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Summary

A simulation model for infiltration of water in layered soils, written in CSMP (Con-
tinuous System Modeling Program), is described.

The influence of the occurrence of a compacted layer or a loosened topscil on the
infiltration behavior is checked. It is concluded that this behavior can be predicted
if soil parameters are available.

In an appendix special attention is paid to the problem of choosing the proper size
of the compartments in which the soil is divided and the necessary averaging procedure.

At last the magnitude of the time steps is discussed.

Introduction

Tillage is practiced to control weeds and to influence soil structure or the physical
properties of the soil. These physical properties are of primary importance to plant
growth, because they influence the mechanical resistance to root growth, the possible
rate of intake of water, the chance of pool formation during rainfall, the availability
of the soil water and the amount of oxygen in the soil.

In this paper the main interest is in the movement of water through the soil as in-
fluenced by plowing and the possible occurrence of hardpans under the plowed layer.

The variation in volumetric water content (@ in cm3.cm-3) of a soil, both in time
and space, is usually described by the second order partial differential equation:
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in which K(®) = hydraulic conductivity of the soil in ¢cm . day-t, and — = gradient
of the hydraulic potential in cm H2O . cm-1. ox

As the hydraulic conductivity, K(6), depends on the volumetric water content, it is
impossible to obtain from Eq. 1 an analytical expression for the change of the water
content with time and depth, and the problem must be solved by means of numerical
methods.

Procedures to compute the infiltration into soils have been developed by Philip (1955)
and Hanks and Bowers (1962). The former solution requires a uniform soil and a con-
stant initial water content throughout the soil, the latter one requires constant boundary
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conditions throughout the computation.

In this paper a numerical method is presented, which yields dynamic temporal and
spatial knowledge of the water status of any non-uniform one-dimensional soil system
which can be divided into homogeneous layers of describable conductivity and matric
suction as a function of the water content.

The method is presented in the language CSMP (Continuous System Modeling Pro-
gram), which improves readability to a large extent by providing a large number of
subroutines, especially for the handling of numerical integration.

The simulation model

The simulation program for the unsaturated flow of water in soils is given in Table 1.

To describe the movement of the soil water, a model of a soil column of unit area,
divided into a number of compartments, not necessarily of the same size, is considered.

In Fig. 1 a schematic representation of a slab from the middle of the column is given.
For convenience the given compartments are referred to as 1, 2 and 3.

At any moment the volume of water in compartment 2 (VOLW2 in cm?) is defined
as an integral with the formal statement:

VOLW2 = INTGRL(IVOLW2,NFLR2)
in which IVOLW2 = initial amount of water in compartment 2 in cm3, and NFLR2 =
net flow rate into compartment 2 in cm3.cm-2. day-t.

The net flow rate is calculated from the flow rates over boundary 1 and 2 (V1 and
V2 in cm3.cm2. day!) with:

NFLR2 = V1 — V2

It is assumed that the water in each compartment is distributed homogeneously, so
that the volumetric water content (WC in cm3.cm=3) is calculated by dividing the
amount of water with the thickness of the compartment (TCOM in cm):

WC1l = VOLWI1/TCOM1

WC2 = VOLW2/TCOM?2

To calculate the velocities of flow, it is assumed that the flow of water occurs from
the middle of one compartment to the middle of the adjacent one and is governed by
Darcy’s law. This law states that the velocity is in the same direction as and propor-
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Fig. 1. Schematic representation of a part from the middle
L ; of the soil column.
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tional to the driving force. Since the driving force is proportional to a potential gradient,
the velocities (V1 and V2 in cm3. cm-2. day-1) are calculated with:

V1l = KAV1 X (P2—P1)/(0.5 X (TCOM1 + TCOM2))

V2 = KAV2 X (P3—P2)/(0.5 X (TCOM2 + TCOM3))
in which KAV1, KAV2 = average conductivity in cm . day-!; and P1, P2, P3 = pres-
sure equivalence of the hydraulic potential in cm H:O.

