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HSP 60.2 plays important role in pathogenesis of Mycobacterium tuberculosis 

causing tuberculosis. This chaperonin comprises of three domains namely-

apical, intermediate and equatorial which assists in proper protein folding thus 

preventing aggregation of unfolded polypeptides. To evaluate the structural 

changes during protein folding, conformations of HSP 60.2 were monitored 

during 10 ns time scale. Molecular dynamic simulations are used to study the 

large amount of molecular and biomolecular conformations with the use of 

high end computational assistance. The Principal component analysis and 

clustering techniques are used for revealing major conformational changes that 

occur in the MD simulation. Normal mode analysis was also performed to 

study the conformation and direction of motion of a protein under study for a 

large time scale simulation. These studies suggest that functional behavior of 

protein that depends on the structure. Chaperonin 60.2 is not only plays a role 

as protein folding machinery, but also an immunologically important 

biomolecule. Hence it is provided and drawn a clear path between role of 

chaperon in protein folding and their role in the infection showing the 

immunological importance of Heat Shock Protein 60.2. 

 

Keyword: 

Heat Shock Proteins  
Molecular Dynamic Simulations 
Principal Component Analysis 
Clustering  
Protein folding 

Normal mode analysis 

Copyright © 2015   International Journal for Computational Biology,  

http:// www.ijcb.in, All rights reserved. 

Corresponding Author: 

Gollapalli Pavan 

Department of Biotechnology and 

Bioinformatics,Jnana Sayhadri, 

Kuvempu University, 

Shivamogga,Karnataka, India. 

Email : gollapalli.pavan@gmail.com 
 

 

How to Cite: 

Pavan Gollapalli et. al. Molecular dynamics and 

Conformational flexibility in Heat Shock Protein 

60.2 of Mycobacterium tuberculosis. IJCB. 2015; 

Volume 4 (Issue 2): Page 31-45. 

 

 

1. INTRODUCTION  

The diseases caused by Mycobacterium are important sources of morbidity and mortality in the world 

today [1].  Mycobacterium tuberculosis is the causative agent of the tuberculosis that kills more than 2 billion 

people i.e., one third of world’s population. Chaperonin 60 (Cpn60), also commonly referred to as heat shock 

protein 60(Hsp60), is one of the major molecular chaperones that are present ubiquitously in all forms of life. 

These Molecular chaperones are known to assist the folding, assembly, and transport of several cellular proteins 

[2]. Invasion of a host is an apparent form of a stress, and induction of Cpn60s has also been observed in . 

pathogenic organisms. The over expressed pathogen derived Cpn60s act as major antigens that result in strong 

immune responses from the host
 
[3]. Its immunodominant epitopes have recently been identified. It has also 

been explored for possible inclusion in are combinant vaccine [4]
. 
Interestingly, the mycobacterial chaperonins 

have previously been shown to be secreted into the extracellular environment, although their role as molecular 
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chaperones is limited to the cytosol [5]. The existence of chaperonins in the extracellular environment thus 

suggests a possible alternate functional role
 
[6].                                                                                                                                                                              

However, recent literature suggests that the heat shock proteins or chaperonin (HSP 10 and HSP 60.1, HSP 

60.2) play key role in pathogenesis of Mycobacterium tuberculosis.  These chaperonins assist in the correct 

folding of most protein under both normal and stress conditions. Before their role as protein folding molecules 

was discovered, the chaperonin of certain pathogenic bacteria viz., M. tuberculosis were identified as major 

immunogens
 
[7]. 

Totally structure comprises 447 amino acid residues in chain A and 445 residues in chain B. The overall 

architecture comprises three distinct domains-equatorial, intermediate and apical. The HSP 60.2 structure 

reveals large hydrophobic regions are exposed on the surface, with an elegant conformational change involving 

reorientation of the N-terminal helix [Residues 60 to 74]. In both A and B chain, the asymmetric unit shields 

hydrophobic residues of the equatorial domain. In addition, this conformational change appears to promote the 

packing of the α-helices spanning residues 87 to 107 and 60 to 97. Another hydrophobic patch occurs in the 

apical domain and has been shown to bind substrate proteins. These two hydrophobic patches in each of HSP 

60.2 monomer have role in binding unfolded polypeptides [8].   

