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 Prediction of a protein's tertiary structure from its sequence information alone 

is considered a major task in modern computational biology.  In order to closer 

the gap between protein sequences to its tertiary structures, we discuss the 

correlation between protein sequence and local tertiary structure information in 

this paper.  The strategy we used in this work is predict small portions (local) of 

protein tertiary structure with high confidence from conserved protein 

sequences, which are called “protein sequence motifs”. 799 protein sequence 

motifs that transcend protein family boundaries were obtained from our 

previous work.  The prediction accuracy generated from the best group of 

protein sequence motifs always keep higher than 90% while more than 8% of 

the independent testing data segments are predicted. Since the most meaningful 

result published in latest publication is merely 70.02% accuracy under the 

coverage of 4.45%, the research results achieved in this paper are obviously 

outperformed. Besides, we also set up a stricter evaluation to our prediction to 

further understand the relation between protein sequence motifs and tertiary 

structure predictions.  The results suggest that the hidden sequence-to-structure 

relationship can be uncovered using the Super Granule SVM Model with the 

Chou-Fasman Parameter.  With the high local tertiary structure prediction 

accuracy provided in this article, the hidden relation between protein primary 

sequences and their 3D structure are uncovered considerably. 
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1. INTRODUCTION 
 Proteins are used by organisms for virtually every life function.  Understanding the relationship between the 

amino acid sequence and the resulting protein structure is one of the most important research topics:  First of all, based 

on many biochemical experiments, it is believed that a sequence is the sole determinate in a polypeptide‟s 

structural conformation. Most proteins have just one shape for their lifetime, but a handful -- in particular:  

proteins associated with viruses such as HIV, the influenza virus, and with alpha-synuclein (protein involved in 

Parkinson disease) -- have two dramatically different shapes; one before the disease attacks and one 

after.Second, the function of a protein is directly dependent on its three-dimensional structure.  Last but not 

least, structural-based drug design in the medical field relies heavily on protein tertiary structural information 

which is usuallyobtained from expensive X-ray crystallography or NMR spectroscopy.   

 Sequence motifs are referred to as the conserved sequence patterns either functionally or structurally 

similar in a group of related proteins. The role of motifs is in predicting functional or structural portion of other 

proteins including prosthetic attachment sites, enzyme-binding sites and DNA /RNA binding sites, and so on. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal for Computational Biology (IJCB)

https://core.ac.uk/display/304928905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


   15              ISSN: 2278-8115 

 

IJCB Vol. 1, No.1, 2012, 14 – 27       http://www.ijcb.in 

 

 Even though the discovery of new motifs requires tremendous time and effort, the modification of 

known motifs and the generalization of new motifs are major issues in academia. Protein sequence motifs are 

usually categories into families.  The signatures can be derived as complex descriptors, or simple consensus 

patterns, such as blocks or profiles [1].  Some popular motifs databases include PROSITE [2], BLOACK [3], 

PRINTS [4], SBASE [5], and PFAM [6]. In terms of techniques, protein sequence motif discovery tools such as 

MEME [7], Gibbs Sampling [8], Block Maker [9], MITRA [10] and Profile Branching [11] are extensively 

adopted by the bioinformatics communities. These applications, however, suffer a common issue of limiting the 

size of input dataset. Consequently, little information that crosses family boundaries can be discovered by these 

databases and tools. In order to find out protein sequence motifs information that crosses family boundaries, the 

input dataset need to be big enough to cover all representative sequences for all known protein sequences.  As a 

result, efficient techniques are demanded.  Clustering is one of the most popular data mining techniques and has 

been studied extensively for protein sequence motifs discovering [13, 14, 16, 20-27].     Han et al produced high 

quality protein clusters from protein sequence frequency profiles [13, 21] using the K-means clustering 

algorithm. These recurring patterns were regarded as vocabularies to understand the whole sentence encoded in 

protein structure.  Subsequently, they used the sequence clusters combined with Hidden Markov Model (HMM) 

[28] to predict local protein structures.  However, these conventional clustering algorithms assumed that the 

distance between data points could be calculated. While the distance function was not well characterized, this 

approach might not reveal the true sequence-to-structure relationship [30].   

 Support Vector Machines (SVMs) [31] have established their importance in various research fields. 