The average conductivities are calculated from the conductivities of the two compart-
ments involved. When the thickness of the compartments is in the order of centimeters,
this method of averaging may be critical. It is shown in Appendix 1 that the arithmetic
average is a good choice. Hence:

KAV1 = (K1 4+ K2)/2

KAV2 = (K2 + K3)/2
The conductivity of each compartment is obtained from an experimentally determined
conductivity curve and the volumetric water content of the compartment with:

K1 = AFGEN(KTB1, WC1)

K2 = AFGEN(KTB2, WC2)

The AFGEN function interpolates linearly in the given tabulated functions, entered in
the program in the following form:

FUNCTION KTB1 = (0.05,1.E-10), (0.10,1.E-5), (0.15,5.3E-3)

This statement presents the relation between the conductivity, the last figure of each
pair and the volumetric water content, the first figure of each pair. By entering dif-
ferent relations for each compartment it is possible to introduce a layered soil. The
actual interpolation is then most conveniently done by a TWOVAR function, which
enables the simultaneous use of water content and depth as independent variables. This
function is not given in the manual, but is described in detail by Luke (1968).

In the same way the matric suction of the compartments (S1, S2 in cm H20) is ob-
tained from tabulated functions, which again may differ for different compartments,
with:

S1 AFGEN(SUTB1, WC1)

S2 AFGEN(SUTB2, WC2)

If an hydraulic head is present, the water in the soil may be above atmospheric pres-
sure but the relation between the volumetric water content of the soil and its matric
suction is generally only given in the region below atmospheric pressure. The com-
pressibility of water is so low, that for a completely saturated soil the potential increases
practically with an infinite rate with increasing water content. Such an anomaly in the
suction curve does not exist in practice, because always some air is included, which
is compressed according to Boyle’s law. Hence the suction curve may be extended in
the region above atmospheric pressure with a finite slope.

To arrive at the hydraulic potential (P1, P2 in cm H:0), the gravity potential must
be added to the matric suction. This gravity potential (GRP1, GRP2 in cm H:0) is
calculated with respect to the depth of the bottom of the column as:

GRP1 = DEPTHT — DEPTH1

GRP2 = DEPTHT — DEPTH2
in which DEPTHT = total length of the column in cm; and DEPTH1, DEPTH2 =
distance from the middle of the compartment to the soil surface in cm.

Thus:

Pl = S1 + GRP1

P2 = S2 4+ GRP2
It can be secen that all variables are calculated from the state of the system at any
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moment. Hence, the velocities depend only on that state and are independent of each
other.

To obtain a reasonable total length of the column and a reasonable solution, twenty
compartments are introduced, the first ten being 2 cm each, the next five 4 cm each
and the last five 6 cm each. Hence, all calculations must be performed twenty times.
This is most easily done with FORTRAN DO loops. To perform in that case all inte-
grations simultaneously, the following formal statements are introduced:

VOLW1 = INTGRL(IVOLWI1,NFLR1,20)

/REAL IVOLW(20), VOLW(20), NFLR(20)

/EQUIVALENCE (IVOLW(1), IVOLW1), (NFLR(1), NFLR1), (VOLW(1), VOLW1)

The flow rates over the first and the last boundary must be calculated separately,
according to the imposed boundary conditions. These may be any time-dependent po-
tential or flux rate.

The flow rate into the first compartment (FLR(1) in cm3.cm-2. day-1) equals the
rainfall (RAIN in c¢m . day1), which is introduced as a function of time, with:

RAIN = AFGEN(RAINTB, TIME)

Pool formation can be accounted for by introducing another integral, which keeps track
of the water on the soil (PLDPTH in c¢m), as follows:

PLDPTH = INTGRL(0.,RAIN-FLR(1))

FLR(1) = FCNSW(PLDPTH, AMIN1(RAIN, FLOW), AMIN1(RAIN, FLOW),

FLOW)

FLOW = KAV(1) X (PS-P(1))/(0.5 X TCOM(1))
in which

FCNSW = CSMP function switch, which takes the value of the second argument,

if the first argument < 0, the third one, when the first = 0, and the
fourth one when the first > 0.

AMIN1 = functional statement, which takes as output the smallest of the two
arguments.

PS = pressure equivalence of the hydraulic potential at the soil surface in
cm H:0.

PS is calculated as the sum of the matric suction at the soil surface (SSURF in
c¢cm H20), the gravity potential (DEPTHT) and the hydrostatic pressure of the water
above soil (PLDPTH) with:

PS = SSURF + DEPTHT -+ PLDPTH

It is assumed that when there is a layer of water on top of the soil, or when it is
raining, there is always a thin layer saturated at the surface. This means that in that
case SSURF is always zero.

