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ABSTRACT

Groups of Divisibility

Seth Gerberding

Director: Ramiro Lafuente-Rodriguez, Ph.D.

In this thesis, we examine a part of abstract algebra known as Groups of Divisibility.

We construct these special groups from basic concepts. We begin with partially-ordered

sets, then build our way into groups, rings, and even structures akin to rings of poly-

nomials. In particular, we explore how elementary algebra evolves when an ordering is

included with the operations. Our results follow the work done by Anderson and Feil

[1], however we include more explicit proofs and constructions. Our primary results

include proving that a group of divisibility can be provided with an order to make it

a partially-ordered group; that every Bezout domain is a pseudo-Bezout domain; and

that an integral domain is a pseudo-Bezout domain if and only if the partial order on

its group of divisibility is a lattice.
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1 Introduction

In this thesis, we explore a part of abstract algebra called groups of divisibility. These

groups clearly have to do with divisibility, but what divisibility is in an algebraic sense

is unclear. As it turns out, there is a rich way to conceptualize divisibility. It involves

order. To help fuel intuition, consider a classic concept that addresses divisibility: the

greatest common divisor (or greatest common factor).

For two numbers a, b ∈ N, the greatest common divisor is a number d such that d

divides both a and b, and if there is another number c that also divides a and b, then it

also divides d. Of course, it follows that d is also greater than c.

But notice how the greatest common divisor is not defined using order. Order may

intuitively be there, but it is not in the formal definition. But there still appears to

be some kind of relationship between divisibility and order, at least with the greatest

common divisor (and the least common multiple). In this thesis, we formalize this

relationship by using algebraic structures with the inclusion of order. But to do so, we

have to understand order.

Algebra, historically, has endeavoured to build up definitions and concepts that were

intuitively used in prior mathematics. For example, we have groups, which are sets

with an operation. Groups are fascinating structures, but have limitations with more

complicated structures like the Real Numbers. With the Real Numbers we have more

than one operation. Thus, to better understand the Real Numbers algebraically, we

created rings, integral domains, and fields. But if we think about the Real Numbers

a bit more, we find that order has still not been analyzed in an algebraic way. Some

numbers are considered greater than or less than other numbers. The same can be said

about functions: some functions are greater than others, either point wise or with respect

to degree. This thesis explores the way ordering has been introduced into algebra, and

specifically how it relates to divisibility.

Just like many other components of algebra, we will begin with groups and then

move on to higher structures. However, before we begin with groups, we address order
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more formally by discussing partially ordered sets and lattices. These special sets are in

a way similar to groups and other algebraic structure: they include a set, but instead

of an operation, they are equipped with a binary relation that has certain proprieties.

Once partially-ordered sets are properly understood, then we can equip operations.

The concepts we cover, while deeply theoretical, actually have a wide range of ap-

plications. These applications extend well beyond merely enhancing already established

uses. Lattices, for example, are useful for understanding circuit switches [9]. The work

done, therefore, is more than theoretical: there is a great potential for powerful appli-

cations.

Section 2 goes over some background, including what is meant for something to be

an order and what joins and meets are. Section 3 discusses lattices, section 4 addresses

l-groups and proves some properties thereof. Section 5 extends the notions of homomor-

phisms and subgroups to l -groups. Section 6 addresses groups of divisibility. Finally,

section 7 provides an example of our concepts at work. We follow the work done by

Krull [8], Jaffard [6] and Ohm [10] to explore groups of divisibility.

We refer the reader, regarding basic algebraic concepts and notation, to Dummit and

Foot [4], Hernstein [5], and Rotman [11], and for concepts and notation in lattice-ordered

groups and rings: Anderson and Feil [1], Darnell [3] and Medvedev and Kopytov[7].

2 Partially Ordered Sets

A partial order consists of two things: a set and an ordering, denoted by “≤”. 1 This

ordering must be defined because it is not obvious what is means to be less than or equal

in all instances. However, whatever the definition of “≤” is, in order to be a partial

order it must fulfill three properties.

Definition 2.1. A partial order, denoted by “≤”, is a binary relation between two ele-

ments a and b such that the ordering is:

1Similarly, we may use ′′ ≥′′ .
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1. Reflexive: a ≤ a

2. Transitive: if a ≤ b and b ≤ c, then a ≤ c, and

3. Antisymmetric: if a ≤ b and b ≤ a, then a = b.

When we include this ordering on a set, we arrive at a partially ordered set.

Example 2.2. Consider the power set on the set A = {1, 2}. Define the ordering as

follows: X ≤ Y if and only if X ⊆ Y. Clearly, this relation defines a partial order.

A

{1} {2}

∅

Figure 1

For example, as shown in Figure 1, by the ordering, {1} ≤ A and {2} ≤ A. Similarly,

∅ ≤ {1} and ∅ ≤ {2}. However, {1} 
 {2} and {2} 
 {1} because {1} and {2} are

“incomparable.”

One thing to note is that two elements may not be related in any way, just as {1}

and {2} were in the last example. The only requirement for a partially ordered set is

that every element be related to at least one other element, i.e., that they are “in the

structure.”

Next, we add more conditions onto a partially ordered set to create what we call a

lattice.

