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Abstract
The present study compares three different techniques (decision tree, artificial neural network and multivariate regression
analysis) for predicting blast-induced ground vibrations in some Indian tunnelling projects. The performance of these models
was also compared to site-specific conventional predictor equations. A database consisting of 137 vibration records was ran-
domly divided into training and testing sets for model generation. Eight input parameters (total charge, tunnel cross-section,
maximum charge per delay, number of holes, hole diameter, distance from blasting face, hole depth and charge per hole) were
selected for model development using bivariate correlation analysis. Results indicated that the decision tree is best suited for
predicting vibrations. The decision tree further suggested that the intensity of near-field ground vibrations is mainly affected by
total charge fired in a round, whereas the intensity of far-field vibrations is governed by maximum charge per delay and charge
per hole. Conventional ground vibration predictors and machine learning techniques such as neural networks do not depict the
relationship between input and output parameters. However, the present study substantiates that the decision tree can be a good
tool for precise prediction of ground vibrations. Further, the decision tree can classify and relate different blast design parameters
for refining blast designs to control ground vibrations on sites.
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Abbreviations
ANN Artificial neural network
CART Classification and regression tree
MCPD Maximum charge per delay
MVRA Multivariate regression analysis
PPV Peak particle velocity
RMSE Root mean square error

1 Introduction

The drill and blast method is the most widely used technique
for rock excavation in tunnelling and underground projects. Its

suitability for medium to hard ground conditions has been
well recorded [1]. The drill and blast method is not only eco-
nomical in comparison to mechanical methods like tunnel
boring machine, road header, etc., but it can also be used to
obtain varying tunnel profiles. Past researches indicate that
only 20–30% of explosives are utilised for rock fragmentation
and the remaining 70–80% yield unwanted effects such as
ground vibrations, fly-rock, noise, etc. in surface mining [2,
3]. The ground vibrations from uncontrolled rock blasting
pose an adverse impact on surrounding rock mass, natural
habitats, buildings and structures. The engineering structures
are highly prone to damages caused by blast vibrations asso-
ciated with low frequencies between 4 and 24 Hz (Directorate
General of Mines Safety 1997). This is because the frequency
of ground vibrations resonates with the natural frequency of
structures causing more damage. It is often observed that the
people living nearby these projects erroneously co-relate dam-
ages in their households with the blast vibrations. This results
in protest, confrontation, delay and occasional closure of the
projects. Intense blast vibrations produced by uncontrolled
blasting may also damage the available groundwater channels
and harm the surrounding ecology. These vibrations can be
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effectively controlled by varying blast design parameters.
Hence, the prediction of blast-induced vibrations and assess-
ment of their effects are generally done before the commence-
ment of blasting activities.

Peak particle velocity (PPV) is the most preferred predictor
to evaluate blast-induced ground vibration. Almost all the pre-
dictor equations estimate PPV considering only two parame-
ters, i.e. maximum charge per delay (MCPD) and distance
between blast face to monitoring points. Some predictor equa-
tions also consider attenuation or damping factors for the pre-
diction of PPV. It has been observed that the prediction of
these equations is inconsistent [4]. These predictor equations
have their limitations which affect the prediction of the vibra-
tions. PPV is observed to be influenced by various other pa-
rameters such as geological and geotechnical conditions, blast
geometry, the total explosive used, etc. The empirical predic-
tor equations do not consider these and hence have low accu-
racy. For tunnelling and underground projects, these parame-
ters play a significant role. Recently, researchers have effec-
tively demonstrated the use of advance statistical and soft
computing tools for the prediction of ground vibrations con-
sidering the aforementioned parameters. Soft computing tech-
niques such as genetic programming, maximum likelihood
classification, technique for order preference similarity to ide-
al solutions, support vector machine, artificial neural network
(ANN) and classification and regression tree (CART) have
been effectively used for predicting blast vibrations and other
blast design parameters. Decision tree-based learningmethods
such as CART split or classify data (at nodes) into smaller
datasets and generate small linear models using regression.
These linear models together generalise the final model for
minimising RMSE (root mean square error) at each node.
These models are easy to comprehend unlike neural networks
and machine learning tools. The applicability of decision tree
or CART in predicting PPV has not been extensively studied.
Hasanipanah et al. [5] forecasted blast-induced ground vibra-
tions forMiduk coppermine, Iran, using CART,MVRA (mul-
tivariate regression analysis) and different empirical models
considering 86 blast events and two effective parameters
(MCPD and monitoring distance). They concluded that the
CART technique performed best (R2 = 0.95 and RMSE 0.17)
and can generalise results. Similarly, Khandelwal et al. [6]
estimated PPV of an open cast coal mine of Singareni
Collieries Company Limited, Telangana, India, using CART,
MVRA and empirical models. They concluded that the per-
formance of CART in predicting PPV was superior to other
examined models. In both studies, only two parameters
(MCPD and monitoring distance) were considered for
predicting PPV.

