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Comparative sequence analysis has been a powerful tool in 

bioinformatics which interprets knowledge about the functionality of a 

sequence, making use of its structural information. Among the non 

coding regions of DNA,   the comparison of promoter sequences has 

received a great deal of attention in medical science as promoter 

regions play a crucial role in gene regulation. In this work we propose 

an alignment free sequence comparison metric for comparison of 

promoter sequences. We use the binary and decimal position specific 

motif matrices (PSMM) of the promoters which were created for our 

experiments using the TFSEARCH tool. Simple weighted algorithm is 

used to compute the dissimilarity between the PSMMs of promoter 

sequences, thereby analyzing its underlying homology and 

functionality. The NCBI database was used to obtain the promoter 

sequences of 500 nucleotides upstream the transcription start site (TSS) 

of enzyme pyruvate kinase (PKLR) from the glycolysis pathway of 

different organisms for one experiment and all the enzymes from the 

glycolysis pathway of organism human for the other. The proposed 

dissimilarity metric is successful in bringing out differences on both the 

datasets and the results regarding similarities and differences in 

promoter sequences could be essential to have a clear knowledge of 

transcription regulation process in different organisms.The results 

reveal some useful findings which can be extended for a broader 

investigation. 
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1. INTRODUCTION  
Understanding the accumulated knowledge related to huge data has gained importance in the recent 

years. Extracting knowledge from such huge data is more challenging than the analysis of simple conventional 

data. One of the most analyzed massive data is the biological sequences. Promoter sequences in the non-coding 

regions of the genes are one such data which are less explored when compared to the coding regions of the 

genes.   Promoters can prove to be one of the keys to understand the underlying hypotheses of gene expression 

and regulation which is mainly controlled by transcription factors (TFs), that is, proteins that bind to promoter 

regions at specific sites (TFBSs) and regulate the process of transcription initiation.  
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The knowledge that governs the RNA synthesis using RNA polymerase is positioned in the promoter 

region that lies between 200-2000 nucleotides upstream of the Transcription Start Site (TSS) of a gene. The TFs  

interact with the sequence specific elements or motifs, which are 5-12 nucleotides in length. The motifs appear 

to be arranged in a specific configuration that confers on each gene an individualized spatial or temporal 

transcription program [1]. The lack of nucleotide sequence conservation between functionally related promoter 

regions makes it challenging to come out with an efficient computational model for promoter sequence analysis. 

Thus, the promoter regions of genes with similar expression pattern may not show sequence similarity even 

though they may be regulated by similar configuration of TFs [2].  

 A considerable amount of work has been carried out in aligning coding regions of DNA sequences for 

finding homology between different species. A variety of computational methods are available for sequence 

alignment namely, Bayesian methods [3], Dot matrix [4] [5], Scoring matrices [4], Dynamic programming [6], 

Hidden Markov Models [7] [8], Neural networks [9], Genetic algorithms [10], Word-based techniques etc. 

Plenty of alignment programs based on these methods exist, notably Clustal W, Clustal X, GRAIL, BLASTX, 

FASTA and MEME. Most of these methods use nucleotide comparison which is not suited for promoter 

regions. Few tools that align promoter sequences are CONREAL, Monkey and AVID. Despite the recent 

progress in phylogenetic foot printing techniques, lack of nucleotide conservation partially explains the limited 

success of the available computational models for promoter comparison [11].  

 In promoters, functionality is based on motif conservation and not nucleotide conservation. Hence, this 

type of comparison is not suited for promoters. There have been many successful attempts on similarity analysis 

and comparison of promoter sequences which perform alignment and few are alignment free 

[6][12][13][14].However, we propose an alignment free sequence comparison metric for promoter sequence 

comparison.  

In this work, we have extracted   promoter sequences consisting of one prokaryote and nine eukaryotes. 

We use the NCBI database to extract the entire possible promoter of enzyme pyruvate kinase (dataset 1) from 

the glycolysis pathway and also the promoters of 10 enzymes from glycolysis pathway of organism human 

(dataset 2). Only few reports regarding the comparison of promoter sequences of enzymes of a metabolic 

pathway exist. These obtained promoters are varying in length (500bps – 35,000bps). For analysis we have 

considered 500bps from each of the promoter sequence and then used TFSEARCH tool to obtain the motif 

details and later created the normalized position specific motif matrices (PSMM) from the same. This results in 

matrices of size 73x10, 79x10 for each promoter of dataset 1 and dataset 2 respectively. The total number of 

motifs extracted by the tool is 73 in dataset 1 and 79 motifs were extracted from dataset 2. The matrix is a record 

of the presence (entry in the cell is 1 or more) or absence (entry in the cell is 0) of a motif in various positions 1-

50, 51-100, … 451-500 of the 500 bps considered. Then we apply the proposed alignment free sequence 

comparison method for the analysis of these promoter sequences. The steps are described in detail in the next 

section.  

 

2. MATERIALS AND METHODS  
The overall schema of the method adopted is as described in the Fig 1. The PSSM creation and the 

proposed dissimilarity measures are discussed in detail in the next section.  

