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Abstract 

The prevalence of Hepatitis B Virus (HBV) and Human 

immunodeficiency virus (HIV) co-infection have been on the 

increase. Moreover, none of these two diseases has a cure for 

now while both diseases are very deadly. However, the mode of 

transmission of these diseases are closely related and this highly 

predisposes individuals to co-infection. There is, therefore, the 

need to initiate effective control measures that would forestall the 

co-epidemic of the two diseases in our society, considering the 

grave implications of such situation. Consequently, a 

deterministic model for HIV and HBV co-epidemic which 

unveils measures that should be implemented to avoid the 

menace associated with the co-epidemic is considered. The model 

is qualitatively analyzed and the model basic reproduction 

number is derived. The criteria for the stability of each of the 

model equilibria are established. The model is numerically solved 

and simulated for the different scenarios of the co-epidemic. The 

findings from the simulations are discussed. 

Keywords: Hepatitis B Virus, Human immunodeficiency virus, Co-

epidemic, Disease prevalence, Equilibrium solution, Stability 

analysis 

1 INTRODUCTION 

Human immunodeficiency virus (HIV) and Hepatitis B Virus (HBV) 

disease co-infection is common globally due to similar mode of 
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transmission [6, 3]. It is estimated by the Joint United Nations 

Program on HIV/HBV that 10% of 33 million HIV-infected patients 

are concurrent infected with chronic HBV [11]. Aside, there are more 

than 350 million people currently infected with HBV while 75% of 

these carriers reside in Asia [4, 18]. In Nigeria, the prevalence of 

HIV/HBV co-infection ranges between 10% − 70% of the population 

in each of the geopolitical zones. The variation across these zones is 

about the widest observed in any country in the world [16]. Co-

infection of HBV and HIV occur when individuals who are HIV 

positive are concurrently infected with HBV. Getting infected with 

HBV is not automatic for HIV infected individuals unless they have 

sufficient contact (devoid of precautionary measures) with infectious 

HBV individuals. Similarly, individuals infected with HBV do not get 

infected with HIV unless they are sufficiently exposed to the (HIV) 

virus without effective protection. 

It is worthy to note that HIV infection modifies the course of HBV 

infection by increasing rates of chronicity, prolonging HBV viremia, 

and increasing liver diseases associated deaths. This calls for concern 

because, apart from increasing the toxicity to antiretroviral 

medications, patients with HIV/HBV co-infection have increased 

levels of HBV replication, decreased rates of spontaneous resolution 

of the HBV infection, and more risk of reactivation of previous 

infections. Thus, individuals with co-infection of both diseases have 

higher tendency of developing cirrhosis of the liver. Although, HBV 

and HIV possess similar features like transmission using a reverse 

transcriptase enzyme during replication, likelihood to develop chronic 

infections, and high probability of mutation in their genome 

occasionally resulting into resistance to widely used anti-viral agents 

[16]. The medical profile of an acute HBV infected patient may 

change in the presence of HIV infection with the exhibition of fewer 

cases of icteric illness and reduced spontaneous clearance of HBV [8]. 
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Moreover, individuals that are infected with both HIV and chronic 

HBV have higher levels of HBV DNA and reduced rates of clearance 

of the hepatitis B e-antigen (HBeAg). According to some medical 

professionals, serum transaminase levels may be lower in HIV/HBV 

co-infected patients when compared to patients infected with only 

HBV, but normal transaminase levels should not be taking as an 

indication that there is no underlying hepatic fibrosis [13]. In recent 

times, diseases associated with liver infection are the top killer 

diseases, with the exception of HIV/AIDS, particularly in parts of the 

world with wide coverage for the antiretroviral therapy (ART) 

administration. Worse still, some cohort studies also show that the risk 

of liver-associated disease induced deaths is 2-3 times higher in 

HIV/HBV co-infected patients than in patients infected with only HIV 

disease (14% vs 6%) [13]. Equally, HIV/HBV co-infection could 

result into more frequent flares of hepatic transaminase which may 

trigger immune reconstitution inflammatory syndrome (IRIS) due to 

ART, interruption of HIV/HBV treatment, or the development of 

resistance to HIV/HBV therapy . 

