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Flashback to 2016

Dear Reader of this Report,

At the Leibniz Institute for Solid State and Materials Research Dresden, 2016 was again

a very productive and successful year. Our scientific output has been on the same high

level as in the previous years. The appendix to this report contains the record of our pub-

lications, invited talks, patent applications, completed graduations and guest stays. The

main part presents outstanding scientific results for each Research Area of our research

program:
� Research Area 1: Functional quantum materials
� Research Area 2: Function through size
� Research Area 3: Quantum effects at the nanoscale
� Research Area 4: Towards products

The range of materials that we investigate is broad but well-defined. It contains Quan-

tum Materials, a highly topical class of materials in condensed matter physics, as well

as Functional Materials, representing an important part of modern materials engineer-

ing. In addition, in the last years, Nanoscale Materials became a strong focus of pres-

ent-day materials science and a crucial material class for cutting-edge developments in

electrical engineering. These three classes, Quantum Materials, Functional Materials and

Nanoscale Materials, provide the three materials-oriented pillars of our scientific work.

The research area “Towards Products” binds together materials science and scientific en-

gineering that is at the borderline to prototypes and products. Establishing, fostering

and promoting the contact to industry partners is the main aspect within this activity.

While being distinctly multidisciplinary, there is a clear common thread to all our activ-

ities: all researchers at the IFW Dresden investigate yet unexplored properties of novel

materials with the aim to establish new functionalities and applications.

In July 2016, Burkard Hillebrands took over the position of the Scientific Director, and

the two-years interim period of Manfred Hennecke being the Scientific Director ended.

During the first months in office, the new Scientific Director launched a mission-and-

Prof. Dr. Burkard Hillebrands and Dr. Doreen Kirmse,
the Executive Board of the IFW Dresden
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vision process with special emphasis on the further development of the IFW’s research

program. A program meeting with all responsible scientists of IFW is scheduled for

spring 2017. Together with the IFW’s Administrative Director, Doreen Kirmse, he defined

several priority fields of action like the promotion of young academics, development of

resources and personnel, improved integration into federal, regional and local environ-

ments, internationalization as well as public relations and marketing. We are waiting

for a successor for the director position of the Institute for Complex Materials, who will

be appointed by a joint committee between IFW and Technische Universität Dresden. We

are looking forward to the presentation of invited candidates in spring 2017 and hope

for a fast and appropriate procedure to fill the vacant position.

A further important management issue in 2016 was the election of Doreen Kirmse as

one of the four Vice Presidents of the Leibniz Association. This is a great opportunity for

the IFW – as one of the large Leibniz Institutes – both to take more responsibility and

to obtain more visibility within the Leibniz Association. 

In 2016, three IFW scientists have been appointed as professors at universities: Fei Ding

at University of Hannover (Germany), Qingming Deng at Huaiyin Normal University

(China) and Laura Corredor-Bohórquez at the University Rio Grande do Norte (Brazil).

The training of students and young scientists remains a very important concern of our

work. PhD and diploma students are involved in nearly all scientific projects and in the

resulting publications. Altogether, 29 PhD theses have been successfully completed in

2016, nine of them with the best grade possible – summa cum laude. The IFW acknowl-

edges these outstanding achievements of young scientist by awarding the Tschirnhaus-

Medal.

As a Leibniz Institute, the IFW is financed by the federal government and the German

federa l states in equal parts. However, a considerable extension of capability is the

amount of third-party project funding which is also an important index of quality. The

level of third-party funding in 2016 amounts to 9.6 Mio. Euro – a level at the forefront

within the Leibniz Association. Most of this project funding was acquired in a highly

Parting members of the Scientific Advisory Board have been 
honored with the IFW Leibniz-Medal: Prof. Dr. P. Fauchet, 
Prof. Dr. E. Umbach, Prof. Dr. X. Obradors and Prof. Dr. A. L. Greer.

Dr. Doreen Kirmse says farewell to
Prof. Dr. Manfred Hennecke as 
Scientific Director, June 30, 2016

Handing-over ceremony of the Scientific Director, 
4 October 2016
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competitiv e mode from the DFG and the European Commission. In particular, a substan-

tial participation in the Collaborative Research Centre 1143 on “Correlated magnetism:

From frustration to topology” at the Technische Universität Dresden shows our com -

petitive capability. Among the large number of other third-party funded projects are two

DFG Priority Programs that are coordinated by scientists form the IFW, as well as seven

DFG Priority Programs and three DFG Research Groups where scientists from the IFW

participat e. As in the previous years the IFW has been very successful in initiating and

participating in EU-funded projects. After having been awarded two ERC Starting Grants

in 2012, one ERC Advanced Grant in 2013 and two ERC Consolidator Grants in 2015, again

IFW researchers received highly prestigious funding in 2016 with two more ERC Starting

Grants. Dr. Axel Lubk received an ERC Starting Grant for his proposal entitled “Nanoscale

materials: revealing electromagnetic and deformation fields, chemical composition

and quantum states at atomic resolution - ATOM”. Prof. Dr. Fei Ding received an ERC Start-

ing Grant for his research on “Elementary quantum dot networks enabled by on-chip

nano-optomechanical systems - QD-NOMS”.

Essentially publicly funded, it is our mission to make our research results public. We have

published more than 400 letters, papers and reports in scientific journals and confer-

ence proceedings. 189 invited talks were presented by our scientists at conferences,

workshops, seminars and other occasions around the world. In 2016, we were granted

18 patents, and applications for 12 more patents have been made. Apart from these

scientifi c communications the IFW continued its large efforts to make scientific work

accessibl e for the general public and to inspire young people to study science or

engineerin g. We took part in many joint actions of the Dresden network of universities

and research institutions. From July 4th until October 3rd, 2016, we participated in the

joint Science Exhibition at the Dresden Neumarkt Square where the partners of DRESDEN-

concept jointly presented their research highlights. Another large event was the pres-

entation of Saxon Leibniz-Institutes during the celebration of the German Unification

Day from October 1st to 3rd, 2016 in Dresden. In front of the unique backdrop of the

Frauenkirche thousands of visitors were visiting the exhibition tents eager to obtain an

impression of Saxony’s research landscape. A much closer look to our research, espe-

cially in the fields of magnetism and superconductivity, was offered to the participants

Demonstrator of scanning tunneling microscopy
(photo: C. Hüller)

Award ceremony of Tschirnhaus Medals
for the best PhD theses, 7 March 2016
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of the “Junior Doctor” action and the visitors of the “Dresden Long Night of Sciences”.

Besides these big events we organize almost weekly lab-tours for various visitor groups,

from school classes through official representatives to guests from foreign organizations.

The youngest guests have been kindergarten groups during the three children’s days at

IFW in September 2016.

A crucial part of the IFW’s identity is its vivid life including the cultivation of the scien-

tific dialogue, family-friendly working conditions, intercultural diversity and the support

of sportive and cultural activities. In 2016 we organized a series of workshops, colloquia

and talks to foster the scientific dialogue and, along the way, allow for social and

communicatio n aspects of cooperation. Social events like the annual IFW Summer Day,

the Christmas party and vernissages to our art exhibitions also contribute to a good

workin g atmosphere among all IFW groups. 

The positive development of the IFW is being fostered continuously by the engagement

of colleagues and partners from universities, research institutes and industry, our Sci-

entific Advisory Board and the Board of Trustees as well as the funding organizations. 

We are now looking forward to 2017. It is an important milestone that we celebrate 25

years of IFW Dresden, which was founded on January 1, 1992.

We would like to thank all our partners and friends for their support and cooperation.

Dresden, February 2017

Prof. Dr. Burkard Hillebrands                                                        Dr. Doreen Kirmse

Scientific Director                                                              Administrative Director

New apprentices starting their professional
training at IFW in 2016

Prof. Dr. Fei Ding received an ERC starting
grant (photo: M. Hultsch)

Dr. Axel Lubk received an ERC starting
grant (photo: M. Hultsch)
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Facts & Figures 

Organization

The Leibniz Institute for Solid State and Material Research Dresden (IFW) is one of

currentl y 91 institutes of the Leibniz Association in Germany. It is a legally independent

association, headed by the Scientific Director, Prof. Dr. Burkard Hillebrands, and the

Administrativ e Director, Dr. Doreen Kirmse.

The scientific body of the IFW Dresden is structured into five institutes, the directors of

which are simultaneously full professors at Dresden, and Chemnitz Universities of

Technolog y:
� Institute for Solid State Research, Prof. Dr. Bernd Büchner
� Institute for Metallic Materials, Prof. Dr. Kornelius Nielsch
� Institute for Complex Materials, Dr. Thomas Gemming (temp.)
� Institute for Integrative Nanosciences, Prof. Dr. Oliver G. Schmidt
� Institute for Theoretical Solid State Physics, Prof. Dr. Jeroen van den Brink

Further divisions are the Research Technology Division and the Administrative Division.

Financing

The institutional funding of IFW is supplied by the Federal government and by the

Germa n states (Länder) in equal parts. In 2016, this funding was about 33.378 million

euros in total. 

In addition, the IFW receives project funding from external sources of about 9,6 million

euros. Thereof, about 40,5% came from German Research Foundation (DFG), 29% from

European Union programs, 11,1 % from Federal Government projects, 12,1 % from

industr y and 7,4% from other donors including the Free State of Saxony.

Get-together of students with automobile and aerospace
industry at IFW Dresden (Photo: C.-I. Mokry)

Physics for beginners: Children’s Day at IFW Joint presentation of Saxon Leibniz 
Institutes at the Dresden Neumarkt
Square during the Day of German Unity
(photo: C. Hüller)
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Personnel

On 31 December 2016, 483 staff members were employed at the IFW, including 94

doctorat e students as well as 18 apprentices in seven different vocational trainings and

two business students of a vocational academy. 

Gender equality, as well as work life balance, are defined goals of the IFW Dresden. In

2016, the percentage of women in scientific positions was 25% and the percentage of

women in scientific leading positions was 21%. The IFW is regularly audited for the

certificat e “audit berufundfamilie” (a strategic management tool for a better compati-

bility of family and career).

Number of publications and patents

In terms of publications, the qualitative and quantitative level remains high at the IFW.

In 2016, IFW scientists have published more than 400 refereed journal articles, a

considerabl e number of them in high impact journals. Furthermore, IFW members held

189 invited talks at conferences and colloquia. 

By 31 December 2016, the IFW holds 113 patents in Germany and 80 international

patents.

Micro-actuator for vaporization of fluids based
on Surface Acoustic Waves (SAW)

Christmas Lecture at IFW by
Prof. Dr. Jens Freudenberger

Get-together of students with automobile
and aerospace industry at IFW Dresden
(photo: C.-I. Mokry)
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Research Area 1

Spin-orbit coupling in iron-based superconductors 
revealed by ARPES 

S. Borisenko, D. Evtushinsky, A. Fedorov, Y. Kushnirenko, E. Haubold, 

Z. Liu, I. Morozov, R. Kappenberger, S. Wurmehl, B. Büchner, A. Yaresko1, 

T. Kim2, M. Hoesch2, T. Wolf 3, N. Zhigadlo4

Abstract: Spin–orbit coupling (SOC) is a fundamental interaction in solids that can

induc e a broad spectrum of unusual physical properties from topologically non-trivial

insulating states to unconventional pairing in superconductors. In iron-based super-

conductors (IBS) its role has so far been considered insignificant with the models based

on spin- or orbital fluctuations pairing being the most advanced in the field. Using

high-resolution angle-resolved photoemission spectroscopy (ARPES) we have detect-

ed a significant splitting of the electronic states due to spin-orbit interaction with the

energy scale exceeding that of nematic order in all main representatives of IBS. This

splitting occurs in the immediate vicinity to the Fermi level and the involved electrons

turn out to be the most sensitive to the superconductivity itself, implying the intimate

relation between this fundamental interaction and mechanism of high-temperature

superconductivi ty.

Detection of spin-orbit splitting in LiFeAs

A well known from the textbooks fact is that in the presence of spin–orbit coupling, the

spin of electron quantized along any axis is no longer a good quantum number and the

electronic states are better described by the total angular momentum. This canonical in-

teraction may result in a lifting of the degeneracy of the electronic states and lead to the

fascinating physical phenomena such as spin Hall effects, spin relaxation, topological

insulation, occurrence of Dirac, Majorana and Weyl fermions, etc. No wonder that the sys-

tems with SOC are in the focus of intensive research in the field of spintronics – there is

a unique opportunity to manipulate the spin without the aid of magnetic field. A spe-

cial role has been played by SOC in the field of superconductors. In low-dimensional or

noncentrosymmetric systems it can promote and stabilize superconductivity [1], allow

ferromagnetism to coexist with superconductivity [2] or even rise Tc [3]. SOC could be

a very important ingredient in describing the superconducting state in Sr2RuO4, where

it is larger than the superconducting gap [4]. In iron-based superconductors (IBS), where

the low-energy electronic states are composed of different orbitals, SOC-induced spin

anisotropy together with the orbital mixing may directly influence the orbital and spin

angular momentum of the Cooper pairs, thus making the determination of the pairing

symmetry non-trivial. However, until now SOC in IBS was considered insignificant.

We start with the example of LiFeAs, which is a special representative of iron-based fam-

ily of superconductors [5]. This material is one of the most studied due to its stoichiom-

etry and non-polar surfaces. Its electronic structure is believed to be well understood

from numerous ARPES experiments and the parameterization of its electronic dispersions

has been used to test the most developed theoretical approaches [6-8].

According to the band structure calculations the most convenient places to detect the

spin-orbit splitting in LiFeAs is exactly in the center of the Brillouin Zone (BZ) and at the

BZ-boundary where it crosses the electron-like pockets [9]. In Fig.1a we show the ARPES

data taken along the high-symmetry direction in the BZ running through the Γ-point.

From this intensity plot one is able to resolve three hole-like dispersions forming the cor-

responding Fermi surface pockets around Γ. Two of the dispersions have their maxima

below the Fermi level and these are non-degenerate, i.e. the tops of these bands are lo-

cated at slightly different binding energies. This is confirmed by panel b) of Fig. 1 where

the energy-distribution curve taken at zero momentum is shown. There are two features

separated by 9.5 meV and this distance is due to SOC.



10 Research Area 1    FUNCTIONAL QUANTUM MATERIALS

To measure the magnitude of the SOC on the electron pockets we have to switch to the

other location in the k-space mentioned earlier. Since the SOC split dispersions cross the

Fermi level in (kx, ky) plane, we can observe this splitting in the momentum space with

high resolution. We have recorded the detailed Fermi surface map near the corner of the

BZ especially for this purpose. Indeed, as follows from Fig. 1c, electron pockets are no

longer degenerate along the MX-direction, contrary to what is expected from non-rel-

ativistic band structure. To quantify the effect in terms of energy, we plot the intensity

as a function of momentum along MX and energy in panel d). The dispersions are again

split by ∼ 10 meV demonstrating the lifting of the degeneracy of electron pockets along

the high symmetry directions and closely corresponding to the value determined in the

center of the BZ. As predicted by the calculations, we have thus directly observed the SOC

in LiFeAs.

Universality of spin-orbit coupling in iron-based superconductors family

The similar experiments on FeSe reveal the presence of SOC and support the dominant

role of this interaction in comparison with the nematic splitting [10]. In Fig. 2a,b we show

the data similar to those from Fig. 1a, but for FeSe and taken at two different excitation

photon energies corresponding to Γ and Z-points of the BZ. In this case the separation

of the tops of the bands is larger (∼ 25 meV) and this is not only due to the larger SOC.

FeSe is also known for hosting the electronic nematic transition and this order at low

temperature s contributes to the lifting of the degeneracy at the center of the BZ. On

the other hand, nematic order parameter results in the splitting of the bands exactly in

the corners of the BZ and this fact allowed us to determine two energy scales (SOC and

nematicity) independently. It turned out that in FeSe spin-orbit interaction is stronger

[10]. 

The analogous data for other two main families of IBS are presented in other panels of

Fig. 2. In the case of the optimally hole-doped 122 material (Tc ∼ 38 K), there is no pos-

sibility to determine the SOC directly at the center of the BZ since tops of all hole-like

bands are well above the Fermi level in accordance with lower electron concentration.

Fig. 1: (a) ARPES data along the high-symmetry 
direction in LiFeAs multiplied by the Fermi function.
(b) Energy-distribution curve corresponding to zero
momentum in panel (a). (c) High-precision Fermi
surface map of electron pockets in LiFeAs. 
(d) Second derivative of ARPES intensity recorded
along the MX-direction.
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We went around this limitation by the following procedure. Because of the sizeable

super-conducting gap and proximity of the band’s edges to EF, the top of the band is

“reflecte d” from the Fermi level to the occupied side of the spectrum below critical

temperatur e Tc (see Fig. 2c and Fig. 4h in Ref. 9). The SOC can be determined from the

energy-distribution curve (not shown) going through the reflected tops. Another dis-

tinction of the 122 family from 11 and 111 materials is that the SOC does lift the degen-

eracy right at the corner of the BZ (now X-point, not M, since BZ is different) because of

different crystal symmetry. This splitting is visible in Fig. 2d I. Finally, we detect the split-

ting also in the representative of 1111 family, the Co-SmFeAsO (Tc ∼ 16K). In accordance

with the calculations, there is a doublet in  and a singlet in M-point (Fig. 2e,f). 

We summarized our observations in Fig. 3 where we plotted the experimentally deter-

mined values of SOC together with those predicted by the band structure calculations.

There is a clear correlation between the two datasets, which speaks in favor of our

interpretatio n of the observed splitting. We note, that experimental value for FeSe is

slightly overestimated since the nematic order contributes to the splitting at the cen-

ter of the BZ, but this contribution remains noticeably smaller than that of SOC.

Fig. 2: (a) Photoemission intensity along the cut in
the k-space running through the Γ-point in FeSe. 
(b) Same as (a), but for the cut running through 
Z-point. (c) Same as (a) for K-BaFe2As2. Dashed lines
show the anticipated dispersions in the unoccupied
part of the spectrum. (d) ARPES intensity plot for 
the cut, going through the corner of the BZ in 
K-BaFe2As2. (e) and (f) Same as (c) and (d) in the
case of Co-SmFeAsO material. White arrows show
the doublets while the red arrow shows a singlet.

Fig. 3: Comparison of the experimental values for
SOC obtained by reading the peak positions from the
corresponding energy-distribution curves, with the
theoretical values. ‘el’ means electron pocket.
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Relation to the mechanism of high-temperature superconductivity

We expect that these findings are highly relevant for the superconductivity in IBS. Ex-

isting approaches strongly rely on the presence of shallow bands crossing the Fermi lev-

el with energy dispersion of the order of the pairing interaction. Another theoretical

study demonstrates that the inclusion of SOC leads to further mixing of triplet pairing,

as well as to an anisotropic energy gap on all Fermi surfaces in iron-based superconduc-

tors [11], the latter being observed experimentally [12]. In Fig. 4 we schematically show

the Fermi surface contours and gap functions for the representatives of IBS families hav-

ing the highest Tc. We mark in red those Fermi surfaces or their portions, which are

formed by the spin–orbit split states. Remarkably, the largest superconducting gap in

each material is supported by the SOC-induced Fermi surfaces. Moreover, in 11 and 122

IBS, where the SOC in the corner of the BZ is comparable to that in the centre, one sees

correspondingly considerable superconducting gaps. 

We have thus observed the decisive influence of the spin–orbit interaction on the low-

energy electron dynamics of all representative iron-based superconductors, which is

stronger than possible nematic effects. The size of SOC is comparable to the pairing gap

and the Fermi energy, which may have profound implications on the mechanism of

superconductivit y in these materials.

[1] A. D. Caviglia et al., Phys. Rev. Lett. 104, 126803 (2010).
[2] D. A. Dikin et al., Phys. Rev. Lett. 107, 056802 (2011).
[3] H. Jeffrey Gardner et al., Nat. Phys. 7, 895–900 (2011).
[4] M. W. Haverkort et al., Phys. Rev. Lett. 101, 026406 (2008).
[5] S. V. Borisenko et al., Phys. Rev. Lett. 105(6), 067002 (2010).
[6] Y. Wang et al., Phys. Rev. B 88(17), 174516 (2013).
[7] F. Ahn et al., Phys. Rev. B 89(14), 144513 (2014).
[8] T. Saito et al. Phys. Rev. B 90, 035104 (2014).
[9] S. V. Borisenko et al. Nat. Phys. 12, 311 (2016).
[10] A. Fedorov et al. Sci. Rep. 6, 36834 (2016).
[11] V. Cvetkovic and O. Vafek, Phys. Rev. B 88, 134510 (2013)
[12] S. V. Borisenko et al., Symmetry 4, 251–264 (2012).

Funding: DFG (BO1912/2-2, BO1912/3-1, BE1749/13 and WU595/3-1)
Cooperation: 1MPI FKF Stuttgart, 2Diamond Light Source Ltd. UK, 3KIT, 
4Univ. of Bern, Dept. of Chemistry and Biochemistry

Fig. 4: Sketches of the Fermi contours are shown
in the horizontal plane. Fully red or partially red
contours are the states at the Fermi level induced
by the large (5 –25 meV) spin–orbit splitting de-
tected experimentally. Gap functions are given by
the third axis and shown only for the centres and
one of the corners of the BZ for simplicity. All gap
functions are normalized to the maximum value
indicated in each plot.
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Elucidating exotic ground states of correlated materials 
by electron spectroscopy

A. Koitzsch, C. Habenicht, N. Heming, H. Kandpal, M. Knupfer, 

E. Müller, B. Büchner, J. van den Brink

Abstract: Understanding the properties of materials is at the core of condensed mat-

ter physics and often the basis for applications. The complex quantum materials, the

subject of this research area, are especially challenging in this regard but frequently

hold great promises for future technologies. Here we demonstrate how state-of-the-

art spectroscopy combined with theoretical investigations help to elucidate important

aspects of the ground state properties of two such materials, α-RuCl3 and CeB6. Our

result s serve as a starting point of systematic material modifications and concrete fol-

low-up investigations and promote better understanding of a variety of compounds.

Jeff Description of the Honeycomb Mott Insulator α-RuCl3

The search for novel electronic and magnetic ground states has ever been a driving force

of condensed matter physics. The effects of strong spin-orbit coupling, possibly compet-

ing with other energy scales, have turned out to be especially fruitful in this respect in

recent years. This is most prominently manifested by the advent of topological insula-

tors [1]. More recently, the Kitaev model was established, which describes the bond-

dependen t spin interactions on a honeycomb spin ½ lattice [2]. The Kitaev model attracts

enormous attention because it is exactly solvable and its ground state is an exotic

quantum spin liquid. However, unambiguous experimental evidence is lacking so far. The

prime candidates for the realization of Kitaev physics have been the 5d5 iridates A2IrO3

(A = Na, Li) [3]. This thread of research relies on the realization of effective Jeff = ½ pseu-

dospins by the combined interaction of spin-orbit coupling and crystal field splitting.

But the concept of Jeff = ½ pseudospins is under debate for the iridates due to substan-

tial lattice distortions lifting the t2g degeneracy, which, strictly speaking, invalidates the

Jeff description.

α-RuCl3 appeared recently against this background as a 4d analogue to the iridates [4].

Ru is in a 3+ state and features a d5 electron count with a low spin state. Its spin-orbit

coupling (λ ≈ 0.1 eV) is strongly reduced as compared to the iridates, but so is its band-

width W due to presumed correlation effects. Importantly, the local cubic symmetry is

almost perfect in contrast to the iridates. Hence, the Jeff description might be still

operabl e for α-RuCl3. Another practical advantage is that it can be synthesized as large,

easy-to-cleave single crystals, which offer the possibility of exfoliation. RuCl3 has been

known for a long time and is even of some importance as a chemical. Its electronic

structur e has been repeatedly investigated over the years by optical spectroscopy and

photoemission. The picture of a Mott-insulating state was proposed where the Ru 4d

bands are situated close to EF but show little dispersion [5]. 

Here we elucidate the electronic structure of α-RuCl3 by state of the art photoemission

(PES), electron-energy-loss spectroscopy (EELS), density-functional-theory (DFT), and

multiplet calculations. We achieve a consistent, quantitative picture of a spin-orbit as-

sisted Mott insulator. The central question of this study, and decisive for the prospects

of α-RuCl3 as a possible carrier of Kitaev ground states, is whether or not the Jeff = ½

descriptio n of the electronic structure is appropriate. Based on the comparison of the

DFT calculations with results from angle-resolved photoemission spectroscopy (ARPES),

we can answer this question affirmatively [6]. 

Fig. 1 shows schematically the Jeff description along with the outcome of the DFT calcu-

lations. Starting with a situation where only the crystal field splitting is considered

(Fig.1a), subsequently the spin-orbit coupling (Fig.1b) and on-site correlations (Fig.1c)

are taken into account, leading, in an ideal case, to a splitting of the pure Jeff = ½ band.
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Fig. 1: (a)–(c) Jeff description of the d-level elec-
tronic structure. (a) Schematic density of states
without interactions. (b) Under the presence of
strong spin-orbit coupling. (c) With spin-orbit
coupling and on-site correlation U. 
(d) Calculated density of states of α-RuCl3 with
spin-orbit coupling and on-site correlation.

Fig. 2: (a) Angle dependence of the valence band
of α-RuCl3. Red dotted lines are results of band
structure calculations. (b) Expansion of the Ru 4d
region. (c) Band structure with inclusion of the
SOC. (d) Comparison of experimental and theo-
retical Γ-point spectra extracted from calculations
with and without spin-orbit coupling (SOC). 
(e) Band structure without SOC.

As seen in Fig. 1d, already the DFT results are more complex. This can be compared to

experimen t. Fig. 2 presents ARPES results compared to theory. The overall experimen-

tal bandstructure is reasonably well described by the DFT (Fig. 2a). We observe weakly

dispersing, broad valence bands (Fig. 2b). The comparison is significantly better for the

calculation, where the spin-orbit coupling is included, indicating its relevance for the

ground state properties (Figs. 2c-e). 

The above findings convey the picture of a Mott insulator whose low-energy structure is

dictated by a mixture of the local cubic symmetry and spin-orbit coupling which might

give rise to exotic magnetic ground states [7].

Nesting-driven multipolar order in CeB6 from photoemission tomography

Some heavy fermion materials show so-called hidden-order phases which are invisible

to many characterization techniques and whose microscopic origin remained controver-

sial for decades. Among such hidden-order compounds CeB6 is of model character due

to its simple electronic configuration and crystal structure. CeB6 is a heavy-fermion

materia l showing a mass enhancement of the order of 100 [8], which is due to the

hybridizatio n of the localized f-electrons with the itinerant conduction electrons. Mag-
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netism of heavy fermion materials is determined by the competition of Kondo screening

and the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, the former quenching the

local moments and favouring paramagnetic behaviour, the latter promoting magnetic

orde r mediated by the conduction electrons. In CeB6 the usual paramagnetic response

is found before antiferromagnetic order with a double-Q commensurate structure char-

acterized by the propagation vectors QAFM1 = (π/2, π/2, 0) and QAFM2 = (π/2, π/2, π) sets

in below TN = 2.3 K. However, the phase diagram is more complex: the antiferromagnet-

ism is preceded by a famous hidden order state at TQ = 3.2 K, the so called antiferro-

quadrupolar phase (AFQ), which has been explained by the ordering of quadrupole

moment s with QAFQ = ( π, π, π) [9]. The latter has long been elusive to neutron diffrac-

tion experiments. Attempts were made to describe these observations by theories

emphasizin g the local character of the magnetic moments [10]. In an itinerant picture,

on the other hand, the strength of the magnetic interactions is mediated by the conduc-

tion electrons and depends on the low-energy electronic structure. It can be expressed

within linear response theory by the Lindhard function. The latter quantifies the propen-

sity of a given electronic structure towards nesting instabilities of the Fermi surface and

the subsequent formation of a new, in our case magnetically ordered, state. An interest-

ing question in this context is whether or not the AFQ state also is directly linked to the

electronic structure in a similar way. However, although CeB6 has been studied for more

than 50 years, the three-dimensional (3D) electronic structure of CeB6 was not known

so far neither from experiment nor from theory with sufficient accuracy to test this

Fig. 3: (a) Crystal structure of CeB6. (b) Brillouin zone
with high symmetry points. (c – e) Fermi surfaces and
representations of the different cleavage planes. 
(c) (100), taken with a photon energy of hν = 700eV;
(d) (110), hν = 609eV; (e) (111), hν = 700eV; 
measured at 12K. (f–h) 3D representation of the
measured Fermi surface and the measurement plane.
The different colours of the ellipsoids are for clarity.
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hypothesi s. This deficiency called for a detailed investigation of the band structure and

the Fermi surface of CeB6. Here we implement a rigorous and innovative approach: We

measured samples cleaved along all high-symmetry crystallographic planes (100),

(110), (111). This probes different planes of k-space, resembling a tomographic type of

measurement that yields complete 3D information about the electronic structure in

contras t to conventional angle-resolved photoemission spectroscopy (ARPES), in which

one direction orthogonal to the surface is always inferior to two others. Fig. 3 presents

the experimental results obtained in this way. Fig. 3a, b show schematically the crystal

structure and the Brillouin zone of CeB6. Fig. 3c-e present the ARPES data for the three

different cleavage planes, which clearly reflect the underlying crystal symmetry.