SVMs implement the soft margin concept to bear mislabeled examples for the purpose of maximizing the 

margin.  Therefore, SVMs are capable of handling non-linear classification by implicitly mapping input samples 

into a higher dimension for maximum-margin hyperplane generation. Under this point of view, the SVM can be 

more efficient to discover the non-linear sequence-to-structure relationship than the K-means clustering 

algorithm [30]. However, applying the SVM to this problem is not feasible because of the high computational 

cost of the SVM algorithm [17].  It is almost infeasible to model a SVM over half a million data segments, 

which is the necessary requirement for generating protein sequence motifs that cross protein family boundaries. 

However, combining the SVM and the granule computing allows for uncovering the unknown behind the 

sequence-to-structure relationship.    

 Recently, Zhong et al [30] proposed the Clustering SVM for protein local tertiary structure prediction.  

With an aim to evaluate recurring pattern quality, 3D information including RMSD and Torsion Angle are 

integrated in the motifs evaluation process.  Our research goal is to reveal the correlation between protein 

primary sequences and the structures; As a result, none of 3D information is included during the generation of 

protein sequence motifs.  In this paper, we explain how to combine granule computing, the SVM and, the Chou-

Fasman parameter to achieve our research goal.  A detailed report on local protein structure prediction based on 

sequence information is also provided. 

 

2. SUPER GRANULE COMPUTING MODELS 
 Super Granule Support Vector Machine (Super GSVM) with Chou-Fasman parameter is a new model 

specifically designed for protein local tertiary structure prediction.  It is founded on the FGK model [16] and the 

Super GSVM-FE model [23].  In this section, we explain the FGK model and the Super GSVM-FE model, and 

then propose the Super Granule Support Vector Machine (Super GSVM) with Chou-Fasman parameter model.   

 

2.1 The FGK Model for Protein Sequence Motifs Discovery 

 Granular computing represents information in the form of aggregates, also called “information 

granules” [17, 18].  For a huge and complicated problem, it uses the divide-and-conquer concept to split the 

original task into several smaller subtasks to save time and space complexity Also, in the process of splitting the 

original task, it comprehends the problem without including meaningless information.  As opposed to traditional 

data-oriented numeric computing, granular computing is knowledge-oriented [18].  

A granular computing based model called “Fuzzy-Greedy-Kmeans model” (FGK model) is proposed in our 

previous work [16].  This model works by using FCM to building a set of information granules and then 

applying our new greedy K-means clustering algorithm to obtain the final information.  The basic idea of FGK 

model is showed in Figure 1.  The greedy method collects five traditional K-means results and then selects the 

initial centroids based on those results.  Due to the fact that the centroids in higher quality clusters have the 

potential to generate better clusters in the sixth round, we divided our selection initial centroids procedure into 

five steps: initially gathering centroid seeds belonging to clusters with structural similarity greater than 80% and 

then proceeding with 75%, 70%, 65% and 60%.  Major advantages of the FGK model are reduced time- and 

space- complexity, filtered outliers, and higher quality granular information results. 
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 Fig. 1 The sketch of the Fuzzy Greedy K-means (FGK) Model 

 

 

 Table 1. Chou-Fasman Parameters [32].  The first column indicates the name of 20 amino acids.  The 

 next three columns represent the propensities of each amino acid for helices (P(a)), sheets (P(b)) or 

 turns (P(t)). 
Symbol and name of Amino Acid  P(a) P(b) P(t) 

A : Alanine 142 83 66 

R : Arginine 8 93 95 

D : Aspartic Acid 101 54 146 
N : Asparagine 67 89 156 

C : Cysteine 70 119 119 

E : Glutamic 151 37 74 
Q : Glutamine 111 110 98 

G : Glycine 57 75 156 
H : Histidine 100 87 95 

I : Isoleucine 108 160 47 

L : Leucine 121 130 59 
K : Lysine 114 74 101 

M : Methionine 145 105 60 

F : Phenylalanine 113 138 60 
P : Proline 57 55 152 

S : Serine 77 75 143 

T : Threonine 83 119 96 
W : Tryptophan 108 137 96 

Y : Tyrosine 69 147 114 

V : Valine 106 170 50 

 

2.2 The Super GSVM-FE Model for Protein sequence Motifs Extraction 

 Basically, this new model is the next generation of the FGK model.  It also uses the fuzzy concept to 

divide the original dataset into several smaller information granules.  For each granule, after five iterations of 

traditional K-means clustering, the greedy k-means is applied.  The next step is different from the FGK model: 

we adapt ranking SVM (2002 et al, 2002) to rank all members in each cluster generated by the greedy K-means 

clustering algorithm, and then we filter out lower ranked members.   The number of segments to eliminate is 

decided by a user defined filtrate percentage.  The results of different percentage are discussed in [23] and 

“20%” provides the best tradeoff value.  After the feature elimination step, we collect all surviving data points in 
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each information granule and then run greedy K-means with same initial centroids we previously generated.  

