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Flashback to 2009

The Annual Report 2009 of the IFW presents a typical cross section of our scientific activities in the

past year, highlighting main results in the first part and giving a somewhat more systematic

overview of results obtained in our five Research Areas in its second part. It finally informs on the

materialized and personalized output and activities, and on how the IFW is organized. The very first

pages of the Annual Report we want to use for a flashback to the institutes life in 2009: highlights,

events and important developments beyond scientific results.

The IFW Winter School takes place every year in January to foster the scientific communication

among all IFW groups and to train young scientists in special topics of IFW’s Research Program.

In 2009 the topical focus was put on low dimensions – a topic broad enough to gather a large num-

ber of scientists that could contribute with talks and discussions. The program of the four-day event

included tutorial lectures of experts and short contributions of senior and young scientists as well

as some time for skiing and social gathering. All participants agreed that the IFW Winter School

is a very useful event to strengthen the internal cooperation and to train the skills of senior and

young scientists.  

On March 2, 2009, the IFW invited its partners, friends and sponsors to the Annual Reception. On

this occasion Dr. Kathrin Doerr was awarded the IFW Research Prize for her excellent work on fer-

roic materials. The Deutsche Bank Junior Award was given to Dr. Jayanta Das for his outstanding

PhD thesis on metallic glasses. A further highlight of this evening was the decoration of the Leib-

niz President Prof. Dr. Ernst Th. Rietschel with the Leibniz Medal of the IFW Dresden.

In March 2009 Dresden hosted the worldwide second largest physicists’ meeting: The third time

after 2003 and 2006 the Spring Meeting of the Condensed Matter Division of the German Physi-

cal Society was held in Dresden. The enthusiasm of the organizing team around Prof. Dr. Ludwig

Schultz made it a big success with a record participation of more than 5300 scientists. Prior to the

conference a week-long satellite event “Physics in the shopping Mall” brought physics to the pub-

lic, in particular to children and young people. The overwhelming success of this event was based

on the fascinating spirit of young scientists presenting physics in an every day environment both

with competence and enthusiasm.

Prof. Dr. Ludwig Schultz und Dr. h. c. Rolf Pfrengle

try the new model to demonstrate superconducting

levitation for the Hannover Fair 2009

Prof. Dr. Jürgen Eckert (second from left in the front row)

is among the winners of the prestigious Leibniz Prize 2009

Dr. Kathrin Dörr is awarded the IFW Research Award

during the Annual Reception 2009
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Further large conferences organized in 2009 by the IFW were the 9th European Conference on

Applied Superconductivity (EUCAS) in September, the meeting of single crystal growers in March

and the Workshop Spin Caloritronics in May. Furthermore we hosted two Kick-off-meetings of net-

works coordinated by the IFW: the Kick-Off Meeting of the EU network DIVERSITY in January and

the Kick-off meeting of the Priority Program of the German Research Foundation on high tem-

perature superconductivity in Fe Pnictides in July. The IFW is quite active in getting conferences

to Dresden and organizing them. A full list of conferences organized by the IFW in 2009 is given

on page 110. All these conferences demonstrate that Dresden has developed to an attractive place

for the scientific community. The IFW as one of the key players in this regional network of univer-

sity and non-university research institutes takes much effort to improve further the collaboration

between Dresden institutes to have a good starting position for the next call in the German

excellence initiative.

Prof. Dr. Helmut Eschrig, the founding director of the IFW and Scientific Director from 1998 to 2008

retired at the end of September 2009 and handed over the position of the Director of the Institute

for Theoretical Solid State Physics to Prof. Dr. Jeroen van den Brink. The Institute for Theoretical

Solid State Physics is the smallest in the concert of five IFW’s institutes and was founded 2004

out of the theory group. It has its core competence in density functional theory and cooperates

closely with experimentally working groups inside and outside the IFW. With Jeroen van den Brink

the IFW could win an internationally recognised expert in the field of theory of correlated systems.

His previous work on molecular crystals, multiferroics and superconductivity provides lots of

opportunities for cooperation not only within the IFW but also with the university and other

institutes in Dresden. A further bargain for the Institute for Theoretical Solid State Physics and for

the IFW as a whole was the grant of an Emmy Noether Research Group on the simulation of spin-

orbital systems from 2010 on to Dr. Maria Daghofer. 

The training of students and young scientists is a very important concern of IFW’s work. PhD and

diploma students are involved in nearly all scientific projects and in the resulting publications. The

number of PhD students working at the Institute has been increased in the last two years to about

150 on average. Also the number of diploma and master students doing their theses at the IFW has

increased significantly during the last years resulting in the record number of 23 diploma or

master theses in 2009. 

In August 2009 we welcomed seven

new apprentices 

These young men finished their vocational

training at IFW 

The Dresden Long Night of Sciences attracted many curious people

to the IFW’s laboratories
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The large efforts for project funding produced a good crop of fruit in 2009. The level of third

party funding has significantly increased in 2009 to more than 16 Mio. Euro - twice as high as the

target level and due to a special situation in funding and economic programs not being typical for

the future. Nevertheless a large amount of that funding was acquired in competitive mode from

the DFG and the EU. In particular the grant of a second Emmy Noether Research Group by the DFG

and the new DFG Priority Program on Fe-pnictides which starts in 2010 coordinated by the IFW are

a nice success.  As in the years before the IFW is very successful in initiating EU projects and

participating in them. Five of the 24 running EU-projects in 2010 in the IFW are coordinated by the

IFW. Concerning the “Pakt für Forschung” the IFW was successful with all five applications for

projects so far starting in 2006 and continuing in 2007, 2008, 2009 and 2010. There are very few

institutes in the Leibniz Association equally successful. 

Due to the increasing project funding and to the increasing number of PhD, master and diploma

students the overall number of persons working in the IFW has grown to more than 600. The

resulting severe shortage of office space is met – apart from improvising and moving closer - by

plans for an annex building which has made further progress in 2009. We are looking forward to

the start of construction and the appearance of the first excavators in 2010. Two other infrastruc-

tural projects came to a successful completion in 2009: The installation of a Helium liquefaction

facility that makes the supply of liquid Helium independent from external influences (see pages

48-49) and the establishment of the IFW’s Chemnitz research site. The latter is going to streng-

then the cooperation with the Chemnitz University of Technology where Prof. Dr. Oliver G. Schmidt

holds a chair. The IFW rented 260 square meter laboratory area in a start-up building within the

“Smart System Campus” and equipped it for the development of 3D rolled-up nanomembranes.  

2009 was again a yielding year with respect to prizes and honours awarded to members of the IFW.

A complete list is included at the end of this Report. The most prestigious of the prizes won in 2009

by IFW members is the Gottfried-Wilhelm-Leibniz-Prize of the German Research Foundation,

which has been awarded to Prof. Dr. Jürgen Eckert. The Federation of European Materials Societies

(FEMS) awarded the FEMS Materials Gold Medal 2009 to Prof. Dr. Ludwig Schultz in recognition

of his merits in materials science. The Technical University of Bratislava acknowledged the efforts

of the IFW Dresden for close cooperation with an honorary doctorate for our Administrative

Director, Dr. h. c. Rolf Pfrengle.

Women high school students try the work in

a chemical lab during the Autumn School

“Theoria cum Praxi”

The event “Physics in the shopping

Mall” brought physics to the public,

in particular to children and young

people

Participants of the Kick-off meeting of

the EU-project DIVERSITY in January

2009

Our team at IFW’s Chemnitz research

site headed by Prof. Dr. Oliver Schmidt

(forth from right) who held a Chair at

TU Chemnitz
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A crucial part of the IFW’s identity is its vivid life including the cultivation of the scientific dialogue,

family-friendly working conditions and the support of sportive, creative and cultural activities. The

IFW organizes a series of workshops, colloquia and talks to foster the scientific dialogue and, along

the way, allow for social and communication aspects of cooperation. An important meeting for all

scientists of the IFW is the yearly two-day program session where all scientists discuss and adjust

the research program for the following year.

In 2009 the IFW continued its large efforts to make scientific work accessible for the general pub-

lic and to inspire young people to study science or engineering. The IFW took part in many joint

actions as the Summer University of the TU Dresden and the lecture series “Physics on Saturday”.

The IFW is one of the initiators of the Dresden Long Night on Sciences which took place for the

seventh time in 2009. The greatest attraction in the IFW’s program seemed to be the special

offers for kids to try experiments themselves and to play with the superconducting train. Besides

these big events we almost weekly organize lab-tours for various visitor groups, from school

classes through official representatives to guests from foreign organizations.

So we are looking back to a successful year 2009 in the Institute’s development. We are quite aware

that this is due to the sustainable network of colleagues and partners in universities, research

institutes and industry, both on the regional and the international scale. We thank all of them for

constructive cooperation and are looking forward to taking up future challenges together. Spe-

cial tribute is paid to the members of the Scientific Advisory Board and of the Board of Trustees

as well as the funding organizations that continuously support and foster the positive develop-

ment of the IFW. 

Dresden, January 2010

Prof. Ludwig Schultz                                                               Dr. h. c. Rolf Pfrengle

Scientific Director                                                                Administrative Director

Prof. Dr. Ludwig Schultz is awarded

the FEMS Gold Medal 2009

The TU Bratislava awarded Rolf

Pfrengle an honorary doctorate 

Dr. Christian Kramberger (second from right) is

awarded the Prize of the "Dresdner Gesprächskreis

der Wirtschaft und Wissenschaft e.V.” for his excel-

lent PhD Thesis

Part of the new Helium liquefaction

facility completed in 2009
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The picture “Nano-Dancer” by Franziska Wolny and Uhland Weissker was awarded the 1. Prize of the

Nano&Arts Competition 2009. It shows induced vibrations of a Carbon nanotube in various stages. 
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Highlights

Electrons in cuprates: view by ARPES 
A. A. Kordyuk, V. B. Zabolotnyy, D. V. Evtushinsky, S. V. Borisenko, B. Büchner

Angle resolved photoemission spectroscopy (ARPES) has been playing a crucial role in

understanding of physics behind high temperature superconductivity. Our ARPES

investigation of superconducting cuprates, performed over a decade and accomplished

by very recent results [1, 2], suggests a consistent view of electronic interactions in

cuprates which provides natural explanation of both the origin of the pseudogap

state and the mechanism for high temperature superconductivity. Within this scenario,

the spin-fluctuations play a decisive role in formation of the fermionic excitation spec-

trum in the normal state and are sufficient to explain the high transition temperatures

to the superconducting state [1] while the pseudogap phenomenon is a consequence

of a Peierls-type intrinsic instability of electronic system to formation of an incommen-

surate density wave [2]. In view of these results and their projection to numerous other

materials [3-8], two general questions are arising: is the normal state in 2D metals ever

stable and how does this intrinsic instability interplay with superconductivity?

For many years now, the search for the mechanism of high temperature superconduc-

tivity has been mostly reduced to a simple dilemma: phonons vs. spin-fluctuations [9].

Our commitment to the “spin-fluctuations camp” had started with the observation of

strong doping dependence of the renormalization of the fermionic spectrum of Bi-2212

in the antinodal region of the Brillouin zone, known as a peak-dip-hump lineshape [10].

Such a dependence, the vanishing with overdoping and strong increase with underdop-

ing, had suggested its magnetic origin due to “proximity to antiferromagnet” but had

been difficult to reconcile with phonons. Later, the careful self-energy analysis of the

nodal direction [11, 12] had revealed the same strong trend with doping. This, to-

gether with the other peculiarities of the fermionic spectrum [13, 14], forced us to

conclude that the spin-fluctuations provide the main contribution to the scattering of

the electrons and are, therefore, the main candidate for the superconducting pairing.  

However, despite similar results of other groups, the spin-fluctuations scenario had

not became generally accepted. On one hand, there were some open questions left.

Among the most important was the ‘kink puzzle’, namely, why the nodal and antinodal

renormalizations exhibit essentially different temperature dependence: the latter dis-

appears just above Tc while the former, the ‘kink’, persists at much higher temperatures?

On the other hand, the newly developed models for the electron-phonon coupling in HTSC

[15] had a potential to adopt any particular property of the fermionic spectrum observed

in experiment. This had called forth the necessity of a detailed comparison of the entire

fermionic and bosonic excitation spectra measured for the same sample and search for

distinctive fingerprints of one in another.  

Since we have managed to disentangle the surface and bulk fermionic spectra in YBCO

[16], a suitable material for inelastic neutron scattering (INS) experiments, we have been

able to analyse the charge- and spin-excitation spectra determined by ARPES and INS,

respectively, on the same crystals of YBa2Cu3O6.6 [1]. In simple, these spectra are re-

lated by the Dyson equation: G -1
= G0

-1
+ U 2

X �G, where G0(kk, ω) and G(kk, ω) are the bare

and renormalized fermionic Green’s functions, respectively (the fermionic or charge-

excitation spectrum is represented by the spectral function A = ImG ), X(QQ, Ω) is the spin

susceptibility (the spin-excitation spectrum measured by INS is ImX), U is the spin-

fermion coupling constant, and the “correlation” U 2
X �G gives the fermionic self-

energy. The detailed description of the “correlation” procedure can be found in Ref. 1.

Fig.1a shows the Fermi surface, the Fermi level cut of the fermionic spectrum modelled

based on ARPES data. Fig.1b shows the intensity of spin excitations along Q = q(2π,2π)

Fig. 1: The Fermi surface of YBCO in the
1st BZ derived from ARPES data [18] re-
presents the fermionic Green’s function (a).
The intensity of spin excitations along 
Q = q(2π,2π) resulting from numerical fits
to the INS spectra measured by V. Hinkov
and B. Keimer (MPI, Stuttgart) [1] (b).
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Fig. 2: Comparison of experimental (upper row) and
theoretical (lower row) fermionic spectra (see Ref. 1
for details), by T. Dahm (University of Tübingen).

Fig. 3: The temperature map. (a) The temperature
map which consists of a number of momentum inte-
grated energy distribution curves (EDCs) measured 
at different temperatures at a ‘hot spot’. Separate
EDCs are shown in panels (b-g): as compared to
each other (panels b and e) and to the similar EDCs
measured each for the same temperature but along
the nodal direction (panels c, d, f, g). The gap is 
seen as a shift of the leading edge midpoint (LEM). 
In terms of the colorscale of panel a, the LEM corres-
ponds to white color close to the Fermi level [2].

that represents ImX(QQ, Ω) and is derived from numerical fits to the INS spectra [1].

As we have found, a self-consistent description of both spectra can be obtained by

adjusting a single parameter, U. 

The comparison between the spectral functions, calculated in this way by T. Dahm and

measured experimentally is presented in Fig. 2. The overall similarity demonstrates

clearly that the spin fluctuations can explain all the peculiarities of the electronic

scattering in cuprates. In particular, they provide natural explanation of different tem-

perature dependence of the nodal and antinodal renormalizations. As illustrated in Fig. 1,

the nodal ‘kink’ in fermionic dispersion is a result of the interband scattering on the

spin-fluctuations from the upper, universal, weakly temperature-dependent branch of

the spectrum (Q1 vector), while the scattering between the antinodal regions (Q2 vec-

tor) is determined by the middle of the spin-fluctuation spectrum where a large peak,

known as a ‘resonance mode’ [9], appears just below Tc.

The determined value of the spin-fermion coupling constant, U = 1.59 eV, gives an

estimate of Tc which exceeds 150 K [1]. This demonstrates that spin fluctuations have

sufficient strength to mediate high-temperature superconductivity. 

The actual Tc can be reduced by a variety of effects. Two of them, the phase fluctuations

of the order parameter and competition with other types of order make a link to the

pseudogap phenomenon, not considered in this analysis. In Ref. 2 we have shown that

the electronic density ordering is the most probable origin of the pseudogap in cuprates.

Performing careful temperature- and momentum-resolved photoemission experi-

ments [2], we have found that the depletion of the spectral weight in slightly underdoped

Bi(Tb)-2212 superconductor, usually called the “pseudogap,” exhibits an unexpected

nonmonotonic temperature dependence: decreases linearly approaching T* at which it

reveals a sharp transition but does not vanish and starts to increase gradually again at

higher temperature. 

Fig. 3 illustrates the temperature evolution of the pseudogap presenting a temperature

map (panel a) and momentum integrated energy distribution curves (EDCs) measured
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at different temperatures and compared to each other (panels b and e) as well as to the

similar EDCs but measured for each temperature along the nodal direction (panels c, d,

f, g). The gap is seen as a shift of the leading edge midpoint (LEM) of a gapped EDC. Since

the momentum integrated EDC of the non-gapped spectrum is expected to stay at zero

binding energy for any temperature, as it is observed for the nodal EDCs (Fig. 2 c, d, f,

g), the finite shift of the LEM is a good empirical measure for a gap of unknown origin.

From the temperature map presented in Fig. 2a one can easily see an unusual tempera-

ture evolution of the gap (in terms of the colorscale, the LEM corresponds to the white

color): first it decreases with increasing temperature up to about 170 K, then it starts

to increase again. 

The temperature dependence of the LEM is summarized Fig. 4 (left panel) where it is

compared to the similar quantity measured for TaSe2 (right panel), for which it is known

that the pseudogap results from the incommensurate charge density wave [7]. The

observed one-to-one correspondence between the temperature dependences of the

pseudogap for Bi-2212 and TaSe2, which is discussed in details in Ref. 2, suggests that

density wave ordering also appears in cuprates and, reducing the electron density of

states at the Fermi level, competes with superconductivity. While the evidence for such

a competition is also reported by other groups [17, 18], the exact nature of the order-

ing remains unclear. One may assume that the spin-fluctuations, being a dominant

mediator for electronic interactions in cuprate, play also the role of the main driving

force for the electronic instability resulting in the spin density wave formation. This as-

sumption, however, requires future experimental verification.      

We acknowledge discussions with P. Bourges, A. Chubukov, T. Dahm, T. P. Devereaux,

I. Eremin, J. Fink, A. M. Gabovich, W. Hanke, V. Hinkov, D. S. Inosov, B. Keimer, T. K. Kim,

M. Knupfer, Yu. V. Kopaev, E. E. Krasovskii, I. I. Mazin, E. A. Pashitskii, M. V. Sadovskii,

D. J. Scalapino, R. Schuster, A. Semenov, V. N. Strocov, T. Valla, and technical support

from R. Hübel.
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Fig. 4: Non-monotonic gap function. The position
of the leading edge midpoint (LEM) of the inte-
grated kF EDCs (averaged for two Fermi-crossings),
as function of temperature for an underdoped 
Tb-BSCCO (left) [2] with Tc = 77 K and T* = 170 K
is remarkably similar to the pseudo-gap in a tran-
sition-metal dichalcogenide TaSe2 (right) [7] with
the transitions to the commensurate and incom-
mensurate CDW phases at TICC = 90 K and 
TNIC = 122 K, respectively.



12 Highlights 2009

Nanoscale electronic order and the effect of smart impurities:
nuclear magnetic and quadrupole resonance studies of the
new iron pnictide superconductors
H.-J. Grafe, G. Lang, F. Hammerath, D. Paar, K. Manthey, S.-L. Drechsler, G. Fuchs, 

J. Werner, G. Behr, B. Büchner

Nanoscale electronic order in iron pnictides
The strong electronic correlations present in several transition metal oxides give rise to

a broad range of exotic electronic states, notably high-temperature superconductivity.

Observation of the latter in iron pnictides has ignited strong interest [1], especially as

it requires doping a magnetically-ordered parent phase as in cuprate superconductors.

This has led to question the interplay or competition between the magnetic ordering and

superconductivity ground states, and the possible presence of intrinsic electronic inho-

mogeneities [2-7]. Therefore, we investigated the charge distribution in LaO1-xFxFeAs

and SmO1-xFxFeAs using nuclear quadrupole resonance (NQR) measurements [8]. Our

study shows the presence of an electronic inhomogeneity in the underdoped region of

the phase diagram (0.04 ≤ x ≤ 0.08), ascribed to a nanoscale electronic order. 

NQR takes advantage from the fact that a nucleus with a nuclear spin I >1/2 features an

electric quadrupole moment. In the presence of a finite electric field gradient (EFG) at

the nuclear site, the degeneracy of the corresponding nuclear energy levels is lifted. Since

I =1/2 for iron, the 
75

As nuclei (I =3/2) were used as NQR probes. Their proximity to the

iron layers helps to retain high sensitivity to electronic changes, which may be further

helped by their large polarizability [9]. Probing by radiofrequency irradiation yields the

quadrupole frequency νQ ∝ Vzz (1+η2
/3)

1/2
, where Vzz and η are respectively the highest

eigenvalue and the asymmetry of the EFG tensor. As the EFG stems from the surround-

ing charge distribution, peculiarities of the latter can be inferred from the determina-

tion of the histogram of quadrupole frequencies in the sample that is shown on Fig.1.

On doping, the frequency distribution shifts to higher values. In the undoped limit, the

single narrow line agrees with a single well-defined charge environment for all As

nuclei. The line is broadened in the optimally-doped/overdoped limit (La 10%/15%,

Sm 10%), likely reflecting structural disorder of fluorine dopants and moderate fluorine

concentration inhomogeneities. While LDA calculations are in agreement with the ex-

perimental NQR frequency in the undoped sample, they could not reproduce the shift to

higher frequency upon doping [10]. However, in the underdoped region (La 5%/7.5%,

Sm 4%/6%/8%), two fairly broad peaks are observed, with further structuring of the high

frequency peak for Sm samples. 

A direct explanation would be phase separation on a macroscopic or mesoscopic scale,

with the difference in peak positions indicating low and high doping regions. Beyond

incompatibility with initial X-ray characterization, this can be tested using T1
-1

spin-

lattice relaxation rate measurements for each spectral peak in the La samples which are

shown on Fig. 2. While (T1T )
-1

in the undoped material tends to diverge on approaching

the magnetic transition, all other peaks show no signature of magnetic ordering. They

reflect however a superconducting transition at low temperature as seen from the

rapid decrease of the relaxation, with a T1
-1

behavior broadly consistent with observed

Fig. 1: 75As NQR spectra of LaFeAsO1-xFx and 
SmFeAsO1-xFx. “OPT”and “OVD”refer to optimally-
doped and overdoped samples. Fits including up to
three (La) or four (Sm) Gaussians are shown as full
lines, with the two-Gaussian fit for x = 0.05 (La) 
detailed as an example.

Fig. 2: 75As spin lattice relaxation in LaFeAsO1-xFx. Note that the contribution of the Sm mag-
netic moments to T1

-1 in the Sm samples prohibits a comparison. (Upper panel) Temperature-
dependence of (T1T )-1 with T1

-1 the spin-lattice relaxation rate as measured on each peak of Fig. 1,
with closed/open symbols corresponding to low/high frequencies. The measurements are done
at the T-dependent peak frequency (undoped), 9.7 and 10.6 MHz (both 5% and 7.5%), and
11MHz (10%). (Lower panel) Temperature-dependence of T1

-1 at low temperature, with
horizontal scaling by Tc (as determined from initial characterization) and vertical scaling to obtain
coincidence about Tc .
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power laws [11,12]. For the underdoped samples in the paramagnetic state, the two

spectral peaks feature similar (T1T )
-1

behaviors, very different from the progressive

suppression of low-energy excitations observed at optimal doping. If phase separation

would occur even on a rather small scale (several nanometers or more), the volume frac-

tion corresponding to each peak would exhibit fluctuations specific to the then neces-

sarily different doping levels. In light of the spectra, the relaxation contrast should then

be much larger, with the high-frequency peak relaxation closer to developing a decrease

similar to that at optimal doping. Here, the similar weak Curie-Weiss behavior above Tc

and the moderate difference in amplitude show a sharing of electronic properties, i.e.,

coexistence of the two charge environments at the nanoscale. 

However, a direct electrostatic effect of the fluorine ions such as the effect of Sr
2+

on

adjacent Cu ions in La2-xSrxCuO4 [13] can be excluded here. In this case, each fluorine

must influence on average roughly nine As ions to properly account for the weights of

the peak. The linear growth of the high frequency weight with doping would then sug-

gest that no sizeable overlap of these patches of nine As ions develops as the doping

rises, i.e. fluorine ordering must occur in the underdoped samples for which there is

no experimental hint in iron pnictides. Therefore, the inhomogeneity likely arises not

from the dopants but from an electronic order in the FeAs layers, due to competing

interactions. 

The resolved spectral features and their smooth doping dependence indicate a rather

well-defined and reproducible topology, static on the slow (microsecond) timescale of

NQR. The low and high frequency weights in the spectra would then correspond to low

(closer to undoped) and high (closer to optimally-doped) doping situations. Expected

to feature larger intrinsic magnetic fluctuations, the low-doping regions would ac-

count for the relaxation response of the whole system. Since doping corresponds to

changes in the iron 3d orbital occupancies, it must however be noted that what appears

to be a difference in total occupancy (charge ordering) around As sites may also have

an orbital character (orbital ordering). The presence of a local electronic order is remi-

niscent of the situation observed for instance in cuprates [14] and manganates [15,16],

such as stripe or checkerboard order, static or dynamic. This supports the widespread

presence of electronic inhomogeneities in correlated systems, even in presence of a

homogeneous ground state. 

As for the different phase diagrams proposed for the iron pnictides, the electronic in-

homogeneity of the underdoped region certainly influences the transition from static

magnetism to superconductivity. Starting from high doping, superconductivity is unhin-

dered if not helped by the local order and disappears [2,6,7] only at its low-doping end,

where the high proportion of low-doping regions would allow static magnetism to

shoot up, before recovering electronic homogeneity close to the undoped limit. At low-

doping, the tight link between the structural and magnetic transitions has been argued

to reflect orbital ordering [17]. The local order observed here could then suggest that

a primary factor in the phase diagram of pnictides is realspace competition involving

orbital physics, where sensitivity to structural details would yield seemingly different

phase diagrams. In light of the reported importance of the Fermi surface topology [18],

this would represent a significant change of perspective for future studies.

Smart impurities and the symmetry of the order parameter
Another intriguing aspect of the new iron pnictide superconductors is the symmetry of

the order parameter and the underlying Cooper-pairing mechanism. The presence or

absence of the Hebel-Slichter peak [19] together with the T-dependence of the nuclear

spin lattice relaxation rate, T1
-1

, below Tc are frequently used to discriminate tenta-

tively conventional from unconventional pairing. For a single Fermi surface sheet and

superconductivity in the clean limit T 3
- and T 5

-dependencies would be regarded as

evidence for line- and point-node superconducting order parameters, respectively,



14 Highlights 2009

Fig. 3: 75As T1
-1 for LaFeAs1−δO0.9F0.1 (red diamonds)

compared to LaFeAsO0.9F0.1 (grey crossed squares
[12], new data points for T ≤ 4.2 K). The dotted line
illustrates the T 3 behaviour of T1

-1 for LaFeAsO0.9F0.1,
the solid line indicates the T 5 behaviour observed for
LaFeAs1−δO0.9F0.1. The low-T features with a nearly
linear slope below T ~ 0.3Tc are probably related to
vortices.

which for singlet pairing correspond to the d- and a special s+g-wave state. Recently it

has been realized that the situation in multiband superconductors to which the iron

pnictides do belong is far from being that simple. In addition, the influence of defects

such as impurities and partial chemical substitutions might be crucial for the symmetry

of the order parameter and many physical properties in the superconducting state. In

this context the experimentally observed non-universal behavior for the growing

number of related compounds is challenging. Among various unconventional scenarios

the s±-symmetry proposed [20-22] at the early stages of the iron pnictide research at

present is still the most popular one but other cases including conventional s++-sym-

metry should be considered, too. 

In this unclear situation we report 
75

As NMR measurements of the nuclear spin lattice

relaxation rate in LaFeAsO0.9F0.1 and As-deficient LaFeAs1−δO0.9F0.1. [23] Surprisingly

we observe a drastic change of the T1
-1

(T ) dependence below Tc from T 3
for the clean

sample LaFeAsO0.9F0.1 to T 5
for the disordered LaFeAs1−δO0.9F0.1 (see Fig. 3). In prin-

ciple, our observation of an unusual transition from T 3
to T 5

with increasing disorder is

not necessarily inconsistent with a s±-wave superconducting gap though alternative sce-

narios should be invoked, too. Starting from the clean limit it has been shown [24-26]

that within the generalized s±-wave scenario both node-less and nodal superconduct-

ing gaps might occur depending on the proximity of the doped sample to the antiferro-

magnetic instability. In this regard, naively our finding can be interpreted in favor of a

transition from a nodal to a nodeless unconventional superconducting gap upon adding

As defects which for some reason should drive the system closer to the antiferro-

magnetism, in accord with the slightly enhanced normal state T1
-1

of the As deficient

sample (see Fig. 3).

However, such a simplistic point of view cannot be easily applied to pnictides as it is

also known that the s±-wave ground state is sensitive to non-magnetic impurities. Most

importantly, the intraband impurity scattering does not affect the superconductivity,

since the superconducting gap does not change its sign within each of the bands. At

the same time the scattering with large momenta which connects electron and hole

pockets (interband scattering) is pair-weakening and thus yields a decrease of Tc and

simultaneously introduces power laws in the thermodynamics and T1
-1

at intermediate

temperatures. Therefore, if for some reason As vacancies act as ’smart’ impurities which

change the ratio between the intra- and interband scattering, our observations could

be also explained. The above-mentioned scenario is based on the assumption that

s±-wave order is stable and adding As vacancies either changes the proximity to the

competing antiferromagnetism or/and the ratio of intra- to interband non-magnetic

impurity scattering in pnictides. 
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There is, however, another intriguing possibility. Let us assume that there is a sub-

stantial electron-boson interaction which provides an attractive intraband potential

for Cooper-pairing. In this case a (weak) repulsive interband Coulomb scattering will

still lead to the s±- wave superconducting order in the clean limit though the attractive

electron-boson interaction dominates. However, once the As vacancies change the

ratio between intra- and interband impurity scattering, a transition from s±-wave to

conventional s++-wave superconducting order may be induced. This scenario, however,

still needs further experimental clarification.

For example, despite the transition from T 3
to T 5

behavior we do not find any sign of the

Hebel-Slichter peak in the latter case close to Tc . Moreover, current experimental data

on the importance of the electron-phonon coupling are not very conclusive. Therefore,

the intriguing possibility of high-energy charge fluctuations as well as weak electron-

phonon interactions with orbital fluctuations [27,28] deserve more detailed studies.

Another interesting point would be a detailed comparison with FeSe0.92, which exhibits

a T 3
-law for T1

-1
[29] and other Fe-based superconductors with vacancies in the polar-

isable subsystem. We believe that a future quantitative realistic theoretical description

of our data within unconventional s±- or conventional, but unusual s++-superconduc-

tivity scenarios will stimulate the further development of these approaches and this way

is finally helpful for the elucidation of the underlying but yet unsettled mechanism.
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Iron pnictide thin films
S. Haindl, M. Kidszun, K. Iida, F. Kurth, J. Hänisch, A. Kauffmann, N. Kozlova, 

J. Freudenberger, E. Reich, T. Thersleff, R. Hühne, J. Werner, S. Baunack, L. Schultz, 

B. Holzapfel

Research on superconductivity in the iron pnictides continuously expands nearly two

years after its discovery. In addition to the material synthesis and single crystal growth

thin film fabrication received an important stimulus. On the one hand, epitaxial thin

films support fundamental experiments in superconductivity like phase sensitive tests

using Josephson contacts, current transport in bicrystals and tests of mesoscopic

limits. On the other hand, the aspect of application of iron pnictides may open new and

exciting pathways in material science. 