The number and the thickness of the compartments is choosen in such a way that
the phenomenon that is studied does not affect the water content of the last compart-
ment appreciably. Hence the flow rate over the last boundary is then always zero:

FLR(NL+1) = 0.
in which NL = number of compartments considered.

This constancy of the water content must of course be tested in the actual calculations.

An alternative boundary condition is obtained by assuming a stationary water table
at the bottom of the column.

The amount of water infiltrating into the soil column (CUMINF in cm) is obtained
by integrating the upper flow with:

CUMINF = INTGRL(0.,FLR(1))

Since the conductivities are in cm . day-1, the controls on the TIMER card are also
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#ustopibiaadasedta INITIAL PART OF THE pROGRAMﬁéaqﬁﬁaaauaﬁuénhu
INITIAL

NOSORT

FIXED NLs I9 No J

PARAMETER NL = 20,

PARAMETER GRAV = 1.

*

STORAGE S(30)

STORAGE PSTAR(30)

STORAGE NDEPTH(30)

STORAGE TCOM(30)

STORAGE COND(30)

STORAGE FLR(30)

STORAGE CND (30)

STORAGE WwC(30)

STORAGE wCcl(30)
speppraRaarreertesdDEF INTTION OF THE INVARIABLE GEOMETRY#a#s#tas@diatesis
# AREA IS SET TO UNITY (CM##2)
TABLE TCOM{1-720) = 10#2,95%4495%6.

DEPTH(1) = ,5%TCOM(1)
D0 190 I=2.NL
DEPTH(I) = NEPTH(I=1)+.5#(TCOM(I=1)+TCOM(I))
199 CONTINUE
DEPTHT=0.
DO 191 N= 1eNL
DEPTHYT = DEPTHT+TCOM(N)}

191 CONTINUE
TABLE ADEPTH(1=6) = 0ey100910s191249124151000
STORAGFE NXYC(6) sADEPTH(6) sNXYS(6)
FIXED ITAGIsITAG2
INCON ITAG1 = o
INCON 1TAG2 = 0
sasdparberaeantEsrerttDEFINITION OF THE HYDRAULIC PROPERTIES OF SQIL#ustanitsas
FUNCTION SUTRY = «03430000009¢0692000049¢099280009¢129900e9¢159 oee

420090189240490219)7009026912069¢279924943097409033962490369 see
546906399430944293]1,94459609045990091¢4599=6000s .

FUNCTION SUTB2 = «03¢300000+92¢06920000¢9:0992800+9¢12+900e9¢159 oo
420'"18'240.9-21’170"074’12009027’920’.3097409-33062-9'369 e
54090399430904293149¢459609445990¢91¢4599=6000a

FUNCTION SUTH3 = 4034900000e9¢069150000+9¢09934000¢24129900e0 cee
2159250009018995009¢21944009024921009¢279120¢93097709¢339480es ooe
03692449¢3992eR9¢30490491039¢=7000.

FUNCTION SUTR4 = .039900000.!-069150000-!.09934000-9.12’90009 coe
0159250069¢1899500¢421944009024921009¢279120096309776943394809 a0e
036924¢9¢3992eR9039490491¢399=-7000.

FUNCTION SUTHS = 403439935,9406933485,9¢099270354412,20585¢9 x
0159161350941 897685,9¢2193190¢962491675,942T79665¢3¢2093310 ess
-31’258.'032921209.330]75.9.349143.00359116-9.36’94.!037975.! see
#3R95909¢39945.904093609,4192849¢429021090439154904491009¢459509000
04690e0916469=50000

FUNCTION SUTRA = 403+39935,9¢06933485.90409927035.9412420585¢9 cee
e1591413%¢941897685.90219319009¢2%91675,94279665¢9.20933100 cese
31 9258490329212¢9,33917509¢34914349635911669036994,9¢3797549  o0e
©38959.9039945,904N9360944192B09042921094%4391509044410490459509000
04690091 e469=5000.