Finally, we collect all the results in all granules to create the final protein sequence motif information. Figure 2 

demonstrates the Super GSVM-FE model. 

 

2.3 The Super Granule Support Vector Machine (Super GSVM) with Chou-Fasman Parameter Model for 

Protein Location Tertiary Structure Prediction 

 The sketch of the proposed model has been shown in Figure 3 and 4.  The whole model can be divided 

into two parts:  1. Generate and Extract protein sequence motifs generated mainly from primary sequence 

information (Figure 3); 2. Predict protein local tertiary structures through the obtained motifs. (Figure 4). 

 In order to discover protein sequence motif information which is universally conserved across protein 

family boundaries, our original input dataset is extremely large.  Therefore, an efficient granule computing 

technique is applied: Fuzzy C-means clustering algorithm is utilized as the first step to softly divide the huge 

training dataset into 10 smaller information granules.  For each information granule, we then carry out the 

Greedy K-means clustering algorithm [16], which performs the traditional K-means clustering five iterations 

and then brings together the good clusters‟ centroids as the starting centroids for the sixth round.  343 among 

799 clusters are considered meaningful recurring patterns (for more information including parameter setup and 

detail results, lease reference [16]).  After the quality evaluation, the Chou-Fasman parameter is calculated and 

appended to all data segments.  Since the size of the clusters (the average size of the clusters is 905.75 members) 

is much smaller than the original training dataset (more than half million data segments), we are able to train the 

Ranking-SVM based on secondary structure for each cluster.  Based on the trained Ranking-SVM models, we 

generate the rank of all members within the cluster.  The research results in [23] have shown that eliminating 

20% of the lower ranked members for each cluster generates the optimal protein sequence motifs information in 

the biological and biochemical perspective.  Thus, we purge 20% of the lower ranked members from each 

cluster resulting in 536 out of 799 meaningful recurring patterns.  To conclude the first part of the model, we 

collect all extracted recurring patterns for the next part of the model: local tertiary structure prediction.  It is 

important to note that during the first part of the model, none of the 3D information is involved.  After the 

sequence motifs are formed, for each cluster, we use all members‟ 3D structure to calculate the represented 3D 

structure of the cluster.  3D information is only appended after the cluster is generated and extracted.  Our 

objective is to anticipate the similar 3D structure of discovered protein sequence recurring patterns and 

independent testing dataset on the basis of similarity shared in primary sequence.   

 The second part of the Super GSVM with Chou-Fasman parameter model is straightforward: for each 

independent testing sequence segment, we first append its Chou-Fasman value and then calculate the total 

distance (including the difference of primary sequence and the Chou-Fasman value) by formula (2) with all 

sequence clusters.  Due to the fact that the protein sequence motifs we discovered are transcend protein family 

boundaries, we can directly search for a match without pre-processing the testing dataset into protein categories 

or families.  If we find a closest cluster within a given distance threshold, we can say that the testing segment is 

close enough to our discovered sequence motif and it should have a similar tertiary structure to the 

representative 3D structure of the discovered sequence motif.  Needless to say, how to setup this threshold is a 

research problem.  The stricter threshold we set, the higher prediction accuracy should be achieved.  However, 

the stricter threshold we set, the fewer testing segments can be predicted.  Detail results related to the threshold, 

the prediction coverage and the prediction accuracy are showed in section 4.  Due to the fact that sequence 

motifs, by definition, only occur in a limited number of positions within a proteins sequence, we emphasize 

“local” tertiary structure prediction [29] instead of complete tertiary structure prediction.  Detailed experimental 

results are provided in the results section. 

 

3. EXPERIMENTAL SETUP 
3.1 Training dataset  

Since the major purpose of this work is to obtain protein sequence motif information across protein family 

boundaries, the dataset of our work is supposed to represent all known protein sequences.  However, without a 

systematic approach, it is very difficult to extract useful knowledge from an extremely large volume of data.  

The basic principle we use is to choose representative protein files from the whole PDB database, and then use 

the profile in HSSP to expand each file.  