3 Lattices

With a lattice, we introduce two new concepts called the “meet” and “join”, denoted by

∧ and ∨ respectively, which are defined below.
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Definition 3.1. Let A be a partially ordered set with a, b ∈ A. Then, a∧b is an element

c ∈ A such that:

• c ≤ a and c ≤ b and

• For c′ ∈ A, if c′ ≤ a and c′ ≤ b, then c′ ≤ c

Similarly, a ∨ b is an element c in A such that:

• a ≤ c and b ≤ c and

• For c′ ∈ A such that a ≤ c′ and b ≤ c′, then c ≤ c′.

Definition 3.2. Let A be a lattice, where ai ∈ A, for 1 ≤ i ≤ n. Then,
∨
ai =

a1 ∨ a2 ∨ ... ∨ an. Similar notation applies for meets.

The join is commonly called the least upper bound, and the meet is the greatest lower

bound. That is, the join is the smallest element that is greater than both a and b.

Similarly, the meet is the greatest element that is smaller than both a and b.

An analogous concept is the supremum and infimum. The supremum is also consid-

ered the least upper bound and the infimum the greatest lower bound. However, the

supremum and infimum can be take over an entire set, such as (0, 1], whereas the join

and meet can be defined over only two elements.

We define a lattice.

Definition 3.3. (A,≤) is a lattice if, for every a, b ∈ A, there exists a ∨ b ∈ A and

a ∧ b ∈ A.

An example of a lattice would be the real numbers, (R,≤), where the ordering ≤ is

the usual order defined below.

Definition 3.4. For x, y ∈ R, x ≤ y if there exists a nonnegative z ∈ R such that

x+ z = y.
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Take any two elements of R. For reflexivity, x ≤ x is certainly true: simply let z = 0.

Certainly the relation is transitive: if x ≤ y, and y ≤ z, then there exist positive a, b ∈ R

such that x+ a = y and y + b = z. Then, y + b = x+ a+ b = z. Since a, b are positive,

a+ b is positive, and thus x ≤ z.

For antisymmetry, there are two ways to approach it, the formal way and the intuitive

way. We shall address the intuitive way first. A binary relation, ∗, is symmetric if x ∗ y,

implies y ∗ x. But a relation could be antisymmetric, where, if the two elements are

related to each other, then they are equal. In R, it certainly is the case that ≤ is

antisymmetric: 3 ≤ 5, but 5 
 3. Formally, a relation is antisymmetric if:

x ∗ y and y ∗ x implies x = y.

For R, say x ≤ y and y ≤ x. Then, as before, there exist positive a, b ∈ R such that

x+ a = y and y + b = x. Then, y + b+ a = y, and b = −a. However, if a 6= 0, we have

a contradiction since b would be negative. Thus, a = b = 0, and x = y. Thus, we have

a partial order on R, and since for any two real numbers, one is always greater or equal

to another, it constitutes a lattice.

This understanding of “≤” is the classical sense. However, ≤ can be defined in many

different ways. For example, in the set of positive integers we could say that a ≤ b iff

a|b. It is not obvious that this definition constitutes a partial order, but this is just an

example of a new way to define an ordering.

Finally, we are ready to extend orderings to groups.

4 Lattice-Ordered Groups

To reach lattice-ordered groups, we begin with a standard group from abstract algebra,

(G,+), where + is not necessarily commutative. All the properties of groups, including

inverses, identities, etc. are included. Now, we attach an ordering “≤” such that (G,≤)

is a partially ordered set. However, now we also require that this relation must be

compatible with the group operation. This forms an l-group defined below.
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Definition 4.1. An l-group, denoted by (G,+,≤) is a set quipped with an operation

and ordering such that:

1. (G,+) is a group

2. (G,≤) is a lattice

3. The operation is compatible with the ordering. That is, a ≤ b implies a+ c ≤ b+ c

and c+ a ≤ c+ b

We call these special groups lattice-ordered groups, or l -groups. To briefly pause

and summarize: A group G, with an operation +, and an ordering ≤ is called partially

ordered when the order is reflexive, transitive, and antisymmetric, and is denoted by

(G,+,≤). This group is “upgraded” to a lattice-order group, or l -group, when, for any

two elements in G, both their least upper bound and greatest lower bound are also in

G. If we add the following condition, we get a total order group.

Definition 4.2. Let (G,+,≤) be an l-group. Then, (G,+,≤) is a total order group if

for every g, h ∈ G, either g ≤ h or h ≤ g.

Next, we prove an important property between the operation of the group and the

order, namely that the group operation distributes over both join and meet.

Theorem 4.3. Let (G,+,≤) be an l-group, and a, b, c, d ∈ G. Then:

a+ b ∨ c+ d = (a+ b+ d) ∨ (a+ c+ d) (4.0.1)

a+ b ∧ c+ d = (a+ b+ d) ∧ (a+ c+ d). (4.0.2)

Proof. To prove these equalities, we shall show that that the left hand side is less than

or equal to right hand side, then show the right hand is less than or equal to the left.

Then, the two must be equal.

We start with the first equality. By join properties, b ≤ b ∨ c and c ≤ b ∨ c. Then,

we add a and d to both sides of the inequality:
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a+ b+ d ≤ a+ (b ∨ c) + d

a+ c+ d ≤ a+ (b ∨ c) + d.