To better understand the molecular mechanism of protein folding assisted by HSP 60.2 of Mycobacterium 

tuberculosis, we have studied the flexibility of backbone conformations by the methods of molecular dynamic 

simulations (MD). In the analysis of protein dynamics, an important goal is the description of slow large-

amplitude motions in large proteins. These motions typically describe rearrangements of domains which are 

essential for the function of the protein. In the present work, the principal component analysis and clustering 

techniques are used for MD simulation trajectory data to investigate the major conformational changes in the 

HSP 60.2 during protein folding.  In order to examine the inter- and intra-domain motion of Mycobacterium 

tuberculosis HSP 60.2, normal mode analysis was performed [9]. 

 

 

2. RESEARCH METHOD  
 

2.1. Molecular Dynamic Simulation 

The crystal structure of Mycobacterium tuberculosis HSP 60.2(PDB ID: 1sjp) was used to model 

unliganded molecular dynamic studies. The protein was solved in a cubic box of SPC pre-equilibrated water 

molecules with a minimum distance of 5A0 between the solvent and each face of the box. The final system 

contained 79809 atoms within a box. The solute and solvent was separately coupled to temperature reservoir of 

298.15 k with a coupling time of 0.4 ps. All the minimization and molecular dynamic simulation step were 

performed using GROMCS force field 43a1 and GROMACS program suite 4.5.5 at a stable volume and 

temperature of 300 K   [10, 11] . 

The equation of motion was integrated by using a Leapfrog algorithm with a time step of 2fs. Covalent 

bond length between hydrogen and heavy atoms were constrained using SHAKE [12] with a relative geometric 

tolerance of 0.0001.  The equilibration protocol was considered for 700 frames by steepest-descent minimization 

and not used in the main analysis for the reason described in results. Only the subsequent 10,000 frames (10ns) 

were used in the main analysis [13]. 

 2.1.1. Principal component analysis (PCA) 

Principal component analysis in an unsupervised statistical technique for finding patterns in high-

dimensional data. It is often used a tool in exploratory data analysis to reveal the internal data structure in a way 

that best explains its variance
 
[14-16]. 

A typical MD trajectory consists of the information of time-evolution of the coordinates of the entire 

constituent forming the system being studied. This MD tie steps are an order of 1 fm while the simulation time 

ranges from few to ten nanosecond. The resultant trajectory consist a huge amount of data which can be splited. 

When performed on a set of experimental structures, the principal components describe concerted atomic 
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displacement and can highlight major conformational changes between the structure [17, 18]. Because these 

motions are often essential for protein function
 
[19]. For an N-atom system, the input dataset for PCA can be 

constructed as trajectory matrix in which each column contain a Cartesian coordinate for a given atom of each 

output time step. Apart from long-time MD simulations of generate sufficient trajectory data, the 

diagonalization of the 3N covariance matrix poses the most computationally exhaustive step during PCA. MD-

PCA was carried out with a version of GROMACS 4.5.5 using the same thermostatic as the reference simulation 

but with a time step dependent. This results in a simulation without overall rotation and translation
 
[20].   

PC analysis, performed on Cartesian coordinates or dihedral analysis (dPCA) has proved to be a 

valuable tool for studying conformational change.  Mathematically, the Principal components are obtained by a 

diagonalization of the data covariance matrix C: 

    C=V^V
T
  

This results in the diagonal matrix ‘^’ containing the eigenvalues as diagonal entries and the matrix ‘V’ 

containing the corresponding eigenvectors
 
[21]. 

2.1.2. Covariance matrix 

The first step in the PCA is the construction of the covariance matrix, which capture the degree of co-

linearity of atomic motion for each pair of the atoms. This covariance matrix is subsequently diagonalized 

yielding a matrix of eigenvectors and a diagonal matrix of eigenvalues. Each of the eigenvectors describes 

collective motions of particles; when the values of the vectors indicated how much the corresponding atom 

participate in the motion. The associated eigenvalues gives equal the sum of the fluctuation described by the 

collective motions per atom and thus is a measure for the total modeling associated with an eigenvectors
 
[22]. 

 2.1.3. Clustering 

Clustering analysis is another unsupervised technique for finding patterns within data. Clustering 

algorithm group similar objects into subgroups (i.e., clusters) by minimizing intra-cluster and maximizing inter-

cluster difference. Therefore, most clustering algorithms require a measure of similarity or distance, of object. 

Clustering algorithm can be divided into partitional and hierarchical clustering algorithms
 
[23]. Partitional 

clustering divides the objects from non-overlapping clusters; hierarchical clustering allows nested clustering and 

results in a hierarchical tree. The average value within a cluster is called the centroid: for clustering coordinate 

data, the centroid represents the conformation that best describe the conformations with a cluster
 
[24]. 