The dataset used in this work includes 2710 PDB protein sequences obtained from Protein Sequence Culling 

Server (PISCES) [19]. Among these 2710 protein sequences, no sequence in this database shares more than 25% 

sequence identity.  HSSP is a derived database merging structural (3-D) and sequence (1-D) information. For 

each protein of known 3-D structure from the Protein Data Bank (PDB), the database has a multiple sequence 

alignment of all available homologues and a sequence profile characteristic of the family [35].  In the end of 
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each HSSP file, it calculates the occurrence percentage of every amino acid on each sequence position.  An 

example of the 1b25 HSSP file is given in Figure 5.   

The sliding window technique with nine successive residues is generated from protein sequences.  Each window 

represents one sequence segment of nine contiguous positions.  More than 560,000 segments are generated by 

this method.  Figure 6 shows how we apply the sliding window technique on the 1b25 HSSP file.  Each window 

corresponds to a sequence segment, which is represented by a 9 × 20 matrix. Twenty rows represent 20 amino 

acids and 9 columns represent each position of the sliding window. For the frequency profiles (HSSP) 

representation for sequence segments, each position of the matrix represents the frequency for a specified amino 

acid residue in a sequence position for the multiple sequence alignment. 

3.2 Independent testing dataset 

The latest release of PISCES includes 4345 PDB files.  Compared with the dataset in our experiment (obtained 

in 2005), 2419 PDB files are excluded. In this experiment, we use the protein sequence motifs information 

generated from our old dataset (2710 protein sequence files) to predict the tertiary structure of these 2419 

protein files. Therefore, we regard our 2710 protein files as the training dataset and 2419 protein files as the 

independent testing dataset, which generates around 486,234 segments by the sliding window approach. 

3.3 The source of secondary and tertiary structure information  

We also obtained secondary structure from DSSP [34], which is a database of secondary structure assignments 

for all protein entries in the Protein Data Bank, for each sequence segment.  The main uses of secondary 

structure information are to evaluate sequence clusters and train the ranking SVM.  Originally, DSSP allocates 

the secondary structure to eight different classes. However, in this study, those eight classes are reclassified into 

three categories according to the following conversion model: assigning H, G, and I to H (Helices), assigning B 

and E to E (Sheets), and assigning all others to C (Coils).  The tertiary structure of protein sequence segments in 

the training set and testing set are available from Protein Data Bank (PDB). 

 

In the Super GSVM with Chou-Fasman parameter model, Chou-Fasman parameter is encoded right after the 

protein recurring patterns (clusters) are generated and the testing data are read-in.  The encoded value is 

computed as follows.  For each location within one window size, we calculate the propensity value for helices, 

sheets and turns.  Since the window size we select in the paper is 9 and 3 and different secondary structures are 

considered, an additional 9 × 3 information segment is added after the encoding procedure of Chou-Fasman 

parameter.  As we previously mentioned, for each location within a window size, HSSP provides the probability 

of each amino acid to be appeared.  Since the Chou-Fasman parameter (Table 1) provides the relative value for 

secondary structure determination, if we sum up the twenty cross value of the probability of each amino acid 

and its corresponding helices value in Chou-Fasman parameter, we can determine the total helices value.  Sheets 

and turns (or coil) share the same trends. For example, if a sequence with A (10%), R (2%), D (20%)…, and the 

total helices value equals to 10%*142 + 2%*8 + 20%*101 + … and so on.    Sheets and turns (or coil) share the 

same trends. 

3.5 Distance Measure 

Since the Manhattan distance is featured by every position of the frequency profile equally, this distance 

measure is the most suitable measurement for this research [13]. The following formulation is adopted to obtain 

the distance between two sequence segments [13]. 
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Where L is the window size and N is 20 representing 20 different amino acids. Fk(i,j) is the value of the matrix 

at row i and column j andrepresents the sequence segment. Fc(i,j) is the value of the matrix at row i and column 

j andrepresents the centroids of a give sequence cluster.  The lower the dissimilarity value, the higher similarity 

the two segments have. 

 

3.6 Distance Measure together with Chou- 

Fasman Parameter 

 

City block distance measure is still valid after the Chou-Fasman parameter is encoded in each sequence 

segment.  The following formula is used to calculate the similarity of two sequence segments:  
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Where 1w
and 2w

indicate the weight of the sequence dissimilarity and Chou-Fasman value.  In this paper, both 

weights are equal to 1.  L is the window size and M is 3 for the 3 different secondary structures (H, E and C) 

score values.  The lower total dissimilarity value, the higher similarity the two segments have. 