Fig. 3f-h provide 3D representations of the measured k-space cuts. Additionally, we

conducte d photon-energy dependent measurements in the soft X-ray regime spanning

a wide kz interval (not shown). We use the entire dataset to calculate the Lindhard func-

tion and compare it with neutron scattering data (see Fig. 4). From the consistency of

both, we conclude that the magnetic excitations and the AFQ propagation vector in CeB6

are dictated by the Fermi-surface geometry [11]. Hence, the hidden order is mediated

by itinerant electrons. 

Our findings will serve as a paradigm for the investigation of hidden-order phases in

f-electron systems, but also generally for situations where the itinerant electrons drive

orbital or spin order.
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Fig. 4: (a) Two-dimensional representation of the
Lindhard function in the (HHL) plane compared with
the distribution of magnetic quasielastic scattering
intensity measured by inelastic neutron scattering 
at T = 2.6 K in reciprocal lattice units. (b) Lindhard
function extracted for certain high symmetry direc-
tions with the indication of peaks coinciding with
the propagation vectors of low-temperature 
ordered phases.
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Defect engineering reduces the hysteresis 
of magnetocaloric Heusler alloys

R. Niemann, A. Diestel, B. Schleicher, S. Schwabe, L. Schultz, K. Nielsch, S. Fähler

Magnetocaloric materials as promising solid-state refrigerants

A large fraction of the energy consumed worldwide is used for air conditioning and

refrigeratio n in households, transportation and industry. Magnetocaloric materials

are promising as alternative solid-state refrigerants for more sustainable and environ-

mentally friendly cooling devices. The highest caloric effects occur in materials that

exhibi t first-order phase transitions that can be induced by external magnetic fields

or mechanical stress [1, 2]. These transformations proceed by nucleation and growth

of a low temperature phase with a different crystal structure and mostly different mag-

netic properties. The structural misfit between the phases leads to a hysteresis. All

irreversibl e processes during the transformation are undesired since they heat up the ma-

terial and reduce the efficiency of any cooling application. We study Ni-Mn-Ga, a shape

memory alloy that exhibits a martensitic transformation and a large magnetocaloric

effec t. By nanoindentation into epitaxial films, we create well-defined defects that

promot e the formation of the low-temperature phase in their vicinity [3]. 

Hysteresis as challenge for materials with a first-order transformation

Hysteresis in first-order transitions is a consequence of the formation and movement of

phase boundaries. This leads to energy barriers that have to be overcome to form a nu-

cleus and grow the product phase. In order to reduce the energy barriers and thus the

hysteresis in magnetocaloric applications, different approaches have been proposed

which are either structure or microstructure related.

Approaches tackling the structure try to decrease the lattice misfit between both

phases at the phase boundary. This can be achieved by tuning the chemical composition,

but this commonly also changes other important intrinsic parameters like the transfor-

mation temperature or magnetization difference between the phases, which directly

influenc e the magnetocaloric effect. Microstructural methods usually try to decrease the

nucleation barrier. In general, these barriers are drastically reduced close to defects,

where heterogeneous nucleation is possible. Consequently, the hysteresis can be effec-

tively reduced by introducing defects, e.g., via ion irradiation or precipitations. 

Nanoindentation reduces the nucleation barrier in a Ni-Mn-Ga film

A 1.5 μm thick epitaxial Ni48Mn33Ga19 film was grown by sputter deposition onto a

singl e crystalline MgO substrate. X-ray diffraction (not shown) revealed that the film

undergoe s a transformation from a cubic phase (austenite) to a monoclinic phase

(martensite) when cooled below 400 K. 

To create a permanent surface defect, nanoindentation was performed at room temper-

ature in the martensitic state with a pyramidal Berkovich tip and a maximum force of

20 mN. The plastically deformed surface area close to the remanent indent was analyzed

at room temperature by atomic force microscopy (Fig. 1). The tip has left a regular tri-

angular indent with an edge length of about 1 μm and with a depth of about 170 nm. Its

shape is not perfectly pyramidal; there is a kink in the left face of the indent. The large

depth compared to the film thickness shows that the deformation near the indent was

mostly plastic by movement of dislocations and not entirely pseudo-plastic by twin

boundary movement. The latter is additionally hindered by the complex arrangement of

twin boundaries in the martensite. 
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To determine how the indent influences the martensitic transformation on a local scale,

a series of scanning electron micrographs was acquired during the martensitic trans -

formation [3]. 

Fig. 2a shows the martensitic microstructure around the indent at 353 K. The microstruc-

ture consists of diagonal features (called “type X” martensite) and horizontal and ver-

tical features (called “type Y” martensite). Above the transformation temperature at 423K

(Fig. 2b), the film is almost entirely in the austenitic state except for a few remanent type

Y needles that are preserved very close to the indent. After cooling the sample to 408K

(Fig. 2c), these needles grow away from the indent and hence the phase fraction of

martensite very close to the indent is increased. The rest of the observed sample remains

in the austenitic phase. Upon further cooling to 404 K (Fig. 2d), the needles close to the

indent grow further along [110]A. Additionally, a martensitic needle along the [010]

directio n forms directly at the indent (red arrow). Near the right edge of the image, a new

Fig. 1: (a) AFM images of the remanent indent in
an epitaxial Ni-Mn-Ga film. Additional topography
from the martensitic microstructure is visible. 
(b) Height z along the profiles A-B and C-D.

Fig. 2: SEM micrographs show the martensitic 
microstructure near the indent at different tem -
peratures. (a) The microstructure after indentation.
(b) After heating, the sample becomes austenitic.
(c) and (d) Upon cooling, the martensitic transfor-
mation starts at the indent by formation of type 
Y martensite and a separate type X needle 
(red arrow). (e) The martensite grows further until
(f ) a final, different microstructure is reached.
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group of type Y needles forms, which is not directly connected to the indent. It may

have nucleated independently at another defect or due to some long-range elastic

stray field of the indent. At 399K (Fig. 2e), we observe an increased fraction of type Y

martensite. The central group of needles near the indent has thickened and additional

needles that are oriented along the [11–0]A direction have formed. Those cannot grow

across existing martensite. Finally, at 373 K (Fig. 2f), almost the entire sample is in the

martensitic state. The microstructure again consists only of type X and Y elements but

the particular pattern is significantly different compared to the original martensitic

microstructur e from Fig. 2a. Only near the indent, the type and orientation of the

martensite (type Y along [110]) were preserved. This illustrates that the transformation

path is very sensitive to small variations in the boundary conditions. 

To quantify the effect of the indent on the transformation, the series of electron micro-

graphs was further evaluated: the phase fractions were determined by measuring the

surfac e area covered by austenite and martensite, respectively (Fig. 3). By processing

all images from the temperature series, this analysis yields an approximation of the phase

fraction as a function of temperature. To identify the radius of influence of the indent,

we defined a cut-off radius r. The quantitative evaluation of the phase fraction was then

performed separately for the surface area lying within and outside the cut-off radius,

respectivel y (Fig.3a). The cut-off radius was varied between 1μm and 12μm. These limit s

are given by the size of the indent and of the observed area, respectively. As a result of

this evaluation, the temperature dependence of the austenite phase fraction is plotted

exemplarily for r = 2μm in Fig. 3b. Inside the radius of 2μm, the phase fraction of austen-

ite starts to decrease already at around 410 K while outside the radius, the austenite is

stable until 400 K. This is obviously a consequence of the martensite growing first near

the indent. During further cooling, the austenite phase fraction far from the indent re-

mains larger than the austenite fraction inside the radius. In Fig. 3c, the phase fraction

is plotted for a radius of 6 μm. In this case, there is almost no difference between the

transformation outside and inside the radius. Apart from little deviations near the be-

ginning of the transformation, no significant difference can be observed. We quantify

Fig. 3: Quantification of the impact of an indent
measured for decreasing temperature. (a) Microstruc-
ture near the remanent indent during the martensitic
transformation. A critical radius around the indent is
defined. The dependence of the fraction of austenite
inside (red) and outside (black) a cut-off radius of 
(b) 2 μm and (c) 6 μm around the remanent indent is
shown. The fraction was calculated by measuring the
surface coverage of both phases. (d) The integral of
the difference between the phase fraction inside and
outside the radius is called impact (gray area in (b))
and is a measure for the influence of the indent for
any given radius. Shown is the dependency of the
impact on the radius. For radii smaller than 6 μm, a
significant influence is observed.
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the “impact” of the indent by a single number obtained from an integration of the

differenc e between the phase fraction inside and outside the radius. This area is high-

lighted in gray in Fig.3b. The radius of influence around an indent is achieved by plot-

ting the impact as a function of r (Fig. 3d). The impact monotonously decays with

increasin g radius, which is expected since the influence should vanish at large distances.

From these measurements, we can conclude that one indent controls nucleation within

a radius of about 6μm. This is significantly larger than the indent itself, illustrating that

nanoindentation is an effective way to control nucleation. However, the affected radius

is still in the order of the film thickness of 1.5 μm, indicating that the influence radius

is mostly limited by clamping of the film to the rigid substrate. The present work demon-

strates that an indent can promote the martensitic transformation on a local scale. The

well-defined experiment allows for a better understanding of the observation that

martensite usually starts to grow, e.g., near scratches at the surface of a sample. The un-

derlying mechanism is the increase of the temperature at which the transformation takes

place. This is caused by the elastic stray field around a plastic deformation. This leads

to a relative shift of the respective free energy curves of both phases and results in a stress

induced martensite. Due to the local increase of the temperature at which the trans -

formation takes place, this martensite will nucleate first.

Our observation is that one indent does not result in a switching of the entire sample but

only predominantly affects the transformation in a radius of the order of less than 10 μm,

which suggests that the local change of transformation temperature is more important.

In the film-shaped sample we used, the effect is limited to a small area around each in-

dent. To influence the transformation on a macroscopic scale, the indents could be placed

preferably in a hexagonal lattice and with a lattice constant in the order of several μm,

which corresponds to a density in the order of ≈1010m−2. For a bulk process, we propose

to add defects, e.g., by precipitation reactions or adding inert microparticles. As the

transformation proceeds by nucleation and growth, one should optimize defect size and

distribution not only with respect to their nucleation ability but also for a minimized

pinnin g potential.

[1] A. Diestel et al., JAP 118 (2015) 023908 
[2] B. Schleicher et al., JAP 118 (2015) 053906
[3] R. Niemann et al., APL Mater. 4 (2016) 64101 
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Reproducibility in density functional theory calculations 
of solids and the Full-Potential Local-Orbital code 

K. Koepernik, U. Nitzsche, M. Richter

Abstract: Density functional theory (DFT) is a popular quantum mechanical method for

both academic and commercial applications. It is increasingly used in an automated

fashion to build large databases or to apply multi-scale techniques with limited human

supervision. Therefore, the reproducibility of DFT results underlies the scientific

credibilit y of a substantial fraction of current work in the natural and engineering

science s. Here, we introduce the variety of DFT solvers that partly provide specific

capabilitie s but also share a large class of calculated properties. The latter can be used

for benchmarking and for testing the reproducibility of the results obtained with

completely independent implementations. Results of a recent comparison of equation-

of-state data among 40 different DFT codes are presented. Finally, we summarize

importan t features of the FPLO code being developed at IFW.

Introduction [1]

Each chapter of J. M. Ziman’s famous textbook Principles of the Theory of Solids is

headed by a citation. In particular, he introduces the chapter about Electronic states with

R. Kipling’s lines

There are nine and sixty ways of constructing tribal lays,

And-every-single-one-of-them-is-right.

Kipling’s wisdom is a pray for tolerance of variety, and Ziman makes the point that even

in aiming at a result of mathematical rigor there may be all the good reasons to justify

a variety of ways to reach the goal. However, everybody who has been working in the field

of electronic structure theory knows, that quantitative comparisons between different

codes can be unsatisfactory on a physically relevant scale of accuracy.

This statement does not refer to the never ending discussion of the question, which par-

ticular flavor of density functional theory (DFT) would be the preferable approximation

for a given system. What is meant is the purely numerical implementation of a well-

define d task. Take several band structure codes and let all of them calculate the lattice

constant of fcc thorium in local density approximation (LDA). You may get answers

deviatin g from each other by a much larger amount than the scatter of related experi-

mental data, see Fig.1. Remember, we do not want to discuss the problem of so-called

over-binding in LDA. This latter problem can only be tackled if we know what the numer-

ically well defined LDA result is.

Fig. 1: (adapted from [1]) LDA lattice constant of fcc thorium obtained with the fully relativistic
FPLO method in comparison with different published LDA results and with the experimental
value. The thickness of the line denoted „exp.“ indicates the scatter of different experimental
data.
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At this point it is fair to state that tremendous advances in the numerical techniques have

been achieved since John Slater’s days. A large number of numerical methods to solve

the Kohn-Sham equations, a set of nonlinear integro-differential equations summariz-

ing DFT, has been implemented in past decades. Though these equations are included

in every modern solid state theory textbook, their accurate solution requires a large

arsena l of numerical methods. The related codes usually consist of several hundred-

thousan d lines. Depending on the number of add-ons and on the level of accuracy and

sophistication, their development may take several 10 person-years.

DFT solvers can be categorized according to

(i) the level of accuracy in the construction of potential and charge density like atomic -

sphere approximation (ASA) or the most accurate full-potential (FP) approach; (ii) the

treatment of the atomic core states: pseudo-potential (PP) or all-electron (AE); (iii) the

choice of the basis set for the Bloch states like augmented plane waves (APW), muffin-

tin orbitals (MTO), plane waves (PW), or local orbitals (LO).

As a rule of thumb, a better accuracy of the numerical method consumes more compu-

tational resources. However, the level of sophistication in the numerical approaches

and, in particular, in the choice of the basis states, can essentially influence the rela-

tion between accuracy and effort. Since there is less than no hope to get exact analyt-

ical solutions to a representative selection of significant problems, the only way to judge

numerical accuracy is to compare output numbers of different approaches corresponding

to exactly the same input numbers.

Is accuracy an issue at all? The answer is given in Fig. 1, showing the state-of-the-art of

the year 2007. While the scatter of the experimental data amounts to about 0.1%, the

difference between ASA and FP variants of the same method (LMTO) amounts to more

than 7%. Even results obtained with different sophisticated FP methods scatter within

about 3.5%. Only if this number can be reduced to less than 1% it is possible to judge

the quality of approximations to DFT, like LDA or the generalized gradient approximation

(GGA), with respect to the evaluation of lattice geometries and elastic properties.

Reproducibility test among 40 different DFT implementations [2]

The reproducibility of results is one of the fundamental principles of science. An obser-

vation can only be accepted by the scientific community if it can be confirmed by

independen t studies. This includes numerical studies – computer experiments – with

independen t algorithmic implementations of the same set of equations.

Initiated and coordinated by a DFT group at Ghent University, a pairwise comparison of

a wide range of methods with respect to their calculated equations of state of 71 elemen-

tal crystals was performed. This effort required the combined expertise of a large group

of DFT code developers and expert users, including the authoring IFW team.

Equation-of-state data were evaluated for four classes of DFT solver implementations,

totaling 40 methods. Most codes are found to agree very well, with pairwise differences

that are comparable to those between different high-precision experiments. Even in the

case of PP approaches, which largely depend on the atomic potentials used, a similar

precisio n can be obtained as when using an AE method. The remaining deviations are

due to subtle effects, such as specific numerical implementations or the treatment of

relativisti c terms.

The conducted work [2] demonstrates that the numerical error of DFT implementations

can be determined, even in the absence of an absolute reference code (which is not

availabl e by definition). Although this was not the case 10 years ago, most of the com-

monly used codes and methods are now found to produce essentially identical results,

see Fig.2. The established precision of DFT codes not only ensures the reproducibility of

DFT predictions but also puts several past and future developments on a firmer footing.
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Any newly developed methodology can now be tested against the benchmark and new

DFT applications can be shown to have used a sufficiently precise method. Moreover,

high-precision DFT calculations are essential for developing improvements to DFT

methodology, such as new density functionals, which may further increase the predic-

tive power of the simulations.

FPLO code [3,4]

The FPLO code has been developed at IFW Dresden for two decades [3]. It is one of the

six AE codes that participated in the described reproducibility check [2]. FPLO fulfills the

criteria for a high-precision implementation but has the smallest number of basis func-

tions and, thus, the least numerical effort among the AE methods. Our code comprises

a number of important features like

� a user interface "XFPLO" for visualization of structures, Fermi surfaces, other data;
� a cluster version on the same footing as the periodic version;
� a full-relativistic 4-component Dirac-Kohn-Sham implementation;
� a numerical noise level below 10-6 eV/atom;
� full relativistic LSDA+U and GGA+U approaches in different versions;
� an orbital polarization correction (OPC) scheme;
� band structures with orbital weights ("fat bands");
� molecular-orbital projected DOS and band weights;
� calculation of optical spectra;
� band-unfolding for the interpretation of ARPES data;
� calculation of Z2 - invariants for systems with inversion center;
� downscaling of the exchange field ("LSDA•x");
� real-space plots of Bloch wave functions and energy-resolved densities;
� maximally projected Wannier functions;
� a fixed spin moment method extended to full relativistic calculations.

Fig. 2: (adapted from [2]) Historical evolution of the DFT equilibrium lattice parameter for silicon.
All data points represent calculations within the DFT-PBE framework.Values from literature (dat a
points before 2016) are compared with (i) predictions from the different codes used in the study
[2] (2016 data points, magnified in the inset; open circles indicate data produced by older meth-
ods or calculations with lower numerical settings) and (ii) the experimental value, extrapolated
to 0 K and corrected for zero-point effects (red line). The systematic error due to the approxima-
tion of the DFT functional and the implementation errors are illustrated.



24 Research Area 1    FUNCTIONAL QUANTUM MATERIALS

The whole package contains several 105 lines source code in FORTRAN90 and C. It has

been licenced for more than 200 groups worldwide with a total number of FPLO publi-

cations amounting to about 1000. Regular tutorials do not only focus on code handling

but also on the problem of reproducibility that requires publication of the complete

paramete r set used in the computation.

[1] M. Richter et al., in: Condensed Matter Physics in the Prime of the 21st Century, 
43rd Karpacz Winter School of Theoretical Physics, Ed. J. Jedrzejewski, World 
Scientific, Singapore 2008, pgs. 271-291.

[2] K. Lejaeghere et al., Science 351, 1415 (2016).
[3] K. Koepernik and H. Eschrig, PRB 59, 1743 (1999).
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Electron-lattice interactions strongly renormalize the 
charge transfer energy in the spin-chain cuprate Li2CuO2

S. Johnston, S.-L. Drechsler, J. Geck, R. Kraus, B. Büchner, J. van den Brink

Abstract: Strongly correlated materials are governed by competition and cooperation

among the spin, charge, orbital, and lattice degrees of freedom. The central challenge

for the field is to unravel the action of each interaction in establishing novel phases

of matter. Over the past decade, resonant inelastic x-ray scattering (RIXS) has emerged

as a versatile experimental probe for this purpose. Recently, we have collaborated with

experimentalists from the PAUL SCHERRER Institute in Switzerland to study several

quasi-one-dimensional copper-oxides using this technique. In doing so, we have

gained new insights into several fundamental problems including the nature of their

quasi-particle states (the so-called ZHANG-RICE singlets and triplets) and the unex -

pected role of the electron-lattice interactions in determining their fundamental

electroni c properties.

Motivation – In strongly correlated materials, several of the charge, orbital, spin, and

lattice degrees of freedom are often active and interacting with one another. These ma-

terials have rich phase diagrams with many competing orders, and often exhibit giant

responses to small perturbations. These are characteristics of complex systems, where

the realized phases can depend strongly on perturbing interactions and indirect factors.

One of the primary challenges in this field is then to identify the relevant interactions

in a material and unravel their respective roles in producing each new phase. This task

is an incredibly challenging, however, as even weak interactions can have a large effect.

The two-dimensional copper oxides are perhaps the most well-known example of these

principles, where a complicated mix of interactions gives rise to high-temperature

(high-Tc ) superconductivity and other phenomena; however, despite more than 30

years of research on these materials, the exact mechanisms underlying these phenom-

ena are not understood. Motivated by this, we have been studying spin chain cuprates

[1] such as Li2CuO2 [2-4], Ca2Y2Cu5O10 [5,6], and Sr2CuO2 [7], which are quasi-1D com-

pounds formed from the same fundamental CuO4 building blocks of the high-Tc cuprates

(Fig.1). Working in close collaboration with experimentalists from the PAUL SCHERRER

Institute (Switzerland), we have studied these systems with resonant inelastic x-ray

scatterin g to address critical questions about the physics underlying copper-oxide

material s. 

Fig. 1: Three of the many possible arrangements
[1] of CuO4 plaquettes to form cuprate materials.
The two-dimensional arrangement is typical of
the high-Tc superconducting cuprates. The 
quasi-one-dimensional edge- and corner-shared
arrangements are typical of quantum spin chains
studied by our team.
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Fig. 2: A sketch of the RIXS process whereby the lattice built from edge-sharing CuO4 chains is
excited. The initial electronic state is predominantly of | i�el ~ α|d9 � + β|d10L � character, where L
denotes a hole delocalized on the ligand O sites, while the initial lattice state involves a coherent
state of phonon quanta that describes the shifted equilibrium position of the O atoms. Thick black
arrows: low-temperature ferromagnetic spin structure of the CuO2 chains. After the 1s ➝ 2p tran-
sition, an intermediate state is formed, corresponding to an upper Hubbard band excitation where
the number of holes on the Cu site has changed. The lattice relaxes in response to the change in
the Cu density, until the 1s core hole is filled, leaving the system in an excited electronic and
lattice configuration. Red arrows: direction of the O atom’s motion. 

Resonant Inelastic X-ray Scattering – Resonant inelastic x-ray scattering (RIXS) is

a powerful probe of correlated materials [8]. In a typical RIXS experiment, photons with

energy ω in and momentum κin are incident on a sample. Here, the phonon energy is tuned

to one of the material’s absorption edges, such that the photon stimulates a resonant

dipole transition between an atomic core level and an empty state in the valence bands.

After the core electron excitation, the resulting intermediate excited state propagates

in time under the influence of the core hole’s potential Uc, generating several excitations.

This process continues until the core hole radiatively decays, emitting a photon with en-

ergy ωout and momentum κout, and leaving the system in a final state with energy and

crystal momentum q = (κout – κin). The excitations generated in the intermediate state

encode information about the elementary excitations of the solid. Thus, by examining

the RIXS intensity, one obtains information about the excitation pathways of a ma -

terial. Due to the resonant nature of this technique, it is extremely sensitive to charge,

orbital, spin, and lattice excitations.

Dressing electronic interactions – The cuprates and other 3d transition metal ox-

ides belong to a challenging class of correlated systems, which are the focus of modern

solid-state physics. Primarily two fundamental energy scales determine their physical

properties: the COULOMB onsite repulsion Ud and the charge transfer energy Δ. The

forme r reflects the energy cost associated with charge excitations between the cation

orbitals in the solid. The latter is the energy cost for creating (dn-1L)-type charge ex -

citations, where a hole moves from the cation site to the ligand oxygen atoms (Fig. 2).

In particular, the properties of their quasiparticles, including the ZHANG-RICE singlets and

triplets, depend crucially on the ratio of these values for the so called charge transfer

insulators [9], where Ud > Δ. (This is in contrast to simple MOTT insulators dominated by

Ud, where Ud < Δ.)
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The value of the charge transfer energy has traditionally been thought to be determined

by the chemistry of ions in the solid; however, in our recent work published in Nature

Communications [2], we have shown that up to 50 % of the value of Δ in Li2CuO2 stems

from the strong el-ph interaction in the materials (Figs. 2 & 3). In this case, the relevant

phonon mode modulates the Cu-O bond in the direction perpendicular to the chain

axis but within the plane of the CuO4 plaquette, which also modifies the Cu-O-Cu bond

angle s. We have measured and theoretically analyzed XAS and RIXS data for Li2CuO2

adopting a six-band HUBBARD model with O 1s and planar 2p orbitals and the half-filled

Cu 3 dxy orbitals (see Fig. 1). In this process the incoming photon excites an oxygen 1s

core electron is transferred to an unoccupied state, resulting in an additional electron

in the valence band. In the intermediate state, the lattice responds this change in densit y

by relaxing and creating a number of phonon excitations that appear as satellite features

in the RIXS spectra (Figs. 2d-2g). Through detailed modeling of the data, we determined

the strength of the interaction between the lattice and the electrons. Importantly, if

the electron-lattice interaction is omitted in our analysis, the spectra imply an effective

value Δ ∼ 4.6 eV; however, when the interaction with the lattice is properly accounted

for, this value separates into a purely electronic contribution of Δel ∼ 2.1 eV, and a very

substantial lattice contribution Δ lat ∼ 2.5. These results show that the el-ph interaction

plays a much larger role in low-dimensional cuprates than was previously thought. 

Fig. 3: XAS and RIXS spectra at the O K-edge. a The measured RIXS spectra, recorded at various
temperatures, as indicated. The incident photon energy for these measurements was detuned
slightly from the upper Hubbard band peak in the XAS, as shown in the inset. The red arrow
indicate s the incident phonon energy. b The calculated RIXS spectra obtained using a cluster mode l
that includes coupling to the O-O bond-stretching mode. The calculated XAS spectrum is shown
in the inset. For comparison, c shows the calculated spectra for a model without el-ph coupling
but with an increased value of Δ = εp – εd = 4.6eV. The detailed measured RIXS spectra highlight-
ing the harmonic phonon excitations in the quasi-elastic and dd-excitation energy loss range are
shown in d and f, respectively. Red dashed lines: Gaussian fits to the data that highlight the in-
dividual phonon excitations. Blue line: the difference between the data and the red dashed lines.
The corresponding RIXS calculations are shown in e and g, resp. In d the incident photon ener-
gy coincides with the peak in the XAS intensity. Note that the elastic line has been removed from
the calculated RIXS spectra for clarity. 
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Probing the fundamental quasiparticles – As originally proposed by ZHANG and RICE

[10], a bound state formed by two holes on the same plaquette is a natural quasipar -

ticle in hole-doped copper oxides. Called a ZHANG-RICE singlet (ZRS) in the case of oppo-

site spins, this quasiparticle consists of a pair of holes, where one is localized on the

Cu site and the other is delocalized on the surrounding four oxygens, that form a spin

singlet. Recently, we investigated the electronic excitations of Li2CuO2 with RIXS and

x-ray absorption spectroscopy performed at the O K edge [3,4] and identified distinct

excitonic ZRS excitations associated with both intra- [3] and interchain [4] excitations.

These observations allowed us to obtain new insights into the ways in which these

fundamenta l excitations can be formed. For example, by exploiting temperature-de -

pendent RIXS measurements, we were able to determine several important energies

includin g the binding energy of the ZRS, which is directly relevant for models of the 1D

and 2D cuprates. We also identified the corresponding Zhang-Rice triplet excitation in

the RIXS spectra for the first time, revealing the rich nature of the elementary excita-

tions in the cuprates. 
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Research Area 2

Structural, dynamic and electronic properties of 
Ge2Sb2Te5 phase-change alloy in liquid state

I. Kaban, H. Weber

Abstract: Structural, dynamic and electronic properties of Ge2Sb2Te5 phase-change

alloy in the liquid state have been studied in the frame of a collaborative work [1] sup-

ported by the German Research Foundation (DFG). The structural models of liquid

Ge2Sb2Te5 were obtained by a combined approach including X-ray and neutron diffrac-

tion, reverse Monte-Carlo simulations and ab-initio molecular dynamics modeling

based on the density functional theory. The electronic density of states and viscosity

values extracted from the AIMD models are compatible with electrical resistivity and

viscosity measurements.

Ge-Sb-Te alloys along the GeTe-Sb2Te3 pseudo-binary line exhibit a fast and reversible

amorphous-to-crystalline transition and remarkable differences of the physical proper-

ties of the crystalline and the amorphous phases [2]. The optical reflectivity contrast is

exploited in the optical data storage media such as CDs, DVDs and Blue-ray discs [3]. Re-

cently, a high interest in the Ge-Sb-Te has arisen in view of their potential application

in the non-volatile phase-change memory (PCM), utilizing the electrical resistivity

differenc e between the amorphous and crystalline state [4]. It is expected that PCM will

outperform existing, e.g. Flash memory, and emerging technologies [5].

Functioning of the PCM is based on a rapid switching of an active material from the

amorphous to the crystalline state in a set-operation and from the crystalline to the

amorphous state in a reset-operation, as shown schematically in Fig. 1. The transition

is thermally activated by laser or electric current pulses. Thereby, the phase-change

materia l passes either via the supercooled liquid state (crystallisation) or via the liquid

state (amorphisation). The performance of the PCMs is to a large extent determined by

the atomic structure and dynamics of the phase-change material. In particular, high

fragility which describes the deviation of the viscosity from the Arrhenius-type behav-

iour is responsible for the stability of the amorphous phase at low temperature and the

fast crystallisation at high temperature [5].

In the recent work [1], Ge2Sb2Te5 phase-change alloy in the liquid state has been stu -

died by a combined experimental and computational approach. For this, high-energy

X-ray diffraction (XRD), neutron diffraction with Ge isotopic substitution (NDIS), visco -

sity and density measurements were performed. On the other hand, structural, electron-

ic and kinetic properties of the liquid Ge2Sb2Te5 were extracted from the models obtained

by ab-initio molecular dynamics (AIMD) simulations based on the density functional

theor y (DFT).