In the field of epidemiology, mathematical modeling has provided 

valuable insights into the spread of infectious diseases among humans 

while it has also helped inform health policies which could be 

implemented to address serious epidemiological issues. Thus, there 

have been series of modelling research works on infectious diseases. 

Some of these works provide general framework for modelling 

infectious diseases which exhibits some features without focusing on a 

particular disease (see [10, 22, 21]). On the other hand, there are other 

research works that are centered on the dynamics of a particular 

disease and how it can be successfully controlled and possibly 

eradicated. For instance, Yusuf et al, Waziri et al, and Nsuami 

considered models for the spread, treatment, and control of HIV/AIDS 

[15, 19, 20]. Similarly, Hsin-Yun et al, Ijalana et al, Medley et al, and 

Zhang et al worked on models for the spread and control of HBV [6, 

7, 14, 22]. However, there are quite a few works on modelling co-

infection of two infectious diseases (See [1, 2, 3, 5, 17]). Research 
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works on co-infection are important because such works are central in 

discerning the interrelationship between these diseases. Equally, such 

studies help in determining how prevention and treatment efforts can 

be most effective in such circumstance. In this research work, a model 

for HIV/HBV co-epidemics will be considered. This is justifiable 

because only few works has been done in the area while the issues 

poses a serious threat in places where the prevalence of both diseases 

is very high. 

This paper is structured as follows: In section 2, an epidemiological 

model for HIV and HBV co-epidemic is proposed. The model will be 

shown to be epidemiologically well-posed while the basic 

reproduction number (R0) for the model will be presented. In section 

3, the equilibrium solutions of the model and its different sub-models 

will be determined. In addition, the criteria for the local and global 

stability of each of these equilibria will be established. In section 4, 

the sensitivity analysis of R0 with respect to each of the model 

parameters are carried out and the model will be solved numerically. 

The numerical results are simulated for different scenarios of the co-

epidemics while finding from the simulations are discussed. In the last 

section, the conclusions from the study are given. 

2 PROPOSED MATHEMATICAL MODEL 

A mathematical model which divides the human population into four 

mutually exclusive compartments is considered. The compartments 

are the Susceptible class S(t), the HBV only infected class IB(t), HIV 

only infected class IH(t), and the HIV/HBV co-infected class IC(t). The 

schematic diagram for the disease transmission dynamics is presented 

in Figure 2.1 while the model representing the dynamics of HIV/HBV 

co-epidemics is given as a system of nonlinear ordinary differential 

equations afterwards: 
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Figure 2.1: Diagrammatic Representation of the Model Dynamics 

Basic Model Assumptions 

Taking a cue from Kalu et al [9] and Long et al [5], we constructed 

our proposed model using the assumptions below: 

• Individuals in the population of interest are classified into 

different compartments based on their infection status with 

respect to each of the two diseases. 

• The compartments in the model are mutually exclusive while the 

population dynamics of each of the compartment is purely 

deterministic. 

• Individuals in the different compartments mix freely, without 

segregation, irrespective of individual’s infection status. 

• The natural death rate for individuals in the various compartments 

is the same, since there is no immunity to death whether one is 

sick or healthy. 
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• No individual gets infected with both diseases at once, rather they 

get infected with one of the two diseases first while they contact 

the second afterwards. 

• The model parameters are all non-negative and each take same 

numerical value for individuals infected with either or both 

diseases. 

• New recruits (i.e. new entries) into the population are all 

susceptible and they come into the population at a constant rate Π 

• The transmission of diseases among individuals in the different 

compartments occur through random mixing of the individuals. 