2.2. Normal Mode Analysis 

In order to examine the nature of collective motion of atoms and conformational changes of 

Mycobacterium tuberculosis HSP 60.2
 
[8], normal mode analysis was carried by using ELNemo: a normal mode 

web server for protein movement analysis and the generation of templates for molecular replacement
 
[25] to 

compute the 100 lowest frequency modes of Mycobacterium tuberculosis HSP 60.2
 
[26]. The normal mode 

theory is based on the harmonic approximation of the potential energy function, around a minimum energy 

conformation. This approximation allows the analytic solution of the equation of the motion by diagonalizing 

the Hessian matrix, which yield eigenvalues (normal modes) and are the squares of the associated frequencies
 

[27].  

The classical semi-emperical potential energy function used in the all-atom force field is replaced by a 

simple parameter potential (a Hookean potential): 
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Where dij is the distance between two atoms i and j, d
0 

ij is the distance between these atoms in the three 

dimensional structure, ‘c’ is a constant assumed to be the same for all interacting pairs which refers to the spring 

constant of the potential and Rc is an arbitrary cutoff parameter, beyond which interactions are not taken into 

account
 
[28]. 

 2.2.1. Distance fluctuation 

The map highlights residual pair ‘i’ and ‘j’ with a strongest variation in the distance between their C-

alpha atoms in a given model ‘k’. In these maps, rigid and flexible blocks of amino acid residues can be 

identified along with their relative movement, which are represented by blue and red colored respectively
 
[29]. 

2.2.2. Overlaps 

This measures the degree of similarity between the direction of a chosen conformation change and the 

direction values for the squares of the overlap, starting from the normal modes form a basis, the cumulative sum 

reaches a value of one when it is computed overall modes
 
[30, 31]. 

2.2.3. Collectivity: 

Degree of collectivity measures the fraction of residues that are significantly affected by a given mode. For 

maximal collective movements the degree of collectivity tends to be the value of one whereas for localized 

motions, where the normal mode movement only involves from atoms, the degree of collectivity approaches 

zero. The low frequency normal modes are expected to have collective characters, especially those related to 

functional conformational changes of protein
 
[32, 33]. 

 

3. RESULTS AND ANALYSIS  
 

3.1. MD simulations  

The potential energy of the 10ns simulation was shown it’s decreased and fluctuation to -555226 J at 

700 ps and hence we considered the trajectory after this time for the analysis of simulation. 

 

3. 1. 1. Root Mean Square Deviation (RMSD) 

The root mean square (RMSD) from the crystal structure through 10 ns trajectory is shown in Figure 1. 

The RMSD for the α-carbon tom kept stable around 9000 to 10000 ps which observed a deep decrease from 1 ns 

trajectory. It is also observed a short stability in the RMSD at 2000ps. The overall average RMSD value was 

shown as 0.31 nm. The potential energy, total energy, pressure and temperature were maintained all along the 

10ns simulation were as indicated in table 1. 

 

Table 1: Energy averages and their RMSD values for 10ns MD simulation 

 
ENERGY AVERAGE RMSD 

Potential energy -555226 545.011 

Kinetic energy 100007 377.977 

Total energy -455219 425.434 

Pressure 1.00066 1.12279 

Density 1010.2 98.4869 

Temperature 299.783 1.50635 
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Figure 1: Root mean square deviation (RMSD) of the backbone atoms from the X-ray structure over simulation 

for 10 ns . 

 
 

3. 1. 2. Root Mean Square Fluctuation (RMSF)  

The RMSF captures, for each atom, the fluctuation about its average position. This gives insight into 

the flexibility of regions of the protein and corresponds to the crystallographic b-factors (temperature factors). 

Figure 2.A. shows the RMSF plot obtained was observed was stable only at few atoms around 500-900 and 

1600-2000 atoms. The remaining atoms show a large fluctuation of maximum at 1340 atom. The energy 

component was inspected to ensure the stability of the trajectory.  

For HSP 60.2 which has high flexibility of the protein backbone.  The protein can change to 

conformation, often to assist protein folding. The apical domain that binds to HSP 60.2 shows high fluctuation 

of about 0.98 nm from original conformations. The apical domains form the opening to the solvent of the central 

channel. The segments of these domains that form the top surface of the molecule as well as those that face the 

upper regions of the channel are flexible and not very well ordered. The flexibility of these segments probably 

accounts for the promiscuous binding of a wide range of unfolded   polypeptides
 
[35]. It   suggests   the 

possibility of it to account for large intra-molecular motion while the incoming of proteins as well as release of 

proteins.  