Successful growth of thin films has been reported only by a small number of research

groups worldwide. Superconducting oxypnictide (1111-phase) thin films have been

reported by IFW Dresden [1] using pulsed laser deposition (PLD) and recently by Nagoya

University [2] using molecular beam epitaxy (MBE). However, a controlled growth of

the oxypnictides is a challenging task. Epitaxy and the reduction of the LaOF impurity

turned out to be the main goals in the preparation of thin films mainly governed by post

annealing conditions [3]. A careful analysis of selected films was carried out by trans-

mission electron microscopy which proved the LaOF impurity restricted at the surface of

the film and at the substrate-to-film interface. Nevertheless, epitaxial LaFeAsO1-xFx thin

films (Fig. 1) have been grown by room-temperature deposition with subsequent post

annealing at temperatures of 940°C for 4 hours (‘ex-situ’ process) [4]. A two-band be-

haviour has been observed in pulsed field measurements of the upper critical field, µ0Hc2

(Fig. 2). Attempts to fit the data after Gurevich [5, 6] with a set of coupling constants,

λ i j with i, j =1,2, show that solutions with det(λi j)> 0 and (λi j) < 0 for i ≠ j are possible.

Therefore, a definitive conclusion about the symmetry of the order parameter (s++ and

s+- respectively) cannot be made yet. In comparison, polycrystalline thin films exhibit

a Pauli limit behaviour of the upper critical field (Fig. 3), which is still controversially

discussed today [7, 8]. The same films brought also evidence for a weak link behaviour

of the grain boundaries in this material for the first time [9]. 

Fig. 2: Magnetic phase diagram of an 
epitaxial LaFeAsO1– xFx thin film with fits
from the two-band model. The inset shows
a HRTEM micrograph of the La-1111 phase
after noise reduction (filtered inverse FFT). 

Fig. 3: Magnetic phase diagram of the polycrystalline LaFeAsO1– xFx thin film. The upper critical
field increases with a large slope of -6.2 TK-1. The deviation from the Werthamer-Helfand-
Hohenberg (WHH) fit indicates Pauli limit behaviour.

Fig. 1: c-axis orientation in a θ -2θ scan of an epitaxial LaFeAsO1– xFx thin film. The inset shows
a phi-scan of the (112) pole with a FWHM = 1°.
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In collaboration with the University of Jena, first tunnelling contacts have been fab-

ricated on La-1111 thin films and are currently under investigation. Both, tunnelling

and optical experiments, will give new information about the coupling constant and,

therefore, will provide a better understanding of the mechanism of superconductivity

in the iron pnictides. 

In addition to the 1111 thin films, the growth of Co-doped BaFe2As2 (122-phase) thin

films has been started at IFW Dresden by ultra high vacuum (UHV) PLD. Co-doped

BaFe2As2 and SrFe2As2 epitaxial films have been reported since 2008 [10, 11]. Epi-

taxial Ba(Fe0.9Co0.1)2As2 thin films have been grown at IFW on various substrates (LAO,

STO, LSAT, YAO, MgO) to investigate the influence of the lattice misfit on the super-

conductive properties [12]. As a result, an increase of the superconductive transition

temperature, Tc , was observed with increasing lattice parameter ratio, c/a (Fig 4).

Tunability of the transition temperature by lattice distortions has been suggested in

accordance with observations with respect to the As-Fe-As bond angle [13]. Recently,

optical investigations of the Ba(Fe0.9Co0.1)2As2 thin films have found a nodeless super-

conducting gap [14]. Despite the fact that the measured value of 2∆/kBTc = 2.1 is below

the BCS universal value of 3.5, the electrodynamics of the superconductor agree with

the BCS theory. However, the scattering mechanisms and their influence on supercon-

ductivity in the iron pnictides still remain an unsolved puzzle.   

References

[1] E. Backen, et al., Supercond. Sci. Technol. 2211, 122001 (2008) 

[2] T. Kawaguchi, et al., Appl. Phys. Express 22, 093002 (2009)

[3] M. Kidszun, et al., submitted to Supercond. Sci. Technol. (EUCAS special issue) 

[4] M. Kidszun, S. Haindl, E. Reich, J. Hänisch, L. Schultz, B. Holzapfel, 

Supercond. Sci. Technol. 2233, 022002 (2010)

[5] A. Gurevich, Phys. Rev. B 6677, 184515 (2003)

[6] J. Jaroszynski, et al., Phys. Rev. B 7788, 174523 (2008) 

[7] G. Fuchs, et al., New Journal of Physics 1111, 075007 (2009)

[8] Y. Kohama, et al., Phys. Rev. B 7799, 144527 (2008)

[9] S. Haindl, et al., Phys. Rev. Lett. (accepted) arXiv: 0907.2271

[10] H. Hiramatsu, T. Katase, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Express 11, 

101702 (2008)

[11] S. Baily et al., Phys. Rev. Lett. 110022, 117004 (2009)

[12] K. Iida, et al., Appl. Phys. Lett. 9955, 192501 (2009)  

[13] C. H. Lee, et al., J. Phys. Soc. Jpn. 7777, 083704 (2008)

[14] B. Gorshunov, et al., arXiv: 0912.1256

Cooperation Univ. of Jena, Univ. of Stuttgart

Funded by DFG 

Fig. 4: Variation of the critical temperature 
of Co-doped BaFe2As2 thin films with lattice 
distortion of the film given by the ratio of the
lattice parameters.  



18 Highlights 2009

Recent progress in the preparation of 
Ironpnictide Superconductors
S. Aswartham, C. Nacke, M. Schulze, L. Harnagea, S. Singh, I. Morozov, 

M. Deutschmann, J. Werner, S. Wurmehl, G. Behr, R. Klingeler, N. Leps, 

S. Gaß, K. Leger, G. Friemel, A. Kondrat, C. Hess, J. E. Hamann-Borrero, 

U. Stockert, M. Abdel-Hafez, B. Büchner

In February 2008, superconductivity was found in LaO1-xFxFeAs with a TC of 26 K [1]. The

critical temperature in the oxypnictides, the so called ‘1111’ compounds, can be increased

by e.g. application of high pressure or by exchange of the rare earth element (e.g. R = Sm,

TC = 55K [2]). Soon after the discovery of superconductivity in ‘1111’-compounds, super-

conductivity was also found in the ThCr2Si2-type ‘122’- and the Cu2Sb-type ‘111’-ma-

terials. (Ba,K)Fe2As2 was the first superconductor found in the 122-system; its super-

conducting critical temperature TC can be as high as 38 K [3]. Co-doping at Fe site in

Ba122 leading to SC with TC up to 22 K soon followed this report [4]. The parent (non-

superconducting) AFe2As2 compounds are characterized by their first-order-like

simultaneous structural and magnetic transitions at temperature T0 = 130, 170 and

205 K for A = Ba, Ca and Sr, respectively [5-7]. In LiFeAs (‘111’) superconductivity was

found at temperatures as high as 18 K [8]. The compound ß-Fe1.01Se (‘11’) consisting of

FeSe layers shows superconductivity at 8.5 K, the maximum critical temperature

enhances under pressure up to 37 K [9]. While each of these systems causes its specific

challenges when growing crystals, crystal growth in general proceeds in a layered

manner, i.e. single crystalline layers grow on top of each other, the plane of layers

being perpendicular to the crystallographic c-axis. Crystals are, therefore, fragile and

prone to exfoliation.

In the following, we will enlighten the materials and synthesis aspects of the new

Ironpnictide superconductors.

We were successful in the growth of Ba, Sr, Eu and Ca 122 compounds and their doping

variants. (Eu,K)Fe2As2 single crystals are also successfully grown. For the Ba and Ca

series, different growth routes have been applied. 

The Bridgman technique and growth from self-flux was employed to grow cm-size high-

quality single crystals of pristine BaFe2As2 (Ba122) compound and several of its Co-, Ni-

and K-doped superconducting variants; spanning almost the entire phase diagram [10].

Two different approaches for growing these single crystals were followed. In the first ap-

proach, self-flux (Fe1-xCox)As is used to obtain a homogeneous melt of the composition

Ba(Fe1-xCox)3.1As3.1. The melt composition was chosen to lower the melting temperature

of Ba(Fe1-xCox)2As2 to near T = 1463 K, which is the upper practical limit of using an

evacuated silica ampoule. In such a case, the use of minimal quantity of self-flux helps

increasing the single-crystal yield. A slow cool down in a temperature gradient of about

10 K/cm, in a specially designed crucible assembly, resulted in large flux-free single-

Fig. 1: Pictures of Ba(Fe1-xCox)2As2 crystals with dif-
ferent Co doping level. The top row shows crystals
obtained from self-flux, the bottom row displays
crystals grown by the conventional Bridgman
method.
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crystals of the phase Ba(Fe1-xCox)2 As2. In the second approach, single-crystals were

grown from a stoichiometric melt of composition Ba(Fe1-xCox)2 As2 using the Bridgman

method in a vertical tube furnace in tapered alumina crucibles. Using both techniques,

single-crystals with lateral dimensions up to 25x10 mm
2

and thickness up to 1 mm were

obtained (see Fig. 1). 

Single crystals of Ironpnictides Ca(Fe1- x Cox)2 As2 (0 ≤ x ≤ 0.2) were grown from Sn-flux

using the conventional high temperature solution growth technique, resulting in phase

pure and flux free crystals. Figure 2 shows the crystals, which are plate-like exhibiting

lateral dimensions up to 15 mm and 0.5 mm thickness. 

For both the Ca and Ba system, the crystallographic c-axis of the tetragonal unit cell

decreases upon Co-doping, while the a-axis shows a less significant variation. The

microstructure and the actual Co-content for each grown crystal is by default examined

in detail in an electron microscope equipped with energy dispersive x-ray (EDX) and wave-

length dispersive x-ray (WDX) probe at several points of the crystals. In case of the Ca122

samples, actual Co-contents are about 15 - 35 % smaller than the nominal values. The

Ba crystals obtained from the vertical Bridgman method exhibit a higher Co-content

than the nominal values, while the Co-contents of Ba crystals from self-flux are in good

agreement with the nominal values.

In particular, the high quality of the Ba(Fe1-x Cox)2As2 obtained by the vertical Bridgman

method was confirmed by ZF-µSR studies [11], demonstrating a pure Gaussian-like

relaxation (Fig. 3). Measurements of magnetic susceptibility and electrical resistivity re-

veal superconducting properties of the Co-doped crystals. Narrow superconducting

transition widths (≈ 0.5 K) and large residual resistivity ratios (≈ 7) indicate the high-

quality of our single crystals. Figure 4 shows the electronic phase diagram of the 122

series comparing the results from crystals obtained by growth from self-flux and by a con-

ventional Bridgman growth. The electronic phase diagram of the Ca 122 series as derived

from magnetization, resistivity, specific heat, µSR data reveals a similar shape (not

shown here). 

Fig. 2: Single crystals of Ba(Fe1-xCox)2As2

grown by high temperature solution growth
using Sn-flux. 

Fig. 3: ZF - µSR measurement of a BaFe1.8Co0.2As2 sample
grown via the vertical Bridgman technique. A pure Gaussian
like relaxation confirms the very high quality of the crystal.

Fig. 4: Electronic phase diagram of the sample series 
Ba(Fe1-xCox)2As2 comparing the results from crystals obtained
by growth from self-flux and by vertical Bridgman growth.
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Single crystals of LiFeAs and NaFeAs were obtained from self-flux in sealed Nb crucibles.

For LiFeAs, a Li :Fe:As ratio of 3:2:3 was mixed and sealed in an Al2O3 crucible under

1.5 atm Ar. The resulting crystals have dimensions of maximum 10x8x0.2 mm and the

LiFeAs phase was confirmed by EDX and X-ray diffraction (XRD). We also made LiFeAs

single crystals with Sn-flux. Here, excess Sn was removed by decantation and centri-

fugation. The synthesis of LiFeAs single crystals has not been reported yet elsewhere,

neither from self-flux nor Sn-flux. As displayed in Fig. 5, the material becomes bulk

superconducting below ∼16 K. Our susceptibility data prove the absence of magnetic

impurities and the slope dM/dT at 300 K is in a good agreement with 122- single crys-

tals, La 1111 samples and theoretical predictions [13]. In addition, ARPES measurements

on LiFeAs crystals from self-flux are in agreement with the correct stoichiometry. Re-

markably, the ARPES data exclude Fermi surface nesting indicating that supercon-

ductivity is not associated with a certain nesting condition [12]. 

NaFeAs single crystals have been made very similarly from self-flux, starting with

Na : Fe : As = 1.6 : 1:1. The resulting crystals are slightly smaller than LiFeAs with a

maximum size of 3x2x0.05 mm. The phase was confirmed by EDX and XRD, and the self-

flux consists mainly of Na3As. Superconductivity is found with TC ∼ 7 K (see Fig. 5). For

NaFeAs, a single crystal has already been achieved in Ref. [14] by a slightly different

procedure. Note, that in [14] TC = 23 K is reported (onset temperature in ρ(T)) while the

resistivity becomes zero clearly below 10 K. This agrees to the onset temperature of SC

as derived from our susceptibility data, i.e. ∼24 K. In addition, signatures of the struc-

tural and the magnetic phase transitions are reported in [14] at 52 K and 41 K while our

sample exhibits only one but much more pronounced anomaly at 64 K.

Crystals with a nominal composition of FeTe0.5Se0.5 have been grown using a vertical

Bridgman method in a vertical tube furnace and by a Bridgman-like growth in a ho-

rizontal setup. The material was put under 0.3 bar Ar into double walled quartz tubes.

The temperature profiles are based as well on the extrapolation of the binary phase

diagrams as on Ref. [15] but our studies suggest significantly lower temperatures. The

samples show dendrite-like structures within a homogeneous single-crystalline matrix

(see Fig. 6) which is Te rich as shown by EDX analysis, i.e. Fe1.05Te0.67Se0.33. In parti-

cular, deviations in the ratio Te:Se are observed in the dendrites. The presence of the

correct phase is corroborated by the observation of superconductivity at TC = 11 K

(Fig. 6). Samples with 2% of S doping also exhibit superconductivity with critical

temperature of 11 K.

Fig. 5: (a) Measurement of the magnetization as a
function of temperature for LiFeAs and NaFeAs 
single crystals. The inset shows the superconducting
transitions. (b) SEM picture of a LiFeAs crystal ob-
tained from self-flux.

Fig. 6: Crystal with nominal FeTe0.5Se0.5 composition
and the microstructure obtained by optical micros-
copy. Here, the formation of dendritic phases within
the matrix is observed. The measurement of the mag-
netization as a function of temperature demonstrates
the superconducting properties of the FeTe0.5Se0.5

with TC = 11 K.

a) b)
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Polycrystalline samples of the rare earth Ironoxypnictides have been prepared and

applied to study the electronic phase diagrams (see Fig. 7 for the Sm and Ce series [16])

and to provide materials for NMR, µSR, transport, magnetization, thermal expansion,

specific heat, Andreev spectroscopy, optics, XAS, photoemission spectroscopy, pulsed

magnetic field, and neutron studies. Sample optimization yielded highest quality

polycrystals. The materials show superconductivity with critical temperatures comparable

to those found in literature but with improved smaller widths of the superconducting

transition. Among the successfully synthesized polycrystalline samples are the doping

series LaO1-xFxFeAs with 0 ≤ x ≤ 0.2 and La1-xSrxOFeAs with 0 ≤ x ≤ 0.2 and doping sam-

ples containing other rare earth elements such as Ce, Nd, Gd and Sm. New synthesis

routes have been exploited to further enhance the sample quality e.g. by ball milling of

the educts. All samples have been comprehensively studied regarding their physical

properties, their structural perfection, their doping level and their microstructure.

The normal state magnetization of Ironpnictides exhibits a universal increase upon

heating. In LaO1-xFxFeAs, both the slope and the absolute value of the susceptibility at

elevated temperatures are independent on doping, irrespectively whether long range

antiferromagnetic order or the non-magnetic superconducting ground state appears.

Our data on LiFeAs (Fig. 5), NaFeAs (Fig. 5), Ba(Fe1-xCox)2As2 and Ca(Fe1-xCox)2As2

single crystals imply the generic nature of this feature. Remarkably, there is quanti-

tative agreement of the slope well above the ground states. 

The sample characteristics have a high impact on the experimental results and their

interpretation. This implies that the confirmation of the results hitherto by means of

high-quality samples is mandatory. In the last year, we had considerable progress in the

successful synthesis of the new Ironpnictide superconductors. The high quality of our

samples opens a route to study the underlying physics and to address the open questions

related to this in this new and fascinating class of materials.
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Skyrmions and chirality selection in 
noncentrosymmetric magnets
U. K. Rößler, A. A. Leonov, A. B. Butenko, A. N. Bogdanov

In noncentrosymmetric magnetic materials chiral Dzyaloshinskii-Moriya exchange

stabilizes non-collinear twisted magnetization structures with a fixed sense of rota-

tion. As an alternative to one-dimensional long period spirals, Skyrmion-strings can

arise, which may condense into multiply modulated states. The extended Skyrmionic

textures are determined by the stability of the localized solitonic Skyrmion cores and

their geometrical incompatibility which frustrates regular space-filling. Similar

solitonic states can exist in chiral liquid crystals, ferroelectrics, multiferroics and in

confined systems (e.g. nanolayers of magnetic metals). Our recent results on the

basic phenomenological models of chiral magnets reveal rich temperature-field phase

diagrams that include different Skyrmionic lattices and confinement of Skyrmions.

Introduction
Smooth, multidimensional localized structures (Skyrmions) are intensively inves-

tigated in many areas of physics [1,2]. In the majority of nonlinear field models,

Skyrmionic states appear only as dynamic excitations, but static configurations are

generally unstable and collapse spontaneously into topological singularities [3]. These

instabilities can be overcome if the energy functionals contain (i) contributions with

higher-order spatial derivatives (Skyrme mechanism), [4] or (ii) terms linear with respect

to spatial derivatives of the order parameters (so called Lifshitz invariants) [2,5].

In most condensed matter systems there are no physical interactions underlying ener-

gy contributions with higher order spatial derivatives. On the contrary, Lifshitz invari-

ants arise in different condensed matter systems with intrinsic and induced chirality

[5,6]. They stabilize two- and three-dimensional modulations of the order parameters

with long period and fixed sense of rotation. Such solitonic textures can arise in dif-

ferent classes of noncentrosymmetric magnetic crystals [2,5,7], chiral liquid crystals,

ferroelectrics, and multiferroics [7,8]. 

Effects of chiral couplings in magnetic systems
In magnetism, the chiral couplings rely on the asymmetric Dzyaloshinskii-Moriya (DM)

exchange. In confined systems as magnetic nanolayers, nanowires, and nanodots sur-

face/interface-induced DM couplings influence magnetic states. These surface-induced

couplings favour one sense of rotation in conventional non-collinear micromagnetic

structures as domain walls or vortices. Micromagnetic analysis of this chirality selection

for the vortex ground states of magnetic nanodisks shows that the sign and the strength

of the DM coupling strongly influence their structures, magnetization profiles and core

sizes [9]. The calculated relations between strength of the DM interactions and vortex-

core sizes provide a method to determine the magnitude of surface-induced DM couplings

in ultrathin magnetic films/film elements. 

As a genuine consequence of surface-induced DM couplings different types of chiral

modulations may occur and have been observed [10]. Therefore, thin film systems are

candidate structures to study chiral magnetic Skyrmions. Low temperature properties of

Skyrmionic states have been comprehensively studied earlier [2,5-7]. Our recent results

are concerned with nucleation processes of Skyrmions, their condensation into ex-

tended textures, and their further evolution under the influence of magnetic fields

and temperature. By brute force energy minimization of the phenomenological

(Dzyaloshinskii) models of chiral ferromagnets we have derived numerically exact solu-

tions for isolated and bound Skyrmions and Skyrmion lattices that apply to different

classes of uniaxial and cubic noncentrosymmetric ferromagnets [11,12,13].
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Chiral flux-lines as the building blocks of Skyrmionic matter
The micromagnetic equations for chiral systems include solutions for axisymmetric

localized states, isolated Skyrmions. They can be thought of as isolated topologically

stable filaments within spatially homogeneous phases (Fig.1 a,b). Being proportional

to the strength of DM coupling their sizes reduce to zero in centrosymmetric systems.

Hence, the chiral coupling supplies the unique mechanism to stabilize Skyrmionic

textures. This singles out chiral condensed matter systems with Lifshitz-type invariants

into a particular class of materials with Skyrmionic states. Isolated Skyrmions remind

Abrikosov vortices in type II superconductors or thread-like textures in nematic liquid

crystals. Contrary to these defected patterns with singularities in the core, the dis-

tribution of the order parameter in Skyrmions is smooth. In the phase diagram of the

solutions (Fig. 2) the isolated Skyrmions exist below a certain critical field h0 (Fig. 2)

and are characterized by weak variation of the magnetization modulus m and strong

localization of their cores (Fig. 1). Near the critical field h0 the magnetization modulus

at the Skyrmion axis approaches zero. This destroys topological stability of Skyrmions

and leads to their collapse. 

Skyrmion lattices and helicoids: double-twist versus ideal compatibility 
Below another critical field hc solitary Skyrmion lines condense into hexagonal Skyrmion

lattices (Fig. 3 a, b). These 2D modulated textures compete with the common one-dimen-

sional (helical) modulations (Fig. 3 c). Skyrmion lattices are characterized by a strong

variation of the cell sizes and transformation of their structures near cell boundaries.

However, they preserve axisymmetric distribution of the magnetization near the cell cen-

ter. This remarkable property is due to the specific balance of energy contributions in the

Skyrmions. ”Double-twist” rotation of the magnetization near the Skyrmion core leads

to larger energy reduction than in ”single-twisted” spiral phases. Conversely, the ener-

gy density is larger at the outskirt of the Skrymion than in the helical states. This explains

the unusual axial symmetry of the cell cores and the stability of their cores. There is an

inherent frustration built into models with chiral couplings that prevents to fill the whole

space with the ideal, energetically most favoured double-twist motif. The condensation

of Skyrmions, therefore, creates spatially inhomogeneous twisted phases which can form

lattice-like or amorphous assemblies of these multi-dimensional solitonic objects.

Skyrmion-Skyrmion interactions and confinement phenomenon
The phase diagram (Fig. 2) includes three distinct regions with different character of

inter-Skyrmion coupling. Repulsive interactions are found in a broad temperature

range extending to low temperatures. At higher temperatures, the interactions be-

come oscillatory with alternating sign. Depending on the distance between Skyrmions,

their interaction can be either attractive or repulsive. In this region, Skyrmions are

energetically confined, because pairs or clusters of free Skyrmions can achieve lower

Fig. 1: Cross-section through an isolated Skyrmion in chiral magnets with Dn and cubic sym-
metry (a) and a set of isolated Skyrmion lines (b).

Fig. 2: Temperature (T ) - magnetic field (h) phase 
diagram of an isotropic helimagnet includes regions
with repulsive (I) and  alternating (II) inter-Skyrmion
interactions. In confinement pocket (III) Skyrmions
exist only as bound states. Solitary Skyrmions con-
dense into a hexagonal lattice at critical field hc (T )
(red solid line) and collapse at h0 (T ) (dotted line).

Fig. 3: A cross-section of a cell (a) in a hexagonal
Skyrmion lattice (b) and a one-dimensional chiral
texture (helicoid ) (c).
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energies by a suitable arrangement than the same number of free Skyrmions. Thus,

Skyrmions may form bound agglomerations and extended textures to fill the whole space,

if they can exist in this region of the phase diagram. Finally near the ordering point

Skyrmions are strictly confined, because there cannot exist solutions for asymptoti-

cally free Skyrmions within this confinement pocket (area (III) in Fig. 2). These bound

Skyrmions exist as hexagonal or half-Skyrmion (square) lattices (Fig. 4). As the mag-

netization modulus m is “soft” near the ordering temperature, the magnetic-field-

driven evolution of such confined Skyrmions causes a strong variation of the modulus

within Skyrmion cores, while the equilibrium lattice periods varies little with the applied

field (Figs. 4, 5).

Physical nature of precursor states in chiral magnets
The confinement of Skyrmions is responsible for anomalous magnetic properties in

chiral magnets. The formation of extended Skyrmionic textures at elevated temperatures

belongs to a rare class of instability-type nucleation transitions [14]. The lattices

composed of confined localized Skyrmion units disappear at the transition tempera-

ture continuously as the amplitude of the modulus variation in the lattice vanishes [11].

However, there exists still a multitude of possible arrangements of Skyrmions as they are

nucleated in an extended texture. Evidence for these anomalous transitions into mul-

tiply modulated magnetic states has been found in experiments on chiral magnets as pre-

cursor phases that precede the formation of the helical ground state [15,16]. Our results

show that these precursor phenomena are a general effect related to the confinement

of localized Skyrmionic excitations.

We also find that magnetic anisotropy plays a crucial role to stabilize Skyrmionic states

as thermodynamic phases in cubic helimagnets [11,13]. The magnetic phase diagram in

Fig. 5 includes two regions with Skyrmionic states that are thermodynamically stabilized

by exchange magnetic anisotropy. At zero field the precursor phase is a staggered half-

Skyrmion square lattice, and at higher field a hexagonal Skyrmion lattice is formed in

the so-called A-phase.

Fig. 4: Structure of hexagonal (column I ) and square (column II ) Skyrmion lattices near the
ordering temperature (a) and contour plots for the magnetization modulus m (b) and the mag-
netization component along the magnetization field (c) for increasing magnetic fields.

Fig. 5: In cubic helimagnets like MnSi magnetic
anisotropy stabilizes hexagonal and square
Skyrmion lattices near the ordering temperature Tc.

I II
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Direct observation of superconducting vortex clusters pinned
by a periodic array of magnetic dots in ferromagnetic/super-
conducting hybrid structures
T. Shapoval, V. Metlushko

1
, M. Wolf, B. Holzapfel, V. Neu and L. Schultz 

Strong pinning of superconducting flux quanta by a square array of 1 µm-sized

ferromagnetic dots in a magnetic-vortex state was visualized by low-temperature

magnetic force microscopy (LT-MFM). A direct correlation of the superconducting flux

lines with the position of the dots was observed. The force that the MFM tip exerts on

the individual vortex in the depinning process was used to estimate the spatial mo-

dulation of the pinning potential. It was found, that the superconducting vortices

which are preferably located on top of the ferromagnetic dots experience a pinning force

about 15 times stronger as compared to the pinning force in the pure niobium film. This

strong pinning exceeds the repulsive interaction between the superconducting vortices

and allows vortex clusters to be located at each dot. Our microscopic studies are

consistent with global magnetoresistance measurements on the hybrid structures, but

suggest a modified picture of the pinning mechanism.

Controlling the distribution of magnetic flux quanta (superconducting vortices) in su-

perconducting materials by introducing artificial pinning centers is a challenge, both in

basic and in applied research. Whereas randomly distributed defects act as strong local

pinning centers which significantly improve the in-field critical parameters of supercon-

ducting films, ordered pinning potentials give rise to collective pinning mechanisms and

thus lead to commensurate pinning effects. In comparison to simple structurally ordered

pinning sites, magnetic pinning centers provide additional degrees of freedom, which

lead to several pronounced effects, such as domain-wall superconductivity, field induced

superconductivity, proximity effect, magnetostatic interaction, and local suppression of

superconductivity by strong out-of-plane field components. 

Until now the scientific community concentrates on the investigation of the vortex

behaviour in superconducting/ferromagnetic (SC/FM) hybrid structures where the mag-

netic dots are in a multi domain or single domain state with homogeneous in-plane or

out-of-plane (for strong perpendicular anisotropy) magnetization. But depending on

their shape and aspect ratio, the so called magnetic vortex state can be energetically

stable in circular dots at remanence. Here, the magnetization curls continuously around

the center while staying purely in-plane in a large area of the dot and turns perpendi-

cular to the surface in the center of the dot creating a small magnetization swirl. 

It was shown recently in Hoffmann et al. [1] that the nature of pinning of SC vortices

in such hybrid systems should crucially differ from that where the dots are in the

single domain state. The strong drop of the magnetoresistance curve of the SC film was

clearly correlated to the presence of the magnetic-vortex state of the underlying FM dots.

To look deeper into the nature of this enhanced pinning, local investigations of the

distribution of SC vortices and there behaviour are indispensable. 

In our work we have performed the first local imaging of SC vortices in the vicinity of such

magnetic dots in the magnetic-vortex state. 

The techniques we used, low temperature magnetic force microscopy (LT-MFM), is a

powerful method to probe the spatial variation of the pinning landscape, as it allows

combining the non-invasive imaging of individual vortices with the direct manipulation

and depinning of vortices from their positions.

The following hybrid structure was studied: a square array of permalloy (Py = Ni80Fe20)

dots with 1 µm diameter, 25 nm height and 2 µm periodicity was prepared on a Si (100)

substrate using standard e-beam lithography, e-beam evaporation, and lift-off pro-

cesses; a 100 nm thick SC niobium (Nb) film (Tc = 8.32 K) was deposited on top of the Py
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dot array by sputter deposition [1]. A SEM scan of this Py/Nb hybrid structure is shown

in Fig.1 (a) (inset). The magnetic in-plane hysteresis loop [Fig.1 (a)] of the Py clearly

reveals magnetic vortex behaviour with vortex nucleation and annihilation fields. 

As the first step we have generated magnetic vortices in the Py dots with a defined

polarity, such that the magnetic-vortex core and the MFM tip experience an attractive

interaction that shows up as a dark contrast in the center of the dot [Fig. 1 (c)]. Then,

the sample was cooled down to a temperature below Tc of the Nb film (T = 6.1K = 72%Tc)

in perpendicular fields Hz = – 0.5 mT, –1 mT, –1.5 mT that are close to the matching fields,

Hm , for this hybrid structure (Hm = mφ 0 /S, with φ 0 = h/2e being the magnetic flux

quantum and S = 4 µm
2
). The imaged vortex distributions are shown in Fig. 2 (a)–(c),

respectively. The orientation of Hz is negative, so that SC vortices and the MFM tip

exhibit repulsive interaction and SC vortices show up as confined circular objects with

positive frequency shift (red color). Hence, the SC vortices in Nb film have a polarity

opposite to that of the magnetic-vortex core in Py dots. Thus the magnetostatic inter-

action between magnetic and SC vortices turns out to be repulsive. Such a configuration

is selected to differentiate the magnetostatic pinning mechanism from the non-mag-

netic one.

Figure 2 (a) corresponds to the first matching field H1. Here one SC vortex is visualized

per unit area of the dot array, as expected. The SC vortices are located on top of Py dots

(white circles), showing that the dots act as preferable pinning centers. Nevertheless,

they do not concentrate at the center of the dot, but occupy the edges of the dot.