Sequel to the above listed assumptions, the proposed model 

subdivides the total population at time t denoted as N(t) into four 

epidemiological classes representing the susceptible S(t), HBV 

infected IB(t), HIV infected IH(t) and the co-infected IC(t). Thus, 

N(t) = S(t) + IB(t) + IH(t) + IC(t) 

Individuals enter the susceptible population either by birth or 

immigration at the constant rate Π. The susceptible populationclass 

decreases due to infection of susceptibles by the HBV or HIV infected 

individuals at constant rates of γ and τ respectively. The susceptible 

class population is further reduced due to natural death at a constant 

rate µ. Thus, 

  (2.1) 

With sufficient contact of susceptible individual with either HBV 

infected or HIV/HBV co-infected individuals, the susceptible 

individual becomes a member of the HBV (IB) class at a constant rate 

of γ. Individuals in HBV class could progress to the co-infected class 

IC if he/she have a sufficient contact with either HIV individual or co-

infected individual at the rate of τ. HBV infected population is 

reduced by death due to disease or by natural death rate denoted as µB 

or µ. Hence, 

  (2.2) 
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Similarly, susceptible individuals who had sufficient contact with 

either HIV or HIV/HBV co-infected individuals become a member of 

HIV class (IH) at constant rate of τ. Individuals in HIV class could 

become HIV/HBV co-infected if they are exposed ( without adequate 

protection) to HBV infection through contact with either HBV-

infected individuals or HIV/HBV co-infected individuals at the rate of 

γ. HIV-infected class population is reduced by HIV disease death at 

constant rate µH or by natural death at constant rate denoted as µ. 

Thus, 

  (2.3) 

The population of the HIV/HBV co-infected class increased due as a 

result of individuals who have been co-infected from HBV 

compartment at constant rate τ and those that has been co-infected 

from HIV compartment at constant rate of γ while individuals in this 

compartment die either due to natural death at the rate µ, HBV 

induced death at the µB or HIV induced death at rate µH. Hence, 

  (2.4) 

Thus, the model for the dynamics of the HIV/HBV co-epidemics is as 

presented below: 

  (2.5) 

 

In addition, the total population is given by: 

N(t) = S(t) + IB(t) + IH(t) + IC(t) 

Therefore, the rate of change of the total population N(t) is obtained as 

below: 
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  (2.6) 

 

It is imperative to note that lim . However, there is the need 

to show that the region Θ defined by 

  (2.7) 

is positively invariant. 

For the model to be biological meaningful, it is important to ensure 

that the system of equations (2.5) are epidemiologically well posed. In 

order to show this, it suffices to prove that the system is positive 

invariant. This implies that the model predicts a positive value for 

each of the compartment at any time t ≥ 0 and this can be established 

using the following Lemma. 

Lemma 1 The region Θ is an attractor and it attracts all solutions 

starting in the interior of the positive orthant  

Proof 

Given that each of the model state variables and parameters are non-

negative, it follows from equation (2.6) that 

(2.8) 

 

 

(2.9) 

On integration of equation (2.9) and necessary simplification, we have 

                                 (2.10) 

Using the initial condition that at t = 0, N(0) = N0  gives: 

  (2.11) 
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Therefore as t → ∞, the human population N approaches ; where 

the parameter  is called the carrying capacity. Hence, all feasible 

solutions of the human population of the model equation (2.5) enter 

the region:  

Θ = {(S,IB,IH,IC) ∈< R4 :S >  

 Thus, the trajectoriesstarting Θ remains in Θ all through time. 
Consequently, Θ is positive invariant and the proposed model is 
mathematically and epidemiologically well posed.  

 

2.1 HBV Sub-model 

In the absence of HIV (i.e. IH = 0, IC= 0 ), the model reduces to the 

HBV sub-model given by: 

,S
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S
I

dt
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+

−=     (2.12) 
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However, the basic reproduction number R0 was derived using the next 

generation matrix approach as 

  (2.14) 

2.2 HIV Sub-model 

Similarly, in the absence of HBV where IB = 0 and IC = 0, the model 

reduces to the HIV sub-model given by: 
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Using same approach as done for the HBV sub-model, the basic 

reproduction number to the model was obtained as: 

   (2.17) 

Therefore, RB and RH in equations (2.14 & 2.17) are important 

threshold quantities required to determine whether the situation under 

consideration is an endemic one or not. The basic reproduction 

number R0 for system (2.5) equals the maximum of RB and RH That is, 

 

So, the co-epidemic will persist in the society if this threshold quantity 

is greater than unity 

3 QUALITATIVE ANALYSIS 

In this section, a qualitative analysis of the modelled system will be 

carried out in order to discern the long term behaviour of the system. 

