
International Journal for Computational Biology (IJCB)
Vol.2, No.1, 2013, Page: 01-11

ISSN: 2278-8115 1

Journal homepage: http://www.ijcb.in

A Novel DNA Sequence Compression Method Based on Chaos

Game Representation

Arun K. S
*
, Achuthsankar S. Nair, Oommen V. Oommen

Department of Computational Biology and Bioinformatics, University of Kerala, India

Article Info ABSTRACT

Article history:

Received Feb 6
th

, 2013

Revised Apr 24
th

, 2013

Accepted Jun 9
th

, 2013

 Unique signature images derived out of Chaos Game Representation of bio-

sequences is an area of research that has been confined to pattern recognition

applications. In this paper we pose and answer an interesting question – can we

reproduce a bio-sequence in a lossless way given the co-ordinates of the final

point in its CGR image? We show that it is possible in principle, but would

need enormous resolution for representation of coordinates, roughly

corresponding to the information content of direct binary coding of the

sequence. We go on to show that we can code nucleotide codon triplets using

this method in which 16 codons can be coded using 4 bits, the remaining 48

using 6 bits. Theoretically up to 11% compression is possible with this method.

However, algorithm overheads reduce this to very nominal compression

percentage of less than 4% for human genome and 9% for bacterial genome.

We report the results on a subset of standard test sequences and also an

independent wider data set.

Keyword:

Chaos Game Representation

Sequence Compression

Information-Content

Information-Entropy

Copyright © 2013 International Journal for Computational Biology,

http:// www.ijcb.in, All rights reserved.

Corresponding Author:

Arun K. S,

Department of Computational

Biology and Bioinformatics, North

Campus - Kariavattom, University

of Kerala, Thiruvananthapuram,

Keralam, India – 695581

Email: arunksreedhar12@gmail.com

How to Cite:

Arun K. S et. al. A Novel DNA Sequence

Compression Method Based on Chaos Game

Representation. 2013; Volume 2 (Issue 1): Page

01-11.

1. INTRODUCTION
During 1970s, a new field of physics was developed known as chaotic dynamical systems or simply

chaos [1]. This field is closely associated with fractals. Fractal geometry, in contrast with Euclidean geometry,

deals with objects that possess fractional dimensions. Fractal geometry considers itself the geometry of the real

(rather than the ideal) and consequently treats the objects in nature as possessing fractal dimensions. Among

interesting properties of the fractals are their unvarying complexities at varying scales. The Chaos Game is an

algorithm, which is an offshoot of research in the above area. It allows one to produce unique images of fractal

nature, known as Chaos Game Representation images (CGR images) from symbolic sequences, which can serve

as signature images of the sequences. It was originally described by MichealBarnsley in 1988 [2]. Chaos Game

is an algorithm whose input is a sequence of letters (finite alphabets) and output is an image (see Fig. 1).

Biological sequences like DNA, RNA and amino acid sequences can be represented by sequence of finite

alphabets, are amenable to conversion to CGR images. The use of CGRs as useful signature images of bio-

sequences such as DNA has been investigated since early 1990s. CGR of genome sequences was first proposed

by H. Joel Jeffrey [2]. Later other bio-sequences were also explored. We will now briefly introduce the idea of

deriving a CGR image of a DNA sequence. To derive a Chaos Game Representation of a genome, a square is

first drawn to any desired scale and corners marked A, T, G and C. The choice of the corners is not based on any

particular criteria, and indeed can be assigned in any other way. Points are marked within the square

corresponding to the nucleotides in the sequence.

Nucleotide A, T, G and C have assigned positions (0, 0), (1, 0), (1, 1) and (0, 1) respectively (see Fig.

2). The centre P0 of the CGR square is (0.5, 0.5). Now we define a procedure for representing any arbitrary

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal for Computational Biology (IJCB)

https://core.ac.uk/display/304928896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

2

nucleotide sequence as points inside the square. For plotting a given sequence, we start from the centre of the

square. The first point is plotted halfway between the centre of the square, and the corner corresponding to the

first nucleotide of the sequence, and successive points are plotted halfway between the previous point, and the

corner corresponding to the base of each successive nucleotide. The steps for plotting a given sequence are

concluded below.

