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 A top–down predictor, called TpPred, is developed which consists of 3 level of 

hierarchical classification using cascade of neural networks from sequence 

derived features. The 1st layer of the prediction engine is for identifying a 

query protein as transport protein or not; the 2nd layer for the main functional 

class; and the 3rd layer for the sub-functional class. The overall success rates 

for all the three layers are higher than 65% that were obtained through rigorous 

cross-validation tests on the very stringent benchmark datasets in which none 

of the proteins has 30% sequence identity with any other in the same class or 

subclass. TpPred achieved good prediction accuracies and could nicely 

complement experimental approaches for identification of transport proteins. 

TpPred is freely available to be use in-house as a standalone version and is 

accessible at http://www.juit.ac.in/attachments/tppred/Home.html. 
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1. INTRODUCTION 
Transport proteins are biologically important and play indispensable roles in the fundamental cellular 

processes of all organisms. They are involved in the transport of ions and molecules across the membrane, play 

essential roles in cellular metabolism and activities. They mediate the entry of nutrients into cytoplasm and the 

extrusion of metabolite wastes, maintain a stable internal environment inside the cell by regulating the uptake 

and efflux of ions, protect cells from environmental insults, and enhance communications between cells through 

the secretion of proteins, carbohydrates and lipids [1-3]. Specific transporters have been explored as therapeutic 

targets [4-6]. A variety of transporters are responsible for the absorption, distribution and excretion of drugs 

within the human body which must be factored into pharmacological studies [7,8]. Different transport systems 

differ in their putative membrane topology, energy coupling mechanism and substrate specificities [9]. The 

immense importance of studying transport proteins and the enormity of the data available on these proteins has 

warranted the systematic annotation and classification of transport proteins for elucidating the functional 

mechanisms of proteins and biological processes.   

Transport proteins have been identified by such experimental approaches as absorbance spectroscopy, 

gel electrophoresis, metal-affinity columns and shift assay, chromatography, mass spectroscopy, and combined 

spectroscopic studies. However, some of these methods generally require a purified or semi-purified target of 

interest, do not facilitate identification of unknown targets form complex protein mixtures, or require multi-step 

processes and very specialized equipment, which limit their application ranges. Therefore, there is need to 
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explore other methods including computational approaches for facilitating the identification of transport proteins 

to complement these experimental methods. With the explosion of protein sequences entering into databanks, it 

is highly desirable to explore the feasibility of selectively classifying newly found protein sequences into their 

respective transport protein classes by means of an automated method [10, 11]. This is indeed important because 

knowing which protein belongs to which particular class may help to deduce its catalytic mechanism and 

specificity, giving clues to the relevant biological function. Primary sequence of these proteins are readily 

available, therefore a method using the sequence derived features will prove a much valuable and a cost 

effective process of determining and classifying these proteins into broader transporter/non-transporter and 

specifically into major classes and subclasses as defined by Transport Classification (TC) system 

(http://www.tcdb.org/browse.php) [12].  

So far, sequence alignment and clustering are the primary method for predicting the TC family, as well 

as the function of transporters [13, 14]. Some transporters are known to have no or low homology to other 

proteins of known function [15-18]. A substantial portion of transporters in different TC families have been 

found to have very low sequence identity to other family members. For instance, a member of the multidrug 

transporter family, bmr3, has only 7% sequence identity and 17% similarity to another family member blt [18]. 

The potassium channel, TASK-2, has 18–22% sequence identity to other members of the two-pore domain K
+
 

channel family, such as TWIK-1, TREK-1, TASK-1, and TRAAK [19]. Two members of the major facilitator 

family, GlpT and LacY, are 21% identical to each other [21]. Thus, the function of some of these transporters 

may be difficult to assign based solely on homology, [21, 22] and methods that predict protein function without 

the use of sequence similarity are needed. 