Furthermore, no SC vortices are found in the interstitial positions between Py dots. This

effect becomes more pronounced when the second matching field H2 has been applied

during cooling [Fig. 2 (b)]. Also here, despite of the long-range repulsive interaction

between SC vortices, they are not distributed homogeneously, but are strongly pinned

by the Py dots, so that two vortices are located on each dot. A further increase of the field

to H3 leads to an enhanced magnetic contrast on top of the Py dots, which corresponds

Fig. 1: Magnetic hysteresis loop of the Py array measured at 5 K using a superconducting quan-
tum interference device (SQUID) displays magnetic vortex behaviour with vortex nucleation and
annihilation fields. For the inner loop in the field range from – 30 mT to +30 mT, the mag-
netization process occurs only by vortex propagation and, thus, is reversible (vortex branch). The
inset shows a SEM image of Py dots covered with a 100 nm thick Nb layer. The in-plane field Hy

was varied along the hysteresis loop starting from saturation at +100 mT (b), through applying
a negative field less than the magnetic-vortex annihilation field (–25 mT) to the magnetic-
vortex state at zero field (c). Color bars give the measured ∆ƒ signal which strongly differs be-
tween the saturated (b) and the vortex state (c). A small out-of-plane field of +10 mT was
permanently applied to insure a positive polarity of the magnetic vortex. Scanning distance was
75 nm, T = 14.6 K. The white circles represent the location of the Py dot.

Fig. 2: Visualization of superconducting vortices
pinned by Py dots at 6.1 K (72%Tc ). An area where
one dot is not fully switched to the magnetic-vortex
state and has a residual in-plane component was
chosen for LT-MFM imaging to ensure that the same
dots are imaged at different fields and to correct 
a small thermal drift during experiments. It was es-
tablished that the vertical coil of the microscope has 
a shift of zero point in the range of – 0.5 mT. This 
justifies to consider the +0.5 mT image, where only
magnetic contrast from the Py dots is observed, as 
a “background”, and to subtract it from the other
ones. In the lower right dot, the residual in-plane
component of the Py magnetization leads to a 
slightly disturbed difference image. The frozen 
effective fields Hz are: (a) – 0.5 mT, (b) –1 mT and 
(c) –1.5 mT. SC vortices are visualized as red spots. 
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to multiple flux quanta (vortex cluster) pinned by the dots [Fig. 2 (c)]. Here the ex-

pected three SC vortices could not be separately resolved due to overlapping of their

magnetic stray fields at small vortex-vortex distances. The discussion of the nature of

the imaged vortex distribution can be found in Shapoval et al. [2].

A first estimation of the pinning force is based on the fact that two SC vortices are sit-

uated close to each other on top of the Py dot rather than being organized in a homo-

geneous Abrikosov lattice. Consequently, the pinning force due to these artificial defects

(Fp) is higher than the repulsive force between vortices Fv – v. The repulsive force between

two SC vortices in thin films with a thickness below the penetration depth, λ, has been

approximated in the Pearl model [3] as: Fv – v = φ0
2
/πµ0a2, where a is the distance between

the vortices. For H2, where the distance between two vortices was measured to be about

a = 750 nm [Fig. 2 (b)], the vortex-vortex repulsion force normalized by the Nb film thick-

ness was estimated to be fv – v = 19±0.3 pN/µm. Due to the long-range character of this

interaction, the formation of SC vortex clusters in thin films is energetically unfavorable

[3]. Consequently, the presence of a strong pinning potential is required to ensure the

visualized distribution of SC vortices. As it was shown recently by Brandt [4], according

to the finite-size of the film the real vortex-vortex interaction is weaker than the value

calculated from the Pearl model for an infinite thin SC layer.

While scanning with the MFM tip, an additional lateral force, Flat, that acts on the SC

vortices arises. Thus, a non-invasive imaging of vortices by MFM is possible only if the

vortices are pinned. The tip-vortex interaction force can be accurately tuned during

scanning by varying the tip-sample separation h and Flat can be estimated from 

φ0
the monopole-monopole model [5] as max(F lat) = 0.38m~  ⎯ (h+1.27λ + δ)

-2
, 

2π

where m~ is the monopole moment per unit length of the tip and δ is its position within

the tip as sketched in Fig. 3 (e). If this force exceeds the pinning force of an individual

vortex at a natural or artificial defect the vortex can be dragged from its position. 

Fig. 3: Distribution of the SC vortices in a Nb film in
the presence of the Py dots in the magnetic-vortex
state measured at T = 6.1 K and the second matching
field. The tip-sample distance was varied. As long as
the tip-sample distance h2 is larger than 90 nm, the
vortices are not dragged by the tip. As soon as h2

reaches 90 nm (a), the interstitial vortex (marked by
the arrow) is depinned and moved completely out of
the scanned area. This is apparent from the second
scan at the same distance (b), where this vortex be-
tween the Py dots is no longer visible. The presence
of the 25 nm thick Py dots underneath the Nb film
leads to a surface modulation of the SC film, as it is
sketched in (e). The AFM profile (not presented here)
shows that the modulation h2 – h1 = 30 nm is on the
scale of the Py dot thickness. Consequently, the SC
vortices imaged on top of the Py dots have a lower
tip-sample distance and experience a stronger lateral
force from the MFM tip. Despite the decreased dis-
tance, the vortices on the Py dots are not dragged 
by the tip at h2 = 90 nm and also h2 = 75 nm (c). 
Only when h2 decreases to 60 nm (h1 = 30 nm) and
the lateral depinning force that acts additionally to
the existing repulsive interaction, Fv – v, reaches
2.3 pN/µm, the vortices on top of the Py dots also
start to move (d). Panel (e) sketches a cross-sectional
cut of the FM/SC hybrid structure and the MFM tip
scanning above the surface. 
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In order to probe this effect, MFM scans have been performed on the same sample po-

sition at different tip-sample distances in order to depin the SC vortices located on the

Py dots and in the interstitial positions under the influence of the stray field of the tip

(Fig. 3). From these images using the monopole-monopole model we have estimated the

lateral force that acts between the MFM tip and a SC vortex in the interstitial position and

on the dot. This force normalized by the Nb film thickness was found to be 1.5 pN/µm

for an interstitial vortex that is located in the pure Nb film and 2.3 pN/µm for the vor-

tices on top of the Py dots. As the vortices on the top of the dots already undergo strong

repulsive interaction (fv–v) the effect of the MFM tip should be added to fv–v in order

to find the real force needed to depin the vortices from the dots.  As a result, the total

pinning force at the Py dots is estimated to be 21 pN/µm, which is about 15 times stronger

as compared to the pinning force in the pure Nb film estimated above. The details of the

local pinning analysis can be found in Shapoval et al. [6].

On the one hand, our microscopic observations support the conclusion made from the

magnetoresistance measurement that the Py dots in the magnetic-vortex state act as

highly preferable pinning sites [1], on the other hand they show that a more detailed

explanation of the pinning mechanism is essential for understanding the visualized

arrangement of SC vortices in such FM/SC hybrid structures. 
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Structuring Graphene
M. Rümmeli, J. H. Warner

1
, A. Bachmatiuk, F. Schäffel, B. Büchner 

Graphene is a remarkable material with incredible electrical and mechanical properties.

However, it has only recently been isolated. This has made graphene the “new rising star”

in nano-carbon based materials due to its exciting properties at the nanoscale, e.g. high

charge carrier mobility. In addition, when existing as narrow strips or ribbons (ca. 10 nm

wide) a band gap opens making them excellent candidates for field effect transistors.

Hence, apart from the exciting possibilities in discovering new physics from these 2D

structures, they offer tantalizing opportunities for the development of high speed (and

even flexible) molecular electronics. However, one of the major barriers impeding their

progress on this front relates to difficulties in their fabrication. In order to integrate them

in to electronics they need to be fabricated in large areas or in highly defined ways (e.g.

nanoribbons), better still, in a manner suited to current complimentary metal oxide

semiconductor (CMOS) technology. This latter point is important because the semi-

conducting industry has invested billions in its current technology and so its use for the

large-scale manufacture of graphene based high speed electronic devices and circuitry

will make it economically viable.

Various routes exist to synthesize graphene and the number of routes is ever increasing.

However, the primary routes are through graphite exfoliation, epitaxial graphene,

graphene oxide and chemical vapour deposition. Most techniques, with the exception

of epitaxial growth on SiC, have a serious draw back because one needs to transfer the

graphene to a semiconducting support such as SiO2 for further processing. Within our

research here at the IFW we are developing a carbothermal reduction route which reduces

SiO2 to SiC and then forms graphene layers in a standard CVD reaction. Carbothermal

reduction of silica is usually performed by placing silica in contact with solid carbon

material. Our newly developed CVD carbothermal route does not utilize solid carbon but

takes advantage of carbon species produced by the decomposition of hydrocarbons in a

CVD reaction. Initial studies [1], show the reaction is possible at temperatures of 900
o
C

using ethanol as the feedstock and amorphous SiO2 as the source for crystalline SiO2. An

interesting aspect of this reaction is that sp
2

carbon layers form on the surface of the SiC

(from the reduced SiO2). The mechanism involved in this sp
2

layer formation is not clear

at this stage. Our initial studies the bottom graphene layer’s basal plane lies parallel to

the underlying SiC surface. The data suggest precipitation processes may be occurring.

Hence, it is conceivable if one can prepare a flat SiO2 surface to reduce to SiC and form

flat sp
2

layers, control of the layer formation will provide a simple route to form graphene

and few layer graphene using CVD directly on a semiconducting surface. Figure 1 pres-

ents a simple illustration of the aim. Essentially an oxide layer is formed on a silicon wafer,

for example poly-silicon which is often used in CMOS technology. The route potentially

can be used for patterning graphene structures directly on silicon wafers.

We are also exploring the structural transformation or engineering of graphene via

catalytic hydrogenation. This nano-engineering approach involves the dispersion of

metallic nanoparticles onto a graphene or graphite sheet and their exposure to hydro-

Fig. 1: Schematic representation of a patterned
SiO2 oxide structure on Si (right side) undergoing
a carbothermal reduction process yielding SiC
with graphene (or few lazer graphene) on its 
surface (right side).
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gen at elevated temperatures. In this process the catalyst helps to dissociate mole-

cular hydrogen which then reacts with carbon (from the graphene) to form methane,

leaving an etch track behind (see Fig. 2). From previous studies it is well known that

methane is the only reaction product from this reaction. Catalytic hydrogenation has

great advantages since it provides a means for the controlled cutting of graphene

sheets with atomic precision to create structures of different shapes and sizes with

defined edge structures. In contrast to scanning tunnelling microscope lithography tech-

nique it is intrinsic to the hydrogenation process to accurately etch along specific crys-

tallographic directions. It also allows for greater angular precision at bends. Although

catalytic hydrogenation reactions have been investigated for a long time the hydro-

genation mechanism itself remains controversial. However, in order to be able to ef-

fectively utilize catalytic hydrogenation as a tool to design the desired graphene nano-

structures, an improved understanding of the underlying mechanisms at the nanoscale

is crucial. In our studies [2], etch active Co particles revealed an asymmetric hemis-

pherical shape at the etch front and were faceted at the graphite-particle interface. This

is a result of maintaining maximum surface contact with the graphite edges at the etch-

ing front. The particles where either hcp cobalt or cobalt oxides. Further we were able

to directly image the etch tracks and identify the crystallographic etch direction from

HRTEM to predominantly be [1010]. Additional studies in which a post-annealing step

was introduced showed etch inactive Co particles encapsulated with graphitic shells.

These findings point to an additional source of carbon, probably surface carbon species

which can be mopped up by mobile catalyst particles. The data suggests that all cata-

lysts, whether etch active or not, are actively producing methane and that this occurs

at or near the surface of the catalyst particles. The results point against carbon dis-

solution mechanisms in the catalytic hydrogenation process and provide new insight

into the catalytic hydrogenation of graphite at an atomic level.

Another attractive route to tailor the edges of patterned graphene structures or simply

etch large areas of graphene is through electron beam etching. With the emergence of

aberration corrected electron lenses, atomically accurate electron beam etching of

graphene is now truly feasible. Recent studies of ours show the edge states of graphene

can be etched in a controlled manner using low voltage e-beam irradiation in TEM [3].

This is illustrated in Fig. 3 (left panel). Indeed using low voltage high resolution TEM we

are able to examine the structural reconstruction at the atomic level with sub Ångstrom

resolution (see Fig. 3, right panel). We find preferential termination for graphene lay-

ers along the zigzag orientation for large hole sizes. The temporal resolution can also

be reduced to a record breaking 80 ms, enabling real-time observation of the reconstruc-

tion of carbon atoms during the sputtering process. In addition, the electron-beam

induces rapid displacement of monolayers, fast elastic distortions and flexible bending

at the edges of graphene sheets. These results disclose how energy transfer from the elec-

tron beam to few-layer graphene sheets leads to unique structural transformations.
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Fig. 3: Left panel: Schematic representation of car-
bon atoms being selectively sputtered off the edge
of a graphene layer residing on another graphene
layer. The process allows graphene restructuring. 
Right panel: False colour image of a single ben-
zene ring from a graphene sheet. The image was
acquired using an aberration corrected transmis-
sion electron microscope operating at 80 kV. Sub
Ångstrom resolution is possible. The image clearly
resolves the six carbon atoms forming the benzene
ring. The inter-carbon atom spacing is 1.4 Å.

Fig. 2: Co catalyst particle residing at the head of
an etch track in few layer graphene after having
undergone a hydrogenation reaction.
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Magnetic resonance excitations in the heavy fermion 
compound YbRh2Si2
V. Kataev, U. Schaufuß, A. A. Zvyagin
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In YbRh2Si2 conduction band electrons have a strongy enhanced effective mass due to

the Kondo effect. The electronic properties of this heavy fermion system can be tuned

by magnetic field B and temperature T. By studying the high-field electron spin reso-

nance response across a (B,T )-crossover line that separates different electronic

regimes in YbRh2Si2 we have found that the signal is given essentially by the resonance

of heavy fermions, providing thus direct experimental access to the dynamics of heavy

quasiparticles in the Kondo state.   

In intermetallic compounds comprising a lattice of magnetic rare-earth or actinide

ions quantum interactions between the local 4f (5f ) magnetic moments and conduction

electrons may lead to a formation of so-called heavy fermions at low temperatures, i.e.

conduction electrons with a strongly enhance effective mass. This is the result of the so-

called Kondo effect. It yields the screening of local magnetic moments by conduction

electrons thereby “dissolving” the f -spins into the sea of conduction electrons and

hence transforming conducting electrons into heavy fermion quasiparticles. Heavy

fermion compounds may exhibit a variety of phases and behaviors such as, e.g., exotic

superconducting or magnetic states, unusual metal-insulator transitions, and strong

deviations of electronic properties from a conventional Fermi liquid (FL) metal known

as a non Fermi liquid (NFL) behavior. In these materials magnetic instability may arise

due to a competition of the Kondo effect and the so-called RKKY-interaction between the

f -states and conduction electrons that favors a magnetically ordered ground state. A

prominent example of such class of systems is the intermetallic compound YbRh2Si2 (see,

e.g., Ref. [1] and references therein). Here the competition between these two inter-

actions can be tuned by a magnetic field B and temperature T. In YbRh2Si2 the heavy

fermion state is confined to temperatures and fields T < T0 ≈ 25 K and B < B* ≈ 10 T,

respectively (Fig. 1). In this regime the local 4f-spins should be quenched due to the

Kondo effect rendering the electron spin resonance (ESR) of Yb
3+

ions unobservable. Yet,

surprisingly, a sharp anisotropic ESR signal resembling the ESR of well localized Yb
3+

spin

states has been experimentally observed [4]. 

Fig. 1: Schematic phase diagram of YbRh2Si2 for
B⊥c-axis from Refs. [1,5]. Dash and solid gray lines
delineate the heavy fermion state confined to the 
region T < T0 ≈ 25 K and B < B* ≈ 10 T. The FL 
region denotes the T – B domain where the electrical
resistivity follows the Fermi liquid behavior ~T 2. The
broad (pink) line depicts the thermodynamic and
Hall effect FL-NFL crossover line. Closed symbols
depict T(B)-crossover temperatures below which
specific heat (Cel/T ) [2] and 29Si-NMR Knight shift
K and relaxation rate 1/(T1T ) [3] become tempera-
ture independent as expected in the FL regime.
Open red symbols display crossover temperatures
from the HF-ESR g (T,B)- and ∆B (T,B) dependences
(see the text and Ref. [5]).
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To unravel the nature of this unexpected resonance excitation we have studied the ESR

response in that part of the T(B) phase diagram of YbRh2Si2 where a remarkable crossover

between the NFL regime at low temperatures and small fields to the FL state at higher

temperatures and stronger fields close to the breakdown of the heavy fermion behavior

takes place (Fig. 1). Detailed presentation of our work can be found in Ref. [5]. These

experiments have become possible in the high-field ESR (HF-ESR) laboratory recently

built at the IFW Dresden. In contrast to standard commercial ESR spectrometers our

instrumentation enables high sensitive measurements in a very broad frequency range

ν = 10 GHz – 1 THz in magnetic fields up to 17 T.

In agreement with previous low-frequency (ν < 34 GHz) low field (B < 1 T) ESR studies

[4], at high fields a strongly anisotropic ESR line can be observed below T ∼ 25 K. In

Figs. 2 and 3 we show the T-dependences of the g-factor g = h ν/(µBBres) and the width

∆B of this line, respectively, for the frequencies ν =  93, 249, 297, and 360 GHz. Here

Bres, h and µB are the resonance field, the Planck constant and the Bohr magneton,

respectively. The corresponding resonance fields amount to Bres ≈ 1.85, 5.15, 6.15, and

7.45 T, respectively. At a fixed frequency ν, the g-factor (Fig. 2) increases approxi-

mately as ln(T ) at high temperatures for all frequencies. The rate of this increase is

smaller for the higher frequency/magnetic field and the g(T ) dependence shows a

saturation tendency below ∼ 4 – 5 K for Bres ∼ 5.15 T and 6.15 T (marked by arrows in

Fig. 2). 

The ∆B(T )-dependence [Fig. 3(a)] can be described as a sum of three contributions

∆B(T ) = a + bT + c/(exp(∆ ex /T )–1). Here a depicts a T-independent contribution due

to various kinds of inhomogeneities, bT stands for the relaxation broadening via elec-

tronic degrees of freedom, and the last term has been assigned to a relaxation channel

via an excited doublet state of Yb
3+

ions at an energy ∆ ex above the ground state. At

ν = 93 GHz and Bres ≈ 1.85 T the data points closely follow this dependence in the entire

temperature range of study [solid lines in Fig. 3(a)]. However, further increase of the

frequency and magnetic field gives rise to a deviation from this dependence at T ∼ 7 K,

namely ∆B begins to decrease more rapidly. This feature is more clearly seen in the plot

representation ∆B vs. T 2
[Fig. 3(b)]. Note that such a hump in the ∆B(T )-dependence

occurs closely to the temperature region where the g-factor begins to saturate (Fig. 2). 

Fig. 3: (a) Temperature dependence of the HF-ESR linewidth ∆B for B⊥c-axis 
at ν = 93, 249, 297, and 360 GHz (from bottom to top), which correspond to
resonance fields as indicated. Solid lines are fits (see the text and Ref. [5]); 
(b) Corresponding low temperature data in the representation ∆B vs T 2. Solid
lines are fits to the T 2 dependence; (c) Residual HF-ESR linewidth at T = 0 vs.
B 2 in the FL regime of YbRh2Si2 obtained from the T 2 fits in panel (b). 

Fig. 2: Temperature dependence of the g-factor
for B⊥c-axis at ν = 93, 249, 297, and 360 GHz
(from bottom to top), which correspond to 
resonance fields as indicated. Arrows indicate 
a crossover from a -lnT to g = const behavior 
(see also Ref. [5]).
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Remarkably, as can be seen in Fig. 1, the characteristic crossover temperatures in the

behavior of the g–factor and the linewidth ∆B fall into the crossover line that separates

the electronic regime of the development of the heavy fermion state below the Kondo

temperature T0 ≈ 25 K followed by the formation of the NFL behavior at higher T from the

FL regime at lower T and higher B (pink line and data points in Fig. 1). Furthermore, the

HF-ESR data points continue this line towards the crossover line for the breakdown of

the heavy fermion state (gray dash line in Fig. 1). The fact that characteristic changes

in the HF-ESR observables occur at the crossover between the NFL and FL regimes in the

Kondo state strongly suggests that ESR in YbRh2Si2 is given by the resonance response

of the heavy electrons to microwaves and as such it has distinct properties in the FL and

NFL regimes. (For a detailed discussion see Ref. [5]). 

Strong experimental indications for the occurrence of a novel kind of ESR excitation in

a correlated quantum metal obtained in our HF-ESR experiments on YbRh2Si2 have

stimulated intensive theoretical work [6-9]. We refer here briefly to just the two pioneer-

ing works on this subject [6-7] that treat the ESR response of a Kondo lattice system in

the framework of the Anderson lattice model. In both theories the ESR is considered as

the response due to the collective excitations, i.e., quasiparticles, which appear owing

to the hybridization of the f-electron (localized levels) with the conduction band

electrons. In particular, both theories predict for the Fermi liquid phase with ferromag-

netic interactions a sharp ESR line only slightly shifted from the position expected for

the local 4f resonance of Yb
3+ 

ions. The narrowing of the signal takes place by a factor

of the heavy fermion mass enhancement m/m* [6], or is due to the action of only the

anisotropic part of the electron-electron interaction [7]. Remarkably, both theories pre-

dict for the FL regime a T 2
and B2

dependence of the linewidth ∆B and a temperature

independent g-factor. Indeed, these signatures have been observed in the HF-ESR

experiment: The g-factor tends to a T-independent value in the FL phase (Fig. 2) where

the ∆B closely follows a T 2
-dependence [Fig. 3(b)]; The B 2

-behavior appears in the

dependence of the extrapolated residual linewidth at T = 0 [Fig. 3(c)]. Moreover, the

theory in Ref. [7], which considers also the non Fermi liquid regime, predicts a loga-

rithmic in T dependence of the g-factor in the NFL phase, in a nice agreement with our

experimental observation (Fig. 2). 
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Shape memory effect in CuZr-based bulk metallic glass 
matrix composites
S. Pauly, G. Wang, U. Kühn, N. Mattern, T. Gemming, A. Gebert, L. Schultz and 

J. Eckert

Bulk metallic glasses (BMGs) are interesting from both scientific and engineering as-

pects because of their high yield strength and large elastic limit, which are certainly

desirable characteristics for many applications. However, if the catastrophic fracture

behaviour of bulk metallic glasses cannot be overcome their potential to be used in

structural parts will never be exploited. We report here on CuZr-based BMG matrix com-

posites, which contain shape memory crystals, leading to an exceptional deformation

behaviour and a significant improvement of the mechanical properties.

Plastic deformation in BMGs is highly localised in shear bands with a thickness of only

a few nanometres, which severely limits the plastic deformability [1]. There are dif-

ferent approaches how to introduce a somewhat more homogeneous plastic strain in

glassy materials among them the synthesis of BMG matrix composites [2]. However, the

increase in plasticity does not necessarily go along with work hardening, another

necessity from an engineering point of view [3, 4].

Among the diversity of BMGs [5], CuZr-based alloys are peculiar under two aspects:

Firstly, their melts have a relatively strong tendency to solidify into a glassy structure.

Even binary and ternary glassy alloys can be obtained in the Cu-Zr system [6]. Second-

ly, crystalline B2 CuZr (Pm-3m) shows the shape memory effect [7]. The cubic primitive

B2 structure can undergo a reversible transformation to a monoclinic B19’ (Cm and

P21 /m) structure [8]. Both peculiarities can be made use of by synthesising BMG matrix

composites in CuZr-based alloy systems, e.g. Cu47.5Zr47.5Al 5. Even tough B2 CuZr is only

stable at temperatures above 988 K proper alloy composition and cooling rates allow for

precipitation of B2 CuZr in a glassy matrix. In order to understand and model the

mechanical properties of BMG matrix composites containing the B2 phase it is vital to

also prepare and analyse the response of this crystalline phase to mechanical loading,

which was conducted in this work.

Fig. 1 shows the true stress-strain curves of selected Cu47.5 Zr47.5 Al 5 specimens with

different crystalline volume fractions. The inset to Fig. 1 shows three typical microstruc-

tures of the composites with different crystalline volume fractions. The larger the

amount of the crystalline phase in the composites (i) the lower the yield stress, (ii) the

larger the plasticity and (iii) the more pronounced the work hardening. This behaviour

becomes obvious when the yield stress (Fig. 2(a)) and the fracture strain (Fig. 2(b)) are

plotted as a function of the crystalline volume fraction. At crystalline volume fractions

up to 10 vol.% the BMG matrix composite can be described by the rule of mixtures (ROM)

since the matrix has a yield strength much higher than that of the second phase.

Yielding of the composite is therefore controlled by yielding of the relatively harder

glassy Cu47.5Zr47.5Al 5 phase: 

σ c = ƒα σ α
+ ƒβ σ β

, (1)

where ƒ and σ are the volume fraction and the yield strength of the constituent pha-

ses, and subscript/superscript α and β refer to B2 CuZr and the BMG, respectively.

At crystalline volume fractions exceeding 50 vol.% the composite can be modelled as a

crystalline matrix reinforced with glassy Cu47.5 Zr47.5 Al 5. In this case, the load-bearing

model captures the yield stress [9]:

σ c = σ α
(1 + 0.5ƒβ ). (2)

Between those two limiting cases there is a transition determined by a critical crystalline

volume fraction (vcrit), which has a physical meaning similar to the percolation thresh-

old used to quantify the formation of long-range connectivity in random systems [10].

Fig. 1: True stress-strain curves of Cu47.5Zr47.5Al5
BMG matrix composites with different crystalline

volume fractions. The inset shows the micro-

structures of rods with a diameter of 2 mm and

crystalline volume fractions of (a) 5 vol.%, 

(b) 30 vol.% and (c) 50 vol.%.
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In the present case, vcrit lies between 30 and 50 vol.%. At the critical volume fraction the

crystals interconnect and form a structural framework. This can be readily seen in the

micrographs of the rods (inset to Fig. 1). 

The fracture strain versus crystalline volume fraction is displayed in Fig. 2(b). We adapt

the empirical approach developed by Fan and Miodownik to model the dependence of

fracture strain on the crystalline volume fraction [11]. The composite is topologically

transformed into a three-microstructural-element body, viz. the B2 phase (α), the

glassy phase (β) and phase consisting to equal parts of α and β (αβ). Physically, the

αβ-element can be regarded as effective interface between the α and the β phase. The

fracture strain can then be described by:

εc
ƒ = ƒαc εα

ƒ + ƒβc εβ
ƒ  + κƒα β ε

α
ƒ

β , (3)

where ƒαc , ƒβ c , and ƒαβ are the corrected volume fraction of element α, β, and α +β,

εα
ƒ, εβ

ƒ , and εα
ƒ

β
are the fracture strain of α phase, β phase, and homogenous α +β

composite, respectively, and κ is a dimensionless constant accounting for the con-

straint effect of the element α and/or element β on the element α +β [12]. Regardless

of the value for κ (εα
ƒ

β/εα
ƒ ) equation (3) is capable to capture the measured fracture

strains. The best fit is obtained with κ (εα
ƒ

β/εα
ƒ ) = 10. 

The pure B2 CuZr phase exhibits a pronounced hardening behaviour and a surprisingly

large plasticity for an intermetallic compound reminiscent of TRIP (transformation-

induced plasticity) materials (Fig. 1). The deformation of the crystalline specimens was

monitored in-situ with high energy X-rays to follow the evolution of structural changes.

Fig. 3 shows a 2D diffraction image of the undeformed (left half) and deformed sample

at a stress of 1100 MPa (right half). The integrated 2D diffraction data is shown in the

inset to Fig. 3. At a stress of 0 MPa the Bragg reflections correspond to B2 CuZr, when

the stress reaches 1100 MPa new Bragg peaks can be detected, which are allocated to B19’

CuZr (martensite). Obviously, the work hardening of the B2 phase must be attributed to

the martensitic transformation from B2 CuZr to B19’ in the fully crystalline sample.

Remarkably, even for low volume fractions the work hardening of the B2 crystals leaves

its fingerprints in the stress-strain curves of the composite material. 

The elastic properties of the glassy and the B2 phase were furthermore analysed by ul-

trasonic measurements. Surprisingly, all three, Young’s, shear and bulk modulus of the

glassy and the crystalline B2 phase are nearly identical (Table I). In other words: though

being structurally completely different the glassy and crystalline phases are highly

compatible. We believe that the good match of the shear moduli facilitates the slip trans-

fer from the matrix to the B2 crystals. The glassy matrix deforms by shear banding and

Fig. 3: 2D diffraction image of the fully crystalline

Cu47.5Zr47.5Al5 sample unstressed (left half) and at

1100 MPa. The arrows show the strongest peaks of

the new phase (B19’), which forms induced by plastic

deformation. The inset shows the integrated 2D dif-

fraction images in the undeformed (upper pattern)

and deformed (lower pattern) state. Note, that the

strongest reflection of B2 CuZr has been cut off in

the upper diffraction pattern.

Fig. 2: (a) Experimental and calculated values for the fracture strain as a function of the crystalline

volume fraction and (b) yield strength versus crystalline volume fraction of the Cu47.5Zr47.5Al5 BMG

matrix composites.
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the shear is imposed on the crystalline phase when a shear band reaches the interface

with a crystal. The propagation of shear band will be inhibited by the deformation and

work-hardenability of the B2 phase, which results in the nucleation of more shear

bands. 

Table I: Elastic properties of B2 CuZr and the glassy phase in Cu47.5Zr47.5Al5.

Phase E [GPa] ν G [GPa] B [GPa]

B2 CuZr 82 ± 2 0.385 ± 0.004 29 ± 1 118 ± 3

Glass 89 ± 2 0.373 ± 0.003 33 ± 2 117 ± 3
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High strength conductors: 
Non-destructive pulsed field CuAg-solenoids
J. Freudenberger, M. Frey, A. Gaganov, H. Klauß, J. Lyubimova, L. Schultz, 

D. Seifert, T. Wolf

Ultra strong CuAgZr conductors were developed and tested in pulsed high field mag-

nets. Based on the materials properties a coil featuring additional internal rein-

forcement layers was designed and tested. In combination with refined computer

simulation techniques significant progress was made concerning pulsed magnet

applications. The coil generated a flux density of 66 T without being destroyed.

Introduction
The development of non-destructive pulsed high-field solenoids is crucial for repro-

ducible studies under extreme conditions involving high external magnetic fields. The

maximum flux density that is presently available with these kinds of magnets is in the

order of 90 T. However, there are numerous activities to increase this value.