 

 
Figure 2.A: Root mean square fluctuation (RMSF) of the backbone atoms from X-ray structure over 10 ns 

simulation 
 

 

3. 1. 3. Hydrogen bonds  
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During the simulation, several hydrogen bonds broke and formed. It is found that the number of 

hydrogen bonds range 700 during simulation. The hydrogen bond network is weak, because there is no major 

variation in the number of hydrogen bonds suggesting the molecule is flexible. Figure 2.B. shows the plot of 

hydrogen bonds in HSP 60.2 pairing within 0.35nm. The presence of hydrogen bond donors (336) and acceptors 

(672) is very essential for the protein ATPase activity during the course of protein folding. Due to a weak K+ 

stimulated ATPase activity, an essential component of the chaperonin-mediated protein folding reaction, the 

Mycobacterium tuberculosis HSP 60.2 shows weak ATPase activity
 
[8]. This analysis also provides a measure 

for the formation of α-helix or β-turns or strands.  

 

3. 1. 4. Radius of Gyration 

Radius of gyration gives an indication of the shape of the molecule at each time. The radius of gyration 

compares to the experimentally obtainable hydrodynamic radius. This indicates that the first individual 

component corresponds to the lowest axis of molecule, which the last corresponds to smallest. In effect, the 

three axes give a global indication of the shape of the molecule. It is a rough measure for the compactness of a 

structure. All around the timescale of simulation, we fount some changes in Rg. The large fluctuation in Rg is 

due to the conformation change in apical domain during folding of a protein. In the first 2000 ps of simulation 

we see Rg is stable which increases to 3.55 nm at 3000 ps time scale. In contrast, from 4000 ps the Rg decreases 

gradually indicating the release of folded protein (Figure 3). 

 

 
Figure 2.B:  Radius of Hydrogen bonds for MD simulation for 10 ns. Black lines indicate hydrogen bonds and 

the red line shows pairs within 0.35 nm. 
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Figure 3:  Radius of gyration (Rg) for MD simulation for 10 ns. . In the obtained plot the red, green and grey 

lines indicate the change in shape of molecule along x, y and z axis. The blue line indicates the overall change 

i.e., global change in shape of molecule. 

 
 

3. 1. 5. Minimum distance matrix 

 

To get information about contacts in the protein one can plot the distance between two atoms or the 

minimum distance between two groups or atoms. If one plots the distances between all residues of the protein, 

one obtains a symmetrical matrix. Plotting these matrices for different time frames (see Fig.4.), one can analyze 

changes in the structure. In our analysis a total of 19 matrices for 892 residues with 8187 atoms for every 

1000ps were plotted to study the changes in the structure that occurs. All along the simulation time there is a 

large ratio of increase in the number of contacts between the residues 400-580 with nearly 1250 ratio and a 

gradual decrease in the number of contacts from the residues ranging from 650-892 with ratio nearly 250; when 

compared to the experimental x-ray structure where there is very low ratio of nearly 270 of M. tuberculosis HSP 

60.2.  The Figure 4 shows along the timescale of simulation, there is a very low minimum distance between the 

residues of the protein groups at nearly 7800 ps with 0.099999. 

 
Figure 4:  Minimum distance of contacts between residues based on the time scale of MD simulation for 10 ns. 

Black lines indicate minimum distance between protein-protein 

 

3.2. Principle component Analysis 

 

Principal component analysis of MD simulation of protein have indicated the collective degree of 

freedom dominate protein conformational fluctuation [36]. The large scale collective motions are essential for 

the essential dynamics of the protein [37].  Distance bonds are defined on the basis of inter atomic interactions 

within the starting conformation of the protein. PCA involves diagonalization of the covariance matrix of 

positional fluctuations. Resulting eigenvectors describe modes of the collective fluctuation of which the 

corresponding eigenvalues is a measure of the mean square fluctuation along the mode [38]. The subsequent 

equilibration time was required for the model from HSP 60.2 crystal structure, its immersion into water. 

Equilibration was established by monitoring the system’s RMSD and radius of gyration [39] (Figure 5). It is 

useful to split the dynamics into different modes of motion and analyze these modes individually. In principle, 
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in a system of N atoms, 3N-6 of such modes of internal fluctuations exist (6 degrees of freedom are required to 

describe the external rotation and translation of a system. Matrix showing coordinate covariance’s between c α 

atoms. Red means that two atoms move together, so it is reasonable that on diagonal there is a red line. Blue 

means that they move in opposite directions. The intensity of colors indicates the amplitude of the fluctuations. 

From the covariance matrix it is possible to see that group of atoms move in a correlated or anti-correlated 

manner. 