This work explored a machine learning method, artificial neural network (NN) that predicts transport 

proteins directly from sequence or sequence-derived properties. The sequence derived features that were used 

are amino acid composition, pseudo amino acid composition and physicochemical properties. Using these 

parameters and their combination we have developed a cluster of neural networks for the hierarchical 

classification of transport proteins in a ―top-down‖ approach.  

 

2. RESEARCH METHOD 
2.1 Preparation of dataset 

All transport proteins used in this study are taken from the Transport Classification Database 

(http://www.tcdb.org/) in which the proteins are classified on the basis of their function [12]. A total of 5,359 

transport protein sequences taken together, have been classified into seven major classes as: channels/pores 

(1139), electrochemical potential-driven transporters (1456), primary active transporters (2045), group 

translocators (107), transmembrane electron carriers (106), accessory factors involved in transport (129) and 

incompletely characterized transport systems (377). With the aim of avoiding prejudiced learning in the 

networks, we scaled the sequences such that the inequality in the data points or number of protein sequences in 

each class may be compromised.We reduced the proteins in each class with a similarity cutoff of 30% using 

BLASTClust [23]. A negative dataset consisting of 2,907 protein sequences, representing non-transport 

members is also created from PDB database. These datasets are divided into separate training, testing and 

independent evaluation sets (Table 1). 

 

2.2 Feature vector construction 

Following three types of discrete feature vectors were constructed for each protein sequence.  

1. Amino acid composition: Given the sequence of a protein, its amino acid composition was computed 

and then used to generate a set of 20 features representing composition of 20 standard amino acids  in 

the protein sequences that include A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W and Y. These 

features have been widely used in predicting different structural classes and subcellular localization of 

proteins [10,11,24]. The formula used to calculate amino acid composition is: 
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where AA(i) = Frequency of i
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 amino acid in the sequence 

 

2. Physicochemical properties: Twelve sequence derived properties for each protein sequence was 

calculated using EMBOSS (EBI) package [25]. The parameters include: molecular weight, totalcharge, 

isoelectric point, mole percentages of tiny (A+C+G+S+T), small (A+B+C+D+G+N+P+S+T+V), 

aliphatic (I+L+V), aromatic (F+H+W+Y), non-polar (A+C+F+G+I+L+M+P+V+W+Y), polar 

http://www.rediffmail.com/cgi-bin/red.cgi?red=http%3A%2F%2Fwww%2Etcdb%2Eorg%2Fbrowse%2Ephp
http://www.tcdb.org/
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(D+E+H+K+N+Q+R+S+T+Z), charged (B+D+E+H+K+R+Z), acidic (B+D+E+Z) and basic (H+K+R) 

amino acids . 

 

 3. Pseudo amino acid composition (PseAA): This class of descriptor consists of a set of 37 features, 20 

of which are weighted amino acid compositions and rest 17 are correlation factors calculated among amino 

acids for each protein sequence [26]. 

A protein sequence P with L amino acid resides can be represented as: 

 LRRRRRP 4321
   (1) 

where R1 represents the 1
st
 residue of the protein P, R2 the 2

nd
 residue and so forth. According to the 

simplest discrete model, the amino acid composition of the protein Pbased on the equation (1) can be expressed 

as:  

 TfffP 2021 
 (2) 

where
)20,...,2,1( ufu  are the normalized occurrence frequencies for the 20 native amino acids in 

P and T the transposing operator. The additional 17 features are a series of rank-different correlation factors 

along a protein chain and were calculated as follows.  

A protein sequence P consisting of L amino acid resides can be represented as: 

   LpppppP
T

   ,201202021 
     (3)  

where20 + λ components are given by 
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Wherew is the weight factor and τk is the k
th

 tier correlation factor that reflects the sequence order 

correlation between all the k
th

 most contiguous residues as formulated by 
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WhereΦξ(Ri)is the ξ-th function of the amino acid Ri, and Гthe total number of the functions 

considered. Φ1(Ri), Φ2(Ri) and Φ3(Ri) represented respectively the hydrophobicity value [27], hydrophilicity 

value [28], and side chain mass of amino acid Ri (Table 2); while Φ1(Ri+k), Φ2(Ri+k) and Φ3(Ri+k) are the 

corresponding values for the amino acid Ri+k. Therefore, the total number of functions considered is Γ=3.  