In achieving this, the dynamics of HBV sub-model and HIV sub-

model will be thoroughly studied to provide insight towards 

understanding the full co-epidemic model dynamics 

 

3.1 Disease-free equilibrium 

The disease free equilibrium is a situation where there is no individual 

that is infected with either or both diseases in society. Mathematically, 

this is determined by setting the derivatives in the model equations to 

zeros and solving simultaneously for the dependent variables. Thus, 

the disease-free equilibria are  for the HBV Sub-model, 

for the HIV Sub-model, and  for the full model 

respectively. 

Consideration of stability for disease free equilibrium provides certain 

conditions under which HIV or HBV will die out or persist in the 

population. 
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3.1.1 Local Stability of Disease Equilibria 

Theorem 1 The disease free equilibrium E0B for the HBV sub-model is 

locally asymptotically stable if  RB <1; otherwise it is unstable. 

Proof 

For the HBV sub-model, The Jacobian matrix of the system of 

equations (2.12–2.13) is given by: 

 

Evaluating matrix JB at disease free equilibrium gives: 

  (3.1) 

Matrix J(0B) has the following eigenvalues of  

λ1 = −µ λ2 = (RB − 1)(µ + µ1) (3.2) 

Since the all the eigenvalues of the Jacobian matrix evaluated at E0B 

have negative real parts whenever RB <1, then E0B is locally 

asymptotically stable. Therefore, the disease free equilibrium E0B for 

the HBV sub-model is locally asymptotically stable if RB <1 while it 

is unstable otherwise.  

Theorem 2 The disease free equilibrium E0H for the HBV sub-model is 

locally asymptotically stable if RH <1; otherwise it is unstable. 

Similarly, the Jacobian matrix for the HIV sub-model in equations 

(2.12–2.13) is: 

 

Evaluating matrix JH at disease free equilibrium gives: 

  (3.3) 

The matrix JH has eigenvalues as 
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λ2 = −µ λ3 = (RH − 1)(µ + µ2) (3.4) 

Equally, all the eigenvalues of the Jacobian matrix evaluated at E0H 

have negative real parts whenever RH <1, then E0H is locally 

asymptotically stable. Therefore, the disease free equilibrium E0H for 

the HBV sub-model is locally asymptotically stable if RB <1; 

otherwise it is unstable.  

Theorem 3 The disease free equilibrium E0 for the full HIV/HBV co-

epidemic model is locally asymptotically stable if R0 <1; otherwise it 

is unstable. 

The Jacobian matrix J for the HIV/HBV co-epidemic model in (2.5) 

takes the form: 

 

Where ρ = S + IB + IH + IC 

Evaluating the stability of disease free equilibrium at

= 0 andwriting in term of the basic reproduction 

number R0 

 

 

 

(3.5) 
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The eigenvalues of J0 are obtained as follows: 

 

      (3.6) 

 

Note that the first two eigenvalues are negative while the remaining 

other two eigenvalues require that R0 <1 in order to be strictly 

negative. Hence, the disease free equilibrium E0 is locally 

asymptomatically stable if the basic reproduction number is less than 

unity(R0<1); otherwise it is unstable.  

 

3.1.2 Global Stability of Disease Equilibria 

The global stability for the disease free equilibria will be established 

using Lyapunov function approach on the sub-models equations 

(2.12–2.13) and (2.15–2.16). 

Theorem 4 The disease free equilibria  and  are 

respectively globally asymptotically stable, whenever RB <1 and RH 

<1. 

Applying Lyapunov function below on the HBV sub-model equations 

(2.15–2.16): 

    V (S,IB) = δIB ,δ >0  (3.7) 

Differentiating V (S,IB) with respect to time V yields V˙ = δIB, while 

substituting the model equation into (3.7) and solving gives: 

 

; taking , we have: 

     V    ≤ δ [γ − (µ + µB)]IB  (3.8) 

            ≤ δ[(RB − 1)(µ + µB)]IB, choosing   

        ≤ (RB−1)IB  
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0 V  .  