 

 
 

Figure 5:  covariance matrix of PCA for MD simulation for 10 ns. 

Consequently the time frame of 379.684 nm2 was considered as production data in order to fully 

remove the modal’s equilibration period. The resulting 8028×8028 covariance matrix was subjected to the PCA; 

yielding eigenvectors describe the overall translation and rotation of the system. The eigenvalues from the PCA 

(Table 2), ranked by magnitude, decrease rapidly: the 14th largest eigenvalue is less than one tenth (0.1) of the 

largest and 233rd largest is less than one-hundredth (0.01) of the largest.   

 
 

Table 2: Eigenvalues of the covariance matrix 
Eigenvalues  Index Nm/S2/N 

1 207.512 

2 84.0253 

3 25.1492 

4 13.5509 

5 8.50485 

6 5.10276 

7 3.70947 

8 2.85243 

9 2.46254 

10 2.24156 

11 1.69513 

12 1.5786 

13 1.26809 

14 1.15748 

 

 

3. 3. Cluster Analysis 

In addition to the production simulation trajectory data, two artificial sets of data were constructed 

from independent trajectories of the HSP 60.2 to create trajectories containing nearly 2900 configurations at 1ps 

interval. We found, that the results of the clustering analysis were unambiguous, in terms of the optimal number 

of clusters of conformation. The first represent 19 different sized clusters created for 100 ps (Table. 3). The 
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RMSD ranges from 0.0434 to 1.14 nm and average clustering RMS value is 0.4913 with energy of the matrix 

1949.29 nm.  

Table 3: Number of clusters with size (number of structures in each cluster) 
Cluster Structures Transition 

1 2950 24 

2 1401 50 

3 1396 60 

4 895 10 

5 882 48 

6 749 6 

7 688 26 

8 253 12 

9 194 50 

10 131 29 

11 126 5 

12 118 18 

13 71 14 

14 51 10 

15 46 14 

16 35 6 

17 31 8 

18 5 4 

19 1 2 

 
 

The total number of the transition in the structure is 223 by representing a maximum 18 between two 

specific clusters (Figure 6.A). The set is more different to cluster as it has both very small clusters with small 

variance and relatively large clusters with large variance. The average distance of each conformation in the 

cluster to its centroid spans a large range. The plot (Figure 6.B) shows that each cluster in the dissimilar from its 

neighbors and also the large clusters are may best represented. The diagonal elements (White) on left hand top 

represent self-comparison or zero RMSD and the black (right hand side of diagonal) shows the largest pairwise 

RMSD. The clustering matrix used was the best-fit RMSD of the residues defining the proper folding of 

proteins by HSP 60.2, specifically the apical and equatorial domains. 

 

Figure 6. A: Show Size of clusters for MD simulation for 10 ns.  
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Clustering can identify different conformational states sampled during the simulation by grouping 

molecules structures into subsets based on the conformational similarity
 
[40].  This requires a definition of 

similarity by a distance matrix and a definition of the space where the clustering should occur. In this study, we 

used only Euclidean distance expressed by the root mean square deviation (RMSD) between conformational and 

focus on the different options for the subspace that will be used for clustering. Here we considered only back 

bone carbon atoms since over focus on studying large scale motion of the model protein.    

 

 
 
 

Figure 6. B: 2D RMSD plot for all frames from HSP 60.2 simulation with 19 differentially sized clusters. Note 

that only 18 clusters are readily visible since other one cluster is very small and negligible.  

3. 4. Normal mode analysis  

The 3.20 A
0
 X-ray crystallographic coordinates were used to perform dynamic fitting using normal 

mode analysis. This method uses Hookean potential and linear combination of low frequency normal modes in 

the interactive manner to deform the structure optionally to conform to the low-resolution structure. Normal 

modes are used for the flexible fitting between they represent the large conformational change observed in 

biological system
 
[32, 41]. One advantage of this analysis over the independent fitting of disconnected domains

 

[42] is that it incorporates the structural constraints of the connected hinge region, thereby restaining domain 

separation to energetically reasonable limits. Only the lowest frequency normal modes that 7-fold symmetry is 

selected for functional analysis (Table 4).  