It can be seen from equation (3) that the first 20 components, i.e. p1, p2, …, p20 are associated with the 

conventional AA composition of protein, while the remaining components p20+1, …, p20+λare the correlation 

factors that reflect the 1
st
 tier, 2

nd
 tier, …, and the λ

th
 tier sequence order correlation patterns. It is through these 

additional λ factors the important sequence-order information are incorporated.  

 

2.3 System architecture and component of NN topology 
The overall classification system consists of three layer of successive multilayer feed forward (acyclic) 

artificial NNs (Fig. 1), each one with a single hidden layer at which the computation takes place. Some common 

features shared by all NNs are the following: 

1. There is full connectivity as every node in each network layer is connected to every other node in the 

 adjacent forward layer. 

2. There are a small number of nodes in the hidden layer responsible for the actual learning process 

 carried out by each component network. 

3. The activation function on each node is a nonlinear, sigmoid logistic function of the weighted sum of 

 all synaptic weights (plus a constant bias).  

 

NN1 is a binary classifier which classifies an input protein sequence as a transport protein or non-

transport protein. If the input protein sequence is classified as a transport protein then it is processed by NN2 

which gets classified into one of the seven main classes of transport proteins (channels/pores, electrochemical 

potential-driven transporters, primary active transporters, group translocators, transmembrane electron carriers, 
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accessory factors involved in transport and incompletely characterized transport systems). Each class (except 

electrochemical potential-driven transporters) consists of an independent NN [channels/pores (NN3), primary 

active transporters (NN4), group translocators (NN5), transmembrane electron carriers (NN6), accessory factors 

involved in transport (NN7) and incompletely characterized transport systems (NN8)] for classification of input 

protein sequence specifically into its functional sub-class. We have used three categories of sequence derived 

features such as physicochemical properties, amino acid composition and pseudo amino acid composition for 

training of NNs. Using these parameters independently and with combination we have developed seven neural 

network clusters:, NNAAcomp, NNpseAA, NNprop, NNAAcomp+pseAA, NNAAcomp+prop, NNpseAA+prop, and 

NNAAcomp+pseAA+prop. Before the learning process, all network synaptic weights are initialized to small random 

values which have been optimized to final weights during learning process based on backpropagation algorithm 

[29]. An important issue in the design of a NN classification system is the network‘s generalization, that is, its 

ability to give correct predictions when it is presented with unseen examples. With a small number of training 

samples and a relatively large number of synaptic weights, there is always the possibility that the network‘s free 

parameters will adapt to the special features of the training data (overfitting). A straightforward way to 

overcome this problem is to use sufficient number of training examples (usually more than 30 times the number 

of adjustable network parameters). However, the protein classes are unbiased and it is not possible to have these 

many numbers. Therefore to control the over fitting in our application, we have employed nonconvergent 

criteria (early stopping method); the training process is stopped before the optimization procedure finished. We 

follow the common method which is to withhold and use part of the training data (20%) as an internal validation 

set. Training is stopped at the point at which the classification error on the holdout subset begins to rise.  

In the prediction phase, just like the forward pass in learning, network weights are globally fixed (those 

obtained after the convergence of the training process) and the NN is presented with an unknown example for 

classification. In the same hierarchical manner, the input signal propagates once in the forward direction and the 

output value constitutes the network‘s decision based on the already studied training examples. The prediction 

accuracy of the models has been validated using self-consistency, jackknife and independent data set. For 

jackknife test we randomized the test set for 100 times and recorded average performance accuracy. 