1. Select the first nucleotide from the given sequence.

2. Calculate the midpoint between the centre and the corner corresponding to the first nucleotide (xN,

yN). Let the midpoint be (xi, yi). Let (xc, yc) be the co-ordinates of the midpoint of the square.

Then xi = (xc+ xN)/2 and yi= (yc+ yN)/2

3. Do the following steps until all the nucleotides are processed: Read the next nucleotide in the sequence.

Calculate the midpoint between the current point (xi, yi) and the corner corresponding to the newly read

nucleotide: xi+1 = (xi+ xN)/2 and yi+1 = (yi+ yN)/2.

Now using the above procedure let us plot a DNA sequence TACAGA into the CGR square. Points are

marked within the square corresponding to the bases in the sequence, as follows:

1. Plot the first point P1, halfway between the center of the square P0, and the T corner.

2. The next point P2 is plotted halfway between P1 and the A corner.

3. The next point P3 is plotted halfway between P2 and the C corner.

4. The next point P4 is plotted halfway between P3 and the A corner.

5. The next point P5 is plotted halfway between P4 and the G corner.

6. The next point P6 is plotted halfway between P5 and the A corner.

Figures 3 depict the process graphically.

Chaos Game

Algorithm

Input symbol

sequence

Graphical output

Figure 1.Chaos Game Representation process.

ATGTCTATCC

Figure 2. CGR square with each

nucleotide assigned to corners

A (0, 0)

T (1, 0)

G (1, 1) C (0, 1)

P0

 3 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

Now, let us see how a real CGR would look like. Fig. 4 shows CGR of whole genome of

Thermosinuscarboxydivorans Nor1 (NCBI accession code: NZ_AAWL00000000.1), plotted using a tool C-

GRex developed by the authors [3]. A CGR has many interesting properties. Every bio-sequence has a unique

CGR. In fact every symbol in a sequence will have a corresponding unique point in the CGR, even though the

reverse need not be the case. Every point on the CGR is a representation of all the symbols in the sequence up

to that point. For instance, in the CGR of the sequence ATTTGGCCATCG, the fifth point represents the

sequence ATTTG. Each sub-square in a CGR has a special significance. If we divide the CGR into four

quadrants, then the top right corner will contain points representing sub-sequences that end with G, as a

midpoint between any other point in the square and the G-corner has to fall in this quadrant. Hence if we count

(a). „T‟ is plotted.

A (0, 0) T (1, 0)

G (1, 1) C (0, 1)

P0

P1

(b). „TA‟ is plotted.

A (0, 0) T (1,

0)

G (1,

1)

C (0, 1)

P1

P0

P2

(c). „TAC‟ is plotted.

A (0, 0) T (1, 0)

G (1,

1)

C (0, 1)

P1

P0

P2

P3

(d). „TACA‟ is plotted.

A (0, 0) T (1,

0)

G (1, 1) C (0, 1)

P1

P0

P2

P3

P4

(e). „TACAG‟ is plotted.

A (0, 0) T (1, 0)

G (1, 1) C (0, 1)

P1

P0

P2
P4

P3 P5

(f). „TACAGA‟ is plotted.

A (0, 0) T (1, 0)

G (1,

1)

C (0, 1)

P1

P0

P2

P4

P3
P5

P6

Figure 3. Plot of CGR points for the system “TACAGA”

 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

4

the points in this quadrant, it will be equal to the count of the base G in the sequence. If we divide this quadrant

into another 4 squares, in the clockwise order, they would represent subsequences that end in GG, TG, AG and

CG, making it possible to derive the 2-mer counts by counting the points in these sub-squares. In general, by

dividing the CGR square into sub-squares of side 2–n, we can find the number of different n-mers present in the

sequence.