   

Similarly, applying lyapunov function on HIV sub-model equation 

(2.15–2.16) 

V (S,IH) = δIH ,δ >0  (3.9) 

Differentiating V(S, IH) with respect to time yields V = δ
HI  substituting 

the model equations into (3.10) and solving gives: 

 

; taking  we have: 

   V     ≤ δ [τ − (µ + µH)]IH  (3.10) 

     ≤ δ[(RH − 1)(µ + µH)]IH, choosing   

 ≤ (RH − 1)IH 

∴        V  ≤ 0 

It is important to know that, V = 0 provided IB = 0 and IH = 0 in 

equation (3.8 and3.10). Therefore, the global stability of E0 whenever 

RB <1 and RH <1 follows from LaSalles invariance principle [12].  

   

Theorem 5 The disease free equilibrium whenever R0 

<1.is globally asymptotically stable,  

Proof 

Let us consider a Lyapunov function of the form. 

V (S,IB,IH,IC) = α1IB + α2IH + IC 

Differentiating V (S,IB,IH,IC) with respect to time gives: 

(3.11) 

V˙ (S, IB, IH, IC) = α1I˙B + α2I˙H + I˙C (3.12) 

Substituting for I˙
B, I˙

H, and I˙
C in equation (3.12) yields 
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At the disease free equilibrium with , 

and ; equation (3.13) can be simplified as below : 

  (3.14) 

Taking , we have 

  (3.15) 

It is important to note that V˙ (S, IB, IH, IC) = 0 only at the disease-free 

equilibrium E0, otherwise it is negative. Therefore, it follows from 

Lasalle’s invariance principle that all solutions of the model equations 

converges to the E0 as t → ∞ whenever R0 <1. Hence, E0 is globally 

asymptotically stable whenever R0 <1  

3.2 Endemic Equilibrium Solution 

The endemic equilibrium is the steady state in which the disease 

compartments have positive values. This indicates a situation where 

HIV, HBV and HIV/HBV co-infection is always present in the 

society. The endemic equilibria were obtained based on each of the 

sub-models (HBV-Model, HIV- Model and Co-infection model) 

which implies that IB ≥ 0, IH ≥ 0, IC ≥ 0, S>0 

. 
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Thus, the endemic equilibrium solution for the HBV-sub model (2.12–

2.13) is: 

      (3.16) 

Also, the endemic equilibrium solution for the HIV-sub model (2.15–

2.16) is: 

      (3.17) 

However, the endemic equilibrium solution for the full co-infected 

model (2.1–2.4) is computationally laborious to obtain, hence µB,µH 

are set to zeros to obtain a close estimate to the equilibrium: 

 

3.2.1 Local Stability of the Endemic Equilibria: 

Theorem 6 The endemic equilibrium EB
∗for the HBV sub-model is 

locally asymptotically stable if RB >1 while the endemic equilibrium 

EH
∗for the HIV sub-model is locally asymptotically stable if RH >1. 

Proof. 

(i) The HBV sub-model is linearized using Jacobian Matrix 

approach and the resulting matrix is evaluated at the endemic 

equilibrium ( ) to obtain : 
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Based on Routh-Hurwitz criteria for a 2 × 2 matrix, the endemic 

equilibrium is locally asymptotically stable, if the matrix Trace is 

negative and its Determinant is positive. So, the Trace and 

Determinant of matrix JB is given as: 

Trace (JB) = −γ+ µB = − (RB − 1) − µ 

(3.20) 

 

From the foregoing, the endemic equilibrium  is locally 

asymptotically stable if RB >1 provided γ > µB. 

 

(ii) Similarly, the Jacobian Matrix of HIV sub-model was obtained 

and evaluated at the endemic equilibrium (EH
∗) as given below : 

 

Trace (JH) = −τ + µH = −(RH − 1) − µ 

(3.22) 
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Just as in the HBV sub-model, the endemic equilibrium  for the 

HIV-sub-model is locally asymptotically stable if RH >1, provided τ > 

µH.  