 

3. RESULTS AND ANALYSIS 
 Neural network has been successfully used previously for predicting the functional classes of proteins 

from sequence-derived structural and physicochemical properties and irrespective of sequence similarity [30-

32]. However, transport proteins involve a substantially more diverse spectrum of proteins than most of the 

other classes of proteins. The diverse spectrum of proteins poses a more critical test for constructing a NN 

prediction system. In order to assess the performance of the TpPred, we applied several tests. We created a new 

independent test set with well-characterized protein sequences from all level of classes and sub-classes (Table 1) 

to evaluate the performance of the new integrated system.  In addition we have also performed sub-sampling test 

(self consistency test) and jackknife test for evaluating the performance of TpPred. These validation tests are 

commonly used for measuring the accuracy of a classifier [10, 33-35]. The performance of neural networks with 

combined features (especially the one combined all three types of features) tend to perform better than the one 

using only a single type of features or less type of features.  

 

 3.1 Performance of 1
st
 layer of neural network 

 The performance and validation results of NN1 are given in Table 3. The network achieved an overall 

accuracy of 97.3% and 88.4% for the training set and test set data using combination of sequence derived 

features—amino acid composition, pseudo amino acid composition and physicochemical properties. While 

considering the validation techniques by using an independent data set, self consistency test and jackknife test, 

the overall accuracy of the 1
st
 layer of TpPred is 85.2%, 88.0% and 81.4% respectively. The details of the 

performance accuracy and validation results based on different types of sequence derived feature have been 

represented in Table 5. 

 

 3.2 Performance of 2
nd

 layer of neural network 

 The overall success rate in identifying the transport proteins among their seven major functional classes 

is 97.5% (using training set) and 75.0% (using test set) (Table 4). Similarly the overall performance accuracy 

based on three types of validation tests has been found to be 79.8% (using independent data set), 84.2% (using 

self consistency test) and 68.5% (using jackknife test). The corresponding results by TpPred on the data set for 

seven major classes of transport proteins using different types of sequence derived features are given in below. 
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 Table 1 Number of transport proteins according to their class and subclass used for training and 

 validation of  TpPred. 

Classes & Subclasses 
Number of 

proteins 
Training set Test set Independent set 

1. Channels/pores (S1) 1139 545 157 164 

1.A 481 386 95 50 

1.B 269 212 57 52 

1.C 309 246 63 57 

1.E 38 34 4 5 

2. Electrochemical potential-driven transporters (S2) 1456 558 148 73 

3. Primary active transporters (S3) 2045 896 210 134 

3.A 1612 1280 332 67 

3.B 22 20 2 3 

3.D 370 301 69 61 

3.E 27 24 3 3 

4. Group translocators (S4) 107 90 17 20 

4.A 91 73 18 17 

4.C 12 10 2 3 

5. Transmembrane electron carriers (S5) 106 81 25 21 

5.A 61 50 11 11 

5.B 45 35 10 10 

8. Accessory factors involved in transport (S6) 129 109 20 26 

8.A 94 78 16 17 

8.B 35 26 9 9 

9. Incompletely characterized transporters (S7) 377 268 75 49 

9.A 211 168 43 26 

9.B 164 132 32 23 

 The transport proteins are classified at two levels (TC class, and TC subclass) as indicated by a specific 

 TC number TC I.X. Here I = 1,…..,9 represents each of the 9 TC classes, X = A, B, C, D, E,… 

 represents each of the TC subclasses that belong to a TC class. 

 

 Table 2Hydrophobicity, hydrophilicity and mass of side chain scales for 20 amino acids used in 

 calculating pseudo amino acid composition (PseAA). 

Amino acid Hydrophobicitya Hydrophilicityb Mass of side chain  

A 0.62 -0.5 15 

C 0.29 -1 47 

D -0.9 3 59 

E -0.74 3 73 

F 1.19 -2.5 91 

G 0.48 0 1 

H -0.4 -0.5 82 

I 1.38 -1.8 57 

K -1.5 3 73 

L 1.06 -1.8 57 

M 0.64 -1.3 75 

N -0.78 0.2 58 

P 0.12 0 42 

Q -0.85 0.2 72 

R -2.53 3 101 
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S -0.18 0.3 31 