Amongst all the soft computing techniques, the applicabil-
ity of ANN has been widely investigated. Hence, the present
study compares the results obtained from the CART model
with the ANN model. Similar to the human brain, ANN also

consists of a massively interconnected network of neurons for
parallel and non-linear information transfer [7]. ANN is ini-
tially trained by some known examples of a problem to ac-
quire knowledge. Once the ANN is trained, the network is
capable of predicting the unspecified instances of the problem.
ANN is well accepted amongst scientists and researchers as an
important tool for solving a complex problem and real-world
applications. In the field of rock mechanics and tunnelling
technology, researchers have widely applied ANN to predict
laboratory results [8, 9]. The past researchers have established
that ANN is a versatile tool which can effectively predict fly-
rock, back-break, over-break and ground vibrations in mines.
In an interesting study, Amnieh et al. [10] applied ANN in
Sarcheshmeh opencast copper mine, for predicting burden,
spacing and total weight of explosives using PPV and other
parameters such as block volume and explosive type as input.
Monjezi et al. [11] implemented ANN to predict fly-rock in
blasting using nine input parameters at Sungun opencast mine.
The study concluded that ANN is superior to Lundborg and
other statistical models. Mohamed [12] predicted blast vibra-
tions of a limestone quarry in Egypt using ANN. He also
investigated the effect of a different number of input variables
on ANN for predicting ground vibrations. In their model,
MCPD, distance from the blasting face to the monitoring
point, stemming and hole depths were taken as input param-
eters to predict PPV. It was concluded that the prediction re-
sults obtained from different models of ANN are more reliable
than those obtained from the tradition scaling laws.
Furthermore, they established that the PPV is highly affected
by the parameter ‘distance from the blasting face’ and is least
affected by the parameter ‘stemming’. Similarly, Alvarez-
Vigil et al. [13] found that blast-induced PPVand frequencies
at Bahoto quarry, Spain, can be effectively predicted by ANN
than conventional statistics. Zhongya and Xiaoguang [14]
used two intelligence science techniques, i.e. general regres-
sion neural network and support vector machine for predicting
the blast-induced vibrations at Masjed-Soleiman dam, Iran.
Maximum charge per delay and distance between the blast
face to the monitoring point were considered as input param-
eters for both techniques. Results obtained from the general
regression neural network and support vector machine dem-
onstrated better correlation in comparison to empirical
methods for predicting PPV. Mohamadnejad et al. [15] pre-
dicted blast-induced ground vibrations of the Gol-E-Gohar
opencast iron mine, Iran, using a four-layer feed-forward back
propagation model incorporating multi-layer perceptron
trained with the Levenberg–Marquardt algorithm. Their
ANN model was formulated using the maximum charge per
delay, distance from the blasting face to the monitoring point,
stemming hole depths as inputs and PPV as output. The ob-
tained results were compared with the commonly used vibra-
tion predictor equations. They concluded that the PPV predict-
ed by ANN is more reliable than predicted by vibration
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predictor equations. Saadat et al. [16] predicted the blast-
induced ground vibrations using ANN in the Siahbisheh
tunnelling project, Iran, and concluded that ANN is more ac-
curate in comparison to conventional statistics and empirical
methods. Moreover, Lapcevic et al. [17] studied ground vibra-
tions at an underground copper mine in Serbia and obtained
good prediction using ANN in comparison to other conven-
tional methods.