3.2.2 Global stability of the Endemic Equilibria 

Theorem 7 If RB >1, then there exist an endemic equilibrium EB
∗(in 

addition to the disease free equilibrium) and it is globally 

asymptotically stable. 

Proof: 

Given that RB > 1, then the existence of the equilibrium is guaranteed 

considering a Lyapunov function. 

0 (3.23) 

Differentiating V (S,IB) with respect to time gives: 

  (3.24) 

Substituting  and  with N ≈ N∗in the 

preceding equation yields: 

 
≤ 0 ω1,ω2∈<R+ choosing such that  whileS ≥ S ∗,IB ≤ IB

∗ 

(3.25) 

Thus, V˙ (S, IH) ≤ 0 while it only vanishes at the endemic equilibrium 

EB
∗. Based on Lasalle’s invariance principle, all the model solutions 
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approaches   whenever RB >1. Hence,  exists and it is 

globally asymptotically stable in Θ whenever RB >1. 

 

It is imperative to mention here that the proof for the global stability 

of the endemic equilibrium EH
∗ follows the same approach with 

substitution of IH for IB and RH > 1 for RB > 1. 

 

4 NUMERICAL RESULTS AND DISCUSSION 

In this section, sensitivity analysis of the basic reproduction number 

with respect to each of the model parameters will be carried out and 

the model will be solved numerically using Runge-Kutta Fourth Order 

Scheme. The numerical results will be simulated using computer 

programs that will be executed with MATLAB mathematical 

software. 

4.1 Model Variables Initial Conditions and Parameter Values 

Considering the Nigerian Demographic Population Data, the country 

estimated population for the year 2016 is 186 million (United Nations, 

2016). In addition, Nigeria has the second largest HIV epidemic in the 

world with a total estimate of 3.4 million people living with HIV. 

Furthermore, Nigeria has one of the highest prevalence of Hepatitis B 

infection in the world with a national prevalence of 10% while 0.3% 

of the population are co-infected with HIV and HBV. Based on these 

information, the model variables initial conditions is taking as

, 

, and . 

 

Also, the model parametervalues are as given in the table below: 
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Table 4.1: The model parameter description and their corresponding 

values 

Parameter Definition Value Reference 

Π Recruitment rate into S 0.22 × N [5] 

µ Natural death rate 0.012 

yr−1 

[3, 20] 

µB HBV induced death rate 0.11 yr−1 Estimated and [3] 

µH HIV induced death rate 0.09 yr−1 Estimated and 

[20] 

γ Transmission rate of 

HBV 

0.125 Estimated 

τ Transmission rate of 

HIV 

0.041 Estimated 

 

4.2 Sensitivity Indices of R0 

The sensitivity of R0 with respect to each of the model parameters are 

obtained as follows: 

 

 

 

  (4.1) 

 

 

 

Based on the parameter values stated in Table 4.1, the sensitivity 

indices of R0 with respect to each of the parameters are displayed in 

the table below: 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.2, 2020 

 

68 

Table 4.2: Sensitivity analysis for basic reproduction number 

 

Sensitive 

Index 

Value 

Γγ 1 

Γµ -0.0983 

ΓµB -0.9016 

Γτ 1 

Γµ -0.117 

ΓµH -0.8823 

 

The sign in front of each of the values in Tables 4.2 shows what will 

happen to R0 if the parameter is increased or decreased. R0 increases 

when sensitivity indices with positive signs increase, while R0 

decreases when sensitivity indices with negative signs increase and 

vice versa. The most sensitive parameters to RB and RH are found to be 

τ and γ respectively. Sensitivity indices τ =1 and γ =1 mean that RB or 

RH approximately decreases by 1% when either τ or γ is decreased by 

1%. This implies that any control measure that can be put in place to 

reduce γ - HBV transmission rate and τ - HIV transmission rate would 

be effective in controlling the spread of HBV and HIV respectively. 