 

 
Figure 1. Architecture of the proposed model 
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2.1. The PSMM Creation 

The PSMM of promoter sequences of both the dataset is obtained by the following steps. At first, we 

obtain the nucleotides in the region behind the start of PKLR gene till the end/start of the gene behind it for 

forward strands/backward strands, from the NCBI. This constitutes the entire promoter of that particular gene. 

Then, we spot the first ‘TATA box’ behind initiator codon (ATG) of the gene and then take 500bps behind that 

TATA for our experimentation. Later, these sequences are submitted to the ‘TFSEARCH’ [15] tool with a 

default threshold of 85% (specified in tool) to obtain the details of all the motifs with their position and score. 

This process is carried out for all the organisms listed below in Table 1 and the enzymes listed in Table 2. 

 

Table 1 - Organisms list (dataset 1)               Table 2 - Enzymes list (dataset 2) 
1.    Homo sapien (human)                                1.   HK1 hexokinase 1  

2.    Gorilla gorilla (gorilla)                              2.   GPI glucose-6-phosphate isomerase  

3.    Macaca mulatta (rhesus monkey)              3.   PFKM phosphofructokinase 

4.    Bos taurus (cattle)      4.   ALDOA aldolase A, fructose-bisphosphate 

5.    Felis catus (cat)      5.   TPI1 triosephosphate isomerase 1 

6.    Pan troglodytes (chimpanzee)     6.   GAPDH glyceraldehyde-3-phosphate dehydrogenase 

7.    Canis lupus (dog)      7.   PGK1 phosphoglycerate kinase 1  

8.    Rattus norvegicus (rat)     8.   PGAM2 phosphoglycerate mutase 2 (muscle)  

9.    Drosophila melanogaster (fruit fly)    9.   ENO1 enolase 1, (alpha) 

10.  Pseudomonas aeruginosa (bacterium)     10.  PKM pyruvate kinase (muscle) 

 

 The PSMM matrix is generated by considering all the unique motifs identified by the TFSEARCH tool 

and are greater than 5bp in length. The matrix has 10 columns representing positions 1-50, 51-100, up to 

......451-500 of the considered 500 bps. The number of rows depends on the number of unique motifs present in 

that particular promoter. We build an initial matrix where the multiple occurrences of a motif are counted. We 

have considered its binary matrix indicating just presence or absence of a motif in a position for our 1st 

experiment and matrix with actual number of motif occurrences for 2nd experiment. In case the motif is spread 

over two different ranges then we put ‘1’ in the cell/cells where at least 40% of the motif is present. Every 

promoter has different number of motifs resulting in varying number of rows. Hence before we submit the 

matrix to our algorithm we do initial pre processing by normalizing the number of rows by simply taking union 

of all the motifs from different promoters. The input matrix of the organism Homo sapien is as shown in Table 

3. 

Table 3 – Partial Homo sapien PSMM 

Motif/ 

Positions 

0- 

50 

51- 

100 

- - - - - - - 451- 

500 

ADR1 1 0 1 1 0 0 1 0 0 5 

AhR/Ar 0 0 0 0 0 0 0 0 0 0 

SRF 0 0 0 0 0 0 0 0 0 0 

AbaA 0 0 0 0 0 0 0 0 0 0 

AML-1a 1 0 0 0 0 1 0 0 0 0 

AP 0 0 0 0 0 0 0 0 0 0 

AP-4 0 0 0 0 0 0 0 0 0 0 

Bcd 0 0 0 0 0 0 0 0 0 0 

BR-C Z 0 0 0 0 0 4 0 0 3 0 

C/EBPa 0 0 0 0 0 0 0 0 0 0 

C/EBPb  0 0 0 0 0 0 0 1 0 0 

C/EBP 0 0 0 0 0 0 0 0 0 0 

cap 0 0 0 0 2 0 0 0 0 0 

CDP CR 0 0 0 0 0 0 0 0 0 0 

CdxA 0 1 0 0 0 0 0 0 0 0 

CdxA-1 0 0 0 0 0 0 0 0 0 0 

c-Ets 0 0 1 0 0 0 0 0 0 0 

CF1 / 1 0 0 0 0 0 0 0 0 0 
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2.2. Proposed Dissimilarity Metric 

A dissimilarity measure D is considered a metric if it satisfies the following relations    sequences A, B 

and C [16] [17] [18]. 

1. : ( , ) 0Nonnegativity D A B    

2. : ( , ) 0Reflexivity D A B iff A B    

3. : ( , ) ( , )Symmetry D A B D B A   

4. : ( , ) ( , ) ( , )Triangle Inequality D A B D B C D A C    

 

 Metric: Weighted column sum 

Let A and B be the PSSMs of the two promoters under comparison. We perform logical ‘bit XOR’ 

operation as in equation 1 on these matrices. This operation results in a matrix ‘X’ containing 1 in the bit 

position if corresponding bits of matrices A, B are dissimilar and 0 if the bits are similar.  