2 Research Significance

Recent researches indicate that soft computing tools are more
accurate and efficient in predicting ground vibrations. In pre-
vious attempts, Hasanipanah et al. [5] and Khandelwal et al.
[6] developed decision trees for predicting vibrations using
only two controllable parameters, i.e. MCPD and monitoring
distance from blasting patch. However, blast-induced ground
vibrations are affected by many controllable and uncontrolla-
ble parameters. Controllable parameters include geometrical
parameters (hole depth, hole diameter, no. of holes, area of
tunnel cross-section) and explosive-dependent parameters
(explosive type, total charge, MCPD, charge per hole, etc.).
Uncontrollable parameters comprise delay-time scatter, geol-
ogy, rock properties, etc. The main difference between previ-
ous investigations and the present work is that in addition to
the two controllable parameters considered by Hasanipanah
et al. [5] and Khandelwal et al. [6], this study further considers
other effective controllable parameters (total charge, tunnel
cross-section, number of holes, hole diameter, hole depth,
charge per hole, etc.) for developing a decision tree. The clas-
sification obtained from the decision tree using a high number
of inputs may facilitate easy comprehension and control of
blast vibrations on sites. Furthermore, in the previous investi-
gations, the decision tree was developed for vibration predic-
tion of open cast mines. In the present study, the decision tree
is developed for predicting vibrations during underground ex-
cavations. The suitability of the decision tree was determined
by comparing it with widely researched ANN, MVRA and
other empirical models.

3 Site Description

The dataset for the investigation was compiled from observa-
tions noted at six different Indian tunnel sites. Five of the sites
are situated in the Himalayas, whereas one site is located in the
Aravalli mountain range. The distances between the blasting
faces and monitoring stations at all sites were precisely mea-
sured using a portable GPS (global positioning system). PPV
was measured using portable seismographs manufactured by
Instantel. The dynamic range of the seismographs used is
greater than 96 dB with frequency ranging between 2 and

250 Hz and sampling rate of 300 samples/s. Seismographs
generate variation graphs of PPV and dominant frequency as
outputs. The trigger levels of the seismographs used can be
varied between 0.1 and 255 mm/s. Geophone of the seismo-
graph is capable of measuring particle velocities in three or-
thogonal directions. A brief description of the project sites is
presented below.

3.1 Chuzachen Hydro-Electric Project, East Sikkim,
India

The Chuzachen Hydro-Electric Project is run-of-the-river pro-
ject situated 21 km east of Rangpo City. Its power generation
capacity is 110 MW. The project is built across the Rangpo
and Rangoli rivers in the state of Sikkim, India. The investi-
gation was conducted in the head race tunnel of the project.
The lithology along the tunnel alignment comprises mainly of
schist, gneiss, mylonite, quartzite and phyllite rocks with
cross-cutting pegmatite veins. The rock mass was classified
as class IV using rock mass quality (Q-system). The uniaxial
compressive strength of encountered rock mass varied be-
tween 77 and 55 MPa. The cross-section of the investigated
tunnel was 25 m2. A double-split burn-cut pattern containing
nine cut holes was used for initial cut formation. The pattern
initiates with a central hole and extends using subsequent
firing of holes located at the edges. Eventually, 22 breakages
and 24 periphery holes were sequentially fired in the round as
shown in Fig. 1a.