2. RESEARCH METHOD
2.1 Reversing the Chaos Game Representations

Many works can be seen on investigation into use of CGRs as unique signature images for genomes

and also other bio-sequences [4] [5] [6] [7] [8]. This paper however addresses a slightly different question. The

CGR images are derived out of DNA sequences. Can the sequence be reconstructed given its CGR? More

specifically, can we reconstruct the sequence up to a particular point, given the coordinates of the final point in

the CGR image? Our interest in the question arises from the recognition of the possibility that if the answer to

the question we raised is yes, then we have a unique and arguably efficient way of compressing DNA

sequences. If the answer is an unqualified yes, then every DNA sequence, irrespective of its length can be

represented by two numbers, the coordinates of the last nucleotide of the DNA sequence when it is plotted in the

CGR image. We will demonstrate the basic idea with a toy example. Let us consider a DNA sequence

TACAGAAACG, of length 10 bases, and we show below in Table 1 the x and y coordinates of the pixels

plotted in the CGR image of this sequence.

Figure 4.CGR of Thermosinuscarboxydivorans Nor 1

whole genome.

 C -Region G -Region

T - Region A - Region

Figure 5. Different regions in Chaos Game

Representation

(0.5, 0.5)

C(0, 1)

A (0, 0) T (1, 0)

G(1, 1)

 5 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

Now we apply our general question that we raised above in this specific example. Given the

coordinates of the last nucleotide T (0.5170898, 0.7700195), can we trace back the whole sequence? A cursory

look at the CGR image plotting procedure would tell us that it is a rather trivial matter to do this trace back.

One of the main properties of CGR square is that, all DNA sequences which end with a particular nucleotide

will be plotted within the corresponding region. For example, all DNA sequences which terminate in A will fall

in the A-Region. Fig 5 shows all regions in a CGR square.

Thus, if we know the region in which a given point falls, then we can find the corresponding

nucleotide. Further, if we know the „i‟th coordinates of a sequence then we can calculate the coordinates

immediately preceding it. i.e. (i-1)th point. This can be done exploiting the fact that (i-1)th point is the

midpoint of ith point and the corner specified by that nucleotide.

Table 1. CGR Coordinates of the 10-base sequence „TACAGAAACG‟

Consider a nucleotide sequence S. Let the coordinates corresponding to the „i‟th nucleotide Ni be (xi,

yi). Let (xN,yN) be the coordinate of the CGR corner in which the „i‟th nucleotide falls. Since (xi, yi) is the

midpoint of (xN,yN) and (xi-1, yi-1), we have xi = (xi-1 + xN) /2 and yi = (yi-1 + yN) /2 . It is trivial to note

that: xi-1 = 2 xi- xN and yi-1 = 2 yi - yN. Fig. 6shows the points (xi, yi), (xN,yN) and (xi-1, yi-1). Since (xi, yi)

Sequence X Coordinate Y Coordinate

T 0.75 0.25

TA 0.375 0.125

TAC 0.1875 0.5625

TACA 0.09375 0.28125

TACAG 0.546875 0.640625

TACAGA 0.2734375 0.3203125

TACAGAA 0.1367187 0.1601562

TACAGAAA 0.0683593 0.0800781

TACAGAAAC 0.0341796 0.540039

TACAGAAACG 0.5170898 0.7700195

Figure 6. Tracing back from CGR to

square

A (0, 0) T (1, 0)

G (1, 1) C (0, 1)

(xN,yN)

Pi (xi, yi)

Pi-1 (xi-1, yi-1)

 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

6

is in T-Region, the nucleotide at position i is T. Similarly (xi-1, yi-1) is in A-Region, so the nucleotide at

position „i-1‟ is A. Thus we can trace back the whole sequence.

We give below the algorithm for trace-back of nucleotides, from final CGR coordinate. Let the corners

of the square be A at (0, 0), T at (1, 0), G at (1, 1) and C at (0, 1). Let S be an array that stores the generated

sequence. Let (x1, y1) be the current coordinate point and let (xN,yN) be the coordinate of the relevant CGR

corner.

start

initialise (x1, y1) to the last coordinate point of the CGR of given sequence

i=1;

while(x1 !=0 && y1 !=0)

{

 r = findRegion(x1, y1);

 if r == 1 { push ‘A’ to S; xN = 0, yN = 0; }

 else if r == 2 { push ‘T’ to S; xN = 1, yN = 0; }

 else if r == 3 { push ‘G’ to S; xN = 1, yN = 1; }

 else if r == 4 { push ‘C’ to S; xN = 0, yN = 1; }

x1 = 2 * x1 - xN;

y1 = 2 * y1 - yN;

i = i + 1;