3.7 Secondary Structural Similarity Measure 

Cluster‟s average structure is calculated using the following formula: 

 

 Secondary structural similarity= ws
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Where ws is the window size and Pi,H shows the frequency of occurrence of helix among the segments for the 

cluster in position i. Pi,E and Pi,C are defined in a similar way. If the structural homology for a cluster exceeds 

70%, the cluster can be considered structurally identical [15]. If the structural homology for the cluster is 

between 60% and 70%, the cluster can be viewed weakly structurally homologous [20]. 

3.8 Tertiary Structure Distance (dmRMSD) 

 

In this research, we use “Distance Matrix”, which is the mutual distance among Cα carbans, to represent the real 

3D structure as well as predicted 3D structure. The distance matrix to represent the structural segment stores the 

distance from the first atom‟s Cα carban to the second atom‟s Cα carban, the distance from the first atom‟s Cα 

carban to the third atom‟s Cα carban, …, the distance from the first atom‟s Cα carban to the ninth atom‟s Cα 

carban and then the distance from the second atom‟s Cα carban to the third atom‟s Cα carban… and so on. In 

our example, since the window size equals to nine, the distance matrix stores 36 distances in total.    

In order to describe the representative 3D structure of a cluster, we introduce Average Distance Matrix (ADM), 

which records the average for the distance matrices of all the sequence segments in one cluster, using the 

following formula: 
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Where

k

ji
is referred to the distance between α-carbon atom i and α-carbon atom j in the sequence segment k 

of the length L.  N is the total number of sequences in the cluster. 

To calculate the structure distance between the real one and the predicted one, we use dmRMSD [36, 37] 

described as follows: 
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Where

ADM

ji
 is used to represent the predicted sequence cluster‟s 3D structure and

1s

ji
is the structure 

information to be predicted. M is the number of distances in the distance matrix.  Since the window size we 

assumed is nine (L=9), M = 36. 

 

4. RESULTS AND ANALYSIS 
4.1 Quality of Protein Sequence Motifs Information 

Due to the fact that our main research idea is based on using protein sequence patterns generated from 

only sequence (1D) information to predict the protein tertiary (3D) structure, the quality of protein sequence 

recurring patterns dominates the success level of our experiment.  As the result, improving the quality of our 

protein sequence pattern (motifs) information is our first priority.  Intra-cluster secondary structure similarity 

within the protein sequence clusters is the major evaluation criteria.  According to [15, 20], if the structural 

homology for a cluster exceeds 70%, the cluster can be considered structurally identical; If the structural 

homology for the cluster exceeds 60% and lower than 70%, the cluster can be viewed weakly structurally 
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homologous. Therefore, we separate the cluster quality into four classes based on the secondary structure 

similarity of clusters: Bad (<60%), Fair (60%~70%), Good (70%~80%) and Excellent (>80%). 

In our previous work, we have successfully obtained 343 out of 799 clusters (detailed cluster quality 

information is available in Table 2).  Next, we further extract all clusters by training a Ranking-SVM for each 

cluster and discard the lower 20% ranked data segments.  Extra 200 high quality (secondary structural similarity 

> 70%) protein sequence patterns are produced [29] (detailed cluster quality information is also available in 

Table 2).  Since our focus is on finding protein sequence motifs that crosses family boundaries, we are able to 

use our protein sequence patterns to predict protein local tertiary structures on all unknown protein sequences 

without being limited to a specific protein family.  

 

Table 2. The comparison of number of clusters belongs to different group 

 
 

Secondary Structure Quality 

< 60% 

(Bad) 

60%~70% 

(Fair) 

70%~80% 

(Good) 

> 80% 

(Excellent) 

 

FGK250 [16] 
 

 

456 

 

231 

 

88 

 

24 

Super GSVM [5] 256 287 156 100 

Super GSVM with Chou-Fasman 274 267 160 99 

 

The key difference between this experiment and the latest study [29] is the inclusion of the Chou-

Fasman parameter [32, 33] on each data segment before the clusters are trained by the ranking SVM.  The same 

training data set and independent testing dataset were used in this experiment as were used in our previous work 

[29].  Table2 demonstrates the number of sequence clusters belonging to different quality categories generated 

by different approaches.  The first row of Table2 indicates the secondary structure quality category. According 

to [15, 20], if the structural homology for a cluster exceeds 70%, the cluster can be considered structurally 

identical; If the structural homology for the cluster exceeds 60% and lower than 70%, the cluster can be viewed 

weakly structurally homologous. Therefore, we separate the clusters into four classes based on the secondary 

structure similarity of clusters: Bad (<60%), Fair (60%~70%), Good (70%~80%) and Excellent (>80%). 