High-energy XRD experiments were carried out at the German Electron Synchrotron

DESY (Hamburg, Germany) and at the European Synchrotron Radiation Facility ESRF

(Grenoble, France). Neutron diffraction measurements were performed at the ISIS

pulsed neutron and muon source of the Rutherford Appleton Laboratory (Oxford, UK).

The density was determined by a high-energy γ-ray attenuation method at the Depart-

ment of Physics of the Niigata University (Niigata, Japan). The dynamic viscosity was

measured with an oscillating-cup viscometer at the IFW Dresden.

Fig. 1: Schematic of phase-change memory 
operation (Tx – crystallisation temperature, 
Tm – melting temperature).
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The dynamic viscosity of liquid Ge2Sb2Te5 alloy shows an Arrhenius-type behaviour in the

liquid state (Fig. 2). The experimental values are well fitted by the function 

η = η0 · exp � Εa

kBT� with the activation energy for the viscous flow Εa = 0.266eV and a

constant η0 = 0.063 mPas; kB is the Boltzmann constant, and T is the absolute temper-

ature. The temperature dependence of the dynamic viscosity excellently correlates with

the structural data. The X-ray diffraction structure factors S(Q) of liquid Ge2Sb2Te5

exhibi t a continuous evolution upon cooling until crystallization (Fig. 3). The structur-

al parameters such as the position and the height of the peaks change linearly with the

temperature. A similar behavior follows from the temperature dependences for the to-

tal structure factors measured by neutron diffraction as well as from the corresponding

total pair distribution functions (not shown).

In order to describe the chemical and topological short-range order in a three-compo-

nent liquid or amorphous alloy knowledge of the six partial pair distribution functions

(PDF) is needed. This requires the same number of independent and sufficiently differ-

ent diffraction measurements, which is not possible. To obtain the structural informa-

tion, liquid Ge2Sb2Te5 was modeled by DFT-based AIMD simulations in work [1]. Standard

Fig. 2: Dynamic viscosity of liquid Ge2Sb2Te5

alloy: experiment and AIMD calculation. The
measurement was performed upon cooling at 
1K/min. The lines are the fits with the Arrhenius 

equation η = η0 · exp � Εa

kBT�.

Fig. 3: XRD total structure factors of liquid
Ge2Sb2Te5 measured upon cooling at 5 K/min.
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generalized-gradient-approximation functional of Perdew, Burke and Ernzerhof (PBE) for

the exchange-correlation energy and a van der Waals density functional which includes

non-local correlations (vdW-DF2) were used to generate particle trajectories at differ-

ent temperatures, from which the partial pair distribution functions were extracted.

To test the partial PDFs obtained by AIMD simulations, they were fitted simultaneously

with the XRD and ND structure factors in the frame of the reverse Monte-Carlo (RMC)

simulatio n technique [7]. It has been demonstrated in a number of works that RMC is a

very effective tool for structure modelling of disordered systems by simultaneous fitting

different experimental and theoretical datasets and constraints. The AIMD vdW-DF2

mode l showed a good agreement with the experimental data (Figs. 4 and 5). Therefore,

the respective partial pair distribution functions were used for determination of the

partia l coordination numbers and bond lengths [1]. A significant number of Ge-Ge and

Ge-Sb bonds was observed in liquid Ge2Sb2Te5. These bonds were supposed to be

responsibl e for the presence of tetrahedral structures in amorphous Ge2Sb2Te5. Te-Te

bonds were also found in the liquid state but their number decreases drastically upon

quenching to the amorphous state.

The bond angle distributions (BADs) and the angular-limited three-body correlations

(ALTBCs) were calculated from the AIMD trajectories. The BADs displayed a peak centred

at 90°, being an indicative of predominant (defective) octahedral coordination. Upon

increasing temperature, the height of the peak decreased and the probability of ob -

serving bond angles below 80° and above 110° became more significant. Analysis of

the ALTBC distributions revealed alternating short and long bonds, indicative of Peierls

distortion, which appeared to decrease with increasing temperature.

The electronic density of states (DOS) and the diffusion coefficient D for liquid Ge2Sb2Te5

were extracted from the vdW-DF2 AIMD simulations. The density of states showed a

pronounce d pseudogap at the Fermi energy in the supercooled liquid state and at the

melting temperature, which decreased at higher temperatures. This correlates with the

negative temperature coefficient of the electrical resistivity of liquid Ge2Sb2Te5.

Fig. 4: Partial pair distribution functions gij(r) for liquid Ge2Sb2Te5 at 925 K: red lines – extracted
from the AIMD model using vdW-DF2 functional; blue lines – RMC fits of the vdW-DF2 AIMD
PDFs and experimental XRD and ND structure factors simulated simultaneously. 

Fig. 5: XRD and ND structure factors S(Q) for liquid
Ge2Sb2Te5 measured at 923 K (olive) compared to
the structure factors obtained from vdW-DF2 AIMD
simulations (red) and RMC simulations (blue).
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The dynamic viscosity was obtained from the AIMD diffusion coefficient D using the 

Stokes-Einstein relation η =      
kBT

6πRhydD
, where Rhyd is the hydrodynamic radius. The cal-

culated viscosity showed a very good qualitative agreement with the experimental dat a

(Fig. 2). Fitting the theoretical values with the Arrhenius equation yielded the activa-

tion energy Εa = 0.256 eV and a constant η0 = 0.140 mPas (compare to Εa = 0.266 eV and

η0 = 0.063 mPas from the fit of the experimental data). Somewhat larger theoretical

viscosit y might be explained by the approximations inherent in the employed exchange-

correlation functional, by the finite size effects due to the periodic boundary conditions,

or by the use of thermostats.

In summary, the structural, electronic and kinetic properties of Ge2Sb2Te5 phase-change

alloy in the liquid and weakly supercooled liquid state were obtained using state of the

art experimental and theoretical techniques in work [1]. A good agreement of the ex-

perimental and theoretical structural characteristics as well as the physical properties

suggest that the van der Waals density functional (vdW-DF2) used in the present AIMD

simulations provides a  good description of liquid Ge2Sb2Te5. 
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Fig. 1: Field distributions and effective potentials along the radial direction of (a) weakly, (b) mod-
erately and (c) strongly hybridized photon-plasmon modes. The thicknesses of the cavity wall (T)
and the metal coating layer (t) are set as T/R = 0.48 and t/R = 0.032, T/R = 0.48 and t/R = 0.008,
T/R = 0.08 and t/R = 0.008, respectively.

Hybrid material microtubes for optoplasmonics and sensing 

Y. Yin, S. Li, E. S. Ghareh Naz, V. Engemaier, S. Böttner, S. Giudicatti, 

S. Weiz, L. Ma, M. Medina-Sánchez, O. G. Schmidt

Abstract: Rolled-up nanotechnology has been used to develop opto-plasmonic micro-

tubular cavities as well as high performance electrochemical biosensors. Such platforms

have served in one side to comprehensively investigate the hybridization mechanism

of photon-plasmon modes and for the selective coupling of localized surface plasmons

and resonant light in three- dimensionally confined tubular microcavities; and on the

other side, by integrating electrodes in the tubular cavities, to determine DNA concen-

tration changes as well as to study DNA conductive and conformational changes due

to the intrinsic electric field distribution within the tubular geometry.

Hybridization of photon-plasmon modes in opto-plasmonic microcavities

The coupling between photon and surface plasmons in opto-plasmonic microcavities

results in hybrid photon-plasmon modes, which has attracted extensive interest from

both fundamental and applied physics. In previous reports, the location of plasmon-type

field of hybrid mode has been contradictorily reported to occur at either the inner or

oute r surface of metal layer coated on a microcavity. Recently, we comprehensively

investigate d the hybridization mechanism of photon-plasmon modes based on opto-plas-

monic microtubular cavities [1]. We revealed that the occurrence and location of hybrid

photon-plasmon mode is determined by the coupling strength. As shown in Fig. 1,

three types of photon-plasmon modes are identified as weakly, moderately and strong-

ly hybridized modes. An effective potential approach is used to illustrate the generation

and transition of these kinds of hybrid modes based on the competition between light

confinement in the cavity and the potential barrier induced by the metal layer. 
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Among the three types of hybrid mode, strongly hybridized photon-plasmon modes are

particularly interesting for enhanced light-matter interactions. We experimentally

demonstrated strongly hybridized photon-plasmon modes thin-walled microtube cavi-

ties [2], as shown in Fig. 2. The generation of strongly hybridized modes is relevant to

both fundamental and applied physics, paving the way for enhanced light-matter inter-

actions in opto-plasmonic microcavities. These works provide a universal picture for

understandin g the basic physical mechanisms of photon-plasmon mode hybridization

in metal-coated WGM microcavities, and is relevant for opto-plasmonic cavity designs. 

Localized surface plasmons selectively coupled to 
resonant light in opto-plasmonic microcavities

Optical microcavities constitute an important platform for the study of light-matter

interaction s, where the size mismatch between the optical wavelength and any interact-

ing nano-objects is bridged by cavity quantum electrodynamics or plasmonic nanostruc-

tures integrated within the cavities. In our recent work, for the first time a plasmonic

nanogap was designed in microtubular cavities to demonstrate efficient coupling of

localize d surface plasmons (LSPs) and resonant light [3], as shown in Fig. 3. Moreover,

selective coupling of LSPs and resonant modes were achieved, exhibiting spatial depend-

ence of the plasmonic nanogap on the microcavities. This selective coupling between

optica l axial modes and localized surface plasmons is explained by a modified quasi-po-

tential model based on perturbation theory. Our work reveals the interaction between

surface plasmon resonances localized at the nanoscale and optical resonances confined

in WGM microcavities at the microscale, thus establishing a unique platform for future

investigations of light-matter interactions. 

Fig. 2: Optical field distributions in the tube wall 
before and after the gold nanocap deposition. 
(a) The maximum of the electric field profile 
(TE mode) slightly shifts towards the center of the
cavity after the gold coating, as shown in the top
panel. The middle and bottom panels show the
mode profiles before and after the gold coating, 
respectively. (b) Efficient coupling between the TM
photonic mode and the surface plasmon supported
by the gold nanocap results in an enhanced EM 
field at the gold surface, as shown in the top panel.
The mode profile in the gold-coated section 
(bottom panel) clearly shows a strong hybrid mode
compared to that before the gold coating (middle
panel).

Fig. 3: Localized surface plasmons (LSPs) selectively
coupled to different order of axial photonic modes 
in a rolled-up microtube cavity. The axial modes are
confined within a lobe region on the tube while the
LSPs are supported by vertical metal nanogap which
is created at the lobe edge.
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Ultrasensitive impedimetric DNA biosensor

An ultrasensitive DNA biosensor based on strain-engineered tubular electrodes was

develope d [4,5]. The inner electrode surface was modified with a specific DNA sequence

of Avian Influenza Virus subtype H1N1 (Fig. 4a). Electrochemical impedance spec-

troscopy (EIS) in presence of [Fe(CN)6]-3 redox probe was employed for the label-free

detectio n of the complementary DNA, in a range of 20aM-2pM, obtaining the lowest

limit of quantification reported so far for DNA sensors without amplification (20aM)

(Fig. 4b). The sensor showed four orders of magnitude sensitivity improvement compared

to its planar counterpart. An opposite impedance response was also observed when the

hybridization event occured in the tubular electrode. The results suggest that there is

an enhancement of electron hopping /tunneling along the DNA chains due to the

enriche d electric field inside the tube (Fig. 4c). Likewise, conformational changes of

DNA might also contribute to this effect. In this geometry, the increase in the electric

field at distances corresponding to the typical depletion layer thickness of ferricyanide,

favors ionic migration. Combined with the ability of the rolled-up electrodes to accu -

mulate charge at its surface, this makes the charge transfer via conduction through

doubl e stranded DNA much more efficient than for the planar electrodes. In that latter

case the variation in impedance would arise because of the building up of a dielectric bar-

rier, which can be noticed only at higher DNA concentrations. In this way the opposite

behavior of the impedance and the higher sensitivity of the rolled-up electrodes can be

explained. Moreover, it has been shown that under strong enough electric fields (hun-

dreds of volts per centimeter), single stranded DNA undergoes isotropic compression [6].

DNA conformational changes due to this difference in electric field compared to the pla-

nar ones would be enough to change the impedance response after the hybridization

event. In the planar electrodes, the hybridization would produce an increase of the

organi c layer, therefore increasing the impedance. On the contrary, in the tubular

electrode s, the hybridization would facilitate the expansion of the DNA strands, open-

ing in this way channels for the electron transfer and decreasing impedance.

Fig. 4: DNA rolled-up biosensor: (a) Single tubular
electrode and its scanning electron microscope 
image, (b) Impedance measurements after different
target DNA hybridizations on planar and tubular
electrodes, and (c) Electric field calculations for both
planar and tubular electrodes. 

(a) (b)

(c)
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These highly integrated three-dimensional sensors provide a tool to study electrical

propertie s of DNA under versatile experimental conditions and open a new avenue for

novel biosensing applications (i.e. for protein, enzyme detection or monitoring of cell

behavior under in-vivo like conditions). The nanomembrane engineering used in the fab-

rication process sets the current biosensor apart from others previously reported in three

key aspects: no additional labels or materials are needed, a very simplified measurement

setup is sufficient, and just microliter sample volumes are required, showing high inte-

gration level for point-of-care diagnostic platforms with minimum setup requirements.
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Weyl semimetals

S. Bäßler 1, S. Borisenko, B. Büchner 5, D.V. Efremov, A. Fedorov7, C. Felser 2, 

T. Förster 5,11, J. Gooth4, E. Haubold, C. Hess5, M. Hoesch8, R. Hühne, D. Kasinathan2,

S. Khim2, T.K. Kim8, A. Kimura9, J. Klotz 5,11, K. Koepernik, Y. Kushnirenko, K. Nielsch,

A. C. Niemann, T. Okuda10, H. Reith, B. Rellinghaus, M. Schmidt 2, P. Sergelius1, 

C. Shekhar 2, M.I. Sturza, K. Sumida9, V. Süß2, K. Taguchi 9, J. van den Brink 5,6, 

C. Wiegand1, J. Wosnitza5,11, S.-C. Wu 2, S. Wurmehl5, B. Yan2,3, T. Yoshikawa9, R. Zierold1

Abstract: While the physical concept of Weyl fermions was derived as one solution of

the Dirac equation as early as in the late 1920s, the experimental realization of such

fermions came only in 2015 as quasi-particles in Weyl semimetals. In this new topo-

logical matter, conduction and valence bands touch linearly near the Fermi level and

the crossing points of these linear bands – so-called Weyl nodes – always appear in spa-

tially separated pairs of opposite chirality. The IFW engaged in the scientific discussion

about this newly realized, topological matter by theoretical modelling of new materi-

als and magnetometry as well as magneto-transport experiments. 

Theoretical Modelling – TaIrTe4: A Ternary type-II Weyl semimetal

In metallic condensed matter systems, two different types of Weyl fermions can in

principl e emerge, with either a vanishing (type-I) or with a finite (type-II) density of

states at the Weyl node energy. As of the date of this publication, only WTe2 and MoTe2

were predicted to be type-II Weyl semimetals.

Using density functional methods we identified TaIrTe4 as a third member of this fami-

ly of topological semimetals [1] – a finding which served us as a starting point for a broad

investigation of TaIrTe4 including ARPES [2] and quantum oscillation measurements [3].

TaIrTe4 is structurally similar to the other two compounds although with a unit cell

double d in the b-direction. However, this analogy does not carry very far since the elec-

tronic structure differs in that it shows corrugated electron pockets (labelled 4 and 5 in

Fig.1) closer to the Γ-point and two sets of nested hole pockets (labelled 1 and 2) for

larger kx. The hole pockets each contain two Weyl points (WPs) of opposite chirality,

resultin g in the smallest possible total number of four Weyl points imposed by crystal

symmetry. We calculated the Berry curvature to prove the topological nature of these WPs

and to determine their chirality. It is interesting to note that the four WPs of TaIrTe4 re-

side at similar positions as some of the WPs of the other two type-II Weyl semimetals.

Since TaIrTe4 contains the smallest possible number of WPs, one could speculate if

their occurance is a more generic feature of this class of compounds.

We also performed calculations of the surface spectral function for the surfaces of

idea l semi-infinite slabs to demonstrate the existence of topological surface states

(Ferm i arcs) (Fig. 2). The attractive feature of TaIrTe4 is that its Weyl points are well-sep-

arated within the Brillouin zone (BZ), resulting in Fermi arcs connecting pairs of Weyl

nodes of opposite chirality in each hole pocket. The two symmetry inequivalent surfaces

which are created by cleaving the compound at its natural cleavage plane carry differ-

ent Fermi arcs connecting two Weyl points either in the first BZ (Fig. 2, upper row) or in

the second BZ (Fig. 2, lower row). The first case with a (001)-surface is more promising,

since here the Fermi arcs extend to about 1/3 of the surface Brillouin zone and are clear-

ly removed from the bulk spectrum. This large momentum-space separation is very

favourable for detecting the Fermi arcs spectroscopically and in transport experiments.

Fig. 1: The bulk Fermi surface of TaIrTe4 viewed down the c-axis. The individual sheets are labelled
1 and 2 for the nested hole pockets, 3 for the small hole pocket and 4 and 5 for the electron pock-
ets. Only the relevant portion of the BZ is shown in a-direction.
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Fig. 3: The non-centrosymmetric crystal struc-
ture in a tetragonal lattice (space group I41md)
of NbP.

A possible complication for experimental observation of these topological surface

states lies in the fact that at least in the calculations the Weyl points occur in the unoc-

cupied bands at 82 meV above the Fermi level.  Our calculations suggest that the Fermi

arcs should be clearly detectable in an energy range from 50 - 82 meV. Doping and mass

renormalization effects could bring them closer to the Fermi level.

Magnetometry experiments – Berry phase and band structure 
analysis of the Weyl semimetal NbP

NbP is a recently discovered Weyl semimetal and the lightest member of the inversion

breaking TaAs compound family. It has a non-centrosymmetric crystal structure in a

tetragonal lattice (space group I41md) (Fig. 3) and shows many remarkable properties

like extremely large magnetoresistance due to electron-hole resonance or Fermi arcs –

a projection of the berry curvature onto the surfaces. In contrast to other Weyl semimet-

als, there is only weak spin orbit coupling in NbP because of the low atomic mass of Nb,

which leads to the existence of additional parabolic bands apart from the Weyl bands. 

To bring more insight to the band structure of NbP, we performed quantum oscil-

lation measurements on a single crystalline NbP sample in a vibrating sample mag -

netometry (VSM) setup [4]. The magnetic moment as a function of the magnetic field

shows a superposition of quantum oscillations of various frequencies due to the de-Haas-

van Alpen (dHvA) effect (Fig. 4 a, b) – reflecting the multiple involved conduction

channel s in NbP. To obtain access to individual conductio n bands and their properties,

a Fourier transformation was conducted over the entire magnetic field range (Fig. 4 c,

d). We were able to identify 4 oscillation frequencies in the kx /ky direction – β = 0.8 T,

γ = 2.5 T, δ = 31.7 T, ε = 137.6 T – and 2 oscillation frequencies in the kz direction –

η = 6.6 T, θ = 31.25 T – of physical relevance. 

To identify the nature of the conduction channels associated with these frequencies –

paraboli c band or linear Weyl band – several properties of the charge carriers have been

evaluated. Firstly, a non-trivial Berry phase hints at a relativistic Weyl band, whereas

the Berry phase gives the phase factor of an adiabatically driven, quantum mechanical

system. Secondly, charge carriers on linear Weyl bands show a significantly lower effec-

tive mass as the conventional charge carrier on parabolic bands. Effective masses were

calculated for each conduction channel individually by the temperature-dependent

dHvA-oscillation amplitude damping. Thirdly, the Fermi surface and Fermi vectors were

calculated for each conduction channel, while the oscillation cross section was approx-

imated as a circle. Subsequently, the according energy values, carrier life time and the

mobility have been derived. 

Fig. 2: Surface spectral function of two possible
terminations of an ideal semi-infinite slab; upper
row: (001) and lower row: (00-1) surface. The
individual panels show the results for different
energies ranging from the bulk Fermi level (at
the left) to the Weyl point energy 82.7 meV (at
the right). The solid lines are kz = 0 cuts of the
bulk Fermi surface at the corresponding ener-
gies. Only a part of the upper right quadrant of
the surface Brillouin zone is shown. The cross
marks the position of the Weyl point and the 
arrow the Fermi arc. The small loop of the 
Fermi surface cut at the Weyl point energy 
and position in the right panels indicates the
type-II nature of the Weyl point.
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Taking all the criteria into account, we are able to identify the β-band as a carrier of Weyl

fermions for the following reasons: It has a non-trivial Berry phase, the lowest effective

mass of 0.048 m0, a high mobility (25800 cm2/Vs) and the Weyl node lies only 3.7 meV

away from the Fermi level. This close distance between Fermi level and Weyl nodes is

require d for the Weyl fermions’ activation.

Magneto-transport experiments – Chiral magnetoresistance 
in Ga-doped Weyl semimetal NbP

In Weyl semimetals, chirality is, in principle, a strictly conserved quantum number.

Howeve r, in the case of parallel aligned electric and magnetic fields (E IIB), a breakdown

of this chiral symmetry occurs (Fig. 5). The resulting, additional topological current

leads to the observation of a negative magnetoresistance (NMR) in Weyl semimetals

for E IIB. In intrinsic NbP the observation of such a chiral anomaly induced NMR has

not be realized so far, because of the large distance of the Weyl points from the Fermi

level (EF).

Here, we choose the approach of material engineering via a Ga-etching, focused ion beam

process to achieve a more favourable Fermi level position for the observation of chiral

anomaly induced NMR in NbP [5]. In this process, a Ga-doped NbP micro-ribbon (Fig. 6a)

of the dimension 50 μm x 2.5 μm x 0.5 μm was prepared. A SEM-EDX analysis showed a

concentration of 53% Nb, 45% P and 2% Ga on the surface of the micro-ribbon (Fig. 6a). 

In transverse magneto-transport measurements at low temperatures, we observed

Shubnikov-de-Haas (SdH) oscillations (Fig. 6b). Utilizing a Fourier transformation on

the resistivity vs. inverse magnetic field data, we were able to identify six different SdH

oscillation frequencies (Fig. 6c). Comparing these frequencies with ab initio simulations

of the NbP band structure confirms a shift of EF by +10 meV compared to the pristine,

undope d NbP sample. 

In longitudinal magneto-transport measurements, we observed NMR which we attribute

to the chiral anomaly effect. The NMR is seen over the whole temperature range from 5 K

to 300 K (Fig. 6d) with a slightly increasing effect size for increasing temperatures which

Fig. 4: (a,b) dHvA oscillations of the magnetic 
moment as a function of the magnetic field between
2.5 K and 60 K are shown. In the graphs, the raw 
data are shown with a subtracted linear background
and several superpositions of different oscillation fre-
quencies are visible. (c,d) The fast Fourier transforms
of the measurement data as a function of the inverse
magnetic field is displayed. Several oscillation peaks
and their higher harmonics can be observed.

Fig. 5: Sketch of chiral anomaly in a Weyl semimetal:
The energy spectrum of left- and right-handed 
chirality fermions (red and blue, respectively) in 
parallel applied electric and magnetic fields is shown.
In the zeroth Landau level, left-handed particles 
and right-handed antiparticles have been produced,
leading to an additional topological current.
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we attribute to the increasing ionization of Ga at elevated temperatures, pushing EF even

closer to the Weyl points. Furthermore, angle-dependent magnetoresistance measure-

ments showed a cos2(ϕ)-dependence of the resistivity with ϕ as the angle between

electri c and magnetic field, which further strengthens our assignment of the NMR for

E IIB to the chiral anomaly effect in Ga-doped NbP.

To further explore the chiral anomaly effect in Ga-doped NbP samples, we plan on detailed

thermoelectric studies in the future. 
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Fig. 6: (a) SEM-EDX data of the first 3 μm from the left sample edge along the [100] direction
of the NbP micro-ribbon reveals an average 53% Nb, 45% P and 2% Ga composition. (b) The
temperature-dependent, transverse MR reveals SdH oscillations below 75 K. (c) FFT spectra from
5 K to 25 K show six fundamental SdH frequencies at F1 = 3.47 T, F2 = 17.37 T, F3 = 24.56 T,
F4 = 34.63 T, F5 = 43.08 T and F6 = 71.36 T. (d) NMR is observed in parallel magnetic and electri c
fields from 5 K to 300 K. 
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A novel processing route for integrated 
micro thermoelectric coolers

J. Garcia, D. A. L. Ramos, V. Linseis1, M. Mohn, K. Nielsch, 

N. Perez Rodriguez, H. Reith, G. Schierning, H. Schlörb 

Abstract: To enable further miniaturization and closer integration of photonic inte -

grated circuits (PICs), driven by the continuously growing network traffic, local heat

management on the chip component scale is required. A contribution to this local heat

management is envisioned by integrated micro thermoelectric coolers. A cost-efficient

and highly scalable synthesis method, that is compatible with existing IC processing

techniques, is the electrochemical deposition. At the IFW we developed a new fabri -

cation process for micro thermoelectric coolers using a laser lithographic process

combined with electrochemical deposition of thermoelectric p- and n-type materials

into pre-structured cavities [1]. By optimizing the pulsed electrochemical deposition

of ternary n-type Bi2(TexSe1-x)3 and p-type (BixSb1-x)2Te3 materials, compact and

smooth films with thermoelectric properties close to the bulk counterpart can be

achieved. We investigated the influence of the deposition parameters on the film

compositio n and crystal structure as well as the thermoelectric properties for thick

films and confined structures.  

Electrochemical deposition of Bi2(TexSe1-x)3 and (BixSb1-x)2Te3 thick films

Low resistance thermally oxidized silicon wafers coated with 5 nm of Ti and 100 nm of

Pt are used as working electrodes for the electrochemical deposition of the BiTe-based

materials. These substrates are placed in a three electrode electrochemical cell, with a

Pt mesh as a counter electrode and a Ag/AgCl reference electrode. The bath chemistry

of both, the n-type material, Bi2(TexSe1–x)3, and the p-type material, (BixSb1–x)2Te3, was

optimized and additives were used to achieve more compact and even films [2].

The use of additives in precise amounts and the choice of pulsed deposition conditions

allowed to greatly improve the compactness and evenness of the deposited (Bi1–xSbx)2Te3

continuous films. Fig. 1 shows SEM images of as-deposited films. Electrodeposition with

short pulse times results in dendritic and non-compact growth (Fig. 1a). Deposition with

longer pulse times and surface-adsorbing additives results in levelled and compact

layer s (Fig. 1b). 

The electrochemical deposition of these materials into confined structures revealed a

differen t growth mechanism. Using previously optimized deposition conditions for con-

tinuous films the deposition in confined structured results in more dendritic deposits,

together with an uncontrolled overgrowth along the edges of the cavities. In order to

overcome this issue, the deposition potential as well as the pulse time was adjusted in

combination with ultrasonic stirring of the electrolyte during deposition leading to

compac t and smooth deposits. For further improvement of the morphology and to reduce

the roughness first experiments with heated substrates during deposition show

promisin g results.

Thermoelectric characterization of films

The transport properties of thermoelectric films highly depend on the deposition param-

eters controlling the stoichiometry as well as the morphology of the films. The thermo-

electric efficiency of a material is defined by the figure of merit zT = σS2T/λ therefore

a good thermoelectric material should have a high Seebeck coefficient S as well as a high

electrical σ and low thermal conductivity λ.

To optimize the deposition conditions the Seebeck coefficient is the most critical trans-

port parameter as it highly depends on the stoichiometry. The Seebeck coefficient at

room temperature of the deposits is measured using a potential Seebeck microprobe

Fig. 1: SEM top-view and cross-sections of
(BixSb1-x)2Te3 films deposited at a pulse
time of a) ton/toff = 10 ms/50 ms and 
b) ton/toff = 100 ms/2500 ms deposited
with surfactant.



42 Research Area 2    FUNCTION THROUGH SIZE

syste m (PSM, Panco). For the temperature dependent characterization of the Seebeck

coefficient and the electrical conductivity a commercial setup (LSR, Linseis) is used. In

Fig. 2 the temperature dependent Seebeck coefficient and the electrical conductivity

of p-type (Bi1–xSbx)2Te3 and n-type Bi2(TexSe1–x)3 with and without additives are

presente d. The samples with additives show an improvement in the thermoelectric

properties. The power factor (PF = σS2) of the n-type material with additives is as high

as 1 mWm-1K-1 around RT and can be further improved by annealing. 

Recently we developed a chip-based platform to simultaneously measure the in-plane

electrical and thermal conductivity as well as the Seebeck coefficient in collaboration

with Linseis Messgeräte GmbH [3]. The chip is combining 2 measurement structures; (1)

a hot stripe measurement setup on a suspended Si3N4 membrane (s. Fig. 3) for either

steady state or transient thermal conductivity measurements and (2) a 4-point measure-

ment setup (s. Fig. 3) for the determination of the electrical transport properties as

well as the Seebeck coefficient. The measurement chip made it possible to measure the

thermal conductivity of our deposits which is a challenge with common measurement

techniques, like time domain thermal reflectance or laser flash due to the high rough-

ness and the low thickness of the deposits, respectively. To determine the thermal

conductivit y of the deposits first the thermal conductivity seed layer had to be measured

to be subtracted afterwards resulting in a thermal conductivity of the p- and n-type

deposit s of around 1 Wm-1K-1 at RT which is in good agreement with previous reported

data for thick films [4].        