}

n=i;

reverse (S);

stop

The procedure findRegion accepts two parameters corresponding to a coordinate position and returns a

number representing the region (1, 2, 3, and 4 for A, G, T and C regions respectively) in which the specified

coordinate point lies. The procedure findRegion is called by the above algorithm in each iteration to predict the

correct nucleotide.

intfindRegion(int x, int y)

{

if (x<0 & y<0) { return 1; }

if (x>0 & y<0) { return 2; }

if (x>0 & y>0) { return 3; }

if (x<0 & y>0) { return 4; }

}

The application of the above algorithms to the toy sequence „TACAGAAACG‟ is shown in Table 2. If

we read from bottom to top we will get the DNA sequence corresponding to the given point. Thus we can

regenerate the complete sequence from the last coordinate.

Now our demonstration on the trivial example shows that the DNA sequence TACAGAAACG can be

represented in a lossless manner by the (x, y) coordinates of the last nucleotide G. We have definitely produced

a unique way of representing the sequence. Can we compress the DNA sequence based on this? We observe (see

Table 1) that resolution of the CGR coordinates increases as the length of the sequence increases. This length

has to be weighed against the direct binary representation of nucleotides to explore possibility of compression.

Direct binary representation of 4 nucleotides requires log2 (4) = 2 bits/nucleotide. If the CGR coordinates of a

sequence of 10 bases is represented using 4-byte floats, then this representation costs 64 bits whereas direct

binary coding requires only 20 bits. We find that in the 10 base sequences, the coordinates of the final point in

CGR has prominent decimal places upto7 positions. Thus our attempt to compress the sequence is immediately

faced with a newer limit -- the resolution of the CGR coordinate. We propose an approach to compress DNA

sequence by facing this limitation. Before we present our method to achieve compression of DNA sequences,

we briefly review the existing methods for the same.

One of the first DNA sequence compression algorithm was reported in 1993-94 by Grumbach and

Tahi. Two lossless compression algorithms for DNA sequences proposed by them are Biocompress

andBiocompress-2 [9]. These two algorithms are based on the Lempel-Ziv data compression method.

Biocompress-2 first detects exact repeats and complimentary palindromes in the sequence. These detected

repeats and palindromes in the target sequence are then encoded. E. Rivals reports another compression

algorithm named Cfact[10], whichsearches the longest exact matching repeat using suffix tree data structure in

an entire sequence. The GenCompress algorithm, introduced in 1999 by Xin Chen and Sam Kwang [11] yields

 7 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

significantly better compression ratio than the previous algorithms. The idea is to use approximate instead of

exact repetitions. CTW+LZ [13] is another DNA compression algorithm based on context free weighting

method. It is a combination of GenCompress and CTW. Long exact/approximate repeats are encoded by LZ77

type algorithm and shorter repeats are encoded by CTW method. This algorithm provides very good

compression ratio. But the execution time required is too high for long sequences. DNACompress employs the

Lempel Ziv compression scheme [12].The method consists of two phases. In the first phase it finds all

approximate repeats and complimentary palindromes using specific software PatternHunter. During the second

phase the approximate repeats and non-repeats are encoded. DNAC is yet another method by Chang C. H. [14].

DNAC is a DNA compression tool having four phases. During the first phase it builds a suffix tree to locate

exact repeats. In the second phase all exact repeats are extended to approximate repeats by dynamic

programming. During the third phase it extracts the optimal non-overlapping repeats from overlapping ones. In

the last phase the algorithm encodes all repeats. DNASequitur[16] is a grammar-based DNA compression

algorithm which infers a context free grammar to represent the input data. Even if the algorithm is elegant, its

performance is not on par with other methods. DNAPack [15] uses Hamming distance for the repeats &

complimentary palindromes and CTW for non-repeat groups. DNAPack uses a dynamic programming approach

for choosing the repeats instead of greedy method. GergelyKorodiet. al. [17] report a new method for

compressing DNA sequences using normalized maximum likely hood.