Commonly, high field solenoids are wound from a highly strengthened conductor ma-

terial, which is insulated and reinforced. The conductor-reinforcement composite is

required to have a high strength to withstand the Lorentz forces during the pulse. The

conductor is required to possess a high electrical conductivity in order to minimise ohmic

heating and energy losses. A high fatigue strength of the wire helps to guarantee a long

lifetime of the coil. These material properties have to be met at the same time in a

single conductor material to make it suitable for pulsed high field applications. The

present CuAgZr (i.e. Cu-Ag7-Zr0.05 in wt.%) alloys meet these requirements. For details

concerning the preparation process and microstructural features please refer to [1]. 

The coil design is naturally affected by the desired magnet specifications, such as the

peak field, pulse duration and inner bore. Pulsed magnets with a relatively short pulse

duration (less than 100 ms) and magnetic fields up to 70 T are usually designed as a

solenoid. Longer pulses and higher fields result in large magnets with several sections. 

Coil winding
The coil was initially designed using PMDS 2.1 and further refined using finite element

simulations; the commercial programs COMSOL and ANSYS. The coil is wound from a

CuAgZr wire with a cross section of 3.69 mm x 2.46 mm; corner radius: 0.62 mm. The

bore of the coil is 9 mm, which means that about 8 mm are available for experiments. The

length of the winding section is 75 mm. The wire is insulated with Kapton
TM

. The first

five layers of conductor are reinforced using Zylon. The thickness of the reinforcement

layer is adjusted to reduce the peak stress in the conductor at peak field below the ulti-

mate tensile strength. The last layer of the coil is reinforced using carbon fibre. After

winding, the coil was vacuum impregnated. An axial pre-stress of about 100 MPa has been

applied, which is beneficial for the pulsed magnets in the sense of stress development

during the pulse. 

Coil modelling
The temperature and current density distribution during the discharge is evaluated

using an FEA model. An axisymmetric model is used to increase accuracy and reduce the

simulation time. In principle, the FEA model solves for the magnetic diffusion and

thermal diffusion equations:
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σ is the electrical conductivity, 
→
A the magnetic vector potential, V the voltage applied

to a turn, J the current density, k the heat conductivity, C the heat capacity, ρ the

density and T the temperature. The heating Q in the model is calculated by

Q =  ⎯J 2

σ

The material properties are modelled as functions of the temperature. The electrical

conductivity of the conductor was determined to be 70% and 210% IACS at room

temperature and 77K, respectively. 

An advantage of the FEA simulation is that the current density distribution can be

evaluated for the entire cross-sectional area of the coil, which is shown at 4.8 ms at

peak field in Figure 1. The current density varies by about 15% at peak field. 

It can be seen that the current density distribution is similar for all turns in shape and

magnitude. Equally steep gradients in the current density can be observed, though the

gradients arise in a different direction for the outer turns. Whereas for turns close to the

centre plane the gradients are in the radial direction, for turns further away an axial

gradient exists. This is particularly pronounced for the turns close to the end flanges.

The mechanical stresses in the coil are evaluated using an elasto-plastic axisymmetric

model of the coil. The centre plane of the coil is assumed to be a symmetry plane. The

body force
→
F = 

→
J × 

→
B is applied as a body load to the individual turns of the coil. Stres-

ses occurring because of different temperatures and different thermal expansion

coefficients are considered as well. 

It was verified that the highest stresses occur at peak field, which is not immediately

obvious due to the fact that the changes in current density distribution across a turn lead

to changes in the body force. Figure 2 shows the von-Mises stress plotted along the

centre plane of the coil, which is where the stresses are highest. The stresses were cal-

culated for a peak field of 70 T using a multi-linear stress-strain model (ANSYS) and by

using a bilinear stress-strain model (COMSOL). The result illustrates that both models

yield a similar approximation.

The thickness of the individual reinforcement layers was adjusted to lower the stress

in the conductor below the ultimate tensile strength, which was measured to be 1.1 GPa

in the case of CuAgZr. For safety reasons 900 MPa were used in the model. The stress in

the reinforcement fibre is still fairly moderate in comparison to the reported UTS of the

fibre composite (i.e. 4 GPa at 77 K). In order to achieve a good load transfer between

Fig. 1: Cross section of the coil showing the
current density distribution within the conduc-
tor material at peak field. The current density
(right colour map) is in A/m2.

Fig. 2: Von-Mises stress across the radius at the centre of the coil. Results were obtained with
COMSOL and ANSYS using a bi-linear (index 1) and multi-linear stress-strain model (index 2).
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Fig. 3: 66 T discharge

conductor and fibre a minimum strain at break of about 3% is necessary. Simple FEA

simulations show that for achieving the highest possible stress in both, the conductor

and the reinforcement, the conductor needs to be able to tolerate this strain.

Coil test
The coil is energised by a 0.8 MJ capacitor bank at the Clarendon Laboratory in Oxford,

UK. The coil was tested carefully over 44 pulses. The maximum field obtained during the

coil test was 66 T at a peak voltage of 6500 V using 24 mF (i.e. a total energy of 507 kJ).

This constitutes a new high field record for the Clarendon Laboratory. The rise time of

the pulse is about 4.4 ms and the total pulse length about 12.6 ms, which is shown in

Figure 3. 

The inductance of the coil measured after each pulse showed an irreversible change of

1.85 %. It was verified in subsequent pulses that the inductance is stable. 

Coil performance
High field pulsed solenoids can benefit from highly optimised materials. The character-

isation of the materials is a key issue to support modelling of pulsed high field solenoids. 

Not every conductor is compatible with every reinforcement. Soft materials and conduc-

tors with intermediate strength possess enough margin in terms of strain to be combined

with any type of reinforcement. High strength conductors are more challenging, as

little is gained when reinforcing them using a high strength fibre. Despite this, a coil has

been designed and tested successfully using a high strength CuAgZr conductor. The coil

relies on optimally placed internal reinforcement layers; at peak field the conductor is

stressed to its mechanical limit. The coil generated a record field of 66 T. Finite element

calculations suggest that the coil design can generate fields up to 70 T and is therefore

in good agreement with the experimental findings. The results show that even a high

strength conductor such as CuAgZr can be reinforced using high strength fibres.

Although the results are promising there are still big challenges to be faced. Future work

should concentrate on reducing the electrical resistivity of CuAgZr, which would flatten

the path to higher fields. Alternatively, the load in the fibre could be increased, which

would require a conductor with a larger plastic strain. Both aspects can be addressed by

the optimisation of the thermo-mechanical treatment of the CuAgZr alloy, which is

under progress. We believe that a material with a conductivity of about 70 % IACS and the

highest possible ultimate tensile strength at a plastic strain of 3 % may be the ideal

compromise for pulsed high field applications.
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Rolled-Up Metamaterials
E. J. Smith, Y. F. Mei, and O. G. Schmidt

By combining the idea of creating metamaterials through alternating stacked layers

of a metal and an oxide with rolled-up technology, we explore different realizable de-

vices. By releasing strained nanomembrane bi-layers grown on photoresist-patterned

Si wafers, three dimensional, rolled-up, optically plasmonic metamaterials can be cre-

ated. The resulting stacked metal-oxide bi-layers allow for the guidance and coupling

of surface plasmons which leads to the transmission of sub-wavelength information in

such devices as the hyperlens and metamaterial fiber optics. 

Introduction 
Metamaterials are man-made materials which exhibit optical effects that are naturally

nonexistent. By combining two unlike materials on a sub-wavelength lattice, one is able

to create new materials which can lead to the development of devices with negative in-

dex of refraction [1], “invisibility” cloaking devices [2], sub-wavelength imaging devices

(hyperlens) [3-5], and new ways of guiding light (metamaterial fiber optics) [6] to name

a few. Plasmonic metamaterials function through the manipulation of the permittivity

(ε) of a material and are achievable by growing alternating layers of oxides and plas-

monic metals with a bi-layer thickness much smaller than the working wavelength of light

(d << λ). These materials are of interest because of their ability to transmit sub-wave-

length information; which in turn can lead to the miniaturization and increased sensi-

tivity of communication and biological sensing devices. In this highlight we discuss our

recent work on the investigation and realization of rolled-up metamaterials. 

Stacking bi-layers of a metal and an oxide leads to an anisotropic metamaterial media

as shown in Fig.1(a). The result is a different permittivity in the tangential and parallel

plane of the stacked layers which allow for plasmons to couple through or propagate

along the metal and oxide layers. The resulting permittivity of these stacked bi-layers

can be calculated by using an effective media theory [7] ε|| = (cmεm + cdεd)/(cm + cd) and

ε⊥ = [(cm + cd)εmεd]/(cdεm + cmεd), where εm is the permittivity of the metal, εd is the per-

mittivity of the dielectric, cm and cd are the relative ratios of the metal and dielectric for

a single bi-layer (cm + cd = 1). In Fig. 1(b), the effective permittivity for a 3:1 ratio of a

TiO2 :Ag stacked lattice is given for the perpendicular and parallel plane of the metama-

terial. The inset of Fig. 1(b) shows the imaginary part of the permittivities which accounts

for loss in the system. One way of creating these metamaterials is by simply growing lay-

er after layer on top of one another, which leads to a well-established planer configu-

ration. However, if we grow a single strained bi-layer of metal and oxide on a sacrificial

layer, upon releasing of the sacrificial layer, we can obtain a rolled-up metamaterial

whose overall permittivity can be expressed simply by the coordinate change: 

Rolled-Up Hyperlens
One of the devices which was investigated and can be realized from such a rolled-up meta-

material is the hyperlens. The hyperlens works by coupling surface plasmons to the near

field, evanescent waves of an object. The coupling of the surface plasmons through

alternating layers of metal and oxide converts these evanescent waves into propagat-

ing waves which can then be picked up through classical microscopy techniques[3],

visually described in Fig. 2(a). The mathematical explanation comes from the dispersion

relation for transverse magnetic (TM) modes ko
2 

= (kr
2
/εθ) + (kθ

2
/εr), where kr is the wave

vector in the radial direction and kθ is the wave vector in the tangential direction of the

tube, εθ and εr are the effective tangential and radial permittivities of the material (note

Fig. 1: (a) A plasmonic metamaterial can be created
by stacking alternating layers of a metal and an oxide
whose overall bi-layer thickness is much smaller than
the incident wavelength (d << λ). This lattice structure
allows for the manipulation of the material’s permit-
tivity, leading to an anisotropic plasmonic metama-
terial (differing in the parallel and perpendicular axis).
(b) This is illustrated by using the effective media 
theory to calculate the permittivities of a stacked 
system comprised of a 3:1 ratio of TiO2:Ag.
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the shift to polar coordinates for simplicity). This shows that when Re{εr } < 0 and

Re{εθ}> 0, leading to a hyperbolic dispersion, or when Re{εr }>>Re{εθ}, leading to an

elliptical dispersion, the transmission of high order spatial information is possible[5].

The kθ governs the smallest size limit of an object, the larger the kθ the smaller the

object. When there is an elliptical dispersion relation, a higher kθ is obtainable, and when

there is hyperbolic dispersion, kθ becomes unbound, allowing for the resolution of

objects with limitless size. As one can see in Fig. 2(b), by changing the bi-layer com-

position or the working wavelength, it is possible to control the level of anisotropy of

the material and how the light is mediated inside the metamaterial. In this figure the

dispersion of a rolled bi-layer of TiO2 and Ag is looked at by adjusting the filling per-

centage of Ag. As the Ag is increased, the metamaterial can take on many types of

dispersion until it finally approaches classical Ag behavior. Likewise, as the filling

percentage of Ag is lowered, the metamaterial approaches classical TiO2 behavior.

The hyperlens is of particular interest because of the prospect of being able to image

sub-wavelength information of molecules or objects within living cells. Existing conven-

tional microscopy techniques for seeing such small details cannot look at a living object.

With this in mind we studied how to optimize the rolled-up hyperlens to work with such

objects. We studied how to better improve the output signal of the lens to allow for lar-

ger magnification and higher resolution. One way of doing this is by using the hyperlens

as an immersion lens; by impedance matching (Z match) the lens to the surrounding

system, the output is much higher. In order to impedance match, the square root of the

tangential permittivity must be equal to the index of refraction of the surrounding me-

dium (sqrt(εθ) = nmedium). The impedance matching conditions for a surrounding media

of air and water are shown in Fig. 2(a). The improved resolution can be seen in Fig. 3 when

comparing how a hyperlens, that is impedance matched to water, performs in air

(Fig. 3(a)) and water (Fig. 3(b)). The far field cross section of the magnetic field shows

much better resolution for the properly impedance-matched lens Fig. 3(c).

Fig. 2: (a) The evanescent near-field of an object dies off exponentially as is travels away from
the source. However, through alternating stacked layers of a metal and an oxide, the evanescent
waves couple with surface plasmons which convert them to propagating waves that can be picked
up in the far-field with classical optics. (b) The dispersion relation for TM modes for a metama-
terial can take on many forms as seen here for a TiO2/Ag combination showing the effects of
using a different wavelength and filling percentage of Ag. The dotted and dashed lines represent
the impedance matching of a hyperlens, to the surrounding medium of air or water respec-
tively, as a function of wavelength vs. Ag filling percentage. 

Fig. 3: (Copyright AIP) Impedance matching the lens
to the surrounding medium becomes important for
higher transmission and can give way to higher reso-
lution than unmatched systems. This condition is met
with sqrt(εθ) = nmedium, and results in suppressed
Fresnel reflection at the outer interface of the hyper-
lens for a higher output and better resolution. The
normalized magnetic field distribution for air (a) and
water(b) are shown. (c) A cross section of the mag-
netic field profile taken at 3.5microns [dotted line in
(a) and (b)] from the outer surface is shown to have
higher resolution in water than in air. For this par-
ticular simulation, the effective permittivity is used 
for a 2:1 ratio of Al2O3:Ag at λ = 342nm leading to 
a sqrt(εθ) = 1.32 and a index of refraction for water
used was 1.33. (d) The geometry used is as follows;
an inner diameter i = λ, outer diameter o = 3λ, a 
separation of dots s = λ/2 and a dot size q = λ/30.
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Metamaterial Fiber Optics
The second rolled-up metamaterial device that can be created by using the same

material combination and geometry [but by turning the propagation direction of light

parallel to the tube rather than perpendicular and switching to Hybrid waves (HE)] is

what we call metamaterial fiber optics (MFOs) [6]. There are a number of reasons and

advantages for studying and developing MFOs. There currently exist two main forms of

guiding light, either via classical core propagation or via surface plasmon (SP) guidance.

Classical guidance is obviously practical in light guidance on a large scale but for on-chip

electro-optics, they fall short because of there large size, on the order of 100 µm; this

is one reason to turn to SP waveguides. SP waveguides allow for the miniaturization of

devices and can be developed for faster on-chip communication. MFOs combine both

technologies into a single device due to their unique 3-fold anisotropy [εeff
]. Light can

be guided either plasmonically (Fig. 4(a)), or classically (Fig. 4(b)), or can allow for a

coupling between plasmonic and classical guidance, Fig. 4(c), which could lead to sub-

wavelength information transmission. The other advantages include the small compact

size, a few microns or smaller, and the ability to guide light using a cladding thinner

than the incident wavelength. 

The type of guidance is determined by the material makeup and the incident wavelength.

There are a number of regions in which the permittivities of our system have unique va-

lues, each leading to a unique form of guidance; (ε||
eff < 0/ε⊥

eff > 0) (ε||
eff > 0/ε⊥

eff < 0)

(ε||
eff > 0/ε⊥

eff > 0), all of which cater to plasmonic guidance in the cladding and

(0 <{ε||
eff,ε⊥

eff } < 1) (ε||
eff/ε⊥

eff = 0) which allow for classical core guidance. The region

where ε||
eff and ε⊥

eff are both negative arises from guides made of metal and lead to core

guidance via total internal reflection [Some of these regions can be seen in the single

material composition of TiO2 and Ag calculated for Fig 1(b)]. As mentioned before, the

plasmonic modes can be coupled into the core when a higher index medium is introduced,

which could lead to higher sensitivity sensors. Fig. 4(d) shows a close-up of the cladding

layers of a metamaterial optical fiber in order to highlight the recent development which

has been made to experimentally realize our devices shown in an SEM image in Fig. 4(e).

Taking a FIB cut of one of our tubes, the inset of Fig. 4(e) reveals the level of compact-

ness (which is necessary for plasmonic coupling) obtainable by rolling a nanomembrane

bi-layer of SiO2 (9nm) and Ag (3nm) grown on a photoresist sacrificial layer.

In conclusion, we have explored various metamaterials which can be realized experimen-

tally through rolled-up technology. One device which can go beyond the diffraction

limit and image nano-objects optically, and another device which can combine classical

and plasmonic guidance through means of a sub-wavelength cladding and an overall

miniaturized structure. Both devices can be grown and implemented into existing and

future on-chip technology through self assembly. The experimental progress which has

been made to develop these devices was also presented.
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FFiigg  44:: By changing the metamaterial makeup or the
incident wavelength of light, rolled-up MFOs are able
to propagate light via: (a) plasmonic means in the
cladding, (b) classically through the hollow core, 
(c) as well as coupling the plasmonic modes of the
cladding with the classical core of a higher index
medium which could give way to higher sensitivity
sensors. (d) A close-up figure of the geometry of the
MFOs used for the simulations can be compared to
(e) the recent results in our progress towards experi-
mental realization. The SEM image of a FIB-cut tube
shows the compactness achieved by rolling a single
bi-layer of SiO2 (9nm) and Ag (3nm).
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Self-assembled quantum dots in stretchable nanomembranes
F. Ding, J. D. Plumhof, V. Kr̆ápek, M. Benyoucef, K. Dörr, A. Rastelli, and O. G. Schmidt

Strain is one of the key parameters in nanoscience. We fabricated a piezoelectric-based

electro-mechanical device to study the effect of external biaxial stress on the light

emission of single InGaAs/GaAs (001) quantum dots embedded in a 200 nm-thick GaAs

nanomembrane. Reversible and bi-directional spectral tuning of quantum dot ex-

citonic emission is demonstrated. The most intriguing finding is that biaxial strain is

a reliable tool to engineer the quantum dot electronic structure and reach color

coincidence between exciton and biexciton emission, providing a vital prerequisite for

the generation of polarization entangled photon pairs through a time reordering

strategy. The physical origin of this new phenomenon is discussed based on empirical

pseudopotential calculations. 

To possibly make use of quantum phenomena in the field of quantum information pro-

cessing and communication, a key tool is entanglement - the spooky, distance-defying

link that can form between objects such as photons even when they are completely

shielded from one another. It’s a link that Einstein went to his grave denying, yet its

existence is now beyond dispute [1-3]. One of the research interests in our institute (IIN)

is the generation of entangled photon pairs from semiconductor quantum dots (QDs) [2].

Polarization-entangled photons can be produced by the radiative cascade: biexciton

(XX) → exciton (X) → ground state (G), where the polarization of a photon pair is

determined by the spin of the intermediate X state [see Fig. 1(a)]. However, in real

self-assembled semiconductor QDs the intermediate X states split into two states by an

energy δ called fine structure splitting (FSS) [4, 5]. This non-vanishing FSS makes the

two decay paths distinguishable and destroys the polarization entanglement. A number

of post-growth techniques have been used to reduce δ, such as in-plane magnetic

fields, lateral electric fields, uniaxial stress [6] and rapid thermal annealing.

Inspired by a recent proposal, we focus on an alternative approach which does not re-

quire the FSS to be below radiative linewidth [7]. In this so-called “time-reordering

scheme” the emission energies of X (EX) and XX (EXX) are tuned into resonance.  Now, one

matches the red photons H1 (V2) and the blue photons V1 (H2) [see Fig. 1(b)] across

generations in a QD. The entanglement is then accomplished by performing a unitary time

reordering on the two-photon state.

The experimental challenge is that the emission energies EX and EXX in as-grown QDs are

usually different, i.e. the energy of two excitons (XX) is not simply twice the energy of

a single exciton (X), because of interactions. We have demonstrated that an external

biaxial tensile (T) or compressive (C) stress, provided by a piezoelectric actuator, can be

used to achieve EX ≈ EXX, one step towards the generation of polarization entangled

photon pairs through the time reordering strategy. 

The sample used here was grown on a GaAs(001) substrate in a solid-source molecular

beam epitaxy (MBE) machine [see Fig. 2]. A layer of self-assembled In(Ga)As QDs sand-

wiched between 150 nm and 50 nm GaAs layers was grown on top of a 1 µm thick

Al 0.7Ga0.3As sacrificial layer. By means of optical lithography we defined square patterns

on the sample followed by a non-selective wet chemical etching step. The Al 0.7Ga0.3As

sacrificial layer was completely removed in HF (5% vol.), leaving the square-shape

nano-membranes on the GaAs substrate. The membranes were then transferred onto a

300 µm-thick [Pb(Mg1/3 Nb2/3)O3]0.72 –[PbTiO3]0.28 (PMN-PT) actuator via PMMA resist.

A bias voltage V applied to the PMN-PT results in an in-plane strain ε// in the GaAs

membrane and the QD structure. The PMN-PT was poled so that V > 0 (< 0) corresponds

to in-plane compressive (tensile) strain ε// < 0 (> 0). The choice of PMN-PT is due to its

large in-plane strain capabilities and negligible drop of strain at low temperature.

Fig. 1: Level schemes showing the biexciton-exciton
cascade. The solid (dashed) line represents the decay
channel that yields H (V) polarized photons. 
(a) Entangled photon pairs are obtained by reducing
the FSS δ to zero. Two lines (X and XX) with energy
splitting EB(XX) can be seen in a PL spectrum. 
(b) An alternative consists in engineering the system
so as to reduce EB(XX) to zero, thus to obtain color
coincidence across generation. Now two lines with
splitting δ are present in the PL spectrum.
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Fig. 3(a) shows photoluminescence (PL) spectra of a single In(Ga)As QD under different

strain states. With increasing in-plane compression (C), the emission energies of differ-

ent lines shift to higher energy (blue shift), while under tensile (T) stress the QD emis-

sion lines shift to lower energy (red shift). More interestingly, the binding energy EB of

XX, defined as EB(XX) = EX - EXX, is also modified by external biaxial stress. A clear

demonstration is given in Fig. 3(b), where the grayscale-coded PL intensity of X and XX

are plotted as a function of linear polarization angle and energy for various values of V.

As expected, X and XX show anti-correlated shifts as we rotate the analyzer. The FSS for

this QD, i.e., the energy separation δ between the H and V components of X or XX can be

well resolved, and we obtain δ = 48 ± 5 µeV, see left inset of Fig. 3(b). As the voltage

increases the magnitude of EB(XX) decreases, while δ (FSS) stays constant within the

measurement uncertainties. At 1100 V (the maximum voltage available at present)

EB(XX) → 0 and δ dominates the energy scale in the problem: only two peaks with the

splitting of δ can be observed. We have now practically reached the color coincidence

of (V2, H1) and (H2, V1), an ideal condition for the time reordering entanglement

measurement as described in Fig. 1(b).

Fig. 2: Fabrication process of the 200-nm-thick
GaAs membrane containing the In(Ga)As QDs. 
The membranes were then transferred, using a 
thin layer of PMMA as glue, onto a PMN-PT
piezoelectric actuator. A bias voltage V applied to
the PMN-PT results in an in-plane strain ε// in the 
GaAs membrane and the QD structure.

Fig. 3: (a) Low-temperature (6 K) PL spectra of a 
single QD under different strain states. The exci-
tonic lines can be either blue shifted or red shifted,
depending on the external stress. Under compres-
sive stress the color coincidence of X and XX is
reached at V~1100 V. 
(b) Polarization-resolved PL map for the X and 
XX lines at several voltages. At 0 V EB(XX) is much
larger than δ, while EB(XX) vanishes (limited by 
the system resolution) and δ dominates at 1100 V,
in accordance with Figure 1.



46 Highlights 2009

In order to understand the experimental results, calculations on realistic InGaAs/GaAs

QDs containing 3 million atoms were performed using the empirical pseudopotential and

the configuration interaction (CI) approaches [8] at the Max-Planck-Institute for Solid

State Research in Stuttgart. The QD was modeled as a lens shaped In0.8Ga0.2As structure

with a height of 2.5 nm and elliptical base of major (minor) axis of 10 (7.5) nm along the

[1-10] ([110]) crystal direction. We plot in Fig. 4(a) the strain modified conduction band

minimum and the upper two valence bands. For the latter bands we used circles propor-

tional in size to the fraction of heavy hole character. In the unstrained region, far from

the dot, heavy- and light-hole bands are degenerate; close to the dot (inside the dot),

the light (heavy)-hole band forms the valence band maximum. The valence band off-

set (VBO) and the conduction band offset (CBO) are also defined. In Fig. 4(b) we show

a linear increase by ∼35 meV for the CBO upon change in biaxial strain ε// from 0.1 %

to -1 %. This represents an increased confinement and localization of electron wave func-

tion. For the VBO, however, we find a decrease by ∼3 meV for the same range of strains.

Upon compression, the hole wave functions tend to become more delocalized. This, rather

counterintuitive behavior can be observed directly on the wave functions in Fig. 4(c),

where we display the lowest electron state (LUMO) and highest hole state (HOMO) at two

different strains. This localization/delocalization gives rise to changes in the Coulomb

integrals between lowest electron (e) and hole (h) states, as shown in Fig. 4(d).

From the calculations, we find that the effect of biaxial strain on the correlation ener-

gy is very small. The main changes in the binding energy of XX are due to changes in the

direct Coulomb interactions between electron and holes under biaxial strain. In this case,

changes in binding energy can be approximated by:

∆EB(XX) ≈ [∆Jeh – ∆Jhh] – [∆Jee – ∆Jeh ],

where Jee , Jhh , and Jeh are the Coulomb integrals. Figure 4(d) shows that ∆Jeh and ∆Jee

increase with compressive strain, with only small deviations from each other. Interest-

ingly, ∆Jhh shows the opposite behavior, but its magnitude is substantially smaller

than those of ∆Jeh and ∆Jee. We thus conclude that the increase in binding energy of

XX upon compression is mainly a consequence of the increase in the electron-hole

attraction term. 

Fig. 4: (a) Calculated band diagram at ε// = 0; for
the valence band, the size of the circles is propor-
tional to the heavy hole character of the bands. 
(b) Changes in CBO (VBO) with strain ε//. 
(c) HOMO and LUMO wave function of QD at
ε// = 0.1% and -1%. The red color encloses 75% of
the charge density, while light gray color represents
the outline of the QD. 
(d) Changes in Coulomb integrals with biaxial strain.
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In conclusion, we have developed a promising technique to investigate the effect of

external stress on the optical properties of single QDs. Stress is provided by a piezo-

electric actuator at low temperatures and allow us to engineer the properties of QDs em-

bedded in nanomembranes or optical microcavities [9]. We find that biaxial strain is a

reliable tool to engineer the QD electronic structure and reach color coincidence between

exciton and biexciton emission. This represents the first, but a critical step towards the

generation of entangled photon pairs via the newly proposed time reordering scheme.

References

[1] R. J. Young et al., Phys. Rev. Lett. 102, 030406 (2009)

[2] R. Hafenbrak et al., New J. Phys. 9, 315 (2007)

[3] O. Benson et al., Phys. Rev. Lett. 84, 2513 (2000)

[4] D. Gammon et al., Phys. Rev. Lett. 76, 3005 (1996)

[5] M. Bayer et al., Phys. Rev. B 65, 195315 (2002)

[6] S. Seidl et al., Appl. Phys. Lett. 88, 203113 (2006)

[7] J. E. Avron et al., Phys. Rev. Lett. 100, 120501 (2008)

[8] L.-W. Wang and A. Zunger, Phys. Rev. B 59, 15806 (1999)

[9] T. Zander et al., Optics Express 17, 22452 (2009)

Cooperation R. Singh, G. Bester, T. Zander, Max Max-Planck-Institut für Festkörper-

forschung, Stuttgart, Germany; N. Akopian, U. Perinetti, V. Zwiller, Delft University of

Technology, The Netherlands; Y.H. Chen, Institute of Semiconductor, Chinese Academy

of Sciences, Beijing, China; We acknowledge Andreas Herklotz, Jong-Woo Kim, 

C. C. Bof Bufon, R. Hafenbrak and P. Michler for fruitful discussions

Funded by DFG (FOR730), BMBF (No. 01BM459), NWO (VIDI), CAS-MPG Joint Scholar-

ship and NSFC China (60625402)



48 Technological impact

Technological impact

New facility for Helium liquefaction in the IFW
D. Lindackers

The installation of new scientific instruments and medical devices operating under

cryogenic conditions are the major reasons for a worldwide increase of Liquid Helium

(LHe) consumption in the last two decades. At the same time the few natural gas sources

from which Helium gas can be extracted under economical conditions are going to de-

plete. Both constraints are causing the shortage of LHe and the steady price increase

being observed since a couple of years. Under these general conditions the specific si-

tuation in the IFW is indicated by a dramatic increase of the LHe-demand from 15.000 l

in 1995 to 80.000 l in 2009 together with a painful lack of reliable supply from the gas

industries. During the last years the amount of LHe delivered by the gas industries did

not cover the demand of the operating cryostats causing unplanned shut downs of quite

a number of cryogenic experiments. This situation causes hard impact to the scientific

work and increases the Helium consumption again, because the restart procedures re-

quire large quantities of LHe during the cool down phase. In order to have LHe

permanently available the IFW decided to install its own liquefaction facilities and to

organise the delivery of LHe into the labs as well as the recovery of the gaseous match.

Setting up the project the new Helium plant should meet highest standards regarding

energy efficiency and helium loss. At the same time it has to be compatible to the ex-

isting recovery system which was installed in the mid nineties. Fig.1 shows a scheme of

the entire plant. On the left side the existing recovery system is shown. It consists of a

piping net collecting the gaseous Helium which boils off the cryostats and transfers the

gas from all labs to a balloon of 20 m
3

capacity. From there the gas is compressed into

transport cylinders at 200 bars and returned to the gas industries.

At the right side of Fig.1 the new part of the Helium facilities are shown by its main com-

ponents. The transportable high pressure cylinders are replaced by ten stationary

mounted cylinders with a total geometrical volume of 25 m
3
. Their operation pressure is

again 200 bars, providing enough storage capacity to cope with 2-3 weeks of shut down

of the liquefier, e.g. for maintenance reasons. The operation of the ten cylinders is

controlled by a system of high pressure valves which are controlled by a central PLC,

Fig. 1: Scheme of IFW Helium plant 
(source: C. Haberstroh, TU Dredsen)
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allowing their filling for gas recovery and their unloading for liquefaction at the same

time. Together with a number of gas sensors measuring the He quality the high pressure

control system allows the separation the raw gas in different cylinders according to

the impurity content. By blending the gas inside the different cylinders, the liquefier

can be provided with an optimized feed gas quality for the achievement of maximum

efficiency. 

The coldbox liquefies the gaseous helium with a regular send-out of 39 l/h which can

be doubled by pre-cooling the feed gas with LN2. The liquid is transferred into a storage

dewar of 5000 l capacity from which it can be filled into transport dewars of 100 l

capacity each, further used for the delivery of LHe into the IFW labs. The filling is

performed by a cryogenic rotary pump which is mounted inside the storage dewar. To-

gether with a feedback line the transfer system introduces LHe into the transport dewars

and replaces the volume loss in the storage dewar by the cold GHe which is displaced by

the liquid. By these means the liquid can be stored and filled under atmospheric

conditions, keeping its temperature at 4.2 K thus avoiding the occurrence of flash gas.