Table 4: Low Frequency and Collectivity Values of Normal modes obtained 
 

R2 Frequency collectivity 

Mode 7 1.00 0.5920 

Mode 8 1.05 0.6282 

Mode 9 1.32 0.5013 

Mode 10 1.73 0.5576 

Mode 11 2.07 0.5899 

Mode 12 2.60 0.5646 

Mode 13 2.72 0.6186 

Mode 14 2.78 0.7123 

Mode 15 2.78 0.5331 

Mode 16 3.30 0.4599 

 

 

The RMSD difference of the Cα backbone between the two modes is zero. Interestingly, the calculated 

normal mode analysis of the HSP 60.2 subunit into the reconstruction positions shows that the unresolved 

equatorial residues of the N-terminal and C-terminal end of the beginning of the new inter-ring density 

connections (Figure 7). The NMA derived structures showed, that both the trans and cis apical domain rotations 

counterclockwise with respect to the 7-fold axis. The large mobile loop region (297-355) in both the cis and 

trans apical domains appear to rotate in the same direction
 
[43]. 
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Figure 7: Ribbon view of two chains in the HSP 60.2 extracted from a cluster (Red-chain A and Blue-chain B) 
 

Although there is not always a clear one-to-one correspondence, there is a quantitatively good 

agreement between movements described by the first five modes
 
[44] (i.e., mode 7, 8, 9, 10 & 11).  The 

covariance of the motion between the α-carbons of HSP 60.2 of both inter- and intra-domain motions is shown 

in the form of covariance matrix (Figure 8). The eigenvalues of the first five modes denote a small variation in 

the movement (Figure 9). 

 

Figure 8: Correlation matrix of Normal mode analysis 
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Figure 9: Histogram representing eigenvalues of each normal mode. 
 

This shows both the apical and equatorial domain move in a direction towards intermediate domain. 

The blue and red colored blocks in the matrix indicate these residues for which the distance changes 

significantly in movement of 7th mode. Figure 10 shows the map for distance fluctuations between residue 

measure and the relative movements in the 7th mode. The rigid and flexible blocks of amino acid residues were 

identified along with their relative movement.  

 



   43              ISSN: 2278-8115 

 

IJCB Vol. 4, No. 2, August 2015, 31 – 45      http://www.ijcb.in 

 

 

Figure 10: Normal modes 7-12 showing residue indexes based on normal square atomic displacement. 

 

 

4. CONCLUSION  

A molecular dynamic simulation are extensively used in order to understand the protein 

function in relation with structure and is particularly well-suited for studying the local minima in the 

free energy landscape and the transitions between these minima which characterize how biomolecules 

perform their requisite functions. Our MD simulation reveals that the HSP 60.2 of Mycobacterium 

tuberculosis flexibility and observe a conformational changes that occur during protein folding i.e., the 

protein subunit binding favors the conformer that has a strong  affinity towards protein subunit since 

ATP-dependent conformational changes in GroEL which leads for proper folding of unfolded protein. 

Our analysis suggests the global movement may be significantly flexible, thus making it different by 

showing that all domains move in a strict fashion. Principal component analysis and Clustering 

methodologies applied to the results of MD simulations focus on partitioning structural ensembles into 

groups of structures which share similar conformational features. It is hoped that when applied to 

simulations of HSP 60.2, the clustering results in partitions which correspond to the descriptive-meta-

stable and transition-states of the system as discussed in results. The PC analysis on molecular 

dynamics trajectory data revealed that major motions and conformational changes during simulation 

are dominant by the N-terminal helix, which is important property for protein folding.  Normal mode 

analysis is used to predict the direction of intra-domain movement of proteins. The 7th  lowest 

frequency mode suggests the possibility of Mycobacterium tuberculosis HSP60.2 large conformational 

changes that are regulated by binding and hydrolysis of ATP that are occurring due to flexible 

movement of the apical domain towards the equatorial domain.  The large en bloc movement of apical 
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domain away from the equatorial domain and a contemporary inward movement of the intermediate 

domain suggesting the rigid body movement across two hinge regions (one at interface of apical and 

intermediate domain and the other between intermediate and equatorial domain). The distribution of 

negative charge on the surface of HSP60.2 and presence of hydrophobic regions on their surface might 

play key role in binding unfolded polypeptides and thus preventing their miss-folding.    

 

ACKNOWLEDGEMENTS  
We gratefully acknowledge for the award of INSPIRE fellowship from the Department of Science and 

Technology (DST), New Delhi, India for the financial support and encouragement.  

 

REFERENCES  
[1] Kaufmann SHE, Heat shock proteins and pathogenesis of bacterial infections.  Springer Semin. Immunopathol.  

1991; 13: 25-36. 

[2]  Hartl FU, Molecular chaperones in cellular protein folding. Nature 1996; 391: 571–580. 

[3] U Zu gel U, Kaufmann SHE., Role of heat shock proteins in Protection from and pathogenes  of infectious diseases. 

