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Abstract 

In the present paper, we construct the analytical solutions of some Space-Time nonlinear fractional order systems 

involving Jumarie's modified Riemann-Liouville derivative in mathematical physics : such that Space-Time 

fractional Whitham-Broer-Kaup equations, Space-Time fractional Breaking Soliton equations, Space-Time 

fractional Coupled Boussinesq- Burgers equations and Space-Time fractional Coupled Burgers Equations by 

using The fractional sub-equation method . this method  is very powerful mathematical technique for finding 

exact solutions of nonlinear ordinary differential equations. 
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1 Introduction : 

Fractional differential equations are generalizations of classical differential equations of integer order.  In recent 

years, nonlinear fractional differential equations (FDEs) have been attracted great interest. It is caused by both 

the development of the theory of fractional calculus itself and by the applications of such constructions in various 

sciences such as physics, engineering, and biology [1–7]. For better understanding the mechanisms of the 

complicated nonlinear physical phenomena as well as applying them in practical life, the solution of fractional 

differential equation is much involved   [8–15]. 

Recently, Zhang and Zhang [16] introduced a new method called fractional sub-equation method to look for 

traveling wave solutions of nonlinear FDEs. The method is based on the homogeneous balance principle [17] and 

Jumarie’s modified Riemann-Liouville derivative [18-19]. By using fractional sub-equation method, Zhang et al. 

successfully obtained traveling wave solutions of nonlinear time fractional biological population model and (4 + 

1) dimensional space-time fractional Fokas equation. More recently, Guo et al. [20] and Lu [21] improved Zhang 

et al.’s work [16] and obtained exact solutions of some nonlinear FDEs. 

In the present paper, the fractional sub-equation method will be employed  on some systems involving Jumaries 

modified Riemann-Liouville derivative to find the exact solution for some Space-Time nonlinear fractional 
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systems, such that Space-Time fractional Whitham-Broer-Kaup equations, Space-Time fractional Breaking 

Soliton equations, Space-Time fractional Coupled Boussinesq- Burgers equations and Space-Time fractional 

Coupled Burgers Equations .The fractional sub-equation method is very powerful mathematical technique for 

finding exact solutions of nonlinear ordinary differential equations. 

The rest of this paper is organized as follows. In Section 2, we will describe the  Modified Riemann-Liouville 

derivative and give the main steps of method here.  In Section 3, we give four applications of the proposed 

method . In Section 4, some conclusion are given. 

2 Descriptions the Modified Riemann-Liouville Derivative and the Proposed   Method. 

  

The Jumarie's Modified Riemann-Liouville Derivative of order  is defined by the  expression [18]: 

........................                  .(1) 

 

Some properties of the proposed Modified Riemann-Liouville Derivative are listed in [18] as follows: 

 

a) …………………………………..………      .              (2) 

b) (f(x)g(x))= g(x))+ (f(x))………………………………               (3) 

c) ……………..          ...          (4) 

d) , where M is any constant. 

These equations play an important role in calculus. 

We present the main steps of the generalizing fractional sub-equation method as: 

Step 1: Give nonlinear FDEs with independent variables X= ( , , ,…., , t) and dependent variable u : 

                    (5) 

Where  and are modified fractional Riemann-liouville derivative of u with 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.2, 2020 

 

24 

respect to t , , , ,…,  respectively and u=( , , ,…, ,t) is unknown  function , P is polynomial in u 

and its various partial derivative , in which the highest order derivatives and nonlinear terms are involved. 

Step 2: By using the traveling wave transformation:   

u( , , ….., ,t)=U( )  , ξ= + + +……+ +ct………..                           (6) 

Where c, , , …, , are constants to be determined later, the FDE (5) is reduced to the nonlinear fractional 

ordinary differential equation (FODE)for U= U( )  

                   (7) 

Step 3: Suppose the reduced equation obtained in Step 2 has a solution in the form  

U( )= ………………………………………………………………                          (8) 

Where   are  constants to be determined later, n is a positive integer  

Determined  by balancing the highest order derivative and nonlinear terms in Eq. (5) or 

 Eq.(7)and  satisfies the following fractional Riccati equation: 

, where σ is a constant…………………………    …                      (9) 

The following solutions of fractional Riccati equation (9): 

 

= ……………………………………    ………                 (10) 

Where the generalized hyperbolic and   trigonometric functions are defined by the Mittage-Leffler 

function : 

 ,       ,  , 
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,           

            ,            ,  

Remark: 

We define the degree of u(  ) as D[u(  )] = n, which gives rise to the degrees of other expressions, as 

follows: 

=n+q, =np +r (q+ n) . 