Since a+ (b∨ c) +d is greater than both a+ b+d and a+ c+d, it must be either greater

than the join of the two, or equal to it. So:

(a+ b+ d) ∨ (a+ c+ d) ≤ a+ (b ∨ c) + d. (4.0.3)

Now we shall develop the inequality the other way. We begin with

a+ b+ d ≤ (a+ b+ d) ∨ (a+ c+ d)

a+ c+ d ≤ (a+ b+ d) ∨ (a+ c+ d).

In this case, we subtract a and d from both sides, so we have:

b ≤ −a+ (a+ b+ d) ∨ (a+ c+ d)− d

c ≤ −a+ (a+ b+ d) ∨ (a+ c+ d)− d.

Since the right hand side is greater than both b and c, it must either be greater than or

equal to the join of b and c. That is:

b ∨ c ≤ −a+ (a+ b+ d) ∨ (a+ c+ d)− d.

Bringing a and d back to the left hand side, we have our result:

a+ (b ∨ c) + d ≤ (a+ b+ d) ∨ (a+ c+ d). (4.0.4)

Inequalities (4.0.3) and (4.0.4) complete (1). The proof for (2) is nearly identical.

Next, we prove De Morgan’s laws for joins and meets.

Theorem 4.4. Let (G,+,≤) be an l-group such that a, b ∈ G. Then:

−(a ∨ b) = −a ∧ −b, (4.0.5)
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and

−(a ∧ b) = −a ∨ −b. (4.0.6)

Proof. We are going to prove (1), and the proof of (2) is nearly identical. We begin with

two inequalities stemming from joins: a ≤ a ∨ b and b ≤ a ∨ b. Then, −(a ∨ b) ≤ −a

and −(a ∨ b) ≤ −b. Since −(a ∨ b) is less than both −a and −b, it must be less than or

equal to the meet of −a and −b. That is:

−(a ∨ b) ≤ −a ∧ −b. (4.0.7)

Next we prove the opposite inequality. We need to be a little creative, and begin

with something different: −a∧−b ≤ −a and −a∧−b ≤ −b. Then, taking inverses yields

a ≤ −(−a∧−b) and b ≤ −(−a∧−b). By proprieties of joins, since −(−a∧−b) is greater

than both a and b, it must be greater than or equal to the join of a and b. Therefore,

a ∨ b ≤ −(−a ∧ −b). Finally, by taking inverses again, we arrive at:

−a ∧ −b ≤ −(a ∨ b). (4.0.8)

Next we prove an useful proposition.

Proposition 4.5. Let a, b be in an l-group. Then,

a− (a ∧ b) + b = a ∨ b.
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Proof. The proof is straight forward, using Theorem 4.4 and distributive properties.

a− (a ∧ b) + b = a+ (−a ∨ −b) + b

= (0 ∨ a− b) + b

= b ∨ a

= a ∨ b.

Corollary 4.6. a− (a ∨ b) + b = a ∧ b

Proof. Follows immediately from Proposition 4.5.

Next, we give a few definitions.

Definition 4.7. Let g ∈ G, where (G,+,≤) is an l-group.

• The positive part of g is g ∨ 0, denoted by g+;

• The negative part of g is −g ∨ 0, denoted by g−.

Observe that g + g− = g + (−g ∨ 0) = (0 ∨ g) = g+. Similarly, −g− = −(−g ∨ 0) =

(g ∧ 0). Thus we arrive at the following equality:

g+ ∧ g− = (g + g−) ∧ g− = (g ∧ 0) + g− = −g− + g− = 0. (4.0.9)

We say two elements of an l -group are disjoint if a ∧ b = 0. Therefore, g+ and g−

are disjoint. Quickly, we want to prove an important property about disjoint elements.

Proposition 4.8. Let (G,+,≤) be an l-group such that a ∧ b = 0 for a, b ∈ G. Then,

a+ b = a ∨ b.

Proof. From Proposition 4.5, we have that a − (a ∧ b) + b = a ∨ b. Since a ∧ b = 0, we

arrive at a+ b = a ∨ b.

Corollary 4.9. Let g be an element of an l-group. Then g+ + g− = g+ ∨ g−.
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Proof. By Equation (4.0.9), g+ and g− are disjoint. Then, by Proposition 4.8, g+ +g− =

g+ ∨ g−.

With this proposition in hand, we can prove a version of the triangle inequality for

l -groups. Absolute value, in this context, means |g| = g+ + g−.

Theorem 4.10. Let (G,+,≤) be an l-group and a, b ∈ G. Then, |a+ b| ≤ |a|+ |b|+ |a|.

Proof. We begin with |a + b| = (a + b)+ + (a + b)− = (a + b) ∨ 0 + (−b− a) ∨ 0. Next,

observe that a ≤ a ∨ 0 and b ≤ b ∨ 0 yields a+ b ≤ a ∨ 0 + b ∨ 0. Similarly, we arrive at

0 ≤ a ∨ 0 + b ∨ 0. Therefore, (a + b) ∨ 0 ≤ a ∨ 0 + b ∨ 0. The same argument will hold

for (a+ b)−. Thus, we can deduce:

(a+ b) ∨ 0 + (−b− a) ∨ 0 ≤ a ∨ 0 + b ∨ 0 +−b ∨ 0 +−a ∨ 0

= a+ + |b|+ a−.