3.2 Karchham-Wangatoo Hydro-Electric Project,
Himachal Pradesh, India

The Karchham-Wangatoo Hydro-Electric Project has a 1000-
MW capacity, a run-of-the-river project built across the Sutlej
River in Kinnaur district, Himachal Pradesh, India. Blasting
was performed and monitored in four different excavations,
namely, adit to diversion tunnel, diversion tunnel, inlet adit
and main access tunnel. The rock types, tunnel cross-
sectional area, rock mass classes and the blast pattern used
for excavation of underground structures are shown in
Table 1. The uniaxial compressive strengths of rock mass in
adit to diversion, diversion tunnel, inlet adit and main access
tunnel were between 115 and 64, 122–76, 95–55 and 110–
75 MPa, respectively. The drilling and firing patterns used for
excavating different underground structures are depicted in
Fig. 1b to e.

3.3 Shongtong-Karchham Hydro-Electric Project,
Himachal Pradesh, India

The Shongtong-Karchham Hydro-Electric Project is a run-of-
the-river project constructed over the Sutlej River in Kinnaur
district, Himachal Pradesh, India. The project is having a
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capacity of generating 450 MW power. The project area and
its surroundings expose one of the oldest stacks of rocks in the
core Himalayas. The study was conducted in adit and diver-
sion tunnels of the project. The metamorphic phase in the
tunnels was characterised as green-schist to amphibolite fa-
cies. Rock mass classification of the tunnel as per the Q-sys-
tem was 23 and designated as class II rock mass. The uniaxial
compressive strength of the rock mass present in the investi-
gated structures varied between 145 and 72 MPa. The wedge-
cut pattern as shown with 11 cut, 40 breakage and 36 perim-
eter holes (Fig. 1f) was used for excavation.

3.4 Sawra-Kuddu Hydro-Electric Project, Himachal
Pradesh, India

The Sawra-Kuddu Hydro-Electric Project is run-of-the-river
scheme constructed over the Pabbar River, Himachal Pradesh
to generate 111 MW power. The lithology of the area mainly
comprises of quartz phyllite schist. The study was conducted
in adit to head race tunnel of the project. The rock mass was
moderate to highly jointed, thinly foliated and sheared. The
joints were smooth and rough planar with clay-filled discon-
tinuities. The rock mass was characterised as extremely poor
to very poor category. The uniaxial compressive strength of
the rock mass in the adit varied between 80 and 50 MPa. The
cross-section of the tunnel was 29 m2. A wedge-cut pattern
with 7 cut, 14 breakage and 26 perimeter holes as shown in
Fig. 1g was used for rock excavation.

3.5 Baga Transportation Tunnel, Solan, Himachal
Pradesh, India

The Baga tunnel is a roadway tunnel located in Solan district
of Himachal Pradesh, India. The rock type encountered along
the tunnel comprises of highly fractured and weathered
quartzite. The tunnel was excavated from both sides, and rock
mass classified as type V was encountered throughout the
alignment. The uniaxial compressive strength of rock mass
varied between 52 and 42 MPa. The cross-section of the tun-
nel was 60m2. A pilot tunnel (5 × 2.9 m) was firstly excavated
with the wedge-cut pattern. The firing sequence and blast
pattern implemented for tunnel excavation are depicted in
Fig. 1h.

3.6 Ghat ki Guni, Jaipur, Rajasthan

Ghat ki Guni is a twin transportation tunnel constructed at
Jhalana hills in the Aravalli mountain ranges, Jaipur,
Rajasthan. The area is mainly composed of Alwar and
Ajabgarh rock groups consisting of calc-silicates, quartzite,
grits and schistose rocks. The cross-sectional area of the tun-
nel was 81.2 m2. The uniaxial compressive strength of the
rock mass varied between 112 and 65 MPa. The tunnel was

excavated using heading (5.7 m high) and benching (2.5 m
deep) with a wedge-cut pattern as shown in Fig. 1i.

Cartridge emulsion explosives as specified in Table 2 were
used at the investigated sites. In India, the emulsion explosives
with a diameter less than 50mm are detonator sensitive and do
not require booster for initiation. A non-electric detonating
system was used in conjunction with electric blasting cap
no. 8 to detonate the blast.