So, the value of n can be obtained for the equation (5 or7). 

Step 4: Substituting Eq.(8) along with Eq.(9) into Eq.(7), we can get a polynomial  

in ,setting all the coefficients of of overdetermined nonlinear 

algebraic equations for c,  and  . 

Step 5: Assuming that the constants c, k,   can be obtained by  

solving the algebraic equations in step 4, substituting these constants and the solutions  

of Eq.(9) into Eq. (8) we can obtain the explicit solutions of Eq.(5) immediately. 

 

3 Application of the Method: 

In this section , we want to solve some systems of non-linear fractional derivative differential equations by 

applying the technique of generalizing fractional sub-equation method.  

 

1. Space-Time (1+1) fractional derivative Whitham-Broer-Kaup equations (WBK): [22,23] 

 

We consider fractional derivative Whitham -Broer- Kaup equations in the form: 

……………………….            (11) 
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By considering the traveling wave transformation, 

u(x,t)=U( ),     v(x,t)=V( ),     where ξ=kx+ct 

Eq. (11) can be reduced to the following nonlinear fractional ODE: 

…… ………… .   (12) 

We suppose that Eq.(4.2) has the following general solution: 

 

By balancing the highest order derivative term and nonlinear term in Eq.(12), 

and ,we have m+1=2n+1 then n=1,3+n=n+m+1 then m=2. 

Then we suppose that Eq.(12) has the following formal solution: 

………………………………………………………….  .  (13) 

Where  satisfies fractional Riccati equation 

  ………………                                                                            …    

(14) 

Substituting (13) along with (14) into (12) and setting the coefficient of (i=0,1,2,3)  

to zero, we can obtain aset of algebraic equation for c,k,  as follows 

From the first equation of previous system (13): 

 

 

+  

 

From the second equation of previous system (13): 
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By using Mathematica: 

Case 1:  , where  and  are arbitrary. 

 

……………………………………………………………………………………  

 

Case 

2:  

 

Where  ,  ξ=xk+ct 

 

 

 

 

Where   ,   ξ= xk+ct 
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Where   ,  ξ=xk+ct, w is constant. 

 

……………………………………….  

 

Case3:

 

Where   , ξ=xk+ct 

 

 

 

Where  , ξ=xk+ct 

 

 

 

Where  ,  ξ=xk+ct, w is constant. 

………………………………………………..  

 

1.1 Figures of Space-Time (1+1) fractional derivative Whitham -Broer- Kaup   equations: 

Case 2:  

 Where   ,  ,then: 
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Where ,  , then: 

 

Where   , , the  

Case 3: 

Where  , , then: 

 

 

Where  ,  ,then: 
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Where ,  then: 

 

 

 

2:Space-Time (2+1) fractional derivative Breaking Soliton equations:[18] 

We consider the Space-time (2+1) fractional Breaking Soliton equations: 

……… …………............   ..(15) 

By considering the traveling wave transformation  

u(x,t)= U( )  , v(x,t) = V( )  ,  Where ξ= x+ +ct  

Eq.(15), can be reduced to the following nonlinear fractional ODE: 

...... …    (16) 

 

We suppose that Eq.(16) has the following general solution: 
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By balancing the highest order derivative term and nonlinear term in Eq.(16), 

, and and , we have n+3=n+m+1 then m=2 ,1+n=m+1 then m=n=2. 

Then we suppose that Eq.(4.6) has the following formal solution: 

……………………………………………………......          (17)                                                                                                               

Substituting (17) along with (14) into (16) and setting the coefficient of (i=0,1,2,3,4,5) to zero, we can obtain 

a set of algebraicequation for c,k,  as follows: 

 

From the first equation of previous system  (15): 

 

 

 

 

0   

:  

:  

 

From the second equation of previous system (15): 

 

=0 
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0  

  

By using Mathematica : 

 

Case1:  

……………………………………………………………………………..  