Fabrication of micro thermoelectric coolers

The processing steps for the fabrication of Π–structured micro-thermoelectric devices

were chosen to be compatible with complementary metal-oxide-semiconductor (CMOS)

technology. Considering the integration of the micro-thermoelectric coolers, the

Fig. 2: Temperature dependent a) Seebeck
coefficient and b) electrical conductivity of
Bi2(TexSe1-x)3 and (BixSb1-x)2Te3 films 
deposited with and without additives.

Fig. 3: a) Schematic back side view of the hot
stripe setup on two Si3N4 membranes to measure
the thermal conductivity; b) Front side of the
measurement chip showing the Hallbar structure
which is used for the electrical conductivity and
the Seebeck measurement.

a) b)
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differen t electronic or photonic components as transistors, gates or lasers to be encased

by the thermoelectric device may represent irregularities on the substrate with respect

to the topology up to the micrometre scale. For that reason a laser photolithographic

approac h using thick photoresists was chosen.

The process flow followed to fabricate the micro thermoelectric coolers is schematized

in Fig. 4. As it is shown, the fabrication process consists of four major steps of mixed

photo-patterning and wet chemical etching or electrochemical deposition, followed

by a final structuring of the electrodes, defining the electrical contacts of the device.

Figure 4a-c represent the pre-structuring of the Cr/Au seed layer to avoid an electrical

shortcut between consecutive leg-pairs. The pre-structured substrate is used for spin-

coating and cavities of 20 x 140 μm2 are subsequently structured at specific positions as

can be seen in Fig. 4d. These cavities are then used as template for the electrochemical

deposition of the first component of the leg-pair, for instance the n-type Bi2(TexSe1-x)3

(Fig. 4e and f). The electrodeposition time is chosen to achieve 12 μm thick leg. This

process is repeated, although now the cavities are structured in front of the previous

structures as demonstrated in Fig. 4g. The n-type material is protected by the pho -

toresist during the deposition of the 12 μm p-type (BixSb1-x)2Te3 to prevent cross-

contamination s. 

The last step of micro thermoelectric cooler fabrication comprises the deposition of the

top contact. The photolithography process for this purpose is not trivial and requires two

different exposures. The final structure of the photoresist is schematized in Fig. 4 j. In

this case, the photoresist that covers the previously deposited legs is completely exposed

and developed in order to obtain a clean top surface of the legs for the top contact dep-

osition process. However, the photoresist deposited between the leg-pairs, which will

conform the Π–structure, has to be levelled with the legs. For this reason, these areas

have been exposed with the specific dose that within the 12 minutes of development the

resulting thickness is 12 μm. Moreover, as this gap is not conductive, a homogeneous

Au seed layer has been sputtered before the top contact Ni electrodeposition process,

Fig. 4k and 4l. The entire micro thermoelectric cooler is coated again with photoresist

in order to etch away the remaining Au bottom seed layer which defines the electrical

connection of consecutive leg pairs in series, as shown in Fig. 4m. This process can be

used also to define the electrical connections with an external measurement equipment,

Fig. 4n.

Fig. 4: a), b) and c) laser lithographic pre-structuring
of photoresist (red) to pattern Cr/Au seed layer 
(yellow) via wet chemical etching followed by 
photoresist stripping; d), e) and f) represent the 
corresponding procedure for the electrodeposition of
the Bi2(TexSe1-x)3 component of the leg-pair (blue)
and g), h) and i) for the (BixSb1-x)2Te3 component
(green); The template used for top contact 
fabrication is shown in j), while the result after 
Au sputtering and Ni electrodeposition (white) is 
represented in k) before, and l) after photoresist re-
moval. Final Cr/Au seed layer structuring is required
to avoid electrical shortcut between consecutive 
leg-pairs m) and for the electrical contact pads n).
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With the presented work flow, a first working leg pair could be fabricated arranged in

the desired micro thermoelectric cooler structure which geometrical characteristics fits

with the requirements for its application on a PIC. A tilted SEM image is shown in Fig. 5.

As can be seen, high compactness of leg-pairs has been achieved. Furthermore, free

standing Ni contacts between the legs are stable enough for a robust micro thermo -

electric cooling device. Such top contacts are deposited on top of both n-type and p-type

materials ensuring homogeneous contacts.

In order to electrically characterise a single leg-pair, the remaining Cr/Au seed layer

has been patterned. The values of the total resistance measured in different leg-pairs

has been found to be around 80 Ω. Taking into account the low resistance of the n- and

p-type legs fabricated, the contribution of the contact resistance, which was studied

usin g the Cox Strack method for different contact materials, has a strong impact on the

total resistance. This effect is even more pronounced due to the high roughness that

increase s the total contact area, especially in the case of the (BixSb1-x)2Te3 material.

[1] J. Garcia et al., JSS 6 (2017) N1
[2] Patent DE102016217419.3
[3] V. Linseis et al., JMR 31 (2016) 3196
[4] C. Schumacher et al., Adv. Energy Mater. 3 (2013) 95
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Fig. 5: a) SEM picture of several leg pairs from the
micro-thermoelectric cooler; b) false color image
of a leg-pair with highlighted Bi2(TexSe1-x)3 (blue),
(BixSb1-x)2Te3 (red) and Ni top contact (brown).
The inset shows the electrical configuration for
the characterization of a single leg pair (black line
indicates the electrical path).
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Research Area 3

The role of the superconducting layer morphology 
in the superconducting spin valve effect 

P. Leksin, A. Kamashev1, J. Schumann, V. Kataev, J. Thomas, 

T. Gemming, B. Büchner, I. Garifullin1

Abstract: Superconducting spin valves based on the superconductor/ferromagnet

(S/F) proximity effect are considered to be a key element in the emerging field of

superconductin g spintronics [1]. Considering this, we have studied the influence of

the superconducting layer morphology on the proximity effect in the S/F based structu-

res [2]. The investigation of two types of heterostructures, with a rough and with a

smooth superconducting layer, respectively, was carried out using the transmission

electron microscopy in combination with transport and magnetic characterization. The

suppression of the critical temperature of the S layer turned out to be the same for both

kinds of the structures. However, the magnitude of the conventional superconducting

spin valve effect significantly increases, when the morphology of the S layer is changed

from the type of overlapping islands to a smooth one. We attribute this drastic effect

to a homogenization of the Green function of the superconducting condensate over the

S/F interface in the S/F1/F2 valve with a smooth S layer surface.

The interplay between superconductivity and ferromagnetism in thin layered hetero-

structures gives rise to a number of new physical phenomena, such as the S/F/S π-pha-

se Josephson effect, the so-called cryptoferromagnetic state, conventional (singlet)

and unconventional (triplet) superconducting spin valve effects (SSVE), etc. (see, e.g.,

a recent review [1] and references therein). SSVE for a sequence of two metallic F lay-

ers and one S layer, S/F1/F2, was theoretically proposed in 1997 by Oh et al. [3]. The

physica l mechanism of SSVE relies on the idea to manipulate the phase and the ampli-

tude of the superconducting wave function penetrating into the F1 layer and, hence, the

superconducting critical temperature Tc , by changing the magnetic state of the F1/F2

part of the heterostructure. A similar theory for the F1/S/F2 multilayer was proposed in

1999 by Tagirov [4] and Buzdin et al. [5]. Later, a triplet spin valve effect was theoreti-

cally described for S/F1/F2 structures by Fominov et al. [6-8]. At present, there is a num-

ber of experimental works, confirming SSVE effect. In most of the cases the magnitude

of the effect ΔTc = Tc
AP– Tc

P turned out to be of the order of 10 – 40 mK, whereas the width

of the superconducting transition was δTc ∼ 100 mK (see references in [1]). Therefore no

full switching between the normal and the superconducting states could be achieved. Fi-

nally, for the case of the S/F1/F2 multilayer, the full switching due to SSVE was realized

by means of a notable reduction of δTc [9]. 

Up to now, the role of the microscopic structure of the superconducting layer in S/F and

S/F1/F2 proximity effects has been given little attention from both, theoretical and

experimenta l side. In our work [2] we experimentally demonstrate that an important

reaso n for the small magnitude of SSVE in metallic S/F1/F2 heterostructures is the rough

surface of the S layer composed of overlapped islands which can reduce ΔTc down to

zero. By improving the morphology of the S layer to the smooth one we were able to

significantl y enhance ΔTc up to 100 mK. This highlights a key role of the quality of the S

layer for the S/F proximity related SSVE in metallic heterostructures.

In order to investigate the influence of the S layer structure type on the S/F proximity

effect we have prepared the following groups of samples: bilayer S/F structures [Fig. 1(a)]

and S/F1/F2 based spin valve samples [Fig. 1(c)]. We have also prepared a trilayer sam-

ple S/AD/F [see Fig. 1(b)] to demonstrate the importance of the antidiffusion (AD)
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Fig. 1: Schematic design of the samples: Bilayer (a),
trilayer (b) and spin valve structures (c) with the
rough (right side) and a smooth surface (left side) 
of the S film.

Fig. 2: Microscopic characterization of the samples
with a rough (top row) and a smooth (bottom row) 
S layer deposited at the substrate temperatures of
300 K and 150 K, respectively. Micrographs of the
surface of the Pb layer and TEM images of the cross-
section obtained with HAADF detector at two magni-
fications are shown on panels (a), (b) and (c) for the
Py(5)/Pb(70) structure with the rough Pb layer, and
on panels (d), (e) and (f) for the Py(5)/Cu(2)/Pb(70)
structure with the smooth Pb layer, respectively.

laye r introduced between the S and F layers for the improvement of the quality of the su-

perconducting transitions without influencing the S/F proximity effect. Each of these

groups had two types of the S layer: (i) S layer composed of overlapping islands which

will be further called a rough S layer, and (ii) smooth S layer (Fig. 1). 

For the implementation of the S/F1/F2 based spin valve we prepared samples with the

layer sequence AF/F1/N/F2/AD/S deposited on the MgO(100) substrate [Fig. 1(c)].

Here, N is the nonmagnetic metallic layer between F1 and F2 layers that decouples mag-

netizations of the F layers. The antiferromagnetic (AF) layer pins the magnetization of

the F1 layer, whereas the magnetization of the F2 layer remains free. The materials

choice was the following: for F layers we used permalloy Py = Ni0.81Fe0.19, N and AD

layers were made of Cu, Pb was used for the S layer, and CoOx was used for the AF layer.

The deposition of layers was performed using an e-gun in ultra-high vacuum with

pressur e 10-9 mbar. To examine the layer stacks regarding the thickness of the layers as

well as the interface roughness and the morphology of the Pb layer cross sections of the

samples were investigated with a transmission electron microscope FEI TEM/STEM Tecnai

F30 working at an acceleration voltage of 300 kV. All the details of the sample prepara-

tion and the microscopic measurements can be found in [2]. The interfaces between the

single layers could clearly be seen in the TEM micrographs as well as in the STEM-HAADF

images (Fig. 2). As can be seen in Figs. 2(b) and 2(c), in the MgO/Py/Pb structure pre-

pared at Tsub = 300 K the Pb layer grows in a shape of overlapping islands with an island

size of 0.2 - 1 μm; in the case of MgO/Py/Cu/Pb structure prepared at Tsub = 150 K the TEM

image of the cross-section reveals a smooth surface of the Pb layer [Fig. 2(e)]. 
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The superconducting properties of the samples were studied using a 4-contact resis -

tivity measurement. The details of the experiment can be found in [2]. We found that

the residual resistivity ratio RRR = ρ (300K)/ρ (10K) of the studied samples lies in the in-

terval 10 < RRR < 17 with no notable difference with regard to the S layer type. Fig. 3

shows characteristic superconducting transitions for the rough and smooth type Py/Pb

and Py/Cu/Pb structures. Comparison of Figs. 3 (a) and (b) reveals that for samples pre-

pared Tsub = 300 K the Cu AD layer does not influence the superconducting properties.

The transition is sharp in both cases with the same value of Tc. In contrast, the transi-

tion curve of the Py/Pb sample prepared at Tsub = 150 K exhibits several steps indicating

degraded superconducting properties [Fig. 3(c)]. Insertion of the Cu AD layer drastical-

ly improves the quality of the transition [Fig. 3(d)] making it even superior to those in

Figs. 3 (a) and (b). This result is similar to our earlier findings [10].

All structures were magnetically characterized using a 7 T VSM SQUID magnetometer from

Quantum Design. First, the samples were cooled down from 300 K to 10 K in the presence

of the in-plane magnetic field of +4 kOe. At 10 K the magnetic field was varied from

+4 kOe to -4 kOe and then back to +4 kOe. In a strong positive field the magnetizations

of F1 and F2 layers M1 and M2 are aligned parallel and the sample is fully magnetized. M2

follows the sign change of the applied field and flips giving rise to a step of the M(H)

curv e [insert in Fig. 5(a)]. Eventually M1 is reversed in a field of -2.5 kOe, and the

structur e is fully magnetized in the opposite direction. 

Fig. 4 depicts the dependence of Tc on the Pb layer thickness dPb for systems Py/Cu/Pb

and Py/Pb with rough and smooth Pb layers. Interestingly, the measured samples show

very similar Tc(dPb) dependence suggesting that the Cu antidiffusive layer does not

affec t the S/F proximity effect and that the morphology of the S structure does not

influenc e the character of the suppression of Tc. We fit the experimental data with the

theory by Fominov et al. [12] (see the details in [2]). For the spin valve samples we

hav e chosen dPb = 70 nm because it is large enough to provide measurable Tc, and yet

it is close to the critical thickness dPb
cr = 40 nm, which is favorable for the observation

of SSVE. We prepared the superconducting spin valve samples CoOx(3)/Py1(3)/Cu(4)/

Py2(1)/Cu(2)/Pb(70) with a rough and a smooth Pb layer. The SQUID characterization

(see Fig. 5(a) and the insert therein) did not reveal any difference in magnetic proper-

ties between these two systems. However, for the system with the rough S layer we found

no shift of Tc when switching between the AP and P states, suggesting the absence of

Fig. 3: Electrical transport characterization of the
samples. Superconducting transitions curves for 
samples Py(5)/Pb(70) and Py(5)/Cu(2)/Pb(70) with
the rough Pb layer (Tsub = 300 K) are shown in panels
(a) and (b), the curves for the respective samples 
with the smooth Pb layers (Tsub = 150 K) are shown
in panels (c) and (d).

Fig. 4: Dependence of Tc on the thickness of the su-
perconducting Pb layer d_Pb for Py/Pb and Py/Cu/Pb
structures with a rough Pb layer (squares and opened
triangles), and for Py/Cu/Pb structures with a smooth
Pb layer (open circles). Solid line denotes the theory fit.



48 Research Area 3    QUANTUM EFFECTS AT THE NANOSCALE

SSVE, ΔTc = 0 [Fig. 5(b)]. In contrast, for the spin valve system with the smooth S layer

the ΔTc amounts to 100 mK [Fig. 5(c)].The results in Figs. 5 (b) and (c) clearly demons-

trate a drastic influence of the morphology of the S layer on SSVE. We argue that the most

possible reason is that the in-plane inhomogeneity of the S layers "converts" into the

inhomogeneity of the superconducting pair Green function in the F layer causing the sup-

pression of SSVE, whereas the dependence of Tc on the thickness of the S layer remains

unaffected by its surface morphology. (for more details see [2]) The magnitude of SSVE

ΔTc can be turned down to zero by increasing the roughness of the S surface and boos-

ted up to ΔTc = 100 mK by flattening the S layer. This finding provides new insights into

the sensitivity of the microscopic mechanism of SSVE to the real morphology of the

superconductin g spin valves and can be important for the implementation of SSVE in

superconductin g spin electronic devices.
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Fig. 5: Magnetic and superconducting properties of the spin valve samples with rough and
smooth S layer. Minor magnetic hysteresis loop corresponding to the magnetization reversal of
the free Py2 layer (a), and the major hysteresis loop [insert in panel (a)] for the sample
CoOx/Py1(3)/Cu(4)/Py2(1)/Cu(2)/Pb(70) with a smooth Pb layer. This magnetic behavior is
also typical for the spin valve sample with a rough Pb layer. Superconducting transitions, measu-
red for AP and P states for CoOx/Py1(3)/Cu(4)/Py2(1)/Cu(2)/Pb(70) with a rough (b) and a
smooth Pb layer (c). Arrows depict mutual orientation of the magnetizations of the Py1 and Py2

layers.
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Charge transfer, band-like transport, and magnetic ions 
at F16CoPc/rubrene interfaces 

Y. Krupskaya, F. Rückerl, M. Knupfer, A. F. Morpurgo1

Abstract: Organic semiconductors offer great flexibility to control electronic states of

interfacial electronic systems. Here we present a first step in realizing organic charge

transfer interfaces that combine both electrical conductivity and magnetism. We have

performed a detailed investigation of the F16CoPc/rubrene interface by means of

charge transport measurements, Hall effect, scanning Kelvin probe microscopy and pho-

toemission spectroscopy. We found that the amount of charge transfer across the

F16CoPc/rubrene interface is high enough to cause significantly enhanced electrical

conductivity and the band-like transport in rubrene crystals at the interface. Moreover,

photoemission studies have shown that the charge transfer at the F16CoPc/rubrene

interfac e involves electronic orbitals of the magnetic Co ions in the phthalocyanine

molecule s. Thus, F16CoPc/rubrene is the first organic interface where the charge

transfe r responsible for the interfacial conductivity fully involves the metal Co core of

the phthalocyanine molecules.

Charge transport at the interface

F16CoPc/rubrene interface devices were formed on a polydimethylsiloxane (PDMS)

substrat e. First a rubrene single crystal (grown by physical vapor transport) was lami-

nated on PDMS and then a 70 nm F16CoPc film was evaporated (under high vacuum con-

ditions) on top of the crystal. In order to maintain its quality, the rubrene crystal was

kept at room temperature throughout the deposition of the evaporated film. As a result,

the morphology of the F16CoPc film was expected to be far from ideal, as indeed indicat-

ed by atomic force microscopy (AFM) measurements showing F16CoPc films with rather

rough surfaces, consisting of small grains with irregular orientation. Electrical contacts

to the interface were realized manually using conducting carbon paste, following a strat-

egy adopted earlier to perform transport measurements on different organic single

crysta l interfaces [1]. An optical microscope image of one of the devices investigated is

shown in Fig. 1a.

Charge transport at F16CoPc/rubrene interfaces was measured in vacuum using a multi-

terminal device configuration by means of an Agilent Technology E5270B parameter

analyze r. The I-V curve of an F16CoPc/rubrene interface (Fig. 1b) exhibits linear charac-

Fig. 1: (a) Optical microscope image of an F16CoPc/rubrene interface device. The rubrene single
crystal is covered by a 70 nm F16CoPc film and contacted with conducting carbon paste. Contacts
V1/V4 were used to source and drain current, contacts V2/V3 to measure the voltage and per-
form four-terminal resistance measurements, and contacts V2/V5 for Hall voltage measurements.
(b) Room temperature I-V curve for the F16CoPc/rubrene device measured in a four-terminal
configuratio n.
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teristics and indicates that the measured conductance is many orders of magnitude

larger than the conductance of the individual materials forming the interface. Specifi-

cally, the room temperature resistivity for all measured devices was found to be in the

range of 260 - 350 kΩ/square. Moreover, the results of temperature dependent transport

measurements (Fig. 2a) show a decrease in resistivity upon cooling, indicating that

transpor t at F16CoPc/rubrene interfaces exhibit clear signatures of the intrinsic band-

like regime, down to T ∼ 130 K.

Hall effect measurements performed on the same devices (Fig. 2b) show that charge

transport in the F16CoPc/rubrene interface is dominated by holes in rubrene crystals, as

it may have been expected, since the charge carrier mobility in organic films is gener-

ally significantly lower than in crystals. Indeed, in our F16CoPc/rubrene interfaces the

electrons in F16CoPc can be considered as fully localized and their contribution to

transpor t ignored. This is confirmed by spectroscopic data discussed below. From the

measured Hall resistance and longitudinal resistivity we extract the values of the

interfacia l hole density (n = 1.6 ·1013 cm-2) and mobility ( μ = 1.2 cm2V -1s-1) for our

F16CoPc/rubrene interfaces. With the exception of TTF-TCNQ [1], the interfacial hole

densit y in F16CoPc/rubrene is the highest among all studied organic charge transfer

interface s [1-6].

To gain a better microscopic understanding of the energetics of F16CoPc/rubrene inter-

faces, we have performed scanning Kelvin probe microscopy (SKPM) [7] experiments.

Here we have measured the contact potential difference between rubrene and F16CoPc,

which corresponds to the difference ΔEF between the chemical potentials in the two

material s. The measurements were performed on samples consisting of a 70 nm F16CoPc

film evaporated onto a SiO2 substrate, onto which a rubrene crystal was subsequently

laminated. Measuring the difference in contact potential by scanning across the

F16CoPc/rubrene interface is particularly effective, because it enables the contact

potentia l to be measured directly independently of the work function of the tip. A

representativ e SKPM image and a line-scan contact potential measurement are shown

in Figs. 3a and 3b, respectively. The difference in the chemical potentials of the F16CoPc

film and the rubrene crystal, ΔEF, can be extracted directly from the data and is found

to be approximately 290 meV (Fig. 3b). This value is larger than the one obtained for

F4 -TCNQ/rubrene, ΔEF ∼ 250 meV, the largest in the Fx -TCNQ/rubrene family of interfaces

[6]. Since a larger value of ΔEF is normally conducive to a larger charge transfer, the

outcom e of SKPM experiments support the conclusions obtained from the transport

measurements, namely that the charge transfer at the F16CoPc/rubrene interface is

larger than the charge transfer at any of interface of the Fx -TCNQ/rubrene family [6].

Fig. 2: (a) Temperature dependence of the resistivity of three different, nominally identical,
F16CoPc/rubrene devices. (b) Hall resistance vs. applied magnetic field measured at room
temperatur e.

Fig. 3: Scanning Kelvin probe microscopy measure-
ments on an F16CoPc/rubrene heterostructure. The
results exhibit a clear step in both the topography
(not shown) and in the contact potential (a) as the 
tip is moved from the surface of F16CoPc film (left
side of the images) to rubrene crystal (right side of
the images). (b) Line-cut extracted from the SKPM
image (a); the step corresponds to the difference in
contact potential measured on the F16CoPc and the
rubrene.



Photoemission spectroscopy

The electronic states of F16CoPc/rubrene interfaces have been probed by photoemission

(PES) spectroscopy in the valence as well as the core level region. Since straightforward

photoemission spectroscopy on bulk rubrene crystals are prevented by charging effects

[8], measurements were performed on F16CoPc/rubrene thin film interfaces. These

interface s were prepared using a gold (100) single crystal as a substrate, onto which a

5 nm rubrene film was deposited, followed by an F16CoPc film. Samples with different

nominal thickness of the F16CoPc film ranging from 0.1 nm to 3.5 nm were investigated

in order to identify particular changes that represent the interface region. 

Fig. 4 summarizes the results of the photoemission studies of F16CoPc/rubrene interfaces

with different thicknesses of the F16CoPc layer. Panels a-c of Fig. 4 depict the Co 3p3/2

core level emission spectra for three selected layer thicknesses. The spectrum obtained

for the thick F16CoPc layer of 3.5 nm (Fig. 4a) consists of a single, slightly asymmetric

line which represents the two valent Co(II) in the center of F16CoPc; the width and the

shape of the spectral feature is determined by the Co 2p3/2 multiplet [9]. In the case of

thinner F16CoPc layers we observe changes in the Co 2p3/2 spectrum (Fig. 4b). Here, a

second spectral feature appears at lower binding energies, which corresponds to the

F16CoPc molecules at the interface to rubrene. With further reducing the thickness of the

F16CoPc film (i.e. increasing the contribution of the interfacial F16CoPc molecules to the

measured signal) we see a clear increase of the relative intensity of the second feature

(Fig. 4c). These observations are in good agreement with a number of studies where the

interaction of Co-phthalocyanines with metal substrates has been reported [10-12]. The

second feature in the spectrum arises due to a strong interaction at the interface that

leads to a charge transfer and a consequent change in the valence of the Cobalt ion in

F16CoPc to Co(I) [10, 11, 13]. Thus, our results demonstrate that at the F16CoPc/rubrene

interface the Co center of the F16CoPc is reduced due to a charge transfer from the rubrene

molecules. 
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Fig. 4: Left: Photoemission core level (XPS) spectra at the Co
2p3/2 core level of a F16CoPc/rubrene film hererostructure
with different F16CoPc film thickness: 3.5 nm (a), 0.9 nm (b)

and 0.2 nm (c). An additional feature related to the interfa-
cial states appears in the spectrum of the thinner F16CoPc
film. Right: Valence band photoemission (UPS) spectra of
the valence region of F16CoPc with different film thickness:
3.5 nm (d), 0.9 nm (e) and 0.2 nm (f). The contribution of 
a pure rubrene film was subtracted from the spectra. The
second peak in the spectrum of the thinner F16CoPc film
corresponds to the 3dz2 orbital of the phthalocyanines Co
center that is empty in the normal state and gets filled due
to the charge transfer from rubrene molecules.
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Photoemission spectra of the valence region of F16CoPc for three different layer thick-

nesses are presented in panels d-f of Fig. 4. The data are fully consistent with the results

obtained from the core level presented above. For a thick F16CoPc layer (Fig. 4d) the

spectru m consists of an emission line at about 1.2 eV binding energy arising from the

highest occupied molecular orbital (HOMO) of F16CoPc [11]. However for thinner layers,

where the relative contribution to the signal from interfacial molecules is higher (Figs.

4e and 4f), an additional feature appears at lower binding energy (about 0.75 eV). This

feature can be associated to the 3dz2 orbital of the phthalocyanines Co center [14] that

gets filled due to the charge transfer from rubrene molecules and becomes therefore

visibl e in PES. 

Finally, the photoemission spectroscopy investigations complement our transport

studie s as they clearly indicate a charge transfer at the F16CoPc/rubrene interface

concomitan t with a hole doping of rubrene. Moreover, the measurements allow us to

conclud e that the charge transfer, which causes enhanced electrical conductivity in

F16CoPc/rubrene, fully involves the metal Co core of the phthalocyanine molecules

makin g this system to be the first conducting organic interface in which charge trans-

fer involves magnetic ions.
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Valence-state reflectometry of complex oxide heterointerfaces

J. E. Hamann-Borrero, S. Macke1,2, W. S. Choi3,4, R. Sutarto5, F. He5, A. Radi1, I. Elfimov1,

R. J. Green1, M. W. Haverkort6, V. B. Zabolotnyy7, H. N. Lee3, G. A. Sawatzky1, V. Hinkov7

Abstract: Development in the atomic layer by layer synthesis of transition metal oxide

materials and the possibility to put dissimilar materials face-to-face at an interface has

provided a vast playground for exciting emergent physics [1]. Prominent examples are

the formation of a 2D electron gas at the LaAlO3/SrTiO3 interface [2] and the obser-

vation of superconductivity at interfaces of non-superconducting copper oxides [3],

among others [4,5]. The nature of these new phenomena has been addressed to be

closely related to reconstruction of the charge, spin and orbital states that takes

place as a consequence of the local symmetry breaking at the interface. Notwithstand-

ing, since these interfaces are normally buried deep below the samples surface, the

study of their electronic and structural properties is an experimental challenge. In this

regard, resonant x-ray reflectivity (RXR) provides a unique experimental tool to

study such effects. It is non-destructive, interface sensitive and, since the experiment

is performed at energies close to absorption edges, it yields depth resolved element

specific spectroscopic information [6,7]. Using an element and valence specific descrip-

tion of RXR we obtain the electronic density profile of the different Co species along

the polar (001) direction of a LaCoO3 film on NdGaO3. Our analysis reveals a pro-

nounced valence state reconstruction from Co3 + in the bulk to Co2 + at the surface, with

an areal density close to 0.5 Co2 + ions per unit cell. An identical film capped with po-

lar (001) LaAlO3 maintains the Co3 + valence over its entire thickness. We interpret this

as evidence for electronic reconstruction in the uncapped film, involving the transfer

of 0.5 e− per unit cell to its polar surface.

Heterostructures comprising transition-metal oxides (TMOs) exhibit a particularly rich

variety of physical phenomena, which largely emerges due to the  interplay between their

structural, electronic and magnetic degrees of freedom, tuned by heteroepitaxial expo-

sure and strain [4]. A prominent example is the formation of a two-dimensional electron

gas at the (001) interface between the two band insulators SrTiO3 (STO) and LaAlO3

(LAO)[6]. Various ideas have been put forward to explain this [2,8], many of them re-

lated to the fact that ionic and heteropolar films of certain orientations consist of

charged planes: this would lead to a sizable potential along the film normal (polar ca-

tastrophe), unless its polar interfaces carry opposite compensating charge. This charge

can be provided by various reconstruction mechanisms [2,8], including structural

distortio n effects and interface stoichiometry changes. A different possibility is elec -

tronic reconstruction, the pure transfer of charge between the opposite polar interfaces

[2]. In the particular LAO/STO case, such electronic reconstruction would entail the

transfer of 0.5e− per two-dimensional unit cell (u.c.) from the LAO surface to the inter-

face, hence leading to a Ti valence reduction and to the observed two-dimensional elec-

tron gas in the intrinsically non-polar STO. Experimentally, however, the reported

LAO/STO interfacial electron concentrations vary widely and often deviate by orders of

magnitude from values consistent with electronic reconstruction [9,10]. Therefore, the

origin of the two-dimensional electron gas in LAO/STO remains highly debated, and

microscopi c evidence is required, which supports the whole concept of electronic

reconstructio n in polar TMO films in general. 