Table 2.Recursive derivation of sequence from CGR coordinates

All the methods described above report their results on almost entirely different set of data and hence it

is impossible to compare the results directly. Most of the tools are not any more available for testing online or

otherwise. Hence we are unable to report a comprehensive comparison. For the sake of comparison with our

work, we have chosen to separate out the common sequences on which test results have been reported in all the

paper reviewed above. It is not clear whether the dataset on which results are reported in the above papers have

been hand-picked or randomly chosen. Sequences with repeats and inverted repeats achieve good compression

ratios, but test results on random data are required to conclude further about the existing methods.

Current X

 Coordinate

xi

Current Y

 Coordinate

yi

Nucleotide Corner

Vertex

(xN,yN)

Previous

X Coordinate

xi-1 = 2xi - xN

Previous

Y Coordinate

yi-1 = 2yi - yN

0.5170898 0.7700195 G (1, 1) 0.0341796 0.540039

0.0341796 0.540039 C (0, 1) 0.0683592 0.080078

0.0683592 0.080078 A (0, 0) 0.1367184 0.160156

0.1367184 0.160156 A (0, 0) 0.2734368 0.320312

0.2734368 0.320312 A (0, 0) 0.5468736 0.640624

0.5468736 0.640624 G (1, 1) 0.0937472 0.281248

0.0937472 0.281248 A (0, 0) 0.1874944 0.562496

0.1874944 0.562496 C (0, 1) 0.3749888 0.124992

0.3749888 0.124992 A (0, 0) 0.7499776 0.249984

0.7499776 0.249984 T (1, 0) 0.4999552 0.499968

 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

8

2.2 Compressing DNA sequence using CGR coordinate reversing

Based on our experimentation, we have found that it is ideal to consider the sequence as a string of

triplet bases (codons) and reduce the problem to that of compressing codons only. With four bases, there are 64

codons and assuming equal probability for all codons, the number of bits required will be 2 × 3 = 6 bits/ codon.

Through actual experimentation, we found that 16 of the 64 codons can be derived by reversing the CGR

coordinates, with only 2 bits representation for each co-ordinate. This means that we can represent those using 4

bits/codon. The remaining 48 codons require 6 bits, but the informational space is not fully utilized in these

codes as, log2 48 = 5.85 (in place of 6). This extra space can be utilized for implementing overheads of the

compression algorithm proposed below. Table 4 shows the code assigned for 64 codons.

Our compression process works as follows. We first slice the DNA sequence to be compressed into

codons. Corresponding binary sequence is generated based on codes assigned. In this binary sequence, some

codons are coded by 4 bits and others by 6 bit code. When we encode a codon by 4 bit, we are compressing the

codon by 4/6 *100 =33%. The information whether a codon is coded by 4 or 6 bit is either stored in the dual

code of the previous codon or using a bit in a separate binary sequence. The algorithm for compression is given

below. The sequence length is assumed to be a multiple of 3. (Otherwise, the remaining 1 or 2 nucleotides can

be coded using 8 bits and this situation can be trivially handled). The algorithm accepts a DNA sequence as

input and produces two binary sequences. First binary sequence is compressed DNA and second one contains

some information regarding compressed binary sequence.

Compression Algorithm

DNASeq – String array storing input DNA sequence.

CompDNASeq – Binary array storing compressed DNA.

InfoSeq – Bit array indicating 4-bit/6-bit coding using 0/1.

start

whileDNASeq<> null do

{

read the next codon

if a 4 bit code exists:

append 4 bit code to CompDNASeq; Append ‘1’ to InfoSeq.

else if two six bit codes exists

read the next codon

if it has a 4 bit code

append the second 6 bit code of the previous codon to CompDNASeq.

append the 4 bit code of the current codon to CompDNASeq.

append ‘0’ to InfoSeq.

else

append the 6 bit code of the previous codon to CompDNASeq.

append ‘0’ to InfoSeq.

move the cursor one codon backward.

 end

 end

}

stop

Now we give below the decompression algorithm. This takes the two binary arrays produced by the

compression algorithm and derives the original DNA sequence.

Decompression Algorithm

CompDNASeq – Binary sequence array which stores the compressed DNA.