4 The Dataset

The compiled database consists of 137 data points moni-
tored at different sensitive and strategic locations of the
investigated sites. Generally, more than 100 data points
must be considered in a dataset for obtaining reliable re-
sults using numerical models [17]. The dataset was divided
in 80:20 ratio for training and testing, respectively. The
parameters considered for formulating ANN, CART and
MVRA models were tunnel cross-section, number of
holes, hole diameter, average hole depths, average charge
per hole, maximum charge per delay, total charge, powder
factor and distance from the blasting face to the monitoring
point. Only those parameters which can be directly con-
trolled by the blaster were used for developing models. The
statistical description of blast data is presented in Table 3.
For the identification of influencing parameters, a correla-
tion matrix was formed and is shown in Table 4. The bi-
variate correlation technique was used to analyse the
strength of the linear relationship between the input and
output parameters. The matrix helped in determining the
relative influence of each input parameter on the output
parameter. It can be observed from the matrix that the most
and the least influencing parameters are ‘monitoring dis-
tance’ and ‘number of holes’, respectively. After compila-
tion of the dataset, the predictive models for the PPV were
formulated using conventional scaled distance laws,
MVRA, ANN and CART.

5 Prediction of Blast Vibrations
by Conventional Predictor Equations
and MVRA

5.1 Conventional Predictor Equations

Scaled distance laws minimise the damage potential of blast
vibrations by predicting PPVs against scaled distances. The
prediction enables engineers to adjust MCPD to limit PPV
within the safety standards. These equations generally assume
that the energy of the ground motion produced by blast varies
with the mass of explosives detonated per delay and monitor-
ing distance. Various ground vibrations predictor equations
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   (a): Double-split burn cut pattern adopted for excavation of HRT, Chuzachen HEP,  
East Sikkim 

            (b): Burn-cut pattern for excavation of adit to diversion tunnel, Karchham- 

Wangatoo HEP 

                 (c): Burn-cut pattern for excavation of diversion tunnel, Karchham-Wangatoo HEP          (d): Burn-cut pattern for excavation of inlet adit, Karchham-Wangatoo HEP   

(e): Burn-cut pattern for excavation of main access tunnel of Karchham-Wangatoo  

HEP 

(f): Wedge-cut pattern used for excavation of adit and diversion tunnel of  
Shongtong-Karchham HEP

Fig. 1 Blast designs adopted at the investigated sites
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(g):  Wedge-cut pattern for excavation of adit to HRT of Sawra-Kuddu HEP (h): Wedge cut pattern for excavation of transportation tunnel, Solan, Himachal  

Pradesh 

(i):  Wedge-cut pattern used for excavation of  Ghat ki Guni Transportation Tunnel, 

Jaipur 

Note: All dimension are in ‘mm’ 

              Charged hole of 45 mm diameter 

                          Dummy hole of 45 mm diameter 

                          Relief hole of 89 mm diameter  

0,1,2,3…….15: Detonation Sequence 

Fig. 1 (continued)
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proposed by different researchers and used in the present
study are shown in Table 5. The scaled distance and PPV are
plotted on log-log plane to evaluate the parameters associated
with these equations. Since this is done individually for each
site, the separate prediction equation was formulated for each
site with individual site constant. The site constants calculated
for different predictor equations are presented in Table 6. The
output predicted by these predictor equations was compared
with the recorded PPVs for error calculation. Two error func-
tions, namely, RMSE and coefficient of determination (R2),
were used to check the accuracy of all the models. The relative
comparison of various predictor equations is shown in Fig. 2.
It can be observed that the best predictor equation for all sites
was the United States Bureau of Mines.