We have found such evidence on a LaCoO3 (LCO) film grown on NdGaO3 (NGO), using a

novel approach to resonant X-ray reflectivity (RXR). RXR is a non-destructive, element-

and interface-specific technique, that directly probes the valence band electrons of the

transition metal and their profile across the interface. In this new approach we have used
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distinct optical constants for the different valence states of Co, as obtained from X-ray

absorption spectroscopy (XAS). And used them to model their electronic density profiles

by fitting experimental data.

From the fits of the resonant reflectivity data (Fig. 1) we were able to extract the element

and valence depth concentration profiles of all the ionic species of the heterostructure

(Fig. 2). The profiles reveal that the uncapped LCO//NGO sample exhibit a narrow Co2+

accumulation localized at the film surface with a full width at half maximum of 8.6 Å

(∼ 2 u.c.), concomitant with a decline in Co3+ concentration (Fig. 2a). Importantly, the

total amount of Co2+, if it was confined to one monolayer, would correspond to an are-

al density of 0.55 ± 0.15 ions per u.c., close to half coverage. This, and the fact that we

achieve our fits using Co2+ and Co3+ spectra typical for bulk cobaltates, strongly indicate

that both samples maintain their crystallinity up to the LCO surface, and are not subject

to chemical decomposition. By depositing a protective LAO (polar) layer on top of the

LCO film, we were able to switch off the polar/non-Polar (P/NP) character of the vacu-

um/LCO interface in a controlled way: this moves the P/NP interface to the LAO surface,

hence keeping the LCO electronic properties intact (i.e., Co3+) throughout the film

thickness (Fig. 2b).

Fig. 1: RXR data and fits. Data measured in the 
constant-energy and constant-qz modes (black 
symbols) are shown, along with the best obtained 
fits (red lines), based on the profiles shown in Fig. 2.
(a) Constant-energy scans for the uncapped sample.
(b) Constant-qz scans for the uncapped sample. 
(c) Constant-energy scans for the capped sample. 
(d) Constant-qz scans for the capped sample. The
constant-energy data are shown on a logarithmic
scale, the constant-qz on a linear scale. For clarity,
the scans have been shifted along the y axis with 
respect to each other in (a and c). The constant-qz
scans in (b and d) were measured at the qzi positions
marked with blue numbers i in (a and c).
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Fig. 3: Crystal structures and schematic charge and valence profiles for both samples. (a) Uncapped
sample with the electronically reconstructed surface following from our analysis. (b) Sample capped
with LAO. The reconstruction of the LAO surface is not known and beyond the scope of this work.
A charge of − 0.5e proximate to the surface follows from the reconstruction.

Fig. 2: Element and valence depth concentration profiles. (a) Profiles of the uncapped sample. 
(b) Profiles of the capped sample. The region at the surface of the samples marked in lighter red
is likely to contain further light elements such as carbon, in addition to oxygen. 

The reconstruction scenario applied to the LCO surface resulting from our analysis is

outline d in Fig. 3a. Beginning from the surface, the atomic layer sequence is

LaO/CoO2 /LaO/CoO2 /..., which nominally corresponds to a charge concentration se-

quence of + e/ − e/ + e/ − e/... per u.c. over the sample thickness, including the entire

substrate. The compensation of the associated internal potential occurs resulting in

effectiv e charges of − e/2 and e/2 per u.c. at the LCO film surface and backside of

the substrate. 



56 Research Area 3    QUANTUM EFFECTS AT THE NANOSCALE

Regarding the reconstruction mechanism, La and O have a rather stable single valence

and do not exhibit bands near the chemical potential, whereas LDA+U calculations, have

established that the first electron affinity state is within a Co d-band [11]. Therefore,

it is energetically favorable to leave the potential uncompensated over the topmost half

u.c. and accommodate the compensating charge in the buried CoO2 layer, leading to the

reconstructed surface configuration LaO (+1)/CoO2 (−1.5). This changes the Co valence

to 2.5+, which is spectroscopically observed as a superposition of Co3+ and Co2+ in the

XAS spectra (not shown). This electronic reconstruction scenario involving the subsur-

face layer is very different from the scenarios discussed for LAO/STO and related

material s. Moreover, the close proximity of the observed Co2+ concentration to 0.5 per

u.c. and the fact that it is energetically favorable to change the Co valence in a purely

electronic way [11] leaves electronic reconstruction as the explanation by far most

consisten t with our data. 

In summary, we have demonstrated that RXR is an excellent tool to study reconstruction

phenomena in heterostructures comprising complex materials. We have shown direct mi-

croscopic evidence for electronic reconstruction on the polar (001) surface of LaCoO3.

Our results indicate that LCO films are dominated by Co3+ and that Co2+ is limited to the

surface: this sets stringent boundary conditions for the interpretation of ferromagnet-

ism in LCO thin films [12] and powders [13]. It suggests that Co3+ spin-state transitions

in the bulk drive the ferromagnetism and excludes schemes involving the presence of

Co4+ at the surface [13].
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Quantum effects at the nanoscale

Y. Chen, J. Zhang, M. Zopf, R. Keil, B. Hoefer, Y. Zhang, K. Jung, F. Ding, O. G. Schmidt 

Abstract: Many of the quantum information applications rely on indistinguishable

sources of polarization entangled photons. Semiconductor quantum dots are among

the leading candidates for a deterministic entangled photon source, however, due to

their random growth nature, it is impossible to find different quantum dots emitting

entangled photons with identical wavelengths. The wavelength tunability has there-

fore become a fundamental requirement for a number of envisioned applications.

With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-

electromechanical-system, we can recover the quantum dot electronic symmetry at

differen t exciton emission wavelengths. Our device facilitates the scalable integration

of indistinguishable entangled photon sources on-chip, and therefore removes a ma-

jor stumbling block to the quantum-dot-based solid-state quantum information

platform s.

Wavelength-tunable entangled photons from 
silicon-integrated III-V quantum dots

A topical challenge in quantum information processing (QIP) is the generation and

manipulatio n of polarization entangled photon pairs [1, 2]. Spontaneous parametric-

down-conversion (SPDC) and four-wave-mixing (FWM) have served as the main workhors-

es for these purposes in the past decade, and the implementation of a fully integrated

quantum optoelectronic device is within reach by marrying these sources with chip-scale

silicon photonics [3-5]. However the generated photons are characterized by Poisson-

ian statistics, i.e. one usually does not know when an entangled photon pair is emitted.

This fundamentally limits their applications in complex quantum protocols, e.g. an

event-ready test of Bell’s inequality and high efficiency entanglement purifications,

where deterministic operations are much favoured.

We demonstrate wavelength-tunable entangled photon sources based on III-V QDs

integrate d on a silicon chip [6]. It has been predicted that the FSS of QDs can be effec-

tively eliminated by uniaxial stresses when the strain axis is closely aligned along the

[110] or [1-10] direction. With the application of a pair of orthogonal uniaxial stress-

es, it might be possible to eliminate the FSS with the emission wavelength on demand.

To this end, we design and fabricate a device consisting of QD-embedded nanomembranes

suspended on a four-legged thin-film PMN-PT ([Pb(Mg1/3Nb2/3)O3]0.72[PbTiO3]0.28) ac-

tuator integrated on a silicon substrate. With the combined uniaxial stresses along two

orthogonal directions, we are able to keep the FSS strictly below 1 μeV while shifting the

exciton wavelength/energy by more than 3000 times of the QD radiative linewidth. High

fidelity entangled photon emission is demonstrated when the FSS is tuned to below 1 μeV.

Therefore wavelength-tunable entangled photons are generated on chip with a single

devic e footprint of a few hundred microns.

We use the industrial transfer printing and die bonding techniques to realize the novel

integration of III-V, PMN-PT and Si. A 15 μm PMN-PT thin film bonded on a silicon sub-

strate is employed here to realize novel micro-electromechanical system (MEMS) devices

with sophisticated functionalities on chip (Fig. 1). Arrays of QD-containing GaAs

nanomembranes, each 80 × 80 μm2 in size, were then transferred onto the PMN-PT

MEMS with four actuation legs (Figs. 1a, b). The crystal axes [1-10] and [110] of the GaAs

nanomembrane were carefully aligned along the designed stress axes of the actuators.  

Fig. 1: Wavelength-tunable polarization entangled photon sources integrated on silicon. 
(a) MEMS devices for anisotropic strain engineering of III-V QD based quantum light sources. 
(b) Micrograph showing the zoom-in of a completed device. Electrical contacts are made on the
four legs A-D. The center region is a bonded QD-containing nanomembrane. (c) Illustration of
the fine structure splitting (FSS) in a QD. 
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The uniaxial strain tuning behaviour of FSS is determined by the QD principal axis with

respect to the uniaxial stress direction. For a QD whose principal axis is closely aligned

with the stress direction, the FSS can be effectively eliminated. An example of the FSS

tuning behaviour for such an aligned QD is given in Fig. 2a. The uniaxial stress tuning is

done by sweeping the voltage VAC from 0 V to 100 V on one pair of legs, while fixing the

voltage VBD at 0 V on the other pair of legs. With increasing VAC the FSS first decreases

monotonically to a minimum value and then increases. At VAC of about 73 V the FSS is com-

pletely eliminated. The phase θ, which indicates the angle (see inset of Fig. 2a) between

the exciton polarization and the [1-10] crystallographic direction of GaAs, undergoes

a sharp phase change of 90 degrees.

Two dimensional scanning on the two pairs of legs, by sweeping both VBD and VAC is then

performed. In Fig. 2b we show the results in a three dimensional plot. The astonishing

result is that, with this four-legged device providing orthogonal uniaxial stresses, mul-

tiple zero FSS points with different exciton wavelength λX (energy EX) can be achieved.

At different VBD, the electronic symmetry of quantum dot can be always recovered by

sweeping VAC and the FSS is erased. The dashed line on the bottom plane of the plot

indicate s the combinations of (VAC, VBD) at which the FSS reaches its minimum. A linear

relationship is found for the ratio of voltage changes ΔVAC /ΔVBD. In terms of the applied

stresses (X, Y), indeed, an effective two-level model for the FSS of QDs with exciton

polarizatio n closely aligned to principal stress axes predicts a zero FSS  with a linear

relationshi p ΔX/ΔY and confirms this experimental finding.

Fig. 2: Anisotropic strain engineering of a QD 
under orthogonal uniaxial stresses. (a) FSS and
phase θ are plotted as a function of the voltage
VAC at a fixed voltage VBD of 0 V. The inset in (a)
gives the definition of θ. (b) The changes in FSS
when both VBD and VAC are scanned. The dashed
line on the bottom plane indicates a linear shift of
the voltage combination (VAC, VBD) at which FSS
reaches the minimum values.



We have performed the polarization cross-correlation spectroscopy on a brighter QD

embedde d inside another device on the same chip. The FSS is tuned to around zero

(0.21 ± 0.20 μeV) to demonstrate the polarization entanglement, and the data are

presente d in Fig. 3b. A key criterion for entanglement is the presence of a correlation

independent of the chosen polarization basis, i.e. �ψ+ > = 1/√2( �HX X HX > +�VX X VX >) =

1/√2( �DXX DX > +�AXX AX >) = 1/√2( �RXX LX > +�LXX RX >), with D, A, R, L denoting the

diagona l, anti-diagonal, right-hand circular and left-hand circular polarizations. Clear

photon bunching, with a normalized second order correlation function g2 (τ) > 3, can be

observed for the co-polarized HH and DD photons, whereas in the circular basis the

bunching occurs for the cross-polarized RL photons. The entanglement fidelity f + to the

maximally entangled Bell state can be determined from the measurements in Fig. 3b, see

Methods. The peak near the zero time delay yields a fidelity f + of 0.733 ± 0.075 without

any background subtraction, which exceeds the threshold of 0.5 for a classically

correlate d state by more than 3 standard deviations. The above results are in line with

previous experimental and theoretical works, and verify that highly entangled photons

can be generated with our device with large wavelength tunability.

In summary, we have experimentally realized wavelength-tunable entangled photon

sources on a III-V/Si chip, which represents an important step towards scalable entan-

gled photon sources based on III-V QDs. The reported device will play an important role

not only in building a solid-state quantum network based on entanglement swapping and

quantum memories, but also in building advanced quantum photonic circuits for on-chip

QIP applications. The MEMS based device features the advantages of sophisticated

anisotropic stress control on chip. We envision that it will inspire many other topics in

quantum and nano-technologies, and an interesting perspective is to replace the

nanomembranes with the emerging two-dimensional materials and to study the strain-

dependent photonic and electronic properties.
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Fig. 3: Independent tunability of exciton wavelength and FSS. (a) FSS is plotted as a function of
the exciton wavelength λX (energy EX), at different values of VBD. The solid lines are theoretical
fits. (b) Polarization correlation spectroscopy are performed on the biexciton and exciton photons,
when the QD FSS is tuned to zero. 
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Spin-orbit coupling in tubular photonic microcavities 

L. B. Ma, S. L. Li, V. M. Fomin, M. Hentschel1, J. B. Götte2, Y. Yin, 

E. Saei Ghareh Naz, V. Engemaier, O. G. Schmidt

Abstract: In a non-trivial evolution in parameter space, light can acquire a geometric

phase which plays an important role in a variety of physical contexts. However, in

previou s reports the evolution occurred exclusively on the macro-scale, which prevents

the application in on-chip integrated photonics. Moreover, the concept of optical

Berry phases has been generalized in the context of non-Abelian and non-cyclic

evolutio n. Despite substantial efforts in theory, the experimental realization of non-

Abelian evolution of light, in particular with non-cyclic Berry phase, has received

littl e experimental verification. Here, we enable optical spin-orbit coupling in

asymmetri c microcavities and experimentally observe non-cyclic optical geometric

phases acquired in non-Abelian evolutions. This work is interesting from both a

fundamenta l and experimental point of view, and implies promising applications

which would rely on manipulating photons in on-chip integrable quantum devices.

Spin-orbit coupling enabled in microtubular cavities 

In optics, the spin-orbit coupling leads to the occurrence of geometric phase (also known

as Berry phase) [1-4] which plays an important role in a surprisingly large number of

physical contexts. The geometric phase of light depends only on the topology of the

physica l system evolution in parameter space, and thus is independent of the device ma-

terial and photon energy. Photons propagating along a helically wound fiber represent-

ed the first physical system exploited to verify the existence of the Berry’s geometric

phase [4]. In optical microcavities (see Fig. 1(a)), which confine light to small volumes

by resonant circulation along a closed trajectory, the optical spin-orbit interaction is

irrelevan t due to the trivial evolution of light, which results in ordinary discrete

eigenmode s in optical WGM resonators.

However, optical spin-orbit coupling can be induced in specially designed cavity struc-

ture such as a Möbius strip. In the optical resonant circulation, the transverse electric

field twists around during the propagation in the strip (see Fig. 1(b)). In this way, an

effective orbital angular momentum (OAM), similar to that of an optical vortex [5], is

generate d for the spin-orbit coupling. The spin-orbit coupling leads to the occurrence

of a geometric phase π. This extra phase leads to a half-integer number of waves for

constructiv e interferences along a closed-loop trajectory, which has been revealed in

classical Möbius-ring resonators [6]. Similar to the previously reported helical wave-

guides, this behavior represents an Abelian evolution. 

Fig. 1: Optical spin-orbit coupling in WGM microcav-
ities (top panel) and the corresponding polarization
evolution on the Poincaré sphere (bottom panel). 
(a) In-plane polarized light does not provide orbital
angular momentum in a symmetric ring resonator
due to the unchanged electric field (E) vector with 
respect to the wave vector k, which results in a 
stationary point on the Poincaré sphere. (b) In a
Möbius-ring resonator, the twisted electric field E
along the Möbius strip causes a varying orbital 
angular momentum for spin-orbit coupling, which 
results in a cyclic evolution on the Poincaré sphere.
(c) An effective orbital angular momentum along X
is generated due to the rotation of the major axis 
of the electric field E regulated by the cone-shaped 
tube wall of an anisotropic medium, allowing for an 
interaction with the spin angular momentum, which
results in a non-cyclic evolution on the Poincaré
sphere. The variations of the major polarization axis
of the field E (red arrows) are shown with respect 
to the laboratory coordinate frame (XYZ). The blue
dashed lines represent light trajectories, while the 
red dotted lines represent the polarization evolution
trace on Poincaré sphere.
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Recently, we experimentally realized spin-orbit coupling of light in an on-chip cone-

shaped microtube resonator. When resonant light propagates in the thin-walled

microtub e, the electric field vector rotates around the tube axis due to the cone-shape

of the microtube (see Fig. 1(c)). This rotation generates an effective OAM along the tube

axis [5]. In the cone-shaped tubes the resonant trajectory slightly tilts out of plane to

reduce the optical path according to Fermat’s principle. It is this tilted trajectory that

causes the SAM to be not orthogonal to the OAM and which, in turn, enables the coupling

between spin and orbital degree of freedom. In addition, the resonant light experiences

an anisotropic refractive index in the asymmetric tube. Theoretical investigation has pre-

dicted that spin-orbit interacting light in a weakly anisotropic medium can experience

a non-Abelian evolution [7], that is, an evolution for which there are no normal modes

leading to a continuous transfer between any chosen basis states. 

Occurrence of optical Berry phase and mode conversion 
in non-Abelian evolution 

It is well known that the resonant light in WGM microcavities is either transverse mag-

netic (TM) or transverse electric (TE) linearly polarized [8]. For symmetric microtubes,

the measured electric field of the light is linearly polarized and oriented parallel to the

tube axis for the TM modes. However, in cone-shaped microtube cavities the resonant

light is no longer linearly polarized. Figure 2 shows the intensity maps for the linearly

(Lp) and elliptically polarized (Ep) modes as a function of the orientation angle (0 to

360°), which were respectively measured from a symmetric and an asymmetric tube. In

the intensity map measured from the symmetric tube, the polarization state is clearly

shown to be linearly polarized along the tube axis. In the asymmetric tube case, the vary-

ing but unbroken polarization trace is characteristic for elliptical polarization. Moreover,

the major axis of the ellipse, or in other words the polarization orientation, is found to

tilt away from the tube axis. The polar plots in Fig. 2(c) clearly reveal the eccentricity and

the tilt angle (φ ∼ 44.5°) of one of the measured polarization states after evolution

in the asymmetric microtube cavity. These unusual phenomena go beyond the conven -

tional knowledge of optical WGM resonances in microcavities and can be attributed to the

occurrence of a geometric phase in a non-Abelian evolution of light [9].

Fig. 2: Elliptical polarization state of light in a 
cone-shaped microtube cavity. (a) In a rolled-up
asymmetric microtube being pumped by a laser
beam (532 nm), the linearly polarized light evolves
into ellipti cally polarized one with the major axis
tilted out of (with an angle ϕ) the tube axis. 
(b) Resonant mode intensity maps of a linear 
polarization (Lp) state measured from a symmetric
tube where spin-orbit interaction is absent and an
elliptical polarization (Ep) state measured in the
presence of spin-orbit coupling of light in an asym-
metric tube. In the corresponding polar diagrams
shown in (c) the linear polarization (dashed line) 
is oriented parallel to tube axis while the elliptical
polarization exhibits a tilt angle ϕ with respect to
the tube axis.
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Fig. 3: Change in the magnitude of the polarization
components. Measured vector amplitudes of the right
(a+) and left (a–) components with the concurrent
geometric phase φ. The evolution traces agree well
with the theoretical model in Eq. (7) (dashed curves).
Top panel shows (left) a linear polarization comprised
of in-phase rotating right and left circular polarization
components, and (right) geometric phase +ϕ (shown
with bold green arc) acquired for a– and -ϕ (shown
with dotted blue arc) acquired for a– .

In the asymmetric microtube cavity, the initial state of the resonant light is linearly

polarize d. A linear polarization state is comprised of the right and left circular polariza-

tion components with the same probability amplitude, as schematically shown in

Fig. 2(a). Due to the spin-orbit coupling, the right and left circular components acquire

a geometric phase φ with opposite signs. In addition to the occurrence of geometric

phase φ, mode conversion happened between the right and left circular polarization

bases due to the spin-orbit coupling in non-Abelian evolution, as predicted in theory [7].

As shown in Fig. 2(a), the conversion of amplitudes between the two circular components

leads to a change from a linear to an elliptical polarization, while the geometric phase

causes the orientation of the major axis of the polarization to tilt by an angle (equal to

φ) with respect to the initial orientation. Since the final output state differs from the

initia l one, the evolution generates a non-cyclic geometric phase. Here we show that

the non-cyclic geometric phase can be readily measured by simply recording the tilt

angle of the light polarization ellipse. The change of the circular bases is evidence for

the lack of independent modes, which is a consequence of the intricate non-Abelian

evolutio n. 

In order to depict the evolution trace, a series of final polarization states were measured

from different asymmetric tubes, in which the resonant light experiences different ex-

tents of the polarization evolution. It is found that a larger eccentricity is accompanied

by a larger tilt angle (φ) due to their co-evolution in the asymmetric microcavities. This

kind of the evolution trace can be well reproduced by previously reported theory, indi-

cating a good agreement between the theoretical model and measurements. In addition,

we have performed polarization measurements for different mode frequencies in the

same tube cavity and found that the tilt angle as well as the eccentricity is independent

of the wavelength. This is a clear evidence that the effect is of purely geometric, rather

than dynamical origin. 

In contrast to previous reports on optical spin-orbit coupling, where the right and left

handed circular polarization bases are often spatially separated, here we do not observe

such a spatial separation of the spin components, but rather an amplitude conversion

between basis vectors during the evolution. This process is systematically shown in Fig. 3

by comparing the variation of the squared moduli of the coefficients accompanied by the

tilt angle φ. Based on the measured results, the respective squared amplitudes for the

right and left circular components are extracted. The two squared vector amplitudes vary

in an opposite way and therefore result in the vector splitting of the spinning photons

in a Hilbert space. The evolution traces of the two vector amplitudes can be well fitted

by previously reported theoretical model, as shown in Fig. 3. 
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Our work shows that the non-cyclic geometric phase acquired in a non-Abelian evolu-

tion can be readily demonstrated in a compact optical microtube cavity. The cone-like

asymmetric optical microcavities establish an ideal platform to realize spin-orbit cou-

pling for the examination of non-trivial topological effects in the context of a non-

Abelian evolution. Geometric phase and amplitude variations of components in the

circula r polarization basis reveal essential physical processes in a non-Abelian evolution,

which is of interest for both fundamental and applied physics.  
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Josephson Currents Induced by the Witten Effect

F. S. Nogueira and J. van den Brink

Abstract: We have predicted a new type of topological Josephson effect involving type

II superconductors and three-dimensional topological insulators as tunnel junctions.

We have demonstrated that vortex lines induce a variant of the Witten effect that is

the consequence of the axion electromagnetic response of the topological insulator:

at the interface of the junction each flux quantum becomes fractionally charged,

acquirin g an electrical charge of e/4. As a consequence, an external magnetic field

applie d perpendicular to the junction induces an AC Josephson effect in absence of any

external voltage. We derived a number of further experimental consequences and

propose d potential setups where these quantized, flux induced, Witten effects may be

observed.

Fundamentally, the Josephson effect refers to coherent tunneling of Cooper pairs

betwee n two superconductors (SCs), governed by the basic equations [1],

IJ (Δφ) = Ic sinΔφ,               δt Δφ =  
2eV

�
(1)

where Δφ is the phase difference of the superconducting order parameters across the

junction and V is an external voltage. When V = 0 we have the DC Josephson effect, while

for V ≠ 0 the Josephson current oscillates with time, leading to the AC Josephson effect. 

Another fundamental Josephson effect follows by setting V = 0 and applying an exter-

nal magnetic field parallel to the junction, 

I = Ic
φ0

πφ
sin � πφ

φ0
� sin  �Δφ +  

πφ
φ0

�
where φ is the total magnetic flux through the junction and φ0 = hc/(2e) is the elemen-

tary flux quantum. 

The standard Josephson effect described by the above equations typically features an

insulating tunnel junction. In the past ten years there has been growing interest on tun-

nel junctions consisting of a topological insulator (TI) [2]. In this case a topological

Josephson effect where a coherent tunneling of charge e quasi-particles is predicted to

occur. This charge e object is composed by two Majorana fermions [3], one residing at

the boundary of the left SC and the other one at the right SC, thus corresponding to a

topologically protected bound state. The coherent tunneling of a charge e rather than

2e implies a Josephson current having 4π rather than the usual 2π one [2,3]. This

fractiona l Josephson effect is believed to offer a promising avenue towards achieving

topologically protected quantum computation, where the braiding of Majorana modes

is used as a means to manipulate Qbits [3].   

Recently we have demonstrated that due to the axion electromagnetic response of

three-dimensional TIs [4] another topological Josephson effect is possible if a magnet-

ic field is applied perpendicular to the junction, and the SCs involved are type II ones [5].

This is easily seen by noticing that the quantum Hall response on a TI surface implies that

at interface between a type II SC and a TI (assumed to be located at z = 0) the charge

and current densities are quite generally given by, 

ρ(r, z) =  
σH

c B(r, z = 0) · z^ δ(z),               j = σH(E × z^ )                    

where σH = e2/(2h) is the Hall conductivity, which is known to be half-quantized for the

surface of a three-dimensional TI [4]. As we have demonstrated in Ref. [5], it is now a
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simple consequence of the expression for ρ that for a magnetic field of a single vortex

line, 

Q = �d 3rρ (r, z) =  
σH

c
z^ · �d 2rB(r, z = 0) =   

e
4 � φ

φ0
� =  

ne
4

since for a single flux line φ = nφ0 (n is an integer). The above simple result shows that

a single vortex carries a fractional charge e/4 at the interface between a type II SC and

a TI. This charge fractionalization due to vortices corresponds to a mechanism known as

Witten effect [6]. In its original formulation, the Witten effect follows from an electric

charge acquired by a ‘t Hooft-Polyakov magnetic monopole in the presence of an axion

term, which in electrodynamics takes the form of a magnetoelectric term ∼E ·B in the

Lagrangian. In Ref. [5] we have shown that the Witten effect also works if vortex lines

are used. Essentially the deep meaning behind our formulation of the Witten effect in a

solid state system stems from a dual picture where vortex lines can be viewed as world-

lines of magnetic monopoles. We have discussed this duality in detail in another recent

publication [8]. 

Since a (vertical) tunnel junction SC-TI-SC made of a three-dimensional TI contains two

interfaces, the charged vortices on each interface carry opposite charges, generating

in this way a capacitance energy; a schematic representation of a possible experimen-

tal setup is shown in Fig. 1. The induced voltage is given by Vind = Nυe/(4C) [5], where

C is the capacitance of the junction and Nv is the number of vortices. In view of Eq. (1)

this implies an AC Josephson effect induced by the Witten effect having a frequency

wW = Nυe 2/(2�C). Thus, due to the Witten effect, an AC Josephson effect can be

induce d in an SC-TI-SC junction in absence of an external voltage by simply applying a

magnetic field perpendicular to the junction. By considering further quantum effects

via the path integral representation of the junction, it is possible to show that at least

for small junctions the number of vortices must be quantized according to Nυ = 8m,

where m is a positive integer. Physically this means that a minimum charge of 2e must

be attained in order to charge the junction, since each vortex carries a minimum

fractiona l charge of e/4. Furthermore, if in addition an oscillating gate voltage is applied

to the junction, Shapiro steps are doubly quantized according to, 

Vnm =  
n�ω1

2e
–

2me
C

in which case the usual Shapiro step result is obtained for m = 0. The above equation leads

to a charge lattice, Qnm = CVnm, reminiscent of the Schwinger result [9] generalizing

the Dirac quantization to dyons, namely, dipoles involving an electric and a magnetic

charge.

Fig. 1: (a) Schematic view of a junction between a
strong TI (e.g. Bi2Se3, Bi2Te3 or strained HgTe) and
a type II SC (e.g. Nb,V, or a high Tc cuparate). The
magnetic flux from the vortex lines at the interface
induces a charge fractionalization due to the Witten
effect. (b) Schematics of possible experimental setup
to measure Josephson-Witten effect. The Witten ef-
fect acts on the vortex lines rather than on magnetic
monopoles, thus creating a potential difference
across the junctions.
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An experimental realization of the above Josephson-Witten effect would have many

importan t consequences. First, it would imply that vortices are fractionally charged in

SC-TI-SC junctions, which at the same time would yield an indirect measurement of the

half-quantized Hall conductivity, currently a practically impossible task to achieve in

standard transport experiments. Second, this would provide evidence for the topo -

logical magnetoelectric effect in three-dimensional TIs [4]. Third, since vortices carry

a minima l charge e/4, this would also provide direct evidence for anyon excitations. 
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Emergent magnetic ground state in iridium oxides 
with strong spin-orbit coupling

E. Plotnikova, S. Nishimoto, V. Katukuri, V. Yushankhai, H. Stoll, U. Roessler, 

M. Daghofer, I. Rousochatzakis, K. Wohlfeld, L. Hozoi, J. van den Brink

Abstract: The discovery that spin-orbit coupling (SOC) can induce topologically protect-

ed conducting states on the edge of the insulating materials has in recent years revived

interest in SOC materials. The interplay of electron-electron interaction and SOC has

also received enhanced attention: On one hand, the combination was soon discovered

as a promising route to alternative topologically nontrivial states, from topological

Mott over fractional Chern insulators to a potential realization for Kitaev’s celebrated

spin-liquid phase with its anyonic excitations.