InfoSeq – Bit array storing whether 4-bit/6-bit codes are used for each codon.

DNASeq – String array storing decompressed DNA sequence is stored.

start

do the following steps until all codons are processed.

{

if the current bit in InfoSeq is 0

take the next six bits from CompDNASeq.

if it is greater than 01 11 11

append the corresponding codon to DNASeq.

 9 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

take the next four bits from CompDNASeq.

append the corresponding codon to DNASeq.

else

append the corresponding codon to DNASeq.

end.

else

take the next four bits from CompDNASeq.

append the corresponding codon to DNASeq.

end.

}

saveDNASeq file.

stop

Tables and Figures are presented center, as shown below and cited in the manuscript.

3. RESULTS AND ANALYSIS
We implemented the CGR-based DNA sequence compression algorithm and tested it on two sets of

data. To enable comparison with existing methods, we have used the common data indicated in Table 4 first.

The results appear in the Table 5. Further we also report results in an enlarged and more representative dataset,

in Table 6. The maximum compression achieved is nearly 8.8% for bacterial gene 9128976 (lpa_01672). If 4-bit

codons are less than approximately 36%, then the sequence is not compressible.

Table 3. CGR codes assigned for codons of Bacterial genome. 6 bit codes are used to code only 48

codons. Hence same codons are assigned dual codes which can be used to store one extra bit, for

algorithm implementation overheads.

S
l.

 N
o

.

C
o

d
o

n

C
o

d
e

S
l.

 N
o

.

C
o

d
o

n

C
o

d
e

S
l.

 N
o

.

C
o

d
o

n

C
o

d
e

S
l.

 N
o

.

C
o

d
o

n

C
o

d
e

1 AAA 0000 17 GAC
100000

110000 33 TAG 000000 49 GTA 010000

2 ATA 0100 18 GCA
100001

110001 34 TGA 000001 50 CTT 010001

3 AGA 0101 19 CGT
100010

110010 35 AGG 000010 51 AAG 010010

4 ACA 0001 20 AAC
100011

110011 36 TAA 000011 52 TAC 010011

5 TAT 1000 21 CCG
100100
110100 37 CGA 000100 53 CAT 010100

6 TTT 1100 22 ACC
100101

110101 38 CTA 000101 54 TTG 010101

7 TGT 1101 23 ATC
100110

110110 39 CGG 000110 55 TTA 010110

8 TCT 1001 24 GCC
100111
110111 40 TGC 000111 56 ACG 010111

9 GAG 1010 25 GGT
101000

111001 41 CCT 001000 57 TGG 011000

10 GTG 1110 26 ATG
101001

111001 42 TCA 001001 58 CAA 011001

11 GGG 1111 27 GGC
101010
111010 43 CCA 001010 59 GTC 011010

12 GCG 1011 28 CAG
101011

111011 44 GGA 001011 60 AGC 011011

13 CAC 0010 29 ATT
101100

111100 45 TCG 001100 61 GCT 011100

14 CTC 0110 30 GAT
101101
111101 46 TCC 001101 62 TTC 011101

15 CGC 0111 31 GAA
101110

111110 47 AGT 001110 63 AAT 011110

16
CCC 0011 32 CTG

101111
111111 48 ACT 001111 64 GTT 011111

 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

10

At the outset, we note that the results of the two popular DNA compression tools – Gencompress1 and

DNA Compress (which are the ones available on-line for testing) both accept ASCII text files as inputs and

show compression on the ASCII text. However, DNA text files (we ignored the headers, they can be trivially

managed) need only 2 bits/base as there are only 4 symbols in the string. If we consider this fact, then both the

above methods are seen to show very unimpressive performance. Hence comparison with our method is not

directly possible. As the test sequences of the previously reported algorithms are not available, no exact

comparison and conclusion is possible. Our testing with these tools revealed that they mostly expand the data

files, sometimes to even 9bits/base. In the case of our algorithm, we note that the effectiveness of this algorithm

is dependent on the occurrence of 4 bit codons in the sequence. It is possible to predict the compressibility of the

sequence by computing the probability of 4-bit and 6-bit codons (as in Table 4). The expected bits/codon is p4

× (4+1) + p6a × 6 + p6b × (6+1) , where p4 = probability of 4-bit codons (+1 is for overhead in InfoSeq), p6a =

probability of 6-bit codons (overhead is not required, as dual codes can serve the purpose), and p6b =

probability of 6-bit codons (+1 is for overhead in InfoSeq). We achieved best case compression of 1.82 bits/base

and worst case of only 2.082 bits/base.