Since |a| = a+ ∨ a−, we can conclude that a+ ≤ |a| and a− ≤ |a|. Therefore:

a+ + |b|+ a− ≤ |a|+ |b|+ |a|.

Now we prove a new distributive property for l -groups. Earlier, we proved that

the operation distributes over joins and meets in Theorem 4.3. This new distributive

property is about joins over meets and vice versa.

Lemma 4.11. If a ≤ (a ∨ b), then c ∧ a ≤ c ∧ (a ∨ b).

Proof. Since a ≤ a ∨ b and c ∧ a ≤ a, we conclude that c ∧ a ≤ a ∨ b. Finally, since

c ∧ a ≤ a, we deduce that c ∧ a ≤ c ∧ (a ∨ b).

Theorem 4.12. The lattice of an l-group is torsion free.
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Torsion free means that, for an element a in a set, there does not exist a positive

integer n such that na = 0. An element has torsion if there does exist such an n. For

example, Z6 has torsion because 2(3) = 0. Before we prove this theorem, we prove a

lemma pertaining to joins.

Lemma 4.13. Let n be a positive natural number and g be an element of an l-group.

Then, n(g ∨ 0) = ng ∨ (n− 1) ∨ ... ∨ g ∨ 0.

Proof. We proceed by induction on n. The first case, n = 1, is obvious: 1(g∨0) = (g∨0).

Now assume k(g ∨ 0) = kg ∨ (k− 1)g ∨ ....∨ g ∨ 0. Then, for k+ 1, we get the following:

(k + 1)(g ∨ 0) = k(g ∨ 0) + (g ∨ 0)

= (kg ∨ (k − 1)g ∨ .... ∨ g ∨ 0) + (g ∨ 0)

= (kg + (g ∨ 0)) ∨ (k − 1)g + (g ∨ 0) ∨ ... ∨ g + (g ∨ 0) ∨ 0 + (g ∨ 0)

= (k + 1)g ∨ kg ∨ kg ∨ ... ∨ g ∨ g ∨ 0

= (k + 1)g ∨ kg ∨ ... ∨ 2g ∨ g ∨ 0.

Proof of Theorem 4.12. Assume that ng = 0 for an element of G. Then, by Lemma

4.13:

n(g ∨ 0) = ng ∨ (n− 1)g ∨ ... ∨ g ∨ 0

= (n− 1)g ∨ ... ∨ g ∨ 0.

By applying Lemma 4.13 to the right hand side again, we arrive at:

n(g ∨ 0) = (n− 1)(g ∨ 0) = n(g ∨ 0)− (g ∨ 0).

Thus 0 = −(g ∨ 0), and 0 = g ∨ 0. We can apply the same argument to −g, and arrive
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at 0 = −g ∨ 0. Therefore, −g ≤ 0 and g ≤ 0, so g = 0.

Lastly, we prove an important property pertaining to l -groups. We switch from

additive to multiplicative notation for simplicity’s sake in these longer computations.

Theorem 4.14. The lattice of an l-group is distributive.

Proof. We prove both distribution equalities, beginning with a∧(b∨c) = (a∧b)∨(a∧c).

First, by Lemma 4.11, a∧(b∨c) ≥ a∧b and a∧(b∨c) ≥ a∧c. Therefore, (a∧b)∨(a∧c) ≤

a∧(b∨c). Now we need only show that any other upper bound is greater than a∧(b∨c).

Say m ≥ (a ∧ b) and m ≥ (a ∧ c). Since b ≤ b ∨ c and c ≤ b ∨ c, we deduce that

e ≤ (b∨c)b−1 and e ≤ (b∨c)c−1. Then, a ≤ (b∨c)b−1a, and a∧(b∨c) ≤ (b∨c)b−1a∧(b∨c).

Then,

(b ∨ c)b−1a ∧ (b ∨ c) = (b ∨ c)(b−1a ∧ e)

= (b ∨ c)(b−1a ∧ b−1b)

= (b ∨ c)b−1(a ∧ b)

Similarly, we arrive at (b ∨ c)b−1a ∧ (b ∨ c) ≤ (b ∨ c)c−1(a ∧ c).

Since (a ∧ b) ≤ b, we conclude a ∧ (b ∨ c) ≤ (b ∨ c)b−1m and similarly a ∧ (b ∨ c) ≤

(b ∨ c)c−1m. Therefore, a ∧ (b ∨ c) ≤ (b ∨ c)b−1m ∧ (b ∨ c)c−1m. Also, note that

(b ∨ c)b−1m ∧ (b ∨ c)c−1m = (b ∨ c)(b−1 ∧ c−1)m

= (b ∨ c)(b ∨ c)−1m

= m,

and thus a ∧ (b ∨ c) ≤ m.

For the other distribution, the proof is similar: (b∧c) ≤ b implies that a∨(b∧c) ≤ a∨b

(similarly for c). Then, assume n ≤ a ∨ b and n ≤ a ∨ c. For b ∧ c ≤ b, observe that
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(b ∧ c)b−1a ≤ a (again, similarly for c). Therefore:

a ∨ (b ∧ c) ≥ (b ∧ c)b−1a

= (b ∧ c)(b−1a ∨ e)

= (b ∧ c)(b−1a ∨ b−1b)

= (b ∧ c)b−1(a ∨ c)

Thus, (b ∧ c)b−1(a ∨ c) ≤ a ∨ (b ∧ c) and (b ∧ c)c−1(a ∨ c) ≤ a ∨ (b ∧ c). Therefore,

(b ∧ c)c−1n ∨ (b ∧ c)c−1n ≤ a ∨ (b ∧ c), and thus n ≤ a ∨ (b ∧ c).