On the other hand, SOC and correlated square-lattice iridates are emerging as a sister-

system to high-TC cuprates. Thus, we considered an interplay of all three interactions

- electron-electron interaction, SOC and electron-phonon coupling in a form of Jahn-

Teller on a model system of square-lattice Sr2IrO4. Moreover, honeycomb-lattice iridates

have been identified as platforms for the much anticipated Kitaev’s topological spin

liquid: In this context, we studied Li2IrO3, a honeycomb iridate with two crystallograph-

ically inequivalent sets of adjacent Ir sites.

Due to strong spin-orbit (SOC) coupling, in a low energy limit 5d compounds with one

hole in the lowest manifold like Sr2IrO4 and Li2IrO3 can be described by a total angular

momentum jeff = 1/2.

Jahn-Teller effect in square-lattice Sr2IrO4 [1]

In a 3d systems with negligible SOC a single hole (or electron) has an orbital degree of

freedom in addition to spin – as opposed to the single jeff = 1/2 degree of freedom of the

5d hole. As a consequence, an analogous 3d system can not only feature orbital order

in addition to magnetism, but the orbital and lattice degrees of freedom would be

couple d via so called Jahn-Teller effect, i.e. a structure distortion that occures to lift an

orbital degeneracy [cf. Fig. 1(a)]. In contrast, in 5d compounds the quenching of the or-

bital degree of freedom by SOC removes the possibility of orbital order and would at first

sight also appear to suppress Jahn-Teller effect and coupling to the lattice. However,

while Jahn-Teller effect is indeed absent for the ground state consisting of jeff = 1/2 pseu-

dospins, see Fig. 1(b), we have shown that it leaves clear signatures in the dynamics of

collective excitations into the jeff = 3/2 sector (i.e. excitons), which can be created in

resonan t inelastic X-ray scattering (RIXS) and has been discussed in two recent

theoretica l and experimental studies [2, 3]. As seen in Fig. 1(c), the Jahn-Teller effect

is here not quenched and can allow for a novel type of excitonic propagation.

We have derived an analytical microscopical model describing the motion of such an ex-

citon coupled to the jeff = 1/2 magnons and shown that the Jahn-Teller coupling provides

an additional channel for delocalization whose signatures can be clearly distinguished

from the pure superexchange scenario. Both Jahn-Teller effect and superexchange can

allow the exciton to exchange place with a nearest-neighbor isospin without flipping said

isospin. This creates 'faults' in the alternating order, see Fig. 3(a), and thus creates or

annihilates magnons. Jahn-Teller effect however also allows for a so-called free chan-

nel of exciton propagation [see Fig. 3(b)], i.e. allows the exciton to propagate without

creating ‘faults’ in the AFM background. The reason is that in superexchange, both the

exciton and a said isospin conserve their 'spin', i.e. their jz quantum number. In an

alternatin g isospin order, where nearest neighbors are always of opposite jz , this

necessaril y creates or removes 'defects', see Fig. 3(a), and thus magnons. The Jahn-Teller

effect, in contrast, allows the exciton and the isospin to flip their quantum numbers

while exchanging places and this allows for the nearest neighbor hopping of an exciton

Fig.1: Cartoon picture showing the Jahn-Teller effect
in systems without and with strong SOC: (a) Weak
SOC – oxygen displacements following 'conven -
tional' Jahn-Teller effect for the ground state with
e.g. the dxz /dyz alternating orbital order. (b) Strong 
SOC - no oxygen displacements due to the quenched
Jahn-Teller effect for the ground state with e.g. 
� j = 1/2, jz = 1/2� � j = 1/2, jz = -1/2� alternating spin-
orbital order (antiferromagnetic order of j = 1/2
isospins). (c) Strong SOC - oxygen displacements
around the � j = 3/2, jz = -3/2� exciton (which 'lives'
in the antiferromagnetic j = 1/2 ground state) 
showing that such a system is Jahn-Teller active.
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a)

b)

Fig. 2: Spin-orbit exciton with both superexchange
and Jahn-Teller interaction calculated using the 
SCBA. Intensities are given for two RIXS geometries: 
(a) normal and (b) grazing incidence [3]. 'A', 'B', 'C'
in panel (a) denote three main features of the 
spectrum. Superexchange parameters J2 = -0.33 J1, 
J3 = 0.25 J1, W1 = 0.5 J1 [3], and W2 = W3 = 0. 
Jahn-Teller interaction V = 0.8 J1 and broadening 
δ = 0.05 J1. On-site energy of the exciton is 
10 J1 ≈ 3/2 λ [3], crystal-field splitting between 
� jz � = 1/2 and � jz � = 3/2 states is 2.29 J1, and 
J1 = 0.06 eV.

Fig. 3: Cartoon showing the two types of nearest neighbor hopping of a jeff = 3/2 exciton in the
antiferromagnetically ordered background: (a) Polaronic hopping (due to Jahn-Teller effect or
superexchange): a jeff = 3/2 exciton with the jz = -3/2 quantum number (left panel) does not
change its jz quantum number during the hopping process to the nearest neighbor sites
(middle/right panels) and thus the je = 1/2 magnons are created at each step of the excitonic hop-
ping (wiggle lines on middle and right panels). (b) Free hopping (solely due to Jahn-Teller effect):
a jeff = 3/2 exciton with the jz = -3/2 quantum number (left panel) hops to the nearest neighbor
site and acquires jz = 3/2 quantum number (middle panel). Note that in this case the jeff = 1/2
magnons are not created in the system (middle/right panels).

without creating magnons, i.e., a free excitonic dispersion. For a rigorous derivation of

the model describing both types of exciton propagation we refer to [1].

The excitonic spectral functions are calculated taking into account 'matrix elements' de-

pending on the angle of the incident beam [3], and shown in Fig. 2. The most striking

difference to the pure superexchange scenario becomes visible in the so-called 'normal'

RIXS geometry [cf. Fig. 2(a)]: a dispersive feature at around 0.4 eV (denoted as A in the

figure) that has its minimal energy at k = (0, 0) and disperses upward towards the zone

boundary, where it merges with the B feature.

An unexplained feature with minimum at the Γ point was observed in normal-incidence

RIXS experiments on Sr2IrO4 [3], albeit with a weaker intensity. It is worth noting that

a similar peak was also seen in Na2IrO3 [4], where it does not merge with the higher-

energ y features, suggesting that the merging may be a detail specific to Sr2IrO4. In

contras t, the minimum at the Γ point is a robust and characteristic feature of Jahn-

Teller-mediated propagation, because superexchange-driven peaks invariably have a

maximum at the Γ point.

a)                                                                                 b)
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Overall, we have found SOC to substantially affect the interplay of Jahn-Teller effect and

superexchange. In 3d compounds with weak SOC and unquenched orbital degeneracy

both act on the same microscopic degree of freedom (i.e. orbitals) and in general lead

to similar signatures. In the strongly spin-orbit-coupled 5d case, however, Jahn-Teller

effect (determined purely by the orbital) and superexchange (strongly affected by

spin-orbit entanglement) address different microscopic degrees of freedom. Their inter-

play is thus far more intricate, as is coupling between ions with and without strong SOC.

Table 1: Effective exchange couplings (meV) in Li2IrO3, obtained by ab initio wave-

functio n quantum chemistry calculations. The values for each of the two distinct types

of [Ir2O10] units, B1 and B2/B3, are shown.

Effective couplings b = B1 b = B2/B3

Jb -19.2 0.8

Kb - 6.0 -11.6

Γb
xbyb -1.1 4.2

Γb
zbxb = -Γb

ybzb - 4.8 2.0

Triplet dimer formation in honeycomb Li2IrO3 [5]

Employing ab initio wave-function quantum chemistry methods, we have estimated the

signs and strengths of the nearest-neighbor (NN) exchange coupling parameters,

namel y, the Heisenberg J and Kitaev K couplings, for honeycomb iridate Li2IrO3 (Li213).

The experimental data [6] indicate C2h point-group symmetry for one set of NN IrO6

octahedr a, denoted as B1 in Fig. 4(a), and slight distortions of the Ir2O2 plaquettes that

lower the symmetry to Ci for the other type of adjacent octahedra, labeled B2 and B3.

The effective parameters were obtained as in Table 1. We have found that both J and K

are ferromagnetic (FM) for the B1 links, in contrast to Na2IrO3 (Na213), where J is

antiferromagneti c for all pairs of Ir NN’s [7]. Insights into this difference between the

Li and Na iridates are provided by the curves plotted in Fig. 5, displaying the depend-

ence of the NN J on the amount of trigonal distortion for simplified structural models

of both Li213 and Na213. The trigonal compression of the O octahedra translates into

Ir-O-Ir bond angles larger than 90°. Interestingly, we can see that for 90° bond angle

{ the case for which most of the superexchange models are constructed – both J and K

are very small, ≤ 1 meV.

Fig. 4: (a) Honeycomb layer in Li2IrO3. The two distinct sets of NN links [6] are labeled as B1
(along the crystallographic b axis) and B2/B3. The large FM interaction J = -19.2 meV on B1 bonds
stabilizes rigid T = 1 triplets that frame an effective triangular lattice. (b) Representative exchange
couplings for B1 (J,K ), B2/B3 (J’,K’), second neighbor (J2) and third neighbor (J3) paths on the
original hexagonal grid are shown. Jδ (δ ∈ {a, b, a – 2b}) are isotropic exchange interactions on the
effective triangular net.
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Having established the dominant NN couplings we now turn to the magnetic phase

diagra m of Li213 including the effect of second and third neighborHeisenberg interac-

tions J2 and J3. The latter are known to be sizable and to significantly influence certain

properties. However, since correlated quantum chemistry calculations for these longer-

range interaction terms are computationally much too demanding, we have investi -

gated their effect by computations for extended effective Hamiltonians that use the ab

initio NN magnetic interactions listed in Table 1 and adjustable isotropic J2, J3 ex-

change couplings. With strong FM exchange on the B1 bonds, a natural description of

the system consists in replacing all B1 pairs of Ir 1/2 pseudospins by rigid triplet degrees

of freedom. This mapping leads to an effective model of spin T = 1 entities on a trian -

gular lattice [see Fig. 4(b)]. Since T = 1, the classical limit is expected to yield a rather

accurate overall description of the phase diagram. As shown in Fig. 6(a), there exist five

different regions for | J2,3| ≤ 6 meV, three with commensurate (FM, diagonal zigzag and

stripy) and two with incommensurate (IC) Q (we call them ICx and ICy, with Q = (q; 0)

and (0; q), respectively).

To establish the effect of quantum fluctuations and further test the triplet-dimer picture,

we have additionally carried out exact diagonalization calculations on 24-site clusters

for the original honeycomb spin-1/2 model including the effect of J2 and J3. The result-

ing phase diagram is given in Fig. 6(b). For each phase, the real-space spin configura-

tion and the reciprocal-space Bragg peak positions are shown. In the absence of J2 and

J3, the system is in a spin-liquid phase characterized by a structureless static spin

structure factor S(Q) that is adiabatically connected to the Kitaev liquid phase for -K �J.

By switching on J2 and J3, we recover most of the classical phases of the effective

Fig. 6: Phase diagram of Li213 in the J2-J3 plane with the NN couplings listed in Table 1, along
with schematic spin configurations and Bragg peak positions (red circles) for each phase. 
(a) Classica l phase diagram of the effective spin T = 1 model on the triangular lattice. The actu-
al ground-state configurations in the incommensurate regions ICx and ICy can be much richer that
the standard coplanar helix states owing to anisotropy. (b) Quantum mechanical phase diagram
for the original spin-1/2 model.

Fig. 5: Variation of the Heisenberg and Kitaev exchange couplings with the Ir-O-Ir angle in
idealize d honeycomb structural models. Results of spin-orbit MRCI calculations are shown, for NN
Ir-Ir links in both Li213 (continuous lines) and Na213 (dashed). For each system, the NN Ir-Ir
distance s are set to the average value in the experimental crystal structure [6] and the Ir-O bond
lengths are all the same. Consequently, J = J’ and K = K’. The variation of the Ir-O-Ir angles is
the result of gradual trigonal compression. Note that � J � , �K � � 1 meV at 90°. Inset: dependence
of the NN J in Li213 when the bridging O’s are gradually shifted in opposite senses parallel to the
Ir-Ir axis.
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spin-1 model, including the ICx phase, albeit with a smaller stability region due to

finite-size effects. We have also found an AF Néel state region, which is now shifted to

larger J3’s as compared to Na213 [7], due to the large negative J on B1 bonds. Except for

the Néel and the spin-liquid phase, all other phases feature rigid triplets on the B1 bonds.

This means that the effective triplet picture is quite robust.

Our result for rigid triplet degrees of freedom finds support in recent fits of the mag -

netic susceptibility data, which yield effective moments of 2.22 μB for Li213 [8], much

larger than the value of 1.74 μB expected for an isotropic ½ spin system. Turning final-

ly to the nature of the actual magnetic ground state of Li213, we first note that the

longer-range couplings J2 and J3 are expected to be both AF and to feature values not

larger than 5-6 meV [9] in honeycomb iridates, which suggests that Li213 orders either

with a diagonal-zigzag or ICx pattern. Recent magnetic susceptibility and specific heat

measurements show indeed that the ground state is very different from zigzag in Li213

[10] while inelastic neutron scattering data [11] indicate clear signatures of incommen-

surate Bragg peaks. These experimental findings may be consistent with the ICx spin

configuration.
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Selective synthesis of endohedral metallofullerenes 
with methane 

K. Junghans, M. Rosenkranz, Q. Deng, A. L. Svitova, C. Schlesier, 

N. A. Samoylova, C.-H. Chen, A. A. Popov

Abstract: Arc-discharge synthesis of endohedral metallofullerenes is accompanied by

formation of larger amounts of undesired compounds, such as empty fullerenes,

which dramatically complicate the separation of target metallofullerenes. Development

of the condition s for selective synthesis are highly demanded. We describe how the use

of methane as a reactive gas dramatically increases the selectivity in the synthesis of

the various types of clusterfullerenes.

Selective synthesis of titanium-carbide clusterfullerenes M2TiC@C80

with lanthanides

Encapsulation of metal ions and clusters inside the carbon cage stabilizes the endohe-

dral species and opens the way to materials with unusual electronic and magnetic prop-

erties [1]. However, the moderate yield of the arc-discharge synthesis and complicated

multi-step chromatographic separation required to obtained endohedral metallo-

fullerenes (EMFs) in pure molecular form remain serious obstacles on the way to the

broader application of EMFs. In a conventional EMFs synthesis, empty fullerenes are

formed with much higher relative yield and usually comprise more than 95% of the

fullerenes formed. It is therefore desirable to develop more selective approaches for the

synthesis of EMFs. The first selective method for the synthesis of EMFs was developed

in IFW Dresden for nitride clusterfullerenes with composition M3N@C2n (M = Sc, Y, lan-

thanides; 2n = 68 – 96) [2]. Addition of NH3 gas to the arc-discharge reactor atmosphere

dramatically reduced the yield of empty fullerenes, but did not affect formation of nitride

clusterfullerenes, which could be then obtained with high degree of selectivity. Similar

effect could be achieved when solid nitrogen-containing organic molecules were used

instead of NH3 gas. Although very efficient for the synthesis of nitride clusterfullerenes,

this method is not suitable when other types of clusterfullerenes (with endohedral car-

bon, sulfur etc.) is targeted in the synthesis. In developing synthetic routes for EMFs dur-

ing the last years, we have found that methane CH4 is an efficient selectivity booster for

several types of clusterfullerenes, which will be reviewed in this Highlight.

Recently, in an attempt to obtain Ti-based nitride clusterfullerenes with Lu using NH3 as

a reactive gas or melamine as a solid organic nitrogen source, we have discovered a new

type of clusterfullerene, Lu2TiC@C80, which has endohedral μ3-carbide ion and a dou-

ble Ti=C bond [3]. The molecule is an isostructural analogue of the Lu2ScN@C80, in which

the Sc–N fragment is replaced by the isoelectronic Ti = C fragment. In the Lu/Ti/NH3 or

Lu/Ti/melamine systems, Lu2TiC@C80 is only a minor by-product, whereas the main EMF

products are Lu3N@C2n nitride clusterfullerenes. However, the use of methane instead

of NH3 showed that in the Lu/Ti/CH4 system Lu2TiC@C80 is formed as the main fullerene

product. The possibility to use this approach for selective synthesize of Ti-carbide clus-

terfullerenes was then verified for the whole lanthanide row (Y, Ce, Nd, Gd, Dy, Er, and

Lu) [4]. Figure 1 shows that under optimized conditions, Ti-carbide clusterfullerenes are

the most abundant EMF products for Lu, Dy, Er, Y, and Gd. M2TiC@C80-I (Roman number

denotes the isomer) is the major or the only component of the fraction eluting near 36

min (highlighted in Fig. 1a). Thus, pure M2TiC@C80-I molecules were obtained from the

EMF extract in a single HPLC separation step (Fig. 1b). The ionic radius of the lanthanide

ion (R 3+) plays a crucial role in the absolute yield of EMFs. Lu (R3+ = 0.86 Å), Er (0.90 Å),

and Dy (0.91 Å) afford similar amounts of M2TiC@C80-I per synthesis, the yields of

Gd2TiC@C80-I (0.94 Å) and Nd2TiC@C80-I (0.98 Å) are roughly 6 and 20 times lower than

that of Dy2TiC@C80-I, respectively, whereas Ce2TiC@C80 (1.01 Å) is not produced at all.
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The role of CH4 in this type of synthesis is similar to that of NH3 [2] in the synthesis of

nitride clusterfullerenes: reactive gas increases selectivity of the process by suppress-

ing the formation of empty fullerenes and making the EMFs with desired central atom(s)

the main products. Increase of the selectivity of the synthesis by CH4 reactive gas facil-

itated detection of other M-Ti carbide clusterfullerenes, which was not possible in the

first report on Lu2TiC@C80-I [3]. Mass-spectrometry studies proved formation of

M2TiC@C2n with larger cages (C82, C84). More importantly, we identified a new type of

M-Ti-carbide clusterfullerene with one more carbon atom in the structure, M2TiC2@C80

(Fig. 1d). Isolation of Dy2TiC@C80 and Dy2TiC2@C80 allows us to study how the carbide

cluster composition affect magnetic properties. Although both molecules are found to

be single molecule magnets, the Dy2TiC2@C80 exhibits a much narrower hysteresis

compared to Dy2TiC@C80 showing that a substitution of a single carbide ion by acetylide

unit in the endohedral cluster has a deteriorating effect on the SMM properties.

The role of methane in the synthesis of 
mixed-metal Sc-Ti clusterfullerenes

As Sc usually gives higher yields of EMFs in comparison to lanthanides, a series of arc-

discharge syntheses with Sc, Ti, and CH4 (Fig. 2) was performed to obtain a complete

overview on the influence of individual metals and methane on the synthesis [5]. The

results are summarized in Fig. 3. When methane was used as a reactive gas in the arc-

discharge synthesis without metals, no empty cage fullerenes are formed. In the

Sc/CH4 system, the main fullerene products are carbide clusterfullerenes, including

Sc4C2@C80 (the most abundant EMF), Sc3C2@C80, isomers of Sc2C2@C82 and family

Sc2C2n (2n = 74, 76, 82, 86, 90, etc.), as well as Sc3CH@C80. Besides, we have also

detecte d formation of exotic carbides clusterfullerenes with odd number of carbon

atoms and tetrahedral Sc4 cluster, Sc4C@C80 and Sc4C3@C80 [6].

Surprisingly, completely different behavior is observed in the Ti/CH4 system. Instead of

producing Ti-carbide EMFs, we found that Ti has a suppressing influence of CH4 during

the synthesis. As a result, the Ti/CH4 system produced only empty cage fullerenes, but

with a considerably different size and isomeric distribution [5]. Formation of Ti-EMFs in

Fig. 1: (a) HPLC chromatograms of raw extracts obtained in metal/Ti/CH4 arc-discharge syn -
theses; filled peaks highlight M2TiC@C80, whereas triangles denote the fractions containing
M2TiC2@C80. (b) positive ion MALDI mass spectra of isolated M2TiC@C80 compounds, insets
show isotopic distributions. (c) molecular structure of M2TiC@C80; (d) molecular structure of
M2TiC2@C80. In (c) and (d), lanthanides atoms are green, Ti is cyan, endohedral carbons are grey.

Fig. 2: Schematic description of the EMF synthesis in
the Sc/Ti/CH4 system: metal atoms are packed into
graphite rods and evaporated in the arc-discharge in
the He atmosphere with addition of methane. From
the cover page of Chem. Eur. J. Ref. [5].
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the Ti/CH4 system could not be detected even by mass spectrometry. The mixed-metal

Sc-Ti/CH4 system methane efficiently suppresses empty cage fullerene formation. One

of the major differences between the Sc/CH4 and Sc-Ti/CH4 systems is the decrease in

yield of Sc4C2@C80 in the presence of Ti. Sc4C2@C80 is the main EMF formed in the Sc/CH4

synthesis, but it is a minor component in the Sc-Ti/CH4 system. Another major difference

involves the formation of a series of mixed-metal Sc2TiCx clusterfullerenes with both even

and odd numbers of carbon atoms. The most abundant EMF product in the Sc-Ti/CH4 sys-

tem is Sc2TiC@C80 (two isomers with Ih and D5h cage symmetry) followed by Sc2TiC2@C80

(also two isomers) and small amounts of Sc2TiC@C68 and Sc2TiC@C78.

Elucidation of the molecular structure of two isomers of Sc2TiC81 and Sc2TiC82 was accom-

plished by 13C NMR spectroscopy. Sc2TiC81-I has a characteristic two-line spectrum,

which unambiguously points to the freely rotating Sc2TiC cluster encapsulated within the

Ih(7)-C80 cage. A similar spectrum with slightly different chemical shifts was observed

for Sc2TiC82, which suggests that the compound can be formulated as Sc2TiC2@Ih(7)-C80.

The 13C NMR spectrum of Sc2TiC81-II has six lines, characteristic of the D5h(6)-C80 cage,

which indicates that the compound is Sc2TiC@D5h(6)-C80. Crystals suitable for X-ray

diffractio n were grown by cocrystallization of Sc2TiC@Ih(7)-C80 with Ni(OEP); OEP is the

dianion of octaethylporphyrin. The crystals of Sc2TiC@Ih(7)-C80•Ni(OEP)•2(C7H8) are

isostructural to crystals of Lu2TiC@Ih(7)-C80•Ni(OEP)•2(C7H8) [3]. The asymmetric

unit contains one endohedral fullerene, one porphyrin, and two molecules of toluene.

The endohedral fullerene consists of a nearly planar Sc2TiC unit inside an Ih-C80 cage, with

the central C81 atom adopting a μ3 configuration (Fig. 4).

Selective 13C enrichment of the central carbon atom in Sc3CH@C80

Optimized conditions of the EMF synthesis with methane allowed the synthesis of

Sc3CH@C80 in amounts sufficient for its detailed structural and spectroscopic char -

acterization [7]. Furthermore, Sc3CH@C80 offers a unique possibility to study the role

of methane in the carbide clusterfullerene formation using 13C-rich reagents. The

isotopi c distribution of the central carbon atom can be determined by 1H NMR from

the relative intensity of the 13C satellites, whereas the net isotopic distribution in the

whole molecule (obviously dominated by that of the carbon cage) can be deduced

from the mass-spectra. To clarify how methane affects the EMF formation, we synthesized

Fig. 3: Overview of the EMF syntheses in the Sc/Ti/CH4 system and resulting fullerenes (the
amount of graphite and helium gas is constant for all syntheses). Initial conditions (metals and re-
active gas) are printed in red, main fullerene products in black, minor fullerene products in blue.

Fig. 4: View for the structure of 
Sc2TiC@Ih(7)-C80 Ni(OEP) toluene with hydrogen
and solvent atoms omitted for clarity; only the 
predominant Sc and Ti positions (occupancy 0.87) 
are shown. Displacement parameters are shown at
the 50% probability level. Selected bond lengths:
Ti1–C81, 1.917(4) Å; Sc1–C81, 2.102(4) Å;
Sc2–C81, 2.104(4) Å.
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13C-enriched Sc3CH@C80 by applying either (i) 13CH4 or (ii) 13C powder (mixed with

graphite powder with natural 13C abundance). NMR and mass-spectrometry showed

that the use 13C powder leads to the equal 13C distribution in the carbon cage and the

centra l carbon atom (Fig. 5). However, the use of 13CH4 in the synthesis of Sc3CH@C80

results in selective enrichment of the central carbon atom with 13C. This result proves that

CH4 is not just a source of hydrogen, but plays an active role during the clusterfullerene

formation.

Our recent studies showed that carbide clusterfullerenes are not the only EMFs whose

synthesi s becomes more selective in the presence of CH4. Sulfide clusterfullerenes can

also benefit from the use of methane as a reactive gas. The use of Dy2S3 as a simulta-

neous source of metal and sulfur and addition of CH4 to the reactor atmosphere allowed

us to synthesize Dy2S@C2n EMFs with high degree of selectivity. Thus, the systematic

study of the role of methane as a reactive gas in the synthesis of EMFs showed that is

dramaticall y increases the selectivity of the synthesis.
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Fig. 5: (a) Molecular structure of Sc3CH@C80; (a) Mass-spectra of Sc3CH@C80 samples with
differen t 13C content obtained in CH4/13C, 13CH4/C, and CH4/C syntheses; (b) 1H NMR spec-
tra for the same samples, normalized to the intensity of the main singlet; satellites at 11.70 and
11.82 ppm are due 1H-13C coupling, and their intensity is proportional to the 13C content for the
central carbon atom.
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Research Area 4

Surface Acoustic Waves: concepts, materials and applications

S. Biryukov, E. Brachmann, A. Darinskii1, T. Gemming, S. Menzel, G. Rane, W. Ren, 

H. Schmidt, M. Seifert, A. Sotnikov, M. Spindler, M. Weihnacht2, R. Weser, A. Winkler

Abstract: In order to intensify application-oriented research on surface acoustic waves

(SAW) the interdisciplinary expertise was extended concerning acoustic wave exci -

tation and propagation effects, acoustofluidic interaction phenomena, dynamic behav-

ior of polar dielectrics, advanced substrate and electrode materials and, finally, con-

cepts for new applications. Important topics are SAW-based actuators, e.g. deployed

for microfluidic lab-on-chip systems or efficient SAW-driven atomizers, as well as

SAW-based wireless sensors for harsh environments. Here, the choice of appropriate

material systems is the key to provide reliable operation under extreme conditions like

very low or high temperatures. Besides precise characterization of promising piezoelec-

tric crystals in a wide temperature range, extensive investigations have been devot-

ed to novel electrode metallization systems to gain a comprehensive understanding for

increasing temperature and RF power capability. In the following three special topics

out of the research spectrum spanning from fundamentals to applications are

introduce d.

Surface acoustic wave momentum based rotation effect

Surface acoustic waves (SAW) have a momentum that can be deployed for interesting

application s like novel rotary actuators. In this sense the idea of a new kind of stator-

free motor was developed and the underlying rotation effect has been demonstrated

experimentall y [1]. The basic setup for this comprises a cylindrical tube made of piezo-

electric Pb(Zr,Ti)O3 ceramics which is radially poled, i.e. perpendicular to the surface

of the tube. To excite surface acoustic waves a periodic interdigital transducer was cre-

ated on the external surface by means of a silver thin film. This transducer is a unidirec-

tional transducer (UDT) designed for SAW excitation mainly into one direction. The UDT

contains 10 periods, each of a length of 13.8 mm, covering the whole circumference of

the tube. Transducer aperture is 20 mm and tube thickness 2 mm. For this dimensions

the UDT provides SAW excitation with a maximum acoustic unidirectivity at a frequency

of 273 kHz.

In order to realize a rotation effect, the tube was suspended to a cantilever by means of

a thin thread (Fig. 1). Two thin wires connected the UDT with the signal supply realized

by a signal generator cascaded with a power amplifier. Due to the elasticity of the

thread and the wires the whole mechanical structure acted as a torsion pendulum. All

movements of this pendulum have been visualized and monitored by a laser beam

reflecte d from the mirror fixed to the top lid of the structure.

Fig. 1: Schematic experimental setup: UDT 
electrode pattern depicted in white (left).
Clockwise (cw) and counterclockwise (ccw)
propagating SAW of different amplitudes 
depicted by arrows of different thicknesses
(right); A: UDT aperture; F: resultant rotation
force; Ri and Re: internal and external tube
radius, resp.
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Once the electrical signal was switched on, inside the UDT surface waves were excited with

amplitudes proportional to the signal voltage. Due to the acoustic unidirectivity of the

transducer there were two SAWs propagating into opposite directions along the surface

round the tube with different amplitudes. The tube reacted on this with an oscillatory

rotation, i.e. it rotated counterclockwise from the initial point by a certain rotation an-

gle, then stopped and moved back to the initial point and so on. Cause of this rotation

is the distributed rotation force F acting on the tube around the whole circumference.