As shown from Table2, both Super GSVM models outperform the original FGK model.  Comparing 

the two Super GSVM models, we find that the one with Chou-Fasman does produce one more high quality 

clusters (secondary structural similarity > 70%).  This suggests that the addition of the Chou-Fasman parameter 

enabled the ranking SVM to rank the belongingness of each cluster member to its particular cluster more 

intelligently, resulting in higher quality clusters. Although the total number of clusters greater than 60% is 

reduced and the difference of number of high quality clusters is not huge, the prediction accuracy for protein 

local tertiary structure is increased dramatically as reported in the next section. 

 

4.2 Prediction Accuracy Comparison  

In Figure 7, we provide a visual description to explain the use of protein local tertiary structure 

prediction.The colorful portion of figure is depicted from the local tertiary structure prediction.  Researchers can 

use the predicted portion as anchors to expend consecutive fractions and form global tertiary structure 

prediction. Undoubtedly, the prediction accuracy and the prediction coverage (how many colorful portions are 

formed) play the key role to the success of global prediction. 

 

 Table 3. Prediction Accuracy with 1.5 Å criteria and coverage on three clustering quality groups under 

 different distance threshold 

 Excellent Group Good Group Fair Group 

Distance 

Threshold 

Prediction 
accuracy 

(%) 

#segment 

Predicted 
Coverage(%) 

Prediction 
accuracy 

(%) 

#segment 

Predicted 
Coverage(%) 

Prediction 
accuracy 

(%) 

#segment 

Predicted 
Coverage(%) 

600 100.00% 20 ≈0% 57.14% 14 ≈0% 12.90% 31 0.01% 

700 99.21% 254 0.05% 63.87% 155 0.03% 28.79% 323 0.07% 

800 97.37% 1254 0.26% 73.59% 765 0.16% 32.69% 1355 0.28% 

900 96.05% 3619 0.74% 73.24% 2425 0.50% 36.80% 3864 0.79% 

1000 95.53% 7781 1.60% 74.02% 5665 1.17% 39.32% 8289 1.70% 

1100 94.87% 13893 2.86% 75.06% 11097 2.28% 42.10% 15285 3.14% 
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1200 93.79% 20985 4.32% 73.87% 18634 3.83% 43.24% 25247 5.19% 

1300 92.67% 28576 5.88% 72.38% 28480 5.86% 43.50% 38310 7.88% 

1400 91.34% 35990 7.40% 70.99% 39747 8.17% 43.14% 54534 11.22% 

1500 89.92% 42948 8.83% 69.43% 51802 10.65% 42.34% 72350 14.88% 

1600 88.41% 49014 10.08% 67.97% 63729 13.11% 41.42% 91126 18.74% 

1700 87.00% 53945 11.09% 66.57% 74339 15.29% 40.45% 109133 22.44% 

1800 85.82% 57767 11.88% 65.34% 83047 17.08% 39.66% 124386 25.58% 

1900 84.88% 60307 12.40% 64.44% 89033 18.31% 38.98% 135447 27.86% 

2000 84.29% 61763 12.70% 63.88% 92702 19.07% 38.54% 142728 29.35% 

 

Table 4. Prediction accuracy with 1.0 Å criteria on three cluster groups under different distance threshold 

 Excellent Group Good Group Fair Group 

Distance 
Threshold 

Prediction 

accuracy 

(%) 

#segment 
Predicted 

Coverage(%) 

Prediction 

accuracy 

(%) 

#segment 
Predicted 

Coverage(%) 

Prediction 

accuracy 

(%) 

#segment 
Predicted 

Coverage(%) 