Moreover, RB and RH is also remarkably sensitive to µB - HBV-

induced death rate and µH - HIV-induced death rate. The indices show 

that asthese disease death rates increase, RB and RH decrease, thus 

implying reduction in the spread of the two diseases. However, the 

natural death rate (µ) is the least sensitive to the basic reproduction 

numbers, though it affects them adversely. 
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4.3 Numerical Simulations and Discussion 

Using the set initial conditions and parameter values in Table 4.1, the 

model system of equations is solved numerically with graphical 

results presented as follows: 

 

Figure 4.1: Population Profile for S(t), IB(t), IH(t) , and IC(t) when R0 

>1 with  τ = 3.50, γ = 1.60, µ = 0.012, µB = 0.011, µH = 0.090 

. 

Figure 4.1 shows the population dynamics of each of the model 

compartments over time. The population profile of the susceptible 

class S(t) which has the largest population of the four compartments at 

initial time with a total population of 163.68 million individuals falls 

drastically to a level below 20 million within two years while the 

population in the co-infected class IC(t) rises logistically to as high as 

180 million in about half a decade. However, the IB(t) and IH(t) rise 

slowly to different peaks, after which they both started falling and 

stabilizes at different population levels with the final population 

levelof the IH(t) class remarkably higher than that of IB(t) class. It is 

important to note that the scenario depicted in Figure 4.1 is what 

would have happened if no control measures have been put in place to 

curtail the alarming spread of each of the two diseases and their co-

infection. 
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Figure 4.2: Population Profile when R0 <1 with τ = 0.084, γ = 0.015, µ 

=0.012, µB = 0.011, µH = 0.090 

. 

On the contrary, Figure 4.2 depicts a scenario where there are 

effective control measures to forestall the spread of each of the 

diseases and the co-infection by both diseases. This is actually the 

case when R0 is less than unity. As can be seen, Figure 4.2 shows that 

the population in the susceptible class S(t) continues to increase over 

time while the population in each of the infected classes IB(t), IH(t), 

and IC(t) continue to fall. Thus, it can be inferred that any control 

measures that can effectively reduce R0 below unity would be useful 

in curtailing the spread of each of the diseases and their co-infection. 

 

Figure 4.3: Population profile of HBV when RB = 1.8525 >1 and    

RB = 0.0459 <1. 
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Figure 4.4: Population profile of HIV when RH = 2.451 ≥ 1 and         

RH = 0.1863 ≤ 1. 

In Figure 4.3, the model population dynamics was considered in the 

absence of HIV disease for cases with RB < 1 and RB > 1. It was 

observed that the population of HBV infected class continues to fall in 

the case with RB < 1 while it continues to rise in the case with RB > 1. 

Similarly, the model dynamics was considered in the absence of HBV 

disease for cases with RH < 1 and RH > 1. Just as in the case without 

HIV, the population of the HIV infected class continues to increase 

when RH > 1 while it continues to fall when RH < 1. Obviously, these 

results behaved as expected and it is an indication that the model 

predictions would be reasonable. 

 

Figure 4.5: Population Profile of co-infected for four different 

scenarios of basic reproduction number 

. 
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In Figure 4.5, the population profile of the co-infected compartment 

with respect to four different scenarios were considered. These 

scenarios are : ( RH <1, RB <1), (RH >1, RB <1), (RH <1, RB >1), and ( 

RH > 1, RB > 1). Here, the co-infected population decreases over time 

until it reaches a level where it stabilizes when both basic 

reproduction numbers were less than unity (i.e. RH < 1 and RB < 1). 

However, there was gradual increase in the co-infected population 

when (RH > 1, RB < 1) and when (RH < 1, RB> 1) from the first year to 

the fourth year but this increase is not substantial when compared to 

the scenario where (RH > 1, RB > 1) which shows a drastic increase 

from the second year to the third year. Nevertheless, there was a slight 

decrease in the population from the fifth year until it reaches a level 

where it stabilizes over time. 

 

Figure 4.6: Population Profile of co-infected for different values of γ 

. 