This technology saves 30% of primary energy and more than 80% of filling time. 

The components framed by the dashed square in Fig.1 are installed inside a new build-

ing, which was erected on an open place between two laboratory buildings, which were

already existent in the IFW premises. Fig. 2 shows the arrangement of equipment in the

main liquefaction hall. 

The plot plan is optimized for the handling of transport dewars during the filling

campaigns. Therefore the coldbox, storage dewar, and filling station are gathered on

one side and the docking station, where the transport dewars are connected to the re-

covery system, on the opposite side. The boil off gas occurring in the liquefaction hall

is collected by a balloon of 20 m
3

volume which is attached to the existing recovery sys-

tem in order to enlarge the entire low pressure buffer. The machinery equipment which

is depicted in Fig. 1 is installed in the basement underneath the liquefaction hall and is

not depicted in Fig. 2.

After one year of planning the construction and installation works could be completed

within ten month. The IFW planning team was supported by the Technical University

Dresden Dept. of Cryogenics, DERU Planungsgesellschaft für Reinraumtechnik Dres-

den, and Blum & Schultze Architekten Dresden. Since December 2009 the Helium cycle

in the IFW is closed and the institute is now able to provide its cryogenic experiments

with the needed coolant. Fig. 3 shows the new helium facility in operation.

Fig. 2: Arrangement of liquefaction components 
inside the new building between Haus B and Haus C
(Source: DERU, Blum & Schultze Architekten)

Fig. 3: New IFW Helium plant in operation 
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“Rhone”- New high-performance hardware for scientific computing
U. Nitzsche

It is our aim to explain experimental findings, to get insight into the mechanisms be-

hind the measured properties and, last but not least, to predict unexpected properties

or new materials. This aim not only requires appropriate analytical theories but, in most

cases, also numerical methods and high-performance computer facilities. Accordingly,

there exists a long-time experience at ITF to build up and operate computer clusters

based on standard PC technology and on Linux operating systems. Our previous cluster

named “mulde” was designed six  years ago as a cost-efficient system fitting to the needs

at that time. The end of its lifetime is foreseeable  and a new cluster had to be acquired.

Our intention was that the new machine should not simply replace the old one. Rather,

it should be better in those points that meanwhile had turned out as bottlenecks. After

a long series of performance tests, not only concerning the computing speed but also

the I/O rate for the hard disk access, comparison of different racks and finally different

manufacturers, we decided to order a system consisting of 

� 32 nodes, each equipped with 8 Intel Nehalem processor cores, 2.93 GHz clock rate, 

and 24 GB of DDR3 RAM; this combination yields a doubled memory access 

bandwidth;

� a working file space of 1.7TB realized with fast SAS hard disks and with a 10 Gbit/s 

connection to the nodes;

� a very fast interprocess connection network between the nodes, based on the 

InfiniBand IV technology as a prerequisite for parallel computing.

The high power density of current Quadcore-processors requires water-cooling: under full

load, the new system has a power draw comparable with 25 averaged 4-persons house-

holds. This posed a new challenge, excellently mastered by our facility management.

On December 8, the cluster was delivered and started. First tests already confirm the con-

cept. In particular, processes with high traffic between CPU and RAM like band structure

codes profit from the new design. For this kind of processes we really achieved a speedup

of 100% compared with the former cluster “mulde”. Additionally, network dropouts

caused by high I/O traffic to the hard disks could even not be produced on the new

system. The system went productive on December 23. Many thanks to the members of the

IT department and of the facility management, especially to Thomas and Jan Fichte, to

Mr Ulrich from the plumber service, and to Mr Effenberg and Dr. Zimmermann for their

straightforward support.

Cooperation MEGWARE Computer GmbH Chemnitz
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Highly textured Nickel-Tungsten substrate

for YBCO coated conductors (graphically

altered EBSD image)

Visualization of the spin polaron

in LaCoO3

Iron filled carbon nanotube attached

to a conventional AFM cantilever

Unit cell of Al3Li4(BH4)13
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Research Area 1
Superconductivity and superconductors

Cu NQR Evidence for a Different Effect of Zn and Ni Doping on the 
Pseudogap in (Eu,Nd)Ba2(Cu,Zn,Ni)3O7

H.-J. Grafe, F. Hammerath, T. Wolf
1
, G. Khaliullin

2
, V. Kataev, B. Büchner

The origin of the pseudogap in the cuprates and its relation to high temperature

(high-Tc) superconductivity is still under debate. Theoretically, it has been related either

to a precursor superconducting state without macroscopic phase coherence or to a kind

of order that may even compete with superconductivity such as a stripe order or spin and

charge density waves. Experimentally, measurements of the optical conductivity [1] that

probe the charge excitations in (Eu,Nd)Ba2(Cu,Zn,Ni)3O7 show that large Zn impurity

doping suppresses the charge pseudogap, whereas large amounts of Ni enhances its

energy scale. Therefore we have investigated the spin dynamics by means of nuclear

quadrupole resonance (NQR) measurements on the Cu nucleus in these compounds [2].

Whereas our previous measurements were somewhat affected by the additional mag-

netic moment of the Nd, we could now measure single crystals of EuBa2(Cu,Zn,Ni)3O7

where the Eu is non-magnetic [3]. We find that Ni doping enhances the nuclear spin

lattice relaxation rate, (T1T )
-1

, leading to a Curie Weiss like temperature dependence (see

Fig.). In contrast, large amounts of Zn reduces (T1T )
-1

. At low temperatures, this effect

is even more pronounced, and the opening of a spin pseudogap in the Zn doped samples

is clearly visible. Since (T1T )
-1

probes the low frequency dynamic spin susceptibility of

the CuO2 planes at the antiferromagnetic wave vector, Q af, we conclude that Ni enhances

antiferromagnetic correlations, and thereby the hole localization and the charge pseudo-

gap. In contrast, large amounts of Zn dilute the spin system, and thus the low energy

spin collective modes are suppressed, resulting in a (spin) pseudogap like decrease of

(T1T )
-1

at low temperatures. Our results reveal hence an intimate relationship between

magnetic correlations and the charge pseudogap phenomenon in high-Tc cuprates.  

[1] A. V. Pimenov et al., Phys. Rev. Lett. 9944, 227003 (2005)

[2] H.-J. Grafe et al., Phys. Rev. B 7777, 014522 (2008)

[3] H.-J. Grafe et al., preprint

Cooperation 
1
Forschungszentrum Karlsruhe, Germany; 

2
Max-Planck-Institut für 

Festkörperforschung, Stuttgart, Germany

Funded by DFG, Forschergruppe 538 

Fig.: Cu spin lattice relaxation rate divided by 
temperature, (T1T )-1, for undoped (black squares),
Zn doped (green triangles) and Ni doped (red dots)
EuBa2(Cu,Zn,Ni)3O7. Ni doping enhances (T1T )-1,
while Zn doping reduces (T1T )-1 leading to a 
pseudogap like decrease below ~40 K.
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YBCO coated conductor architectures
B. Holzapfel, R. Hühne, J. Eickemeyer, U. Gaitzsch, A. Güth, C. Rodig, H. Klauß, 

J. Freudenberger, J. Hänisch, M. Sparing, B. Rellinghaus, R. Gärtner, T. Thersleff, 

A. Kirchner, T. Freudenberg, M. Erbe, M. Schubert, L. Schultz

The preparation of coated conductor architectures for high-performance superconduct-

ing tapes based on YBCO films was continued last year in the framework of an IFW pro-

ject. A major part of the work was dedicated to the development of improved textured

metal substrates showing a reduced ferromagnetism at 77 K and higher mechanical

strength compared to the standard Ni-5at%W tape. For the first time, highly textured

Ni-9at%W tapes were realized using specific homogenisation and stress relief treatments

leading to a cube orientated fraction of more than 94 % [1]. Simultaneously, the prepa-

ration of Ni-7.5at%W substrates was optimised resulting in an improved texture with a

cube oriented fraction of more than 97 %. A standard Y2O3/YSZ/CeO2 coated conductor

architecture was prepared on these substrates using pulsed laser deposition. The final

YBCO layers showed an in-plane alignment below 8° and a critical current density of

1.1 MA/cm
2

on Ni-9at%W and 1.25 MA/cm
2

on Ni-7.5at%W, respectively (see Fig.).

Furthermore, the work was focused on the improvement of the critical current density

of the superconducting layer in magnetic fields by the incorporation of artificial pinning

centres. Pulsed laser deposition as well as chemical solution deposition was used to

implement different second phase materials, as for example Y2Ba4Cu(Nb,Zr)Oy [2],

BaZrO3 or BaHfO3 in the YBCO matrix. The influence of these nanoparticles on the local

structure of the grown film was investigated in detail using high resolution transmission

electron microscopy in order to correlate the defect structures to the measured elec-

trical properties of the YBCO layer. As a result, it was found that the Jc anisotropy of

the superconducting layer can be tuned by adapting deposition parameters like

temperature or deposition rate.

[1] R. Hühne et al., Supercond. Sci. Technol. 23 (2010) accepted.

[2] E. Reich et al., Supercond. Sci. Technol. 22 (2009) 105004.

Cooperation  evico GmbH, Univ. Cambridge, Gent Univ., Zenergy GmbH, 

ICMAB Barcelona, Shanghai Univ., Bruker HTS GmbH

Funded by BMBF, EU, DAAD

Fig.: Newly developed highly textured
Ni-9at%W substrates as templates for
YBCO coated conductors [1].
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Plasmon Dispersion vs. Charge Order in Transition-Metal Dichalcogenides?
R. Schuster, M. Knupfer, B. Büchner

The transition-metal dichalcogenides are quasi-2D metallic systems that are known to

exhibit different electronic instabilities as a function of temperature. Prominent

representatives are 2H-TaSe2, 2H-TaS2 and 2H-NbSe2 all undergoing a charge-density

wave (CDW) transition followed by the onset of superconductivity at lower temperatures.

Another very similar member of this class is 2H-NbS2 which, however, does not show any

signs of charge order. In addition to the above mentioned phase transitions, the con-

duction electrons, derived mainly from the transition-metal ions, can also perform

collective density oscillations – so called plasmons – that can be probed with the help

of electron energy-loss spectroscopy. Such experiments have been done on 2H-NbS2 in

the past and revealed conventional quadratic plasmon dispersion with a positive slope

that is theoretically predicted for ordinary metals. We performed similar investigations

on the other three above given members of the family and found a remarkably different

behavior that is summarized in the figure. All the compounds which are known to un-

dergo the CDW transition show a negative dispersion of the plasmon which contradicts

not only the behaviour found in 2H-NbS2 but also the prediction of a positive dispersion

for conventional metallic systems. This behavior points to a possible – yet unknown –

interference between the plasmon and the CDW. But even if the coexistence of negative

plasmon dispersion and the charge order is purely accidental the negative dispersion

poses considerable theoretical questions. 

Cooperation Institut de Physique de la Matière Complexe, Ecole Polytechnique

Féderale de Lausanne, Switzerland

Funded by DFG

MgB2 – Preparation of first 1000 m long multifilamentary wire
M. Herrmann, W. Häßler, A. Kario, C. Rodig, D. Seifert, T. Wolf, H.-P. Trinks, 

J. Scheiter, M. Schubert, K. Nenkov, G. Fuchs, B. Holzapfel, L. Schultz

The collaboration with Bruker HTS succeeded in the preparation of a single piece

multifilamentary wire exceeding a 1000 m in length with a Je of up to 91 A/mm
2

at 4.2 K

and 5T. This conductor, using a mechanically alloyed in-situ MgB2 precursor prepared at

IFW was manufactured under industrial production conditions at Bruker HTS. Only a

reasonable interplay of both key parameters, an appropriate preparation route and high

current carrying capability, will allow for a widespread use of MgB2 conductors.

Detailed studies on the influence of the milling parameters, e.g. time and speed of

processing has been done and showed, that the morphology of the powder is strongly

affected. With increasing milling energy, a refined particle size down to several nano-

meter, improved homogeneity of the powder and subsequently improved critical current

densities in the wires are observed. At the same time the decreasing flowability of the

precursor changes the deformability of the conductor when used in the powder-in-tube

approach. In order to allow for an easy and reliable production of MgB2 wires on the kilo-

meter scale, it was essential to prepare a precursor which could be deformed properly

within the sophisticated architecture of the conductor as required for all different aspects

of the application.

Cooperation Bruker HTS GmbH Alzenau, Slovak Academy of Science - Institute of

Electrical Engineering Bratislava, Karlsruhe Institute of Technology

Funded by EAS Bruker GmbH, DAAD, NESPA

Fig.: Dispersion of the charge carrier plasmon for 
different representatives of the transition-metal
dichalcogenides measured at room temperature. The
curves are normalized to their onset values at 0.1Å-1.

Fig.: First 1000 m multifilamentary MgB2 wire using
mechanically alloyed in-situ powder manufactured
under industrial production conditions
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Research Area 2
Magnetism and magnetic materials

Hole induced spin polarons in LaCoO3

A. Alfonsov, E. Vavilova
1
, A. Podlesnyak

2
, D.I. Khomskii

3
, V. Kataev, B. Büchner

LaCoO3 is nonmagnetic at low temperatures and shows a temperature activated mag-

netism due to a change of the Co
3+

spin state. Surprisingly, a very small hole doping

(< 0.5 %) via Sr
2+

or Ca
2+

substitution for La
3+

yields a strong magnetization already at

low temperatures. The expected saturation magnetic moment should not exceed 5 µB per

doped hole, which is the maximum possible value for the Co ion transformed into the 4+

oxidation state due to the heterovalent Sr/Ca substitution at the La site. In fact, the mag-

netic field dependence of the magnetization yields a much higher value of ∼ 15 µB/hole.

To uncover the nature of this effect we have measured electron spin resonance (ESR) on

La0.998Sr0.002CoO3 and La0.998Ca0.002CoO3 samples using the unique possibilities of the

high field ESR laboratory at the IFW Dresden. The home made setup enables high sen-

sitive measurements in the frequency range from 10 GHz to 1 THz, in the magnetic fields

up to 17 T and at temperatures from 300 K down to 2 K. The low temperature ESR ex-

periments reveal multiple resonance excitations indicating the occurrence of extended

clusters (spin polarons) with a high spin value and substantial orbital contribution

to the magnetism (Fig.). We have found out that the crucial role in the formation of the

spin polaron is played by the introduced hole: It turns the oxidation state of the central

Co ion to 4+, changes the spin states of 6 neighbouring Co
3+

ions and couples them

ferromagnetically through the double exchange mechanism (Fig.). Details of the ESR

experiments, supporting nuclear magnetic resonance and inelastic neutron scattering

measurements, as well as the discussion of the spin polaron model can be found in

Ref. [1].

[1] A. Podlesnyak et al., Phys. Rev. Lett. 101, 247603 (2008)
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LSDA+U revisited
K. Koepernik, W. E. Pickett

1
, E. R. Ylvisaker

1

Density functional theory (DFT) is an amazingly successful tool to quantitatively describe

many properties of solids, surfaces and molecules in the limit of “weak” correlation.

In its practical implementation DFT is based on the local spin density approximation

(LSDA) or gradient corrected schemes (GGA), which includes the full correlation

Fig. a) The ESR spectrum measured at a frequency f = 285 GHz and a temperature T = 4 K (gray
line); the frequency dependence of the three most intense resonance lines at T = 4 K (cyan trian-
gles, brown circles and blue squares). Solid lines (cyan, brown and blue) represent a calculated
frequency dependence of the ESR absorption lines of the spin polaron with the spin S = 13/2,
g-factor of ~2.6 and the anisotropy energy gap of ~100 GHz (~0.4 meV).
b) Calculated energy levels diagram of the spin polaron with S = 13/2  (high energy Sz states
|±5/2 > to |±13/2 > are not shown). Arrows represent the three most intense ESR transitions
between the Sz states |3/2 > ⇔ |-1/2 >, |-3/2 > ⇔ |-1/2 > and |1/2 > ⇔ |-1/2 > at a frequency
f = 285 GHz and a temperature T = 4 K [see panel (a)].
c) Visualization of the spin polaron in LaCoO3. A central Co4+ ion in the low spin (LS) S = 1/2 state
is surrounded by 6 Co3+ ions in the intermediate spin (IS) S = 1 state. The hole is dynamically
distributed over the cluster providing a ferromagnetic coupling of spins via the double-exchange
mechanism. 
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energy of the homogeneous electron liquid. This approach is lacking effects of the

energy dependence of the electronic self-energy and contains spurious self-interactions,

which becomes important in strongly correlated systems. One commonly used sim-

plistic remedy for these problems is the LSDA+U scheme, which incorporates an ad-hoc

occupation number dependent term to the functional. There are many heuristic

arguments involved in its construction and consequently several different flavors of the

theory exist. We investigated the physical implications of the various flavors of LSDA+U,

based both on a theoretical analysis and on numerical calculations. It turns out that

among the two commonly used flavors one exhibits a very strange behavior with respect

to predicted ground state properties, which leads to a violation of Hund’s first rule for

isolated atoms. Our analytical results increase the understanding of the physical effects

of these kinds of functionals and may lead to improved functionals. It is conceivable that

this kind of discussion will also have implications for the LSDA+dynamical mean-field

(DMFT) theory, since it is based on a similar ad-hoc Hamiltonian.

Cooperation 
1
Univ. of California Davis, USA

Angle-resolved Photoemission Spectroscopy of 
Spin – Ladder Compounds
A. Koitzsch, D. S. Inosov

1
, H. Shiozawa

2
, V. B. Zabolotnyy, S. V. Borisenko, 

A. Varykhalov
3
, C. Hess, M. Knupfer, U. Ammerahl

4
, A. Revcolevschi

4
, and B. Büchner

One of the peculiar properties of the cuprates is their ability to form sophisticated

crystal structures where copper-oxygen networks with a dimensionality between one and

two can occur – so called ladder compounds. Cuprate two-leg ladder compounds of the

type Sr14-xCaxCu24O41 have been in the focus of intense research for many reasons: i) they

are believed to be relevant for the cuprate high-Tc problem, both as simpler paradigm of

t-J models [1] and due to the known affinity of the two-dimensional cuprates to one-

dimensional (stripe) phenomena [2], ii) as quasi one-dimensional materials they are sub-

ject to strong quantum fluctuations and complex density wave order, giving rise to ex-

otic ground states [3], iii) they are superconductors in their own right with an unresolved

pairing mechanism [4]. We have investigated the electronic structure of Sr14-xCaxCu24O41

(x = 0; 11.5) single crystals by angle-resolved photoemission spectroscopy. Remarkable

agreement with bandstructure calculations is found. The Fermi surface is observed for

Sr2.5Ca11.5Cu24O41 from which we derive a charge carrier concentration between 0.15 and

0.2 holes per Cu atom at T = 25 K in the ladder substructure. The chain substructures, on

the other hand, act as diffraction grating for the ladder photoelectrons giving rise to

incommensurate replicas of the ladder bands. A low energy band renormalization, a kink,

is observed at E = 70 meV for Sr2.5Ca11.5Cu24O41. The kink is similar to the one found in

two-dimensional cuprates, suggesting a close relationship between the latter and

ladder compounds with high internal pressure.

[1] E. Dagotto et al., Phys. Rev. B 4455, 5744 (1992) 

[2] J. M. Tranquada et al., Nature 337755, 561 (1995)

[3] T. Vuletic et al., Phys. Rep. 442288, 169 (2006)

[4] M. Uehara et al., J. Phys. Soc. Jpn. 6655, 2764 (1996)

[5] M. Arai et al., Phys. Rev. B 5566, R4305 (1997)
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Fig.: Spin (S), orbital (L) and total (J) angular momen-
tum for an isolated 4f-shell as a function of the total
4f-shell occupation. The left panel shows the results
for the AMF functional and clearly violates Hund’s
first rule, while the right panel (AL/FLL functional)
follows Hund’s rules. 

Fig.: Photoemission spectra of Sr14Cu24O41. 
(a) k- integrated valence band. Inset: Crystal struc-
ture of the ladder plane. (b) Map of photoemission
intensity at EB = 0.4 eV integrated over ∆E = 0.08 eV.
The blue line corresponds to the tight binding fit of
bandstructure calculations for the bonding band [5].
Green arrows mark the kx positions of the measure-
ments in (c+d). (c) Intensity  map with perpendicular
polarization. The light blue line corresponds to the
antibonding band of [5]. (d) Intensity map taken 
with parallel polarization.
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Non-existence of exact Kohn-Sham-equations in semi-relativistic current
density functional theory
M. Taut, P. Machon, and H. Eschrig

One of the basic theorems for the widely used Kohn-Sham (KS) equations in density

functional theory (DFT) is that for any interacting electron system in an external scalar

potential v ext
(r) there is a non-interacting model system, which provides the exact

density n(r) and energy Etot of the ground state. This follows from the fact that the

external potential is a unique functional of the density. If additionally a magnetic field

(or vector potential Aext
(rr)) is involved, then semi-relativistic current density func-

tional theory (CDFT) applies, but the external potentials vext
(r) and Aext

(r) are no more

unique functionals of the densities n(r) and jp
(r). Consequently, the existence of exact

Kohn-Sham equations for the ground state cannot be proven. In standard CDFT im-

plementations, the exsistence of exact KS equations is nevertheless presupposed.

However, we have shown [1] using the exact analytical solutions of a two-electron

quantum dot in a magnetic field [2] that in this system exact KS equations can exist

only for certain orbital angular momenta. Consequently, the existence of exact KS

equations is neither guaranteed for - nor restricted to ground states (see also Fig.), a

result important for the application of KS theory to orbital magnetism.

[2] M. Taut, et al. Phys. Rev. A 80, 022517 (2009)

[1] M.Taut, J. Phys. A27, 1045 (1994)

Electrodeposition of structured layers using defined 
magnetic field gradients
K. Tschulik, M. Uhlemann, J. Koza, K. Hennig, I. Mönch, V. Hoffmann, A. Gebert

Structuring of deposits has been demonstrated in ∇B-fields superimposed during the

electrodeposition process in presence of paramagnetic ions as Cu
2+

, Fe
2+

or Co
2+

. Defined

∇B -fields at disc-electrodes have been generated by a magnetic field template prepared

from Fe wires (∅ = 1 mm, l = 3 mm) embedded in PVC (Fig. a) placed directly behind the

electrode. The wire axes have been aligned perpendicularly to the horizontal electrode

and magnetized by a homogeneous magnetic field Bex of 0.5 T.

Obtained deposits show a direct correlation of the distribution of magnetic flux den-

sity B at the electrode and the morphology and thickness of the deposit. Maxima of

deposit thickness correlate with maxima of B∇B, so evidently ∇B -fields can alter the

current distribution at the electrode (Fig. b,c). As the depositions have been performed

in the mass-controlled regime this observation indicates enhanced mass-transport of

paramagnetic ions to these regions, leading to locally increased deposition rates. In

contrast to that no structuring effect has been achieved for deposition of Bi from

electrolytes containing diamagnetic Bi
3+

ions. The structuring mechanism is mainly

based on a sufficient influence of the field gradient force which attracts paramagnetic

ions to regions of high field gradients. This force is overlapped by the Lorentzforce

inducing a local MHD-convection. 

Cooperation TU Dresden, Forschungszentrum Dresden-Rossendorf

Funded by DFG / SFB 609, Studienstiftung des deutschen Volkes 

Fig.: Total energy of the harmonic two-electron
quantum dot for fixed confinement frequency 
ω0 = 1 versus cyclotron frequency ωc. The orbital 
angular momentum ML is varied. Thick lines indicate
states for which an exact Kohn-Sham system exists.
The vertical lines indicate where the angular momen-
tum of the ground state changes.

Fig.: Optical images of magnetic field template (a),
structured Cu deposit (b), and simulated flux 
density distribution (c). 
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Highly ordered, half-metallic Co2FeSi single crystals
C. G. F. Blum, S. Wurmehl, G. Friemel, C. Hess, G. Behr, B. Büchner, C. A. Jenkins
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A wide variety of properties such as half-metallicity is found among Heusler compounds.

In order to separate intrinsic and extrinsic properties, high quality single crystals are

required. Here, we report on differently grown crystals (by arc-melting, floating zone and

Czochralski method) of the half-metallic ferromagnet Co2FeSi [1]. All crystals show

excellent ordering, confirmed by Laue diffraction and nuclear magnetic resonance

spectroscopy, resulting in outstanding electrical behaviour with low residual resistivity

and high residual-resistivity-ratio. All Co2FeSi crystals show a plateau in the resistivity

below 50 K, which might point to half-metallic ferromagnetism. The cross-over from this

unusual to more conventional transport (T 2
dependence) around 50 K indicates the onset

of spin flip scattering and thus is indispensable for understanding the strong tempera-

ture dependence of Co2FeSi tunnelling magnetoresistance-devices.

[1] C. G. F. Blum et al., Appl. Phys. Lett. 9955 (2009) 161903.
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Epitaxial thin SmCo5 films with perpendicular anisotropy
M. Seifert, V. Neu, and L. Schultz

SmCo5 is the hard magnetic material with the highest uniaxial magnetic anisotropy

and is long established for bulk permanent magnet applications. As a thin film, epitaxial

SmCo5 has only been realized on Cr buffered MgO(110) with a perfect in-plane texture,

where the c-axis is oriented along the MgO[001] direction [1]. Due to the interest in

materials with strong perpendicular anisotropy, recently several groups investigated

polycrystalline Sm-Co based thin films on Cu templates with a preferred orientation

of the c-axis perpendicular to the film plane [2]. In contrast to this, we achieved

epitaxial growth of SmCo5 with a perpendicular anisotropy without the use of an

additional copper layer, and with a largely improved anisotropy constant of

Ku = 7.6 MJ/m
3

[3].

The films have been prepared by UHV pulsed laser deposition (PLD) at 700°C in on-axis

geometry (KrF excimer laser, 248 nm, base pressure < 5 × 10
-9

mbar) on a Ru buffered

Al2O3(0001) substrate. SmCo5 (101
–

1) pole figure measurements result in two sets of poles

with 6-fold symmetry which are rotated 30° with respect to each other in agreement with

two rotated variants of hexagonal SmCo5 growing with the c-axis perpendicular to the

surface. For film reduced thicknesses the intensity of one variant decreases, leading to

a single orientation of SmCo5 on Al2O3. The figure shows the highly anisotropic mag-

netic behavior of a 20 nm thin SmCo5 film when measuring out of the film plane (i.e.

parallel to the uniaxial anisotropy axis) and perpendicular to it, together with the

extrinsic magnetic properties. 

[1] A. Singh, et al., J. Appl. Phys. 9999, 08E917 (2006)

[2] J. Sayama et al. Appl. Phys. Lett. 8855, 5640 (2004); S. Takei et al. J. Magn. Magn. 

Mater. 227722, 1703 (2004)

[3] M. Seifert et al., Appl. Phys. Lett. 9944, 022501 (2009)

Fig.: Magnetic hysteresis of an epitaxial SmCo5 film
with perpendicular anisotropy. The flat and narrow
hard axis loop can be fitted to a high uniaxial
anisoptropy with Ku = 7.6 MJ/m3.

Fig.: Resistivity as a function of temperature for 
the Czochralski grown single crystal (triangles), the
polycrystal (squares) and the zone molten single 
crystal (dots).The inset shows a rod obtained from
the floating zone method containing large and high
quality Co2FeSi single crystals.
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Huge tetragonal distortion in epitaxial films
J. Buschbeck, I. Opahle, M. Richter, U. K. Rößler, L. Schultz, S. Fähler 

Strained coherent film growth is commonly either limited to ultrathin films or low

strains. Here, we present an approach to achieve high strains in thicker films, by using

materials with inherent structural instabilities. As an example, 50 nm thick epitaxial

films of the Fe70Pd30 magnetic shape memory alloy are examined. Strained coherent

growth on various substrates allows us to adjust the tetragonal distortion from

c/abct = 1.09 to 1.39, covering most of the Bain transformation path from fcc to bcc

crystal structure. 

The magnetic properties of these films display considerable changes: The Curie tem-

perature is increased more than 25% with respect to the value for Fe70Pd30 with fcc

structure. This is accompanied by an increase of the magnetic anisotropy from near

zero to values close to those of ‘‘fct ’’ bulk Fe70Pd30. 

Softening of the crystal lattice and a flat energy landscape along the Bain path are not

a unique feature of this alloy. Similar lattice instabilities may be exploited in various func-

tional materials including (magnetic) shape memory, ferroelectric, multiferroic, or

magnetocaloric materials for extended adjustability of their crystal structure in strained

epitaxial films.

Cooperation Univ. Frankfurt; Johannes Gutenberg-Univ.Mainz

Funded by DFG via SPP1239 (www.MagneticShape.de)

Domain models for ferromagnetic shape memory materials
A. T. Onisan, A. N. Bogdanov, U. K. Rößler

The twinned martensitic microstructure of ferromagnetic shape-memory materials is

transformed by modest applied magnetic fields. A domain model for the twin-variant and

magnetic domain distribution in bulk systems of ferromagnetic shape-memory materi-

als has been developed. The approach combines crystal elasticity, compatibility between

twins with a (pseudo)-tetragonal lattice structure, and micromagnetic domain theory.

The model has been applied to calculate detailed phase diagrams under external mag-

netic fields and stresses for the archetypical ferromagnetic shape-memory material

Ni-Mn-Ga as a magnetic system with easy-axis anisotropy and for Fe-Pd with easy-plane

fourfold anisotropies. The example shown is a phase diagram for Ni-Mn-Ga with two-

variant microstructure composed of x- and z-variants. The phase diagrams allow to

analyse the anhysteretic transformation and magnetization processes under combined

Fig.: A) Sketch of the Bain transformation between
fcc (top) and bcc structure (bottom); B) c/a ratio 
(left scale) and in-plane lattice constants (right scale)
of the Fe-Pd bct unit cell in dependence of the lattice
spacings of the various buffer layers used (marked on
top). 
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external magnetic fields and stresses. It is found that equilibrium domain and variant

structures, caused by the depolarization, can own degrees of freedom in these systems

that allow a rearrangement without energy cost.

Funded by DFG (SPP1239, A8)

Highly dispersive and low-energy spiral magnetic excitations 
in the frustrated chain compound Li2CuO2

S. L. Drechsler, W. E. A. Lorenz, R. Klingeler, N. Wizent, G. Behr, U. Nitzsche, 

J. Málek, B. Büchner

Li2CuO2 is the first and the most frequently studied compound of the growing class of

frustrated edge-shared spin-chain cuprates. Owing to its structural simplicity with

ideally planar CuO2 chains it can be considered as a model quasi-one-dimensional (1D)

frustrated quantum spin system. We performed various inelastic neutron scattering (INS)

investigations of Li2CuO2 and detected the long sought quasi-1D magnetic excitations

with a large dispersion along the CuO2-chains (Fig.1). The total dispersion is governed

by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral

J1 = -228K. An anomalous quartic dispersion near the zone center and a pronounced min-

imum corresponding to a low-energy spiral excitation over a commensurate collinear NÉEL

ground state with a pitch angle of about 41
o

(Fig. 2) which points to the vicinity of a 3D

FM-spiral critical point. The leading exchange couplings are obtained applying standard

linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral

state and drives the FM in-chain ordering below the NÉEL temperature. The obtained

exchange parameters are in agreement with the exact diagonalization results for a re-

alistic five-band extended HUBBARD Cu3dO2p model on CunO2n+2 clusters (n = 2- 6) and

with predictions derived from total energy calculations for various magnetic structures

using the L(S)DA+U scheme, if a moderate value of the COULOMB repulsion on Cu-sites

U = 5.6 eV is employed. The achieved detailed knowledge of the main exchange couplings

derived from the INS-data provides a good starting point for an improved general

theoretical description of other CuO2-chain systems.