FUNCTION COTAY = o03¢14lE=79040692.E=69¢0951¢4E=59012940E=4924¢150 see
1elE=3941842,4E=39,2192.5E=3902493.FE~39,2791e9E=29,30971E-29 0w
.339107E‘10.36’n319.3990699.4291l6810459100690459’ll.5

FUNCTION COTR2 = o0341elF=7940692eE=69¢099)e4E=S041294eE=49.4159 0o
1e1E=39¢1892.4F~39,2192.5E=3922493eFE=394279149E-2943097e1E=29 oee
03391 e7E=19¢3696319039904A9964291e6R9045910e69445991145

FUNCTION COTR3 = 20341e1F-109021911F~109¢2492¢3E=79427927E=39 s
0309039339019 96369¢59946399497963949101

FUNCTION COTB4 = .03!101E‘]09021!1ClE'10'.?492.3E'790?7920IE‘B' oo
©309¢0390339e159¢369¢599¢399e97943949101

FUNCTION COTRE = 40301¢5E=10901701e¢5E=1090e1896e35E=59,19e8¢72E"S 000

02092eF=49421964485F=4942298412F~4942391.F=39e2491e668E=3942%, ser

2e¢3TE=39e2696ePE=3442791,5F=29.2891e8BE=2942993,24F=29,30s e

5e35E=2943)198eFE=29,329¢129¢33941894349.209e35943694369.57 soe

Table 1. CSMP program for unsaturated water flow in layered soils.



37907390389 ¢B6903091¢27904091096904192e249¢429288404393eT43%  eee
04493096904594.290469447

FUNCTION COTHBAG = ¢034165E=100e1791¢5E=109¢18+6¢35E=59,19+8Be72E=Ssesse
e2092eFE~b9,2194e85F=64942298012F=4942391eF=39¢2491¢68E~39+25, cee
2¢3TE=3902696072F"3442T9145E=29.2891.88E=29.2993,24E=29,309 ces
5035E'2!o3198-F'2’032901?90339018’034’o2090359036’.369o57’ 2o

0379¢739e¢383e86h90309102700409016969¢4192:62490¢4292¢88904393e749 oo
0449309694594 029e469407
TABLF WCI(1=20) = 4170179170509 170844417117941715094238979 40
¢306009+306309+306584¢306859,307289.307819¢3083694308% 900
+309459431020443113903124943135,4,3146
DO 148 I= 1eNL
IVOLW(I) = WwCI(I)®#TCOMI(T)
148 CONTINUF
suBsareRsEeRIReRaRsRstDEF INITION OF THE BOUNDARY CONDITIONSH##®#uutasuatasataly
PARAME TER WCSAT] = 459
PARAMFTER WCSAT? = 46
WCSURF = WCSAT1
7

CNUS = TWOVARICOTRLs69ADEPTHYNXYCs04 s WCSURF 9 TTAGL)

DYNAMIC

NOSORT

/ REAL  Y1VOLW(30)4v0] w(30) (NFLR(30)

/ EQUIVALENCKE (IvOLW (1) IVOLW1) " (NFLR(1)*NFLR1)* (VOLW(1)*VOLW1)
VOLW] = TNTGRL UIVOLW1eNFLRLs20)

FUNCTION RAINTB = Qe90a9eN1948e941094849,100190091090,

RAIN = AFGEN(RAINTBoTIME)
wuBdpEateet et CALCULATION OF HYDRAULTIC PROPERTIES OF THE |LAYERSH##at##assson
HO 3 N = 14NL
WCIN) = VOLW(N)/TCOM(N)
CONDINY = TWOVAR(COTBLs64ADEPTHeNXYCoDEPTH(N) sWCIN),ITAGL)
S{N) = TWOVARISUTB) 469 ADFPTHeNXYSIDEPTH(N) «WC(N) s ITAG2)
PSTAR(N) = «14¥%¥S(N) +{OFPTHT=DEPTH(N) ) #GRAV
3 CONTINUF
DO 13 N = 24NL
CND(N) = (COND(N=1)+COND(N)) /2,
13 CONTINUE
DO 10 N = PyNL
FLRINY = CNDU(N)# ((PSTAR(N=1)=PSTAR(N) )}/ (S% (TCOM(N)+ eos
TCOMIN=1))))
lo CONTINUF
SSURF= TWOVAR(SUTBY 96 ¢ ANFPTHeNXYS e 0. sWCSURF ITAGR)
CND (1) =(CNUS+COND (1)) /2,
FILOW = CNU(1) # (PSTARS=PSTAR(1))}/(0.5%TCOM(1))
FLR(1) = FCNSWI(PLNPTHIAMINI(RAINGFLOW) 9 AMIN] (RAINIFLOW) 9000
FLUW)
PLUPTH = INTGRL(0,9RAIN=FLR (1))
FLR(NL*+1) = 0o
DO 5 N = 1yNL
NFLR(N) = F) RIN)=FLR(N+])
5 CONTINUF
CUMINF = INTGRL(0,eFLR(])?
et e ARt wOOTPUT CONTROL 3ttt it dedtdess
A=IMPULS (0e 4 PRDEL)
IF (A#KEEP .| . Te0e®) GOTO 6
104 FORMAT (13F10e4/12F1004)
WRTITE (helus)
106 FORMAT (1H +33HWATERCONTENT FOR DIFFERENT DEPTHS)
WHRITE (69104) (WC(N)9eN=T1eNL)
WRITF(6+101)
101 FORMAT(1H 945H HYDRAULIC PRESSURE HEAD FOR DIFFERENT DEPTHS)
106 FORMAT(10F1344)
WRTITE(hel0A) (PSTAR(N) 9N = 1eNL)