Table 4. Claimed Test results of the algorithm for DNA compression reported in literature since

1991.Only the results on sequences which are commonly reported in all the reviewed papers are

included in the table. The sequences included are: chloroplast genomes (GenBankID: X04465, and

Z00044), mitochondria genomes (M68929 and X55026), human genes (M86524, J03071 and M26434)

and two viral genomes (X17403 and M35027). It is to be noted that the claimed results could not be

verified in most cases. In some cases, our verification showed these figures to be in general not

achievable.

The significance of information entropy is that it tells us the minimum number of bits required to

encode the message digitally [20]. This would mean that if we measure the entropy of a message, we know if

there is scope for compression of the message. For example, a DNA sequence of four letters, A, G, C and T. A

simple coding mechanism is to code each letter with two bits (as there are four signals, log24=2). However, if it

is known that probability of symbols A,G,C and T are 0.15,0.35,0.15 and 0.35 respectively then

H = - ∑ pi log pi

= - (0.15*log(0.15) + (-) 0.35*log(0.35) + 0.15*log(0.15) + 0.35*log(0.35))

= 1.88b.

This would mean that this DNA sequence can be compressed ((2-1.88)/2)=5.9%. Amino acid sequences, which

some researcher claim as incompressible [18], can be compressed using our algorithm by simply reverse

translating amino acid sequences to corresponding DNA sequences.

4. CONCLUSION
In addition to proposing a unique way of compressing DNA sequences, the work reported in this paper

also throws up many new ways of approaching sequence studies. Whether sequences can be compared based on

final CGR coordinates is one such problem of exploration. Intuitively, the difference between final coordinates

indirectly would indicate the amount of evolutionary divergence. Further studies are required in this direction to

confirm if this would be practical and if it would be advantageous over existing scoring scheme.

It is also noted here that the algorithmic implementation has scope for further refinement. At an

average, a DNA sequence has about 30% of 4 bit codons which can be compressed by 33%. Thus 11%

compression is achievable at an average. Further refinement in algorithm implementation is required to enhance

this currently achieved compression results to reach this threshold.

Sl no
Method Key Approach

Compression achieved

(bits/nucleotide)

Best Worst Average

1 BioCompress2 [12][16][18] Lampel-Ziv algorithm 1.31 1.94 1.78

2 Cfact [12][16][18] Suffix tree 1.49 1.93 1.71

3 GenCompress2 [12][16][18] Edit distance 1.1 1.92 1.74

4 CTW+LZ [12][16][18] Context free weighting 1.1 1.92 1.74
5 DNACompress[12][16][18][19] Lampel-Ziv algorithm 1.03 1.91 1.73

6 DNAPack [12][16][18] Hamming distance and CTW 1.04 1.90 1.71

7 GeMNL [12][16][18] Adaptive Markov models 1.01 1.91 1.66

 11 ISSN: 2278-8115

IJCB Vol. 2, No. 1, 2013, 01 – 11 http://www.ijcb.in

We have demonstrated in this paper that DNA sequences can be compressed by representing the

codons in them by using CGR coordinates. The best compression rates achieved are 1.82bits/base against the 2

bit/base standard coding. This compression rates are reasonable, given the limits imposed by Shannon‟s entropy.

In the near future, when personal genome sequencing may become indispensable, storing DNA sequence in

handhold devices may be required. The work reported in the paper opens a new way for realizing this

application.

ACKNOWLEDGEMENTS
We express our sincere thanks to Dr. Pawan K. Dhar, Hon. Director, Centre for systems and Synthetic

Biology, University of Kerala for the helpful discussions. This work has its roots in a project funded by

Department of Information Technology, Govt. of India (DIT/R&D/B10/15(23)2008, dated 07/09/2010).