[1] W.E.A. Lorenz et al., Europhysics Lett. 88, 37002 (2009).

Cooperation R. Kuzian, Institute for Problems of Materials Science, Kiev, Ukraine;

H. Rosner, Max Planck Institute for Chemical Physics of Solids, Dresden; A. Hiess, 

Institut Laue Langevin, Grenoble, France; M. Loewenhaupt, Institut für Festkörper-

physik, TU Dresden

Funded by DFG, Emmy-Noether Gruppe

Fig. 2: The same as in Fig. 1 as measured by cold
neutrons including also a direction perpendicular to
the CuO2-chains (central panel). For the low-energy
minimum corresponding to incommensurate spiral
excitations see right panel.

Fig.: Phase diagram for Ni-Mn-Ga under magnetic
fields and compressive stress in z-direction in terms 
of volume fractions ξ of tetragonal x- and z-variants
and internal magnetic domains 1 (2) with up (down)
magnetization.

Fig. 1: The experimental magnon dispersion 
measured by various inelastic neutron scattering
(INS) studies along the chain direction as compared
with a linear spin wave (LSW)-fit.
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Permanent Magnets 
O. Gutfleisch, T. G. Woodcock, J. Thielsch, K. Güth, J. Lyubina, L. Römhildt, 

K. Skokov, R. Schäfer, K.-H. Müller, L. Schultz

New energy concepts are required for the future of our industrial society resulting in e.g.

an ever increasing emphasis on improving the efficiency of electricity transmission and

utilisation and in the progressive replacement of oil-based fuels in transportation by

electric motors. Recently, there is a much revived interest in various types of high

performance permanent magnets (RPMs) based on rare earth intermetallic compounds.

This is triggered by e.g. the growing demand for energy efficient technologies in which

magnets often play a pivotal part. One prominent example is found in automobiles,

specifically for traction motors in hybrid electric vehicles (HEVs). In this context,

advanced permanent magnets are being studied in our group in terms of their funda-

mentals, processing and applications. This includes the determination of intrinsic mag-

netic properties, investigation of high pulsed magnetic field-induced phase transi-

tions, detailed microstructural and micromagnetic analysis as well as the development

of novel processing routes. 

Generally, the major driver for research and development of RPMs is the need for

maximised energy densities at various operating temperatures. This includes Pr2Fe14B-

type magnets for applications at 77 K together with high Tc superconductors, Nd2Fe14B-

type magnets with reduced Dy content and much improved temperature stability for

electromotor applications at around 450 K, and a new generation of SmCo 2:17-type

magnets for applications exceeding 670 K. It also includes magnetic microelectro-

mechanical systems (mag-MEMS) for e.g. high speed permanent magnetic generators

which require highly textured thick RPM films.

The characterisation and engineering of internal interfaces on a (sub-)nano scale is

aimed at improved temperature stability of the magnet for HEVs applications.

Cooperation CNRS Grenoble, France; Toyota Motor Corporation, Japan; Tohoku Univ.

Sendai, Japan; Univ. of Texas, USA; Vacuumschmelze Hanau, Germany;  National 

Institute of Materials Science, Tsukuba, Japan

Funded by Toyota, Hans L. Merkle Stiftung, Bosch, Aichi-Steel, Forschungsvereini-

gung Antriebstechnik (FVA)

Fig. 2: MFM image of NdFeB 5µm thick film
deposited by triode sputtering (cooperation
Institute Néel Grenoble).

Fig. 1: Highest resolution TEM image of
the Nd2Fe14B phase in a Dy-free sintered
magnet with the c-axis perpendicular to
the imaging plane. 
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Fig.: An example for a solid-solid phase
transition in La(Fe,Si)13 correlating the
resulting adiabatic temperature change
with a strong magnetovolume effect,
both in an applied magnetic field of
1.9 Tesla.

Magnetocaloric Materials 
O. Gutfleisch, K. Skokov, J. Lyubina, M. Krautz, N. Scheerbaum, J. Liu, M. Richter

Magnetic refrigeration offers a solid state alternative to standard gas compression-based

cooling that would simultaneously eliminate the need for harmful refrigerant gases and

reduce energy requirements and hence carbon dioxide emissions. About ten years have

passed since the discovery of the giant magnetocaloric effect in Gd5(Si,Ge)4, the mag-

netic refrigerant that re-ignited interest in magnetic cooling around room temperature.

Since then a number of alternative magnetic refrigerants have emerged, resulting in a

field that is yielding fundamental discoveries regarding solid-solid phase transitions

whilst opening the way to new applications in cooling and other magneto-thermal and

magneto-mechanical areas.

Our research focuses on the search for novel material systems, novel processing routes,

and nano-architectures, the hysteresis properties, the time-dependency of magneto-

structural and magnetoelastic transitions, the tailoring of operating temperature and

of required magnetic fields, the engineering properties of magnetocaloric materials and

ultimately the design of magnetic cooling devices. Systems of interest are the La-series

alloy compounds, some transition-metal-based compounds, especially MnFePGe, as

well as Heusler alloys. 

Cooperation Imperial College London, UK; Vacuumschmelze Hanau, Germany; 

Istituto Nazionale di Ricerca Metrologica Torino, Italy; Univ. de Barcelona, Spain;

Ames National Labs, USA; Univ. de Zaragoza, Spain; Camfridge Ltd., UK

Funded by EU (Solid State Energy Efficient Cooling - SSEEC), BASF Future Business
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Research Area 3
Molecular nanostructures and molecular solids

Engineering of the energy level alignment at organic semiconductor 
interfaces by intramolecular degrees of freedom: 
transition metal phthalocyanines
M. Grobosch, V. Yu. Aristov, O. V. Molodtsova, C. Schmidt, and M. Knupfer

We have determined the energy level alignment at interfaces between various transition

metal phthalocyanines (MnPc, FePc, CoPc, NiPc, CuPc) and gold using photoemission

spectroscopy. Our results demonstrate that the transition metal center has a strong

influence on the electronic properties of the phthalocyanine films as well as their

interfaces with gold. This offers a route to adjust the hole injection barrier via the choice

of otherwise equivalent molecular organic semiconductors. In particular, the inter-

faces MnPc/Au and CoPc/Au are characterized by a small hole injection barrier, which

would be advantageous for applications. These are directly related to the presence of

metal 3d states closest to the chemical potential. The nature of the molecular orbitals

(metal 3d or ligandlike), that form the states closest to the chemical potential differ

between MnPc and CoPc. In CoPc they are of predominantly metallic 3d character with

a1g symmetry and do not hybridize with the ligand π-system. Therefore, they are most

likely to be highly localized due to the very small overlap between these orbitals of

adjacent molecules and thus do not contribute to charge transport. Oppositely, the

relevant states in MnPc strongly hybridize with the ligand, and thus, injection into

these states with a small barrier from gold should also result in continuous charge

transport across the interface. For details see: M. Grobosch et al., J. Phys. Chem. C 111133,

13219 (2009).

Cooperation Institute of Solid State Physics, Russian Academy of Sciences; 

TASC-INFM Laboratory; Univ. of Johannesburg 

Funded by DFG, RFBR

Time-delayed release of the cytostatic carboplatin from multiwalled 
carbon nanotubes
D. Haase, M. Arlt, K. Krämer, A. Leonhardt, S. Oswald, M. Ritschel, R. Klingeler, 

S. Hampel, B. Büchner

The ongoing progress in developing tailored nanoscaled materials opens novel per-

spectives in applying nanotechnological approaches for medical therapy. Here, we show

the feasibility of carbon nanotubes (CNT) as casing and carrier for cytostatics and

demonstrate time-delayed release which is preferable in actual chemotherapies.

CNT/Carboplatin-hybrids have been synthesized via a liquid phase method using

different types of CNT (multiwalled CNT with tubular and with herringbone structure,

respectively). The relevant difference between the starting materials concerns their inner

diameter which amounts 10-20 nm for the tubular CNT and about 100 nm for the herring-

bone type CNT. Interestingly, the carboplatin filling content is the same for both types,

i.e. around 0.13 mg Pt per mg total mass. The release of the drug from the CNT was

investigated by dispersion of the hybrids in cell culture medium and quantification of

the drug present in the medium. Concerning the release, the tubular CNT/Carboplatin-

hybrid was found to be favourable from which after 7 days 30 % of the Pt-content have

been released, thereby demonstrating the carrier function for drugs. In comparison, the

herringbone CNT/Carboplatin-hybrid released only 10 % of the Pt after 7 days.

Fig. TEM images of two different types (tubular and
herringbone) of CNT filled with Carboplatin.

Fig.: Comparison of the valence band photoemission
spectra of MnPc, FePc, and CoPc taken with photon
energies of 21.2 and 110 eV (MnPc, CoPc) or 100 eV
(FePc). Due to different cross sections, the data at
100/110 eV more strongly reflect metal 3d con-
tributions.
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Cytotoxicity of the hybrids as well as of the pure CNT was assessed in vitro using prostate

carcinoma cells. CNT/Carboplatin-hybrids reduced cell viability with the same efficien-

cy as pure Carboplatin at the same concentration. Carboplatin-loaded CNT effectively

reduced colony formation of prostate cancer cell lines similar to Carboplatin solution.

Our study highlights the potential of the use of CNT for biomedical applications.

Cooperation Department of Urology, TU Dresden University of Technology

Funded by DFG, EU

Iron filled carbon nanotubes – Novel high resolution high stability probes
for quantitative magnetic force microscopy
F. Wolny, T. Mühl, U. Weissker, K. Lipert, A. Leonhardt, B. Büchner

Magnetic force microscopy (MFM) is a popular scanning probe technique to qualita-

tively image magnetic stray fields. To obtain quantitative information on the magnetic

stray field or its gradients at the specimen’s surface it is necessary to know the mag-

netic characteristics of the applied MFM tip. However, due to the complex geometry of

conventional magnetically coated MFM probes, the effective magnetic tip coating in-

volved in the tip-sample interaction depends on the geometry of the sample stray field.

We use an iron filled carbon nanotube (FeCNT) which contains a long single-crystal iron

cylinder of defined geometry (several microns in length, 10-50 nm in diameter) as

MFM probe. This probe possesses well defined magnetic properties and thus permits a

straightforward, universal calibration. The enclosed ferromagnetic wire can be re-

garded as an extended dipole of which only the monopole close to the sample surface

plays a role during the imaging process. An easy calibration routine involving two pa-

rallel conducting paths that produce a defined magnetic field can be used to determine

the probe’s magnetic monopole moment needed for quantitative MFM measurements.

Furthermore, the FeCNT probe has many more advantages over a conventional MFM

probe: the mechanical and oxidation stability of the FeCNT leads to an extraordinarily

long probe lifetime, the small diameter enables a high magnetic resolution and the mag-

netic shape anisotropy of the elongated iron cylinder ensures a stable direction of the

probe magnetization. 

Cooperation Ohio State Univ., USA

Funded by DFG

Space-charge-limited currents in organics with trap distributions 
G. Paasch, S. Scheinert

1

Analytical approximations for space-charge-limited currents (SCLCs) in systems with ex-

ponential or Gaussian trap distributions were widely used in analyzing organic diodes.

The current follows a power law with a transition into the trap-free SCLC at high voltages

and an ohmic low voltage limit. The power coefficient γ is connected with either the

decay constant or the variance of the distributions. Within these formulations, it is not

possible to check the relevance of the numerous approximations needed to derive them.

This concerns especially the relations of the contact work functions and of the layer

Fig.: Top: Iron filled carbon nanotube attached to a conventional AFM cantilever.
Middle: Setup for calibrating the FeCNT probe. The gold conducting paths of known geometry
produce a defined magnetic field which is used to relate the MFM signal to actual magnetic field
gradient values. Bottom: Calibration curves for a FeCNT probe. Conducting paths with different
geometry (separation b between both paths) yield similar values of the corresponding probe mag-
netic monopole moment q.
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thickness with the trap concentration, the position of the center of the trap distribution

and its maximum value. Application of the analytical approximations to results of full

numerical simulations allows one to set limits for the parameter ranges in which the ap-

proximations can be applied. In the case of the exponential distribution the analytical

approximation is rather good for high trap concentrations and thicker layers. However,

the simulations reveal a number of additional peculiarities. Such, the high voltage

limit is usually not the trap-free SCLC but ohmic and determined only by the anode bar-

rier, the low voltage limit leads to a diodelike dependence with a large ideality factor and

scaling with layer thickness and position of the trap distribution is extremely limited.

In the case of the Gaussian trap distribution the simulations show indeed that the for-

mula together with the connection between the power coefficient and the variance of

the distribution fails completely. Thus, in principle, earlier analyzes of experimental

data should be revised by using numerical simulations.

[1] G. Paasch and S. Scheinert, JOURNAL OF APPLIED PHYSICS 110066, 084502 (2009)
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Co Dimers on Hexagonal Carbon Rings Proposed as Subnanometer 
Magnetic Storage Bits
R. Xiao, D. Fritsch, M. D. Kuz’min, K. Koepernik, H. Eschrig, M. Richter, 

K. Vietze
1
, G. Seifert

1 

It is demonstrated by means of density functional and ab initio quantum chemical

calculations [1], that transition-metal–carbon systems have the potential to enhance

the presently available area density of magnetic recording by 3 orders of magnitude.

As a model system, Co2 benzene with a diameter of 0.5 nm is investigated. It shows a

magnetic anisotropy of the order of 0.1 eV per molecule, large enough to store perma-

nently one bit of information at temperatures considerably larger than 4 K. A similar per-

formance can be expected, if cobalt dimers are deposited on graphene or on graphite.

[1] R. Xiao et al. Phys. Rev. Lett. 110033 (2009) 187201, selected for Virtual Journal of 

Nanoscale Science & Technology 2200, 2009.

Cooperation
1

TU Dresden

Funded by DFG, SPP 1145 and FOR 520. 

Fig. Magnetic anisotropy energy of Co atoms in dif-
ferent chemical and structural environments. Black
squares denote experimental data, blue circles and
red diamonds denote lower and upper estimate theo-
retical data. Bulk hcp Co, bulk L10 CoPt, Co atoms on
the Pt (111) surface, and Co dimers on the graphite
(0001) surface (our prediction) consecutively differ
from each other by about 1 order of magnitude.
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The CVD synthesis of carbon coated magnetic nanoparticles
A. Leonhardt, V. Khavrus, E. M. M. Ibrahim, A. A. El-Gendy, S. Hampel, 

R. Klingeler, B. Büchner

Magnetic nanoparticles are receiving a lot of attention because this kind of hetero-

structure offers opportunities to develop devices and materials with new functions for

different applications such as magnetic recording, tissue engineering, drug delivery/

targeting, magnetic resonance imaging, magnetic bio-separation, and so on. The neces-

sity of coating magnetic nanoparticles with protective shell like carbon is to achieve their

stability against oxidation and corrosion and reduce their agglomeration.

Carbon coated Fe, Co and Ni nanoparticles (Fe@C, Co@C, and Ni@C, respectively) have

been produced by high pressure chemical vapour deposition [1, 2]. The used method is

based on the decomposition of a vapor consisting of metallocene (Me(C5H5)2, Me = Fe,

Co, or Ni) at a temperature in the range of 800–950 °C and a pressure of 10–30 bar in a

horizontal steel reactor. A water-cooled finger is located in the cold zone of the reactor.

The gas mixture is injected by using a nozzle-system. After the deposition process

Me@C nanoparticles are concentrated on the cooled finger. Scanning and high resolu-

tion transmission electron microscopy images show that the nanoparticles have a size

distribution from 2 to 100 nanometers and display the core/shell structure with one or

more metal particles forming the core in a particular shell (see Fig.). The thickness of

the protective carbon layers encapsulating the core particles amounts to 3–7 nm. The

coated nanoparticles are ferromagnetic at least up to 400 K [1].

The proposed method can be extended for the synthesis various carbon coated alloys

nanoparticles with different stochiometric ratio of the core composition using different

volatile metalorganic compounds.

[1] A.A. El-Gendy et al. Carbon 47 (2009) 2821-2828.

[2] V.O. Khavrus et al. J. Phys. Chem. C 2010, accepted.

Cooperation L.V. Pisarzhevsky Institute of Physical Chemistry, National Academy 

of Sciences of Ukraine, Kyiv, Ukraine; Sohag Univ. Egypt.

Funded by DFG, SMWK

Fig.: SEM and TEM (inset) images of prepared Co@C
nanoparticles.
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Fig.: Phase diagram of Gd-Ti with predicted liquidus
and binodal line (dotted). Onset temperatures of the
α-Ti to β-Ti solid state transformation, the eutectic/
monotectic reaction and the liquidus temperature in
case of Gd5Ti95 from the DSC measurements are 
denoted by triangles. Different microstructures of
samples quenched from the various temperatures 
are denoted by open dots (macroscopically homo-
geneous microstructure) and filled dots (coarse 
phase separated microstructure), respectively. 
Full line: binodal line fitted from microstructure 
analyses. Dashed line: tentative liquidus line.

Research Area 4
Metastable alloys

Liquid-liquid phase separation in binary Ti-Gd and Zr-Gd melts
W. Löser, S. Schmitz, H.-G. Lindenkreuz, N. Mattern, B. Schwarz, B. Büchner

Phase separated metallic glasses, as a new class of cluster materials, can be produced

from complex alloys involving binary terminal systems with both negative and positive

heats of mixing, respectively. It was shown that phase separation of the supercooled

liquid state into two different glasses occurred in melt spun Zr-based metallic glass al-

loys due to the positive heat of mixing in the liquid state for Zr-R, where R is a Rare Earth

element. Liquid phase separation below a critical temperature Tc can principally occur

within either a stable or a metastable miscibility gap. While the former is an equilib-

rium phase diagram feature, the latter one lies beneath the liquidus curve (Tc < TL ). For

thermodynamic modeling of glass forming systems experimental data are an urgent

need. Liquid phase separation in two binary melt systems, Gd-Zr and Gd-Ti, related to

phase separated metallic glasses are investigated by electromagnetic levitation ex-

periments along with differential scanning calorimetric (DSC) studies. Gd-Ti samples

quenched onto a copper chill substrate from temperatures below the binodal line exhi-

bit typical coarse phase separated microstructures, assigning melt immiscibility. Accord-

ing to the undercooling experiments the miscibility gap of Gd-Ti melts extends at least

from 10 to 80 at.% Gd (Fig.), much wider than reported previously [1]. The critical tem-

perature is about 1580°C at Gd20Ti80. In the Gd-Zr system melt droplets quenched from

the undercooled state exhibit concurrent coarse Gd and Zr primary phase constituents

suggesting a metastable miscibility gap. The dissimilar phase separation features of the

two binary systems investigated may imply different glass forming ability of the alloys.

[1] J.L. Murray. In: T.B. Massalski, editor. Binary alloy phase diagrams, 

ASM International, Materials Park (OH); 2
nd

Ed., 1990, p.1935.
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Phase separation in Cu46Zr47-xAl7Gdx metallic glasses
N. Mattern, J. M. Park, J. H. Han, J. Eckert 

Phase separated metallic glasses can be prepared in the Cu-Zr-Gd system by rapid

quenching the melt as a consequence of the large positive enthalpy of mixing between

gadolinium and zirconium [1,2]. The influence of composition on phase separation and

microstructure of Cu46Zr47-x Al 7Gdx glasses was studied by in-situ synchrotron small-

angle scattering (SAXS) combined with simultaneous measurement of wide angle X-ray

scattering (WAXS). The question viewed is to which extend phase separation occurs in

the glasses if the concentration of gadolinium is low, because for such compositions

improved glass forming ability and plasticity is observed [1]. Low SAXS intensities of

Cu46Zr47-x Al 7Gdx alloys with x ≤ 5 indicate a homogeneous glass for the as-quenched

state. Fig. 1a shows the in situ scattering data of the Cu46Zr42Al7Gd5 glass at elevated

temperatures. The increase of the SAXS intensities between T = 573–673 K give evidence

of on-going phase separation by spinodal decomposition with a correlation length of

about 6 nm prior to crystallisation as seen by WAXS at Tx = 723 K. For x ≥ 7 at % the

heterogeneities are already observed in the as-quenched glasses increasing in size for

higher gadolinium contents. Fig. 1b shows the calculated pseudo-binary section along

Cu50Zr50-Cu50Gd50 of the ternary phase diagram. The composition dependence of the

miscibility gap of the under-cooled metastable liquid determines the structure forma-

tion of the glasses. Early stages of spinodal decomposition or an almost homogeneous

glassy state is obtained if the critical temperature of liquid-liquid phase separation TC

is near to the glass transition temperature Tg. On the other side, if TC is much larger

then Tg, the microstructure becomes coarsened due to additional growth of the phase

separated liquids during quenching.  

[1] E. S.  Park et al. Scripta Mater. 57 (2007) 49.

[2] I.V. Stasi et al. J. Optoelectronics and Advanced Materials 10 (2008) 2963.

Cooperation Yonsei Univ. Seoul, Hasylab at DESY Hamburg 
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In-situ AFM studies for corrosion analysis of 
Fe-based bulk metallic glasses
F. Gostin, A. Gebert, M. Uhlemann, U. Kühn, J. Eckert, L. Schultz

In-situ atomic force microscopy (AFM) is a powerful technique which offers the pos-

sibility of direct observation of surface topographical changes during electrochemical

measurements. An in-house built set-up allows a three electrode configuration to be used

and full capability of control with an external potentiostat. Studies concerning the

particularities of corrosion damage morphologies of Fe-based glassy alloys have not

been performed up to now. Corrosion morphologies of classical crystalline alloys are

strongly dependent on their structural characteristics such as grain boundaries, se-

condary phases, different orientation of grains etc. However, glassy alloys are missing

most of these. In consequence, initiation of corrosion on such alloys is expected to be

stochastic in nature. In-situ AFM realizes the detection of very early corrosion mor-

phology features due to two factors: one is the very good depth resolution and the

Fig. 1a: SAXS and WAXS (inset) intensities of glassy Cu46Zr42Al7Gd5 at elevated temperatures.
After measurement at T = 573 K the temperature was stepwise increased by 10 K and repeated
for each temperature.
Fig. 1b: Calculated pseudo binary section of the Cu-Zr-Gd phase diagram with the miscibility gap
in the undercooled metastable  liquid (red dotted line). The glass transition temperature Tg is ex-
trapolated from the binary glasses (blue dashed line).  

Fig.: In-situ AFM image of a corroding surface of a
Fe-based BMG 
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second is the advantage of monitoring the same area of the surface throughout the cor-

rosion process. This in turn allows tracing back the features from the late stages where

they are easily visible. The figure shows an in-situ AFM image of a bulk glassy

(Fe44.3Cr5Co5Mo12.8Mn11.2C15.8B5.9)98.5Y1.5 alloy surface taken after 1 hour in 0.5 M H2SO4

under free corrosion conditions. The arrows indicate initial centres of dissolution on the

nano-scale otherwise not observable by optical or electron microscopy. Their appearance

can be correlated with the chemical short range order of the glassy state.

Cooperation TU Dresden, Univ. Politehnica Bucarest

Geometrical aspects of the glass-forming ability of binary metallic alloys
V. Kokotin, A. Elsner, H. Hermann

The glass forming ability of metallic alloys and the stability of bulk metallic glasses have

been addressed in numerous publications. Experimental rules have been established

summarizing the experimental knowledge of conditions required for good glass form-

ing ability. The atomic size distribution is one of the important variables controlling the

stability of non-crystalline states. It is obvious that in dense-packed systems the local

symmetry of clusters of atoms and the character of the medium-range order are corre-

lated. If, e.g., the local clusters have essentially five-fold symmetry the system which

the clusters are embedded in can not be periodic with respect to translational operations.

We characterize a system of atoms given by the coordinates and the size of each atom

in the following way: The Voronoi/Laguerre mosaic of the system is generated. A mo-

saic cell describes the cluster formed by the central atom and its neighbours. Two

neighbouring clusters have one common interface. The number of edges of this inter-

face is used as a measure for the symmetry of the rotation axis linking both clusters. For

three-, four- and six-fold symmetry (approximated by the edge number) the link between

the clusters would favour crystalline arrangements. For all other edge numbers the link

would promote non-crystalline medium-range order. The complete system of atoms is

now described by the number, fnc , of all cluster interfaces with 5, 7, …, edges divided by

the number of interfaces with 3, 4, or 6 edges. The figure shows the result for dense-

packed binary systems. Parameter fnc is plotted versus size ratio and composition.

Clearly, there is a confined region where fnc is comparatively high. This is the region where

geometrical aspects contribute to preferred glass forming ability. The binary bulk

metallic glasses known until now fit into this region. Probably, further alloys situated

in the high fnc region are waiting for their discovery as bulk metallic glasses.

Cooperation Univ. of Appl. Sc. Darmstadt, Bergakademie Freiberg, RAN Novosibirsk

Funded by DFG

High-strength Al-based composites
S. Scudino, K. B. Surreddi, M. Sakaliyska, F. Ali, T. Gemming, U. Kühn, M. Stoica, 

N. Mattern, H. Ehrenberg, J. Eckert

As a result of the increasingly severe requirements for limiting fuel consumption and

carbon dioxide emission, there is a growing trend to reduce the structural weight of

vehicles in the transport sector. Among the advanced engineering materials for trans-

port applications, Al-based metal matrix composites (MMCs) show the largest potential

to reach this goal and to develop novel lightweight high-performance materials due to

Fig.: Degree of non-crystalline local symmetry
versus size ratio and fraction of small atoms 
for computer simulated dense packed binary 
mixtures of spherical atoms. 
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Fig.: Room temperature compression stress-strain
curves for the Al-based metal matrix composites 
reinforced with different reinforcing particles: 
metallic glasses (MG), quasicrystals (QC) complex
metallic alloys (CMA) and nanocrystals (NC).

their remarkable properties, including low density, high strength and good fatigue and

wear resistance. In addition, MMCs offer the possibility to tailor their properties to meet

specific requirements, which renders this type of materials quite unique in comparison

to conventional unreinforced materials. In this project, several high-strength rein-

forcing phases, ranging from metallic glasses, complex metallic alloys and quasicrystals

have been used to produce lightweight Al-based MMCs. The results indicate that the

reinforcing particles are very effective for improving the mechanical properties of the

metal matrix, revealing that the properties can be tuned within a wide range of strength

and ductility as a function of size and volume fraction of the reinforcement.

Cooperation FZ Jülich; MPI Dresden; Univ. Frankfurt; Sejong Univ. Seoul/Korea; 

Univ. Torino, Italy; CNRS Grenoble, France; Slovak Univ. of Technology, Trnava, Slovak

Republic
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High-strength martensitic Fe-base alloys
H. Wendrock, U. Kühn, H. Turnow, J. Stange, J. Hufenbach, C. Powik, 

U. Siegel, M. Kaiser, N. Mattern, H. Klauß, A. Güth, S. Roth, J. Eckert

Alloys of the type Fe84.3Cr4.3Mo4.6V2.2C4.6 show outstanding mechanical properties when

prepared by arc or induction melting under high purity conditions and cast into copper

moulds. Compressive strength values of more than 4000 MPa combined with a compres-

sive fracture strain of more than 20 % were achieved. Also tensile tests show large

strength of about 1400 MPa already in the as-cast state of the material. A number of

alloy variations with partial substitution of the carbide forming elements were investi-

gated, and the mechanical properties of some promising compositions were studied at

higher temperatures.

The complex microstructure (martensite, different complex carbides, residual austen-

ite, see Fig. 1a for the initial alloy) was studied after appropriate metallographic pre-

paration by highly resolved EBSD measurements combined with fast EDX mapping

(Fig.1b). The phase fractions and the typical grain size and shape could be determined

in this way. Two main carbide types (MC and M2C) were found forming a skeleton of

lamellar primary carbides 0.2 to 1.5 µm thick. Austenite regions are nearly equiaxed with

a size of 0.3 to 1 µm, situated mostly between the martensite needles.

Tensile tests in-situ in the SEM showed that the fracture surface is highly connected with

the interface between the carbides and the martensitic matrix. Thus, confinement of the

primary carbide network is expected to be advantageous for increasing the tensile

strength of this material. 

Cooperation TU BA Freiberg, MPI for Iron research Düsseldorf

Fig.: a) SEM secondary electron micrograph showing a
typical image of a specimen of Fe84.3Cr4.3Mo4.6V2.2C4.6

polished for EBSD, FOV is 40 µm;
b) coloured EBSD+EDS map at the same location on a
grid of 500x500 points with 80 nm distance showing 
4 phases (black = not recognizable, grain/phase
boundaries or zones of very high deformation);
c) colour legend of b) and numerical results of phase
fractions
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Hybrid cathodes of LiMPO4 (M=Mn, Fe, Co, Ni) and 
carbon nanofilaments (CNF) for Li-ion batteries
H. Ehrenberg, A. Sarapulova, D. Mikhailova, N. N. Bramnik, J. Eckert

Phosphoolivines LiMPO4 are promising cathode materials, but suffer from a low elec-

tronic conductivity and, depending on the specific 3d-transition metal M, pronounced

instabilities in the charged state. For M=Fe the fully charged state is very stable, and

appropriate composite concepts, based on carbon coatings are well established with ex-

cellent performance but a rather low cell voltage of about 3.4 V. A much higher energy

density would be possible for LiCoPO4, which offers cell voltages of about 4.9 V, but with

a different working mechanism [1]. The charged state LixCoPO4 is intrinsically unstable

at elevated temperatures and suffers from oxygen release, especially in the presence of

fine carbon particles [3]. To overcome limitations from low electronic conductivity and

oxygen release in the charged state we have proposed a hybrid concept, based on an or-

dered array of carbon nanofilaments (CNF), which is in contact with a graphite current

collector and coated with the electrochemically active phosphoolivines. Different

processes have been established for the coating of the CNFs, e.g. for M=Fe [4] or Mn [5].

Most promising results are obtained for M=Co by the so-called triethylphosphite method,

which allows a complete coverage of the CNFs with LiCoPO4, see the top figure for a

single nanofibre and the bottom one for an ordered array of CNFs. The ongoing work is

focused on building a demonstrator battery to determine the actual performance para-

meters for such hybrid cathodes in real devices.

[1] Bramnik et al. Chem. Mater. 19 (2007) 908-915.

[2] Ehrenberg et al. Solid State Sciences 11 (2009) 18-23.