6 COMTINUF
METHOD MItNF
FINISH WCl = =,59WC1 = 1,5+TELLER = 10000
TIMER FINTIM = laasPKDEL = 0001
FND
STOP

Table 1 (continued).
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in days. In this case the finish time is 1. day and the interval at which output is re-
quested, defined by a print delay, is 0.01 day, i.e.:

TIMER FINTIM = 1., PRDEL = 0.01

The integration is performed with the predictor-corrector METHOD of MILNE,
which chooses its own time step, according to an upper boundary at the difference
between the predicted and the corrected value of the fastest changing integral. For the
definition of the output, the CSMP PRINT and the FORTRAN WRITE capability
are used.

Results

Simulation runs are made with three different soil types representative for the plowed
and unplowed light humous sandy soils of the no-tillage experiment in Achterberg
(Bakermans and de Wit, 1970). These are the following: an unplowed soil with a satur-
ated conductivity of 4.2 cm . day-!; a soil, consisting of a plowed deck with a saturated
conductivity of 11.5 c¢m . day"!, overlying an unplowed subsoil with a saturated con-
ductivity of 4.2 cm . day-t; the same plowed soil, but with a compacted plow zone be-
tween 10 and 12 ¢cm having a saturated conductivity of 1.1 cm . day-1.

While no data were available for the unsaturated conductivities of these soils, use
was made of the experimental formula of Rijtema (1969), to calculate the values of
the conductivity from the suction curves.

The suction curves (pF-curves) and conductivity curves are given in tabulated form
in the program in Table 1. For the unplowed soil in SUTB5 and COTBS, for the com-
pacted layer in SUTB3 and COTB3 and for the plowed soil in SUTB1 and COTBI1.

The simulated rain is gradually increasing from zero at the onset of the simula-
tion to 20 mm . h-1 at time 0.01 day, stays then the same on to 0.10 day and is further
on absent.

0 15 20 25 30 35 40 @5 50 cmdcm-3
" WATER CONTENT

—— calcuiated
- . --extrapolated

x unplowed soil

» plowed soil with
plow layer

o plowed soil without
plow layer

201

Fig. 2. Water content profiles for
the three different soil types at time
zero (initial) and at the end of the
simulated rain, i.e. 0.10 days.

30
cm
DEP
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In all cases the profile started at an equilibrium situation, assuming a ground water
table at 3.00 m, which means that the top layer of the soil is about at field capacity,
but has not for all soil types the same water content. The initial water content profiles
for the first 28 ¢cm of the profile are shown in Fig. 2. As is explained earlier, the water
contents are calculated in the middle of the compartments. In the homogeneous soil
these points are connected by a solid line. On the boundary between different layers
the exact shape is not known and the extrapolation is given as a dashed line. If one is
interested in more detail, smaller compartments have to be introduced.

In Fig. 2 are also shown the water content profiles at 0.1 day, hence at the end of
the simulated rainfall.

Least water has entered the unplowed soil with the lowest saturated conductivity. The
water has however reached a greater depth, because the initial water content was highest.

