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Malaria is an infectious disease caused by protozoan of the genus Plasmodium. 

It is transmitted by bite from infected female Anopheles mosquito. Plasmodium 

falciparum erythrocyte membrane protein 1 (PfEmp1), an antigen that is 

responsible for the immune evasion of the protozoan. This protein has adhesive 

properties that cause the infected erythrocytes to bind to the endothelial lining 

of the blood vessel, thus preventing the infected cells from getting filtered by 

the spleen. It is found that there is an interaction between the sulphate ion on 

the endothelial cells and NH1, NH2 of Arg 1467 (A), NZ of Lys 1324 (A) and 

two bonds with N of Gly 1329 (A) on the protein. Inhibiting this interaction 

may prevent the evasive action. A Ligand with SO4 interactive region can be 

used to achieve this. Computer aided drug designing techniques were used to 

find a new scaffold to solve the purpose. GROMACS was used to simulate the 

protein-Ligand interaction. It was observed that ZINC17206599 shows the best 

interaction and may prove to be a promising candidate drug for Malaria. 
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1. INTRODUCTION  
Malaria was discovered to be a parasitic disease in 1880s. Malaria is an infectious disease transmitted to 

humans by the infected Anopheles mosquitoes. The infection spreads through the bite of the infected mosquito 

and by contact with the infected blood in rare cases. A developing foetus can contract the disease from the 

mother. The common symptoms include high fever and chills, headache, nausea, sweats, muscle pain and these 

tends to show up in cycles. Malaria is a preventable and curable disease. However sometimes, even after the 

treatment and the malarial parasites (Plasmodium) remain in the body in organs as they become resistant to the 

medicines. Cytoadhesion of Plasmodium falciparum-infected erythrocytes to host microvasculature is a key 

virulence determinant. Parasite binding is mediated by a large family of clonally variant adhesion proteins, 

termed P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by var genes and expressed at the 

infected erythrocyte surface 
[1]

. Although PfEMP1 proteins have extensively diverged under opposing selection 

pressure to maintain ligand binding while avoiding antibody mediated detection, recent work has revealed they 

can be classified into different groups based on chromosome location and domain composition. This grouping 

reflects functional specialization of PfEMP1 proteins for different human host and microvascular binding niches 

and appears to be maintained by gene recombination hierarchies. In one extreme, a specific PfEMP1 variant is 

associated with placental binding and malaria during pregnancy, while other PfEMP1 subtypes appear to be 

specialized for infection of malaria naïve hosts. Here, we discuss recent findings on the origins and evolution of 
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the var gene family, the structure–function of PfEMP1 proteins, and a distinct subset of PfEMP1 variants that 

have been associated with severe childhood malaria 
[2,] [3]

. 

The human malaria parasite, Plasmodium falciparum, varies a family of adhesion proteins at the infected 

erythrocyte (IE) surface that it uses to bind to the endothelial lining of blood microvessels (Milleret al., 2002). 

During blood-stage infection, P. falciparum merozoites sequentially invade and egress from red blood cells 

every 48 h. As the parasite matures, IEs exhibit reduced deformability and sequester from blood circulation.This 

allows the parasite to avoid splenic clearance mechanisms, but comes at a cost to the host. Sequestered IEs 

disrupt microvascular blood flow (Dondorp et al., 2008) and cause localized endothelial dysfunction by 

damaging endothelial barrier integrity and inducing proinflammatory, pro-adhesive and coagulation pathways 

(Francischetti et al., 2008; Moxon et al., 2009; Miller et al.,2013). This adhesive phenotype is also associated 

with organ-specific disease complications from IE adherence in brain (cerebral malaria) and placenta (placental 

malaria) microvasculature (Miller et al., 2002). Cytoadhesion is mediated by specific interactions between 

members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family encoded by var genes and 

receptors on the surfaces of endothelial cells (Rowe et al., 2010)
[4]