[3] Bramnik et al. Electrochem. Solid-State Lett. 11 (2008) A89-A93

[4] Sivakumar et al. J. Power Sources 180 (2008) 553-560.

[5] Bramnik et al. J. Alloys Compd. 464 (2008) 259-264.
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New Hydrides 
O. Gutfleisch, C. Rongeat, I. Lindemann, C. Bonatto-Minella, 

R. Domènech Ferrer, C. Geipel, B. Gebel, M. Herrich, L. Dunsch, 

S. Oswald, M. Uhlemann, A. Gebert, L. Schultz

Human development has caused a depletion of natural energy resources and climate

changes with non-predictable consequences. New energy concepts are required for the

future of our industrial society. The only known energy carrier with a high energy

density and no emission of greenhouse gas is hydrogen. 

Research of solid-state storage of hydrogen – for e.g. zero-emission vehicle propulsion

and other mobile applications – is pursued by exploring functional complex hydrides

such as alanates and borohydrides. These materials offer several advantages over con-

ventional metal hydrides provided thermodynamics, kinetics decomposition pathways

and the reabsorption of hydrogen in modest conditions can be controlled and mastered.

Our work includes the characterisation with high-pressure differential scanning calori-

metry, gravimetric and pressure-composition-temperature analysis as well as the study

of hydrogen dynamics using in-situ XPS, XRD and Raman in order to understand details

of the complex sequence of transformations, to identify intermediate reaction products

and rate determining steps in complex hydrides and reactive hydride composites.

Fig.: (top) CNFs, coated with LiCoPO4 by the 
triethylphosphite method, (bottom) an ordered
array of CNFs, all coated with LiCoPO4.
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Novel processing techniques such as high hydrogen pressure reactive milling and high

pressure annealing are used in order to identify new materials with high reversible

hydrogen contents.

Recently we focused on the double-cation system Li-Al-borohydride, which shows a

desorption temperature suitable for applications (∼70°C) combined with an high gravi-

metric (17.2 wt.%) as well as volumetric (117 kg/m
3

) hydrogen density. The material was

synthesised via high energy ball milling of AlCl3 and LiBH4 in different molar ratios to

find the adequate stoichiometry of the metathesis reaction. The structure of the com-

pound was determined from high-resolution synchrotron powder diffraction and shows

a unique complex structure within the borohydrides with the chemical formula

Li4 (BH4)[Al(BH4)4]3. The compound forms a cubic unit cell containing a complex cation

[Li4(BH4)]
3+ 

and a complex anion [Al (BH4)4]
-
. Both are observed for the first time in

solid state. 

Cooperation EMPA, Switzerland; GKSS Research Centre Geesthacht, Germany; 

FZ Karlsruhe, Germany; Univ. of Amsterdam, Netherlands; Univ. of Geneva, Switzer-

land; Swiss-Norwegian Beam Line at ESRF, France; Univ. of Utrecht, Netherlands; 

Interdisciplinary Nanoscience Center, Univ. of Aarhus, Denmark

Funded by EU (NESSHY, COSY), HGF (FuncHy), ECEMP (Sächsische Exzellenzinitiative)

Fig.: Unit cell of Al3Li4(BH4)13. Four (BH4)- tetra-
hedrons (blue) and one Al3+ cation (green) form
the complex anion [Al(BH4)4]-. Four Li+ cations
(red) bonded to one (BH4)- tetrahedron (brown) 
in the centre form the complex cation [Li4(BH4)]3+.
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Research Area 5
Stress-driven architectures and phenomena

Spectral tunability of rolled-up microtube resonators on glass 
V. A. Bolaños Quiñones, G. S. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, 

Y. F. Mei, and O. G. Schmidt

Microtubular resonators fabricated by the release and roll-up of strained nanomembranes

guide light along the tube wall in the azimuthal direction. After a few rotations performed

by the pre-stressed nanomembranes, the wall thickness of the final tube is smaller than

the resonant wavelengths (or modes) supported by the resonator. As a consequence, the

evanescent field of the resonant modes interacts with the media surrounding the mi-

croresonator, suggesting potential applications for on-chip components like filters and

sensors. In order to fine tune the resonant modes, stepwise one-by-one monolayer (ML)

Al2O3 coating on a SiO/SiO2 rolled-up microtube with atomic layer deposition is carried

out. As shown in Fig. 1a, rolled-up microtubes are fabricated on a transparent glass sub-

strate, and their scanning electron microscopy (SEM) image is presented in Fig. 1b. By

ALD coating, a controllable red shift of TM polarized resonant modes (labelled by solid

circles and empty triangles in Fig. 1c) measured by photoluminescence (PL) is obtained

over a wide spectral range. The measurements are well reproduced by finite-differ-

ence-time-domain (FDTD) simulations. In addition, a new group of resonant modes

emerge when the Al2O3 coating is thicker than 200 ML (∼ 20 nm). These modes are TE

polarized (labelled by solid triangles) perpendicular to the previous group. Therefore,

as the wall thickness increases, the diffraction loss of the TE modes decrease, allowing

the microresonator to simultaneously support both TM and TE resonant modes. FDTD

simulations reveal a progressive increase of the microtube refractive index after the

consecutive Al2O3 coating, which cause a higher contrast between the microtube and

the surrounding media resulting in the observed mode shifts.

Funded by Volkswagen Foundation (I/84 072) and a Multidisciplinary University 

Research Initiative (MURI) sponsored by the U.S. Air Force Office of Scientific 

Research (AFOSR) Grant No. FA9550-09-1-0550

Characterization of promising piezoelectric single crystals
A. Sotnikov, E. Smirnova, H. Schmidt, and M. Weihnacht

Hexagonal aluminum nitride (AlN) as a single crystal is of great interest due to its

extreme physical and chemical properties. Attractive piezoelectric properties, very high

values of sound velocity and the possibility to operate in harsh environment make AlN

a very promising material for surface acoustic wave (SAW) applications. As expected,

piezoelectric response in AlN can be observed up to very high temperatures.

Tetragonal LiAlO2 crystal is attracting much attention as a promising substrate for

growing III-nitrides like GaN/(Al,Ga)N which are technologically very important

materials. Since LiAlO2 shows high sound velocities and piezoelectric response, it might

also be a potential candidate for SAW applications.

Material parameters including the elastic, piezoelectric and dielectric constants of AlN

and LiAlO2 piezoelectric single crystals, respectively, have been evaluated at room

temperature by different methods: ultrasonic pulse-echo method, electromechanical

resonance-antiresonance method and traditional dielectric method. Temperature depen-

dences of the dielectric constant ε33, the piezoelectric stress constant e33 as well as the

elastic constants C33 and C44 of AlN have been measured at temperatures up to 500°C.

Fig.: (a) Rolled-up microtubular cavity array fabricated
on a transparent glass substrate; (b) SEM image of 
microtubes rolled up from a square pattern. (c) Photo-
luminescence (PL) spectra of an ~7 µm diameter tube
after coating with Al2O3 layers with increasing thick-
nesses (in MLs). Symbols mark the evolution of two
TM modes (solid circles and empty triangles) and one
TE mode (solid triangles). 

Fig.: Elastic constants of LiAlO2 single crystal as a
function of temperature.
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The full set of the dielectric, elastic and piezoelectric constants for LiAlO2 single crys-

tal has been obtained in the temperature range from -70°C to +50°C for the first time

(see Fig.). Using the experimental data, temperature coefficients of material parame-

ters of LiAlO2 have been calculated. The experimental results show that both materials,

AlN and LiAlO2 crystals are promising for surface- and bulk acoustic wave applications.

Cooperation Nitride Crystals Group, St. Petersburg, Russia; Tohoku University,

Sendai, Japan.
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Wireless Control of Tubular Catalytic Microbots for the Transportation, 
Assembly and Delivery of Microobjects
A. A. Solovev, S. Sanchez

1
, Y. F. Mei, O. G. Schmidt

Recently significant attention has been dedicated towards the development of man-made

synthetic catalytic micro- and nanomotors which can mimic biological counterparts in

terms of propulsion power, motion control and speed. However, only few applications of

such self-propelled vehicles have been described. Here we show wireless control of

self-propelled catalytic Ti/Fe/Pt rolled-up microtubes (microbots). Magnetically di-

rected movement of tubular microbots was accomplished through the incorporation

of a ferromagnetic (Fe) layer. The extraordinary easy control over microbots movement

by changing the direction of an external magnetic field during motion helps to speci-

fically load and deliver cargo at the desired place. Microbots self-propel by ejecting

microbubbles via platinum catalytic decomposition of hydrogen peroxide into oxygen and

water. Furthermore, the physical characteristics of tubular microbots lead to high

propulsion power achieving the absorption and delivering of up to sixty polymeric

particles to a desired location as shown in Fig. 1A. As expected, their speeds slow down

with more loaded particles. Our presented results are very promising for future drug

delivery systems, biomedical applications require the use of biocompatible fuels for

powering autonomous micromachines. Furthermore, one exciting direction could be a

“microfactory” for nanoscience, which is illustrated in Fig. 1B. We are investigating on

microbots powered by glucose fuels, their integration into Lab-On-a-Chip technologies,

communication and self-organization. 

Cooperation
1

National Institute for Materials Science, Tsukuba, Ibaraki, Japan;

School of Physical & Mathematical Sciences, Nanyang Technological Univ., Singapore

Fig.: A) Transportation of polystyrene microparticles
of 5 µm diameter. A) Optical microscope images of
microbot loading and transporting 3 (ii), 27 (iii), 
44 (i) and 58 (iv) particles. Insets show microbot’s 
average speeds. B) Schematic representation of 
“microfactory” where wireless control of microbots
by an external magnet, assisted load, transport, 
delivery and assembly of microparticles and nano-
plates in fuel solution.
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Multiferroic Oxide Film Structures
K. Dörr, O. Bilani, K. Boldyreva, M. C. Dekker, C. Deneke, E. Wild, A. Herklotz, 

J.-W. Kim, K. Nenkov, A. Rastelli, A. D. Rata, O. G. Schmidt, L. Schultz

Multiferroic HoMnO3 films of thicknesses ≤ 1 µm were prepared by pulsed laser deposi-

tion (PLD) and have been investigated by optical Second Harmonic Generation (SHG) [1]

and SQUID magnetometry in order to reveal the ferroic phases present in the thin

films (thesis of J.-W. Kim). While HoMnO3 is a single-phase low-temperature multi-

ferroic, magnetic films epitaxially grown on piezoelectric substrates of PMN-PT(001)

(Pb(Mg1/3Nb2/3)0.72Ti0.28O3) provide a model system for strain-coupled two-phase

multiferroics [2] comprising of a ferroelectric and a magnetic component. For the

magnetic films, phase-separated manganites [3] and La1-xSrxCoO3 with a potentially

strain-controllable spin state of the Co ions have been investigated. Cobaltite films reveal

spin-state control by strain for x = 0 [4], and a tendency for defect formation resulting

from spin-state-related enhanced thermal expansion. In User projects at the CNMS, ORNL

the reversible strain induced in coherent superlattices of [La0.7Sr0.3MnO3/SrTiO3]n (Fig.)

and in buffer layers of LaAl1-xScxO3 offering an adjustable in-plane lattice parameter

of 3.8 – 4 Å has been demonstrated using four-circle x-ray diffraction. Strain application

in thin film membranes is promising through the approach of rolled-up epitaxial oxide

layers.       

The light emission from InGaAs quantum dots embedded in GaAs microring resonators

has been efficiently tuned employing the reversible compressive or expansive strain from

PMN-PT crystals at 10 K [5], indicating a promising potential of the strain tuning for

establishing resonances which are required to achieve entangled photon states. Light-

control of the metal or insulator state has been demonstrated for epitaxial electron-

doped films of La0.7Ce0.3MnO3/SrTiO3(001) [6]. 

[1] T. Kordel et al., Phys. Rev. B 8800, 045409 (2009)

[2] K. Dörr et al., Eur. J. Phys. B 7711, 361 (2009)

[3] M. C. Dekker et al., Phys. Rev. B 8800, 144402 (2009)

[4] A. Herklotz et al., Phys. Rev. B 7799, 092409 (2009)

[5] T. Zander et al., Optics Express 1177, 22452 (2009)

[6] E. Beyreuther et al., Phys. Rev. B 8800, 075106 (2009)
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Rolled-up Cr microtubes alignment in microfluidic systems 
by standing surface acoustic waves
X. H. Kong, H. Schmidt, C. Deneke, H. X. Ji, D. J. Thurmer, M. Bauer, S. Menzel, 

and O. G. Schmidt

Recently, surface acoustic waves (SAW) have been established as a promising approach

for fast, reliable manipulation and alignment of micro- and nanostructures in micro-

fluidic systems. Here, the alignment of rolled-up Cr microtubes dispersed in propylene

carbonate solvent by standing surface acoustic waves (SSAW) is demonstrated. For our

experiments, a pair of electrically optimized, opposing interdigital transducers (IDTs)

is fabricated on top of a 128° rotated Y-cut LiNbO3 substrate. Each IDT launches a SAW

with a wavelength of 130 µm at a corresponding frequency of about 30 MHz, to form a

SSAW pattern in the area of a fluidic channel between the substrate and a glass cover.

For the alignment experiment, the capillary is filled with Cr tube suspension. In the start,

the rolled-up microtubes are randomly dispersed in the fluidic channel (see Fig. inset).

When two rf power signals (here: 6 dBm) are simultaneously applied to both IDT ports

in equal portions, a standing wave pattern accompanied by an appropriate electric field

Fig.: Typical optical micrograph of Cr microtube
alignment by standing surface acoustic waves on 
a LiNbO3 substrate. The 30 µm long Cr microtubes
are orderly aligned in parallel to the SAW propa-
gation direction (denoted by the double arrows). 
The inset shows the initial random dispersion of 
the microtubes before starting of SAW excitation.

Fig.: Scheme of a reversibly strainable oxide superlat-
tice on a piezoelectric substrate of PMN-PT (top) and
electrically controlled lattice parameters of PMN-PT
measured by x-ray diffraction (bottom).
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Fig.: Top: FDTD-calculated electric field intensity pro-
files for the TE modes M1, M2, and M3 confined in a
PhC nanocavity. Bottom: mode wavelength shift for
three modes and quality factor for M3 as a function
of the square root of the oxidation time at a laser
power P = 50 mW. The open symbols indicate the
values after a dip in HCl for 5 s.

pattern forms in the capillary. Due to these patterns, the rolled-up Cr microtubes are

aligned into one direction, with their axis parallel to the propagation direction of the

SAWs. Such an aligned tube area is depicted in the figure. The proportion of microtube

alignment by SSAWs at a certain frequency depends on the length of the tubes and the

applied signal power. In a setup with two IDT pairs, arranged perpendicularly to each

other, the alignment of the Cr microtubes can be switched by this method between the

two main directions.

Funded by BMBF (InnoProfile)

Optical microcavity tuning by local laser processing
H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, A. Rastelli, O. G. Schmidt

Photonic crystal (PhC) optical microcavities are attracting much interest for their

potential application in advanced optical devices such as switches, filters, multiplexers,

low-threshold lasers, and cavity quantum electrodynamics. For such applications, it is

necessary to control and tune the resonant wavelength of the PhC cavity modes. The PhC

cavity resonances (or modes) can be tuned by adjusting the PhC lattice and defect

geometries. However, the exact spectral position of the modes can not be predicted

with the accuracy required for some applications, because the modes are highly sen-

sitive to fabrication parameters. Therefore, postprocessing tuning techniques able to

compensate for fabrication imperfections are particularly demanded. Most of tuning

techniques presented so far either modify the properties of the whole sample, which

prevents the local tuning of a single nanocavity, or need extra materials and processing

tools. 

In this work, we investigated the local tuning of optical modes in GaAs PhC micro-

cavities by continuous wave laser-assisted oxidation in air atmosphere. The oxide growth

leads to controllable shifts of the cavity modes to shorter wavelengths. By irradiation

with a focused laser beam at power levels of a few tens mW, PhC nanocavity modes blue-

shift by up to 2.5 nm. The mode shifts, which are different for different modes of the same

cavity, can be controlled by varying the irradiation conditions and are well explained by

finite-element-method (FEM) and finite-difference time-domain (FDTD) simulations.

[1] H. S. Lee et al. Appl. Phys. Lett. 95, 191109 (2009).
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Winterschule in Bizerte/ Tunesien, 2.-6.11.09 (2009).

254) T.G. Woodcock, O. Gutfleisch, Multi-phase local texture analysis in NdFeB sintered magnets, Vortrag am Max Planck Institut fuer 

Eisenforschung, Duesseldorf, 30.11.09 (2009).

255) S. Wurmehl, Nuclear magnetic resonance applied to spin polarized Heusler compounds, DFG-JST Treffen 2009, Kyoto/ Japan, 

19.-25.1.09 (2009).

256) S. Wurmehl, Nuclear magnetic resonance applied to spin polarized Heusler compounds, Vortragsbeitrag zum Dreikoenigstreffen 

der Fachgruppe Magnetismus der DPG, Bad Honnef, 5.-7.1.09 (2009).

257) S. Wurmehl, Spin polarized Heusler compounds, MRS Fall Meeting, Boston/ USA, 30.11.-4.12.09 (2009).
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Issues of Patents 2009

DE 101 63 517 Resonatorfilterkaskade

Inventors: G. Martin et al.

DE 103 01 722 Verfahren zur Herstellung endohedraler Fullerene

Inventors: L. Dunsch, P. Georgi, F. Ziegs, H. Zöller

DE 198 37 743 Akustischer Oberflächenwellenfilter

Inventor: G. Martin

DE 10 2006 027 060 Oszillatorkreis mit akustischen Eintor-Oberflächenwellenresonatoren

Inventors: G. Martin et al.

DE 10 2008 001 000 Schichtsystem für Elektroden

Inventor: S. Menzel

Patent Applications 2009

10903 Isolationsmaterial für integrierte Schaltkreise 

Inventors: H. Hermann et al.

10907 Verfahren zur Steuerung der magnetischen Hyperthermie

Inventors: R. Klingeler, Y. Krupskaya, B. Büchner

10908 Wandler mit natürlicher Unidirektionalität für akustische Oberflächenwellen

Inventors: G. Martin, M. Weihnacht, S. Biryukov, A. Darinski et al.

10909 Verfahren und Anordnung zum Anregen von elektro-akustischen Aktuatoren

Inventors: R. Brünig, K. Mensel, H. Schmidt

10910 Strangförmiges Kompositleitermaterial

Inventor: S. Menzel

10912 Unidirektionaler Wandler für akustische Oberflächenwellen

Inventor: G. Martin et al.

10913 Verfahren zur Ermittlung elektrischer und mechanischer Material-

eigenschaften

Inventors: G. Guhr, R. Brünig et al.

10914 Magnetisches Legierungsmaterial und Verfahren zu seiner Herstellung

Inventors: J. Lyubina, O. Gutfleisch

10915 Bauelement aus einem ferromagnetischen Formgedächtnismaterial und 

dessen Verwendung

Inventors: S. Fähler, M. Thomas, O. Heczko, J. Buschbeck, J. Mc Cord

10918 Peltier-Seebeck basiertes thermoelektrisches Bauelement und Verfahren 

zu seiner Herstellung 

Inventors: T. Dienel, J. Schumann, A, Rastelli, O.G. Schmidt

10919 Thermoionisches Bauelement und Verfahren zu seiner Herstellung 

Inventors: T. Dienel, J. Schumann, A, Rastelli, O.G. Schmidt

10924 Metastabile Legierungen und Verfahren zu ihrer Herstellung

Inventors: J. Eckert, S. Pauly, U. Kühn



PhD Theses 2009    107

PhD Theses 2009

Francesca Cavallo Strain driven architecture of Si-based nanomembranes

Thomas Dienel Molekulare Systeme im Wechselspiel von Struktur und Ladung

Fei Ding Quantum device oriented researches of semiconductor micro-/

nanostructures

Antje Elsner Computergestützte Simulation und Analyse zufälliger dichter 

Kugelpackungen

Sebastian Engel Chemisch deponierte Schichtsysteme zur Realisierung von 

YBCO-Bandleitern

Mandy Grobosch Experimentelle Bestimmung der elektronischen Eigenschaften 

anwendungsrelevanter Grenzflächen organischer Halbleiter mittels 

Photoelektronenspektroskopie

Ingo Hellmann Magnetische und elektronische Eigenschaften von 

Übergangsmetalloxid-Nanostrukturen

Marko Herrmann Einfluss von Präparation und Dotierung auf die supraleitenden 

Eigenschaften in mechanisch legierten Magnesium-Diborid

Denis Klemm Analyse dünner Schichten mit der optischen Glimmentladungs-

spektroskopie

Ah-Ram Kwon Epitaxial Nd-Fe-B films: Growth, texture, magnetism and the influence 

of mechanical elongation

Ryan Y. W. Lai Magnetic Microstructure and Actuation Dynamics of NiMnGa Magnetic 

Shape Memory Materials

Andreas Nilsson BSCCO superconductors processed by the glass-ceramic route

Anreia Ioana Popa Electrochemistry and magnetism of Li-doped transition metal oxides

Franziska Schäffel Synthesis, characterization and modification of carbon nanomaterials

Uwe Schaufuß Hochfeld/Hochfrequenz-Elektronenspin-Resonanz an Übergangsmetall-

verbindungen mit starken elektronischen Resonanzen

Nils Scheerbaum Magnetische NiMnGa-Komposite

Nadja Wizent Hochdruckkristallzüchtung ausgewählter Oxidverbindungen

Kostyantyn Zagorodniy Molekularer Entwurf neuer Isolationsmaterialien für mikroelektronische 

Anwendungen

Tim Zander Herstellung und Eigenschaften von Metall/Halbleiter-Übergittern und 

Mikroringresonatoren

Hongbin Zhang Relativistic density functional treatment of magnetic anisotropy

Lijuan Wang Growth and spectroscopic characterization of self-assembled lateral 

quantum dot molecules

Kim Jong Woo  Multiferroic hexagonal HoMnO3 films
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Diploma and Master Theses 2009

Naveen K. Abraham Experimental Preparation of Theoretically Designed Insulating Materials 

for Furture Microelectronic Applications

Leif Bader Mikrostrukturelle und mechanische Charakterisierung von 

Fe-C-(Cr)-(Mo)-(V)-Legierungen

Dirk Bombor Konstruktion eines Rastertunnelmikroskops für variable Temperaturen 

und Oberflächenunter-suchungen an supraleitenden Eisenpniktiden

Maria Dimitrakopoulou Synthesis and Characterization of Silicon Nanowires

Christian Görner Konzept zum Umbau einer Walzanlage für das Walzen von Blechen aus 

amorphen Metalllegierungen (BA)

Veronika Hähnel Elektrochemisch hergestellte Fe-Nanodrähte: Struktur, Morphologie 

und magnetische Eigenschaften

Wenbo Han Functionalisation of carbon nanotubes for application as sensor 

materials

Alexander Kauffmann Eisenpniktidsupraleiter in gepulsten Magnetfeldern bis 50 T

Roberto Kraus Elektronen-Energie-Verlust-Spektroskopie an TiOCl

Maria Krautz Realstruktur und antiferromagnetische Eigenschaften einer technischen 

FeMnNiCr-Legierung

Steve Kupke Elektrischer Transport an freistehenden eisengefüllten, mehrwandigen 

Kohlenstoffnanoröhren

Jens Liebich Präparation von Festbett-Katalysatoren auf Basis von Fe, Co, Mo und V 

für die Herstellung von SWCNTs/DWCNTs

Inge Lindemann Einfluss eines äußeren Magnetfeldes auf die Anordnung von 

Cu-Au-Nanopartikeln

Daniel Lorenz Numerische Simulation der zellularen Erstarrung von Silizium

Tom Marr Texturentwicklung von Ni-5at%W Rohrmaterial

Rafael Gregorio Mendes Magnetic Force Microscopy of Nanomagnets

Enrico Mund Synthese und Charakterisierung von Wolfram- Nanodrähten und deren 

Verwendung in metallischen Glasmatrix-Kompositen

Friedrich Roth Untersuchung der optischen Eigenschaften von Supraleitern aus der 

Gruppe der Eisenarsenide

Christian Schmidt Photoemissionsspektroskopie an Übergangsmetell-Phthalocyaninen

Tobias Schneider Entwicklung und Umsetzung einer Herstellungstechnologie für 

Sensorelemente aus einer amorphen Zirkon-Basislegierung

Sailaja Tetali Growth enhancement of Carbon Nanotubes using O2 and H2 by using 

Laser Ablation method

Mario Tränkner Quantitative Bestimmung nanoskaliger Srn+1TinO3n+1-Ruddlesden-

Popper Phasen mittels Analyse von TEM-Messungen

Zimo Wang Functionalisation of carbon nanotubes for biomedical applications
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Calls and Awards 2009

Calls on Professorships

Dr. Rüdiger Klingeler Univ. Heidelberg

Prof. Dr. Bernd Büchner Univ. Mainz

Prof. Dr. Jürgen Eckert Univ. Stuttgart

Awards

Prof. Dr. Jürgen Eckert Gottfried-Wilhelm-Leibniz-Prize 2009 of the DFG

Prof. Dr. Ludwig Schultz FEMS Gold Medal 2009

Dr. h. c. Rolf Pfrengle Honorary Doctorate of the Slovakian TU Bratislava

Alexander Solovev DSM Science and Technology Award 2009

Dr. Christian Kramberger Prize of the Dresdner Gesprächskreis der Wirtschaft und der 

Wissenschaft e.V. 2009

Franziska Wolny First Prize of the Nano&Arts contest 

Claudia Hürrich Second Prize of the Science as Art Competition at the 2009 MRS Fall 

Meeting in Boston

Publication and Poster Awards

Uta Kühn et al.  Best Poster Award EUROMAT 2009 in Glasgow

Ute Queitsch Best PhD Poster Award, Trends in Nanotechnology 2009, 

Barcelona 7-11 September 2009

Jakub Koza Best Poster Award of the International Conference on Electromagnetic 

Processing of Materials (EPM 2009) 

Ahmed El-Gendy Best Poster Award of the SFB 491 Summer School on Nanomagnetism

Maria Sparing Best Poster Award EUCAS 2009 in Dresden 

IFW Awards

Dr. Christian Hess IFW Research Award 2009

Dr.-Ing. Franziska Schäffel Deutsche Bank Junior Award 2009 for the best PhD thesis

Dr. Mark Rümmeli IFF Research Award 2009

Dr. Jens Freudenberger IMW Research Award 2009

Dr. Sergio Scudino IKM Research Award 2009

Dr. Armando Rastelli IIN Research Award 2009

Dr. Manuel Richter ITF Research Award 2009
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Conferences

Kick-Off Meeting of the EU project DIVERSITY

January 16–17, 2009

Chairman: Dr. h.c. R. Pfrengle (IFW Dresden)

30 Participants

Deutsche Kristallzüchtungstagung 

March 4 - 6, 2009 in the IFW Dresden, Germany

Chairman: Dr. Behr (IFW Dresden)

100 Participants

DPG Frühjahrstagung der Sektion Kondensierte Materie 2009

March 22 - 27, 2009 in Dresden, Germany

Chairman: Prof. L. Schultz (IFW Dresden)

4500 participants

XXIII International EPR Seminar

April 23 - 25, 2009 in Bad Gottleuba, Germany 

Chairman: Prof. L. Dunsch (IFW Dresden), Prof. V. Brezová (SK), Dr.P.Rapta (SK)

50 participants

Spin Caloritronics 

Mai 12 - 15, 2009 in the IFW Dresden, Germany

Chairpersons: Prof. B. Büchner (IFW Dresden),  Prof. C. Felser (Univ. Mainz)

EUCAS 2009: 9th European Conference on Applied Superconductivity

September 13 - 17, 2009 in Dresden, Germany

Chairman: Prof. L. Schultz (IFW Dresden)

850 participants

Kick-off meeting of the DFG Priority Program1458 “HTS in Fe Pnictides”

July 22, 2009 in the IFW Dresden, Germany

Chairperson: Prof. Dr. B. Büchner (IFW Dresden)

IFW Colloquia

Prof. Albert van den Berg, Univ. of Twente, Netherlands, Lab-on-a-Chip: from micro/nanofluidic research-platform 

to biomedical applications, 08.01.2009

Prof. Klaus Muellen, Max-Planck Institute for Polymer Research, Mainz

Molecular Electronics, 15.01.2009

Prof. Angel Rubio, Univ. del Pais Vasco, Spain, Excited state dynamics of nanostructures and biomolecules within time-dependent 

DFT22.01.2009

Prof. Richard Berndt, Univ. Kiel, Conductance of single atoms, clusters and molecules, 26.02.2009

Prof. Jörg J. Schneider, TU Darmstadt, Carbon nanotubes and inorganic oxides: Synthesis and functional material properties, 

02.04.2009

Prof. Atac Imamoglu, ETH Zürich, Cavity-QED with a single quantum dot in a nano-cavity, 16.04.2009

Prof. Jürgen Janek, Univ. Gießen, Micro- and Nano-Ionics - Interfaces of solid electrolytes, 23.04.2009

Prof. Ravi Silva, Univ. of Surrey, Carbon Nanotubes: Developing a Platform for Physical and Biological Applications, 30.04.2009

Prof. Klaus Kern, MPI für Festkörperforschung, Stuttgart, Metal-Organic Nanocontacts, 07.05.2009

Prof. Anke Rita Pyzalla, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Material characterization using neutrons and synchrotron radiation, 25.06.2009

Prof. Quentin A. Pankhurst, London Centre for Nanotechnology, Univ. College London

Biomedical applications of nanoscale magnetic materials, 02.07.2009

Prof.  Peter Littlewood, Cambridge Univ., A new condensate of matter and light: Bose Einstein Condensation of Polaritons, 29.10.2009

Prof.  Joachim Spatz, MPI f. Metallforschung Stuttgart, Molecular engineering of cellular environments, 05.11.2009

Prof. John A. Rogers, Univ. of Illinois, Materials for Stretchable Electronics: From Hemispherical Digital Imagers to Devices for 

Cardiac Electrophysiology, 19.11.2009

Prof. Ferdi Schüth, Max-Planck-Institut für Kohlenforschung, Design von funktionalen Nanomaterialien, 10.12.2009
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IFW Winterschool on low dimensions in Oberwiesenthal, January 18-21, 2009 

Honorary colloquim on occasion of the award of Prof. Dr. Jürgen Eckert with the Leibniz-Prize 2009, 06.04.2009

Honorary colloquium on the occasion of the 60
th

anniversary of Dr. h. c. Rolf Pfrengle, 21.04.2009

Opening of the IFW-Colloquium in the winter terms with talks of the prizewinners of the Research-Awards 2009 of the 

IFW ś Institutes, Oct. 15, 2009

Seminars of the IFW’s Institutes

Joint Seminars

Prof. Mostovoy Maxim Vladimirovich Vladimirovich, Univ. of Groningen, Magnetoelectric Coupling in Frustrated Magnets, 

15.01.2009, Joint Seminar

Christoph Bruch, Max Planck Digital Library, Will open access change scientific publishing? 27.04.2009, Joint Seminar 