T -0.05 -0.4 45 

V 1.08 -1.5 43 

W 0.81 -3.4 130 

Y 0.26 -2.3 107 

  a
Hydrophobicity values are from reference [27] 

  b
Hydrophilicity values are from reference [28] 

 

 Table 3 Performance accuracy and validation results of 1
st
 layer of TpPred based on combination of 

 pseudo amino acid composition, amino acid composition and physicochemical properties.  
Classes of Train Set Test Set Validation of NN1 (%) 

proteins (%) (%) Independent data set   Self consistency test  Jackknife test 

Transport 98.2 87.7 70.4 81.6 75.9 

Non-transport 96.4 89.1 100.0 94.4 86.9 

Average 97.3 88.4 85.2 88.0 81.4 

 

  

 Table 4 Performance accuracy and validation results of 2
nd

 layer of TpPred based on combination of 

 pseudo amino acid composition, amino acid composition and physicochemical properties. 
Classes of proteins Training  Test  Validation of NN2 (%) 

 set (%) set (%) Independent data 

set 

Self consistency 

test 

Jackknife 

test 

1.Channels/pores 95.8 66.9 57.9 59.9 46.0 

2.Electrochemical potential- 

driven transporters 
93.9 73.6 84.9 89.9 71.6 

3.Primary active transporters 93.1 70.9 64.2 68.2 52.7 

4.Group translocators 100.0 76.5 90.0 96.0 81.9 

5.Transmembrane electron carriers 100.0 68.0 95.2 97.2 78.6 

8.Accesory factors involved in transport 100.0 85.0 84.6 89.6 73.3 

9.Incompletely characterized transporters 100.0 84.0 81.6 88.6 75.1 

Average 97.5 75.0 79.8 84.2 68.5 

 

 3.3 Performance of 3
rd

 layer of neural network  

 The performance accuracy and validation results of NNs in identifying subclasses of channels/pores 

(NN3), primary active transporters (NN4), group translocators (NN5), transmembrane electron carriers (NN6), 

accessory factors involved in transport (NN7) and incompletely characterized transport systems (NN8) using 

combination of all sequence derived features has been given in Table 5. The corresponding results by TpPred on 

the detection of α-type channels (1.A), β-barrel porins (1.B), pore-forming toxins (1.C) and holins (1.D) are 

94.4% (training set), 83.2% (test set), 69.5% (independent data set), 70.0% (self consistency test) and 64.6% 

(jackknife test) on the data set ‗S1‘. Similarly for the data set ‗S3‘ the performance accuracy for the detection of 

P-P-bond-hydrolysis-driven transporters (3.A), decarboxylation-driven transporters (3.B), oxidoreduction-driven 

transporters (3.D) and light absorption driven transporters (3.E) is 95.1% (training set), 95.0% (test set), 73.3% 

(independent data set), 79.3% (self consistency test) and 68.5% (jackknife test). For the data set ‗S4‘, the 

performance accuracy for the detection of phosphotransfer-driven group translocators (4.A) and acyl CoA 

ligase-coupled transporters (4.C) is 100% (training set), 100% (test set), 80.4% (independent data set), 86.8% 

(self consistency test) and 73.0% (jackknife test). For the data set ‗S5‘, the performance accuracy for the 

detection of transmembrane 2-electron transfer carriers (5.A) and transmembrane 1-electron transfer carriers 

(5.B) is 100% (training set), 100% (test set), 95.4% (independent data set), 96.8% (self consistency test) and 

82.7% (jackknife test). For the data set ‗S6‘, the performance accuracy for the detection of auxiliary transport 

proteins (8.A) and ribosomally synthesized protein-peptide toxins (8.B) that target channels and carriers proteins 

is 97.4% (training set), 100% (test set), 83.0% (independent data set), 86.7% (self consistency test) and 76.3% 

(jackknife test). The overall accuracy of detection of recognized transporters of unknown biochemical 
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mechanism (9.A) and putative transport proteins (9.B) is 100% (training set), 97.8% (test set), 82.2% 

(independent set), 87.8% (self consistency test) and 73.7% (jackknife test) for the data set ‗S7‘. The details of 

the performance accuracy have been represented in Table 5. 