. Each parasite genotype encodes 60 different 

var genes, which are expressed in a mutually exclusive fashion (Guizetti and Scherf, 2013). Switching between 

var genes facilitates parasite immune evasion and modifies IE binding specificity (Roberts et al., 1993). A 

specific PfEMP1 variant, VAR2CSA, interacts with chondroitin sulfate A, which is abundant within the 

placental intervillous space (Fried and Duffy, 1996; Salanti et al., 2004). In contrast, cerebral binding and severe 

childhood malaria is associated with specific PfEMP1 variants containing a combination of adhesion domains, 

termed domain cassettes (DC) 8 and 13 (Avril et al., 2012;Claessens et al., 2012; Lavstsen et al., 2012). The 

vast majority of P. falciparum infections do not lead to severe malaria, suggesting that IE sequestration is 

relatively well adapted to limit host death and favour parasite transmission to mosquitoes. It is therefore 

interesting that potentially lethal adhesion traits persist in the parasite population. This review covers recent 

advances in the molecular mechanisms of PfEMP1 binding, integrating findings on protein structure–function, 

var gene evolution and adhesion phenotypes associated with severe malaria
4
. 

 

 
 

The PfEMP1 head structure has diverged into three major binding groups under selection for EPCR 

binding, CD36 binding, or to form rosettes with uninfected erythrocytes. The proportion of different head 

structure types in the 3D7 reference genome isolate and their predicted binding properties is shown. Note there 

may be some binding exceptions (e.g. only a subset of CIDRα1 domains bind EPCR, see Fig. 1). CD36 binding 

is the most common PfEMP1 adhesion trait and is associated with mild malaria. EPCR binding and rosetting is 

linked to group A head structures. Group A PfEMP1 tend to be expressed in early childhood infections or 

malaria naïve, and are also associated with severe malaria. Under normal circumstances, protein C (PC) binds to 

EPCR and is activated by the thrombin (T)/thrombomodulin (TM) complex. Activated protein C (APC) that is 

released into the plasma has anti-coagulant activity and the APC/EPCR complex activates the protease activated 

receptor 1 (PAR1) to mediate intracellular signalling. The protein C-EPCR signalling pathway has anti-

inflammatory, anti-thrombotic and endothelial cytoprotective activities that help maintain vascular integrity 

(Mosnier et al., 2007). The loss of EPCR at sites of P. falciparum IE sequestration (Moxon et al., 2013) and 

EPCR binding parasites (Turner et al., 2013) may combine to interfere or subvert these pathways and contribute 

to disease pathogenesis
[5], [6]

. 



                 ISSN: 2278-8115 

IJCB Vol. 5, No. 1, Month 2016, 28 – 37      http://www.ijcb.in 

30 

According to WHO, approximately 660,000 people died from malaria in 2010 globally, most of them 

were African children. There were an estimated 219 million cases of malaria infection in 2010 worldwide. The 

malaria burden in many parts of the world is being dramatically reduced thanks to increased malaria prevention 

and control measures. Travellers from malaria-free areas who enter endemic areas are especially vulnerable to 

severe symptoms when they become infected. About 80% of all malaria cases occur in just 17 countries 
[4]

. 

Nigeria and the Democratic Republic of the Congo account for more than 40% of all malaria deaths worldwide 
[7]

. 

Different types of malaria are caused by different species of Plasmodium parasite and each  type differs 

according to the parasites as each of the parasite have different life cycle which results in slight symptoms and 

treatment variations
9
. Malaria is to be treated as soon as the symptoms appear. According to World Health 

Organization the following drugs can be used for treating malaria: Amodiaquine, Artesunate, Atovaquone, 

Dapsone, Dihydroartemisinin, Lumefantrine, Mefloquine, Piperaquine, Pyrimethamine (see figure 1 for the 

structures). 

 

 
Figure 1: Marketed Anti-malarial drugs 

Considering the epidemiology, action of the existing anti-malarial drugs is weakened as the parasites 

become highly resistive due to their mutative capacity. Therefore, it is necessary that the proteins synthesized by 

these parasites are targeted to control the disease outcome. The agenda is to inhibit the interaction of NH1, NH2 

of Arg 1467 (A), NZ of Lys 1324 (A) and two bonds with N of Gly 1329 (A) with the four oxygen‟s from the 

sulphate ions. The endothelial cell of the blood vessel contains chondroitin sulphate where the protein's adhesive 

property comes into action as it binds to the SO4 on the cell lining. Hence, if this function is inhibited, the effect 

can be inversed. Hence, the infected cells can be filtered out of the body. 