This force arises as a recoil of the excitation of two counter-propagating SAW with dif-

ferent amplitudes and momentums [1]. The value of this force as well as the maximum

rotational angle depend on the signal level fed to the unidirectional transducer. From

the experimental data a square-law dependence of the arising force F versus signal

voltag e U could be deduced which is also valid for the tube driven in the opposite direc-

tion after arranging the tube upside down (Fig. 2). According to this, the rotation effect

is not proportional to the amplitude difference of the counter-propagating waves, but

rather proportional to the difference of their square moduli.

Simulation of acoustic pressure produced by SAW in microfluidic channels

When propagating through a microchannel filled with fluids, the surface acoustic wave

can pump the fluids or mix them or can manipulate fluid-borne microparticles. These rel-

atively slowly time varying, or even time-independent, processes occur due to the non-

linearity being inherent in the fluid dynamics. The initial step in estimating microfluidic

phenomena is to compute the high-frequency (HF) acoustic pressure changing in the flu-

id with the SAW frequency. The correctness of determining the HF pressure via a linear

boundary-value problem underlies the correctness of subsequent computations. Using

the finite element method the HF pressure inside a microchannel was determined fol-

lowing two different approaches and the results were compared [2]. The first approach

was solving the full scattering problem for the SAW propagating on the surface of a piezo-

electric substrate and incident on the microchannel fabricated inside a polymer con-

tainer. The HF pressure was computed self-consistently in parallel with the acoustic field

in all parts of the structure. The computational domain was truncated by the so-called

perfectly matched layer. An alternative way is to solve a simplified boundary-value. One

of the widespread approximations is to compute only the acoustic field in the channel.

The SAW displacement on the channel – substrate interface is fixed and the impedance

boundary condition on the other three borders of the channel is used. This simplified

model assumes that the fixed SAW displacement is as if the SAW propagated along the

interface between two half-spaces occupied by the fluid and the substrate material. The

example studied in our work showed that the difference between the results can be

significan t, ranging from several ten percent up to several times at different points in-

side the channel (Fig. 3). Therefore, believing that solving the full scattering problem

yields more accurate results, it is reasonable to recommend its implementation despite

an attractive simplicity of the approximate boundary-value problem.

High temperature stable W-Mo thin films for interdigital transducers

In order to study their phase formation behavior and electrical resistivity as a function

of deposition parameters [3-5] as well as to develop a dedicated structuring process [6],

Tungsten and Molybdenum layers and multilayers thereof have been investigated. The

films were deposited by magnetron sputtering on thermally oxidized (100)Si as a

referenc e substrate. Deposition at high substrate temperature (e.g. 400°C) leads to the

formation of the desired α-W phase that has a relatively low electrical resistivity (bulk

5.49μΩcm) compared with the β-W (bulk 150-350μΩcm). Within all the investigated

films the bilayer as well as multilayers of W and Mo (upper layer) have the most sig -

nificant improved electrical performance compared with the pure W or pure Mo films.

Especiall y, the bilayer stack consisting of 95nm Mo and 5nm W shows a minimum in

Fig. 2: Resultant rotation force F as a function of
driving ac voltage amplitude U. The case related
to ccw force F is shown in Fig. 1. The cw force
corresponds to analog measurements for the tube
upside down.

Fig. 3: Calculated acoustic pressure Re(p) at vertical
channel edges vs. distance z from the substrate. The
channel height is 200 μm. Curves 1A, 1B: left-hand
edge, curves 2A, 2B: right-hand edge. Curves 1A,
2A: full scattering problem, curves 1B, 2B: "approxi-
mate" boundary-value problem (preset SAW 
displacements and impedance boundary condition).
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resistivit y due to an “epitaxial-like” growth that results in a large grain microstructure

with a low grain boundary volume (Fig. 4, 5). Here, the size effect and thus an increase

of the resistivity by down-scaling the individual layer thickness is not observed al-

though the 5 nm thickness of the W layer is below the EMFP of W (bulk 19.1 nm, from Choi,

D. et al., Physical Review B, 2012. 86 (4)). Several effects were proved to attribute to

that: i) The W and Mo layers grow epitaxially at coherent interfaces forming a columnar

"super microstructure" when the W layer thickness is reduced to 5 nm. In this case the

W layer acts as a template for the Mo layer growth on it avoiding the formation of tiny

grains like observed for pure Mo films. ii) Because of a minimal re-sputtering effect the

surface roughness does not significantly increase. The higher resistivity for other bi-

layer films when W-layer thickness tw > 5nm partly relates to an increased re-sputtering

effect. iii) Damage by the re-sputtering on W is much lower while depositing the Mo

layer on top. Here, the Mo layer acts as a protection layer to retain the grain structure

of the subjacent W layer. iv) Attributed to the higher amount of defects created by the

re-sputtering process, W-rich multilayer stacks have in general a higher resistivity. v) A

higher volume fraction of interfaces (including grain boundary volume) resulted in

higher residual stress in polycrystalline films. Thus, to become thermodynamically

favorabl e, a higher amount of misfit dislocations will be introduced to release the

interna l stress which further leads to an increase of resistivity.

[1] S. Biryukov et al., Appl. Phys. Lett. 108 (2016) 134103.
[2] A.N. Darinskii et al., Lab Chip 16 (2016) 2701.
[3] G.K. Rane et al., Mat. Sci. Eng. B 202 (2015) 31.
[4] G.K. Rane et al., Materials 9 (2016) 2, 101/1.
[5] W. Ren, Thesis, IFW Dresden/TU Dresden (2016).
[6] M. Spindler et al., Thin Solid Films 612 (2016) 322.

Funding: BMBF InnoProfile-Transfer (03IPT619A MiMi; 03IPT610Y HoBelAB)
Deutsche Forschungsgemeinschaft (SCHM 2365/12-1, SO 1085/2-1, WI 4140/2-1)
Creavac, SAW Components Dresden, Vectron International

Cooperation: TU Dresden; TU Clausthal, Goslar; Ioffe Physical Technical Institute RAS,
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Fig. 5: FIB cross-section views of a series of multilay-
ers deposited onto 1μm SiO2/(100)Si substrate with
5nm W layer each (Foot numbers next to chemical
symbols denote the individual layer thickness, while
foot number outside the brackets denote the number
of bilayers within the stack. The total film thickness
was kept constant at 100nm).

Fig. 4: Electrical resistivity of bilayers (left) and multilayers (right) of W-Mo deposited at room
temperatur e or 400°C onto 1μm SiO2/(100)Si substrate.
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Superconducting magnetic bearings in 
high-speed ring spinning machines

A. Abdkader 1, A. Berger, D. Berger, C. Cherif 1, T. Espenhahn, G. Fuchs, 

M. Hossain1, R. Hühne, K. Nielsch, L. Schultz, M. Sparing

Abstract: The unique properties of superconducting magnetic bearings (SMB) - passive

load bearing and contact-less motion - have been intensely studied in recent years e.g.

for motors, flywheel energy storage systems and other high-speed rotating machines.

In the framework of a joint DFG project with the Institute of Textile Machinery and High

Performance Material Technology (ITM) at the TU Dresden we investigated the replace-

ment of the conventional ring traveler twist element in ring spinning machines with

a superconducting magnetic bearing. The goal of this project is to reduce the limiting

process factors in the industrial production of short staple yarn by ring spinning, which

are mainly frictional wear and heat in the twist element, with a new concept of the

twist element based on SMB.

Development of a superconducting magnetic bearing twist element

Superconducting magnetic bearings (SMB) enable the levitation of a permanent mag-

net (PM) in an inherently stable position over a cooled superconductor (SC). No addition-

al positioning system is necessary, but a material depending cryogenic temperature of

the superconductor has to be guaranteed for their operation. These passive bearings are

being investigated for applications of stationary levitation and contact free motion in

all space dimensions. Linear superconducting magnetic bearings are used in the levitat-

ing transport systems like the Supratrans2 test facility [1]. In energy storage applica-

tions SMBs could prove advantage compared to the conventional system [2]. 

In our project, a rotating superconducting magnetic bearing is incorporated in a ring

spinning machine as a replacement of the traditional, friction afflicted ring-traveler twist

element [3, 4]. In general, the ring-spinning technology is the most widely used spin-

ning method for short staple yarn production due to the high quality of the yarn and the

flexibility of the process. The continuous ring spinning process converts a loose fiber rov-

ing to yarn by drawing, twisting, and winding up on a bobbin. The ring traveler system

thereby induces twist in the processed material by guiding it around the spindle. In the

twist element the yarn is guided through a c-shaped clip, the traveler, which is dragged

along a ring surrounding the spindle. The traveler is slightly slower than the spindle,

enablin g the winding of the yarn onto the bobbin. The rotational speed and hence the

productivity of the process is limited by the friction heat between ring and traveler. This

heat damages the twist element which causes wear and also can lead to melting of

syntheti c yarns at high rotational speed. Therefore, the maximum rotational speed

achievable in industrial yarn production with a conventional twist element is 25.000 rpm

or less, depending on the raw material of the fibers. 

To improve the behavior, a SMB twist element was developed und incorporated in a ring

spinning tester as shown in Fig. 1. The schematic components of such a bearing are shown

in Fig. 2. It consists of a fixed superconducting YBa2Cu3O7-x (YBCO) ring prepared from

bulk segments, which is cooled down to 77 K. Levitating above is a rotating permanent

magnetic ring with a fixed eyelet as yarn guide. The YBCO ring is cooled by a continuous

flow cryostat using liquid nitrogen (LN2) [5]. The special design cools down the super-

conductor by solid state conduction and hence allows the free positioning of the YBCO

ring in the vacuum chamber. This is important to assure a small initial cooling distance

(field cooling height) between PM ring and SC ring of 5 mm and hence good bearing prop-

erties like bearing force and stiffness. The SMB twist element significantly reduces the

productivity limiting friction heat in the spinning process of short staple yarn and thus

the process speed might be increased from commonly 25.000 rpm up to 50.000 rpm.

Fig. 1: SMB twist element in the ring spinning tester
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Polyeste r yarn spun with the SBM twist element has similar properties to conventional

yarn. Furthermore, the yarn surface of the SMB-yarn is more even and less hairy due to

the reduced friction and heat in the SMB twist element.

Characterization of the SMB

During the project, we started to investigate the static and dynamic behavior of the

SMB both experimentally and theoretically, e.g. forces, displacements and precession,

with respect to the ring spinning process [6, 7]. The SMB as twist element in the ring

spinnin g machine is mathematically described as a spring-mass-damper system, which

is excited by an external force, i.e. the yarn force (Fig. 2). The yarn force acts at the

eccentri c contact point between yarn and magnet, i.e. the eyelet at the inner bore of the

steel shell around the PM ring. The yarn force FY (ω)(components FG
z, FY

ϕ
, FY

r ) leads to a

displacement of the ring in radial and axial direction and to an additional tilt (angle α)

with respect to the position of the YBCO ring. They are counteracted by the restoring

forces of the bearing FB
z in axial and FB

r in radial direction. 

The bearing stiffness ki = dFi /dxi (index i being the displacement direction) causes forced

oscillations in radial and axial directions. There is no restoring force in circumferential

direction for this round SMB geometry, thus FY
ϕ

acts as driving force for the free rotation

of the PM ring. The rotation of the PM ring is superimposed by the above mentioned

forced oscillations having an amplitude A(ω) and a decay constant δ. While the station-

ary stiffness ki of SMBs is easily accessible by force vs. displacement measurements, the

determination of the decay constant and the dynamic stiffness is more complex, which

makes a correct prediction of maximum amplitude during operation difficult. Therefore,

a measurement setup was developed to determine the damped oscillations of the

bearing. As a result, the decay constant δ of the SMB was found to depend strongly not

only on the field cooling distance but also on the initial radial displacement Δr. Since

damping in SMB is caused by the depinning of flux lines during oscillation, the linear

increas e of δ with Δr can be attributed to an increase of the average number of pinning

centers within the displacement distance. 

The dependence of the decay constant δ on the initial displacement has consequences

for the rotation frequency dependent amplitude of the oscillation A(ω) during the

rotatio n of the PM ring. Fig. 3 shows the calculated amplitude of the oscillations in lat-

eral, tilt and axial direction during rotation [6]. The obtained damped resonance frequen-

cy, where the amplitude of the oscillation A(ω) is maximal, remains below 1.500 rpm for

all modes. These small rotational speeds are not relevant for the actual spinning process,

Fig. 2: Configuration of the SMB twist element
with acting forces

Fig. 3: Oscillation amplitude A(ω) of the PM ring
for different decay constants δ [6]
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which takes place between 5.000 and 25.0000 rpm. However, during the acceleration and

deceleration of the process, these frequencies occur and the respective oscillation

amplitude s have to be considered for the setup and operation of the SMB system in the

ring-spinning machine.

To measure the real yarn force induced tilt and displacement of the PM ring during spin-

ning, an array of optical positioning sensors is used, developed in cooperation with the

IFW research technology department (Fig. 4). Additionally, the tilt of the PM due to the

yarn forces in combination with high rotational speed leads to a hysteretic heat input

in the superconductor. At high rotational speed, this hysteresis loss becomes an impor-

tant factor on the bearing reliability. The resulting heat was estimated to be 13.4 W at

25.000 rpm for the maximum tilt in the resonance case during rotation [5]. This is sig-

nificantly higher than the heat input due to convection, radiation and conduction,

which is in the range of ∼ 2.3 W. However, the real amount of displacement and hysteretic

loss, which is important for the cooling efforts, has to be measured. Therefore, a

calorimetri c test facility was set up recently to measure the hysteretic losses on the SMB

in dependence of the tilt angle and the rotation speed [8].

Future developments 

The current SMB system was developed and tested for a maximum speed of 25.000 rpm.

A new cryostat will be built and tested in the second project period, which started re-

cently. The major aim of the new development is to operate the ring spinning process

with a speed of up to 50.000 rpm. To realize this velocity, a new cryostat will operate at

lower temperatures using a reduced pressure above the liquid nitrogen bath in order to

increase the levitation force and bearing stability compared to the current first ring

spinnin g tester. Additionally, the rotating permanent magnetic ring has to be reinforced

by a shrunk-on steel shell in order to withstand the large tangential tensile stresses

developin g at speeds of 50.000 rpm.

[1] L. Kühn et al., Elektrische Bahnen 110 (2012) 461.
[2] F .N. Werfel et al., Supercond. Sci. Technol. 25 (2012) 014007.
[3] M. Hossain et al., Textile Res. J. 84 (2014) 871. 
[4] M. Sparing et al., IEEE Trans. Appl. Supercond. 25 (2015) 3600504.
[5] A. Berger et al., IEEE Trans. Appl. Supercond. 26 (2016) 3601105.
[6] M. Sparing et al., IEEE Trans. Appl. Supercond. 26 (2016) 3600804.
[7] M. Hossain et al., Textile Res. J. (2016) in press 

(DOI: https://doi.org/10.1177/0040517516641363).
[8] A. Berger et al., Proc. ISMB15 (2016) in press.

Funding: Deutsche Forschungsgemeinschaft (SCHU1118/12-1)

Cooperation: 1 TU Dresden, Evico GmbH, TUDATEX

Fig. 4: Measurement setup for the characterization
of the dynamic SMB properties
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Entirely flexible on-site conditioned magnetic sensorics

D. Karnaushenko, N. Münzenrieder 1,2, D. D. Karnaushenko, 

M. Melzer, D. Makarov3, G. Tröster 1, O. G. Schmidt

Abstract: The establishment of shapeable magnetoelectronics was pioneered at the IFW

Dresden and demonstrated magnetic sensorics with unique mechanical properties. Up

to now, these developments were almost exclusively focused on individual magnetic

sensing elements, only. In order to expand this technology to a wider field of applica-

tions that require more complex shapeable magnetosensitive systems and allow for the

design of market ready prototypes, research efforts have been made to combine the

magnetoresisitve elements with signal conditioning circuitry on the same shapeable

platform. Hence, the first entirely flexible integrated magnetic field sensor system was

realized consisting of a magnetosensitive bridge, on-site conditioned using high-

performance IGZO-based readout electronics. The system outperforms commercial

fully integrated rigid magnetic sensors by at least one order of magnitude, whereas all

components remain fully functional when bend to a radius of 5 mm.

Flexible electronics [1] naturally conform to static or dynamic complex shaped surfaces

offering intimate yet durable contact with biological as well as synthetic tissue. The in-

herent feature of this new formulation of electronics of being soft and compliant enables

a plethora of new applications, especially in medicine and consumer electronics, with a

variety of flexible devices already available.

Up to now, the data acquired using entirely flexible and even imperceptible [2] sensorics,

are mostly transmitted using wires to external conventional electronics for post-process-

ing, e.g. signal amplification or multiplexing. This measurement scheme, however, pos-

sesses strong disadvantages in terms of the signal-to-noise ratio (SNR), applicability and

reliability and narrows the bandwidth of the device. The signals are amplified together

with the noise, which can be either picked up by the long wires or produced by the

electroni c circuit itself. To enhance the responsiveness and sensitivity of an acquisition

system, the output of a sensory system should be amplified directly at the sensor loca-

tion. This so called frontend signal conditioning is a standard approach in conventional

rigid microelectronics, but is not yet established for flexible electronics. 

In this work, we demonstrate a fully integrated yet entirely flexible magnetosensory

syste m  [3], which can be fabricated over large areas (Fig.  1). The complete device

(Fig. 2a,b) is integrated on a single 50 μm thick polyimide foil and consists of a differ-

ential giant magnetoresistive (GMR) sensing element arranged in a Wheatstone bridge

configuration (red frames and Fig. 2c), an NMOS operational amplifier with differential

high impedance input and single ended output (green frames), built from 16 Indium-

Galliu m-Zinc-Oxide (IGZO) bottom-gate inverted thin-film transistors (TFTs) [4] and a

high current output amplifier TFT (blue frames) operated as class A power amplifier with

an open drain output to provide maximum adaptability to different loads. The GMR bridge

consists of two reference non-magnetic Cu-based resistors and two magnetoresistive

element s (Fig.  2c) implemented by giant magnetoresistive Co/Cu multilayer stacks

couple d in the first antiferromagnetic maximum [5]. The saturation field of the GMR

element s is tuned to be ≈4 kOe to ensure linear response in a broad field range from

20 Oe to about 1.8 kOe (Fig. 2f) as required e.g. for proximity sensing. The differential

and power amplifier readout circuitry reveals a remarkable amplification of 48.6 dB and

a unity gain frequency of about 200 kHz. Furthermore, the analogue differential sig-

nalling promotes an efficient rejection of common mode noises leading to an extreme-

ly low noise floor of -124 dBm Hz-1. The GMR Wheatstone bridge, whose differential

outpu t is connected to the operational amplifier, allows processing of small signals in

the microvolts range and efficiently rejects common mode noise. 

Fig. 1: One specimen of the flexible high-
performance magnetosensory system on
50 μm polyimide foil.
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The presented work demonstrates for the first time, that IGZO semiconductor devices

enabl e the realization of entirely flexible low-noise electronics, suitable for sensor

readout circuits. IGZO-based electronics [4] has been chosen for its high-performance

and low power operation. In particular a carrier mobility beyond 10 cm2/Vs and extreme

bending radii down to the micrometer range [6] rendering IGZO an attractive alterna-

tive to organic semiconductor-based devices. The used IGZO TFTs also ensures a very high

input impedance of >10 GΩ. The on-site amplification of the bridge output within the

flexible sensor system results in a high responsiveness of 25 V V -1 kOe-1. This corresponds

to a 270 times enhancement of the signal amplitude, which is the highest gain of flex-

ible amplifiers reported so far. With these parameters, the mechanically flexible mag -

netosensory system outperforms even its rigid commercially available counterparts [3].

Operating at only 3 V supply, the open drain output enables the use of high and low im-

pedance loads, and can reach a full scale amplitude with an output current of up to 3 mA

(Fig. 2a) suggesting the possibility to directly drive external power demanding devices

such as a relay or light emitting diodes (LEDs). Besides its high current driving capabil-

ity, the device consumes less than 250 μW at 1.7 V and 450 μW at 3 V (internal with 1 MΩ

Fig. 2: The complete device (a,b) consists of an operational amplifier made of 16 IGZO based TFTs,
an output power amplifier TFT and GMR multilayer meander elements arranged in a Wheatstone
bridge configuration (c). (d) Transfer characteristics of the IGZO power transistor measured in the
linear (VDS = 0.1 V) and saturation (VDS = 5 V) regime while flat and bent to different radii.
(e) Bode plot of the operational amplifier (without power TFT) in planar and bent state and
applicatio n examples operating at frequencies within its bandwidth. (f) Response function vs.
applie d magnetic field of the magnetic sensor bridge (without readout circuitry) measured at
differen t bending radii. The insets show the sensory system mounted to the bending test stage
at two different deformation states.
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load), rendering the circuit the most power efficient entirely flexible fully integrated

sensor y system reported so far [3]. This remarkable energy efficiency potentially allows

the system to be powered using renewable green energy sources, e.g. flexible energy

harvester s and storage elements. 

The entire sensory system shows remarkable compliance versus severe bending defor-

mation. Upon flexure, the output power amplifier TFT remains fully operational down to

a bending radius of 3.5 mm and exhibits only small DC parameter changes (Fig. 2d). The

operational amplifier circuit is also tested under bending to a radius of 5 mm revealing

a voltage gain of 18.9 dB, a unity gain frequency of 508 kHz and unchanged common

mode rejection (Fig.  2e). The GMR characteristics of the sensor bridge, remain un-

changed even when the system is bent down to a radius of 1.5 mm (Fig. 2f). 

To assess the electrical performance of the flexible two-stage amplifier, the input of

the operational amplifier is subjected to a differential 3 Hz sinusoidal signal with a peak-

to-peak amplitude of 10 mV (Fig. 3). Here, the circuit input is biased to a DC offset of

1.5 V, in order to operate within the allowed common mode input range and to imitate

the output signal of the GMR bridge, whereas the high current TFT is biased to 15 μA us-

ing an external source. By monitoring the intermediate output signal of the operational

amplifier and the overall output of the readout electronics a output signal amplitude of

40 mV and 2.7 V is measured, respectively. 

Our high-performance flexible magnetosensory system represents a key step towards en-

tirely flexible electronics, capable of sensing and processing signals without the need

of rigid elements. The device bandwidth is appropriate to cover a broad range of sensor

applications and we envision that the integrated GMR bridge can be used to trigger

externa l devices or provide feedback signals paving the way towards the realization of

entirely flexible magnetic gadgets and switches, These are highly relevant in medicine

for applications where mechanical flexibility, light-weight and energy efficiency of the

electronic components are of major relevance, e.g. heart pacemaker, brain implants,

hearing aids, capsule endoscopes, mechanical prosthetics, health threat alarming

device s or automatic delivery systems. In this respect, thin flexible fully integrated

switches that are triggered by a small permanent magnet or an external magnetic field

could reduce size and power consumption of the final wearable devices or smart implants.

Furthermore, these components are needed for interactive consumer electronics in the

spirit of the Internet of Things (IoT) concept. Especially, devices operating at frequen-

cies bellow 100 kHz require low noise switches and sensory feedback (Fig. 2e).

The publication of this entirely flexible on-site conditioned magnetic sensorics system

also includes significant demonstrator experiments, such as flexible magnetic switch

or linear proximity sensor operation to highlight its versatile operation potential [3]. A

supporting video showing the signal sequence of the operational amplifier and the

entire system with simultaneously switching a commercial semiconductor LED by means

of an external permanent magnet is available via the provided QR-link. The entire setup

in this experiment is powered using 3 V external supply and consumes only 550  μW

includin g the LED.

The flexible monolithic integration of magnetic sensorics with TFT based electronics not

only bears the great potential for signal amplification, but also allows for multiplexing,

in order to operate and address large sensor arrays on a flexible sheet (e.g. in an active

matrix), or to combine a variety of functional components to complex smart systems

on a prototype level. As demonstrated for GMR sensors in the IFW Dresden [7], also the

IGZO based electronics exploited here, has been proven for imperceptible forms elec -

tronics [6], suggesting their combination on such a platform, as well. Both aspects are

subject of current efforts in this research topic. Although the TFT amplifying circuit in

this work was designed and fabricated at the ETH Zürich, we are currently establishing

IGZO fabrication capabilities in our venues, as well, to be able to extend this promising

route of innovation for the future challenges in the FlexMag development center.

Fig. 3: Intermediate response of the operational 
amplifier (blue) and overall output of the readout
electronics (red) on an externally applied differential
sinus input signal, that mimics the output of the 
sensor bridge. The data reveals a total open loop gain
of 48.6 dB, whereas the supply voltage was 3 V and
the oscilloscope (1MΩ) was used as a load element.
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and Data Bases (AIKED ‘16), Venice/ Italy, 29.-31.1.16 (2016).

182) H. Schmidt, Magnetooptical properties of metals, half-metals, and garnets, Institutsseminar, Friedrich-Schiller Universitaet Jena/ 

Germany, 8.1.16 (2016).

183) G. Schierning, Nanocrystalline silicon with tungsten silicide inclusion phases: Morphology and thermoelectric properties, E-MRS, 

SYMPOSIUM W, Materials and systems for micro-energy harvesting and storage, Lille/ France, 4.5.16 (2016).

184) G. Schierning, Nanocrystalline silicon for thermoelectricity, Thermoelectrics colloquium, HZB, Berlin/ Germany, 24.11.16 (2016).
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Issues of patents (issue decision date)

DE 10 2015 214 177 Drehbarer Batterieträger (01.02.2016 )
(11508 DE) Inventors: Markus Herklotz, Jonas Weiß, Eike Ahrens, Lars Giebeler      

DE 10 2011 007 898.3 Verfahren zur Herstellung von Halbzeugen auf Basis von intermetallischen Verbindungen (07.04.2016 )
(11102 DE) Inventors: Jens Freudenberger, Tom Marr        

DE 11 2011 101 243.8 Verfahren und Anordnung zur Manipulation von in einem magnetischen Medium gespeicherten 
(11002 DE) Domäneninformationen (22.04.2016 )

Inventor: Rudolf Schäfer         

CN 201180049051.8 Herstellungsverfahren für Seltenerdmagneten (04.05.2016 )
(11013 CN) Inventors: Noritsungu Sakuma, Hidefumi Kishimoto, Akira Kato, Tetsuya Shoji, Dominique Givord, 

Nora Dempsey, Thomas George Woodcock, Oliver Gutfleisch, Gino Hrkac, Thomas Schrefl

JP 2013-516808 Herstellungsverfahren für Seltenerdmagneten (13.05.2016 )
(11013 JP) Inventors: Noritsungu Sakuma, Hidefumi Kishimoto, Akira Kato, Tetsuya Shoji, Dominique Givord, 

Nora Dempsey, Thomas George Woodcock, Oliver Gutfleisch, Gino Hrkac, Thomas Schrefl

US 14/004,556 Magnetoelektronisches Bauelement und Verfahren zu seiner Herstellung (26.05.2016 )
(11103 US) Inventors: Denys Makarov, Oliver G. Schmidt        

EP 09797002.4 Beschichtetes magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (24.08.2016 )
(10832 DE) Inventors: Julia Lyubina, Oliver Gutfleisch, Miheala Buschbeck       

EP 09797002.4 Beschichtetes magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (24.08.2016 )
(10832 FR) Inventors: Julia Lyubina, Oliver Gutfleisch, Miheala Buschbeck       

EP 09797002.4 Beschichtetes magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (24.08.2016 )
(10832 GB) Inventors: Julia Lyubina, Oliver Gutfleisch, Miheala Buschbeck       

EP 09797002.4 Beschichtetes magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (24.08.2016 )
(10832 AT) Inventors: Julia Lyubina, Oliver Gutfleisch, Miheala Buschbeck       

EP 09797002.4 Beschichtetes magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (24.08.2016 )
(10832 CH/LI) Inventors: Julia Lyubina, Oliver Gutfleisch, Miheala Buschbeck       

EP 09797002.4 Beschichtetes magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung (24.08.2016 )
(10832 EP) Inventors: Julia Lyubina, Oliver Gutfleisch, Miheala Buschbeck       

EP 1381531 Magnetanordnung für die Aufhängung und Führung schwebender Fahrzeuge und Transporteinrichtungen 
(10217 EP) (07.10.2016 )

Inventors: Martina Falter, Peter Bartusch, Ludwig Schultz       

DE 10 2016 216 283.7 Probenkarussell (27.10.2016 )
(11602 DE) Inventors: Ulrich Stoeck, Jonas Weiß, Eike Ahrens, Lars Giebeler      

DE 10 2013 210 383.2 Akustisches Oberflächenwellenbauelement mit vorwiegend in Ausbreitungsrichtung polarisierten 
(11314 DE) Oberflächenwellen (07.11.2016 )

Inventors: Manfred Weihnacht, Hagen Schmidt, Alexander Darinskii       

DE 10 2015 200 643.3 Verfahren zur Herstellung von neuronale Zellen enthaltenden strangförmigen Kapseln und 
(11410 DE) strangförmige Kapseln (10.11.2016 )

Inventors: Andreas Winkler, Anne K. Meyer
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EP 11788419.7 Oberflächenstrukturierte metallische Gläser und Verfahren zur Herstellung (07.12.2016 )
(11018 EP) Inventors: Bujar Jerliu, Simon Pauly, Kumar Babu Sureddi, Sergio Scudino, Jürgen Eckert     

13/824,572 Herstellungsverfahren für Seltenerdmagneten (13.12.2016 )
(11013 US) Inventors: Noritsungu Sakuma, Hidefumi Kishimoto, Akira Kato, Tetsuya Shoji, Dominique Givord, 