600 95.00% 20 ≈0% 42.86% 14 ≈0% 3.23% 31 0.01% 

700 96.46% 254 0.05% 45.81% 155 0.03% 6.50% 323 0.07% 

800 93.14% 1254 0.26% 53.99% 765 0.16% 9.08% 1355 0.28% 

900 90.80% 3619 0.74% 54.19% 2425 0.50% 10.61% 3864 0.79% 

1000 89.37% 7781 1.60% 54.49% 5665 1.17% 11.01% 8289 1.70% 

1100 88.36% 13893 2.86% 54.10% 11097 2.28% 12.16% 15285 3.14% 

1200 86.71% 20985 4.32% 52.31% 18634 3.83% 12.65% 25247 5.19% 

1300 85.08% 28576 5.88% 50.58% 28480 5.86% 12.81% 38310 7.88% 

1400 83.48% 35990 7.40% 49.07% 39747 8.17% 12.70% 54534 11.22% 

1500 81.86% 42948 8.83% 47.71% 51802 10.65% 12.36% 72350 14.88% 

1600 80.22% 49014 10.08% 46.49% 63729 13.11% 11.96% 91126 18.74% 

1700 78.69% 53945 11.09% 45.41% 74339 15.29% 11.48% 109133 22.44% 

1800 77.46% 57767 11.88% 44.55% 83047 17.08% 11.13% 124386 25.58% 

1900 76.44% 60307 12.40% 43.94% 89033 18.31% 10.89% 135447 27.86% 

2000 75.85% 61763 12.70% 43.55% 92702 19.07% 10.68% 142728 29.35% 

 

In this subsection, we indicate a successful prediction of local 3D structure if the average dmRMSD is 

less than 1.5 Å.  A complete report on the prediction accuracy gen-erated from different cluster groups and the 

number of predicted segments is provided in Table3.  The first column shows different distance thresholds 

(corresponding to step(4) in Figure 4) based on the distance calculation of “Distance measure together with 

Chou-Fasman parameter” described in 3.6.  The second, fifth, and eighth column give the prediction accuracy 

based on given distance threshold under different cluster groups.  The third, sixth, and ninth column illustrate 

the number of predicted sequence segments under different cluster groups.  The prediction coverage (the fourth, 

seventh, and tenth column) is derived from the number of predicted segments divided by total number of testing 

sequence segments, which equals to 486,234.   

A full comparison of the prediction accuracy between the Super GSVM model [29] and our newly 

proposed Super GSVM with Chou-Fasman parameter model is presented in Figure 8 and 9.  Excellent (in Figure 

8) and Good (in Figure 9) are the prediction results generated from four different groups in this paper.   P-

Excellent (in Figure 8) and P-Good (in Figure 9) are the prediction results re-ported in [29].  As we mentioned 

in section 2.3, different distance thresholds generate different prediction accuracy and prediction coverage.  

Since the distance is calculated differently in this research and in [29], it is not useful to directly compare the 

accuracy-vs.-distance threshold relationship.However, coverage is consistent between both experiments; as a 

result, we use coverage as X-axis in Figure 8 and 9 to show the direct comparison.   

The new prediction results show a clear increase in accuracy while comparing with the previous work 

[29].  The prediction accuracy line of the excellent group stands alone at the top of the figure and always keeps 

above 84%.  The best prediction accuracy result in [29] is 71.98% which covers a mere 0.14% of testing dataset.  

Comparing the above finding with this work, the prediction accuracy is approximately 97% at the same 

coverage.  This is a 25% prediction accuracy improvement.  Even the Good group in this experiment shows 
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better quality than the P-Excellent group.  Since the fair group did not generate meaningful prediction results in 

both this research and [29], we just skip the comparison.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The sketch of the Super GSVM-FE Model 

 

4.3 A Stricter Prediction Criterion  

In order to compare with the latest research result, we adopt the criterion that if the average dmRMSD 

is less than 1.5 Å, it indicates a successful prediction. However, we are also curious whether our research results 

are still outstanding under a stricter criterion?  Therefore, we reevaluate our prediction accuracy by the standard 

that “if the average dmRMSD is less than 1.0 Å, it indicates a successful prediction.”  Table 4 (use the same 

format in Table 3) represents the prediction accuracy under different distance thresholds based on the new 

criterion. Figure 10 is derived from Table 4 for visually comparison.  



   23              ISSN: 2278-8115 

 

IJCB Vol. 1, No.1, 2012, 14 – 27       http://www.ijcb.in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The procedure of generating and extracting protein sequence motifs from primary sequence 

 information with Chou-Fasman parameter 

 

------------------------------------------------------------------------------------------------------------------ ---------- 
1) For each protein sequence segments with unknown 3D structure 

2)     Encode Chou-Fasman Parameter 
3)     Find the cluster (generated in Fig 3) with closest distance  

4)         If the distance is within the distance threshold: 

5)             Feed the unknown protein sequence segment into cluster‟s   
                Ranking SVM 

6)             If Ranking SVM provides a good rank: 

7)                 Predict protein sequence segment‟s 3D structure via cluster‟s representative 3D structure 
8)             Else 

9)                 Find the next cluster with closest primary sequence  

10) Goto step (3)  

11)       Else 

12)           Unable to predict the given protein sequence segment   
---------------------------------------------------------------------------------------------------------------------------- 

 Fig. 4 Pseudo code for the super Granule Support Vector Machine Model (Super GSVM) 

Training dataset 

Fuzzy C-Means Clustering 

Information 

Granule 1 

Information 

Granule 10 

Greedy K-means 

Clustering  

Greedy K-means 

Clustering  

Collect all extracted clusters and 
Ranking-SVMs  

Calculate representatice3D 

structure for each cluster  

... 