This theorem shows that an l -group is distributive. However, it is not the case that

all lattices are distributive.

Example 4.15. Consider the following set, A = {a, b, c, d, e}. The diagram below signi-

fies the ordering.

a

b c d

e

Figure 2

Now consider b ∧ (d ∨ c) and (b ∧ d) ∨ (b ∧ c). The first term goes to b ∧ a, which is b.

The second terms goes to e ∨ e, which is just e. Thus the lattice is not distributive.

Example 4.16. Let A = {a, b, c, d, e}. The diagram below signifies the ordering.

14



a

b
c

d

e

Figure 3

Again, we consider b ∧ (d ∨ c) and (b ∧ d) ∨ (b ∧ c). The first term goes to b ∧ a,

which is b. For the second term, it goes to d ∨ e, which is d. Therefore this lattice is

not distributive either. In fact, it can be shown the only nondistributive lattices are the

lattices in which one of the these two are embedded [2].

Now we are ready to develop some higher theory regarding homomorphisms, ideals,

and kernels. First, we need to offer some new definitions which “update” traditional

notions of these concepts to include order.

5 l-Homomorphisms and l-Subgroups

In this section, we extend homomorphisms and subgroups from elementary group theory

to lattices and l -groups. We begin by defining the analogous terms, then prove results

pertaining to these concepts.

Definition 5.1. Let f : G 7→ H, where (G, ∗,≤) and (H, ∗,≤) are l-groups, and a, b ∈ G.

Then, f is an l-homomorphism if the following conditions hold:

1. f is a group homomorphism, i.e., f(a ∗ b) = f(a) ∗ f(b)

2. f is a lattice homomorphism, i.e., f(a∧b) = f(a)∧f(b) and f(a∨b) = f(a)∨f(b).

Definition 5.2. A function f between two partially ordered sets is order-preserving if

a ≤ b implies f(a) ≤ f(b).
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Theorem 5.3. If f is an l-homomorphism, then f is order-preserving.

Proof. Let f : G→ H be an l -homomorphism. For a, b ∈ G, let a ≤ b. Then, b = a ∨ b,

and therefore f(b) = f(a ∨ b) = f(a) ∨ f(b). Thus, f(a) ≤ f(b).

However, the converse is not true: a function that is order-preserving does not imply

that it is an l -homomorphism. Consider the following example.

Example 5.4. Let f : (D+
6 , |) → ({1, 2, 3, 6},≤), such that f is the identity function,

i.e., f(x) = x for every x. The ordering on D+
6 is as follows: (i.e., a ≤ b if and only if

a|b).

3

6

2

1

Figure 4

Computation reveals that f is order preserving. For example, 1 ≤ 2, and f(1) ≤ f(2).

However, consider f(2∨3): (2∨3) is 6, and therefore f(2∨3) = 6. However, f(2)∨f(3) =

2 ∨ 3 = 3. And thus, f is not an l-homormorphism, for it fails to preserve joins and

meets.

We continue to extend classical algebra with more definitions.

Definition 5.5. Let G be an l-group and H be a subgroup of G, with the further condition

that for a, b ∈ H, then a ∨ b ∈ H and a ∧ b ∈ H. Then H is an l-subgroup of G.

Definition 5.6. Let H be an l-subgroup of l-group G. H is convex if, for h, k ∈ H and

a ∈ G, h ≤ a ≤ k implies a ∈ H.
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Definition 5.7. Let f be an l-homomorphism from G to H. If f is a bijection, then f

is an l-isomorphism.

Definition 5.8. Let G be an l-group, and H an l-subgroup of G. If, for h ∈ H and

every a, a−1 ∈ G, we have a−1ha ∈ H then H is normal.

Definition 5.9. Let G be an l-group, and H ⊆ G. Then, H is an l-ideal if H is a

subgroup of G, H is convex, and H is normal in G.

Definition 5.10. Let φ be a l-homomorphism from G to H, where G and H are l-groups.

Then, Ker(φ) = {a ∈ G|φ(a) = eh}, where eh is the identity element in H.

For Theorems 5.11, 5.12, and 5.13, assume the following:

Let φ be an l -homomorphism from (G, ∗,≤) to (H, ∗,≤), where G and H are l -groups,

and φ is onto.

Theorem 5.11. The kernel, Ker(φ), is an l-ideal.

Proof. Three parts are required: Ker(φ) be an l -subgroup of G, convex, and normal.

Let a, b ∈ Ker(φ). Then, φ(ab) = φ(a)φ(b) = e′e′ = e′ implies that ab ∈ Ker(φ). Since

Ker(φ) ⊆ G, Ker(φ) is associative by definition. It is well known that homomorphisms

preserve the identity element. Lastly, observe that φ(aa−1) = φ(e) = e′ = φ(a)φ(a−1).

Then, φ(a−1) = e′. Therefore, a−1 ∈ Ker(φ). Finally, φ(a∧b) = φ(a)∧φ(b) = e′∧e′ = e′.