Plowing of the soil leads to a faster intake of water, whereas the greater steepness
of the conductivity curve causes a somewhat steeper wetting front. The occurrence of
the hardpan prevents, to a certain extent, leakage to the subsoil. The difference in maxi-
mum intake rate of the water is demonstrated in Fig. 3, where the height of the water
above soil is given as a function of time, for the three soil types. The unplowed soil
is covered by a pool of 2.25 cm at the end of the rainfall. There remains water on that
soil until 0.35 day, so that the upper part of the soil is still saturated at that time, which
may result in oxygen deficiency.

After plowing the height of the water above soil does not exceed 1 cm. The com-
pacted layer causes a somewhat slower intake, which leads to a more pronounced
pool influence, although the effect is small.

It is obvious that although the total pore volume is little affected by plowing, there
is a clear distinction in behaviour under heavy rain between the plowed and the un-
plowed soil. This is entirely due to the complete different pore size contribution, i.e. the
percentage of large pores being greater in the plowed soil (Ouwerkerk and Boone, 1970).

The situation 7.2 hours after the end of the simulated rainfall is given in Fig. 4. As
can be expected from Fig. 3, all three profiles started already drying at the top, while
the lower part of the profile is still wetting. It should be noted that the effect of hyste-
resis is not taken into account, the same suction curve being used for both processes.

HEIGHT OF l
WATER ABOVE
SOIL end of rain i
cm x  unplowed soit
« plowed soil with plow tayer
20 o plowed soil without plow layer

18

y

start
1.4 Jof rain

12
10
8

6
4
2

2

o5 0 15 P F3 K7 ES %5

TIME days

Fig. 3. Height of water above the soil, for the three soil types, as a function of time.
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— 15 20 25 30 35 0 45 cm3cm-3 Fig. 4. Water content profiles for the
"/ WATER CONTENT  three soil types 7.2 hours after the end
of the simulated rain.

— Calculated
2 me-. extrapoated

= unplowed soil
« plowed soit with plow layer
254 w plowed soil without plow layer

30

35

45

50

55

60
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DEPTH

The highest water content is found in the unplowed soil, caused by the extended occur-
rence of the pool.

The differences between both plowed soils are not striking. However the hardpan
leads to a slower drainage of the top soil, so that more water is left there.

Although from these figures significant differences in behavior are shown among
the various treatments, it is difficult to draw definite conclusions because of the un-
certainty in the magnitude of the soil parameters. It is however shown that, if sufficient
accurate data are available, it is possible to predict the behavior of the soil under dif-
ferent moisture regimes and management practices.

Appendix 1: The average conductivities and the size of the compartments

The method of Milne was used to perform the integration along the time axis. This
method chooses its own time step (Appendix 2), according to a rather strict error cri-
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terion, which is described in the CSMP Manual. Accordingly the steps are small enough
to consider the integration in time as a continuous process.

However the integration in depth is done in a discontinuous manner because the
column is divided in a relatively small number of compartments. This means that the
calculated flow of water throughout the column may not only depend on soil parameters
but also on the depth of the compartments and the method of averaging the conducti-
vities between the compartments. The most simple way to evaluate whether artefacts
are introduced, is by executing the program for smaller and smaller compartment sizes
until the results do not change appreciably any more.

Simulated results with compartment sizes of 4, 2, 1 and 0.5 cm are given in Fig. S,
for the unplowed soil, to show that the present compartment size of 2 cm gives accept-
able results.

The method of averaging the conductivity between two compartments and the size
of the compartments may also be evaluated in another way. For this purpose the par-
tial differential equation in which Darcy’s law and the conservation equation are com-
bined is considered:

80 ¢

op*
ot~ ax FO) 50 ®

in which: @ = volumetric water content in ¢cm3.c¢m-3; t = time in seconds; x =
distance in cm, positive in the direction of flow; K(®) = hydraulic conductivity in
cm . sec'l; P* = the pressure equivalence of the hydraulic potential in cm H.O.

05 10 - - - Y 50 emend
we

TIME= 08 day

20

24

28

32

36
cm
DEPTH

Fig. 5. The influence of the size of the compartments on the infiltration profile.
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For vertical flow the hydraulic potential in this equation is equal to the sum of the
matric potential and the gravity potential.