 

Table 5 Performance accuracy and validation results of 3
rd

 layer of TpPred based on combination of pseudo 

amino acid composition, amino acid composition and physicochemical properties.  
Classes and  Training Set  Test Set  Validation of NNs (%) 

subclasses (%) (%) Independent data set   Self consistency test  Jackknife test 

1. Channels / pores (NN3) 

1.A 98.7 86.3 40.0 43.9 41.3 

1.B 96.2 86.0 82.7 89.9 76.9 

1.C 94.3 85.7 75.4 81.4 72.3 
1.E 88.2 75.0 80.0 85.0 77.9 

Average 94.4 83.2 69.5 75.0 67.1 

3. Primary active transporters (NN4) 

3.A 99.4 90.1 64.2 70.9 67.0 

3.B 90.0 100.0 66.7 76.2 61.7 

3.D 95.0 89.8 62.3 70.1 59.9 
3.E 95.8 100.0 100.0 100.0 85.6 

Average 95.1 95.0 73.3 79.3 68.5 

4. Group translocators  (NN5) 

4.A 100.0 100.0 94.1 97.3 79.5 

4.C 100.0 100.0 66.7 76.2 66.5 

Average 100.0 100.0 80.4 86.8 73.0 

5. Transmembrane electron carriers (NN6) 

5.A 100.0 100.0 90.9 93.6 76.4 

5.B 100.0 100.0 100.0 100.0 89.0 
Average 100.0 100.0 95.4 96.8 82.7 

8. Accessory factors involved in transport (NN7) 

8.A 98.7 100.0 88.2 91.2 75.3 
8.B 96.1 100.0 77.8 82.2 77.2 

Average 97.4 100.0 83.0 86.7 76.3 

9. Incompletely characterized transporters (NN8) 

9.A 100.0 98.0 85.0 90.4 77.8 

9.B 100.0 97.6 79.5 85.2 69.6 

Average 100.0 97.8 82.2 87.8 73.7 

 

 

 
 

 

Fig. 1A schematic drawing to classify transport proteins into their seven main functional classes and subclasses. 

The notation for different subclasses are: 1.A, α-type channel; 1.B, ß-barrel porins; 1.C, pore-forming toxins; 

1.H, holins; 3.A, P-P-bond-hydrolysis-driven transporters; 3.B, decarboxylation-driven transporters; 3.D, 

oxidoreduction-driven transporters; 3.E, light absorption-driven transporters; 4.A, phosphotransfer-driven group 

translocators; 4.C, acyl CoA ligase-coupled transporters; 5.A, transmembrane 2-electron transfer carriers; 5.B, 

transmembrane 1-electron transfer carriers; 8.A, auxiliary transport proteins ; 8.B, protein-peptide toxins 

targeted to channels and carriers; 9.A, recognized transporters of unknown biochemical mechanism; 9.B, 

putative transport proteins. 
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CONCLUSION 
 From a practical point of view, the most important aspect of a prediction model is its ability to make 

correct predictions. Till date most of the available methods use the 3-D structure of the protein to predict and 

classify transport proteins. This is a very tedious job and requires much costlier endeavors. The sequence of a 

protein is an important determinant for the detailed molecular function of proteins and would consequently also 

be useful for prediction of transport protein and classes. Additionally much encouraging results have been 

predicted using the sequence derived features. Therefore, a much accurate and reliable method is that which 

predicts the transport proteins and their classes based on both strategies. Cascade of neural networks used in this 

study appears to be a potentially useful tool for the prediction of transport proteins of different classes. The 

prediction accuracy may be further enhanced with the further expansion of our knowledge about transport 

proteins particularly for those small transport classes, more refined representation of the structural and 

physicochemical properties of proteins, and the improvement of prediction algorithms such as the better 

treatment of imbalanced dataset.  
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