Similarly, a ∨ b ∈ Ker(φ). Thus, Ker(φ) is an l -subgroup of G.

For convexity, let c ∈ G such that a ≤ c ≤ b. Then, φ(a) ≤ φ(c) ≤ φ(b) implies

e′ ≤ φ(c) ≤ e′. Thus, φ(c) = e′, and c ∈ Ker(φ). Finally, for normality, consider c−1ac.

Then, φ(c−1ac) = φ(c−1)φ(a)φ(c). Since a ∈ Ker(φ), φ(c−1)eφ(c) = φ(c−1)φ(c). Since

homormorphisms preserve inverses, our proof is complete.

Theorem 5.12. If N is an l-ideal of G, then the set of right cosets G/N can be provided

with an order which makes it an l-group, so that the natural map v : G 7→ G/N is an

l-homomorphism.
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Proof. It is well known, from classical group theory, that G/N is a group, and v is a

group homomorphism. Therefore, we need to show that an order can be provided which

makes G/N a lattice. We shall define that ordering, Nb ≤ Na, to mean there exists an

n ∈ N such that b ≤ na. We must show that this ordering is reflexive, transitive, and

antisymmetric. For reflexivity, Na ≤ Na since a ≤ ea. For transitivity, assume that

Nb ≤ Na and Nc ≤ Nb. That is, there exists n and n′ such that b ≤ na and c ≤ n′b.

Then, c ≤ n′b ≤ n′na. Thus, c ≤ n′na, and Nc ≤ Na. Finally, for antisymmetry,

assume that Na ≤ Nb and Nb ≤ Na. Then, a ≤ nb and b ≤ n′a for n, n′ ∈ N . Then,

n−1 ≤ ba−1 and ba−1 ≤ n′. Since N is an l -ideal, it is convex. Therefore, ba−1 = k, for

some k ∈ N , and b = ka, and thus, Nb = Na. Thus, our ordering is valid, and G/N has

partial order.

Next we show that our order is compatible with the group operation. Say Nb ≤ Na,

so b ≤ na. Then, bc ≤ nac, and Nbc ≤ Nac. Thus, NbNc ≤ NaNc.

Theorem 5.13. G/Ker(φ) is l-isomorphic to H.

Proof. Define ψ : G/Ker(φ) → G/N . Observe that (ψ(v))(g) = φ(g). For one to one,

assume that ψ(na) = ψ(nb) for some a, b ∈ G. Then, φ(a) =φ(b). Next, φ(b)−1φ(a) =

e′. Since φ is an l-homormorphism, it preserves inverses. Therefore, φ(b)−1φ(a) =

φ(b−1)φ(a) = φ(b−1a) = e′. Therefore, b−1a ∈ Ker(φ), that is, Ka = Kb. For onto,

take some h ∈ H. Since φ is onto, there exists g ∈ G such that φ(g) = h. Therefore,

ψ(Ng) = h.

Finally, to show that ψ preserves lattices, suppose Na∧Nb for Na and Nb ∈ Ker(φ).

Then, ψ(Na ∧ Nb) = φ(a ∧ b), and since φ is an l -homomorphism, ψ(Na ∧ Nb) =

φ(a) ∧ φ(b), and thus ψ(Na ∧Nb) = ψ(Na) ∧ ψ(Nb). A similar argument can be made

for joins.

Notice that Theorem 5.12 is the classical First Isomorphism Theorem for groups.
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6 Groups of Divisibility

We now turn to the topic of Groups of Divisibility. As the name suggests, we shall at

some point arrive, at a group. But before we get to these special groups, we must start

in Rings.

Definition 6.1. A Ring (G,+, ·) is a set G with two operations, denoted by “+” and

“·”, with the following properties:

• (G,+) is an abelian group

• Multiplication is associative a(bc) = (ab)c, for a, b, c ∈ G.

• Multiplication is distributive over addition: a · (b+ c) = a · b+ a · c and (b+ c) · a =

b · a+ c · a

• If in addition, there exists an element denoted by 1 such that 1 · a = a = a · 1 for

every a ∈ G, then R is a ring with unity.

Definition 6.2. Let (G,+, ·) be a ring. If ab = ba for every a, b ∈ G, then (G,+, ·) is

a commutative ring.

Definition 6.3. An Integral Domain is a commutative ring with unity and the additional

property: ab = 0 implies that a = 0 or b = 0.

There is another way to characterize an integral domain, by using divisors of zero.

Divisors of zero are elements that divide zero. That is, for a, b different than zero, ab = 0.

With this new concept, we can create an equivalent meaning for integral domains.

Proposition 6.4. Let G be an integral domain. Then G has no divisors of zero.

Proof. Let a, b ∈ G such that ab = 0. Then, a0 = 0 = ab, and so by the cancellation

property, b = 0. Similarly, a may equal zero as well.

The best example of an integral domain is Z. However, not every ring is an integral

domain. For example, take Z6: 2 · 3 = 0, but 2 and 3 are not zero, and so Z6 is not an

integral domain. An integral domain can be further expanded to a field.
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Definition 6.5. A field is a commutative ring where every nonzero element is invertible.