Clin Microbiol Rev, 1999; 12: 19–39. 

[4] Tascon RE, Colston MJ,  Ragno S, Stavropoulos E, Gregory D, Lowrie DE., Vaccination against tuberculosis by 

DNA injection. Nat Med. 1996; 2: 888–892. 

[5] De Bruyn J, Soetaert K, Buyssens P, Calonne DI, Coene JL, Gallet X, et al. Evidence for specific and non covalent 

binding of lipids to natural and recombinant Mycobacterium bovis BCG Hsp60 proteins, and  to the Escherichia  coli  

homologue  GroEL. Microbiology 2000; 146: 1513-1524. 

[6] Fossati G, Isso G, Rizzi E, Gancia E, Modena D, Moras ML, et al. Mycobacterium tuberculosis chaperonin 10 is 

secreted in the macrophage phagosome: Is secretion due to dissociation and adoption of a partially helical structure at 

the membrane? J Bacteriol. 2001; 185: 4254-4267. 

[7] Mande SC, Santosh Kumar CM, Sharma A., Evolution of bacterial chaperonin 60 paralogues and moonlighting 

activity. In: B. Henderson (Ed.) Moonlighting cell stress proteins in microbial infection. Heat shock proteins book 

series, Springer Netherlands, 2003; Vol 7: 101-121. 

[8] Rohini Qamra, Shekar C Mande., Crystal structure of the 65-kilodalton Heat shock protein, Chaperonin 60.2 of 

Mycobacterium tuberculosis. J Bacteriol. 2004; 8105-8113. 

[9] Tama F, Sanejouand YH., Conformational changes in protéin arising from normal mode calculation. Protein Eng, 

2001 Jan; 14(1): 1-6. 

[10]Schuler LD, Xavier Daura, Wilfred F Van Gunsteren., An improved GROMOS 96 force field for aliphatic 

hydrocarbons in the condensed phase, J Copul Chem, 2001; 22: 1205. 

[11] Oostenbrink C1, Villa A, Mark AE, van Gunsteren WF., A biomolecular force field based on the free enthalpy of 

hydration and salvation: the GROMOS force field parameter set 53A5 and 53A6. J Comput Chem. 2004; 25(13): 1656-

76. 

[12] Ryckaert JP, Ciccotti G, Berendsen JH., Numerical integration of the Cartesian equations of motion of a system 

with constrains: molecular dynamics of n-alkanes, J Comput Phys 1977; 23: 327-41. 

[13] Tara S, Straatsma TP, McCammon JA., Mouse acetylcholinesterase unliganded and in complex with hyperzine A: 

a comparison of molecular dynamics simulations, Biopolymers, 1999; 50: 35-43. 

[14] Pearson K, On lines and planes of closest fit to system of points in space. Philos Mag.1901; 2: 559-572. 

[15] Hotelling H, Analysis of a complex of statistical variables into principal components, J Educ Psychol. 1933; 24: 

417-441 and 498-520. 

[16] Jolliffe IT, Principal component analysis, New York, Springer 2002. 

[17] Van Aalten DM, Conn DA, de Groot BL, Berendsem HJ.Findlay JB, Amadei A. Protein dynamics derived from 

clustering on crystal structure. Biophys J. Dec 1997; 73 (6): 2891-96. 
[18] Anadei A, Linsen AB, Berendsem HJ., Essential dynamics of proteins, Proteins, 1993; 17: 412-425. 

[19] Hayward S, de Groot BL., Normal mode and essential dynamics, Methods Mol Biol, 2008; 443: 89-106. 

[20] Amadei A, Chillemi G, Ceruso MA, Grottesi A, Di Nola A., Molecular dynamics simulations with constrained 

roto-translation motions: theoretical basis and statistical mechanical consistency, J Chem Phys, 2000; 113: 9-23. 
[21] Strang G, Linear algebra and its application. San Diego: Harcourt Brace Jonanovich, 3rd ed., 1988. 

[22] Hugher G, On the mean accuracy of statistical patterns recognizers.IEEE Transaction on Information Theory, 

1968; 14(1): 55-63. 

[23] Tan PN, Steinbach M, Kumar V. Introduction to data mining, Addison-Wesle, Chapter cluster analysis: Basic 

concepts and algorithms. 2006; 487-568. 

[24]Shao J, Tonner SW, Thopson N, Cheathan TE, Clustering molecular dynamic trajectories: Characterizing the 

performance of different clustering algorithms, J Chem Theor Comput, 2007; 3: 2312-2334. 