5.2 MVRA

The relationship between a dependent variable and one or
more independent variables can be modelled using MVRA.
This method is an advanced version of simple linear regres-
sion and is based on the minimisation of error differences
between the predicted and measured output values. The
MVRA-based model has also been developed in the study
for the PPV prediction. A typical MVRA model is shown in
the equation

Y ¼ α0 þ α1X 1 þ :::::::::::::::þ αiX i þ e ð1Þ
where

Y is the predicted variable,
Xi (i = 1, 2 ...n) is the input parameters,
α0 is the intercept (coordinate at the origin),
αi (i = 1, 2 ...n) is the coefficient of the ith input parameter,

and e is the error associated with prediction.
A variable having significance predicted value greater than

15% is generally discarded for predicting the output. As the
observed predicted values for the cross-section, no. of holes, hole
diameter, hole depth, andMCPDwere greater than 15%, so these
parameters were neglected for formulating MVRA. The follow-
ing equation has been obtained for predicting PPVusingMVRA:

PPV mm=sð Þ ¼ 31:42−7:24 CPH; kg½ �
þ 0:02 TC; kg½ �−0:10 D;m½ �

The relation between predicted andmeasured PPVobtained
for test data using MVRA on 1:1 slope line is shown in Fig. 3.
The CoD and RMSE for MVRA equations are 0.33 and 5.93,
respectively. Ta
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6 Soft Computing Tools

6.1 ANN

ANN consists of multiple layers, and each layer comprises a
fixed number of neurons. The number of neurons depends
upon the nature of the problem. Each neuron of the individual
layer is interconnected with every neuron of consecutive
layers using some weights [18]. The number of neurons in
the input layer is equal to the number of inputs. Similarly,
the number of neurons in the output layer depends on the
number of output parameters. The number of hidden layers
containing neurons depends upon the complication of the
problem and is usually determined by trial and error [19].
Neurons of the input layer are connected via a hidden layer
to the neurons of the output layer with some weight. The
schematic representation of a single neuron j is shown in
Fig. 4. The output of the neuron oj is calculated using Eq. (2).

oj ¼ f ∑
n

i¼1
wijki þ bj
� �� �

ð2Þ

where wij is the weight associated with the connection from
input neuron i having a magnitude of pi, bj is the bias

associated with neuron j and f is the activation function. The
neurons are activated via activation function which is, in gen-
eral, a differential non-linear function like sigmoid, linear
function or step function.

The feed-forward back propagation neural network has
been found most suitable for predicting results in the area of
rock mechanics for function approximation [20–23]. The
training process in ANN is generally carried out by adjusting
the biases and weights iteratively, for minimising the error and
predicting results closer to the target value. There are various
back propagation algorithms such as gradient descent, gradi-
ent descent with momentum, conjugate gradient, Levenberg–
Marquardt and quasi-Newton approaches, which are generally
used to train the model.

6.1.1 The Architecture of the ANN Network and Data
Processing

The network in the present study was architected using
the neural network tool (nntool) with MATLAB software.
The network consists of one input layer containing eight
input neurons, one hidden layer containing 19 neurons
and one output layer containing a single neuron.
Overfitting was prevented by using a small number of

Table 4 Correlation matrix with significance levels for different parameters

Cross-section No. of holes Hole
diameter

Hole depth Charge/hole MCPD Total charge Distance PPV

Cross-section 1

No. of holes 0.67 1

Hole diameter 0.30 0.34 1

Hole depth 0.48 0.54 0.85 1

Charge per hole 0.35 0.18 0.52 0.65 1

MCPD 0.58 0.64 0.54 0.63 0.53 1

Total charge 0.71 0.74 0.59 0.74 0.75 0.78 1

Distance 0.35 0.17 0.44 0.45 0.47 0.27 0.40 1

PPV − 0.15 − 0.07 − 0.44 − 0.47 − 0.53 − 0.23 − 0.34 − 0.59 1

Table 5 Summary of commonly used PPV predictor equations

Predictor equations Empirical models

United States Bureau of Mines (1959) Vppv ¼ K D
√Qmax

� �
−B

Langefors and Kihlstrom (1963) Vppv ¼ K √Qmax

D2
3

� �
B

General Predictor (1964) Vppv =KD
−B(Qmax)