The aim of this study was to design a lead compound against malaria with the help of various Insilico 

approaches against multiple protein targets. The various approaches include Pharmocophore based screening to 

get more novel molecules based on uniqueness of features, screening against various databases and to study 

molecular dynamics study to check stability of the protein-ligand complex in different environmental factors 
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with respect to temperature, pressure and energy that might prove more efficient binding against the target 

protein and hence increase the probability to cure the malaria. 

 

2. MATERIALS AND METHODS 
2.1 Literature review and screening the drugs 

Nine drugs marketed against malaria as prescribed by World Health Organisation namely Amodiaquine, 

Artesunate, Atovaquone, Dapsone, Dihydroartemisinin, Lumefantrine, Mefloquine, Piperaquine, and 

Pyrimethamine were finalised for the process. Thereafter, these molecules were screened for Arg, Lys, and Gly - 

CDS interaction. Structure of a chondroitin sulphate binding DBL3X from a var2csa encoded PfEMP1 protein 

in complex with sulphate (3BQK) was used as the target protein and the sulphate group was removed using 

Accelrys Discovery Studio before submitting it for active site prediction. CastP server 

(http://sts.bioe.uic.edu/castp/), an online tool to find the active sites on a protein was used to determine the 

pockets on PfEMP1. It was observed that Lys 1324, Arg 1467, Gly 1329 fell under the largest pocket (pocket 

47). The range for plotting the grid while docking drugs with the protein was analysed from this result. The 

averaged coordinates of the amino acids were obtained from the topology file of PfEMP1 so that grid 

parameters (centre grid box values) could be set and the pocket size was also considered for this. Grid parameter 

(point dimension) was set to 60, 60, 60 on the x, y and z coordinates to cover the entire pocket and docking was 

performed. It was observed that only Amodiaquine, Artesunate, Atovaquone, Mefloquine and Piperaquine 

bonded with Gly 1329 or Lys 1324 (see Table 1).Dapsone, Dihydroartemisinin, Lumefantrine, Pyrimethamine 

were eliminated as it did not show required interaction. 

Table 1: Docking result for the nine marketed drugs with PfEMP1 

Sr. no Drugs Run Energy Rank Sub-Rank Interaction 

1 Amodiaquine 46 -5.92 7 1 Gly 1329 

2 Artesunate 15 -6.55 3 2 Lys 1324 

  

34 -6.39 13 1 Lys 1324 

3 Atovaquone 4 -7.96 2 1 Gly 1329 

  

29 -7.31 3 4 Lys 1324 

  

41 -7.33 3 3 Lys 1324 

  

55 -7.92 2 2 Gly 1329 

4 Dapsone No Match No Match No Match No Match No Match 

5 Dihydroartemisinin No Match No Match No Match No Match No Match 

6 Lumefantrine No Match No Match No Match No Match No Match 

7 Mefloquine 16 -5.26 5 4 Gly 1329 

  

26 -5.25 5 5 Gly 1329 

  

26 -5.25 5 5 Lys 1324 

  

46 -5.44 5 2 Gly 1329 

8 Piperaquine 18 -5.5 15 1 Gly 1329 

9 Pyrimethamine No Match No Match No Match No Match No Match 

Selected drugs were then combined in Discovery Studio into a single .mol2 format. Separate 

combination was created keeping each drug as pivot molecule for Pharmocophore analysis. These were then 

uploaded to PharmaGist server, an online server for Pharmocophore analysis. The analysis revealed that 

Artesunate as the pivot molecule produced favourable results (see Table 2). 

The Pharmocophore was obtained from PharmGist (http://bioinfo3d.cs.tau.ac.il/PharmaGist/)
 
result for 

combined molecule (Artesunate, Amodiaquine, Atovaquone, Mefloquine, Piperaquine) with Artesunate as the 

pivot molecule, were then uploaded on Zinc Pharmer (http://zincpharmer.csb.pitt.edu/) for searching molecules 

with identical Pharmocophore. Parameters were altered to get optimum results. Repetitive Pharmocophore class 

members were disabled and filters were set to molecular weight ≤ 500 and subset was set to ZINC Natural 

Products.  