[25] Suhre S, Sanejouand YH., ELNemo: a normal mode web-server for protein movement analysis and the generation 

of templates for molecular replacement, Nucleic Acids Research, 2004; 32: 610-614. 

[26] Brook B, Karpleus M., Harmonic dynamics of protein: Normal mode and fluctuations in bovine pancreatic trypsin 

inhibitor, Proc Natl Acad Sci USA 1983; 80: 6571-75. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Oostenbrink%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15264259
http://www.ncbi.nlm.nih.gov/pubmed/?term=Villa%20A%5BAuthor%5D&cauthor=true&cauthor_uid=15264259
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mark%20AE%5BAuthor%5D&cauthor=true&cauthor_uid=15264259
http://www.ncbi.nlm.nih.gov/pubmed/?term=van%20Gunsteren%20WF%5BAuthor%5D&cauthor=true&cauthor_uid=15264259


   45              ISSN: 2278-8115 

 

IJCB Vol. 4, No. 2, August 2015, 31 – 45      http://www.ijcb.in 

 

[27] Tirion M, Large amplitudr elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Letters. 

1996; 77: 1905-1908.  

[28] Nishikawa T, Go N., Normal mode of vibrations in bovine pancreatic trypsin inhibitor and its mechanical property, 

Protein Strut Funct Genel, 1987; 2: 308-329. 

[29] Delarue M, Sanejouand YH., Simplified normal mode analysis of the conformational transition in DNA-dependent 

polymerase: the elastic network model, J Mol Biol, 2005; 320: 1011-24. 

[30] Perahia D, Monawed L., Computation of low frequency model modes in macromolecules: improvements to the 

method of diagonalization in a mixed basis and application to hemoglobin, Compt Chem, 1995; 19: 241-246. 

[31] Tama F, Sanezound YH., Conformational changes of protein arising from normal mode calculations. Protein Eng, 

2001; 14: 1-6. 

[32] Tama F, Gadae FX, Marques O, Sanejouand YH., Building-block approach for determining low-frequency normal 

modes of macromolecules, Prorein Strcurure Funct Genel, 2000; 41: 1-7. 

[33] Kleywegt GJ, Use of non-crystallographic symmetry in protein structure refinement. Acta Cryst D. 1996; 52: 842-

857. 

[34] Ralph Z, Ashley MB, Sarah P,  Christopher MJ, Fernando JC, Ralph G, et al. Chaperone activity and structure of 

monomeric polypeptide binding domains of GroEL. Proc Natl Acad Sci USA. Dec 24 1996; 93(26): 15024–29. 

[35] de Groot BL, Van Aalten DMF, Amadei A, Berendsen HJC., The Consistency of large concerted motion in 

proteins in Molecular Dynamics Simulation, Biophysical  J, 1996; 21: 1707-13.  

[36] Amadei A, Linssen ABM, Berendsen HJC., Essential dynamics of protein, Protein Struct Funct Genet, 1993;7: 

412-425. 

[37] Wolf A, Baumann S, Amdt HD, Kirsclner KN.,  Influence of theotrepton binding on the ribosomal associated 

region characterized by molecular dynamic simulation, Bioorg Med Chem. 2012 Dec 15; 20 (24):7194-205.  

[38] Shenkin PS, McDonald DQ., Cluster analysis of molecular conformations, J Comput Chem, 1994;15: 899-915. 

[39] Tama F, Valle M, Frank J,  Brooks CL., Dynamic reorganization of functionally active ribosome explored by 

normal mode analysis and cryo-electron microscopy, Proc Natl Acad Sci USA, 2003; 100(3): 9319-23. 

[40] Rosemn AM, Ranson NA, Gowen B, Fuller SD, Saibil HR., Structure of unliganded and ATP-bound states of the 

Escherichie Coli chaperon GroEL by cryoelectron microscopy,  J Struct Biol, 2001; 135: 115-125. 

[41] Falke S, Tama F, Charles LB III, Edward PG, Mark TF., The 13 A0 structure of a chaperonin GroEL-protein 

substrate complex by cryo-electron microscopy, J Jmb, 2005; 02: 027. 

[42] Skjaerven L, Martinez A, Reuter N., Principal component analysis and Normal mode analysis of protein; a 

quantitative comparison using the GroEL subunit, Protein, 2011; 79(1): 252-43.  

 

 

 
 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Zahn%20R%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Buckle%20A%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Buckle%20A%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Perrett%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Johnson%20C%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Johnson%20C%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Corrales%20F%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Corrales%20F%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Golbik%20R%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/23107668