 

                      X A B                              (1) 

 

The column sum ‘CS’ of each column ‘j’ in the matrix ‘X’ is computed using the equation 2 and then 

the weighted column sum ‘WCS’ is calculated by multiplying each CS with numerical weights in the increasing 

order starting with 1 as described in the equation 3. Later, the average weighted column sum ‘AWCS’ is 

calculated by dividing ACS by the size of matrix ‘X’. The AWCS value constitutes the dissimilarity score 

between the promoters A and B. 

  1

( ) ( , ) , 1,2,3......,
r

i

CS j X i j j c


 
                     (2) 

 

                    1

( )*k, 1, 2........, c
c

j

WCS CS j k


                    (3) 

 

                                                             / ( * )AWCS WCS r c                                     (4)     

                                                                       

Where ‘r’ is the number of rows and ‘c’ is the number of columns in matrix ‘X’. CS (j) measures the 

dissimilarity present between the promoters due to various motifs in the position ‘j’. Position ‘j’ is assigned 

weight inversely proportional to its distance from TATA box. WCS denotes the total weighted dissimilarity of 

the two promoters and AWCS gives the normalized dissimilarity. 

 

3. RESULTS AND ANALYSIS  
3.1.  Experiment 1 (binary matrices ignoring multiple occurrences of a motif) 

The results show lower dissimilarity for organisms belonging to the same family. This can be seen in 

Fig 3.b for organisms 1, 2 and 6 which belong to family ‘Hominidae’. There is considerably higher dissimilarity 

for organisms of different families. The dissimilarity is considerably high between a prokaryote and a eukaryote 

in dataset 1. The results on dataset 2 show that the dissimilarity is quite uniform suggesting existence of some 

similarity between the enzymes of the glycolysis pathway as plotted in Fig 4.b. Table 4 and Table 5 are the 

dissimilarity matrices of dataset 1 and dataset 2 respectively. 

 

  
Figure 3. a. Dissimilarity of human promoter with the rest of 9 organisms (dataset1). Figure 3. b. Dissimilarity 

of organisms 1,2,6 with the rest of 7 organisms. 
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Table 4 – The dissimilarity matrix of experiment 1 on dataset 1 

 
 

 

 

  
Figure 4. a. Dissimilarity score plotted of HK1 promoter with the promoters of rest of the 9 enzymes of 

glycolysis (dataset2). Figure 4. b. Dissimilarity of HK1 with rest 9 enzymes. 

 

 

 

Table 5 – The dissimilarity matrix of experiment 1 on dataset 2 
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3.2. Experiment 2 (matrices with actual number of motif occurrences) 

The pattern of dissimilarity results obtained on dataset 1 and dataset 2 when the decimal PSSM was fed as 

input to the algorithm is similar to the results obtained in experiment 1 as plotted in Fig 5.a and 5.b. In this case 

the dissimilarity values were scaled up as the multiple occurrences of the motif were taken into account. In 

dataset 2, we observe significant similarity between the promoter sequences of all enzymes involved in the 

glycolysis pathway as plotted in Fig 6. All the enzymes had HSF, CdXA, ADR1 and cap in common in their 

promoters. This observation also suggests that the expression of the enzymes in a single metabolic pathway is 

likely to be regulated by similar pattern of TFBs in a promoter sequence. However, this similarity analysis 

should be carried out and compared for different metabolic pathways which would give an insight into the 

specific or ubiquitous nature of the regulatory motifs in promoter sequences. 

 

  
 

Figure 5.a Dissimilarity of human promoter with the rest of 9 organisms (dataset1). Figure 5.b. Dissimilarity of 

organisms 1, 2, 6 with the rest of 7 organisms. 

 
Table 6 – The dissimilarity matrix of experiment 2 on dataset 1. 

 
 

 

 
Figure 6. Dissimilarity of HK1 with rest 9 enzymes. 
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Table 7 – The dissimilarity matrix of experiment 2 on dataset 2. 

 
 

4. CONCLUSION  
This paper successfully demonstrates the use of proposed weighted column sum dissimilarity metric for 

promoter sequence similarity analysis. Demarcation between prokaryotes and eukaryotes has been observed. 

These differences in prokaryotic and eukaryotic promoter sequence motifs suggest the distinct patterns of 

transcription regulation and this could be helpful in designing pathogen specific drugs. Moreover, the 

information regarding the similarities and differences in promoter sequences could be essential to have a clear 

knowledge of transcription regulation process in different organisms. These results might also lead to some 

inferences on the evolutionary process of transcription from prokaryotes to eukaryotes. 

We also notice that the promoter regions of genes with dissimilar motif pattern and arrangement may show 

sequence similarity even though they may not be regulated by similar motif configuration. All these results are 

from analysis of normalized promoter PSMM. We can also extend the experiments onto varied size PSMM and 

compare the obtained results. Perhaps a combination of non coding region (promoter) and coding region 

similarity score can give us a better understanding of the underlying homology existing between these genes.  
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