Replacing the gradient in matric potential by a gradient in moisture content the equa-
tion reads:

60 0 06

Z 2D bl

ot (Sx( (6) ox
in which: D(@) = diffusivity in cm?.sect = K(@)/C(@); C(®) = the differential
moisture capacity d®/dP, in (cm H:0)-1; P, = matric potential in cm H:0; h =
position in the gravity field.

In the absence of gravity influence, as for horizontal flow, the equation reduces to:

06 0 60

= = = (D(O) — 3

ot 6x( (©) (3x) ()

For a uniform non-swelling soil with a uniform initial water content and wetted at
one side, the boundary conditions are:

@ — O forx = 0andt > 0 (f = final)
® = @ forx > 0and t = 0 (i = initial)

oh
+ K(6) 1) (2)

By applying the Boltzmann transformation, 1 = x/V¥t, to Eq. 3 and the boundary
conditions, the partial differential equation in x and t, is transformed into an ordinary
second-order differential in 1:

0, 140

d .d

— 5 L = 4

a PO g T30 @
with boundary conditions: ® = @; for | = »; ® = @ for 1 = 0.

Eq. 4 can be rewritten as:

d2‘(~) - L (ﬁ dD((i) de

a: — PO G G+ Ta T @) ®

This equation may be solved with a CSMP program with 1 as the independent semi-
continuous variable. This results in a relation between 1 and @, and this relation may
be compared with the similar relation obtained from the ‘compartmentalized’ soil, as
discussed in the paper. In this way it can be judged whether the method of averaging
between the compartments and whether the size of the compartments are reasonable.

The relation between 1 and @ is obtained by integrating Eq. 5 twice, so that the
dynamic part of the CSMP program reads as follows:

WC2D = —1./D X (L/2 X WC1D + DI1D x WCI1D) (6)

Eq. 6 for the second-order differential of the water content is identical to Eq. 5, WC2D
standing for d2 /d12, WCID for d$/d1 and D1D for dD/d1. The variable L is intro-
duced as the independent variable with the statement:

RENAME TIME =L
The differential quotient of D is calculated with the CSMP function:
D1D = DERIV(D1DLD)
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D1DI being equal to (dD/d1); - o.

The first-order differential quotient is then given by:

WCID = INTGRL(WC1DI,WC2D) @)
in which WCI1DI stands for (d@/d1),_,.

The value of WC itself is obtained by:

WC = INTGRL(WCIL,WCI1D) 8)

in which WC stands for ® and WCI for ©:.
Philip (1955) used the sorptivity to characterize a soil with respect to its infiltration

behaviour. The sorptivity (S in cm . secfé) is defined as:

fee)
S =12/ (B—dl 9)
The sorptivity is calculated in the program with:
S = INTGRL(0.,WC) (10)

During the computation the value of ); is not known, so that the value of S obtained
from Eq. 10 must be reduced afterwards by the rectangle ©&; X 1. Of course equal
values for S do not imply similar shapes of the @ —1 relations.

The initial values D1DI and WCIDI are needed to start the calculation. These two
values are connected by means of the chain rule:

(dD(©)/d1)1—0 = (dE/d1)1—0 X (dD(E)/d@)i-0.

Y2 e
em3cm-3 Spesem
0
WC1DI
-0.15L
-0.30
201
s} -0.60
’/
R , | ,;/. . o . . 8
10 20 30 om sec 12 kS 20 25 0 B acm3 ©
Fig. 6. The relation between th_(l) and Fig.7. The relation between the initial slope
water content (%) with an initial water con- of the 9-1 curve (WCI1DI) and the initial
tent (¢%;) of 0.228. water content (17;).
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semi-continuous solution

em3em-3
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“weighted“average
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Fig. 8. The sorptivity (S) as a function of time (a) and the relation between x)/t () and water con-
tent (@) (b) for different averaging procedures compared with the semi-continuous solution.

The value of (dD(@)/d @)1, is known, because the relation between D and @ is known.
Choosing a value for (d©@/d1);_, provides a value for (dD(®)/d1)1—o.

Introducing in the CSMP program an arbitrarily chosen value of WCI1DI, a relation
between @ and 1 is obtained, as shown in Fig. 6, for WC1DI = — 0.425. The constant

DEPTH

150

WATER CONTENT —>

KU

KL

Fig. 9. Schematic representation of two adjacent
compartments during infiltration,
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value @);, which is approached with increasing 1 equals the initial water content of
the soil.