Prof. Peter Abbamonte, Univ. of Illinois at Urbana-Champaign, Charge accumulation at La CuO-LaSrCuO4 interfaces observed 

with resonant soft x-ray scattering, 24.11.2009, ITF-IFF-Seminar

Dr. John Hill, Brookhaven National Laboratory, Hard X-ray RIXS, polarization dependence and orbitons, 02.12.2009, ITF-IFF-Seminar

Dr. Giacomo Ghiringhelli, Politecnico di Milano, Electronic and magnetic excitations studied by high resolution soft x-ray resonant 

inelastic scattering, 09.12.2009, ITF-IFF-Seminar

Dr. Stephan Roche, TU Dresden & CEA, Institute of Nanosciences and Cryogenics Grenoble, Carbon-based Nanosciences & Nano-

technologies: Nanotubes and Graphene at the Heart, 21.07.2009, Joint Seminar IFF and TU Dresden

IFF-Seminars

Prof. Jürgen Schnack, Univ. Bielefeld, Trends in Molecular Magnetism - A Personal Perspective, 22.01.2009

Prof. Bert Koopmans, Eindhoven Univ. of Technology, The Physics of Plastic Spintronics, 26.01.2009

Dr. Alexey Popov, IFW Dresden, Spectroelectrochemistry of fullerene derivatives, 23.02.2009

Prof. Yurii V. Kopaev, Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Biordered superconducting state and 

the pseudogap, 24.02.2009

Prof. Andreas Hirsch, Univ. Erlangen-Nürnberg, Water-Solubility and Antioxidant Activity of Various Exohedral Fullerene Derivatives, 

09.03.2009

Dr. Gerhard Jakob, Univ. Mainz, Thin films of Heusler compounds, 30.03.2009

Dr. Klaus Braun, Deutsches Krebsforschungszentrum Heidelberg, Behandlung von GBM-Zellen mit TMZ-Bioshuttles, 17.04.2009

Dr. John M. Tranquada, Brookhaven National Laboratory, Intertwined Spin, Charge, and Superconducting Orders in Cuprates, 

20.04.2009

Prof. Jacques Jupille, Univ. Pierre et Marie Curie Paris, Growth and wetting at a glance, 21.04.2009

Prof. Kurt Westerholt, Ruhr-Univ.t Bochum, Proximity effects in superconductor/ferromagnet thin film heterostructures, 08.06.2009

Dr. Philippe Moreau, Uni. de Nantes, Electron energy-loss spectroscopy to study electronic structures of materials: from lithium battery 

matarials to perovskites, 15.06.2009

Prof. Andreas Hirsch, Univ. Erlangen-Nürnberg, Water-Solubility and Antioxidant Activity of Various Exohedral Fullerene Derivatives, 

22.06.2009

Dr. Thomas Seyller, Univ. Erlangen-Nürnberg, Epitaxial graphene on SiC - a new material for carbon-based electronics, 24.06.2009

Dr. Giuseppe Cirillo, Univ.della Calabria, Functionalized Carbon Nanotubes with antioxidant properties, 29.06.2009

Prof. Dirk Morr, Univ. of Chicago, Pseudo-gap and Coexisting Phases in the Cuprate Superconductors, 24.07.2009

Prof. Wolfgang Windl, Ohio State Univ. Columbus, Electronic Structure Calculations of Materials: From Spin Lifetimes to 

Bulk Metallic Glasses, 28.07.2009

Prof. Patrick Woodward, Ohio State Univ., Complex Perovskites: Mining the periodic table for new functional materials, 31.07.2009

Dr. Steffen Sykora, TU Dresden, Microscopic approach to high-temperature superconductors within the t-J model, 31.08.2009

Dr. Danny Porath, Hebrew Univ. of Jerusalem, From bio-inspired systems for nanoelectronics to physico-inspired tools to 

study bio-systems, 08.09.2009

Prof. Junichi Kushibiki, Tokohu Univ. Sendai, Ultrasonic Micro-Spectroscopy Technology and its Recent Applications, 18.09.2009

Dr. Pedro M.F.J. Costa, Univ. of Aveiro, Portugal, In situ characterisation of filled carbon nanotubes: adding a sense of touch to TEM, 

23.09.2009
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Dr. Wilhelm Auwärter, TU München, Looking at the interior of functional molecules: Tunneling microscopy and spectroscopy on 

adsorbed porphyrins, 09.10.2009

Prof. Dieter Kölle, Univ. Tübingen, Microscopic Analysis of electric transport and noise in superconductors, 26.10.2009

Dr. Dimitri Argyriou, Helmholtz-Zentrum Berlin, Is there a pseudogap in the Bi-layer manganites? 27.10.2009

Dr. Paola Ayala, Univ. Wien, Substitutionally-Functionalized vs Metallicity-selected Single-Walled Carbon Nanotubes, 06.11.2009

Dr. Sebastian Gönnenwein, Walther-Meißner-Institut, TU München, Magnetoelastic magnetization manipulation in ferromagnet/

ferroelectric hybrids, 16.11.2009

Prof. Oleg Sinyashin, A.E. Arbuzov Institute of Organic and Physical Chemistry Kazan, Interplay between structure and molecular 

interactions in the complexes of phosphorus-sulfur containing compounds, 17.11.2009

Prof. Chun-Ru Wang, Institute of Chemistry, Chinese Academy of Sciences, Several Novel Endohededral Metallofullerenes, 17.11.2009

Dr. Thorsten Schmitt, Swiss Ligth Source, PSI Villingen, Resonant Inelastic Soft X-Ray Scattering in Quasi One Dimensional Cuprates, 

26.11.2009

Prof. Carita Kvarnström, Univ. of Turku, Spectroelectrochemistry of conducting polymers, 26.11.2009

Dr. Dmitry Yakhvarov, A.E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Kazan, Russia, 

Electrochemical methods for new chemical technologies and material science, 27.11.2009

Prof. Christopher Brett, Univ. of Coimbra, Portugal, Some recent achievements and future perspectives in electrochemistry,01.12.2009

Prof. Erich Kleinpeter, Univ. Potsdam, Spatial Magnetic Properties of Molecules Subjected to Anisotropic Effects of 

Functional Groups and Planar/Spherical (Anti)aromaticity, 03.12.2009

Dr. Valentina Bisogni, ESRF Grenoble, Low energy excitations in cuprates: a resonant inelastic X-ray scattering investigation, 04.12.2009

Dr. Katja Weichert, Max-Planck-Institut für Festkörperforschung Stuttgart, LiFePO4 single crystals - electrochemical characterisation 

and defect chemistry, 07.12.2009

Dr. Björn Bräuer, Stanford Univ. USA, Scanning transmission x-ray microscopy imaging of magnetic nanostructures and 

organic semiconductor devices, 14.12.2009

Dr. Markus Kriener, Kyoto Univ. Japan, Superconductivity in the charge-carrier doped wide-gap semiconductors diamond, silicon, 

and silicon carbide,18.12.2009

IMW-Seminars

Prof. Andreas  Mortensen, EPFL, Laboratory of Mechanical Metallurgy, Lausanne, Replicated open-pore microcellular aluminium: 

processing and properties 8.1.2009

Prof. Eberhard Burkel, Univ. Rostock, Neue Materialien für den Cell-Material Dialogue und die Technik, 15.01.2009

Prof. Ralf  Wehrspohn, Fraunhofer-Institut für Werkstoffmechanik, Halle, Geordnete poröse Materialien und Anwendungen, 22.01.2009

Jose M. Barandiaran; Volodymyr Chernenko; Jorge Feuchtwanger, Univ. del Pais Vasco, Ferromagnetic Shape Memory Effect, 04.02.2009

Prof. Ibrahim Karaman Karaman, Texas A&M Univ., Recent Advances in Shape Memory Alloys, 20.02.2009

Dr. Johann Schnagl, BMW Group München, Wasserstoff-Tanks, 23.04.2009

Prof. Dietrich Wolf, Univ. Duisburg-Essen, Struktur und Dynamik von Nanopulvern, 04.05.2009

Prof. Robert F.  Singer, Univ. Erlangen - Nürnberg, Neue Materialien und Prozesse für Gasturbinen in der Energieerzeugung, 02.07.2009

Prof. Hans-Josef Hug, Univ. of Basel and EMPA, Switzerland, The role of uncompensated spins for the exchange bias effect, 16.07.2009

Dr. Alina Deac, FZ Jülich, Spin-transfer effects in metallic multilayers with in-plane reference and out-of-plane free layer: 

An analytical model, 05.11.2009

Dr. Martin Wagner, Ruhr-Univ. Bochum, New experimental and theoretical insights into the mechanical behavior of NiTi thermal shape 

memory alloys, 19.11.2009

Prof. Kazuhiro Hono, Univ. of Tsukuba, Japan, Advances in laser assisted atom probe and its applications to the interface 

characterizations of permanent magnets, 03.12.2009

Prof. Ophir Auslaender, Technion - Israel Institute of Technology, Using magnetic force microscopy to study superconductors: 

from vortex manipulation to measuring the magnetic penetration depth, 10.12.2009

IKM-Seminars

Prof. Karl-Ulrich Kainer, GKSS Forschungszentrum Geesthacht, Strategien zur Modifizierung der Zug-Druck-Anisotropie bei 

Magnesium-Knetlegierungen, 14.01.2009

Dr.  Claus Burkhardt, NMI Reutlingen, Analyse an organischen/anorganischen Biomaterialien und Beschichtungen mit FIB-SIMS, 

28.01.2009
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Henrich Schleifenbaum, FhI für Lasertechnik Aachen, Werkzeug Licht - Werkstoff- und funktionsgerechte Bauteilherstellung 

mittels Selective Laser Melting, 04.02.2009

Dr. Daniela Zander, Univ. Dortmund, Korrosion von Titanlegierungen in biologischen Ersatzelektrolyten für den Einsatz in der 

Medizintechnik, 11.02.2009

Dr. Andrés Fabián Lasagni, Fraunhofer IWS Dresden, Surface Functionalization and 2D-3D design using Direct Laser Interference 

Patterning, 06.05.2009

Dr. Johann Michler, EMPA, Switzerland, In situ Analyse mittels Nanointender, 12.05.2009

Dr. Alexandra Lex, Univ. Münster, The Role of the Electrolyte in Lithium Ion Batteries, 13.05.2009

Dr. Thomas Ebel, GKSS Geesthacht, Metal Injection Moulding von Titan- und Magnesiumlegierungen, 27.05.2009

Prof. Dr. Ludwik Dobrzynski, Andrzej Soltan Institute for Nuclear Studies & Univ. of Bialystock, Warsaw, Poland, Structure, 

Spin distributions and Spin Dynamics in DO3-type of alloys based on Fe3si and Fe3Al, 03.06.2009 

Prof. Dr.-Ing. Christoph Leyens, TU Cottbus, Ti-Legierungen für Anwendungen in der Luft- und Raumfahrt, 24.06.2009

Prof. Robert Glaum, Univ. Bonn, Redox-Verhalten und katalytische Eigenschaften von Phosphaten der Übergangsmetalle, 01.07.2009

Dr. Ahmed Shariq, Fraunhofer Center for Nanoelectronic Technologies, Dresden, Three Dimensional Structural and Compositional 

Analyses of Semiconducting Materials using Atom Probe Tomography, 02.12.2009

IIN-Seminar

Dr. Anthony J. Bennett, Toshiba Research Europe Ltd., Cambridge, UK, Indistinguishable photons from electrically-driven 

single quantum dots, 09.01.2009

Dr. Till Hartmut Metzger, ESRF, Grenoble, France, Nanostructures in the light of synchrotronradiation, 16.01.2009

Dr. Alexandre Jacquot, Fraunhofer-Institut für Physikalische Messtechnik, Freibug, Transport properties measurement on 

problematic samples with the 3Omega-Method, 20.02.2009

Dr. Dmitri  Yakovlev, TU Dortmund, Spin coherence of electrons in singly-charged quantum dots, 06.03.2009

Prof. Thomas Heinzel, Univ. Düsseldorf, Transport properties of magnetic barriers, 20.03.2009

Na Liu, Univ. Stuttgart, Three-dimensional metamaterials at optical frequencies, 27.03.2009

Dr. Stefan Mendach, Univ. Hamburg, Spin wave optics in ferromagnetic waveguides and resonators, 03.04.2009

Dr. Ing. Federico  Peretti, TU München, Modelling of coplanar devices and equivalent circuit analysis of their interaction with 

two-level quantum systems, 17.04.2009

Dr. Li Zhang, ETH Zürich, Helical Nanobelts as Motion Converters, 08.05.2009

Dr. Silvano De Franceschi, CEA, Institute for Nanoscience and Cryogenics, Grenoble, France, Quantum transport in self-assembled 

semiconductor nanostructures, 25.05.2009

Ibraheem A.I.  Al-Naib, TU Braunschweig, Microwave and Terahertz Applications of Metamaterials, 28.05.2009

Prof.  Carsten Timm, TU Dresden, Molecular Spintronics and the Master Equation, 05.06.2009

Dr. Michal Grochol, Univ. Erlangen, Exitons and photons in cavity-embedded quantum dot lattices, 03.07.2009

Prof. Geoffrey A.  Ozin, Univ. of Toronto, P-Ink and Elast-Ink Lab to Market, 13.07.2009

Dr. Kevin A. Prior, Heriot-Watt Univ. Edinburgh, II-VI semiconductors: an overview and MBE Growth at Heriot-Watt Univ., 14.07.2009

Jessica E. Bickel, Univ. of Michigan, The effect of Strain on Surface Reconstructions in Compound Semiconductor Alloys, 17.08.2009

Prof. Guiseppe Grosso, Univ. di Pisa, Tight finding model for the electronic and optical properties of multilayer Silicon/Germanium 

nanostructures, 11.09.2009

Prof. Hans von Känel, ETH Zürich, Strained Silicon-Germanium Heterostructures, 25.09.2009

Dr. Fei Ding, IFW Dresden, Versatile strain engineering of quantum dots, microrings and grapheme, 09.10.2009

Dr. Marco Schowalter, Univ. Bremen, Quantification of composition in semiconductor heterostructures using TEM, 23.10.2009

Prof. Xingyu Jiang, National Center for Nanoscience + Technology, Beijing, China, Micro/Nano-Scale Tools for Biochemical Analysis, 

26.10.2009

Carmine Ortix, Univ. Leiden, Netherlands, Electronic properties of rolled-up materials, 30.10.2009

Prof.  Peter Kratzer, Univ. Duisburg-Essen, Theory of the shape evolution of InAs quantum dots on GaAs(001) and In0.5Ga0.5As(001) 

substrates, 06.11.2009

Dr. Samuel Sanchez, IFW Dresden + WPI, MANA, National Institute for Materials Science, Tsukuba, Ibaraki, Japan, Nanorobots: 

the ultimate wireless self-propulsed sensing and actuating devices, 20.11.2009

Prof. Dr. Georgeta  Salvan, TU Chemnitz, Organic semiconductors for spintronic applications, 27.11.2009

Prof. Dr. David Snoke, Univ. of Pittsburgh, USA, Bose-Einstein Condensation of Polaritons in a Two-Dimensional Trap, 21.12.2009
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ITF- Seminars

Dr. Emmanuele Cappelluti, Univ. of Rome "La Sapienza", SMC Research Center, Calculation of Effective Born Charges for Bilayer

Graphene, 12.02.2009

Dr. Jan Kunes, Univ. Augsburg, What do the Correlations do? Selected Materials with Dynamical Mean-Field Approximation, 28.05.2009

Prof. Helmut Eschrig, IFW Dresden, The electronic structure of iron-based superconductors revisited, 11.06.2009

Dr. Roman Kuzian, lnstitute for Materials Science, Kiev, A polar state in SrTiO3 induced by manganese impurities, 25.06.2009

Prof. Gernot Paasch, Dr. Susanne Scheinert, IFW Dresden / TU Ilmenau, Space-charge-limited currents in organics with 

trap distributions: Analytical approximations vs. numerical simulation, 09.07.2009

Dr. Stefaan Cottenier, Center for Molecular Modeling (CMM), Ghent Univ., Belgium, Gamma-Fe4N: facts, hypotheses and open questions, 

21.09.2009

Prof. Christian Elsässer, Fraunhofer IWM, Freiburg, First-principles modelling of interfaces in functional metal-oxide devices, 

24.09.2009

Prof. Józef Spalek, Marian Smoluchowski Institute of Physics, Jagiellonian Univ., and Univ. of Science and Technology, Krakow, Poland, 

A quantum critical scaling of the wave function near the Mott-Hubbard transition, 30.10.2009

Dr. Oliver Fruchart, Institut Néel, Grenoble, Magnetization processes within domain walls and control of flux-closure chirality in 

micron-size self-assembled epitaxial dots, 09.12.2009

Dr. Maurits W. Haverkort, MPI für Festkörperforschung, Stuttgart, Theory of Resonant and non-Resonant Inelastic X-ray Scattering 

of Orbitons and Magnons, 10.12.2009
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Guests and Scholarships

Guest scientists (stay of 4 weeks and more)

Name Home Institute                                                           Home country  

Hanaa Abuzeid National Research Centre Cairo Egypt

Prof. Dr. Victor Aristov Institute of Solid State Physics, Moscow Russia

Dr. Jhon Bados Ipus University of Seville, Spain Columbia

Dr. Nilam Shankarrao Barekar Indian Institute of Technology Kharagpur India

Isil Birlik Dokuz Eylul University Izmir Turkey

Taufik Aljuhuri Bonaedy INHA Univ. Inchean, Korea Indonesia

Christian Bonatto Minella GKSS FZ Geesthacht Italy

Michal Bystrzejewski Univ. Warszawa Poland

Prof. Dr. Chuanbing Cai Shanghai University China

Dr. Ihor Chumak Univ. Lvov Ukraine

Dr. Alexander Darinskiy Institute for Crystallography Moscow Russia

Dr. Fei Ding MPI Stuttgart China

Dr. Evgenia Dmitrieva Algorithm St. Petersburg Russia

Hryhoriy Dmytriv Lvov National University Ukraine

Roger Domènech Ferrer Univ. Autonoma de Barcelona Spain

Feng Fan Shanghai University China

Prof. Dr. Ilgiz Garifullin Zavoisky Phys.-Techn. Institute Kazan Russia

Dr. Vadim Grinenko Inst. for supercond. & solid state physics Moscow Russia

Luminita Harnagea University Paris Rumania

Dr. Oleg Heczko Institute of Physics, Praha Czech Rep.

Dr. GaoShan Huang University of Hong Kong China

Dr. Kazumasa Iida University of Cambridge, UK Japan

Dr. Hemchandra Kandpal Goethe Univ. Frankfurt/Main India

Dr. Olga Kataeva Arbuzov Inst. of Organic and Physical Russia

Chemistry Kazan

Dr. Andrea Rozalia Kellenberger Univ. Politehnica Timisoara Rumania

Dr. Vyacheslav Khavrus Pisarzhevsky Inst. of Physical Chemistry Kiev Ukraine

Prof. Dr. Konstantin Kikoin Univ. Tel-Aviv, Israel Russia

Dr. Timur Kim Paul Scherrer Inst. Villigen, Switzerland Russia

Dr. Xianghua Kong Institute of Chemistry, Peking China

Dr. Vlastimil Krapek Inst. of Condensed Matter Physics, Brno Czech Rep.

Natalia Kuratyeva Nikolaev Inst. of Inorganic Chemistry, Novosibirsk Russia

Dr. Roman Kuzian Inst. for Materials Research Kiev Ukraine

Pavel Leksin Kazan Physical Technical Institute Russia

Dr. Irene Lucas del Pozo Institute of Aerospace Technique Madrid Spain

Dr. Vladimir Lukes Slovak. Univ. of Technology Bratislava Slovakia

Matthias Lutz University of Southampton, UK Austria

Dr. Libo Ma Shandong Normal University Jinan China

Dr. Jiri Malek Univ. Praha Czech Rep.

Dr. Maria Markina Lomonosov State University Moscow Russia

Dr. Igor Morozov Lomonosov State University Moscow Russia

Prof. Alexander Moskvin Ural State University, Yekaterinburg Russia

Dr. Touyana Namsaraeva Buryat State University, Ulan-Ude Russia

Dr. Satoshi Nishimoto MPI PKS Dresden Japan

Dr. Dalibor Paar Univ. Zagreb Croatia

Dr. Jérome Paillier HEITO Paris France

Dr. Jin Man Park Yonsei Univ. Seoul Korea

Prof. Dr. Volodymyr Pavlyuk Ivan Franko Lvov National University Ukraine

Benjamin Podmiljsak Jozef Stefan Institute Ljubljana Slovenia
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Dr. Ashim Kumar Pramanik UGC-DAE Consortiu, University Indore India

Dr. Peter Rapta Slovak. University of Technology Bratislava Slovakia

Dr. Samuel Sanchez Ordonez Intern. Center for Materials Nanoarchitectonics, Spain

Tsukuba, Japan

Angelina Sarapulova Geological Institute Ulan-Ude Russia

Mahdi Sargolzaei Univ. of Sciences and Technology Teheran Iran

Dr. Chandra Shekhar Banaras Hindu University India

Dr. Surjeet Singh Univ. de Paris-Sud India

Dr. Konstantin Skokov Tver State University Russia

Dr. Elena Smirnova A.F. Ioffe Physikal. Techn. Inst. St. Petersburg Russia

Tatyana Vasilchikova Moscow State University Russia

Prof. Alexander Vasiliev Moscow State University Russia

Dr. Evgeniya Vavilova Physical Technical Institute Kazan Russia

Dr. Olga Volkova Moscow State University Russia

Lijuan Wang MPI Stuttgart China

Dr. Dmitry Yakhvarov Inst. of Organic and Physical Chemistry Kazan Russia

Dr. Galina Zakharova Institute of Solid State Chemistry Yekaterinburg Russia

Dr. Michal Zalibera Slovak. TU Bratislava Slovakia

Yue Zhang TU Darmstadt China

Dr. Feng Zhu Changchun Institute of Applied Chemistry China

Agnieszka Zlotorowicz St. Petersburg State University Poland

Dr. Elena Zvereva Lomonosov State University, Moscow Russia

Scholarships

Name Home country Donor

Jayaraj Jayamani India Alexander von Humboldt-Stiftung

Dr. Hengxing Ji China Alexander von Humboldt-Stiftung

Ran Li China Alexander von Humboldt-Stiftung

Prof. Dr. Gang Liu China Alexander von Humboldt-Stiftung

Dr. Qiang Luo China Alexander von Humboldt-Stiftung

Dr. Oksana Kvitnytska Ukraine Alexander von Humboldt-Stiftung

Dr. Guillaume Manilal Lang France Alexander von Humboldt-Stiftung

Dr. Daoyong Cong China Alexander von Humboldt-Stiftung

Ping Feng China Alexander von Humboldt-Stiftung

Dr. Alexey Popov Russia Alexander von Humboldt-Stiftung

Dr. Gang Wang China Alexander von Humboldt-Stiftung

James B. Whitaker USA Alexander von Humboldt-Stiftung

Marietta Seifert Germany Studienstiftung des deutschen Volkes 

Maria Sparing Germany Studienstiftung des deutschen Volkes 

Franziska Schäffel Germany Cusanuswerk 

Silvia Vock Germany Cusanuswerk 

Simon Pauly Germany Cusanuswerk 

Yulieth Arango Columbia EU (AlBan Fellow) 

Sebastiano Garroni Italy EU 

Iwona Dobosz Poland EU

Maria Dimitrakopoulou Greece DAAD 

Mohammed Yehia Taha El Bahrawy Egypt DAAD

Fedor Fedorov Russia DAAD 

Dr. Ahmed Hashem Egypt DAAD 

Trisha Karan India DAAD (IIT-Master-Sandwich-Programm)

Ram Bachchan Kumar India DAAD (IIT-Master-Sandwich-Programm)
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Daniel Henrique Nogueira Dias Brazil DAAD

Roman Rezaev Russia DAAD

Kumar Babu Surreddi India DAAD 

Ivan Tarasiuk Ukraine DAAD 

Alexey Alfonsov Russia Int. Max-Planck Research School 

Anupama Parameswaran India Int. Max-Planck Research School 

Liran Wang China Int. Max-Planck Research School 

Orkidia Zeneli Albania Int. Max-Planck Research School 

Grzegorz Parzych Poland ECEMP Internat. Graduiertenschule

Dr. Alexander Grüneis Austria APART Austria

Fahad Ali Pakistan PIEAS Islamabad 

Ahmed Aboud Mahmoud lgendy Egypt Egypt government

Abdelwahab Hamdy Hassan Egypt Egypt government

Dr. Eslam Mohamed Ibrahim Egypt Egypt government

Mahmoud Abdel-Hafez Mohamed Egypt Egypt government

Dr. Hong Seok Lee Korea Korea Res. Foundation / MURI (NATO)

Kaikai Song China China Scholarship Council 

Jun Tan China China Scholarship Council 

Yiku Xu China China Scholarship Council 

Lin Zhang China China Scholarship Council 

Yang Zhang China China Scholarship Council 

Na Zheng China China Scholarship Council 

Franziska Thoss Germany  Deutsche Bundesstiftung Umwelt

Guest stays of IFW members at other institutes 

Dr. Christoph Deneke Brasil Synchrotron LNLS, Campinas; Oct. 29 – Dec.12, 2009 in the 

frame of the DFG Project “Combined study of optical active microtubes 

by photoluminescence and x-ray micro-diffraction”

Thomas Kroll Centro Atómico Bariloche, Solid State Theory Group, Comisión 

Nacional de Energía Atómica, Bariloche, Argentinia, Feb. 16 – May 14, 

2009 and Oct. 27- Nov. 26, 2009, joint research on FeAs

Martin Philipp Saint-Gobain Paris, France, 13.09. - 10.10.2009, research stay

Franziska Wolny Ohio State Univ. Columbus, Ohio, USA, 4.10. - 30.10.2009, guest stay 

for measurements 

Miroslava Sakaliyska North Carolina State Univ. Raleigh, USA, 01.02.09-30.04.09 research 

stay on Cu-Zn-Al alloys

Kumar Babu Surreddi Univ. Ulsan Korea, 01.02.09-31.03.09, research stay on Al-based 

glassy powder

Prof. Dr. Jürgen Eckert Univ. Vienna, Austria, 12.07.09 – 26.07.09 and 09.10.09 – 24.10.09, 

Guest lectures on Metastable Materials

Dr. Bernhard Holzapfel Physics Dept. Shanghai Univ., China, 03.05.2009 - 26.05.2009, 

Vorlesung im Rahmen einer Gastprofessur

Dr. Jeffrey McCord Institut Jean Lamour - Nancy-Univ. -CNRS Nancy, France, Cooperation 

on magnetic thin film analysis (Three one week stays in Feb., Sept. 

and Oct. 2009)
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The Institute by numbers

Personnel

In 2009 the Leibniz Institute for Solid State and Material Research Dresden employed 523 staff

members, including 106 doctorate students, 39 post docs, 21 guest scientists and 18 apprentices. The

quote of female staff is 38 %. Furthermore, in 2009, the IFW hosted 49 fellows, that came with their

own money to work at the institute. 47 diploma students worked at the IFW and 30 trainees did a

practical course at the institute in 2009. The total number of guest scientists, above all was 135.

Financing

Total budget  ………………………..………… 44,449.7 k€ 

Thereof

Federal States of Germany ………..……..… 14,837.4 k€

Free State of Saxony ……………..………… 14,837.4 k€ 

Third party funding spent …………..……… 14,518.9 k€

Return on infrastructure, interest, royalties .. 256.0 k€ 

Third party funding

by the DFG …………………..………...…… 2,724.0 k€ 

by the EC  …………………....……………… 3,822.5 k€   

by the Federal States of Germany ..…..…..… 1,501.6 k€

by Free State of  Saxony ……..…...………… 4,295.5 k€

by industry ………………..……..…………  1,358.7 k€

by foundations / others ……..…...………… 816.6 k€

Total ……………………………..……….… 14,518.9 k€

Expenditures 

Remuneration costs …………….………….… 19,333.8 k€

Equipment, infrastructure and consumables .... 10,338.8 k€

Investment  …………………………………… 14,776.1 k€

Total  ……………………………..…………… 44,448.7 k€

Patents 

By 31 December 2009 the institute can boast of a total of 119 German and 198 patents registered

abroad. In 2009 a total of 12 patent applications were registered.

Personnel according to organisational units 2009

8%
6% 2% 4%

80%

Scientific Institutes

Administration

Apprentices

Research Technology Division

Executive Board/Support Staff



Boards    119

Board of trustees

Dr. Petra Karl, Saxon Ministry of Science and Art - Head -

Liane Horst, Federal Ministry of  Education and Research

Prof. Dr. Konrad Samwer, Univ. Göttingen

Dr. Hans Rainer Hilzinger, Vacuumschmelze GmbH & Co Hanau

Scientific Advisory Board

Prof. Dr. Reiner Kirchheim, Univ. Göttingen, Germany -Head-

Prof. Dr. Gertrud Zwicknagl, TU Braunschweig, Germany 

Dr. Hans Deppe, AMD Saxony Ltd & Co. KG Dresden, Germany

Prof. Dr. Dominique Givord, Laboratoire Louis Néel, Grenoble, France 

Prof. Dr. Alan Lindsay Greer, Univ. of Cambridge, U.K.

Dr. Giselher Herzer, Vacuumschmelze GmbH & Co Hanau, Germany

Prof. Dr. Max Lagally, Univ. of Wisconsin-Madison, U.S.A.

Prof. Dr. Xavier Obradors Berenguer, Univ. Autònoma de Barcelona, Spain

Prof. Dr. George Sawatzky, Univ. of British Columbia Vancouver, Canada
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IFW’s Research Program 2010

1. Superconductivity and superconductors
1.1 Electronic structure and fundamentals

1.2 Superconducting materials

1 P1 Superconducting transport systems and magnetic bearings

1 P2 YBCO tape conductors

1 P3 Nanoscaled inhomogeneities in superconductors (Pakt 2009) 

2. Magnetism and magnetic materials
2.1 Theoretical and experimental fundamentals

2.2 Magnetic materials 

2.3 Magnetic microstructures

2.4 Phase equilibria and single crystal growth

2 P1 Pulsed high magnetic fields

2 P2 Magnetic shape memory alloys

2 P3 Energy efficient cooling with magnetocaloric materials (Pakt 2010)

3. Molecular nanostructures and molecular solids
3.1 Nanotubes and fullerenes

3.2 Conducting polymers and organic molecular solids

3.3 Molecular Magnets

3 P1 Manipulation of nanoscaled magnets (Pakt 2007)

4. Metastable alloys
4.1 Solidification and crystallization

4.2 Corrosion and hydrogen

4.3  Materials for sports

4.4 Bulk amorphous metals and composite materials

4.5 Lithium-ion batteries

4 P1 Cluster materials with competing properties (Pakt 2008)

5. Stress-driven architectures and phenomena
5.1 3D micro/nanoarchitectures 

5.2 Quantum dots

5.3 Ferroic oxid films

5.4 SAW systems

5 P1 New multiferroic oxides (Pakt 2006)