 

Case2:  

 

Where ,  ξ=  

 

 

Where  , ξ=  
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Where  ,ξ=  

 

……………………………………  

 

2.1: Figures of Space-Time (2+1) fractional derivative Breaking Soliton equations: 

Case 2: 

Where  , , then: 

 

 

 

 

Where  ,  

 

Where  ,  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.2, 2020 

 

34 

 

3: Space-Time (1+1) fractional derivative Coupled Boussinesq-Burgers equations: 

We consider the Space-Time fractional Coupled Boussinesq-Burgers equations: 

. ........................................................................    .     .(18) 

By considering the traveling wave transformation  

u(x,t)= U( ),  v(x,t)=V( )  ,   Where ξ= x+ ct  

Eq.(18) can be reduced to the following nonlinear fractional ODE: 

..................................................        (19) 

We suppose that Eq.(19) has the following general solution: 

 

 

By balancing the highest order derivative term and nonlinear term in Eq.(19)  ,  and 

, , we have n+3=n+m+1 then m=2 , 1+2n= m+1 then n=1. 

Then we suppose that  Eq .(19) has the following formal solution: 

 

……………………………………………………………….....(20)                                                                                                                  

Substituting  (20) along with  (14) into (19) and setting the coefficient of (i=0,1,2,3,4) to zero, we can 

obtain a set of algebraic equation for c,k, as follows: 
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From the first equation of previous system (19):  

 

 

 

: 0 

 

From the second equation of previous system (19): 

 

 

 

 

0 

By usingMathematica: 

Case1:  

………………………………………………………………………….…..  

Case2:  

Where , ξ =xk+ ct 
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Where ,ξ =xk+ ct 

 

 

 

Where , ξ=xk+ct 

……………………………………………………….......  

 

 

Case3  

Where  , ξ =xk+ ct 

 

 

 

Where ,ξ =xk+ ct 
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Where ,ξ=xk+ct 

……………………………………………  

 

 

 

 

3.1 Figures of Space-Time (1+1) fractional derivative Coupled   Boussinesq-Burgers equations: 

Case 2: 

Where  ,  

 

Where  
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Where  

 

Case 3: 

Where  

 

Where  
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the  

 

Where ,  

 

 

4: Space-Time (1+1) fractional derivative Coupled Burgers Equations. 

We consider Space-Time fractional coupled Burgers Equations: 

…… …………………….  .       (21) 

By considering the traveling wave transformation u(x,t)=U(ξ), v(x,t)=V(ξ), and ξ=xk+ct 

Eq.(21) can be reduced to the following nonlinear fractional ODE: 

………………           (22) 

 

We suppose that Eq.(22) has the following general solution: 
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By balancing the highest order derivative term and nonlinear term in Eq.(22) , and , , we have 

n+2=n+n+1 then n=1,2+m= m+m+1 then m=n=1. 

Then we suppose that Eq.(22) has the following formal solution. 

………………………………………………………………..(23)                                                                                                                  

Substituting (23) along with (14) into (22) and setting the coefficient of (i=0,1,2,3)  

to zero, We can obtain a set of algebraic equation for c,k,  as follows: 

From the first equation of previous system (22): 

 

 

0 

 

From the second equation of previous system (22): 

 

0 

 

 

 

By using Mathematica: 
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Case1:   

…………………………………………………………………………  

 

Case2:  

Where  ,ξ=xk+ct 

 

 

 

Where   , ξ = x k +c t 

 

 

 

Where  , ξ = x k +c t, w is constant. 

……………………………………………………….  

 

Case3:  

Where  , ξ = x k +c t 
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Where  , ξ = x k +c t 

 

 

Where , ξ = x k +c t , w is constant. 

……………………………………………………………………………………  

 

Case 4:  

Where  , ξ = x k +c t  

 

 

 

Where  , ξ = x k +c t  
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Where  and ξ=xk+ct 

                                                                     

 

4.1: Figures  of Space-Time (1+1) fractional derivative Coupled Burgers Equations: 

 

Case 2: 

Where  

 

 

 

Where  

 

 

Where  
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Case 3: 

 

 

 

Where  

 

Where  
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Case 4: 

Where , then: 

 

 

Where  
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Where  

 

Conclusions 

 

In this paper, we proposed generalizing fractional sub- equation method to construct exact solutions of 

space-time nonlinear fractional derivative systems: Whitham-Broer-Kaup equations, Breaking Soliton equations, 

coupled Boussinesq-Burgers equations and coupled Burgers equations. As this method is based on the 

homogenous balancing principle, so it also be applied to other space-time nonlinear fractional derivative systems 

where the homogeneous balancing principle is satisfied. We conclude that the fractional sub-equation method is 

powerful, effective and convenient for nonlinear fractional PDEs. 
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