By executing the program several times, with a range of initial slopes, the relation
between WCIDI and @; is found. This relation is graphically presented in Fig. 7, for
a final water content ®; = 0.46 cm3.cm-3 and the unplowed soil.

To obtain the relation between @ and 1 for any given initial water content (&) of
the soil column, the proper value of WCIDI is read from Fig.7 and entered in the
CSMP program. The value of the sorptivity (S) is also obtained in this manner. In
Fig. 8a this sorptivity is compared with the sorptivity obtained from the ‘compartiment-
alized’ program, using three averaging procedures for the conductivities and compart-
ment sizes of 2 and 4 cm. At early stages the values of the ‘compartimentalized’ pro-
gram differ considerably from the proper value, especially with the coarse grid, because
of the small number of compartments involved. In all cases however, the sorptivities
approach the proper value even with the largest compartments. It appears that the
arithmetic average gives the best results within the shortest time.

In Fig. 8b the @1 curves for the three methods of averaging are compared with the
one obtained from the semi-continuous integration. Although there are small differences
at the dry end of the column, the arithmetic average gives here also reasonable results.

Appendix 2: The magnitude of the time step

When the method of Milne or the method of Runge-Kutta is used for integration, the
CSMP program chooses its own time step, according to a rather strict error criterion.
In the examples given here, the time step varies between 4.5 X 10-6 and 6.25 X 10-4 day.

These small time steps are due to the high values of the diffusivity, especially at high
water contents. The size of the time step itself may be evaluated as follows.

Consider a situation as presented in Fig. 9, where a soil at the top touches a some-
what drier soil at the bottom. In the absence of gravity influence, the net flow rate into
the bottom compartment equals:

NFL = D X A—@ , since the flow out of that compartment is zero.

Ax
The system will start to oscillate when in one time step the change in water content
is greater than 0.5 X A @. This implies that:

Dx 29 At=nOX Axx 05 or
Ax
_(Ax)2
At = D X 0.5

Hence, in the absence of gravity, the time step is proportional to the thickness of the
compartments squared and depends furthermore on the diffusivity, which depends
again on the water content. For a given soil it is obvious that the same accuracy is
obtained after a short time (t) at a shallow depth (x), as after a longer time (nt) at a
greater depth (n2x). This reasoning holds only if the system is stability controlled as
is the case with these distributive systems.

If gravity is involved, the net flow rate into the lower compartment equals the sum
of the net diffusion flow and the net gravitational flow:
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NFL = NDF 4 NGF
The net diffusion flow is still the same:
AB
Ax
The net gravitational flow equals:
NGF = (KL-KU) X 1/1

in which KL = hydraulic conductivity of the lower compartment, and KU = hy-
draulic conductivity of the upper compartment.
As KU may be approximated by:

NDF = D X

dK
KU = KL — — X A@,
16 AYC
. . dK . .
in which 10 is the slope of the conductivity curve, the total net flow rate equals:
AO  dK
NFL = D X — — X (@]
Ax Tde <8
This system will start to oscillate when:
ABO dK
D ' R fmy e ™~ .
(D x Ay d(_)x AO) X At=A6O X Ax X 0.5
or
2
At — 0.5 (Ax)

D4 dK/dO x Ax
From the foregoing equation it is clear that in the presence of gravity influence the
time step is proportional to /Ax—squared in situations where

D >>dK/d@ X Ax
and is proportional to AXx in situations where:

dK/d® X Ax>>D
The given formula applied to the saturated unplowed soil from this paper gives that
the time step is proportional to Ax in situations where:

Ax>>D X d@/dK, ie.

0.46
>> 42 — = .
Ax 00 X 44 453.6 cm

Table 2. The magnitude of the time step for simulation runs
TCOM (cm) DELT (days) with different compartment sizes. Calculated as the average be-
tween time = 0. and 0.5 day.

0.5 1.95 X 10-4
1 7.85 X 10-4
2 3.25 x 10-3
4 1.25 X 10-2
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This means that for all relevant situations in the scope of this paper the time step is
proportional to Ax squared, as is shown in Table 2 for the unplowed soil.

Only in soils where the diffusivity at saturation is very low, the time step becomes
proportional to Ax.
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