REFERENCES
[1]Kathleen T. Alligood , Tim D. Sauer , James A. Yorke , “Chaos: An Introduction to Dynamical Systems”, Springer

(1997).

[2] Jeffrey H J Chaos game representation of gene structure. Nucleic Acids Res. 18:2163–2170 (1990).

[3] Achuthsankar S Nair, Vrinda V Nair, K S Arun, Krishna Kant, AlpanaDey Bio-sequence Signatures Using Chaos Game

Representation. In: Fulekar M H editor. Bioinformatics: Applications In Life And Environmental Sciences Springer

Netherlands 62-76 (2010).

[4] Deschavanne P J, Giron A, Vilain J, Fagot G, Fertil B Genomic signature: characterization and classification of species

assessed by chaos game representation of sequences. Mol. Biol. Evol. 16:1391-1399 (1999).

[5] Antonio Neme, Antonio Nido, VíctorMireles, Pedro Miramontes The self-organized chaos game representation for

genomic signatures analysis. Learning and Nonlinear Models Revista da SociedadeBrasileira de RedesNeurais (SBRN) 6:

111-120 (2008).

[6] Joseph J, Sasikumar R Chaos game representation for comparison of whole genomes. BMC Bioinformatics 7:243 (2006).

[7] Bai-linHao, H C Lee, Shu-yu Zhang Fractals related to long DNA sequences and complete genomes. Chaos, Solitons&

Fractals 11: 825-836 (2000).

[8] Vrinda V Nair, KarthikaVijayan, Deepa P Gopinath, Achuthsankar S Nair ANN Based Classification of Unknown

Genome Fragments Using Chaos Game Representation. Proc of the Second International Conference on Machine Learning

and Computing IEEE Computer Society Washington DC USA 81-85 (2010).

[9] Grumbach S, Tahi F A new challenge for compression algorithms: Genetic sequences. J. Inform. Process. Manage. 30:

875–886 (1994).

[10] E Rivals, J P Delahaye, M Dauchet, and O Delgrange A guaranteed compression scheme for repetitive DNA

sequences. LIFL Lille I Univ Tech. Rep. IT–285 (1995).

[11] Chen X, Kwong S, Li M A compression algorithm for DNA sequences. IEEE Engineering in Medicine and

Biology.61–66 (2001).

[12] Chen X, Li M, Ma B, Tromp J DNA Compress: fast and effective DNA sequence compression. Bioinformatics

18:1696–1698 (2002).

[13] Matsumoto T, Sadakane K, Imai H Biological sequence compression algorithms. In Genome Informatics Workshop

Universal Academy Press 43–52 (2000).

[14] Chang C H DNAC: A Compression Algorithm for DNA Sequences by Nonoverlapping Approximate Repeats. Master

Thesis. National Taiwan University, Graduate Institute of Information, Taipei, Taiwan (2004).

[15] B Behzadi, F L Fessant DNA compression challenge revisited: A dynamic programming, approach. CPM 190–200

(2005).

[16] Neva Cherniavsky, Richard Ladner Grammar-based Compression of DNA Sequences. 2004, UW CSE Technical

Report 2007-05-02(2004) .

[17] KorodiG,Tabus I, Rissanen J, Astola J DNA sequence compression - Based on the normalized maximum likelihood

model. Inst. of Signal Process. Tampere Univ. of Technol. Signal Processing Magazine IEEE 24: 47 – 53 (2007).

[18] Craig G. Nevill-Manning, Ian H. Witten Protein is Incompressible. DCC '99 Proceedings of the Conference on Data

Compression IEEE Computer Society Washington, DC, USA 257-266.

[19] Minh Duc Cao, Trevor I. Dix, Lloyd Allison, Chris Mears (2007) A Simple Statistical Algorithm for Biological

Sequence Compression. IEEE Data Compression Conference, Snowbird, UT 42-45 (1999).

[20] AchuthsankarS.Nair, Arun K.S .It‟s 60 years since”KPB WCY XZ” became more informative than “I LOVE YOU”

IEEE Potentials (ISSN: 0278-6648) vol.29, Issue 6, pp.16-19,Nov-Dec (2010).