 

 

 

 

http://sts.bioe.uic.edu/castp/
http://bioinfo3d.cs.tau.ac.il/PharmaGist/
http://zincpharmer.csb.pitt.edu/
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2.2 Preparing the molecules for docking 

The result from Zinc Pharmer generated a single .sdf file for the various screened molecules. Duplicate 

entries were removed from the .sdf to obtain unique molecules in a single .sdf file (see Figure 3 for KNIME 

workflow)
. 

Perl subroutine was used to split the single .sdf files into separate molecule files based on the 

delimiter differentiation. Thus, 37 sdf files obtained were then converted to .pdbqt format necessary for docking 

(Autodock) with Shell script. 

 

KNIME workflow for removing duplicates using GroupBy Node 

 
Figure 3: KNIME workflow for removing duplicated molecule from sdf file 

 

2.3 Docking using Autodock 

Autodock is a tool developed using C program. This tool is used to study interaction between ligands 

(flexible) and protein (macromolecules) of known and unknown structures. Docking can be done in 

conformational space using Lamarckian genetic algorithm that is coupled with energy using a method based on 

the Amber force field. These two functions generate the molecular coordinates that describes about the possible 

docked ligand conformations that can be used for theoretical drug designing and study. Docked conformation is 

represented by binding energy and hydrogen bond formation on the basis of quantum and molecular mechanical 

modeling of atomic forces
[8],[9]

.The grid parameters that was used for the first docking was used again as the 

pocket in consideration was same. Grid parameter files and dock parameter files for 50 runs were generated 

individually for all the Ligands. Then, a batch file was prepared to run all the 37 Ligands. After docking 

Lamarckian genetic algorithm was utilised to analyse the result. Ligands with lowest binding energy value were 

selected. 

2.4 Loop Docking 

The purpose behind loop docking approach is based on the fact that consecutive docking runs could 

noticeably improve the docking energy and orientation. In various cases, the best docked structure could be a 

docking artefact and does not represent the best docking orientation as per our experience in the docking study. 

Therefore, we always opt to rerun the docking calculation using the best-docked structure from initial docking 

as a starting structure for a second docking run. Few scripts were used to allow this process to be automated. 

This can be achieved by Autodock Vina or else by creating batch files of the ligands selected to redock. The 

automated loop docking will continue until threshold value is reached. The threshold value (d) is the difference 

between the docking binding energy of the last run and the preceding one. When the defined threshold value is 

reached, the docking stops and the best docked structure are selected. Autodock software is used for docking 

analysis
 [9]

.  

2.5 Molecular Dynamics Simulation using GROMACS  

Molecular simulation is very important and useful toolbox to understand structures and dynamics in 

detail in molecular modelling wherein motions of atoms can be tracked. This method is more focused on two 

main approaches, namely energy minimization and molecular dynamics that optimize the structure and simulate 

natural motion of biological molecules. Firstly, we are going to set up environment for simulation, prepare the 

input file of the structure for simulation, solvate the structure in water, minimize and equilibrate it, perform 

short production simulation. GROMACS (http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-

tutorials/complex/) GROMOS 43a1 force field was used to process the GROMACS structure file and topologies 

were created with the help of PRODRG server. The system was solvated using SPC water model in a box with 

1nm solute wall distance. Non toxic Ligand with the lowest binding energy was selected for molecular dynamics 

simulation. Steepest descent algorithm was used to run energy minimization steps
 [10]

. 

 

 

3. RESULTS AND DISCUSSION 

http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/complex/
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/complex/
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Results from the second docking step was obtained and noted in table 3. The 50 runs performed to obtain 50 

conformations were checked for hydrogen bonds and the required interaction between the Ligand and the 

protein (Arg 1467, Lys 1324, and Gly 1329). It was observed that four Ligands ZINC03825293, 

ZINC12898578, ZINC17206599, and ZINC44690116 had slightly optimum biding energy -7.27 to -9.08. Loop 

docking was then performed on these Ligands to obtain the consistency in the interaction formed. Batch file 

with the docking scripts were created for 40 RUNs to dock the Ligands (15 set for each Ligand, summing to 60 

docked values). 