... 

For Each  

Cluster 

Train Ranking 
SVM 

and then 

Eliminate 20% 
lower rank 

members  

 

... 

Train Ranking SVM 
and then 

Eliminate 20% lower 

rank members  

 

… … For Each  

Cluster 

Five iterations of 

traditional K-
means 

Five iterations of 

traditional K-
means 

Evaluate each cluster by 

the 2nd structural similarity 

AND 
For each member of the 

cluster, encode Chou-

Fasman parameter  

 

… For Each  

Cluster 

… For Each  

Cluster 

Evaluate each cluster by 

the 2nd structural similarity 
AND 

For each member of the 

cluster, encode Chou-
Fasman parameter  

 

... 
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 Fig. 5 Part of 1b25 HSSP file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 An Example of the sliding window technique with a widow size of 9 applied on 1b25 HSSP file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 The visual description demonstrates the importance of protein local tertiary structure prediction 

 in global structure prediction.  Based on the colorful segments, which are generated by the local tertiary 

 structure prediction model with high accuracy, we can simplify the complex exploration process from 

 an astronomically large space by a reasonable extent.     
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Fig. 8comparison of protein local tertiary structure prediction accuracy generated by protein sequence 

 motifs with 2nd structure similarity > 80% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Comparison of protein local tertiary structure prediction accuracy generated by protein sequence 

 motifs with 2nd structure similarity between 70%~80% 
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Fig. 10Comparison of protein local tertiary structure prediction accuracy generated by different group 

 under 1.0Å criterion 
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Under a much more strenuous criterion, the excellent group still able to generate prediction accuracy 

greater than 90% with distance thresholds equals to 900 (0.74% coverage) and generate prediction accuracy 

greater than 80% with distance thresholds equals to 1600 (10% coverage).  At the 1.0Å criterion, all groups 

except the excellent group seem to fall approximately 20~30% in their prediction accuracies.  The Excellent 

group, however, experiences a fall of < 10%.  This result supports the idea that the sequence patterns with the 

highest secondary structural homology result in the highest prediction accuracies. This observation can also be 

supported by that when we change the criterion from 1.5Å to 1.0Å, the effects on the prediction accuracy is 

minimum. 

 

5. FUTURE WORKS 
 Without any parallelization, it took our team 18 days to generate sequence clusters from our 500MB 

training dataset and another three months to train Ranking-SVM on all 799 clusters.  Currently, we are adapting 

our model to support high performance computing so that we can feasibly try many different parameters and 

adopt the latest data.    

 Multiple experiments naturally follow from this study.  Firstly, we can compare the newly generated 

clusters with the clusters from the previous study.  This could reveal a new metric for cluster quality as well as 

increase our understanding of the impact that slight structural modifications at the primary structural level have 

on the overall tertiary structure.  Secondly, we might discover the best weight (in equation (2)) between the 

protein sequence and Chou-Fasman parameter to calculate the optimal distance between two sequence 

segments.  Last but not least, an intelligent voting mechanism can be included for better prediction accuracy 

generation. 
 

6. CONCLUSION 
 In conclusion, it appears that the inclusion of the Chou-Fasman parameter in the training set presented 

to the Super GSVM significantly increases prediction accuracies.  The increase is experienced without a 

significant rising in the quality of the clusters as measured by secondary structure homology.  This suggests that 

the Chou-Fasman parameter (used in the prediction of secondary structure) may hold some value in the 

prediction of tertiary structure that is outside of that held by secondary homology.  To the best of our 

knowledge, it is the first time that Chou-Fasman parameter is adopted into the mechanism of protein local 

tertiary structural prediction.  Above 90% of local tertiary structure prediction is achieved by our excellent 

protein sequence pattern group.  The high prediction accuracy implies that it is feasible to predict local tertiary 

structure information based on purely sequence information. 
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