A

Ambraseys and Hendron (1968) Vppv ¼ K Dffiffiffiffiffiffiffi
Qmax

3
p

� �
−B

Bureau of Indian Standards: 6922 (1973) Vppv ¼ K Qmax

D2
3

� �
B
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hidden neurons. Different sizes of the network were con-
sidered for determining the number of hidden neurons and
optimising network. For the training process, the
Levenberg–Marquardt back propagation algorithm with
Bayesian regularisation algorithm was used (applied as
TRAINBR function in MATLAB software). The
Levenberg–Marquardt optimisation technique optimises
weights and biases associated with the network and up-
dates the network accordingly. Squared error and weights
were used as performance indices. These indices are
minimised to obtain the best combination of weights for
architecting the generalised network. The mean square
error (MSE) function available in the nntool box was used
as default performance index for optimising algorithm. A
representative flowchart for construction of the ANN
model is shown in Fig. 5.

Early stopping and regularisation are the two most com-
monly used techniques for enhancing the generalisation of the
network. An early stopping criterion was used to prevent the
network generalisation. The training of the network was
stopped when any one of the following criteria was achieved:

& The maximum number of epoch (set as 5000).
& Maximum time allotted, i.e. 5 s.
& Minimisation of the performance function.
& Performance gradient falls below the minimum value of

1 × 10−7.
& mu value (scalar parameter associated with the

Levenberg–Marquardt algorithm) exceeds its maximum
value of 1 × 1010.

Log sigmoid function (LOGSIG) was used for training the
data. The data were scaled between 0 and 1 using Eq. (3)

dnormalised ¼ d−dmin

dmax−dmin

� �
ð3Þ

where,

dmax maximum value of a data point.
dmin minimum value of a data point.
dnormalised scaled value of a data point.

The major disadvantage of ANN is that it cannot extrapo-
late the dataset; hence, the testing of dataset should be exam-
ined carefully for ranging the testing dataset within the range
of the training dataset.

6.1.2 Prediction of PPV Using the ANN Technique

The neural network developed for the present study contained
eight input parameters and one output parameter as already
presented in Table 3. Based on various trials and errors, the
best result was found using 19 number of neurons in theTa
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hidden layer. The plot of mean square error vs. epoch is shown
in Fig. 6. It clearly shows that the testing error does not in-
crease above the best performing epoch depicting that the

network developed is not overlearning [24]. The measured
and predicted PPV on 1:1 slope line for the ANN model is

R² = 0.86
RMSE=6.58
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Fig. 2 Plots for measured vs
predicted PPV by conventional
predictor equations

Fig. 4 The schematic representation of neuron j
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shown in Fig. 7. The CoD and RMSE for test data of ANN
were 0.93 and 3.38, respectively.

6.2 Decision Tree and CART Technique

Classification is a general process for humans. On the other
hand, numeric predictions are generally conducted using
mathematical tools such as regression. However, the CART
technique classifies and regresses data simultaneously using
the decision tree. A decision tree is a graphical representation
of results in the form of an inverted tree having roots upward
and branches containing leaves at the bottom (Fig. 8). A de-
cision tree starts with a root node (most influencing parameter)
with its possible value and further branches into subsets based
on homogeneity using tests. The tests compare the value with
a predetermined constant for data splitting at each node. The
data can be split into three or more subsets based on several if
and then conditions. These processes are reiterated for each
branch. The branch development is terminated using stopping
criteria. An attribute is not split if all the instances at the node
are classified similarly. The entire tree details about the influ-
ence of each attribute. The most influencing attribute is
branched further and is termed as a root node. The target

START

LEAST
ERROR ?

DATA COLLECTION

DATA SCALING

PROPORTIONING DATA   FOR 

TRAINING AND TESTING

TRAINING

TESTING

STOP

NO

YES

Fig. 5 A representative flowchart for construction of the ANN model

Fig. 6 Mean squared error vs epoch with best performing model
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values may be predicted using a combination of nodes or
individual node.