 

Molecule ID Molecule* Rank RUN Binding Energy Interaction 

ZINC02048908 mol_35 2 15 -5.45 Arg1467:NH1::Mol:O1 

ZINC02096530 mol_9 1 23 -4.01 Lys1324:NZ::Mol:O2 

ZINC03114733 mol_34 1 2 -5.31 Lys1324:NZ::Mol:O1 

ZINC03825293 mol_37 2 39 -7.27 Arg1467:NH1::Mol:O2 

ZINC05116458 mol_36 1 28 -6.73 Arg1467:NH1::Mol:O2 

ZINC05499390 mol_17 

 

Not docked to required Amino acid 

ZINC08383351 mol_19 1 9 -4.25 Arg1467:NH1::Mol:O1 

ZINC08386341 mol_3 

 

Not docked to required Amino acid 

ZINC08396720 mol_4 2 4 -5.68 Gly1329:N::Mol:O4 

ZINC08396724 mol_30 1 6 -5.35 Lys1324:NZ::Mol:O1 

ZINC08397806 mol_27 1 10 -6.54 Lys1324:NZ::Mol:O1 

ZINC08455906 mol_23 1 31 -6.76 Lys1324:NZ::Mol:O1 

ZINC08456758 mol_14 1 17 -6.97 Lys1324:NZ::Mol:O1 

ZINC12898578 mol_29 1 13 -9.08 Arg1467:NH2::Mol:O2 

ZINC17206599 mol_10 1 13 -8.02 Lys1324:NZ::Mol:N1 

ZINC38141428 mol_26 1 44 -3.57 Lys1324:NZ::Mol:O2 

ZINC44690116 mol_28 2 2 -9.08 Lys1324:NZ::Mol:O2 

ZINC68562755 mol_15 Not docked to required Amino acid 

ZINC68562764 mol_18 2 6 -2.48 Lys1324:NZ::Mol:O1 

ZINC68562775 mol_16 1 31 -2.31 Lys1324:NZ::Mol:O1 

ZINC68568582 mol_22 1 40 -3.04 Lys1324:NZ::Mol:O1 

ZINC68568583 mol_21 1 16 -3.46 Lys1324:NZ::Mol:O1 

ZINC68568586 mol_32 1 50 -3.42 Arg1467:NH1::Mol:O2 

ZINC68568588 mol_33 1 50 -3.18 Arg1467:NH1::Mol:O2 

ZINC68568593 mol_7 1 37 -3.03 Arg1467:NH1::Mol:O2 

ZINC68568595 mol_8 2 3 -3.21 Arg1467:NH1::Mol:O1 

ZINC68568614 mol_25 Not docked to required Amino acid 

ZINC68568616 mol_24 1 31 -3.44 Lys1324:NZ::Mol:O2 

ZINC68568621 mol_12 1 4 -3.77 Gly1329:N::Mol:O2 

ZINC68568623 mol_13 1 34 -2.69 Lys1324:NZ::Mol:O2 

ZINC68568635 mol_11 1 10 -3.27 Gly1329:N::Mol:O1 

ZINC68591375 mol_5 1 8 -3.08 Lys1324:NZ::Mol:O1 

ZINC68591381 mol_6 1 30 -3 Lys1324:NZ::Mol:O2 

ZINC68591396 mol_1 1 30 -2.15 Arg1467:NH1::Mol:O2 

ZINC68591401 mol_2 2 4 -2.6 Arg1467:NH1::Mol:O2 

ZINC72400092 mol_31 1 20 -3.64 Lys1324:NZ:Mol:O1 
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ZINC77311469 mol_20 Not docked to required Amino acid 

Table 3:  Docking results based on conformation at which favourable interaction was obtained.   

Molecules were numbered for convenience. 