The best example of a field is (R,+, ·), which is certainly an abelian group; multipli-

cation is commutative; 1 is the multiplicative identity; and every a 6= 0 has an inverse,

namely 1
a
. For our purposes, fields are important because of their relationship with

integral domains via quotient fields.

Once again, the best example of a quotient field is the rationals with respect to the

integers. That is, the integral domain would be (Z,+, ·), and the rationals would be the

quotient field because every rational number is the quotient of two integers.

Definition 6.6. A Multiplicative Group is a group under multiplication of the invertible

elements of a field or ring.

With these definitions, we can now develop more theory.

Definition 6.7. A unit of a ring is a nonzero element that has a multiplicative inverse.

We denote the set of units of a ring by U.

Definition 6.8. Let R be a ring and I an ideal of R. I is principal if I is generated by

a single element a, denoted as 〈a〉.

Proposition 6.9. (U, ·) is a group, where U is the set of units in ring (R,+, ·).

Proof. Note that 1 ∈ U , since 1 = 1 · 1. Then, let a, b ∈ U . Then, there exists a−1,

b−1 such that aa−1 = 1 and bb−1 = 1. Then, for ab, (ab)b−1a−1 = 1. Thus, ab ∈ U .

Furthermore, a−1, b−1 ∈ U as well, since they also divide 1. Multiplication is associative

by definition of a ring.

Definition 6.10. Let D be an integral domain, K be the (unique) quotient field of D,

and U the unit group. Let K∗ be the multiplicative group of K. Then, the group of

divisibility is defined as:

G(D) = K∗/U

where UaUb := Uab.
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Now, G(D) (referred to from here on out as G) is an abelian group because multi-

plication was said to be commutative.

Now, we are going to attached an ordering on G: let Ua ≤ Ub if b/a ∈ D. Notice

that b/a ∈ D is equivalent to a|b, where a|b if b = ak for some k ∈ D. Now we are going

to prove that G with this partial order produces an l -group.

Theorem 6.11. Let G be a group of divisibility. Then G is a partially ordered group.

Proof. We must prove that the ordering satisfies the symmetric, reflexive, and transitive

properties required for a lattice, and that it is compatible with the operation. Say,

Ua ≤ Ub for a, b ∈ K∗. Ua ≤ Ua since a = 1a. Assume further that Ub ≤ Uc. Then,

there exist k1, k2 ∈ D such that k1a = b and k2b = c. Then, k2k1a = c. Since D is a

domain, k2k1 ∈ D. Thus, a|c and Ua ≤ Uc. Next, say Ua ≤ Ub and Ub ≤ Ua. Then,

k1b = a and k2a = b. Therefore, k1k2a = a and k1k2 = 1. Thus, k1, k2 ∈ U . Then,

for x ∈ Ua, there exists a u ∈ U such that x = ua. Then x = uk1b. Since u, k1 ∈ U ,

x ∈ Ub. Therefore, Ua ⊆ Ub. Similarly, Ub ⊆ Ua. Thus Ua = Ub. Finally, let Ua ≤ Ub,

so k1b = a. Then, k1bc = ac, and Uac ≤ Ubc. Therefore, UaUc ≤ UbUc.

Before we proceed much further, we need to make one last note about rings. From

elementary number theory we know that for two numbers a, b, the greatest common

divisor, c is a number that divides both a and b, and any other number that also divides

a and b also divides c. We extend (rather intuitively) this notion into the context of

rings.

Definition 6.12. For two elements of a ring, a, b, the greatest common divisor, or gcd,

is an element c such that c divides both a and b and any other elements that divides a, b

also divides c.

With this new concept, we can define a new kind of domain: a pseudo-Bezout domain.

Definition 6.13. A domain D is a pseudo-Bezout domain if every two elements of D

has a greatest common divisor also in D.2

2Also known as GCD-Domains.
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We have the “psuedo” version of a Bezout domain, and now we introduce a regular

Bezout domain.

Definition 6.14. A domain D is a Bezout Domain if every finitely generated ideal is

principal.

At first glance, there appears to be no obvious connection between a Bezout Domain

and a psuedo-Bezout Domain. However, there is one.

Theorem 6.15. Every Bezout Domain is a psuedo-Bezout Domain.

Proof. Let a, b ∈ D. Then, the ideal 〈a, b〉 is principal, and therefore 〈a, b〉 = 〈d〉 for

some d ∈ D. Clearly, d|b and d|a, for a0 + be = dk for some k ∈ D. Then, assume d′|a

and d′|b for some d′ ∈ D. Then, d = sa+ tb for s, t ∈ D, and thus d = sd′k + td′k′, and

thus d′|d.

Theorem 6.16. A domain is a pseudo-Bezout domain if and only if the partial order

on its group of divisibility is a lattice.

Proof. Assume D is psuedo-Bezout. That is, for every a, b ∈ D, there exists a greatest

common divisor, c ∈ D, such that c|a and c|b, and for any c′ that divides both a and

b, c′ also divides c. Therefore, Uc ≤ Ua and Uc ≤ Ub, and thus Uc ≤ Ua ∧ Ub. Since

Uc′ ≤ Uc for any c′ that divides both a and b, we conclude Uc = Ua ∧ Ub. We must

also find a join for every a, b ∈ D. We claim that ab
c

is the join (and the least common

multiple). First, observe that ab
c
∈ D. Let m = ab

c
. Now, a|m and b|m, and therefore

Ua ≤ Um and Ub ≤ Um. Assume a|m′ and b|m′. Then, take ak = m for some k ∈ D.

