, the bundle orientations are preserved by g if g_{z} is orientation preserving.

Theorem 4. Let T be a manifold. Assume that an r-form ω orients the smooth fibre bundle $F=(T, \rho, P, L)$, $d_{P} \in B^{r}(P)$ orients P and the manifold T is oriented by the $(r+s)$-form $d_{T}=\rho^{*} d_{P} \wedge \omega$. Then, d_{T} depends on ω and d_{P}.

Proof. Assume that P is connected. Consider the smooth fibre bundle $F=(T, \rho, P, L)$ such that the r-form ω orients F. Also assume that $d_{P} \in B^{r}(P)$ orients P and the manifold T is oriented by the $(r+s)$-form

$$
d_{T}=\rho^{*} d_{P} \wedge \omega
$$

Let us choose a fixed element $c \in P$ such that $d_{L}=\sigma_{c}^{*} \omega$. Then, L is oriented by d_{L}. Since P is connected, we have to consider the case $T=P \times L$. Then, the orientations of F presented by ω and $1 \times d_{L}$ are identical.

Assume that $F=(T, \rho, P, L)$ is a smooth fibre bundle and ω is a differential form in $B^{s}(T)$. Let $i_{X} \omega \in$ $\operatorname{Sec} \Lambda^{s} X_{T}^{*}$. Then, the vector bundle X_{T} is oriented by $i_{X} \omega$ if F is oriented by ω. Consider two differential forms η and ω in $B^{s}(T)$ and their induced forms $i_{X} \eta$ and $i_{X} \omega$ in $B^{r}\left(L_{x}\right)$. Then, the orientations of $F=(T, \rho, P, L)$ by η and ω are identical if and only if the orientations of X_{T} by $i_{X} \eta$ and $i_{X} \omega$ are identical.

Let $h \in \mho(P \times L)$ such that $h>0$. If the orientations of $F=(T, \rho, P, L)$ by η and ω are identical, then the orientations of X_{T} by $i_{X} \eta$ and $i_{X} \omega$ are also identical. Therefore, the orientations in X_{T} represented by $i_{X} \omega$ and $i_{X}\left(1 \times d_{L}\right)$ are identical. In this case, we have

$$
i_{X} \omega=h \cdot i_{X}\left(1 \times d_{L}\right) .
$$

If $a \in P, b \in L$, then we have

$$
\left(\sigma_{c}^{*} \omega\right)(a)=h(a, b) \cdot d_{L}(b)
$$

Consequently, it follows immediately that

$$
\rho^{*} d_{P} \wedge \omega=h \cdot \rho^{*} d_{P} \wedge \rho_{L}^{*} d_{L} .
$$

The orientation presented by the form $\rho^{*} d_{P} \wedge \rho_{L}^{*} \Delta_{L}$ orients $P \times L$. Since d_{P} and d_{L} represent the orientations of P and L, respectively, hence the orientation represented by $\rho^{*} d_{P} \wedge \rho_{L}^{*} \Delta_{L}$ depends on the orientations represented by d_{P} and d_{L}. Since the manifold T is oriented by the $(r+s)$-form $d_{T}=$ $\rho^{*} d_{P} \wedge \omega$ and $h>0$, so, d_{T} depends on ω and d_{P}.

References

[1] Becker, James C., and Daniel H. Gottlieb. "The transfer map and fiber bundles." Topology 14.1 (1975): 1-12.
[2] Brown, Lawrence. "Stable isomorphism of hereditary subalgebras of C*-algebras." Pacific Journal of Mathematics 71.2 (1977): 335-348.
[3] Hattori, Akio. "Spectral swquence in the de Rham cohomology of fibre bundles." Journal of the Faculty of Science, University of Tokyo. Sect. 1, Mathematics, astronomy, physics, chemistry (1960): 289-331.
[4] Hermann, Robert. "A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle." Proceedings of the American Mathematical Society 11.2 (1960): 236-242.
[5] Hicks, Noel J. Notes on differential geometry. Vol. 3. Princeton: van Nostrand, 1965.
[6] Kostant, Bertram. "Graded manifolds, graded Lie theory, and prequantization." Differential geometrical methods in mathematical physics. Springer, Berlin, Heidelberg, 1977. 177-306.
[7] Matsushima, Yozô, and Shingo Murakami. "On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds." Annals of Mathematics (1963): 365-416.
[8] Meyer, Mark, et al. "Discrete differential-geometry operators for triangulated 2manifolds." Visualization and mathematics III. Springer, Berlin, Heidelberg, 2003. 35-57.
[9] Narasimhan, Mudumbai S., and Conjeeveram S. Seshadri. "Stable and unitary vector bundles on a compact Riemann surface." Annals of Mathematics (1965): 540-567.
[10] Okonek, Christian, et al. Vector bundles on complex projective spaces. Vol. 3. Boston: Birkhäuser, 1980.
[11] Struik, Dirk Jan. Lectures on classical differential geometry. Courier Corporation, 1961.
[12] Wang, Hsien-Chung. "Closed manifolds with homogeneous complex structure." American Journal of Mathematics 76.1 (1954): 1-32.