 

Zinc ID Molecule Rank RUN Binding Energy Interaction 

ZINC17206599 

mol_10-1 2 40 -8.77 Lys1324:NZ::Mol:O4 

mol_10-2 4 11 -7.5 Lys1324:NZ::Mol:N1 

mol_10-3 1 3 -8.43 Lys1324:NZ::Mol:O4 

mol_10-4 1 37 -8.64 Lys1324:NZ::Mol:N1 

mol_10-5 1 1 -8.69 Lys1324:NZ::Mol:O4 

mol_10-6 1 26 -8.74 Lys1324:NZ::Mol:O4 

mol_10-7 1 30 -8.15 Lys1324:NZ::Mol:O1 

mol_10-8 2 26 -8.1 Lys1324:NZ::Mol:O4 

mol_10-9 1 18 -8.23 Lys1324:NZ::Mol:O4 

mol_10-10 1 7 -7.74 Gly1329:N::Mol:O5 

    

Lys1324:NZ::Mol:O4 

mol_10-11 1 40 -8.65 Lys1324:NZ::Mol:N1 

mol_10-12 1 13 -8.13 Gly1329:O::Mol:O7 

mol_10-13 2 21 -8.28 Gly1329:N::Mol:O1 

        Lys1324:NZ::Mol:O4 

mol_10-14 1 17 -8.74 Lys1324:NZ:Mol:N1 

mol_10-15 1 22 -8.82 Lys1324:NZ:Mol:O1 

ZINC44690116 

mol_28-1 1 18 -8.76 Lys1324:NZ::Mol:O2 

mol_28-2 3 16 -8.67 Lys1324:NZ::Mol:O6 

mol_28-3 2 14 -8.65 Lys1324:NZ::Mol:O1 

mol_28-4 2 25 -9.09 Lys1324:NZ::Mol:O1 

mol_28-5 1 9 -8.68 Arg1467:NH2::Mol:O5 

mol_28-6 1 20 -8.96 Arg1467:NH2::Mol:O5 

        Arg1467:NE::Mol:O5 

mol_28-7 3 33 -8.88 Arg1467:NH2::Mol:O2 

mol_28-8 2 3 -9.03 Lys1324:NZ::Mol:O5 

mol_28-9 1 2 -9.21 Lys1324:NZ::Mol:O1 

mol_28-10 2 14 -8.6 Arg1467:NH2::Mol:O5 

mol_28-11 2 6 -9.02 Lys1324:NZ::Mol:O4 

mol_28-12 2 16 -9.23 Lys1324:NZ::Mol:O1 

mol_28-13 3 21 -8.85 Lys1324:NZ::Mol:O5 

mol_28-14 1 3 -8.74 Lys1324:NZ::Mol:O1 

mol_28-15 1 7 -8.76 Lys1324:NZ::Mol:O2 

Table 4: Loop docking resulted in the following values of the Ligands binding energies. 

 

It was observed that Ligand "ZINC17206599" and "ZINC 44690116" had least fluctuating binding energy range 

with standard deviations 0.401 and 0.205 respectively.  
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                                                 Figure 3: PfEmp1 interacting with ZINC17206599 

 

3.1 Toxicity Prediction 

 The basis for toxicity prediction from chemical structure is that the properties of chemical are implicit 

in its molecular structure. Biological activity can be expressed as a function of partition and reactivity, that 

is, for a chemical to be able to express its toxicity it must be transported from its site of administration to its 

site of action and then it must bind to or react with its receptor or target. This process may also involve 

metabolic transformation of the chemical
[11]

. The application of these principles to the prediction of toxicity 

of new or untested chemicals has been achieved in number of different ways covering a wide range of 

complexity, from computer system containing database of hundreds of chemicals, to simple “reading across” 

between chemicals with similar chemical /toxicological functionality. The prediction of toxicity from 

chemical structure can make a valuable contribution to the reduction of animal usage in the screening out of 

potentially toxic chemicals at an early stage and in providing data for making positive classifications of 

toxicity. The toxicity value was predicted using Toxpredict (https://apps.ideaconsult.net/ToxPredict) for 

Ligands "ZINC17206599" and "ZINC 44690116" (see table 4 for Toxpredict results). ZINC 44690116 was 

eliminated for further analysis as it turned to be carcinogenic. 

 

Molecule 

Mol Wt.  

(g/mol) 

Mol. 

Formula 

X

L

og

P 

HBD 

Count 

HBA 

Count 

Rotatabl

e Bonds 

Toxicit

y 

Lipins

ki Rule 

failure 

ZINC17206599 528.6371  

C29H40N2

O7 

4.