Since ab
c

= m, cm
b

= a. Therefore, cm
b
k = m′, and thus m|m′.

Now, assume the group of divisibility is a lattice. Then, for every a, b ∈ G, there

exists a c such that Uc = Ua ∧ Ub. Therefore, c|a and c|b, and for every c′ that divides

both a and b, c′|c, since if c′|a and c′|b, then Uc′ ≤ Ua and Uc′ ≤ Ub, and therefore is less

than the meet. Therefore, a, b has a gcd, and the domain is therefore psuedo-Bezout.

Before we turn to the main theorem of this thesis, we have to provide a final definition.
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Definition 6.17. Let K be a field. Then, a demivaluation on K is a group homomor-

phism φ from from the multiplication group of K, K∗, onto an abelian l-group G such

that:

φ(x+ y) ≥ φ(x) ∧ φ(y).

Theorem 6.18. Every abelian l-group is the group of divisibility of a Bezout Domain.

Proof. Let G be an abelian l-group and K a field. Then, let K[G] denote the group ring

of G over K, where K[G] is the vector space with a basis of aXg, where g ∈ G and a ∈ K.

So, r ∈ K[G] is of the form r =
∑n

i=1 aiX
gi . Let I := {gi}

⋂
{hi}, ḡ := {gi} − {hi}, and

finally h̄ := {hi} − {gi}. Finally, we define the following operations:

n∑
i=1

aiX
gi +

m∑
i=1

biX
hi =:

∑
i∈I

(ai + bi)X
g +

∑
i∈ḡ

aiX
gi +

∑
i∈h̄

biX
hi

aXg · bXg =: abXg+h.

These two operations behave exactly the same way addition and multiplication operate

in any ring of polynomials. So K[G] is a ring. Next we show it is an integral domain.

Say r, s ∈ K[G]. Let α be a compatible order on G (since G is an l-group). Let

E(r) denote the set of elements of G that appear as exponents in the linear expansion

of r (similarly for E(s)). Then, for rs, there will be a unique term corresponding to the

multiplication of the terms of degree g and h of the form k1k2X
g+h for k1, k2 ∈ K. But

then, since K is a field, k1k2 6= 0, and therefore k1k2X
g+h 6= 0.

Next, we are going to define a demivalution from the quotient field of K[G], k, to

G+. Let ψ : k → G+ such that ψ(r) = g1 ∧ g2 ∧ ... ∧ gn. Clearly, this map is injective.

To show that ψ is a demivalution, take r, s ∈ K[G]. Then, E(r+ s) ⊆ E(r)
⋃
E(s), and

therefore:

ψ(r + s) =
∧

E(r + s) ≥
∧

E(r)
∧

E(s) = ψ(w) ∧ ψ(s).

And thus ψ is a demivaluation. To see that it is a group homormorphism, observe
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that since G is abelian, it is representable. Therefore, φ(r) is the smallest element

of E(r), and therefore ψ(rs) = ψ(s) + ψ(r). Finally, we will show that the subring

Dw, where Dw = {x ∈ k|ψ(x) ≥ 0}, of k is a Bezout domain. Let r, s ∈ Dw, where

ψ(r) = g, ψ(s) = h, so r = tXg and s = uXh where ψ(t) = 0 and ψ(u) = 0. Thus,

< r, s >=< Xg, Xh > . But, since Dw is a pseudo-Bezout domain, g, h have a gcd,

namely g ∧ h. Therefore < Xg, Xh >=< Xg∧h > . Thus, Dw is a Bezout domain.

7 Example

In our final section, we shall present an example of a integral domain and it’s group of

divisibility and show its partial ordering.

For our integral domain, we select Z. The quotient field is Q, and the group of units

is U = {−1, 1}. The group of divisibility, therefore, is Q∗/U. And so, the ordering is

defined as:

Ua ≤ Ub if and only if
b

a
∈ Z.

Now we will show that the ordering is reflexive, antisymmetric, transitive, and is

compatible with the operation. We begin with reflexivity. Since a/a = 1 ∈ Z, Ua ≤ Ua.

For antisymmetry, assume Ua ≤ Ub and Ub ≤ Ua, so b/a ∈ Z and a/b ∈ Z. Thus,

b
a

= x ∈ Z and a
b

= y ∈ Z. Then, 1 = yx, and since x, y ∈ Z, x = y = 1 or x = y = −1.

Thus, a = ±b. Since U = {1,−1}, Ua = Ub.

For transitivity, let Ua ≤ Ub and Ub ≤ Uc such that c/b = y ∈ Z. Since b/a ∈ Z,

b = ax, and so c/(ax) = y. Therefore, c/a = xy, and since x, y ∈ Z, xy is also in Z.

Thus, Ua ≤ Uc.

Finally, let Ua ≤ Ub, so ak = b for k ∈ Z. Then, ack = bc, and so Uac ≤ Ubc, and

finally UaUc ≤ UbUc. Therefore the ordering is compatible with the operation. Since we

have reflexivity, transitivity, antisymmetry, and compatibility, the group of divisibility

is a partially ordered group.
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