Figure 4.6 shows the population profile of the co-infected 

compartment for different values of HBV transmission rate (γ). Four 

different scenarios were considered with increasing HBV transmission 

rates (γ) whose values were 0.0015, 0.5, 1 and 2 respectively. It was 

observed that when γ = 2, there was a rapid growth in the population 

of co-infected individuals from 0.1 million to about 2 million up to the 

third year. Thereafter, there was a gradual decrease in the population 

which could be due to disease induced deaths which could outnumber 

the HIV/HBV co-infection incidence at such instance since the co-

infected individuals are the likely majority. Equally, when γ = 1, the 
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co-infected individuals population rises steadily from 0.1 million to 

1.67 million from the first year to the sixth year. Thereafter, there was 

a decline in the population of co-infected individuals as time 

progresses as a result of death either by HIV or HBV infections. Also, 

it was observed that when γ = 0.5, there was a slow increase in the co-

infected class population which takes a longer time to reach its peak 

as compared to when γ = 2 or 1. 

The foregoing notwithstanding, the scenario with γ = 0.0015 results in 

a decrease in the co-infected individuals population to a steady 

minimal level. This could be due to effective control measures put in 

place to forestall the spread of HBV disease. Some of the measures 

could be routine HBV vaccination with adequate coverage, early 

detection of the disease and its immediate treatment, awareness and 

educational enlightenment of susceptibles to avoid getting infected, 

etc. 

 

Figure 4.7: Population Profile of co-infected for different values of τ 

. 

Figure 4.7 shows the population profile of the co-infected 

compartment when the transmission rate of HIV (τ) is assigned each 

of the four different values τ = 5, τ = 3, τ = 1, and τ = 0.085 

respectively. 

In this Figure, it was observed that, when the value of τ = 5, there was 

a rapid growth in the population of co-infected individuals from 0.7 

million to about 14 million within the first year (indicating a scenario 
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of high HIV incidence in the population). Thereafter, there was a 

gradual decrease in the population due to HIV disease-induced deaths. 

Moreover, a similar trend as that for τ = 5 was observed when τ = 3 

and τ = 1, though the peaks attained in the latter cases were lesser 

while it took a relatively longer time to get there. However, the co-

infected population decline steady over time from the first year when τ 

= 0.085. This situation could happen if effective control measures can 

be put in place to ensure that infected individuals do not infect any 

one before their eventual death. 

. 

5 CONCLUSION 

In this paper, a simplified mathematical model consisting of four non-

linear ordinary differential equations on HIV and HBV co-epidemic 

was considered. The model basic reproduction number R0 was derived 

and it was used to establish the criteria for the stability of the model 

equilibria. It was shown that each of the three disease-free equilibrium 

E0B,E0H,E0 for the respective HBV-sub model, HIV-sub model and the 

full model are locally asymptotically stable when R0 < 1 (i.e. RB < 1, 

RH < 1). Also, the global stability analysis of HIV-sub model and 

HBV-sub model was accomplished using appropriate Lyapunov 

functions. In addition, a sensitivity analysis of R0 with respect to each 

of the model parameters were carried out; it was found that R0 was 

most sensitive to τ and γ. This implies that each of these two 

parameters should be correctly estimated in order for the model 

predictions to be reliable. This also indicates that control measures 

that reduce each of these parameters would be useful in mitigating the 

spread of the two diseases. Nevertheless, the proposed model was 

solved numerically using Runge-Kunta method of order four which 

was executed with MATLAB R2016a. Simulations of our numerical 

result corroborates the findings from our mathematical analyses. The 

simulations show that the co-epidemic could only be eradicated, if 

control measures that can drive the basic reproduction number below 

unity are put in place, otherwise the HIV/HBV co-epidemic would 

persists in such society. Thus, it is recommended that in any society 

where either HBV or HIV disease is endemic, proactive and effective 
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control measures should be taken to forestall the spread of the other 

disease because inability to do this could lead to an alarming co-

epidemic of both diseases. This could be accomplished by initiating 

programs that would facilitate timely detection of infected individuals 

while identified infected patients should be regularly counseled and 

placed on immediate treatment. 
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