Nora Dempsey, Thomas George Woodcock, Oliver Gutfleisch, Gino Hrkac, Thomas Schrefl

Priority patent applications (priority date)

11529 DE Asymmetric optical resonator and optical device comprising the asymmetric optical resonator 
(02.02.2016)
Inventors: Libo Ma, Oliver G. Schmidt        

11530 PCT Kondensator und Verfahren zur Herstellung dieses Kondensators (04.02.2016)
Inventors: Oliver G. Schmidt, Eric Pankenin, Shoichiro Suzuki       

11601 DE Akustoelektrischer Oszillator (24.03.2016)
Inventor: Günter Martin         

11512 DE Bauelemente auf flexiblen Substraten und Verfahren zu ihrer Herstellung (01.06.2016)
Inventors: Jens Ingolf Mönch, Denys Makarov, Oliver G. Schmidt

11618 DE Vorrichtung für die Mikrofluidik (25.07.2016)
Inventors: Andreas Winkler, Stefan Harazim        

11619 DE Akustisches Oberflächenwellenbauelement mit Drehung der Schwingungsebene (22.08.2016)
Inventors: Hagen Schmidt, Manfred Weihnacht, Alexander Darinskii, Robert Weser      

11602 DE Probenkarussell (30.08.2016)
Inventors: Ulrich Stoeck, Jonas Weiß, Eike Ahrens, Lars Giebeler      

11609 DE Elektrolytsystem zur Herstellung Thermoelektrischer Schichten und Strukturen (13.09.2016)
Inventors: Nicolás Pérez Rodríguesz, Heike Schlörb, Melanie Mohn, Tom Sieger      

11621 DE Akustoelektrischer Oszillator basierend auf an Oberflächen geführten akustischen Wellen (06.10.2016)
Inventor: Günter Martin

11612 DE Verfahren zur Herstellung mindestens eines dreidimensionalen Bauelementes zur uni-, bi-, tri- oder 
multidirektionalen Messung und/oder Generierung von Vektorfelder (13.10.2016)
Inventors: Daniil Karnaushenko, Dmitriy Karnaushenko, Oliver G. Schmidt       

11624 DE Thermomagnetischer Generator (18.11.2016)
Inventors: Kai Sellschopp, Sebastian Fähler, Anja Waske       

11622 DE Dreidimensionaler Tomograf (22.11.2016)
Inventors: Oliver G. Schmidt, Mariana Medina Sanchez, Sonja Maria Weiz

Trademarks

31656 DE SAW Symposium SENSORS & ACTUATORS (06.12.2016)
Inventors: Hagen Schmidt, Siegfried Menzel        
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PhD Theses

Azar Aliabadi ESR and Magnetization Studies of Transition Metal Molecular Compounds, TU Dresden

Matthias Bönisch Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys, 
TU Dresden

Nan Du Novel applications of BiFeO3 (BFO)-based nonvolatile resistive switches, TU Chemnitz

Christian David Salazar Enriques Scanning tunneling microscopy on low dimensional systems: dinickel molecular complexes and 
iron nanostructures, TU Dresden

Alexander Fedorov Electronic structure of doped 2D materials, TU Dresden

Markus Gellesch Statistical study of the effect of annealing treatments on assemblies of intermetallic magnetic 
nanoparticles related to the Heusler compound Co2FeGa, TU Dresden 

Nadine Heming Untersuchung der Volumen- und Oberflächeneigenschaften von Hexaboriden, TU Dresden

Tony Jaumann Zur Degradation und Optimierung von nanostrukturierten Siliciumanoden in Lithium-Ionen- und 
Lithium-Schwefel-Batterien, TU Dresden

Fatemeh Asgharazadeh Javid Phase formation, martensitic transformation and mechanical Properties of Cu-Zr-based alloys, 
TU Dresden

Daniil Karnaushenko Shapeable microelectronics, TU Chemnitz

Frederik Klein Graphitisierung von tetraedischem amorphem Kohlenstoff mittels Elektronen im Rastertunnel und 
Rasterelektronenmikroskop, TU Dresden

Britta Koch Scaffold dimensionality and confinement determine single cell morphology and migration, TU Dresden

Julia Körner Gekoppelte Oszillatoren als neuartige Sensoren für Cantilever-Magnetometrien, TU Dresden

Tobias Kosub Ferromagnet-free magnetoelectric thin film elements, TU Chemnitz

Gungun Lin Multifunctional droplet-based micro-magnetofluidic devices, TU Chemnitz

Veronika Magdanz Rolled up microtubes for the capture, guidance and release of single spermatozoa, TU Dresden

Ignacio G. Gonzalez Martinez Novel thermal and electron-beam approaches for the fabrication of boron-rich nanowires, TU Dresden

Christian Nowka Untersuchungen zu Gasphasentransporten in quasibinären Systemen von Bi2Se3 mit Bi2Te3, 
Sb2Se3, MnSe und FeSe zur Erzeugung von Nanokristallen, TU Dresden

Christopher Reiche Novel sensors for scanning force microscopy based on carbon nanotube mechanical resonators, 
TU Dresden 

Ludwig Reichel Gedehnte epitaktische Fe-Co-X Schichten (X = B, C, N) mit erhöhter magnetischer Anisotropie, 
TU Dresden

Ahmad Omar Disentangling the Intrinsic Attributes and the Physical Properties in Cobalt-based Quaternary 
Heusler Compounds, TU Dresden

Steven Rodan Nuclear magnetic resonance and specific heat studies of half-metallic ferromagnetic 
Heusler compounds, TU Dresden

Wolf Schottenhamel Aufbau eines hochauflösenden Dilatometers und einer hydrostatischen SQUID-Druckzelle sowie 
Untersuchungen an korrelierten Übergangsmetalloxiden, TU Dresden 

Ivan Soldatov Thermoelectric effects and anisotropy in magnetic films, TU Dresden

Alexander Surrey Preparation and Characterization of Nanoscopic Solid State Hydrogen Storage Materials, TU Dresden

Louis Veyrat Quantum Transport Study of Spin-Helical Dirac Fermions in 3D Topological Insulator Nanostructures, 
TU Dresden

Uwe Vogel Grenzflächenausbildung zwischen LiNbO3 (LiTaO3) und Barriereschichten für den Einsatz bei 
Metallisierungssystemen für SAW-Strukturen, TU Dresden

Sebastian Wicht Atomar aufgelöste Strukturuntersuchungen für das Verständnis der magnetischen Eigenschaften 
von FePt-HAMR-Prototypmedien, TU Dresden

Stephan Zimmermann Elektronenspinresonanz an niederdimensionalen und frustrierten magentischen Systemen, TU Dresden
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Diploma and Master Theses

Sascha Balakin Thermische Stabilität und thermoplastisches Verformungsverhalten von Ni-freien Ti-basierten und 
Zr-basierten massiven metallischen Gläsern für biomedizinische Anwendungen, TU Dresden

Nooshin Bandari Fabrication of SU-8 shadow mask for multi-layers of metal/oxide deposition, TU Chemnitz

Paul Bergelt Abscheidung und Charakterisierung metallischer Dünnschichten durch Kondensation 
mikroakustisch erzeugter Aerosole, TU Dresden

Hagen Bryja Herstellung und Charakterisierung verspannter epitaktischer BaTiO3 Schichten für 
elektrokalorische Untersuchungen, TU Dresden

Kenny Duschek Untersuchung magneto-ionischer Effekte an elektrodeponierten Fe-Schichten in basischen 
Elektrolyten, HTW Dresden

Stefan Engelhardt Strukturelle und ferroelektrische Eigenschaften von epitaktischen BaZrxTi1-xO3-Schichten, 
TU Dresden

Clemens Gütter Magnetkraftmikroskopie: Methodenweiterentwicklung und Messungen an gerollten Nanomembranen, 
TU Dresden

Florian Heinsch Studium der Hochtemperatur-Ladungsdichtewellen in reinem und interkaliertem Tantaldisulfid 
mittels Röntgendiffraktion, TU Dresden

Zongqi Hou NMR – Untersuchungen von Al und Si dotiertem LiMgPO4, TU Dresden

Fabia  Kochta Mikrostrukturelle und elektrochemische Analyse von biodegradierbaren FeMnC(B,S)-Legierungen 
für medizinische Anwendungen , HTW Dresden

Martin Leinert Einfluss von Heterogenitäten auf das Verformungsverhalten von Cu47,5Zr47,5Al5 basierten 
metallischen Gläsern, TU Dresden

Xiao Ma Elektrochemische Präparation und Charakterisierung von CoFe-Mikromagneten für 
Mikrofluidikanwendungen, TU Dresden

Karthikeyan Manga Thermal Conductivity Characterization of Organic Thin Films by Three-Omega Technique, TU Chemnitz

Jörg Pribbenow Evaluierung der Möglichkeit zur Ummantelung von Nanopartikeln aus der Gasphase im Flug, 
TU Dresden

Wenjing Ren Mikrostrukturelle Untersuchung von nanostrukturierten W/Mo mehrschichtigen Dünnschichten, 
TU Dresden

Juliane Ruda Synthese 1,4-Dicyanobenzen basierter poröser leitfähiger Polymere und deren Anwendung als 
Matrixmaterial in Lithium-Schwefel Akkumulatoren, TU Dresden

Sebastian Schimmel Konstruktion und Inbetriebnahme eines Molekularverdampfers für Tunnelmikroskopiemessungen 
endohedraler Fullerene im Ultrahochvakuum, TU Dresden

Tobias Schorr NMR-Messungen am Eisenpniktid BaFe2As2 unter uniaxialem Druck, TU Dresden

Christian Schricker Fertigung eines massiven Zr-Basis-Glases mittels selektivem Laserschmelzens, TU Dresden

Stefan Schwabe In-situ Charakterisierung des strukturellen Phasenübergangs variabel dehnbarer, epitaktischer 
Ni-Mn-Ga-Co-Schichten, TU Dresden

Richard Ulm Elektrolytische Wasserstofferzeugung in überlagerten Magnetfeldern, HTW Dresden

Yu Wan Elektronenenergieverlustspektroskopie an WSe2, TU Dresden

Bruno Weise Herstellung und Charakterisierung der Magnetokalorischen Legierung NiCoMnAl, TU Dresden

Jonas Zehner Kerr mikroskopische Untersuchungen der  magnetischen Mikrostruktur epitaktischer Fe- und 
FePt-Dünnschichten sowie Fe(Pt)/Polymer-Elektrolyt-Heterostrukturen für magneto-ionische Effekte, 
TU Dresden

Julian Zeisner ESR-Spektroskopie an magnetisch frustrierten und quasieindimensionalen 
Übergangsmetallverbindungen, TU Dresden
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Professorships

Qingming Deng Assistant Professorship, Huaiyin Normal Univ., China

Fei Ding Full Professorship, Univ. Hannover

Laura Corredor-Bohórquez Full Professorship, Univ. Federal do Rio Grande do Norte, Brazil

Bernd Rellinghaus Guest Professorship, Bergakademie TU Freiberg 

Awards

Gungun Lin Chinese Government Award for Outstanding Chinese Student Abroad

Qingming Deng Chinese Government Award for Outstanding Chinese Student Abroad

Vladimir Fomin Admission as a member in the Mediterranean Institute of Fundamental Physics

Alexey N. Bogdanov EPS CMD Europhysics Prize 2016, together with P. Böni, C. Pfleiderer, A. Rosch und A. Vishwanath

Max Sieger IEEE Council on Superconductivity Graduate Study Fellowship in Applied Superconductivity 

Best poster/best contribution awards

F. Karnbach  Hydromag Best Poster Prize at the 10th PAMIR International Conference on Fundamental and 
Applied MHD, 20-24 June 2016 in Cagliari

M. Medina-Sanchez, M. Guix, S. Harazim, L. Schwarz, O. G. Schmidt: Best Conference Paper Award of the International Conference 
on Manipulation, Automation and Robotics at Small Scales (MARSS), 18-22 July 2016 in Paris 

M. Medina-Sanchez, B. lbarlucea, N. Perez, D. D. Karnaushenko, S. M. Weiz, L. Baraban, G. Cuniberti, O. G. Schmidt: Best Paper Award 
of the 9th International Workshop on Impedance Spectroscopy, 26-28. Sept. 2016 in Chemnitz

M. Calin, A. Gebert, A.C. Ghinea, P. F. Gostin, S. Abdi, C. Mickel, J. Eckert: 2016 MSC Impact Editor’s Choice Award of Materials 
Science Engineering C 

IFW Awards

Ulrich Rößler & Alexey Bogdanov IFW Research Prize 2016

Daniil Karnaushenko IFW Junior Research Award 2016

Libo Ma IIN Research Prize 2016

Ivan Kaban IKM Research Prize 2016

Carmine Ortix ITF Research Prize 2016

Daniil Karnaushenko Tschirnhaus-Medal of the IFW for excellent PhD theses

Julia Körner Tschirnhaus-Medal of the IFW for excellent PhD theses

Tobias Kosub Tschirnhaus-Medal of the IFW for excellent PhD theses

Gungun Lin Tschirnhaus-Medal of the IFW for excellent PhD theses

Veronika Magdanz Tschirnhaus-Medal of the IFW for excellent PhD theses

Christopher Reiche Tschirnhaus-Medal of the IFW for excellent PhD theses

Ludwig Reichel Tschirnhaus-Medal of the IFW for excellent PhD theses

Alexander Surrey Tschirnhaus-Medal of the IFW for excellent PhD theses

Sebastian Wicht Tschirnhaus-Medal of the IFW for excellent PhD theses
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March 6 – 10 2nd SELECTA Workshop (Smart ELECTrodeposited Alloys for environmentally sustainable applications) 
Training on research methodologies, characterization techniques and reporting scientific results

April 3 – 6 612. WE-Heraeus Seminar „Electron and phonons: Interfaces and interactions“, 
Physikzentrum Bad Honnef

April 4 – 6 2nd Workshop „Floating Zone Technique“, IFW Dresden

April 4 – 8 2nd Summer School of SPP 1458 on Iron Pnictides in Storkow near Berlin 

May 3 – 4 Seminar zum IFW-Forschungsthema 2.4 „Nanoscale Magnets“, Evangelische Akademie Meißen

June 20 – 22 final seminar of the DFG Priority Program 1386, Jufa Jülich

June 30 – July 1 Workshop on Resonant Inelastic and Elastic X-Ray Scattering 2016, IFW Dresden

Aug. 30 Workshop „Thermoelectric materials“, IFW Dresden

Oct. 20 – 21 SAW Sensor and Actuator Symposium 2016 (SAW Symposium 2016) Dresden

Oct 31 – Nov 4 627th WE-Heraeus Seminar „Low dimensional quantum systems: models and materials“ 
in Bad Honnef, Germany

Nov. 25 Nanomagnetism Workshop, IFW Dresden

27 Nov –2 Dec Symposium “Nanomembrane Materials” at MRS Fall Meeting, Boston, USA, 
Chairs: Y.F. Mei, J.-H. Ahn, J. Rogers, O.G. Schmidt
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Guest scientists (stay of 4 weeks and more)

Name Home Institute Home country

Dr. Aswartham, Saicharan University of Kentucky, USA India

Dr. Bachmatiuk, Alicja Wroclaw Research Centre ILT Poland

Dr. Bashlakov, Dmytro B.Verkin Institute Kharkiv Ukraine

Dr. Burkov, Aleksandr A.F. Ioffe Institut, St.Petersburg Russia

Dr. Caglieris, Federico Univ.Genua Italy

Cherniavskii, Ivan O. Lomonosov Moscow State Univ. Russia

Denisova, Kseniia Lomonosov Moscow State Univ. Russia

Egunov, Aleksandr Institute of Materials Science of Mulhouse France

Dr. Fernandez S. Pablo Roberto TU Dresden Costa Rica

Prof. Fu Lei Wuhan Univ. China 

Gamaiunova, Nina B.Verkin Institute Kharkiv Ukraine

Dr. Hong Xiaochen Fudan Univ. China 

Dr. Hu Han Nanyang Technological Univ. Singapore China 

Dr. Huang, Shao-Zhuan Wuhan Univ. of Technology China 

Dr. Johnston, Steven Sinclair Univ. of Tennesse, Knoxville Canada

Dr. Jung, Hyoyun Yonsei Univ. Korea

Kamashev, Andrey Zavoisky Phys.-Techn. Institute Kazan Russia

Dr. Kandpal, Hemchandra Indian Institute of Technology Roorkee India

Kondo, Massaya Osaka Univ. Japan

Dr. Kvitnytska, Oksana B.Verkin Institute Kharkiv Ukraine 

Dr. Lee, Jae-Ki Korea Electrotechnology Research Insitute Korea

Li Yuan Institute of Semiconductors Beijing China 

Dr. Liu, Fupin Univ. of Science and Technology Hefei China 

Dr. Machata, Peter Slovak Univ. of Technology Bratislava Slovakia

Dr. Makharza, Sami A M Palestinian Territories

Dr. Mikhailova, Daria MPI CPfS Dresden Russia

Dr. Morozov, Igor Lomonosov Moscow State Univ. Russia

Dr. Morrow, Ryan Christopher Ohio State Univ. USA

Prof. Dr. Naidiuk, Iurii B.Verkin Institute Kharkiv Ukraine

Dr. Neild, Adrian Monash Univ. Australia UK

Dr. Novikov, Sergei A.F. Ioffe Institut, Sankt Petersburg Russia

Dr. Parzych, Grzegorz TU Dresden Poland

Dr. Prando, Giacomo TU Dresden Italy

Dr.Ray, Rajyavardhan TU Dresden India

Dr. Rienks, Emile TU Dresden Netherlands

Dr. Roslova, Mariia TU Dresden Russia

Dr. Seiro, Silvia Univ.Salzburg Italy

Dr. Valldor, Björn Martin MPI CPfS Dresden Sweden

Dr. Valligatla, Sreeramulu India

Dr. Velez, Patricio Consejo Nacional Argentina Argentina

Wang, Jiawei Hong Kong Univ. China 

Dr. Yakhvarov, Dmitry Institute of Organic & Phys. Chem. Kazan Russia

Yakymovych, Andriy Ukraine
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Scholarships

Name Home country Donor

Dr. Dassonneville, Bastien France Alexander von Humboldt Foundation

Dr. Ghimire, Madhav Prasad Nepal Alexander von Humboldt Foundation 

Dr. Kim Beom, Seok Korea Alexander von Humboldt Foundation

Dr. Kravchuk, Volodymyr Ukraine Alexander von Humboldt Foundation

Dr. Morrow, Ryan Christopher USA Alexander von Humboldt Foundation

Prof. Dr. Pickett, Warren USA Alexander von Humboldt Foundation

Dr. Shrestha, Nabeen Kumar Nepal Alexander von Humboldt Foundation

Prof. Dr. Singh, Avinash USA Alexander von Humboldt Foundation

Dr. Zhang, Yang China Alexander von Humboldt Foundation

Prof. Dr. Zotos, Xenophon Greece Alexander von Humboldt Foundation

Dr. Du, Yun China China Scholarship Council

Dr. Wang, Jing China China Scholarship Council

Deng, Liang China China Scholarship Council

Liu, Lixiang China China Scholarship Council

Lu, Xueyi China China Scholarship Council

Sui, Yan Fei China China Scholarship Council

Sun, Xiaolei China China Scholarship Council

Wang, Ju China China Scholarship Council

Wang, Pei China China Scholarship Council

Xi, Lixia China China Scholarship Council

Xu, Haifeng China China Scholarship Council

Yin, Yin China China Scholarship Council

Zhang, Long China China Scholarship Council

Prof. Czeppe, Tomasz Henryk Poland DAAD

Dr. Fedorov, Fedor Russia DAAD

Prof. Lishchynskyy, Igor Ukraine DAAD

Saha, Snehajyoti India DAAD

Ghunaim, Rasha Palästinian territories DAAD

Shahid, Rub Nawaz Pakistan DAAD

Dr. Ahmad, Mushtaq Pakistan DAAD Leibniz-Programm

Dr. Moravkova, Zuzana Czech Rep. DAAD Leibniz-Programm

Linnemann, Julia Germany Deutsche Bundesstifung Umwelt

Dr. Vavilova, Evgeniia Russia TU Chemnitz

Dr. Gorshenkov, Mikhail Vladimirovich Russia TU Dresden; EU MULTIC-Programm

Madian, Mahmoud Egypt Graduate Academy TU Dresden

Surrey, Alexander Germany Graduate Academy TU Dresden

Perea, Cabarcas Darling Columbia COLCIENCIAS Columbia

Dr. Zilic, Dijana Croatia Croatian Science Foundation (CSF)

Dr. Wuppulluri, Madhuri India Eleonore Trefftz Guest Professorship

Vieira, Rafael Portugal EU - ERASMUS MUNDUS

Dr. Tynell, Tommi Paavo Finnlandia Finnish Cultural Foundation 

Salimian, Maryam Iran, Islam. Rep. FCT Portugal

Dr. Alshwawreh, Nidal K. Hamed Canada German Jordanian University

Miyajima, Tomohiro Japan Graduate School of Engineering 
Kyushu Univ.

Li, Haichao China Harbin Institute of Technology

Bönisch, Matthias Austria International Graduate School

Chirkova, Alisa Russia International Graduate School
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Name Home country Donor

Liu, Bo China International Graduate School

Salman, Omar Oday Iraq Iraq Gov.

Sasaki, Sho Japan Japan Student Services Organisation 
(JASSO)

Wang, Vivian USA Krupp-Praktikantenprogramm für
Standford-Studenten

Foroughi Alireza Iran, Islam. Rep. Iran Gov.

Lara Ramos, David Alberto Mexico Mexico Gov.

Dr. Gan, Li-Hua China Natural Science Foundation of China

Günes, Taylan Turkey Research Council of Turkey

Karatas, Özgül Turkey Research Council of Turkey

Dr. Wang, Shenghai China Shandong University
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Guest stays of IFW members at other institutes 2016

Jeroen van den Brink 25.01.2016 – 04.03.2016 / 14.03.2016 – 22.04.2016, Research 
stay at Harvard University, Cambridge (MA), USA, Common project 
in the area of theoretical photon science, which focusses on the 
modelling of resonant inelastic x-ray scattering responses 

Bastien Dassonneville 06.02.2016 – 21.02.2016, Laboratoire de Physique des Solides, 
Orsay, Paris, France

Romain Giraud 01.11.2016 – 18.11.2016, Spintec, Grenoble, France

Veronika Hähnel 07.10.2016 – 22.10.2016, Research stay at University of Arkansas 
(Department of Chemistry & Biochemistry), Fayetteville, USA 

Junhee Han 07.06.2016 – 01.07.2016, Research stay at Institute of Industrial 
Technology, Incheon, Korea  

Florian Kiebert 24.11.2016 – 24.12.2016, Monash University Melbourne, Australia

Karin Leistner 17.01.2016 – 17.07.2016, Research stay at SFU Vancouver, Canada

Ignacio G. Gonzales Martinez 31.03.2016 – 19.04.2016, Research stay at Oxford University, 
Oxford, England 

Robert Niemann 14.02. – 21.02.2016, Research stay at ASCR Prague, Czech Rep.
03.04. – 24.04.2016, Measurements at Univ. de Barcelona, Spain
18.07. – 07.08.2016, Research stay at Texas A&M University, 
College Station, TX, USA

Rafael Gregorio Mendes 28.06.2016 – 15.07.2016, Research stay at Suzhou Univ., China   

Jinbo Pang 05.01.2016 – 03.02.2016, Research stay at CMPW PAN (Polish 
Academy of Sciences), Zabrze, Poland

Parthiban Ramasamy, 02.02.2016 – 24.02.2016, Synchrotron measurement at Institute of 
Technology (INPG), Grenoble, France 

Christin Schlesier 27.04.2016 – 30.05.2016, Paul-Scherrer-Institut, Villigen & 
Physik-Institut, Uni Zürich, Schweiz 

Sebastian Schneider 25.04. – 23.05.2016, Research stay and measurements at Pacific 
Northwest National Laboratory, Richland, WA, USA
24.07.-08.08.2016, Microscopy & Microanalysis Meeting, Columbus,
OH, USA

Ivan Soldatov 14.02. – 20.02.2016, Research stay at Far Eastern Federal 
University, Wladiwostok, Russia
18.03. – 26.04.2016, Research stay and measurements at 
University of California, San Diego, USA

Mihai Stoica 17.01.2016 – 31.01.2016, Research stay at ETH, Zürich, Switzerland

Andreas Winkler 12.05.2016 – 28.05.2016, Research stay at Monash University, 
Melbourne, Australia and invited visit at University of Technology 
and Design in Singapore

Ulrike Wolff 30.09. – 31.12.2016, Research stay and measurements at Jozef 
Stefan Institut Ljubljana, Slovenia
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Board of trustees

Jörg Geiger, Saxonian Ministry of Science and Art - Head -

Dr. Herbert Zeisel, Federal Ministry of  Education and Research (up to 31.12.2016)

Dr. Peter Schroth, Federal Ministry of  Education and Research (from 01.01.2017 on)

Prof. Dr. Gerhard Rödel, TU Dresden

Prof. Dr. Sibylle Günter, MPI for Plasma Physics 

Scientific Advisory Board

Prof. Dr. Maria-Roser Valenti, Univ. Frankfurt, Germany - Head -

Prof. Dr. Robert H. Blick, Univ. Hamburg (from 01.10.2016 on)

Prof. Dr. Sang-Wook Cheong, Rutgers (from 01.10.2016 on)

Prof. Dr. Silke Christiansen, HZB Berlin, Germany

Prof. Dr. Andrey Chubukov, Univ. of Minnesota, USA

Prof. Dr. Ralph Claessen, Univ. Würzburg (from 01.10.2016 on)

Prof. Dr. Philippe M. Fauchet, Vanderbilt Univ., USA (up to 30.09.2016)

Prof. Dr. Matthias Göken, Univ. Erlangen-Nürnberg, Germany 

Prof. Dr. Alan Lindsay Greer, Univ. of Cambridge, U.K. (up to 30.09.2016)

Prof. Dr. Rolf Hellinger, Siemens AG Erlangen, Germany (up to 30.09.2016)

Prof. Dr. Xavier Obradors Berenguer, Univ. Autònoma de Barcelona, Spain (up to 30.09.2016)

Prof. Dr. Nini Pryds, TU Denmark (from 01.10.2016 on)

Prof. Dr. Roberta Sessoli, Univ. di Firenze, Italy

Prof. Dr. Eberhardt Umbach, Karlsruhe Institute of Technology, Germany (up to 30.09.2016)
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Research organization of IFW Dresden

Institute for
Metallic Materials (IMW)

Prof. Dr. Kornelius Nielsch - 104

Secr.: Svea Fleischer - 102
Linda Petersohn - 324

Chemical synthesis of materials

Dr. Heike Schlörb - 230

Functional oxide layers and 
superconductors

Dr. Ruben Hühne - 716

Magnetic materials

Dr. Thomas G. Woodcock - 221

Functional magnetic films

Dr. Sebastian Fähler - 328

Quantum materials and devices

PD Dr. Andy Thomas - 746

Thermoelectric materials 
and devices

Dr. Gabi Schierning - 1875

Metal physics

Prof. Dr. Jens Freudenberger- 550

Magnetic microstructures

Prof. Dr. Rudolf Schäfer - 223

Metastable and nanostructured 
materials

Dr. Bernd Rellinghaus - 754

Institute for
Solid State Research (IFF)

Prof. Dr. Bernd Büchner - 808

Secr.: Kerstin Höllerer - 300
Katja Schmiedel  - 805

Surface dynamics

Dr. Hagen Schmidt - 278

Transport and scanning probe 
microscopy

Dr. Christian Heß - 533

Chemistry of nanomaterials

Dr. Alexey Popov - 871

Magnetic properties

Dr. Vladislav Kataev - 328

Electronic and optical properties

Prof. Dr. Martin Knupfer - 544

Synchrotron methods

Dr. Sergey Borisenko - 566

Crystal growth and synthesis 
of inorganic materials

Dr. Sabine Wurmehl - 519

Institute for
Complex Materials (IKM)

Dr. Thomas Gemming - 298
(temp.)

Secr.: Brit Präßler-Wüstling - 217
Janett Schuster - 198

Solidification processes and 
complex structures

Dr. Ivan Kaban - 644

Magnetic composites and 
applications 

Dr. Anja Waske - 846

Micro- and nanostructures

Dr. Thomas Gemming - 298

Chemistry of 
functional materials

Dr. Annett Gebert - 275

Electrochemical energy storage

Dr. Lars Giebeler - 652

Alloy design and processing

Dr. Uta Kühn - 402

Metallic glasses and composites

Dr. Simon Pauly - 451

Institute for
Integrative Nanosciences (IIN)

Prof. Dr. Prof. h. c. 
Oliver G. Schmidt - 800

Secr.: Kristina Krummer - 810

Rolled-up photonics

Dr. Libo Ma - 1153

Integrated nanophotonics

Dr. Fei Ding - 752

Micro- and nanobiomedical 
engineering

Dr. Mariana Medina Sanchez - 489

Institute for Theoretical
Solid State Physics (ITF)

Prof. Dr. 
Jeroen van den Brink - 400

Secr.: Grit Rötzer - 380

Quantum Chemistry 

Dr. Liviu Hozoi - 1829

Quantum theory of complex 
nanoarchitectures

Dr. Carmine Ortix - 352

Numerical solid state physics

Dr. Manuel Richter - 360

Date: January 2017
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