4 0 9 8 No 0 

ZINC 44690116 470.43  NA 

1.

39 2 8 4 Yes 0 

Table 5: Computed properties for selected “ZINC17206599” are as follows 

 

3.2 GROMACS Results 

i. RMSD: Each structure from a trajectory (-f) is compared to a reference structure. The reference structure is 

taken from the structure file (-s) so you need to put the crystal structure under the flag -s and the structure 

that you want to compare with the crystal structure under the flag -f. Then, when you select the groups, the 

first that the tool asks for is the group for least square fit (so, the structures under the -f flag) and the second 

is the group for RMSD calculation (structure under the -s flag). For better information you can see section 

8.9 of Gromacs Manual. The g_rms is a graphic of RMSD vs time. You should also see root mean square 

fluctuation (g_rmsf), perhaps this tool is what you are looking for. The plot indicates that the RMSD value 

is fluctuating over the time, but there are chances that it can be stable after 1.2 ns at 0.2 nm. 

ii. Radius of Gyration: Radius of gyration describes the overall spread of the molecule and is defined as the 

root mean square distance of the collection of atoms from their common centre of gravity. We can see from 

https://apps.ideaconsult.net/ToxPredict
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the reasonably invariant Rg values that the protein remains very stable, in its compact (folded) form over the 

course of 1 ns at 300 K. This result is not unexpected, but illustrates an advanced capacity of GROMACS 

analysis that comes built-in. 

 
 

 

4. DISCUSSION 
 
  As per our observation in docking results the ZINC17206599 molecules shows binding affinity towards 

the pfEMP1 protein. Interestingly, for all the proposed compound complexes, the average RMSD values were 

below 0.25 A ° and the variation of the potential energies falls within 1,000 kcal/mol which is a good indication 

of the system stability. Docking studies are used at different stages in drug discovery such as in the prediction of 

ligand–receptor complex structures and also to rank the ligand molecules based upon the binding energies of the 

corresponding ligand–enzyme complexes. Docking protocols aid in elucidation of the most energetically 

favourable binding mode of the ligand to the receptor. Validated computational tools can serve as useful tools to 

save time and effort in the drug design process. In this report, we tried to introduce an Insilco approach that 

relies on the use of docking calculations followed by molecular dynamics simulations to accurately estimate the 

binding affinity, as well as the stability of the inhibitor enzyme complexes. It can be safely noted that docking 

calculations could be entirely misleading and even using the same software, in many case, may result in 

different predictions. In order to ensure reliable docking results, we embarked on a novel approach which 

„„loop-docking‟‟ to enhance the docking calculations predications and to verify their binding by using MD 

simulations. 

 

5. CONCLUSION  
In the selection of new drug candidates, many efforts are focused on the early elimination of compounds 

that might cause several side effects or interact with other drugs. In silico techniques help in this regard and they 

are going to become a central issue in any rigid drug discovery process. In silico technology alone cannot 

guarantee the identification of new safe and effective lead compound but more realistically future success 

depend on the proper integration of new promising technologies. The Drug Designing and development process 

is a long and expensive one. Due to the limitation of throughput, accuracy and cost, experimental techniques 

cannot be applied widely; therefore, recently the drug discovery process has shifted to In Silico approaches such 

as homology modeling, protein-ligand interactions, vHTS etc. In Silico approach has been of great importance 

to develop fast and accurate target identification and prediction method for the discovery. Therefore, from the 

obtained result it can be concluded that SO4 ZINC17206599 shows interaction with NH1, NH2 of Arg 1467 (A), 

NZ of Lys 1324 (A) and two bonds with N of Gly 1329 (A) on the protein which may inhibit the reason causing 

pathogenicity of PfEmp1
[12], [13]

. Toxicity values are also observed to be favourable for the drug. Molecular 

dynamics simulation shows stable rmsd, gyrate value. Thus, the results from this study may prove 

ZINC17206599 to be candidate drug for treating malaria. Further optimizations as well as in-depth structural 

and biological studies of the selected inhibitor are required to confirm the findings. 
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