The model was built in MATLAB software using numeri-
cal codes. Hundred iterations were performed for training the
dataset. Each training iteration yielded a decision tree with
CoD. At the 10th iteration, the proximate values of CoD were
obtained for training and testing datasets (Fig. 9), indicating
the absence of overfitting. Hence, the decision tree at the 10th
iteration with CoDtest = 0.95 and RMSEtest = 1.560 was
finalised for predicting PPV and classifying blast-related pa-
rameters (Fig. 10).

The decision tree obtained at the 10th iteration is depicted
in Fig. 11. It suggests that PPV is primarily influenced by
monitoring distance (root node of the tree). For a distance less
than 11.7 m, the value of PPV is expected to be 69.75 mm/s.
For monitoring distances between 11.7 and 16.25 m, the ex-
pected PPV of blasts reduces to 37.7 mm/s. Similarly, for
distances between 16.25 and 39m, total charge plays a pivotal
role in predicting blast-induced vibrations. PPV at these dis-
tances can be reduced from 28.5 to 16.774 mm/s by limiting
the total charge below 113 kg. The cross-section of the tunnel
governs the intensity of blast-induced ground vibration for
distances 39 to 59 m. However, for distances between 59
and 127.5 m, MCPD plays a pre-dominant role in controlling
vibrations. Furthermore, the magnitude of PPV at these dis-
tances can be reduced by limiting MCPD below 93.485 kg;

this can be easily achieved by using a greater number of de-
lays. However, distances beyond 127.5 m are primarily influ-
enced by charge per hole. Hence, the decision tree indicated
that the near-field vibrations in underground blasting are
mainly influenced by total charge fired in a complete cycle
(composed of several rounds). The use of proper delay inter-
vals can help in controlling PPV between distances 59 and
127.5 m. However, explosive charge in every hole is to be
controlled for limiting far-field vibrations (beyond 127.5 m)
in tunnel blasting. Hence, the rules prescribed in the decision
tree can be readily used for controlling blast-induced vibra-
tions at the investigated sites.

7 Evaluation of Models’ Performance

The PPV predicted using the test data were correlated with
measured PPV for performance evaluation. All the formulated
models (CART, ANN, MVRA and conventional predictors)
were compared to each other using performance indices. The
comparison of different models is presented in Table 7. The
CART model outperformed all the other models as a high
CoD with low RMSE was obtained for it. The performance
of the ANN model was better in comparison to MVRA,
USBM and other convention predictors (Figs. 2, 3 and 7).
Thus, the results indicate that the CART model developed in
the present study may be used for predicting PPV at all the
sites considered in the study. CART being a rule-based meth-
od can be easily implemented on sites for controlling and
predicting blast-induced ground vibrations.

8 Conclusions

Precise and efficient prediction of PPV enables minimising
blast-induced nuisances. The present research compares
CART, ANN, MVRA and conventional empirical predictors
to predict blast-induced nuisances in some Indian tunnels.
This was achieved by compiling a dataset of 137 data points
from six tunnelling sites. The dataset was further split in a ratio
of 80:20 for developing and testing the models. The numerical
models were developed using eight controllable input param-
eters (total charge, tunnel cross-section, maximum charge per
delay, number of holes, hole diameter, distance from blasting
face, hole depth and charge per hole) which can be easily
regulated on-site by blast designers. The preciseness of the
developed models was compared using the magnitude of
two statistical functions (R2 and RMSE). The decision tree-
based CART model is superior in predicting PPV when com-
pared to ANN,MVRA and other conventional predictors. The
R2 and RMSE for the decision tree-basedmodel were 0.95 and
1.56, respectively. Rules prescribed in the decision tree can be
easily implemented by blast designers on the sites for

R² = 0.9535
RMSE = 1.560 
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controlling PPV. The decision tree indicated that near-field
ground vibrations are mainly affected by total charge fired in
a round. The intensity of far-field vibrations (greater than
50 m) can be controlled by adjusting MCPD and charge per
hole. The results of the study indicate that the decision tree is
an accurate and handy technique for limiting the vibrations
on-site.
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